Science.gov

Sample records for aligned phospholipid bilayers

  1. Magnetically aligned phospholipid bilayers with positive ordering: a new model membrane system.

    PubMed Central

    Prosser, R S; Hwang, J S; Vold, R R

    1998-01-01

    A stable smectic phospholipid bilayer phase aligned with the director parallel to the magnetic field can be generated by the addition of certain trivalent paramagnetic lanthanide ions to a bicellar solution of dimyristoylphosphatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC) in water. Suitable lanthanide ions are those with positive anisotropy of their magnetic susceptibility, namely Eu3+, Er3+, Tm3+, and Yb3+. For samples doped with Tm3+, this phase extends over a wide range of Tm3+ concentrations (6-40 mM) and temperatures (35-90 degrees C) and appears to undergo a transition from a fluid nematic discotic to a fluid, but highly ordered, smectic phase at a temperature that depends on the thulium concentration. As a membrane mimetic, these new, positively ordered phospholipid phases have high potential for structural studies using a variety of techniques such as magnetic resonance (EMR and NMR), small-angle x-ray and neutron diffraction, as well as optical and infrared spectroscopy. PMID:9591667

  2. Molecular interactions of quinidine with phospholipid bilayers.

    PubMed

    Suwalsky, M; Villena, F; Bagnara, M; Sotomayor, C P

    1995-01-01

    Quinidine (QUIN) is one of the most important and efficient antiarrhythmic drugs (AAD). It belongs to class I, which are the drugs that exert their action at the level of the sodium channels in the membrane of the myocard. Several hypotheses support the idea that the molecular mechanism of action of the AAD is via nonspecific interactions with phospholipids sited in the neighborhood of the channels. In order to probe the validity of these hypotheses, QUIN was made to interact with the phospholipids dimyristoylphosphadidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). These interactions were performed in a hydrophobic and a hydrophilic medium under a wide range of molar ratios. The resulting products were analyzed by X-ray diffraction. QUIN solutions were also made to interact with DMPC liposomes, which were studied by fluorescent spectroscopy. Finally, human erythrocytes which were incubated with QUIN solutions were observed by scanning electron microscopy. The results of these experiments proved that QUIN indeed interacted with phospholipid bilayers. PMID:7546041

  3. Possible mechanism of adhesion in a mica supported phospholipid bilayer

    SciTech Connect

    Pertsin, Alexander; Grunze, Michael

    2014-05-14

    Phospholipid bilayers supported on hydrophilic solids like silica and mica play a substantial role in fundamental studies and technological applications of phospholipid membranes. In both cases the molecular mechanism of adhesion between the bilayer and the support is of primary interest. Since the possibilities of experimental methods in this specific area are rather limited, the methods of computer simulation acquire great importance. In this paper we use the grand canonical Monte Carlo technique and an atomistic force field to simulate the behavior of a mica supported phospholipid bilayer in pure water as a function of the distance between the bilayer and the support. The simulation reveals a possible adhesion mechanism, where the adhesion is due to individual lipid molecules that protrude from the bilayer and form widely spaced links with the support. Simultaneously, the bilayer remains separated from the bilayer by a thin water interlayer which maintains the bilayer fluidity.

  4. Millimeter-area, free standing, phospholipid bilayers.

    PubMed

    Beltramo, Peter J; Van Hooghten, Rob; Vermant, Jan

    2016-05-11

    Minimal model biomembrane studies have the potential to unlock the fundamental mechanisms of cellular function that govern the processes upon which life relies. However, existing methods to fabricate free-standing model membranes currently have significant limitations. Bilayer sizes are often tens of micrometers, decoupling curvature or substrate effects, orthogonal control over tension, and solvent exchange combined with microscopy techniques is not possible, which restricts the studies that can be performed. Here, we describe a versatile platform to generate free standing, planar, phospholipid bilayers with millimeter scale areas. The technique relies on an adapted thin-film balance apparatus allowing for the dynamic control of the nucleation and growth of a planar black lipid membrane in the center of an orifice surrounded by microfluidic channels. Success is demonstrated using several different lipid types, including mixtures that show the same temperature dependent phase separation as existing protocols, moreover, membranes are highly stable. Two advantages unique to the proposed method are the dynamic control of the membrane tension and the possibility to make extremely large area membranes. We demonstrate this by showing how a block polymer, F68, used in drug delivery increases the membrane compliance. Together, the results demonstrate a new paradigm for studying the mechanics, structure, and function of model membranes.

  5. Millimeter-area, free standing, phospholipid bilayers.

    PubMed

    Beltramo, Peter J; Van Hooghten, Rob; Vermant, Jan

    2016-05-11

    Minimal model biomembrane studies have the potential to unlock the fundamental mechanisms of cellular function that govern the processes upon which life relies. However, existing methods to fabricate free-standing model membranes currently have significant limitations. Bilayer sizes are often tens of micrometers, decoupling curvature or substrate effects, orthogonal control over tension, and solvent exchange combined with microscopy techniques is not possible, which restricts the studies that can be performed. Here, we describe a versatile platform to generate free standing, planar, phospholipid bilayers with millimeter scale areas. The technique relies on an adapted thin-film balance apparatus allowing for the dynamic control of the nucleation and growth of a planar black lipid membrane in the center of an orifice surrounded by microfluidic channels. Success is demonstrated using several different lipid types, including mixtures that show the same temperature dependent phase separation as existing protocols, moreover, membranes are highly stable. Two advantages unique to the proposed method are the dynamic control of the membrane tension and the possibility to make extremely large area membranes. We demonstrate this by showing how a block polymer, F68, used in drug delivery increases the membrane compliance. Together, the results demonstrate a new paradigm for studying the mechanics, structure, and function of model membranes. PMID:27050618

  6. The role of lamellate phospholipid bilayers in lubrication of joints.

    PubMed

    Pawlak, Zenon; Urbaniak, Wiesław; Gadomski, Adam; Yusuf, Kehinde Q; Afara, Isaac O; Oloyede, Adekunle

    2012-01-01

    This study aims to determine the effect of progressive loss of the surface active phospholipids on the characteristics, and hence tribological function of articular cartilage. In accordance to Hill's hypothesis, 3-7 lipid bilayers at pH 7.4 operate as the solid lubricant in the cartilage-cartilage interface during physiological function. These bilayers are known to be depleted during cartilage degeneration. This study models this loss of phospholipid bilayers, studying experimentally both wet and dry cartilage surfaces, measuring surface wettability, and friction coefficient under a constant stress of 1.2 MPa. The results demonstrate that the friction coefficient increases gradually with loss of the phospholipid bilayers, and gains in value with decrease in wettability.

  7. Transmembrane peptides influence the affinity of sterols for phospholipid bilayers.

    PubMed

    Nyström, Joel H; Lönnfors, Max; Nyholm, Thomas K M

    2010-07-21

    Cholesterol is distributed unevenly between different cellular membrane compartments, and the cholesterol content increases from the inner bilayers toward the plasma membrane. It has been suggested that this cholesterol gradient is important in the sorting of transmembrane proteins. Cholesterol has also been to shown play an important role in lateral organization of eukaryotic cell membranes. In this study the aim was to determine how transmembrane proteins influence the lateral distribution of cholesterol in phospholipid bilayers. Insight into this can be obtained by studying how cholesterol interacts with bilayer membranes of different composition in the presence of designed peptides that mimic the transmembrane helices of proteins. For this purpose we developed an assay in which the partitioning of the fluorescent cholesterol analog CTL between LUVs and mbetaCD can be measured. Comparison of how cholesterol and CTL partitioning between mbetaCD and phospholipid bilayers with different composition suggests that CTL sensed changes in bilayer composition similarly as cholesterol. Therefore, the results obtained with CTL can be used to understand cholesterol distribution in lipid bilayers. The effect of WALP23 on CTL partitioning between DMPC bilayers and mbetaCD was measured. From the results it was clear that WALP23 increased both the order in the bilayers (as seen from CTL and DPH anisotropy) and the affinity of the sterol for the bilayer in a concentration dependent way. Although WALP23 also increased the order in DLPC and POPC bilayers the effects on CTL partitioning was much smaller with these lipids. This indicates that proteins have the largest effect on sterol interactions with phospholipids that have longer and saturated acyl chains. KALP23 did not significantly affect the acyl chain order in the phospholipid bilayers, and inclusion of KALP23 into DMPC bilayers slightly decreased CTL partitioning into the bilayer. This shows that transmembrane proteins can

  8. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    SciTech Connect

    Bradshaw, J.P.; Gilchrist, P.J.; Duff, K.C.; Saxena, A.M.

    1994-12-31

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein.

  9. Galactocerebroside-phospholipid interactions in bilayer membranes.

    PubMed

    Ruocco, M J; Shipley, G G; Oldfield, E

    1983-07-01

    Differential scanning calorimetry (DSC) and x-ray diffraction have been used to study the interaction of hydrated N-palmitoylgalactosylsphingosine (NPGS) and dipalmitoylphosphatidylcholine (DPPC). For mixtures containing less than 23 mol% NPGS, complete miscibility of NPGS into hydrated DPPC bilayers is observed in both the bilayer gel and liquid-crystal phases. X-ray diffraction data demonstrate insignificant differences in the DPPC-bilayer gel-phase parameters on incorporation of up to 23 mol% NPGS. At greater than 23 mol% NPGS, additional high-temperature transitions occur, indicating phase separation of cerebroside. For these cerebroside concentrations, at 20 degrees C, x-ray diffraction shows two lamellar phases, hydrated DPPC-NPGS gel bilayers (d = 64 A) containing 23 mol% NPGS, and NPGS "crystal" bilayers (d = 55 A). On heating to temperatures greater than 45 degrees C, the mixed DPPC-NPGS bilayer phase undergoes chain melting, and on further increasing the temperature progressively more NPGS is incorporated into the liquid-crystal DPPC-NPGS bilayer phase. At temperatures greater than 82 degrees C (the transition temperature of hydrated NPGS), complete lipid miscibility is observed at all DPPC/NPGS molar ratios.

  10. Cholesterol autoxidation in phospholipid membrane bilayers

    SciTech Connect

    Sevanian, A.; McLeod, L.L.

    1987-09-01

    Lipid peroxidation in unilamellar liposomes of known cholesterol-phospholipid composition was monitored under conditions of autoxidation or as induced by a superoxide radical generating system, gamma-irradiation or cumene hydroperoxide. Formation of cholesterol oxidation products was indexed to the level of lipid peroxidation. The major cholesterol oxidation products identified were 7-keto-cholesterol, isomeric cholesterol 5,6-epoxides, isomeric 7-hydroperoxides and isomeric 3,7-cholestane diols. Other commonly encountered products included 3,5-cholestadiene-7-one and cholestane-3 beta, 5 alpha, 6 beta-triol. Superoxide-dependent peroxidation required iron and produced a gradual increase in 7-keto-cholesterol and cholesterol epoxides. Cholesterol oxidation was greatest in liposomes containing high proportions of unsaturated phospholipid to cholesterol (4:1 molar ratio), intermediate with low phospholipid to cholesterol ratios (2:1) and least in liposomes prepared with dipalmitoylphosphatidylcholine and cholesterol. This relationship held regardless of the oxidizing conditions used. Cumene hydroperoxide-dependent lipid peroxidation and/or more prolonged oxidations with other oxidizing systems yielded a variety of products where cholesterol-5 beta,6 beta-epoxide, 7-ketocholesterol and the 7-hydroperoxides were most consistently elevated. Oxyradical initiation of lipid peroxidation produced a pattern of cholesterol oxidation products distinguishable from the pattern derived by cumene hydroperoxide-dependent peroxidation.

  11. Sponge mesoporous silica formation using disordered phospholipid bilayers as template.

    PubMed

    Galarneau, Anne; Sartori, Federica; Cangiotti, Michela; Mineva, Tzonka; Di Renzo, Francesco; Ottaviani, M Francesca

    2010-02-18

    Lecithin/dodecylamine/lactose mixtures in ethanol/aqueous media led to the formation of sponge mesoporous silica (SMS) materials by means of tetraethoxysilane (TEOS) as silica source. SMS materials show a "sponge-mesoporous" porosity with a pore diameter of about 5-6 nm, in accordance to the length of a lecithin bilayer. SMS synthesis was developed to create a new class of powerful biocatalysts able to efficiently encapsulate enzymes by adding a porosity control to the classical sol-gel synthesis and by using phospholipids and lactose as protecting agents for the enzymes. In the present study, the formation of SMS was investigated by using electron paramagnetic resonance (EPR) probes inserted inside phospholipid bilayers. The influence of progressive addition of each component (ethanol, dodecylamine, lactose, TEOS) on phospholipid bilayers was first examined; then, the time evolution of EPR spectra during SMS synthesis was studied. Parameters informative of mobility, structure, order, and polarity around the probes were extracted by computer analysis of the EPR line shape. The results were discussed on the basis of solids characterization by X-ray diffraction, nitrogen isotherm, transmission electron microscopy, and scanning electron microscopy. The results, together with the well-known ability of ethanol to promote membrane hemifusion, suggested that the templating structure is a bicontinuous phospholipid bilayer phase, shaped as a gyroid, resulting of multiple membrane hemifusions induced by the high alcohol content used in SMS synthesis. SMS synthesis was compared to hexagonal mesoporous silica (HMS) synthesis accomplished by adding TEOS to a dodecylamine/EtOH/water mixture. EPR evidenced the difference between HMS and SMS synthesis; the latter uses an already organized but slowly growing mesophase of phospholipids, never observed before, whereas the former shows a progressive elongation of micelles into wormlike structures. SMS-type materials represent a new

  12. The interaction of N-oleylethanolamine with phospholipid bilayers.

    PubMed

    Epps, D E; Cardin, A D

    1987-10-16

    Long chain acylamides of ethanolamine were previously found to increase in the infarcted canine myocardium. Subsequent in vitro experiments established a number of interesting biological and physiological properties of these compounds including alteration of rabbit skeletal sarcoplasmic reticulum function and inhibition of permeability dependent calcium release from heart mitochondria. These results suggested an interaction between the N-acylethanolamines and biological membranes. In the present work we show that the most potent species in previous studies, N-oleylethanolamine, forms stable complexes with phospholipid vesicles, lowers diphenylhexatriene polarization ratios in dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine uni- and multilamellar bilayer vesicles, and also produces a concentration dependent decrease in the phase transitions of these lipid structures. In addition studies with parinaric acids also suggested that N-oleylethanolamine partitions preferentially into more fluid areas of the bilayer. The results are discussed in terms of possible effects on biological membranes.

  13. Metal ion binding to phospholipid bilayers evaluated by microaffinity chromatography.

    PubMed

    Ross, Eric E; Hoag, Christian; Pfeifer, Zach; Lundeen, Christopher; Owens, Sarah

    2016-06-17

    Group I and II ion binding to phospholipid membranes was evaluated by affinity chromatography utilizing a new stationary phase system based on lipid bilayers supported within large-pore particles composed of Stöber silica spheres. Using an inductively coupled plasma mass spectrometer for detection, robust determination of binding selectivity within group II ions is achieved with capillary columns containing nanomole quantities of lipid and using picomoles of metal analyte. Columns with a unique lipid formulation can be prepared within three hours using a solvent-casting assembly method. The observable thermotropic phase behavior of dipalmitoylphosphatidylcholine has a significant effect on alkaline metal binding and demonstrates the dynamic nature of the supported bilayers. Of the group I ions, only lithium exhibits retention with neutral phosphatidylcholine bilayer stationary phases. A comparison of Stöber-based supports with two commercially available large-pore silicas reveals the effect that particle structure has on analyte accessibility to the bilayer surface as evaluated by retention per supported lipid mass. PMID:27189434

  14. A new technique of depositing phospholipid bilayers on quartz surfaces: its use in membrane spin-label studies.

    PubMed

    Kawano, I; Floyd, R A; Sridhar, R

    1981-03-01

    We have developed a new improved technique termed the parallel-beam spattering (PBS) method for depositing phospholipid bilayers on quartz surfaces. This technique involves atomizing the phospholipid mixture with a stream of nitrogen gas and passing this atomized mixture through two orifices separated by a distance to achieve a parallel beam of atomized particles before deposition on the quartz plate. A static electric field can easily be applied to the quartz surface. Also a goniometer of new design has been constructed to allow precise positioning of the deposited phospholipid bilayers with reference to the magnetic field. We have utilized the PBS method to deposit phosphatidylcholine/nitroxyl labeled cholestane mixtures on quartz plates and have found that hydrated bilayers of these mixtures yield ESR spectra with essentially the same characteristics as those obtained using more conventional techniques. The distinct advantage of the new technique for depositing bilayers is that there is no spectral anomaly present which usually is present when the more conventional method of depositing bilayers is used. The spectral anomaly is apparently caused by a portion of the bilayers aligned in directions not directly parallel to the quartz surface. For precision work the spectral anomaly is unacceptable. It is not observed with the new PBS method which has yielded highly reproducible results. PMID:6263962

  15. Improved 1H amide resonance line narrowing in oriented sample solid-state NMR of membrane proteins in phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Lu, George J.; Park, Sang Ho; Opella, Stanley J.

    2012-07-01

    We demonstrate 1H amide resonance line widths <300 Hz in 1H/15N heteronuclear correlation (HETCOR) spectra of membrane proteins in aligned phospholipid bilayers. This represents a substantial improvement over typically observed line widths of ˜1 kHz. Furthermore, in a proton detected local field (PDLF) version of the experiment that measures heteronuclear dipolar couplings, line widths <130 Hz are observed. This dramatic line narrowing of 1H amide resonances enables many more individual signals to be resolved and assigned from uniformly 15N labeled membrane proteins in phospholipid bilayers under physiological conditions of temperature and pH. Finding that the decrease in line widths occurs only for membrane proteins that undergo fast rotational diffusion around the bilayer normal, but not immobile molecules, such as peptide single crystals, identifies a potential new direction for pulse sequence development that includes overall molecular dynamics in their design.

  16. Interaction of the organochlorine pesticide dieldrin with phospholipid bilayers.

    PubMed

    Suwalsky, M; Benites, M; Villena, F; Aguilar, F; Sotomayor, C P

    1997-01-01

    Dieldrin is an organochlorine insecticide highly toxic for human beings. Although its exact mechanism of action is not well known, there is evidence that it acts at the cell membrane level. In fact, the lipophilicity of the pesticide as well as that of the phospholipid bilayer present in biological membranes makes the latter a most likely target for the interaction of dieldrin with living organisms. In order to evaluate its perturbing effect upon cell membranes the pesticide was made to interact with human erythrocytes and molecular models. These studies were performed by scanning electron microscopy on erythrocytes, fluorescence spectroscopy on dimyristoylphosphatidylcholine (DMPC) large unilamellar vesicles and X-ray diffraction on multilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE). It was observed that dieldrin particularly interacted with DMPC liposomes and multilayers perturbing its molecular arrangements. However, no effect was noticed on erythrocytes, which might be due to its high cholesterol content. PMID:9309876

  17. Interaction of the antiarrhythmic drug procainamide with phospholipid bilayers.

    PubMed

    Suwalsky, M; Villena, F; Bagnara, M; Sotomayor, C P

    1995-01-01

    Several hypotheses link the molecular mechanism of action of the antiarrhythmic drugs (AAD) that belong to class I to non-specific interactions with phospholipids sited in the neighborhood of sodium channels in the membrane of the myocardium. Procainamide (PROC), one of the least lipophilic drugs of this group, was induced to interact with bilayers of dimyristoylphosphatidylcholine (DMPC) and dimirystoylphosphatidylethanolamine (DMPE), liposomes of DMPC and human erythrocytes. The perturbing effects of PROC upon these systems were respectively determined by X-ray diffraction, fluorescence spectroscopy and scanning electron microscopy. It was found that PROC exerted very little effect upon DMPC and DMPE even at such a high concentration as 10 mM. However, at therapeutical plasma concentrations, PROC induced shape changes in vitro to red cells. PMID:7766259

  18. Study of supported phospholipid bilayers by THz-TDS

    NASA Astrophysics Data System (ADS)

    Ionescu, Alina; Mernea, Maria; Vasile, Ionut; Brandus, Catalina Alice; Barbinta-Patrascu, Marcela Elisabeta; Tugulea, Laura; Mihailescu, Dan; Dascalu, Traian

    2012-10-01

    Terahertz Time-Domain Spectroscopy (THz-TDS) is a new technique in studying the conformational state of molecules. Cell membranes are important structures in the interaction with extra cellular entities. Their principal building blocks are lipids, amphiphilic molecules that spontaneously self-assemble when in contact with water. In this work we report the use of THz-TDS in transmission mode to examine the behavior of supported phospholipid bilayers (SPBs) within the frequency range of 0.2 THz to 3 THz. SPBs were obtained by vesicle adsorption method involving the spread of a suspension (50-100 μl) of small unilamellar vesicles (SUVs) or multilamellar vesicles (MLVs) dissolved in PBS (phosphate buffer solution) on a support of silicon wafers. Both SUVs and MLVs were obtained from dipalmitoyl phosphatidylcholine (DPPC) and lecithin by using the thin-film hydration method. Broadband THz pulses are generated and detected using photoconductive antennas optically excited by a femtosecond laser pulse emitted from a self-mode locked fiber laser at a wavelength of 780 nm with a pulse widths of 150 fs. THz-TDS was proven to be a useful method in studying SPBs and their hydration states. The absorption coefficient and refractive index of the samples were calculated from THz measurements data. The THz absorption spectra for different lipids in SPBs indicate specific absorption frequency lines. A difference in the magnitude of the refractive index was also observed due to the different structure of supported lipid bilayers. The THz spectrum of DPPC was obtained by using theoretical simulations and then the experimental and theoretical THz spectra were compared.

  19. Controlled permeability of phospholipid bilayers and bilayer-templated polymer nanocapsules

    NASA Astrophysics Data System (ADS)

    Danila, Delia Cezara

    The work presented focuses on the study of the permeability of the phospholipid bilayer membranes of liposomes---a model of biological membranes---by the use of carrier molecules as well as on the study of the permeability of polymer nanocapsules when using liposomes as a template for their synthesis. The results of this work can lead to the development of novel biomedical devices and to the development of novel classes of polymer nanomaterials. A series of carrier molecules, alpha-aminophosphonates, was synthesized in order to transport a polar molecule, an amino acid (alanine), across the lipid bilayer of synthetic liposomal membranes. Aminophosphonates were prepared by the Kabachnik-Fields reaction from a primary amine, a phosphite, and a carbonyl compound. Transport of alanine, a model polar molecule, was studied by liposome efflux experiments coupled with enzymatic assays. All carriers exhibited moderate transport properties, which makes them suitable for construction of controlled released devices. A second project involved the use of liposomes as a template for the synthesis of polymer nanocapsules. Porous polymer nanocapsules were prepared by co-dissolving hydrophobic monomers and porogens in the interior of bilayer membranes followed by polymerization and subsequent removal of lipid scaffold and porogens. Structural characterization was performed by electron microscopy. Permeability of polymer nanocapsules was studied by analyzing the retention of molecules of various sizes in the capsule interior. Selective pores were produced that were capable of differentiating molecules with a relatively small size difference. This work describes a new class of polymer nanomaterials previously unavailable.

  20. Effects of cholesterol or gramicidin on slow and fast motions of phospholipids in oriented bilayers

    SciTech Connect

    Peng, Z.Y.; Simplaceanu, V.; Dowd, S.R.; Ho, C. )

    1989-11-01

    Nuclear spin-lattice relaxation both in the rotating frame and in the laboratory frame is used to investigate the slow and fast molecular motions of phospholipids in oriented bilayers in the liquid crystalline phase. The bilayers are prepared from a perdeuterated phospholipid labeled with a pair of {sup 19}F atoms at the 7 position of the 2-sn acyl chain. Phospholipid-cholesterol or phospholipid-gramicidin interactions are characterized by measuring the relaxation rates as a function of the bilayer orientation, the locking field, and the temperature. These studies show that cholesterol or gramicidin can specifically enhance the relaxation due to slow motions in phospholipid bilayers with correlation times {tau}{sub s} longer than 10{sup {minus}8} sec. The perturbations of the geometry of the slow motions induced by cholesterol are qualitatively different from those induced by gramicidin. In contrast, the presence of cholesterol or gramicidin slightly suppresses the fast motions with correlation times {tau}{sub f} = 10{sup {minus}9} to 10{sup {minus}10} sec without significantly affecting their geometry. Weak locking-field and temperature dependences are observed for both pure lipid bilayers and bilayers containing either cholesterol or gramicidin, suggesting that the motions of phospholipid acyl chains may have dispersed correlation times.

  1. Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion

    NASA Astrophysics Data System (ADS)

    Oertel, Jana; Keller, Adrian; Prinz, Julia; Schreiber, Benjamin; Hübner, René; Kerbusch, Jochen; Bald, Ilko; Fahmy, Karim

    2016-05-01

    Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the “outer shape” of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of ~10 nm diameter containing a lipid bilayer ~5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials.

  2. Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion

    PubMed Central

    Oertel, Jana; Keller, Adrian; Prinz, Julia; Schreiber, Benjamin; Hübner, René; Kerbusch, Jochen; Bald, Ilko; Fahmy, Karim

    2016-01-01

    Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the “outer shape” of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of ~10 nm diameter containing a lipid bilayer ~5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials. PMID:27216789

  3. Anisotropic metal growth on phospholipid nanodiscs via lipid bilayer expansion.

    PubMed

    Oertel, Jana; Keller, Adrian; Prinz, Julia; Schreiber, Benjamin; Hübner, René; Kerbusch, Jochen; Bald, Ilko; Fahmy, Karim

    2016-01-01

    Self-assembling biomolecules provide attractive templates for the preparation of metallic nanostructures. However, the intuitive transfer of the "outer shape" of the assembled macromolecules to the final metallic particle depends on the intermolecular forces among the biomolecules which compete with interactions between template molecules and the metal during metallization. The shape of the bio-template may thus be more dynamic than generally assumed. Here, we have studied the metallization of phospholipid nanodiscs which are discoidal particles of ~10 nm diameter containing a lipid bilayer ~5 nm thick. Using negatively charged lipids, electrostatic adsorption of amine-coated Au nanoparticles was achieved and followed by electroless gold deposition. Whereas Au nanoparticle adsorption preserves the shape of the bio-template, metallization proceeds via invasion of Au into the hydrophobic core of the nanodisc. Thereby, the lipidic phase induces a lateral growth that increases the diameter but not the original thickness of the template. Infrared spectroscopy reveals lipid expansion and suggests the existence of internal gaps in the metallized nanodiscs, which is confirmed by surface-enhanced Raman scattering from the encapsulated lipids. Interference of metallic growth with non-covalent interactions can thus become itself a shape-determining factor in the metallization of particularly soft and structurally anisotropic biomaterials. PMID:27216789

  4. Lipid-Bilayer Dynamics Probed by a Carbon Dot-Phospholipid Conjugate.

    PubMed

    Nandi, Sukhendu; Malishev, Ravit; Bhunia, Susanta Kumar; Kolusheva, Sofiya; Jopp, Jürgen; Jelinek, Raz

    2016-05-10

    Elucidating the dynamic properties of membranes is important for understanding fundamental cellular processes and for shedding light on the interactions of proteins, drugs, and viruses with the cell surface. Dynamic studies of lipid bilayers have been constrained, however, by the relatively small number of pertinent molecular probes and the limited physicochemical properties of the probes. We show that a lipid conjugate comprised of a fluorescent carbon dot (C-dot) covalently attached to a phospholipid constitutes a versatile and effective vehicle for studying bilayer dynamics. The C-dot-modified phospholipids readily incorporated within biomimetic membranes, including solid-supported bilayers and small and giant vesicles, and inserted into actual cellular membranes. We employed the C-dot-phospholipid probe to elucidate the effects of polymyxin-B (a cytolytic peptide), valproic acid (a lipophilic drug), and amyloid-β (a peptide associated with Alzheimer's disease) upon bilayer fluidity and lipid dynamics through the application of various biophysical techniques. PMID:27166809

  5. Lipid-Bilayer Dynamics Probed by a Carbon Dot-Phospholipid Conjugate.

    PubMed

    Nandi, Sukhendu; Malishev, Ravit; Bhunia, Susanta Kumar; Kolusheva, Sofiya; Jopp, Jürgen; Jelinek, Raz

    2016-05-10

    Elucidating the dynamic properties of membranes is important for understanding fundamental cellular processes and for shedding light on the interactions of proteins, drugs, and viruses with the cell surface. Dynamic studies of lipid bilayers have been constrained, however, by the relatively small number of pertinent molecular probes and the limited physicochemical properties of the probes. We show that a lipid conjugate comprised of a fluorescent carbon dot (C-dot) covalently attached to a phospholipid constitutes a versatile and effective vehicle for studying bilayer dynamics. The C-dot-modified phospholipids readily incorporated within biomimetic membranes, including solid-supported bilayers and small and giant vesicles, and inserted into actual cellular membranes. We employed the C-dot-phospholipid probe to elucidate the effects of polymyxin-B (a cytolytic peptide), valproic acid (a lipophilic drug), and amyloid-β (a peptide associated with Alzheimer's disease) upon bilayer fluidity and lipid dynamics through the application of various biophysical techniques.

  6. Magnetic field alignable domains in phospholipid vesicle membranes containing lanthanides.

    PubMed

    Beck, Paul; Liebi, Marianne; Kohlbrecher, Joachim; Ishikawa, Takashi; Rüegger, Heinz; Zepik, Helmut; Fischer, Peter; Walde, Peter; Windhab, Erich

    2010-01-14

    Magnetic fields were applied as a structuring force on phospholipid-based vesicular systems, using paramagnetic lanthanide ions as magnetic handles anchored to the vesicle membrane. Different vesicle formulations were investigated using small angle neutron scattering (SANS) in a magnetic field of up to 8 T, cryo-transmission electron microscopy (cryo-TEM), (31)P NMR spectroscopy, dynamic light scattering (DLS), and permeability measurements with a fluorescent water-soluble marker (calcein). The investigated vesicle formulations consisted usually of 80 mol % of the phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 20 mol % of a chelator lipid (DMPE-DTPA; 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-diethylenetriaminepentaacetate) with complexed lanthanide ions (Tm(3+), Dy(3+), or La(3+)), and the total lipid concentration was 15 mM. Vesicles containing the paramagnetic lanthanide Tm(3+) or Dy(3+) exhibited a temperature-dependent response to magnetic fields, which can be explained by considering the formation of lipid domains, which upon reaching a critical size become alignable in a magnetic field. The features of this "magnetic field alignable domain model" are as follows: with decreasing temperature (from 30 to 2.5 degrees C) solid domains, consisting mainly of the higher melting phospholipid (DMPE-DTPA.lanthanide), begin to form and grow in size. The domains assemble the large magnetic moments conferred by the lanthanides and orient in magnetic fields. The direction of alignment depends on the type of lanthanide used. The domains orient with their normal parallel to the magnetic field with thulium (Tm(3+)) and perpendicular with dysprosium (Dy(3+)). No magnetic field alignable domains were observed if DMPE-DTPA is replaced either by POPE-DTPA (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-diethylenetriamine-pentaacetate) or by DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine).

  7. Supported Phospholipid Bilayer Defects Created by a Cation or Anion of a Room-Temperature Ionic Liquid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, the independent effects on a supported phospholipid bilayer (SPB) caused by a cation and anion of a room-temperature ionic liquid (RT-IL) were studied via atomic force microscopy (AFM). The supported phospholipid bilayer was composed only of 1,2-dielaidoylphosphatidylcholine (DEPC) an...

  8. Evidence for the hydration effect at the semiconductor phospholipid-bilayer interface by TiO2 photocatalysis.

    PubMed

    Suwalsky, M; Schneider, C; Mansilla, H D; Kiwi, J

    2005-03-01

    The interactions of TiO2 with phospholipid bilayers found in cell membrane walls were observed to perturb the bilayer structure under UVA light irradiation. The structure changes in the phospholipid bilayers upon contact with TiO2 under light and in the dark were followed by X-ray diffraction. Hydration effects at the semiconductor-phospholipid interface played an important role in the degradation of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) bilayers taken as cell wall lipid bilayer models. Evidence is provided that the fluidity of the phospholipid bilayers plays a significant role when interacting in the dark with the TiO2 or in processes mediated by TiO2 under light irradiation. PMID:15708523

  9. Interaction of an ionic liquid with a supported phospholipid bilayer is lipid-dependent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liquid salts, commonly called ionic liquids, are used as solvents to conduct transformation of vegetable oils into new products. These reactions are often catalyzed via immobilized enzymes. However, some enzymes were found to lose activity and are in need of some protection. Phospholipid bilayers...

  10. Use of an oriented transmembrane protein to probe the assembly of a supported phospholipid bilayer.

    PubMed Central

    Contino, P B; Hasselbacher, C A; Ross, J B; Nemerson, Y

    1994-01-01

    Planar-supported phospholipid bilayers formed by the adsorption of vesicles are increasingly used in the investigation of lipid-dependent reactions. We have studied the way in which these bilayers are formed with phospholipid vesicles containing the transmembrane protein Tissue Factor (TF). TF complexed with the serine protease, factor VIIa, is the primary initiator of blood coagulation by way of activation of the zymogen factor X. TF has been shown to orient randomly on the inner and outer leaflets of vesicles. We used proteolytic digestion to produce vesicles in which the extracellular domain of TF is located on the inner leaflet. These vesicles show no cofactor activity for factor VIIa as a result of the inability of the extracellular domain of TF to bind VIIa. After freeze/thawing, 50% of the cofactor activity was regained, indicating reorientation of the sequestered, inner leaflet TF. Adsorption of these vesicles to the inner surface of glass microcapillaries results in a continuous phospholipid bilayer. The microcapillaries were perfused with a solution of factors VIIa and X, and the effluent was monitored for factor Xa production, a sensitive measure of the activity of the TF-VIIa complex. For coatings produced with the digested vesicles, minimal TF-VIIa activity was observed, showing that the supported bilayer preserves the orientation of the leaflets in the vesicles, i.e., the outer leaflet of the vesicles forms the outer leaflet of the supported bilayer. PMID:7811922

  11. Lateral Pressure Dependence of the Phospholipid Transmembrane Diffusion Rate in Planar-Supported Lipid Bilayers

    PubMed Central

    Anglin, Timothy C.; Conboy, John C.

    2008-01-01

    The dependence of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) flip-flop kinetics on the lateral membrane pressure in a phospholipid bilayer was investigated by sum-frequency vibrational spectroscopy. Planar-supported lipid bilayers were prepared on fused silica supports using the Langmuir-Blodgett/Langmuir-Schaeffer technique, which allows precise control over the lateral surface pressure and packing density of the membrane. The lipid bilayer deposition pressure was varied from 28 to 42 mN/m. The kinetics of lipid flip-flop in these membranes was measured by sum-frequency vibrational spectroscopy at 37°C. An order-of-magnitude difference in the rate constant for lipid translocation (10.9 × 10−4 s−1 to 1.03 × 10−4 s−1) was measured for membranes prepared at 28 mN/m and 42 mN/m, respectively. This change in rate results from only a 7.4% change in the packing density of the lipids in the bilayer. From the observed kinetics, the area of activation for native phospholipid flip-flop in a protein-free DPPC planar-supported lipid bilayer was determined to be 73 ± 12 Å2/molecule at 37°C. Significance of the observed activation area and potential future applications of the technique to the study of phospholipid flip-flop are discussed. PMID:18339755

  12. X-ray studies on phospholipid bilayers. XIII. Interactions with gentamicin.

    PubMed

    Suwalsky, M; Frías, J

    1993-01-01

    This study deals with the structural perturbations that the aminoglycoside antibiotic gentamicin (GENT) can produce to phospholipid bilayers. Two multi-bilayer systems, one built-up of dimyristoylphosphatidylcholine (DMPC) and the other of dimyristoylphosphatidylethanolamine (DMPE) were allowed to interact with GENT. The experiments were performed in both a hydrophobic and a hydrophilic medium below the phospholipid main transition temperatures. X-ray diffraction techniques were used to determine the extent of the perturbation induced by GENT. The maximum effect was attained when GENT interacted with DMPC in the hydrophobic medium. On the other hand, GENT in aqueous solutions was unable to perturb in any significant extent the structure of the phospholipids under study. PMID:8216614

  13. Nanomechanical characterization of phospholipid bilayer islands on flat and porous substrates: a force spectroscopy study.

    PubMed

    Nussio, Matthew R; Oncins, Gerard; Ridelis, Ingrid; Szili, Endre; Shapter, Joseph G; Sanz, Fausto; Voelcker, Nicolas H

    2009-07-30

    In this study, we compare for the first time the nanomechanical properties of lipid bilayer islands on flat and porous surfaces. 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) bilayers were deposited on flat (silicon and mica) and porous silicon (pSi) substrate surfaces and examined using atomic force spectroscopy and force volume imaging. Force spectroscopy measurements revealed the effects of the underlying substrate and of the lipid phase on the nanomechanical properties of bilayers islands. For mica and silicon, significant differences in breakthrough force between the center and the edges of bilayer islands were observed for both phospolipids. These differences were more pronounced for DMPC than for DPPC, presumably due to melting effects at the edges of DMPC bilayers. In contrast, bilayer islands deposited on pSi yielded similar breakthrough forces in the central region and along the perimeter of the islands, and those values in turn were similar to those measured along the perimeter of bilayer islands deposited on the flat substrates. The study also demonstrates that pSi is suitable solid support for the formation of pore-spanning phospholipid bilayers with potential applications in transmembrane protein studies, drug delivery, and biosensing.

  14. Cholesterol enhances surface water diffusion of phospholipid bilayers

    SciTech Connect

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi; Olijve, Luuk L. C.

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  15. Cholesterol enhances surface water diffusion of phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Cheng, Chi-Yuan; Olijve, Luuk L. C.; Kausik, Ravinath; Han, Songi

    2014-12-01

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed 1H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5-10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in faster

  16. HgCl2 disrupts the structure of the human erythrocyte membrane and model phospholipid bilayers.

    PubMed

    Suwalsky, M; Ungerer, B; Villena, F; Cuevas, F; Sotomayor, C P

    2000-10-01

    The structural effects of Hg(II) ions on the erythrocyte membrane were studied through the interactions of HgCl2 with human erythrocytes and their isolated resealed membranes. Studies were carried out by scanning electron microscopy and fluorescence spectroscopy, respectively. Hg(II) induced shape changes in erythrocytes, which took the form of echinocytes and stomatocytes. This finding means that Hg(II) locates in both the outer and inner monolayers of the erythrocyte membrane. Fluorescence spectroscopy results indicate strong interactions of Hg(II) ions with phospholipid amino groups, which also affected the packing of the lipid acyl chains at the deep hydrophobic core of the membrane. HgCl2 also interacted with bilayers of dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. X-ray diffraction indicated that Hg(II) ions induced molecular disorder to both phospholipid bilayers, while fluorescence spectroscopy of dimyristoylphosphatidylcholine large unilamellar vesicles confirmed the interaction of Hg(II) ions with the lipid polar head groups. All these findings point to the important role of the phospholipid bilayers in the interaction of Hg(II) on cell membranes. PMID:11065190

  17. Bilayer/cytoskeleton interactions in lipid-symmetric erythrocytes assessed by a photoactivable phospholipid analogue

    SciTech Connect

    Pradhan, D.; Schlegel, R.A. ); Williamson, P. )

    1991-08-06

    Two mechanisms have been proposed for maintenance of transbilayer phospholipid asymmetry in the erythrocyte plasma membrane, one involving specific interactions between the aminophospholipids of the inner leaflet of the bilayer and the cytoskeleton, particularly spectrin, and the other involving the aminophospholipid translocase. If the former mechanism is correct, then erythrocytes which have lost their asymmetric distribution of phospholipids should display altered bilayer/cytoskeleton interactions. To test this possibility, normal erythrocytes, erythrocytes from patients with chronic myelogenous leukemia or sickle disease, and lipid-symmetric and -asymmetric erythrocyte ghosts were labeled with the radioactive photoactivable analogue of phosphatidylethanolamine, 2-(2-azido-4-nitrobenzoyl)-1-acyl-sn-glycero-3-phospho({sup 14}C) ethanolamine (({sup 14}C)AzPE), previously shown to label cytoskeletal proteins from the bilayer. The labeling pattern of cytoskeletal proteins in pathologic erythrocytes and lipid-asymmetric erythrocyte ghosts was indistinguishable from normal erythrocytes, indicating that the probe detects no differences in bilayer/cytoskeleton interactions in these cells. In contrast, in lipid-symmetric erythrocyte ghosts, labeling of bands 4.1 and 4.2 and actin, and to a lesser extent ankyrin, by ({sup 14}C)AzPE was considerably reduced. Significantly, however, labeling of spectrin was unaltered in the lipid-symmetric cells. These results do not support a model in which spectrin is involved in the maintenance of an asymmetric distribution of phospholipids in erythrocytes.

  18. General model of phospholipid bilayers in fluid phase within the single chain mean field theory.

    PubMed

    Guo, Yachong; Pogodin, Sergey; Baulin, Vladimir A

    2014-05-01

    Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.

  19. Rapid flip-flop motions of diacylglycerol and ceramide in phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Ogushi, Fumiko; Ishitsuka, Reiko; Kobayashi, Toshihide; Sugita, Yuji

    2012-01-01

    We have investigated flip-flop motions of diacylglycerol and ceramide in phospholipid bilayers using coarse-grained molecular dynamics simulations. In the simulations, flip-flop motions of diacylglycerol and ceramide in the DAPC membrane are slower than cholesterol. Rates correlate with the number of unsaturated bonds in the membrane phospholipids and hence with fluidity of membranes. These findings qualitatively agree with corresponding experimental data. Statistical analysis of the trajectories suggests that flip-flop can be approximated as a Poisson process. The rate of the transverse movement is influenced by depth of the polar head group in the membrane and extent of interaction with water.

  20. Chain-melting phase transition and short-range molecular interactions in phospholipid foam bilayers.

    PubMed

    Exerowa, Dotchi

    2002-02-25

    Occurrence of two-dimensional chain melting phase transition in foam bilayers was established for the first time. Microscopic horizontal foam bilayers [Newton black films (NBF)] were investigated by the microinterferometric method of Scheludko-Exerowa. The foam bilayers were formed from water-ethanol solutions of dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) and egg phosphatidylcholine (Egg PC) and samples of amniotic fluid (AF) at different temperatures. The influence of temperature on the foam bilayer thickness h(w) and on the critical concentration Cc for formation of foam bilayer was studied. It was shown that in the range of the main phase transition the temperature dependence of h(w) and C(c) changed specifically in the case of DMPC and DPPC foam bilayers. The thickness of the foam bilayers increased with decreasing temperature in the range of the main phase transition due to the melting of hydrocarbon tails of phospholipid molecules. These changes took place at the temperatures of the bulk chain-melting phase transitions, as determined by differential scanning calorimetry (DSC) for both aqueous, and water/ethanol DMPC, DPPC, and DPPC dispersions. An effect of the 'disperse medium' on h(w) was found for foam bilayers from DPPC. The results that foam bilayers could have different thickness at different temperatures disproved the current concept that NBF acquired constant thickness at concentrations higher than C(el,cr). The data for Cc were analysed on the basis of the hole-nucleation theory of bilayer stability of Kashchiev and Exerowa. This theory considered the amphiphile bilayer as a two-dimensional ordered system with short-range molecular interactions between the first neighbour molecules (as in a crystal). The short-range molecular interactions were presented by the parameter binding energy Q of an amphiphile molecule in the bilayer. The binding energy Q of two neighbouring phospholipids was calculated for the gel (30

  1. Confocal Raman Microscopy of Hybrid-Supported Phospholipid Bilayers within Individual C18-Functionalized Chromatographic Particles.

    PubMed

    Kitt, Jay P; Harris, Joel M

    2016-09-01

    Measuring lipid-membrane partitioning of small molecules is critical to predicting bioavailability and investigating molecule-membrane interactions. A stable model membrane for such studies has been developed through assembly of a phospholipid monolayer on n-alkane-modified surfaces. These hybrid bilayers have recently been generated within n-alkyl-chain (C18)-modified porous silica and used in chromatographic retention studies of small molecules. Despite their successful application, determining the structure of hybrid bilayers within chromatographic silica is challenging because they reside at buried interfaces within the porous structure. In this work, we employ confocal Raman microscopy to investigate the formation and temperature-dependent structure of hybrid-phospholipid bilayers in C18-modified, porous-silica chromatographic particles. Porous silica provides sufficient surface area within a confocal probe volume centered in an individual particle to readily measure, with Raman microscopy, the formation of an ordered hybrid bilayer of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with the surface C18 chains. The DMPC surface density was quantified from the relative Raman scattering intensities of C18 and phospholipid acyl chains and found to be ∼40% of a DMPC vesicle membrane. By monitoring Raman spectra acquired versus temperature, the bilayer main phase transition was observed to be broadened and shifted to higher temperature compared to a DMPC vesicle, in agreement with differential scanning calorimetry (DSC) results. Raman scattering of deuterated phospholipid was resolved from protonated C18 chain scattering, showing that the lipid acyl and C18 chains melt simultaneously in a single phase transition. The surface density of lipid in the hybrid bilayer, the ordering of both C18 and lipid acyl chains upon bilayer formation, and decoupling of C18 methylene C-H vibrations by deuterated lipid acyl chains all suggest an interdigitated acyl chain

  2. Confocal Raman Microscopy of Hybrid-Supported Phospholipid Bilayers within Individual C18-Functionalized Chromatographic Particles.

    PubMed

    Kitt, Jay P; Harris, Joel M

    2016-09-01

    Measuring lipid-membrane partitioning of small molecules is critical to predicting bioavailability and investigating molecule-membrane interactions. A stable model membrane for such studies has been developed through assembly of a phospholipid monolayer on n-alkane-modified surfaces. These hybrid bilayers have recently been generated within n-alkyl-chain (C18)-modified porous silica and used in chromatographic retention studies of small molecules. Despite their successful application, determining the structure of hybrid bilayers within chromatographic silica is challenging because they reside at buried interfaces within the porous structure. In this work, we employ confocal Raman microscopy to investigate the formation and temperature-dependent structure of hybrid-phospholipid bilayers in C18-modified, porous-silica chromatographic particles. Porous silica provides sufficient surface area within a confocal probe volume centered in an individual particle to readily measure, with Raman microscopy, the formation of an ordered hybrid bilayer of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) with the surface C18 chains. The DMPC surface density was quantified from the relative Raman scattering intensities of C18 and phospholipid acyl chains and found to be ∼40% of a DMPC vesicle membrane. By monitoring Raman spectra acquired versus temperature, the bilayer main phase transition was observed to be broadened and shifted to higher temperature compared to a DMPC vesicle, in agreement with differential scanning calorimetry (DSC) results. Raman scattering of deuterated phospholipid was resolved from protonated C18 chain scattering, showing that the lipid acyl and C18 chains melt simultaneously in a single phase transition. The surface density of lipid in the hybrid bilayer, the ordering of both C18 and lipid acyl chains upon bilayer formation, and decoupling of C18 methylene C-H vibrations by deuterated lipid acyl chains all suggest an interdigitated acyl chain

  3. Condensed complexes and the calorimetry of cholesterol-phospholipid bilayers.

    PubMed Central

    Anderson, T G; McConnell, H M

    2001-01-01

    A recent thermodynamic model describes a reversible reaction between cholesterol (C) and phospholipid (P) to form a condensed complex C(nq)P(np). Here q and p are relatively prime integers used to define the stoichiometric composition, and n is a measure of cooperativity. The present study applies this model to the scanning calorimetry of binary mixtures of cholesterol and saturated phosphatidylcholines, especially work by McElhaney and collaborators. These mixtures generally show two heat capacity peaks, a sharp peak and a broad peak. The sharp heat absorption is largely due to the chain melting transition of pure phospholipid. In the present work the broad heat absorption is attributed to the thermal dissociation of complexes. The best fits of the model to the data require the complex formation to be highly cooperative, with cooperativity n = 12. Detailed comparisons are made between model calculations and calorimetric data. A number of unusual features of the data arise naturally in the model. The principal discrepancy between the calculations and experimental results is a spurious calculated heat absorption peak. This discrepancy is related to the reported relative magnitudes of the integrated broad and sharp heat absorption curves. PMID:11606290

  4. Molecular dynamics of dibenz[a,h]anthracene and its metabolite interacting with lung surfactant phospholipid bilayers.

    PubMed

    Padilla-Chavarría, Helmut I; Guizado, Teobaldo R C; Pimentel, Andre S

    2015-08-28

    The interaction of dibenz[a,h]anthracene and its ultimate carcinogenic 3,4-diol-1,2-epoxide with lung surfactant phospholipid bilayers was successfully performed using molecular dynamics. The DPPC/DPPG/cholesterol bilayer (64 : 64 : 2) was used as the lung surfactant phospholipid bilayer model and compared with the DPPC bilayer as a reference. Dibenz[a,h]anthracene and its 3,4-diol-1,2-epoxide were inserted in water and lipid phases in order to investigate their interactions with the lung surfactant phospholipid bilayers. The radial distribution function between two P atoms in polar heads shows that the 3,4-diol-1,2-epoxide affects the order between the P atoms in the DPPC/DPPG/cholesterol model more than dibenz[a,h]anthracene, which is a consequence of its preference for the polar heads and dibenz[a,h]anthracene prefers to be located in the hydrocarbon chain of the phospholipid bilayers. Dibenz[a,h]anthracene and its 3,4-diol-1,2-epoxide may form aggregates in water and lipid phases, and in the water-lipid interface. The implications for the possible effect of dibenz[a,h]anthracene and its 3,4-diol-1,2-epoxide in the lung surfactant phospholipid bilayers are discussed.

  5. Interaction of the Disaccharide Trehalose with a Phospholipid Bilayer: A Molecular Dynamics Study

    PubMed Central

    Pereira, Cristina S.; Lins, Roberto D.; Chandrasekhar, Indira; Freitas, Luiz Carlos G.; Hünenberger, Philippe H.

    2004-01-01

    The disaccharide trehalose is well known for its bioprotective properties. Produced in large amounts during stress periods in the life of organisms able to survive potentially damaging conditions, trehalose plays its protective role by stabilizing biostructures such as proteins and lipid membranes. In this study, molecular dynamics simulations are used to investigate the interaction of trehalose with a phospholipid bilayer at atomistic resolution. Simulations of the bilayer in the absence and in the presence of trehalose at two different concentrations (1 or 2 molal) are carried out at 325 K and 475 K. The results show that trehalose is able to minimize the disruptive effect of the elevated temperature and stabilize the bilayer structure. At both temperature, trehalose is found to interact directly with the bilayer through hydrogen bonds. However, the water molecules at the bilayer surface are not completely replaced. At high temperature, the protective effect of trehalose is correlated with a significant increase in the number of trehalose-bilayer hydrogen bonds, predominantly through an increase in the number of trehalose molecules bridging three or more lipid molecules. PMID:15041666

  6. The structure of unsupported, self-assembled phospholipid bilayers on an artificially nano-patterned surface

    NASA Astrophysics Data System (ADS)

    Smith, Gregory; Jung, Seung-Yong; Browning, James; Keum, Jong; Lavrik, Nickolay; Collier, Pat

    2012-02-01

    We present neutron reflectivity measurements of the in-situ microscopic architecture of phospholipid molecules at the interface between a regularly nano-patterned surface and an aqueous sub-phase using neutron reflectometry. 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) single bilayers were deposited on a patterned silicon substrate. The substrate was patterned with a rectangular array of nano-scaled holes using e-beam nano-lithographic techniques. The goal of these experiments is to produce a set of small freely-suspended bilayers spanning the nanostructured surface. We compare results for films deposited by vesicle adsorption or by the Langmuir--Shafer (L-S) technique. Initial data analysis shows that there are well formed bilayers on the surface. Detailed analysis of the reflectivity curves will be presented to confirm details of the architecture of these bilayer films. Bilayers prepared in this way may serve as model single bilayer systems with freely suspended areas for the study of membrane functionality in biological and biomimetic materials and systems.

  7. Polyarginine Interacts More Strongly and Cooperatively than Polylysine with Phospholipid Bilayers.

    PubMed

    Robison, Aaron D; Sun, Simou; Poyton, Matthew F; Johnson, Gregory A; Pellois, Jean-Philippe; Jungwirth, Pavel; Vazdar, Mario; Cremer, Paul S

    2016-09-01

    The interactions of two highly positively charged short peptide sequences with negatively charged lipid bilayers were explored by fluorescence binding assays and all-atom molecular dynamics simulations. The bilayers consisted of mixtures of phosphatidylglycerol (PG) and phosphatidylcholine (PC) lipids as well as a fluorescence probe that was sensitive to the interfacial potential. The first peptide contained nine arginine repeats (Arg9), and the second one had nine lysine repeats (Lys9). The experimentally determined apparent dissociation constants and Hill cooperativity coefficients demonstrated that the Arg9 peptides exhibited weakly anticooperative binding behavior at the bilayer interface at lower PG concentrations, but this anticooperative effect vanished once the bilayers contained at least 20 mol % PG. By contrast, Lys9 peptides showed strongly anticooperative binding behavior at all PG concentrations, and the dissociation constants with Lys9 were approximately 2 orders of magnitude higher than with Arg9. Moreover, only arginine-rich peptides could bind to the phospholipid bilayers containing just PC lipids. These results along with the corresponding molecular dynamics simulations suggested two important distinctions between the behavior of Arg9 and Lys9 that led to these striking differences in binding and cooperativity. First, the interactions of the guanidinium moieties on the Arg side chains with the phospholipid head groups were stronger than for the amino group. This helped facilitate stronger Arg9 binding at all PG concentrations that were tested. However, at PG concentrations of 20 mol % or greater, the Arg9 peptides came into sufficiently close proximity with each other so that favorable like-charge pairing between the guanidinium moieties could just offset the long-range electrostatic repulsions. This led to Arg9 aggregation at the bilayer surface. By contrast, Lys9 molecules experienced electrostatic repulsion from each other at all PG

  8. Visualization and analysis of lipopolysaccharide distribution in binary phospholipid bilayers

    SciTech Connect

    Henning, Maria Florencia; Sanchez, Susana; Bakas, Laura

    2009-05-22

    Lipopolysaccharide (LPS) is an endotoxin released from the outer membrane of Gram-negative bacteria during infections. It have been reported that LPS may play a role in the outer membrane of bacteria similar to that of cholesterol in eukaryotic plasma membranes. In this article we compare the effect of introducing LPS or cholesterol in liposomes made of dipalmitoylphosphatidylcholine/dioleoylphosphatidylcholine on the solubilization process by Triton X-100. The results show that liposomes containing LPS or cholesterol are more resistant to solubilization by Triton X-100 than the binary phospholipid mixtures at 4 {sup o}C. The LPS distribution was analyzed on GUVs of DPPC:DOPC using FITC-LPS. Solid and liquid-crystalline domains were visualized labeling the GUVs with LAURDAN and GP images were acquired using a two-photon microscope. The images show a selective distribution of LPS in gel domains. Our results support the hypothesis that LPS could aggregate and concentrate selectively in biological membranes providing a mechanism to bring together several components of the LPS-sensing machinery.

  9. VISUALIZATION AND ANALYSIS OF LPS DISTRIBUTION IN BINARY PHOSPHOLIPID BILAYERS

    PubMed Central

    Florencia, Henning María; Susana, Sanchez; Laura, Bakás

    2010-01-01

    Lipopolysaccharide (LPS) is an endotoxin released from the outer membrane of Gram negative bacteria during infections. It have been reported that LPS may play a rol in the outer membrane of bacteria similar to that of cholesterol in eukaryotic plasma membranes. In this article we compare the effect of introducing LPS or cholesterol in liposomes made of dipalmitoylphosphatidylcholine/dioleoylphosphatidylcholine on the solubilization process by Triton X-100. The results show that liposomes containing LPS or Cholesterol are more resistant to solubilization by Triton X-100 than the binary phospholipid mixtures at 4°C. The LPS distribution was analyzed on GUVs of DPPC:DOPC using FITC-LPS. Solid and liquid-crystalline domains were visualized labeling the GUVs with LAURDAN and GP images were acquired using a two-photon microscope. The images show a selective distribution of LPS in gel domains. Our results support the hypothesis that LPS could aggregate and concentrate selectively in biological membranes providing a mechanism to bring together several components of the LPS-sensing machinery. PMID:19324006

  10. Unassisted translocation of large polypeptide domains across phospholipid bilayers.

    PubMed

    Brambillasca, Silvia; Yabal, Monica; Makarow, Marja; Borgese, Nica

    2006-12-01

    Although transmembrane proteins generally require membrane-embedded machinery for integration, a few can insert spontaneously into liposomes. Previously, we established that the tail-anchored (TA) protein cytochrome b(5) (b5) can posttranslationally translocate 28 residues downstream to its transmembrane domain (TMD) across protein-free bilayers (Brambillasca, S., M. Yabal, P. Soffientini, S. Stefanovic, M. Makarow, R.S. Hegde, and N. Borgese. 2005. EMBO J. 24:2533-2542). In the present study, we investigated the limits of this unassisted translocation and report that surprisingly long (85 residues) domains of different sequence and charge placed downstream of b5's TMD can posttranslationally translocate into mammalian microsomes and liposomes at nanomolar nucleotide concentrations. Furthermore, integration of these constructs occurred in vivo in translocon-defective yeast strains. Unassisted translocation was not unique to b5 but was also observed for another TA protein (protein tyrosine phosphatase 1B) whose TMD, like the one of b5, is only moderately hydrophobic. In contrast, more hydrophobic TMDs, like synaptobrevin's, were incapable of supporting unassisted integration, possibly because of their tendency to aggregate in aqueous solution. Our data resolve long-standing discrepancies on TA protein insertion and are relevant to membrane evolution, biogenesis, and physiology.

  11. Platelet Immobilization on Supported Phospholipid Bilayers for Single Platelet Studies.

    PubMed

    Uhl, Eva; Donati, Alessia; Reviakine, Ilya

    2016-08-23

    The worldwide cardiovascular disease (CVD) epidemic is of grave concern. A major role in the etiology of CVDs is played by the platelets (thrombocytes). Platelets are anuclear cell fragments circulating in the blood. Their primary function is to catalyze clot formation, limiting traumatic blood loss in the case of injury. The same process leads to thrombosis in the case of CVDs, which are commonly managed with antiplatelet therapy. Platelets also have other, nonhemostatic functions in wound healing, inflammation, and tissue regeneration. They play a role in the early stages of atherosclerosis and the spread of cancer through metastases. Much remains to be learned about the regulation of these diverse platelet functions under physiological and pathological conditions. Breakthroughs in this regard are expected to come from single platelet studies and systems approaches. The immobilization of platelets at surfaces is advantageous for developing such approaches, but platelets are activated when they come in contact with foreign surfaces. In this work, we develop and validate a protocol for immobilizing platelets on supported lipid bilayers without activation due to immobilization. Our protocol can therefore be used for studying platelets with a wide variety of surface-sensitive techniques. PMID:27438059

  12. Comparison Actin- and Glass-Supported Phospholipid Bilayer Diffusion Coefficients

    PubMed Central

    Sterling, Sarah M.; Dawes, Ryan; Allgeyer, Edward S.; Ashworth, Sharon L.; Neivandt, David J.

    2015-01-01

    The formation of biomimetic lipid membranes has the potential to provide insights into cellular lipid membrane dynamics. The construction of such membranes necessitates not only the utilization of appropriate lipids, but also physiologically relevant substrate/support materials. The substrate materials employed have been shown to have demonstrable effects on the behavior of the overlying lipid membrane, and thus must be studied before use as a model cushion support. To our knowledge, we report the formation and investigation of a novel actin protein-supported lipid membrane. Specifically, inner leaflet lateral mobility of globular actin-supported DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayers, deposited via the Langmuir-Blodgett/Langmuir Schaefer methodology, was investigated by z-scan fluorescence correlation spectroscopy across a temperature range of 20–44°C. The actin substrate was found to decrease the diffusion coefficient when compared to an identical membrane supported on glass. The depression of the diffusion coefficient occurred across all measured temperatures. These results indicated that the actin substrate exerted a direct effect on the fluidity of the lipid membrane and highlighted the fact that the choice of substrate/support is critical in studies of model lipid membranes. PMID:25902434

  13. Phenethyl alcohol disorders phospholipid acyl chains and promotes translocation of the mitochondrial precursor protein apocytochrome c across a lipid bilayer.

    PubMed

    Jordi, W; Nibbeling, R; de Kruijff, B

    1990-02-12

    The interaction of phenethyl alcohol with model membranes and its effect on translocation of the chemically prepared mitochondrial precursor protein apocytochrome c across a lipid bilayer was studied. Phenethyl alcohol efficiently penetrates into monolayers and causes acyl chain disordering judged from deuterium nuclear magnetic resonance measurements with specific acyl chain-deuterated phospholipids. Translocation of apocytochrome c across a phospholipid bilayer was stimulated on addition of phenethyl alcohol indicating that the efficiency of translocation of this precursor protein is enhanced due to a disorder of the acyl chain region of the bilayer.

  14. Functionalization of cobalt porphyrin-phospholipid bilayers with his-tagged ligands and antigens

    NASA Astrophysics Data System (ADS)

    Shao, Shuai; Geng, Jumin; Ah Yi, Hyun; Gogia, Shobhit; Neelamegham, Sriram; Jacobs, Amy; Lovell, Jonathan F.

    2015-05-01

    Methods to attach polypeptides to lipid bilayers are often indirect and ineffective, and can represent a substantial bottleneck in the formation of functionalized lipid-based materials. Although the polyhistidine tag (his-tag) has been transformative in its simplicity and efficacy in binding to immobilized metals, the successful application of this approach has been challenging in physiological settings. Here we show that lipid bilayers containing porphyrin-phospholipid conjugates that are chelated with cobalt, but not with other metals, can effectively capture his-tagged proteins and peptides. The binding follows a Co(II) to Co(III) transition and occurs within the sheltered hydrophobic bilayer, resulting in an essentially irreversible attachment in serum or in a million fold excess of competing imidazole. Using this approach we anchored homing peptides into the bilayer of preformed and cargo-loaded liposomes to enable tumour targeting without disrupting the bilayer integrity. As a further demonstration, a synthetic protein fragment derived from the human immunodeficiency virus was bound to immunogenic liposomes for potent antibody generation for an otherwise non-antigenic peptide.

  15. Functionalization of Cobalt Porphyrin-Phospholipid Bilayers with His-tagged Ligands and Antigens

    PubMed Central

    Shao, Shuai; Geng, Jumin; Yi, Hyun Ah; Gogia, Shobhit; Neelamegham, Sriram; Jacobs, Amy; Lovell, Jonathan F.

    2015-01-01

    Methods to attach polypeptides to lipid bilayers are often indirect, ineffective and can represent a substantial bottleneck in the formation of functionalized lipid-based materials. Although the polyhistidine tag (his-tag) has been transformative in its simplicity and efficacy in binding to immobilized metals, the successful application of this approach has been challenging in physiological settings. Here we show that lipid bilayers containing porphyin-phospholipid that is chelated with cobalt, but not other metals, can effectively capture his-tagged proteins and peptides. The binding follows a Co(II) to Co(III) transition and occurs within the sheltered hydrophobic bilayer, resulting in essentially irreversible attachment in serum or in million-fold excess of competing imidazole. Using this approach we anchored homing peptides into the bilayer of preformed and cargo-loaded liposomes to enable tumour-targeting without disrupting the bilayer integrity. As a further demonstration, a synthetic HIV-derived protein fragment was bound to immunogenic liposomes for potent antibody generation for an otherwise non-antigenic peptide. PMID:25901823

  16. Importance of phospholipid bilayer integrity in the analysis of protein–lipid interactions

    SciTech Connect

    Drücker, Patrick; Gerke, Volker; Galla, Hans-Joachim

    2014-10-10

    Highlights: • We show long-term mechanical stabilization of solid supported bilayers. • Bilayer integrity is essential for the investigation of protein–lipid interactions. • Protein adsorption to a bilayer containing defects causes membrane destruction. - Abstract: The integrity of supported phospholipid bilayer membranes is of crucial importance for the investigation of lipid–protein interactions. Therefore we recorded the formation of supported membranes on SiO{sub 2} and mica by quartz crystal microbalance and controlled the integrity by atomic force microscopy. This study aims to analyze how membrane defects affect protein–lipid interactions. The experiments focused on a lipid mixture of POPC/DOPC/Chol/POPS/PI(4,5)P{sub 2} (37:20:20:20:3) and the binding of the peripheral membrane associated protein annexin A2. We found that formation of a continuous undisturbed bilayer is an indispensable precondition for a reliable determination and quantification of lipid–protein-interactions. If membrane defects were present, protein adsorption causes membrane disruption and lipid detachment on a support thus leading to false determination of binding constants. Our results obtained for PI(4,5)P{sub 2} and cholesterol containing supported membranes yield new knowledge to construct functional surfaces that may cover nanoporous substrates, form free standing membranes or may be used for lab-on-a-chip applications.

  17. Ether- versus ester-linked phospholipid bilayers containing either linear or branched apolar chains.

    PubMed

    Balleza, Daniel; Garcia-Arribas, Aritz B; Sot, Jesús; Ruiz-Mirazo, Kepa; Goñi, Félix M

    2014-09-16

    We studied the properties of bilayers formed by ether-and ester-containing phospholipids, whose hydrocarbon chains can be either linear or branched, using sn-1,2 dipalmitoyl, dihexadecyl, diphytanoyl, and diphytanyl phosphatidylcholines (DPPC, DHPC, DPhoPC, and DPhPC, respectively) either pure or in binary mixtures. Differential scanning calorimetry and confocal fluorescence microscopy of giant unilamellar vesicles concurred in showing that equimolar mixtures of linear and branched lipids gave rise to gel/fluid phase coexistence at room temperature. Mixtures containing DHPC evolved in time (0.5 h) from initial reticulated domains to extended solid ones when an equilibrium was achieved. The nanomechanical properties of supported planar bilayers formed by each of the four lipids studied by atomic force microscopy revealed average breakdown forces Fb decreasing in the order DHPC ≥ DPPC > DPhoPC > DPhPC. Moreover, except for DPPC, two different Fb values were found for each lipid. Atomic force microscopy imaging of DHPC was peculiar in showing two coexisting phases of different heights, probably corresponding to an interdigitated gel phase that gradually transformed, over a period of 0.5 h, into a regular tilted gel phase. Permeability to nonelectrolytes showed that linear-chain phospholipids allowed a higher rate of solute + water diffusion than branched-chain phospholipids, yet the former supported a smaller extent of swelling of the corresponding vesicles. Ether or ester bonds appeared to have only a minor effect on permeability.

  18. Ether- versus Ester-Linked Phospholipid Bilayers Containing either Linear or Branched Apolar Chains

    PubMed Central

    Balleza, Daniel; Garcia-Arribas, Aritz B.; Sot, Jesús; Ruiz-Mirazo, Kepa; Goñi, Félix M.

    2014-01-01

    We studied the properties of bilayers formed by ether-and ester-containing phospholipids, whose hydrocarbon chains can be either linear or branched, using sn-1,2 dipalmitoyl, dihexadecyl, diphytanoyl, and diphytanyl phosphatidylcholines (DPPC, DHPC, DPhoPC, and DPhPC, respectively) either pure or in binary mixtures. Differential scanning calorimetry and confocal fluorescence microscopy of giant unilamellar vesicles concurred in showing that equimolar mixtures of linear and branched lipids gave rise to gel/fluid phase coexistence at room temperature. Mixtures containing DHPC evolved in time (0.5 h) from initial reticulated domains to extended solid ones when an equilibrium was achieved. The nanomechanical properties of supported planar bilayers formed by each of the four lipids studied by atomic force microscopy revealed average breakdown forces Fb decreasing in the order DHPC ≥ DPPC > DPhoPC >> DPhPC. Moreover, except for DPPC, two different Fb values were found for each lipid. Atomic force microscopy imaging of DHPC was peculiar in showing two coexisting phases of different heights, probably corresponding to an interdigitated gel phase that gradually transformed, over a period of 0.5 h, into a regular tilted gel phase. Permeability to nonelectrolytes showed that linear-chain phospholipids allowed a higher rate of solute + water diffusion than branched-chain phospholipids, yet the former supported a smaller extent of swelling of the corresponding vesicles. Ether or ester bonds appeared to have only a minor effect on permeability. PMID:25229144

  19. Formation of Supported and Anchored Phospholipid Bilayers by Fusion of Unilamellar Vesicles: An AFM Study.

    NASA Astrophysics Data System (ADS)

    Reviakine, Ilya; Brisson, Alain

    2000-03-01

    The process of formation of supported phospholipid bilayers (SPBs) on the surface of mica from unilamellar vesicles prepared by sonication or extrusion was investigated by AFM. The effect of liposome size and of Ca2+ on the SPB formation was studied. Intact surface-adsorbed liposomes of various sizes could be visualized. The results obtained in this study were compared with the theoretical model of Seifert et al (1) and with the experimental results obtained by other groups (2),(3). 2-dimensional (2D) crystals formed on SPBs (4) present a surface with significantly different properties than that of mica. Phospholipid vesicles can be anchored to them via specific (ligand-receptor) interactions, forming Anchored Vesicular Layers (AVLs, by analogy with Supported Vesicular Layers, or SVLs (5)). The formation of Anchored Phospholipid Bilayers (APBs) from AVLs was also investigated (6). 1. Seifert, U. Adv. Phys. (1997), 46, 13. 2. Keller, C.A., Kasemo, B. Biophys. J. (1998), 75, 1397. 3. Reviakine and Brisson, Langmuir, in press. 4. Reviakine, I., Bergsma-Schutter, W., Brisson, A. J.Struct. Biol. (1998), 121, 356. 5. Nollert, P., Kiefer, H., Jähnig, F. Biophys. J. (1995), 69, 1447. 6. Reviakine and Brisson, Langmuir, submitted.

  20. Neutron reflectivity study of substrate surface chemistry effects on supported phospholipid bilayer formation on (1120) sapphire.

    SciTech Connect

    Oleson, Timothy A.; Sahai, Nita; Wesolowski, David J; Dura, Joseph A; Majkrzak, Charles F; Giuffre, Anthony J.

    2012-01-01

    Oxide-supported phospholipid bilayers (SPBs) used as biomimetric membranes are significant for a broad range of applications including improvement of biomedical devices and biosensors, and in understanding biomineralization processes and the possible role of mineral surfaces in the evolution of pre-biotic membranes. Continuous-coverage and/or stacjed SPBs retain properties (e.,g. fluidity) more similar to native biological membranes, which is desirable for most applications. Using neutron reflectivity, we examined face coverage and potential stacking of dipalmitoylphosphatidylcholine (DPPC) bilayers on the (1120) face of sapphire (a-Al2O3). Nearly full bilayers were formed at low to neutral pH, when the sapphire surface is positively charged, and at low ionic strength (l=15 mM NaCl). Coverage decreased at higher pH, close to the isoelectric point of sapphire, and also at high I>210mM, or with addition of 2mM Ca2+. The latter two effects are additive, suggesting that Ca2+ mitigates the effect of higher I. These trends agree with previous results for phospholipid adsorption on a-Al2O3 particles determined by adsorption isotherms and on single-crystal (1010) sapphire by atomic force microscopy, suggesting consistency of oxide surface chemistry-dependent effects across experimental techniques.

  1. Phospholipid surface bilayers at the air-water interface. II. Water permeability of dimyristoylphosphatidylcholine surface bilayers.

    PubMed Central

    Ginsberg, L; Gershfeld, N L

    1985-01-01

    Dispersions of dimyristoylphosphatidylcholine (DMPC) in water have been reported to form a structure at 29 degrees C at the equilibrium air/water surface with a molecular density equal to that of a typical bilayer. In this study, the water permeability of this structure has been evaluated by measuring the rate of water evaporation from DMPC dispersions in water in the temperature range where the surface film density exceeds that of a monolayer. Evaporation rates for the lipid dispersions did not deviate from those for lipid-free systems throughout the entire temperature range examined (20-35 degrees C) except at 29 degrees C, where a barrier to evaporation was detected. This strengthens the view that the structure that forms at this temperature has the properties of a typical bilayer. PMID:3978199

  2. Elasticity, strength and stability of bilayer lipid membranes and their changes due to phospholipid modification.

    PubMed

    Passechnik, V I; Hianik, T; Karagodin, V P; Kagan, V E

    1984-12-01

    Elasticity measurements of bilayer lipid membranes (BLM) based on registration of the third harmonic of the membrane current during the application of a periodic tension to the membrane was used to study the effects of lipid peroxidation (LPO) and phospholipase A on BLM. LPO resulted in decreased values of the Young modulus for BLM, while some products of LPO and phospholipid hydrolysis (linolenic acid) were able to increase drastically the modulus. The presence of individual products of LPO and phospholipid hydrolysis in BLM produced non-additive effects on the elasticity, strength and stability of BLM. Lysolecithine strongly affected both the strength and stability of BLM. without changing its elasticity modulus. It was found that the lower the rate of structural changes in lecithine BLM, the longer its lifetime. Membranes having a heterogeneous polar composition form more stable BLM as compared to chemically homogeneous membranes.

  3. X-ray studies on phospholipid bilayers. XIV. Interactions with the antiarrhythmic asocainol.

    PubMed

    Suwalsky, M; Sánchez, I; Neira, F

    1993-01-01

    Asocainol (ASOC) belongs to class I of the antiarrhythmic drugs, i.e., those that exert their action at the level of the sodium channels of the myocardial cell membrane. It has been suggested that their molecular mechanism of action might be through nonspecific interactions with phospholipids that surround the channel proteins. In order to test this hypothesis, ASOC was made to interact with two multibilayer systems, one built-up of dimyristoylphosphatidylcholine (DMPC) and the other of dimyristoylphosphatidylethanolamine (DMPE). These are the type of lipids that are respectively found in the outer and inner monolayers of human erythrocytes. The experiments were carried out in a hydrophobic as well as in a hydrophilic medium below the phospholipid main transition temperatures. The perturbing effect of ASOC upon the bilayer structures was determined by X-ray diffraction. It was found that ASOC was able to fluidize DMPC in both media but not to DMPE. PMID:8297425

  4. Arsenite interactions with phospholipid bilayers as molecular models for the human erythrocyte membrane.

    PubMed

    Suwalsky, Mario; Rivera, Cecilia; Villena, Fernando; Sotomayor, Carlos P; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2007-04-01

    There are scanty reports concerning the effects of arsenic compounds on the structure and functions of cell membranes. With the aim to better understand the molecular mechanisms of the interaction of arsenite with cell membranes we have utilized bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. The capacity of arsenite to perturb the bilayer structures was determined by X-ray diffraction and fluorescence spectroscopy, whilst the modification of their thermotropic behaviour was followed by differential scanning calorimetry (DSC). The experiments carried out by X-ray diffraction and calorimetry clearly indicated that NaAsO(2) interacted with DMPE and modified its thermotropic behaviour. No such information has been so far reported in the literature. PMID:17175091

  5. Cholesteryl oligoethyleneglycol glycosides: fluidizing effect of their embedment into phospholipid bilayers.

    PubMed

    Bardonnet, Pierre-Louis; Faivre, Vincent; Pirot, Fabrice; Boullanger, Paul; Falson, Françoise

    2005-04-22

    Glycosides of cholesteryl oligoethyleneglycols have been synthesized and embedded in liposome bilayers. Several methods as steady-state fluorescence polarization, differential scanning calorimetry, zeta potential, and agglutination have been used to describe the physicochemical outcome of the incorporation of these synthetic glycolipids within phospholipid layers. From calorimetry and fluorescence experiments, it is apparent that the glycolipids decrease the transition temperature of the bilayers in a more important extent than cholesterol. Furthermore, the thickness of the aqueous layer fixed around the liposome is independent of the presence of glycolipids, suggesting that their hydrophilic parts (tetraethyleneglycol spacer and sugar moiety) are not completely extended towards the aqueous phase. Nevertheless, an important and specific interaction has been observed between such glycosylated liposomes and vegetal lectins.

  6. Disturb or Stabilize? A Molecular Dynamics Study of the Effects of Resorcinolic Lipids on Phospholipid Bilayers

    PubMed Central

    Siwko, Magdalena E.; de Vries, Alex H.; Mark, Alan E.; Kozubek, Arkadiusz; Marrink, Siewert J.

    2009-01-01

    Abstract Resorcinolic lipids, or resorcinols, are commonly found in plant membranes. They consist of a substituted benzene ring forming the hydrophilic lipid head, attached to an alkyl chain forming the hydrophobic tail. Experimental results show alternative effects of resorcinols on lipid membranes. Depending on whether they are added to lipid solutions before or after the formation of the liposomes, they either stabilize or destabilize these liposomes. Here we use atomistic molecular dynamics simulations to elucidate the molecular nature of this dual effect. Systems composed of either one of three resorcinol homologs, differing in the alkyl tail length, interacting with dimyristoylphosphatidylcholine lipid bilayers were studied. It is shown that resorcinols preincorporated into bilayers induce order within the lipid acyl chains, decrease the hydration of the lipid headgroups, and make the bilayers less permeable to water. In contrast, simulations in which the resorcinols are incorporated from the aqueous solution into a preformed phospholipid bilayer induce local disruption, leading to either transient pore formation or even complete rupture of the membrane. In line with the experimental data, our simulations thus demonstrate that resorcinols can either disturb or stabilize the membrane structure, and offer a detailed view of the underlying molecular mechanism. PMID:19383459

  7. Monomethylarsonate (MMAv) exerts stronger effects than arsenate on the structure and thermotropic properties of phospholipids bilayers.

    PubMed

    Suwalsky, Mario; Rivera, Cecilia; Sotomayor, Carlos P; Jemiola-Rzeminska, Malgorzata; Strzalka, Kazimierz

    2008-01-01

    Methylation of inorganic arsenic has been regarded as a detoxification mechanism because its metabolites monomethylarsonic acid (MMA(v)) and dimethylarsinic acid (DMA(v)) are supposed to be less toxic than inorganic arsenite and arsenate. In recent years, however, this interpretation has been questioned. Additionally, there are insufficient reports concerning the effects of arsenic compounds on cell membrane structure and functions. With the aim to better understand the molecular mechanisms of the interaction of MMA(v) and arsenate with cell membranes, we have utilized molecular models consisting in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of many cell membranes including that of the human erythrocyte. The capacity of MMA(v) and arsenate to perturb the bilayer structures of DMPC and DMPE was evaluated by X-ray diffraction; the modifications of their thermotropic behavior were followed by differential scanning calorimetry (DSC), while DMPC large unilamellar vesicles (LUV) were studied by fluorescence spectroscopy. It was found that MMA(v) and arsenate did not structurally perturb DMPC bilayers; however, DMPE bilayers did suffer structural perturbations by MMA(v). DSC measurements also revealed that DMPE's thermotropic properties were significantly affected by arsenicals, where MMA(v) was more effective than arsenate, whilst only slight modifications were observed in the case of DMPC-MMA(v) system. PMID:17961907

  8. Nanomechanics of phospholipid bilayer failure under strip biaxial stretching using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Murphy, M. A.; Horstemeyer, M. F.; Gwaltney, Steven R.; Stone, Tonya; LaPlaca, Michelle; Liao, Jun; Williams, Lakiesha; Prabhu, R.

    2016-06-01

    The current study presents a nanoscale in silico investigation of strain rate dependency of membrane (phospholipid bilayer) failure when placed under strip biaxial tension with two planar areas. The nanoscale simulations were conducted in the context of a multiscale modelling framework in which the macroscale damage (pore volume fraction) progression is delineated into pore nucleation (number density of pores), pore growth (size of pores), and pore coalescence (inverse of nearest neighbor distance) mechanisms. As such, the number density, area fraction, and nearest neighbor distances were quantified in association with the stress–strain behavior. Deformations of a 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer were performed using molecular dynamics to simulate mechanoporation of a neuronal cell membrane due to injury, which in turn can result in long-term detrimental effects that could ultimately lead to cell death. Structures with 72 and 144 phospholipids were subjected to strip biaxial tensile deformations at multiple strain rates. Formation of a water bridge through the phospholipid bilayer was the metric to indicate structural failure. Both the larger and smaller bilayers had similar behavior regarding pore nucleation and the strain rate effect on pore growth post water penetration. The applied strain rates, planar area, and cross-sectional area had no effect on the von Mises strains at which pores greater than 0.1 nm2 were detected (0.509  ±  7.8%) or the von Mises strain at failure (ε failure  =  0.68  ±  4.8%). Additionally, changes in bilayer planar and cross-sectional areas did not affect the stress response. However, as the strain rate increased from 2.0  ×  108 s‑1 to 1.0  ×  109 s‑1, the yield stress increased from 26.5 MPa to 66.7 MPa and the yield strain increased from 0.056 to 0.226.

  9. Nanomechanics of phospholipid bilayer failure under strip biaxial stretching using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Murphy, M. A.; Horstemeyer, M. F.; Gwaltney, Steven R.; Stone, Tonya; LaPlaca, Michelle; Liao, Jun; Williams, Lakiesha; Prabhu, R.

    2016-06-01

    The current study presents a nanoscale in silico investigation of strain rate dependency of membrane (phospholipid bilayer) failure when placed under strip biaxial tension with two planar areas. The nanoscale simulations were conducted in the context of a multiscale modelling framework in which the macroscale damage (pore volume fraction) progression is delineated into pore nucleation (number density of pores), pore growth (size of pores), and pore coalescence (inverse of nearest neighbor distance) mechanisms. As such, the number density, area fraction, and nearest neighbor distances were quantified in association with the stress-strain behavior. Deformations of a 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer were performed using molecular dynamics to simulate mechanoporation of a neuronal cell membrane due to injury, which in turn can result in long-term detrimental effects that could ultimately lead to cell death. Structures with 72 and 144 phospholipids were subjected to strip biaxial tensile deformations at multiple strain rates. Formation of a water bridge through the phospholipid bilayer was the metric to indicate structural failure. Both the larger and smaller bilayers had similar behavior regarding pore nucleation and the strain rate effect on pore growth post water penetration. The applied strain rates, planar area, and cross-sectional area had no effect on the von Mises strains at which pores greater than 0.1 nm2 were detected (0.509  ±  7.8%) or the von Mises strain at failure (ɛ failure  =  0.68  ±  4.8%). Additionally, changes in bilayer planar and cross-sectional areas did not affect the stress response. However, as the strain rate increased from 2.0  ×  108 s-1 to 1.0  ×  109 s-1, the yield stress increased from 26.5 MPa to 66.7 MPa and the yield strain increased from 0.056 to 0.226.

  10. Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases.

    PubMed Central

    Veiga, M P; Arrondo, J L; Goñi, F M; Alonso, A

    1999-01-01

    The effects of ceramides of natural origin on the gel-fluid and lamellar-inverted hexagonal phase transitions of phospholipids (mainly dielaidoylphosphatidylethanolamine) have been studied by differential scanning calorimetry, with additional support from infrared and 31P nuclear magnetic resonance (NMR) spectroscopy. In the lamellar phase, ceramides do not mix ideally with phospholipids, giving rise to the coexistence of domains that undergo the gel-fluid transition at different temperatures. The combination of differential scanning calorimetry and infrared spectroscopy, together with the use of deuterated lipids, allows the demonstration of independent melting temperatures for phospholipid and ceramide in the mixtures. In the lamellar-hexagonal phase transitions, ceramides (up to 15 mol %) decrease the transition temperature, without significantly modifying the transition enthalpy, thus facilitating the inverted hexagonal phase formation. 31P-NMR indicates the coexistence, within a certain range of temperatures, of lamellar and hexagonal phases, or hexagonal phase precursors. Ceramides from egg or from bovine brain are very similar in their effects on the lamellar-hexagonal transition. They are also comparable to diacylglycerides in this respect, although ceramides are less potent. These results are relevant in the interpretation of certain forms of interfacial enzyme activation and in the regulation and dynamics of the bilayer structure of cell membranes. PMID:9876146

  11. Tip-induced deformation of a phospholipid bilayer: Theoretical perspective of sum frequency generation imaging

    SciTech Connect

    Volkov, Victor

    2014-10-21

    The paper addresses theory of Sum Frequency Generation imaging of an atomic force microscopy tip-induced deformation of a bilayer phospholipid membrane deposited over a pore: known as a nano-drum system. Image modeling employed nonlinearities of the normal modes specific to hydrocarbon terminal methyls, which are distributed about the deformed surfaces of inner and outer leaflets. The deformed profiles are according to the solutions of shape equation for Canham-Helfrich Hamiltonian accounting properties of four membranes, which differ in elasticity and adhesion. The results indicate that in continuous deformed surfaces, the difference in the curvature of the outer and inner leaflets dominates in the imaged nonlinearity. This is different comparing to the results for a perfect bilayer spherical cap system (the subject of previous study), where nonlinear image response is dominated by the mismatch of the inner and outer leaflets’ surface areas (as projected to the image plane) at the edge of perfectly spherical structure. The results of theoretical studies, here, demonstrate that Sum Frequency Generation imaging in continuous and deformed bilayer surfaces are helpful to address curvature locally and anticipate mechanical properties of membrane. The articles discuss applicability and practical limitations of the approach. Combination of Atomic Force Microscopy and Sum Frequency Generation imaging under controlled tip-induced deformation provides a good opportunity to probe and test membranes physical properties with rigor of adopted theory.

  12. Tip-induced deformation of a phospholipid bilayer: Theoretical perspective of sum frequency generation imaging

    NASA Astrophysics Data System (ADS)

    Volkov, Victor

    2014-10-01

    The paper addresses theory of Sum Frequency Generation imaging of an atomic force microscopy tip-induced deformation of a bilayer phospholipid membrane deposited over a pore: known as a nano-drum system. Image modeling employed nonlinearities of the normal modes specific to hydrocarbon terminal methyls, which are distributed about the deformed surfaces of inner and outer leaflets. The deformed profiles are according to the solutions of shape equation for Canham-Helfrich Hamiltonian accounting properties of four membranes, which differ in elasticity and adhesion. The results indicate that in continuous deformed surfaces, the difference in the curvature of the outer and inner leaflets dominates in the imaged nonlinearity. This is different comparing to the results for a perfect bilayer spherical cap system (the subject of previous study), where nonlinear image response is dominated by the mismatch of the inner and outer leaflets' surface areas (as projected to the image plane) at the edge of perfectly spherical structure. The results of theoretical studies, here, demonstrate that Sum Frequency Generation imaging in continuous and deformed bilayer surfaces are helpful to address curvature locally and anticipate mechanical properties of membrane. The articles discuss applicability and practical limitations of the approach. Combination of Atomic Force Microscopy and Sum Frequency Generation imaging under controlled tip-induced deformation provides a good opportunity to probe and test membranes physical properties with rigor of adopted theory.

  13. Patterned domains of supported phospholipid bilayer using microcontact printing of Pll-g-PEG molecules.

    PubMed

    Chalmeau, Jerome; le Grimellec, Christian; Sternick, John; Vieu, Christophe

    2012-01-01

    In this work, we propose a reliable microcontact printing (μCP) process for generating Patterned Supported Phospholipids Bilayer (P-SPB) confined by Poly-L-(lysine)-grafted-polyethylene(glycol) (Pll-g-PEG) molecular barriers. The efficiency of Pll-g-PEG for inhibiting the fusion process of incubated liposome was first analyzed by Quartz Micro Balance (QCM) measurements. The quality and stability of Pll-g-PEG patterns were then both verified by fluorescence microscopy and Atomic Force Microscopy (AFM) in liquid media. The micro domains of P-SPB produced were stable in liquid environment during several weeks and also during AFM imaging. This exceptional stability is a clear improvement compared to previous studies involving proteins as confinement barriers.

  14. Swelling of phospholipid membranes by divalent metal ions depends on the location of the ions in the bilayers.

    PubMed

    Alsop, Richard J; Maria Schober, Rafaëla; Rheinstädter, Maikel C

    2016-08-10

    The Hofmeister series illustrates how salts produce a wide range of effects in biological systems, which are not exclusively explained by ion charge. In lipid membranes, charged ions have been shown to bind to lipids and either hydrate or dehydrate lipid head groups, and also to swell the water layer in multi-lamellar systems. Typically, Hofmeister phenomena are explained by the interaction of the ions with water, as well as with biological interfaces, such as proteins or membranes. We studied the effect of the divalent cations Mg(2+), Ca(2+), Fe(2+), and Zn(2+) on oriented, stacked, phospholipid bilayers made of dimyristoylphosphatidylcholine (DMPC). Using high-resolution X-ray diffraction, we observed that the cations lead to a swelling of the water layer between the bilayers, without causing significant changes to the bilayer structure. The cations swelled the bilayers in different amounts, in the order Fe(2+) > Mg(2+) > Ca(2+) > Zn(2+). By decomposing the total bilayer electron density into different molecular groups, Zn(2+) and Ca(2+) were found to interact with the glycerol groups of the lipid molecules and cause minor swelling of the bilayers. Mg(2+) and Fe(2+) were found to position near the phosphate groups and cause a strong increase in the number of hydration water molecules. Our results present a molecular mechanism-of-action for the Hofmeister series in phospholipid membranes. PMID:27453289

  15. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers.

    PubMed Central

    Bernsdorff, C; Wolf, A; Winter, R; Gratton, E

    1997-01-01

    The effect of high hydrostatic pressure on the lipid bilayer hydration, the mean order parameter, and rotational dynamics of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) cholesterol vesicles has been studied by time-resolved fluorescence spectroscopy up to 1500 bar. Whereas the degree of hydration in the lipid headgroup and interfacial region was assessed from fluorescence lifetime data using the probe 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH), the corresponding information in the upper acyl chain region was estimated from its effect on the fluorescence lifetime of and 3-(diphenylhexatrienyl)propyl-trimethylammonium (TMAP-DPH). The lifetime data indicate a greater level of interfacial hydration for DPPC bilayers than for POPC bilayers, but there is no marked difference in interchain hydration of the two bilayer systems. The addition of cholesterol at levels from 30 to 50 mol% to DPPC has a greater effect on the increase of hydrophobicity in the interfacial region of the bilayer than the application of hydrostatic pressure of several hundred to 1000 bar. Although the same trend is observed in the corresponding system, POPC/30 mol% cholesterol, the observed effects are markedly less pronounced. Whereas the rotational correlation times of the fluorophores decrease in passing the pressure-induced liquid-crystalline to gel phase transition of DPPC, the wobbling diffusion coefficient remains essentially unchanged. The wobbling diffusion constant of the two fluorophores changes markedly upon incorporation of 30 mol% cholesterol, and increases at higher pressures, also in the case of POPC/30 mol% cholesterol. The observed effects are discussed in terms of changes in the rotational characteristics of the fluorophores and the phase-state of the lipid mixture. The results demonstrate the ability of cholesterol to adjust the structural and dynamic properties of membranes composed of

  16. Direct determination of crystallographic phases for diffraction data from lipid bilayers. II. Refinement of phospholipid structures.

    PubMed Central

    Dorset, D L

    1991-01-01

    Using a systematic approach for the acceptance of crystallographic phase assignment, based on the evaluation of triplet structure invariants, electron and x-ray diffraction data from phospholipid multilamellar arrays are analyzed by direct methods. After calculation of Fourier maps with a partial set of phased structure factor magnitudes, the structure is refined in real space by flattening of the hydrocarbon region of the bilayer and an optimal solution is sought either by the calculation of [delta rho 4] suggested by Luzzati, where rho is the structure density or by a test of density smoothness [magnitude of delta rho/ delta r magnitude of], where r positions are located along the normal to the lamellar surface. Reanalyses of previously determined structures sometimes lead to new conclusions (e.g., a possible similarity of the electron density profile for DL-DMPE and L-DMPE, and a clear indication of the fatty acid adduct in the mixed L-DPPC/palmitic acid bilayer). Because of presumed secondary scattering perturbations (primarily to the least intense reflections), the refinements of the electron diffraction intensities are less easily evaluated than those carried out with x-ray diffraction data. PMID:1777564

  17. Formation of pit-spanning phospholipid bilayers on nanostructured silicon dioxide surfaces for studying biological membrane events.

    PubMed

    Pfeiffer, Indriati; Zäch, Michael

    2013-01-01

    Zwitterionic phospholipid vesicles are known to adsorb and ultimately rupture on flat silicon dioxide (SiO2) surfaces to form supported lipid bilayers. Surface topography, however, alters the kinetics and mechanistic details of vesicles adsorption, which under certain conditions may be exploited to form a suspended bilayer. Here we describe the use of nanostructured SiO2 surfaces prepared by the colloidal lithography technique to scrutinize the formation of suspended 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayers from a solution of small unilamellar lipid vesicles (SUVs). Atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) were employed to characterize nanostructure fabrication and lipid bilayer assembly on the surface.

  18. Interactions of Al(acac)3 with cell membranes and model phospholipid bilayers.

    PubMed

    Suwalsky, M; Ungerer, B; Villena, F; Norris, B; Cárdenas, H; Zatta, P

    1999-07-15

    Aluminum is a neurotoxic agent; however, little information has been obtained regarding its molecular cytotoxicity and the effects on the stability of biological membranes. This is mainly due to the ill-defined chemical speciation of the metal compounds. For this reason, the present study used aluminum acetylacetonate, (Al(acac)3), a neutral, chemically well-defined, hydrolytically stable and lipophilic compound. To understand the molecular mechanism of its interaction with cell membranes, Al(acac)3 was incubated with human erythrocytes, isolated toad skin and molecular models of biomembranes. The latter consisted of multilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoyphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. The results showed that Al(acac)3 interacted with the erythrocyte membrane modifying its normal discoid morphology to both echinocytic and stomatocytic shapes. This finding indicates that the Al complex was inserted in both the outer and inner layers of the red cell membrane, a conclusion supported by X-ray diffraction analyses of DMPC and DMPE bilayers. Electrophysiological measurements performed on toad skin revealed a significant decrease in the potential difference and short-circuit current responses after application of Al(acac)3, effects interpreted to reflect inhibition of the active transport of ions. Al(acac)3 was active on both surfaces of the skin suggesting that the membrane was permeated by the metal complex. It is concluded that Al(acac)3 both alters the molecular structure of the lipid bilayer, thereby modifying the biophysical properties of the cell membrane, and changes its physiological properties. PMID:10499289

  19. Conformation of alamethicin in oriented phospholipid bilayers determined by (15)N solid-state nuclear magnetic resonance.

    PubMed Central

    Bak, M; Bywater, R P; Hohwy, M; Thomsen, J K; Adelhorst, K; Jakobsen, H J; Sørensen, O W; Nielsen, N C

    2001-01-01

    The conformation of the 20-residue antibiotic ionophore alamethicin in macroscopically oriented phospholipid bilayers has been studied using (15)N solid-state nuclear magnetic resonance (NMR) spectroscopy in combination with molecular modeling and molecular dynamics simulations. Differently (15)N-labeled variants of alamethicin and an analog with three of the alpha-amino-isobutyric acid residues replaced by alanines have been investigated to establish experimental structural constraints and determine the orientation of alamethicin in hydrated phospholipid (dimyristoylphosphatidylcholine) bilayers and to investigate the potential for a major kink in the region of the central Pro(14) residue. From the anisotropic (15)N chemical shifts and (1)H-(15)N dipolar couplings determined for alamethicin with (15)N-labeling on the Ala(6), Val(9), and Val(15) residues and incorporated into phospholipid bilayer with a peptide:lipid molar ratio of 1:8, we deduce that alamethicin has a largely linear alpha-helical structure spanning the membrane with the molecular axis tilted by 10-20 degrees relative to the bilayer normal. In particular, we find compatibility with a straight alpha-helix tilted by 17 degrees and a slightly kinked molecular dynamics structure tilted by 11 degrees relative to the bilayer normal. In contrast, the structural constraints derived by solid-state NMR appear not to be compatible with any of several model structures crossing the membrane with vanishing tilt angle or the earlier reported x-ray diffraction structure (Fox and Richards, Nature. 300:325-330, 1982). The solid-state NMR-compatible structures may support the formation of a left-handed and parallel multimeric ion channel. PMID:11509381

  20. Phospholipid bilayer relaxation dynamics as revealed by the pulsed electron-electron double resonance of spin labels

    NASA Astrophysics Data System (ADS)

    Syryamina, V. N.; Dzuba, S. A.

    2012-10-01

    Electron paramagnetic resonance (EPR) spectroscopy in the form of pulsed electron-electron double resonance (ELDOR) was applied to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) phospholipid bilayers containing lipids that were spin-labeled at different carbon positions along the lipid acyl chain. Pulsed ELDOR detects motionally induced spin flips of nitrogen nuclei in the nitroxide spin labels, which manifests itself as magnetization transfer (MT) in the nitroxide EPR spectrum. The MT effect was observed over a wide temperature range (100-225 K) on a microsecond time scale. In line with a previous study on molecular glasses [N. P. Isaev and S. A. Dzuba, J. Chem. Phys. 135, 094508 (2011), 10.1063/1.3633241], the motions that induce MT effect were suggested to have the same nature as those in dielectric secondary (β) Johari-Goldstein fast relaxation. The results were compared with literature dielectric relaxation data for POPC bilayers, revealing some common features. Molecular motions resulting in MT are faster for deeper spin labels in the membrane interior. The addition of cholesterol to the bilayer suppresses the lipid motions near the steroid nucleus and accelerates the lipid motions beyond the steroid nucleus, in the bilayer interior. This finding was attributed to the lipid acyl chains being more ordered near the steroid nucleus and less ordered in the bilayer interior. The motions are absent in dry lipids, indicating that the motions are determined by intermolecular interactions in the bilayer.

  1. The anticancer drug chlorambucil interacts with the human erythrocyte membrane and model phospholipid bilayers.

    PubMed

    Suwalsky, M; Hernández, P; Villena, F; Sotomayor, C P

    1999-12-01

    The plasma membrane has gained increasing attention as a possible target of antitumor drugs. It has been reported that they act as growth factor antagonists, growth factor receptor blockers, interfere with mitogenic signal transduction or exert direct cytotoxic effects. Chlorambucil (4-[p-(bis[2-chloroethyl]amino)phenyl]butyric acid) is an alkylating agent widely used in the treatment of chronic lymphocytic leukaemia. Contradictory reports have been published concerning its interaction with cell membranes. Whereas a decrease in the fluidity of Ehrlich ascite tumor cells has been adduced, no evidences were found that chlorambucil changes membrane lipid fluidity and alkylating agents had effects in these systems even at highly toxic concentrations. Our results showed that chlorambucil at a dose equivalent to its therapeutical concentration in the plasma (3.6 microM) caused the human erythrocyte membrane to develop cup-shaped forms (stomatocytes). Accordingly to the bilayer couple hypothesis, this means that the drug is inserted into the inner monolayer of the erythrocyte membrane, a conclusion supported by X-ray diffraction performed on multilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the erythrocyte membrane, respectively. It is concluded that the cytotoxic effect of chlorambucil might be due to alteration of the structure and therefore of the physiological properties of cell membranes such as fluidity, permeability, receptor and channel functions. PMID:10685501

  2. Gramicidin conformational studies with mixed-chain unsaturated phospholipid bilayer systems

    SciTech Connect

    Cox, K.J.; Ho, Cojen; Lombardi, J.V.; Stubbs, C.D. )

    1992-02-04

    The transition of gramicidin from a nonchannel to a channel form was investigated using mixed-chain phosphatidylcholine lipid bilayers. Gramicidin and phospholipids were codispersed, after removal of the solvents chloroform/methanol or trifluoroethanol which resulted in nonchannel and channel conformations, respectively, as confirmed using circular dichroism (CD). The fluorescence emission maxima of the nonchannel form were shifted toward shorter wavelengths by heating at 60C (for 0-12 h), which converted it to a channel form, again as confirmed by CD. The channel form did not respond to heat treatment. Heat treatment also increased the fluorescence anisotropy of the nonchannel gramicidin tryptophans. The rate of transition from the nonchannel to channel conformation was found to be faster is phosphatidylethanolamine was present in combination with phosphatidylcholine compared to phosphatidylcholine alone. Using the fluorescence anisotropy of the membrane lipid probe, 1,6-diphenyl-1,3,5-hexatriene, it was also shown that the motional properties of the surrounding lipid acyl chains differed for the channel and nonchannel gramicidin conformations. The possibility that lipids tending to favor the hexagonal phase (H{sub II}) would enhance the rate of the nonchannel to channel transition was supported by {sup 31}P NMR which revealed the presence of some H{sub II} lipids in the channel preparations. The results of this study suggest that gramicidin may serve as a useful model for similar conformational transitions in other more complex membrane proteins.

  3. First-leaflet phase effect on properties of phospholipid bilayer formed through vesicle adsorption on LB monolayer.

    PubMed

    Park, Jin-Won

    2010-10-01

    Phospholipid bilayers were formed on mica using the Langmuir-Blodgett technique and liposome fusion, as a model system for biomembranes. Nanometer-scale surface physical properties of the bilayers were quantitatively characterized upon the different phases of the first leaflets. Lower hydration/steric forces on the bilayers were observed at the liquid phase of the first leaflet than at the solid phase. The forces appear to be related to the low mechanical stability of the lipid bilayer, which was affected by the first leaflet phase. The first leaflet phase also influenced the long-range repulsive forces over the second leaflet. Surface forces, measured using a modified probe with an atomic force microscope, showed that lower long-range repulsive forces were also found at the liquid phase of the first leaflet. Force measurements were performed at 300 mM sodium chloride solution so that the effect of the phase on the long-range repulsive forces could be investigated by reducing the effect of the repulsion between the second-leaflet lipid headgroups on the long-range repulsive forces. Forces were analyzed using the Derjaguin-Landau-Verwey-Overbeek theory so that the surface potential and surface charge density of the lipid bilayers were quantitatively acquired for each phase of the first leaflet.

  4. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness.

    PubMed Central

    Paula, S; Volkov, A G; Van Hoek, A N; Haines, T H; Deamer, D W

    1996-01-01

    Two mechanisms have been proposed to account for solute permeation of lipid bilayers. Partitioning into the hydrophobic phase of the bilayer, followed by diffusion, is accepted by many for the permeation of water and other small neutral solutes, but transient pores have also been proposed to account for both water and ionic solute permeation. These two mechanisms make distinctively different predictions about the permeability coefficient as a function of bilayer thickness. Whereas the solubility-diffusion mechanism predicts only a modest variation related to bilayer thickness, the pore model predicts an exponential relationship. To test these models, we measured the permeability of phospholipid bilayers to protons, potassium ions, water, urea, and glycerol. Bilayers were prepared as liposomes, and thickness was varied systematically by using unsaturated lipids with chain lengths ranging from 14 to 24 carbon atoms. The permeability coefficient of water and neutral polar solutes displayed a modest dependence on bilayer thickness, with an approximately linear fivefold decrease as the carbon number varied from 14 to 24 atoms. In contrast, the permeability to protons and potassium ions decreased sharply by two orders of magnitude between 14 and 18 carbon atoms, and leveled off, when the chain length was further extended to 24 carbon atoms. The results for water and the neutral permeating solutes are best explained by the solubility-diffusion mechanism. The results for protons and potassium ions in shorter-chain lipids are consistent with the transient pore model, but better fit the theoretical line predicted by the solubility-diffusion model at longer chain lengths. PMID:8770210

  5. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness

    NASA Technical Reports Server (NTRS)

    Paula, S.; Volkov, A. G.; Van Hoek, A. N.; Haines, T. H.; Deamer, D. W.

    1996-01-01

    Two mechanisms have been proposed to account for solute permeation of lipid bilayers. Partitioning into the hydrophobic phase of the bilayer, followed by diffusion, is accepted by many for the permeation of water and other small neutral solutes, but transient pores have also been proposed to account for both water and ionic solute permeation. These two mechanisms make distinctively different predictions about the permeability coefficient as a function of bilayer thickness. Whereas the solubility-diffusion mechanism predicts only a modest variation related to bilayer thickness, the pore model predicts an exponential relationship. To test these models, we measured the permeability of phospholipid bilayers to protons, potassium ions, water, urea, and glycerol. Bilayers were prepared as liposomes, and thickness was varied systematically by using unsaturated lipids with chain lengths ranging from 14 to 24 carbon atoms. The permeability coefficient of water and neutral polar solutes displayed a modest dependence on bilayer thickness, with an approximately linear fivefold decrease as the carbon number varied from 14 to 24 atoms. In contrast, the permeability to protons and potassium ions decreased sharply by two orders of magnitude between 14 and 18 carbon atoms, and leveled off, when the chain length was further extended to 24 carbon atoms. The results for water and the neutral permeating solutes are best explained by the solubility-diffusion mechanism. The results for protons and potassium ions in shorter-chain lipids are consistent with the transient pore model, but better fit the theoretical line predicted by the solubility-diffusion model at longer chain lengths.

  6. Permeation of halide anions through phospholipid bilayers occurs by the solubility-diffusion mechanism

    NASA Technical Reports Server (NTRS)

    Paula, S.; Volkov, A. G.; Deamer, D. W.

    1998-01-01

    Two alternative mechanisms are frequently used to describe ionic permeation of lipid bilayers. In the first, ions partition into the hydrophobic phase and then diffuse across (the solubility-diffusion mechanism). The second mechanism assumes that ions traverse the bilayer through transient hydrophilic defects caused by thermal fluctuations (the pore mechanism). The theoretical predictions made by both models were tested for halide anions by measuring the permeability coefficients for chloride, bromide, and iodide as a function of bilayer thickness, ionic radius, and sign of charge. To vary the bilayer thickness systematically, liposomes were prepared from monounsaturated phosphatidylcholines (PC) with chain lengths between 16 and 24 carbon atoms. The fluorescent dye MQAE (N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide) served as an indicator for halide concentration inside the liposomes and was used to follow the kinetics of halide flux across the bilayer membranes. The observed permeability coefficients ranged from 10(-9) to 10(-7) cm/s and increased as the bilayer thickness was reduced. Bromide was found to permeate approximately six times faster than chloride through bilayers of identical thickness, and iodide permeated three to four times faster than bromide. The dependence of the halide permeability coefficients on bilayer thickness and on ionic size were consistent with permeation of hydrated ions by a solubility-diffusion mechanism rather than through transient pores. Halide permeation therefore differs from that of a monovalent cation such as potassium, which has been accounted for by a combination of the two mechanisms depending on bilayer thickness.

  7. β-CD-dextran polymer for efficient sequestration of cholesterol from phospholipid bilayers: Mechanistic and safe-toxicity investigations.

    PubMed

    Stelzl, Dominik; Nielsen, Thorbjørn Terndrup; Hansen, Terkel; di Cagno, Massimiliano

    2015-12-30

    The aim of this work was to investigate the suitability of β-cyclodextrin-dextran (BCD-dextran) polymer as cholesterol sequestering agent in vitro. For this purpose, BCD-dextran-cholesterol complexation was studied by phase solubility studies as well as with a specifically designed in vitro model based on giant unilamellar vesicles (GUVs) to evaluate the ability of this polymer to sequestrate cholesterol from phospholipid bilayers. Cholesterol-sequestering ability of BCD-dextran was also investigated on different cell lines relevant for the hematopoietic system and results were correlated to cells toxicity. BCD-dextran polymer was capable of extracting significant amount of cholesterol from phospholipid bilayers and to a higher extent in comparison to available β-cyclodextrins (BCDs). The ability of BCD-dextran in sequestering cholesterol resulted also very high on cell lines relevant for the hematopoietic system. Moreover, BCD-dextran resulted less toxic on cell cultures due to higher selectivity in sequestering cholesterol in comparison to MBCD (that sequestrated also significant amounts of cholesteryl esters). In conclusion, BCD-dextran resulted an extremely efficient cholesterol-sequestering agent and BCD-dextran resulted more selective to cholesterol extraction in comparison to other BCDs (therefore of lower cytotoxicity). This phenomenon might play a key role to develop an efficient treatment for hypercholesterolemia based on cholesterol segregation.

  8. On the application of the MARTINI coarse-grained model to immersion of a protein in a phospholipid bilayer

    NASA Astrophysics Data System (ADS)

    Mustafa, Ghulam; Nandekar, Prajwal P.; Yu, Xiaofeng; Wade, Rebecca C.

    2015-12-01

    An important step in the simulation of a membrane protein in a phospholipid bilayer is the correct immersion of the protein in the bilayer. Crystal structures are determined without the bilayer. Particularly for proteins with monotopic domains, it can be unclear how deeply and in which orientation the protein is being inserted in the membrane. We have previously developed a procedure combining coarse-grain (CG) with all-atom (AA) molecular dynamics (MD) simulations to insert and simulate a cytochrome P450 (CYP) possessing an N-terminal transmembrane helix connected by a flexible linker region to a globular domain that dips into the membrane. The CG simulations provide a computationally efficient means to explore different orientations and conformations of the CYP in the membrane. Converged configurations obtained in the CG simulations are then refined in AA simulations. Here, we tested different variants of the MARTINI CG model, differing in the water model, the treatment of long-range non-bonded interactions, and the implementation (GROMACS 4.5.5 vs 5.0.4), for this purpose. We examined the behavior of the models for simulating a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer in water and for the immersion of CYP3A4 in a POPC bilayer, and compared the CG-MD results with the previously reported experimental and simulation results. We also tested the methodology on a set of four other CYPs. Finally, we propose an optimized protocol for modeling such protein-membrane systems that provides the most plausible configurations and is computationally efficient; this incorporates the standard non-polar water model and the GROMACS 5.0.4 implementation with a reaction field treatment of long-range interactions.

  9. On the application of the MARTINI coarse-grained model to immersion of a protein in a phospholipid bilayer

    SciTech Connect

    Mustafa, Ghulam E-mail: rebecca.wade@h-its.org; Nandekar, Prajwal P.; Yu, Xiaofeng; Wade, Rebecca C. E-mail: rebecca.wade@h-its.org

    2015-12-28

    An important step in the simulation of a membrane protein in a phospholipid bilayer is the correct immersion of the protein in the bilayer. Crystal structures are determined without the bilayer. Particularly for proteins with monotopic domains, it can be unclear how deeply and in which orientation the protein is being inserted in the membrane. We have previously developed a procedure combining coarse-grain (CG) with all-atom (AA) molecular dynamics (MD) simulations to insert and simulate a cytochrome P450 (CYP) possessing an N-terminal transmembrane helix connected by a flexible linker region to a globular domain that dips into the membrane. The CG simulations provide a computationally efficient means to explore different orientations and conformations of the CYP in the membrane. Converged configurations obtained in the CG simulations are then refined in AA simulations. Here, we tested different variants of the MARTINI CG model, differing in the water model, the treatment of long-range non-bonded interactions, and the implementation (GROMACS 4.5.5 vs 5.0.4), for this purpose. We examined the behavior of the models for simulating a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayer in water and for the immersion of CYP3A4 in a POPC bilayer, and compared the CG-MD results with the previously reported experimental and simulation results. We also tested the methodology on a set of four other CYPs. Finally, we propose an optimized protocol for modeling such protein-membrane systems that provides the most plausible configurations and is computationally efficient; this incorporates the standard non-polar water model and the GROMACS 5.0.4 implementation with a reaction field treatment of long-range interactions.

  10. Effect of Deuteration on Phase Behavior of Supported Phospholipid Bilayers: A Spectroelectrochemical Study.

    PubMed

    Madrid, Elena; Horswell, Sarah L

    2015-11-17

    Differences in molecular organization of two sides of a chemically symmetric, planar bilayer supported on a Au(111) substrate have been monitored with charge density measurements and in situ polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). Isotopic substitution of the hydrogen atoms in the hydrocarbon chains with deuterium atoms in one monolayer was employed to allow the monitoring of C-H vibrations from that monolayer alone. Charge density measurements of bilayers formed from dimyristoylphosphatidylethanolamine (DMPE) showed that the effect of placing the deuterated layer next to the substrate or electrolyte had little impact on the electrical barrier properties. In situ PM-IRRAS studies revealed that the structure of the two monolayers was the same at negative potentials, where the bilayer is separated from the Au substrate, but different at more positive potentials or small charge densities, where the bilayer is expected to be directly adsorbed on the Au surface. Thus, the differences observed for the related molecule dimyristoylphosphatidylcholine (DMPC) persist in planar structures, although to a lesser extent. A small but observable variation in the tilt angle was also apparent in the spectra of both isotopically asymmetric DMPE bilayers during the electrochemical phase transition. The fact that this effect was not previously observed for hydrogenous bilayers means that the dynamic behavior of deuterated DMPE and/or of bilayers composed of different monolayers is different from that of hydrogenous DMPE bilayers. These results have implications for future studies in which isotopic substitution is used to extract selectively information from one layer or component of lipid bilayers in spectroscopic or neutron measurements. PMID:26536482

  11. Molecular Mechanism of the Synergistic Effects of Vitrification Solutions on the Stability of Phospholipid Bilayers

    PubMed Central

    Hughes, Zak E.; Mancera, Ricardo L.

    2014-01-01

    The vitrification solutions used in the cryopreservation of biological samples aim to minimize the deleterious formation of ice by dehydrating cells and promoting the formation of the glassy state of water. They contain a mixture of different cryoprotective agents (CPAs) in water, typically polyhydroxylated alcohols and/or dimethyl sulfoxide (DMSO), which can damage cell membranes. Molecular dynamics simulations have been used to investigate the behavior of pure DPPC, pure DOPC, and mixed DOPC-β-sitosterol bilayers solvated in a vitrification solution containing glycerol, ethylene glycol, and DMSO at concentrations that approximate the widely used plant vitrification solution 2. As in the case of solutions containing a single CPA, the vitrification solution causes the bilayer to thin and become disordered, and pores form in the case of some bilayers. Importantly, the degree of thinning is, however, substantially reduced compared to solutions of DMSO containing the same total CPA concentration. The reduction in the damage done to the bilayers is a result of the ability of the polyhydroxylated species (especially glycerol) to form hydrogen bonds to the lipid and sterol molecules of the bilayer. A decrease in the amount of DMSO in the vitrification solution with a corresponding increase in the amount of glycerol or ethylene glycol diminishes further its damaging effect due to increased hydrogen bonding of the polyol species to the bilayer headgroups. These findings rationalize, to our knowledge for the first time, the synergistic effects of combining different CPAs, and form the basis for the optimization of vitrification solutions. PMID:24940779

  12. Cyclic and Linear Monoterpenes in Phospholipid Membranes: Phase Behavior, Bilayer Structure, and Molecular Dynamics.

    PubMed

    Pham, Quoc Dat; Topgaard, Daniel; Sparr, Emma

    2015-10-13

    Monoterpenes are abundant in essential oils extracted from plants. These relatively small and hydrophobic molecules have shown important biological functions, including antimicrobial activity and membrane penetration enhancement. The interaction between the monoterpenes and lipid bilayers is considered important to the understanding of the biological functions of monoterpenes. In this study, we investigated the effect of cyclic and linear monoterpenes on the structure and dynamics of lipids in model membranes. We have studied the ternary system 1,2-dimyristoyl-sn-glycero-3-phosphocholine-monoterpene-water as a model with a focus on dehydrated conditions. By combining complementary techniques, including differential scanning calorimetry, solid-state nuclear magnetic resonance, and small- and wide-angle X-ray scattering, bilayer structure, phase transitions, and lipid molecular dynamics were investigated at different water contents. Monoterpenes cause pronounced melting point depression and phase segregation in lipid bilayers, and the extent of these effects depends on the hydration conditions. The addition of a small amount of thymol to the fluid bilayer (volume fraction of 0.03 in the bilayer) leads to an increased order in the acyl chain close to the bilayer interface. The findings are discussed in relation to biological systems and lipid formulations. PMID:26375869

  13. Molecular mechanism of the synergistic effects of vitrification solutions on the stability of phospholipid bilayers.

    PubMed

    Hughes, Zak E; Mancera, Ricardo L

    2014-06-17

    The vitrification solutions used in the cryopreservation of biological samples aim to minimize the deleterious formation of ice by dehydrating cells and promoting the formation of the glassy state of water. They contain a mixture of different cryoprotective agents (CPAs) in water, typically polyhydroxylated alcohols and/or dimethyl sulfoxide (DMSO), which can damage cell membranes. Molecular dynamics simulations have been used to investigate the behavior of pure DPPC, pure DOPC, and mixed DOPC-β-sitosterol bilayers solvated in a vitrification solution containing glycerol, ethylene glycol, and DMSO at concentrations that approximate the widely used plant vitrification solution 2. As in the case of solutions containing a single CPA, the vitrification solution causes the bilayer to thin and become disordered, and pores form in the case of some bilayers. Importantly, the degree of thinning is, however, substantially reduced compared to solutions of DMSO containing the same total CPA concentration. The reduction in the damage done to the bilayers is a result of the ability of the polyhydroxylated species (especially glycerol) to form hydrogen bonds to the lipid and sterol molecules of the bilayer. A decrease in the amount of DMSO in the vitrification solution with a corresponding increase in the amount of glycerol or ethylene glycol diminishes further its damaging effect due to increased hydrogen bonding of the polyol species to the bilayer headgroups. These findings rationalize, to our knowledge for the first time, the synergistic effects of combining different CPAs, and form the basis for the optimization of vitrification solutions. PMID:24940779

  14. Probing the Huntingtin 1-17 Membrane Anchor on a Phospholipid Bilayer by Using All-Atom Simulations

    PubMed Central

    Côté, Sébastien; Binette, Vincent; Salnikov, Evgeniy S.; Bechinger, Burkhard; Mousseau, Normand

    2015-01-01

    Mislocalization and aggregation of the huntingtin protein are related to Huntington’s disease. Its first exon—more specifically the first 17 amino acids (Htt17)—is crucial for the physiological and pathological functions of huntingtin. It regulates huntingtin’s activity through posttranslational modifications and serves as an anchor to membrane-containing organelles of the cell. Recently, structure and orientation of the Htt17 membrane anchor were determined using a combined solution and solid-state NMR approach. This prompted us to refine this model by investigating the dynamics and thermodynamics of this membrane anchor on a POPC bilayer using all-atom, explicit solvent molecular dynamics and Hamiltonian replica exchange. Our simulations are combined with various experimental measurements to generate a high-resolution atomistic model for the huntingtin Htt17 membrane anchor on a POPC bilayer. More precisely, we observe that the single α-helix structure is more stable in the phospholipid membrane than the NMR model obtained in the presence of dodecylphosphocholine detergent micelles. The resulting Htt17 monomer has its hydrophobic plane oriented parallel to the bilayer surface. Our results further unveil the key residues interacting with the membrane in terms of hydrogen bonds, salt-bridges, and nonpolar contributions. We also observe that Htt17 equilibrates at a well-defined insertion depth and that it perturbs the physical properties—order parameter, thickness, and area per lipid—of the bilayer in a manner that could favor its dimerization. Overall, our observations reinforce and refine the NMR measurements on the Htt17 membrane anchor segment of huntingtin that is of fundamental importance to its biological functions. PMID:25762330

  15. Supported phospholipid bilayer interaction with components found in typical room-temperature ionic liquids - a QCM-D and AFM study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quartz crystal microbalance with dissipation monitoring and atomic force microscopy were combined to evaluate the defects created by room-temperature ionic liquid anion and cation in a supported phospholipid bilayer composed of Zwitterionic lipids on a silica surface. The cation 1-octyl-3-methyl im...

  16. Insulation of the conduction pathway of muscle transverse tubule calcium channels from the surface charge of bilayer phospholipid

    PubMed Central

    1986-01-01

    Functional calcium channels present in purified skeletal muscle transverse tubules were inserted into planar phospholipid bilayers composed of the neutral lipid phosphatidylethanolamine (PE), the negatively charged lipid phosphatidylserine (PS), and mixtures of both. The lengthening of the mean open time and stabilization of single channel fluctuations under constant holding potentials was accomplished by the use of the agonist Bay K8644. It was found that the barium current carried through the channel saturates as a function of the BaCl2 concentration at a maximum current of 0.6 pA (at a holding potential of 0 mV) and a half-saturation value of 40 mM. Under saturation, the slope conductance of the channel is 20 pS at voltages more negative than -50 mV and 13 pS at a holding potential of 0 mV. At barium concentrations above and below the half-saturation point, the open channel currents were independent of the bilayer mole fraction of PS from XPS = 0 (pure PE) to XPS = 1.0 (pure PS). It is shown that in the absence of barium, the calcium channel transports sodium or potassium ions (P Na/PK = 1.4) at saturating rates higher than those for barium alone. The sodium conductance in pure PE bilayers saturates as a function of NaCl concentration, following a curve that can be described as a rectangular hyperbola with a half-saturation value of 200 mM and a maximum conductance of 68 pS (slope conductance at a holding potential of 0 mV). In pure PS bilayers, the sodium conductance is about twice that measured in PE at concentrations below 100 mM NaCl. The maximum channel conductance at high ionic strength is unaffected by the lipid charge. This effect at low ionic strength was analyzed according to J. Bell and C. Miller (1984. Biophysical Journal. 45:279- 287) and interpreted as if the conduction pathway of the calcium channel were separated from the bilayer lipid by approximately 20 A. This distance thereby effectively insulates the ion entry to the channel from the bulk of

  17. Dithionite penetration through phospholipid bilayers as a measure of defects in lipid molecular packing.

    PubMed

    Langner, M; Hui, S W

    1993-04-01

    The permeability of dithionite through bilayers was utilized to probe the structural defects in the bilayers of these lipids through their respective gel-fluid and bilayer-hexagonal phase transitions. The water soluble dithionite ion penetrates intact bilayers very slowly. The rate of irreversible quenching of the fluorescence of NBD-PE labelled liposomes may thus be used as an indicator of the permeability of this ion through bilayers. The quenching rate has a fast and a slow component, the fast one corresponds to the quenching of fluorophores immediately accessible to the quencher, i.e. those on the outer surface of liposomes. The slower component represents the average rate of penetration of the quencher through the bilayer, to quench those fluorophores at the inner shells of the multilamellar vesicles. Both rates may be approximated by a single exponential function. The slow exponent is simply related to the permeability. The permeability of DMPC as a function of temperature shows a peak at the gel-fluid phase transition at 24 degrees C, but returns to about the pre-transition value at temperatures above the phase transition. The permeability of egg PE shows a hump at 45 degrees C before the hexagonal phase transition at 65 degrees C is reached and becomes infinite at the hexagonal phase transition as all fluorophores are immediately accessible to the quencher. We believe that the permeability measured by this method relates more to the molecular packing defects which maximizes at the gel-fluid phase transition temperatures just below the bilayer-hexagonal phase transition, rather than the general packing order which simply changes with structural phases.

  18. Structure and dynamics of a hydrated phospholipid bilayer in the presence of a silica substrate

    NASA Astrophysics Data System (ADS)

    McCune, Matthew; Kosztin, Ioan

    We study the structure and dynamics of a hydrated diyristoyl-phosphatidycholine (DMPC) lipid bilayer supported on a silica substrate using all-atom molecular dynamics (MD) simulation. A similar MD simulation of a freestanding DMPC bilayer is used as a reference to determine changes to both lipid and hydration water properties due to the introduction of the substrate. Long time (0.1 microsecond) MD trajectories were used to investigate the effect of the substrate on the structure and dynamics of the lipid bilayer by determining (i) the spatial distribution of water molecules and selected lipid atoms; (ii) the out of plane fluctuations of the lipid molecules; (iii) the dipole moment orientation of hydration waters; and (iv) the lateral mean-square-displacement of both lipid and water molecules. The obtained results suggest that (i) at equilibrium the space between the substrate and lipid bilayer is filled by only hydration water; (ii) the presence of the substrate has no major influence on the structure of hydration water layers and on the out-of-plane fluctuations of the lipids; and (iii) the silica substrate alters considerably the lateral diffusion of the lipids in the closest bilayer leaflet and the hydration waters between the substrate and DMPC membrane. The reported results appear to be consistent with previous MD and neutron scattering studies. Work supported by National Science Foundation Integrative Graduate Education and Research Traineeship (DGE-1069091). The computations were performed on the HPC resources at the University of Missouri Bioinformatics Consortium (UMBC).

  19. Permeability of fluid-phase phospholipid bilayers: assessment and useful correlations for permeability screening and other applications.

    PubMed

    Nitsche, Johannes M; Kasting, Gerald B

    2013-06-01

    Permeability data (P(lip/w) ) for liquid crystalline phospholipid bilayers composed of egg lecithin and dimyristoylphosphatidylcholine (DMPC) are analyzed in terms of a mathematical model that accounts for free surface area and chain-ordering effects in the bilayer as well as size and lipophilicity of the permeating species. Free surface area and chain ordering are largely determined by temperature and cholesterol content of the membrane, molecular size is represented by molecular weight, and lipophilicity of the barrier region is represented by the 1,9-decadiene/water partition coefficient, following earlier work by Xiang, Anderson, and coworkers. A correlating variable χ = MW(n) σ/(1 -σ) is used to link the results from different membrane systems, where different values of n are tried, and σ denotes a reduced phospholipid density. The group (1 -σ)/σ is a measure of free surface area, but can also be interpreted in terms of free volume. A single exponential function of χ is developed that is able to correlate 39 observations of P(lip/w) for different compounds in egg lecithin at low density, and 22 observations for acetic acid in DMPC at higher densities, spanning nine orders of magnitude to within an rms error for log 10 P(lip/w) of 0.20. The best fit found for n = 0.87 ultimately makes χ much closer to the ratio of molecular to free volumes than surface areas. The results serve as a starting point for estimating passive permeability of cell membranes to nonionized solutes as a function of temperature and cholesterol content of the membrane.

  20. Interactions of phospholipid bilayer with chitosan: effect of molecular weight and pH.

    PubMed

    Fang, N; Chan, V; Mao, H Q; Leong, K W

    2001-01-01

    Chitosan has demonstrated its potentials as a gene carrier and a membrane perturbant for subsequent drug delivery to cells. However, there is currently a lack of experimental correlation between the physiochemical properties of chitosan and the resulting degree of lipid bilayer destabilization. In this study, the effect of pH and chitosan molecular weight on the interaction between chitosan and dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer was examined with cross-polarization microscopy, differential scanning calorimetry (DSC), and Fourier transform- (FT-) Raman spectroscopy. Cross-polarized images showed that the direct hydration of the DPPC/chitosan mixture led to the formation of larger DPPC multilamellar vesicles (MLV), and pure chitosan also induced fusions of individual MLV. Under the influence of chitosan, the calorimetric enthalpy of DPPC was reduced in a concentration-dependent manner, and a new phase appeared at 28 degrees C during sample cooling. Even the lowest chitosan mole fraction of 0.04% reduced the cooperative unit of the DPPC bilayer by more than 70%. In addition, the electrostatic effect between chitosan and DPPC tuned the degree of membrane bilayer perturbation. Reduction of pH increased the number of protonated amines on the chitosan backbone and caused further disruption on the membrane organization. Mixing DPPC with chitosan in an organic medium before hydration enhanced the hydrophobic interactions between the two molecules and greatly reduced the cooperative unit among individual lipids during the main phase transition. The increase of chitosan molecular weight also affected the cooperativity in the thermotropic transition of DPPC bilayer. FT-Raman spectroscopy provided additional evidence that chitosan directly perturbed the organizations of the hydrophobic inner core of the DPPC bilayer.

  1. Interaction of 3β-amino-5-cholestene with phospholipids in binary and ternary bilayer membranes

    PubMed Central

    Lönnfors, Max; Engberg, Oskar; Peterson, Blake R.; Slotte, J. Peter

    2011-01-01

    3β-Amino-5-cholestene (aminocholesterol) is a synthetic sterol whose properties in bilayer membranes have been examined. In fluid palmitoyl sphingomyelin (PSM) bilayers, aminocholesterol and cholesterol were equally effective in increasing acyl chain order, based on changes in diphenylhexatriene (DPH) anisotropy. In fluid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers, aminocholesterol ordered acyl chains, but slightly less efficiently than cholesterol. Aminocholesterol eliminated the PSM and DPPC gel-to-liquid crystalline phase transition enthalpy linearly with concentration, and the enthalpy approached zero at 30 mol% sterol. Whereas cholesterol was able to increase the thermostability of ordered PSM domains in a fluid bilayer, aminocholesterol under equal conditions failed to do this, suggesting that its interaction with PSM was not as favorable as cholesterol’s. In ternary mixed bilayers, containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), PSM or DPPC, and cholesterol at proportions to contain a liquid-ordered phase (60:40 by mol of POPC and PSM or DPPC, and 30 mol% cholesterol), the average life-time of trans parinaric acid (tPA) was close to 20 ns. When cholesterol was replaced with aminocholesterol in such mixed bilayers, the average life-time of tPA was only marginally shorter (about 18 ns). This observation, together with acyl chain ordering data, clearly shows that aminocholesterol was able to form a liquid-ordered phase with saturated PSM or DPPC. We conclude that aminocholesterol should be a good sterol replacement in model membrane systems for which a partial positive charge is deemed beneficial. PMID:22128897

  2. Single-walled carbon nanotubes do not pierce aqueous phospholipid bilayers at low salt concentration.

    PubMed

    Shi, Liu; Shi, Dachuan; Nollert, Matthias U; Resasco, Daniel E; Striolo, Alberto

    2013-06-01

    Because of their unique physical, chemical, and electrical properties, carbon nanotubes are an attractive material for many potential applications. Their interactions with biological entities are, however, not yet completely understood. To fill this knowledge gap, we present experimental results for aqueous systems containing single-walled carbon nanotubes and phospholipid membranes, prepared in the form of liposomes. Our results suggest that dispersed single-walled carbon nanotubes, instead of piercing the liposome membranes, adsorb on them at low ionic strength. Transmission electron microscopy and dye-leakage experiments show that the liposomes remain for the most part intact in the presence of the nanotubes. Further, the liposomes are found to stabilize carbon nanotube dispersions when the surfactant sodium dodecylbenezenesulfonate is present at low concentrations. Quantifying the interactions between carbon nanotubes and phospholipid membranes could not only shed light on potential nanotubes cytotoxicity but also open up new research venues for their use in controlled drug delivery and/or gene and cancer therapy.

  3. Variation in hydration forces between neutral phospholipid bilayers: evidence for hydration attraction.

    PubMed

    Rand, R P; Fuller, N; Parsegian, V A; Rau, D C

    1988-10-01

    It is now generally recognized that hydration forces dominate close interactions of lipid hydrophilic surfaces. The commonality of their characteristics has been reasonably established. However, differences in measured net repulsion, particularly evident when phosphatidylethanolamine (PE) and phosphatidylcholine (PC) bilayers are compared, suggest there exists a variety of behavior wider than expected from earlier models of hydration and fluctuation repulsion balanced by van der Waals attraction. To find a basis for this diverse behavior, we have looked more closely at measured structural parameters, degrees of hydration, and interbilayer repulsive forces for the lamellar phases of the following lipids: 1-palmitoyl-2-oleoyl-PE (POPE), egg PE, transphosphatidylated egg PE (egg PE-T), mono- and dimethylated egg PE-T (MMPE and DMPE), 1-stearoyl-2-oleoyl-PC (SOPC), and mixtures of POPE and SOPC. POPE and SOPC bilayers differ not only in their maximum degrees of hydration but also in the empirical hydration force coefficients and decay lengths that characterize their interaction. When mixed with POPE, SOPC effects sudden and disproportionate increases in hydration. POPE, egg PE, and egg PE-T differ in their degree of hydration, molecular area, and hydration repulsion. A single methylation of egg PE-T almost completely converts its hydration and bilayer repulsive properties to those of egg PC; little progression of hydration is seen with successive methylations. In order to reconcile these observations with the conventional scheme of balancing interbilayer hydration and fluctuation-enhanced repulsion with van der Waals attraction, it is necessary to relinquish the fundamental idea that the decay of hydration forces is a constant determined by the properties of the aqueous medium. Alternatively, one can retain that fundamental idea if one recognizes the possibility that polar group hydration has an attractive component to it. In the latter view, that attractive component

  4. Medium-chain fatty acid binding to albumin and transfer to phospholipid bilayers

    SciTech Connect

    Hamilton, J.A. )

    1989-04-01

    Temperature-dependent (5-42{degree}C) {sup 13}C NMR spectra of albumin complexes with 90% isotopically substituted (1-{sup 13}C)octanoic or (1-{sup 13}C)decanoic acids showed a single peak at >30{degree}C but three peaks at lower temperatures. The chemical-shift differences result from different ionic and/or hydrogen-bonding interactions between amino acid side chains and the fatty acid carboxyl carbon. Rapid exchange of fatty acid among binding sites obscures these sites at temperatures >30{degree}C. Rate constants for exchange at 33{degree}C were 350 sec{sup {minus}1} for octanoate and 20 sec {sup {minus}1} for decanoate. Temperature-dependent data for octanoate showed an activation energy of 2 kcal/mol for exchange. Spectra of albumin complexes with the 12-carbon saturated fatty acid, lauric acid, had several narrow laurate carboxyl peaks at 35{degree}C, indicating longer lifetimes in the different binding sites. Fatty acid exchange between albumin and model membranes (phosphatidylcholine bilayers) occurred on a time scale comparable to that for exchange among albumin binding sites, following the order octanoate > decanoate > laurate. The equilibrium distribution of fatty acid between lipid bilayers and protein was measured directly from NMR spectra. Decreasing pH increased the relative affinity of fatty acid for the lipid bilayer. The results predict that the relative affinity of octanoic acid for albumin and membranes will be similar to that of long-chain fatty acids, but the rate of equilibration will be {approx} 10{sup 4} faster for octanoic acid.

  5. Constitutive Dimerization of the G-Protein Coupled Receptor, Neurotensin Receptor 1, Reconstituted into Phospholipid Bilayers

    PubMed Central

    Harding, Peter J.; Attrill, Helen; Boehringer, Jonas; Ross, Simon; Wadhams, George H.; Smith, Eleanor; Armitage, Judith P.; Watts, Anthony

    2009-01-01

    Neurotensin receptor 1 (NTS1), a Family A G-protein coupled receptor (GPCR), was expressed in Escherichia coli as a fusion with the fluorescent proteins eCFP or eYFP. A fluorophore-tagged receptor was used to study the multimerization of NTS1 in detergent solution and in brain polar lipid bilayers, using fluorescence resonance energy transfer (FRET). A detergent-solubilized receptor was unable to form FRET-competent complexes at concentrations of up to 200 nM, suggesting that the receptor is monomeric in this environment. When reconstituted into a model membrane system at low receptor density, the observed FRET was independent of agonist binding, suggesting constitutive multimer formation. In competition studies, decreased FRET in the presence of untagged NTS1 excludes the possibility of fluorescent protein-induced interactions. A simulation of the experimental data indicates that NTS1 exists predominantly as a homodimer, rather than as higher-order multimers. These observations suggest that, in common with several other Family A GPCRs, NTS1 forms a constitutive dimer in lipid bilayers, stabilized through receptor-receptor interactions in the absence of other cellular signaling components. Therefore, this work demonstrates that well-characterized model membrane systems are useful tools for the study of GPCR multimerization, allowing fine control over system composition and complexity, provided that rigorous control experiments are performed. PMID:19186134

  6. Thrombomodulatory Effect of Anti-B2-Glycoprotein I Antibodies on Crystalline Annexin A5 on Phospholipid Bilayers, as Observed by Atomic Force Microscopy

    PubMed Central

    Irman, Špela; Škarabot, Miha; Muševič, Igor; Rozman, Blaž; Božič, Borut

    2011-01-01

    Antibodies against β2-glycoprotein I are a subset of very heterogeneous family of antiphospholipid antibodies. It is well recognised that anti-β2-glycoprotein I antibodies are the main pathogenic players in the autoimmune disease known as antiphospholipid syndrome. Many mechanisms have been proposed through which these autoantibodies could cause microplacental, arterial or venous thrombosis. One of the suggested mechanisms is an antiphospholipid antibody-mediated disruption of annexin A5 protective crystalline shield on negatively charged phospholipid membranes. In current report the study of β2-glycoprotein I, anti-β2-glycoprotein I antibodies and annexin A5 interactions was performed on in vitro model of planar solid-supported phospholipid bilayers and visualized by atomic force microscopy. Planar phospholipid bilayers comprised 30 % L-α-phosphatidylserine and 70 % L-α-phosphatidylcholine. For the study of interactions 10 mg/l annexin A5, 0.15 g/l β2-glycoprotein I, 10 g/l of IgG fraction from healthy blood donor, 10 g/l of IgG fraction from a patient with anti-β2-glycoprotein I antibodies and 0.4 g/l of isolated IgG anti-β2-glycoprotein I antibodies from the same patients in Hepes buffered saline with 1.5 mM Ca2+ were used. We confirmed the clustering of β2-glycoprotein I on planar phospholipid bilayers. We also found that in the presence of annexin A5, β2-glycoprotein I does not bind to planar phospholipid bilayers. However, when adding the anti-β2-glycoprotein I antibodies, the growth of β2-glycoprotein I-anti-β2-glycoprotein I antibodies complexes in the presence of incompletely crystallized annexin A5 on planar phospholipid bilayers was observed. Results confirm the possible thrombomodulatory activity of anti-β2-glycoprotein antibodies through their effect on crystalline annexin A5. In addition, the hypothesis that the presence of possibly pathologic antigen-antibody pair itself is not sufficient to start the pathological process is confirmed

  7. Density fluctuations in saturated phospholipid bilayers increase as the acyl-chain length decreases.

    PubMed Central

    Ipsen, J H; Jørgensen, K; Mouritsen, O G

    1990-01-01

    A systematic computer simulation study is conducted for a model of the main phase transition of fully hydrated saturated diacyl phosphatidylcholine bilayers (DMPC, DPPC, and DSPC). With particular focus on the fluctuation effects on the thermal properties in the transition region, the study yields data for the specific heat, the lateral compressibility, and the lipid-domain size distribution. Via a simple model assumption the transmembrane passive ion permeability is derived from the lipid-domain interfacial measure. A comparative analysis of the various data shows, in agreement with a number of experiments, that the lateral density fluctuations and hence the response functions increase as the acyl-chain length is decreased. Images FIGURE 2 PMID:2291936

  8. Effects of pentanol isomers on the phase behavior of phospholipid bilayer membranes.

    PubMed

    Griffin, Kathryn L; Cheng, Chih-Yin; Smith, Eric A; Dea, Phoebe K

    2010-11-01

    Differential scanning calorimetry (DSC) was used to analyze the thermotropic phase behavior of dipalmitoylphosphatidylcholine (DPPC) bilayers in the presence of pentanol isomers. The concentration of each pentanol isomer needed to induce the interdigitated phase was determined by the appearance of a biphasic effect in the main transition temperatures, the onset of a hysteresis associated with the main transition from the gel-to-liquid crystalline phase, and the disappearance of the pretransition. Lower threshold concentrations were found to correlate with isomers of greater alkyl chain length while branching of the alkyl chain was found to increase biphasic behavior. The addition of a methyl group to butanol systems drastically decreased threshold concentrations. However, as demonstrated in the DPPC/neopentanol system, branching of the alkyl chain away from the -OH group lowers the threshold concentration while maintaining a biphasic effect.

  9. Collective dynamics in fully hydrated phospholipid bilayers studied by inelastic x-ray scattering.

    PubMed

    Chen, S H; Liao, C Y; Huang, H W; Weiss, T M; Bellisent-Funel, M C; Sette, F

    2001-01-22

    The short wavelength density fluctuation of DLPC (dilaurylphosphatidylcholine) bilayers close to full hydration has been studied by the inelastic x-ray scattering technique below and above the main transition temperature. The analysis based on a generalized three effective eigenmode theory allows us to construct the dispersion relation of the high frequency sound mode for the first time. The marked softening of the excitation near k = 14 nm(-1), corresponding to the lipid chain-chain correlation peak in the structure factor, in the L(alpha) phase implies prevalent occurrences of short-wavelength in-plane motions of lipid chains that might be of importance for transportation of small molecules across membranes. PMID:11177926

  10. Lipid-Protein Correlations in Nanoscale Phospholipid Bilayers by Solid-State NMR

    PubMed Central

    Kijac, Aleksandra; Shih, Amy Y.; Nieuwkoop, Andrew J.; Schulten, Klaus; Sligar, Stephen G.; Rienstra, Chad M.

    2011-01-01

    Nanodiscs are an example of discoidal nanoscale lipid/protein particles that have been extremely useful for the biochemical and biophysical characterization of membrane proteins. They are discoidal lipid bilayer fragments encircled and stabilized by two amphipathic helical proteins named membrane scaffolding protein (MSP), ~10 nm in size. Nanodiscs are homogeneous, easily prepared with reproducible success, amenable to preparations with a variety of lipids, and stable under a range of temperatures. Here we present solid-state NMR (SSNMR) studies on lyophilized, rehydrated POPC Nanodiscs prepared with uniformly 13C, 15N-labeled MSP1D1 (Δ1-11 truncated MSP). Under these conditions, by SSNMR we directly determine the gel-to-liquid crystal lipid phase transition to be at 3 ± 2 °C. Above this phase transition, the lipid 1H signals have slow transverse relaxation, enabling filtering experiments as previously demonstrated for lipid vesicles. We incorporate this approach into two- and three-dimensional heteronuclear SSNMR experiments to examine the MSP1D1 residues interfacing with the lipid bilayer. These 1H-13C and 1H-13C-13C correlation spectra are used to identify and quantify the number of lipid-correlated and solvent-exposed residues by amino acid type, which furthermore is compared with molecular dynamics studies of MSP1D1 in Nanodiscs. This study demonstrates the utility of SSNMR experiments with Nanodiscs for examining lipid-protein interfaces and has important applications for future structural studies of membrane proteins in physiologically relevant formulations. PMID:20804175

  11. Channel-forming activity of syringopeptin 25A in mercury-supported phospholipid monolayers and negatively charged bilayers.

    PubMed

    Becucci, Lucia; Toppi, Arianna; Fiore, Alberto; Scaloni, Andrea; Guidelli, Rolando

    2016-10-01

    Interactions of the cationic lipodepsipeptide syringopeptin 25A (SP25A) with mercury-supported dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylserine (DOPS) and dioeleoylphosphatidic acid (DOPA) self-assembled monolayers (SAMs) were investigated by AC voltammetry in 0.1M KCl at pH3, 5.4 and 6.8. SP25A targets and penetrates the DOPS SAM much more effectively than the other SAMs not only at pH6.8, where the DOPS SAM is negatively charged, but also at pH3, where it is positively charged just as SP25A. Similar investigations at tethered bilayer lipid membranes (tBLMs) consisting of a thiolipid called DPTL anchored to mercury, with a DOPS, DOPA or DOPC distal monolayer on top of it, showed that, at physiological transmembrane potentials, SP25A forms ion channels spanning the tBLM only if DOPS is the distal monolayer. The distinguishing chemical feature of the DOPS SAM is the ionic interaction between the protonated amino group of a DOPS molecule and the carboxylate group of an adjacent phospholipid molecule. Under the reasonable assumption that SP25A preferentially interacts with this ion pair, the selective lipodepsipeptide antimicrobial activity against Gram-positive bacteria may be tentatively explained by its affinity for similar protonated amino-carboxylate pairs, which are expected to be present in the peptide moieties of peptidoglycan strands.

  12. Channel-forming activity of syringopeptin 25A in mercury-supported phospholipid monolayers and negatively charged bilayers.

    PubMed

    Becucci, Lucia; Toppi, Arianna; Fiore, Alberto; Scaloni, Andrea; Guidelli, Rolando

    2016-10-01

    Interactions of the cationic lipodepsipeptide syringopeptin 25A (SP25A) with mercury-supported dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylserine (DOPS) and dioeleoylphosphatidic acid (DOPA) self-assembled monolayers (SAMs) were investigated by AC voltammetry in 0.1M KCl at pH3, 5.4 and 6.8. SP25A targets and penetrates the DOPS SAM much more effectively than the other SAMs not only at pH6.8, where the DOPS SAM is negatively charged, but also at pH3, where it is positively charged just as SP25A. Similar investigations at tethered bilayer lipid membranes (tBLMs) consisting of a thiolipid called DPTL anchored to mercury, with a DOPS, DOPA or DOPC distal monolayer on top of it, showed that, at physiological transmembrane potentials, SP25A forms ion channels spanning the tBLM only if DOPS is the distal monolayer. The distinguishing chemical feature of the DOPS SAM is the ionic interaction between the protonated amino group of a DOPS molecule and the carboxylate group of an adjacent phospholipid molecule. Under the reasonable assumption that SP25A preferentially interacts with this ion pair, the selective lipodepsipeptide antimicrobial activity against Gram-positive bacteria may be tentatively explained by its affinity for similar protonated amino-carboxylate pairs, which are expected to be present in the peptide moieties of peptidoglycan strands. PMID:27322780

  13. Infrared and fluorescence spectroscopic studies of a phospholipid bilayer supported by a soft cationic hydrogel scaffold.

    PubMed

    Grossutti, Michael; Seenath, Ryan; Noël, John A; Lipkowski, Jacek

    2016-07-01

    Polarized attenuated total reflection (ATR-IR) spectroscopy and fluorescence microscopy techniques were used to characterize a 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) membrane supported on porous, cationic hydrogel beads. Fluorescence microscopy images showed that the DPhPC coated the external surface of the hydrogel scaffold. In addition, a fluorescence assay of the emission intensity of the Tb(3+)/dipicolinic acid complex demonstrated that the DPhPC coating acted as a barrier to Tb(3+) efflux from the scaffolded vesicle and successfully sealed the porous hydrogel bead. Fluorescence quenching and ATR-IR spectroscopic measurements revealed that the lipid coating has a bilayer structure. The phytanoyl chains were found to exhibit significant trans-gauche isomerization, characteristic of the fluid liquid phase. However, no lipid lateral mobility was observed by fluorescence recovery after photobleaching (FRAP) measurements. The phosphocholine headgroup was found to be well hydrated and oriented such that the cationic choline group tucked in behind the anionic phosphate group, consistent with an electrostatic attraction between the cationic scaffold and zwitterionic lipid. The absence of lipid lateral mobility may be due to the strength of this attraction.

  14. sup 2 H Nuclear magnetic resonance of the gramicidin A backbone in a phospholipid bilayer

    SciTech Connect

    Prosser, R.S.; Davis, J.H. ); Dahlquist, F.W.; Lindorfer, M.A. )

    1991-05-14

    Solid-state {sup 2}H NMR spectroscopy has been employed to study the channel conformation of gramicidin A (GA) in unoriented 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) multilayers. Quadrupolar echo spectra were obtained at 44{degree}C and 53{degree}C, from gramicidin A labels in which the proton attached to the {alpha} carbon of residue 3,4,5,10,12, or 14 was replaced with deuterium. Because of the nearly axially symmetric electric field gradient tensor, the quadrupolar splittings obtained from an unoriented multilamellar dispersion of DMPC and singly labeled GA directly yield unambiguous orientational constraints on the C-{sup 2}H bonds. The authors conclude that the helix sense of the channel conformation of GA is right-handed. Assuming that the dominant motions are fast axial diffusion of the gramicidin molecule and reorientation of the diffusion axis with respect to the local bilayer normal, then the theoretical splittings may all be scaled down by a constant motional narrowing factor.

  15. The role of cytosolic proteins in the insertion of tail-anchored proteins into phospholipid bilayers.

    PubMed

    Colombo, Sara F; Longhi, Renato; Borgese, Nica

    2009-07-15

    Tail-anchored (TA) proteins are membrane proteins that contain an N-terminal domain exposed to the cytosol and a single transmembrane segment near the C-terminus followed by few or no polar residues. TA proteins with a mildly hydrophobic transmembrane domain, such as cytochrome b5 (b5), are able to insert post-translationally into pure lipid vesicles without assistance from membrane proteins. Here, we investigated whether any cytosolic proteins are needed to maintain b5 in a competent state for transmembrane integration. Using b5 constructs translated in vitro or produced in bacteria, we demonstrate that cytosolic proteins are neither necessary nor facilitatory for the unassisted translocation of b5. Furthermore, we demonstrate that no cytosolic protein is involved in the translocation of a C-terminal domain of 85 residues appended to the transmembrane domain of b5. Nevertheless, b5 does bind cytosolic proteins, and in their presence but not in their absence, its insertion into liposomes is inhibited by the thiol oxidant diamide and the alkylating agent N-ethylmaleimide. The effect of diamide is also observed in living cells. Thus, the specific in vivo targeting of b5 might be achieved by interaction with redox-sensitive targeting factors that hinder its nonspecific insertion into any permissive bilayer.

  16. Assembly of Influenza Hemagglutinin Fusion Peptides in a Phospholipid Bilayer by Coarse-grained Computer Simulations

    PubMed Central

    Collu, Francesca; Spiga, Enrico; Lorenz, Christian D.; Fraternali, Franca

    2015-01-01

    Membrane fusion is critical to eukaryotic cellular function and crucial to the entry of enveloped viruses such as influenza and human immunodeficiency virus. Influenza viral entry in the host cell is mediated by a 20–23 amino acid long sequence, called the fusion peptide (FP). Recently, possible structures for the fusion peptide (ranging from an inverted V shaped α-helical structure to an α-helical hairpin, or to a complete α-helix) and their implication in the membrane fusion initiation have been proposed. Despite the large number of studies devoted to the structure of the FP, the mechanism of action of this peptide remains unclear with several mechanisms having been suggested, including the induction of local disorder, promoting membrane curvature, and/or altering local membrane composition. In recent years, several research groups have employed atomistic and/or coarse-grained molecular dynamics (MD) simulations to investigate the matter. In all previous works, the behavior of a single FP monomer was studied, while in this manuscript, we use a simplified model of a tripeptide (TP) monomer of FP (TFP) instead of a single FP monomer because each Influenza Hemagglutinin contains three FP molecules in the biological system. In this manuscript we report findings targeted at understanding the fusogenic properties and the collective behavior of these trimers of FP peptides on a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine model membrane. Here we show how the TFP monomers self-assemble into differently sized oligomers in the presence of the membrane. We measure the perturbation to the structure of the phospholipid membrane caused by the presence of these TFP oligomers. Our work (i) shows how self-assembly of TFP in the presence of the membrane induces non negligible deformation to the membrane and (ii) could be a useful starting point to stimulate discussion and further work targeted to fusion pore formation. PMID:26636093

  17. Photophysical studies of bioconjugated ruthenium metal-ligand complexes incorporated in phospholipid membrane bilayers.

    PubMed

    Sharmin, Ayesha; Salassa, Luca; Rosenberg, Edward; Ross, J B Alexander; Abbott, Geoffrey; Black, Labe; Terwilliger, Michelle; Brooks, Robert

    2013-10-01

    The luminescent, mono-diimine ruthenium complexes [(H)Ru(CO)(PPh3)2(dcbpy)][PF6] (1) (dcbpy = 4,4'-dicarboxy-2,2'-bipyridyl) and [(H)Ru(CO)(dppene)(5-amino-1,10-phen)][PF6] (2) (dppene = bis(diphenylphosphino)ethylene; phen = phenanthroline) were conjugated with 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE) and with cholesterol in the case of complex 2. Using standard conjugation techniques, compound 1 gives the bis-lipid derivative [(H)Ru(CO)(PPh3)2(dcbpy-N-DPPE2)][PF6] (3), while 2 provides the monolipid conjugate [(H)Ru(CO)(dppene)(1,10-phen-5-NHC(S)-N-DPPE)][PF6] (4) and the cholesterol derivative [(H)Ru(CO)(dppene)(1,10-phen-5-NHC(O)Ocholesteryl)][PF6] (5). These compounds were characterized by spectroscopic methods, and their photophysical properties were measured in organic solvents. The luminescence of lipid conjugates 3 and 4 is quenched in organic solvents while compound 4 shows a weak, short-lived, blue-shifted emission in aqueous solution. The cholesterol conjugate 5 shows the long-lived, microsecond-time scale emission associated with triplet metal-to-ligand charge-transfer excited states. Incorporation of conjugate 3 in lipid bilayer vesicles restores the luminescence, but with blue shifts (~80 nm) accompanied by nanosecond-time scale lifetimes. In the vesicles conjugate 4 shows a short-lived and blue-shifted emission similar to that observed in solution but with increased intensity. Conjugation of the complex [(H)Ru(CO)(PhP2C2H4C(O)O-N-succinimidyl)2(bpy)][PF6] (6") (bpy = 2,2'-bipyridyl) with DPPE gives the phosphine-conjugated complex [(H)Ru(CO)(PhP2C2H4C(O)-N-DPPE)2(bpy)][PF6] (7). Complex 7 also exhibits a short-lived and blue-shifted emission in solution and in vesicles as observed for complexes 3 and 4. We have also conjugated the complex [Ru(bpy)2(5-amino-1,10-phen)][PF6]2 (8) with both cholesterol (9) and DPPE (10). Neither complex 9 nor the previously reported complex 10 exhibited the blue shifts observed for complexes 3 and 4

  18. Photophysical Studies of Bioconjugated Ruthenium Metal-Ligand Complexes Incorporated in Phospholipid Membrane Bilayers

    PubMed Central

    Sharmin, Ayesha; Salassa, Luca; Rosenberg, Edward; Ross, J. B. Alexander; Abbott, Geoffrey; Black, Labe; Terwilliger, Michelle; Brooks, Robert

    2013-01-01

    Luminescent, mono-diimine, ruthenium complexes, [(H)Ru(CO)(PPh3)2(dcbpy)][PF6] (1, dcbpy = 4,4′-dicarboxy bipyridyl) and [(H)Ru(CO)(dppene)(5-amino-1,10-phen)][PF6] (2, dppene = bis diphenylphosphino-ethylene, phen = 9,10-phenanthroline), have been conjugated with 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DPPE) and with cholesterol in the case of 2. Compound 1 gives the bis-lipid derivative [(H)Ru(CO)(PPh3)2(dcbpy-N-DPPE2)][PF6] (3), while 2 provides the mono-lipid conjugate [(H)Ru(CO)(dppene)(1,10-phen-5-NHC(S)-N-DPPE)][ PF6] (4), and the cholesterol derivative [(H)Ru(CO)(dppene)(1,10-phen-5-NHC(O)OChol)][PF6] (5, Chol = cholesteryl), using standard conjugation techniques. These compounds were characterized by spectroscopic methods, and their photophysical properties were measured in organic solvents. The luminescence of lipid conjugates 3 and is quenched in organic solvents while compound 4 a weak, short-lived, blue-shifted emission in solution. The cholesterol conjugate shows the long-lived, microsecond-timescale emission associated with triplet metal-to-ligand charge-transfer (3MLCT) excited states. Incorporation of conjugate 3 in lipid bilayer vesicles restores the luminescence, but with blue shifts (~80 nm) accompanied by nanosecond-timescale lifetimes. In the vesicles conjugate 4 shows a similar short-lived and blue-shifted emission to that observed in solution but with increased intensity. Conjugation of the complex [(H)Ru(CO)(PhP2C2H4C(O)O-N-succinimidyl)2(bpy)][PF6] (6”) with DPPE gives the phosphine-conjugated complex [(H)Ru(CO)(PhP2C2H4C(O)-N-DPPE)2(bpy)][PF6] (7). Complex 7 also exhibits a short-lived and blue-shifted emission in solution and in vesicles as observed for 3 and 4. We have also conjugated the complex [Ru(bpy)2(5-amino-1,10-phenanthroline)][PF6]2 (8) with both cholesterol (9) and DPPE (10). Neither 9 nor the previously reported 10 exhibited the blue shifts observed for 3 and 4 when incorporated into LUVs. The anisotropies of

  19. Phospholipid Scramblases

    PubMed Central

    Williamson, Patrick

    2015-01-01

    The distribution of phospholipid types between the two leaflets of a membrane bilayer is a controlled feature of membrane structure. One of the two membrane catalytic activities governing this distribution randomizes the composition of the two leaflets—the phospholipid scramblases. Two proteins (Xkr8 and TMEM16F) required for the activation of these activities have been identified. One of these proteins (TMEM16F) is quite clearly a scramblase itself and provides insight into the mechanism by which transbilayer phospholipid movement is facilitated. PMID:26843813

  20. Planar asymmetric lipid bilayers of glycosphingolipid or lipopolysaccharide on one side and phospholipids on the other: membrane potential, porin function, and complement activation.

    PubMed Central

    Wiese, A; Reiners, J O; Brandenburg, K; Kawahara, K; Zähringer, U; Seydel, U

    1996-01-01

    We have determined some physicochemical properties of the monosaccharide-type fraction (GSL-1) of glycosphingolipids, the major glycolipid components of the outer leaflet of the Gram-negative species Sphingomonas paucimobilis. These properties included the state of order of the hydrocarbon moiety, the effective molecular area, surface charge density, and intrinsic transmembrane potential profile of reconstituted planar asymmetric GSL-1/phospholipid bilayer membranes. We have, furthermore, investigated the insertion into and the function of porin channels in the reconstituted bilayers and the complement-activating capability of GSL-1 surfaces. All results were compared with respective data for deep rough mutant lipopolysaccharide of Salmonella minnesota R595. We found a remarkable agreement in most functional properties of the two glycolipids. PMID:8770208

  1. Structure and thermotropic phase behavior of fluorinated phospholipid bilayers: a combined attenuated total reflection FTIR spectroscopy and imaging ellipsometry study.

    PubMed

    Schuy, Steffen; Faiss, Simon; Yoder, Nicholas C; Kalsani, Venkateshwarlu; Kumar, Krishna; Janshoff, Andreas; Vogel, Reiner

    2008-07-17

    Lipid bilayers consisting of lipids with terminally perfluoroalkylated chains have remarkable properties. They exhibit increased stability and phase-separated nanoscale patterns in mixtures with nonfluorinated lipids. In order to understand the bilayer properties that are responsible for this behavior, we have analyzed the structure of solid-supported bilayers composed of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and of a DPPC analogue with 6 terminal perfluorinated methylene units (F6-DPPC). Polarized attenuated total reflection Fourier-transform infrared spectroscopy indicates that for F6-DPPC, the tilt of the lipid acyl chains to the bilayer normal is increased to 39 degrees as compared to 21 degrees for native DPPC, for both lipids in the gel phase. This substantial increase of the tilt angle is responsible for a decrease of the bilayer thickness from 5.4 nm for DPPC to 4.5 nm for F6-DPPC, as revealed by temperature-controlled imaging ellipsometry on microstructured lipid bilayers and solution atomic force microscopy. During the main phase transition from the gel to the fluid phase, both the relative bilayer thickness change and the relative area change are substantially smaller for F6-DPPC than for DPPC. In light of these structural and thermotropic data, we propose a model in which the higher acyl-chain tilt angle in F6-DPPC is the result of a conformational rearrangement to minimize unfavorable fluorocarbon-hydrocarbon interactions in the center of the bilayer due to chain staggering.

  2. Phospholipid nanosomes.

    PubMed

    Castor, Trevor P

    2005-10-01

    Phospholipid nanosomes are small, uniform liposomes manufactured utilizing supercritical fluid technologies. Supercritical fluids are first used to solvate phospholipid raw materials, and then decompressed to form phospholipid nanosomes that can encapsulate hydrophilic molecules such as proteins and nucleic acids. Hydrophobic therapeutics are co-solvated with phospholipid raw materials in supercritical fluids that, when decompressed, form phospholipid nanosomes encapsulating these drugs in their lipid bilayers. Mathematical modeling and semi-empirical experiments indicate that the size and character of phospholipid nanosomes depend on the several process parameters and material properties including the size and design of decompression nozzle, bubble size, pressure and the rate of decompression, interfacial forces, charge distribution and the nature of compound being encapsulated. Examples are presented for the encapsulation of a protein and hydrophobic drugs. In vitro and in vivo data on breast cancer cells and xenografts in nude mice indicate that paclitaxel nanosomes are less toxic and much more effective than paclitaxel in Cremophor EL (Taxol). Camptothecin nanosomes demonstrate that the normally very water-insoluble camptothecin can be formulated in a biocompatible aqueous medium while retaining in vivo efficacy against lymphoma xenografts in nude mice. In vitro data for betulinic acid nanosomes demonstrate enhanced efficacy against HIV-1 (EC50 of 1.01 microg/ml versus 6.72 microg/ml for neat betulinic acid). Phospholipid nanosomes may find utility in the enhanced delivery of hydrophilic drugs such as recombinant proteins and nucleic acid as well as hydrophobic anticancer and anti-HIV drugs.

  3. Influence of the Human and Rat Islet Amyloid Polypeptides on Structure of Phospholipid Bilayers: Neutron Reflectometry and Fluorescence Microscopy Studies.

    PubMed

    Junghans, Ann; Watkins, Erik B; Majewski, Jaroslaw; Miranker, Andrew; Stroe, Izabela

    2016-05-01

    Neutron reflectivity (NR) and fluorescent microscopy (FM) were used to study the interactions of human (hIAPP) and rat (rIAPP) islet amyloid polypeptides with several formulations of supported model lipid bilayers at the solid-liquid interface. Aggregation and deposition of islet amyloid polypeptide is correlated with the pathology of many diseases, including Alzheimer's, Parkinson, and type II diabetes (T2DM). A central component of T2DM pathology is the deposition of fibrils in the endocrine pancreas, which is toxic to the insulin secreting β-cells. The molecular mechanism by which the cell death occurs is not yet understood, but existing evidence points toward interactions of IAPP oligomers with cellular membranes in a manner leading to loss of their integrity. Our NR and FM results showed that the human sequence variant, hIAPP, had little or no effect on bilayers composed of saturated-acyl chains like zwitterionic DPPC, anionic DPPG, and mixed 80:20 mol % DPPC:DPPG bilayers. In marked contrast, the bilayer structure and stability of anionic unsaturated DOPG were sensitive to protein interaction, and the bilayer was partly solubilized by hIAPP under the conditions used here. The rIAPP, which is considered less toxic, had no perturbing effects on any of the above membrane formulations. Understanding the conditions that result in membrane disruption by hIAPP can be crucial in developing counter strategies to fight T2DM and also physicochemically similar neurodegenerative diseases such as Alzheimer's. PMID:27065348

  4. Neutron reflectivity studies of the interaction of cubic-phase nanoparticles with phospholipid bilayers of different coverage.

    PubMed

    Vandoolaeghe, Pauline; Rennie, Adrian R; Campbell, Richard A; Nylander, Tommy

    2009-04-01

    Liquid-crystalline cubic-phase nanoparticles (CPNPs) (known as Cubosome particles), based on the lipid glycerol monooleate and stabilized by the nonionic block copolymer Pluronic F-127, interact with supported model membranes consisting of dioleoylphosphatidylcholine (DOPC) in a complex and dynamic fashion. Neutron reflectivity measurements on the interaction of CPNPs with bilayers of different coverage have increased our understanding of an interfacial exchange mechanism that is relevant to delivery applications. To access the composition of the adsorption layer, the method of isotopic contrast between the components was exploited by using DOPC with perdeuterated acyl chains, which are distinguishable (high scattering contrast) from the hydrogenous components of the CPNPs. The exchange of material between CPNPs and the bilayer takes place regardless of the initial bilayer coverage. However, this parameter has a strong influence on the physical nature of the layer formed upon interaction. For a bilayer of "high coverage" (80%), extensive exchange takes place between the CPNP components and the bilayer, and at steady state the surface layer comprises 72% glycerol monooleate and 8% DOPC, with no change in the solvent content. An analogous experiment involving pure glycerol monooleate liquid crystals shows that lipid exchange occurs even in the absence of the stabilizing polymer. For bilayers of "low coverage" (55%), the exchange mechanism involves an initial adsorption of material from the CPNPs to fill in the bilayer defects. However, most of the bilayer breaks up and only 15% coverage remains after 30 h. The evolution of a Bragg diffraction peak was monitored in this case to show that the bound nanoparticles occupy >7% surface coverage and have a periodicity in the density of the internal lipid structure that decreases with time. This progression is attributed to the incorporation of d-DOPC molecules within the internal cubic structure of the nanoparticles. The

  5. Regulation of the temperature-dependent activation of transient receptor potential vanilloid 1 (TRPV1) by phospholipids in planar lipid bilayers.

    PubMed

    Sun, Xiaohui; Zakharian, Eleonora

    2015-02-20

    TRPV1 (transient receptor potential vanilloid 1) proteins are heat-activated nonselective cation channels. TRPV1 channels are polymodal in their function and exhibit multifaceted regulation with various molecular compounds. In this regard, phosphoinositides, particularly phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate, are important channel regulators. However, their effects on TRPV1 channel activity have not been conclusively determined. To characterize temperature-induced activation of TRPV1 in the presence of different phospholipids, we purified the TRPV1 protein from HEK-293 cells and incorporated it into planar lipid bilayers. In the presence of 2.5 μm phosphatidylinositol 4,5-bisphosphate, TRPV1 channels demonstrated rapid activation at 33-39 °C and achieved full channel opening at 42 °C. At this temperature range, TRPV1 heat activation exhibited steep temperature dependence (temperature coefficient (Q10) of 18), and the channel openings were accompanied by large changes in entropy and enthalpy, suggesting a substantial conformation change. At a similar temperature range, another phosphoinositide, phosphatidylinositol 4-phosphate, also potentiated heat activation of TRPV1, but with much lower efficiency. Negatively charged phosphatidylglycerol could also induce heat activation of TRPV1 channels, although with a small-conductance state. Our data demonstrate that phospholipids, specifically phosphoinositides, are important regulators of TRPV1 and are required for heat-induced channel activity.

  6. Characterization of conformation and interaction of gene delivery vector polyethylenimine with phospholipid bilayer at different protonation state.

    PubMed

    Choudhury, Chandan Kumar; Kumar, Abhinaw; Roy, Sudip

    2013-10-14

    Polyethylenimine (PEI) is a pH sensitive polymer possessing stretched and coiled conformation at low and high pH, respectively. It is an efficient gene delivery agent. Thus, the interaction of PEI with the biomembrane is very crucial to understand the gene delivery mechanism. In this report, we have investigated the structural properties of PEI and bilayer due to the interaction of PEI with lipid molecules. PEI has coil structure at high pH while at low pH it is elongated. The neutral PEI chain predominately settles itself at the bilayer water interface. We do not find any disruption or pore formation on the bilayer due to interaction of neutral PEI chain. PEI at low pH gets elongated due to electrostatic interaction between charges of the protonated sites. This protonated PEI chain interacts with bilayer membrane, which leads to formation of water/ion channel through the membrane. We have analyzed the structure of the channel and water dynamics along the channel.

  7. Does the reconstitution of RC-LH1 complexes from Rhodopseudomonas acidophila strain 10050 into a phospholipid bilayer yield the optimum environment for optical spectroscopy?

    PubMed

    Böhm, Paul S; Kunz, Ralf; Southall, June; Cogdell, Richard J; Köhler, Jürgen

    2013-12-01

    We have investigated reaction-center light-harvesting 1 (RC-LH1) complexes from Rhodopseudomonas (Rps.) acidophila in detergent buffer solution and reconstituted into a phospholipid bilayer and compared the results with the outcome of an earlier study conducted on RC-LH1 immobilized in polyvinyl alcohol (PVA). The aim of this study was to test whether the immobilization of the complexes in a PVA matrix might lead to a deterioration of the proteins and thereby limit the accessible information that can be obtained from optical spectroscopy. It has been found that the complexes dissolved in a detergent buffer solution are subject to fast spectral dynamics preventing any meaningful application of single-molecule spectroscopy. In contrast, for the bilayer samples it is revealed that the reconstitution process results in a significantly larger fraction of broken complexes with respect to the preparation of the complexes in a PVA film. Moreover, we find that for the intact complexes the statistics of the key spectral features, such as the spectral separations of the bands and the mutual orientation of their transition-dipole moments, show no variation dependent on using either a bilayer or PVA as a matrix. Given the additional effort involved in the reconstitution process, the lower amount of intact RC-LH1 complexes and, concerning the decisive spectral details, the identical results with respect to embedding the complexes in a PVA matrix, we come to the conclusion that the immobilization of these proteins in a PVA matrix is a good choice for conducting low-temperature experiments on individual light-harvesting complexes.

  8. Competitive, reversible inhibition of cytosolic phospholipase A2 at the lipid-water interface by choline derivatives that partially partition into the phospholipid bilayer.

    PubMed

    Burke, J R; Witmer, M R; Zusi, F C; Gregor, K R; Davern, L B; Padmanabha, R; Swann, R T; Smith, D; Tredup, J A; Micanovic, R; Manly, S P; Villafranca, J J; Tramposch, K M

    1999-07-01

    Cytosolic phospholipase A2 (cPLA2) catalyzes the selective release of arachidonic acid from the sn-2 position of phospholipids and is believed to play a key cellular role in the generation of arachidonic acid. When assaying the human recombinant cPLA2 using membranes isolated from [3H]arachidonate-labeled U937 cells as substrate, 2-(2'-benzyl-4-chlorophenoxy)ethyl-dimethyl-n-octadecyl-ammonium chloride (compound 1) was found to inhibit the enzyme in a dose-dependent manner (IC50 = 5 microM). It was over 70 times more selective for the cPLA2 as compared with the human nonpancreatic secreted phospholipase A2, and it did not inhibit other phospholipases. Additionally, it inhibited arachidonate production in N-formyl-methionyl-leucyl-phenylalanine-stimulated U937 cells. To further characterize the mechanism of inhibition, an assay in which the enzyme is bound to vesicles of 1,2-dimyristoyl-sn -glycero-3-phosphomethanol containing 6-10 mol % of 1-palmitoyl-2-[1-14C]arachidonoyl-sn-glycero-3-phosphocholine was employed. With this substrate system, the dose-dependent inhibition could be defined by kinetic equations describing competitive inhibition at the lipid-water interface. The apparent equilibrium dissociation constant for the inhibitor bound to the enzyme at the interface (KI*app) was determined to be 0.097 +/- 0.032 mol % versus an apparent dissociation constant for the arachidonate-containing phospholipid of 0.3 +/- 0.1 mol %. Thus, compound 1 represents a novel structural class of inhibitor of cPLA2 that partitions into the phospholipid bilayer and competes with the phospholipid substrate for the active site. Shorter n-alkyl-chained (C-4, C-6, C-8) derivatives of compound 1 were shown to have even smaller KI*app values. However, these short-chained analogs were less potent in terms of bulk inhibitor concentration needed for inhibition when using the [3H]arachidonate-labeled U937 membranes as substrate. This discrepancy was reconciled by showing that these shorter

  9. Partitioning of 2,6-Bis(1H-Benzimidazol-2-yl)pyridine Fluorophore into a Phospholipid Bilayer: Complementary Use of Fluorescence Quenching Studies and Molecular Dynamics Simulations

    PubMed Central

    Kyrychenko, Alexander; Sevriukov, Igor Yu.; Syzova, Zoya A.; Ladokhin, Alexey S.; Doroshenko, Andrey O.

    2014-01-01

    Successful use of fluorescence sensing in elucidating the biophysical properties of lipid membranes requires knowledge of the distribution and location of an emitting molecule in the bilayer. We report here that 2,6-bis(1H-benzimidazol-2-yl)pyridine (BBP), which is almost non-fluorescent in aqueous solutions, reveals a strong emission enhancement in a hydrophobic environment of a phospholipid bilayer, making it interesting for fluorescence probing of water content in a lipid membrane. Comparing the fluorescence behavior of BBP in a wide variety of solvents with those in phospholipid vesicles, we suggest that the hydrogen bonding interactions between a BBP fluorophore and water molecules play a crucial role in the observed “light switch effect”. Therefore, the loss of water-induced fluorescence quenching inside a membrane are thought to be due to deep penetration of BBP into the hydrophobic, water-free region of a bilayer. Characterized by strong quenching by transition metal ions in solution, BBP also demonstrated significant shielding from the action of the quencher in the presence of phospholipid vesicles. We used the increase in fluorescence intensity, measured upon titration of probe molecules with lipid vesicles, to estimate the partition constant and the Gibbs free energy (ΔG) of transfer of BBP from aqueous buffer into a membrane. Partitioning BBP revealed strongly favorable ΔG, which depends only slightly on the lipid composition of a bilayer, varying in a range from -6.5 to -7.0 kcal/mol. To elucidate the binding interactions of the probe with a membrane on the molecular level, a distribution and favorable location of BBP in a POPC bilayer were modeled via atomistic molecular dynamics (MD) simulations using two different approaches: (i) free, diffusion-driven partitioning of the probe molecules into a bilayer and (ii) constrained umbrella sampling of a penetration profile of the dye molecule across a bilayer. Both of these MD approaches agreed with

  10. Modeling the endosomal escape of cell-penetrating peptides: transmembrane pH gradient driven translocation across phospholipid bilayers.

    PubMed

    Magzoub, Mazin; Pramanik, Aladdin; Gräslund, Astrid

    2005-11-15

    Cell-penetrating peptides (CPPs) are able to mediate the efficient cellular uptake of a wide range of cargoes. Internalization of a number of CPPs requires uptake by endocytosis, initiated by binding to anionic cell surface heparan sulfate (HS), followed by escape from endosomes. To elucidate the endosomal escape mechanism, we have modeled the process for two CPPs: penetratin (pAntp) and the N-terminal signal peptide of the unprocessed bovine prion protein (bPrPp). Large unilamellar phospholipid vesicles (LUVs) were produced encapsulating either peptide, and an ionophore, nigericin, was used to create a transmembrane pH gradient (DeltapH(mem), inside acidic) similar to the one arising in endosomes in vivo. In the absence of DeltapH(mem), no pAntp escape from the LUVs is observed, while a fraction of bPrPp escapes. In the presence of DeltapH(mem), a significant amount of pAntp escapes and an even higher degree of bPrPp escape takes place. These results, together with the differences in kinetics of escape, indicate different escape mechanisms for the two peptides. A minimum threshold peptide concentration exists for the escape of both peptides. Coupling of the peptides to a cargo reduces the fraction escaping, while complexation with HS significantly hinders the escape. Fluorescence correlation spectroscopy results show that during the escape process the LUVs are intact. Taken together, these results suggest a model for endosomal escape of CPPs: DeltapH(mem)-mediated mechanism, following dissociation from HS of the peptides, above a minimum threshold peptide concentration, in a process that does not involve lysis of the vesicles.

  11. Computer Simulation Studies of Ion Channel Gating: Characteristics of the M2 Channel of Influenza-A Virus in a Phospholipid Bilayer

    NASA Technical Reports Server (NTRS)

    Schweighofer, Karl J.; Pohorille, Andrew; DeVincenzi, D. (Technical Monitor)

    1999-01-01

    The 25 amino acids long, transmembrane fragment of the Influenza virus M2 protein forms a homotetrameric channel that transports protons across lipid bilayers. It has been postulated that high efficiency and selectivity of this process is due to gating by four histidine residues that occlude the channel lumen in the closed state. Two mechanisms of gating have been postulated. In one mechanism, the proton is "shuttled" through the gate by attaching to the delta nitrogen atom on the extracellular side of the imidazole ring, followed by the release of the proton attached to the epsilon nitrogen atom on the opposite side. In the second mechanism, the four histidines move away from each other due to electrostatic repulsion upon protonation, thus opening the gate sufficiently that a wire of water molecules can penetrate the gate. Then, protons are transported by "hopping" along the wire. In this paper, both mechanisms are evaluated in a series of molecular dynamics simulations by investigating stability of different protonation states of the channel that are involved in these mechanisms. For the shuttle mechanism, these are states with all epsilon protonated histidines, one biprotonated residue or one histidine protonated in the delta position. For the gate opening mechanism, this is the state in which all four histidines are biprotonated. In addition, a state with two biprotonated histidines is considered. For each system, composed of the protein channel embedded in phospholipid bilayer located between two water lamellae, a molecular dynamics trajectory of approximately 1.3 ns (after equilibration) was obtained. It is found that the states involved in the shuttle mechanism are stable during the simulations. Furthermore, the orientations and dynamics of water molecules near the gate are conducive to proton transfers involved in the shuttle. In contract, the fully biprotonated state, implicated in the gate opening mechanism, is not stable and the channel looses its

  12. Time-of-Flight Bragg Scattering from Aligned Stacks of Lipid Bilayers using the Liquids Reflectometer at the Spallation Neutron Source

    SciTech Connect

    Pan, Jianjun; Heberle, Frederick A; Carmichael, Justin R; Ankner, John Francis; Katsaras, John

    2012-01-01

    Time-of-flight (TOF) neutron diffraction experiments on aligned stacks of lipid bilayers using the horizontal Liquids Reflectometer at the Spallation Neutron Source are reported. Specific details are given regarding the instrumental setup, data collection and reduction, phase determination of the structure factors, and reconstruction of the one-dimensional neutron scattering length density (NSLD) profile. The validity of using TOF measurements to determine the one-dimensional NSLD profile is demonstrated by reproducing the results of two well known lipid bilayer structures. The method is then applied to show how an antimicrobial peptide affects membranes with and without cholesterol.

  13. Profile structures of the voltage-sensor domain and the voltage-gated K+-channel vectorially oriented in a single phospholipid bilayer membrane at the solid-vapor and solid-liquid interfaces determined by x-ray interferometry

    PubMed Central

    Gupta, S.; Liu, J.; Strzalka, J.; Blasie, J. K.

    2011-01-01

    One subunit of the prokaryotic voltage-gated potassium ion channel from Aeropyrum pernix (KvAP) is comprised of six transmembrane α helices, of which S1–S4 form the voltage-sensor domain (VSD) and S5 and S6 contribute to the pore domain (PD) of the functional homotetramer. However, the mechanism of electromechanical coupling interconverting the closed-to-open (i.e., nonconducting-to-K+-conducting) states remains undetermined. Here, we have vectorially oriented the detergent (OG)-solubilized VSD in single monolayers by two independent approaches, namely “directed-assembly” and “self-assembly,” to achieve a high in-plane density. Both utilize Ni coordination chemistry to tether the protein to an alkylated inorganic surface via its C-terminal His6 tag. Subsequently, the detergent is replaced by phospholipid (POPC) via exchange, intended to reconstitute a phospholipid bilayer environment for the protein. X-ray interferometry, in which interference with a multilayer reference structure is used to both enhance and phase the specular x-ray reflectivity from the tethered single membrane, was used to determine directly the electron density profile structures of the VSD protein solvated by detergent versus phospholipid, and with either a moist He (moderate hydration) or bulk aqueous buffer (high hydration) environment to preserve a native structure conformation. Difference electron density profiles, with respect to the multilayer substrate itself, for the VSD-OG monolayer and VSD-POPC membranes at both the solid-vapor and solid-liquid interfaces, reveal the profile structures of the VSD protein dominating these profiles and further indicate a successful reconstitution of a lipid bilayer environment. The self-assembly approach was similarly extended to the intact full-length KvAP channel for comparison. The spatial extent and asymmetry in the profile structures of both proteins confirm their unidirectional vectorial orientation within the reconstituted membrane and

  14. Controlling the alignment and the morphology of bilayer BCP films using templated self-assembly

    NASA Astrophysics Data System (ADS)

    Amir Tavakkoli K., G.; Gotrik, Kevin W.; Hannon, Adam F.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.

    2012-02-01

    Templated self-assembly of block copolymer (BCP) thin films can control the alignment of BCP microdomains in a single layer using chemical and topographical methods. However, controlling the alignment and the morphology of BCP microdomains in two different layers simultaneously and fabricating complicated three-dimensional (3D) structures is relatively unexplored. This control is useful for the fabrication of multilevel thin film devices. Also, the forces and energetics governing BCP self-assembly are better understood at the bulk scale. This paper discusses how to control the BCP in two different layers by using a majority-block-functionalized post template. We showed by using an array of majority block functionalized posts, we could fabricate very complicated three-dimensional structures and we were able to control the BCP in two different layers. We fabricated three dimensional junctions and bends in two different levels of the BCP, bottom and top. Moreover, we showed we could fabricate periodic superstructures as well as changing the morphology of the BCP in one of the layers from the original cylinders to ellipsoids, spheres, and bicontinuous cylinders and having two different morphologies on top of each other.

  15. The alignment of a voltage-sensing peptide in dodecylphosphocholine micelles and in oriented lipid bilayers by nuclear magnetic resonance and molecular modeling.

    PubMed Central

    Mattila, K; Kinder, R; Bechinger, B

    1999-01-01

    The S4 segments of voltage-gated sodium channels are important parts of the voltage-sensing elements of these proteins. Furthermore, the addition of the isolated S4 polypeptide to planar lipid bilayers results in stepwise increases of ion conductivity. In order to gain insight into the mechanisms of pore formation by amphipathic peptides, the structure and orientation of the S4 segment of the first internal repeat of the rat brain II sodium channel was investigated in the presence of DPC micelles by multidimensional solution NMR spectroscopy and solid-state NMR spectroscopy on oriented phospholipid bilayers. Both the anisotropic chemical shift observed by proton-decoupled (15)N solid-state NMR spectroscopy and the attenuating effects of DOXYL-stearates on TOCSY crosspeak intensities of micelle-associated S4 indicate that the central alpha-helical portion of this peptide is oriented approximately parallel to the membrane surface. Simulated annealing and molecular dynamics calculations of the peptide in a biphasic tetrachloromethane-water environment indicate that the peptide alpha-helix extends over approximately 12 residues. A less regular structure further toward the C-terminus allows for the hydrophobic residues of this part of the peptide to be positioned in the tetrachloromethane environment. The implications for possible pore-forming mechanisms are discussed. PMID:10512830

  16. Intercalation of bovine serum albumin coated gold clusters between phospholipid bilayers: temperature-dependent behavior of lipid-AuQC@BSA assemblies with red emission and superlattice structure.

    PubMed

    Söptei, Balázs; Mihály, Judith; Visy, Júlia; Wacha, András; Bóta, Attila

    2014-04-10

    A method has been developed to encapsulate bovine serum albumin (BSA)-coated gold quantum clusters (AuQC@BSA) in a multilamellar system of dipalmitoylphosphatidylcholine (DPPC). Results have shown that intercalation of AuQC@BSA particles into lipid bilayers occurs in the presence of CaCl2. Intense red photoluminescence emission was observed after encapsulation of the clusters. A well-defined structure was found with periodic distances drastically larger than that in the pure DPPC/water system. Although Ca(2+) ions can change the dipole characteristics of the lipid bilayer surface, leading to unbinding between the bilayers of multilamellar DPPC/water system, the repulsion is shielded in the presence of AuQC@BSA particles. A coherent superlattice structure evolves due to mixed Ca(2+)-DPPC and Ca(2+)-AuQC@BSA interactions. Studies at different temperatures have suggested a correlation between the luminescence properties of the clusters and phase transition of the lipid layers. The temperature-dependent behavior assumes the connection between the coating and the lipid bilayer surface. Temperature-dependent features of lipid intercalated Au clusters provide new opportunities in their application.

  17. Quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry measurements of the phospholipid bilayer anchoring stability and kinetics of hydrophobically modified DNA oligonucleotides.

    PubMed

    van der Meulen, Stef A J; Dubacheva, Galina V; Dogterom, Marileen; Richter, Ralf P; Leunissen, Mirjam E

    2014-06-10

    Decorating lipid bilayers with oligonucleotides has great potential for both fundamental studies and applications, taking advantage of the membrane properties and the specific Watson-Crick base pairing. Here, we systematically studied the binding of DNA oligonucleotides with the frequently used hydrophobic anchors cholesterol, stearyl, and distearyl to supported lipid bilayers made of dioleoylphosphatidylcholine (DOPC) by quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry (SE). All three anchors were found to incorporate well into DOPC lipid membranes, yet only the distearyl-based anchor remained stable in the bilayer when it was rinsed. The unstable anchoring of the cholesterol- and stearyl-based oligonucleotides can, however, be stabilized by hybridization of the oligonucleotides to complementary DNA modified with a second hydrophobic anchor of the same type. In all cases, the incorporation into the lipid bilayer was found to be limited by mass transport, although micelle formation likely reduced the effective concentration of available oligonucleotides in some samples, leading to substantial differences in binding rates. Using a viscoelastic model to determine the thickness of the DNA layer and elucidating the surface coverage by SE, we found that at equal bulk concentrations double-stranded DNA constructs attached to the lipid bilayer establish a layer that is thicker than that of single-stranded oligonucleotides, whereas the DNA surface densities are similar. Shortening the length of the oligonucleotides, on the other hand, does alter both the thickness and surface density of the DNA layer. This indicates that at the bulk oligonucleotide concentrations employed in our experiments, the packing of the oligonucleotides is not affected by the anchor type, but rather by the length of the DNA. The results are useful for material and biomedical applications that require efficient linking of oligonucleotides to lipid membranes. PMID

  18. Bilayer properties of hydroxytyrosol- and tyrosol-phosphatidylcholine lipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tyrosol and hydroxytyrosol are the phytochemicals abundantly found in olive oil. Transphosphatidylation of tyrosol and hydroxytyrosol with dioleoylphosphocholine resulted in phospholipids with antioxidant properties. The ability of these phyto-phospholipids to form liposomes and supported bilayers w...

  19. The molecular-scale arrangement and mechanical strength of phospholipid/cholesterol mixed bilayers investigated by frequency modulation atomic force microscopy in liquid

    NASA Astrophysics Data System (ADS)

    Asakawa, Hitoshi; Fukuma, Takeshi

    2009-07-01

    Cholesterols play key roles in controlling molecular fluidity in a biological membrane, yet little is known about their molecular-scale arrangements in real space. In this study, we have directly imaged lipid-cholesterol complexes in a model biological membrane consisting of dipalmitoylphosphatidylcholine (DPPC) and cholesterols by frequency modulation atomic force microscopy (FM-AFM) in phosphate buffer solution. FM-AFM images of a DPPC/cholesterol bilayer in the liquid-ordered phase showed higher energy dissipation values compared to those measured on a nanoscale DPPC domain in the gel phase, reflecting the increased molecular fluidity due to the insertion of cholesterols. Molecular-resolution FM-AFM images of a DPPC/cholesterol bilayer revealed the existence of a rhombic molecular arrangement (lattice constants: a = 0.46 nm, b = 0.71 nm) consisting of alternating rows of DPPC and cholesterols as well as the increased defect density and reduced molecular ordering. The mechanical strength of a DPPC/cholesterol bilayer was quantitatively evaluated by measuring a loading force required to penetrate the membrane with an AFM tip. The result revealed the significant decrease of mechanical strength upon insertion of cholesterols. Based on the molecular-scale arrangement found in this study, we propose a model to explain the reduced mechanical strength in relation to the formation of lipid-ion networks.

  20. A molecular dynamics study of the lateral free energy profile of a pair of cholesterol molecules as a function of their distance in phospholipid bilayers

    NASA Astrophysics Data System (ADS)

    Andoh, Yoshimichi; Oono, Kimiko; Okazaki, Susumu; Hatta, Ichiro

    2012-04-01

    Free energy profile of a pair of cholesterol molecules in a leaflet of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers in the liquid-crystalline phase has been calculated as a function of their lateral distance using a combination of NPT-constant atomistic molecular dynamics calculations (P = 1 atm and T = 310.15 K) and the thermodynamic integration method. The calculated free energy clearly shows that the two cholesterol molecules form a dimer separated by a distance of 1.0-1.5 nm in POPC bilayers. Well depth of the free energy profile is about 3.5 kJ/mol, which is comparable to the thermal energy kBT at 310.15 K. This indicates that the aggregation of cholesterol molecules in the bilayers depends on the temperature as well as the concentration of the system. The free energy function obtained here may be used as a reference when coarse grained potential model is investigated for this two-component system. Local structure of POPC molecules around two cholesterol molecules has also been investigated.

  1. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene

    PubMed Central

    Prasongkit, Jariyanee; Feliciano, Gustavo T.; Rocha, Alexandre R.; He, Yuhui; Osotchan, Tanakorn; Ahuja, Rajeev; Scheicher, Ralph H.

    2015-01-01

    Fast, cost effective, single-shot DNA sequencing could be the prelude of a new era in genetics. As DNA encodes the information for the production of proteins in all known living beings on Earth, determining the nucleobase sequences is the first and necessary step in that direction. Graphene-based nanopore devices hold great promise for next-generation DNA sequencing. In this work, we develop a novel approach for sequencing DNA using bilayer graphene to read the interlayer conductance through the layers in the presence of target nucleobases. Classical molecular dynamics simulations of DNA translocation through the pore were performed to trace the nucleobase trajectories and evaluate the interaction between the nucleobases and the nanopore. This interaction stabilizes the bases in different orientations, resulting in smaller fluctuations of the nucleobases inside the pore. We assessed the performance of a bilayer graphene nanopore setup for the purpose of DNA sequencing by employing density functional theory and non-equilibrium Green’s function method to investigate the interlayer conductance of nucleobases coupling simultaneously to the top and bottom graphene layers. The obtained conductance is significantly affected by the presence of DNA in the bilayer graphene nanopore, allowing us to analyze DNA sequences. PMID:26634811

  2. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene.

    PubMed

    Prasongkit, Jariyanee; Feliciano, Gustavo T; Rocha, Alexandre R; He, Yuhui; Osotchan, Tanakorn; Ahuja, Rajeev; Scheicher, Ralph H

    2015-12-04

    Fast, cost effective, single-shot DNA sequencing could be the prelude of a new era in genetics. As DNA encodes the information for the production of proteins in all known living beings on Earth, determining the nucleobase sequences is the first and necessary step in that direction. Graphene-based nanopore devices hold great promise for next-generation DNA sequencing. In this work, we develop a novel approach for sequencing DNA using bilayer graphene to read the interlayer conductance through the layers in the presence of target nucleobases. Classical molecular dynamics simulations of DNA translocation through the pore were performed to trace the nucleobase trajectories and evaluate the interaction between the nucleobases and the nanopore. This interaction stabilizes the bases in different orientations, resulting in smaller fluctuations of the nucleobases inside the pore. We assessed the performance of a bilayer graphene nanopore setup for the purpose of DNA sequencing by employing density functional theory and non-equilibrium Green's function method to investigate the interlayer conductance of nucleobases coupling simultaneously to the top and bottom graphene layers. The obtained conductance is significantly affected by the presence of DNA in the bilayer graphene nanopore, allowing us to analyze DNA sequences.

  3. Theoretical assessment of feasibility to sequence DNA through interlayer electronic tunneling transport at aligned nanopores in bilayer graphene.

    PubMed

    Prasongkit, Jariyanee; Feliciano, Gustavo T; Rocha, Alexandre R; He, Yuhui; Osotchan, Tanakorn; Ahuja, Rajeev; Scheicher, Ralph H

    2015-01-01

    Fast, cost effective, single-shot DNA sequencing could be the prelude of a new era in genetics. As DNA encodes the information for the production of proteins in all known living beings on Earth, determining the nucleobase sequences is the first and necessary step in that direction. Graphene-based nanopore devices hold great promise for next-generation DNA sequencing. In this work, we develop a novel approach for sequencing DNA using bilayer graphene to read the interlayer conductance through the layers in the presence of target nucleobases. Classical molecular dynamics simulations of DNA translocation through the pore were performed to trace the nucleobase trajectories and evaluate the interaction between the nucleobases and the nanopore. This interaction stabilizes the bases in different orientations, resulting in smaller fluctuations of the nucleobases inside the pore. We assessed the performance of a bilayer graphene nanopore setup for the purpose of DNA sequencing by employing density functional theory and non-equilibrium Green's function method to investigate the interlayer conductance of nucleobases coupling simultaneously to the top and bottom graphene layers. The obtained conductance is significantly affected by the presence of DNA in the bilayer graphene nanopore, allowing us to analyze DNA sequences. PMID:26634811

  4. CW dipolar broadening EPR spectroscopy and mechanically aligned bilayers used to measure distance and relative orientation between two TOAC spin labels on an antimicrobial peptide

    NASA Astrophysics Data System (ADS)

    Sahu, Indra D.; Hustedt, Eric J.; Ghimire, Harishchandra; Inbaraj, Johnson J.; McCarrick, Robert M.; Lorigan, Gary A.

    2014-12-01

    An EPR membrane alignment technique was applied to measure distance and relative orientations between two spin labels on a protein oriented along the surface of the membrane. Previously we demonstrated an EPR membrane alignment technique for measuring distances and relative orientations between two spin labels using a dual TOAC-labeled integral transmembrane peptide (M2δ segment of Acetylcholine receptor) as a test system. In this study we further utilized this technique and successfully measured the distance and relative orientations between two spin labels on a membrane peripheral peptide (antimicrobial peptide magainin-2). The TOAC-labeled magainin-2 peptides were mechanically aligned using DMPC lipids on a planar quartz support, and CW-EPR spectra were recorded at specific orientations. Global analysis in combination with rigorous spectral simulation was used to simultaneously analyze data from two different sample orientations for both single- and double-labeled peptides. We measured an internitroxide distance of 15.3 Å from a dual TOAC-labeled magainin-2 peptide at positions 8 and 14 that closely matches with the 13.3 Å distance obtained from a model of the labeled magainin peptide. In addition, the angles determining the relative orientations of the two nitroxides have been determined, and the results compare favorably with molecular modeling. This study demonstrates the utility of the technique for proteins oriented along the surface of the membrane in addition to the previous results for proteins situated within the membrane bilayer.

  5. Membrane lysis by the antibacterial peptides cecropins B1 and B3: A spin-label electron spin resonance study on phospholipid bilayers.

    PubMed Central

    Hung, S C; Wang, W; Chan, S I; Chen, H M

    1999-01-01

    Custom antibacterial peptides, cecropins B1 (CB1) and B3 (CB3), were synthesized. These peptides have particular sequence characteristics, with CB1 having two amphipathic alpha-helical segments and CB3 having two hydrophobic alpha-helical segments. These differences were exploited for a study of their efficacy in breaking up liposomes, which had different combinations of phosphatidic acid (PA) and phosphatidylcholine (PC), and a study of their lipid binding ability. Binding and nonbinding lysis actions of CB1 and CB3 on liposomes were examined further by electron spin resonance (ESR). The spin-labeled lipids 5'SL-PC, 7'SL-PC, 10'SL-PC, 12'SL-PC, and 16'SL-PC were used as probes. The ESR spectra revealed larger outer hyperfine splittings (2A(max)) for CB1 when the interactions of CB1 and CB3 with liposomes were compared. These observations indicate a larger restriction of the motion of the spin-labeled chains in the presence of CB1. Plots of the effective order parameter at the various probe positions (chain flexibility gradient) versus the peptide-lipid ratio further suggested that the lysis action of CB1 is related to its capacity to bind to the lipid bilayers. In contrast, there is no evidence of binding for CB3. To augment these findings, four spin-labeled peptides, C8SL-CB1, C32SL-CB1, C5SL-CB3, and C30SL-CB3, were also examined for their binding to and their state of aggregation within the lipid bilayers. Association isotherms of the peptides were measured for liposomes containing two molar fractions of PA (0.25 and 0.75). The membrane binding of the CB1 peptides exhibited a cooperative behavior, whereas the association isotherm of CB3 revealed binding to the lipid only for beta = 0.75 liposomes. To further identify the location of CB1 in the lipid bilayers, measurements of the collision rate with chromium oxalate in solution were conducted. Results from ESR power saturation measurements suggested that the NH(2)-terminal alpha-helix of CB1 is located on the

  6. Nigericin-mediated transport of cesium ions through phospholipid bilayers studied by a sup 133 Cs magnetization-transfer NMR technique

    SciTech Connect

    Riddell, F.G.; Arumugam, S.; Patel, A. )

    1990-06-27

    The use of Cs-133 NMR spectroscopy to study the nigericin-mediated transport of Cs{sup +} ions through phosphatidylcholine bilayers is reported. A magnetization-transfer technique used involves a compartmentalized system of cells or of vesicles and employs a shift reagent or a relaxation agent to contrast the signals from the intracompartmental and extracompartmental metal ions. A magnetic label is placed at one site by inserting the spin population, and then the signal intensity is followed at the other site as the inverted signal relaxes back. The process was found to be first order in nigericin. 16 refs., 1 fig., 1 tab.

  7. Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance.

    PubMed

    Bayerl, T M; Bloom, M

    1990-08-01

    Spherical supported vesicles (SSVs), a new model system consisting of single dimyristoyl phosphatidylcholine (DMPC) bilayers adsorbed to spherical glass beads with a narrow size distribution, were prepared at two different sizes (0.5 and 1.5 microns) and their physical properties were studied by deuterium nuclear magnetic resonance (2H-NMR). Such SSV samples can be prepared at any desired size between 0.3 and 10 microns. The 2H-NMR measurements provide evidence for a strong dependence of the spectra and the transverse relaxation times on the curvature of the SSVs in a diameter range between 0.5 and 1.5 microns. For larger SSVs (1.5 microns diameter) their powder spectra and their calculated oriented spectra are similar to those obtained for multilamellar dispersions of DMPC-d54. The lineshape of the smaller SSVs exhibits a temperature dependence which is not found in multilamellar samples. The SSVs are stable in the liquid crystalline phase over days but irreversibly change to multilamellar vesicles in the gel state. The average thickness of the water layer between the single bilayer and the glass bead surface was estimated by 1H-NMR to e 17 +/- 5 A.

  8. Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance.

    PubMed Central

    Bayerl, T M; Bloom, M

    1990-01-01

    Spherical supported vesicles (SSVs), a new model system consisting of single dimyristoyl phosphatidylcholine (DMPC) bilayers adsorbed to spherical glass beads with a narrow size distribution, were prepared at two different sizes (0.5 and 1.5 microns) and their physical properties were studied by deuterium nuclear magnetic resonance (2H-NMR). Such SSV samples can be prepared at any desired size between 0.3 and 10 microns. The 2H-NMR measurements provide evidence for a strong dependence of the spectra and the transverse relaxation times on the curvature of the SSVs in a diameter range between 0.5 and 1.5 microns. For larger SSVs (1.5 microns diameter) their powder spectra and their calculated oriented spectra are similar to those obtained for multilamellar dispersions of DMPC-d54. The lineshape of the smaller SSVs exhibits a temperature dependence which is not found in multilamellar samples. The SSVs are stable in the liquid crystalline phase over days but irreversibly change to multilamellar vesicles in the gel state. The average thickness of the water layer between the single bilayer and the glass bead surface was estimated by 1H-NMR to e 17 +/- 5 A. PMID:2207243

  9. Indirect evidence for lipid-domain formation in the transition region of phospholipid bilayers by two-probe fluorescence energy transfer.

    PubMed Central

    Pedersen, S; Jørgensen, K; Baekmark, T R; Mouritsen, O G

    1996-01-01

    The fluorescence energy transfer between two lipid probes, N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1, 2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (donor) and N-(Lissamine rhodamine B sulfonyl)-1, 2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (acceptor), incorporated into 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine unilamellar and multilamellar lipid bilayers, is studied in the temperature region of the main phase transition. The two probes display different relative solubilities in the gel and fluid lipid-bilayer phases. A distinct maximum in the fluorescence intensity of the donor is observed in the transition region, indicating that the two probes are demixing and hence increasing their average separation. The observation is interpreted in terms of dynamic segregation of the two probes into coexisting gel and fluid lipid domains that are formed dynamically in the transition region due to strong density fluctuations. The interpretation of the experimental observations is supported by a detailed theoretical calculation using computer simulation of a microscopic model that takes full account of diffusion of the two probes and the fluctuations of gel and fluid lipid domains characteristic of the main phase transition. Images FIGURE 4 PMID:8842195

  10. Nonenzymatic Reactions above Phospholipid Surfaces of Biological Membranes: Reactivity of Phospholipids and Their Oxidation Derivatives.

    PubMed

    Solís-Calero, Christian; Ortega-Castro, Joaquín; Frau, Juan; Muñoz, Francisco

    2015-01-01

    Phospholipids play multiple and essential roles in cells, as components of biological membranes. Although phospholipid bilayers provide the supporting matrix and surface for many enzymatic reactions, their inherent reactivity and possible catalytic role have not been highlighted. As other biomolecules, phospholipids are frequent targets of nonenzymatic modifications by reactive substances including oxidants and glycating agents which conduct to the formation of advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs). There are some theoretical studies about the mechanisms of reactions related to these processes on phosphatidylethanolamine surfaces, which hypothesize that cell membrane phospholipids surface environment could enhance some reactions through a catalyst effect. On the other hand, the phospholipid bilayers are susceptible to oxidative damage by oxidant agents as reactive oxygen species (ROS). Molecular dynamics simulations performed on phospholipid bilayers models, which include modified phospholipids by these reactions and subsequent reactions that conduct to formation of ALEs and AGEs, have revealed changes in the molecular interactions and biophysical properties of these bilayers as consequence of these reactions. Then, more studies are desirable which could correlate the biophysics of modified phospholipids with metabolism in processes such as aging and diseases such as diabetes, atherosclerosis, and Alzheimer's disease.

  11. Nonenzymatic Reactions above Phospholipid Surfaces of Biological Membranes: Reactivity of Phospholipids and Their Oxidation Derivatives

    PubMed Central

    Solís-Calero, Christian; Ortega-Castro, Joaquín; Frau, Juan; Muñoz, Francisco

    2015-01-01

    Phospholipids play multiple and essential roles in cells, as components of biological membranes. Although phospholipid bilayers provide the supporting matrix and surface for many enzymatic reactions, their inherent reactivity and possible catalytic role have not been highlighted. As other biomolecules, phospholipids are frequent targets of nonenzymatic modifications by reactive substances including oxidants and glycating agents which conduct to the formation of advanced lipoxidation end products (ALEs) and advanced glycation end products (AGEs). There are some theoretical studies about the mechanisms of reactions related to these processes on phosphatidylethanolamine surfaces, which hypothesize that cell membrane phospholipids surface environment could enhance some reactions through a catalyst effect. On the other hand, the phospholipid bilayers are susceptible to oxidative damage by oxidant agents as reactive oxygen species (ROS). Molecular dynamics simulations performed on phospholipid bilayers models, which include modified phospholipids by these reactions and subsequent reactions that conduct to formation of ALEs and AGEs, have revealed changes in the molecular interactions and biophysical properties of these bilayers as consequence of these reactions. Then, more studies are desirable which could correlate the biophysics of modified phospholipids with metabolism in processes such as aging and diseases such as diabetes, atherosclerosis, and Alzheimer's disease. PMID:25977746

  12. Extensive exchange of rat liver microsomal phospholipids.

    PubMed

    Zilversmit, D B; Hughes, M E

    1977-08-15

    Liver microsomal fractions were prepared from rats injected with a single dose of choline [14C]methylchloride or with single or multiple doses of 32Pi. Exchangeability of microsomal phospholipids was determined by incubation with an excess of mitochondria and phospholipid exchange proteins derived from beef heart, beef liver or rat liver. Labeled phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol were found to act as a single pool and were 85--95% exchangeable in 1--2h. High latencies of mannose-6-phosphate phosphohydrolase activities and impermeability of microsomes to EDTA proved that phospholipid exchange proteins did not have access to the intracisternal space. If microsomal membranes are largely composed of phospholipid bilayers, the experiments suggest that one or more of the phospholipid classes in microsomal membranes undergo rapid translocation between the inner and outer portions of the bilayer.

  13. Extensive exchange of rat liver microsomal phospholipids.

    PubMed

    Zilversmit, D B; Hughes, M E

    1977-08-15

    Liver microsomal fractions were prepared from rats injected with a single dose of choline [14C]methylchloride or with single or multiple doses of 32Pi. Exchangeability of microsomal phospholipids was determined by incubation with an excess of mitochondria and phospholipid exchange proteins derived from beef heart, beef liver or rat liver. Labeled phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and phosphatidylinositol were found to act as a single pool and were 85--95% exchangeable in 1--2h. High latencies of mannose-6-phosphate phosphohydrolase activities and impermeability of microsomes to EDTA proved that phospholipid exchange proteins did not have access to the intracisternal space. If microsomal membranes are largely composed of phospholipid bilayers, the experiments suggest that one or more of the phospholipid classes in microsomal membranes undergo rapid translocation between the inner and outer portions of the bilayer. PMID:889827

  14. [Phospholipids: properties and health effects].

    PubMed

    Torres García, Jairo; Durán Agüero, Samuel

    2014-09-12

    Phospholipids are amphipathic lipids, which are found in all the cell membranes, organized as a lipid bilayer. They belong to the glycerol-derived lipids, showing a similar structure as triglycerides. The current interest of them comes from its effectiveness to incorporate different fatty acids in the cell membrane, as they exhibit better absorption and utilization than triglycerides. In this paper, the bibliographical data published about the benefits of the phospholipids in inflammatory processes, cancer, cardiovascular diseases, neurological disorders, liver disease and as an antioxidants transporter is reviewed.

  15. Phosphatydylglycerol promotes bilayer insertion of salmon calcitonin.

    PubMed Central

    Bradshaw, J P

    1997-01-01

    Neutron diffraction from oriented multibilayers has been used to study the bilayer interaction of the amphipathic peptide salmon calcitonin. Penetration of calcitonin into bilayers composed of dioleoylphosphatidylcholine increases with the addition of 15% (mol) of the anionic phospholipid dioleoylphosphatidylglycerol. Neutron scattering profiles of water distribution in stacked bilayers show a continuous band of deuterons across each bilayer, consistent with the suggestion that the hormone forms transbilayer alpha-helixes under these conditions. These experiments add to the growing body of data on the role of phosphatidylglycerol in bilayer insertion of protein helices and suggests a possible evolutionary history for calcitonin. Images FIGURE 5 PMID:9129820

  16. Bursting Bubbles and Bilayers

    PubMed Central

    Wrenn, Steven P.; Dicker, Stephen M.; Small, Eleanor F.; Dan, Nily R.; Mleczko, Michał; Schmitz, Georg; Lewin, Peter A.

    2012-01-01

    This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition - in particular, poly (ethylene glyclol) (PEG) - is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the “brush” regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power) with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented, including those

  17. Effects of ion interactions with a cholesterol-rich bilayer.

    PubMed

    Mao, Lingxue; Yang, Linlin; Zhang, Qiansen; Jiang, Hualiang; Yang, Huaiyu

    Previous molecular dynamics (MD) simulations of ion-lipid interactions have focused on pure phospholipid bilayers. Many functional microdomains in membranes have a complex composition of cholesterol and phospholipids. Here, we reveal the distinctiveness of the interactions and the effects of the ions on a cholesterol-rich bilayer by performing MD simulations of a cholesterol-rich bilayer with a Na(+)/K(+) mixture or a Na(+)/K(+)/Ca(2+)/Mg(2+) mixture. The simulations reveal that Ca(2+) maintains its dominant role in the interaction with the cholesterol-rich bilayer, but the binding affinity of Mg(2+) to the cholesterol-rich bilayer is even weaker than the affinities of Na(+) and K(+), whereas its interaction with pure phospholipid bilayers is strong and is only slightly weaker than that of Ca(2+). Additionally, it was found that the presence of additional divalent cations induces the headgroups of phospholipids to be more perpendicular to the membrane surface, reducing the lateral movement of lipids and slightly altering the ordering and packing of the cholesterol-rich bilayer, different from divalent cations, which strongly influence that ordering and packing of pure phospholipid bilayers. Therefore, this study indicates that cholesterol in the membrane could affect the interactions between membrane and cations. The findings could be helpful in understanding the biological processes relevant to regulation of cations in cholesterol-rich regions.

  18. Cholesterol Perturbs Lipid Bilayers Nonuniversally

    SciTech Connect

    Pan Jianjun; Mills, Thalia T.; Tristram-Nagle, Stephanie; Nagle, John F.

    2008-05-16

    Cholesterol is well known to modulate the physical properties of biomembranes. Using modern x-ray scattering methods, we have studied the effects of cholesterol on the bending modulus K{sub C}, the thickness D{sub HH}, and the orientational order parameter S{sub xray} of lipid bilayers. We find that the effects are different for at least three classes of phospholipids characterized by different numbers of saturated hydrocarbon chains. Most strikingly, cholesterol strongly increases K{sub C} when both chains of the phospholipid are fully saturated but not at all when there are two monounsaturated chains.

  19. Protein-phospholipid interactions in blood clotting.

    PubMed

    Morrissey, James H; Davis-Harrison, Rebecca L; Tavoosi, Narjes; Ke, Ke; Pureza, Vincent; Boettcher, John M; Clay, Mary C; Rienstra, Chad M; Ohkubo, Y Zenmei; Pogorelov, Taras V; Tajkhorshid, Emad

    2010-04-01

    Most steps of the blood clotting cascade require the assembly of a serine protease with its specific regulatory protein on a suitable phospholipid bilayer. Unfortunately, the molecular details of how blood clotting proteins bind to membrane surfaces remain poorly understood, owing to a dearth of techniques for studying protein-membrane interactions at high resolution. Our laboratories are tackling this question using a combination of approaches, including nanoscale membrane bilayers, solid-state NMR, and large-scale molecular dynamics simulations. These studies are now providing structural insights at atomic resolution into clotting protein-membrane interactions. PMID:20129649

  20. Protein-Phospholipid Interactions in Blood Clotting

    PubMed Central

    Morrissey, James H.; Davis-Harrison, Rebecca L.; Tavoosi, Narjes; Ke, Ke; Pureza, Vincent; Boettcher, John M.; Clay, Mary C.; Rienstra, Chad M.; Ohkubo, Y. Zenmei; Pogorelov, Taras V.; Tajkhorshid, Emad

    2010-01-01

    Most steps of the blood clotting cascade require the assembly of a serine protease with its specific regulatory protein on a suitable phospholipid bilayer. Unfortunately, the molecular details of how blood clotting proteins bind to membrane surfaces remain poorly understood, owing to a dearth of techniques for studying protein-membrane interactions at high resolution. Our laboratories are tackling this question using a combination of approaches, including nanoscale membrane bilayers, solid-state NMR, and large-scale molecular dynamics simulations. These studies are now providing structural insights at atomic resolution into clotting protein-membrane interactions. PMID:20129649

  1. Resonant Tunneling in Double Bilayer Graphene Heterostructures

    NASA Astrophysics Data System (ADS)

    Fallahazad, Babak; Lee, Kayoung; Kang, Sangwoo; Xue, Jiamin; Larentis, Stefano; Corbet, Christopher; Kim, Kyounghwan; Movva, Hema; Taniguchi, Takashi; Watanabe, Kenji; Register, Leonard; Banerjee, Sanjay; Tutuc, Emanuel

    2015-03-01

    We present the realization and characterization of independently contacted and rotationally aligned double bilayer graphene heterostructures, that show gate-tunable tunneling resonances and negative differential resistance in their interlayer current-voltage characteristics. Our devices are fabricated by successively stacking mechanically exfoliated bilayer graphene and hexagonal boron nitride dielectric using a layer-by-layer transfer technique. The bilayers are rotationally aligned during the device fabrication by selecting flakes with straight edges, and using them as a reference for alignment. We determine the heterostructure energy band alignment at the tunneling resonance using the individual layer carrier densities, and including the chemical potential dependence on the carrier density. Our analysis show that the tunneling resonances occur when the charge neutrality points of the two bilayer graphene are energetically aligned, which suggests the resonances stem from the momentum conserving tunneling. This work has been supported by NRI-SWAN, ONR, and Intel.

  2. Novel chelate-induced magnetic alignment of biological membranes.

    PubMed Central

    Prosser, R S; Volkov, V B; Shiyanovskaya, I V

    1998-01-01

    A phospholipid chelate complexed with ytterbium (DMPE-DTPA:Yb3+) is shown to be readily incorporated into a model membrane system, which may then be aligned in a magnetic field such that the average bilayer normal lies along the field. This so-called positively ordered smectic phase, whose lipids consist of less than 1% DMPE-DTPA:Yb3+, is ideally suited to structural studies of membrane proteins by solid-state NMR, low-angle diffraction, and spectroscopic techniques that require oriented samples. The chelate, 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine diethylenetriaminepentaacetic acid, which strongly binds the lanthanide ions and serves to orient the membrane in a magnetic field, prevents direct lanthanide-protein interactions and significantly reduces paramagnetic shifts and line broadening. Similar low-spin lanthanide chelates may have applications in field-ordered solution NMR studies of water-soluble proteins and in the design of new magnetically aligned liquid crystalline phases. PMID:9788910

  3. Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes.

    PubMed

    McCaffrey, Jesse E; James, Zachary M; Thomas, David D

    2015-01-01

    We have optimized the magnetic alignment of phospholipid bilayered micelles (bicelles) for EPR spectroscopy, by varying lipid composition and temperature. Bicelles have been extensively used in NMR spectroscopy for several decades, in order to obtain aligned samples in a near-native membrane environment and take advantage of the intrinsic sensitivity of magnetic resonance to molecular orientation. Recently, bicelles have also seen increasing use in EPR, which offers superior sensitivity and orientational resolution. However, the low magnetic field strength (less than 1 T) of most conventional EPR spectrometers results in homogeneously oriented bicelles only at a temperature well above physiological. To optimize bicelle composition for magnetic alignment at reduced temperature, we prepared bicelles containing varying ratios of saturated (DMPC) and unsaturated (POPC) phospholipids, using EPR spectra of a spin-labeled fatty acid to assess alignment as a function of lipid composition and temperature. Spectral analysis showed that bicelles containing an equimolar mixture of DMPC and POPC homogeneously align at 298 K, 20 K lower than conventional DMPC-only bicelles. It is now possible to perform EPR studies of membrane protein structure and dynamics in well-aligned bicelles at physiological temperatures and below.

  4. Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes

    NASA Astrophysics Data System (ADS)

    McCaffrey, Jesse E.; James, Zachary M.; Thomas, David D.

    2015-01-01

    We have optimized the magnetic alignment of phospholipid bilayered micelles (bicelles) for EPR spectroscopy, by varying lipid composition and temperature. Bicelles have been extensively used in NMR spectroscopy for several decades, in order to obtain aligned samples in a near-native membrane environment and take advantage of the intrinsic sensitivity of magnetic resonance to molecular orientation. Recently, bicelles have also seen increasing use in EPR, which offers superior sensitivity and orientational resolution. However, the low magnetic field strength (less than 1 T) of most conventional EPR spectrometers results in homogeneously oriented bicelles only at a temperature well above physiological. To optimize bicelle composition for magnetic alignment at reduced temperature, we prepared bicelles containing varying ratios of saturated (DMPC) and unsaturated (POPC) phospholipids, using EPR spectra of a spin-labeled fatty acid to assess alignment as a function of lipid composition and temperature. Spectral analysis showed that bicelles containing an equimolar mixture of DMPC and POPC homogeneously align at 298 K, 20 K lower than conventional DMPC-only bicelles. It is now possible to perform EPR studies of membrane protein structure and dynamics in well-aligned bicelles at physiological temperatures and below.

  5. Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes.

    PubMed

    McCaffrey, Jesse E; James, Zachary M; Thomas, David D

    2015-01-01

    We have optimized the magnetic alignment of phospholipid bilayered micelles (bicelles) for EPR spectroscopy, by varying lipid composition and temperature. Bicelles have been extensively used in NMR spectroscopy for several decades, in order to obtain aligned samples in a near-native membrane environment and take advantage of the intrinsic sensitivity of magnetic resonance to molecular orientation. Recently, bicelles have also seen increasing use in EPR, which offers superior sensitivity and orientational resolution. However, the low magnetic field strength (less than 1 T) of most conventional EPR spectrometers results in homogeneously oriented bicelles only at a temperature well above physiological. To optimize bicelle composition for magnetic alignment at reduced temperature, we prepared bicelles containing varying ratios of saturated (DMPC) and unsaturated (POPC) phospholipids, using EPR spectra of a spin-labeled fatty acid to assess alignment as a function of lipid composition and temperature. Spectral analysis showed that bicelles containing an equimolar mixture of DMPC and POPC homogeneously align at 298 K, 20 K lower than conventional DMPC-only bicelles. It is now possible to perform EPR studies of membrane protein structure and dynamics in well-aligned bicelles at physiological temperatures and below. PMID:25514061

  6. Optimization of Bicelle Lipid Composition and Temperature for EPR Spectroscopy of Aligned Membranes

    PubMed Central

    McCaffrey, Jesse E.; James, Zachary M.; Thomas, David D.

    2014-01-01

    We have optimized the magnetic alignment of phospholipid bilayered micelles (bicelles) for EPR spectroscopy, by varying lipid composition and temperature. Bicelles have been extensively used in NMR spectroscopy for several decades, in order to obtain aligned samples in a near-native membrane environment and take advantage of the intrinsic sensitivity of magnetic resonance to molecular orientation. Recently, bicelles have also seen increasing use in EPR, which offers superior sensitivity and orientational resolution. However, the low magnetic field strength (less than 1 T) of most conventional EPR spectrometers results in homogeneously oriented bicelles only at a temperature well above physiological. To optimize bicelle composition for magnetic alignment at reduced temperature, we prepared bicelles containing varying ratios of saturated (DMPC) and unsaturated (POPC) phospholipids, using EPR spectra of a spin-labeled fatty acid to assess alignment as a function of lipid composition and temperature. Spectral analysis showed that bicelles containing an equimolar mixture of DMPC and POPC homogeneously align at 298 K, 20 K lower than conventional DMPC-only bicelles. It is now be possible to perform EPR studies of membrane protein structure and dynamics in well-aligned bicelles at physiological temperatures and below. PMID:25514061

  7. Preferred conformation and dynamics of the glycerol backbone in phospholipids. An NMR and X-ray single-crystal analysis

    SciTech Connect

    Hauser, H.; Pascher, I.; Sundell, S. )

    1988-12-27

    The conformation of the glycerol group of a number of diacyl and monoacyl (lyso) phospholipids differing in the chemical nature of the head group was studied by {sup 1}H high-resolution NMR and X-ray crystallography. The NMR measurements were carried out with solutions or micellar dispersions of the lipids in deuteriated organic solvents or {sup 2}H{sub 2}O. Both solutions, in which the lipid is present as monomers, and lipid micelles give rise to good high-resolution NMR spectra exhibiting spin coupling hyperfine interactions. From {sup 1}H spin coupling it is concluded that there are two stable conformations about the glycerol C(2)-C(3) bond of phospholipids. By comparison of NMR and single-crystal X-ray data it is obvious that both conformations are minimum free energy conformations. Rotamer A is the conformation prevailing in phospholipid single-crystal structures. The conformation of rotamer B is also found in phospholipid single-crystal structures though to a lesser extent. NMR measurements indicate that in liquid crystals the diacylglycerol part of phospholipids fluctuates between the two stable staggered conformations of rotamers A and B. The transition between rotamers A and B is fast on the NMR time scale and must be accompanied by appropriate changes in the torsion angles {beta}{sub 1} to {beta}{sub 4} and {gamma}{sub 1} to {gamma}{sub 4} of the two fatty acyl chains. It is clear from the data presented that the parallel alignment of the hydrocarbon chains or chain stacking in phospholipid aggregates such as bilayers or micelles is the fundamental principle governing the conformation of the C(2)-C(3) glycerol bond.

  8. Hydrated cholesterol: Phospholipid domains probed by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Solomonov, I.; Daillant, J.; Fragneto, G.; Kjaer, K.; Micha, J. S.; Rieutord, F.; Leiserowitz, L.

    2009-10-01

    X-ray scattering experiments on mixed films of cholesterol and phospholipids at air-water and Si solid-water interfaces were undertaken to glean information on pathological crystallization of cholesterol bilayers. Grazing-incidence X-ray diffraction patterns at the air-water interface of various cholesterol:dipalmitoyl-phosphatidylcholine (Ch:DPPC) monolayer mixtures compressed beyond monolayer collapse yielded the established 10×7.5 Å2 Ch bilayer motif, for Ch:DPPC molar ratios higher than 2.5:1. Attempts to obtain a diffraction signal from various Ch:phospholipid film mixtures at the Si solid-water interface, indicative of the presence of the Ch bilayer motif, were unsuccessful. Only after removal of sufficient water from the cell was a weak diffraction signal obtained suggestive of a cholesterol film two bilayers thick. Off-specular X-ray reflectivity measurements made on a 1.75:1 mixture of Ch and bovine cardiac phosphatidylcholine (BCPC) deposited as a bilayer on a Si wafer and placed in a cell filled with water yielded positive results. The derived electron density profile showed the presence of a bilayer mixture consistent with a phase separation of cholesterol and BCPC, and possible formation of a crystalline cholesterol bilayer within the hydrated mixed bilayer, but not a proof thereof.

  9. The aminosterol antibiotic squalamine permeabilizes large unilamellar phospholipid vesicles.

    PubMed

    Selinsky, B S; Zhou, Z; Fojtik, K G; Jones, S R; Dollahon, N R; Shinnar, A E

    1998-03-13

    The ability of the shark antimicrobial aminosterol squalamine to induce the leakage of polar fluorescent dyes from large unilamellar phospholipid vesicles (LUVs) has been measured. Micromolar squalamine causes leakage of carboxyfluorescein (CF) from vesicles prepared from the anionic phospholipids phosphatidylglycerol (PG), phosphatidylserine (PS), and cardiolipin. Binding analyses based on the leakage data show that squalamine has its highest affinity to phosphatidylglycerol membranes, followed by phosphatidylserine and cardiolipin membranes. Squalamine will also induce the leakage of CF from phosphatidylcholine (PC) LUVs at low phospholipid concentrations. At high phospholipid concentrations, the leakage of CF from PC LUVs deviates from a simple dose-response relationship, and it appears that some of the squalamine can no longer cause leakage. Fluorescent dye leakage generated by squalamine is graded, suggesting the formation of a discrete membrane pore rather than a generalized disruption of vesicular membranes. By using fluorescently labeled dextrans of different molecular weight, material with molecular weight /=10,000 is retained. Negative stain electron microscopy of squalamine-treated LUVs shows that squalamine decreases the average vesicular size in a concentration-dependent manner. Squalamine decreases the size of vesicles containing anionic phospholipid at a lower squalamine/lipid molar ratio than pure PC LUVs. In a centrifugation assay, squalamine solubilizes phospholipid, but only at significantly higher squalamine/phospholipid ratios than required for either dye leakage or vesicle size reduction. Squalamine solubilizes PC at lower squalamine/phospholipid ratios than PG. We suggest that squalamine complexes with phospholipid to form a discrete structure within the bilayers of LUVs, resulting in the transient leakage of small encapsulated molecules. At higher

  10. Phospholipids at the Interface: Current Trends and Challenges

    PubMed Central

    Pichot, Roman; Watson, Richard L.; Norton, Ian T.

    2013-01-01

    Phospholipids are one of the major structural elements of biological membranes. Due to their amphiphilic character, they can adopt various molecular assemblies when dispersed in water, such as bilayer vesicles or micelles, which give them unique interfacial properties and render them very attractive in terms of foam or emulsion stabilization. This article aims at reviewing the properties of phospholipids at the air/water and oil/water interfaces, as well as the recent advances in using these natural components as stabilizers, alone or in combination with other compounds such as proteins. A discussion regarding the challenges and opportunities offered by phospholipids-stabilized structure concludes the review. PMID:23736688

  11. Interactions of phospholipids with the potassium channel KcsA.

    PubMed

    Williamson, Ian M; Alvis, Simon J; East, J Malcolm; Lee, Anthony G

    2002-10-01

    The potassium channel KcsA from Streptomyces lividans has been reconstituted into bilayers of phosphatidylcholines and fluorescence spectroscopy has been used to characterize the response of KcsA to changes in bilayer thickness. The Trp residues in KcsA form two bands, one on each side of the membrane. Trp fluorescence emission spectra and the proportion of the Trp fluorescence intensity quenchable by I(-) hardly vary in the lipid chain length range C10 to C24, suggesting efficient hydrophobic matching between KcsA and the lipid bilayer over this range. Measurements of fluorescence quenching for KcsA reconstituted into mixtures of brominated and nonbrominated phospholipids have been analyzed to give binding constants of lipids for KcsA, relative to that for dioleoylphosphatidylcholine (di(C18:1)PC). Relative lipid binding constants increase by only a factor of three with increasing chain length from C10 to C22 with a decrease from C22 to C24. Strongest binding to di(C22:1)PC corresponds to a state in which the side chains of the lipid-exposed Trp residues are likely to be located within the hydrocarbon core of the lipid bilayer. It is suggested that matching of KcsA to thinner bilayers than di(C24:1)PC is achieved by tilting of the transmembrane alpha-helices in KcsA. Measurements of fluorescence quenching of KcsA in bilayers of brominated phospholipids as a function of phospholipid chain length suggest that in the chain length range C14 to C18 the Trp residues move further away from the center of the lipid bilayer with increasing chain length, which can be partly explained by a decrease in helix tilt angle with increasing bilayer thickness. In the chain length range C18 to C24 it is suggested that the Trp residues become more buried within the hydrocarbon core of the bilayer. PMID:12324421

  12. Fabrication of a planar zwitterionic lipid bilayer on titanium oxide.

    PubMed

    Cho, Nam-Joon; Frank, Curtis W

    2010-10-19

    There is great demand to fabricate planar phospholipid bilayers on biocompatible materials. The preferred method of forming bilayers on these substrates is the spontaneous adsorption and rupture of phospholipid vesicles. However, in the case of titanium oxide, model vesicles composed solely of zwitterionic phospholipids do not follow this self-assembly pathway under physiological conditions, prompting the use of complex bilayer materials and less-facile methods. Herein, we report a novel pH-based strategy for fabricating zwitterionic bilayers on titanium oxide in a simple and robust manner. Depending on the pH conditions under which lipid vesicles adsorb onto titanium oxide, quartz crystal microbalance-dissipation (QCM-D) monitoring demonstrated that the self-assembly pathway can in fact result in planar bilayer formation. The pH of the solution could then be adjusted to physiological levels with no effect on the mass and viscoelastic properties of the bilayer. Moreover, fluorescence recovery after photobleaching (FRAP) measurements indicated a high degree of lateral lipid diffusivity within the bilayer at physiological pH, commensurate with its role as a cell membrane mimic. Compared to existing protocols, this strategy permits the fabrication of a more diverse array of planar bilayers on titanium oxide by tuning the self-assembly pathway of lipid vesicle adsorption onto solid substrates.

  13. Cholesterol's location in lipid bilayers

    DOE PAGES

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R.; Harroun, Thad A.; Katsaras, John

    2016-04-04

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown – at least in some bilayers – to align differently from its canonical upright orientation, where its hydroxyl group is in themore » vicinity of the lipid–water interface. In this study we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.« less

  14. Functional One-Dimensional Lipid Bilayers on Carbon Nanotube Templates

    SciTech Connect

    Artyukhin, A; Shestakov, A; Harper, J; Bakajin, O; Stroeve, P; Noy, A

    2004-07-23

    We present one-dimensional (1-D) lipid bilayer structures that integrate carbon nanotubes with a key biological environment-phospholipid membrane. Our structures consist of lipid bilayers wrapped around carbon nanotubes modified with a hydrophilic polymer cushion layer. Despite high bilayer curvature, the lipid membrane maintains its fluidity and can sustain repeated damage-recovery cycles. We also present the first evidence of spontaneous insertion of pore-forming proteins into 1-D lipid bilayers. These structures could lead to the development of new classes of biosensors and bioelectronic devices.

  15. Hybrid copolymer-phospholipid vesicles: phase separation resembling mixed phospholipid lamellae, but with mechanical stability and control.

    PubMed

    Chen, Dong; Santore, Maria M

    2015-04-01

    Vesicles whose bilayer membranes contain phospholipids mixed with co-polymers or surfactants comprise new hybrid materials having potential applications in drug delivery, sensors, and biomaterials. Here we describe a model polymer-phospholipid hybrid membrane system exhibiting strong similarities to binary phospholipid mixtures, but with more robust membrane mechanics. A lamella-forming graft copolymer, PDMS-co-PEO (polydimethylsiloxane-co-polyethylene oxide) was blended with a high melting temperature phospholipid, DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine), over a broad compositional range. The resulting giant hybrid unilamellar vesicles were compared qualitatively and quantitatively to analogous mixed phospholipid membranes in which a low melting temperature phospholipid, DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), was blended with DPPC. The mechanical properties of the hybrid vesicles, even when phase separated, were robust with high lysis stresses and strains approaching those of the pure copolymer vesicles. The temperature-composition phase diagram of the hybrid vesicles closely resembled that of the mixed phospholipids; with only slightly greater nonidealities in the hybrid compared with DOPC/DPPC mixed membranes. In both systems, it was demonstrated that tension could be used to manipulate DPPC solidification into domains of patchy or striped morphologies that exhibited different tracer incorporation. The patch and stripe-shaped domains are thought to be different solid DPPC polymorphys: ripple and tilt (or gel). This work demonstrates that in mixed-phospholipid bilayers where a high-melting phospholipid solidifies on cooling, the lower-melting phospholipid may be substituted by an appropriate copolymer to improve mechanical properties while retaining the underlying membrane physics.

  16. Phospholipid liposomes functionalized by protein

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Savostyanov, G. V.; Grishina, O. A.

    2015-03-01

    Finding new ways to deliver neurotrophic drugs to the brain in newborns is one of the contemporary problems of medicine and pharmaceutical industry. Modern researches in this field indicate the promising prospects of supramolecular transport systems for targeted drug delivery to the brain which can overcome the blood-brain barrier (BBB). Thus, the solution of this problem is actual not only for medicine, but also for society as a whole because it determines the health of future generations. Phospholipid liposomes due to combination of lipo- and hydrophilic properties are considered as the main future objects in medicine for drug delivery through the BBB as well as increasing their bioavailability and toxicity. Liposomes functionalized by various proteins were used as transport systems for ease of liposomes use. Designing of modification oligosaccharide of liposomes surface is promising in the last decade because it enables the delivery of liposomes to specific receptor of human cells by selecting ligand and it is widely used in pharmacology for the treatment of several diseases. The purpose of this work is creation of a coarse-grained model of bilayer of phospholipid liposomes, functionalized by specific to the structural elements of the BBB proteins, as well as prediction of the most favorable orientation and position of the molecules in the generated complex by methods of molecular docking for the formation of the structure. Investigation of activity of the ligand molecule to protein receptor of human cells by the methods of molecular dynamics was carried out.

  17. Dynamics, Surface Electrostatics and Phase Properties of Nanoscale Curved Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Koolivand, Amir

    Surface electrostatic potential of a lipid bilayer governs many vital functions of living cells. Several classes of proteins are known of exhibiting strong binding preferences to curved lipid bilayer surfaces. In this project we employed electron paramagnetic resonance (EPR) of a recently introduced phospholipid (IMTSL-PTE) bearing a pH-sensitive nitroxide covalently attached to the lipid head group to measure the surface electrostatics of the lipid membrane and nanopore-confined lipid bilayers as a function of the bilayer curvature. The pKa of the ionizable group of this lipid-based spin probe is reporting on the bilayer surface electrostatics potential by changes in the EPR spectra. Specifically, both rotational dynamics and magnetic parameters of the nitroxide are affected by the probe protonation. Effect of curvature on the surface electrostatic potential and dynamics of lipid bilayer was studied for POPG and DMPG unilamellar vesicles (ULVs). It was found that the magnitude of the negative surface electrostatic potential increased upon decrease in the vesicle diameter for the bilayers in the fluid phase; however, no significant changes were observed for DMPG ULVs in a gel phase. We speculate that biologically relevant fluid bilayer phase allows for a larger variability in the lipid packing density in the lipid polar head group region than a more ordered gel phase and it is likely that the lipid flip-flop is responsible for pH equilibration of IMTSL-PTE. The kinetic EPR study of nitroxide reduction showed that the rate of flip-flop is in the order of 10-5 s-1. The flip-flop rate constant increases when vesicle size deceases. Oxygen permeability measured by X-ban EPR decreases in higher curved vesicles---an observation that is consistent with a tighter packing in smaller vesicles. Partitioning of a small nitroxide molecule TEMPO into ULVs was measured by X-band (9 GHz) and W-band (95 GHz) EPR spectroscopy. The partitioning coefficient of this probe in the lipid

  18. Effect of Vesicle-to-Micelle Transition on the Interactions of Phospholipid/Sodium Cholate Mixed Systems with Curcumin in Aqueous Solution.

    PubMed

    Zhang, Sha; Wang, Xiaoyong

    2016-08-01

    The role of vesicle-to-micelle transition has been investigated in the interactions of phospholipid vesicles, phospholipid/sodium cholate (NaC) mixed vesicles, and phospholipid/NaC mixed micelles with curcumin in aqueous solution. The addition of NaC causes phospholipid vesicles to transit into phospholipid/NaC mixed vesicles and phospholipid/NaC mixed micelles. Turbidity measurement reveals that the presence of curcumin increases the NaC concentration for the solubilization of phospholipid vesicles, which indicates that the bound curcumin tends to suppress the vesicle-to-micelle transition. The pyrene polarity index and curcumin fluorescence anisotropy measurements suggest that phospholipid/NaC mixed micelles have a more compact structure than that of phospholipid vesicles and phospholipid/NaC mixed vesicles. Curcumin associated with phospholipid vesicles, phospholipid/NaC mixed vesicles, and phospholipid/NaC mixed micelles often results in higher intensities of absorption and fluorescence than those of free curcumin. However, phospholipid/NaC mixed vesicles lead to the highest values of absorption and fluorescence intensities, binding constant, and radical-scavenging capacity with curcumin. The different structures in the phospholipid bilayer of phospholipid/NaC mixed vesicles and the hydrophobic part of phospholipid/NaC mixed micelles where curcumin located are discussed to explain the interaction behaviors of phospholipid/NaC mixed systems with curcumin.

  19. Contact bubble bilayers with flush drainage.

    PubMed

    Iwamoto, Masayuki; Oiki, Shigetoshi

    2015-03-16

    Planar lipid bilayers have been used to form stable bilayers into which membrane proteins are reconstituted for measurements of their function under an applied membrane potential. Recently, a lipid bilayer membrane is formed by the apposition of two monolayers that line an oil-electrolyte interface. Here, a bilayer membrane system is developed with picoliter bubbles under mechanically and chemically manipulable conditions. A water bubble lined with a phospholipid monolayer is blown from a glass pipette into an oil phase. Two blowing pipettes are manipulated, and bubbles (each with a diameter of ~ 50 μm) are held side by side to form a bilayer, which is termed a contact bubble bilayer. With the electrode implemented in the blowing pipette, currents through the bilayer are readily measured. The intra-bubble pressure is varied with the pressure-controller, leading to various sizes of the bubble and the membrane area. A rapid solution exchange system is developed by introducing additional pressure-driven injection pipettes, and the blowing pipette works as a drain. The solution is exchanged within 20 ms. Also, an asymmetric membrane with different lipid composition of each leaflet is readily formed. Example applications of this versatile method are presented to characterize the function of ion channels.

  20. Contact Bubble Bilayers with Flush Drainage

    PubMed Central

    Iwamoto, Masayuki; Oiki, Shigetoshi

    2015-01-01

    Planar lipid bilayers have been used to form stable bilayers into which membrane proteins are reconstituted for measurements of their function under an applied membrane potential. Recently, a lipid bilayer membrane is formed by the apposition of two monolayers that line an oil-electrolyte interface. Here, a bilayer membrane system is developed with picoliter bubbles under mechanically and chemically manipulable conditions. A water bubble lined with a phospholipid monolayer is blown from a glass pipette into an oil phase. Two blowing pipettes are manipulated, and bubbles (each with a diameter of ~ 50 μm) are held side by side to form a bilayer, which is termed a contact bubble bilayer. With the electrode implemented in the blowing pipette, currents through the bilayer are readily measured. The intra-bubble pressure is varied with the pressure-controller, leading to various sizes of the bubble and the membrane area. A rapid solution exchange system is developed by introducing additional pressure-driven injection pipettes, and the blowing pipette works as a drain. The solution is exchanged within 20 ms. Also, an asymmetric membrane with different lipid composition of each leaflet is readily formed. Example applications of this versatile method are presented to characterize the function of ion channels. PMID:25772819

  1. Interaction of isopropylthioxanthone with phospholipid liposomes.

    PubMed

    Momo, Federico; Fabris, Sabrina; Stevanato, Roberto

    2007-04-01

    Isopropylthioxanthone (ITX) is a highly lipophilic molecule which can be released in foods and beverages from the packages, where it is present as photoinitiator of inks in printing processes. Recently it was found in babies milk, and its toxicity cannot be excluded. The structure of the molecule suggests a possible strong interaction with the lipid moiety of biological membranes, and this is the first study of its effects on phospholipid organization, using differential scanning calorimetry (DSC) and spin labelling techniques. The data obtained with multilamellar liposomes of saturated phospholipids of different length, with and without cholesterol, point out that the molecule changes the lipid structure; in particular, in the gel state, behaving like a disordering agent it increases the mobility of the bilayer, while, in the fluid state, tends to rigidify the membrane, in a cholesterol like way. This behavior supports the hypothesis that ITX experiences a relocation process when the lipid matrix passes from the gel to the fluid state.

  2. Lipid-Controlled Peptide Topology and Interactions in Bilayers: Structural Insights into the Synergistic Enhancement of the Antimicrobial Activities of PGLa and Magainin 2

    PubMed Central

    Salnikov, Evgeniy S.; Bechinger, Burkhard

    2011-01-01

    To gain further insight into the antimicrobial activities of cationic linear peptides, we investigated the topology of each of two peptides, PGLa and magainin 2, in oriented phospholipid bilayers in the presence and absence of the other peptide and as a function of the membrane lipid composition. Whereas proton-decoupled 15N solid-state NMR spectroscopy indicates that magainin 2 exhibits stable in-plane alignments under all conditions investigated, PGLa adopts a number of different membrane topologies with considerable variations in tilt angle. Hydrophobic thickness is an important parameter that modulates the alignment of PGLa. In equimolar mixtures of PGLa and magainin 2, the former adopts transmembrane orientations in dimyristoyl-, but not 1-palmitoyl-2-oleoyl-, phospholipid bilayers, whereas magainin 2 remains associated with the surface in all cases. These results have important consequences for the mechanistic models explaining synergistic activities of the peptide mixtures and will be discussed. The ensemble of data suggests that the thinning of the dimyristoyl membranes caused by magainin 2 tips the topological equilibrium of PGLa toward a membrane-inserted configuration. Therefore, lipid-mediated interactions play a fundamental role in determining the topology of membrane peptides and proteins and thereby, possibly, in regulating their activities as well. PMID:21402029

  3. High pressure volumetric measurements in dipalmitoylphosphatidylcholine bilayers.

    PubMed

    Tosh, R E; Collings, P J

    1986-07-10

    The one previously reported high pressure volumetric experiment on a phospholipid bilayer investigated a region of pressure between 0 and 25 MPa and obtained isothermal compressibility values for the liquid crystal and intermediate phases which differed by more than a factor of ten. We report new volumetric measurements around the main transition in dipalmitoylphosphatidylcholine (DPPC) from 0 to 100 MPa. The isothermal compressibility data for the two phases are of the same order of magnitude, and the experimentally determined coexistence curve, specific volume dependence, and volume discontinuity values are compared with the predictions of the phenomenological theory according to Sugar and Tarjan ((1982) Sov. Phys. Crystallogr. 27, 4-5). Significant discrepancies between this theory and experiment are found. Finally, the data indicate that steric interactions play a more dominant role in the main transition of phospholipid bilayers than in transitions in most thermotropic liquid crystals.

  4. Molecular Insights into Phospholipid -- NSAID Interactions

    NASA Astrophysics Data System (ADS)

    Babu Boggara, Mohan; Krishnamoorti, Ramanan

    2007-03-01

    Non steroidal anti inflammatory drugs (NSAIDs) e.g. Aspirin and Ibuprofen, with chronic usage cause gastro intestinal (GI) toxicity. It has been shown experimentally that NSAIDs pre-associated with phospholipids reduce the GI toxicity and also increase the therapeutic activity of these drugs compared to the unmodified ones. Using all atomistic simulations and two different methodologies, we studied the partitioning behavior of two model NSAIDs (Aspirin and Ibuprofen) as a function of pH and drug loading. The results from two methodologies are consistent in describing the equilibrium drug distribution in the bilayers. Additionally, the heterogeneity in density and polarity of the bilayer in the normal direction along with the fact that NSAIDs are amphiphilic (all of them have a carboxylic acid group and a non-polar part consisting of aromatic moieties), indicate that the diffusion mechanism in the bilayer is far different compared to the same in a bulk medium. This study summarizes the various effects of NSAIDs and their behavior inside the lipid bilayer both as a function of pH and drug concentration.

  5. Main phase transitions in supported lipid single-bilayer.

    PubMed

    Charrier, A; Thibaudau, F

    2005-08-01

    We have studied the phase transitions of a phospholipidic single-bilayer supported on a mica substrate by real-time temperature-controlled atomic force microscopy. We show the existence of two phase transitions in this bilayer that we attribute to two gel (L(beta))/fluid (L(alpha)) transitions, corresponding to the independent melting of each leaflet of the bilayer. The ratio of each phase with temperature and the large broadening of the transitions' widths have been interpreted through a basic thermodynamic framework in which the surface tension varies during the transitions. The experimental data can be fit with such a model using known thermodynamic parameters. PMID:15879467

  6. Lipid mobility in supported lipid bilayers by single molecule tracking

    NASA Astrophysics Data System (ADS)

    Kohram, Maryam; Shi, Xiaojun; Smith, Adam

    2015-03-01

    Phospholipid bilayers are the main component of cell membranes and their interaction with biomolecules in their immediate environment is critical for cellular functions. These interactions include the binding of polycationic polymers to lipid bilayers which affects many cell membrane events. As an alternative method of studying live cell membranes, we assemble a supported lipid bilayer and investigate its binding with polycationic polymers in vitro by fluorescently labeling the molecules of the supported lipid bilayer and tracking their mobility. In this work, we use single molecule tracking total internal reflection fluorescence microscopy (TIRF) to study phosphatidylinositol phosphate (PIP) lipids with and without an adsorbed polycationic polymer, quaternized polyvinylpyridine (QPVP). Individual molecular trajectories are obtained from the experiment, and a Brownian diffusion model is used to determine diffusion coefficients through mean square displacements. Our results indicate a smaller diffusion coefficient for the supported lipid bilayers in the presence of QPVP in comparison to its absence, revealing that their binding causes a decrease in lateral mobility.

  7. Phospholipid nanodisc engineering for drug delivery systems.

    PubMed

    Murakami, Tatsuya

    2012-06-01

    Biocompatible mesoscale nanoparticles (5-100 nm in diameter) are attractive tools for drug delivery. Among them are several types of liposomes and polymer micelles already in clinical trial or use. Generally, biocompatibility of such particles is achieved by coating them with polyethylene glycol (PEG). Without PEG coating, particles are quickly trapped in the reticuloendothelial system when intravenously administered. However, recent studies have revealed several potential problems with PEG coating, including antigenicity and restriction of cellular uptake. This has motivated the development of alternative drug and gene delivery vehicles, including chemically and genetically engineered high-density lipoprotein (HDL)-like nanodiscs or "bicelles". HDL is a naturally occurring mesoscale nanoparticle that normally ferries cholesterol around in the body. Its initial "nascent" form is thought to be a simple 10 nm disc of phospholipids in a bilayer, and can be easily synthesized in vitro by mixing recombinant apoA-I proteins with various phospholipids. In this review, the use of synthetic HDL-like phospholipid nanodiscs as biocompatible drug carriers is summarized, focussing on manufacturing, size-control, drug loading and cell targeting.

  8. Effects of imidazolium-based ionic surfactants on the size and dynamics of phosphatidylcholine bilayers with saturated and unsaturated chains.

    PubMed

    Lee, Hwankyu

    2015-07-01

    Imidazolium-based ionic surfactants of different sizes were simulated with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayers. Regardless of the phospholipid type, larger surfactants at higher concentrations more significantly insert into the bilayer and increase the bilayer-surface size, in agreement with experiments and previous simulations. Insertion of surfactants only slightly decreases the bilayer thickness, as also observed in experiments. Although the surfactant insertion and its effect on the bilayer size and thickness are similar in different types of bilayers, the volume fractions of surfactants in the bilayer are higher for DMPC bilayers than for POPC and DOPC bilayers. In particular, ionic surfactants with four hydrocarbons yield their volume fractions of 4.6% and 8.7%, respectively, in POPC and DMPC bilayers, in quantitative agreement with experimental values of ∼5% and ∼10%. Also, the inserted surfactants increase the lateral diffusivity of the bilayer, which depends on the bilayer type. These findings indicate that although the surfactant insertion does not depend on the bilayer type, the effects of surfactants on the volume fraction and bilayer dynamics occur more significantly in the DMPC bilayer because of the smaller area per lipid and shorter saturated tails, which helps explain the experimental observations regarding different volume fractions of surfactants in POPC and DMPC bilayers.

  9. Mechanical properties of lipid bilayers and regulation of mechanosensitive function

    PubMed Central

    Balleza, Daniel

    2012-01-01

    Material properties of lipid bilayers, including thickness, intrinsic curvature and compressibility regulate the function of mechanosensitive (MS) channels. This regulation is dependent on phospholipid composition, lateral packing and organization within the membrane. Therefore, a more complete framework to understand the functioning of MS channels requires insights into bilayer structure, thermodynamics and phospholipid structure, as well as lipid-protein interactions. Phospholipids and MS channels interact with each other mainly through electrostatic forces and hydrophobic matching, which are also crucial for antimicrobial peptides. They are excellent models for studying the formation and stabilization of membrane pores. Importantly, they perform equivalent responses as MS channels: (1) tilting in response to tension and (2) dissipation of osmotic gradients. Lessons learned from pore forming peptides could enrich our knowledge of mechanisms of action and evolution of these channels. Here, the current state of the art is presented and general principles of membrane regulation of mechanosensitive function are discussed. PMID:22790280

  10. Interaction of abscisic acid with phospholipid membranes

    SciTech Connect

    Stillwell, W.; Brengle, B.; Hester, P.; Wassall, S.T. )

    1989-04-04

    The plant hormone abscisic acid (ABA) is shown, under certain conditions, to greatly enhance the permeability of phospholipid bilayer membranes to the nonelectrolyte erythritol (followed spectrophotometrically by osmotic swelling) and the anion carboxyfluorescein (followed by fluorescence). The hormone is ineffective with single- and mixed-component phosphatidylcholine membranes in the liquid-crystalline or gel states. In contrast, substantial ABA-induced permeability is measured for two-component membranes containing lipids with different polar head groups or containing phosphatidylcholines with different acyl chains at temperatures where gel and liquid-crystalline phases coexist. Despite the large ABA-induced enhancement in bilayer permeability, no evidence for a substantial change at the molecular level was seen in the membranes by magnetic resonance techniques. {sup 13}C NMR spin-lattice relaxation times, T{sub 1}, in sonicated unilamellar vesicles and ESR of spin-labeled fatty acids intercalated into membranes showed negligible effect on acyl chain order and dynamics within the bilayer, while {sup 31}P NMR of sonicated unilamellar vesicles indicated negligible effect on molecular motion and conformation in the head-group region. The authors propose that, instead of causing a general nonspecific perturbation to the membrane, the hormone acts at membrane defects formed due to mismatch in molecular packing where two different head groups or acyl chain states interface. Increased membrane disruption by ABA at these points of membrane instability could then produce an enhancement in permeability.

  11. The local phospholipid environment modulates the activation of blood clotting.

    PubMed

    Shaw, Andrew W; Pureza, Vincent S; Sligar, Stephen G; Morrissey, James H

    2007-03-01

    Examples abound of membrane-bound enzymes for which the local membrane environment plays an important role, including the ectoenzyme that triggers blood clotting, the plasma serine protease, factor VIIa, bound to the integral membrane protein, tissue factor. The activity of this enzyme complex is markedly influenced by lipid bilayer composition and further by tissue factor partitioning into membrane microdomains on some cell surfaces. Unfortunately, little is known about how membrane microdomain composition controls factor VIIa-tissue factor activity, as reactions catalyzed by membrane-tethered enzymes are typically studied under conditions in which the experimenter cannot control the composition of the membrane in the immediate vicinity of the enzyme. To overcome this problem, we used a nanoscale approach that afforded complete control over the membrane environment surrounding tissue factor by assembling the factor VIIa.tissue factor complex on stable bilayers containing 67 +/- 1 phospholipid molecules/leaflet (Nanodiscs). We investigated how local changes in phospholipid bilayer composition modulate the activity of the factor VIIa.tissue factor complex. We also addressed whether this enzyme requires a pool of membrane-bound protein substrate (factor X) for efficient catalysis, or alternatively if it could efficiently activate factor X, which binds directly to the membrane nanodomain adjacent to tissue factor. We have shown that full proteolytic activity of the factor VIIa.tissue factor complex requires extremely high local concentrations of anionic phospholipids and further that a large pool of membrane-bound factor X is not required to support sustained catalysis.

  12. Detection of supported lipid bilayers with carbon nanotube transistors

    NASA Astrophysics Data System (ADS)

    Zhou, Xinjian; Moran-Mirabal, Jose; Craighead, Harold; McEuen, Paul

    2005-03-01

    Supported lipid bilayers are important synthetic structures that can be used to mimic and study the properties and functions of cellular membranes, as well as to perform various bioassays which involve membrane bound receptors. The fusion of phospholipid vesicles and formation of a supported lipid bilayer can be detected in real time with high sensitivity by carbon nanotube field effect transistors which have been patterned on the same substrate. The properties of different vesicles, such as fusion rates and phospholipid composition can be distinguished by the conductance change of carbon nanotube field effect transistors. Fluorescence is used to verify the formation of a supported lipid bilayer, although the detection scheme is label-free. This demonstrates that electrical detection with carbon nanotubes can provide a powerful tool for study of lipid membranes.

  13. Gate-Tunable Resonant Tunneling in Double Bilayer Graphene Heterostructures

    NASA Astrophysics Data System (ADS)

    Fallahazad, Babak; Lee, Kayoung; Kang, Sangwoo; Xue, Jiamin; Larentis, Stefano; Corbet, Christopher; Kim, Kyounghwan; Movva, Hema C. P.; Taniguchi, Takashi; Watanabe, Kenji; Register, Leonard F.; Banerjee, Sanjay K.; Tutuc, Emanuel

    2015-01-01

    We demonstrate gate-tunable resonant tunneling and negative differential resistance in the interlayer current-voltage characteristics of rotationally aligned double bilayer graphene heterostructures separated by hexagonal boron-nitride (hBN) dielectric. An analysis of the heterostructure band alignment using individual layer densities, along with experimentally determined layer chemical potentials indicates that the resonance occurs when the energy bands of the two bilayer graphene are aligned. We discuss the tunneling resistance dependence on the interlayer hBN thickness, as well as the resonance width dependence on mobility and rotational alignment.

  14. Phospholipid flippases: building asymmetric membranes and transport vesicles

    PubMed Central

    Sebastian, Tessy T.; Baldridge, Ryan D.; Xu, Peng; Graham, Todd R.

    2012-01-01

    Phospholipid flippases in the type IV P-type ATPase family (P4-ATPases) are essential components of the Golgi, plasma membrane and endosomal system that play critical roles in membrane biogenesis. These pumps flip phospholipid across the bilayer to create an asymmetric membrane structure with substrate phospholipids, such as phosphatidylserine and phosphatidylethanolamine, enriched within the cytosolic leaflet. The P4-ATPases also help form transport vesicles that bud from Golgi and endosomal membranes, thereby impacting the sorting and localization of many different proteins in the secretory and endocytic pathways. At the organismal level, P4-ATPase deficiencies are linked to liver disease, obesity, diabetes, hearing loss, neurological deficits, immune deficiency and reduced fertility. Here, we review the biochemical, cellular and physiological functions of P4-ATPases, with an emphasis on their roles in vesicle-mediated protein transport. PMID:22234261

  15. Lipid bilayers covalently anchored to carbon nanotubes.

    PubMed

    Dayani, Yasaman; Malmstadt, Noah

    2012-05-29

    The unique physical and electrical properties of carbon nanotubes make them an exciting material for applications in various fields such as bioelectronics and biosensing. Due to the poor water solubility of carbon nanotubes, functionalization for such applications has been a challenge. Of particular need are functionalization methods for integrating carbon nanotubes with biomolecules and constructing novel hybrid nanostructures for bionanoelectronic applications. We present a novel method for the fabrication of dispersible, biocompatible carbon nanotube-based materials. Multiwalled carbon nanotubes (MWCNTs) are covalently modified with primary amine-bearing phospholipids in a carbodiimide-activated reaction. These modified carbon nanotubes have good dispersibility in nonpolar solvents. Fourier transform infrared (FTIR) spectroscopy shows peaks attributable to the formation of amide bonds between lipids and the nanotube surface. Simple sonication of lipid-modified nanotubes with other lipid molecules leads to the formation of a uniform lipid bilayer coating the nanotubes. These bilayer-coated nanotubes are highly dispersible and stable in aqueous solution. Confocal fluorescence microscopy shows labeled lipids on the surface of bilayer-modified nanotubes. Transmission electron microscopy (TEM) shows the morphology of dispersed bilayer-coated MWCNTs. Fluorescence quenching of lipid-coated MWCNTs confirms the bilayer configuration of the lipids on the nanotube surface, and fluorescence anisotropy measurements show that the bilayer is fluid above the gel-to-liquid transition temperature. The membrane protein α-hemolysin spontaneously inserts into the MWCNT-supported bilayer, confirming the biomimetic membrane structure. These biomimetic nanostructures are a promising platform for the integration of carbon nanotube-based materials with biomolecules.

  16. Self-reproducing catalyst drives repeated phospholipid synthesis and membrane growth

    PubMed Central

    Hardy, Michael D.; Yang, Jun; Selimkhanov, Jangir; Cole, Christian M.; Tsimring, Lev S.; Devaraj, Neal K.

    2015-01-01

    Cell membranes are dynamic structures found in all living organisms. There have been numerous constructs that model phospholipid membranes. However, unlike natural membranes, these biomimetic systems cannot sustain growth owing to an inability to replenish phospholipid-synthesizing catalysts. Here we report on the design and synthesis of artificial membranes embedded with synthetic, self-reproducing catalysts capable of perpetuating phospholipid bilayer formation. Replacing the complex biochemical pathways used in nature with an autocatalyst that also drives lipid synthesis leads to the continual formation of triazole phospholipids and membrane-bound oligotriazole catalysts from simpler starting materials. In addition to continual phospholipid synthesis and vesicle growth, the synthetic membranes are capable of remodeling their physical composition in response to changes in the environment by preferentially incorporating specific precursors. These results demonstrate that complex membranes capable of indefinite self-synthesis can emerge when supplied with simpler chemical building blocks. PMID:26100914

  17. Interaction of epicatechin gallate with phospholipid membranes as revealed by solid-state NMR spectroscopy.

    PubMed

    Uekusa, Yoshinori; Kamihira-Ishijima, Miya; Sugimoto, Osamu; Ishii, Takeshi; Kumazawa, Shigenori; Nakamura, Kozo; Tanji, Ken-ichi; Naito, Akira; Nakayama, Tsutomu

    2011-06-01

    Epicatechin gallate (ECg), a green tea polyphenol, has various physiological effects. Our previous nuclear Overhauser effect spectroscopy (NOESY) study using solution NMR spectroscopy demonstrated that ECg strongly interacts with the surface of phospholipid bilayers. However, the dynamic behavior of ECg in the phospholipid bilayers has not been clarified, especially the dynamics and molecular arrangement of the galloyl moiety, which supposedly has an important interactive role. In this study, we synthesized [13C]-ECg, in which the carbonyl carbon of the galloyl moiety was labeled by 13C isotope, and analyzed it by solid-state NMR spectroscopy. Solid-state 31P NMR analysis indicated that ECg changes the gel-to-liquid-crystalline phase transition temperature of DMPC bilayers as well as the dynamics and mobility of the phospholipids. In the solid-state 13C NMR analysis under static conditions, the carbonyl carbon signal of the [13C]-ECg exhibited an axially symmetric powder pattern. This indicates that the ECg molecules rotate about an axis tilting at a constant angle to the bilayer normal. The accurate intermolecular-interatomic distance between the labeled carbonyl carbon of [13C]-ECg and the phosphorus of the phospholipid was determined to be 5.3±0.1 Å by 13C-(31)P rotational echo double resonance (REDOR) measurements. These results suggest that the galloyl moiety contributes to increasing the hydrophobicity of catechin molecules, and consequently to high affinity of galloyl-type catechins for phospholipid membranes, as well as to stabilization of catechin molecules in the phospholipid membranes by cation-π interaction between the galloyl ring and quaternary amine of the phospholipid head-group. PMID:21352801

  18. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation.

    PubMed

    Cordeiro, Rodrigo M

    2014-01-01

    Reactive oxygen species (ROS) are involved in biochemical processes such as redox signaling, aging, carcinogenesis and neurodegeneration. Although biomembranes are targets for reactive oxygen species attack, little is known about the role of their specific interactions. Here, molecular dynamics simulations were employed to determine the distribution, mobility and residence times of various reactive oxygen species at the membrane-water interface. Simulations showed that molecular oxygen (O2) accumulated at the membrane interior. The applicability of this result to singlet oxygen ((1)O2) was discussed. Conversely, superoxide (O2(-)) radicals and hydrogen peroxide (H2O2) remained at the aqueous phase. Both hydroxyl (HO) and hydroperoxyl (HO2) radicals were able to penetrate deep into the lipid headgroups region. Due to membrane fluidity and disorder, these radicals had access to potential peroxidation sites along the lipid hydrocarbon chains, without having to overcome the permeation free energy barrier. Strikingly, HO2 radicals were an order of magnitude more concentrated in the headgroups region than in water, implying a large shift in the acid-base equilibrium between HO2 and O2(-). In comparison with O2, both HO and HO2 radicals had lower lateral mobility at the membrane. Simulations revealed that there were intermittent interruptions in the H-bond network around the HO radicals at the headgroups region. This effect is expected to be unfavorable for the H-transfer mechanism involved in HO diffusion. The implications for lipid peroxidation and for the effectiveness of membrane antioxidants were evaluated. PMID:24095673

  19. Adsorption of monovalent cations to bilayer membranes containing negative phospholipids.

    PubMed

    Eisenberg, M; Gresalfi, T; Riccio, T; McLaughlin, S

    1979-11-13

    The electrophoretic mobilities of multilamellar phosphatidylserine vesicles were measured in solutions containing monovalent cations, and the xi potentials, the electrostatic potentials at the hydrodynamic plane of shear, were calculated from the Helmholtz--Smoluchowski equation. In the presence of 0.1 M lithium, sodium, ammonium, potassium, rubidium, cesium, tetraethylammonium, and tetramethylammonium chloride, the xi potentials were -60, -62, -72, -73, -77, -80, -82, and -91 mV, respectively. Similar results were obtained with phosphatidylglycerol vesicles; different results were obtained with cardiolipin, phosphatidylinositol, and phosphatidic acid vesicles. The phosphatidylserine results are interpreted in terms of the Stern equation, a combination of the Gouy equation from the theory of the diffuse double layer, the Boltzmann relation, and the Langmuir adsorption isotherm. Evidence is presented that suggests the hydrodynamic plane of shear is 2 A from the surface of the membrane in solutions containing the alkali metal cations. With this assumption, the intrinsic association constants of the above monovalent cations with phosphatidylserine are 0.8, 0.6, 0.17, 0.15, 0.08, 0.05, 0.03, and 0 M-1, respectively. The validity of this approach was tested in two ways. First, the xi potentials of vesicles formed from mixtures of phosphatidylserine and a zwitterionic lipid, phosphatidylcholine, were measured in solutions containing different concentrations of sodium. All the data could be described by the Stern equation if the "relaxation" of the ionic atmosphere, which is predicted by classic electrostatic and hydrodynamic theory to occur at low salt concentrations and high potentials, was circumvented by using only large (diameter greater than 13 micrometers) vesicles for these measurements. Second, the fluorescent probe 2-(p-toluidinyl)naphthalene-6-sulfonate was used to estimate the potential at the surface of phosphatidylserine and phosphatidylglycerol vesicles sonicated in 0.1 M NaCl. Reasonable agreement with the predicted values of the surface potential was obtained.

  20. Amphotericin B induces interdigitation of apolipoprotein stabilized nanodisk bilayers.

    PubMed

    Nguyen, Thanh-Son; Weers, Paul M M; Raussens, Vincent; Wang, Zhen; Ren, Gang; Sulchek, Todd; Hoeprich, Paul D; Ryan, Robert O

    2008-01-01

    Amphotericin B nanodisks (AMB-ND) are ternary complexes of AMB, phospholipid and apolipoprotein organized as discrete nanometer scale disk-shaped bilayers. In gel filtration chromatography experiments, empty ND lacking AMB elute as a single population of particles with a molecular weight in the range of 200 kDa. AMB-ND formulated at a 4:1 phospholipid:AMB weight ratio separated into two peaks. One peak eluted at the position of control ND lacking AMB while the second peak, containing all of the AMB present in the original sample, eluted in the void volume. When ND prepared with increased AMB were subjected to gel filtration chromatography an increased proportion of phospholipid and apolipoprotein was recovered in the void volume with AMB. Native gradient gel electrophoresis corroborated the gel filtration chromatography data and electron microscopy studies revealed an AMB concentration-dependent heterogeneity in ND particle size. Stability studies revealed that introduction of AMB into ND decreases the ability of apoA-I to resist denaturation. Atomic force microscopy experiments showed that AMB induces compression of ND bilayer thickness while infrared spectroscopy analysis revealed that the presence of AMB does not induce extreme lipid disorder or alter the mean angle of the molecular axis along fatty acyl chains of ND phospholipids. Taken together the results are consistent with AMB-induced bilayer interdigitation, a phenomenon that likely contributes to AMB-dependent pore formation in susceptible membranes.

  1. Morphological and Physical Analysis of Natural Phospholipids-Based Biomembranes

    PubMed Central

    Jacquot, Adrien; Francius, Grégory; Razafitianamaharavo, Angelina; Dehghani, Fariba; Tamayol, Ali; Linder, Michel; Arab-Tehrany, Elmira

    2014-01-01

    Background Liposomes are currently an important part of biological, pharmaceutical, medical and nutritional research, as they are considered to be among the most effective carriers for the introduction of various types of bioactive agents into target cells. Scope of Review In this work, we study the lipid organization and mechanical properties of biomembranes made of marine and plant phospholipids. Membranes based on phospholipids extracted from rapeseed and salmon are studied in the form of liposome and as supported lipid bilayer. Dioleylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) are used as references to determine the lipid organization of marine and plant phospholipid based membranes. Atomic force microscopy (AFM) imaging and force spectroscopy measurements are performed to investigate the membranes' topography at the micrometer scale and to determine their mechanical properties. Major Conclusions The mechanical properties of the membranes are correlated to the fatty acid composition, the morphology, the electrophoretic mobility and the membrane fluidity. Thus, soft and homogeneous mechanical properties are evidenced for salmon phospholipids membrane containing various polyunsaturated fatty acids. Besides, phase segregation in rapeseed membrane and more important mechanical properties were emphasized for this type of membranes by contrast to the marine phospholipids based membranes. General Significance This paper provides new information on the nanomechanical and morphological properties of membrane in form of liposome by AFM. The originality of this work is to characterize the physico-chemical properties of the nanoliposome from the natural sources containing various fatty acids and polar head. PMID:25238543

  2. Specific requirements of nonbilayer phospholipids in mitochondrial respiratory chain function and formation

    PubMed Central

    Baker, Charli D.; Basu Ball, Writoban; Pryce, Erin N.; Gohil, Vishal M.

    2016-01-01

    Mitochondrial membrane phospholipid composition affects mitochondrial function by influencing the assembly of the mitochondrial respiratory chain (MRC) complexes into supercomplexes. For example, the loss of cardiolipin (CL), a signature non–bilayer-forming phospholipid of mitochondria, results in disruption of MRC supercomplexes. However, the functions of the most abundant mitochondrial phospholipids, bilayer-forming phosphatidylcholine (PC) and non–bilayer-forming phosphatidylethanolamine (PE), are not clearly defined. Using yeast mutants of PE and PC biosynthetic pathways, we show a specific requirement for mitochondrial PE in MRC complex III and IV activities but not for their formation, whereas loss of PC does not affect MRC function or formation. Unlike CL, mitochondrial PE or PC is not required for MRC supercomplex formation, emphasizing the specific requirement of CL in supercomplex assembly. Of interest, PE biosynthesized in the endoplasmic reticulum (ER) can functionally substitute for the lack of mitochondrial PE biosynthesis, suggesting the existence of PE transport pathway from ER to mitochondria. To understand the mechanism of PE transport, we disrupted ER–mitochondrial contact sites formed by the ERMES complex and found that, although not essential for PE transport, ERMES facilitates the efficient rescue of mitochondrial PE deficiency. Our work highlights specific roles of non–bilayer-forming phospholipids in MRC function and formation. PMID:27226479

  3. Small angle x-ray scattering studies of magnetically oriented lipid bilayers.

    PubMed Central

    Hare, B J; Prestegard, J H; Engelman, D M

    1995-01-01

    Magnetically oriented lipid/detergent bilayers are potentially useful for studies of membrane-associated molecules and complexes using x-ray scattering and nuclear magnetic resonance (NMR). To establish whether the system is a reasonable model of a phospholipid bilayer, we have studied the system using x-ray solution scattering to determine the bilayer thickness, interparticle spacing, and orientational parameters for magnetically oriented lipid bilayers. The magnetically orientable samples contain the phospholipid L-alpha-dilauroylphosphatidylcholine (DLPC) and the bile salt analog 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO) in a 3:1 molar ratio in 70% water (w/v) and are similar to magnetically orientable samples used as NMR media for structural studies of membrane-associated molecules. A bilayer thickness of 30 A was determined for the DLPC/CHAPSO particles, which is the same as the bilayer thickness of pure DLPC vesicles, suggesting that the CHAPSO is not greatly perturbing the lipid bilayer. These data, as well as NMR data on molecules incorporated in the oriented lipid particles, are consistent with the sample consisting of reasonably homogeneous and well dispersed lipid particles. Finally, the orientational energy of the sample suggests that the size of the cooperatively orienting unit in the samples is 2 x 10(7) phospholipid molecules. Images FIGURE 1 PMID:8580332

  4. PHYSICAL STUDIES OF PHOSPHOLIPIDS

    PubMed Central

    Chapman, D.; Fluck, D. J.

    1966-01-01

    On heating pure, fully saturated 2,3-diacyl-DL-phosphatidyl-ethanolamines and 2,3-diacylphosphatidyl-cholines (lecithins) in water to the transition temperature at which large endothermic heat changes occur, they are observed, by light microscopy, to form myelin figures. This result is discussed in terms of the large difference in the transition temperature for "melting" of the hydrocarbon chains of unsaturated and saturated phospholipids and is illustrated by means of differential thermal analysis (D.T.A.) curves. These structures have been examined by electron microscopy after negative staining and after reaction with osmium tetroxide. Typical phospholipid lamella structures are seen in the phosphatidylcholines after negative staining, and in the phosphatidyl-ethanolamines after both negative staining and osmium fixation. The distances across these lamellae have been measured. Some preliminary investigations of the nature of the osmium tetroxide reaction with the phosphatidyl-ethanolamines have been made. PMID:4165077

  5. New insights into water-phospholipid model membrane interactions.

    PubMed

    Milhaud, Jeannine

    2004-05-27

    Modulating the relative humidity (RH) of the ambient gas phase of a phospholipid/water sample for modifying the activity of phospholipid-sorbed water [humidity-controlled osmotic stress methods, J. Chem. Phys. 92 (1990) 4519 and J. Phys. Chem. 96 (1992) 446] has opened a new field of research of paramount importance. New types of phase transitions, occurring at specific values of this activity, have been then disclosed. Hence, it is become recognized that this activity, like the temperature T, is an intensive parameter of the thermodynamical state of these samples. This state can be therefore changed (phase transition) either, by modulating T at a given water activity (a given hydration level), or, by modulating the water activity, at a given T. The underlying mechanisms of these two types of transition differ, especially when they appear as disorderings of fatty chains. In lyotropic transitions, this disordering follows from two thermodynamical laws. First, acting on the activity (the chemical potential) of water external to a phospholipid/water sample, a transbilayer gradient of water chemical potential is created, leading to a transbilayer flux of water (Fick's law). Second, water molecules present within the hydrocarbon region of this phospholipid bilayer interact with phospholipid molecules through their chemical potential (Gibbs-Duhem relation): the conformational state of fatty chains (the thermodynamical state of the phospholipid molecules) changes. This process is slow, as revealed by osmotic stress time-resolved experiments. In thermal chain-melting transitions, the first rapid step is the disordering of fatty chains of a fraction of phospholipid molecules. It occurs a few degrees before the main transition temperature, T(m), during the pretransition and the sub-main transition. The second step, less rapid, is the redistribution of water molecules between the different parts of the sample, as revealed by T-jump time-resolved experiments. Finally, in

  6. Effect of Cholesterol on the Structure of a Five-Component Mitochondria-Like Phospholipid Membrane

    PubMed Central

    Cathcart, Kelly; Patel, Amit; Dies, Hannah; Rheinstädter, Maikel C.; Fradin, Cécile

    2015-01-01

    Cellular membranes have a complex phospholipid composition that varies greatly depending on the organism, cell type and function. In spite of this complexity, most structural data available for phospholipid bilayers concern model systems containing only one or two different phospholipids. Here, we examine the effect of cholesterol on the structure of a complex membrane reflecting the lipid composition of mitochondrial membranes, with five different types of headgroups (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and cardiolipin (CL)) and a variety of hydrocarbon tails. This particular system was chosen because elevated cholesterol contents in mitochondrial membranes have been linked to a breaking down of Bax-mediated membrane permeabilization and resistance to cancer treatments. High resolution electron density profiles were determined by X-ray reflectivity, while the area per phospholipid chain, Apc, and the chain order parameter, SX-ray, were determined by wide-angle X-ray scattering (WAXS). We show that chain order increases upon the addition of cholesterol, resulting in both a thickening of the lipid bilayer and a reduction in the average surface area per phospholipid chain. This effect, well known as cholesterol’s condensation effect, is similar, but not as pronounced as for single-component phospholipid membranes. We conclude by discussing the relevance of these findings for the insertion of the pro-apoptotic protein Bax in mitochondrial membranes with elevated cholesterol content. PMID:26529029

  7. Micro-patterning of ionic reservoirs within a double bilayer lipid membrane to fabricate a 2D array of ion-channel switch based electrochemical biosensors

    SciTech Connect

    Sansinena, J. M.; Yee, C. K.; Sapuri, A.; Swanson, Basil I.; Redondo, A.; Parikh, A. N.

    2004-01-01

    We present a simple approach for the design of ionic reservoir arrays within a double phospholipid bilayer to ultimately develop a 2D array of ion-channel switch based electrochemical biosensors. As a first step, a primary bilayer lipid membrane is deposited onto an array of electrodes patterned onto a substrate surface. Subsequently, an array of microvoids is created within the bilayer by a wet photolithographic patterning of phospholipid bilayers using a deep UV light source and a quartz/chrome photomask. To ensure registry, the photomask used to pattern bilayers is designed to match up the microvoids within the primary bilayer with the array of electrodes on the substrate surface. The deposition of a secondary bilayer lipid membrane onto the primary bilayer that spans across the patterned microvoids leads to the formation of the array of ionic reservoirs within the double phospholipid bilayer. This is accomplished using giant unilamellar vesicles and by exploiting membrane electrostatics. The use of ion-channels incorporated into the secondary bilayer that covers the individual ionic reservoirs allows the construction of a 2D array of ion-channel switch based electrochemical biosensors that are able to recognize different target-agents simultaneously.

  8. The topology of lysine-containing amphipathic peptides in bilayers by circular dichroism, solid-state NMR, and molecular modeling.

    PubMed Central

    Vogt, B; Ducarme, P; Schinzel, S; Brasseur, R; Bechinger, B

    2000-01-01

    In order to better understand the driving forces that determine the alignment of amphipathic helical polypeptides with respect to the surface of phospholipid bilayers, lysine-containing peptide sequences were designed, prepared by solid-phase chemical synthesis, and reconstituted into membranes. CD spectroscopy indicates that all peptides exhibit a high degree of helicity in the presence of SDS micelles or POPC small unilamellar vesicles. Proton-decoupled (31)P-NMR solid-state NMR spectroscopy demonstrates that in the presence of peptides liquid crystalline phosphatidylcholine membranes orient well along glass surfaces. The orientational distribution and dynamics of peptides labeled with (15)N at selected sites were investigated by proton-decoupled (15)N solid-state NMR spectroscopy. Polypeptides with a single lysine residue adopt a transmembrane orientation, thereby locating this polar amino acid within the core region of the bilayer. In contrast, peptides with > or = 3 lysines reside along the surface of the membrane. With 2 lysines in the center of an otherwise hydrophobic amino acid sequence the peptides assume a broad orientational distribution. The energy of lysine discharge, hydrophobic, polar, and all other interactions are estimated to quantitatively describe the polypeptide topologies observed. Furthermore, a molecular modeling algorithm based on the hydrophobicities of atoms in a continuous hydrophilic-hydrophobic-hydrophilic potential describes the experimentally observed peptide topologies well. PMID:11053137

  9. Surfactant phospholipid metabolism

    PubMed Central

    Agassandian, Marianna; Mallampalli, Rama K.

    2012-01-01

    Pulmonary surfactant is essential for life and is comprised of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. PMID:23026158

  10. Amphotericin B induced interdigitation of apolipoprotein stabilized nanodisk bilayers

    SciTech Connect

    Nguyen, T; Weers, P M; Sulchek, T; Hoeprich, P D; Ryan, R O

    2006-12-07

    Amphotericin B nanodisks (AMB-ND) are ternary complexes of AMB, phospholipid (PL) and apolipoprotein organized as discrete nanometer scale disk-shaped bilayers. In gel filtration chromatography experiments, empty ND lacking AMB elute as a single population of particles with a molecular weight in the range of 200 kDa. AMB-ND formulated at a 4:1 PL:AMB weight ratio, separated into two peaks. Peak 1 eluted at the position of control ND lacking AMB while the second peak, containing all of the AMB present in the original sample, eluted in the void volume. When ND prepared with increased AMB (1:1 phospholipid:AMB molar ratio) were subjected to gel filtration chromatography, an increased proportion of phospholipid and apolipoprotein were recovered in the void volume with the AMB. Prior to gel filtration the AMB-ND sample could be passed through a 0.22 {micro}m filter without loss of AMB while the voided material was lost. Native gel electrophoresis studies corroborated the gel permeation chromatography data. Far UV circular dichroism analyses revealed that apoA-I associated with AMB-ND denatures at a lower guanidine HCl concentration than apoA-I associated with ND lacking AMB. Atomic force microscopy revealed that AMB induces compression of the ND bilayer thickness consistent with bilayer interdigitation, a phenomenon that is likely related to the ability of AMB to induce pore formation in susceptible membranes.

  11. The amphiphilic alkyl ester derivatives of l-ascorbic acid induce reorganization of phospholipid vesicles.

    PubMed

    Giudice, Francesca; Ambroggio, Ernesto E; Mottola, Milagro; Fanani, Maria Laura

    2016-09-01

    l-ascorbic acid alkyl esters (ASCn) are lipophilic forms of vitamin C, which maintain some of its antioxidant power. Those properties make this drug family attractive to be used in pharmacological preparations protecting other redox-sensible drugs or designed to reduce possible toxic oxidative processes. In this work, we tested the ability of l-ascorbic acid alkyl esters (ASCn) to modulate the structure, permeability, and rheological properties of phospholipid bilayers. The ASCn studied here (ASC16, ASC14, and ASC12) alter the structural integrity as well as the rheological properties of phospholipid membranes without showing any evident detergent activity. ASC14 appeared as the most efficient drug in destabilize the membrane structure of nano- and micro-size phospholipid liposomes inducing vesicle content leakage and shape elongation on giant unilamellar vesicles. It also was the most potent enhancer of membrane microviscosity and surface water structuring. Only ASC16 induced the formation of drug-enriched condensed domains after its incorporation into the lipid bilayer, while ASC12 appeared as the less membrane-disturbing compound, likely because of its poor, and more superficial, partition into the membrane. We also found that incorporation of ASCn into the lipid bilayers enhanced the reduction of membrane components, compared with soluble vitamin C. Our study shows that ASCn compounds, which vary in the length of the acyl chain, show different effects on phospholipid vesicles used as biomembrane models. Those variances may account for subtly differences in the effectiveness on their pharmacological applications. PMID:27342371

  12. Modulation of Plasma Membrane Ca2+-ATPase by Neutral Phospholipids

    PubMed Central

    Pignataro, María Florencia; Dodes-Traian, Martín M.; González-Flecha, F. Luis; Sica, Mauricio; Mangialavori, Irene C.; Rossi, Juan Pablo F. C.

    2015-01-01

    The effects of lipids on membrane proteins are likely to be complex and unique for each membrane protein. Here we studied different detergent/phosphatidylcholine reconstitution media and tested their effects on plasma membrane Ca2+ pump (PMCA). We found that Ca2+-ATPase activity shows a biphasic behavior with respect to the detergent/phosphatidylcholine ratio. Moreover, the maximal Ca2+-ATPase activity largely depends on the length and the unsaturation degree of the hydrocarbon chain. Using static light scattering and fluorescence correlation spectroscopy, we monitored the changes in hydrodynamic radius of detergent/phosphatidylcholine particles during the micelle-vesicle transition. We found that, when PMCA is reconstituted in mixed micelles, neutral phospholipids increase the enzyme turnover. The biophysical changes associated with the transition from mixed micelles to bicelles increase the time of residence of the phosphorylated intermediate (EP), decreasing the enzyme turnover. Molecular dynamics simulations analysis of the interactions between PMCA and the phospholipid bilayer in which it is embedded show that in the 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer, charged residues of the protein are trapped in the hydrophobic core. Conversely, in the 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer, the overall hydrophobic-hydrophilic requirements of the protein surface are fulfilled the best, reducing the thermodynamic cost of exposing charged residues to the hydrophobic core. The apparent mismatch produced by a 1,2-dioleoyl-sn-glycero-3-phosphocholine thicker bilayer could be a structural foundation to explain its functional effect on PMCA. PMID:25605721

  13. Modifiers of the Dipole Potential of Lipid Bilayers

    PubMed Central

    Efimova, S. S.; Ostroumova, O. S.

    2015-01-01

    This paper assesses the magnitude of change in the dipole potential (φd) of membranes caused by the adsorption of modifiers on lipid bilayers of various compositions. We tested flavonoids, muscle relaxants, thyroid hormones, and xanthene and styrylpyridinium dyes in order to assess their dipole-modifying properties. A quantitative description of the modifying action of flavonoids, muscle relaxants, thyroid hormones, and xanthene dyes is shown as the ratio of the maximum change in the bilayer dipole potential upon saturation and the absolute φd value of the unmodified membrane. The slopes of the linear relationship between the increase in the dipole potential of phospholipid bilayers and the concentration of styrylpyridinium dyes in membrane-bathing solutions were found. We described the relationships between the change in φd and the chemical structure of modifiers, as well as the charge and spontaneous curvature of lipid monolayers. PMID:26798493

  14. Phospholipids regulate localization and activity of mDia1 formin.

    PubMed

    Ramalingam, Nagendran; Zhao, Hongxia; Breitsprecher, Dennis; Lappalainen, Pekka; Faix, Jan; Schleicher, Michael

    2010-10-01

    Diaphanous-related formins (DRFs) are large multi-domain proteins that nucleate and assemble linear actin filaments. Binding of active Rho family proteins to the GTPase-binding domain (GBD) triggers localization at the membrane and the activation of most formins if not all. In recent years GTPase regulation of formins has been extensively studied, but other molecular mechanisms that determine subcellular distribution or regulate formin activity have remained poorly understood. Here, we provide evidence that the activity and localization of mouse formin mDia1 can be regulated through interactions with phospholipids. The phospholipid-binding sites of mDia1 are clusters of positively charged residues in the N-terminal basic domain (BD) and at the C-terminal region. Upon binding to the lipid bilayer the N-terminal region of mDia1 induces strong clustering of phosphatidylinositol-4,5-bisphosphate (PIP(2)) and subsequently inserts into the membrane bilayer thus anchoring mDia1 to the reconstituted plasma membrane. In addition, an interaction of phospholipids with the C-terminal region of mDia1 causes a drastic reduction of its actin filament assembly activity. Our data suggest that the N-terminal phospholipid-binding sites help to anchor formins at the plasma membrane, and the interaction with phospholipids in the C-terminus functions as a switch for transient inactivation.

  15. The mechanism of detergent solubilization of lipid bilayers.

    PubMed

    Lichtenberg, Dov; Ahyayauch, Hasna; Goñi, Félix M

    2013-07-16

    Multiple data are available on the self-assembly of mixtures of bilayer-forming amphiphiles, particularly phospholipids and micelle-forming amphiphiles, commonly denoted detergents. The structure of such mixed assemblies has been thoroughly investigated, described in phase diagrams, and theoretically rationalized in terms of the balance between the large spontaneous curvature of the curvophilic detergent and the curvophobic phospholipids. In this critical review, we discuss the mechanism of this process and try to explain the actual mechanism involved in solubilization. Interestingly, membrane solubilization by some detergents is relatively slow and the common attribute of these detergents is that their trans-bilayer movement, commonly denoted flip-flop, is very slow. Only detergents that can flip into the inner monolayer cause relatively rapid solubilization of detergent-saturated bilayers. This occurs via the following sequence of events: 1), relatively rapid penetration of detergent monomers into the outer monolayer; 2), trans-membrane equilibration of detergent monomers between the two monolayers; 3), saturation of the bilayer by detergents and consequent permeabilization of the membrane; and 4), transition of the whole bilayer to thread-like mixed micelles. When the detergent cannot flip to the inner monolayer, the outer monolayer becomes unstable due to mass imbalance between the monolayers and inclusion of the curvophilic detergent molecules in a flat surface. Consequently, the outer monolayer forms mixed micellar structures within the outer monolayer. Shedding of these micelles into the aqueous solution results in partial solubilization. The consequent leakage of detergent into the liposome results in trans-membrane equilibration of detergent and subsequent micellization through the rapid bilayer-saturation mechanism.

  16. Phospholipid transfer proteins revisited.

    PubMed Central

    Wirtz, K W

    1997-01-01

    Phosphatidylinositol transfer protein (PI-TP) and the non-specific lipid transfer protein (nsL-TP) (identical with sterol carrier protein 2) belong to the large and diverse family of intracellular lipid-binding proteins. Although these two proteins may express a comparable phospholipid transfer activity in vitro, recent studies in yeast and mammalian cells have indicated that they serve completely different functions. PI-TP (identical with yeast SEC14p) plays an important role in vesicle flow both in the budding reaction from the trans-Golgi network and in the fusion reaction with the plasma membrane. In yeast, vesicle budding is linked to PI-TP regulating Golgi phosphatidylcholine (PC) biosynthesis with the apparent purpose of maintaining an optimal PI/PC ratio of the Golgi complex. In mammalian cells, vesicle flow appears to be dependent on PI-TP stimulating phosphatidylinositol 4,5-bisphosphate (PIP2) synthesis. This latter process may also be linked to the ability of PI-TP to reconstitute the receptor-controlled PIP2-specific phospholipase C activity. The nsL-TP is a peroxisomal protein which, by its ability to bind fatty acyl-CoAs, is most likely involved in the beta-oxidation of fatty acids in this organelle. This protein constitutes the N-terminus of the 58 kDa protein which is one of the peroxisomal 3-oxo-acyl-CoA thiolases. Further studies on these and other known phospholipid transfer proteins are bound to reveal new insights in their important role as mediators between lipid metabolism and cell functions. PMID:9182690

  17. Carboxyl-terminated PAMAM dendrimer interaction with 1-palmitoyl-2-oleoyl phosphocholine bilayers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polycationic polymers and liposomes have a great potential use as individual drug delivery systems and greater potential as a combined drug delivery system. Thus, it is important to better understand the interactions of polymers with phospholipid bilayers. A mechanistic study of carboxyl-terminate...

  18. Nanoparticles Evading The Reticuloendothelial System: Role of The Supported Bilayer

    PubMed Central

    Li, Shyh-Dar; Huang, Leaf

    2009-01-01

    Summary We have previously shown that the PEGylated LPD (liposome-polycation-DNA) nanoparticles were highly efficient in delivering siRNA to the tumor with low liver uptake. Its mechanism of evading the reticuloendothelial system (RES) is reported here. In LPD, nucleic acids were condensed with protamine into a compact core, which was then coated by two cationic lipid bilayers with the inner bilayer stabilized by charge-charge interaction (also called the supported bilayer). Finally, a detergent-like molecule, polyethylene glycol (PEG)-phospholipid is post-inserted into the lipid bilayer to modify the surface of LPD. The dynamic light scattering (DLS) data showed that LPD had improved stability compared to cationic liposomes after incubation with a high concentration of DSPE-PEG2000, which is known to disrupt the bilayer. LPD prepared with a multivalent cationic lipid, DSGLA, had enhanced stability compared to those containing DOTAP, a monovalent cationic lipid, suggesting that stronger charge-charge interaction in the supported bilayer contributed to a higher stability. Distinct nanoparticle structure was found in the PEGylated LPD by transmission electron microscopy, while the cationic liposomes were transformed into tubular micelles. Size exclusion chromatography data showed that approximately 60% of the total cationic lipids, which were located in the outer bilayer of LPD, were stripped off during the PEGylation; and about 20% of the input DSPE-PEG2000 was incorporated into the inner bilayer with about 10.6 mol% of DSPE-PEG2000 presented on the particle surface. This led to complete charge shielding, low liver sinusoidal uptake, and 32.5% injected dose delivered to the NCI-H460 tumor in a xenograft model. PMID:19595666

  19. Interactions of ibuprofen with hybrid lipid bilayers probed by complementary surface-enhanced vibrational spectroscopies

    PubMed Central

    Levin, Carly S.; Kundu, Janardan; Janesko, Benjamin G.; Scuseria, Gustavo E.; Raphael, Robert M.; Halas, Naomi J.

    2016-01-01

    The incorporation of small molecules into lipid bilayers is a process of biological importance and clinical relevance that can change the material properties of cell membranes and cause deleterious side effects for certain drugs. Here we report the direct observation, using surface enhanced Raman and IR spectroscopies (SERS, SEIRA), of the insertion of ibuprofen molecules into hybrid lipid bilayers. The alkanethiol-phospholipid hybrid bilayers were formed onto gold nanoshells by self-assembly, where the underlying nanoshell substrates provided the necessary enhancements for SERS and SEIRA. The spectroscopic data reveal specific interactions between ibuprofen and phospholipid moieties and indicate that the overall hydrophobicity of ibuprofen plays an important role in its intercalation in these membrane mimics. PMID:18942873

  20. Simulation of lipid bilayer self-assembly using all-atom lipid force fields.

    PubMed

    Skjevik, Åge A; Madej, Benjamin D; Dickson, Callum J; Lin, Charles; Teigen, Knut; Walker, Ross C; Gould, Ian R

    2016-04-21

    In this manuscript we expand significantly on our earlier communication by investigating the bilayer self-assembly of eight different types of phospholipids in unbiased molecular dynamics (MD) simulations using three widely used all-atom lipid force fields. Irrespective of the underlying force field, the lipids are shown to spontaneously form stable lamellar bilayer structures within 1 microsecond, the majority of which display properties in satisfactory agreement with the experimental data. The lipids self-assemble via the same general mechanism, though at formation rates that differ both between lipid types, force fields and even repeats on the same lipid/force field combination. In addition to zwitterionic phosphatidylcholine (PC) and phosphatidylethanolamine (PE) lipids, anionic phosphatidylserine (PS) and phosphatidylglycerol (PG) lipids are represented. To our knowledge this is the first time bilayer self-assembly of phospholipids with negatively charged head groups is demonstrated in all-atom MD simulations.

  1. Self-assembly of different single-chain bolaphospholipids and their miscibility with phospholipids or classical amphiphiles.

    PubMed

    Blume, Alfred; Drescher, Simon; Graf, Gesche; Köhler, Karen; Meister, Annette

    2014-06-01

    A variety of bolalipids with a single long alkyl chain and two identical headgroups self-assemble in aqueous solutions into helical entangled nanofibers leading to the formation of a hydrogel. An increase in temperature usually leads to the break-up of the fiber structure into micellar aggregates. In this paper the question is addressed whether bolalipids of different lengths or different headgroup structures can form mixed fibers. Also, the stability of the fiber aggregation of bolalipids in mixtures with phospholipids forming lamellar bilayers is discussed. Here, the question whether single-chain bolalipids can be incorporated into phospholipid bilayers to stabilize bilayer membranes is important, as possibly lipid vesicles used for drug delivery can be improved. Finally, the stability of the fiber aggregate against solubilisation by common surfactants was studied. The paper addresses the question which type of aggregate structure dominates the self-assembly of bipolar and monopolar amphiphiles in aqueous suspension.

  2. On the formation of a macroscopically flat phospholipid membrane on a hydrosol substrate

    NASA Astrophysics Data System (ADS)

    Tikhonov, A. M.; Asadchikov, V. E.; Volkov, Yu. O.

    2015-10-01

    The dependence of the structure of a phospholipid layer (DSPC and SOPC) adsorbed on a hydrosol substrate on the concentration of NaOH in a solution of 5-nm silica particles has been studied by X-ray reflectrometry with the use of synchrotron radiation. Profiles of the electron density (polarizability) have been reconstructed from the experimental data within a model-independent approach. According to these profiles, the thickness of the lipid film can vary from a monolayer (~35 Å) to several bilayers (~450 Å). At the volume concentration of NaOH of ~0.5 mol/L, the film on the hydrosol surface is a macroscopically flat phospholipid membrane (bilayer) with a thickness of ~60 Å and with areas of (45 ± 2) and (49 ± 3) Å2 per DSPC and SOPC molecule, respectively.

  3. Cell signalling and phospholipid metabolism

    SciTech Connect

    Boss, W.F.

    1990-01-01

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  4. A Fluorescence-based Assay of Phospholipid Scramblase Activity.

    PubMed

    Ploier, Birgit; Menon, Anant K

    2016-01-01

    Scramblases translocate phospholipids across the membrane bilayer bidirectionally in an ATP-independent manner. The first scramblase to be identified and biochemically verified was opsin, the apoprotein of the photoreceptor rhodopsin. Rhodopsin is a G protein-coupled receptor localized in rod photoreceptor disc membranes of the retina where it is responsible for the perception of light. Rhodopsin's scramblase activity does not depend on its ligand 11-cis-retinal, i.e., the apoprotein opsin is also active as a scramblase. Although constitutive and regulated phospholipid scrambling play an important role in cell physiology, only a few phospholipid scramblases have been identified so far besides opsin. Here we describe a fluorescence-based assay of opsin's scramblase activity. Opsin is reconstituted into large unilamellar liposomes composed of phosphatidylcholine, phosphatidylglycerol and a trace quantity of fluorescent NBD-labeled PC (1-palmitoyl-2-{6-[7-nitro-2-1,3-benzoxadiazole-4-yl)amino]hexanoyl}-sn-glycero-3-phosphocholine). Scramblase activity is determined by measuring the extent to which NBD-PC molecules located in the inner leaflet of the vesicle are able to access the outer leaflet where their fluorescence is chemically eliminated by a reducing agent that cannot cross the membrane. The methods we describe have general applicability and can be used to identify and characterize scramblase activities of other membrane proteins. PMID:27684510

  5. Interaction of general anesthetics with phospholipid vesicles and biological membranes.

    PubMed

    Vanderkooi, J M; Landesberg, R; Selick, H; McDonald, G G

    1977-01-01

    Low concentrations of general anesthetics, including halothane, ethrane, trilene, diethyl ether and chloroform are observed to shift the phase transitions of phospholipid vesicles to lower temperatures, and from these data partition coefficients for the anesthetic between lipid and water can be calculated. In contrast to the anesthetics, high concentrations of ethanol are required to shift the phase transition of lipids and glycerol causes no effect. Above the phase transition general anesthetics alter nuclear magnetic resonance spectra of phospholipid dispersions and increase the rotational and lateral diffusion rates of fluorescent probes located in the hydrocarbon core of the bilayer, indicating that they induce disorder in the structure. In red blood cell membranes and sarcoplasmic reticulum fragments, the rotational diffusion rate of 1-phenyl-6-phenylhexatriene is increased in the presence of general anesthetics. The 220 MHz nuclear magnetic resonance spectra of sarcoplasmic reticulum reveal some resolved lines from the lecithin fatty acid protons; addition of general anesthetic increases the contribution of these peaks. The data from the NMR and fluorescence techniques lead to the conclusion that general anesthetics increase the pool size of melted lipids in the bimolecular phospholipid layers of biological membranes; this would account for the ability of general anesthetics to increase passive diffusion rates of various substances in membranes.

  6. Synthesis of triphenylphosphonium phospholipid conjugates for the preparation of mitochondriotropic liposomes.

    PubMed

    Benien, Parul; Benein, Parul; Almuteri, Mohammed A; Mehanna, Ahmed S; D'Souza, Gerard G M

    2015-01-01

    Surface modification of liposomes with a ligand is facilitated by the conjugation of the ligand to a hydrophobic molecule that serves to anchor the ligand to the liposomal bilayer. We describe here a simple protocol to conjugate a triphenylphosphonium group to several commercially available functionalized phospholipids. The resulting triphenylphosphonium conjugated lipids can be used to prepare liposomes that preferentially associate with mitochondria when exposed to live mammalian cells in culture. PMID:25634266

  7. Modeling Nanoparticle Wrapping or Translocation in Bilayer Membranes

    PubMed Central

    Curtis, Emily M.; Bahrami, Amir H.; Weikl, Thomas R.; Hall, Carol K.

    2015-01-01

    The spontaneous wrapping of nanoparticles by membranes is of increasing interest as nanoparticles become more prevalent in consumer products and hence more likely to enter the human body. We introduce a simulations-based tool that can be used to visualize the molecular level interaction between nanoparticles and bilayer membranes. By combining LIME, an intermediate resolution, implicit solvent model for phospholipids, with discontinuous molecular dynamics (DMD), we are able to simulate the wrapping or embedding of nanoparticles by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer membranes. Simulations of hydrophilic nanoparticles with diameters from 10Å to 250Å show that hydrophilic nanoparticles with diameters greater than 20Å become wrapped while the nanoparticle with a diameter of 10Å does not . Instead this smaller particle became embedded in the bilayer surface where it could interact with the hydrophilic head groups of the lipid molecules. We also investigate the interaction between a DPPC bilayer and hydrophobic nanoparticles with diameters 10Å to 40Å. These nanoparticles do not undergo the wrapping process; instead they directly penetrate the membrane and embed themselves within the inner hydrophobic core of the bilayers. PMID:26260123

  8. Actin Assembly at Model-Supported Lipid Bilayers

    PubMed Central

    Heath, George R.; Johnson, Benjamin R.G.; Olmsted, Peter D.; Connell, Simon D.; Evans, Stephen D.

    2013-01-01

    We report on the use of supported lipid bilayers to reveal dynamics of actin polymerization from a nonpolymerizing subphase via cationic phospholipids. Using varying fractions of charged lipid, lipid mobility, and buffer conditions, we show that dynamics at the nanoscale can be used to control the self-assembly of these structures. In the case of fluid-phase lipid bilayers, the actin adsorbs to form a uniform two-dimensional layer with complete surface coverage whereas gel-phase bilayers induce a network of randomly oriented actin filaments, of lower coverage. Reducing the pH increased the polymerization rate, the number of nucleation events, and the total coverage of actin. A model of the adsorption/diffusion process is developed to provide a description of the experimental data and shows that, in the case of fluid-phase bilayers, polymerization arises equally due to the adsorption and diffusion of surface-bound monomers and the addition of monomers directly from the solution phase. In contrast, in the case of gel-phase bilayers, polymerization is dominated by the addition of monomers from solution. In both cases, the filaments are stable for long times even when the G-actin is removed from the supernatant—making this a practical approach for creating stable lipid-actin systems via self-assembly. PMID:24268147

  9. Modeling nanoparticle wrapping or translocation in bilayer membranes

    NASA Astrophysics Data System (ADS)

    Curtis, Emily M.; Bahrami, Amir H.; Weikl, Thomas R.; Hall, Carol K.

    2015-08-01

    The spontaneous wrapping of nanoparticles by membranes is of increasing interest as nanoparticles become more prevalent in consumer products and hence more likely to enter the human body. We introduce a simulations-based tool that can be used to visualize the molecular level interaction between nanoparticles and bilayer membranes. By combining LIME, an intermediate resolution, implicit solvent model for phospholipids, with discontinuous molecular dynamics (DMD), we are able to simulate the wrapping or embedding of nanoparticles by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer membranes. Simulations of hydrophilic nanoparticles with diameters from 10 Å to 250 Å show that hydrophilic nanoparticles with diameters greater than 20 Å become wrapped while the nanoparticle with a diameter of 10 Å does not. Instead this smaller particle became embedded in the bilayer surface where it can interact with the hydrophilic head groups of the lipid molecules. We also investigate the interaction between a DPPC bilayer and hydrophobic nanoparticles with diameters 10 Å to 40 Å. These nanoparticles do not undergo the wrapping process; instead they directly penetrate the membrane and embed themselves within the inner hydrophobic core of the bilayers.

  10. Modeling nanoparticle wrapping or translocation in bilayer membranes.

    PubMed

    Curtis, Emily M; Bahrami, Amir H; Weikl, Thomas R; Hall, Carol K

    2015-09-14

    The spontaneous wrapping of nanoparticles by membranes is of increasing interest as nanoparticles become more prevalent in consumer products and hence more likely to enter the human body. We introduce a simulations-based tool that can be used to visualize the molecular level interaction between nanoparticles and bilayer membranes. By combining LIME, an intermediate resolution, implicit solvent model for phospholipids, with discontinuous molecular dynamics (DMD), we are able to simulate the wrapping or embedding of nanoparticles by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer membranes. Simulations of hydrophilic nanoparticles with diameters from 10 Å to 250 Å show that hydrophilic nanoparticles with diameters greater than 20 Å become wrapped while the nanoparticle with a diameter of 10 Å does not. Instead this smaller particle became embedded in the bilayer surface where it can interact with the hydrophilic head groups of the lipid molecules. We also investigate the interaction between a DPPC bilayer and hydrophobic nanoparticles with diameters 10 Å to 40 Å. These nanoparticles do not undergo the wrapping process; instead they directly penetrate the membrane and embed themselves within the inner hydrophobic core of the bilayers.

  11. An engineered dimeric protein pore that spans adjacent lipid bilayers

    PubMed Central

    Mantri, Shiksha; Sapra, K. Tanuj; Cheley, Stephen; Sharp, Thomas H.; Bayley, Hagan

    2013-01-01

    The bottom-up construction of artificial tissues is an underexplored area of synthetic biology. An important challenge is communication between constituent compartments of the engineered tissue and between the engineered tissue and additional compartments, including extracellular fluids, further engineered tissue and living cells. Here we present a dimeric transmembrane pore that can span two adjacent lipid bilayers and thereby allow aqueous compartments to communicate. Two heptameric staphylococcal α-hemolysin (αHL) pores were covalently linked in an aligned cap-to-cap orientation. The structure of the dimer, (α7)2, was confirmed by biochemical analysis, transmission electron microscopy (TEM) and single-channel electrical recording. We show that one of two β barrels of (α7)2 can insert into the lipid bilayer of a small unilamellar vesicle, while the other spans a planar lipid bilayer. (α7)2 pores spanning two bilayers were also observed by TEM. PMID:23591892

  12. Bilayer Graphene Electromechanical Systems

    NASA Astrophysics Data System (ADS)

    Champagne, Alexandre; Storms, Matthew; Yigen, Serap; Reulet, Bertrand

    Bilayer graphene is an outstanding electromechanical system, and its electronic and mechanical properties, as well as their coupling, are widely tunable. To the best of our knowledge, simultaneous charge transport and mechanical spectroscopy (via RF mixing) has not been realized in bilayer graphene. We present data showing clear electromechanical resonances in three suspended bilayer devices whose length range from 1 to 2 microns. We first describe the low-temperature current annealing of the devices which is crucial to achieve the transconductance, I -VG , necessary to implement a RF mixing detection method. We describe our RF mixing circuit and data. We measure clear mechanical resonances ranging in frequency from 50 to 140 MHz. We show that we can smoothly tune the resonance frequencies of our bilayer resonators with mechanical strain applied via a backgate voltage. We measure quality factors up to 4000. We briefly discuss the effects of the RF driving power on the dispersion of the mechanical resonance. We aim to use these high quality mechanical resonance as a mechanical sensor of the bilayer quantum Hall phase transitions. We show initial data of a bilayer mechanical resonance as a function of magnetic field and quantum Hall phase transitions.

  13. Drug-Membrane Interactions Studied in Phospholipid Monolayers Adsorbed on Non-porous Alkylated Microspheres

    PubMed Central

    LUKACOVA, VIERA; PENG, MING; FANUCCI, GAIL; TANDLICH, ROMAN; HINDERLITER, ANNE; MAITY, BIKASH; MANIVANNAN, ETHIRAJAN; COOK, GREGORY R.; BALAZ, STEFAN

    2008-01-01

    Characterization of interactions with phospholipids is an integral part of the in vitro profiling of drug candidates because of the roles the interactions play in tissue accumulation and passive diffusion. Currently used test systems may inadequately emulate the bilayer core solvation properties (immobilized artificial membranes - IAM), suffer from potentially slow transport of some chemicals (liposomes in free or immobilized forms), and require a tedious separation (if used for free liposomes). Here we introduce a well-defined system overcoming these drawbacks: nonporous octadecylsilica particles coated with a self-assembled phospholipid monolayer. The coating mimics the structure of the headgroup region, as well as the thickness and properties of the hydrocarbon core more closely than IAM. The monolayer has a similar transition temperature pattern as the corresponding bilayer. The particles can be separated by filtration or a mild centrifugation. The partitioning equilibria of 81 tested chemicals were dissected into the headgroup and core contributions, the latter using the alkane/water partition coefficients. The deconvolution allowed a successful prediction of the bilayer/water partition coefficients with the standard deviation of 0.26 log units. The plate-friendly assay is suitable for high-throughput profiling of drug candidates without sacrificing the quality of analysis or details of the drug-phospholipid interactions. PMID:17218665

  14. Influence of Hydrophobic Mismatch on Structures and Dynamics of Gramicidin A and Lipid Bilayers

    PubMed Central

    Kim, Taehoon; Lee, Kyu Il; Morris, Phillip; Pastor, Richard W.; Andersen, Olaf S.; Im, Wonpil

    2012-01-01

    Gramicidin A (gA) is a 15-amino-acid antibiotic peptide with an alternating L-D sequence, which forms (dimeric) bilayer-spanning, monovalent cation channels in biological membranes and synthetic bilayers. We performed molecular dynamics simulations of gA dimers and monomers in all-atom, explicit dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dioleoylphosphatidylcholine (DOPC), and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers. The variation in acyl chain length among these different phospholipids provides a way to alter gA-bilayer interactions by varying the bilayer hydrophobic thickness, and to determine the influence of hydrophobic mismatch on the structure and dynamics of both gA channels (and monomeric subunits) and the host bilayers. The simulations show that the channel structure varied little with changes in hydrophobic mismatch, and that the lipid bilayer adapts to the bilayer-spanning channel to minimize the exposure of hydrophobic residues. The bilayer thickness, however, did not vary monotonically as a function of radial distance from the channel. In all simulations, there was an initial decrease in thickness within 4–5 Å from the channel, which was followed by an increase in DOPC and POPC or a further decrease in DLPC and DMPC bilayers. The bilayer thickness varied little in the monomer simulations—except one of three independent simulations for DMPC and all three DLPC simulations, where the bilayer thinned to allow a single subunit to form a bilayer-spanning water-permeable pore. The radial dependence of local lipid area and bilayer compressibility is also nonmonotonic in the first shell around gA dimers due to gA-phospholipid interactions and the hydrophobic mismatch. Order parameters, acyl chain dynamics, and diffusion constants also differ between the lipids in the first shell and the bulk. The lipid behaviors in the first shell around gA dimers are more complex than predicted from a simple mismatch

  15. Influence of hydrophobic mismatch on structures and dynamics of gramicidin a and lipid bilayers.

    PubMed

    Kim, Taehoon; Lee, Kyu Il; Morris, Phillip; Pastor, Richard W; Andersen, Olaf S; Im, Wonpil

    2012-04-01

    Gramicidin A (gA) is a 15-amino-acid antibiotic peptide with an alternating L-D sequence, which forms (dimeric) bilayer-spanning, monovalent cation channels in biological membranes and synthetic bilayers. We performed molecular dynamics simulations of gA dimers and monomers in all-atom, explicit dilauroylphosphatidylcholine (DLPC), dimyristoylphosphatidylcholine (DMPC), dioleoylphosphatidylcholine (DOPC), and 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers. The variation in acyl chain length among these different phospholipids provides a way to alter gA-bilayer interactions by varying the bilayer hydrophobic thickness, and to determine the influence of hydrophobic mismatch on the structure and dynamics of both gA channels (and monomeric subunits) and the host bilayers. The simulations show that the channel structure varied little with changes in hydrophobic mismatch, and that the lipid bilayer adapts to the bilayer-spanning channel to minimize the exposure of hydrophobic residues. The bilayer thickness, however, did not vary monotonically as a function of radial distance from the channel. In all simulations, there was an initial decrease in thickness within 4-5 Å from the channel, which was followed by an increase in DOPC and POPC or a further decrease in DLPC and DMPC bilayers. The bilayer thickness varied little in the monomer simulations-except one of three independent simulations for DMPC and all three DLPC simulations, where the bilayer thinned to allow a single subunit to form a bilayer-spanning water-permeable pore. The radial dependence of local lipid area and bilayer compressibility is also nonmonotonic in the first shell around gA dimers due to gA-phospholipid interactions and the hydrophobic mismatch. Order parameters, acyl chain dynamics, and diffusion constants also differ between the lipids in the first shell and the bulk. The lipid behaviors in the first shell around gA dimers are more complex than predicted from a simple mismatch model

  16. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Benedetto, Antonio; Bingham, Richard J.; Ballone, Pietro

    2015-03-01

    Molecular dynamics simulations in the NPT ensemble have been carried out to investigate the effect of two room temperature ionic liquids (RTILs), on stacks of phospholipid bilayers in water. We consider RTIL compounds consisting of chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF6]) salts of the 1-buthyl-3-methylimidazolium ([bmim]+) cation, while the phospholipid bilayer is made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Our investigations focus on structural and dynamical properties of phospholipid and water molecules that could be probed by inelastic and quasi-elastic neutron scattering measurements. The results confirm the fast incorporation of [bmim]+ into the lipid phase already observed in previous simulations, driven by the Coulomb attraction of the cation for the most electronegative oxygens in the POPC head group and by sizeable dispersion forces binding the neutral hydrocarbon tails of [bmim]+ and of POPC. The [bmim]+ absorption into the bilayer favours the penetration of water into POPC, causes a slight but systematic thinning of the bilayer, and further stabilises hydrogen bonds at the lipid/water interface that already in pure samples (no RTIL) display a lifetime much longer than in bulk water. On the other hand, the effect of RTILs on the diffusion constant of POPC (DPOPC) does not reveal a clearly identifiable trend, since DPOPC increases upon addition of [bmim][Cl] and decreases in the [bmim][PF6] case. Moreover, because of screening, the electrostatic signature of each bilayer is only moderately affected by the addition of RTIL ions in solution. The analysis of long wavelength fluctuations of the bilayers shows that RTIL sorption causes a general decrease of the lipid/water interfacial tension and bending rigidity, pointing to the destabilizing effect of RTILs on lipid bilayers.

  17. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids

    SciTech Connect

    Benedetto, Antonio; Bingham, Richard J.; Ballone, Pietro

    2015-03-28

    Molecular dynamics simulations in the NPT ensemble have been carried out to investigate the effect of two room temperature ionic liquids (RTILs), on stacks of phospholipid bilayers in water. We consider RTIL compounds consisting of chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF{sub 6}]) salts of the 1-buthyl-3-methylimidazolium ([bmim]{sup +}) cation, while the phospholipid bilayer is made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Our investigations focus on structural and dynamical properties of phospholipid and water molecules that could be probed by inelastic and quasi-elastic neutron scattering measurements. The results confirm the fast incorporation of [bmim]{sup +} into the lipid phase already observed in previous simulations, driven by the Coulomb attraction of the cation for the most electronegative oxygens in the POPC head group and by sizeable dispersion forces binding the neutral hydrocarbon tails of [bmim]{sup +} and of POPC. The [bmim]{sup +} absorption into the bilayer favours the penetration of water into POPC, causes a slight but systematic thinning of the bilayer, and further stabilises hydrogen bonds at the lipid/water interface that already in pure samples (no RTIL) display a lifetime much longer than in bulk water. On the other hand, the effect of RTILs on the diffusion constant of POPC (D{sub POPC}) does not reveal a clearly identifiable trend, since D{sub POPC} increases upon addition of [bmim][Cl] and decreases in the [bmim][PF{sub 6}] case. Moreover, because of screening, the electrostatic signature of each bilayer is only moderately affected by the addition of RTIL ions in solution. The analysis of long wavelength fluctuations of the bilayers shows that RTIL sorption causes a general decrease of the lipid/water interfacial tension and bending rigidity, pointing to the destabilizing effect of RTILs on lipid bilayers.

  18. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids.

    PubMed

    Benedetto, Antonio; Bingham, Richard J; Ballone, Pietro

    2015-03-28

    Molecular dynamics simulations in the NPT ensemble have been carried out to investigate the effect of two room temperature ionic liquids (RTILs), on stacks of phospholipid bilayers in water. We consider RTIL compounds consisting of chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF6]) salts of the 1-buthyl-3-methylimidazolium ([bmim](+)) cation, while the phospholipid bilayer is made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Our investigations focus on structural and dynamical properties of phospholipid and water molecules that could be probed by inelastic and quasi-elastic neutron scattering measurements. The results confirm the fast incorporation of [bmim](+) into the lipid phase already observed in previous simulations, driven by the Coulomb attraction of the cation for the most electronegative oxygens in the POPC head group and by sizeable dispersion forces binding the neutral hydrocarbon tails of [bmim](+) and of POPC. The [bmim](+) absorption into the bilayer favours the penetration of water into POPC, causes a slight but systematic thinning of the bilayer, and further stabilises hydrogen bonds at the lipid/water interface that already in pure samples (no RTIL) display a lifetime much longer than in bulk water. On the other hand, the effect of RTILs on the diffusion constant of POPC (DPOPC) does not reveal a clearly identifiable trend, since DPOPC increases upon addition of [bmim][Cl] and decreases in the [bmim][PF6] case. Moreover, because of screening, the electrostatic signature of each bilayer is only moderately affected by the addition of RTIL ions in solution. The analysis of long wavelength fluctuations of the bilayers shows that RTIL sorption causes a general decrease of the lipid/water interfacial tension and bending rigidity, pointing to the destabilizing effect of RTILs on lipid bilayers. PMID:25833602

  19. Surface tension effects on the phase transition of a DPPC bilayer with and without protein: a molecular dynamics simulation.

    PubMed

    Kong, Xian; Qin, Shanshan; Lu, Diannan; Liu, Zheng

    2014-05-14

    While the surface tension of a cell membrane, or a plasma membrane, regulates cell functions, little is known about its effect on the conformational changes of the lipid bilayer and hence the resulting changes in the cell membrane. To obtain some insights into the phase transition of the lipid bilayer as a function of surface tension, we used a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayer as a model lipid bilayer and aquaporin (AqpZ), a transmembrane channel protein for water, as a model embedded protein. A coarse-grained molecular dynamics simulation was applied to illustrate the phase transition behavior of the pure DPPC bilayer and aquaporin-embedded DPPC bilayer under different surface tensions. It was shown that an increased surface tension reduced the phase transition temperature of the DPPC bilayer. As for the DPPC bilayer in gel form, no significant changes occurred in the structure of the bilayer in response to the surface tension. Once in a liquid crystal state, both the structure and properties of the DPPC bilayer, such as area per lipid, lipid order parameters, bilayer thickness and lateral diffusion coefficients, were responsive to the magnitude of surface tension in a linear way. The presence of aquaporin attenuated the compact alignment of the lipid bilayer, hindered the parallel movement, and thus made the DPPC bilayer less sensitive to the surface tension.

  20. Local anesthetics structure-dependently interact with anionic phospholipid membranes to modify the fluidity.

    PubMed

    Tsuchiya, Hironori; Ueno, Takahiro; Mizogami, Maki; Takakura, Ko

    2010-01-01

    While bupivacaine is more cardiotoxic than other local anesthetics, the mechanistic background for different toxic effects remains unclear. Several cardiotoxic compounds act on lipid bilayers to change the physicochemical properties of membranes. We comparatively studied the interaction of local anesthetics with lipid membranous systems which might be related to their structure-selective cardiotoxicity. Amide local anesthetics (10-300 microM) were reacted with unilamellar vesicles which were prepared with different phospholipids and cholesterol of varying lipid compositions. They were compared on the potencies to modify membrane fluidity by measuring fluorescence polarization. Local anesthetics interacted with liposomal membranes to increase the fluidity. Increasing anionic phospholipids in membranes enhanced the membrane-fluidizing effects of local anesthetics with the potency being cardiolipin>phosphatidic acid>phosphatidylglycerol>phosphatidylserine. Cardiolipin was most effective on bupivacaine, followed by ropivacaine. Local anesthetics interacted differently with biomimetic membranes consisting of 10mol% cardiolipin, 50mol% other phospholipids and 40mol% cholesterol with the potency being bupivacaine>ropivacaine>lidocaine>prilocaine, which agreed with the rank order of cardiotoxicity. Bupivacaine significantly fluidized 2.5-12.5mol% cardiolipin-containing membranes at cardiotoxicologically relevant concentrations. Bupivacaine is considered to affect lipid bilayers by interacting electrostatically with negatively charged cardiolipin head groups and hydrophobically with phospholipid acyl chains. The structure-dependent interaction with lipid membranes containing cardiolipin, which is preferentially localized in cardiomyocyte mitochondrial membranes, may be a mechanistic clue to explain the structure-selective cardiotoxicity of local anesthetics.

  1. Amino-terminal basic residues of Src mediate membrane binding through electrostatic interaction with acidic phospholipids.

    PubMed Central

    Sigal, C T; Zhou, W; Buser, C A; McLaughlin, S; Resh, M D

    1994-01-01

    Membrane targeting of pp60src (Src) is mediated by its myristoylated amino terminus. We demonstrate that, in addition to myristate, six basic residues in the amino terminus are essential for high-affinity binding to the lipid bilayer via electrostatic interaction with acidic phospholipids. Specifically, c-Src was shown to bind 2500-fold more strongly to vesicles composed of the physiological ratio of 2:1 phosphatidylcholine (PC)/phosphatidylserine (PS) than to neutral PC bilayer vesicles. The apparent Kd for binding of c-Src to the PC/PS bilayer was 6 x 10(-7) M. This interaction is sufficiently strong to account for c-Src membrane targeting. Mutants of c-Src in which the amino-terminal basic residues were replaced by neutral asparagine residues exhibited binding isotherms approaching that of wild-type binding to neutral bilayers (apparent Kd of 2 x 10(-3) M). The transforming v-Src and activated c-Src (Y527F) proteins also bound more strongly to PC/PS bilayers (apparent Kd of approximately 1 x 10(-5) M) than to neutral PC bilayers. In vivo experiments with Src mutants confirmed the role of positive charge in mediating membrane binding and cellular transformation. Images PMID:7527558

  2. Coverage and disruption of phospholipid membranes by oxide nanoparticles.

    PubMed

    Pera, Harke; Nolte, Tom M; Leermakers, Frans A M; Kleijn, J Mieke

    2014-12-01

    We studied the interactions of silica and titanium dioxide nanoparticles with phospholipid membranes and show how electrostatics plays an important role. For this, we systematically varied the charge density of both the membranes by changing their lipid composition and the oxide particles by changing the pH. For the silica nanoparticles, results from our recently presented fluorescence vesicle leakage assay are combined with data on particle adsorption onto supported lipid bilayers obtained by optical reflectometry. Because of the strong tendency of the TiO2 nanoparticles to aggregate, the interaction of these particles with the bilayer was studied only in the leakage assay. Self-consistent field (SCF) modeling was applied to interpret the results on a molecular level. At low charge densities of either the silica nanoparticles or the lipid bilayers, no electrostatic barrier to adsorption exists. However, the adsorption rate and adsorbed amounts drop with increasing (negative) charge densities on particles and membranes because of electric double-layer repulsion, which is confirmed by the effect of the ionic strength. SCF calculations show that charged particles change the structure of lipid bilayers by a reorientation of a fraction of the zwitterionic phosphatidylcholine (PC) headgroups. This explains the affinity of the silica particles for pure PC lipid layers, even at relatively high particle charge densities. Particle adsorption does not always lead to the disruption of the membrane integrity, as is clear from a comparison of the leakage and adsorption data for the silica particles. The attraction should be strong enough, and in line with this, we found that for positively charged TiO2 particles vesicle disruption increases with increasing negative charge density on the membranes. Our results may be extrapolated to a broader range of oxide nanoparticles and ultimately may be used for establishing more accurate nanoparticle toxicity assessments and drug

  3. Dynamics of bio-membranes investigated by neutron spin echo: Effects of phospholipid conformations and presence of lidocaine

    NASA Astrophysics Data System (ADS)

    Yi, Zheng

    Bio-membranes of the natural living cells are made of bilayers of phospholipids molecules embedded with other constituents, such as cholesterol and membrane proteins, which help to accomplish a broad range of functions. Vesicles made of lipid bilayers can serve as good model systems for bio-membranes. Therefore these systems have been extensively characterized and much is known about their shape, size, porosity and functionality. In this dissertation we report the studies of the effects of the phosoholipid conformation, such as hydrocarbon number and presence of double bond in hydrophobic tails on dynamics of phospholipids bilayers studied by neutron spin echo (NSE) technique. We have investigated how lidocaine, the most medically used local anesthetics (LA), influence the structural and dynamical properties of model bio-membranes by small angle neutron scattering (SANS), NSE and differential scanning calorimetry (DSC). To investigate the influence of phospholipid conformation on bio-membranes, the bending elasticities kappac of seven saturated and monounsaturated phospholipid bilayers were investigated by NSE spectroscopy. kappa c of phosphatidylcholines (PCS) in liquid crystalline (L alpha) phase ranges from 0.38x10-19 J for 1,2-Dimyristoyl- sn-Glycero-3-Phosphocholine (14:0 PC) to 0.64x10-19 J for 1,2-Dieicosenoyl-sn-Glycero-3-Phosphocholine (20:1 PC). It was confirmed that when the area modulus KA varies little with chain unsaturation or length, the elastic ratios (kappac/ KA)1/2 of bilayers varies linearly with lipid hydrophobic thickness d. For the study of the influence of LA on bio-membranes, SANS measurements have been performed on 14:0 PC bilayers with different concentrations of lidocaine to determine the bilayer thickness dL as a function of the lidocaine concentration. NSE has been used to study the influence of lidocaine on the bending elasticity of 14:0 PC bilayers in Lalpha and ripple gel (Pbeta') phases. Our results confirmed that the molecules of

  4. Air-stable droplet interface bilayers on oil-infused surfaces

    PubMed Central

    Boreyko, Jonathan B.; Polizos, Georgios; Datskos, Panos G.; Sarles, Stephen A.; Collier, C. Patrick

    2014-01-01

    Droplet interface bilayers are versatile model membranes useful for synthetic biology and biosensing; however, to date they have always been confined to fluid reservoirs. Here, we demonstrate that when two or more water droplets collide on an oil-infused substrate, they exhibit noncoalescence due to the formation of a thin oil film that gets squeezed between the droplets from the bottom up. We show that when phospholipids are included in the water droplets, a stable droplet interface bilayer forms between the noncoalescing water droplets. As with traditional oil-submerged droplet interface bilayers, we were able to characterize ion channel transport by incorporating peptides into each droplet. Our findings reveal that droplet interface bilayers can function in ambient environments, which could potentially enable biosensing of airborne matter. PMID:24821774

  5. Normal and Frictional Interactions between Liposome-Bearing Biomacromolecular Bilayers.

    PubMed

    Gaisinskaya-Kipnis, Anastasia; Klein, Jacob

    2016-08-01

    Highly efficient lubricating boundary layers at biosurfaces such as cartilage have been proposed to comprise phospholipids complexed with biomacromolecules exposed at the surfaces. To gain insight into this, a systematic study on the normal and frictional forces between surfaces bearing a sequentially deposited model alginate-on-chitosan bilayer, bearing different adsorbed phosphatidylcholine (PC) liposomes, was carried out using a surface force balance. Structures of the resulting surface complexes were determined using atomic force microscopy (AFM) and cryo-scanning electron microscopy (cryo-SEM). The liposome/lipid-polymer complexes could maintain their integrity up to high pressures in terms of both normal and shear interactions between the surfaces, which were repeatable, reproducible, and revealed very low friction (coefficient of friction μ down to 10(-3)-10(-4), depending on the PC used) up to pressures of hundreds of atm. We attribute this remarkable lubrication capability ultimately to hydration lubrication acting at the hydrated phosphocholine headgroups of the PC lipids, either exposed at the liposome surfaces or through complexation with the polyelectrolyte bilayer. Values of μ, while low, were roughly an order of magnitude higher than for the same PC vesicles adsorbed on bare mica, a difference attributed to their lower density on the bilayer; the bilayer, however, stabilized the PC-vesicles far better than bare mica against rupture and shear at high compressions and sliding. PMID:27409248

  6. Mammalian Glucose Transporter Activity Is Dependent upon Anionic and Conical Phospholipids*

    PubMed Central

    Hresko, Richard C.; Kraft, Thomas E.; Quigley, Andrew; Carpenter, Elisabeth P.; Hruz, Paul W.

    2016-01-01

    The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers. PMID:27302065

  7. Mammalian Glucose Transporter Activity Is Dependent upon Anionic and Conical Phospholipids.

    PubMed

    Hresko, Richard C; Kraft, Thomas E; Quigley, Andrew; Carpenter, Elisabeth P; Hruz, Paul W

    2016-08-12

    The regulated movement of glucose across mammalian cell membranes is mediated by facilitative glucose transporters (GLUTs) embedded in lipid bilayers. Despite the known importance of phospholipids in regulating protein structure and activity, the lipid-induced effects on the GLUTs remain poorly understood. We systematically examined the effects of physiologically relevant phospholipids on glucose transport in liposomes containing purified GLUT4 and GLUT3. The anionic phospholipids, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and phosphatidylinositol, were found to be essential for transporter function by activating it and stabilizing its structure. Conical lipids, phosphatidylethanolamine and diacylglycerol, enhanced transporter activity up to 3-fold in the presence of anionic phospholipids but did not stabilize protein structure. Kinetic analyses revealed that both lipids increase the kcat of transport without changing the Km values. These results allowed us to elucidate the activation of GLUT by plasma membrane phospholipids and to extend the field of membrane protein-lipid interactions to the family of structurally and functionally related human solute carriers. PMID:27302065

  8. Incorporation and characterization of biological molecules in droplet-interface bilayer networks for novel active systems

    NASA Astrophysics Data System (ADS)

    Sarles, Stephen A.; Ghanbari Bavarsad, Pegah; Leo, Donald J.

    2009-03-01

    Biological molecules including phospholipids and proteins offer scientists and engineers a diverse selection of materials to develop new types of active materials and smart systems based on ion conduction. The inherent energy-coupling abilities of these components create novel kinds of transduction elements. Networks formed from droplet-interface bilayers (DIB) are a promising construct for creating cell mimics that allow for the assembly and study of these active biological molecules. The current-voltage relationship of symmetric, "lipid-in" dropletinterface bilayers are characterized using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV). "Lipid-in" diphytanoyl phosphatidylcholine (DPhPC) droplet-interface bilayers have specific resistances of nearly 10MΩ•cm2 and rupture at applied potentials greater than 300mV, indicating the "lipid-in" approach produces higher quality interfacial membranes than created using the original "lipid-out" method. The incorporation of phospholipids into the droplet interior allows for faster monolayer formation but does not inhibit the selfinsertion of transmembrane proteins into bilayer interfaces that separate adjacent droplets. Alamethicin proteins inserted into single and multi-DIB networks produce a voltage-dependent membrane conductance and current measurements on bilayers containing this type of protein exhibit a reversible, 3-4 order-of-magnitude conductance increase upon application of voltage.

  9. Effect of Trehalose on a Phospholipid Membrane under Mechanical Stress

    PubMed Central

    Pereira, Cristina S.; Hünenberger, Philippe H.

    2008-01-01

    Explicit solvent molecular dynamics simulations were used to investigate at atomic resolution the effect of trehalose on a hydrated phospholipid bilayer under mechanical stress (stretching forces imposed in the form of negative lateral pressure). Simulations were performed in the absence or presence of trehalose at 325 K, and with different values for negative lateral pressure. In the concentration regime (2 molal) and range of lateral pressures (1 to −250 bar) investigated, trehalose was found to interact directly with the membrane, partially replacing water molecules in the formation of hydrogen bonds with the lipid headgroups. Similar to previous findings in the context of thermal stress, the number, degree of bridging, and reaching depth of these hydrogen bonds increased with the magnitude of perturbation. However, at the concentration considered, trehalose was not sufficient to preserve the integrity of the membrane structure and to prevent its extreme elongation (and possible disruption) under the effect of stretching forces. PMID:18599628

  10. Immobilized lipid-bilayer materials

    DOEpatents

    Sasaki, Darryl Y.; Loy, Douglas A.; Yamanaka, Stacey A.

    2000-01-01

    A method for preparing encapsulated lipid-bilayer materials in a silica matrix comprising preparing a silica sol, mixing a lipid-bilayer material in the silica sol and allowing the mixture to gel to form the encapsulated lipid-bilayer material. The mild processing conditions allow quantitative entrapment of pre-formed lipid-bilayer materials without modification to the material's spectral characteristics. The method allows for the immobilization of lipid membranes to surfaces. The encapsulated lipid-bilayer materials perform as sensitive optical sensors for the detection of analytes such as heavy metal ions and can be used as drug delivery systems and as separation devices.

  11. Twisting bilayer graphene superlattices.

    PubMed

    Lu, Chun-Chieh; Lin, Yung-Chang; Liu, Zheng; Yeh, Chao-Hui; Suenaga, Kazu; Chiu, Po-Wen

    2013-03-26

    Bilayer graphene is an intriguing material in that its electronic structure can be altered by changing the stacking order or the relative twist angle, yielding a new class of low-dimensional carbon system. Twisted bilayer graphene can be obtained by (i) thermal decomposition of SiC; (ii) chemical vapor deposition (CVD) on metal catalysts; (iii) folding graphene; or (iv) stacking graphene layers one atop the other, the latter of which suffers from interlayer contamination. Existing synthesis protocols, however, usually result in graphene with polycrystalline structures. The present study investigates bilayer graphene grown by ambient pressure CVD on polycrystalline Cu. Controlling the nucleation in early stage growth allows the constituent layers to form single hexagonal crystals. New Raman active modes are shown to result from the twist, with the angle determined by transmission electron microscopy. The successful growth of single-crystal bilayer graphene provides an attractive jumping-off point for systematic studies of interlayer coupling in misoriented few-layer graphene systems with well-defined geometry.

  12. The effect of temperature on supported dipalmitoylphosphatidylcholine (DPPC) bilayers: structure and lubrication performance.

    PubMed

    Wang, Min; Zander, Thomas; Liu, Xiaoyan; Liu, Chao; Raj, Akanksha; Wieland, D C Florian; Garamus, Vasil M; Willumeit-Römer, Regine; Claesson, Per Martin; Dėdinaitė, Andra

    2015-05-01

    Phospholipids fulfill an important role in joint lubrication. They, together with hyaluronan and glycoproteins, are the biolubricants that sustain low friction between cartilage surfaces bathed in synovial fluid. In this work we have investigated how the friction force and load bearing capacity of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers on silica surfaces are affected by temperature, covering the temperature range 25-52°C. Friction forces have been determined utilizing the AFM colloidal probe technique, which showed that DPPC bilayers are able to provide low friction forces over the whole temperature interval. However, the load bearing capacity is improved at higher temperatures. We interpret this finding as being a consequence of lower rigidity and higher self-healing capacity of the DPPC bilayer in the liquid disordered state compared to the gel state. The corresponding structure of solid supported DPPC bilayers at the silica-liquid interface has been followed using X-ray reflectivity measurements, which suggests that the DPPC bilayer is in the gel phase at 25°C and 39°C and in the liquid disordered state at 55°C. Well-defined bilayer structures were observed for both phases. The deposited DPPC bilayers were also imaged using AFM PeakForce Tapping mode, and these measurements indicated a less homogeneous layer at temperatures below 37°C.

  13. Stabilising lamellar stacks of lipid bilayers with soft confinement and steric effects.

    PubMed

    Bougis, K; Leite Rubim, R; Ziane, N; Peyencet, J; Bentaleb, A; Février, A; Oliveira, C L P; Andreoli de Oliveira, E; Navailles, L; Nallet, F

    2015-07-01

    Structure and interactions stabilising the lamellar stack of mixed lipid bilayers in their fluid state are investigated by means of small-angle X-ray scattering. The (electrically neutral) bilayers are composed of a mixtures of lecithin, a zwitterionic phospholipid, and Simulsol, a non-ionic cosurfactant with an ethoxylated polar head. The soft confinement of the bilayer hydrophilic components is varied by changing hydration and bilayer composition, as well as the length of the cosurfactant polar head. Structural transitions are observed at low hydration, in the stacking order for the longer cosurfactant, and in the mixed bilayers for the shorter one. At higher hydration, the swelling of the lamellar stacks occurs with a significant, but continuous evolution in the mixed bilayer structure. The bilayer structural changes are discussed in analogy with the so-called "brush-to-mushroom" transition induced by lateral confinement, relevant for long linear polymers grafted onto rigid surfaces, taking also into account the role of vertical confinement.

  14. Lamellar slippage of bilayers--a hypothesis on low friction of natural joints.

    PubMed

    Pawlak, Zenon; Urbaniak, Wieslaw; Hagner-Derengowska, Magda; Hagner, Wojciech

    2014-12-01

    The cartilage's amphoteric surface behavior is a physical phenomenon in biological lubrication. However, there is a lack of knowledge on amphoteric phospholipids bilayers and in overcoming friction in cartilage joints. In this paper, friction experiments were conducted, and the cartilage's surface was characterized using pH and wettability, while the interfacial energy and coefficients were determined. The lamellar slippage of bilayers and a short-range repulsion between the interfaces of negatively charged (-PO4 (-)) cartilage surfaces resulted in low frictional properties of the joint.

  15. Membrane fusion promoters and inhibitors have contrasting effects on lipid bilayer structure and undulations.

    PubMed

    McIntosh, T J; Kulkarni, K G; Simon, S A

    1999-04-01

    It has been established that the fusion of both biological membranes and phospholipid bilayers can be modulated by altering their lipid composition (Chernomordik et al., 1995 .J. Membr. Biol. 146:3). In particular, when added exogenously between apposing membranes, monomyristoylphosphatidylcholine (MMPC) inhibits membrane fusion, whereas glycerol monoleate (GMO), oleic acid (OA), and arachidonic acid (AA) promote fusion. This present study uses x-ray diffraction to investigate the effects of MMPC, GMO, OA, and AA on the bending and stability of lipid bilayers when bilayers are forced together with applied osmotic pressure. The addition of 10 and 30 mol% MMPC to egg phosphatidylcholine (EPC) bilayers maintains the bilayer structure, even when the interbilayer fluid spacing is reduced to approximately 3 A, and increases the repulsive pressure between bilayers so that the fluid spacing in excess water increases by 5 and 15 A, respectively. Thus MMPC increases the undulation pressure, implying that the addition of MMPC promotes out-of-plane bending and decreases the adhesion energy between bilayers. In contrast, the addition of GMO has minor effects on the undulation pressure; 10 and 50 mol% GMO increase the fluid spacing of EPC in excess water by 0 and 2 A, respectively. However, x-ray diffraction indicates that, at small interbilayer separations, GMO, OA, or AA converts the bilayer to a structure containing hexagonally packed scattering units approximately 50 A in diameter. Thus GMO, OA, or AA destabilizes bilayer structure as apposing bilayers are brought into contact, which could contribute to their role in promoting membrane fusion.

  16. Nonsedimentable Microvesicles from Senescing Bean Cotyledons Contain Gel Phase-Forming Phospholipid Degradation Products 1

    PubMed Central

    Yao, Kening; Paliyath, Gopinadhan; Thompson, John E.

    1991-01-01

    A mixture of liquid-crystalline and gel-phase lipid domains is detectable by wide angle x-ray diffraction in smooth microsomal membranes isolated from senescent 7-day-old cotyledons, whereas corresponding membranes from young 2-day-old cotyledons are exclusively liquid-crystalline. The gel-phase domains in the senescent membranes comprise phospholipid degradation products including diacylglycerols, free fatty acids, long-chain aldehydes, and long-chain hydrocarbons. The same complement of phospholipid degradation products is also present in nonsedimentable microvesicles isolated from senescent 7-day-old cotyledons by filtration of a 250,000g, 12-hour supernatant through a 300,000 dalton cut-off filter. The phospholipid degradation products in the microvesicles form gel-phase lipid domains when reconstituted into phospholipid liposomes. Nonsedimentable microvesicles of a similar size, which are again enriched in the same gel-phase-forming phospholipid degradation products, are also generated in vitro from smooth microsomal membranes isolated from 2-day-old cotyledons when Ca2+ is added to activate membrane-associated lipolytic enzymes. The Ca2+-treated membranes do not contain detectable gel-phase domains, suggesting that the phospholipid degradation products are completely removed by microvesiculation. The observations collectively indicate that these nonsedimentable microvesicles serve as a vehicle for moving phospholipid degradation products out of membrane bilayers into the cytosol. As noted previously (Yao K, Paliyath G, Humphrey RW, Hallett FR, Thompson JE [1991] Proc Natl Acad Sci USA 88: 2269-2273), the term “deteriosome” connotes this putative function and would serve to distinguish these microvesicles from other cytoplasmic microvesicles unrelated to deterioration. ImagesFigure 2Figure 3Figure 4Figure 5Figure 6Figure 7 PMID:16668427

  17. Phospholipids in foods: prooxidants or antioxidants?

    PubMed

    Cui, Leqi; Decker, Eric A

    2016-01-15

    Lipid oxidation is one of the major causes of quality deterioration in natural and processed foods and thus a large economic concern in the food industry. Phospholipids, especially lecithins, are already widely used as natural emulsifiers and have been gaining increasing interest as natural antioxidants to control lipid oxidation. This review summarizes the fatty acid composition and content of phospholipids naturally occurring in several foods. The role of phospholipids as substrates for lipid oxidation is discussed, with a focus on meats and dairy products. Prooxidant and antioxidant mechanisms of phospholipids are also discussed to get a better understanding of the possible opportunities for using phospholipids as food antioxidants.

  18. Alignment validation

    SciTech Connect

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  19. Does fluoride disrupt hydrogen bond network in cationic lipid bilayer? Time-dependent fluorescence shift of Laurdan and molecular dynamics simulations.

    PubMed

    Pokorna, Sarka; Jurkiewicz, Piotr; Vazdar, Mario; Cwiklik, Lukasz; Jungwirth, Pavel; Hof, Martin

    2014-12-14

    Time-dependent fluorescence shift (TDFS) of Laurdan embedded in phospholipid bilayers reports on hydration and mobility of the phospholipid acylgroups. Exchange of H2O with D2O prolongs the lifetime of lipid-water and lipid-water-lipid interactions, which is reflected in a significantly slower TDFS kinetics. Combining TDFS measurements in H2O and D2O hydrated bilayers with atomistic molecular dynamics (MD) simulations provides a unique tool for characterization of the hydrogen bonding at the acylgroup level of lipid bilayers. In this work, we use this approach to study the influence of fluoride anions on the properties of cationic bilayers composed of trimethylammonium-propane (DOTAP). The results obtained for DOTAP are confronted with those for neutral phosphatidylcholine (DOPC) bilayers. Both in DOTAP and DOPC H2O/D2O exchange prolongs hydrogen-bonding lifetime and does not disturb bilayer structure. These results are confirmed by MD simulations. TDFS experiments show, however, that for DOTAP this effect is cancelled in the presence of fluoride ions. We interpret these results as evidence that strongly hydrated fluoride is able to steal water molecules that bridge lipid carbonyls. Consequently, when attracted to DOTAP bilayer, fluoride disrupts the local hydrogen-bonding network, and the differences in TDFS kinetics between H2O and D2O hydrated bilayers are no longer observed. A distinct behavior of fluoride is also evidenced by MD simulations, which show different lipid-ion binding for Cl(-) and F(-).

  20. Effect of Lysophosphatidylcholine on the Surface Hydration of Phospholipid Vesicles

    PubMed Central

    Alves, Marilene; Bales, Barney L.; Peric, Miroslav

    2009-01-01

    The interfacial properties of the negatively charged dimyristoyl-phosphatidylglycerol (DMPG) and the zwitterionic dimyristoyl-phosphatidylcholine (DMPC) vesicles mixed with the fusion inhibitor lysomyristoylphosphatidylcholine (LMPC) are investigated by electron paramagnetic resonance (EPR). At 35 °C, addition of 20 mole percent of LMPC to the DMPG vesicles increases the effective concentration of water in the interfacial layer of DMPG vesicles from 19.3 M to 27.7 M, whereas in the case of mixed DMPC-LMPC vesicle the effective water concentration in the interfacial layer of DMPC vesicles only changes, from 15.1 M to 18.4 M. The hydrogen bonding structure in both mixed DMPG-LMPC and mixed DMPC-LMPC vesicles becomes stronger with an increasing fraction of LMPC in the vesicles. The average area per phospholipid decreases in mixed DMPC-LMPC vesicles, while it increases in mixed DMPG-LMPC vesicles as the proportion of LMPC in the vesicle increases. The inhibitory nature of LMPC in both vesicle and biological fusion comes from the increase in surface hydration, as well as from the dynamic cone shape of LMPC in the phospholipid bilayer PMID:18070590

  1. Inositol depletion restores vesicle transport in yeast phospholipid flippase mutants.

    PubMed

    Yamagami, Kanako; Yamamoto, Takaharu; Sakai, Shota; Mioka, Tetsuo; Sano, Takamitsu; Igarashi, Yasuyuki; Tanaka, Kazuma

    2015-01-01

    In eukaryotic cells, type 4 P-type ATPases function as phospholipid flippases, which translocate phospholipids from the exoplasmic leaflet to the cytoplasmic leaflet of the lipid bilayer. Flippases function in the formation of transport vesicles, but the mechanism remains unknown. Here, we isolate an arrestin-related trafficking adaptor, ART5, as a multicopy suppressor of the growth and endocytic recycling defects of flippase mutants in budding yeast. Consistent with a previous report that Art5p downregulates the inositol transporter Itr1p by endocytosis, we found that flippase mutations were also suppressed by the disruption of ITR1, as well as by depletion of inositol from the culture medium. Interestingly, inositol depletion suppressed the defects in all five flippase mutants. Inositol depletion also partially restored the formation of secretory vesicles in a flippase mutant. Inositol depletion caused changes in lipid composition, including a decrease in phosphatidylinositol and an increase in phosphatidylserine. A reduction in phosphatidylinositol levels caused by partially depleting the phosphatidylinositol synthase Pis1p also suppressed a flippase mutation. These results suggest that inositol depletion changes the lipid composition of the endosomal/TGN membranes, which results in vesicle formation from these membranes in the absence of flippases.

  2. Nanomechanics of electrospun phospholipid fiber

    SciTech Connect

    Mendes, Ana C. E-mail: ioach@food.dtu.dk; Chronakis, Ioannis S. E-mail: ioach@food.dtu.dk; Nikogeorgos, Nikolaos; Lee, Seunghwan

    2015-06-01

    Electrospun asolectin phospholipid fibers were prepared using isooctane as a solvent and had an average diameter of 6.1 ± 2.7 μm. Their mechanical properties were evaluated by nanoindentation using Atomic Force Microscopy, and their elastic modulus was found to be approximately 17.2 ± 1 MPa. At a cycle of piezo expansion-retraction (loading-unloading) of a silicon tip on a fiber, relatively high adhesion was observed during unloading. It is proposed that this was primarily due to molecular rearrangements at the utmost layers of the fiber caused by the indentation of the hydrophilic tip. The phospholipid fibers were shown to be stable in ambient conditions, preserving the modulus of elasticity up to 24 h.

  3. Membrane binding of human phospholipid scramblase 1 cytoplasmic domain.

    PubMed

    Posada, Itziar M D; Sánchez-Magraner, Lissete; Hervás, Javier H; Alonso, Alicia; Monaco, Hugo L; Goñi, Félix M

    2014-07-01

    Human phospholipid scramblase 1 (SCR) consists of a large cytoplasmic domain and a small presumed transmembrane domain near the C-terminal end of the protein. Previous studies with the SCRΔ mutant lacking the C-terminal portion (last 28 aa) revealed the importance of this C-terminal moiety for protein function and calcium-binding affinity. The present contribution is intended to elucidate the effect of the transmembrane domain suppression on SCRΔ binding to model membranes (lipid monolayers and bilayers) and on SCRΔ reconstitution in proteoliposomes. In all cases the protein cytoplasmic domain showed a great affinity for lipid membranes, and behaved in most aspects as an intrinsic membrane protein. Assays have been performed in the presence of phosphatidylserine, presumably important for the SCR cytoplasmic domain to be electrostatically anchored to the plasma membrane inner surface. The fusion protein maltose binding protein-SCR has also been studied as an intermediate case of a molecule that can insert into the bilayer hydrophobic core, yet it is stable in detergent-free buffers. Although the intracellular location of SCR has been the object of debate, the present data support the view of SCR as an integral membrane protein, in which not only the transmembrane domain but also the cytoplasmic moiety play a role in membrane docking of the protein.

  4. Phospholipid Diffusion Coefficients of Cushioned Model Membranes determined via Z-Scan Fluorescence Correlation Spectroscopy

    PubMed Central

    Sterling, Sarah M.; Allgeyer, Edward S.; Fick, Jörg; Prudovsky, Igor; Mason, Michael D.; Neivandt, David J.

    2013-01-01

    Model cellular membranes enable the study of biological processes in a controlled environment and reduce the traditional challenges associated with live or fixed cell studies. However, model membrane systems based on the air/water or oil/solution interface do not allow for incorporation of transmembrane proteins, or for the study of protein transport mechanisms. Conversely, a phospholipid bilayer deposited via the Langmuir-Blodgett/Langmuir Schaefer method on a hydrogel layer is potentially an effective mimic of the cross-section of a biological membrane, and facilitates both protein incorporation and transport studies. Prior to application, however, such membranes must be fully characterized, particularly with respect to the phospholipid bilayer phase transition temperature. Here we present a detailed characterization of the phase transition temperature of the inner and outer leaflets of a chitosan supported model membrane system. Specifically, the lateral diffusion coefficient of each individual leaflet has been determined as a function of temperature. Measurements were performed utilizing z-scan fluorescence correlation spectroscopy (FCS), a technique that yields calibration-free diffusion information. Analysis via the method of Wawrezinieck and coworkers, revealed that phospholipid diffusion changes from raft-like to free diffusion as the temperature is increased; an insight into the dynamic behavior of hydrogel supported membranes not previously reported. PMID:23705855

  5. Nutritional Deficiencies and Phospholipid Metabolism

    PubMed Central

    Gimenez, María S.; Oliveros, Liliana B.; Gomez, Nidia N.

    2011-01-01

    Phospholipids are important components of the cell membranes of all living species. They contribute to the physicochemical properties of the membrane and thus influence the conformation and function of membrane-bound proteins, such as receptors, ion channels, and transporters and also influence cell function by serving as precursors for prostaglandins and other signaling molecules and modulating gene expression through the transcription activation. The components of the diet are determinant for cell functionality. In this review, the effects of macro and micronutrients deficiency on the quality, quantity and metabolism of different phospholipids and their distribution in cells of different organs is presented. Alterations in the amount of both saturated and polyunsaturated fatty acids, vitamins A, E and folate, and other micronutrients, such as zinc and magnesium, are discussed. In all cases we observe alterations in the pattern of phospholipids, the more affected ones being phosphatidylcholine, phosphatidylethanolamine and sphingomyelin. The deficiency of certain nutrients, such as essential fatty acids, fat-soluble vitamins and some metals may contribute to a variety of diseases that can be irreversible even after replacement with normal amount of the nutrients. Usually, the sequelae are more important when the deficiency is present at an early age. PMID:21731449

  6. Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays.

    PubMed

    Lu, Bin; Smith, Tyler; Schmidt, Jacob J

    2015-05-01

    The widespread environmental presence and commercial use of nanoparticles have raised significant health concerns as a result of many in vitro and in vivo assays indicating toxicity of a wide range of nanoparticle species. Many of these assays have identified the ability of nanoparticles to damage cell membranes. These interactions can be studied in detail using artificial lipid bilayers, which can provide insight into the nature of the particle-membrane interaction through variation of membrane and solution properties not possible with cell-based assays. However, the scope of these studies can be limited because of the low throughput characteristic of lipid bilayer platforms. We have recently described an easy to use, parallel lipid bilayer platform which we have used to electrically investigate the activity of 60 nm diameter amine and carboxyl modified polystyrene nanoparticles (NH2-NP and COOH-NP) with over 1000 lipid bilayers while varying lipid composition, bilayer charge, ionic strength, pH, voltage, serum, particle concentration, and particle charge. Our results confirm recent studies finding activity of NH2-NP but not COOH-NP. Detailed analysis shows that NH2-NP formed pores 0.3-2.3 nm in radius, dependent on bilayer and solution composition. These interactions appear to be electrostatic, as they are regulated by NH2-NP surface charge, solution ionic strength, and bilayer charge. The ability to rapidly measure a large number of nanoparticle and membrane parameters indicates strong potential of this bilayer array platform for additional nanoparticle bilayer studies.

  7. Super-resolution Imaging of the Natural Killer Cell Immunological Synapse on a Glass-supported Planar Lipid Bilayer

    PubMed Central

    Chen, Yuhui; Huang, Shengjian; Liu, Dongfang

    2015-01-01

    The glass-supported planar lipid bilayer system has been utilized in a variety of disciplines. One of the most useful applications of this technique has been in the study of immunological synapse formation, due to the ability of the glass-supported planar lipid bilayers to mimic the surface of a target cell while forming a horizontal interface. The recent advances in super-resolution imaging have further allowed scientists to better view the fine details of synapse structure. In this study, one of these advanced techniques, stimulated emission depletion (STED), is utilized to study the structure of natural killer (NK) cell synapses on the supported lipid bilayer. Provided herein is an easy-to-follow protocol detailing: how to prepare raw synthetic phospholipids for use in synthesizing glass-supported bilayers; how to determine how densely protein of a given concentration occupies the bilayer's attachment sites; how to construct a supported lipid bilayer containing antibodies against NK cell activating receptor CD16; and finally, how to image human NK cells on this bilayer using STED super-resolution microscopy, with a focus on distribution of perforin positive lytic granules and filamentous actin at NK synapses. Thus, combining the glass-supported planar lipid bilayer system with STED technique, we demonstrate the feasibility and application of this combined technique, as well as intracellular structures at NK immunological synapse with super-resolution. PMID:25741636

  8. Tethered or adsorbed supported lipid bilayers in nanotubes characterized by deuterium magic angle spinning NMR spectroscopy.

    PubMed

    Wattraint, Olivier; Warschawski, Dror E; Sarazin, Catherine

    2005-04-12

    2H solid-state NMR experiments were performed under magic angle spinning on lipid bilayers oriented into nanotubes arrays, as a new method to assess the geometrical arrangement of the lipids. Orientational information is obtained from the intensities of the spinning sidebands. The lipid bilayers are formed by fusion of small unilamellar vesicles of DMPC-d54 inside a nanoporous anodic aluminum oxide, either by direct adsorption on the support or by tethering through a streptavidin/biotin linker. The results support that the quality of the lipid bilayers alignment is clearly in favor of the tethering rather than an adsorbed strategy. PMID:15807556

  9. Mechanical properties of electrospun bilayer fibrous membranes as potential scaffolds for tissue engineering.

    PubMed

    Pu, Juan; Komvopoulos, Kyriakos

    2014-06-01

    Bilayer fibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning, using a parallel-disk mandrel configuration that resulted in the sequential deposition of a layer with fibers aligned across the two parallel disks and a layer with randomly oriented fibers, both layers deposited in a single process step. Membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, bilayer membranes exhibited higher porosity than single-layer membranes consisting of randomly oriented fibers fabricated with a solid-drum collector. However, despite their higher porosity, bilayer membranes demonstrated generally higher elastic modulus, yield strength and toughness than single-layer membranes with random fibers. Bilayer membrane deformation at relatively high strain rates comprised multiple abrupt microfracture events characterized by discontinuous fiber breakage. Bilayer membrane elongation yielded excessive necking of the layer with random fibers and remarkable fiber stretching (on the order of 400%) in the layer with fibers aligned in the stress direction. In addition, fibers in both layers exhibited multiple localized necking, attributed to the nonuniform distribution of crystalline phases in the fibrillar structure. The high membrane porosity, good mechanical properties, and good biocompatibility and biodegradability of PLLA (demonstrated in previous studies) make the present bilayer membranes good scaffold candidates for a wide range of tissue engineering applications.

  10. Screening ion-channel ligand interactions with passive pumping in a microfluidic bilayer lipid membrane chip

    PubMed Central

    Saha, Shimul C.; Powl, Andrew M.; Wallace, B. A.; de Planque, Maurits R. R.; Morgan, Hywel

    2015-01-01

    We describe a scalable artificial bilayer lipid membrane platform for rapid electrophysiological screening of ion channels and transporters. A passive pumping method is used to flow microliter volumes of ligand solution across a suspended bilayer within a microfluidic chip. Bilayers are stable at flow rates up to ∼0.5 μl/min. Phospholipid bilayers are formed across a photolithographically defined aperture made in a dry film resist within the microfluidic chip. Bilayers are stable for many days and the low shunt capacitance of the thin film support gives low-noise high-quality single ion channel recording. Dose-dependent transient blocking of α-hemolysin with β-cyclodextrin (β-CD) and polyethylene glycol is demonstrated and dose-dependent blocking studies of the KcsA potassium channel with tetraethylammonium show the potential for determining IC50 values. The assays are fast (30 min for a complete IC50 curve) and simple and require very small amounts of compounds (100 μg in 15 μl). The technology can be scaled so that multiple bilayers can be addressed, providing a screening platform for ion channels, transporters, and nanopores. PMID:25610515

  11. Bilayer reconstitution of voltage-dependent ion channels using a microfabricated silicon chip.

    PubMed Central

    Pantoja, R; Sigg, D; Blunck, R; Bezanilla, F; Heath, J R

    2001-01-01

    Painted bilayers containing reconstituted ion channels serve as a well defined model system for electrophysiological investigations of channel structure and function. Horizontally oriented bilayers with easy solution access to both sides were obtained by painting a phospholipid:decane mixture across a cylindrical pore etched into a 200-microm thick silicon wafer. Silanization of the SiO(2) layer produced a hydrophobic surface that promoted the adhesion of the lipid mixture. Standard lithographic techniques and anisotropic deep-reactive ion etching were used to create pores with diameters from 50 to 200 microm. The cylindrical structure of the pore in the partition and the surface treatment resulted in stable bilayers. These were used to reconstitute Maxi K channels in the 100- and 200-microm diameter pores. The electrophysiological characteristics of bilayers suspended in microchips were comparable with that of other bilayer preparations. The horizontal orientation and good voltage clamping properties make the microchip bilayer method an excellent system to study the electrical properties of reconstituted membrane proteins simultaneously with optical probes. PMID:11566808

  12. Electric field driven changes of a gramicidin containing lipid bilayer supported on a Au(111) surface.

    PubMed

    Laredo, Thamara; Dutcher, John R; Lipkowski, Jacek

    2011-08-16

    Langmuir-Blodgett and Langmuir-Schaeffer methods were employed to deposit a mixed bilayer consisting of 90% of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 10% of gramicidin (GD), a short 15 residue ion channel forming peptide, onto a Au(111) electrode surface. This architecture allowed us to investigate the effect of the electrostatic potential applied to the electrode on the orientation and conformation of DMPC molecules in the bilayer containing the ion channel. The charge density data were determined from chronocoulometry experiments. The electric field and the potential across the membrane were determined through the use of charge density curves. The magnitudes of potentials across the gold-supported biomimetic membrane were comparable to the transmembrane potential acting on a natural membrane. The information regarding the orientation and conformation of DMPC and GD molecules in the bilayer was obtained from photon polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) measurements. The results show that the bilayer is adsorbed, in direct contact with the metal surface, when the potential across the interface is more positive than -0.4 V and is lifted from the gold surface when the potential across the interface is more negative than -0.4 V. This change in the state of the bilayer has a significant impact on the orientation and conformation of the phospholipid and gramicidin molecules. The potential induced changes in the membrane containing peptide were compared to the changes in the structure of the pure DMPC bilayer determined in earlier studies.

  13. Rpe65 Isomerase Associates with Membranes through an Electrostatic Interaction with Acidic Phospholipid Headgroups*

    PubMed Central

    Yuan, Quan; Kaylor, Joanna J.; Miu, Anh; Bassilian, Sara; Whitelegge, Julian P.; Travis, Gabriel H.

    2010-01-01

    Opsins are light-sensitive pigments in the vertebrate retina, comprising a G protein-coupled receptor and an 11-cis-retinaldehyde chromophore. Absorption of a photon by an opsin pigment induces isomerization of its chromophore to all-trans-retinaldehyde. After a brief period of activation, opsin releases all-trans-retinaldehyde and becomes insensitive to light. Restoration of light sensitivity to the apo-opsin involves the conversion of all-trans-retinaldehyde back to 11-cis-retinaldehyde via an enzyme pathway called the visual cycle. The critical isomerization step in this pathway is catalyzed by Rpe65. Rpe65 is strongly associated with membranes but contains no membrane-spanning segments. It was previously suggested that the affinity of Rpe65 for membranes is due to palmitoylation of one or more Cys residues. In this study, we re-examined this hypothesis. By two independent strategies involving mass spectrometry, we show that Rpe65 is not palmitoylated nor does it appear to undergo other post-translational modifications at significant stoichiometry. Instead, we show that Rpe65 binds the acidic phospholipids, phosphatidylserine, phosphatidylglycerol, and cardiolipin, but not phosphatidic acid. No binding of Rpe65 to basic phospholipids or neutral lipids was observed. The affinity of Rpe65 to acidic phospholipids was strongly pH-dependent, suggesting an electrostatic interaction of basic residues in Rpe65 with negatively charged phospholipid headgroups. Binding of Rpe65 to liposomes containing phosphatidylserine or phosphatidylglycerol, but not the basic or neutral phospholipids, allowed the enzyme to extract its insoluble substrate, all-trans-retinyl palmitate, from the lipid bilayer for synthesis of 11-cis-retinol. The interaction of Rpe65 with acidic phospholipids is therefore biologically relevant. PMID:19892706

  14. Alignment fixture

    DOEpatents

    Bell, Grover C.; Gibson, O. Theodore

    1980-01-01

    A part alignment fixture is provided which may be used for precise variable lateral and tilt alignment relative to the fixture base of various shaped parts. The fixture may be used as a part holder for machining or inspection of parts or alignment of parts during assembly and the like. The fixture includes a precisely machined diameter disc-shaped hub adapted to receive the part to be aligned. The hub is nested in a guide plate which is adapted to carry two oppositely disposed pairs of positioning wedges so that the wedges may be reciprocatively positioned by means of respective micrometer screws. The sloping faces of the wedges contact the hub at respective quadrants of the hub periphery. The lateral position of the hub relative to the guide plate is adjusted by positioning the wedges with the associated micrometer screws. The tilt of the part is adjusted relative to a base plate, to which the guide plate is pivotally connected by means of a holding plate. Two pairs of oppositely disposed wedges are mounted for reciprocative lateral positioning by means of separate micrometer screws between flanges of the guide plate and the base plate. Once the wedges are positioned to achieve the proper tilt of the part or hub on which the part is mounted relative to the base plate, the fixture may be bolted to a machining, inspection, or assembly device.

  15. Curriculum Alignment.

    ERIC Educational Resources Information Center

    Crowell, Ronald; Tissot, Paula

    Curriculum alignment (CA) refers to the congruence of all the elements of a school's curriculum: curriculum goals; instructional program--what is taught and the materials used; and tests used to judge outcomes. CA can be a very powerful can be a very powerful factor in improving schools. Although further research is needed on CA, there is…

  16. Cell signalling and phospholipid metabolism

    SciTech Connect

    Boss, W.F.

    1989-01-01

    Our research for the past two years has involved the study of phosphoinositides and their potential role in regulating plant growth and development. Our initial goal was to document the sequence of events involved in inositol phospholipid metabolism in response to external stimuli. Our working hypothesis was that phosphatidylinositol bisphosphate (PIP/sub 2/) was in the plasma membrane of plants cells and would be hydrolyzed by phospholipase C to yield the second messengers inositol triphosphate (IP/sub 3/) and diacyglycerol (DAG) and that IP/sub 3/ would mobilize intracellular calcium as has been shown for animal cells. Our results with both carrot suspension culture cells and sunflower hypocotyl indicate that this paradigm is not the primary mechanism of signal transduction in these systems. We have observed very rapid, within 5 sec, stimulation of phosphatidylinositol monophosphate (PIP) kinase which resulted in an increase in PIP/sub 2/. However, there was no evidence for activation of phospholipase C. In addition, we have shown that PIP and PIP/sub 2/ can activate the plasma membrane ATPase. The results of these studies are described briefly in the paragraphs below. Inositol phospholipids are localized in distinct membrane fractions. If PIP and PIP/sub 2/ play a role in the transduction of external signals, they should be present in the plasma membrane. We used the fusogenic carrot suspension culture cells as a model system to study the distribution of inositol phospholipids in various membrane fractions and organelles. Cells were labeled 12 to 18 h with myo(2-/sup 3/H) inositol and the membranes were isolated by aqueous two-phase partitioning. The plasma membrane was enriched in PIP and PIP/sub 2/ compared to the intracellular membranes.

  17. Lipid bilayer elasticity measurements in giant liposomes in contact with a solubilizing surfactant.

    PubMed

    Ménager, Christine; Guemghar, Dihya; Perzynski, Régine; Lesieur, Sylviane; Cabuil, Valérie

    2008-05-01

    A new method to probe the modification of the elasticity of phospholipid bilayers is presented. The purpose here concerns the action of a solubilizing surfactant on a vesicle bilayer. This method is based on the measure of the under-field elongation of giant magnetic-fluid-loaded liposomes. The addition of the nonionic surfactant octyl-beta-d-glucopyranoside (OG) to vesicles at sublytic levels increases the elasticity of the membrane, as shown by the value of the bending modulus K(b), which decreases. K(b) measured around 20 kT for a pure 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer indeed reaches a few kT in the case of the mixed OG-DOPC bilayer. The purpose and interest of this study are to allow the determination of the membrane bending modulus before and after the addition of OG on the same magnetic liposome. Moreover, the experimental conditions used in this work allow the control of lipid and surfactant molar fractions in the mixed aggregates. Then, optical microscopy observation can be performed on samples in well-defined regions of the OG-phospholipid state diagram. PMID:18363418

  18. NMR study of the interactions of polymyxin B, gramicidin S, and valinomycin with dimyristoyllecithin bilayers

    SciTech Connect

    Zidovetzki, R.; Banerjee, U.; Harrington, D.W.; Chan, S.I.

    1988-07-26

    The interactions of three polypeptide antibiotics (polymyxin B, gramicidin S, and valinomycin) with artificial lecithin membranes were studied by nuclear magnetic resonance (NMR). Combination of /sup 31/P and /sup 2/H NMR allowed observation of perturbations of the bilayer membrane structure induced by each of the antibiotics in the regions of the polar headgroups and acyl side chains of the phospholipids. The comparative study of the effects of these membrane-active antibiotics and the lipid bilayer structure demonstrated distinct types of antibiotic-membrane interactions in each case. Thus, the results showed the absence of interaction of polymyxin B with the dimyristoyllecithin membranes. In contrast, gramicidin S exhibited strong interaction with the lipid above the gel to liquid-crystalline phase transition temperature: disordering of the acyl side chains was evident. Increasing the concentration of gramicidin S led to disintegration of the bilayer membrane structure. At a molar ratio of 1:16 of gramicidin S to lecithin, the results are consistent with coexistence of gel and liquid-crystalline phases of the phospholipids near the phase transition temperature. Valinomycin decreased the phase transition temperature of the lipids and increased the order parameters of the lipid side chains. Such behavior is consistent with penetration of the valinomycin molecule into the interior of the lipid bilayers.

  19. Tryptophan probes reveal residue-specific phospholipid interactions of apolipoprotein C-III.

    PubMed

    Pfefferkorn, Candace M; Walker, Robert L; He, Yi; Gruschus, James M; Lee, Jennifer C

    2015-11-01

    Apolipoproteins are essential human proteins for lipid metabolism. Together with phospholipids, they constitute lipoproteins, nm to μm sized particles responsible for transporting cholesterol and triglycerides throughout the body. To investigate specific protein-lipid interactions, we produced and characterized three single-Trp containing apolipoprotein C-III (ApoCIII) variants (W42 (W54F/W65F), W54 (W42F/W65F), W65 (W42F/W54F)). Upon binding to phospholipid vesicles, wild-type ApoCIII adopts an α-helical conformation (50% helicity) as determined by circular dichroism spectroscopy with an approximate apparent partition constant of 3×10(4) M(-1). Steady-state and time-resolved fluorescence measurements reveal distinct residue-specific behaviors with W54 experiencing the most hydrophobic environment followed by W42 and W65. Interestingly, time-resolved anisotropy measurements show a converse trend for relative Trp mobility with position 54 being the least immobile. To determine the relative insertion depths of W42, W54, and W65 in the bilayer, fluorescence quenching experiments were performed using three different brominated lipids. W65 had a clear preference for residing near the headgroup while W54 and W42 sample the range of depths ~8-11 Å from the bilayer center. On average, W54 is slightly more embedded than W42. Based on Trp spectral differences between ApoCIII binding to phospholipid vesicles and sodium dodecyl sulfate micelles, we suggest that ApoCIII adopts an alternate helical conformation on the bilayer which could have functional implications.

  20. Interaction of cord factor (alpha, alpha'-trehalose-6,6'-dimycolate) with phospholipids.

    PubMed

    Crowe, L M; Spargo, B J; Ioneda, T; Beaman, B L; Crowe, J H

    1994-08-24

    We previously reported that cord factor (alpha,alpha'-trehalose-6,6'-dimycolate) isolated from Nocardia asteroides strain GUH-2 strongly inhibits fusion between unilamellar vesicles containing acidic phospholipid. We chose to study the effects of this molecule on liposome fusion since the presence of N. asteroides GUH-2 in the phagosomes of mouse macrophages had been shown to prevent phagosomal acidification and inhibit phagosome-lysosome fusion. A virtually non-virulent strain, N. asteroides 10905, does not prevent acidification or phagosome-lysosome fusion and, further, contains only trace amounts of cord factor. In the present paper, we have investigated the effects of cord factor on phospholipid bilayers that could be responsible for the inhibition of fusion. We show that cord factor increases molecular area, measured by isothermal compression of a monolayer film, in a mixed monolayer more than would be expected based in its individual contribution to molecular area. Cord factor, as well as other glycolipids investigated, increased the overall hydration of bilayers of dipalmitoylphosphatidylcholine by 50%, as estimated from the unfrozen water fraction measured by differential scanning calorimetry. The effect of calcium on this increased molecular area and headgroup hydration was measured by fluorescence anisotropy and FTIR spectroscopy of phosphatidylserine liposomes. Both techniques showed that cord factor, incorporated at 10 mol%, increased acyl chain disorder over controls in the presence of Ca2+. However, FTIR showed that cord factor did not prevent headgroup dehydration by the Ca2+. The other glycolipids tested did not prevent either the Ca(2+)-induced chain crystallization or headgroup dehydration of phosphatidylserine bilayers. These data point to a possible role of the bulky mycolic acids of cord factor in preventing Ca(2+)-induced fusion of liposomes containing acidic phospholipids. PMID:8075141

  1. Phase transitions in hydrophobe/phospholipid mixtures: hints at connections between pheromones and anaesthetic activity.

    PubMed

    Borsacchi, Silvia; Geppi, Marco; Macchi, Sara; Ninham, Barry W; Fratini, Emiliano; Ambrosi, Moira; Baglioni, Piero; Lo Nostro, Pierandrea

    2016-06-01

    The phase behavior of a mixture of a typical insect pheromone (olean) and a phospholipid (DOPC)/water dispersion is extensively explored through SAXS, NMR and DSC experiments. The results mimic those obtained with anaesthetics in phospholipid/water systems. They also mimic the behavior and microstructure of ternary mixtures of a membrane mimetic, bilayer-forming double chained surfactants, oils and water. Taken together with recent models for conduction of the nervous impulse, all hint at lipid involvement and the underlying unity in mechanisms of pheromone, anaesthetic and hydrophobic drugs, where a local phase change in the lipid membrane architecture may be at least partly involved in the transmission of the signal. PMID:27210443

  2. Encapsulation of Living Cells within Giant Phospholipid Liposomes Formed by the Inverse-Emulsion Technique.

    PubMed

    Chowdhuri, Sampreeti; Cole, Christian M; Devaraj, Neal K

    2016-05-17

    Liposomes form spontaneously by the assimilation of phospholipids, the primary component of cell membranes. Due to their unique ability to form selectively permeable bilayers in situ, they are widely used as nanocarriers for drug and small-molecule delivery. However, there is a lack of straightforward methodologies to encapsulate living microorganisms. Here we demonstrate the successful encapsulation of whole cells in phospholipid vesicles by using the inverse-emulsion technique of generating unilamellar vesicles. This method of liposome preparation allows for a facile encapsulation of large biomaterials that previously was not easily attainable. Using Escherichia coli as a model organism, we found that liposomes can protect the bacterium against external protease degradation and from harsh biological environments. Liposomes prepared by the inverse-emulsion method were also capable of encapsulating yeast and were found to be naturally susceptible to hydrolysis by enzymes such as phospholipases, thus highlighting their potential role as cell delivery carriers. PMID:26919463

  3. Shapes of Mixed Phospholipid Vesicles

    PubMed Central

    Aranda-Espinoza, Helim; Maldonado, Amir

    2006-01-01

    We studied the shape of phospholipid vesicles prepared by hydration of a mixture of phosphatidylcholine (SOPC) and phosphatidylserine (SOPS) in different proportions. The aim of the work is to obtain some insight into the influence of the chemical composition of a biomembrane on its shape. The optical microscopy results show that the shape of the vesicles depend on the SOPC:SOPS composition. For low SOPS contents, coiled cylindrical vesicles are observed. The results suggest that specific compositions of the SOPC:SOPS vesicles produce some spontaneous curvature on the membrane and then a coiling instability. PMID:19669461

  4. Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays

    NASA Astrophysics Data System (ADS)

    Lu, Bin; Smith, Tyler; Schmidt, Jacob J.

    2015-04-01

    The widespread environmental presence and commercial use of nanoparticles have raised significant health concerns as a result of many in vitro and in vivo assays indicating toxicity of a wide range of nanoparticle species. Many of these assays have identified the ability of nanoparticles to damage cell membranes. These interactions can be studied in detail using artificial lipid bilayers, which can provide insight into the nature of the particle-membrane interaction through variation of membrane and solution properties not possible with cell-based assays. However, the scope of these studies can be limited because of the low throughput characteristic of lipid bilayer platforms. We have recently described an easy to use, parallel lipid bilayer platform which we have used to electrically investigate the activity of 60 nm diameter amine and carboxyl modified polystyrene nanoparticles (NH2-NP and COOH-NP) with over 1000 lipid bilayers while varying lipid composition, bilayer charge, ionic strength, pH, voltage, serum, particle concentration, and particle charge. Our results confirm recent studies finding activity of NH2-NP but not COOH-NP. Detailed analysis shows that NH2-NP formed pores 0.3-2.3 nm in radius, dependent on bilayer and solution composition. These interactions appear to be electrostatic, as they are regulated by NH2-NP surface charge, solution ionic strength, and bilayer charge. The ability to rapidly measure a large number of nanoparticle and membrane parameters indicates strong potential of this bilayer array platform for additional nanoparticle bilayer studies.The widespread environmental presence and commercial use of nanoparticles have raised significant health concerns as a result of many in vitro and in vivo assays indicating toxicity of a wide range of nanoparticle species. Many of these assays have identified the ability of nanoparticles to damage cell membranes. These interactions can be studied in detail using artificial lipid bilayers, which

  5. The local heating effect by magnetic nanoparticles aggregate on support lipid bilayers.

    PubMed

    Wang, Changling; Xu, Ruizhi; Tang, Liming

    2013-07-01

    In this paper, we established a theoretical model to investigate the local heating effect of magnetic nanoparticles (MNPs) aggregate on the support lipid bilayers (SLBs) under external alternating current (AC) magnetic field, which may be helpful to understand hyperthermia at single cell level. Using atomic force microscope (AFM), the transformation of the support phospholipid bilayers surrounding MNPs aggregate was observed in real-time. We found that the fluidity of lipid bilayers changed when the size of MNPs aggregate larger than 200 nm, as a result of magnetic heating in the AC magnetic field. These experimental data were consistent with the simulation results, which demonstrated the valid of our established model, as well as described more realistically the above phenomenon.

  6. Effects of Sugars on Lipid Bilayers during Dehydration − SAXS/WAXS Measurements and Quantitative Model

    SciTech Connect

    Lenne, Thomas; Garvey, Christopher J.; Koster, Karen L.; Bryant, Gary

    2009-04-02

    We present an X-ray scattering study of the effects of dehydration on the bilayer and chain-chain repeat spacings of dipalmitoylphosphatidylcholine bilayers in the presence of sugars. The presence of sugars has no effect on the average spacing between the phospholipid chains in either the fluid or gel phase. Using this finding, we establish that for low sugar concentrations only a small amount of sugar exclusion occurs. Under these conditions, the effects of sugars on the membrane transition temperatures can be explained quantitatively by the reduction in hydration repulsion between bilayers due to the presence of the sugars. Specific bonding of sugars to lipid headgroups is not required to explain this effect.

  7. Proteins with H-bond packing defects are highly interactive with lipid bilayers: Implications for amyloidogenesis

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel; Berry, R. Stephen

    2003-03-01

    We noticed that disease-related amyloidogenic proteins and especially cellular prion proteins have the highest proportion of incompletely desolvated backbone H bonds among soluble proteins. Such bonds are vulnerable to water attack and thus represent structural weaknesses. We have measured the adsorption of proteins onto phospholipid bilayers and found a strong correlation between the extent of underwrapping of backbone H bonds in the native structure of a protein and its extent of deposition on the bilayer: the less the H bond wrapping, the higher the propensity for protein-bilayer binding. These observations support the proposition that soluble proteins with amyloidogenic propensity and membrane proteins share a pervasive building motif: the underwrapped H bonds. Whereas in membrane proteins, this motif does not signal a structural vulnerability, in soluble proteins, it is responsible for their reactivity.

  8. Air-stable droplet interface bilayers on oil-infused surfaces

    SciTech Connect

    Boreyko, Jonathan B; Polizos, Georgios; Datskos, Panos G; Sarles, Stephen A; Collier, Pat

    2014-01-01

    Droplet interface bilayers (DIBs) are versatile model membranes useful for synthetic biology and biosensing; however, to date they have always been confined to fluid reservoirs. Here, we demonstrate that when two or more water droplets collide on an oil-infused substrate, they exhibit non-coalescence due to the formation of a thin oil film that gets squeezed between the droplets from the bottom-up. We show that when phospholipids are included in the water droplets, a stable droplet interface bilayer forms between the non-coalescing water droplets. As with traditional oil-submerged DIBs, we were able to characterize ion channel transport by incorporating peptides into each droplet. Our findings reveal that droplet interface bilayers can function in air environments, which could potentially enable biosensing of atmospheric particulates.

  9. [The characteristics of the radiation-initiated peroxidation of the phosphatidylcholine making up liposomes containing phospholipids which are susceptible to free-radical fragmentation].

    PubMed

    Davydov, V Iu; Kisel', M A; Shadyro, O I; Iurkova, I L

    2000-01-01

    The regularities of accumulation of conjugated dienes and thiobarbituric acid (TBA)-reactive substances under gamma-irradiation of liposomes from rat liver phosphatidylcholine (PC) and its mixtures with the resistant to lipid peroxidation saturated phospholipids and bovine brain sphingomyelin (SM) were studied. It was established that the incorporation of negatively charged dipalmitoylphosphatidylglycerol (DPPG) and dipalmitoylphosphatidylethanol (DPPET) into lipid bilayer resulted in the increase of primary and secondary products of LPO, whereas neutral dipalmitoylphosphatidylcholine (DPPC) and SM involving in the phospholipid mixtures inhibited the peroxidation of PC. For anionic phospholipids, DPPG had more profound activating action on LPO, amongst the neutral phospholipids SM was more potent inhibitor of the reaction. Unlike DPPET and DPPC, DPPG and SM were subjected to free radical fragmentation on gamma-radiation. It is suggested that the intermediates and products of free radical fragmentation may modulate the progress of LPO. PMID:11031481

  10. Multi-component modeling of quasielastic neutron scattering from phospholipid membranes

    SciTech Connect

    Wanderlingh, U. D’Angelo, G.; Branca, C.; Trimarchi, A.; Rifici, S.; Finocchiaro, D.; Conti Nibali, V.; Crupi, C.; Ollivier, J.; Middendorf, H. D.

    2014-05-07

    We investigated molecular motions in the 0.3–350 ps time range of D{sub 2}O-hydrated bilayers of 1-palmitoyl-oleoyl-sn-glycero-phosphocholine and 1,2-dimyristoyl-sn-glycero-phosphocholine in the liquid phase by quasielastic neutron scattering. Model analysis of sets of spectra covering scale lengths from 4.8 to 30 Å revealed the presence of three types of motion taking place on well-separated time scales: (i) slow diffusion of the whole phospholipid molecules in a confined cylindrical region; (ii) conformational motion of the phospholipid chains; and (iii) fast uniaxial rotation of the hydrogen atoms around their carbon atoms. Based on theoretical models for the hydrogen dynamics in phospholipids, the spatial extent of these motions was analysed in detail and the results were compared with existing literature data. The complex dynamics of protons was described in terms of elemental dynamical processes involving different parts of the phospholipid chain on whose motions the hydrogen atoms ride.

  11. Viscoelastic changes measured in partially suspended single bilayer membranes.

    PubMed

    Hasan, Imad Younus; Mechler, Adam

    2015-07-21

    For studies involving biomimetic phospholipid membrane systems, such as membrane-protein interactions, it is crucial that the supported membrane is biomimetic in its physical properties as well as in its composition. Two often overlooked aspects of biomimicry are the need for unrestrained lipid mobility, reflected in the viscoelastic properties of the membrane, and sufficient space between the membrane and the support for the insertion of transmembrane proteins. Here we show for a series of DMPC-based membranes that a partially suspended single bilayer membrane can be formed on functionalized gold surface without tethering. These membranes exhibit sufficient freedom of motion to represent the viscoelastic properties of a free lamellar bilayer membrane as demonstrated by determining the phase transition temperatures of these single bilayer membranes from the viscosity change upon chain melting using the dissipation signal of a quartz crystal microbalance (QCM-D). Atomic force microscopy imaging confirmed confluent, smooth membrane coverage of the QCM-D sensor that completely obscured the roughness of the sputtered gold surface. High-force AFM imaging was able to push membrane patches into the valleys of the gold morphology, confirming the inherently suspended nature of the MPA supported membrane. We show that the correlation between frequency and dissipation changes in the QCM-D sensograms is a sensitive indicator of the morphology of the membrane. PMID:26073288

  12. Preparation and characterization of phospholipid-conjugated indocyanine green as a near-infrared probe.

    PubMed

    Suganami, Akiko; Toyota, Taro; Okazaki, Shigetoshi; Saito, Kengo; Miyamoto, Katsuhiko; Akutsu, Yasunori; Kawahira, Hiroshi; Aoki, Akira; Muraki, Yutaka; Madono, Tomoyuki; Hayashi, Hideki; Matsubara, Hisahiro; Omatsu, Takashige; Shirasawa, Hiroshi; Tamura, Yutaka

    2012-12-15

    We have rationally designed and synthesized a novel near-infrared (NIR) photoactivating probe, designated by iDOPE, in which an indocyanine green (ICG) fluorophore is covalently conjugated with a phospholipid moiety, 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), to incorporate into liposome bilayers. NIR irradiation showed that iDOPE retained the optical and fluorescence properties of ICG and demonstrated photoactivator characteristics: fluorescence emission at around 820 nm in a solvent, singlet oxygen production, and concentration-dependent heat generation. Additionally, iDOPE was incorporated into liposome bilayers and maintained stable liposomally formulated iDOPE (LP-iDOPE) over 1week under physiological conditions. We also observed the tumor-specific biodistribution of LP-iDOPE of in vivo xenografts. These findings suggest that LP-iDOPE might be a promising tool for NIR optical imaging, photodynamic therapy, and photothermal therapy.

  13. Feruloyl glycerol and 1,3-diferuloyl glycerol antioxidant behavior in phospholipid vesicles.

    PubMed

    Evans, Kervin O; Compton, David L; Laszlo, Joseph A; Appell, Michael

    2016-02-01

    Feruloyl-sn-glycerol (FG) and 1,3-diferuloyl-sn-glycerol (F2G), the by-product of biocatalytic transesterification soybean oil and ethyl ferulate, were examined for their behavior in phospholipid vesicles. Based on absorbance and fluorescence methods, FG and F2G both were found to partition into vesicles and incorporate well into 1,2-dioleoylphosphocholine (DOPC) vesicles. FG and F2G incorporation resulted in vesicles that were as or slightly more stable than the unloaded vesicles. FG and F2G both demonstrated the ability to maintain antioxidant properties within the lipid bilayer. Bilayer depth analysis was conducted using the parallax method and molecular modeling. PMID:26561732

  14. Phospholipid Metabolism in Ferrobacillus ferrooxidans

    PubMed Central

    Short, Steven A.; White, David C.; Aleem, M. I. H.

    1969-01-01

    The lipid composition of the chemoautotroph Ferrobacillus ferrooxidans has been examined. Fatty acids represent 2% of the dry weight of the cells and 86% of the total are extractable with organic solvents. About 25% of the total fatty acids are associated with diacyl phospholipids. Polar carotenoids, the benzoquinone coenzyme Q-8, and most of the fatty acids are present in the neutral lipids. The phospholipids have been identified as phosphatidyl monomethylethanolamine (42%), phosphatidyl glycerol (23%), phosphatidyl ethanolamine (20%), cardiolipin (13%), phosphatidyl choline (1.5%), and phosphatidyl dimethylethanolamine (1%) by chromatography of the diacyl lipids, by chromatography in four systems of the glycerol phosphate esters derived from the lipids by mild alkaline methanolysis, and by chromatographic identification of the products of acid hydrolysis of the esters. No trace of phosphatidylserine (PS), glycerolphosphorylserine, or serine could be detected in the lipid extract or in derivatives of that extract. This casts some doubt on the postulated involvement of PS in iron metabolism. After growth in the presence of 14C and 32P, there was essentially no difference in the turnover of either isotope in the glycerolphosphate ester derived from each lipid in cells grown at pH 1.5 or 3.5. Images PMID:5802599

  15. Tunneling Plasmonics in Bilayer Graphene.

    PubMed

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  16. ALIGNING JIG

    DOEpatents

    Culver, J.S.; Tunnell, W.C.

    1958-08-01

    A jig or device is described for setting or aligning an opening in one member relative to another member or structure, with a predetermined offset, or it may be used for measuring the amount of offset with which the parts have previously been sct. This jig comprises two blocks rabbeted to each other, with means for securing thc upper block to the lower block. The upper block has fingers for contacting one of the members to be a1igmed, the lower block is designed to ride in grooves within the reference member, and calibration marks are provided to determine the amount of offset. This jig is specially designed to align the collimating slits of a mass spectrometer.

  17. Image alignment

    SciTech Connect

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  18. The use of natural and synthetic phospholipids as pharmaceutical excipients*

    PubMed Central

    van Hoogevest, Peter; Wendel, Armin

    2014-01-01

    In pharmaceutical formulations, phospholipids obtained from plant or animal sources and synthetic phospholipids are used. Natural phospholipids are purified from, e.g., soybeans or egg yolk using non-toxic solvent extraction and chromatographic procedures with low consumption of energy and minimum possible waste. Because of the use of validated purification procedures and sourcing of raw materials with consistent quality, the resulting products differing in phosphatidylcholine content possess an excellent batch to batch reproducibility with respect to phospholipid and fatty acid composition. The natural phospholipids are described in pharmacopeias and relevant regulatory guidance documentation of the Food and Drug Administration (FDA) and European Medicines Agency (EMA). Synthetic phospholipids with specific polar head group, fatty acid composition can be manufactured using various synthesis routes. Synthetic phospholipids with the natural stereochemical configuration are preferably synthesized from glycerophosphocholine (GPC), which is obtained from natural phospholipids, using acylation and enzyme catalyzed reactions. Synthetic phospholipids play compared to natural phospholipid (including hydrogenated phospholipids), as derived from the number of drug products containing synthetic phospholipids, a minor role. Only in a few pharmaceutical products synthetic phospholipids are used. Natural phospholipids are used in oral, dermal, and parenteral products including liposomes. Natural phospholipids instead of synthetic phospholipids should be selected as phospholipid excipients for formulation development, whenever possible, because natural phospholipids are derived from renewable sources and produced with more ecologically friendly processes and are available in larger scale at relatively low costs compared to synthetic phospholipids. Practical applications: For selection of phospholipid excipients for pharmaceutical formulations, natural phospholipids are preferred

  19. The Water Permeability and Pore Entrance Structure of Aquaporin-4 Depend on Lipid Bilayer Thickness.

    PubMed

    Tong, Jihong; Wu, Zhe; Briggs, Margaret M; Schulten, Klaus; McIntosh, Thomas J

    2016-07-12

    Aquaporin-4 (AQP4), the primary water channel in glial cells of the mammalian brain, plays a critical role in water transport in the central nervous system. Previous experiments have shown that the water permeability of AQP4 depends on the cholesterol content in the lipid bilayer, but it was not clear whether changes in permeability were due to direct cholesterol-AQP4 interactions or to indirect effects caused by cholesterol-induced changes in bilayer elasticity or bilayer thickness. To determine the effects resulting only from bilayer thickness, here we use a combination of experiments and simulations to analyze AQP4 in cholesterol-free phospholipid bilayers with similar elastic properties but different hydrocarbon core thicknesses previously determined by x-ray diffraction. The channel (unit) water permeabilities of AQP4 measured by osmotic-gradient experiments were 3.5 ± 0.2 × 10(-13) cm(3)/s (mean ± SE), 3.0 ± 0.3 × 10(-13) cm(3)/s, 2.5 ± 0.2 × 10(-13) cm(3)/s, and 0.9 ± 0.1 × 10(-13) cm(3)/s in bilayers containing (C22:1)(C22:1)PC, (C20:1)(C20:1)PC, (C16:0)(C18:1)PC, and (C13:0)(C13:0)PC, respectively. Channel permeabilities obtained by molecular dynamics (MD) simulations were 3.3 ± 0.1 × 10(-13) cm(3)/s and 2.5 ± 0.1 × 10(-13) cm(3)/s in (C22:1)(C22:1)PC and (C14:0)(C14:0)PC bilayers, respectively. Both the osmotic-gradient and MD-simulation results indicated that AQP4 channel permeability decreased with decreasing bilayer hydrocarbon thickness. The MD simulations also suggested structural modifications in AQP4 in response to changes in bilayer thickness. Although the simulations showed no appreciable changes to the radius of the pore located in the hydrocarbon region of the bilayers, the simulations indicated that there were changes in both pore length and α-helix organization near the cytoplasmic vestibule of the channel. These structural changes, caused by mismatch between the hydrophobic length of AQP4 and the bilayer hydrocarbon

  20. Spectroscopic studies of amphotericin B solubilized in nanoscale bilayer membranes.

    PubMed

    Hargreaves, Peter L; Nguyen, Thanh-Son; Ryan, Robert O

    2006-01-01

    Nanodisks (ND) are discrete nanometer scale phospholipid bilayers whose perimeter is circumscribed by amphipathic apolipoproteins. The membranous environment of ND serves as a matrix for solubilizing the polyene antibiotic amphotericin B (AMB). The spectral properties of AMB in ND are dependent upon AMB concentration. Whereas AMB-ND prepared at a concentration of 2.5 mg AMB per 10 mg phospholipid are consistent with AMB self association in the ND membrane environment, AMB-ND prepared at 0.25 or 0.025 mg AMB per 10 mg phospholipid give rise to spectra reminiscent of AMB in organic solvent. Incubation of ND prepared at a phospholipid/AMB ratio of 400:1 (w/w) at 37 degrees C for 1 h induced a shift in absorbance and near UV circular dichroism spectra consistent with antibiotic self-association. The kinetics of this spectral transition were investigated as a function of incubation temperature. While no change in A388 nm occurred in incubations at 20 degrees C, a time-dependent decrease in A388 nm was observed at 25, 30 and 37 degrees C. Inclusion of ergosterol in the ND membrane attenuated temperature-induced AMB spectral changes. In Saccharomyces cerevisiae growth inhibition assays, ND containing self associated AMB were somewhat less effective than ND possessing a greater proportion of monomeric AMB. On the other hand, inclusion of ergosterol or cholesterol in the ND particle did not alter the growth inhibition properties of AMB-ND. The miniature membrane environment of ND provides a novel milieu for solubilization and characterization of lipophilic biomolecules.

  1. 21 CFR 862.1575 - Phospholipid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... measure phospholipids in serum and plasma. Measurements of phospholipids are used in the diagnosis and treatment of disorders involving lipid (fat) metabolism. (b) Classification. Class I (general controls)....

  2. Molecular photovoltaic system based on fullerenes and carotenoids co-assembled in lipid/alkanethiol hybrid bilayers.

    PubMed

    Liu, Lixia; Zhan, Wei

    2012-03-13

    A hybrid molecular photovoltaic system, based on fullerene C(60) and lutein (a natural photosynthetic carotenoid pigment) that are assembled in a phospholipid/alkanethiol bilayer matrix, is described here. The assembly and photoconversion behaviors of such a system were studied by UV-vis spectroscopy, cyclic voltammetry, impedance spectroscopy, photoelectrochemical action spectroscopy, and photocurrent generation. While lutein itself is inefficient in generating photocurrent, it can strongly modulate photocurrents produced by fullerenes when coassembled in the lipid bilayer matrix presumably via photoinduced electron transfer. Our results thus provide a successful example of combining both synthetic and natural photoactive components in building molecular photovoltaic systems.

  3. Long N-acyl fatty acids on sphingolipids are responsible for miscibility with phospholipids to form liquid-ordered phase.

    PubMed

    Quinn, Peter J

    2009-10-01

    The structure and thermotropic phase behaviour of aqueous dispersions of dipalmitoylphosphatidylcholine and glucosylceramide rich in C-24 fatty acyl residues was investigated by synchrotron X-ray diffraction methods. Binary mixtures comprised of molar ratios 2.5:100, 6.5:100, 12.6:100, 25:100, 40:100 and 50:100, glucolipid:phospholipid were examined in heating and cooling scans of 2 degrees /min between 25 and 85 degrees C. Small-angle reflections indicated coexisting lamellar structures over the entire temperature range investigated. Reversible thermotropic changes were observed in one lamellar structure that is consistent with transitions between gel, ripple and fluid lamellar phases of pure phospholipid. The temperature of these transitions, however, were progressively shifted up by about 5 degrees C in the mixture containing the highest proportion of glucolipid and coincided with a published endothermic peak observed in this mixture. A higher-temperature endotherm was associated with molecular rearrangements on transition of the gel phase phospholipid to the fluid phase. This rearrangement was associated with the appearance of identifiable transient intermediate structures in the small-angle scattering region. The glucolipid formed stoichiometric mixtures with the phospholipid at all temperatures investigated and there was no evidence of phase separation of pure glucolipid. Analysis of the wide-angle scattering profiles during an initial heating scan of a binary mixture comprised of 40:60 glucolipid:phospholipid was consistent with a phase transition of pure phospholipid at about 43 degrees C coexisting with a liquid-ordered phase formed from the two lipids. This was confirmed by analysis of the small-angle scattering peaks of this mixture recorded at 25 and 65 degrees C which showed that a glucolipid-rich phase coexisted with almost pure bilayers of phospholipid at both temperatures. The glucolipid-rich phase consisted of 45:55 mole ratio glucolipid:phospholipid

  4. Egg phospholipids and cardiovascular health.

    PubMed

    Blesso, Christopher N

    2015-04-01

    Eggs are a major source of phospholipids (PL) in the Western diet. Dietary PL have emerged as a potential source of bioactive lipids that may have widespread effects on pathways related to inflammation, cholesterol metabolism, and high-density lipoprotein (HDL) function. Based on pre-clinical studies, egg phosphatidylcholine (PC) and sphingomyelin appear to regulate cholesterol absorption and inflammation. In clinical studies, egg PL intake is associated with beneficial changes in biomarkers related to HDL reverse cholesterol transport. Recently, egg PC was shown to be a substrate for the generation of trimethylamine N-oxide (TMAO), a gut microbe-dependent metabolite associated with increased cardiovascular disease (CVD) risk. More research is warranted to examine potential serum TMAO responses with chronic egg ingestion and in different populations, such as diabetics. In this review, the recent basic science, clinical, and epidemiological findings examining egg PL intake and risk of CVD are summarized.

  5. Supported lipid bilayer membranes for water purification by reverse osmosis.

    PubMed

    Kaufman, Yair; Berman, Amir; Freger, Viatcheslav

    2010-05-18

    Some biological plasma membranes pass water with a permeability and selectivity largely exceeding those of commercial membranes for water desalination using specialized trans-membrane proteins aquaporins. However, highly selective transport of water through aquaporins is usually driven by an osmotic rather mechanical pressure, which is not as attractive from the engineering point of view. The feasibility of adopting biomimetic membranes for water purification driven by a mechanical pressure, i.e., filtration is explored in this paper. Toward this goal, it is proposed to use a commercial nanofiltration (NF) membrane as a support for biomimetic lipid bilayer membranes to render them robust enough to withstand the required pressures. It is shown in this paper for the first time that by properly tuning molecular interactions supported phospholipid bilayers (SPB) can be prepared on a commercial NF membrane. The presence of SPB on the surface was verified and quantified by several spectroscopic and microscopic techniques, which showed morphology close to the desired one with very few defects. As an ultimate test it is shown that hydraulic permeability of the SPB supported on the NF membrane (NTR-7450) approaches the values deduced from the typical osmotic permeabilities of intact continuous bilayers. This permeability was unaffected by the trans-membrane flow of water and by repeatedly releasing and reapplying a 10 bar pressure. Along with a parallel demonstration that aquaporins could be incorporated in a similar bilayer on mica, this demonstrates the feasibility of the proposed approach. The prepared SPB structure may be used as a platform for preparing biomimetic filtration membranes with superior performance based on aquaporins. The concept of SPBs on permeable substrates of the present type may also be useful in the future for studying transport of various molecules through trans-membrane proteins. PMID:20099798

  6. Supported lipid bilayer membranes for water purification by reverse osmosis.

    PubMed

    Kaufman, Yair; Berman, Amir; Freger, Viatcheslav

    2010-05-18

    Some biological plasma membranes pass water with a permeability and selectivity largely exceeding those of commercial membranes for water desalination using specialized trans-membrane proteins aquaporins. However, highly selective transport of water through aquaporins is usually driven by an osmotic rather mechanical pressure, which is not as attractive from the engineering point of view. The feasibility of adopting biomimetic membranes for water purification driven by a mechanical pressure, i.e., filtration is explored in this paper. Toward this goal, it is proposed to use a commercial nanofiltration (NF) membrane as a support for biomimetic lipid bilayer membranes to render them robust enough to withstand the required pressures. It is shown in this paper for the first time that by properly tuning molecular interactions supported phospholipid bilayers (SPB) can be prepared on a commercial NF membrane. The presence of SPB on the surface was verified and quantified by several spectroscopic and microscopic techniques, which showed morphology close to the desired one with very few defects. As an ultimate test it is shown that hydraulic permeability of the SPB supported on the NF membrane (NTR-7450) approaches the values deduced from the typical osmotic permeabilities of intact continuous bilayers. This permeability was unaffected by the trans-membrane flow of water and by repeatedly releasing and reapplying a 10 bar pressure. Along with a parallel demonstration that aquaporins could be incorporated in a similar bilayer on mica, this demonstrates the feasibility of the proposed approach. The prepared SPB structure may be used as a platform for preparing biomimetic filtration membranes with superior performance based on aquaporins. The concept of SPBs on permeable substrates of the present type may also be useful in the future for studying transport of various molecules through trans-membrane proteins.

  7. Membrane-surfactant interactions. The role of surfactant in mitochondrial complex III-phospholipid-Triton X-100 mixed micelles

    SciTech Connect

    Valpuesta, J.M.; Arrondo, J.L.; Barbero, M.C.; Pons, M.; Goni, F.M.

    1986-05-15

    Complex III (ubiquinol-cytochrome c reductase) was purified from beef heart mitochondria in the form of protein-phospholipid-Triton X-100 mixed micelles (about 1:80:100 molar ratio). Detergent may be totally removed by sucrose density gradient centrifugation, and the resulting lipoprotein complexes retain full enzyme activity. In order to understand the role of surfactant in the mixed micelles, and the interaction of Triton X-100 with integral membrane proteins and phospholipid bilayers, both the protein-lipid-surfactant mixed micelles and the detergent-free lipoprotein system were examined from the point of view of particle size and ultrastructure, enzyme activity, tryptophan fluorescence quenching, 31P NMR, and Fourier transform infrared spectroscopy. The NMR and IR spectroscopic studies show that surfactant withdrawal induces a profound change in phospholipid architecture, from a micellar to a lamellar-like phase. However, electron microscopic observations fail to reveal the existence of lipid bilayers in the absence of detergent. We suggest that, under these conditions, the lipid:protein molar ratio (80:1) is too low to permit the formation of lipid bilayer planes, but the relative orientation and mobility of phospholipids with respect to proteins is similar to that of the lamellar phase. Protein conformational changes are also detected as a consequence of surfactant removal. Fourier transform infrared spectroscopy indicates an increase of peptide beta-structure in the absence of Triton X-100; changes in the amide II/amide I intensity ratio are also detected, although the precise meaning of these observations is unclear.

  8. Connexin channels and phospholipids: association and modulation

    PubMed Central

    Locke, Darren; Harris, Andrew L

    2009-01-01

    Background For membrane proteins, lipids provide a structural framework and means to modulate function. Paired connexin hemichannels form the intercellular channels that compose gap junction plaques while unpaired hemichannels have regulated functions in non-junctional plasma membrane. The importance of interactions between connexin channels and phospholipids is poorly understood. Results Endogenous phospholipids most tightly associated with purified connexin26 or connexin32 hemichannels or with junctional plaques in cell membranes, those likely to have structural and/or modulatory effects, were identified by tandem electrospray ionization-mass spectrometry using class-specific interpretative methods. Phospholipids were characterized by headgroup class, charge, glycerol-alkyl chain linkage and by acyl chain length and saturation. The results indicate that specific endogenous phospholipids are uniquely associated with either connexin26 or connexin32 channels, and some phospholipids are associated with both. Functional effects of the major phospholipid classes on connexin channel activity were assessed by molecular permeability of hemichannels reconstituted into liposomes. Changes to phospholipid composition(s) of the liposome membrane altered the activity of connexin channels in a manner reflecting changes to the surface charge/potential of the membrane and, secondarily, to cholesterol content. Together, the data show that connexin26 and connexin32 channels have a preference for tight association with unique anionic phospholipids, and that these, independent of headgroup, have a positive effect on the activity of both connexin26 and connexin32 channels. Additionally, the data suggest that the likely in vivo phospholipid modulators of connexin channel structure-function that are connexin isoform-specific are found in the cytoplasmic leaflet. A modulatory role for phospholipids that promote negative curvature is also inferred. Conclusion This study is the first to

  9. Force Spectroscopy Reveals the Effect of Different Ions in the Nanomechanical Behavior of Phospholipid Model Membranes: The Case of Potassium Cation

    PubMed Central

    Redondo-Morata, Lorena; Oncins, Gerard; Sanz, Fausto

    2012-01-01

    How do metal cations affect the stability and structure of phospholipid bilayers? What role does ion binding play in the insertion of proteins and the overall mechanical stability of biological membranes? Investigators have used different theoretical and microscopic approaches to study the mechanical properties of lipid bilayers. Although they are crucial for such studies, molecular-dynamics simulations cannot yet span the complexity of biological membranes. In addition, there are still some experimental difficulties when it comes to testing the ion binding to lipid bilayers in an accurate way. Hence, there is a need to establish a new approach from the perspective of the nanometric scale, where most of the specific molecular phenomena take place. Atomic force microscopy has become an essential tool for examining the structure and behavior of lipid bilayers. In this work, we used force spectroscopy to quantitatively characterize nanomechanical resistance as a function of the electrolyte composition by means of a reliable molecular fingerprint that reveals itself as a repetitive jump in the approaching force curve. By systematically probing a set of bilayers of different composition immersed in electrolytes composed of a variety of monovalent and divalent metal cations, we were able to obtain a wealth of information showing that each ion makes an independent and important contribution to the gross mechanical resistance and its plastic properties. This work addresses the need to assess the effects of different ions on the structure of phospholipid membranes, and opens new avenues for characterizing the (nano)mechanical stability of membranes. PMID:22225799

  10. Lipid bilayers on nano-templates

    DOEpatents

    Noy, Aleksandr; Artyukhin, Alexander B.; Bakajin, Olgica; Stoeve, Pieter

    2009-08-04

    A lipid bilayer on a nano-template comprising a nanotube or nanowire and a lipid bilayer around the nanotube or nanowire. One embodiment provides a method of fabricating a lipid bilayer on a nano-template comprising the steps of providing a nanotube or nanowire and forming a lipid bilayer around the polymer cushion. One embodiment provides a protein pore in the lipid bilayer. In one embodiment the protein pore is sensitive to specific agents

  11. Organization and Structure of Branched Amphipathic Oligopeptide Bilayers.

    PubMed

    Jia, Zhiguang; Whitaker, Susan K; Tomich, John M; Chen, Jianhan

    2016-09-27

    A class of self-assembling branched amphiphilic peptide capsules (BAPCs) was recently developed that could serve as a new drug delivery vehicle. BAPCs can encapsulate solutes up to ∼12 kDa during assembly, are unusually stable, and are readily taken up by cells with low cytotoxicity. Coarse-grained simulations have supported that BAPCs are defined by bilayers that resemble those formed by diacyl phospholipids. Here, atomistic simulations were performed to characterize the structure and organization of bilayers formed by three branched amphiphilic peptides (BAPs): bis(Ac-FLIVIGSII)-K-K4-CO-NH2, bis(Ac-CHA-LIVIGSII)-K-K4-CO-NH2, and bis(Ac-FLIVI)-K-K4-CO-NH2. The results show BAPs form a network of intra- and intermolecular backbone hydrogen bonds within the same leaflet in addition to hydrophobic side-chain interactions. The terminal residues of two leaflets form an interdigitation region locking two leaflets together. The phenyl groups in bis(Ac-FLIVIGSII)-K-K4-CO-NH2 and bis(Ac-FLIVI)-K-K4-CO-NH2 are tightly packed near the bilayer center but do not formed ordered structures with specific π-π stacking. Replacing phenyl groups with the cyclohexane side chain only slightly increases the level of disorder in bilayer structures and thus should not significantly affect the stability, consistent with experimental results on bis(Ac-CHA-LIVIGSII)-K-K4-CO-NH2 BAPCs. Self-assembly simulations further suggest that leaflet interdigitation likely occurs at early stages of BAPC formation. Atomistic simulations also reveal that the BAPC bilayers are highly permeable to water. This prediction was validated using fluorescence measurements of encapsulated self-quenching dye upon transferring BAPCs to buffers with different salt concentrations. Improved understanding of the organization and structure of BAPC bilayers at the atomic level will provide a basis for future rational modifications of BAP sequence to improve BAPC properties as a new class of delivery vehicle. PMID

  12. Bilayer structure and physical dynamics of the cytochrome b5 dimyristoylphosphatidylcholine interaction.

    PubMed Central

    Chester, D W; Skita, V; Young, H S; Mavromoustakos, T; Strittmatter, P

    1992-01-01

    Cytochrome b5 is a microsomal membrane protein which provides reducing potential to delta 5-, delta 6-, and delta 9-fatty acid desaturases through its interaction with cytochrome b5 reductase. Low angle x-ray diffraction has been used to determine the structure of an asymmetrically reconstituted cytochrome b5:DMPC model membrane system. Differential scanning calorimetry and fluorescence anisotropy studies were performed to examine the bilayer physical dynamics of this reconstituted system. These latter studies allow us to constrain structural models to those which are consistent with physical dynamics data. Additionally, because the nonpolar peptide secondary structure remains unclear, we tested the sensitivity of our model to different nonpolar peptide domain configurations. In this modeling approach, the nonpolar peptide moiety was arranged in the membrane to meet such chemically determined criteria as protease susceptibility of carboxyl- and amino-termini, tyrosine availability for pH titration and tryptophan 109 location, et cetera. In these studies, we have obtained a reconstituted cytochrome b5:DMPC bilayer structure at approximately 6.3 A resolution and conclude that the nonpolar peptide does not penetrate beyond the bilayer midplane. Structural correlations with calorimetry, fluorescence anisotropy and acyl chain packing data suggest that asymmetric cytochrome b5 incorporation into the bilayer increases acyl chain order. Additionally, we suggest that the heme peptide:bilayer interaction facilitates a discreet heme peptide orientation which would be dependent upon phospholipid headgroup composition. Images FIGURE 1 FIGURE 2 FIGURE 7 PMID:1600082

  13. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis.

    PubMed

    Funakoshi, Kei; Suzuki, Hiroaki; Takeuchi, Shoji

    2006-12-15

    Artificial planar lipid bilayers are a powerful tool for the functional study of membrane proteins, yet they have not been widely used due to their low stability and reproducibility. This paper describes an accessible method to form a planar lipid bilayer, simply by contacting two monolayers assembled at the interface between water and organic solvent in a microfluidic chip. The membrane of an organic solvent containing phospholipids at the interface was confirmed to be a bilayer by the capacitance measurement and by measuring the ion channel signal from reconstituted antibiotic peptides. We present two different designs for bilayer formation. One equips two circular wells connected, in which the water/solvent/water interface was formed by simply injecting a water droplet into each well. Another equips the cross-shaped microfluidic channel. In the latter design, formation of the interface at the sectional area was controlled by external syringe pumps. Both methods are extremely simple and reproducible, especially in microdevices, and will lead to automation and multiple bilayer formation for the high-throughput screening of membrane transport in physiological and pharmaceutical studies.

  14. Ion channel stability of Gramicidin A in lipid bilayers: effect of hydrophobic mismatch.

    PubMed

    Basu, Ipsita; Chattopadhyay, Amitabha; Mukhopadhyay, Chaitali

    2014-01-01

    Hydrophobic mismatch which is defined as the difference between the lipid hydrophobic thickness and the peptide hydrophobic length is known to be responsible in altering the lipid/protein dynamics. Gramicidin A (gA), a 15 residue β helical peptide which is well recognized to form ion conducting channels in lipid bilayer, may change its structure and function in a hydrophobic mismatched condition. We have performed molecular dynamics simulations of gA dimer in phospholipid bilayers to investigate whether or not the conversion from channel to non-channel form of gA dimer would occur under extreme negative hydrophobic mismatch. By varying the length of lipid bilayers from DLPC (1, 2-Dilauroyl-sn-glycero-3-phosphocholine) to DAPC (1, 2-Diarachidoyl-sn-glycero-3-phosphocholine), a broad range of mismatch was considered from nearly matching to extremely negative. Our simulations revealed that though the ion-channel conformation is retained by gA under a lesser mismatched situation, in extremely negative mismatched situation, in addition to bilayer thinning, the conformation of gA is changed and converted to a non-channel one. Our results demonstrate that although the channel conformation of Gramicidin A is the most stable structure, it is possible for gA to change its conformation from channel to non-channel depending upon the local environment of host bilayers.

  15. Multi-Stacked Supported Lipid Bilayer Micropatterning through Polymer Stencil Lift-Off.

    PubMed

    Zhu, Yujie; Negmi, Ahmed; Moran-Mirabal, Jose

    2015-01-01

    Complex multi-lamellar structures play a critical role in biological systems, where they are present as lamellar bodies, and as part of biological assemblies that control energy transduction processes. Multi-lamellar lipid layers not only provide interesting systems for fundamental research on membrane structure and bilayer-associated polypeptides, but can also serve as components in bioinspired materials or devices. Although the ability to pattern stacked lipid bilayers at the micron scale is of importance for these purposes, limited work has been done in developing such patterning techniques. Here, we present a simple and direct approach to pattern stacked supported lipid bilayers (SLBs) using polymer stencil lift-off and the electrostatic interactions between cationic and anionic lipids. Both homogeneous and phase-segregated stacked SLB patterns were produced, demonstrating that the stacked lipid bilayers retain lateral diffusivity. We demonstrate patterned SLB stacks of up to four bilayers, where fluorescence resonance energy transfer (FRET) and quenching was used to probe the interactions between lipid bilayers. Furthermore, the study of lipid phase behaviour showed that gel phase domains align between adjacent layers. The proposed stacked SLB pattern platform provides a robust model for studying lipid behaviour with a controlled number of bilayers, and an attractive means towards building functional bioinspired materials or devices. PMID:26343733

  16. Multi-Stacked Supported Lipid Bilayer Micropatterning through Polymer Stencil Lift-Off

    PubMed Central

    Zhu, Yujie; Negmi, Ahmed; Moran-Mirabal, Jose

    2015-01-01

    Complex multi-lamellar structures play a critical role in biological systems, where they are present as lamellar bodies, and as part of biological assemblies that control energy transduction processes. Multi-lamellar lipid layers not only provide interesting systems for fundamental research on membrane structure and bilayer-associated polypeptides, but can also serve as components in bioinspired materials or devices. Although the ability to pattern stacked lipid bilayers at the micron scale is of importance for these purposes, limited work has been done in developing such patterning techniques. Here, we present a simple and direct approach to pattern stacked supported lipid bilayers (SLBs) using polymer stencil lift-off and the electrostatic interactions between cationic and anionic lipids. Both homogeneous and phase-segregated stacked SLB patterns were produced, demonstrating that the stacked lipid bilayers retain lateral diffusivity. We demonstrate patterned SLB stacks of up to four bilayers, where fluorescence resonance energy transfer (FRET) and quenching was used to probe the interactions between lipid bilayers. Furthermore, the study of lipid phase behaviour showed that gel phase domains align between adjacent layers. The proposed stacked SLB pattern platform provides a robust model for studying lipid behaviour with a controlled number of bilayers, and an attractive means towards building functional bioinspired materials or devices. PMID:26343733

  17. Layer-resolved photoemission tomography: The p -sexiphenyl bilayer upon Cs doping

    NASA Astrophysics Data System (ADS)

    Reinisch, E. M.; Puschnig, P.; Ules, T.; Ramsey, M. G.; Koller, G.

    2016-04-01

    The buried interface between a molecular thin film and the metal substrate is generally not accessible to the photoemission experiment. With the example of a sexiphenyl (6 P ) bilayer on Cu we show that photoemission tomography can be used to study the electronic level alignment and geometric structure, where it was possible to assign the observed orbital emissions to the individual layers. We further study the Cs doping of this bilayer. Initial Cs exposure leads to a doping of only the first interface layer, leaving the second layer unaffected except for a large energy shift. This result shows that it is in principle possible to chemically modify just the interface, which is important to issues like tuning of the energy level alignment and charge transfer to the interface layer. Upon saturating the film with Cs, photoemission tomography shows a complete doping (6 p4 - ) of the bilayer, with the molecular geometry changing such that the spectra become dominated by σ -orbital emissions.

  18. LIPID PEROXIDATION GENERATES BIOLOGICALLY ACTIVE PHOSPHOLIPIDS INCLUDING OXIDATIVELY N-MODIFIED PHOSPHOLIPIDS

    PubMed Central

    Davies, Sean S.; Guo, Lilu

    2014-01-01

    Peroxidation of membranes and lipoproteins converts “inert” phospholipids into a plethora of oxidatively modified phospholipids (oxPL) that can act as signaling molecules. In this review, we will discuss four major classes of oxPL: mildly oxygenated phospholipids, phospholipids with oxidatively truncated acyl chains, phospholipids with cyclized acyl chains, and phospholipids that have been oxidatively N-modified on their headgroups by reactive lipid species. For each class of oxPL we will review the chemical mechanisms of their formation, the evidence for their formation in biological samples, the biological activities and signaling pathways associated with them, and the catabolic pathways for their elimination. We will end by briefly highlighting some of the critical questions that remain about the role of oxPL in physiology and disease. PMID:24704586

  19. Covalent attachment of functionalized lipid bilayers to planar waveguides for measuring protein binding to biomimetic membranes.

    PubMed Central

    Heyse, S.; Vogel, H.; Sänger, M.; Sigrist, H.

    1995-01-01

    A new method is presented for measuring sensitively the interactions between ligands and their membrane-bound receptors in situ using integrated optics, thus avoiding the need for additional labels. Phospholipid bilayers were attached covalently to waveguides by a novel protocol, which can in principle be used with any glass-like surface. In a first step, phospholipids carrying head-group thiols were covalently immobilized onto SiO2-TiO2 waveguide surfaces. This was accomplished by acylation of aminated waveguides with the heterobifunctional crosslinker N-succinimidyl-3-maleimidopropionate, followed by the formation of thioethers between the surface-grafted maleimides and the synthetic thiolipids. The surface-attached thiolipids served as hydrophobic templates and anchors for the deposition of a complete lipid bilayer either by fusion of lipid vesicles or by lipid self-assembly from mixed lipid/detergent micelles. The step-by-step lipid bilayer formation on the waveguide surface was monitored in situ by an integrated optics technique, allowing the simultaneous determination of optical thickness and one of the two refractive indices of the adsorbed organic layers. Surface coverages of 50-60% were calculated for thiolipid layers. Subsequent deposition of POPC resulted in an overall lipid layer thickness of 45-50 A, which corresponds to the thickness of a fluid bilayer membrane. Specific recognition reactions occurring at cell membrane surfaces were modeled by the incorporation of lipid-anchored receptor molecules into the supported bilayer membranes. (1) The outer POPC layer was doped with biotinylated phosphatidylethanolamine. Subsequent specific binding of streptavidin was optically monitored. (2) A lipopeptide was incorporated in the outer POPC monolayer. Membrane binding of monoclonal antibodies, which were directed against the peptide moiety of the lipopeptide, was optically detected. The specific antibody binding correlated well with the lipopepitde

  20. Interaction of melittin with mixed phospholipid membranes composed of dimyristoylphosphatidylcholine and dimyristoylphosphatidylserine studied by deuterium NMR

    SciTech Connect

    Dempsey, C.; Bitbol, M.; Watts, A. )

    1989-08-08

    The interaction of bee venom melittin with mixed phospholipid bilayers composed of dimyristoylphosphatidylcholine deuterated in the {alpha}- and {beta}-methylenes of the choline head group (DMPC-d{sub 4}) and dimyristoylphosphatidylserine deuterated in the {alpha}-methylene and {beta}-CH positions of the serine head group (DMPS-d{sub 3}) was studied in ternary mixtures by using deuterium NMR spectroscopy. The changes in the deuterium quadrupole splittings of the head-group deuteriomethylenes of DMPC-d{sub 4} induced by DMPS in binary mixtures were systematically reversed by increasing concentrations of melittin, so that at a melittin concentration of 4 mol % relative to total lipid the deuterium NMR spectrum from DMPC-d{sub 4} in the ternary mixture was similar to the spectrum from pure DMPC-d{sub 4} bilayers. The absence of deuterium NMR signals arising from melittin-bound DMPS in ternary mixtures containing DMPS-d{sub 3} indicates that the reversal by melittin of the effects of DMPS on the quadrupole splittings of DMPC-d{sub 4} results from the response of the choline head group to the net surface charge rather than from phase separation of melittin-DMPS complexes. The similarity in the effects of the two cationic but otherwise dissimilar peptides indicates that the DMPS head group responds to the surface charge resulting from the presence in the bilayer of charged amphiphiles, in a manner analogous to the response of the choline head group of phosphatidylcholine to the bilayer surface charge. The presence of DMPS greatly stabilized DMPC bilayers with respect to melittin-induced micellization, indicating that the latter effect of melittin may not be important for the hemolytic activity of the peptide.

  1. Theoretical studies of lipid bilayer electroporation using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Levine, Zachary Alan

    Computer simulations of physical, chemical, and biological systems have improved tremendously over the past five decades. From simple studies of liquid argon in the 1960s to fully atomistic simulations of entire viruses in the past few years, recent advances in high-performance computing have continuously enabled simulations to bridge the gap between scientific theory and experiment. Molecular dynamics simulations in particular have allowed for the direct observation of spatial and temporal events which are at present inaccessible to experiments. For this dissertation I employ all-atom molecular dynamics simulations to study the transient, electric field-induced poration (or electroporation) of phospholipid bilayers at MV/m electric fields. Phospholipid bilayers are the dominant constituents of cell membranes and act as both a barrier and gatekeeper to the cell interior. This makes their structural integrity and susceptibility to external perturbations an important topic for study, especially as the density of electromagnetic radiation in our environment is increasing steadily. The primary goal of this dissertation is to understand the specific physical and biological mechanisms which facilitate electroporation, and to connect our simulated observations to experiments with live cells and to continuum models which seek to describe the underlying biological processes of electroporation. In Chapter 1 I begin with a brief introduction to phospholipids and phospholipid bilayers, followed by an extensive overview of electroporation and atomistic molecular dynamics simulations. The following chapters will then focus on peer-reviewed and published work we performed, or on existing projects which are currently being prepared for submission. Chapter 2 looks at how external electric fields affect both oxidized and unoxidized lipid bilayers as a function of oxidation concentration and oxidized lipid type. Oxidative damage to cell membranes represents a physiologically relevant

  2. Erythrocyte Membrane Model with Explicit Description of the Lipid Bilayer and the Spectrin Network

    PubMed Central

    Li, He; Lykotrafitis, George

    2014-01-01

    The membrane of the red blood cell (RBC) consists of spectrin tetramers connected at actin junctional complexes, forming a two-dimensional (2D) sixfold triangular network anchored to the lipid bilayer. Better understanding of the erythrocyte mechanics in hereditary blood disorders such as spherocytosis, elliptocytosis, and especially, sickle cell disease requires the development of a detailed membrane model. In this study, we introduce a mesoscale implicit-solvent coarse-grained molecular dynamics (CGMD) model of the erythrocyte membrane that explicitly describes the phospholipid bilayer and the cytoskeleton, by extending a previously developed two-component RBC membrane model. We show that the proposed model represents RBC membrane with the appropriate bending stiffness and shear modulus. The timescale and self-consistency of the model are established by comparing our results with experimentally measured viscosity and thermal fluctuations of the RBC membrane. Furthermore, we measure the pressure exerted by the cytoskeleton on the lipid bilayer. We find that defects at the anchoring points of the cytoskeleton to the lipid bilayer (as in spherocytes) cause a reduction in the pressure compared with an intact membrane, whereas defects in the dimer-dimer association of a spectrin filament (as in elliptocytes) cause an even larger decrease in the pressure. We conjecture that this finding may explain why the experimentally measured diffusion coefficients of band-3 proteins are higher in elliptocytes than in spherocytes, and higher than in normal RBCs. Finally, we study the effects that possible attractive forces between the spectrin filaments and the lipid bilayer have on the pressure applied on the lipid bilayer by the filaments. We discover that the attractive forces cause an increase in the pressure as they diminish the effect of membrane protein defects. As this finding contradicts with experimental results, we conclude that the attractive forces are moderate and do

  3. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network.

    PubMed

    Li, He; Lykotrafitis, George

    2014-08-01

    The membrane of the red blood cell (RBC) consists of spectrin tetramers connected at actin junctional complexes, forming a two-dimensional (2D) sixfold triangular network anchored to the lipid bilayer. Better understanding of the erythrocyte mechanics in hereditary blood disorders such as spherocytosis, elliptocytosis, and especially, sickle cell disease requires the development of a detailed membrane model. In this study, we introduce a mesoscale implicit-solvent coarse-grained molecular dynamics (CGMD) model of the erythrocyte membrane that explicitly describes the phospholipid bilayer and the cytoskeleton, by extending a previously developed two-component RBC membrane model. We show that the proposed model represents RBC membrane with the appropriate bending stiffness and shear modulus. The timescale and self-consistency of the model are established by comparing our results with experimentally measured viscosity and thermal fluctuations of the RBC membrane. Furthermore, we measure the pressure exerted by the cytoskeleton on the lipid bilayer. We find that defects at the anchoring points of the cytoskeleton to the lipid bilayer (as in spherocytes) cause a reduction in the pressure compared with an intact membrane, whereas defects in the dimer-dimer association of a spectrin filament (as in elliptocytes) cause an even larger decrease in the pressure. We conjecture that this finding may explain why the experimentally measured diffusion coefficients of band-3 proteins are higher in elliptocytes than in spherocytes, and higher than in normal RBCs. Finally, we study the effects that possible attractive forces between the spectrin filaments and the lipid bilayer have on the pressure applied on the lipid bilayer by the filaments. We discover that the attractive forces cause an increase in the pressure as they diminish the effect of membrane protein defects. As this finding contradicts with experimental results, we conclude that the attractive forces are moderate and do

  4. Surface Dilution Kinetics of Phospholipase A2 Catalyzed Lipid-Bilayer Hydrolysis

    PubMed Central

    Singh, Jasmeet; Ranganathan, Radha

    2014-01-01

    Phospholipase A2 (PLA2) enzymes catalyze hydrolysis of phospholipids in membranes. Elucidation of the kinetics of interfacial enzymatic activity is best accomplished by investigating the interface substrate concentration dependence of the activity, for which appropriate diluents are required. PLA2 is stereo selective toward the L_enantiomers of phospholipids. A novel approach employing D_phospholipids as diluents to perform surface dilution kinetic studies of PLA2 is presented. Activity of bee-venom PLA2 at mixed L+D_DPPC (dipalmitoylphosphatidylcholine) bilayer interfaces was measured as functions of substrate L_DPPC mole fraction and vesicle concentration, using a sensitive fluorescence assay. A model for interface enzymatic activity based on the three-step kinetic scheme of: (i) binding of PLA2 to the bilayer interface; (ii) binding of a lipid to PLA2 at the interface; and (iii) hydrolysis, was applied to the hydrolysis data. Activity profiles showed that D_enantiomers also bind to the enzyme but resist hydrolysis. Activity dependences on vesicle and substrate concentrations could be disentangled, bringing resolution to an outstanding problem in membrane hydrolysis, of separating the effects of the three steps. Individual values of the kinetic parameters of the model including the vesicle-PLA2 equilibrium dissociation constant of step (i), interface Michaelis-Menten-Henri constant for L and D_DPPC of step (ii), and the rate constant for interface hydrolysis, step (iii) were obtained as solutions to equations resulting from fitting the model to the data. PMID:24491041

  5. Cholesterol-induced variations in the volume and enthalpy fluctuations of lipid bilayers.

    PubMed

    Halstenberg, S; Heimburg, T; Hianik, T; Kaatze, U; Krivanek, R

    1998-07-01

    The sound velocity and density of suspensions of large unilamellar liposomes from dimyristoylphosphatidylcholine with admixed cholesterol have been measured as a function of temperature around the chain melting temperature of the phospholipid. The cholesterol-to-phospholipid molar ratio xc has been varied over a wide range (0 phospholipid, and of the apparent specific adiabatic compressibility have been derived from the measured data. These data are particularly discussed with respect to the volume fluctuations within the samples. A theoretical relation between the compressibility and the excess heat capacity of the bilayer system has been derived. Comparison of the compressibilities (and sound velocity numbers) with heat capacity traces display the close correlation between these quantities for bilayer systems. This correlation appears to be very useful as it allows some of the mechanical properties of membrane systems to be calculated from the specific heat capacity data and vice versa. PMID:9649386

  6. Adsorption kinetics dictate monolayer self-assembly for both lipid-in and lipid-out approaches to droplet interface bilayer formation

    SciTech Connect

    Venkatesan, Guru A.; Lee, Joonho; Farimani, Amir Barati; Heiranian, Mohammad; Collier, C. Patrick; Narayana, Aluru; Sarles, Stephen A.

    2015-11-10

    The droplet interface bilayer (DIB) is a method to assemble planar lipid bilayer membranes between lipid-coated aqueous droplets and has gained popularity among researchers in many fields. Well-packed lipid monolayer on aqueous droplet–oil interfaces is a prerequisite for successfully assembling DIBs. Such monolayers can be achieved by two different techniques: “lipid-in”, in which phospholipids in the form of liposomes are placed in water, and “lipid-out”, in which phospholipids are placed in oil as inverse micelles. While both approaches are capable of monolayer assembly needed for bilayer formation, droplet pairs assembled with these two techniques require significantly different incubation periods and exhibit different success rates for bilayer formation. In our study, we combine experimental interfacial tension measurements with molecular dynamics simulations of phospholipids (DPhPC and DOPC) assembled from water and oil origins to understand the differences in kinetics of monolayer formation. With the results from simulations and by using a simplified model to analyze dynamic interfacial tensions, we conclude that, at high lipid concentrations common to DIBs, monolayer formation is simple adsorption controlled for lipid-in technique, whereas it is predominantly adsorption-barrier controlled for the lipid-out technique due to the interaction of interface-bound lipids with lipid structures in the subsurface. The adsorption barrier established in lipid-out technique leads to a prolonged incubation time and lower bilayer formation success rate, proving a good correlation between interfacial tension measurements and bilayer formation. Also, we clarify that advective flow expedites monolayer formation and improves bilayer formation success rate by disrupting lipid structures, rather than enhancing diffusion, in the subsurface and at the interface for lipid-out technique. Additionally, electrical properties of DIBs formed with varying lipid placement and

  7. Adsorption kinetics dictate monolayer self-assembly for both lipid-in and lipid-out approaches to droplet interface bilayer formation

    DOE PAGES

    Venkatesan, Guru A.; Lee, Joonho; Farimani, Amir Barati; Heiranian, Mohammad; Collier, C. Patrick; Narayana, Aluru; Sarles, Stephen A.

    2015-11-10

    The droplet interface bilayer (DIB) is a method to assemble planar lipid bilayer membranes between lipid-coated aqueous droplets and has gained popularity among researchers in many fields. Well-packed lipid monolayer on aqueous droplet–oil interfaces is a prerequisite for successfully assembling DIBs. Such monolayers can be achieved by two different techniques: “lipid-in”, in which phospholipids in the form of liposomes are placed in water, and “lipid-out”, in which phospholipids are placed in oil as inverse micelles. While both approaches are capable of monolayer assembly needed for bilayer formation, droplet pairs assembled with these two techniques require significantly different incubation periods andmore » exhibit different success rates for bilayer formation. In our study, we combine experimental interfacial tension measurements with molecular dynamics simulations of phospholipids (DPhPC and DOPC) assembled from water and oil origins to understand the differences in kinetics of monolayer formation. With the results from simulations and by using a simplified model to analyze dynamic interfacial tensions, we conclude that, at high lipid concentrations common to DIBs, monolayer formation is simple adsorption controlled for lipid-in technique, whereas it is predominantly adsorption-barrier controlled for the lipid-out technique due to the interaction of interface-bound lipids with lipid structures in the subsurface. The adsorption barrier established in lipid-out technique leads to a prolonged incubation time and lower bilayer formation success rate, proving a good correlation between interfacial tension measurements and bilayer formation. Also, we clarify that advective flow expedites monolayer formation and improves bilayer formation success rate by disrupting lipid structures, rather than enhancing diffusion, in the subsurface and at the interface for lipid-out technique. Additionally, electrical properties of DIBs formed with varying lipid

  8. PagP Crystallized from SDS/Cosolvent Reveals the Route for Phospholipid Access to the Hydrocarbon Ruler

    SciTech Connect

    Cuesta-Seijo, Jose Antonio; Neale, Chris; Khan, M. Adil; Moktar, Joel; Tran, Christopher D.; Bishop, Russell E.; Pomès, Régis; Privé, Gilbert G.

    2012-02-06

    Enzymatic reactions involving bilayer lipids occur in an environment with strict physical and topological constraints. The integral membrane enzyme PagP transfers a palmitoyl group from a phospholipid to lipid A in order to assist Escherichia coli in evading host immune defenses during infection. PagP measures the palmitoyl group with an internal hydrocarbon ruler that is formed in the interior of the eight-stranded antiparallel {beta} barrel. The access and egress of the palmitoyl group is thought to take a lateral route from the bilayer phase to the barrel interior. Molecular dynamics, mutagenesis, and a 1.4 {angstrom} crystal structure of PagP in an SDS/2-methyl-2,4-pentanediol (MPD) cosolvent system reveal that phospholipid access occurs at the crenel present between strands F and G of PagP. In this way, the phospholipid head group can remain exposed to the cell exterior while the lipid acyl chain remains in a predominantly hydrophobic environment as it translocates to the protein interior.

  9. PagP Crystallized from SDS/Cosolvent Reveals the Route for Phospholipid Access to the Hydrocarbon Ruler

    PubMed Central

    Cuesta-Seijo, Jose Antonio; Neale, Chris; Khan, M. Adil; Moktar, Joel; Tran, Christopher D.; Bishop, Russell E.; Pomès, Régis; Privé, Gilbert G.

    2016-01-01

    SUMMARY Enzymatic reactions involving bilayer lipids occur in an environment with strict physical and topological constraints. The integral membrane enzyme PagP transfers a palmitoyl group from a phospholipid to lipid A in order to assist Escherichia coli in evading host immune defenses during infection. PagP measures the palmitoyl group with an internal hydrocarbon ruler that is formed in the interior of the eight-stranded antiparallel β barrel. The access and egress of the palmitoyl group is thought to take a lateral route from the bilayer phase to the barrel interior. Molecular dynamics, mutagenesis, and a 1.4 Å crystal structure of PagP in an SDS/2-methyl-2, 4-pentanediol (MPD) cosolvent system reveal that phospholipid access occurs at the crenel present between strands F and G of PagP. In this way, the phospholipid head group can remain exposed to the cell exterior while the lipid acyl chain remains in a predominantly hydrophobic environment as it translocates to the protein interior. PMID:20826347

  10. Cell signalling and phospholipid metabolism. Final report

    SciTech Connect

    Boss, W.F.

    1990-12-31

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  11. Gravimetric determination of phospholipid concentration.

    PubMed

    Tejera-Garcia, Roberto; Connell, Lisa; Shaw, Walter A; Kinnunen, Paavo K J

    2012-09-01

    Accurate determination of lipid concentrations is an obligatory routine in a research laboratory engaged in studies using this class of biomaterials. For phospholipids, this is frequently accomplished using the phosphate assay (Bartlett, G.R. Phosphorus Assay in Column Chromatography. J. Biol. Chem. 234, 466-468, 1959). Given the purity of the currently commercially available synthetic and isolated natural lipids, we have observed that determination of the dry weight of lipid stock solutions provides the fastest, most accurate, and generic method to assay their concentrations. The protocol described here takes advantage of the high resolution and accuracy obtained by modern weighing technology. We assayed by this technique the concentrations of a number of phosphatidylcholine samples, with different degrees of acyl chain saturation and length, and in different organic solvents. The results were compared with those from Bartlett assay, (31)P NMR, and Langmuir compression isotherms. The data obtained show that the gravimetric assay yields lipid concentrations with a resolution similar or better than obtained by the other techniques.

  12. Self-Assembly of Bilayer Vesicles Made of Saturated Long Chain Fatty Acids.

    PubMed

    Douliez, Jean-Paul; Houssou, Bérénice Houinsou; Fameau, A-Laure; Navailles, Laurence; Nallet, Frédéric; Grélard, Axelle; Dufourc, Erick J; Gaillard, Cédric

    2016-01-19

    Saturated long chain fatty acids (sLCFA, e.g., C14:0, C16:0, and C18:0) are potentially the greenest and cheapest surfactants naturally available. However, because aqueous sodium soaps of sLCFA are known to crystallize, the self-assembly of stable bilayer vesicles has not been reported yet. Here, by using such soaps in combination with guanidine hydrochloride (GuHCl), which has been shown recently to prevent crystallization, we were capable of producing stable bilayer vesicles made of sLCFA. The phase diagrams were established for a variety of systems showing that vesicles can form in a broad range of composition and pH. Both solid state NMR and small-angle neutron scattering allowed demonstrating that in such vesicles sLCFA are arranged in a bilayer structure which exhibits similar dynamic and structural properties as those of phospholipid membranes. We expect these vesicles to be of interest as model systems of protocells and minimal cells but also for various applications since fatty acids are potentially substitutes to phospholipids, synthetic surfactants, and polymers. PMID:26700689

  13. The Bilayer Enhances Rhodopsin Kinetic Stability in Bovine Rod Outer Segment Disk Membranes

    PubMed Central

    Corley, Scott C.; Sprangers, Peter; Albert, Arlene D.

    2011-01-01

    Rhodopsin is a kinetically stable protein constituting >90% of rod outer segment disk membrane protein. To investigate the bilayer contribution to rhodopsin kinetic stability, disk membranes were systematically disrupted by octyl-β-D-glucopyranoside. Rhodopsin kinetic stability was examined under subsolubilizing (rhodopsin in a bilayer environment perturbed by octyl-β-D-glucopyranoside) and under fully solubilizing conditions (rhodopsin in a micelle with cosolubilized phospholipids). As determined by DSC, rhodopsin exhibited a scan-rate-dependent irreversible endothermic transition at all stages of solubilization. The transition temperature (Tm) decreased in the subsolubilizing stage. However, once the rhodopsin was in a micelle environment there was little change of the Tm as the phospholipid/rhodopsin ratio in the mixed micelles decreased during the fully solubilized stage. Rhodopsin thermal denaturation is consistent with the two-state irreversible model at all stages of solubilization. The activation energy of denaturation (Eact) was calculated from the scan rate dependence of the Tm and from the rate of rhodopsin thermal bleaching at all stages of solubilization. The Eact as determined by both techniques decreased in the subsolubilizing stage, but remained constant once fully solubilized. These results indicate the bilayer structure increases the Eact to rhodopsin denaturation. PMID:21689528

  14. Structure and motion of phospholipids in human plasma lipoproteins. A sup 31 P NMR study

    SciTech Connect

    Fenske, D.B.; Chana, R.S.; Parmar, Y.I.; Treleaven, W.D.; Cushley, R.J. )

    1990-04-24

    The structure and motion of phospholipids in human plasma lipoproteins have been studied by using {sup 31}P NMR. Lateral diffusion coefficients, D{sub T}, obtained from the viscosity dependence of the {sup 31}P NMR line widths, were obtained for very low density lipoprotein (VLDL), low-density lipoprotein (LDL), high-density lipoproteins (HDL{sub 2}, HDL{sub 3}), and egg PC/TO microemulsions at 25{degree}C, for VLDL at 40{degree}C, and for LDL at 45{degree}C. In order to prove the orientation and/or order of the phospholipid head-group, estimates of the residual chemical shift anistropy, {Delta}{sigma}, have been obtained for all the lipoproteins and the microemulsions from the viscosity and field dependence for the {sup 31}P NMR line widths. These results suggest differences in the orientation and/or ordering of the head-group in the HDLs. The dynamic behavior of the phosphate moiety in LDL and HDL{sub 3} has been obtained from the temperature dependence of the {sup 31}P spin-lattice relaxation rates. Values of the correlation time for phosphate group reorientation and the activation energy for the motion are nearly identical in LDL and HDL{sub 3} and are similar to values obtained for phospholipid bilayers. This argues against long-lived protein-lipid interactions being the source of either the slow diffusion in LDL or the altered head-group orientation in the HDLs.

  15. Raman Investigation of Temperature Profiles of Phospholipid Dispersions in the Biochemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Craig, Norman C.

    2015-06-01

    The temperature dependence of self-assembled, cell-like dispersions of phospholipids is investigated with Raman spectroscopy in the biochemistry laboratory. Vibrational modes in the hydrocarbon interiors of phospholipid bilayers are strongly Raman active, whereas the vibrations of the polar head groups and the water matrix have little Raman activity. From Raman spectra increases in fluidity of the hydrocarbon chains can be monitored with intensity changes as a function of temperature in the CH-stretching region. The experiment uses detection of scattered 1064-nm laser light (Nicolet NXR module) by a Fourier transform infrared spectrometer (Nicolet 6700). A thermoelectric heater-cooler device (Melcor) gives convenient temperature control from 5 to 95°C for samples in melting point capillaries. Use of deuterium oxide instead of water as the matrix avoids some absorption of the exciting laser light and interference with intensity observations in the CH-stretching region. Phospholipids studied range from dimyristoylphosphotidyl choline (C14, transition T = 24°C) to dibehenoylphosphotidyl choline (C22, transition T = 74°C).

  16. Fusion of phospholipid vesicles induced by muscle glyceraldehyde-3-phosphate dehydrogenase in the absence of calcium.

    PubMed

    Morero, R D; Viñals, A L; Bloj, B; Farías, R N

    1985-04-01

    Ca2+-induced fusion of phospholipid vesicles (phosphatidylcholine/phosphatidic acid, 9:1 mol/mol) prepared by ethanolic injection was followed by five different procedures: resonance energy transfer, light scattering, electron microscopy, intermixing of aqueous content, and gel filtration through Sepharose 4-B. The five methods gave concordant results, showing that vesicles containing only 10% phosphatidic acid can be induced to fuse by millimolar concentrations of Ca2+. When the fusing capability of several soluble proteins was assayed, it was found that concanavalin A, bovine serum albumin, ribonuclease, and protease were inactive. On the other hand, lysozyme, L-lactic dehydrogenase, and muscle and yeast glyceraldehyde-3-phosphate dehydrogenase were capable of inducing vesicle fusion. Glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle, the most extensively studied protein, proved to be very effective: 0.1 microM was enough to induce complete intermixing of bilayer phospholipid vesicles. Under conditions used in this work, fusion was accompanied by leakage of internal contents. The fusing capability of glyceraldehyde-3-phosphate dehydrogenase was not affected by 5 mM ethylenediaminetetraacetic acid. The Ca2+ concentration in the medium, as determined by atomic absorption spectroscopy, was 5 ppm. Heat-denatured enzyme was incapable of inducing fusion. We conclude that glyceraldehyde-3-phosphate dehydrogenase is a soluble protein inherently endowed with the capability of fusing phospholipid vesicles.

  17. Global alignment: Finding rearrangements during alignment

    SciTech Connect

    Brudno, Michael; Malde, Sanket; Poliakov, Alexander; Do, Chuong B.; Couronne, Olivier; Dubchak, Inna; Batzoglou, Serafim

    2003-01-06

    Motivation: To compare entire genomes from different species, biologists increasingly need alignment methods that are efficient enough to handle long sequences, and accurate enough to correctly align the conserved biological features between distant species. The two main classes of pairwise alignments are global alignment, where one string is transformed into the other, and local alignment, where all locations of similarity between the two strings are returned. Global alignments are less prone to demonstrating false homology as each letter of one sequence is constrained to being aligned to only one letter of the other. Local alignments, on the other hand, can cope with rearrangements between non-syntenic, orthologous sequences by identifying similar regions in sequences; this, however, comes at the expense of a higher false positive rate due to the inability of local aligners to take into account overall conservation maps.

  18. Hepatic secretion of phospholipid vesicles in the mouse critically depends on mdr2 or MDR3 P-glycoprotein expression. Visualization by electron microscopy.

    PubMed Central

    Crawford, A R; Smith, A J; Hatch, V C; Oude Elferink, R P; Borst, P; Crawford, J M

    1997-01-01

    Hepatocellular secretion of bile salts into the biliary space induces phospholipid and cholesterol secretion, but the mechanism for integrated lipid secretion is poorly understood. Knockout mice unable to make the canalicular membrane mdr2 P-glycoprotein exhibit normal rates of bile salt secretion, yet are virtually incapable of secreting biliary phospholipid and cholesterol. As the mdr2 P-glycoprotein is thought to mediate transmembrane movement of phospholipid molecules, this mouse model was used to examine the mechanism for biliary phospholipid secretion. In wild-type mdr2 (+/+) mice, ultrarapid cryofixation of livers in situ revealed abundant unilamellar lipid vesicles within bile canalicular lumina. Although 74% of vesicles were adherent to the external aspect of the canalicular plasma membrane, bilayer exocytosis was not observed. Vesicle numbers in mdr2 (+/-) and (-/-) mice were 55 and 12% of wild-type levels, respectively. In a strain of mdr2 (-/-) mice which had been "rescued" by heterozygous genomic insertion of the MDR3 gene, the human homologue of the murine mdr2 gene, vesicle numbers returned to 95% of wild-type levels. Our findings indicate that biliary phospholipid is secreted as vesicles by a process largely dependent on the action of the murine mdr2 P-glycoprotein or human MDR3 P-glycoprotein. We conclude that mdr2-mediated phospholipid translocation from the internal to external hemileaflet of the canalicular membrane permits exovesiculation of the external hemileaflet, a vesiculation process promoted by the detergent environment of the bile canalicular lumen. PMID:9366571

  19. Hepatic secretion of phospholipid vesicles in the mouse critically depends on mdr2 or MDR3 P-glycoprotein expression. Visualization by electron microscopy.

    PubMed

    Crawford, A R; Smith, A J; Hatch, V C; Oude Elferink, R P; Borst, P; Crawford, J M

    1997-11-15

    Hepatocellular secretion of bile salts into the biliary space induces phospholipid and cholesterol secretion, but the mechanism for integrated lipid secretion is poorly understood. Knockout mice unable to make the canalicular membrane mdr2 P-glycoprotein exhibit normal rates of bile salt secretion, yet are virtually incapable of secreting biliary phospholipid and cholesterol. As the mdr2 P-glycoprotein is thought to mediate transmembrane movement of phospholipid molecules, this mouse model was used to examine the mechanism for biliary phospholipid secretion. In wild-type mdr2 (+/+) mice, ultrarapid cryofixation of livers in situ revealed abundant unilamellar lipid vesicles within bile canalicular lumina. Although 74% of vesicles were adherent to the external aspect of the canalicular plasma membrane, bilayer exocytosis was not observed. Vesicle numbers in mdr2 (+/-) and (-/-) mice were 55 and 12% of wild-type levels, respectively. In a strain of mdr2 (-/-) mice which had been "rescued" by heterozygous genomic insertion of the MDR3 gene, the human homologue of the murine mdr2 gene, vesicle numbers returned to 95% of wild-type levels. Our findings indicate that biliary phospholipid is secreted as vesicles by a process largely dependent on the action of the murine mdr2 P-glycoprotein or human MDR3 P-glycoprotein. We conclude that mdr2-mediated phospholipid translocation from the internal to external hemileaflet of the canalicular membrane permits exovesiculation of the external hemileaflet, a vesiculation process promoted by the detergent environment of the bile canalicular lumen.

  20. Local mobility in lipid domains of supported bilayers characterized by atomic force microscopy and fluorescence correlation spectroscopy.

    SciTech Connect

    Frankel, Daniel J.; Buranda, T.; Burns, Alan Richard

    2005-01-01

    Fluorescence correlation spectroscopy (FCS) is used to examine mobility of labeled probes at specific sites in supported bilayers consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid domains in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Those sites are mapped beforehand with simultaneous atomic force microscopy and submicron confocal fluorescence imaging, allowing characterization of probe partitioning between gel DPPC and disordered liquid DOPC domains with corresponding topography of domain structure. We thus examine the relative partitioning and mobility in gel and disordered liquid phases for headgroup- and tailgroup-labeled GM1 ganglioside probes and for headgroup- and tailgroup-labeled phospholipid probes. For the GM1 probes, large differences in mobility between fluid and gel domains are observed; whereas unexpected mobility is observed in submicron gel domains for the phospholipid probes. We attribute the latter to domain heterogeneities that could be induced by the probe. Furthermore, fits to the FCS data for the phospholipid probes in the DOPC fluid phase require two components (fast and slow). Although proximity to the glass substrate may be a factor, local distortion of the probe by the fluorophore could also be important. Overall, we observe nonideal aspects of phospholipid probe mobility and partitioning that may not be restricted to supported bilayers.

  1. On the use of deuterium nuclear magnetic resonance as a probe of chain packing in lipid bilayers

    SciTech Connect

    Boden, N.; Jones, S.A.; Sixl, F. )

    1991-02-26

    The packing of hydrocarbon chains in the bilayers of lamellar (L{sub {alpha}}) phases of soap/water and phospholipid/water mixtures has been studied by deuterium NMR spectroscopy and X-ray diffraction. A universal correlation is shown to exist between the average C-D bond order parameter {bar S}{sub CD} of hydrocarbon chains and the average area per chain a{sub ch}, irrespective of the chemical structure of the surfactant, composition, and temperature. The practical utility of the correlation is illustrated by its application to the characterization of the distribution of various hydrophobic and amphiphilic solutes in bilayers. The distribution of hydrocarbons within a bilayer is shown to depend upon their molecular structure in a manner which highlights the nature of the molecular interactions involved. But the response of the surfactant chains to the void volume created in the center of the bilayer is dependent upon the distance of penetration of the alcohol into the bilayer. For benzyl alcohol, the shortest molecule, this void volume is taken up by the disordering of the chains, while for decanol, the longest molecule, it is absorbed by interdigitation of the chains of apposing monolayers. For octanol, the chain interdigitation mechanism is dominant at low concentrations, but there is a transition to chain disordering at high concentrations. Finally, it is shown that the correlation provides a useful test for statistical mechanical models of chain ordering in lipid bilayers.

  2. Acyl chain composition and coexisting fluid phases in lipid bilayers

    NASA Astrophysics Data System (ADS)

    Gu, Yongwen; Bradley, Miranda; Mitchell, Drake

    2011-10-01

    At room temperature phospholipid bilayers enriched in sphingolipids and cholesterol may form a solid phase as well as two coexisting fluid phases. These are the standard fluid phase, or the liquid-disordered phase, ld, and the liquid-ordered phase, lo, which is commonly associated with lipid rafts. Ternary mixtures of palmitoyl-oleoyl-phosphocholine (POPC; 16:0,18:1 PC), sphingomyelin (SPM), and cholesterol (Chol) form coexisting lo, ld and solid phases over a wide range of molar ratios. We are examining the ability of two fluorescent probes to detect these 2 phases: NBD linked to di-16:0 PE which partitions strongly into the lo phase and NBD linked to di-18:1 PE which partitions strongly into the ld phase. We are also examining the effect of the highly polyunsaturated phospholipid stearoyl-docosahexanoyl-phosphocholine (SDPC; 18:0, 22:6 PC) on the ternary phase diagram of POPC/SPM/Chol with particular focus on the functionally important lo/ld coexistence region. We report on the fluorescence lifetime and anisotropy decay dynamics of these two fluorescent probes.

  3. Health effects of dietary phospholipids

    PubMed Central

    2012-01-01

    Beneficial effects of dietary phospholipids (PLs) have been mentioned since the early 1900's in relation to different illnesses and symptoms, e.g. coronary heart disease, inflammation or cancer. This article gives a summary of the most common therapeutic uses of dietary PLs to provide an overview of their approved and proposed benefits; and to identify further investigational needs. From the majority of the studies it became evident that dietary PLs have a positive impact in several diseases, apparently without severe side effects. Furthermore, they were shown to reduce side effects of some drugs. Both effects can partially be explained by the fact that PL are highly effective in delivering their fatty acid (FA) residues for incorporation into the membranes of cells involved in different diseases, e.g. immune or cancer cells. The altered membrane composition is assumed to have effects on the activity of membrane proteins (e.g. receptors) by affecting the microstructure of membranes and, therefore, the characteristics of the cellular membrane, e.g. of lipid rafts, or by influencing the biosynthesis of FA derived lipid second messengers. However, since the FAs originally bound to the applied PLs are increased in the cellular membrane after their consumption or supplementation, the FA composition of the PL and thus the type of PL is crucial for its effect. Here, we have reviewed the effects of PL from soy, egg yolk, milk and marine sources. Most studies have been performed in vitro or in animals and only limited evidence is available for the benefit of PL supplementation in humans. More research is needed to understand the impact of PL supplementation and confirm its health benefits. PMID:22221489

  4. The Effect of Cholesterol on Short- and Long-Chain Monounsaturated Lipid Bilayers as Determined by Molecular Dynamics Simulations and X-Ray Scattering

    PubMed Central

    Kučerka, Norbert; Perlmutter, Jason D.; Pan, Jianjun; Tristram-Nagle, Stephanie; Katsaras, John; Sachs, Jonathan N.

    2008-01-01

    We investigate the structure of cholesterol-containing membranes composed of either short-chain (diC14:1PC) or long-chain (diC22:1PC) monounsaturated phospholipids. Bilayer structural information is derived from all-atom molecular dynamics simulations, which are validated via direct comparison to x-ray scattering experiments. We show that the addition of 40 mol % cholesterol results in a nearly identical increase in the thickness of the two different bilayers. In both cases, the chain ordering dominates over the hydrophobic matching between the length of the cholesterol molecule and the hydrocarbon thickness of the bilayer, which one would expect to cause a thinning of the diC22:1PC bilayer. For both bilayers there is substantial headgroup rearrangement for lipids directly in contact with cholesterol, supporting the so-called umbrella model. Importantly, in diC14:1PC bilayers, a dynamic network of hydrogen bonds stabilizes long-lived reorientations of some cholesterol molecules, during which they are found to lie perpendicular to the bilayer normal, deep within the bilayer's hydrophobic core. Additionally, the simulations show that the diC14:1PC bilayer is significantly more permeable to water. These differences may be correlated with faster cholesterol flip-flop between the leaflets of short-chain lipid bilayers, resulting in an asymmetric distribution of cholesterol molecules. This asymmetry was observed experimentally in a case of unilamellar vesicles (ULVs), and reproduced through a set of novel asymmetric simulations. In contrast to ULVs, experimental data for oriented multilamellar stacks does not show the asymmetry, suggesting that it results from the curvature of the ULV bilayers. PMID:18515383

  5. Droplet-interface-bilayer assays in microfluidic passive networks

    PubMed Central

    Schlicht, Bárbara; Zagnoni, Michele

    2015-01-01

    Basic biophysical studies and pharmacological processes can be investigated by mimicking the intracellular and extracellular environments across an artificial cell membrane construct. The ability to reproduce in vitro simplified scenarios found in live cell membranes in an automated manner has great potential for a variety of synthetic biology and compound screening applications. Here, we present a fully integrated microfluidic system for the production of artificial lipid bilayers based on the miniaturisation of droplet-interface-bilayer (DIB) techniques. The platform uses a microfluidic design that enables the controlled positioning and storage of phospholipid-stabilized water-in-oil droplets, leading successfully to the scalable and automated formation of arrays of DIBs to mimic cell membrane processes. To ensure robustness of operation, we have investigated how lipid concentration, immiscible phase flow velocities and the device geometrical parameters affect the system performance. Finally, we produced proof-of-concept data showing that diffusive transport of molecules and ions across on-chip DIBs can be studied and quantified using fluorescence-based assays. PMID:25909686

  6. Lipid monolayer states and their relationships to bilayers.

    PubMed Central

    MacDonald, R C; Simon, S A

    1987-01-01

    Uncommon methods of formation and analysis of lipid monolayers have enabled the recognition of several monolayer states and the identification of that in which molecular organization corresponds closely to that of the bilayer. Monolayers were formed by continuously adding a solution of phospholipid [dimyristoyl phosphatidylcholine in hexane/ethanol, 9:1 (vol/vol)] to the air/water interface of a constant-area trough. This procedure generates unconventional surface pressure (pi)-surface concentration (gamma) isotherms, which for liquid-crystalline monolayers consist of straight lines with three prominent intersections, two of which are not apparent in conventional pi-A isotherms. The regions of linear change of pi are explicable in terms of the area dependence of alkyl chain entropy. The two breaks at lower pi delimit states in which both chains lie parallel to the surface. The third occurs at collapse, which corresponds to a true equilibrium for unstressed liposomes. Mechanical and thermodynamic properties of bilayers, particularly phase-transition parameters, correspond closely to those of monolayers with which they are in equilibrium. Images PMID:3473494

  7. A comparison of DMPC- and DLPE-based lipid bilayers.

    PubMed Central

    Damodaran, K V; Merz, K M

    1994-01-01

    interaction we find that the DLPE interface is relatively "flat" (as opposed to DMPC-based bilayers), which results in a surface that has regions of positive and negative charge that reside in the same plane along the bilayer normal. Based on this we propose that the DLPE bilayer interface can correlate itself with another DLPE interface by alignment of the regions of positive (or negative) charge on one leaflet with the opposite charges on the opposing leaflet. PMID:8038380

  8. Filamentous Fungi with High Cytosolic Phospholipid Transfer Activity in the Presence of Exogenous Phospholipid

    PubMed Central

    Record, Eric; Lesage, Laurence; Cahagnier, Bernard; Marion, Didier; Asther, Marcel

    1994-01-01

    The phospholipid transfer activity of cell extracts from 15 filamentous fungus strains grown on a medium containing phospholipids as the carbon source was measured by a fluorescence assay. This assay was based on the transfer of pyrene-labeled phosphatidylcholines forming the donor vesicles to acceptor vesicles composed of egg phosphatidylcholines. The highest phosphatidylcholine transfer activity was obtained with cell extracts from Aspergillus oryzae. The presence of exogenous phospholipids in the culture medium of A. oryzae was shown to increase markedly the activity of phospholipid transfer as well as the pool of exocellular proteins during the primary phase of growth. Modifications in the biochemical marker activities of cellular organelles were observed: succinate dehydrogenase, a mitochondrial marker; inosine diphosphatase, a Golgi system marker; and cytochrome c oxidoreductase, an endoplasmic reticulum marker, were increased 7.3-, 2-, and 22-fold, respectively, when A. oryzae was grown in the presence of phospholipids. PMID:16349388

  9. Translocation of alpha-sarcin across the lipid bilayer of asolectin vesicles.

    PubMed Central

    Oñaderra, M; Mancheño, J M; Gasset, M; Lacadena, J; Schiavo, G; Martínez del Pozo, A; Gavilanes, J G

    1993-01-01

    alpha-Sarcin is a cytotoxic protein produced by the mould Aspergillus giganteus. Insertion of alpha-sarcin into asolectin membranes has been demonstrated by protein labelling with photoreactive phospholipids. alpha-Sarcin added externally to tRNA-containing asolectin liposomes degrades the entrapped tRNA. Trypsin-containing asolectin liposomes were also prepared. Encapsulated trypsin degrades alpha-sarcin, even in the presence of a large excess of external hen egg-white trypsin inhibitor to prevent any alpha-sarin degradation outside the vesicles. These processes occur only with acidic phospholipids and were not observed when phosphatidylcholine vesicles were used. These results indicate that alpha-sarcin penetrates the lipid bilayer and becomes exposed to the lumen of negatively charged liposomes. Images Figure 3 Figure 5 PMID:8216220

  10. Formation and finite element analysis of tethered bilayer lipid structures.

    PubMed

    Kwak, Kwang Joo; Valincius, Gintaras; Liao, Wei-Ching; Hu, Xin; Wen, Xuejin; Lee, Andrew; Yu, Bo; Vanderah, David J; Lu, Wu; Lee, L James

    2010-12-01

    curves exhibited two semicircle spectral features typical for the large size defects in planar tBLMs. FEA revealed that, to account for these EI features for bound liposome systems (50-500 nm diameter), one needs to assume much lower tBLM conductivities of the submembrane space, which separates the electrode surface and the phospholipid bilayer. Alternatively, FEA indicates that such features may also be observed on composite surfaces containing both bound liposomes and patches of planar bilayers. Triple semicircular features, observed in some of the experimental EI curves, were attributed to an increased complexity of the real tBLMs. The modeling demonstrated that such features are typical for heterogeneous tBLM surfaces containing large patches of different defectiveness levels. By integrating AFM, EIS, and FEA data, our work provides diagnostic criteria allowing the precise characterization of the properties and the morphology of surface supported bilayer systems.

  11. Formation and finite element analysis of tethered bilayer lipid structures.

    PubMed

    Kwak, Kwang Joo; Valincius, Gintaras; Liao, Wei-Ching; Hu, Xin; Wen, Xuejin; Lee, Andrew; Yu, Bo; Vanderah, David J; Lu, Wu; Lee, L James

    2010-12-01

    curves exhibited two semicircle spectral features typical for the large size defects in planar tBLMs. FEA revealed that, to account for these EI features for bound liposome systems (50-500 nm diameter), one needs to assume much lower tBLM conductivities of the submembrane space, which separates the electrode surface and the phospholipid bilayer. Alternatively, FEA indicates that such features may also be observed on composite surfaces containing both bound liposomes and patches of planar bilayers. Triple semicircular features, observed in some of the experimental EI curves, were attributed to an increased complexity of the real tBLMs. The modeling demonstrated that such features are typical for heterogeneous tBLM surfaces containing large patches of different defectiveness levels. By integrating AFM, EIS, and FEA data, our work provides diagnostic criteria allowing the precise characterization of the properties and the morphology of surface supported bilayer systems. PMID:20977245

  12. Does fluoride disrupt hydrogen bond network in cationic lipid bilayer? Time-dependent fluorescence shift of Laurdan and molecular dynamics simulations

    SciTech Connect

    Pokorna, Sarka; Jurkiewicz, Piotr; Hof, Martin; Vazdar, Mario; Cwiklik, Lukasz; Jungwirth, Pavel

    2014-12-14

    Time-dependent fluorescence shift (TDFS) of Laurdan embedded in phospholipid bilayers reports on hydration and mobility of the phospholipid acylgroups. Exchange of H{sub 2}O with D{sub 2}O prolongs the lifetime of lipid-water and lipid-water-lipid interactions, which is reflected in a significantly slower TDFS kinetics. Combining TDFS measurements in H{sub 2}O and D{sub 2}O hydrated bilayers with atomistic molecular dynamics (MD) simulations provides a unique tool for characterization of the hydrogen bonding at the acylgroup level of lipid bilayers. In this work, we use this approach to study the influence of fluoride anions on the properties of cationic bilayers composed of trimethylammonium-propane (DOTAP). The results obtained for DOTAP are confronted with those for neutral phosphatidylcholine (DOPC) bilayers. Both in DOTAP and DOPC H{sub 2}O/D{sub 2}O exchange prolongs hydrogen-bonding lifetime and does not disturb bilayer structure. These results are confirmed by MD simulations. TDFS experiments show, however, that for DOTAP this effect is cancelled in the presence of fluoride ions. We interpret these results as evidence that strongly hydrated fluoride is able to steal water molecules that bridge lipid carbonyls. Consequently, when attracted to DOTAP bilayer, fluoride disrupts the local hydrogen-bonding network, and the differences in TDFS kinetics between H{sub 2}O and D{sub 2}O hydrated bilayers are no longer observed. A distinct behavior of fluoride is also evidenced by MD simulations, which show different lipid-ion binding for Cl{sup −} and F{sup −}.

  13. Dissipative Particle Dynamics Simulations for Phospholipid Membranes Based on a Four-To-One Coarse-Grained Mapping Scheme.

    PubMed

    Li, Xiaoxu; Gao, Lianghui; Fang, Weihai

    2016-01-01

    In this article, a new set of parameters compatible with the dissipative particle dynamics (DPD) force field is developed for phospholipids. The coarse-grained (CG) models of these molecules are constructed by mapping four heavy atoms and their attached hydrogen atoms to one bead. The beads are divided into types distinguished by charge type, polarizability, and hydrogen-bonding capacity. First, we derive the relationship between the DPD repulsive force and Flory-Huggins χ-parameters based on this four-to-one CG mapping scheme. Then, we optimize the DPD force parameters for phospholipids. The feasibility of this model is demonstrated by simulating the structural and thermodynamic properties of lipid bilayer membranes, including the membrane thickness, the area per lipid, the lipid tail orientation, the bending rigidity, the rupture behavior, and the potential of mean force for lipid flip-flop. PMID:27137463

  14. Dissipative Particle Dynamics Simulations for Phospholipid Membranes Based on a Four-To-One Coarse-Grained Mapping Scheme

    PubMed Central

    Li, Xiaoxu; Gao, Lianghui; Fang, Weihai

    2016-01-01

    In this article, a new set of parameters compatible with the dissipative particle dynamics (DPD) force field is developed for phospholipids. The coarse-grained (CG) models of these molecules are constructed by mapping four heavy atoms and their attached hydrogen atoms to one bead. The beads are divided into types distinguished by charge type, polarizability, and hydrogen-bonding capacity. First, we derive the relationship between the DPD repulsive force and Flory-Huggins χ-parameters based on this four-to-one CG mapping scheme. Then, we optimize the DPD force parameters for phospholipids. The feasibility of this model is demonstrated by simulating the structural and thermodynamic properties of lipid bilayer membranes, including the membrane thickness, the area per lipid, the lipid tail orientation, the bending rigidity, the rupture behavior, and the potential of mean force for lipid flip-flop. PMID:27137463

  15. Lipid peroxidation in small and large phospholipid unilamellar vesicles induced by water-soluble free radical sources.

    PubMed

    Li, Q T; Yeo, M H; Tan, B K

    2000-06-24

    The susceptibility of small and large egg yolk phosphatidylcholine unilamellar vesicles to Fe(2+)/histidine-Fe(3+)- and Fenton reagent (Fe(2+)-H(2)O(2))-induced lipid peroxidation was evaluated by measuring the formation of thiobarbituric acid reactive substances (TBARS). It has been found that surface curvature or phospholipid packing exerts significant effect on the oxidative susceptibility of the unsaturated lipid bilayers and the highly curved and loosely packed small unilamellar vesicles (SUVs) exhibit much less resistance to the oxidative stress induced by the water-soluble free radical sources. The presence of lipid hydroperoxides in sonicated vesicles was excluded as the cause for higher level of lipid peroxidation in the phospholipid SUVs. Instead, the experimental results can be explained by the difference in ability of the water-soluble oxidants to penetrate the two types of lipid membranes. This hypothesis is supported by data obtained from fluorescence lifetime and quenching studies. PMID:10873566

  16. Correlation between fluidising effects on phospholipid membranes and mitochondrial respiration of propofol and p-nitrosophenol homologues.

    PubMed

    Momo, Federico; Fabris, Sabrina; Wisniewska, Anna; Fiore, Cristina; Bindoli, Alberto; Scutari, Guido; Stevanato, Roberto

    2003-03-25

    Nitrosopropofol (2-6-diisopropyl-4-nitrosophenol) has dramatic consequences for respiration, ATP synthesis and the transmembrane potential of isolated rat liver mitochondria at concentrations at which propofol (2-6-diisopropylphenol) does not cause any apparent effects. These results correlate well with the observation that nitrosopropofol is also a stronger perturbing agent of phospholipid membranes. In this paper we verify the possible biological activity of different phenols and nitrosophenols on mitochondrial respiration. We then discuss their interactions with phospholipid liposomes, studied with differential scanning calorimetry, spin labelling techniques and UV-Vis spectrophotometry, in order to obtain information on drug distribution and the modifications they impose on lipid bilayer. The results of the experiments performed on mitochondria and model membranes prove an interesting correlation between the effects of the molecules on both systems.

  17. Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids

    PubMed Central

    Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter

    2016-01-01

    Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only. PMID:27222167

  18. Optimization of the Design and Preparation of Nanoscale Phospholipid Bilayers for its Application to Solution NMR

    PubMed Central

    Puthenveetil, Robbins; Vinogradova, Olga

    2016-01-01

    Despite arduous efforts and recent technological developments structural investigation of integral membrane proteins remains a challenge. The primary deterrents include difficulties with their expression, low inherent solubility and various problems associated with existing membrane mimicking systems. A relatively new class of membrane mimetics, nanodiscs, has been developed as a promising alternative. Although nanodiscs have been proven successful for several biophysical applications, they yet remain to become the system of preferred choice for structure determination. We have hereby made nanodiscs more suitable for solution NMR applications by reducing the diameter of the self-assembly complex to its potential limit. We achieved a noticeable improvement in the quality of NMR spectra obtained for the transmembrane and cytoplasmic domains of integrin αIIb incorporated into these smaller discs rendering them susceptible for a thorough structural investigation. We also present an on-column method for a rapid, efficient, single step preparation of protein incorporated nanodiscs at high concentrations. These discs have been fully characterized by transmission electron microscopy, dynamic light scattering and differential scanning calorimetry. PMID:23436707

  19. Antioxidant effect of 4-nerolidylcatechol and α-tocopherol in erythrocyte ghost membranes and phospholipid bilayers.

    PubMed

    Fernandes, K S; Silva, A H M; Mendanha, S A; Rezende, K R; Alonso, A

    2013-09-01

    4-Nerolidylcatechol (4-NC) is found in Pothomorphe umbellata root extracts and is reported to have a topical protective effect against UVB radiation-induced skin damage, toxicity in melanoma cell lines, and antimalarial activity. We report a comparative study of the antioxidant activity of 4-NC and α-tocopherol against lipid peroxidation initiated by two free radical-generating systems: 2,2'-azobis(2-aminopropane) hydrochloride (AAPH) and FeSO4/H2O2, in red blood cell ghost membranes and in egg phosphatidylcholine (PC) vesicles. Lipid peroxidation was monitored by membrane fluidity changes assessed by electron paramagnetic resonance spectroscopy of a spin-labeled lipid and by the formation of thiobarbituric acid-reactive substances. When lipoperoxidation was initiated by the hydroxyl radical in erythrocyte ghost membranes, both 4-NC and α-tocopherol acted in a very efficient manner. However, lower activities were observed when lipoperoxidation was initiated by the peroxyl radical; and, in this case, the protective effect of α-tocopherol was lower than that of 4-NC. In egg PC vesicles, malondialdehyde formation indicated that 4-NC was effective against lipoperoxidation initiated by both AAPH and FeSO4/H2O2, whereas α-tocopherol was less efficient in protecting against lipoperoxidation by AAPH, and behaved as a pro-oxidant for FeSO4/H2O2. The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical assay indicated that two free radicals were scavenged per 4-NC molecule, and one free radical was scavenged per α-tocopherol molecule. These data provide new insights into the antioxidant capacity of 4-NC, which may have therapeutic applications for formulations designed to protect the skin from sunlight irradiation.

  20. How well does cholesteryl hemisuccinate mimic cholesterol in saturated phospholipid bilayers?

    PubMed

    Kulig, Waldemar; Tynkkynen, Joona; Javanainen, Matti; Manna, Moutusi; Rog, Tomasz; Vattulainen, Ilpo; Jungwirth, Pavel

    2014-02-01

    Cholesteryl hemisuccinate is a detergent that is often used to replace cholesterol in crystallization of membrane proteins. Here we employ atomistic molecular dynamics simulations to characterize how well the properties of cholesteryl hemisuccinate actually match those of cholesterol in saturated protein-free lipid membranes. We show that the protonated form of cholesteryl hemisuccinate mimics many of the membrane properties of cholesterol quite well, while the deprotonated form of cholesteryl hemisuccinate is less convincing in this respect. Based on the results, we suggest that cholesteryl hemisuccinate in its protonated form is a quite faithful mimic of cholesterol for membrane protein crystallization, if specific cholesterol-protein interactions (not investigated here) are not playing a crucial role.

  1. Antioxidation behavior of milkweed oil 4-hydroxy-3-methyoxycinnamate esters in phospholipid bilayers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Milkweed (Asclepia syriaca) has seed oil that is rich in polyunsaturated triacylglycerides that contain olefinic groups. The olefinic groups can be chemically oxidized to form either epoxy or polyhydroxy triacylglycerides that can be esterified with trans-4-hydroxy-3-methoxoycinnamic acid, commonly...

  2. Effects of Polyhexamethylene Biguanide and Polyquaternium-1 on Phospholipid Bilayer Structure and Dynamics.

    PubMed

    Horner, Ian J; Kraut, Nadine D; Hurst, Jerod J; Rook, Alyssa M; Collado, Crystal M; Atilla-Gokcumen, G Ekin; Maziarz, E Peter; Liu, X Michael; Merchea, Mohinder M; Bright, Frank V

    2015-08-20

    Multipurpose solutions (MPS) are a single solution that functions to simultaneously rinse, disinfect, clean, and store soft contact lenses. Several commercial MPS products contain polyhexamethylene biguanide (PHMB) and/or polyquaternium-1 (PQ-1) as antimicrobial agents. In this paper we have created an in vitro small unilamellar vesicle (SUV) model of the corneal epithelial surface, and we have assessed the interactions of PHMB and PQ-1 with several model biomembranes by using fluorescence spectroscopy, dynamic light scattering (DLS), and liquid chromatography-mass spectrometry (LC-MS). Steady-state and time-resolved fluorescence were used to assess the membrane acyl chain and polar headgroup region local microenvironment as a function of added PHMB or PQ-1. DLS was used to detect and quantify SUV aggregation induced by PHMB and PQ-1. LC-MS was used to determine the liposomal composition from any precipitated materials in comparison to the as-prepared SUVs. The results are consistent with PHMB adsorbing onto and PQ-1 intercalating into the biomembrane structure. The differences between the two interaction mechanisms have substantial impacts on the biomembrane dynamics and stability.

  3. Emerging roles for anionic non-bilayer phospholipids in fortifying the outer membrane permeability barrier.

    PubMed

    Bishop, Russell E

    2014-09-01

    Lately, researchers have been actively investigating Escherichia coli lptD mutants, which exhibit reduced transport of lipopolysaccharide to the cell surface. In this issue of the Journal of Bacteriology, Sutterlin et al. (H. A. Sutterlin, S. Zhang, and T. J. Silhavy, J. Bacteriol. 196:3214-3220, 2014) now reveal an important functional role for phosphatidic acid in fortifying the outer membrane permeability barrier in certain lptD mutant backgrounds. These findings come on the heels of the first reports of two LptD crystal structures, which now provide a structural framework for interpreting lptD genetics.

  4. Roles of Sterol Derivatives in Regulating the Properties of Phospholipid Bilayer Systems.

    PubMed

    Bui, Tham Thi; Suga, Keishi; Umakoshi, Hiroshi

    2016-06-21

    Liposomes are considered an ideal biomimetic environment and are potential functional carriers for important molecules such as steroids and sterols. With respect to the regulation of self-assembly via sterol insertion, several pathways such as the sterol biosynthesis pathway are affected by the physicochemical properties of the membranes. However, the behavior of steroid or sterol molecules (except cholesterol (Chl)) in the self-assembled membranes has not been thoroughly investigated. In this study, to analyze the fundamental behavior of steroid molecules in fluid membranes, Chl, lanosterol, and ergosterol were used as representative sterols in order to clarify how they regulate the physicochemical properties of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes. Membrane properties such as surface membrane fluidity, hydrophobicity, surface membrane polarity, inner membrane polarity, and inner membrane fluidity were investigated using fluorescent probes, including 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene, 8-anilino-1-naphthalenesulfonic acid, 6-propionyl-2-(dimethylamino) naphthalene, 6-dodecanoyl-2-dimethylaminonaphthalene, and 1,6-diphenyl-1,3,5-hexatriene. The results indicated that each sterol derivative could regulate the membrane properties in different ways. Specifically, Chl successfully increased the packing of the DOPC/Chl membrane proportional to its concentration, and lanosterol and ergosterol showed lower efficiencies in ordering the membrane in hydrophobic regions. Given the different binding positions of the probes in the membranes, the differences in membrane properties reflected the relationship between sterol derivatives and their locations in the membrane.

  5. Emerging Roles for Anionic Non-Bilayer Phospholipids in Fortifying the Outer Membrane Permeability Barrier

    PubMed Central

    2014-01-01

    Lately, researchers have been actively investigating Escherichia coli lptD mutants, which exhibit reduced transport of lipopolysaccharide to the cell surface. In this issue of the Journal of Bacteriology, Sutterlin et al. (H. A. Sutterlin, S. Zhang, and T. J. Silhavy, J. Bacteriol. 196:3214–3220, 2014) now reveal an important functional role for phosphatidic acid in fortifying the outer membrane permeability barrier in certain lptD mutant backgrounds. These findings come on the heels of the first reports of two LptD crystal structures, which now provide a structural framework for interpreting lptD genetics. PMID:25022852

  6. Effects of Polyhexamethylene Biguanide and Polyquaternium-1 on Phospholipid Bilayer Structure and Dynamics.

    PubMed

    Horner, Ian J; Kraut, Nadine D; Hurst, Jerod J; Rook, Alyssa M; Collado, Crystal M; Atilla-Gokcumen, G Ekin; Maziarz, E Peter; Liu, X Michael; Merchea, Mohinder M; Bright, Frank V

    2015-08-20

    Multipurpose solutions (MPS) are a single solution that functions to simultaneously rinse, disinfect, clean, and store soft contact lenses. Several commercial MPS products contain polyhexamethylene biguanide (PHMB) and/or polyquaternium-1 (PQ-1) as antimicrobial agents. In this paper we have created an in vitro small unilamellar vesicle (SUV) model of the corneal epithelial surface, and we have assessed the interactions of PHMB and PQ-1 with several model biomembranes by using fluorescence spectroscopy, dynamic light scattering (DLS), and liquid chromatography-mass spectrometry (LC-MS). Steady-state and time-resolved fluorescence were used to assess the membrane acyl chain and polar headgroup region local microenvironment as a function of added PHMB or PQ-1. DLS was used to detect and quantify SUV aggregation induced by PHMB and PQ-1. LC-MS was used to determine the liposomal composition from any precipitated materials in comparison to the as-prepared SUVs. The results are consistent with PHMB adsorbing onto and PQ-1 intercalating into the biomembrane structure. The differences between the two interaction mechanisms have substantial impacts on the biomembrane dynamics and stability. PMID:26239890

  7. Ambidextrous binding of cell and membrane bilayers by soluble matrix metalloproteinase-12.

    PubMed

    Koppisetti, Rama K; Fulcher, Yan G; Jurkevich, Alexander; Prior, Stephen H; Xu, Jia; Lenoir, Marc; Overduin, Michael; Van Doren, Steven R

    2014-11-21

    Matrix metalloproteinases (MMPs) regulate tissue remodelling, inflammation and disease progression. Some soluble MMPs are inexplicably active near cell surfaces. Here we demonstrate the binding of MMP-12 directly to bilayers and cellular membranes using paramagnetic NMR and fluorescence. Opposing sides of the catalytic domain engage spin-labelled membrane mimics. Loops project from the β-sheet interface to contact the phospholipid bilayer with basic and hydrophobic residues. The distal membrane interface comprises loops on the other side of the catalytic cleft. Both interfaces mediate MMP-12 association with vesicles and cell membranes. MMP-12 binds plasma membranes and is internalized to hydrophobic perinuclear features, the nuclear membrane and inside the nucleus within minutes. While binding of TIMP-2 to MMP-12 hinders membrane interactions beside the active site, TIMP-2-inhibited MMP-12 binds vesicles and cells, suggesting compensatory rotation of its membrane approaches. MMP-12 association with diverse cell membranes may target its activities to modulate innate immune responses and inflammation.

  8. Calorimetric Behavior of Phosphatidylcholine/Phosphatidylethanolamine Bilayers is Compatible with the Superlattice Model

    PubMed Central

    Cheng, Kwan Hon; Virtanen, Jorma; Somerharju, Pentti

    2012-01-01

    Differential scanning calorimetry was used to study the phase behavior of binary lipid bilayers consisting of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) of varying acyl chain length. A 2-state transition model was used to resolve the individual transition components, and the 2-state transition enthalpy, the relative enthalpy and the transition temperature of each component were plotted as a function of composition. Intriguingly, abrupt changes in these thermodynamic parameters were observed at or close to many “critical” XPE values predicted by the Superlattice model proposing that phospholipids with different headgroups tend to adopt regular rather than random lateral distributions. Statistical analysis indicated that the agreement between the observed and predicted “critical” compositions is highly significant. Accordingly, these data provide strong evidence for that the molecules in PC/PE bilayers tend to adopt regular, superlattice-like lateral arrangements, which could be involved in the regulation of the lipid compositions of biological membranes. PMID:22251448

  9. Protein stability and conformational rearrangements in lipid bilayers: linear gramicidin, a model system.

    PubMed Central

    Cotten, M; Xu, F; Cross, T A

    1997-01-01

    The replacement of four tryptophans in gramicidin A by four phenylalanines (gramicidin M) causes no change in the molecular fold of this dimeric peptide in a low dielectric isotropic organic solvent, but the molecular folds are dramatically different in a lipid bilayer environment. The indoles of gramicidin A interact with the anisotropic bilayer environment to induce a change in the molecular fold. The double-helical fold of gramicidin M, as opposed to the single-stranded structure of gramicidin A, is not compatible with ion conductance. Gramicidin A/gramicidin M hybrid structures have also been prepared, and like gramicidin M homodimers, these dimeric hybrids appear to have a double-helical fold, suggesting that a couple of indoles are being buried in the bilayer interstices. To achieve this equilibrium structure (i.e., minimum energy conformation), incubation at 68 degrees C for 2 days is required. Kinetically trapped metastable structures may be more common in lipid bilayers than in an aqueous isotropic environment. Structural characterizations in the bilayers were achieved with solid-state NMR-derived orientational constraints from uniformly aligned lipid bilayer samples, and characterizations in organic solvents were accomplished by solution NMR. Images FIGURE 2 FIGURE 3 FIGURE 5 PMID:9251781

  10. Morphological and nanomechanical behavior of supported lipid bilayers on addition of cationic surfactants.

    PubMed

    Lima, Lia M C; Giannotti, Marina I; Redondo-Morata, Lorena; Vale, M Luísa C; Marques, Eduardo F; Sanz, Fausto

    2013-07-30

    The addition of surfactants to lipid bilayers is important for the modulation of lipid bilayer properties (e.g., in protein reconstitution and development of nonviral gene delivery vehicles) and to provide insight on the properties of natural biomembranes. In this work, the thermal behavior, organization, and nanomechanical stability of model cationic lipid-surfactant bilayers have been investigated. Two different cationic surfactants, hexadecyltrimethylammonium bromide (CTAB) and a novel derivative of the amino acid serine (Ser16TFAc), have been added (up to 50 mol %) to both liposomes and supported lipid bilayers (SLBs) composed by the zwitterionic phospholipid DPPC. The thermal phase behavior of mixed liposomes has been probed by differential scanning calorimetry (DSC), and the morphology and nanomechanical properties of mixed SLBs by atomic force microscopy-based force spectroscopy (AFM-FS). Although DSC thermograms show different results for the two mixed liposomes, when both are deposited on mica substrates similar trends on the morphology and the mechanical response of the lipid-surfactant bilayers are observed. DSC thermograms indicate microdomain formation in both systems, but while CTAB decreases the degree of organization on the liposome bilayer, Ser16TFAc ultimately induces the opposite effect. Regarding the AFM-FS studies, they show that microphase segregation occurs for these systems and that the effect is dependent on the surfactant content. In both SLB systems, different microdomains characterized by their height and breakthrough force Fb are formed. The molecular organization and composition is critically discussed in the light of our experimental results and literature data on similar lipid-surfactant systems. PMID:23782267

  11. Solute effects on the colloidal and phase behavior of lipid bilayer membranes: ethanol-dipalmitoylphosphatidylcholine mixtures.

    PubMed Central

    Vierl, U; Löbbecke, L; Nagel, N; Cevc, G

    1994-01-01

    By means of the scanning differential calorimetry, x-ray diffractometry, and the dynamic light scattering, we have systematically studied the phase and packing properties of dipalmitoylphosphatidylcholine vesicles or multibilayers in the presence of ethanol. We have also determined the partial ternary phase diagram of such dipalmitoylphosphatidylcholine/water/ethanol mixtures. The directly measured variability of the structural bilayer parameters implies that ethanol binding to the phospholipid bilayers increases the lateral as well as the transverse repulsion between the lipid molecules. This enlarges the hydrocarbon tilt (by up to 23 degrees) and molecular area (by < or = 40%). Ethanol-phospholid association also broadens the interface and, thus, promotes lipid headgroup solvation. This results in excessive swelling (by 130%) of the phosphatidylcholine bilayers in aqueous ethanol solutions. Lateral bilayer expansion, moreover, provokes a successive interdigitation of the hydrocarbon chains in the systems with bulk ethanol concentrations of 0.4-1.2 M. The hydrocarbon packing density as well as the propensity for the formation of lamellar gel phases simultaneously increase. The pretransition temperature of phosphatidylcholine bilayers is more sensitive to the addition of alcohol (initial shift: delta Tp = 22 degrees C/mol) than the subtransition temperature (delta Ts reversible 5 degrees C/mol), whereas the chain-melting phase transition temperature is even less affected (delta Tm = 1.8 degrees C/mol). After an initial decrease of 3 degrees for the bulk ethanol concentrations below 1.2 M, the Tm value increases by 2.5 degrees above this limiting concentration. The gel-phase phosphatidylcholine membranes below Tm are fully interdigitated above this limiting concentration. The chain tilt on the fringe of full chain interdigitation is zero and increases with higher ethanol concentrations. Above Tm, some of the lipid molecules are solubilized by the bound ethanol

  12. Exchange-coupling behavior in nanostructured FePt/Fe bilayer films

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Sellmyer, D. J.

    2016-05-01

    Different thicknesses of FePt/Fe bilayer films are deposited on (001) MgO substrates by sputtering Fe and Pt targets with in-situ heating at 830OC. X-ray diffraction indicates a complete alignment of the FePt [001] axis with MgO [001] axis. The nucleation field Hn is estimated from hysteresis loops measured using a SQUID magnetometer. A FePt/Fe bilayer model is proposed to calculate the nucleation field Hn and compared with the experimental data. The model can explain experimental trends and gives useful predictions for nanostructure synthesis and further experiment.

  13. Probe chemistry effect on surface properties of asymmetric-phase lipid bilayers.

    PubMed

    Park, Jin-Won

    2010-01-01

    Phospholipid bilayers were formed on mica using Langmuir-Blodgett technique and liposome fusion, as a model system for biomembranes. Nanometer-scale surface physical properties were quantitatively characterized upon the different phases of the monolayers with the different surface chemistry. The less hydration/steric forces were observed at the liquid-phase of the lipid layer than at the solid-phase for the OH-modified probe, while the forces with the CH(3)-modified probe were independent of the mechanical stability of the layer. The forces appear to be related to the surface chemistry of the probe to the layer as well as the mechanical stability of the lipid layer, which depends on the phase and the asymmetry of the lipid bilayer. After the breakthrough of the lipid bilayer, the CH(3)-modified probe adhered more strongly to the lipid bilayers than do the OH-modified probe. Using results from the JKR theory, it is found that the adhesion can be accounted for in both cases by surface energy consideration, not mechanical effects.

  14. Fluid bilayer structure determination by the combined use of x-ray and neutron diffraction. I. Fluid bilayer models and the limits of resolution.

    PubMed Central

    Wiener, M C; White, S H

    1991-01-01

    This is the first in a series of papers concerned with methods for the determination of the structures of fluid phospholipid bilayers in the liquid-crystalline (L alpha) phase. The basic approach is the joint refinement of quasimolecular models (King and White, 1986. Biophys. J. 49:1047-1054) using x-ray and neutron diffraction data. We present here (a) the rationale for quasimolecular models, (b) the nature of the resolution problem for thermally disordered bilayers, and (c) an analysis of the resolution of experiments in which Gaussian functions are used to describe the distribution of submolecular components. We show that multilamellar liquid-crystalline bilayers are best described by the convolution of a perfect lattice function with a thermally disordered bilayer unit cell. Lamellar diffraction measurements on such a system generally yield only 5-10 orders of diffraction data from which transbilayer profiles of the unit cell can be constructed. The canonical resolution of these transbilayer profiles, defined as the Bragg spacing divided by the index of the highest recorded diffraction order, is typically 5-10 A. Using simple model calculations, we show that the canonical resolution is a measure of the widths of the distributions of constituents of the unit cell rather than a measure of the spatial separation of the distributions. The widths provide a measure of the thermal motion of the bilayer constituents which can be described by Gaussian functions. The equilibrium positions of the centers of the distributions can be determined with a precision of 0.1-0.5 A based upon typical experimental errors. Images FIGURE 1 PMID:2015381

  15. Growth from below: graphene bilayers on Ir(111).

    PubMed

    Nie, Shu; Walter, Andrew L; Bartelt, Norman C; Starodub, Elena; Bostwick, Aaron; Rotenberg, Eli; McCarty, Kevin F

    2011-03-22

    We elucidate how graphene bilayers form on Ir(111). Low-energy electron diffraction (LEED) reveals that the two graphene layers are not always rotationally aligned. Monitoring this misalignment during growth shows that second-layer islands nucleate between the existing layer and the substrate. This mechanism occurs both when C segregates from the Ir and when elemental C is deposited from above. Low-energy electron microscopy (LEEM) and angle-resolved photoemission spectroscopy (ARPES) show that second-layer nucleation occurs preferentially under the first-layer rotational variants that are more weakly bound to the substrate. New-layer nucleation tends to occur inhomogeneously at substrate defects. Thus new-layer nucleation should be rapid on substrates that weakly bind graphene, making growth unstable toward mound formation initiated at substrate defects. In contrast, stronger binding permits layer-by-layer growth, as for Ru(0001). ARPES shows that bilayer graphene has two slightly p-doped π-bands. The work function of bilayer graphene is dominated by the orientation of the bottom layer. PMID:21322532

  16. Current switching in superconductor semiconductor bilayers

    NASA Astrophysics Data System (ADS)

    Rahman, F.; Thornton, T. J.; Huber, R.

    2006-09-01

    We describe results of electrical transport experiments on niobium-on-indium arsenide and aluminium-on-indium arsenide bilayers. The temperature-dependent properties of electrical conduction in these bilayers is examined first in order to characterize the quality of super-semi interfaces. Next, we look at the differential resistance of the bilayers as a function of bias current. The switching of current between the metal and semiconductor components of the bilayer gives rise to a quasi-inductive effect as it causes voltage spikes in the composite system. Also described is the variation of critical current for these bilayers with temperature and magnetic field.

  17. PLA2-responsive and SPIO-loaded phospholipid micelles

    PubMed Central

    Gao, Qiang; Yan, Lesan; Chiorazzo, Michael; Delikatny, E. James; Tsourkas, Andrew; Cheng, Zhiliang

    2015-01-01

    A PLA2-responsive and superparamagnetic iron oxide (SPIO) nanoparticle-loaded phospholipid micelle was developed. The release of phospholipid-conjugated dye from these micelles was triggered due to phospholipid degradation by phospholipase A2. High relaxivity of the encapsulated SPIO could enable non-invasive magnetic resonance imaging. PMID:26139589

  18. Sensitive detection and prevention of protein adsorption on biomaterial (lipid bilayer) surfaces

    NASA Astrophysics Data System (ADS)

    Xu, Zhong

    2000-10-01

    The adsorption of proteins on biomaterial surfaces is recognized as the first and the most important event that determines or directs consequent host responses. The amount, composition, conformation, and binding affinity of the adsorbed proteins are critical in determining events leading to blood coagulation, platelet adhesion and activation, mammalian and bacterial cell adhesion, and complement activation. This thesis is concerned with the non-specific adsorption of plasma proteins on self-assembled phospholipid surfaces. To examine molecular events in detail, adsorption of plasma proteins on lipid bilayers was studied on both supported planar bilayer and liposomes (phospholipid vesicles) systems. Monolayers of mixed distearoylphosphatidlcholine (DSPC) and PEO (MW. 2000)-grafted distearoylphosphatidylethanolanane (PEO2k-DSPE) were deposited on DSPE-coated quartz substrates by Langmuir-Blodgett (LB) deposition technique. A sensitive total internal reflection fluorescence (TIRF) method, capable of detecting the adsorption of <0.3 ng/cm2 of fluorescein-labeled fibrinogen at a temporal resolution of 0.2 sec, was utilized to study adsorption kinetics of plasma proteins on the supported lipid bilayers. All supported lipid bilayers exhibited over a magnitude reduction in adsorbed plasma proteins compared with the quartz substrate. The increase of PEO2k-DSPE density in the mixed bilayers slightly increased the amount of adsorbed proteins on the bilayers. Plasma proteins adsorbed on liposomes (composed of DSPC and cholesterol) were studied using a spin column procedure for liposome isolation, and SDS-polyacrylamide gel electrophoresis and immunoanalysis for protein separation, quantification and identification. Plasma proteins isolated from liposome surfaces showed distinct and complex profiles. Albumin and fibrinogen were identified as two major plasma proteins that undergo non-specific adsorption on liposomes. Incorporating (PEO2k-DSPE) into liposomes reduced the amount

  19. Enhanced photovoltaic properties in bilayer BiFeO3/Bi-Mn-O thin films

    NASA Astrophysics Data System (ADS)

    Chakrabartty, Joyprokash; Nechache, Riad; Harnagea, Catalin; Li, Shun; Rosei, Federico

    2016-05-01

    We report an external solar power conversion efficiency of ˜1.43% in BiFeO3(BFO)/BiMnO3(BMO) bilayer thin films. Both films are epitaxially grown on (111) oriented niobium doped SrTiO3 (NSTO) single crystal substrates by pulsed laser deposition. By illuminating the BFO/BMO films under 1 Sun (AM 1.5 G), we found a remarkably high fill factor of ˜0.72, much higher than values reported for devices based on BFO or BMO alone. In addition, we demonstrate that the photocurrent density and photovoltage are tunable by changing the polarization direction in the BFO/BMO bilayer, as confirmed by the macroscopic polarization-voltage (P-V) hysteresis loop. This effect is described in terms of a more favorable energy band alignment of the electrode/bilayer/NSTO heterostructure junction, which controls photocarrier separation.

  20. Enhanced photovoltaic properties in bilayer BiFeO3/Bi-Mn-O thin films.

    PubMed

    Chakrabartty, Joyprokash; Nechache, Riad; Harnagea, Catalin; Li, Shun; Rosei, Federico

    2016-05-27

    We report an external solar power conversion efficiency of ∼1.43% in BiFeO3(BFO)/BiMnO3(BMO) bilayer thin films. Both films are epitaxially grown on (111) oriented niobium doped SrTiO3 (NSTO) single crystal substrates by pulsed laser deposition. By illuminating the BFO/BMO films under 1 Sun (AM 1.5 G), we found a remarkably high fill factor of ∼0.72, much higher than values reported for devices based on BFO or BMO alone. In addition, we demonstrate that the photocurrent density and photovoltage are tunable by changing the polarization direction in the BFO/BMO bilayer, as confirmed by the macroscopic polarization-voltage (P-V) hysteresis loop. This effect is described in terms of a more favorable energy band alignment of the electrode/bilayer/NSTO heterostructure junction, which controls photocarrier separation. PMID:27094952

  1. Effect of divalent cations on the structure of dipalmitoylphosphatidylcholine and phosphatidylcholine/phosphatidylglycerol bilayers: An 2H-NMR study

    SciTech Connect

    Zidovetzki, R.; Atiya, A.W.; De Boeck, H. )

    1989-01-01

    The interactions of CaCl2 or MgCl2 with multilamellar phospholipid bilayers were studied by 2H-NMR. Two model membrane systems were used: (1) dipalmitoylphosphatidylcholine (DPPC) bilayers and (2) bilayers composed of a mixture of phosphatidylcholine and phosphatidylglycerol at a molar ratio of 5:1. Addition of 0.25 M CaCl2 to DPPC bilayers resulted in significant uniform increase of the order parameters of the lipid side chains; the effect of 0.25 M MgCl2 was insignificant. Both phosphatidylcholine and phosphatidylglycerol components of the mixed bilayers were affected by the presence of 0.25 M CaCl2 and, to a much smaller degree, by MgCl2. The addition of Ca2+ induced significantly larger increase of the order parameters of the phosphatidylcholine component. The results are consistent with the long-range effects of Ca2+ binding on the packing of the lipid membranes.

  2. Experimental study of the bending elasticity of charged lipid bilayers in aqueous solutions with pH5

    NASA Astrophysics Data System (ADS)

    Mitkova, D.; Stoyanova-Ivanova, A.; Ermakov, Yu A.; Vitkova, V.

    2012-12-01

    Exposure to high concentrations of contaminations due to air polluting gases, vapours and aerosols and possibly altering the normal pH in the body could lead to undesirable changes in the properties of biological cells. Here, we study experimentally the mechanical properties of synthetic phospholipid bilayers containing increasing molar fractions (up to 0.15) of charged lipid (synthetic phosphatidylserine) in aqueous solutions with controlled ionic strength and at pH 5, which is slightly lower than the physiological values of pH. Our observations in phase contrast and fluorescence testified to the coexistence of two phases in membranes for temperatures below 29°C. Micro-sized inhomogeneities in vesicle membranes were systematically observed at temperatures lower than 29°C and for molar fractions of phosphatidylserine in the bilayer higher than 0.1. For the quantitative determination of the membrane bending rigidity, we applied thermal fluctuation analysis of the shape of quasispherical lipid vesicles. As far as the liquid-crystalline state of the bilayer is a necessary condition for the application of the experimental method, only vesicles satisfying this requirement were processed for determination of their membrane bending rigidity. The value obtained for the bending modulus of bilayers with 0.15 molar content of charged lipid is about two times higher than the bending modulus of uncharged membranes in the same bathing solution. These findings are in qualitative agreement with our previous results for the bending rigidity of charged bilayers, measured by vesicle micromanipulation.

  3. What are the sites water occupies at the interface of a phospholipid membrane?

    PubMed

    Volkov, Victor V; Takaoka, Yuji; Righini, Roberto

    2009-04-01

    We explore the two-dimensional infrared response of D(2)O and of OD impurity at the interface of phospholipid membrane fragments. The spectra of the two aqueous states are inhomogeneously broadened due to the absorption of water molecule associated with the membrane interface in different structural sites. The nonlinear spectra of the two species allow disentangling of the spectral contributions of the aqueous states of two types: where the stretching modes are under effective mixing and where the stretching modes are uncoupled. By reviewing the results of the experimental studies with the support of molecular dynamic simulation we identify the spectral signatures of the main structural motives responsible for the inhomogeneous distribution of resonances in the infrared OD stretching region. Our analysis provides a quantitative estimate of the statistical population of the different aqueous species at the polar interface of the bilayer.

  4. Structure of phospholipid monolayers containing poly(ethylene glycol) lipids at the air-water interface

    SciTech Connect

    Majewski, J.; Smith, G.S.; Kuhl, T.L.; Israelachvili, J.N.; Gerstenberg, M.C.

    1997-04-17

    The density distribution of a lipid monolayer at the air-water interface mixed with varying amounts of lipid with poly(ethylene glycol)polymer headgroups (polymer-lipid or PEG-lipid) was measured using neutron reflectometry. The structure of the monolayer at the interface was greatly perturbed by the presence of the bulky polymer-lipid headgroups resulting in a large increase in the thickness of the headgroup region normal to the interface and a systematic roughening of the interface with increasing polymer-lipid content. These results show how bulky hydrophilic moieties cause significant deformations and out-of-place protrusions of phospholipid monolayers and presumably bilayers, vesicles and biological membranes. In terms of polymer physics, very short polymer chains tethered to the air-water interface follow scaling behavior with a mushroom to brush transition with increasing polymer grafting density. 34 refs., 9 figs., 1 tab.

  5. Tetanus toxin is labeled with photoactivatable phospholipids at low pH

    SciTech Connect

    Montecucco, C.; Schiavo, G.; Brunner, J.; Duflot, E.; Boquet, P.; Roa, M.

    1986-02-25

    The mechanism of cell penetration by tetanus toxin is unknown; it has been suggested that the toxin may penetrate into the lipid bilayer from a low-pH vesicular compartment. In this work, the interaction of tetanus toxin with liposomal model membranes has been studied by following its photoinduced cross-linking with either a nitrene or a carbene photolytically generated from corresponding light-sensitive phosphatidylcholine analogues. The toxin was labeled only at pHs lower than 5.5. The low pH acquired hydrophobicity of tetanus toxin appears to be confined to its light chain and to the 45-kDa NH2-terminal fragment of the heavy chain. Negatively charged lipids promote the interaction of this toxin with the hydrocarbon chain of phospholipids. The relevance of the present findings to the possible mechanism of nerve cell penetration by tetanus toxin is discussed.

  6. Direct determination of crystallographic phases for diffraction data from phospholipid multilamellar arrays.

    PubMed Central

    Dorset, D L

    1990-01-01

    Direct determination of crystallographic phases based on probabilistic of sigma 1 and sigma 2 "triplet" structure invariants has been found to be an effective technique for structure analysis with lamellar x-ray or electron diffraction intensity data from phospholipids. In many cases, nearly all phase values are determined, permitting a structure density (electron density for x-ray diffraction; electrostatic potential for electron diffraction) map to be calculated, which is directly interpretable in terms of known bilayer lipid structure. The major source of error is found to be due to the distortion of observed electron diffraction intensity data by incoherent multiple scattering, which can significantly affect the appearance of the electrostatic potential map, but not the success of the phase determination, as long as the observed Patterson function can be interpreted. PMID:2291934

  7. Bilayer Effects of Antimalarial Compounds

    PubMed Central

    Ramsey, Nicole B.; Andersen, Olaf S.

    2015-01-01

    Because of the perpetual development of resistance to current therapies for malaria, the Medicines for Malaria Venture developed the Malaria Box to facilitate the drug development process. We tested the 80 most potent compounds from the box for bilayer-mediated effects on membrane protein conformational changes (a measure of likely toxicity) in a gramicidin-based stopped flow fluorescence assay. Among the Malaria Box compounds tested, four compounds altered membrane properties (p< 0.05); MMV007384 stood out as a potent bilayer-perturbing compound that is toxic in many cell-based assays, suggesting that testing for membrane perturbation could help identify toxic compounds. In any case, MMV007384 should be approached with caution, if at all. PMID:26551613

  8. Investigation of plague lipopolysaccharide complex formation with artificial phospholipid vesicles by elastic laser radiation scattering

    NASA Astrophysics Data System (ADS)

    Gusev, V. V.; Guseva, N. P.; Tatarintsev, S. N.

    1995-01-01

    This paper describes the investigation of incorporation processes of the plague lipopolysaccharide (LPS) into artificial phospholipid vesicles (PLV) on the basis of elastic laser radiation scattering. For this purpose, the angular light scattering dependencies of PLV suspensions, containing various LPS concentrations (0 - 5 mg/ml), were measured using the polarization nephelometer. The design of the polarization nephelometer and the measurement technique are described in detail. Measuring results are compared with electron microscopy data. The most pronounced variation as a result of LPS incorporation into PLV appeared to be the light scattering integral intensity (LSII) at angles exceeding 100. It is shown that the LPS adding into the PLV suspension causes the LSII to increase by a factor 2 - 6 for a LPS concentration range from 0.5 to 5 mg/ml as compared with `empty' PLV. Proceeding from the electron microscopy data it was found that the LSII increase, in general case, is conditioned by variation of the PLV membrane refraction index and formation of PLV aggregates. It was shown that the LSII measurement for the PLV suspension containing LPS can be used as a qualitative express analysis for the LPS incorporation into PLV as well as procedure for determination of the aggregate formation stage from PLV. The LPS of the plague, which as determinants being common for various gram-negative bacteria, is of great interest from the viewpoint of creating preparations for prophylactic measures against the endotoxin infections. However, the LPS toxicity due to the lipid A presence is a disadvantage of this weak antigen. Incorporation of the LPS int bilayer phospholipid membranes leads to its lower toxicity and higher immunization ability. The immunization ability and toxicity of the LPS complexes with bilayer membranes depend essentially on the LPS quantity sorbed in the membrane, as well as on the shapes and sizes of aggregates formed by the LPS and membranes in water

  9. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion

    PubMed Central

    Kell, Douglas B.; Oliver, Stephen G.

    2014-01-01

    One approach to experimental science involves creating hypotheses, then testing them by varying one or more independent variables, and assessing the effects of this variation on the processes of interest. We use this strategy to compare the intellectual status and available evidence for two models or views of mechanisms of transmembrane drug transport into intact biological cells. One (BDII) asserts that lipoidal phospholipid Bilayer Diffusion Is Important, while a second (PBIN) proposes that in normal intact cells Phospholipid Bilayer diffusion Is Negligible (i.e., may be neglected quantitatively), because evolution selected against it, and with transmembrane drug transport being effected by genetically encoded proteinaceous carriers or pores, whose “natural” biological roles, and substrates are based in intermediary metabolism. Despite a recent review elsewhere, we can find no evidence able to support BDII as we can find no experiments in intact cells in which phospholipid bilayer diffusion was either varied independently or measured directly (although there are many papers where it was inferred by seeing a covariation of other dependent variables). By contrast, we find an abundance of evidence showing cases in which changes in the activities of named and genetically identified transporters led to measurable changes in the rate or extent of drug uptake. PBIN also has considerable predictive power, and accounts readily for the large differences in drug uptake between tissues, cells and species, in accounting for the metabolite-likeness of marketed drugs, in pharmacogenomics, and in providing a straightforward explanation for the late-stage appearance of toxicity and of lack of efficacy during drug discovery programmes despite macroscopically adequate pharmacokinetics. Consequently, the view that Phospholipid Bilayer diffusion Is Negligible (PBIN) provides a starting hypothesis for assessing cellular drug uptake that is much better supported by the available

  10. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants

    NASA Astrophysics Data System (ADS)

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-01

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using 19F and 31P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F6OPC. The lipid interactions of SMA(3 : 1) and F6OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F6OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and

  11. Shock-induced poration, cholesterol flip-flop and small interfering RNA transfection in a phospholipid membrane: Multimillion atom, microsecond molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Choubey, Amit

    Biological cell membranes provide mechanical stability to cells and understanding their structure, dynamics and mechanics are important biophysics problems. Experiments coupled with computational methods such as molecular dynamics (MD) have provided insight into the physics of membranes. We use long-time and large-scale MD simulations to study the structure, dynamics and mechanical behavior of membranes. We investigate shock-induced collapse of nanobubbles in water using MD simulations based on a reactive force field. We observe a focused jet at the onset of bubble shrinkage and a secondary shock wave upon bubble collapse. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. We also investigate molecular mechanisms of poration in lipid bilayers due to shock-induced collapse of nanobubbles. Our multimillion-atom MD simulations reveal that the jet impact generates shear flow of water on bilayer leaflets and pressure gradients across them. This transiently enhances the bilayer permeability by creating nanopores through which water molecules translocate rapidly across the bilayer. Effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. The second research project focuses on cholesterol (CHOL) dynamics in phospholipid bilayers. Several experimental and computational studies have been performed on lipid bilayers consisting of dipalmitoylphosphatidylcholine (DPPC) and CHOL molecules. CHOL interleaflet transport (flip-flop) plays an important role in interleaflet coupling and determining CHOL flip-flop rate has been elusive. Various studies report that the rate ranges between milliseconds to seconds. We calculate CHOL flip-flop rates by

  12. Statistical mechanical analysis of Raman spectroscopic order parameter changes in pressure-induced lipid bilayer phase transitions.

    PubMed Central

    Yager, P; Peticolas, W L

    1980-01-01

    The statistical mechanical cluster theory of Fisher as applied by Kanehisa and Tsong to phospholipid bilayers is modified to describe the effects of hydrostatic pressure on the state of an aqueous dispersion of the phospholipid dipalmitoyl phosphatidylcholine. A high pressure Raman scattering cell has been built to obtain the Raman spectra of aqueous dispersions of phospholipids as a function of the applied hydrostatic pressure from 0 to 100 atmospheres. Predicted thermal and pressure-induced phase transitions are compared with an experimentally obtained Raman order parameter derived from the ratio of two bands in the C-H stretching region of the Raman spectrum of the sample. The parameters of the theory are adjusted to obtain a satisfactory fit of the Raman order parameter versus temperature. The theory is then found to give an excellent prediction of the observed pressure dependence of the Raman order parameter with no changes in the adjustable parameters. The implications of the success of the theoretical fit is discussed. Particularly of interest is the rather high value of the critical temperature, Tc, for lipid bilayers which is predicted by the model. PMID:6894876

  13. Surface-Enhanced Infrared Spectroscopy and Neutron Reflectivity Studies of Ubiquinone in Hybrid Bilayer Membranes under Potential Control.

    PubMed

    Quirk, Amanda; Lardner, Michael J; Tun, Zin; Burgess, Ian J

    2016-03-01

    Surface-enhanced infrared adsorption spectroscopy (SEIRAS) and neutron reflectometry (NR) were employed to characterize ubiquinone (UQ) containing hybrid bilayer membranes. The biomimetic membrane was prepared by fusing phospholipid vesicles on a hydrophobic octadecanethiol monolayer self-assembled on a thin gold film. Using SEIRAS, the assembly of the membrane is monitored in situ. The presence of ubiquinone is verified by the characteristic carbonyl peaks from the quinone ester. A well-ordered distal lipid leaflet results from fusion of vesicles with and without the addition of ubiquinone. With applied potential, the hybrid bilayer membrane in the absence of UQ behaves in the same way as previously reported solid supported phospholipid membranes. When ubiquinone is incorporated in the membrane, electric field induced changes in the distal leaflet are suppressed. Changes in the infrared vibrations of the ubiquinone due to applied potential indicate the head groups are located in both polar and nonpolar environments. The spectroscopic data reveal that the isoprenoid unit of the ubiquinone is likely lying in the midplane of the lipid bilayer while the head has some freedom to move within the hydrophobic core. The SEIRAS experiments show redox behavior of UQ incorporated in a model lipid membrane that are otherwise inaccessible with traditional electrochemistry techniques. PMID:26867110

  14. Fast diffusion along defects and corrugations in phospholipid P beta, liquid crystals.

    PubMed Central

    Schneider, M B; Chan, W K; Webb, W W

    1983-01-01

    The diffusion of a fluorescent lipid analogue in liquid crystals of the anisotropic P beta, phase of dimyristoylphosphatidylcholine (DMPC) had been found to be highly variable, suggesting structural defect pathways. Fluorescence photobleaching recovery (FPR) experiments imply two effective diffusion pathways with coefficients differing by at least 100. This is consistent with fast diffusion along submicroscopic bands of disordered material ("defects") in the bilayer corrugations characteristic of this phase. Due to strains during transformation from the L alpha phase, the axis of the corrugations is ordinarily disrupted by mosaic patches rotationally disoriented within the mean plane of the molecular bilayers, although larger oriented domains are sometimes adventitiously aligned into microscopically visible striped textures. The corrugations are also systematically aligned along positive disclinations pairs or "oily streaks." Thus, fast diffusion occurs parallel to the disclination lines and along the textured stripes. FPR results yield an upper limit on the effective diffusion in the ordered material of D less than or equal to 2 X 10(-16) cm2/s at 22 degrees C, D less than or equal to 3 X 10(-17) cm2/s at 13 degrees C. In contrast the diffusion coefficient along defect pathways where disordered ribbons are aligned is D approximately 4 X 10(-11) cm2/s at 16 degrees C. Images FIGURE 4 FIGURE 6 FIGURE 7 PMID:6616004

  15. Effect of the barometric phase transition of a DMPA bilayer on the lipid/water interface. An atomistic description by molecular dynamics simulation.

    PubMed

    Casares, J J Giner; Camacho, L; Romero, M T Martín; Cascales, J J López

    2007-12-13

    Understanding the structure and dynamics of phospholipid bilayers is of fundamental relevance in biophysics, biochemistry, and chemical physics. Lipid Langmuir monolayers are used as a model of lipid bilayers, because they are much more easily studied experimentally, although some authors question the validity of this model. With the aim of throwing light on this debate, we used molecular dynamics simulations to obtain an atomistic description of a membrane of dimyristoylphosphatidic acid under different surface pressures. Our results show that at low surface pressure the interdigitation between opposite lipids (that is, back-to-back interactions) controls the system structure. In this setting and due to the absence of this effect in the Langmuir monolayers, the behavior between these two systems differs considerably. However, when the surface pressure increases the lipid interdigitation diminishes and so monolayer and bilayer behavior converges. In this work, four computer simulations were carried out, subjecting the phospholipids to lateral pressures ranging from 0.17 to 40 mN/m. The phospholipids were studied in their charged state because this approach is closer to the experimental situation. Special attention was paid to validating our simulation results by comparison with available experimental data, therebeing in general excellent agreement between experimental and simulation data. In addition, the properties of the lipid/solution interface associated with the lipid barometric phase transition were studied. PMID:18004836

  16. Effect of the barometric phase transition of a DMPA bilayer on the lipid/water interface. An atomistic description by molecular dynamics simulation.

    PubMed

    Casares, J J Giner; Camacho, L; Romero, M T Martín; Cascales, J J López

    2007-12-13

    Understanding the structure and dynamics of phospholipid bilayers is of fundamental relevance in biophysics, biochemistry, and chemical physics. Lipid Langmuir monolayers are used as a model of lipid bilayers, because they are much more easily studied experimentally, although some authors question the validity of this model. With the aim of throwing light on this debate, we used molecular dynamics simulations to obtain an atomistic description of a membrane of dimyristoylphosphatidic acid under different surface pressures. Our results show that at low surface pressure the interdigitation between opposite lipids (that is, back-to-back interactions) controls the system structure. In this setting and due to the absence of this effect in the Langmuir monolayers, the behavior between these two systems differs considerably. However, when the surface pressure increases the lipid interdigitation diminishes and so monolayer and bilayer behavior converges. In this work, four computer simulations were carried out, subjecting the phospholipids to lateral pressures ranging from 0.17 to 40 mN/m. The phospholipids were studied in their charged state because this approach is closer to the experimental situation. Special attention was paid to validating our simulation results by comparison with available experimental data, therebeing in general excellent agreement between experimental and simulation data. In addition, the properties of the lipid/solution interface associated with the lipid barometric phase transition were studied.

  17. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants.

    PubMed

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-28

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using (19)F and (31)P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F(6)OPC. The lipid interactions of SMA(3 : 1) and F(6)OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F(6)OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.

  18. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants.

    PubMed

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-28

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using (19)F and (31)P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F(6)OPC. The lipid interactions of SMA(3 : 1) and F(6)OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F(6)OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research. PMID:26599076

  19. The Lipid Bilayer Provides a Site for Cortisone Crystallization at High Cortisone Concentrations

    PubMed Central

    Alsop, Richard J.; Khondker, Adree; Hub, Jochen S.; Rheinstädter, Maikel C.

    2016-01-01

    Cortisone is an injected anti-inflammatory drug that can cause painful side effects known as “steroid flares” which are caused by cortisone crystallizing at the injection site. We used molecular dynamics simulations and X-ray diffraction to study the interaction of cortisone with model lipid membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at drug concentrations from 0 mol% to 50 mol%. Cortisone was found to partition in the lipid bilayer and locate in the hydrophilic to hydrophobic interface of the membranes. Cortisone strongly affects the integrity of the membrane, as quantified by a decreased membrane thickness, increased area per lipid, and decreased lipid tail order parameters. At cortisone concentrations of more than 20 mol%, signals from crystallized cortisone were observed. These crystallites are embedded in the bilayers and orient with the membranes. While the cortisone molecules align parallel to the bilayers at low concentrations, they start to penetrate the hydrophobic core at higher concentrations. Trans-membrane crystallites start to nucleate when the membrane thickness has decreased such that cortisone molecules in the different leaflets can find partners from the opposite leaflet resulting in a non-zero density of cortisone molecules in the bilayer center. We suggest that the lipid bilayer provides a site for cortisone crystallization. PMID:26936102

  20. Phospholipid Scramblase 1 Modulates FcR-Mediated Phagocytosis in Differentiated Macrophages.

    PubMed

    Herate, Cecile; Ramdani, Ghania; Grant, Nancy J; Marion, Sabrina; Gasman, Stephane; Niedergang, Florence; Benichou, Serge; Bouchet, Jerome

    2016-01-01

    Phospholipid Scramblase 1 (PLSCR1) was initially characterized as a type II transmembrane protein involved in bilayer movements of phospholipids across the plasma membrane leading to the cell surface exposure of phosphatidylserine, but other cellular functions have been ascribed to this protein in signaling processes and in the nucleus. In the present study, expression and functions of PLSCR1 were explored in specialized phagocytic cells of the monocyte/macrophage lineage. The expression of PLSCR1 was found to be markedly increased in monocyte-derived macrophages compared to undifferentiated primary monocytes. Surprisingly, this 3-fold increase in PLSCR1 expression correlated with an apparent modification in the membrane topology of the protein at the cell surface of differentiated macrophages. While depletion of PLSCR1 in the monocytic THP-1 cell-line with specific shRNA did not inhibit the constitutive cell surface exposure of phosphatidylserine observed in differentiated macrophages, a net increase in the FcR-mediated phagocytic activity was measured in PLSCR1-depleted THP-1 cells and in bone marrow-derived macrophages from PLSCR1 knock-out mice. Reciprocally, phagocytosis was down-regulated in cells overexpressing PLSCR1. Since endogenous PLSCR1 was recruited both in phagocytic cups and in phagosomes, our results reveal a specific role for induced PLSCR1 expression in the modulation of the phagocytic process in differentiated macrophages.

  1. Mammalian phospholipid homeostasis: evidence that membrane curvature elastic stress drives homeoviscous adaptation in vivo.

    PubMed

    Dymond, Marcus K

    2016-08-01

    Several theories of phospholipid homeostasis have postulated that cells regulate the molecular composition of their bilayer membranes, such that a common biophysical membrane parameter is under homeostatic control. Two commonly cited theories are the intrinsic curvature hypothesis, which states that cells control membrane curvature elastic stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain packing order (membrane order). In this paper, we present evidence from data-driven modelling studies that these two theories correlate in vivo. We estimate the curvature elastic stress of mammalian cells to be 4-7 × 10(-12) N, a value high enough to suggest that in mammalian cells the preservation of membrane order arises through a mechanism where membrane curvature elastic stress is controlled. These results emerge from analysing the molecular contribution of individual phospholipids to both membrane order and curvature elastic stress in nearly 500 cellular compositionally diverse lipidomes. Our model suggests that the de novo synthesis of lipids is the dominant mechanism by which cells control curvature elastic stress and hence membrane order in vivo These results also suggest that cells can increase membrane curvature elastic stress disproportionately to membrane order by incorporating polyunsaturated fatty acids into lipids. PMID:27534697

  2. Effect of gramicidin A on the dipole potential of phospholipid membranes.

    PubMed Central

    Shapovalov, V L; Kotova, E A; Rokitskaya, T I; Antonenko, Y N

    1999-01-01

    The effect of channel-forming peptide gramicidin A on the dipole potential of phospholipid monolayers and bilayers has been studied. Surface pressure and surface potential isotherms of monolayers have been measured with a Langmuir trough equipped with a Wilhelmy balance and a surface potential meter (Kelvin probe). Gramicidin has been shown to shift pressure-area isotherms of phospholipids and to reduce their monolayer surface potentials. Both effects increase with the increase in gramicidin concentration and depend on the kind of phosphatidylcholine used. Application of the dual-wavelength ratiometric fluorescence method using the potential-sensitive dye RH421 has revealed that the addition of gramicidin A to dipalmitoylphosphatidylcholine liposomes leads to a decrease in the fluorescence ratio of RH421. This is similar to the effect of phloretin, which is known to decrease the dipole potential. The comparison of the concentration dependences of the fluorescence ratio for gramicidin and phloretin shows that gramicidin is as potent as phloretin in modifying the membrane dipole potential. PMID:10388758

  3. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.

    PubMed

    Pankov, R; Markovska, T; Antonov, P; Ivanova, L; Momchilova, A

    2006-09-01

    Investigations were carried out on the influence of phospholipid composition of model membranes on the processes of spontaneous lipid transfer between membranes. Acceptor vesicles were prepared from phospholipids extracted from plasma membranes of control and ras-transformed fibroblasts. Acceptor model membranes with manipulated levels of phosphatidylethanolamine (PE), sphingomyelin and phosphatidic acid were also used in the studies. Donor vesicles were prepared of phosphatidylcholine (PC) and contained two fluorescent lipid analogues, NBD-PC and N-Rh-PE, at a self-quenching concentration. Lipid transfer rate was assessed by measuring the increase of fluorescence in acceptor membranes due to transfer of fluorescent lipid analogues from quenched donor to unquenched acceptor vesicles. The results showed that spontaneous NBD-PC transfer increased upon fluidization of acceptor vesicles. In addition, elevation of PE concentration in model membranes was also accompanied by an increase of lipid transfer to all series of acceptor vesicles. The results are discussed with respect to the role of lipid composition and structural order of cellular plasma membranes in the processes of spontaneous lipid exchange between membrane bilayers. PMID:17197729

  4. The herpes simplex virus 1 U{sub S}3 regulates phospholipid synthesis

    SciTech Connect

    Wild, Peter; Oliveira, Anna Paula de; Sonda, Sabrina; Schraner, Elisabeth M.; Ackermann, Mathias; Tobler, Kurt

    2012-10-25

    Herpes simplex virus type 1 capsids bud at nuclear and Golgi membranes for envelopment by phospholipid bilayers. In the absence of U{sub S}3, nuclear membranes form multiple folds harboring virions that suggests disturbance in membrane turnover. Therefore, we investigated phospholipid metabolism in cells infected with the U{sub S}3 deletion mutant R7041({Delta}U{sub S}3), and quantified membranes involved in viral envelopment. We report that (i) [{sup 3}H]-choline incorporation into nuclear membranes and cytoplasmic membranes was enhanced peaking at 12 or 20 h post inoculation with wild type HSV-1 and R7041({Delta}U{sub S}3), respectively, (ii) the surface area of nuclear membranes increased until 24 h of R7041({Delta}U{sub S}3) infection forming folds that equaled {approx}45% of the nuclear surface, (iii) the surface area of viral envelopes between nuclear membranes equaled {approx}2400 R7041({Delta}U{sub S}3) virions per cell, and (iv) during R7041({Delta}U{sub S}3) infection, the Golgi complex expanded dramatically. The data indicate that U{sub S}3 plays a significant role in regulation of membrane biosynthesis.

  5. Molecular organization in phospholipid monolayer domains by correlative fluorescence microscopy and electron diffraction.

    PubMed

    Hui, S W; Yu, H

    1994-04-01

    Lipid monolayer is a half leaflet model for lipid bilayer, which forms the basis of biological membranes. Within a certain range of surface area per molecular of phospholipid monolayers at the air-water interface, where the compressibility was nearly infinite, two phases with different molecular packings were observable by fluorescence microscopy. Mixed-phase monolayers of L-1,2-dipalmitoyl-N-monomethyl-3-phosphatidylethanolamine [DP(Me)PE] or L-1,2-dipalmitoyl-N-dimethyl-3-phosphatidyl-ethanolamine [DP(Me)2PE] were deposited on marker grids coated with Formvar films. The molecular organization in the dark and bright fluorescent areas on the grids was investigated by low dose, selected area electron diffraction. Sharp reflection arcs, at a spacing of 4.2A and arranged in a hexagon pattern, were detected from dark domains of both lipids. A diffuse reflection ring at a spacing of 4.6A was derived from the bright background areas. Diffraction patterns were obtained from neighboring areas along selected dark domains of both lipids. The orientations of diffraction patterns from areas along smooth and curving boundaries of DP(Me)2PE domains were found to turn with the boundaries. In the branching domains of DP(Me)PE, the orientations of diffraction patterns indicated that the branches were formed by twinning. Electron diffraction thus provides an unique way to sample the local molecular packing order and orientation within individual domains in phospholipid monolayers.

  6. MAVID multiple alignment server.

    PubMed

    Bray, Nicolas; Pachter, Lior

    2003-07-01

    MAVID is a multiple alignment program suitable for many large genomic regions. The MAVID web server allows biomedical researchers to quickly obtain multiple alignments for genomic sequences and to subsequently analyse the alignments for conserved regions. MAVID has been successfully used for the alignment of closely related species such as primates and also for the alignment of more distant organisms such as human and fugu. The server is fast, capable of aligning hundreds of kilobases in less than a minute. The multiple alignment is used to build a phylogenetic tree for the sequences, which is subsequently used as a basis for identifying conserved regions in the alignment. The server can be accessed at http://baboon.math.berkeley.edu/mavid/.

  7. Nearest Alignment Space Termination

    2006-07-13

    Near Alignment Space Termination (NAST) is the Greengenes algorithm that matches up submitted sequences with the Greengenes database to look for similarities and align the submitted sequences based on those similarities.

  8. Simple, generalizable route to highly aligned block copolymer thin films

    NASA Astrophysics Data System (ADS)

    Qiang, Zhe; Cavicchi, Kevin; Vogt, Bryan; University of Akron Team

    Macroscopic alignment of block copolymer domains in thin films is desired for many applications, such as cell responsive surfaces or optical polarizers. Alignment generally requires specialized tools that apply external fields, shear force gradient, or produce topological patterned substrates. This requirement limits the broad academic application of aligned BCPs. Here, we describe a simple modification of commonly utilized solvent vapor annealing (SVA) process for macroscopic alignment of BCPs. Adhering a flat, crosslinked elastomer pad to the BCP film leads to differential swelling between the elastomer pad and BCP to produce a shear force that aligns the ordered BCP domains. The role of elastomer properties, solvent quality, drying rate and degree of segregation of the block copolymer will be discussed to provide generalized rules for alignment with this technique. Cylindrical nanostructures formed in polystyrene-block-polydimethylsiloxane can be transformed into arrays of silica lines and increasing the thickness from a monolayer to bilayer can effectively halve the spacing of the lines. These results illustrate a generalized method for BCP alignment and a potential route for the generation of complex hierarchical assembled structures. A generalized method for block copolymer thin film alignment: solvent vapor annealing with shear.

  9. Substrate-Supported Phospholipid Membranes Studied by Surface Plasmon Resonance and Surface Plasmon Fluorescence Spectroscopy

    PubMed Central

    Tawa, Keiko; Morigaki, Kenichi

    2005-01-01

    Substrate-supported planar lipid bilayer membranes are attractive model cellular membranes for biotechnological applications such as biochips and sensors. However, reliable fabrication of the lipid membranes on solid surfaces still poses significant technological challenges. In this study, simultaneous surface plasmon resonance (SPR) and surface plasmon fluorescence spectroscopy (SPFS) measurements were applied to the monitoring of adsorption and subsequent reorganization of phospholipid vesicles on solid substrates. The fluorescence intensity of SPFS depends very sensitively on the distance between the gold substrate and the fluorophore because of the excitation energy transfer to gold. By utilizing this distance dependency, we could obtain information about the topography of the adsorbed membranes: Adsorbed vesicles could be clearly distinguished from planar bilayers due to the high fluorescence intensity. SPSF can also incorporate various analytical techniques to evaluate the physicochemical properties of the adsorbed membranes. As an example, we demonstrated that the lateral mobility of lipid molecules could be estimated by observing the recovery of fluorescence after photobleaching. Combined with the film thickness information obtained by SPR, SPR-SPFS proved to be a highly informative technique to monitor the lipid membrane assembly processes on solid substrates. PMID:16040759

  10. Structural Thermodynamics of myr-Src(2–19) Binding to Phospholipid Membranes

    PubMed Central

    Scheidt, Holger A.; Klingler, Johannes; Huster, Daniel; Keller, Sandro

    2015-01-01

    Many proteins are anchored to lipid bilayer membranes through a combination of hydrophobic and electrostatic interactions. In the case of the membrane-bound nonreceptor tyrosine kinase Src from Rous sarcoma virus, these interactions are mediated by an N-terminal myristoyl chain and an adjacent cluster of six basic amino-acid residues, respectively. In contrast with the acyl modifications of other lipid-anchored proteins, the myristoyl chain of Src does not match the host lipid bilayer in terms of chain conformation and dynamics, which is attributed to a tradeoff between hydrophobic burial of the myristoyl chain and repulsion of the peptidic moiety from the phospholipid headgroup region. Here, we combine thermodynamic information obtained from isothermal titration calorimetry with structural data derived from 2H, 13C, and 31P solid-state nuclear magnetic resonance spectroscopy to decipher the hydrophobic and electrostatic contributions governing the interactions of a myristoylated Src peptide with zwitterionic and anionic membranes made from lauroyl (C12:0) or myristoyl (C14:0) lipids. Although the latter are expected to enable better hydrophobic matching, the Src peptide partitions more avidly into the shorter-chain lipid analog because this does not require the myristoyl chain to stretch extensively to avoid unfavorable peptide/headgroup interactions. Moreover, we find that Coulombic and intrinsic contributions to membrane binding are not additive, because the presence of anionic lipids enhances membrane binding more strongly than would be expected on the basis of simple Coulombic attraction. PMID:26244740

  11. Phospholipid biosynthesis in some anaerobic bacteria.

    PubMed Central

    Silber, P; Borie, R P; Mikowski, E J; Goldfine, H

    1981-01-01

    We have identified and characterized enzymes of phospholipid synthesis in two plasmalogen-rich anaerobes. Megasphaera elsdenii and Veillonella parvula, and one anaerobe lacking plasmalogens. Desulfovibrio vulgaris. All three species contained phosphatidate cytidylyltransferase and phosphatidylserine synthase. Phosphatidylglycerophosphate synthesis was detected only D. vulgaris extracts. Phosphatidylserine (diacyl form) was the major product of the phosphatidylserine synthase assay with particles from M. elsdenii or V. parvula. The amounts of phosphatidylethanolamine formed were very low. Only D. vulgaris particles had an active phosphatidylserine decarboxylase. PMID:6263870

  12. Steam sterilisation of vesicular phospholipid gels.

    PubMed

    Tardi, C; Drechsler, M; Bauer, K H; Brandl, M

    2001-04-17

    Vesicular phospholipid gels (VPGs), highly concentrated phospholipid dispersions of semisolid consistency and vesicular morphology are under investigation as potential implantable depots for sustained release of drugs and as intermediates for subsequent dilution into 'conventional' liposome dispersions. It was investigated here if VPGs can be steam sterilised. VPGs prepared from 400 mg/g egg-phosphatidylcholine by high-pressure homogenisation retained their vesicular structure but showed a slight increase in vesicle size (freeze-fracture electron microscopy). However, autoclaving slowed down both, the in vitro release of the hydrophilic marker carboxyfluorescein and vesicles from VPGs. This was assumed to be due to bigger vesicle sizes and corresponding increase in packing density of the vesicular matrix. Upon dilution into a liposome dispersion both negative staining electron microscopy and dynamic laser light scattering analysis confirmed a distinct increase in liposome size, mainly due to fusion of small (20 nm) vesicles with unfavourable curvature. This was consistent with the observed increase in encapsulation efficiency of carboxyfluorescein. Phospholipid hydrolysis during autoclaving was negligible with lysophosphatidylcholine formation of less than 2% (thin layer chromatography). Despite significant change of their morphological and functional properties during autoclaving VPGs retained their main characteristics, such as vesicular structure, sustained release and dilutability to liposome dispersions, and are, therefore, considered as autoclavable.

  13. Phylogenomic investigation of phospholipid synthesis in archaea.

    PubMed

    Lombard, Jonathan; López-García, Purificación; Moreira, David

    2012-01-01

    Archaea have idiosyncratic cell membranes usually based on phospholipids containing glycerol-1-phosphate linked by ether bonds to isoprenoid lateral chains. Since these phospholipids strongly differ from those of bacteria and eukaryotes, the origin of the archaeal membranes (and by extension, of all cellular membranes) was enigmatic and called for accurate evolutionary studies. In this paper we review some recent phylogenomic studies that have revealed a modified mevalonate pathway for the synthesis of isoprenoid precursors in archaea and suggested that this domain uses an atypical pathway of synthesis of fatty acids devoid of any acyl carrier protein, which is essential for this activity in bacteria and eukaryotes. In addition, we show new or updated phylogenetic analyses of enzymes likely responsible for the isoprenoid chain synthesis from their precursors and the phospholipid synthesis from glycerol phosphate, isoprenoids, and polar head groups. These results support that most of these enzymes can be traced back to the last archaeal common ancestor and, in many cases, even to the last common ancestor of all living organisms.

  14. Ionizable Nitroxides for Studying Local Electrostatic Properties of Lipid Bilayers and Protein Systems by EPR

    PubMed Central

    Voinov, Maxim A.; Smirnov, Alex I.

    2016-01-01

    Electrostatic interactions are known to play one of the major roles in the myriad of biochemical and biophysical processes. In this Chapter we describe biophysical methods to probe local electrostatic potentials of proteins and lipid bilayer systems that is based on an observation of reversible protonation of nitroxides by EPR. Two types of the electrostatic probes are discussed. The first one includes methanethiosulfonate derivatives of protonatable nitroxides that could be used for highly specific covalent modification of the cysteine’s sulfhydryl groups. Such spin labels are very similar in magnetic parameters and chemical properties to conventional MTSL making them suitable for studying local electrostatic properties of protein-lipid interfaces. The second type of EPR probes is designed as spin-labeled phospholipids having a protonatable nitroxide tethered to the polar head group. The probes of both types report on their ionization state through changes in magnetic parameters and a degree of rotational averaging, thus, allowing one to determine the electrostatic contribution to the interfacial pKa of the nitroxide, and, therefore, determining the local electrostatic potential. Due to their small molecular volume these probes cause a minimal perturbation to the protein or lipid system while covalent attachment secure the position of the reporter nitroxides. Experimental procedures to characterize and calibrate these probes by EPR and also the methods to analyze the EPR spectra by least-squares simulations are also outlined. The ionizable nitroxide labels and the nitroxide-labeled phospholipids described so far cover an exceptionally wide pH range from ca. 2.5 to 7.0 pH units making them suitable to study a broad range of biophysical phenomena especially at the negatively charged lipid bilayer surfaces. The rationale for selecting proper electrostatically neutral interface for calibrating such probes and example of studying surface potential of lipid bilayer is

  15. Nanoparticles induce raft formation in phospholipid liposomes

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Zhang, Liangfang; Granick, Steve

    2007-03-01

    Motivated by general interests in endocytosis, virus transfection and utilization of nanoparticles as cargo for drug delivery, this study focuses on the binding of nanoparticles to model lipid bilayers and the interactions between them. Exploring not only on the ensemble level, with the help of calorimetry, but also on the single-molecule level using fluorescence probes and single-molecule detection, we conclude the following. First, adsorbates capture and slave dynamically the lipids underneath, which results in lipid packing fluctuations, thereby producing rafts in the bilayers. Second, competition between neighboring particles causes further recomposition of heterogeneous lipid distribution. Bearing this insight in mind, we expect coupled motions of lipid and nanoparticles to occur, and confirm this with direct measurements. Going further, collective responses of lipid molecules cast light on the crucial role of support membranes in determining how membrane-based sensors respond to an external stimulus.

  16. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation

    SciTech Connect

    Musille, Paul M; Pathak, Manish C; Lauer, Janelle L; Hudson, William H; Griffin, Patrick R; Ortlund, Eric A

    2013-01-31

    The human nuclear receptor liver receptor homolog-1 (LRH-1) has an important role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of diabetes and hepatic diseases. LRH-1 is known to bind phospholipids, but the role of phospholipids in controlling LRH-1 activation remains highly debated. Here we describe the structure of both apo LRH-1 and LRH-1 in complex with the antidiabetic phospholipid dilauroylphosphatidylcholine (DLPC). Together with hydrogen-deuterium exchange MS and functional data, our studies show that DLPC binding is a dynamic process that alters co-regulator selectivity. We show that the lipid-free receptor undergoes previously unrecognized structural fluctuations, allowing it to interact with widely expressed co-repressors. These observations enhance our understanding of LRH-1 regulation and highlight its importance as a new therapeutic target for controlling diabetes.

  17. Girder Alignment Plan

    SciTech Connect

    Wolf, Zackary; Ruland, Robert; LeCocq, Catherine; Lundahl, Eric; Levashov, Yurii; Reese, Ed; Rago, Carl; Poling, Ben; Schafer, Donald; Nuhn, Heinz-Dieter; Wienands, Uli; /SLAC

    2010-11-18

    The girders for the LCLS undulator system contain components which must be aligned with high accuracy relative to each other. The alignment is one of the last steps before the girders go into the tunnel, so the alignment must be done efficiently, on a tight schedule. This note documents the alignment plan which includes efficiency and high accuracy. The motivation for girder alignment involves the following considerations. Using beam based alignment, the girder position will be adjusted until the beam goes through the center of the quadrupole and beam finder wire. For the machine to work properly, the undulator axis must be on this line and the center of the undulator beam pipe must be on this line. The physics reasons for the undulator axis and undulator beam pipe axis to be centered on the beam are different, but the alignment tolerance for both are similar. In addition, the beam position monitor must be centered on the beam to preserve its calibration. Thus, the undulator, undulator beam pipe, quadrupole, beam finder wire, and beam position monitor axes must all be aligned to a common line. All relative alignments are equally important, not just, for example, between quadrupole and undulator. We begin by making the common axis the nominal beam axis in the girder coordinate system. All components will be initially aligned to this axis. A more accurate alignment will then position the components relative to each other, without incorporating the girder itself.

  18. Effect of benzyl alcohol on lipid bilayers. A comparisons of bilayer systems.

    PubMed Central

    Ebihara, L; Hall, J E; MacDonald, R C; McIntosh, T J; Simon, S A

    1979-01-01

    The effect of the small anesthetic molecule, benzyl alcohol, on the structure of various bilayer system has been studied by optical, electrical, and x-ray diffraction techniques. We find that the modifications in bilayer thickness caused by benzyl alcohol differ dramatically for planar (or black lipid) bilayers containing solvent, planar bilayers containing little or no solvent, and vesicular bilayers. Benzyl alcohol increases the thickness of planar bilayers containing n-alkane solvents, yet decreases the thickness of "solvent-free" planar bilayers. The effect of benzyl alcohol on vesicular bilayers below the phase transition temperature also depends on whether solvent is present in the bilayers. Without solvent, gel-state bilayers are reduced in thickness by benzyl alcohol, whereas in the presence of solvent, the thickness is unchanged. Above the phase transition temperature, benzyl alcohol has no measurable effect on vesicular bilayer thickness, whether solvent is present or not. These results indicate that different model membrane systems respond quite differently to a particular anesthetic. PMID:263698

  19. Helium Microbeam Mixing of Bilayers.

    NASA Astrophysics Data System (ADS)

    Davis, John Baran

    This study is an experimental and theoretical investigation of room-temperature mixing of bilayers by micron-width He^+ ion beams. Bilayer targets, including Cu/Al, Cu/Si and Sb/Si, were irradiated at room temperature in the University at Albany's Dynamitron particle accelerator with 2-MeV He^+ ion beams ranging from 2 to 6 μm in width. At doses on the order of 10^ {19}/cm^2, RBS spectra revealed evidence of interface mixing in all targets to depths of several thousand A within the cylinder irradiated by the beam. Both RBS spectra and isometric RBS contour maps of the target also showed that mixing of the interface extends laterally well beyond the irradiated area. The interface mixing reaches a maximum in an annular region several times larger in diameter than the ion-beam. Standard theories of primary-recoil, secondary -cascade and thermal-spike mixing predicted interface widths two orders of magnitude smaller than observed for Cu/Al bilayers. Furthermore, He^+ irradiation of Cu/Al targets at liquid-nitrogen temperature did not produce interface mixing, further indicating that ballistic interpretations of the mixing are inadequate. Defect concentrations as a function of position and time were calculated by numerical solution of coupled rate equations for vacancies and interstitials in aluminum. The results of these calculations show that room-temperature He^+ mixing of Cu/Al results almost exclusively from interstitial migration. The numerically calculated concentration of interstitials within the damage cylinder was used to derive an approximate expression for interface width as a function of dose. Comparisons of these predicted values with the experimentally determined interface width as a function of dose agree, within uncertainties. In addition, the annular region observed on RBS maps is explained by the continued presence of a non-equilibrium concentration of interstitials after the ion beam is shut off. Interface mixing in Cu/Si targets, although

  20. Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers.

    PubMed

    Ho, Ming-Chak; Levine, Zachary A; Vernier, P Thomas

    2013-11-01

    Formation of a water bridge across the lipid bilayer is the first stage of pore formation in molecular dynamic (MD) simulations of electroporation, suggesting that the intrusion of individual water molecules into the membrane interior is the initiation event in a sequence that leads to the formation of a conductive membrane pore. To delineate more clearly the role of water in membrane permeabilization, we conducted extensive MD simulations of water bridge formation, stabilization, and collapse in palmitoyloleoylphosphatidylcholine bilayers and in water-vacuum-water systems, in which two groups of water molecules are separated by a 2.8 nm vacuum gap, a simple analog of a phospholipid bilayer. Certain features, such as the exponential decrease in water bridge initiation time with increased external electric field, are similar in both systems. Other features, such as the relationship between water bridge lifetime and the diameter of the water bridge, are quite different between the two systems. Data such as these contribute to a better and more quantitative understanding of the relative roles of water and lipid in membrane electropore creation and annihilation, facilitating a mechanism-driven development of electroporation protocols. These methods can be extended to more complex, heterogeneous systems that include membrane proteins and intracellular and extracellular membrane attachments, leading to more accurate models of living cells in electric fields. PMID:23644990

  1. Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers.

    PubMed

    Ho, Ming-Chak; Levine, Zachary A; Vernier, P Thomas

    2013-11-01

    Formation of a water bridge across the lipid bilayer is the first stage of pore formation in molecular dynamic (MD) simulations of electroporation, suggesting that the intrusion of individual water molecules into the membrane interior is the initiation event in a sequence that leads to the formation of a conductive membrane pore. To delineate more clearly the role of water in membrane permeabilization, we conducted extensive MD simulations of water bridge formation, stabilization, and collapse in palmitoyloleoylphosphatidylcholine bilayers and in water-vacuum-water systems, in which two groups of water molecules are separated by a 2.8 nm vacuum gap, a simple analog of a phospholipid bilayer. Certain features, such as the exponential decrease in water bridge initiation time with increased external electric field, are similar in both systems. Other features, such as the relationship between water bridge lifetime and the diameter of the water bridge, are quite different between the two systems. Data such as these contribute to a better and more quantitative understanding of the relative roles of water and lipid in membrane electropore creation and annihilation, facilitating a mechanism-driven development of electroporation protocols. These methods can be extended to more complex, heterogeneous systems that include membrane proteins and intracellular and extracellular membrane attachments, leading to more accurate models of living cells in electric fields.

  2. Silica nanoparticles for the oriented encapsulation of membrane proteins into artificial bilayer lipid membranes.

    PubMed

    Schadauer, Florian; Geiss, Andreas F; Srajer, Johannes; Siebenhofer, Bernhard; Frank, Pinar; Reiner-Rozman, Ciril; Ludwig, Bernd; Richter, Oliver-M H; Nowak, Christoph; Naumann, Renate L C

    2015-03-01

    An artificial bilayer lipid membrane system is presented, featuring the oriented encapsulation of membrane proteins in a functionally active form. Nickel nitrilo-triacetic acid-functionalized silica nanoparticles, of a diameter of around 25 nm, are used to attach the proteins via a genetically engineered histidine tag in a uniform orientation. Subsequently, the proteins are reconstituted within a phospholipid bilayer, formed around the particles by in situ dialysis to form so-called proteo-lipobeads (PLBs). With a final size of about 50 nm, the PLBs can be employed for UV/vis spectroscopy studies, particularly of multiredox center proteins, because the effects of light scattering are negligible. As a proof of concept, we use cytochrome c oxidase (CcO) from P. denitrificans with the his tag genetically engineered to subunit I. In this orientation, the P side of CcO is directed to the outside and hence electron transfer can be initiated by reduced cytochrome c (cc). UV/vis measurements are used in order to determine the occupancy by CcO molecules encapsulated in the lipid bilayer as well as the kinetics of electron transfer between CcO and cc. The kinetic data are analyzed in terms of the Michaelis-Menten kinetics showing that the turnover rate of CcO is significantly decreased compared to that of solubilized protein, whereas the binding characteristics are improved. The data demonstrate the suitability of PLBs for functional cell-free bioassays of membrane proteins.

  3. Interstellar Dust Grain Alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Lazarian, A.; Vaillancourt, John E.

    2015-08-01

    Interstellar polarization at optical-to-infrared wavelengths is known to arise from asymmetric dust grains aligned with the magnetic field. This effect provides a potentially powerful probe of magnetic field structure and strength if the details of the grain alignment can be reliably understood. Theory and observations have recently converged on a quantitative, predictive description of interstellar grain alignment based on radiative processes. The development of a general, analytical model for this radiative alignment torque (RAT) theory has allowed specific, testable predictions for realistic interstellar conditions. We outline the theoretical and observational arguments in favor of RAT alignment, as well as reasons the "classical" paramagnetic alignment mechanism is unlikely to work, except possibly for the very smallest grains. With further detailed characterization of the RAT mechanism, grain alignment and polarimetry promise to not only better constrain the interstellar magnetic field but also provide new information on the dust characteristics.

  4. Aggregation of oligoarginines at phospholipid membranes: molecular dynamics simulations, time-dependent fluorescence shift, and biomimetic colorimetric assays.

    PubMed

    Vazdar, Mario; Wernersson, Erik; Khabiri, Morteza; Cwiklik, Lukasz; Jurkiewicz, Piotr; Hof, Martin; Mann, Ella; Kolusheva, Sofiya; Jelinek, Raz; Jungwirth, Pavel

    2013-10-01

    A time-dependent fluorescence shift method, biomimetic colorimetric assays, and molecular dynamics simulations have been performed in search of explanations why arginine rich peptides with intermediate lengths of about 10 amino acids translocate well through cellular membranes, while analogous lysine rich peptides do not. First, we demonstrate that an important factor for efficient peptide adsorption, as the first prerequisite for translocation across the membrane, is the presence of negatively charged phospholipids in the bilayer. Second, we observe a strong tendency of adsorbed arginine (but not lysine) containing peptides to aggregate at the bilayer surface. We suggest that this aggregation of oligoarginines leads to partial disruption of the bilayer integrity due to the accumulated large positive charge at its surface, which increases membrane-surface interactions due to the increased effective charge of the aggregates. As a result, membrane penetration and translocation of medium length oligoarginines becomes facilitated in comparison to single arginine and very long polyarginines, as well as to lysine containing peptides.

  5. Supported lipid bilayer nanosystems: stabilization by undulatory-protrusion forces and destabilization by lipid bridging.

    PubMed

    Savarala, Sushma; Monson, Frederick; Ilies, Marc A; Wunder, Stephanie L

    2011-05-17

    Control of the stabilization/destabilization of supported lipid bilayers (SLBs) on nanoparticles is important for promotion of their organized assembly and for their use as delivery vehicles. At the same time, understanding the mechanism of these processes can yield insight into nanoparticle-cell interactions and nanoparticle toxicity. In this study, the suspension/precipitation process of zwitterionic lipid/SiO(2) nanosystems was analyzed as a function of ionic strength and as a function of the ratio of lipid/SiO(2) surface areas, at pH = 7.6. Salt is necessary to induce supported lipid bilayer (SLB) formation for zwitterionic lipids on silica (SiO(2)) (Seantier, B.; Kasemo, B., Influence of Mono- and Divalent Ions on the Formation of Supported Phospholipid Bilayers via Vesicle Adsorption. Langmuir 2009, 25 (10), 5767-5772). However, for zwitterionic SLBs on SiO(2) nanoparticles, addition of salt can cause precipitation of the SLBs, due to electrostatic shielding by both the lipid and the salt and to the suppression of thermal undulation/protrusion repulsive forces for lipids on solid surfaces. At ionic strengths that cause precipitation of SLBs, it was found that addition of excess SUVs, at ratios where there were equal populations of SUVs and SLBs, restored the undulation/protrusion repulsive forces and restabilized the suspensions. We suggest that SUVs separate SLBs in the suspension, as observed by TEM, and that SLB-SLB interactions are replaced by SLB-SUV interactions. Decreasing the relative amount of lipid, to the extent that there was less lipid available than the amount required for complete bilayer coverage of the SiO(2), resulted in precipitation of the nanosystem by a process of nanoparticle lipid bridging. For this case, we postulate a process in which lipid bilayer patches on one nanoparticle collide with bare silica patches on another SiO(2) nanoparticle, forming a single bilayer bridge between them. TEM data confirmed these findings, thus

  6. Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane.

    PubMed Central

    Chiu, S W; Clark, M; Balaji, V; Subramaniam, S; Scott, H L; Jakobsson, E

    1995-01-01

    In this paper we report on the molecular dynamics simulation of a fluid phase hydrated dimyristoylphosphatidylcholine bilayer. The initial configuration of the lipid was the x-ray crystal structure. A distinctive feature of this simulation is that, upon heating the system, the fluid phase emerged from parameters, initial conditions, and boundary conditions determined independently of the collective properties of the fluid phase. The initial conditions did not include chain disorder characteristic of the fluid phase. The partial charges on the lipids were determined by ab initio self-consistent field calculations and required no adjustment to produce a fluid phase. The boundary conditions were constant pressure and temperature. Thus the membrane was not explicitly required to assume an area/phospholipid molecule thought to be characteristic of the fluid phase, as is the case in constant volume simulations. Normal to the membrane plane, the pressure was 1 atmosphere, corresponding to the normal laboratory situation. Parallel to the membrane plane a negative pressure of -100 atmospheres was applied, derived from the measured surface tension of a monolayer at an air-water interface. The measured features of the computed membrane are generally in close agreement with experiment. Our results confirm the concept that, for appropriately matched temperature and surface pressure, a monolayer is a close approximation to one-half of a bilayer. Our results suggest that the surface area per phospholipid molecule for fluid phosphatidylcholine bilayer membranes is smaller than has generally been assumed in computational studies at constant volume. Our results confirm that the basis of the measured dipole potential is primarily water orientations and also suggest the presence of potential barriers for the movement of positive charges across the water-headgroup interfacial region of the phospholipid. Images FIGURE 2 PMID:8534794

  7. Genetic dissection of the phospholipid hydroperoxidase activity of yeast gpx3 reveals its functional importance.

    PubMed

    Avery, Angela M; Willetts, Sylvia A; Avery, Simon V

    2004-11-01

    Saccharomyces cerevisiae expresses multiple phospholipid hydroperoxide glutathione peroxidase (PHGPx)-like proteins in the absence of a classical glutathione peroxidase (cGPx), providing a unique system for dissecting the roles of these enzymes in vivo. The Gpx3 (Orp1/PHGpx3) protein transduces the hydroperoxide signal to the transcription factor Yap1, a function that could account for most GPX-dependent phenotypes. To test this hypothesis and ascertain what functions of Gpx3 can be shared by cGPx-like enzymes, we constructed a novel cGPx-like yeast enzyme, cGpx3. We confirmed that the "gap" sequences conserved among cGPxs but absent from aligned PHGPx sequences are the principal cause of the structural and functional differences of these enzymes. Peroxidase activity against a cGPx substrate was high in the cGpx3 construct, which was multimeric and had a peroxidase catalytic mechanism distinct from Gpx3; but cGpx3 was defective for phospholipid hydroperoxidase and signaling activities. cGpx3 did not complement the sensitivity to lipid peroxidation of a gpxDelta mutant, and the resistance to lipid peroxidation conferred by Gpx3 was independent of Yap1, establishing a functional role for Gpx3 phospholipid hydroperoxidase activity. Using the comparison between cGpx3 and Gpx3 in conjunction with other constructs to probe lipid peroxidation as a toxicity mechanism, we also ascertained that lipid peroxidation-dependent processes are a principal cause of cellular cadmium toxicity. The results demonstrate that phospholipid hydroperoxidase and Yap1-mediated signaling activities of Gpx3 have independent functional roles, although both functions depend on the absence of cGPx-like subunit interaction sites, and the results resolve more clearly the potential drivers of the differential selective evolution of GPx-like enzymes. PMID:15337745

  8. Annular bilayer magnetoelectric composites: theoretical analysis.

    PubMed

    Guo, Mingsen; Dong, Shuxiang

    2010-01-01

    The laminated bilayer magnetoelectric (ME) composites consist of magnetostrictive and piezoelectric layers are known to have giant ME coefficient due to the high coupling efficiency in bending mode. In our previous report, the bar-shaped bilayer composite has been investigated by using a magnetoelectric-coupling equivalent circuit. Here, we propose an annular bilayer ME composite, which consists of magnetostrictive and piezoelectric rings. This composite has a much lower resonance frequency of bending mode compared with its radial mode. In addition, the annular bilayer ME composite is expected to respond to vortex magnetic field as well as unidirectional magnetic field. In this paper, we investigate the annular bilayer ME composite by using impedance-matrix method and predict the ME coefficients as a function of geometric parameters of the composites. PMID:20178914

  9. Photon correlation spectroscopy of bilayer lipid membranes.

    PubMed

    Crilly, J F; Earnshaw, J C

    1983-02-01

    Light scattering by thermal fluctuations on simple monoglyceride bilayer membranes has been used to investigate the viscoelastic properties of these structures. Spectroscopic analysis of these fluctuations (capillary waves) permits the nonperturbative measurement of the interfacial tension and a shear interfacial viscosity acting normal to the membrane plane. The methods were established by studies of solvent and nonsolvent bilayers of glycerol monooleate (GMO). Changes in the tension of GMO/n-decane membranes induced by altering the composition of the parent solution were detected and quantified. In a test of the reliability of the technique controlled variations of the viscosity of the aqueous bathing solution were accurately monitored. The technique was applied to solvent-free bilayers formed from dispersions of GMO in squalane. The lower tensions observed attested to the comparative absence of solvent in such bilayers. In contrast to the solvent case, the solvent-free membranes exhibited a significant transverse shear viscosity, indicative of the enhanced intermolecular interactions within the bilayer.

  10. Preferential interaction of the Alzheimer peptide Aβ-(1-42) with Omega-3-containing lipid bilayers: structure and interaction studies.

    PubMed

    Emendato, Alessandro; Spadaccini, Roberta; De Santis, Augusta; Guerrini, Remo; D'Errico, Gerardino; Picone, Delia

    2016-02-01

    Many age-related neurodegenerative diseases, including Alzheimer Disease (AD), are elicited by an interplay of genetic, environmental, and dietary factors. Food rich in Omega-3 phospholipids seems to reduce the AD incidence. To investigate the molecular basis of this beneficial effect, we have investigated by CD and ESR studies the interaction between the Alzheimer peptide Aβ-(1-42) and biomimetic lipid bilayers. The inclusion of 1,2-didocosahexaenoyl-sn-glycero-3-phosphocholine does not change significantly the bilayers organization, but favors its Aβ-(1-42) interaction. The Omega-3 lipid amount modulates the effect intensity, suggesting a peptide selectivity for membranes containing polyunsatured fatty acids (PUFA) and providing hints for the mechanism and therapy of AD. PMID:26821608

  11. Blepharismins, produced by the protozoan, Blepharisma japonicum, form ion-permeable channels in planar lipid bilayer membranes.

    PubMed

    Muto, Y; Matsuoka, T; Kida, A; Okano, Y; Kirino, Y

    2001-11-23

    Blepharismins are polycyclic quinones found in the pigment granules of the ciliated protozoan, Blepharisma. Exposure to purified blepharismins results in lethal damage to several other ciliates. We here report that, at cytotoxic concentrations, blepharismins formed cation-selective channels in planar phospholipid bilayer membranes. The channels formed in a diphytanoylphosphatidylcholine bilayer had a K(+)/Cl(-) permeability ratio of 6.6:1. Single channel recordings revealed the conductance to be quite heterogeneous, ranging from 0.2 to 2.8 nS in solutions containing 0.1 M KCl, possibly reflecting different states of aggregation of blepharismin. Our observations suggest that channel formation is a cytotoxic mechanism of blepharismin's action against predatory protozoa.

  12. "Nanocrystal bilayer for tandem catalysis"

    SciTech Connect

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  13. Determination of metals in phospholipids by atomic-absorption spectrophotometry.

    PubMed

    Montford, B; Cribbs, S C

    1969-07-01

    A procedure is described for the determination of sodium, potassium, calcium, magnesium and manganese in phospholipids by atomic-absorption spectrophotometry. The method uses a solution of phospholipid in isopentyl acetate; phosphate interference is controlled by the addition of aqueous lanthanum chloride solution homogenized with ethanol. Standards are prepared in a similar solvent mixture. A comparison between the described method and that of standard additions show it to be free of phospholipid matrix effects. PMID:18960604

  14. Simple, generalizable route to highly aligned block copolymer thin films

    NASA Astrophysics Data System (ADS)

    Qiang, Zhe; Cavicchi, Kevin; Vogt, Bryan

    2015-03-01

    Macroscopic alignment of block copolymer domains in thin films is desired for many applications, such as cell responsive surfaces or optical polarizers. Alignment generally requires specialized tools that apply external fields, shear force gradient, or produce topological patterned substrates. This requirement limits the broad academic application of aligned BCPs. Here, we describe a simple modification of commonly utilized solvent vapor annealing (SVA) process for macroscopic alignment of BCPs. Adhering a flat, crosslinked elastomer pad to the BCP film leads to differential swelling between the elastomer pad and BCP to produce a shear force that aligns the ordered BCP domains. The role of elastomer properties, solvent quality, drying rate and degree of segregation of the block copolymer will be discussed to provide generalized rules for alignment with this technique. Cylindrical nanostructures formed in polystyrene-block-polydimethylsiloxane can be transformed into arrays of silica lines and increasing the thickness from a monolayer to bilayer can effectively halve the spacing of the lines. These results illustrate a generalized method for BCP alignment and a potential route for the generation of complex hierarchical assembled structures.

  15. Ethanol effects on binary and ternary supported lipid bilayers with gel/fluid domains and lipid rafts.

    PubMed

    Marquês, Joaquim T; Viana, Ana S; De Almeida, Rodrigo F M

    2011-01-01

    Ethanol-lipid bilayer interactions have been a recurrent theme in membrane biophysics, due to their contribution to the understanding of membrane structure and dynamics. The main purpose of this study was to assess the interplay between membrane lateral heterogeneity and ethanol effects. This was achieved by in situ atomic force microscopy, following the changes induced by sequential ethanol additions on supported lipid bilayers formed in the absence of alcohol. Binary phospholipid mixtures with a single gel phase, dipalmitoylphosphatidylcholine (DPPC)/cholesterol, gel/fluid phase coexistence DPPC/dioleoylphosphatidylcholine (DOPC), and ternary lipid mixtures containing cholesterol, mimicking lipid rafts (DOPC/DPPC/cholesterol and DOPC/sphingomyelin/cholesterol), i.e., with liquid ordered/liquid disordered (ld/lo) phase separation, were investigated. For all compositions studied, and in two different solid supports, mica and silicon, domain formation or rearrangement accompanied by lipid bilayer thinning and expansion was observed. In the case of gel/fluid coexistence, low ethanol concentrations lead to a marked thinning of the fluid but not of the gel domains. In the case of ld/lo all the bilayer thins simultaneously by a similar extent. In both cases, only the more disordered phase expanded significantly, indicating that ethanol increases the proportion of disordered domains. Water/bilayer interfacial tension variation and freezing point depression, inducing acyl chain disordering (including opening and looping), tilting, and interdigitation, are probably the main cause for the observed changes. The results presented herein demonstrate that ethanol influences the bilayer properties according to membrane lateral organization. PMID:20955684

  16. Resonance energy transfer imaging of phospholipid vesicle interaction with a planar phospholipid membrane: undulations and attachment sites in the region of calcium-mediated membrane--membrane adhesion

    PubMed Central

    1996-01-01

    Membrane fusion of a phospholipid vesicle with a planar lipid bilayer is preceded by an initial prefusion stage in which a region of the vesicle membrane adheres to the planar membrane. A resonance energy transfer (RET) imaging microscope, with measured spectral transfer functions and a pair of radiometrically calibrated video cameras, was used to determine both the area of the contact region and the distances between the membranes within this zone. Large vesicles (5-20 microns diam) were labeled with the donor fluorophore coumarin- phosphatidylethanolamine (PE), while the planar membrane was labeled with the acceptor rhodamine-PE. The donor was excited with 390 nm light, and separate images of donor and acceptor emission were formed by the microscope. Distances between the membranes at each location in the image were determined from the RET rate constant (kt) computed from the acceptor:donor emission intensity ratio. In the absence of an osmotic gradient, the vesicles stably adhered to the planar membrane, and the dyes did not migrate between membranes. The region of contact was detected as an area of planar membrane, coincident with the vesicle image, over which rhodamine fluorescence was sensitized by RET. The total area of the contact region depended biphasically on the Ca2+ concentration, but the distance between the bilayers in this zone decreased with increasing [Ca2+]. The changes in area and separation were probably related to divalent cation effects on electrostatic screening and binding to charged membranes. At each [Ca2+], the intermembrane separation varied between 1 and 6 nm within each contact region, indicating membrane undulation prior to adhesion. Intermembrane separation distances < or = 2 nm were localized to discrete sites that formed in an ordered arrangement throughout the contact region. The area of the contact region occupied by these punctate attachment sites was increased at high [Ca2+]. Membrane fusion may be initiated at these sites of

  17. Platelet activating factor activity in the phospholipids of bovine spermatozoa

    SciTech Connect

    Parks, J.E.; Hough, S.; Elrod, C. )

    1990-11-01

    Platelet activating factor (PAF) has been detected in sperm from several mammalian species and can affect sperm motility and fertilization. Because bovine sperm contain a high percentage of ether-linked phospholipid precursors required for PAF synthesis, a study was undertaken to determine the PAF activity of bovine sperm phospholipids. Total lipids of washed, ejaculated bull sperm were extracted, and phospholipids were fractionated by thin-layer chromatography. Individual phospholipid fractions were assayed for PAF activity on the basis of (3H)serotonin release from equine platelets. PAF activity was detected in the PAF fraction (1.84 pmol/mumol total phospholipid) and in serine/inositol (PS/PI), choline (CP), and ethanolamine phosphoglyceride (EP) and cardiolipin (CA) fractions. Activity was highest in the CP fraction (8.05 pmol/mumol total phospholipid). Incomplete resolution of PAF and neutral lipids may have contributed to the activity in the PS/PI and CA fractions, respectively. Phospholipids from nonsperm sources did not stimulate serotonin release. Platelet activation by purified PAF and by sperm phospholipid fractions was inhibited by the receptor antagonist SRI 63-675. These results indicate that bovine sperm contain PAF and that other sperm phospholipids, especially CP and EP, which are high in glycerylether components, are capable of receptor-mediated platelet activation.

  18. Physicochemical studies on the interaction of serum albumin with pulmonary surfactant extract in films and bulk bilayer phase.

    PubMed

    Nag, Kaushik; Vidyashankar, Sangeetha; Devraj, Ravi; Fritzen Garcia, Mauricia; Panda, Amiya K

    2010-12-15

    Functionality, structure and composition of the adsorbed films of bovine lipid extract surfactant (BLES), in the absence and presence of bovine serum albumin (BSA), at the air-buffer interface was characterized through surface tension, atomic force microscopy and time of flight secondary ion mass spectrometric methods. Gel and fluid domains of BLES films were found to be altered significantly in the presence of BSA. Differential scanning calorimetric studies on BLES dispersions in presence of BSA revealed that the perturbations of the lipid bilayer structures were significant only at higher amount of BSA. FTIR studies on the BLES dispersions in buffer solution revealed that BSA could affect the lipid head-group hydrations in bilayer as well as the methylene and methyl vibration modes of fatty acyl chains of the phospholipids present in BLES. Serum albumin could perturb the film structure at pathophysiological concentration while higher amount of BSA was required in perturbing the bilayer structures. The studies suggest a connected perturbed bilayer to monolayer transition model for surfactant inactivation at the alveolar-air interface in dysfunctional surfactants.

  19. Imaging the oxidation effects of the Fenton reaction on phospholipids at the interface between aqueous phase and thermotropic liquid crystals.

    PubMed

    Zhang, Minmin; Jang, Chang-Hyun

    2015-08-01

    The lipid peroxidation process has attracted much attention because of the growing evidence of its involvement in the pathogenesis of age-related diseases. Herein, we report a simple, label-free method to study the oxidation of phospholipids by the Fenton reaction at the interface between an aqueous phase and immiscible liquid crystals (LCs). The different images produced by the orientation of 4-cyano-4'-pentylbiphenyl (5CB) corresponded to the presence or absence of oxidized 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG). The oxidation effects of the Fenton reaction on DOPG were evaluated by monitoring the orientational response of liquid crystals upon contact with the oxidized DOPG solutions. DOPG was oxidized into chain-changed products containing hydroxy, carbonyl, or aldehyde groups, resulting in the rearrangement of the phospholipid layer. This induced the orientational transition of LCs from homeotropic to planar states; therefore, a dark to bright optical shift was observed. This shift was due to the Fenton reaction preventing DOPG to induce the orientational alignment of LCs at the aqueous/LC interface. We also used an ultraviolet spectrophotometer to confirm the effects of oxidation on phospholipids by the Fenton reaction. Using this simple method, a new approach for investigating phospholipid oxidation was established with high resolution and easy accessibility. PMID:25656072

  20. Imaging the oxidation effects of the Fenton reaction on phospholipids at the interface between aqueous phase and thermotropic liquid crystals.

    PubMed

    Zhang, Minmin; Jang, Chang-Hyun

    2015-08-01

    The lipid peroxidation process has attracted much attention because of the growing evidence of its involvement in the pathogenesis of age-related diseases. Herein, we report a simple, label-free method to study the oxidation of phospholipids by the Fenton reaction at the interface between an aqueous phase and immiscible liquid crystals (LCs). The different images produced by the orientation of 4-cyano-4'-pentylbiphenyl (5CB) corresponded to the presence or absence of oxidized 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG). The oxidation effects of the Fenton reaction on DOPG were evaluated by monitoring the orientational response of liquid crystals upon contact with the oxidized DOPG solutions. DOPG was oxidized into chain-changed products containing hydroxy, carbonyl, or aldehyde groups, resulting in the rearrangement of the phospholipid layer. This induced the orientational transition of LCs from homeotropic to planar states; therefore, a dark to bright optical shift was observed. This shift was due to the Fenton reaction preventing DOPG to induce the orientational alignment of LCs at the aqueous/LC interface. We also used an ultraviolet spectrophotometer to confirm the effects of oxidation on phospholipids by the Fenton reaction. Using this simple method, a new approach for investigating phospholipid oxidation was established with high resolution and easy accessibility.

  1. Drug induced `softening' in phospholipid monolayers

    NASA Astrophysics Data System (ADS)

    Basak, Uttam Kumar; Datta, Alokmay; Bhattacharya, Dhananjay

    2015-06-01

    Compressibility measurements on Langmuir monolayers of the phospholipid Dimystoryl Phospatidylcholine (DMPC) in pristine form and in the presence of the Non-steroidal Anti-inflammatory Drug (NSAID) Piroxicam at 0.025 drug/lipid (D/L) molecular ratio at different temperatures, show that the monolayer exhibits large increase (and subsequent decrease) in compressibility due to the drug in the vicinity of the Liquid Expanded - Liquid Condensed (LE-LC) phase transition. Molecular dynamics simulations of the lipid monolayer in presence of drug molecules show a disordering of the tail tilt, which is consistent with the above result.

  2. Thermodynamic and kinetic investigations of the release of oxidized phospholipids from lipid membranes and its effect on vascular integrity

    PubMed Central

    Heffern, Charles T.R.; Pocivavsek, Luka; Birukova, Anna A.; Moldobaeva, Nurgul; Bochkov, Valery N.; Lee, Ka Yee C.; Birukov, Konstantin G.

    2013-01-01

    The lipid membrane not only provides a rich interface with an array of receptor signaling complexes with which a cell communicates, but it also serves as a source of lipid derived bioactive molecules. In pathologic conditions of acute lung injury (ALI) associated with activation of oxidative stress, unsaturated phosphatidyl cholines overlooking a luminal space undergo oxidation leading to generation of fragmented phospholipids such as 1-palmitoyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoPC), or 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) full length oxygenation products (oxPAPC). Using Langmuir monolayers as models of the lipid bilayer, we evaluated the propensity of these phospholipids to solubilize from the cell membrane. The results suggest that lysoPC is rapidly released as it is produced, while oxPAPC has a longer membrane bound lifetime. After being released from cell membranes, these oxidized phospholipids exhibit potent agonist-like effects on neighboring cells. Therefore, we correlate the presence of the two phospholipid groups with the onset and resolution of increased vascular leakiness associated with ALI through testing their effect on vascular endothelial barrier integrity. Our work shows that cells respond differently to these two groups of products of phosphatidyl choline oxidation. LysoPC disrupts cell–cell junctions and increases endothelial permeability while oxPAPC enhances endothelial barrier. These data suggest a model whereby rapid release of lysoPC results in onset of ALI associated vascular leak, and the release of a reserve of oxPAPC as oxidative stress subsides restores the vascular barrier properties. PMID:23911706

  3. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  4. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies.

  5. Orthodontics and Aligners

    MedlinePlus

    ... Repairing Chipped Teeth Teeth Whitening Tooth-Colored Fillings Orthodontics and Aligners Straighten teeth for a healthier smile. Orthodontics When consumers think about orthodontics, braces are the ...

  6. Tidal alignment of galaxies

    NASA Astrophysics Data System (ADS)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  7. Alignability of Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Beech, Russell Scott

    With the continuing drive towards higher speed, density, and functionality in electronics, electrical interconnects become inadequate. Due to optics' high speed and bandwidth, freedom from capacitive loading effects, and freedom from crosstalk, optical interconnects can meet more stringent interconnect requirements. But, an optical interconnect requires additional components, such as an optical source and detector, lenses, holographic elements, etc. Fabrication and assembly of an optical interconnect requires precise alignment of these components. The successful development and deployment of optical interconnects depend on how easily the interconnect components can be aligned and/or how tolerant the interconnect is to misalignments. In this thesis, a method of quantitatively specifying the relative difficulty of properly aligning an optical interconnect is described. Ways of using this theory of alignment to obtain design and packaging guidelines for optical interconnects are examined. The measure of the ease with which an optical interconnect can be aligned, called the alignability, uses the efficiency of power transfer as a measure of alignment quality. The alignability is related to interconnect package design through the overall cost measure, which depends upon various physical parameters of the interconnect, such as the cost of the components and the time required for fabrication and alignment. Through a mutual dependence on detector size, the relationship between an interconnect's alignability and its bandwidth, signal-to-noise ratio, and bit-error -rate is examined. The results indicate that a range of device sizes exists for which given performance threshold values are satisfied. Next, the alignability of integrated planar-optic backplanes is analyzed in detail. The resulting data show that the alignability can be optimized by varying the substrate thickness or the angle of reflection. By including the effects of crosstalk, in a multi-channel backplane, the

  8. Cholera toxin interactions with lipid bilayers.

    PubMed

    Tosteson, M T; Tosteson, D C; Rubnitz, J

    1980-01-01

    The purpose of the experiments described in this paper was to assess the binding of cholera toxin to bilayers containing its receptor, the monosialoganglioside, GMl. The assay was based on the fact that GMl confers on the bilayer a negative surface charge. The magnitude of this surface charge was estimated by measuring the electrical conductance (G) of the bilayers exposed to nonactin-K+ under conditions where G is directly proportional to the potassium concentration in the aqueous solutions immediatey adjacent to the membrane surface. When bilayers were formed from mixtures of GMl and glycerolmonooleate (GMO), it was found that the molar ratio of the lipids in the bilayer was the same as that in the membrane forming solution. It was further found that cholera toxin or the binding subunit of the toxin (choleragenoid) bind to GMO bilayers containing GMl (but not to GMO bilayers containing phosphatidyl serine or disialoganglioside GDla). The value of the apparent dissociation constant for the binding of choleragen to its receptor was found to be 10(-11) M, comparable to values found in intact cells.

  9. Recording ion channels across soy-extracted lecithin bilayer generated by water-soluble quantum dots

    NASA Astrophysics Data System (ADS)

    Sarma, Runjun; Mohanta, Dambarudhar

    2014-02-01

    We report on the quantum dot (QD)-induced ion channels across a soya-derived lecithin bilayer supported on a laser drilled of ~100 μm aperture of cellulose acetate substrate that separates two electrolytic chambers. Adequate current bursts were observed when the bilayer was subjected to a gating voltage. The voltage-dependent current fluctuation, across the bilayer, was attributed to the insertion of ~20 nm sized water-soluble CdSe QDs, forming nanopores due to their spontaneous aggregation. Apart from a closed state, the first observable conductance levels were found as 6.3 and 11 nS, as for the respective biasing voltages of -10 and -20 mV. The highest observable conductance states, at corresponding voltages were ~14.3 and 21.1 nS. Considering two simplified models, we predict that the non-spherical pores (dnspore) can be a better approximation over spherical nanopores (dspore) for exhibiting a definite conductance level. At times, even dnspore ≤ 4dspore and that the non-spherical nanopores were associated with a smaller No. of QDs than the case for spherical nanopores, for a definite conductance state. It seems like the current events are partly stochastic, possibly due to thermal effects on the aggregated QDs that would form nanopores. The dwell time of the states was predicted in the range of 384-411 μs. The ion channel mechanism in natural phospholipid bilayers over artificial ones will provide a closer account to understand ion transport mechanism in live cells and signaling activity including labelling with fluorescent QDs.

  10. Water Permeability of Aquaporin-4 Channel Depends on Bilayer Composition, Thickness, and Elasticity

    PubMed Central

    Tong, Jihong; Briggs, Margaret M.; McIntosh, Thomas J.

    2012-01-01

    Aquaporin-4 (AQP4) is the primary water channel in the mammalian brain, particularly abundant in astrocytes, whose plasma membranes normally contain high concentrations of cholesterol. Here we test the hypothesis that the water permeabilities of two naturally occurring isoforms (AQP4-M1 and AQP4-M23) depend on bilayer mechanical/structural properties modulated by cholesterol and phospholipid composition. Osmotic stress measurements were performed with proteoliposomes containing AQP4 and three different lipid mixtures: 1), phosphatidylcholine (PC) and phosphatidylglycerol (PG); 2), PC, PG, with 40 mol % cholesterol; and 3), sphingomyelin (SM), PG, with 40 mol % cholesterol. The unit permeabilities of AQP4-M1 were 3.3 ± 0.4 × 10−13 cm3/s (mean ± SE), 1.2 ± 0.1 × 10−13 cm3/s, and 0.4 ± 0.1 × 10−13 cm3/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. The unit permeabilities of AQP4-M23 were 2.1 ± 0.2 × 10−13 cm3/s, 0.8 ± 0.1 × 10−13 cm3/s, and 0.3 ± 0.1 × 10−13 cm3/s in PC:PG, PC:PG:cholesterol, and SM:PG:cholesterol, respectively. Thus, for each isoform the unit permeabilities strongly depended on bilayer composition and systematically decreased with increasing bilayer compressibility modulus and bilayer thickness. These observations suggest that altering lipid environment provides a means of regulating water channel permeability. Such permeability changes could have physiological consequences, because AQP4 water permeability would be reduced by its sequestration into SM:cholesterol-enriched raft microdomains. Conversely, under ischemic conditions astrocyte membrane cholesterol content decreases, which could increase AQP4 permeability. PMID:23199918

  11. Biomembrane Fabrication by the Solvent-assisted Lipid Bilayer (SALB) Method

    PubMed Central

    Tabaei, Seyed R.; Jackman, Joshua A.; Kim, Minchul; Yorulmaz, Saziye; Vafaei, Setareh; Cho, Nam-Joon

    2015-01-01

    In order to mimic cell membranes, the supported lipid bilayer (SLB) is an attractive platform which enables in vitro investigation of membrane-related processes while conferring biocompatibility and biofunctionality to solid substrates. The spontaneous adsorption and rupture of phospholipid vesicles is the most commonly used method to form SLBs. However, under physiological conditions, vesicle fusion (VF) is limited to only a subset of lipid compositions and solid supports. Here, we describe a one-step general procedure called the solvent-assisted lipid bilayer (SALB) formation method in order to form SLBs which does not require vesicles. The SALB method involves the deposition of lipid molecules onto a solid surface in the presence of water-miscible organic solvents (e.g., isopropanol) and subsequent solvent-exchange with aqueous buffer solution in order to trigger SLB formation. The continuous solvent exchange step enables application of the method in a flow-through configuration suitable for monitoring bilayer formation and subsequent alterations using a wide range of surface-sensitive biosensors. The SALB method can be used to fabricate SLBs on a wide range of hydrophilic solid surfaces, including those which are intractable to vesicle fusion. In addition, it enables fabrication of SLBs composed of lipid compositions which cannot be prepared using the vesicle fusion method. Herein, we compare results obtained with the SALB and conventional vesicle fusion methods on two illustrative hydrophilic surfaces, silicon dioxide and gold. To optimize the experimental conditions for preparation of high quality bilayers prepared via the SALB method, the effect of various parameters, including the type of organic solvent in the deposition step, the rate of solvent exchange, and the lipid concentration is discussed along with troubleshooting tips. Formation of supported membranes containing high fractions of cholesterol is also demonstrated with the SALB method, highlighting

  12. Fusion and fission of fluid amphiphilic bilayers.

    PubMed

    Gotter, Martin; Strey, Reinhard; Olsson, Ulf; Wennerström, Håkan

    2005-01-01

    The system water-oil (n-decane)-nonionic surfactant (C12E5) forms bilayer phases in a large concentration region, but, for a given oil-to-surfactant ratio, only in a narrow temperature range. In addition to the anisotropic lamellar phase (Lalpha) there is also, at slightly higher temperature, a sponge or L3-phase where the bilayers build up an isotropic structure extending macroscopically in three dimensions. In this phase the bilayer mid-surface has a mean curvature close to zero and a negative Euler characteristic. In this paper we study how the bilayers in the lamellar and the sponge phase respond dynamically to sudden temperature changes. The monolayer spontaneous curvature depends sensitively on temperature and a change of temperature thus provides a driving force for a change in bilayer topology. The equilibration therefore involves kinetic steps of fusion/fission of bilayers. Such dynamic processes have previously been monitored by temperature jump experiments using light scattering in the sponge phase. These experiments revealed an extraordinarily strong dependence of the relaxation time on the bilayer volume fraction phi. At phi < 0.1 the relaxation times are so slow that experiments using deuterium nuclear magnetic resonance (2H-NMR) appear feasible. We here report on the first experiments concerned with the dynamics of the macroscopic phase transition sponge-lamellae by 2H-NMR. We find that the sponge-to-lamellae transition occurs through a nucleation process followed by domain growth involving bilayer fission at domain boundaries. In contrast, the lamellae-to-sponge transformation apparently occurs through a succession of uncorrelated bilayer fusion events. PMID:15715316

  13. α-tocopherol is well designed to protect polyunsaturated phospholipids: MD simulations

    SciTech Connect

    Leng, Xiaoling; Kinnun, Jacob A.; Marquardt, Drew; Ghefli, Mikel; Kucerka, Norbert; Katsaras, John; Atkinson, Jeffrey; Harroun, Thad A.; Feller, Scott E.; Wassall, Stephen

    2015-10-20

    Here, the presumptive function for alpha-tocopherol (αtoc) in membranes is to protect polyunsaturated lipids against oxidation. Although the chemistry of the process is well established, the role played by molecular structure that we address here with atomistic molecular-dynamics simulations remains controversial. The simulations were run in the constant particle NPT ensemble on hydrated lipid bilayers composed of SDPC (1-stearoyl-2-docosahexaenoylphosphatidylcholine, 18:0-22:6PC) and SOPC (1-stearoyl-2-oleoylphosphatidylcholine, 18:0-18:1PC) in the presence of 20 mol % αtoc at 37°C. SDPC with SA (stearic acid) for the sn-1 chain and DHA (docosahexaenoic acid) for the sn-2 chain is representative of polyunsaturated phospholipids, while SOPC with OA (oleic acid) substituted for the sn-2 chain serves as a monounsaturated control. Solid-state 2H nuclear magnetic resonance and neutron diffraction experiments provide validation. The simulations demonstrate that high disorder enhances the probability that DHA chains at the sn-2 position in SDPC rise up to the bilayer surface, whereby they encounter the chromanol group on αtoc molecules. This behavior is reflected in the van der Waals energy of interaction between αtoc and acyl chains, and illustrated by density maps of distribution for acyl chains around αtoc molecules that were constructed. An ability to more easily penetrate deep into the bilayer is another attribute conferred upon the chromanol group in αtoc by the high disorder possessed by DHA. By examining the trajectory of single molecules, we found that αtoc flip-flops across the SDPC bilayer on a submicrosecond timescale that is an order-of-magnitude greater than in SOPC. Our results reveal mechanisms by which the sacrificial hydroxyl group on the chromanol group can trap lipid peroxyl radicals within the interior and near the surface of a polyunsaturated membrane. At the same time, water-soluble reducing agents that regenerate αtoc can access the

  14. α-tocopherol is well designed to protect polyunsaturated phospholipids: MD simulations

    DOE PAGES

    Leng, Xiaoling; Kinnun, Jacob A.; Marquardt, Drew; Ghefli, Mikel; Kucerka, Norbert; Katsaras, John; Atkinson, Jeffrey; Harroun, Thad A.; Feller, Scott E.; Wassall, Stephen

    2015-10-20

    Here, the presumptive function for alpha-tocopherol (αtoc) in membranes is to protect polyunsaturated lipids against oxidation. Although the chemistry of the process is well established, the role played by molecular structure that we address here with atomistic molecular-dynamics simulations remains controversial. The simulations were run in the constant particle NPT ensemble on hydrated lipid bilayers composed of SDPC (1-stearoyl-2-docosahexaenoylphosphatidylcholine, 18:0-22:6PC) and SOPC (1-stearoyl-2-oleoylphosphatidylcholine, 18:0-18:1PC) in the presence of 20 mol % αtoc at 37°C. SDPC with SA (stearic acid) for the sn-1 chain and DHA (docosahexaenoic acid) for the sn-2 chain is representative of polyunsaturated phospholipids, while SOPC with OAmore » (oleic acid) substituted for the sn-2 chain serves as a monounsaturated control. Solid-state 2H nuclear magnetic resonance and neutron diffraction experiments provide validation. The simulations demonstrate that high disorder enhances the probability that DHA chains at the sn-2 position in SDPC rise up to the bilayer surface, whereby they encounter the chromanol group on αtoc molecules. This behavior is reflected in the van der Waals energy of interaction between αtoc and acyl chains, and illustrated by density maps of distribution for acyl chains around αtoc molecules that were constructed. An ability to more easily penetrate deep into the bilayer is another attribute conferred upon the chromanol group in αtoc by the high disorder possessed by DHA. By examining the trajectory of single molecules, we found that αtoc flip-flops across the SDPC bilayer on a submicrosecond timescale that is an order-of-magnitude greater than in SOPC. Our results reveal mechanisms by which the sacrificial hydroxyl group on the chromanol group can trap lipid peroxyl radicals within the interior and near the surface of a polyunsaturated membrane. At the same time, water-soluble reducing agents that regenerate αtoc can access

  15. Liquid crystals and their interactions with colloidal particles and phospholipid membranes: Molecular simulation studies

    NASA Astrophysics Data System (ADS)

    Kim, Evelina B.

    Experimentally, liquid crystals (LC) can be used as the basis for optical biomolecular sensors that rely on LC ordering. Recently, the use of LC as a reporting medium has been extended to investigations of molecular scale processes at lipid laden aqueous-LC interfaces and at biological cell membranes. In this thesis, we present two related studies where liquid crystals are modelled at different length scales. We examine (a) the behavior of nanoscopic colloidal particles in LC systems, using Monte Carlo (MC) molecular simulations and a mesoscopic dynamic field theory (DyFT); and (b) specific interactions of two types of mesogens with a model phospholipid bilayer, using atomistic molecular dynamics (MD) at the A-nm scale. In (a), we consider colloidal particles suspended in a LC, confined between two walls. We calculate the colloid-substrate and colloid-colloid potentials of mean force (PMF). For the MC simulations, we developed a new technique (ExEDOS or Expanded Ensemble Density Of States) that ensures good sampling of phase space without prior knowledge of the energy landscape of the system. Both results, simulation and DyFT, indicate a repulsive force acting between a colloid and a wall. In contrast, both techniques indicate an overall colloid-colloid attraction and predict a new topology of the disclination lines that arises when the particles approach each other. In (b), we find that mesogens (pentylcyanobiphenyl [5CB] or difluorophenyl-pentylbicyclohexyl [5CF]) preferentially partition from the aqueous phase into a dipalmitoylphosphatidylcholine (DPPC) bilayer. We find highly favorable free energy differences for partitioning (-18kBT for 5CB, -26k BT for 5CF). We also simulated fully hydrated bilayers with embedded 5CB or 5CF at concentrations used in recent experiments (6 mol% and 20 mol%). The presence of mesogens in the bilayer enhances the order of lipid acyl tails and changes the spatial and orientational arrangement of lipid headgroup atoms. A stronger

  16. Specific Ion Binding at Phospholipid Membrane Surfaces.

    PubMed

    Yang, Jing; Calero, Carles; Bonomi, Massimiliano; Martí, Jordi

    2015-09-01

    Metal cations are ubiquitous components in biological environments and play an important role in regulating cellular functions and membrane properties. By applying metadynamics simulations, we have performed systematic free energy calculations of Na(+), K(+), Ca(2+), and Mg(2+) bound to phospholipid membrane surfaces for the first time. The free energy landscapes unveil specific binding behaviors of metal cations on phospholipid membranes. Na(+) and K(+) are more likely to stay in the aqueous solution and can bind easily to a few lipid oxygens by overcoming low free energy barriers. Ca(2+) is most stable when it is bound to four lipid oxygens of the membrane rather than being hydrated in the aqueous solution. Mg(2+) is tightly hydrated, and it shows hardly any loss of a hydration water or binding directly to the membrane. When bound to the membrane, the cations' most favorable total coordination numbers with water and lipid oxygens are the same as their corresponding hydration numbers in aqueous solution, indicating a competition between ion binding to water and lipids. The binding specificity of metal cations on membranes is highly correlated with the hydration free energy and the size of the hydration shell.

  17. Negative Coulomb Drag in Double Bilayer Graphene.

    PubMed

    Li, J I A; Taniguchi, T; Watanabe, K; Hone, J; Levchenko, A; Dean, C R

    2016-07-22

    We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found. PMID:27494491

  18. Negative Coulomb Drag in Double Bilayer Graphene.

    PubMed

    Li, J I A; Taniguchi, T; Watanabe, K; Hone, J; Levchenko, A; Dean, C R

    2016-07-22

    We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found.

  19. Berry phase transition in twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.

    2016-09-01

    The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.

  20. Negative Coulomb Drag in Double Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Li, J. I. A.; Taniguchi, T.; Watanabe, K.; Hone, J.; Levchenko, A.; Dean, C. R.

    2016-07-01

    We report on an experimental measurement of Coulomb drag in a double quantum well structure consisting of bilayer-bilayer graphene, separated by few layer hexagonal boron nitride. At low temperatures and intermediate densities, a novel negative drag response with an inverse sign is observed, distinct from the momentum and energy drag mechanisms previously reported in double monolayer graphene. By varying the device aspect ratio, the negative drag component is suppressed and a response consistent with pure momentum drag is recovered. In the momentum drag dominated regime, excellent quantitative agreement with the density and temperature dependence predicted for double bilayer graphene is found.

  1. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.

    PubMed Central

    Cukierman, S; Quigley, E P; Crumrine, D S

    1997-01-01

    concentration was linear at low bulk concentrations of H+ (0.01-2 M) and saturated at concentrations of more than 3 M. It is concluded that 1) The mobility of protons in gramicidin A channels in different lipid bilayers is remarkably similar to proton mobilities in aqueous solutions. In particular, at high concentrations of HCl, proton mobilities in gramicidin A channel and in solution differ by only 25%. 2) Differences between proton conductances in gramicidin A channels in GMO and PEPC cannot be explained by surface charge effects on PEPC membranes. It is proposed that protonated phospholipids adjacent to the mouth of the pore act as an additional source of protons for conduction through gA channels in relation to GMO bilayers. 3) Some experimental results cannot be reconciled with simple alterations in access resistance to proton flow in gA channels. Said differences could be explained if the structure and/or dynamics of water molecules inside gramicidin A channels is modulated by the lipid environment and by modifications in the structure of gA channels. 4) The dioxolane ring is probably responsible for the closing flickers seen in the dimer channel. However, other factors can also influence closing flickers. PMID:9370442

  2. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.

    PubMed

    Cukierman, S; Quigley, E P; Crumrine, D S

    1997-11-01

    concentration was linear at low bulk concentrations of H+ (0.01-2 M) and saturated at concentrations of more than 3 M. It is concluded that 1) The mobility of protons in gramicidin A channels in different lipid bilayers is remarkably similar to proton mobilities in aqueous solutions. In particular, at high concentrations of HCl, proton mobilities in gramicidin A channel and in solution differ by only 25%. 2) Differences between proton conductances in gramicidin A channels in GMO and PEPC cannot be explained by surface charge effects on PEPC membranes. It is proposed that protonated phospholipids adjacent to the mouth of the pore act as an additional source of protons for conduction through gA channels in relation to GMO bilayers. 3) Some experimental results cannot be reconciled with simple alterations in access resistance to proton flow in gA channels. Said differences could be explained if the structure and/or dynamics of water molecules inside gramicidin A channels is modulated by the lipid environment and by modifications in the structure of gA channels. 4) The dioxolane ring is probably responsible for the closing flickers seen in the dimer channel. However, other factors can also influence closing flickers.

  3. Hole-Aligning Tool

    NASA Technical Reports Server (NTRS)

    Collins, Frank A.; Saude, Frank; Sep, Martin J.

    1996-01-01

    Tool designed for use in aligning holes in plates or other structural members to be joined by bolt through holes. Holes aligned without exerting forces perpendicular to planes of holes. Tool features screw-driven-wedge design similar to (but simpler than) that of some automotive exhaust-pipe-expanding tools.

  4. Depletion of acidic phospholipids influences chromosomal replication in Escherichia coli

    PubMed Central

    Fingland, Nicholas; Flåtten, Ingvild; Downey, Christopher D; Fossum-Raunehaug, Solveig; Skarstad, Kirsten; Crooke, Elliott

    2012-01-01

    In Escherichia coli, coordinated activation and deactivation of DnaA allows for proper timing of the initiation of chromosomal synthesis at the origin of replication (oriC) and assures initiation occurs once per cell cycle. In vitro, acidic phospholipids reactivate DnaA, and in vivo depletion of acidic phospholipids, results in growth arrest. Growth can be restored by the expression of a mutant form of DnaA, DnaA(L366K), or by oriC-independent DNA synthesis, suggesting acidic phospholipids are required for DnaA- and oriC-dependent replication. We observe here that when acidic phospholipids were depleted, replication was inhibited with a concomitant reduction of chromosomal content and cell mass prior to growth arrest. This global shutdown of biosynthetic activity was independent of the stringent response. Restoration of acidic phospholipid synthesis resulted in a resumption of DNA replication prior to restored growth, indicating a possible cell-cycle-specific growth arrest had occurred with the earlier loss of acidic phospholipids. Flow cytometry, thymidine uptake, and quantitative polymerase chain reaction data suggest that a deficiency in acidic phospholipids prolonged the time required to replicate the chromosome. We also observed that regardless of the cellular content of acidic phospholipids, expression of mutant DnaA(L366K) altered the DNA content-to-cell mass ratio. PMID:23233230

  5. Transbilayer mobility and distribution of red cell phospholipids during storage.

    PubMed Central

    Geldwerth, D; Kuypers, F A; Bütikofer, P; Allary, M; Lubin, B H; Devaux, P F

    1993-01-01

    We studied phospholipid topology and transbilayer mobility in red cells during blood storage. The distribution of phospholipids was determined by measuring the reactivity of phosphatidylethanolamine with fluorescamine and the degradation of phospholipids by phospholipase A2 and sphingomyelinase C. Phospholipid mobility was measured by determining transbilayer movements of spin-labeled phospholipids. We were unable to detect a change in the distribution of endogenous membrane phospholipids in stored red cells even after 2-mo storage. The rate of inward movement of spin-labeled phosphatidylethanolamine and phosphatidylserine was progressively reduced, whereas that for phosphatidylcholine was increased. These changes in phospholipid translocation correlated with a fall in cellular ATP. However, following restoration of ATP, neither the rate of aminophospholipid translocation nor the transbilayer movement of phosphatidylcholine were completely corrected. Taken together, our findings demonstrate that red cell storage alters the kinetics of transbilayer mobility of phosphatidylserine, phosphatidylethanolamine, and phosphatidylcholine, the activity of the aminophospholipid translocase, but not the asymmetric distribution of endogenous membrane phospholipids, at least at a level detectable with phospholipases. Thus, if phosphatidylserine appearance on the outer monolayer is a signal for red cell elimination, the amount that triggers macrophage recognition is below the level of detection upon using the phospholipase technique. PMID:8325999

  6. Solid-state /sup 15/N NMR of oriented lipid bilayer bound gramicidin A'

    SciTech Connect

    Nicholson, L.K.; Moll, F.; Mixon, T.E.; LoGrasso, P.V.; Lay, J.C.; Cross, T.A.

    1987-10-20

    Highly oriented samples of lipid and gramicidin A' (8:1 molar ratio) have been prepared with the samples extensively hydrated (approximately 70% water v/w). These preparations have been shown to be completely in a bilayer phase with a transition temperature of 28/sup 0/C, and evidence is presented indicating that the gramicidin is in the channel conformation. An estimate of the disorder in the alignment of the bilayers parallel with the glass plates used to align the bilayers can be made from the asymmetry of the nuclear magnetic resonances (NMR). Such an analysis indicates a maximal range of disorder of +-3/sup 0/. Uniformly /sup 15/N-labeled gramicidin has been biosynthesized by Bacillus brevis grown in a media containing /sup 15/N-labeled Escherichia coli cells as the only nitrogen source. When prepared with labeled gramicidin, the oriented samples result in high-resolution /sup 15/N NMR spectra showing 12 resonances for the 20 nitrogen sites of the polypeptide. The frequency of the three major multiple resonance peaks has been interpreted to yield the approximate orientation of the N-H bonds in the peptide linkages with respect to the magnetic field. The bond orientations are only partially consistent with the extant structural models of gramicidin.

  7. Charge renormalization of bilayer elastic properties.

    PubMed

    Sknepnek, Rastko; Vernizzi, Graziano; Olvera de la Cruz, Monica

    2012-09-14

    By combining molecular dynamics simulations and analytical arguments, we investigate the elastic properties of charged lipid bilayers. We show that electrostatic interactions between the head groups can lead to solidification of the lipid bilayer that would otherwise be in a liquid state if the charges were absent. All elastic parameters of the bilayer such as the bending rigidity κ and the two-dimensional bulk modulus λ and Young's modulus Y are found to depend on the values of the charges assigned to the lipid head groups. To extract κ and λ, we fit the molecular dynamics data to a standard elastic model for lipid bilayers. Moreover, we analytically obtain the dependence of the Young modulus Y on the relative strengths of electrostatic and van der Waals interactions in the zero temperature limit.

  8. Self healing nature of bilayer graphene

    NASA Astrophysics Data System (ADS)

    Debroy, Sanghamitra; Pavan Kumar Miriyala, V.; Vijaya Sekhar, K.; Acharyya, Swati Ghosh; Acharyya, Amit

    2016-08-01

    The phenomenon of self healing of cracks in bilayer graphene sheet has been studied using molecular dynamics simulations. The bilayer graphene sheet was subjected to uniaxial tensile load resulting in initiation and propagation of cracks on exceeding the ultimate tensile strength. Subsequently, all forces acting on the sheet were removed and sheet was relaxed. The cracks formed in the graphene sheet healed without any external aid within 0.4 ps The phenomenon of self healing of the cracks in graphene sheet was found to be independent of the length of the crack, but occurred for critical crack opening distance less than 5 Å for AA stacked sheet and 13 Å for AB stacked bilayer graphene sheet. Self healing was observed for both AB (mixed stacking of armchair and zigzag graphene sheet) and AA (both sheets of similar orientation i.e. either armchair-armchair or zigzag-zigzag) stacking of bilayer graphene sheet.

  9. Liquid to quasicrystal transition in bilayer water

    NASA Astrophysics Data System (ADS)

    Johnston, Jessica C.; Kastelowitz, Noah; Molinero, Valeria

    2010-10-01

    The phase behavior of confined water is a topic of intense and current interest due to its relevance in biology, geology, and materials science. Nevertheless, little is known about the phases that water forms even when confined in the simplest geometries, such as water confined between parallel surfaces. Here we use molecular dynamics simulations to compute the phase diagram of two layers of water confined between parallel non hydrogen bonding walls. This study shows that the water bilayer forms a dodecagonal quasicrystal, as well as two previously unreported bilayer crystals, one tiled exclusively by pentagonal rings. Quasicrystals, structures with long-range order but without periodicity, have never before been reported for water. The dodecagonal quasicrystal is obtained from the bilayer liquid through a reversible first-order phase transition and has diffusivity intermediate between that of the bilayer liquid and ice phases. The water quasicrystal and the ice polymorphs based on pentagons are stabilized by compression of the bilayer and are not templated by the confining surfaces, which are smooth. This demonstrates that these novel phases are intrinsically favored in bilayer water and suggests that these structures could be relevant not only for confined water but also for the wetting and properties of water at interfaces.

  10. Dynamic morphologies of microscale droplet interface bilayers.

    PubMed

    Mruetusatorn, Prachya; Boreyko, Jonathan B; Venkatesan, Guru A; Sarles, Stephen A; Hayes, Douglas G; Collier, C Patrick

    2014-04-21

    Droplet interface bilayers (DIBs) are a powerful platform for studying the dynamics of synthetic cellular membranes; however, very little has been done to exploit the unique dynamical features of DIBs. Here, we generate microscale droplet interface bilayers (μDIBs) by bringing together femtoliter-volume water droplets in a microfluidic oil channel, and characterize morphological changes of the μDIBs as the droplets shrink due to evaporation. By varying the initial conditions of the system, we identify three distinct classes of dynamic morphology. (1) Buckling and fission: when forming μDIBs using the lipid-out method (lipids in oil phase), lipids in the shrinking monolayers continually pair together and slide into the bilayer to conserve their mass. As the bilayer continues to grow, it becomes confined, buckles, and eventually fissions one or more vesicles. (2) Uniform shrinking: when using the lipid-in method (lipids in water phase) to form μDIBs, lipids uniformly transfer from the monolayers and bilayer into vesicles contained inside the water droplets. (3) Stretching and unzipping: finally, when the droplets are pinned to the wall(s) of the microfluidic channel, the droplets become stretched during evaporation, culminating in the unzipping of the bilayer and droplet separation. These findings offer a better understanding of the dynamics of coupled lipid interfaces. PMID:24647872

  11. Dynamic Morphologies of Microscale Droplet Interface Bilayers

    SciTech Connect

    Mruetusatorn, Prachya; Boreyko, Jonathan B; Sarles, Stephen A; Venkatesan, Guru; Hayes, Douglas G; Collier, Pat

    2014-01-01

    Droplet interface bilayers (DIBs) are a powerful platform for studying the dynamics of synthetic cellular membranes; however, very little has been done to exploit the unique dynamical features of DIBs. Here, we generate microscale droplet interface bilayers ( DIBs) by bringing together femtoliter-volume water droplets in a microfluidic oil channel, and characterize morphological changes of the DIBs as the droplets shrink due to evaporation. By varying the initial conditions of the system, we identify three distinct classes of dynamic morphology. (1) Buckling and Fission: When forming DIBs using the lipid-out method (lipids in oil phase), lipids in the shrinking monolayers continually pair together and slide into the bilayer to conserve their mass. As the bilayer continues to grow, it becomes confined, buckles, and eventually fissions one or more vesicles. (2) Uniform Shrinking: When using the lipid-in method (lipids in water phase) to form DIBs, lipids uniformly transfer from the monolayers and bilayer into vesicles contained inside the water droplets. (3) Stretching and Unzipping: Finally, when the droplets are pinned to the wall(s) of the microfluidic channel, the droplets become stretched during evaporation, culminating in the unzipping of the bilayer and droplet separation. These findings offer a better understanding of the dynamics of coupled lipid interfaces.

  12. Langmuir films containing ibuprofen and phospholipids

    NASA Astrophysics Data System (ADS)

    Geraldo, Vananélia P. N.; Pavinatto, Felippe J.; Nobre, Thatyane M.; Caseli, Luciano; Oliveira, Osvaldo N.

    2013-02-01

    This study shows the incorporation of ibuprofen, an anti-inflammatory drug, in Langmuir monolayers as cell membrane models. Significant effects were observed for dipalmitoyl phosphatidyl choline (DPPC) monolayers with relevant changes in the elasticity of the monolayer. Dipalmitoyl phosphatidyl glycerol (DPPG) monolayers were affected by small concentrations of ibuprofen, from 1 to 5 mol%. For both types of monolayer, ibuprofen could penetrate into the hydrophobic part of the monolayer, which was confirmed with polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS). Brewster angle microscopy (BAM) images showed that ibuprofen prevents the formation of large domains of DPPC. The pharmacological action should occur primarily with penetration of ibuprofen via electrically neutral phospholipid headgroups of the membrane.

  13. Interaction of polymer-coated silicon nanocrystals with lipid bilayers and surfactant interfaces

    NASA Astrophysics Data System (ADS)

    Elbaradei, Ahmed; Brown, Samuel L.; Miller, Joseph B.; May, Sylvio; Hobbie, Erik K.

    2016-10-01

    We use photoluminescence (PL) microscopy to measure the interaction between polyethylene-glycol-coated (PEGylated) silicon nanocrystals (SiNCs) and two model surfaces: lipid bilayers and surfactant interfaces. By characterizing the photostability, transport, and size-dependent emission of the PEGylated nanocrystal clusters, we demonstrate the retention of red PL suitable for detection and tracking with minimal blueshift after a year in an aqueous environment. The predominant interaction measured for both interfaces is short-range repulsion, consistent with the ideal behavior anticipated for PEGylated phospholipid coatings. However, we also observe unanticipated attractive behavior in a small number of scenarios for both interfaces. We attribute this anomaly to defective PEG coverage on a subset of the clusters, suggesting a possible strategy for enhancing cellular uptake by controlling the homogeneity of the PEG corona. In both scenarios, the shape of the apparent potential is modeled through the free or bound diffusion of the clusters near the confining interface.

  14. Exploring the Effects on Lipid Bilayer Induced by Noble Gases via Molecular Dynamics Simulations.

    PubMed

    Chen, Junlang; Chen, Liang; Wang, Yu; Wang, Xiaogang; Zeng, Songwei

    2015-01-01

    Noble gases seem to have no significant effect on the anesthetic targets due to their simple, spherical shape. However, xenon has strong narcotic efficacy and can be used clinically, while other noble gases cannot. The mechanism remains unclear. Here, we performed molecular dynamics simulations on phospholipid bilayers with four kinds of noble gases to elucidate the difference of their effects on the membrane. Our results showed that the sequence of effects on membrane exerted by noble gases from weak to strong was Ne, Ar, Kr and Xe, the same order as their relative narcotic potencies as well as their lipid/water partition percentages. Compared with the other three kinds of noble gases, more xenon molecules were distributed between the lipid tails and headgroups, resulting in membrane's lateral expansion and lipid tail disorder. It may contribute to xenon's strong anesthetic potency. The results are well consistent with the membrane mediated mechanism of general anesthesia. PMID:26601882

  15. Lab on a Biomembrane: rapid prototyping and manipulation of 2D fluidic lipid bilayers circuits.

    PubMed

    Ainla, Alar; Gözen, Irep; Hakonen, Bodil; Jesorka, Aldo

    2013-09-25

    Lipid bilayer membranes are among the most ubiquitous structures in the living world, with intricate structural features and a multitude of biological functions. It is attractive to recreate these structures in the laboratory, as this allows mimicking and studying the properties of biomembranes and their constituents, and to specifically exploit the intrinsic two-dimensional fluidity. Even though diverse strategies for membrane fabrication have been reported, the development of related applications and technologies has been hindered by the unavailability of both versatile and simple methods. Here we report a rapid prototyping technology for two-dimensional fluidic devices, based on in-situ generated circuits of phospholipid films. In this "lab on a molecularly thin membrane", various chemical and physical operations, such as writing, erasing, functionalization, and molecular transport, can be applied to user-defined regions of a membrane circuit. This concept is an enabling technology for research on molecular membranes and their technological use.

  16. Exploring the Effects on Lipid Bilayer Induced by Noble Gases via Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Chen, Junlang; Chen, Liang; Wang, Yu; Wang, Xiaogang; Zeng, Songwei

    2015-11-01

    Noble gases seem to have no significant effect on the anesthetic targets due to their simple, spherical shape. However, xenon has strong narcotic efficacy and can be used clinically, while other noble gases cannot. The mechanism remains unclear. Here, we performed molecular dynamics simulations on phospholipid bilayers with four kinds of noble gases to elucidate the difference of their effects on the membrane. Our results showed that the sequence of effects on membrane exerted by noble gases from weak to strong was Ne, Ar, Kr and Xe, the same order as their relative narcotic potencies as well as their lipid/water partition percentages. Compared with the other three kinds of noble gases, more xenon molecules were distributed between the lipid tails and headgroups, resulting in membrane’s lateral expansion and lipid tail disorder. It may contribute to xenon’s strong anesthetic potency. The results are well consistent with the membrane mediated mechanism of general anesthesia.

  17. Lipid bilayer membranes: Missing link in the comprehension of synovial lubrication?

    NASA Astrophysics Data System (ADS)

    Packard, Ross; Cowley, Leonie; Dubief, Yves

    2010-03-01

    The human body hosts an extremely efficient tribological system in its synovial joints that operate under very low friction and virtually no wear. It has long been assumed that the higher molecular weight molecules present in the synovial fluid (hyaluronic acid, lubricin) are solely responsible for the mechanical properties of joint. Smaller components, unsaturated phospholipids, have a virtually an undefined role, most probably because of the cancellation of their amphiphilic properties ex vivo caused by oxidation. Using experimental observations of multilamellar arrangements in synovial joints, we formulate the assumption that self-assembling structures provide the anisotropy necessary to synovial fluid to resist drainage under normal compression. Our molecular dynamics simulations demonstrate the tremendous mechanical properties of lipid bilayers and also highlight their weakening consistent with modifications resulting from injuries or joint prosthesis.

  18. Anion carrier formation by calix[4]arene-bis-hydroxymethylphosphonic acid in bilayer membranes.

    PubMed

    Shatursky, Oleg Ya; Kasatkina, Ludmila A; Rodik, Roman V; Cherenok, Sergiy O; Shkrabak, Alexander A; Veklich, Tatiana O; Borisova, Tatiana A; Kosterin, Sergyi O; Kalchenko, Vitaly I

    2014-12-28

    The action of calix[4]arenes C-91, C-97, C-99, C-107 and C-160 on solvent-containing planar bilayer membranes made of cholesterol and egg phosphatidylcholine (egg PC) or synthetic 18-carbon-tail phospholipid DOPC has been investigated in a voltage-clamp mode. Within the range of calix[4]arenes tested, a steady-state voltage-dependent transmembrane current was achieved only after addition of calix[4]-arene C-99 (calix[4]arene-bis-hydroxymethylphosphonic acid) from the side of the membrane the positive potential was applied to. This current exhibited anion selectivity passing more chloride at negative potentials applied from the side of the membrane to which calix[4]arene C-99 was introduced. The kinetics and temperature-dependence determined for calix[4]arene C-99-mediated ionic transport suggest a carrier mode of facilitated diffusion.

  19. Precision alignment device

    DOEpatents

    Jones, Nelson E.

    1990-01-01

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.

  20. Precision alignment device

    DOEpatents

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  1. Galaxy Alignments: An Overview

    NASA Astrophysics Data System (ADS)

    Joachimi, Benjamin; Cacciato, Marcello; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Hoekstra, Henk; Kiessling, Alina; Kirk, Donnacha; Rassat, Anais

    2015-11-01

    The alignments between galaxies, their underlying matter structures, and the cosmic web constitute vital ingredients for a comprehensive understanding of gravity, the nature of matter, and structure formation in the Universe. We provide an overview on the state of the art in the study of these alignment processes and their observational signatures, aimed at a non-specialist audience. The development of the field over the past one hundred years is briefly reviewed. We also discuss the impact of galaxy alignments on measurements of weak gravitational lensing, and discuss avenues for making theoretical and observational progress over the coming decade.

  2. Radiative Grain Alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B. G.

    2015-12-01

    Polarization due to aligned dust grains was discovered in the interstellar medium more than 60 years ago. A quantitative, observationally well tested theory of the phenomenon has finally emerged in the last decade, promising not only an improved understanding of interstellar magnetic fields, but new tools for studying the dust environments and grain characteristics. This Radiative Alignment Torque (RAT) theory also has many potential applications in solar system physics, including for comet dust characteristics. I will review the main aspects of the theory and the observational tests performed to date, as well as some of the new possibilities for using polarization as a tool to study dust and its environment, with RAT alignment.

  3. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  4. Effects of imidazolium-based ionic liquids on the stability and dynamics of gramicidin A and lipid bilayers at different salt concentrations.

    PubMed

    Lee, Hwankyu; Kim, Sun Min; Jeon, Tae-Joon

    2015-09-01

    Gramicidin A (gA) dimers with bilayers, which consist of phospholipids and ionic liquids (ILs) at different molar ratios, were simulated at different salt concentrations of 0.15 and 1M NaCl. Bilayer thickness is larger than the length of a gA dimer, and hence lipids around the gA dimer are significantly disordered to adapt to the gA dimer, yielding membrane curvature. As the IL concentration increases, the bilayer thickness decreases and becomes closer to the gA length, leading to less membrane curvature. Also, ILs significantly increase lateral diffusivities of the gA dimer and lipids at 0.15M NaCl, but not at 1M NaCl because strong electrostatic interactions between salt ions and lipid head groups suppress an increase in the lateral mobility of the bilayer at high salt concentration. These findings help explain the conflicting experimental results that showed the increased ion permeability in electrophysiological experiments at 1M NaCl, but the reduced ion permeability in fluorescent experiments at 0.15M NaCl. ILs disorder lipids and make bilayers thinner, which yields less membrane curvature around the gA dimer and thus stabilizes the gA dimer, leading to the increased ion permeability. This IL effect predominantly occurs at 1M NaCl, where ILs only slightly increase the bilayer dynamics because of the strong electrostatic interactions between salt ions and lipids. In contrast, at 0.15M NaCl, ILs do not only stabilize the curved bilayer but also significantly increase the lateral mobility of gA dimers and lipids, which can reduce gA-induced pore formation, leading to the decreased ion permeability.

  5. COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function.

    PubMed

    Thiam, Abdou Rachid; Antonny, Bruno; Wang, Jing; Delacotte, Jérôme; Wilfling, Florian; Walther, Tobias C; Beck, Rainer; Rothman, James E; Pincet, Frédéric

    2013-08-13

    Intracellular trafficking between organelles is achieved by coat protein complexes, coat protomers, that bud vesicles from bilayer membranes. Lipid droplets are protected by a monolayer and thus seem unsuitable targets for coatomers. Unexpectedly, coat protein complex I (COPI) is required for lipid droplet targeting of some proteins, suggesting a possible direct interaction between COPI and lipid droplets. Here, we find that COPI coat components can bud 60-nm triacylglycerol nanodroplets from artificial lipid droplet (LD) interfaces. This budding decreases phospholipid packing of the monolayer decorating the mother LD. As a result, hydrophobic triacylglycerol molecules become more exposed to the aqueous environment, increasing LD surface tension. In vivo, this surface tension increase may prime lipid droplets for reactions with neighboring proteins or membranes. It provides a mechanism fundamentally different from transport vesicle formation by COPI, likely responsible for the diverse lipid droplet phenotypes associated with depletion of COPI subunits.

  6. Non-linear least squares analysis of phase diagrams fo