Science.gov

Sample records for aligned short fiber

  1. Fiber alignment apparatus and method

    DOEpatents

    Kravitz, S.H.; Warren, M.E.; Snipes, M.B. Jr.; Armendariz, M.G.; Word, J.C. V

    1997-08-19

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring. 8 figs.

  2. Fiber alignment apparatus and method

    DOEpatents

    Kravitz, Stanley H.; Warren, Mial Evans; Snipes, Jr., Morris Burton; Armendariz, Marcelino Guadalupe; Word, V., James Cole

    1997-01-01

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring.

  3. Aligning carbon fibers in micro-extruded composite ink

    NASA Astrophysics Data System (ADS)

    Mahajan, Chaitanya G.

    Direct write processes include a wide range of additive manufacturing techniques with the ability to fabricate structures directly onto planar and non-planar surfaces. Most additive manufacturing techniques use unreinforced polymers to produce parts. By adding carbon fiber as a reinforcing material, properties such as mechanical strength, electrical conductivity, and thermal conductivity can be enhanced. Carbon fibers can be long and continuous, or short and discontinuous. The strength of carbon fiber composite parts is greatly increased when the fibers are preferentially aligned. This research focuses on increasing the strength of additively manufactured parts reinforced using discontinuous carbon fibers that have been aligned during the micro extrusion process. A design of experiments (DOE) approach was used to identify significant process parameters affecting fiber alignment. Factors such as the length of carbon fibers, nozzle diameter, fiber loading fraction, air pressure, translational speed and standoff distance were considered. A two dimensional Fast Fourier Transform (2D FFT) was used to quantify the degree of fiber alignment in the extruded composite inks. ImageJ software supported by an oval profile plugin was used with micrographs of printed samples to obtain the carbon fiber alignment values. The optimal value for the factors was derived by identifying the significant main and interaction effects. Based on the results of the DOE, tensile test samples were printed with fibers aligned parallel and perpendicular to the tensile axis. A standard test method for tensile properties of plastic revealed that the extruded parts with fibers aligned along the tensile axis were better in tensile strength and modulus.

  4. Fiber optics welder having movable aligning mirror

    DOEpatents

    Higgins, Robert W.; Robichaud, Roger E.

    1981-01-01

    A system for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45.degree. angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  5. Anisotropic fiber alignment in composite structures

    DOEpatents

    Graham, A.L.; Mondy, L.A.; Guell, D.C.

    1993-11-16

    High strength material composite structures are formed with oriented fibers to provide controlled anisotropic fibers. Fibers suspended in non-dilute concentrations (e.g., up to 20 volume percent for fibers having an aspect ratio of 20) in a selected medium are oriented by moving an axially spaced array of elements in the direction of desired fiber alignment. The array elements are generally perpendicular to the desired orientation. The suspension medium may also include sphere-like particles where the resulting material is a ceramic. 5 figures.

  6. Anisotropic fiber alignment in composite structures

    DOEpatents

    Graham, Alan L.; Mondy, Lisa A.; Guell, David C.

    1993-01-01

    High strength material composite structures are formed with oriented fibers to provide controlled anisotropic fibers. Fibers suspended in non-dilute concentrations (e.g., up to 20 volume percent for fibers having an aspect ratio of 20) in a selected medium are oriented by moving an axially spaced array of elements in the direction of desired fiber alignment. The array elements are generally perpendicular to the desired orientation. The suspension medium may also include sphere-like particles where the resulting material is a ceramic.

  7. GASSST: global alignment short sequence search tool

    PubMed Central

    Rizk, Guillaume; Lavenier, Dominique

    2010-01-01

    Motivation: The rapid development of next-generation sequencing technologies able to produce huge amounts of sequence data is leading to a wide range of new applications. This triggers the need for fast and accurate alignment software. Common techniques often restrict indels in the alignment to improve speed, whereas more flexible aligners are too slow for large-scale applications. Moreover, many current aligners are becoming inefficient as generated reads grow ever larger. Our goal with our new aligner GASSST (Global Alignment Short Sequence Search Tool) is thus 2-fold—achieving high performance with no restrictions on the number of indels with a design that is still effective on long reads. Results: We propose a new efficient filtering step that discards most alignments coming from the seed phase before they are checked by the costly dynamic programming algorithm. We use a carefully designed series of filters of increasing complexity and efficiency to quickly eliminate most candidate alignments in a wide range of configurations. The main filter uses a precomputed table containing the alignment score of short four base words aligned against each other. This table is reused several times by a new algorithm designed to approximate the score of the full dynamic programming algorithm. We compare the performance of GASSST against BWA, BFAST, SSAHA2 and PASS. We found that GASSST achieves high sensitivity in a wide range of configurations and faster overall execution time than other state-of-the-art aligners. Availability: GASSST is distributed under the CeCILL software license at http://www.irisa.fr/symbiose/projects/gassst/ Contact: guillaume.rizk@irisa.fr; dominique.lavenier@irisa.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20739310

  8. Understanding and overcoming shear alignment of fibers during extrusion.

    PubMed

    Martin, Joshua J; Riederer, Michael S; Krebs, Melissa D; Erb, Randall M

    2015-01-14

    Fiber alignment is the defining architectural characteristic of discontinuous fiber composites and is dictated by shear-dominated processing techniques including flow-injection molding, tape-casting, and mold-casting. However, recent colloidal assembly techniques have started to employ additional forces in fiber suspensions that have the potential to change the energy landscape of the shear-dominated alignment in conditions of flow. In this paper, we develop an energetics model to characterize the shear-alignment of rigid fibers under different flow conditions in the presence of magnetic colloidal alignment forces. We find that these colloidal forces can be sufficient to manipulate the energetic landscape and obtain tunable fiber alignment during flow within even small geometries, such as capillary flow. In most conditions, these colloidal forces work to freeze the fiber orientation during flow and prevent the structure disrupting phenomenon of Jeffrey's orbits that has been accepted to rule fiber suspensions under simple shear flow. PMID:25408494

  9. Short read alignment with populations of genomes

    PubMed Central

    Huang, Lin; Popic, Victoria; Batzoglou, Serafim

    2013-01-01

    Summary: The increasing availability of high-throughput sequencing technologies has led to thousands of human genomes having been sequenced in the past years. Efforts such as the 1000 Genomes Project further add to the availability of human genome variation data. However, to date, there is no method that can map reads of a newly sequenced human genome to a large collection of genomes. Instead, methods rely on aligning reads to a single reference genome. This leads to inherent biases and lower accuracy. To tackle this problem, a new alignment tool BWBBLE is introduced in this article. We (i) introduce a new compressed representation of a collection of genomes, which explicitly tackles the genomic variation observed at every position, and (ii) design a new alignment algorithm based on the Burrows–Wheeler transform that maps short reads from a newly sequenced genome to an arbitrary collection of two or more (up to millions of) genomes with high accuracy and no inherent bias to one specific genome. Availability: http://viq854.github.com/bwbble. Contact: serafim@cs.stanford.edu PMID:23813006

  10. Molecular alignment relaxation in polymer optical fibers for sensing applications

    NASA Astrophysics Data System (ADS)

    Stajanca, Pavol; Cetinkaya, Onur; Schukar, Marcus; Mergo, Pawel; Webb, David J.; Krebber, Katerina

    2016-03-01

    A systematic study of annealing behavior of drawn PMMA fibers was performed. Annealing dynamics were investigated under different environmental conditions by fiber longitudinal shrinkage monitoring. The shrinkage process was found to follow a stretched exponential decay function revealing the heterogeneous nature of the underlying molecular dynamics. The complex dependence of the fiber shrinkage on initial degree of molecular alignment in the fiber, annealing time and temperature was investigated and interpreted. Moreover, humidity was shown to have a profound effect on the annealing process, which was not recognized previously. Annealing was also shown to have considerable effect on the fiber mechanical properties associated with the relaxation of molecular alignment in the fiber. The consequences of fiber annealing for the climatic stability of certain polymer optical fiber-based sensors are discussed, emphasizing the importance of fiber controlled pre-annealing with respect to the foreseeable operating conditions.

  11. Simultaneous alignment of short reads against multiple genomes

    PubMed Central

    Schneeberger, Korbinian; Hagmann, Jörg; Ossowski, Stephan; Warthmann, Norman; Gesing, Sandra; Kohlbacher, Oliver; Weigel, Detlef

    2009-01-01

    Genome resequencing with short reads generally relies on alignments against a single reference. GenomeMapper supports simultaneous mapping of short reads against multiple genomes by integrating related genomes (e.g., individuals of the same species) into a single graph structure. It constitutes the first approach for handling multiple references and introduces representations for alignments against complex structures. Demonstrated benefits include access to polymorphisms that cannot be identified by alignments against the reference alone. Download GenomeMapper at . PMID:19761611

  12. Life prediction of short fiber composites

    NASA Astrophysics Data System (ADS)

    Zago, Alessandro

    A procedure is described for estimating the fatigue lives (i.e. the number of cycles to failure) of parts made of short fiber reinforced thermoplastic matrix composites. First, S-N curves were generated at stress ratios of R = 0 and R = -1 for short glass fiber reinforced Copolyamide coupons with 0° (30% or 50% fiber content by weight), 45° (50% fiber content) and 90° (30% or 50% fiber content) fiber orientations. Second, these S-N curves were compared to data reported in the literature for a wide range of short glass and short carbon fiber reinforced thermoplastics materials. On the basis of these comparison, all available data were "collapsed" on two S-N curves, one for R = 0 and one for R = -l. The fatigue lives of short fiber reinforced thermoplastics were modeled by a Generalized Miner's Rule. Tests were conducted measuring the fatigue lives of 150 by 10 by 2 mm short glass fiber reinforced Copolyamide coupons under different types of cyclic loads. The fatigue lives measured in these tests were compared to those provided by the Generalized Miner's Rule, and good agreements were found between the test and model results. The fatigue lives of two different parts (made of short glass fiber reinforced Copolyamide) were then investigated. The first one was a 150 by 10 by 4 mm coupon with a 2 mm hole at the center. The second one was an automotive gear shift link. The fiber orientations and the stresses inside these parts were calculated, respectively, by the commercial softwares C-Mold and by ABAQUS. The fatigue lives under different cyclic loads were measured; they were also calculated by the Generalized Miner's Rule together with the results of C-Mold and ABAQUS and the S-N data generated in this study. Comparisons between the measured and estimated (by the model) fatigue lives are in reasonable agreement, indicating that the procedure employed is a useful tool for estimating the fatigue lives of parts made of short fiber reinforced thermoplastics.

  13. Generation of Spatially Aligned Collagen Fiber Networks through Microtransfer Molding

    PubMed Central

    Naik, Nisarga; Caves, Jeffrey

    2013-01-01

    The unique biomechanical properties of native tissue are governed by the organization and composition of integrated collagen and elastin networks. We report an approach for fabricating spatially aligned, fiber-reinforced composites (FRC) with adjustable collagen fiber dimensions, layouts, and distribution within an elastin-like protein matrix yielding a biocomposite with controllable mechanical responses. Microtransfer molding is employed for the fabrication of hollow and solid collagen fibers with straight or crimped fiber geometries. Collagen fibers (width: 2 – 50 μm, thickness: 300 nm – 3 μm) exhibit a Young’s modulus of 126 ± 61 MPa and an ultimate tensile strength (UTS) of 7 ± 3.2 MPa. As fiber networks within composite structures, straight fiber layouts display orthotropic responses with Young’s modulus ranging from 0.95 ± 0.35 to 10.4 ± 0.5 MPa and tensile strength from 0.22 ± 0.08 to 0.87 ± 0.5 MPa with increasing fraction of collagen fibers (1–10% v/v). In contrast, composites based on crimped fiber layouts exhibit strain-dependent stiffness with an increase in Young’s modulus from 0.7 ± 0.14 MPa to 3.15 ± 0.49 MPa, at a specific transition strain. Through controlling the microstructure of engineered collagen fiber networks, a facile means has been established to control macroscale mechanical responses of composite protein-based materials. PMID:24039146

  14. Generation of spatially aligned collagen fiber networks through microtransfer molding.

    PubMed

    Naik, Nisarga; Caves, Jeffrey; Chaikof, Elliot L; Allen, Mark G

    2014-03-01

    The unique biomechanical properties of native tissue are governed by the organization and composition of integrated collagen and elastin networks. An approach for fabricating spatially aligned, fiber-reinforced composites with adjustable collagen fiber dimensions, layouts, and distribution within an elastin-like protein matrix yielding a biocomposite with controllable mechanical responses is reported. Microtransfer molding is employed for the fabrication of hollow and solid collagen fibers with straight or crimped fiber geometries. Collagen fibers (width: 2-50 μm, thickness: 300 nm to 3 μm) exhibit a Young's modulus of 126 ± 61 MPa and an ultimate tensile strength of 7 ± 3.2 MPa. As fiber networks within composite structures, straight fiber layouts display orthotropic responses with Young's modulus ranging from 0.95 ± 0.35 to 10.4 ± 0.5 MPa and tensile strength from 0.22 ± 0.08 to 0.87 ± 0.5 MPa with increasing fraction of collagen fibers (1-10%, v/v). In contrast, composites based on crimped fiber layouts exhibit strain-dependent stiffness with an increase in Young's modulus from 0.7 ± 0.14 MPa to 3.15 ± 0.49 MPa, at a specific transition strain. Through controlling the microstructure of engineered collagen fiber networks, a facile means is established to control macroscale mechanical responses of composite protein-based materials. PMID:24039146

  15. Aligning Optical Fibers by Means of Actuated MEMS Wedges

    NASA Technical Reports Server (NTRS)

    Morgan, Brian; Ghodssi, Reza

    2007-01-01

    Microelectromechanical systems (MEMS) of a proposed type would be designed and fabricated to effect lateral and vertical alignment of optical fibers with respect to optical, electro-optical, optoelectronic, and/or photonic devices on integrated circuit chips and similar monolithic device structures. A MEMS device of this type would consist of a pair of oppositely sloped alignment wedges attached to linear actuators that would translate the wedges in the plane of a substrate, causing an optical fiber in contact with the sloping wedge surfaces to undergo various displacements parallel and perpendicular to the plane. In making it possible to accurately align optical fibers individually during the packaging stages of fabrication of the affected devices, this MEMS device would also make it possible to relax tolerances in other stages of fabrication, thereby potentially reducing costs and increasing yields. In a typical system according to the proposal (see Figure 1), one or more pair(s) of alignment wedges would be positioned to create a V groove in which an optical fiber would rest. The fiber would be clamped at a suitable distance from the wedges to create a cantilever with a slight bend to push the free end of the fiber gently to the bottom of the V groove. The wedges would be translated in the substrate plane by amounts Dx1 and Dx2, respectively, which would be chosen to move the fiber parallel to the plane by a desired amount Dx and perpendicular to the plane by a desired amount Dy. The actuators used to translate the wedges could be variants of electrostatic or thermal actuators that are common in MEMS.

  16. Magnetically aligned H I fibers and the rolling hough transform

    SciTech Connect

    Clark, S. E.; Putman, M. E.; Peek, J. E. G.

    2014-07-01

    We present observations of a new group of structures in the diffuse Galactic interstellar medium (ISM): slender, linear H I features we dub 'fibers' that extend for many degrees at high Galactic latitude. To characterize and measure the extent and strength of these fibers, we present the Rolling Hough Transform, a new machine vision method for parameterizing the coherent linearity of structures in the image plane. With this powerful new tool we show that the fibers are oriented along the interstellar magnetic field as probed by starlight polarization. We find that these low column density (N{sub H} {sub I}≃5×10{sup 18} cm{sup –2}) fiber features are most likely a component of the local cavity wall, about 100 pc away. The H I data we use to demonstrate this alignment at high latitude are from the Galactic Arecibo L-Band Feed Array H I (GALFA-H I) Survey and the Parkes Galactic All Sky Survey. We find better alignment in the higher resolution GALFA-H I data, where the fibers are more visually evident. This trend continues in our investigation of magnetically aligned linear features in the Riegel-Crutcher H I cold cloud, detected in the Southern Galactic Plane Survey. We propose an application of the RHT for estimating the field strength in such a cloud, based on the Chandrasekhar-Fermi method. We conclude that data-driven, quantitative studies of ISM morphology can be very powerful predictors of underlying physical quantities.

  17. Magnetically Aligned H I Fibers and the Rolling Hough Transform

    NASA Astrophysics Data System (ADS)

    Clark, S. E.; Peek, J. E. G.; Putman, M. E.

    2014-07-01

    We present observations of a new group of structures in the diffuse Galactic interstellar medium (ISM): slender, linear H I features we dub "fibers" that extend for many degrees at high Galactic latitude. To characterize and measure the extent and strength of these fibers, we present the Rolling Hough Transform, a new machine vision method for parameterizing the coherent linearity of structures in the image plane. With this powerful new tool we show that the fibers are oriented along the interstellar magnetic field as probed by starlight polarization. We find that these low column density (NH \\scriptsize{I} ≃ 5 × 1018 cm-2) fiber features are most likely a component of the local cavity wall, about 100 pc away. The H I data we use to demonstrate this alignment at high latitude are from the Galactic Arecibo L-Band Feed Array H I (GALFA-H I) Survey and the Parkes Galactic All Sky Survey. We find better alignment in the higher resolution GALFA-H I data, where the fibers are more visually evident. This trend continues in our investigation of magnetically aligned linear features in the Riegel-Crutcher H I cold cloud, detected in the Southern Galactic Plane Survey. We propose an application of the RHT for estimating the field strength in such a cloud, based on the Chandrasekhar-Fermi method. We conclude that data-driven, quantitative studies of ISM morphology can be very powerful predictors of underlying physical quantities.

  18. Aligned and Electrospun Piezoelectric Polymer Fiber Assembly and Scaffold

    NASA Technical Reports Server (NTRS)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor); Holloway, Nancy M. (Inventor); Leong, Kam W. (Inventor); Kulangara, Karina (Inventor)

    2015-01-01

    A scaffold assembly and related methods of manufacturing and/or using the scaffold for stem cell culture and tissue engineering applications are disclosed which at least partially mimic a native biological environment by providing biochemical, topographical, mechanical and electrical cues by using an electroactive material. The assembly includes at least one layer of substantially aligned, electrospun polymer fiber having an operative connection for individual voltage application. A method of cell tissue engineering and/or stem cell differentiation uses the assembly seeded with a sample of cells suspended in cell culture media, incubates and applies voltage to one or more layers, and thus produces cells and/or a tissue construct. In another aspect, the invention provides a method of manufacturing the assembly including the steps of providing a first pre-electroded substrate surface; electrospinning a first substantially aligned polymer fiber layer onto the first surface; providing a second pre-electroded substrate surface; electrospinning a second substantially aligned polymer fiber layer onto the second surface; and, retaining together the layered surfaces with a clamp and/or an adhesive compound.

  19. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores.

    PubMed

    Xu, Zhen; Zhang, Yuan; Li, Peigang; Gao, Chao

    2012-08-28

    Liquid crystals of anisotropic colloids are of great significance in the preparation of their ordered macroscopic materials, for example, in the cases of carbon nanotubes and graphene. Here, we report a facile and scalable spinning process to prepare neat "core-shell" structured graphene aerogel fibers and three-dimensional cylinders with aligned pores from the flowing liquid crystalline graphene oxide (GO) gels. The uniform alignment of graphene sheets, inheriting the lamellar orders from GO liquid crystals, offers the porous fibers high specific tensile strength (188 kN m kg(-1)) and the porous cylinders high compression modulus (3.3 MPa). The porous graphene fibers have high specific surface area up to 884 m(2) g(-1) due to their interconnected pores and exhibit fine electrical conductivity (2.6 × 10(3) to 4.9 × 10(3) S m(-1)) in the wide temperature range of 5-300 K. The decreasing conductivity with decreasing temperature illustrates a typical semiconducting behavior, and the 3D interconnected network of 2D graphene sheets determines a dual 2D and 3D hopping conduction mechanism. The strong mechanical strength, high porosity, and fine electrical conductivity enable this novel material of ordered graphene aerogels to be greatly useful in versatile catalysts, supercapacitors, flexible batteries and cells, lightweight conductive fibers, and functional textiles. PMID:22799441

  20. Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores.

    PubMed

    Xu, Zhen; Zhang, Yuan; Li, Peigang; Gao, Chao

    2012-08-28

    Liquid crystals of anisotropic colloids are of great significance in the preparation of their ordered macroscopic materials, for example, in the cases of carbon nanotubes and graphene. Here, we report a facile and scalable spinning process to prepare neat "core-shell" structured graphene aerogel fibers and three-dimensional cylinders with aligned pores from the flowing liquid crystalline graphene oxide (GO) gels. The uniform alignment of graphene sheets, inheriting the lamellar orders from GO liquid crystals, offers the porous fibers high specific tensile strength (188 kN m kg(-1)) and the porous cylinders high compression modulus (3.3 MPa). The porous graphene fibers have high specific surface area up to 884 m(2) g(-1) due to their interconnected pores and exhibit fine electrical conductivity (2.6 × 10(3) to 4.9 × 10(3) S m(-1)) in the wide temperature range of 5-300 K. The decreasing conductivity with decreasing temperature illustrates a typical semiconducting behavior, and the 3D interconnected network of 2D graphene sheets determines a dual 2D and 3D hopping conduction mechanism. The strong mechanical strength, high porosity, and fine electrical conductivity enable this novel material of ordered graphene aerogels to be greatly useful in versatile catalysts, supercapacitors, flexible batteries and cells, lightweight conductive fibers, and functional textiles.

  1. Method and system for aligning fibers during electrospinning

    NASA Technical Reports Server (NTRS)

    Scott-Carnell, Lisa A. (Inventor); Stephens, Ralph M (Inventor); Holloway, Nancy M. (Inventor); Rhim, Caroline (Inventor); Niklason, Laura (Inventor); Clark, Robert L. (Inventor); Siochi, Emilie J. (Inventor)

    2011-01-01

    A method and system are provided for aligning fibers in an electrospinning process. A jet of a fiberizable material is directed towards an uncharged collector from a dispensing location that is spaced apart from the collector. While the fiberizable material is directed towards the collector, an elliptical electric field is generated via the electrically charged dispenser and an oppositely-charged control location. The field spans between the dispensing location and the control location that is within line-of-sight of the dispensing location, and impinges upon at least a portion of the collector. Various combinations of numbers and geometries of dispensers, collectors, and electrodes can be used.

  2. Transverse alignment of fibers in a periodically sheared suspension: An absorbing phase transition with a slowly-varying control parameter

    NASA Astrophysics Data System (ADS)

    Franceschini, Alexandre; Filippidi, Emmanouela; Guazzelli, Elisabeth; Pine, David

    2011-11-01

    Shearing fibers and polymer solutions tends to align particles with the flow direction. Here, we report that neutrally buoyant non-Brownian fibers subjected to oscillatory shear are observed to align perpendicular to the flow. This alignment occurs over a finite range of strain amplitudes and is governed by a subtle interplay between fiber orientation and short-range interactions through an athermal (non-equilibrium) process known as random organization. For a given strain amplitude and concentration, the mean field orientation defines a time-dependant control parameter that can drive the suspension through an absorbing phase transition. The slow drift of the control parameter does not influence the class of the transition. The measured critical threshold and exponents are consistent with the one reported for sphere suspensions. This work was supported by the NSF through the NYU MRSEC, Award DMR:0820341. Additional support was provided by a Lavoisier Fellowship (AF) and from the Onassis Foundation (EF).

  3. Magnetic alignment of nickel-coated carbon fibers

    SciTech Connect

    Hao, Chuncheng; Li, Xiaojiao; Wang, Guizhen

    2011-11-15

    Graphical abstract: Carbon nanofibers were subjected to a two-step pretreatment, sensitization and activation. Carbon nanofibers were encapsulated by a uniform layer of nickel nanoparticles. The prepared composites are ferromagnetic and with a small value of coercivity. Upon such functionalization, the carbon nanofibers can be aligned in a relatively small external magnetic field. Highlights: {center_dot} A simple microwave-assisted procedure for the magnetic composite. {center_dot} Dense layer of nickel on pretreated carbon nanofibers. {center_dot} Ferromagnetic properties and low coercivity. {center_dot} A long-chain aligned structure under magnetic field. -- Abstract: Magnetic composites of nickel-coated carbon nanofibers have been successfully fabricated by employing a simple microwave-assisted procedure. The scanning electron microscopy images show that a complete and uniform nickel coating with mean size of 25 nm could be deposited on carbon fibers. Magnetization curves demonstrate that the prepared composites are ferromagnetic and that the coercivity is 96 Oe. The magnetic carbon nanofibers can be aligned as a long-chain structure in an external magnetic field.

  4. Orthogonally oriented scaffolds with aligned fibers for engineering intestinal smooth muscle

    PubMed Central

    Kobayashi, Masae; Lei, Nan Ye; Wang, Qianqian; Wu, Benjamin M.; Dunn, James C.Y.

    2015-01-01

    Controlling cellular alignment is critical in engineering intestines with desired structure and function. Although previous studies have examined the directional alignment of cells on the surface (x-y plane) of parallel fibers, quantitative analysis of the cellular alignment inside implanted scaffolds with oriented fibers has not been reported. This study examined the cellular alignment in the x-z and y-z planes of scaffolds made with two layers of orthogonally oriented fibers. The cellular orientation inside implanted scaffolds was evaluated with immunofluorescence. Quantitative analysis of coherency between cell orientation and fiber direction confirmed that cells aligned along the fibers not only on the surface (x-y plane) but also inside the scaffolds (x-z & y-z planes). Our study demonstrated that two layers of orthogonally aligned scaffolds can generate the histological organization of cells similar to that of intestinal circular and longitudinal smooth muscle. PMID:26001072

  5. Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration.

    PubMed

    Wang, Han Bing; Mullins, Michael E; Cregg, Jared M; McCarthy, Connor W; Gilbert, Ryan J

    2010-08-01

    Aligned, electrospun fibers have shown great promise in facilitating directed neurite outgrowth within cell and animal models. While electrospun fiber diameter does influence cellular behavior, it is not known how aligned, electrospun fiber scaffolds of differing diameter influence neurite outgrowth and Schwann cell (SC) migration. Thus, the goal of this study was to first create highly aligned, electrospun fiber scaffolds of varying diameter and then assess neurite and SC behavior from dorsal root ganglia (DRG) explants. Three groups of highly aligned, electrospun poly-l-lactic acid (PLLA) fibers were created (1325+383 nm, large diameter fibers; 759+179 nm, intermediate diameter fibers; and 293+65 nm, small diameter fibers). Embryonic stage nine (E9) chick DRG were cultured on fiber substrates for 5 days and then the explants were stained against neurofilament and S100. DAPI stain was used to assess SC migration. Neurite length and SC migration distance were determined. In general, the direction of neurite extension and SC migration were guided along the aligned fibers. On the small diameter fiber substrate, the neurite length was 42% and 36% shorter than those on the intermediate and large fiber substrates, respectively. Interestingly, SC migration did not correlate with that of neurite extension in all situations. SCs migrated equivalently with extending neurites in both the small and large diameter scaffolds, but lagged behind neurites on the intermediate diameter scaffolds. Thus, in some situations, topography alone is sufficient to guide neurites without the leading support of SCs. Scanning electron microscopy images show that neurites cover the fibers and do not reside exclusively between fibers. Further, at the interface between fibers and neurites, filopodial extensions grab and attach to nearby fibers as they extend down the fiber substrate. Overall, the results and observations suggest that fiber diameter is an important parameter to consider when

  6. Electrospinning of unidirectionally and orthogonally aligned thermoplastic polyurethane nanofibers: fiber orientation and cell migration.

    PubMed

    Mi, Hao-Yang; Salick, Max R; Jing, Xin; Crone, Wendy C; Peng, Xiang-Fang; Turng, Lih-Sheng

    2015-02-01

    Unidirectionally and orthogonally aligned thermoplastic polyurethane (TPU) nanofibers were electrospun using a custom-built electrospinning device. The unidirectionally aligned fibers were collected using two parallel copper plates, and the orthogonally aligned fibers were collected using two orthogonal sets of parallel copper plates with alternate negative connections. Carbon nanotubes (CNT) and polyacrylic acid (PAA) were added to modify the polymer solution. It was found that both CNT and PAA were capable of increasing solution conductivity. The TPU/PAA fiber showed the highest degree of fiber orientation with more than 90% of the fibers having an orientation angle between -10° and 10° for unidirectionally aligned fibers, and for orthogonally aligned fibers, the orientation angle of 50% fibers located between -10° and 10° and 48% fibers located between 80° and 100°. Viability assessment of 3T3 fibroblasts cultured on TPU/PAA fibers suggested that the material was cytocompatible. The cells' orientation and migration direction closely matched the fibers' orientation. The cell migration velocity and distance were both enhanced with the guidance of fibers compared with cells cultured on random fibers and common tissue culture plastic. Controlling cell migration velocity and directionality may provide ways to influence differentiation and gene expression and systems that would allow further exploration of wound repair and metastatic cell behavior. PMID:24771704

  7. Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers.

    PubMed

    Xiang, Changsheng; Young, Colin C; Wang, Xuan; Yan, Zheng; Hwang, Chi-Chau; Cerioti, Gabriel; Lin, Jian; Kono, Junichiro; Pasquali, Matteo; Tour, James M

    2013-09-01

    Two types of graphene oxide fibers are spun from high concentration aqueous dopes. Fibers extruded from large flake graphene oxide dope without drawing show unconventional 100% knot efficiency. Fibers spun from small sized graphene oxide dope with stable and continuous drawing yield in good intrinsic alignment with a record high tensile modulus of 47 GPa.

  8. Effect of wall alignment in a very short rotating annulus

    NASA Astrophysics Data System (ADS)

    Noui-Mehidi, Mohamed N.; Ohmura, Naoto; Nishiyama, Kazuki; Takigawa, Teiji

    2009-02-01

    This paper reports numerical results of the study of effects of cylinders wall alignment in a small aspect ratio Taylor-Couette system. The investigation concerns bifurcations of steady vortical structures when the cylindrical walls defining the gap are not perfectly parallel. The imperfection is introduced by opening the outer fixed cylinder with a certain angle with regard to the vertical to form a tapered very short liquid column and keeping the inner rotating cylinder wall vertical. The numerical results obtained for the velocity components have revealed that bifurcation from a particular mode to another one occurs at a range of specific values of the inclination angle of the outer cylinder. The band width of the angle at which bifurcation occurred depended on the Reynolds number Re and was found to become narrower as Re increased. It is shown that geometrically broken symmetry can yield flow symmetry for specific combinations of geometrical and dynamical parameters.

  9. Electrospinning of unidirectionally and orthogonally aligned thermoplastic polyurethane nanofibers: Fiber orientation and cell migration

    PubMed Central

    Mi, Hao-Yang; Salick, Max R.; Jing, Xin; Crone, Wendy C.; Peng, Xiang-Fang; Turng, Lih-Sheng

    2015-01-01

    Unidirectionally and orthogonally aligned thermoplastic polyurethane (TPU) nanofibers were electrospun using a custom-built electrospinning device. The unidirectionally aligned fibers were collected using two parallel copper plates, and the orthogonally aligned fibers were collected using two orthogonal sets of parallel copper plates with alternate negative connections. Carbon nanotubes (CNT) and polyacrylic acid (PAA) were added to modify the polymer solution. It was found that both CNT and PAA were capable of increasing solution conductivity. The TPU/PAA fiber showed the highest degree of fiber orientation with more than 90% of the fibers having an orientation angle between −10° and 10° for unidirectionally aligned fibers, and for orthogonally aligned fibers, the orientation angle of 50% fibers located between −10° and 10° and 48% fibers located between 80° and 100°. Viability assessment of 3T3 fibroblasts cultured on TPU/PAA fibers suggested that the material was cytocompatible. The cells’ orientation and migration direction closely matched the fibers’ orientation. The cell migration velocity and distance were both enhanced with the guidance of fibers compared with cells cultured on random fibers and common tissue culture plastic. Controlling cell migration velocity and directionality may provide ways to influence differentiation and gene expression and systems that would allow further exploration of wound repair and metastatic cell behavior. PMID:24771704

  10. A novel electrospinning target to improve the yield of uniaxially aligned fibers.

    PubMed

    Secasanu, Virgil P; Giardina, Christopher K; Wang, Yadong

    2009-01-01

    Electrospinning is a useful technique that can generate micro and nanometer-sized fibers. Modification of the electrospinning parameters, such as deposition target geometry, can generate uniaxially aligned fibers for use in diverse applications ranging from tissue engineering to material fabrication. For example, meshes of fibers have been shown to mimic the extracellular matrix networks for use in smooth muscle cell proliferation. Further, aligned fibers can guide neurites to grow along the direction of the fibers. Here we present a novel electrospinning deposition target that combines the benefits of two previously reported electrodes: the standard parallel electrodes and the spinning wheel with a sharpened edge. This new target design significantly improves aligned fiber yield. Specifically, the target consists of two parallel aluminum plates with sharpened edges containing a bifurcating angle of 26 degrees. Electric field computations show a larger probable area of aligned electric field vectors. This new deposition target allows fibers to deposit on a larger cross-sectional area relative to the existing parallel electrode and at least doubles the yield of uniaxially aligned fibers. Further, fiber alignment and morphology are preserved after collection from the deposition target. PMID:19562742

  11. Electric Field Effects on Fiber Alignment Using an Auxiliary Electrode During Electrospinning

    NASA Technical Reports Server (NTRS)

    Carnell, Lisa S.; Siochi, Emilie J.; Wincheski, Russell A.; Holloway, Nancy M.; Clark, Robert L.

    2009-01-01

    Control of electrospun fiber placement and distribution was investigated by examining the effect of electric field parameters on the electrospinning of fibers. The experimental set-up used in this study eliminated the bending instability and whipping, allowing the jet to be modeled as a stable trajectory. Coupling of experimental and computational results suggests the potential for predicting aligned fiber distribution in electrospun mats.

  12. Crystal Structure of Enteric Adenovirus Serotype 41 Short Fiber Head

    PubMed Central

    Seiradake, Elena; Cusack, Stephen

    2005-01-01

    Human enteric adenoviruses of species F contain two fibers in the same virion, a long fiber which binds to coxsackievirus and adenovirus receptor (CAR) and a short fiber of unknown function. We have determined the high-resolution crystal structure of the short fiber head of human adenovirus serotype 41 (Ad41). The short fiber head has the characteristic fold of other known fiber heads but has three unusual features. First, it has much shorter loops between the beta-strands. Second, one of the usually well-ordered beta-strands on the distal face of the fiber head is highly disordered and this same region is sensitive to digestion with pepsin, an enzyme occurring naturally in the intestinal tract, the physiological environment of Ad41. Third, the AB loop has a deletion giving it a distinct conformation incompatible with CAR binding. PMID:16254343

  13. Effect of Sterilization Methods on Electrospun Poly(lactic acid) (PLA) Fiber Alignment for Biomedical Applications.

    PubMed

    Valente, T A M; Silva, D M; Gomes, P S; Fernandes, M H; Santos, J D; Sencadas, V

    2016-02-10

    Medically approved sterility methods should be a major concern when developing a polymeric scaffold, mainly when commercialization is envisaged. In the present work, poly(lactic acid) (PLA) fiber membranes were processed by electrospinning with random and aligned fiber alignment and sterilized under UV, ethylene oxide (EO), and γ-radiation, the most common ones for clinical applications. It was observed that UV light and γ-radiation do not influence fiber morphology or alignment, while electrospun samples treated with EO lead to fiber orientation loss and morphology changing from cylindrical fibers to ribbon-like structures, accompanied to an increase of polymer crystallinity up to 28%. UV light and γ-radiation sterilization methods showed to be less harmful to polymer morphology, without significant changes in polymer thermal and mechanical properties, but a slight increase of polymer wettability was detected, especially for the samples treated with UV radiation. In vitro results indicate that both UV and γ-radiation treatments of PLA membranes allow the adhesion and proliferation of MG 63 osteoblastic cells in a close interaction with the fiber meshes and with a growth pattern highly sensitive to the underlying random or aligned fiber orientation. These results are suggestive of the potential of both γ-radiation sterilized PLA membranes for clinical applications in regenerative medicine, especially those where customized membrane morphology and fiber alignment is an important issue. PMID:26756809

  14. Microfabrication of pre-aligned fiber bundle couplers using ultraviolet lithography of SU-8.

    PubMed

    Yang, Ren; Soper, Steven A; Wang, Wanjun

    2006-01-01

    This paper describes the design, microfabrication and testing of a pre-aligned array of fiber couplers using direct UV-lithography of SU-8. The fiber coupler array includes an out-of-plane refractive microlens array and two fiberport collimator arrays. With the optical axis of the pixels parallel to the substrate, each pixel of the microlens array can be pre-aligned with the corresponding pixels of the fiberport collimator array as defined by the lithography mask design. This out-of-plane polymer 3D microlens array is pre-aligned with the fiber collimator arrays with no additional adjustment and assembly required, therefore, it helps to dramatically reduce the running cost and improve the alignment quality and coupling efficiency. In addition, the experimental results for the fiber couplers are also presented and analyzed.

  15. CODEX-aligned dietary fiber definitions help to bridge the ‘fiber gap’

    PubMed Central

    2014-01-01

    A comprehensive dietary fiber (DF) definition was adopted by the CODEX Alimentarius Commission (CAC) (1) to reflect the current state of knowledge about DF, (2) to recognize that all substances that behave like fiber regardless of how they are produced can be named as DF if they show physiological benefits, and (3) to promote international harmonization for food labeling and food composition tables. This review gives the history and evolution of the state of DF knowledge as looked at by refinements in DF methods and definitions subsequent to the launch of the DF hypothesis. The refinements parallel both interventional and epidemiological research leading to better understanding of the role of DF in contributing to the numerous physiological benefits imparted by all the various digestion resistant carbohydrates. A comparison of the CODEX definition (including its footnote that authorizes the inclusion of polymers with DP 3–9) and approved CODEX Type 1 methods with other existing definitions and methods will point out differences and emphasize the importance of adoption of CODEX-aligned definitions by all jurisdictions. Such harmonization enables comparison of nutrition research, recommendations, food composition tables and nutrition labels the world over. A case will be made that fibers are analogous to vitamins, in that they vary in structure, function and amount needed, but each when present in the right amount contributes to optimal health. Since the intake of DF is significantly below recommended levels throughout the world, the recognition that ‘all fibers fit’ is an important strategy in bridging the ‘fiber gap’ by enfranchising and encouraging greater intake of foods with inherent and added DF. Fortifying foods with added DF makes it easier to increase intakes while maintaining calories at recommended levels. PMID:24725724

  16. CODEX-aligned dietary fiber definitions help to bridge the 'fiber gap'.

    PubMed

    Jones, Julie Miller

    2014-01-01

    A comprehensive dietary fiber (DF) definition was adopted by the CODEX Alimentarius Commission (CAC) (1) to reflect the current state of knowledge about DF, (2) to recognize that all substances that behave like fiber regardless of how they are produced can be named as DF if they show physiological benefits, and (3) to promote international harmonization for food labeling and food composition tables. This review gives the history and evolution of the state of DF knowledge as looked at by refinements in DF methods and definitions subsequent to the launch of the DF hypothesis. The refinements parallel both interventional and epidemiological research leading to better understanding of the role of DF in contributing to the numerous physiological benefits imparted by all the various digestion resistant carbohydrates. A comparison of the CODEX definition (including its footnote that authorizes the inclusion of polymers with DP 3-9) and approved CODEX Type 1 methods with other existing definitions and methods will point out differences and emphasize the importance of adoption of CODEX-aligned definitions by all jurisdictions. Such harmonization enables comparison of nutrition research, recommendations, food composition tables and nutrition labels the world over. A case will be made that fibers are analogous to vitamins, in that they vary in structure, function and amount needed, but each when present in the right amount contributes to optimal health. Since the intake of DF is significantly below recommended levels throughout the world, the recognition that 'all fibers fit' is an important strategy in bridging the 'fiber gap' by enfranchising and encouraging greater intake of foods with inherent and added DF. Fortifying foods with added DF makes it easier to increase intakes while maintaining calories at recommended levels. PMID:24725724

  17. The Effect of Surface Modification of Aligned Poly-L-Lactic Acid Electrospun Fibers on Fiber Degradation and Neurite Extension

    PubMed Central

    Schaub, Nicholas J.; Le Beux, Clémentine; Miao, Jianjun; Linhardt, Robert J.; Alauzun, Johan G.; Laurencin, Danielle; Gilbert, Ryan J.

    2015-01-01

    The surface of aligned, electrospun poly-L-lactic acid (PLLA) fibers was chemically modified to determine if surface chemistry and hydrophilicity could improve neurite extension from chick dorsal root ganglia. Specifically, diethylenetriamine (DTA, for amine functionalization), 2-(2-aminoethoxy)ethanol (AEO, for alcohol functionalization), or GRGDS (cell adhesion peptide) were covalently attached to the surface of electrospun fibers. Water contact angle measurements revealed that surface modification of electrospun fibers significantly improved fiber hydrophilicity compared to unmodified fibers (p < 0.05). Scanning electron microscopy (SEM) of fibers revealed that surface modification changed fiber topography modestly, with DTA modified fibers displaying the roughest surface structure. Degradation of chemically modified fibers revealed no change in fiber diameter in any group over a period of seven days. Unexpectedly, neurites from chick DRG were longest on fibers without surface modification (1651 ± 488 μm) and fibers containing GRGDS (1560 ± 107 μm). Fibers modified with oxygen plasma (1240 ± 143 μm) or DTA (1118 ± 82 μm) produced shorter neurites than the GRGDS or unmodified fibers, but were not statistically shorter than unmodified and GRGDS modified fibers. Fibers modified with AEO (844 ± 151 μm) were significantly shorter than unmodified and GRGDS modified fibers (p<0.05). Based on these results, we conclude that fiber hydrophilic enhancement alone on electrospun PLLA fibers does not enhance neurite outgrowth. Further work must be conducted to better understand why neurite extension was not improved on more hydrophilic fibers, but the results presented here do not recommend hydrophilic surface modification for the purpose of improving neurite extension unless a bioactive ligand is used. PMID:26340351

  18. The Effect of Surface Modification of Aligned Poly-L-Lactic Acid Electrospun Fibers on Fiber Degradation and Neurite Extension.

    PubMed

    Schaub, Nicholas J; Le Beux, Clémentine; Miao, Jianjun; Linhardt, Robert J; Alauzun, Johan G; Laurencin, Danielle; Gilbert, Ryan J

    2015-01-01

    The surface of aligned, electrospun poly-L-lactic acid (PLLA) fibers was chemically modified to determine if surface chemistry and hydrophilicity could improve neurite extension from chick dorsal root ganglia. Specifically, diethylenetriamine (DTA, for amine functionalization), 2-(2-aminoethoxy)ethanol (AEO, for alcohol functionalization), or GRGDS (cell adhesion peptide) were covalently attached to the surface of electrospun fibers. Water contact angle measurements revealed that surface modification of electrospun fibers significantly improved fiber hydrophilicity compared to unmodified fibers (p < 0.05). Scanning electron microscopy (SEM) of fibers revealed that surface modification changed fiber topography modestly, with DTA modified fibers displaying the roughest surface structure. Degradation of chemically modified fibers revealed no change in fiber diameter in any group over a period of seven days. Unexpectedly, neurites from chick DRG were longest on fibers without surface modification (1651 ± 488 μm) and fibers containing GRGDS (1560 ± 107 μm). Fibers modified with oxygen plasma (1240 ± 143 μm) or DTA (1118 ± 82 μm) produced shorter neurites than the GRGDS or unmodified fibers, but were not statistically shorter than unmodified and GRGDS modified fibers. Fibers modified with AEO (844 ± 151 μm) were significantly shorter than unmodified and GRGDS modified fibers (p<0.05). Based on these results, we conclude that fiber hydrophilic enhancement alone on electrospun PLLA fibers does not enhance neurite outgrowth. Further work must be conducted to better understand why neurite extension was not improved on more hydrophilic fibers, but the results presented here do not recommend hydrophilic surface modification for the purpose of improving neurite extension unless a bioactive ligand is used. PMID:26340351

  19. Highly Aligned Poly(3,4-ethylene dioxythiophene) (PEDOT) Nano- and Microscale Fibers and Tubes

    PubMed Central

    Wu, Jinghang; Cho, Whirang; Martin, David C.; Feng, Zhang-Qi; Leach, Michelle K.; Franz, Eric W.; Naim, Youssef I.; Gu, Zhong-Ze; Corey, Joseph M.

    2015-01-01

    This study reports a facile method for the fabrication of aligned Poly(3,4-ethylene dioxythiophene) (PEDOT) fibers and tubes based on electrospinning and oxidative chemical polymerization. Discrete PEDOT nano- and microfibers and nano- and microtubes are difficult to fabricate quickly and reproducibly. We employed poly(lactide-co-glycolide) (PLGA) polymers that were loaded with polymerizable 3,4-ethylene dioxythiophene (EDOT) monomer to create aligned nanofiber assemblies using a rotating glass mandrel during electrospinning. The EDOT monomer/PLGA polymer blends were then polymerized by exposure to an oxidative catalyst (FeCl3). PEDOT was polymerized by continuously dripping a FeCl3 solution onto the glass rod during electrospinning. The resulting PEDOT fibers were conductive, aligned and discrete. Fiber bundles could be easily produced in lengths of several centimeters. The PEDOT sheath/PLGA core fibers were immersed in chloroform to remove the PLGA and any residual EDOT resulting in hollow PEDOT tubes. This approach made it possible to easily generate large areas of aligned PEDOT fibers/tubes. The structure and properties of the aligned assemblies were measured using optical microscopy, electron microscopy, Raman spectroscopy, thermal gravimetric analysis, and DC conductivity measurements. We also demonstrated that the aligned PEDOT sheath/PLGA core fiber assemblies could be used in supporting and directing the extension of dorsal root ganglia (DRG) neurons in vitro. PMID:25678719

  20. Polymer-derived ceramic composite fibers with aligned pristine multiwalled carbon nanotubes.

    PubMed

    Sarkar, Sourangsu; Zou, Jianhua; Liu, Jianhua; Xu, Chengying; An, Linan; Zhai, Lei

    2010-04-01

    Polymer-derived ceramic fibers with aligned multiwalled carbon nanotubes (MWCNTs) are fabricated through the electrospinning of polyaluminasilazane solutions with well-dispersed MWCNTs followed by pyrolysis. Poly(3-hexylthiophene)-b-poly (poly (ethylene glycol) methyl ether acrylate) (P3HT-b-PPEGA), a conjugated block copolymer compatible with polyaluminasilazane, is used to functionalize MWCNT surfaces with PPEGA, providing a noninvasive approach to disperse carbon nanotubes in polyaluminasilazane chloroform solutions. The electrospinning of the MWCNT/polyaluminasilazane solutions generates polymer fibers with aligned MWCNTs where MWCNTs are oriented along the electrospun jet by a sink flow. The subsequent pyrolysis of the obtained composite fibers produces ceramic fibers with aligned MWCNTs. The study of the effect of polymer and CNT concentration on the fiber structures shows that the fiber size increases with the increment of polymer concentration, whereas higher CNT content in the polymer solutions leads to thinner fibers attributable to the increased conductivity. Both the SEM and TEM characterization of the polymer and ceramic fibers demonstrates the uniform orientation of CNTs along the fibers, suggesting excellent dispersion of CNTs and efficient CNT alignment via the electrospinning. The electrical conductivity of a ceramic fibers with 1.2% aligned MWCNTs is measured to be 1.58 x 10(-6) S/cm, which is more than 500 times higher than that of bulk ceramic (3.43 x 10(-9) S/cm). Such an approach provides a versatile method to disperse CNTs in preceramic polymer solutions and offers a new approach to integrate aligned CNTs in ceramics. PMID:20423134

  1. Fast and accurate short read alignment with Burrows–Wheeler transform

    PubMed Central

    Li, Heng; Durbin, Richard

    2009-01-01

    Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk PMID:19451168

  2. Optimization of fully aligned bioactive electrospun fibers for "in vitro" nerve guidance.

    PubMed

    Cirillo, Valentina; Guarino, Vincenzo; Alvarez-Perez, Marco Antonio; Marrese, Marica; Ambrosio, Luigi

    2014-10-01

    Complex architecture of natural tissues such as nerves requires the use of multifunctional scaffolds with peculiar topological and biochemical signals able to address cell behavior towards specific events at the cellular (microscale) and macromolecular (nanoscale) level. In this context, the electrospinning technique is useful to generate fiber assemblies having peculiar fiber diameters at the nanoscale and patterned by unidirectional ways, to facilitate neurite extension via contact guidance. Following a bio-mimetic approach, fully aligned polycaprolactone fibers blended with gelatin macromolecules have been fabricated as potential bioactive substrate for nerve regeneration. Morphological and topographic aspects of electrospun fibers assessed by SEM/AFM microscopy supported by image analyses elaboration allow estimating an increase of fully aligned fibers from 5 to 39% as collector rotating rate increases from 1,000 to 3,000 rpm. We verify that fully alignment of fibers positively influences in vitro response of hMSC and PC-12 cells in neurogenic way. Immunostaining images show that the presence of topological defects, i.e., kinks--due to more frequent fiber crossing--in the case of randomly organized fiber assembly concurs to interfere with proper neurite outgrowth. On the contrary, fully aligned fibers without kinks offer a more efficient contact guidance to direct the orientation of nerve cells along the fibers respect to randomly organized ones, promoting a high elongation of neurites at 7 days and the formation of bipolar extensions. So, this confirms that the topological cue of fully alignment of fibers elicits a favorable environment for nerve regeneration.

  3. Fiber Laser Front Ends for High Energy, Short Pulse Lasers

    SciTech Connect

    Dawson, J; Messerly, M; Phan, H; Siders, C; Beach, R; Barty, C

    2007-06-21

    We are developing a fiber laser system for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal for these systems as they are highly reliable and enable long term stable operation.

  4. A simple method for fabrication of electrospun fibers with controlled degree of alignment having potential for nerve regeneration applications.

    PubMed

    Vimal, Sunil Kumar; Ahamad, Nadim; Katti, Dhirendra S

    2016-06-01

    In peripheral nerve injuries where direct suturing of nerve endings is not feasible, nerve regeneration has been facilitated through the use of artificially aligned fibrous scaffolds that provide directional growth of neurons to bridge the gap. The degree of fiber alignment is crucial and can impact the directionality of cells in a fibrous scaffold. While there have been multiple approaches that have been used for controlling fiber alignment, however, they have been associated with a compromised control on other properties, such as diameter, morphology, curvature, and topology of fibers. Therefore, the present study demonstrates a modified electrospinning set-up, that enabled fabrication of electrospun fibers with controlled degree of alignment from non-aligned (NA), moderately aligned (MA, 75%) to highly aligned (HA, 95%) sub-micron fibers while keeping other physical properties unchanged. The results demonstrate that the aligned fibers (MA and HA) facilitated directional growth of human astrocytoma cells (U373), wherein the aspect ratio of cells was found to increase with an increase in degree of fibers alignment. In contrast to NA and MA fibers, the HA fibers showed improved contact guidance to U373 cells that was demonstrated by a significantly higher cell aspect ratio and nuclear aspect ratio. In conclusion, the present study demonstrated a modified electrospinning setup to fabricate differentially aligned fibrous scaffolds with the HA fibers showing potential for use in neural tissue engineering.

  5. Fiber Laser Front Ends for High-Energy Short Pulse Lasers

    SciTech Connect

    Dawson, J W; Liao, Z M; Mitchell, S; Messerly, M; Beach, R; Jovanovic, I; Brown, C; Payne, S A; Barty, C J

    2005-01-18

    We are developing an all fiber laser system optimized for providing input pulses for short pulse (1-10ps), high energy ({approx}1kJ) glass laser systems. Fiber lasers are ideal solutions for these systems as they are highly reliable and once constructed they can be operated with ease. Furthermore, they offer an additional benefit of significantly reduced footprint. In most labs containing equivalent bulk laser systems, the system occupies two 4'x8' tables and would consist of 10's if not a 100 of optics which would need to be individually aligned and maintained. The design requirements for this application are very different those commonly seen in fiber lasers. High energy lasers often have low repetition rates (as low as one pulse every few hours) and thus high average power and efficiency are of little practical value. What is of high value is pulse energy, high signal to noise ratio (expressed as pre-pulse contrast), good beam quality, consistent output parameters and timing. Our system focuses on maximizing these parameters sometimes at the expense of efficient operation or average power. Our prototype system consists of a mode-locked fiber laser, a compressed pulse fiber amplifier, a ''pulse cleaner'', a chirped fiber Bragg grating, pulse selectors, a transport fiber system and a large flattened mode fiber amplifier. In our talk we will review the system in detail and present theoretical and experimental studies of critical components. We will also present experimental results from the integrated system.

  6. Fabrication of Short Graphite Fiber Preforms for Liquid Metal Infiltration

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; He, Xinbo; Liu, Qian; Zhang, Lin; Wang, Ling; Kang, Qiping; Qu, Xuanhui

    2013-06-01

    Starch-based and paraffin wax (PW)-based binders were used to fabricate short graphite fiber preforms for liquid metal infiltration. The effects of different binder components and debinding process parameters on the properties of short graphite fiber preforms were investigated. The results indicate that the graphite fiber preforms with appropriate porosity of 58-62% and relatively high compressive strength of about 2-3 MPa can be made by starch-based and PW-based binders. The graphite fiber preforms made from the PW-based binder exhibit higher compressive strength than that of the starch-based binder. Graphite fiber reinforced aluminum composites fabricated by utilizing these preforms through vacuum pressure infiltration have relatively high density of 98.5% and thermal conductivity of 186.3 W/m K, proving the applicability of the prepared preforms for liquid metal infiltration.

  7. Cell Alignment Driven by Mechanically Induced Collagen Fiber Alignment in Collagen/Alginate Coatings

    PubMed Central

    Chaubaroux, Christophe; Perrin-Schmitt, Fabienne; Senger, Bernard; Vidal, Loïc; Voegel, Jean-Claude; Schaaf, Pierre; Haikel, Youssef; Boulmedais, Fouzia; Lavalle, Philippe

    2015-01-01

    For many years it has been a major challenge to regenerate damaged tissues using synthetic or natural materials. To favor the healing processes after tendon, cornea, muscle, or brain injuries, aligned collagen-based architectures are of utmost interest. In this study, we define a novel aligned coating based on a collagen/alginate (COL/ALG) multilayer film. The coating exhibiting a nanofibrillar structure is cross-linked with genipin for stability in physiological conditions. By stretching COL/ALG-coated polydimethylsiloxane substrates, we developed a versatile method to align the collagen fibrils of the polymeric coating. Assays on cell morphology and alignment were performed to investigate the properties of these films. Microscopic assessments revealed that cells align with the stretched collagen fibrils of the coating. The degree of alignment is tuned by the stretching rate (i.e., the strain) of the COL/ALG-coated elastic substrate. Such coatings are of great interest for strategies that require aligned nanofibrillar biological material as a substrate for tissue engineering. PMID:25658028

  8. Seamless, axially aligned, fiber tubes, meshes, microbundles and gradient biomaterial constructs

    PubMed Central

    Elia, Roberto; Firpo, Matthew A.; Kaplan, David L.; Peattie, Robert A.

    2012-01-01

    A new electrospinning apparatus was developed to generate nanofibrous materials with improved organizational control. The system functions by oscillating the deposition signal (ODS) of multiple collectors, allowing significantly improved nanofiber control by manipulating the electric field which drives the electrospinning process. Other electrospinning techniques designed to impart deposited fiber organizational control, such as rotating mandrels or parallel collector systems, do not generate seamless constructs with high quality alignment in sizes large enough for medical devices. In contrast, the ODS collection system produces deposited fiber networks with highly pure alignment in a variety of forms and sizes, including flat (8 × 8 cm2), tubular (1.3 cm diameter), or rope-like microbundle (45 μm diameter) samples. Additionally, the mechanism of our technique allows for scale-up beyond these dimensions. The ODS collection system produced 81.6 % of fibers aligned within 5° of the axial direction, nearly a four-fold improvement over the rotating mandrel technique. The meshes produced from the 9 % (w/v) fibroin/PEO blend demonstrated significant mechanical anisotropy due to the fiber alignment. In 37 °C PBS, aligned samples produced an ultimate tensile strength of 16.47 ± 1.18 MPa, a Young's modulus of 37.33 MPa, and a yield strength of 7.79 ± 1.13 MPa. The material was 300 % stiffer when extended in the direction of fiber alignment and required 20 times the amount of force to be deformed, compared to aligned meshes extended perpendicular to the fiber direction. The ODS technique could be applied to any electrospinnable polymer to overcome the more limited uniformity and induced mechanical strain of rotating mandrel techniques, and greatly surpasses the limited length of standard parallel collector techniques. PMID:22890517

  9. Fiber-coupled short Fabry-Perot resonators

    SciTech Connect

    Stone, J.; Marcuse, D. )

    1989-05-01

    Fabry-Perot resonators intended as filters in wavelength-multiplexed optical communications systems may have to be very short (on the order of 10 {mu}m) in order to increase their free spectral range. Short, yet tunable cavities can be designed as air gaps between two fibers placed in close proximity with highly reflecting mirrors deposited on their ends. However, an air-gap resonator with plane mirrors between closely spaced fiber ends may yield low throughout because of the poor match between the modes of typical single-mode fibers and the resonant mode in the air-gap cavity. The throughput can be improved by confining the resonant mode by means of a hollow dielectric tube placed inside the resonator. This paper compares short fiber-coupled Fabry-Parot resonators with and without an inserted hollow dielectric waveguide and derives expressions for their transmission losses. The authors show that the throughput of both types of resonator can be improved significantly by using a special fiber with large mode size to couple to the resonator. The special fiber is then spliced to a conventional single-mode fiber. They conclude that the resonator with an inserted hollow dielectric waveguide offers increased throughput for resonators with high finesse.

  10. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning.

    PubMed

    Ryu, Seong Woo; Hwang, Jae Won; Hong, Soon Hyung

    2012-07-01

    Continuous carbon nanotubes (CNT) fibers were directly spun from a vertically aligned CNT forest grown by a plasma-enhanced chemical vapor deposition (PECVD) process. The correlation of the CNT structure with Fe catalyst coarsening, reaction time, and the CNTs bundling phenomenon was investigated. We controlled the diameters and walls of the CNTs and minimized the amorphous carbon deposition on the CNTs for favorable bundling and spinning of the CNT fibers. The CNT fibers were fabricated with an as-grown vertically aligned CNT forest by a PECVD process using nanocatalyst an Al2O3 buffer layer, followed by a dry spinning process. Well-aligned CNT fibers were successfully manufactured using a dry spinning process and a surface tension-based densification process by ethanol. The mechanical properties were characterized for the CNT fibers spun from different lengths of a vertically aligned CNT forest. Highly oriented CNT fibers from the dry spinning process were characterized with high strength, high modulus, and high electrical as well as thermal conductivities for possible application as ultralight, highly strong structural materials. Examples of structural materials include space elevator cables, artificial muscle, and armor material, while multifunctional materials include E-textile, touch panels, biosensors, and super capacitors. PMID:22966627

  11. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning.

    PubMed

    Ryu, Seong Woo; Hwang, Jae Won; Hong, Soon Hyung

    2012-07-01

    Continuous carbon nanotubes (CNT) fibers were directly spun from a vertically aligned CNT forest grown by a plasma-enhanced chemical vapor deposition (PECVD) process. The correlation of the CNT structure with Fe catalyst coarsening, reaction time, and the CNTs bundling phenomenon was investigated. We controlled the diameters and walls of the CNTs and minimized the amorphous carbon deposition on the CNTs for favorable bundling and spinning of the CNT fibers. The CNT fibers were fabricated with an as-grown vertically aligned CNT forest by a PECVD process using nanocatalyst an Al2O3 buffer layer, followed by a dry spinning process. Well-aligned CNT fibers were successfully manufactured using a dry spinning process and a surface tension-based densification process by ethanol. The mechanical properties were characterized for the CNT fibers spun from different lengths of a vertically aligned CNT forest. Highly oriented CNT fibers from the dry spinning process were characterized with high strength, high modulus, and high electrical as well as thermal conductivities for possible application as ultralight, highly strong structural materials. Examples of structural materials include space elevator cables, artificial muscle, and armor material, while multifunctional materials include E-textile, touch panels, biosensors, and super capacitors.

  12. Electrospun fiber constructs for vocal fold tissue engineering: effects of alignment and elastomeric polypeptide coating

    PubMed Central

    Hughes, Lindsay A.; Gaston, Joel; McAlindon, Katherine; Woodhouse, Kimberly A.

    2014-01-01

    Vocal fold lamina propria extracellular matrix (ECM) is highly aligned and when injured, becomes disorganized with loss of the tissue’s critical biomechanical properties. This study examines the effects of electrospun fiber scaffold architecture and elastin-like polypeptide (ELP4) coating on human vocal fold fibroblast (HVFF) behavior for applications toward tissue engineering the vocal fold lamina propria. Electrospun Tecoflex™ scaffolds were made with aligned and unaligned fibers, and were characterized using scanning electron microscopy and uniaxial tensile testing. ELP4 was successfully adsorbed onto the scaffolds; HVFF were seeded and their viability, proliferation, morphology, and gene expression were characterized. Aligned and unaligned scaffolds had initial elastic moduli of ~14 MPa, ~5 MPa and ~0.3 MPa, ~0.6 MPa in the preferred and cross-preferred directions, respectively. Scaffold topography had an effect on the orientation of the cells, with HVFF seeded on aligned scaffolds having a significantly different (p < 0.001) angle of orientation than HVFF cultured on unaligned scaffolds. This same effect and significant difference (p < 0.001) was seen on aligned and unaligned scaffolds coated with ELP4. Scaffold alignment and ELP4 coating impacted ECM gene expression. ELP4 coating, and aligned scaffolds upregulated elastin synthesis when tested on day 7 without a concomitant upregulation of collagen III synthesis. Collectively, results indicate that aligned electrospun scaffolds and ELP4 coating, are promising candidates in the development of biodegradeable vocal fold lamina propria constructs. PMID:25462850

  13. Measurement of high-birefringent spun fiber parameters using short-length fiber Bragg gratings.

    PubMed

    Vasiliev, S A; Przhiyalkovsky, Ya V; Gnusin, P I; Medvedkov, O I; Dianov, E M

    2016-05-30

    Spectral polarization characteristics of short-length fiber Bragg gratings UV-written in a highly-birefringent spun-fiber have been investigated. Based on the analysis of the characteristics the technique for measuring the built-in linear phase birefringence as well as the spin period in this fiber type has been suggested. In this method the birefringence dispersion is excluded and therefore the built-in linear phase birefringence can be measured with an improved accuracy. PMID:27410060

  14. Effect of random/aligned nylon-6/MWCNT fibers on dental resin composite reinforcement.

    PubMed

    Borges, Alexandre L S; Münchow, Eliseu A; de Oliveira Souza, Ana Carolina; Yoshida, Takamitsu; Vallittu, Pekka K; Bottino, Marco C

    2015-08-01

    The aims of this study were (1) to synthesize and characterize random and aligned nanocomposite fibers of multi-walled carbon nanotubes (MWCNT)/nylon-6 and (2) to determine their reinforcing effects on the flexural strength of a dental resin composite. Nylon-6 was dissolved in hexafluoropropanol (10 wt%), followed by the addition of MWCNT (hereafter referred to as nanotubes) at two distinct concentrations (i.e., 0.5 or 1.5 wt%). Neat nylon-6 fibers (without nanotubes) were also prepared. The solutions were electrospun using parameters under low- (120 rpm) or high-speed (6000 rpm) mandrel rotation to collect random and aligned fibers, respectively. The processed fiber mats were characterized by scanning (SEM) and transmission (TEM) electron microscopies, as well as by uni-axial tensile testing. To determine the reinforcing effects on the flexural strength of a dental resin composite, bar-shaped (20×2×2 mm(3)) resin composite specimens were prepared by first placing one increment of the composite, followed by one strip of the mat, and one last increment of composite. Non-reinforced composite specimens were used as the control. The specimens were then evaluated using flexural strength testing. SEM was done on the fractured surfaces. The data were analyzed using ANOVA and the Tukey׳s test (α=5%). Nanotubes were successfully incorporated into the nylon-6 fibers. Aligned and random fibers were obtained using high- and low-speed electrospinning, respectively, where the former were significantly (p<0.001) stronger than the latter, regardless of the nanotubes׳ presence. Indeed, the dental resin composite tested was significantly reinforced when combined with nylon-6 fibrous mats composed of aligned fibers (with or without nanotubes) or random fibers incorporated with nanotubes at 0.5 wt%.

  15. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  16. Enzyme activity assays within microstructured optical fibers enabled by automated alignment

    PubMed Central

    Warren-Smith, Stephen C.; Nie, Guiying; Schartner, Erik P.; Salamonsen, Lois A.; Monro, Tanya M.

    2012-01-01

    A fluorescence-based enzyme activity assay has been demonstrated within a small-core microstructured optical fiber (MOF) for the first time. To achieve this, a reflection-based automated alignment system has been developed, which uses feedback and piezoelectric actuators to maintain optical alignment. The auto-alignment system provides optical stability for the time required to perform an activity assay. The chosen assay is based on the enzyme proprotein convertase 5/6 (PC6) and has important applications in women’s health. PMID:23243579

  17. Pitch-based short carbon fiber. Final report

    SciTech Connect

    Lin, S.S.

    1991-12-01

    Short carbon fiber manufactured from coal tar pitch by Osaka Gas Co. is examined by chemical composition analysis, X-ray powder diffraction, optical microscope, and electron spectroscopic techniques. The present analytical results are compared with the data obtainable from other sources. Owing to the low cost of the short fiber, it is recommended that the fiber could be used for a wide variety of reinforcement applications such as, cement/concrete mixtures, polymer composites, and high temperature materials. Processing includes the mechanical separation of mesophase microbeads of three to 30 micron diameters from crude coal tar during three heat treatment stages. The mesophases obtained are then subjected to solvent extraction, hydrogenation, and polymerization to yield isotropic and anisotropic pitches suitable for melt spinning. The short fiber is fabricated from isotropic pitch by the rotary gas jet method, and the process yields a higher quality fiber as compared to other melt spinning methods. The most important feature is that this process is highly cost effective.

  18. The Potential to Improve Cell Infiltration in Composite Fiber-Aligned Electrospun Scaffolds by the Selective Removal of Sacrificial Fibers

    PubMed Central

    Baker, Brendon M.; Gee, Albert O.; Metter, Robert B.; Nathan, Ashwin S.; Marklein, Ross L.; Burdick, Jason A.; Mauck, Robert L.

    2008-01-01

    Aligned electrospun scaffolds are a promising tool for engineering fibrous musculoskeletal tissues as they reproduce the mechanical anisotropy of these tissues and can direct ordered neo-tissue formation. However, these scaffolds suffer from a slow cellular infiltration rate, likely due in part to their dense fiber packing. We hypothesized that cell ingress could be expedited in scaffolds by increasing porosity, while at the same time preserving overall scaffold anisotropy. To test this hypothesis, poly(ε-caprolactone) (a slow-degrading polyester) and poly(ethylene oxide) (a water-soluble polymer) were co-electrospun from two separate spinnerets to form dual-polymer composite fiber-aligned scaffolds. Adjusting fabrication parameters produced aligned scaffolds with a full range of sacrificial (PEO) fiber contents. Tensile properties of scaffolds were a function of the ratio of PCL to PEO in the composite scaffolds, and were altered in a predictable fashion with removal of the PEO component. When seeded with mesenchymal stem cells (MSCs), increases in the starting sacrificial fraction (and porosity) improved cell infiltration and distribution after three weeks in culture. In pure PCL scaffolds, cells lined the scaffold periphery, while scaffolds containing >50% sacrificial PEO content had cells present throughout the scaffold. These findings indicate that cell infiltration can be expedited in dense fibrous assemblies with the removal of sacrificial fibers. This strategy may enhance in vitro and in vivo formation and maturation of a functional constructs for fibrous tissue engineering. PMID:18313138

  19. 25 Gbps silicon photonics multi-mode fiber link with highly alignment tolerant vertically illuminated germanium photodiode

    NASA Astrophysics Data System (ADS)

    Okumura, Tadashi; Wakayama, Yuki; Matsuoka, Yasunobu; Oda, Katsuya; Sagawa, Misuzu; Takemoto, Takashi; Nomoto, Etsuko; Arimoto, Hideo; Tanaka, Shigehisa

    2015-02-01

    For a multi mode fiber optical link, a high speed silicon photonics receiver based on a highly alignment tolerant vertically illuminated germanium photodiode was developed. The germanium photodiode has 20 GHz bandwidth and responsivity of 0.5 A/W with highly alignment tolerance for passive optical assembly. The receiver achieves 25 Gbps error free operation after 100 m multi mode fiber transmission.

  20. Electric Field Effects on Fiber Alignment Using an Auxiliary Electrode during Electrospinning

    NASA Technical Reports Server (NTRS)

    Carnell, Lisa S.; Wincheski, Russell A.; Siochi, Emilie, J.; Holloway, Nancy M.; Clark, Robert L.

    2007-01-01

    This viewgraph presentation reviews auxiliary and electric field effects on fiber alignment during the process of electrospinning. The contents include: 1) Electrospinning Overview; 2) Experimental Set-up; 3) Jet Exit; 4) Auxiliary Electrode Effects; 5) Electrospinning High Speed Video; 6) Effect of Auxiliary Electrode Position; 7) Micro & Nano Fibers Produced; 8) Micro and Nano Fibrous Mats; 9) Field Effect on Fiber Distribution; 10) Modeling; 11) Calculated trajectories: 5, 10, 15 & 20cm electrode spacing; 12) Off Axis Auxiliary Electrode; 13) Field Strength Effects; and 14) Potential Applications.

  1. Fabrication of Aligned Conducting PPy-PLLA Fiber Films and Their Electrically Controlled Guidance and Orientation for Neurites.

    PubMed

    Zou, Yuanwen; Qin, Jiabang; Huang, Zhongbing; Yin, Guangfu; Pu, Ximing; He, Da

    2016-05-25

    Electrically conductive biomaterial scaffolds have great potential in neural tissue regeneration. In this work, an aligned conductive fibrous scaffold was prepared by electrospinning PLLA on rotating collector and chemical oxidation polymerization of pyrrole (PPy) codoped with poly(glutamic acid)/dodecyl benzenesulfonic acid sodium. The characterization results of composition, structure and mechanics of fiber films show that the existence of weak polar van der Waals' force between PPy coating and PLLA fibers. The resistivity of aligned rough PPy-PLLA fiber film (about 800 nm of fiber diameter) at the perpendicular and parallel directions is 0.971 and 0.874 Ω m, respectively. Aligned rough PPy-PLLA fiber film could guide the extension of 68% PC12 neurites along the direction of fiber axis. Under electrostimulation (ES) of 100, 200, and 400 mV/cm, median neurite lengths of differentiated PC12 on aligned fiber-films are 128, 149, and 141 μm, respectively. Furthermore, under ES of 100, 200, and 400 mV/cm, the alignment rate of neurite along the electropotential direction (angle between neurite and electropotential direction ≤10°) on random fibers film are 17, 23, and 28%, respectively, and the alignment rate of neurites along the fiber axis (angle between neurite and fiber axis ≤10°) on aligned fibers film reach to 76, 83, and 79%, respectively, indicating that the combination of ES and rough conducting aligned structure could adjust the alignment of cellular neurites along the direction of the fiber axis or electropotential. PMID:27172537

  2. Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers

    NASA Astrophysics Data System (ADS)

    Rangari, Vijaya K.; Yousuf, Mohammed; Jeelani, Shaik; Pulikkathara, Merlyn X.; Khabashesku, Valery N.

    2008-06-01

    Alignment of pristine carbon nanotubes (P-CNTs) and fluorinated carbon nanotubes (F-CNTs) in nylon-6 polymer composite fibers (PCFs) has been achieved using a single-screw extrusion method. CNTs have been used as filler reinforcements to enhance the mechanical and thermal properties of nylon-6 composite fibers. The composites were fabricated by dry mixing nylon-6 polymer powder with the CNTs as the first step, then followed by the melt extrusion process of fiber materials in a single-screw extruder. The extruded fibers were stretched to their maxima and stabilized using a godet set-up. Finally, fibers were wound on a Wayne filament winder machine and tested for their tensile and thermal properties. The tests have shown a remarkable change in mechanical and thermal properties of nylon-6 polymer fibers with the addition of 0.5 wt% F-CNTs and 1.0 wt% of P-CNTs. To draw a comparison between the improvements achieved, the same process has been repeated with neat nylon-6 polymer. As a result, tensile strength has been increased by 230% for PCFs made with 0.5% F-CNTs and 1% P-CNTs as additives. These fibers have been further characterized by DSC, Raman spectroscopy and SEM which confirm the alignment of CNTs and interfacial bonding to nylon-6 polymer matrix.

  3. Image-based quantification of fiber alignment within electrospun tissue engineering scaffolds is related to mechanical anisotropy.

    PubMed

    Fee, Timothy; Downs, Crawford; Eberhardt, Alan; Zhou, Yong; Berry, Joel

    2016-07-01

    It is well documented that electrospun tissue engineering scaffolds can be fabricated with variable degrees of fiber alignment to produce scaffolds with anisotropic mechanical properties. Several attempts have been made to quantify the degree of fiber alignment within an electrospun scaffold using image-based methods. However, these methods are limited by the inability to produce a quantitative measure of alignment that can be used to make comparisons across publications. Therefore, we have developed a new approach to quantifying the alignment present within a scaffold from scanning electron microscopic (SEM) images. The alignment is determined by using the Sobel approximation of the image gradient to determine the distribution of gradient angles with an image. This data was fit to a Von Mises distribution to find the dispersion parameter κ, which was used as a quantitative measure of fiber alignment. We fabricated four groups of electrospun polycaprolactone (PCL) + Gelatin scaffolds with alignments ranging from κ = 1.9 (aligned) to κ = 0.25 (random) and tested our alignment quantification method on these scaffolds. It was found that our alignment quantification method could distinguish between scaffolds of different alignments more accurately than two other published methods. Additionally, the alignment parameter κ was found to be a good predictor the mechanical anisotropy of our electrospun scaffolds. The ability to quantify fiber alignment within and make direct comparisons of scaffold fiber alignment across publications can reduce ambiguity between published results where cells are cultured on "highly aligned" fibrous scaffolds. This could have important implications for characterizing mechanics and cellular behavior on aligned tissue engineering scaffolds. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1680-1686, 2016.

  4. High finesse optical fiber cavities: optimal alignment and robust stabilization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ratschbacher, Lothar; Gallego, Jose; Ghosh, Sutapa; Alavi, Seyed; Alt, Wolfgang; Martinez-Dorantes, Miguel; Meschede, Dieter

    2016-04-01

    Fiber Fabry-Perot cavities, formed by micro-machined mirrors on the end-facets of optical fibers, are used in an increasing number of technical and scientific applications. Some of the most promising areas of application of these optical micro-resonators with high finesse and small mode volume are in the field of quantum communication and information. The resonator-enhanced light-matter interaction, for instance, provide basis for the realization of efficient optical interfaces between stationary matter-based quantum nodes and flying single-photon qubits. To date fiber Fabry-Perot cavities have been successfully applied in experiments interfacing single photons with a wide range of quantum systems, including cold atoms, ions and solid state emitters as well as quantum optomechanical experiments. Here we address some important practical questions that arise during the experimental implementation of high finesse fiber Fabry-Perot cavities: How can optimal fiber cavity alignment be achieved and how can the efficiency of coupling light from the optical fibers to the cavity mode and vice versa be characterized? How should optical fiber cavities be constructed and stabilized to fulfill their potential for miniaturization and integration into robust scientific and technological devices that can operate outside of dedicated laboratory environments in the future? The first two questions we answer with an analytic mode matching calculation that relates the alignment dependent fiber-to-cavity mode-matching efficiency to the easily measurable dip in the reflected light power at the cavity resonance. Our general analysis provides a simple recipe for the optimal alignment of fiber Fabry-Perot cavities and moreover for the first time explains the asymmetry in their reflective line shapes. The latter question we explore by investigating a novel, intrinsically rigid fiber cavity design that makes use of the high passive stability of a monolithic cavity spacer and employs thermal

  5. Short fiber-reinforced cementitious composites manufactured by extrusion technology

    NASA Astrophysics Data System (ADS)

    Mu, Bin

    The use of short fibers in the cement-based composites is more preferable due to the simplicity and economic nature in fabrication. The short fiber-reinforced cementitious composite (SFRCC) manufactured by the extrusion method show a great improvement in both strength and toughness as compared to the fiber-reinforced composites made by traditional casting methods. This improvement can be attributed to the achievement of low porosity and good interfacial bond in SFRCC under high shear and compressive stress during the extrusion process. In the present study, products of cylinders, sheets, pipes and honeycomb panels incorporating various mineral admixtures such as slag, silica fume, and metakaolin have been manufactured by the extrusion technology. Two kinds of short fibers, ductile polyvinyl alcohol (PVA) fibers and stronger but less ductile glass fibers, were used as the reinforcement in the products. After the specimens were extruded, tension, bending and impact tests were performed to study the mechanical properties of these products. The rheology test was performed for each mix to determine its viscoelastic properties. In addition, X-ray diffraction (XRD) and scanning electronic microscopy (SEM) technology were employed to get an insight view of the mechanism. A freezing and thawing experiment (ASTM C666) was also carried to investigate the durability of the specimens. Based on these experimental results, the reinforcing behaviors of these two short fibers were investigated. The enhancing effects of silica fume and metakaolin on the extrudates were compared and discussed. Finally, the optimum amount of silica fume and slag was proposed. Since the key point for a successful extrusion is the properly designed rheology which controls both internal and external flow properties of extrudate, a nonlinear viscoelastic model was applied to investigate the rheological behavior of a movable fresh cementitious composite in an extruder channel. The velocity profile of the

  6. Extracellular Recordings of Patterned Human Pluripotent Stem Cell-Derived Cardiomyocytes on Aligned Fibers.

    PubMed

    Li, Junjun; Minami, Itsunari; Yu, Leqian; Tsuji, Kiyotaka; Nakajima, Minako; Qiao, Jing; Suzuki, Masato; Shimono, Ken; Nakatsuji, Norio; Kotera, Hitetoshi; Liu, Li; Chen, Yong

    2016-01-01

    Human induced pluripotent stem cell (hiPSC) derived cardiomyocytes (CMs) hold high potential for use in drug assessment and myocardial regeneration. To create tissue-like constructs of CMs for extracellular monitoring, we placed aligned fibers (AFs) on the surface of a microelectrode array and then seeded hiPSC-CMs for subsequent monitoring for 14 days. As expected, the CMs organized into anisotropic and matured tissue and the extracellular recordings showed reduced premature beating higher signal amplitude and a higher probability of T-wave detection as compared to the culture without fibers. The CMs on the aligned fibers samples also exhibited anisotropic propagation of the field potential. These results therefore suggest that the hiPSC-CMs cultured on AFs can be used more reliably for cell based assays. PMID:27446217

  7. Extracellular Recordings of Patterned Human Pluripotent Stem Cell-Derived Cardiomyocytes on Aligned Fibers

    PubMed Central

    Minami, Itsunari; Yu, Leqian; Nakajima, Minako; Qiao, Jing; Shimono, Ken; Nakatsuji, Norio; Kotera, Hitetoshi; Chen, Yong

    2016-01-01

    Human induced pluripotent stem cell (hiPSC) derived cardiomyocytes (CMs) hold high potential for use in drug assessment and myocardial regeneration. To create tissue-like constructs of CMs for extracellular monitoring, we placed aligned fibers (AFs) on the surface of a microelectrode array and then seeded hiPSC-CMs for subsequent monitoring for 14 days. As expected, the CMs organized into anisotropic and matured tissue and the extracellular recordings showed reduced premature beating higher signal amplitude and a higher probability of T-wave detection as compared to the culture without fibers. The CMs on the aligned fibers samples also exhibited anisotropic propagation of the field potential. These results therefore suggest that the hiPSC-CMs cultured on AFs can be used more reliably for cell based assays. PMID:27446217

  8. Diagnostic apparatus and method for use in the alignment of one or more laser means onto a fiber optics interface

    DOEpatents

    Johnson, Steve A.; Shannon, Robert R.

    1987-01-01

    Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.

  9. Diagnostic apparatus and method for use in the alignment of one or more laser means onto a fiber optics interface

    DOEpatents

    Johnson, S.A.; Shannon, R.R.

    1985-01-18

    Diagnostic apparatus for use in determining the proper alignment of a plurality of laser beams onto a fiber optics interface is disclosed. The apparatus includes a lens assembly which serves two functions, first to focus a plurality of laser beams onto the fiber optics interface, and secondly to reflect and image the interface using scattered light to a monitor means. The monitor means permits indirect observation of the alignment or focusing of the laser beams onto the fiber optics interface.

  10. Self-centering fiber alignment structures for high-precision field installable single-mode fiber connectors

    NASA Astrophysics Data System (ADS)

    Van Erps, Jürgen; Ebraert, Evert; Gao, Fei; Vervaeke, Michael; Berghmans, Francis; Beri, Stefano; Watté, Jan; Thienpont, Hugo

    2014-05-01

    There is a steady increase in the demand for internet bandwidth, primarily driven by cloud services and high-definition video streaming. Europe's Digital Agenda states the ambitious objective that by 2020 all Europeans should have access to internet at speeds of 30Mb/s or above, with 50% or more of households subscribing to connections of 100Mb/s. Today however, internet access in Europe is mainly based on the first generation of broadband, meaning internet accessed over legacy telephone copper and TV cable networks. In recent years, Fiber-To-The-Home (FTTH) networks have been adopted as a replacement of traditional electrical connections for the `last mile' transmission of information at bandwidths over 1Gb/s. However, FTTH penetration is still very low (< 5%) in most major Western economies. The main reason for this is the high deployment cost of FTTH networks. Indeed, the success and adoption of optical access networks critically depend on the quality and reliability of connections between optical fibers. In particular a further reduction of insertion loss of field- installable connectors must be achieved without a significant increase in component cost. This requires precise alignment of fibers that can differ in terms of ellipticity, eccentricity or diameter and seems hardly achievable using today's widespread ferrule-based alignment systems. In this paper, we present a field-installable connector based on deflectable/compressible spring structures, providing a self-centering functionality for the fiber. This way, it can accommodate for possible fiber cladding diameter variations (the tolerance on the cladding diameter of G.652 fiber is typically +/-0.7μm). The mechanical properties of the cantilever are derived through an analytical approximation and a mathematical model of the spring constant, and finite element-based simulations are carried out to find the maximum first principal stress as well as the stress distribution distribution in the fiber alignment

  11. Tough Block Copolymer Organogels and Elastomers as Short Fiber Composites

    NASA Astrophysics Data System (ADS)

    Kramer, Edward J.

    2012-02-01

    The origins of the exceptional toughness and elastomeric properties of gels and elastomers from block copolymers with semicrystalline syndiotactic polypropylene blocks will be discussed. Using synchrotron X-radiation small angle (SAXS) and wide angle X-ray scattering (WAXS) experiments were simultaneously performed during step cycle tensile deformation of these elastomers and gels. From these results the toughness can be attributed to the formation, orientation and elongation of the crystalline fibrils along the tensile direction. The true stress and true strain ɛH during each cycle were recorded, including the true strain at zero load ɛH,p after each cycle that resulted from the plastic deformation of the sPP crystals in the gel or elastomer. The initial Young's modulus Einit and maximum tangent modulus Emax in each cycle undergo dramatic changes as a function of ɛH,p, with Einit decreasing for ɛH,p <= 0.1 and then increasing slowly as ɛH,p increases to 1 while Emax increases rapidly over the entire range of ɛH,p resulting in a ratio of Emax/Einit > 100 to 1000 at the highest maximum (nominal) strain. Based on SAXS patterns from the deformed and relaxed gels, as well as on previous results on deformation of semicrystalline random copolymers by Strobl and coworkers, we propose that the initial decrease in Einit and increase in Emax with ɛH,p are due to a breakup of the network of the original sPP crystal lamellae and the conversion of the sPP lamellae into fibrils whose aspect ratio increases with further plastic deformation, respectively. The gel elastic properties can be understood quantitatively as those of a short fiber composite with a highly deformable matrix. At zero stress the random copolymer midblock chains that connect the fibrils cause these to make all angles to the tensile axis (low Einit), while at the maximum strain the stiff, crystalline sPP fibrils align with the tensile axis producing a strong, relatively stiff gel. The evolution of the

  12. Accurate numerical simulation of short fiber optical parametric amplifiers.

    PubMed

    Marhic, M E; Rieznik, A A; Kalogerakis, G; Braimiotis, C; Fragnito, H L; Kazovsky, L G

    2008-03-17

    We improve the accuracy of numerical simulations for short fiber optical parametric amplifiers (OPAs). Instead of using the usual coarse-step method, we adopt a model for birefringence and dispersion which uses fine-step variations of the parameters. We also improve the split-step Fourier method by exactly treating the nonlinear ellipse rotation terms. We find that results obtained this way for two-pump OPAs can be significantly different from those obtained by using the usual coarse-step fiber model, and/or neglecting ellipse rotation terms.

  13. Electro-magnetic properties of composites with aligned Fe-Co hollow fibers

    NASA Astrophysics Data System (ADS)

    Cho, Seungchan; Choi, Jae Ryung; Jung, Byung Mun; Choi, U. Hyeok; Lee, Sang-Kwan; Kim, Ki Hyeon; Lee, Sang-Bok

    2016-05-01

    A novel Fe-Co binary hollow fiber was synthesized by electroless plating using hydrolyzed polyester fiber and its anisotropy characteristic was investigated for electromagnetic wave absorbing materials. The hollow fibers in parallel with magnetic field show higher saturated magnetization of 202 emu/g at the applied magnetic field of 10 kOe and lower coercivity (27.658 Oe), compared with the random and vertical oriented hollow fibers. From complex permittivity measurement, the Fe-Co hollow fiber composites clearly display a single dielectric resonance, located at ˜14 GHz. The Fe-Co hollow fibers not only provide excellent EM properties in GHz frequency ranges, resulting mainly from the strong resonance, but also adjust the soft magnetic properties through fiber alignments. The cavitary structure of the Fe-Co hollow fibers, not only giving rise to a dielectric loss resonance and also adjusting its peak frequency, may be a pathway to useful EM wave absorptive devices in GHz frequency ranges.

  14. Giant-chirp oscillators for short-pulse fiber amplifiers.

    PubMed

    Renninger, William H; Chong, Andy; Wise, Frank W

    2008-12-15

    A new regime of pulse parameters in a normal-dispersion fiber laser is identified. Dissipative solitons exist with remarkably large pulse duration and chirp, along with large pulse energy. A low-repetition-rate oscillator that generates pulses with large and linear chirp can replace the standard oscillator, stretcher, pulse-picker, and preamplifier in a chirped-pulse fiber amplifier. The theoretical properties of such a giant-chirp oscillator are presented. A fiber laser designed to operate in the new regime generates approximately 150 ps pulses at a 3 MHz repetition rate. Amplification of these pulses to 1 microJ energy with pulse duration as short as 670 fs demonstrates the promise of this new approach.

  15. 600-Hz linewidth short-linear-cavity fiber laser.

    PubMed

    Mo, Shupei; Huang, Xiang; Xu, Shanhui; Li, Can; Yang, Changsheng; Feng, Zhouming; Zhang, Weinan; Chen, Dongdan; Yang, Zhongmin

    2014-10-15

    We proposed a short-linear-cavity (SLC) fiber laser based on a virtual-folded-ring (VFR) resonator and a fiber Bragg grating Fabry-Perot filter. Spatial hole burning effect was reduced by retarding the polarization state of the counter-propagating light waves utilizing the VFR structure. The photon lifetime of the resonator was extended due to the multi-reflection inside the FBG FP, which increased the intra-cavity power and relatively suppressed the contribution of phase diffusion from spontaneous emission. The relaxation oscillation frequency is around 160 kHz due to the slow light effect. The linewidth of the SLC fiber laser was measured to be less than 600 Hz.

  16. SOAP3: ultra-fast GPU-based parallel alignment tool for short reads.

    PubMed

    Liu, Chi-Man; Wong, Thomas; Wu, Edward; Luo, Ruibang; Yiu, Siu-Ming; Li, Yingrui; Wang, Bingqiang; Yu, Chang; Chu, Xiaowen; Zhao, Kaiyong; Li, Ruiqiang; Lam, Tak-Wah

    2012-03-15

    SOAP3 is the first short read alignment tool that leverages the multi-processors in a graphic processing unit (GPU) to achieve a drastic improvement in speed. We adapted the compressed full-text index (BWT) used by SOAP2 in view of the advantages and disadvantages of GPU. When tested with millions of Illumina Hiseq 2000 length-100 bp reads, SOAP3 takes < 30 s to align a million read pairs onto the human reference genome and is at least 7.5 and 20 times faster than BWA and Bowtie, respectively. For aligning reads with up to four mismatches, SOAP3 aligns slightly more reads than BWA and Bowtie; this is because SOAP3, unlike BWA and Bowtie, is not heuristic-based and always reports all answers.

  17. Parallel and Scalable Short-Read Alignment on Multi-Core Clusters Using UPC+.

    PubMed

    González-Domínguez, Jorge; Liu, Yongchao; Schmidt, Bertil

    2016-01-01

    The growth of next-generation sequencing (NGS) datasets poses a challenge to the alignment of reads to reference genomes in terms of alignment quality and execution speed. Some available aligners have been shown to obtain high quality mappings at the expense of long execution times. Finding fast yet accurate software solutions is of high importance to research, since availability and size of NGS datasets continue to increase. In this work we present an efficient parallelization approach for NGS short-read alignment on multi-core clusters. Our approach takes advantage of a distributed shared memory programming model based on the new UPC++ language. Experimental results using the CUSHAW3 aligner show that our implementation based on dynamic scheduling obtains good scalability on multi-core clusters. Through our evaluation, we are able to complete the single-end and paired-end alignments of 246 million reads of length 150 base-pairs in 11.54 and 16.64 minutes, respectively, using 32 nodes with four AMD Opteron 6272 16-core CPUs per node. In contrast, the multi-threaded original tool needs 2.77 and 5.54 hours to perform the same alignments on the 64 cores of one node. The source code of our parallel implementation is publicly available at the CUSHAW3 homepage (http://cushaw3.sourceforge.net). PMID:26731399

  18. Parallel and Scalable Short-Read Alignment on Multi-Core Clusters Using UPC++

    PubMed Central

    González-Domínguez, Jorge; Liu, Yongchao; Schmidt, Bertil

    2016-01-01

    The growth of next-generation sequencing (NGS) datasets poses a challenge to the alignment of reads to reference genomes in terms of alignment quality and execution speed. Some available aligners have been shown to obtain high quality mappings at the expense of long execution times. Finding fast yet accurate software solutions is of high importance to research, since availability and size of NGS datasets continue to increase. In this work we present an efficient parallelization approach for NGS short-read alignment on multi-core clusters. Our approach takes advantage of a distributed shared memory programming model based on the new UPC++ language. Experimental results using the CUSHAW3 aligner show that our implementation based on dynamic scheduling obtains good scalability on multi-core clusters. Through our evaluation, we are able to complete the single-end and paired-end alignments of 246 million reads of length 150 base-pairs in 11.54 and 16.64 minutes, respectively, using 32 nodes with four AMD Opteron 6272 16-core CPUs per node. In contrast, the multi-threaded original tool needs 2.77 and 5.54 hours to perform the same alignments on the 64 cores of one node. The source code of our parallel implementation is publicly available at the CUSHAW3 homepage (http://cushaw3.sourceforge.net). PMID:26731399

  19. Parallel and Scalable Short-Read Alignment on Multi-Core Clusters Using UPC+.

    PubMed

    González-Domínguez, Jorge; Liu, Yongchao; Schmidt, Bertil

    2016-01-01

    The growth of next-generation sequencing (NGS) datasets poses a challenge to the alignment of reads to reference genomes in terms of alignment quality and execution speed. Some available aligners have been shown to obtain high quality mappings at the expense of long execution times. Finding fast yet accurate software solutions is of high importance to research, since availability and size of NGS datasets continue to increase. In this work we present an efficient parallelization approach for NGS short-read alignment on multi-core clusters. Our approach takes advantage of a distributed shared memory programming model based on the new UPC++ language. Experimental results using the CUSHAW3 aligner show that our implementation based on dynamic scheduling obtains good scalability on multi-core clusters. Through our evaluation, we are able to complete the single-end and paired-end alignments of 246 million reads of length 150 base-pairs in 11.54 and 16.64 minutes, respectively, using 32 nodes with four AMD Opteron 6272 16-core CPUs per node. In contrast, the multi-threaded original tool needs 2.77 and 5.54 hours to perform the same alignments on the 64 cores of one node. The source code of our parallel implementation is publicly available at the CUSHAW3 homepage (http://cushaw3.sourceforge.net).

  20. Influence of reinforcement morphology on the mechanical properties of short-fiber composites

    SciTech Connect

    Zhu, Y.T.; Valdez, J.A.; Shi, N.; Lovato, M.L.; Stout, M.G.; Zhou, S.; Blumenthal, W.R.; Lowe, T.C.

    1997-12-01

    A major problem of short-fiber composites is that the interfaces between the fiber and matrix become a limiting factor in improving mechanical properties such as strength. For a short fiber, a strong interface is desired to effectively transfer load from matrix to fiber, thus reducing the ineffective fiber length. However, a strong interface will make it difficult to relieve fiber stress concentration in front of an approaching crack. Stress concentrations result in fiber breakage. The authors report in this paper an innovative approach to overcome this problem: reinforcement morphology design. Short-fibers with enlarged ends are processed and used to reinforce a polyester matrix. The initial results show that the bone-shaped short-fibers produce a composite with significantly higher strength than can be attained with conventional short, straight fibers.

  1. Characterization of PEEK and short-fiber PEEK thermoplastic composites

    SciTech Connect

    Motz, H.

    1987-01-01

    Various topics in the areas of processing, structure, and properties in PEEK and its short-fiber composites are treated. Crystallization at constant temperatures and under nonisothermal conditions was analyzed using time-temperature-transformation curves. Correlation between isothermal and continuous cooling curves allows the rate of cooling needed to manufacture a product with a specific microstructure to be determined. The crystallization range (time or temperature) can be predicted for various heat treatments. In large-dimensioned polymer parts, crystallization does not develop uniformly. A finite-difference approach predicts the temperature distributions within the part for a variety of conditions, so that processing conditions that cause the inhomogeneities can be avoided. Crystallization temperature is important with respect to spherulitic morphology. The lathlike crystallites of adjacent spherulites formed at medium temperatures interweave, whereas a noncrystalline layer separates spherulites formed at higher temperatures. Carbon fibers are more effective nucleating agents than glass fibers, though not all fibers show transcrystallinity. Generally, the fibers did not seem to accelerate the crystallization process. But, they improve the mechanical properties, strength and modulus, at the expense of toughness.

  2. Alignment tolerant expanded beam connector based on a gapless fiber-lens interface.

    PubMed

    Lee, Yong-Geon; Park, Chang-Hyun; Back, Seon-Woo; Kim, Haeng-Jeong; Lee, Sang-Shin

    2016-01-10

    An expanded beam connector (EBC) has been proposed and realized, where a single-mode fiber is seamlessly integrated with a ball lens exhibiting a near-zero back focal length (BFL) so that the incoming small mode exiting the fiber translates into an enlarged collimated beam via the lens. The structural tolerance for the fiber-optic connector is primarily relaxed by relieving the restrictions imposed on the meticulous control of the gap between the lens and the fiber. The EBC has been designed through rigorous ray-optic simulations and then constructed based on a ball lens in LASF35 (n=∼1.98 at λ=1.3  μm), exhibiting an ultrashort BFL of ∼13  μm. It was practically confirmed that an input mode of a ∼10  μm spot relating to the single-mode fiber could be efficiently converted into a highly collimated beam of a ∼350  μm spot that emanates from the ball lens, leading to a 35-fold beam expansion. The alignment tolerance for the fiber as well as the connector unit was scrutinized with respect to the angular tilt and transverse displacement. The measured insertion loss for the EBC, allowing for no separation between the fiber and ball lens, was slightly over 0.8 dB.

  3. Quantitative mapping of collagen fiber alignment in thick tissue samples using transmission polarized-light microscopy.

    PubMed

    Yakovlev, Dmitry D; Shvachkina, Marina E; Sherman, Maria M; Spivak, Andrey V; Pravdin, Alexander B; Yakovlev, Dmitry A

    2016-07-01

    Immersion optical clearing makes it possible to use transmission polarized-light microscopy for characterization of thick (200 to 2000  μm) layers of biological tissues. We discuss polarization properties of thick samples in the context of the problem of characterization of collagen fiber alignment in connective tissues such as sclera and dermis. Optical chirality caused by azimuthal variations of the macroscopic (effective) optic axis of the medium across the sample thickness should be considered in polarization mapping of thick samples of these tissues. We experimentally evaluate to what extent the optical chirality affects the measurement results in typical situations and show under what conditions it can be easily taken into account and does not hinder, but rather helps, in characterization of collagen fiber alignment.

  4. Quantitative mapping of collagen fiber alignment in thick tissue samples using transmission polarized-light microscopy

    NASA Astrophysics Data System (ADS)

    Yakovlev, Dmitry D.; Shvachkina, Marina E.; Sherman, Maria M.; Spivak, Andrey V.; Pravdin, Alexander B.; Yakovlev, Dmitry A.

    2016-07-01

    Immersion optical clearing makes it possible to use transmission polarized-light microscopy for characterization of thick (200 to 2000 μm) layers of biological tissues. We discuss polarization properties of thick samples in the context of the problem of characterization of collagen fiber alignment in connective tissues such as sclera and dermis. Optical chirality caused by azimuthal variations of the macroscopic (effective) optic axis of the medium across the sample thickness should be considered in polarization mapping of thick samples of these tissues. We experimentally evaluate to what extent the optical chirality affects the measurement results in typical situations and show under what conditions it can be easily taken into account and does not hinder, but rather helps, in characterization of collagen fiber alignment.

  5. Diabetes alters mechanical properties and collagen fiber re-alignment in multiple mouse tendons.

    PubMed

    Connizzo, Brianne K; Bhatt, Pankti R; Liechty, Kenneth W; Soslowsky, Louis J

    2014-09-01

    Tendons function to transfer load from muscle to bone through their complex composition and hierarchical structure, consisting mainly of type I collagen. Recent evidence suggests that type II diabetes may cause alterations in collagen structure, such as irregular fibril morphology and density, which could play a role in the mechanical function of tendons. Using the db/db mouse model of type II diabetes, the diabetic skin was found to have impaired biomechanical properties when compared to the non-diabetic group. The purpose of this study was to assess the effect of diabetes on biomechanics, collagen fiber re-alignment, and biochemistry in three functionally different tendons (Achilles, supraspinatus, patellar) using the db/db mouse model. Results showed that cross-sectional area and stiffness, but not modulus, were significantly reduced in all three tendons. However, the tendon response to load (transition strain, collagen fiber re-alignment) occurred earlier in the mechanical test, contrary to expectations. In addition, the patellar tendon had an altered response to diabetes when compared to the other two tendons, with no changes in fiber re-alignment and decreased collagen content at the midsubstance of the tendon. Overall, type II diabetes alters tendon mechanical properties and the dynamic response to load.

  6. A model for cell density effect on stress fiber alignment and collective directional migration

    NASA Astrophysics Data System (ADS)

    Abeddoust, Mohammad; Shamloo, Amir

    2015-12-01

    In this study, numerical simulation of collective cell migration is presented in order to mimic the group migration of endothelial cells subjected to the concentration gradients of a biochemical factor. The developed 2D model incorporates basic elements of the cell, including both the cell membrane and the cell cytoskeleton, based on a viscoelastic cell mechanic model. Various cell processes—including cell random walk, cell-cell interactions, cell chemotaxis, and cellular cytoskeleton rearrangements—are considered and analyzed in our developed model. After validating the model by using available experimental data, the model is used to investigate various important parameters during collective cell chemotaxis, such as cell density, cytoskeleton organization, stress fiber reorientations, and intracellular forces. The results suggest that increasing the cell density causes the cell-cell interactions to affect the orientation of stress fibers throughout the cytoskeleton and makes the stress fibers more aligned in the direction of the imposed concentration gradient. This improved alignment of the stress fibers correlates with the intensification of the intracellular forces transferred in the gradient direction; this improves the cell group migration. Comparison of the obtained results with available experimental observations of collective chemotaxis of endothelial cells shows an interesting agreement.

  7. A model for cell density effect on stress fiber alignment and collective directional migration.

    PubMed

    Abeddoust, Mohammad; Shamloo, Amir

    2015-12-01

    In this study, numerical simulation of collective cell migration is presented in order to mimic the group migration of endothelial cells subjected to the concentration gradients of a biochemical factor. The developed 2D model incorporates basic elements of the cell, including both the cell membrane and the cell cytoskeleton, based on a viscoelastic cell mechanic model. Various cell processes--including cell random walk, cell-cell interactions, cell chemotaxis, and cellular cytoskeleton rearrangements--are considered and analyzed in our developed model. After validating the model by using available experimental data, the model is used to investigate various important parameters during collective cell chemotaxis, such as cell density, cytoskeleton organization, stress fiber reorientations, and intracellular forces. The results suggest that increasing the cell density causes the cell-cell interactions to affect the orientation of stress fibers throughout the cytoskeleton and makes the stress fibers more aligned in the direction of the imposed concentration gradient. This improved alignment of the stress fibers correlates with the intensification of the intracellular forces transferred in the gradient direction; this improves the cell group migration. Comparison of the obtained results with available experimental observations of collective chemotaxis of endothelial cells shows an interesting agreement. PMID:26717999

  8. Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances.

    PubMed

    Weng, Wei; Sun, Qian; Zhang, Ye; Lin, Huijuan; Ren, Jing; Lu, Xin; Wang, Min; Peng, Huisheng

    2014-06-11

    Inspired by the fantastic and fast-growing wearable electronics such as Google Glass and Apple iWatch, matchable lightweight and weaveable energy storage systems are urgently demanded while remaining as a bottleneck in the whole technology. Fiber-shaped energy storage devices that can be woven into electronic textiles may represent a general and effective strategy to overcome the above difficulty. Here a coaxial fiber lithium-ion battery has been achieved by sequentially winding aligned carbon nanotube composite yarn cathode and anode onto a cotton fiber. Novel yarn structures are designed to enable a high performance with a linear energy density of 0.75 mWh cm(-1). A wearable energy storage textile is also produced with an areal energy density of 4.5 mWh cm(-2).

  9. Pediatric Coronal Suture Fiber Alignment and the Effect of Interdigitation on Coronal Suture Mechanical Properties.

    PubMed

    Adamski, Kelly Nicole; Loyd, Andre Matthew; Samost, Albert; Myers, Barry; Nightingale, Roger; Smith, Kathleen; 'Dale' Bass, Cameron R

    2015-09-01

    The morphological and mechanical properties of the pediatric skull are important in understanding pediatric head injury biomechanics. Although previous studies have analyzed the morphology of cranial sutures, none has done so in pediatric specimens nor have previous studies related the morphology to mechanical properties of human sutures. This study quantified the geometry of pediatric cranial sutures and investigated its correlation with the suture mechanical properties. First, the suture fiber alignment was quantified using histological analysis for four ages-neonate, 9 months-old, 11 months-old, and 18 months-old. For the morphometric investigation of the suture interdigitation, suture samples from a 6-year-old were scanned using micro-CT and the level of interdigitation was measured using two techniques. The first technique, the sinuosity index, was calculated by dividing the suture path along the surface of the skull by the suture distance from beginning to end. The second technique, the surface area interdigitation index, was calculated by measuring the surface area of the bone interface outlining the suture and dividing it by the cross-sectional area of the bone. The mechanical properties were obtained using methods reported in Davis et al.6. The results of the histological analysis showed a significant increase in fiber alignment in older specimen; where random fiber alignment has an average angle deviation of 45°, neonatal suture fibers have an average deviation of 32.2° and the 18-month-old fibers had an average deviation of 16.2° (p < 0.0001). For the suture index measurements, only the sinuosity was positively correlated with the ultimate strain (R (2) = 0.62, Bonferroni corrected p = 0.011) but no other measurements showed a significant relationship, including the amount of interdigitation and elastic modulus. Our results demonstrate that there is a distinct developmental progression of the suture fiber alignment at a young age, but the

  10. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    SciTech Connect

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2015-05-22

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey’s equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29{sup th} International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.

  11. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    NASA Astrophysics Data System (ADS)

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2015-05-01

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey's equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29th International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.

  12. SOAP3-dp: Fast, Accurate and Sensitive GPU-Based Short Read Aligner

    PubMed Central

    Zhu, Xiaoqian; Wu, Edward; Lee, Lap-Kei; Lin, Haoxiang; Zhu, Wenjuan; Cheung, David W.; Ting, Hing-Fung; Yiu, Siu-Ming; Peng, Shaoliang; Yu, Chang; Li, Yingrui; Li, Ruiqiang; Lam, Tak-Wah

    2013-01-01

    To tackle the exponentially increasing throughput of Next-Generation Sequencing (NGS), most of the existing short-read aligners can be configured to favor speed in trade of accuracy and sensitivity. SOAP3-dp, through leveraging the computational power of both CPU and GPU with optimized algorithms, delivers high speed and sensitivity simultaneously. Compared with widely adopted aligners including BWA, Bowtie2, SeqAlto, CUSHAW2, GEM and GPU-based aligners BarraCUDA and CUSHAW, SOAP3-dp was found to be two to tens of times faster, while maintaining the highest sensitivity and lowest false discovery rate (FDR) on Illumina reads with different lengths. Transcending its predecessor SOAP3, which does not allow gapped alignment, SOAP3-dp by default tolerates alignment similarity as low as 60%. Real data evaluation using human genome demonstrates SOAP3-dp's power to enable more authentic variants and longer Indels to be discovered. Fosmid sequencing shows a 9.1% FDR on newly discovered deletions. SOAP3-dp natively supports BAM file format and provides the same scoring scheme as BWA, which enables it to be integrated into existing analysis pipelines. SOAP3-dp has been deployed on Amazon-EC2, NIH-Biowulf and Tianhe-1A. PMID:23741504

  13. Numerical simulation of fiber interaction in short-fiber injection-molded composite using different cavity geometries

    NASA Astrophysics Data System (ADS)

    Thi, Thanh Binh Nguyen; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2016-03-01

    The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavity geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.

  14. Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites.

    PubMed

    Xu, Huan; Liu, Chun-Yan; Chen, Chen; Hsiao, Benjamin S; Zhong, Gan-Ji; Li, Zhong-Ming

    2012-10-01

    The poly(lactic acid) (PLA)/ramie fiber biocomposites were fabricated, which exhibited considerable reinforcement effect comparable to the glass fiber at the same loading. The attempts were made to understand the flow-induced morphology of ramie fibers and PLA crystals in the injection-molded PLA/ramie fiber biocomposites, thus revealing its relationship to biocomposite mechanical properties. The polarized optical microscopy (POM) and two-dimensional wide-angle X-ray diffraction (2D-WAXD) were for the first time used to determine the distribution of nature fibers, which interestingly showed the ramie fibers aligned well along the flow direction over the whole thickness of injection-molded parts, instead of skin-core structure. This easy alignment of ramie fibers during the common processing was ascribed to the intrinsically high flexibility of ramie fibers and strong interfacial interaction between PLA chains and cellulose molecules of ramie fibers. Both 2D-WAXD and differential scanning calorimeter (DSC) measurements suggested that the PLA matrix in its ramie biocomposites had rather high orientation degree and crystallinity, which was attributed to effective heterogeneous nucleation induced by ramie fibers and local shearing field in the vicinity of fiber surface. Remarkable improvement of mechanical and thermo-mechanical properties was achieved for PLA/ramie fiber biocomposites, without sacrifice of toughness and ductility. Addition of 30wt% ramie fibers increased the tensile strength and modulus of PLA/ramie fiber biocomposites from 65.6 and 1468 MPa for pure PLA to 91.3 and 2977 MPa, respectively. These superior mechanical properties were ascribed to easy alignment of ramie fibers, high crystallinity of PLA, and favorable interfacial adhesion as revealed by scanning electron microscopy (SEM) observation and theoretical analysis based on dynamic mechanical analysis (DMA) data.

  15. Design and prototyping of self-centering optical single-mode fiber alignment structures

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Gao, Fei; Beri, Stefano; Watté, Jan; Thienpont, Hugo; Van Erps, Jürgen

    2016-06-01

    The European Commission’s goal of providing each European household with at least a 30 Mb s‑1 Internet connection by 2020 would be facilitated by a widespread deployment of fibre-to-the-home, which would in turn be sped up by the development of connector essential components, such as high-precision alignment features. Currently, the performance of state-of-the-art physical contact optical fiber connectors is limited by the tolerance on the cladding of standard telecom-grade single-mode fiber (SMF), which is typically smaller than  ±1 μm. We propose to overcome this limit by developing micro-spring-based self-centering alignment structures (SCAS) for SMF-connectors. We design these alignment structures with robustness and low-cost replication in mind, allowing for large-scale deployment. Both theoretical and finite element analysis (FEA) models are used to determine the optimal dimensions of the beams of which the micro-springs of the SCAS are comprised. Two topologies of the SCAS, consisting of three and four micro-springs respectively, are investigated for two materials: polysulfone (PSU) and polyetherimide (PEI). These materials hold great potential for high-performance fiber connectors while being compatible with low-cost production and with the harsh environmental operation conditions of those connectors. The theory and FEA agree well (<3% difference) for a simple micro-spring. When including a pedestal on the micro-spring (to bring it further away from the fiber) and for shorter spring lengths the agreement worsens. This is due to spring compression effects not being taken into account in our theoretical model. Prototypes are successfully fabricated using deep proton writing and subsequently characterized. The controlled insertion of an SMF in the SCAS is investigated and we determine that a force of 0.11 N is required. The fiber insertion also causes an out-of-plane deformation of the micro-springs in the SCAS of about 7 μm, which is no problem

  16. Design and prototyping of self-centering optical single-mode fiber alignment structures

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Gao, Fei; Beri, Stefano; Watté, Jan; Thienpont, Hugo; Van Erps, Jürgen

    2016-06-01

    The European Commission’s goal of providing each European household with at least a 30 Mb s-1 Internet connection by 2020 would be facilitated by a widespread deployment of fibre-to-the-home, which would in turn be sped up by the development of connector essential components, such as high-precision alignment features. Currently, the performance of state-of-the-art physical contact optical fiber connectors is limited by the tolerance on the cladding of standard telecom-grade single-mode fiber (SMF), which is typically smaller than  ±1 μm. We propose to overcome this limit by developing micro-spring-based self-centering alignment structures (SCAS) for SMF-connectors. We design these alignment structures with robustness and low-cost replication in mind, allowing for large-scale deployment. Both theoretical and finite element analysis (FEA) models are used to determine the optimal dimensions of the beams of which the micro-springs of the SCAS are comprised. Two topologies of the SCAS, consisting of three and four micro-springs respectively, are investigated for two materials: polysulfone (PSU) and polyetherimide (PEI). These materials hold great potential for high-performance fiber connectors while being compatible with low-cost production and with the harsh environmental operation conditions of those connectors. The theory and FEA agree well (<3% difference) for a simple micro-spring. When including a pedestal on the micro-spring (to bring it further away from the fiber) and for shorter spring lengths the agreement worsens. This is due to spring compression effects not being taken into account in our theoretical model. Prototypes are successfully fabricated using deep proton writing and subsequently characterized. The controlled insertion of an SMF in the SCAS is investigated and we determine that a force of 0.11 N is required. The fiber insertion also causes an out-of-plane deformation of the micro-springs in the SCAS of about 7 μm, which is no problem for

  17. Ribbon plastic optical fiber linked optical transmitter and receiver modules featuring a high alignment tolerance.

    PubMed

    Lee, Hak-Soon; Park, Jun-Young; Cha, Sang-Mo; Lee, Sang-Shin; Hwang, Gyo-Sun; Son, Yung-Sung

    2011-02-28

    Ribbon plastic optical fiber (POF) linked four-channel optical transmitter (Tx) and receiver (Rx) modules have been proposed and realized featuring an excellent alignment tolerance. The two modules share a common configuration involving an optical sub-assembly (OSA) with vertical cavity surface emitting lasers (VCSELs)/photodetectors (PDs), and their driver ICs, which are integrated onto a single printed circuit board (PCB) substrate. The OSA includes an alignment structure, a beam router and a fiber guide, which were produced by using plastic injection molding. We have accomplished a fully passive alignment between the VCSELs/PDs and the ribbon POF by taking advantage of the alignment structure that serves as a reference during the alignment of the constituent parts of the OSA. The electrical link, which largely determines the operation speed, has been remarkably shortened, due to a direct wire-bonding between the VCSELs/PDs and the driver circuits. The light sources and the detectors can be individually positioned, thereby overcoming the pitch limitations of the ribbon POF, which is made up of perfluorinated graded-index (GI) POF with a 62.5 μm core diameter. The overall alignment tolerance was first assessed by observing the optical coupling efficiency in terms of VCSEL/PD misalignment. The horizontal and vertical 3-dB alignment tolerances were about 20 μm and 150 μm for the Tx and 50 μm and over 200 μm for the Rx, respectively. The VCSEL-to-POF coupling loss for the Tx and the POF-to-PD loss for the Rx were 3.25 dB and 1.35 dB at a wavelength of 850 nm, respectively. Subsequently, a high-speed signal at 3.2 Gb/s was satisfactorily delivered via the Tx and Rx modules over a temperature range of -30 to 70°C with no significant errors; the channel crosstalk was below -30 dB. Finally, the performance of the prepared modules was verified by transmitting a 1080p HDMI video supplied by a Bluelay player to an LCD TV.

  18. Superporous thermo-responsive hydrogels by combination of cellulose fibers and aligned micropores.

    PubMed

    Halake, Kantappa S; Lee, Jonghwi

    2014-05-25

    In the area of artificial hydrogels, simultaneous engineering of the volume transition characteristics and mechanical properties of stimuli-responsive hydrogels is an important subject. By unrestricted architecting of hierarchical structures, natural hydrogels are able to provide a wide range of swelling and mechanical properties, beyond the limits of artificial hydrogels. Herein, a combination of nanostructures and microstructures was developed to construct superporous hydrogels. Fibers of microfibrillated cellulose (MFC), an eco-friendly reinforcing material, were used as nanostructures, aligned micropores were used as microstructures, and in situ photopolymerization was used to immobilize the two structures together within the gel networks of poly(N-isopropyl acrylamide) (PNIPAm). The introduction of MFC distinctly enhanced volume transition, mainly by decreasing the swelling ratios above the transition. The introduction of directional micropores increased the swelling ratio below the transition and decreased the swelling ratio above the transition, thereby also enhancing the volume transition. Additionally, the formation of aligned micropores achieved fast water infiltration, which is beneficial for superabsorbent applications. The introduction of aligned micropores reduced the elastic modulus, but this could partially be compensated for by reinforcement with MFC. This combination of crystalline nanofibers and aligned micropores has great potential for the development of stimuli-responsive superporous hydrogels outperforming current artificial hydrogels.

  19. Controlled release of 6-aminonicotinamide from aligned, electrospun fibers alters astrocyte metabolism and dorsal root ganglia neurite outgrowth

    NASA Astrophysics Data System (ADS)

    Schaub, Nicholas J.; Gilbert, Ryan J.

    2011-08-01

    Following central nervous system (CNS) injury, activated astrocytes form a glial scar that inhibits the migration of axons ultimately leading to regeneration failure. Biomaterials developed for CNS repair can provide local delivery of therapeutics and/or guidance mechanisms to encourage cell migration into damaged regions of the brain or spinal cord. Electrospun fibers are a promising type of biomaterial for CNS injury since these fibers can direct cellular and axonal migration while slowly delivering therapy to the injury site. In this study, it was hypothesized that inclusion of an anti-metabolite, 6-aminonicotinamide (6AN), within poly-l-lactic acid electrospun fibers could attenuate astrocyte metabolic activity while still directing axonal outgrowth. Electrospinning parameters were varied to produce highly aligned electrospun fibers that contained 10% or 20% (w/w) 6AN. 6AN release from the fiber substrates occurred continuously over 2 weeks. Astrocytes placed onto drug-releasing fibers were less active than those cultured on scaffolds without 6AN. Dorsal root ganglia placed onto control and drug-releasing scaffolds were able to direct neurites along the aligned fibers. However, neurite outgrowth was stunted by fibers that contained 20% 6AN. These results show that 6AN release from aligned, electrospun fibers can decrease astrocyte activity while still directing axonal outgrowth.

  20. Micromechanical modeling of short glass-fiber reinforced thermoplastics-Isotropic damage of pseudograins

    SciTech Connect

    Kammoun, S.; Brassart, L.; Doghri, I.; Delannay, L.; Robert, G.

    2011-05-04

    A micromechanical damage modeling approach is presented to predict the overall elasto-plastic behavior and damage evolution in short fiber reinforced composite materials. The practical use of the approach is for injection molded thermoplastic parts reinforced with short glass fibers. The modeling is proceeded as follows. The representative volume element is decomposed into a set of pseudograins, the damage of which affects progressively the overall stiffness and strength up to total failure. Each pseudograin is a two-phase composite with aligned inclusions having same aspect ratio. A two-step mean-field homogenization procedure is adopted. In the first step, the pseudograins are homogenized individually according to the Mori-Tanaka scheme. The second step consists in a self-consistent homogenization of homogenized pseudograins. An isotropic damage model is applied at the pseudograin level. The model is implemented as a UMAT in the finite element code ABAQUS. Model is shown to reproduce the strength and the anisotropy (Lankford coefficient) during uniaxial tensile tests on samples cut under different directions relative to the injection flow direction.

  1. Fiber/collagen composites for ligament tissue engineering: influence of elastic moduli of sparse aligned fibers on mesenchymal stem cells.

    PubMed

    Thayer, Patrick S; Verbridge, Scott S; Dahlgren, Linda A; Kakar, Sanjeev; Guelcher, Scott A; Goldstein, Aaron S

    2016-08-01

    Electrospun microfibers are attractive for the engineering of oriented tissues because they present instructive topographic and mechanical cues to cells. However, high-density microfiber networks are too cell-impermeable for most tissue applications. Alternatively, the distribution of sparse microfibers within a three-dimensional hydrogel could present instructive cues to guide cell organization while not inhibiting cell behavior. In this study, thin (∼5 fibers thick) layers of aligned microfibers (0.7 μm) were embedded within collagen hydrogels containing mesenchymal stem cells (MSCs), cultured for up to 14 days, and assayed for expression of ligament markers and imaged for cell organization. These microfibers were generated through the electrospinning of polycaprolactone (PCL), poly(ester-urethane) (PEUR), or a 75/25 PEUR/PCL blend to produce microfiber networks with elastic moduli of 31, 15, and 5.6 MPa, respectively. MSCs in composites containing 5.6 MPa fibers exhibited increased expression of the ligament marker scleraxis and the contractile phenotype marker α-smooth muscle actin versus the stiffer fiber composites. Additionally, cells within the 5.6 MPa microfiber composites were more oriented compared to cells within the 15 and 31 MPa microfiber composites. Together, these data indicate that the mechanical properties of microfiber/collagen composites can be tuned for the engineering of ligament and other target tissues. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1894-1901, 2016.

  2. Fabrication and Protein Conjugation of Aligned Polypyrrole-Poly(L-lactic acid) Fibers Film with the Conductivity and Stability.

    PubMed

    Qin, Jiabang; Huang, Zhongbing; Yin, Guangfu; Yang, Anneng; Han, Wei

    2016-03-01

    The conducting composite scaffold, including fiber-cores of aligned poly(L-lactic acid) (PLLA) and shell-layer of polypyrrole (PPy), was fabricated, and then bovine serum albumin (BSA) was conjugated on the PPy shell-layer. Aligned PLLA fibers (about 300 nm diameter) were obtained by electrospinning and rotating drum collection, and then coated by PPy nanoparticles (NPs, about 50 nm diameter) via chemical oxidation. The surface resistivity of PPy-PLLA fibers film were 0.971, 0.874 kΩ. cm at the fiber's vertical and parallel directions, respectively. The results of PPy-PLLA fibers film immersed in phosphate buffer saline for 8 d indicated that the fibers morphology and the film conductivity were not significantly changed, and the fluorescent images showed that FITC-labeled BSA (FITC-BSA) were successfully conjugated in the fibers film with carbodiimide chemistry, and the largest amount of FITC-BSA conjugated in the fibers film from 100 μg/mL proteins solution was 31.31 μg/cm2 due to lots of poly(glutamic acid) in surface-nanogrooves of the fibers surface. Under electrical stimulation of 100 mV, the fibers film was accompanied the release of all conjugated FITC-BSA with the detachment of some PPy NPs. These results suggested that PPy-PLLA fibers film would be potentially applied in the construction of degradable tissue engineering scaffold with protein factors, especially neurotrophic factors for nerve tissue repair. PMID:27455643

  3. Fabrication and Protein Conjugation of Aligned Polypyrrole-Poly(L-lactic acid) Fibers Film with the Conductivity and Stability.

    PubMed

    Qin, Jiabang; Huang, Zhongbing; Yin, Guangfu; Yang, Anneng; Han, Wei

    2016-03-01

    The conducting composite scaffold, including fiber-cores of aligned poly(L-lactic acid) (PLLA) and shell-layer of polypyrrole (PPy), was fabricated, and then bovine serum albumin (BSA) was conjugated on the PPy shell-layer. Aligned PLLA fibers (about 300 nm diameter) were obtained by electrospinning and rotating drum collection, and then coated by PPy nanoparticles (NPs, about 50 nm diameter) via chemical oxidation. The surface resistivity of PPy-PLLA fibers film were 0.971, 0.874 kΩ. cm at the fiber's vertical and parallel directions, respectively. The results of PPy-PLLA fibers film immersed in phosphate buffer saline for 8 d indicated that the fibers morphology and the film conductivity were not significantly changed, and the fluorescent images showed that FITC-labeled BSA (FITC-BSA) were successfully conjugated in the fibers film with carbodiimide chemistry, and the largest amount of FITC-BSA conjugated in the fibers film from 100 μg/mL proteins solution was 31.31 μg/cm2 due to lots of poly(glutamic acid) in surface-nanogrooves of the fibers surface. Under electrical stimulation of 100 mV, the fibers film was accompanied the release of all conjugated FITC-BSA with the detachment of some PPy NPs. These results suggested that PPy-PLLA fibers film would be potentially applied in the construction of degradable tissue engineering scaffold with protein factors, especially neurotrophic factors for nerve tissue repair.

  4. Automated co-alignment of coherent fiber laser arrays via active phase-locking.

    PubMed

    Goodno, Gregory D; Weiss, S Benjamin

    2012-07-01

    We demonstrate a novel closed-loop approach for high-precision co-alignment of laser beams in an actively phase-locked, coherently combined fiber laser array. The approach ensures interferometric precision by optically transducing beam-to-beam pointing errors into phase errors on a single detector, which are subsequently nulled by duplication of closed-loop phasing controls. Using this approach, beams from five coherent fiber tips were simultaneously phase-locked and position-locked with sub-micron accuracy. Spatial filtering of the sensed light is shown to extend the control range over multiple beam diameters by recovering spatial coherence despite the lack of far-field beam overlap.

  5. Guidance of in vitro migration of human mesenchymal stem cells and in vivo guided bone regeneration using aligned electrospun fibers.

    PubMed

    Lee, Ji-hye; Lee, Young Jun; Cho, Hyeong-jin; Shin, Heungsoo

    2014-08-01

    Tissue regeneration is a complex process in which numerous chemical and physical signals are coordinated in a specific spatiotemporal pattern. In this study, we tested our hypothesis that cell migration and bone tissue formation can be guided and facilitated by microscale morphological cues presented from a scaffold. We prepared poly(l-lactic acid) (PLLA) electrospun fibers with random and aligned structures and investigated their effect on in vitro migration of human mesenchymal stem cells (hMSCs) and in vivo bone growth using a critical-sized defect model. Using a polydopamine coating on the fibers, we compared the synergistic effects of chemical signals. The adhesion morphology of hMSCs was consistent with the direction of fiber alignment, whereas the proliferation of hMSCs was not affected. The orientation of fibers profoundly affected cell migration, in which hMSCs cultured on aligned fibers migrated 10.46-fold faster along the parallel direction than along the perpendicular direction on polydopamine-coated PLLA nanofibers. We implanted each fiber type into a mouse calvarial defect model for 2 months. The micro-computed tomography (CT) imaging demonstrated that regenerated bone area was the highest when mice were implanted with aligned fibers with polydopamine coating, indicating a positive synergistic effect on bone regeneration. More importantly, scanning electron microscopy microphotographs revealed that the direction of regenerated bone tissue appeared to be consistent with the direction of the implanted fibers, and transmission electron microscopy images showed that the orientation of collagen fibrils appeared to be overlapped along the direction of nanofibers. Taken together, our results demonstrate that the aligned nanofibers can provide spatial guidance for in vitro cell migration as well as in vivo bone regeneration, which may be incorporated as major instructive cues for the stimulation of tissue regeneration.

  6. Method for promoting specific alignment of short oligonucleotides on nucleic acids

    DOEpatents

    Studier, F. William; Kieleczawa, Jan; Dunn, John J.

    1996-01-01

    Disclosed is a method for promoting specific alignment of short oligonucleotides on a nucleic acid polymer. The nucleic acid polymer is incubated in a solution containing a single-stranded DNA-binding protein and a plurality of oligonucleotides which are perfectly complementary to distinct but adjacent regions of a predetermined contiguous nucleotide sequence in the nucleic acid polymer. The plurality of oligonucleotides anneal to the nucleic acid polymer to form a contiguous region of double stranded nucleic acid. Specific application of the methods disclosed include priming DNA synthesis and template-directed ligation.

  7. Improving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution

    PubMed Central

    Portegies, J. M.; Fick, R. H. J.; Sanguinetti, G. R.; Meesters, S. P. L.; Girard, G.; Duits, R.

    2015-01-01

    We propose two strategies to improve the quality of tractography results computed from diffusion weighted magnetic resonance imaging (DW-MRI) data. Both methods are based on the same PDE framework, defined in the coupled space of positions and orientations, associated with a stochastic process describing the enhancement of elongated structures while preserving crossing structures. In the first method we use the enhancement PDE for contextual regularization of a fiber orientation distribution (FOD) that is obtained on individual voxels from high angular resolution diffusion imaging (HARDI) data via constrained spherical deconvolution (CSD). Thereby we improve the FOD as input for subsequent tractography. Secondly, we introduce the fiber to bundle coherence (FBC), a measure for quantification of fiber alignment. The FBC is computed from a tractography result using the same PDE framework and provides a criterion for removing the spurious fibers. We validate the proposed combination of CSD and enhancement on phantom data and on human data, acquired with different scanning protocols. On the phantom data we find that PDE enhancements improve both local metrics and global metrics of tractography results, compared to CSD without enhancements. On the human data we show that the enhancements allow for a better reconstruction of crossing fiber bundles and they reduce the variability of the tractography output with respect to the acquisition parameters. Finally, we show that both the enhancement of the FODs and the use of the FBC measure on the tractography improve the stability with respect to different stochastic realizations of probabilistic tractography. This is shown in a clinical application: the reconstruction of the optic radiation for epilepsy surgery planning. PMID:26465600

  8. Improving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution.

    PubMed

    Portegies, J M; Fick, R H J; Sanguinetti, G R; Meesters, S P L; Girard, G; Duits, R

    2015-01-01

    We propose two strategies to improve the quality of tractography results computed from diffusion weighted magnetic resonance imaging (DW-MRI) data. Both methods are based on the same PDE framework, defined in the coupled space of positions and orientations, associated with a stochastic process describing the enhancement of elongated structures while preserving crossing structures. In the first method we use the enhancement PDE for contextual regularization of a fiber orientation distribution (FOD) that is obtained on individual voxels from high angular resolution diffusion imaging (HARDI) data via constrained spherical deconvolution (CSD). Thereby we improve the FOD as input for subsequent tractography. Secondly, we introduce the fiber to bundle coherence (FBC), a measure for quantification of fiber alignment. The FBC is computed from a tractography result using the same PDE framework and provides a criterion for removing the spurious fibers. We validate the proposed combination of CSD and enhancement on phantom data and on human data, acquired with different scanning protocols. On the phantom data we find that PDE enhancements improve both local metrics and global metrics of tractography results, compared to CSD without enhancements. On the human data we show that the enhancements allow for a better reconstruction of crossing fiber bundles and they reduce the variability of the tractography output with respect to the acquisition parameters. Finally, we show that both the enhancement of the FODs and the use of the FBC measure on the tractography improve the stability with respect to different stochastic realizations of probabilistic tractography. This is shown in a clinical application: the reconstruction of the optic radiation for epilepsy surgery planning.

  9. Improving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution.

    PubMed

    Portegies, J M; Fick, R H J; Sanguinetti, G R; Meesters, S P L; Girard, G; Duits, R

    2015-01-01

    We propose two strategies to improve the quality of tractography results computed from diffusion weighted magnetic resonance imaging (DW-MRI) data. Both methods are based on the same PDE framework, defined in the coupled space of positions and orientations, associated with a stochastic process describing the enhancement of elongated structures while preserving crossing structures. In the first method we use the enhancement PDE for contextual regularization of a fiber orientation distribution (FOD) that is obtained on individual voxels from high angular resolution diffusion imaging (HARDI) data via constrained spherical deconvolution (CSD). Thereby we improve the FOD as input for subsequent tractography. Secondly, we introduce the fiber to bundle coherence (FBC), a measure for quantification of fiber alignment. The FBC is computed from a tractography result using the same PDE framework and provides a criterion for removing the spurious fibers. We validate the proposed combination of CSD and enhancement on phantom data and on human data, acquired with different scanning protocols. On the phantom data we find that PDE enhancements improve both local metrics and global metrics of tractography results, compared to CSD without enhancements. On the human data we show that the enhancements allow for a better reconstruction of crossing fiber bundles and they reduce the variability of the tractography output with respect to the acquisition parameters. Finally, we show that both the enhancement of the FODs and the use of the FBC measure on the tractography improve the stability with respect to different stochastic realizations of probabilistic tractography. This is shown in a clinical application: the reconstruction of the optic radiation for epilepsy surgery planning. PMID:26465600

  10. Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System

    PubMed Central

    Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei

    2015-01-01

    Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm. PMID:26121614

  11. Optimal Parameter Design of Coarse Alignment for Fiber Optic Gyro Inertial Navigation System.

    PubMed

    Lu, Baofeng; Wang, Qiuying; Yu, Chunmei; Gao, Wei

    2015-01-01

    Two different coarse alignment algorithms for Fiber Optic Gyro (FOG) Inertial Navigation System (INS) based on inertial reference frame are discussed in this paper. Both of them are based on gravity vector integration, therefore, the performance of these algorithms is determined by integration time. In previous works, integration time is selected by experience. In order to give a criterion for the selection process, and make the selection of the integration time more accurate, optimal parameter design of these algorithms for FOG INS is performed in this paper. The design process is accomplished based on the analysis of the error characteristics of these two coarse alignment algorithms. Moreover, this analysis and optimal parameter design allow us to make an adequate selection of the most accurate algorithm for FOG INS according to the actual operational conditions. The analysis and simulation results show that the parameter provided by this work is the optimal value, and indicate that in different operational conditions, the coarse alignment algorithms adopted for FOG INS are different in order to achieve better performance. Lastly, the experiment results validate the effectiveness of the proposed algorithm. PMID:26121614

  12. Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Motto-Ros, V.; Negre, E.; Pelascini, F.; Panczer, G.; Yu, J.

    2014-02-01

    Improving the repeatability and the reproducibility of measurement with laser-induced breakdown spectroscopy (LIBS) is one of the actual challenging issues faced by the technique to fit the requirements of precise and accurate quantitative analysis. Among the numerous factors influencing the measurement stability in short and long terms, there are shot-to-shot and day-to-day fluctuations of the morphology of the plasma. Such fluctuations are due to the high sensitivity of laser-induced plasma to experimental conditions including properties of the sample, the laser parameters as well as properties of the ambient gas. In this paper, we demonstrate that precise alignment of the optical fiber for the collection of the plasma emission with respect to the actual morphology of the plasma assisted by real-time imaging, greatly improves the stability of LIBS measurements in short as well as in long terms. The used setup is based on a plasma imaging arrangement using a CCD camera and a real-time image processing. The obtained plasma image is displayed in a 2-dimensional frame where the position of the optical fiber is beforehand calibrated. In addition, the setup provides direct sample surface monitoring, which allows a precise control of the distance between the focusing lens and the sample surface. Test runs with a set of 8 reference samples show very high determination coefficient for calibration curves (R2 = 0.9999), and a long term repeatability and reproducibility of 4.6% (relative standard deviation) over a period of 3 months without any signal normalization. The capacity of the system to automatically correct the sample surface position for a tilted or non-regular sample surface during a surface mapping measurement is also demonstrated.

  13. Fabrication of aligned Eu(TTA)3phen/PS fiber bundles from high molecular weight polymer solution by electrospinning

    NASA Astrophysics Data System (ADS)

    Yu, Hongquan; Li, Yue; Li, Tao; Chen, Baojiu; Li, Peng; Wu, Yanbo

    2015-12-01

    Super-long aligned luminescent Eu(TTA)3phen/PS composite fibers (TTA = thenoyltrifluoroacetone, phen = 1,10-phenanthroline, PS = polystyrene) with diameter in the range of 1-10 μm were prepared via an electrospinning method. The key to the success of alignment of these fibers was the usage of high molecular weight PS in the electrospinning solution and the low speed collecting drum. Luminescent properties of the composite fibers were systemically studied in comparison with that of the corresponding pure europium complex Eu(TTA)3phen. The results showed that the fluorescence lifetime for the 5 D 0 state in the composite fibers became shorter compared to that in the pure europium complex and decreases gradually with the concentration of Eu(DBM)3phen complex.

  14. Delamination behavior of carbon fiber/epoxy composite laminates with short fiber reinforcement

    SciTech Connect

    Sohn, M.S.; Hu, X.Z. . Dept. of Mechanical and Materials Engineering)

    1994-06-01

    Delamination in laminated materials is one major mode of damage and failure encountered in application. Fracture mechanics is often used to characterize the interlaminar fracture behavior. The interlaminar fracture energies, G[sub I], G[sub II] and G[sub I/II] are the major concerns to characterize the interlaminar toughness of the composite laminates. Typical mode-I fracture is caused by normal tension, and typical mode-II fracture by shear in the direction of crack extension. The objective of the present study is to compare and discuss the mode-I and mode-II interlaminar fracture energies, G[sub I] and G[sub II] of carbon fiber/epoxy composite laminates with and without the reinforcement of short Kevlar fibers (5--7 mm in length) and to identify the microfracture features of the Kevlar fibers under those two delamination modes through SEM observations. Double cantilever beam (DCB) specimens and end notched flexure (ENF) specimens are used for the mode-I and -II delamination experiments.

  15. Alignment of Short Reads: A Crucial Step for Application of Next-Generation Sequencing Data in Precision Medicine.

    PubMed

    Ye, Hao; Meehan, Joe; Tong, Weida; Hong, Huixiao

    2015-01-01

    Precision medicine or personalized medicine has been proposed as a modernized and promising medical strategy. Genetic variants of patients are the key information for implementation of precision medicine. Next-generation sequencing (NGS) is an emerging technology for deciphering genetic variants. Alignment of raw reads to a reference genome is one of the key steps in NGS data analysis. Many algorithms have been developed for alignment of short read sequences since 2008. Users have to make a decision on which alignment algorithm to use in their studies. Selection of the right alignment algorithm determines not only the alignment algorithm but also the set of suitable parameters to be used by the algorithm. Understanding these algorithms helps in selecting the appropriate alignment algorithm for different applications in precision medicine. Here, we review current available algorithms and their major strategies such as seed-and-extend and q-gram filter. We also discuss the challenges in current alignment algorithms, including alignment in multiple repeated regions, long reads alignment and alignment facilitated with known genetic variants.

  16. Alignment of Short Reads: A Crucial Step for Application of Next-Generation Sequencing Data in Precision Medicine

    PubMed Central

    Ye, Hao; Meehan, Joe; Tong, Weida; Hong, Huixiao

    2015-01-01

    Precision medicine or personalized medicine has been proposed as a modernized and promising medical strategy. Genetic variants of patients are the key information for implementation of precision medicine. Next-generation sequencing (NGS) is an emerging technology for deciphering genetic variants. Alignment of raw reads to a reference genome is one of the key steps in NGS data analysis. Many algorithms have been developed for alignment of short read sequences since 2008. Users have to make a decision on which alignment algorithm to use in their studies. Selection of the right alignment algorithm determines not only the alignment algorithm but also the set of suitable parameters to be used by the algorithm. Understanding these algorithms helps in selecting the appropriate alignment algorithm for different applications in precision medicine. Here, we review current available algorithms and their major strategies such as seed-and-extend and q-gram filter. We also discuss the challenges in current alignment algorithms, including alignment in multiple repeated regions, long reads alignment and alignment facilitated with known genetic variants. PMID:26610555

  17. AREM: Aligning Short Reads from ChIP-Sequencing by Expectation Maximization

    NASA Astrophysics Data System (ADS)

    Newkirk, Daniel; Biesinger, Jacob; Chon, Alvin; Yokomori, Kyoko; Xie, Xiaohui

    High-throughput sequencing coupled to chromatin immunoprecipitation (ChIP-Seq) is widely used in characterizing genome-wide binding patterns of transcription factors, cofactors, chromatin modifiers, and other DNA binding proteins. A key step in ChIP-Seq data analysis is to map short reads from high-throughput sequencing to a reference genome and identify peak regions enriched with short reads. Although several methods have been proposed for ChIP-Seq analysis, most existing methods only consider reads that can be uniquely placed in the reference genome, and therefore have low power for detecting peaks located within repeat sequences. Here we introduce a probabilistic approach for ChIP-Seq data analysis which utilizes all reads, providing a truly genome-wide view of binding patterns. Reads are modeled using a mixture model corresponding to K enriched regions and a null genomic background. We use maximum likelihood to estimate the locations of the enriched regions, and implement an expectation-maximization (E-M) algorithm, called AREM (aligning reads by expectation maximization), to update the alignment probabilities of each read to different genomic locations. We apply the algorithm to identify genome-wide binding events of two proteins: Rad21, a component of cohesin and a key factor involved in chromatid cohesion, and Srebp-1, a transcription factor important for lipid/cholesterol homeostasis. Using AREM, we were able to identify 19,935 Rad21 peaks and 1,748 Srebp-1 peaks in the mouse genome with high confidence, including 1,517 (7.6%) Rad21 peaks and 227 (13%) Srebp-1 peaks that were missed using only uniquely mapped reads. The open source implementation of our algorithm is available at http://sourceforge.net/projects/arem

  18. A simplified implementation of edge detection in MATLAB is faster and more sensitive than fast fourier transform for actin fiber alignment quantification.

    PubMed

    Kemeny, Steven Frank; Clyne, Alisa Morss

    2011-04-01

    Fiber alignment plays a critical role in the structure and function of cells and tissues. While fiber alignment quantification is important to experimental analysis and several different methods for quantifying fiber alignment exist, many studies focus on qualitative rather than quantitative analysis perhaps due to the complexity of current fiber alignment methods. Speed and sensitivity were compared in edge detection and fast Fourier transform (FFT) for measuring actin fiber alignment in cells exposed to shear stress. While edge detection using matrix multiplication was consistently more sensitive than FFT, image processing time was significantly longer. However, when MATLAB functions were used to implement edge detection, MATLAB's efficient element-by-element calculations and fast filtering techniques reduced computation cost 100 times compared to the matrix multiplication edge detection method. The new computation time was comparable to the FFT method, and MATLAB edge detection produced well-distributed fiber angle distributions that statistically distinguished aligned and unaligned fibers in half as many sample images. When the FFT sensitivity was improved by dividing images into smaller subsections, processing time grew larger than the time required for MATLAB edge detection. Implementation of edge detection in MATLAB is simpler, faster, and more sensitive than FFT for fiber alignment quantification.

  19. Study of fracture mechanisms of short fiber reinforced AS composite by acoustic emission technique

    SciTech Connect

    Kida, Sotoaki; Suzuki, Megumu

    1995-11-01

    The fracture mechanisms of short fiber reinforced AS composites are studied by acoustic emission technique for examining the effects of fiber contents. The loads P{sub b} and P{sub c} which the damage mechanisms change are obtained at the inflection points of the total AE energy curve the energy gradient method. The damages are generated by fiber breaking at the load point of P{sub b} and P{sub c} in B material, and by the fiber breaking and the debonding between resin and fiber at the load points of P{sub b} and P{sub c} in C material.

  20. Light modulation in planar aligned short-pitch deformed-helix ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Kotova, Svetlana P.; Samagin, Sergey A.; Pozhidaev, Evgeny P.; Kiselev, Alexei D.

    2015-12-01

    We study both experimentally and theoretically modulation of light in a planar aligned deformed-helix ferroelectric liquid crystal (DHFLC) cell with subwavelength helix pitch, which is also known as a short-pitch DHFLC. In our experiments, the azimuthal angle of the in-plane optical axis and electrically controlled parts of the principal in-plane refractive indices are measured as a function of voltage applied across the cell. Theoretical results giving the effective optical tensor of a short-pitch DHFLC expressed in terms of the smectic tilt angle and the refractive indices of the ferroelectric liquid crystal (FLC) are used to fit the experimental data. The optical anisotropy of the FLC material is found to be weakly biaxial. For both the transmissive and reflective modes, the results of fitting are applied to model the phase and amplitude modulation of light in the DHFLC cell. We demonstrate that if the thickness of the DHFLC layer is about 50 μ m , the detrimental effect of field-induced rotation of the in-plane optical axes on the characteristics of an axicon designed using the DHFLC spatial light modulator in the reflective mode is negligible.

  1. Light modulation in planar aligned short-pitch deformed-helix ferroelectric liquid crystals.

    PubMed

    Kotova, Svetlana P; Samagin, Sergey A; Pozhidaev, Evgeny P; Kiselev, Alexei D

    2015-12-01

    We study both experimentally and theoretically modulation of light in a planar aligned deformed-helix ferroelectric liquid crystal (DHFLC) cell with subwavelength helix pitch, which is also known as a short-pitch DHFLC. In our experiments, the azimuthal angle of the in-plane optical axis and electrically controlled parts of the principal in-plane refractive indices are measured as a function of voltage applied across the cell. Theoretical results giving the effective optical tensor of a short-pitch DHFLC expressed in terms of the smectic tilt angle and the refractive indices of the ferroelectric liquid crystal (FLC) are used to fit the experimental data. The optical anisotropy of the FLC material is found to be weakly biaxial. For both the transmissive and reflective modes, the results of fitting are applied to model the phase and amplitude modulation of light in the DHFLC cell. We demonstrate that if the thickness of the DHFLC layer is about 50μm, the detrimental effect of field-induced rotation of the in-plane optical axes on the characteristics of an axicon designed using the DHFLC spatial light modulator in the reflective mode is negligible. PMID:26764706

  2. Innovative Composites Through Reinforcement Morphology Design - a Bone-Shaped-Short-Fiber Composite

    SciTech Connect

    Zhu, Y.T.; Valdez, J.A.; Beyerlain, I.J.; Stout, M.G.; Zhou, S.; Shi, N.; Lowe, T.C.

    1999-06-29

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objective of this project is to improve the strength and toughness of conventional short-fiber composites by using innovative bone-shaped-short (BSS) fibers as reinforcement. We fabricated a model polyethylene BSS fiber-reinforced polyester-matrix composite to prove that fiber morphology, instead of interfacial strength, solves the problem. Experimental tensile and fracture toughness test results show that BSS fibers can bridge matrix cracks more effectively, and consume many times more energy when pulled out, than conventional-straight-short (CSS) fibers. This leads to both higher strength and fracture toughness for the BSS-fiber composites. A computational model was developed to simulate crack propagation in both BSS- and CSS-fiber composites, accounting for stress concentrations, interface debonding, and fiber pullout. Model predictions were validated by experimental results and will be useful in optimizing BSS-fiber morphology and other material system parameters.

  3. Replication of self-centering optical fiber alignment structures using hot embossing

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Wissmann, Markus; Barié, Nicole; Guttmann, Markus; Schneider, Marc; Kolew, Alexander; Worgull, Matthias; Beri, Stefano; Watté, Jan; Thienpont, Hugo; Van Erps, Jürgen

    2016-04-01

    With the demand for broadband connectivity on the rise due to various services like video-on-demand and cloud computing becoming more popular, the need for better connectivity infrastructure is high. The only future- proof option to supply this infrastructure is to deploy "fiber to the home" (FTTH) networks. One of the main difficulties with the deployment of FTTH is the vast amount of single-mode fiber (SMF) connections that need to be made. Hence there is a strong need for components which enable high performance, robust and easy-to- use SMF connectors. Since large-scale deployment is the goal, these components should be mass-producible at low cost. We discuss a rapid prototyping process on the basis of hot embossing replication of a self-centering alignment system (SCAS) based on three micro-springs, which can position a SMF independently of its diameter. This is beneficial since there is a fabrication tolerance of up to +/-1 μm on a standard G.652 SMF's diameter that can lead to losses if the outer diameter is used as a reference for alignment. The SCAS is first prototyped with deep proton writing (DPW) in polymethylmethacrylate (PMMA) after which it is glued to a copper substrate with an adhesive. Using an electroforming process, a nickel block is grown over the PMMA prototype followed by mechanical finishing to fabricate a structured nickel mould insert. Even though the mould insert shows non- ideal and rounded features it is used to create PMMA replicas of the SCAS by means of hot embossing. The SCAS possesses a central opening in which a bare SMF can be clamped, which is designed with a diameter of 121 μm. PMMA replicas are dimensionally characterized using a multisensor coordinate measurement machine and show a central opening diameter of 128.3 +/- 2.8 μm. This should be compared to the central opening diameter of the DPW prototype used for mould formation which was measured to be 120.5 μm. This shows that the electroforming and subsequent replication

  4. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions

    PubMed Central

    Fraley, Stephanie I.; Wu, Pei-hsun; He, Lijuan; Feng, Yunfeng; Krisnamurthy, Ranjini; Longmore, Gregory D.; Wirtz, Denis

    2015-01-01

    Multiple attributes of the three-dimensional (3D) extracellular matrix (ECM) have been independently implicated as regulators of cell motility, including pore size, crosslink density, structural organization, and stiffness. However, these parameters cannot be independently varied within a complex 3D ECM protein network. We present an integrated, quantitative study of these parameters across a broad range of complex matrix configurations using self-assembling 3D collagen and show how each parameter relates to the others and to cell motility. Increasing collagen density resulted in a decrease and then an increase in both pore size and fiber alignment, which both correlated significantly with cell motility but not bulk matrix stiffness within the range tested. However, using the crosslinking enzyme Transglutaminase II to alter microstructure independently of density revealed that motility is most significantly predicted by fiber alignment. Cellular protrusion rate, protrusion orientation, speed of migration, and invasion distance showed coupled biphasic responses to increasing collagen density not predicted by 2D models or by stiffness, but instead by fiber alignment. The requirement of matrix metalloproteinase (MMP) activity was also observed to depend on microstructure, and a threshold of MMP utility was identified. Our results suggest that fiber topography guides protrusions and thereby MMP activity and motility. PMID:26423227

  5. Modulation of anisotropy in electrospun tissue-engineering scaffolds: Analysis of fiber alignment by the fast Fourier transform

    PubMed Central

    Ayres, Chantal; Bowlin, Gary L.; Henderson, Scott C.; Taylor, Leander; Shultz, Jackie; Alexander, John; Telemeco, Todd A.; Simpson, David G.

    2010-01-01

    We describe the use of the fast Fourier transform (FFT) in the measurement of anisotropy in electrospun scaffolds of gelatin as a function of the starting conditions. In electrospinning, fiber alignment and overall scaffold anisotropy can be manipulated by controlling the motion of the collecting mandrel with respect to the source electrospinning solution. By using FFT to assign relative alignment values to an electrospun matrix it is possible to systematically evaluate how different processing variables impact the structure and material properties of a scaffold. Gelatin was suspended at varying concentrations (80, 100, 130, 150 mg/ml) and electrospun from 2,2,2 trifluoroethanol onto rotating mandrels (200–7000 RPM). At each starting concentration, fiber diameter remained constant over a wide range of mandrel RPM. Scaffold anisotropy developed as a function of fiber diameter and mandrel RPM. The induction of varying degrees of anisotropy imparted distinctive material properties to the electrospun scaffolds. The FFT is a rapid method for evaluating fiber alignment in tissue-engineering materials. PMID:16859744

  6. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions.

    PubMed

    Fraley, Stephanie I; Wu, Pei-Hsun; He, Lijuan; Feng, Yunfeng; Krisnamurthy, Ranjini; Longmore, Gregory D; Wirtz, Denis

    2015-01-01

    Multiple attributes of the three-dimensional (3D) extracellular matrix (ECM) have been independently implicated as regulators of cell motility, including pore size, crosslink density, structural organization, and stiffness. However, these parameters cannot be independently varied within a complex 3D ECM protein network. We present an integrated, quantitative study of these parameters across a broad range of complex matrix configurations using self-assembling 3D collagen and show how each parameter relates to the others and to cell motility. Increasing collagen density resulted in a decrease and then an increase in both pore size and fiber alignment, which both correlated significantly with cell motility but not bulk matrix stiffness within the range tested. However, using the crosslinking enzyme Transglutaminase II to alter microstructure independently of density revealed that motility is most significantly predicted by fiber alignment. Cellular protrusion rate, protrusion orientation, speed of migration, and invasion distance showed coupled biphasic responses to increasing collagen density not predicted by 2D models or by stiffness, but instead by fiber alignment. The requirement of matrix metalloproteinase (MMP) activity was also observed to depend on microstructure, and a threshold of MMP utility was identified. Our results suggest that fiber topography guides protrusions and thereby MMP activity and motility. PMID:26423227

  7. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions

    NASA Astrophysics Data System (ADS)

    Fraley, Stephanie I.; Wu, Pei-Hsun; He, Lijuan; Feng, Yunfeng; Krisnamurthy, Ranjini; Longmore, Gregory D.; Wirtz, Denis

    2015-10-01

    Multiple attributes of the three-dimensional (3D) extracellular matrix (ECM) have been independently implicated as regulators of cell motility, including pore size, crosslink density, structural organization, and stiffness. However, these parameters cannot be independently varied within a complex 3D ECM protein network. We present an integrated, quantitative study of these parameters across a broad range of complex matrix configurations using self-assembling 3D collagen and show how each parameter relates to the others and to cell motility. Increasing collagen density resulted in a decrease and then an increase in both pore size and fiber alignment, which both correlated significantly with cell motility but not bulk matrix stiffness within the range tested. However, using the crosslinking enzyme Transglutaminase II to alter microstructure independently of density revealed that motility is most significantly predicted by fiber alignment. Cellular protrusion rate, protrusion orientation, speed of migration, and invasion distance showed coupled biphasic responses to increasing collagen density not predicted by 2D models or by stiffness, but instead by fiber alignment. The requirement of matrix metalloproteinase (MMP) activity was also observed to depend on microstructure, and a threshold of MMP utility was identified. Our results suggest that fiber topography guides protrusions and thereby MMP activity and motility.

  8. The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design.

    PubMed

    Gnavi, Sara; Fornasari, Benedetta Elena; Tonda-Turo, Chiara; Laurano, Rossella; Zanetti, Marco; Ciardelli, Gianluca; Geuna, Stefano

    2015-06-08

    Electrospun fibrous substrates mimicking extracellular matrices can be prepared by electrospinning, yielding aligned fibrous matrices as internal fillers to manufacture artificial nerves. Gelatin aligned nano-fibers were prepared by electrospinning after tuning the collector rotation speed. The effect of alignment on cell adhesion and proliferation was tested in vitro using primary cultures, the Schwann cell line, RT4-D6P2T, and the sensory neuron-like cell line, 50B11. Cell adhesion and proliferation were assessed by quantifying at several time-points. Aligned nano-fibers reduced adhesion and proliferation rate compared with random fibers. Schwann cell morphology and organization were investigated by immunostaining of the cytoskeleton. Cells were elongated with their longitudinal body parallel to the aligned fibers. B5011 neuron-like cells were aligned and had parallel axon growth when cultured on the aligned gelatin fibers. The data show that the alignment of electrospun gelatin fibers can modulate Schwann cells and axon organization in vitro, suggesting that this substrate shows promise as an internal filler for the design of artificial nerves for peripheral nerve reconstruction.

  9. The Effect of Electrospun Gelatin Fibers Alignment on Schwann Cell and Axon Behavior and Organization in the Perspective of Artificial Nerve Design

    PubMed Central

    Gnavi, Sara; Fornasari, Benedetta Elena; Tonda-Turo, Chiara; Laurano, Rossella; Zanetti, Marco; Ciardelli, Gianluca; Geuna, Stefano

    2015-01-01

    Electrospun fibrous substrates mimicking extracellular matrices can be prepared by electrospinning, yielding aligned fibrous matrices as internal fillers to manufacture artificial nerves. Gelatin aligned nano-fibers were prepared by electrospinning after tuning the collector rotation speed. The effect of alignment on cell adhesion and proliferation was tested in vitro using primary cultures, the Schwann cell line, RT4-D6P2T, and the sensory neuron-like cell line, 50B11. Cell adhesion and proliferation were assessed by quantifying at several time-points. Aligned nano-fibers reduced adhesion and proliferation rate compared with random fibers. Schwann cell morphology and organization were investigated by immunostaining of the cytoskeleton. Cells were elongated with their longitudinal body parallel to the aligned fibers. B5011 neuron-like cells were aligned and had parallel axon growth when cultured on the aligned gelatin fibers. The data show that the alignment of electrospun gelatin fibers can modulate Schwann cells and axon organization in vitro, suggesting that this substrate shows promise as an internal filler for the design of artificial nerves for peripheral nerve reconstruction. PMID:26062130

  10. A constitutive function for the heat flux in short-fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Herrmann, Heiko

    2015-12-01

    A constitutive function for heat flux in short-fiber-reinforced composites is developed. The fiber orientation distribution is considered using second-order orientation tensor; therefore, the constitutive function for the heat flux will depend on the orientation tensor. The resulting orthotropic equation is discussed also in the context of energy efficiency of buildings.

  11. Development and Use of a Modified Pulse Electrospinning Setup for Producing Short Fibers

    NASA Astrophysics Data System (ADS)

    Aliyev, Y. T.; Dabynov, B. M.; Bodykov, D. U.; Musabekov, U. S.; Mansurov, Z. A.

    2016-01-01

    A brief literature review is given of studies concerning the method of standard electrospinning, which is used for producing long nanofibers. Experimental setups — the first version and the new, modified pulse electrospinning setup — are described. The results of works on producing short fibers using pulse electrospinning are reported in the present article. Data on short fibers produced experimentally from such polymers as polymethyl methacrylate and cellulose acetate are presented.

  12. The concept of a novel hybrid smart composite reinforced with radially aligned zigzag carbon nanotubes on piezoelectric fibers

    NASA Astrophysics Data System (ADS)

    Ray, M. C.

    2010-03-01

    A new hybrid piezoelectric composite (HPZC) reinforced with zigzag single-walled carbon nanotubes (CNTs) and piezoelectric fibers is proposed. The novel constructional feature of this composite is that the uniformly aligned CNTs are radially grown on the surface of piezoelectric fibers. A micromechanics model is derived to estimate the effective piezoelectric and elastic properties. It is found that the effective piezoelectric coefficient e31 of the proposed HPZC, which accounts for the in-plane actuation, is significantly higher than that of the existing 1-3 piezoelectric composite without reinforcement with carbon nanotubes and the previously reported hybrid piezoelectric composite (Ray and Batra 2009 ASME J. Appl. Mech. 76 034503).

  13. Performance of graphite fiber-reinforced polyimide composites in self-aligning plain bearings to 315 C

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.

    1975-01-01

    A 50/50 (weight percent) composite of graphite fibers and polyimide was studied in self-aligning plain bearings oscillating + or - 15 degrees at 1 hz. The friction coefficient was 0.15 + or - 0.05 at 250 C, and 0.05 + or - 0.02 at 315 C. Best results were obtained with a molded composite liner with chopped graphite fibers randomly oriented in the composite. The specific wear rate is given. It was found that the dynamic unit load capacity was higher for a composite bushing (thin liner), than for a composite ball.

  14. Quantification of short and long asbestos fibers to assess asbestos exposure: a review of fiber size toxicity

    PubMed Central

    2014-01-01

    The fibrogenicity and carcinogenicity of asbestos fibers are dependent on several fiber parameters including fiber dimensions. Based on the WHO (World Health Organization) definition, the current regulations focalise on long asbestos fibers (LAF) (Length: L ≥ 5 μm, Diameter: D < 3 μm and L/D ratio > 3). However air samples contain short asbestos fibers (SAF) (L < 5 μm). In a recent study we found that several air samples collected in buildings with asbestos containing materials (ACM) were composed only of SAF, sometimes in a concentration of ≥10 fibers.L−1. This exhaustive review focuses on available information from peer-review publications on the size-dependent pathogenetic effects of asbestos fibers reported in experimental in vivo and in vitro studies. In the literature, the findings that SAF are less pathogenic than LAF are based on experiments where a cut-off of 5 μm was generally made to differentiate short from long asbestos fibers. Nevertheless, the value of 5 μm as the limit for length is not based on scientific evidence, but is a limit for comparative analyses. From this review, it is clear that the pathogenicity of SAF cannot be completely ruled out, especially in high exposure situations. Therefore, the presence of SAF in air samples appears as an indicator of the degradation of ACM and inclusion of their systematic search should be considered in the regulation. Measurement of these fibers in air samples will then make it possible to identify pollution and anticipate health risk. PMID:25043725

  15. In vitro evaluation of random and aligned polycaprolactone/gelatin fibers via electrospinning for bone tissue engineering.

    PubMed

    Guo, Zhenzhao; Xu, Jiaming; Ding, Shan; Li, Hong; Zhou, Changren; Li, Lihua

    2015-01-01

    Scaffold, as an essential element of tissue engineering, should provide proper chemical and structural cues to direct tissue regeneration. In this study, aligned and random polycaprolactone (PCL)/gelatin fibrous scaffolds with different mass ratio were electrospun. Chemical, structural, and mechanical properties of PCL/gelatin fibrous scaffolds were characterized by FTIR and tensile measurements. The average diameters of different groups were between 334.96 ± 41.43 nm and 363.78 ± 50.49 nm. Blending PCL with gelatin increased the mechanical properties of the scaffolds. The cell culture results demonstrated that the mass ratio of PCL and gelatin showed no obvious effects on cell behavior, whereas the cell growth behavior was affected by the fibers orientation. Higher elongation ratio, enhanced cell proliferation and elevated alkaline phosphatase activity were observed for cells cultured on aligned fibers. The findings in our research provide insightful information for the design and fabrication of scaffolds for bone tissue engineering. PMID:26123758

  16. Reinforcement of conventional glass-ionomer restorative material with short glass fibers.

    PubMed

    Hammouda, Ibrahim M

    2009-01-01

    This study investigated the strengthening effect of glass fibers when added to conventional glass-ionomer restorative material. Glass fibers were incorporated into glass-ionomer powder in 3 wt% and 5 wt%. The fibers used had 1 mm length and 10 microm thickness. These criteria of fiber length, diameter, and concentration represent a new approach for reinforcing conventional glass-ionomer [Medifill, conventional restorative glass-ionomer]. The mechanical properties tested were diametral tensile strength, hardness, flexural strength, flexural modulus and fracture toughness after 24-h and 7-days of storage in deionized water. Glass short fibers were mixed thoroughly into the glass-ionomer powder before mixing with the cement liquid. Samples of specific dimensions were prepared for each time interval and fiber loading according to the manufacturer's instructions and international standards. Hardness was measured using a micro-hardness tester at 100 gram applied load for 15 s. The other mechanical properties were measured using a Lloyd universal testing machine. The results showed increased diametral tensile strength, flexural strength, flexural modulus, and fracture toughness by the addition of glass fibers. There was an appreciable increase of the tested mechanical properties of glass-ionomer restorative material as a result of increasing fiber loading and water storage for 1 week. It was concluded that conventional glass-ionomer can be reinforced by the addition of short glass fibers.

  17. Edge Delamination and Residual Properties of Drilled Carbon Fiber Composites with and without Short-Aramid-Fiber Interleaf

    NASA Astrophysics Data System (ADS)

    Sun, Zhi; Hu, Xiaozhi; Shi, Shanshan; Guo, Xu; Zhang, Yupeng; Chen, Haoran

    2016-10-01

    Edge delamination is frequently observed in carbon fiber reinforced plastic (CFRP) laminates after machining, due to the low fracture toughness of the resin interfaces between carbon fiber plies. In this study, the effects of incorporating tough aramid fibers into the brittle CFRP system are quantified by measuring the residual properties of bolted CFRP. By adding short-aramid-fiber interleaves in CFRP laminates, the residual tensile strength have been substantially increased by 14 % for twill-weave laminates and 45 % for unidirectional laminates respectively. Moreover, tensile failure was observed as the major mode of toughened laminates, in contrast to shear failure of plain laminates. The qualitative FEM results agreed well with the experimental results that edge delamination would cause relatively higher shear stress and therefore alter the failure mode from tensile failure to shear failure.

  18. Edge Delamination and Residual Properties of Drilled Carbon Fiber Composites with and without Short-Aramid-Fiber Interleaf

    NASA Astrophysics Data System (ADS)

    Sun, Zhi; Hu, Xiaozhi; Shi, Shanshan; Guo, Xu; Zhang, Yupeng; Chen, Haoran

    2016-05-01

    Edge delamination is frequently observed in carbon fiber reinforced plastic (CFRP) laminates after machining, due to the low fracture toughness of the resin interfaces between carbon fiber plies. In this study, the effects of incorporating tough aramid fibers into the brittle CFRP system are quantified by measuring the residual properties of bolted CFRP. By adding short-aramid-fiber interleaves in CFRP laminates, the residual tensile strength have been substantially increased by 14 % for twill-weave laminates and 45 % for unidirectional laminates respectively. Moreover, tensile failure was observed as the major mode of toughened laminates, in contrast to shear failure of plain laminates. The qualitative FEM results agreed well with the experimental results that edge delamination would cause relatively higher shear stress and therefore alter the failure mode from tensile failure to shear failure.

  19. Processing-microstructure models for short- and long-fiber thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Phelps, Jay H.

    The research for this thesis has explored the important microstructural variables for injection-molded thermoplastic composites with discontinuous fiber reinforcement. Two variables, the distributions of fiber orientation and fiber length after processing, have proven to be not only important for correct material property prediction but also difficult to predict using currently available modeling and simulation techniques. In this work, we develop new models for the prediction of these two microstructural variables. Previously, the Folgar-Tucker model has been widely used to predict fiber orientation in injection molded SFT composites. This model accounts for the effects of both hydrodynamics and fiber-fiber interactions in order to give a prediction for a tensorial measure of fiber orientation. However, when applied to at least some classes of LFTs, this model does not match all components of experimental fiber orientation tensor data. In order to address this shortcoming of the model, we hypothesize that Folgar and Tucker's phenomenological treatment of the effects of fiber-fiber interactions with an isotropic rotary diffusion contribution to the rate of change of orientation is insufficient for materials with longer fibers. Instead, this work develops a fiber orientation model that incorporates anisotropic rotary diffusion (ARD). From kinetic theory we derive a general family of evolution equations for the second-order orientation tensor, correcting errors in earlier treatments, and identify a specific equation that is useful for predicting orientation in LFTs. The amount of diffusivity in this model used to approximate the effect of fiber-fiber interactions in each direction is assumed to depend on a second-order space tensor, which is taken to be a function of the orientation state and the rate of deformation. Also, concentrated fiber suspensions align more slowly with respect to strain than the Folgar-Tucker model predicts. Here, we borrow the technique of

  20. Mechanical properties and shape memory effect of short fiber reinforced SMP composite

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Lv, Haibao; Yi, Guo; Liu, Yanju; Leng, Jinsong

    2010-04-01

    By adding randomly distributed short fiber into a shape memory polymer (SMP) matrix, both the mechanical properties and the shape memory behavior are improved significantly, overcoming some traditional defects of SMP composite reinforced by long fiber and particles. In this paper, the short fiber reinforced SMP composite are developed for the improvement of the mechanical and thermal properties of styrene-based SMP bulk. The specimens with different chopped fiber weight fractions are prepared, and then their mechanical behavior and electrical properties are investigated. As a result, the resistance against mechanical and thermal mechanical loads in the developed materials increases due to the role of reinforcement fiber. For the conducting composite filled with short carbon fiber, not only the actuation of SMP composite can be driven by low voltage, but also its tensile, bending strength, glass transition temperature, storage modulus and thermal conductivity increase by a factor of filler content of carbon fiber increasing. The results show meaningful guidance for further design and the performance evaluation of such composite materials.

  1. BarraCUDA - a fast short read sequence aligner using graphics processing units

    PubMed Central

    2012-01-01

    Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http://seqbarracuda.sf.net PMID:22244497

  2. Preparation and properties of biodegradable films from Sterculia urens short fiber/cellulose green composites.

    PubMed

    Jayaramudu, J; Reddy, G Siva Mohan; Varaprasad, K; Sadiku, E R; Sinha Ray, S; Varada Rajulu, A

    2013-04-01

    The development of commercially viable "green products", based on natural resources for the matrices and reinforcements, in a wide range of applications, is on the rise. The present paper focuses on Sterculia urens short fiber reinforced pure cellulose matrix composite films. The morphologies of the untreated and 5% NaOH (alkali) treated S. urens fibers were observed by SEM. The effect of 5% NaOH treated S. urens fiber (5, 10, 15 and 20% loading) on the mechanical properties and thermal stability of the composites films is discussed. This paper presents the developments made in the area of biodegradable S. urens short fiber/cellulose (SUSF/cellulose) composite films, buried in the soil and later investigated by the (POM), before and after biodegradation has taken place. SUSF/cellulose composite films have great potential in food packaging and for medical applications.

  3. Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers.

    PubMed

    Zhou, Shian; Kuznetsova, Lyuba; Chong, Andy; Wise, Frank

    2005-06-27

    We show that nonlinear phase shifts and third-order dispersion can compensate each other in short-pulse fiber amplifiers. This compen-sation can be exploited in any implementation of chirped-pulse amplification, with stretching and compression accomplished with diffraction gratings, single-mode fiber, microstructure fiber, fiber Bragg gratings, etc. In particular, we consider chirped-pulse fiber amplifiers at wavelengths for which the fiber dispersion is normal. The nonlinear phase shift accumulated in the amplifier can be compensated by the third-order dispersion of the combination of a fiber stretcher and grating compressor. A numerical model is used to predict the compensation, and experimental results that exhibit the main features of the calculations are presented. In the presence of third-order dispersion, an optimal nonlinear phase shift reduces the pulse duration, and enhances the peak power and pulse contrast compared to the pulse produced in linear propagation. Contrary to common belief, fiber stretchers can perform as well or better than grating stretchers in fiber amplifiers, while offering the major practical advantages of a waveguide medium.

  4. Size and myonuclear domains in Rhesus soleus muscle fibers: short-term spaceflight

    NASA Technical Reports Server (NTRS)

    Roy, R. R.; Zhong, H.; Talmadge, R. J.; Bodine, S. C.; Fanton, J. W.; Koslovskaya, I.; Edgerton, V. R.

    2001-01-01

    The cross-sectional area (CSA), myonuclear number per mm of fiber length, and myonuclear domain (cytoplasmic volume/myonucleus) of mechanically isolated single fibers from biopsies of the soleus muscle of 5 vivarium control, 3 flight simulation and 2 flight (BION 11) Rhesus monkeys (Macaca [correction of Macacca] mulatta) were determined using confocal microscopy before and after a 14-day experimental period. Simulation monkeys were confined in chairs placed in capsules identical to those used during the flight. Fibers were classified as type I, type II or hybrid (containing both types I and II) based on myosin heavy chain (MHC) gel electrophoresis. A majority of the fibers sampled contained only type I MHC, i.e. 89, 62 and 68% for the control, simulation and flight groups, respectively. Most of the remaining fibers were hybrids, i.e. 8, 36 and 32% for the same groups. There were no significant pre-post differences in the fiber type composition for any of the experimental groups. There also were no significant pre-post differences in fiber CSA, myonuclear number or myonuclear domain. There was, however, a tendency for the fibers in the post-flight biopsies to have a smaller mean CSA and myonuclear domain (approximately 10%, p=0.07) than the fibers in the pre-flight biopsy. The combined mean cytoplasmic volume/myonucleus for all muscle fiber phenotypes in the Rhesus soleus muscle was approximately 25,000 micrometers3 and there were no differences in pre-post samples for the control and simulated groups. The cytoplasmic domains tended to be lower (p=0.08) after than before flight. No phenotype differences in cytoplasmic domains were observed. These data suggest that after a relatively short period of actual spaceflight, modest fiber atrophy occurs in the soleus muscle fibers without a concomitant change in myonuclear number.

  5. Laser Processing of Carbon Fiber Reinforced Plastics - Release of Carbon Fiber Segments During Short-pulsed Laser Processing of CFRP

    NASA Astrophysics Data System (ADS)

    Walter, Juergen; Brodesser, Alexander; Hustedt, Michael; Bluemel, Sven; Jaeschke, Peter; Kaierle, Stefan

    Cutting and ablation using short-pulsed laser radiation are promising technologies to produce or repair CFRP components with outstanding mechanical properties e.g. for automotive and aircraft industry. Using sophisticated laser processing strategies and avoiding excessive heating of the workpiece, a high processing quality can be achieved. However, the interaction of laser radiation and composite material causes a notable release of hazardous substances from the process zone, amongst others carbon fiber segments or fibrous particles. In this work, amounts and geometries of the released fiber segments are analyzed and discussed in terms of their hazardous potential. Moreover, it is investigated to what extent gaseous organic process emissions are adsorbed at the fiber segments, similar to an adsorption of volatile organic compounds at activated carbon, which is typically used as filter material.

  6. Micromechanical analysis of thermo-inelastic multiphase short-fiber composites

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob

    1994-01-01

    A micromechanical formulation is presented for the prediction of the overall thermo-inelastic behavior of multiphase composites which consist of short fibers. The analysis is an extension of the generalized method of cells that was previously derived for inelastic composites with continuous fibers, and the reliability of which was critically examined in several situations. The resulting three dimensional formulation is extremely general, wherein the analysis of thermo-inelastic composites with continuous fibers as well as particulate and porous inelastic materials are merely special cases.

  7. Short-term inhalation and in vitro tests as predictors of fiber pathogenicity.

    PubMed Central

    Cullen, R T; Miller, B G; Davis, J M; Brown, D M; Donaldson, K

    1997-01-01

    A wide range of fiber types was tested in two in vitro assays: toxicity to A549 epithelial cells, as detachment from substrate, and the production of the proinflammatory cytokine tumor necrosis factor (TNF) by rat alveolar macrophages. Three of the fibers were also studied in vivo, using short-term inhalation followed by a) bronchoalveolar lavage to assess the inflammatory response and b) measurement of cell proliferation in terminal bronchioles and alveolar ducts, using incorporation of bromodeoxyuridine (BrdU). The amount of TNF produced by macrophages in vitro depended on the fiber type, with the man-made vitreous fibers, and refractory ceramic fibers being least stimulatory and silicon carbide (SiC) whiskers providing the greatest stimulation. In the epithelial detachment assay there were dose-dependent differences in the toxicity of the various fibers, with long amosite being the most toxic. However, there was no clear relationship to known chronic pathogenicity. Fibers studied by short-term inhalation produced some inflammation, but there was no clear discrimination between the responses to code 100/475 glass fibers and the more pathogenic amosite and SiC. However, measurements of BrdU uptake into lung cells showed that amosite and SiC produced a greater reaction than code 100/475, which itself caused no more proliferation than that seen in untreated lungs. These results mirror the pathogenicity ranking of the fibers in long-term experiments. In conclusion, the only test to show potential as a predictive measure of pathogenicity was that of cell proliferation in lungs after brief inhalation exposure (BrdU assay). We believe that this assay should be validated with a wider range of fibers, doses, and time points. PMID:9400730

  8. Macroscopic fibers of well-aligned carbon nanotubes by wet spinning.

    PubMed

    Zhang, Shanju; Koziol, Krzysztof K K; Kinloch, Ian A; Windle, Alan H

    2008-08-01

    A simple process to spin fibers consisting of multi-walled carbon nanotubes (CNTs) directly from their lyotropic liquid-crystalline phase is reported. Ethylene glycol is used as the lyotropic solvent, enabling a wider range of CNT types to be spun than previously. Fibers spun with CNTs and nitrogen-doped CNTs are compared. X-ray analysis reveals that nitrogen-doped CNTs have a misalignment of only +/-7.8 degrees to the fiber axis. The tensile strength of the CNT and nitrogen-doped CNT fibers is comparable but the modulus and electrical conductivity of the are lower. The electrical conductivity of both types of CNT fibers is found to be highly anisotropic. The results are discussed in context of the microstructure of the CNTs and fibers. PMID:18666161

  9. Scintillating Fiber Array Characterization and Alignment for Neutron Imaging using the High Energy X-ray (HEX) Facility

    SciTech Connect

    Buckles, R. A., Ali, Z. A., Cradick, J. R., Traille, A. J., Warthan, W. A.

    2009-09-04

    The Neutron Imager diagnostic at the National Ignition Facility (NIF) located at Lawrence Livermore National Laboratory (LLNL) will produce high-resolution, gated images of neutron-generating implosions. A similar pinhole imaging experiment (PINEX) diagnostic was recently deployed at the Z facility at Sandia National Laboratories (SNL). Both the SNL and LLNL neutron imagers use similar fiber array scintillators (BCF-99-555). Despite diverse resolution and magnification requirements, both diagnostics put significant onus on the scintillator spatial quality and alignment precision to maintain optimal point spread. Characterization and alignment of the Z-PINEX scintillator and imaging system were done at NSTec/Livermore Operations in 2009, and is currently underway for the NIF Neutron Imager.

  10. Hot-embossing replication of self-centering optical fiber alignment structures prototyped by deep proton writing

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Wissmann, Markus; Guttmann, Markus; Kolew, Alexander; Worgull, Matthias; Barié, Nicole; Schneider, Marc; Hofmann, Andreas; Beri, Stefano; Watté, Jan; Thienpont, Hugo; Van Erps, Jürgen

    2016-07-01

    This paper presents the hot-embossing replication of self-centering fiber alignment structures for high-precision, single-mode optical fiber connectors. To this end, a metal mold insert was fabricated by electroforming a polymer prototype patterned by means of deep proton writing (DPW). To achieve through-hole structures, we developed a postembossing process step to remove the residual layer inherently present in hot-embossed structures. The geometrical characteristics of the hot-embossed replicas are compared, before and after removal of the residual layer, with the DPW prototypes. Initial measurements on the optical performance of the replicas are performed. The successful replication of these components paves the way toward low-cost mass replication of DPW-fabricated prototypes in a variety of high-tech plastics.

  11. Biosorption of heavy metal ions from aqueous solutions by short hemp fibers: Effect of chemical composition.

    PubMed

    Pejic, Biljana; Vukcevic, Marija; Kostic, Mirjana; Skundric, Petar

    2009-05-15

    Sorption potential of waste short hemp fibers for Pb(2+), Cd(2+) and Zn(2+) ions from aqueous media was explored. In order to assess the influence of hemp fiber chemical composition on their heavy metals sorption potential, lignin and hemicelluloses were removed selectively by chemical modification. The degree of fiber swelling and water retention value were determined in order to evaluate the change in accessibility of the cell wall components to aqueous solutions due to the fiber modification. The effects of initial ion concentration, contact time and cosorption were studied in batch sorption experiments. The obtained results show that when the content of either lignin or hemicelluloses is progressively reduced by chemical treatment, the sorption properties of hemp fibers are improved. Short hemp fibers are capable of sorbing metal ions (Pb(2+), Cd(2+) and Zn(2+)) from single as well as from ternary metal ion solutions. The maximum total uptake capacities for Pb(2+), Cd(2+) and Zn(2+) ions from single solutions are the same, i.e. 0.078mmol/g, and from ternary mixture 0.074, 0.035 and 0.035mmol/g, respectively.

  12. Comparative transcriptome analysis of short fiber mutants Ligon-lintless 1 and 2 reveals common mechanisms pertinent to fiber elongation in cotton (Gossypium hirsutum L.).

    PubMed

    Gilbert, Matthew K; Kim, Hee Jin; Tang, Yuhong; Naoumkina, Marina; Fang, David D

    2014-01-01

    Understanding the molecular processes affecting cotton (Gossypium hirsutum) fiber development is important for developing tools aimed at improving fiber quality. Short fiber cotton mutants Ligon-lintless 1 (Li1) and Ligon-lintless 2 (Li2) are naturally occurring, monogenic mutations residing on different chromosomes. Both mutations cause early cessation in fiber elongation. These two mutants serve as excellent model systems to elucidate molecular mechanisms relevant to fiber length development. Previous studies of these mutants using transcriptome analysis by our laboratory and others had been limited by the fact that very large numbers of genes showed altered expression patterns in the mutants, making a targeted analysis difficult or impossible. In this research, a comparative microarray analysis was conducted using these two short fiber mutants and their near isogenic wild type (WT) grown under both field and greenhouse environments in order to identify key genes or metabolic pathways common to fiber elongation. Analyses of three transcriptome profiles obtained from different growth conditions and mutant types showed that most differentially expressed genes (DEGs) were affected by growth conditions. Under field conditions, short fiber mutants commanded higher expression of genes related to energy production, manifested by the increasing of mitochondrial electron transport activity or responding to reactive oxygen species when compared to the WT. Eighty-eight DEGs were identified to have altered expression patterns common to both short fiber mutants regardless of growth conditions. Enrichment, pathway and expression analyses suggested that these 88 genes were likely involved in fiber elongation without being affected by growth conditions.

  13. A Comparative Study of Analytical and Numerical Evaluation of Elastic Properties of Short Fiber Composites

    NASA Astrophysics Data System (ADS)

    Reddy, Babu; Badari Narayana, K.

    2016-09-01

    Unlike the case of continuous fiber composites, the prediction of elastic properties of short fiber composites using the corresponding elastic properties of constituents is not a straight forward task. Many authors have attempted to predict the properties using completely either by analytical or by experimental methods or a combination of both leading to empirical solutions. The current trend is to use the well known numerical solution Finite element method (FEM) to model the short fiber composite to predict their properties. In this paper, a RVE (Representative Volume Element) approach is used to model, with appropriate boundary and loading conditions and application of homogenization process to estimate elastic properties. The present values are compared with the available experimental and analytical solutions. The methods that best match with the current FE solutions are highlighted.

  14. Characteristics of fatigue life and damage accumulation of short fiber-reinforced polymer composites

    SciTech Connect

    Yokobori, A.T. Jr.; Takeda, Hidetoshi; Adachi, Takeshi; Ha, J.C.; Yokobori, Takeo

    1996-12-31

    The relation between fatigue life and damage accumulation of fiber-reinforced polymer composite (FRP) is not yet clarified. For practical use of FRP, it is necessary to relate the fatigue life to the mechanism of damage accumulation. Damage formation is controlled by the mechanical behavior of the interface between the matrix and fiber. The authors used short glass fiber-reinforced polycarbonate composite in the experiments. By using an in situ (real time) observational fatigue testing machine, they investigated the relationship between fatigue life and damage accumulation. From these results, the fatigue life of this material was found to be dominated by damage accumulation which results from microfracture at the interface between the matrix and fiber. This microfracture is controlled by a cycle-dependent mechanism.

  15. Short-term magnetic field alignment variations of equatorial ionospheric irregularities

    SciTech Connect

    Johnson, A.L.

    1988-06-01

    The ionospheric irregularities that cause equatorial scintillation are elongated along the north-south magnetic field lines. During a 1981 field campaign at Ascension Island, 250-MHz receivers were spaced from 300 m to 1.6 km along the field lines, and the signals received from the Marisat satellite were cross correlated. Data collected during eight nights of fading showed a linear relationship between fading rate and cross correlation. The alignment of the antennas was adjusted to give a zero time lag between the widely spaced receivers with a measurement accuracy of 0.03 s. Since the average irregularity velocity was 125 m/s, this time accuracy translated to an angular measurement accuracy of 0.1 deg. During a 4-hour period of nightly fading, occasional differences in time of arrival were noted that corresponded to a tilt in the north-south alignment of + or - 1 deg. Data from several nights of fading were analyzed, and each night exhibited the same variance in the north-south irregularity alignment. It is postulated that the shift in the measured peak correlation may have been caused by patches of irregularities at different altitudes where the magnetic field lines have a slightly different direction. 13 references.

  16. Rainbow channeling of protons in very short carbon nanotubes with aligned Stone-Wales defects

    NASA Astrophysics Data System (ADS)

    Ćosić, M.; Petrović, S.; Bellucci, S.

    2016-01-01

    In this paper proton channeling through armchair single-walled-carbon-nanotubes (SWCNTs) with aligned Stone-Wales defects has been investigated. The energy of the proton beam was 1 GeV, while the lengths of the SWCNTs have been varied from 200 nm up to 1000 nm. The linear density of aligned defects has been varied in the whole range, from minimally up to maximally possible values. Here are presented results of a detailed morphological analysis concerning: the formation, evolution and interaction of the nanotube rainbows. The potential of the SWCNT has been constructed from Molère's expression of the Thomas-Fermi's proton-carbon interaction-energy, using the approximation of the continuous atomic string. Trajectories of the channeled protons were obtained by solving the corresponding classical equations of motions. Distributions of the transmitted protons were obtained by the Monte-Carlo simulation. The shape of angular distributions has been explained in the framework of the theory of nanotube rainbows. The aim of this study is also to investigate the applicability of the proton rainbow channeling for the characterization of nanotubes with aligned Stone-Wales defects.

  17. Nebulized solvent ablation of aligned PLLA fibers for the study of neurite response to anisotropic-to-isotropic fiber/film transition (AFFT) boundaries in astrocyte–neuron co-cultures

    PubMed Central

    Zuidema, Jonathan M.; Desmond, Gregory P.; Rivet, Christopher J.; Kearns, Kathryn R.; Thompso, Deanna M.; Gilbert, Ryan J.

    2015-01-01

    Developing robust in vitro models of in vivo environments has the potential to reduce costs and bring new therapies from the bench top to the clinic more efficiently. This study aimed to develop a biomaterial platform capable of modeling isotropic-to-anisotropic cellular transitions observed in vivo, specifically focusing on changes in cellular organization following spinal cord injury. In order to accomplish this goal, nebulized solvent patterning of aligned, electrospun poly-l-lactic acid (PLLA) fiber substrates was developed. This method produced a clear topographic transitional boundary between aligned PLLA fibers and an isotropic PLLA film region. Astrocytes were then seeded on these scaffolds, and a shift between oriented and non-oriented astrocytes was created at the anisotropic-to-isotropic fiber/film transition (AFFT) boundary. Orientation of chondroitin sulfate proteoglycans (CSPGs) and fibronectin produced by these astrocytes was analyzed, and it was found that astrocytes growing on the aligned fibers produced aligned arrays of CSPGs and fibronectin, while astrocytes growing on the isotropic film region produced randomly-oriented CSPG and fibronectin arrays. Neurite extension from rat dissociated dorsal root ganglia (DRG) was studied on astrocytes cultured on anisotropic, aligned fibers, isotropic films, or from fibers to films. It was found that neurite extension was oriented and longer on PLLA fibers compared to PLLA films. When dissociated DRG were cultured on the astrocytes near the AFFT boundary, neurites showed directed orientation that was lost upon growth into the isotropic film region. The AFFT boundary also restricted neurite extension, limiting the extension of neurites once they grew from the fibers and into the isotropic film region. This study reveals the importance of anisotropic-to-isotropic transitions restricting neurite outgrowth by itself. Furthermore, we present this scaffold as an alternative culture system to analyze neurite

  18. Fabrication of Extremely Short Length Fiber Bragg Gratings for Sensor Applications

    NASA Technical Reports Server (NTRS)

    Wu, Meng-Chou; Rogowski, Robert S.; Tedjojuwono, Ken K.

    2002-01-01

    A new technique and a physical model for writing extremely short length Bragg gratings in optical fibers have been developed. The model describes the effects of diffraction on the spatial spectra and therefore, the wavelength spectra of the Bragg gratings. Using an interferometric technique and a variable aperture, short gratings of various lengths and center wavelengths were written in optical fibers. By selecting the related parameters, the Bragg gratings with typical length of several hundred microns and bandwidth of several nanometers can be obtained. These short gratings can be apodized with selected diffraction patterns and hence their broadband spectra have a well-defined bell shape. They are suitable for use as miniaturized distributed strain sensors, which have broad applications to aerospace research and industry as well.

  19. Processing-microstructure models for short- and long-fiber thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Phelps, Jay H.

    The research for this thesis has explored the important microstructural variables for injection-molded thermoplastic composites with discontinuous fiber reinforcement. Two variables, the distributions of fiber orientation and fiber length after processing, have proven to be not only important for correct material property prediction but also difficult to predict using currently available modeling and simulation techniques. In this work, we develop new models for the prediction of these two microstructural variables. Previously, the Folgar-Tucker model has been widely used to predict fiber orientation in injection molded SFT composites. This model accounts for the effects of both hydrodynamics and fiber-fiber interactions in order to give a prediction for a tensorial measure of fiber orientation. However, when applied to at least some classes of LFTs, this model does not match all components of experimental fiber orientation tensor data. In order to address this shortcoming of the model, we hypothesize that Folgar and Tucker's phenomenological treatment of the effects of fiber-fiber interactions with an isotropic rotary diffusion contribution to the rate of change of orientation is insufficient for materials with longer fibers. Instead, this work develops a fiber orientation model that incorporates anisotropic rotary diffusion (ARD). From kinetic theory we derive a general family of evolution equations for the second-order orientation tensor, correcting errors in earlier treatments, and identify a specific equation that is useful for predicting orientation in LFTs. The amount of diffusivity in this model used to approximate the effect of fiber-fiber interactions in each direction is assumed to depend on a second-order space tensor, which is taken to be a function of the orientation state and the rate of deformation. Also, concentrated fiber suspensions align more slowly with respect to strain than the Folgar-Tucker model predicts. Here, we borrow the technique of

  20. Orientational alignment in solids from bidimensional isotropic-anisotropic nuclear magnetic resonance spectroscopy: applications to the analysis of aramide fibers.

    PubMed

    Sachleben, J R; Frydman, L

    1997-02-01

    The use of two-dimensional isotropic-anisotropic correlation spectroscopy for the analysis of orientational alignment in solids is presented. The theoretical background and advantages of this natural-abundance 13C NMR method of measurement are discussed, and demonstrated with a series of powder and single-crystal variable-angle correlation spectroscopy (VACSY) experiments on model systems. The technique is subsequently employed to analyze the orientational distributions of three polymer fibers: Kevlar 29, Kevlar 49 and Kevlar 149. Using complementary two-dimensional NMR data recorded on synthetic samples of poly(p-phenyleneterephthalamide), the precursor of Kevlar, it was found that these commercial fibers possess molecules distributed over a very narrow orientational range with respect to the macroscopic director. The widths measured for these director distribution arrangements were (12 +/- 1.5) degrees for Kevlar 29, (15 +/- 1.5) degrees for Kevlar 49, and (8 +/- 1.5) degrees for Kevlar 149. These figures compare well with previous results obtained for non-commercial fiber samples derived from the same polymer.

  1. Exploitation of stimulated Raman scattering in short-pulse fiber amplifiers.

    PubMed

    Zhou, Shian; Takamido, Tetsuji; Imai, Shinji; Wise, Frank

    2010-07-15

    Stimulated Raman scattering (SRS) generally limits the performance of short-pulse fiber amplifiers. We present the results of experiments that show that, under some conditions, SRS can extend the performance of amplifiers limited by nonlinear phase accumulation. The Stokes spectrum can be free of distortions arising from self-phase modulation and can circumvent the gain-narrowing limit of the amplifier. The generation of 1 microJ and 90 fs pulses from a single-mode fiber amplifier illustrates the potential of the process.

  2. Type IIa Bragg grating based ultra-short DBR fiber laser with high temperature resistance.

    PubMed

    Ran, Yang; Feng, Fu-Rong; Liang, Yi-Zhi; Jin, Long; Guan, Bai-Ou

    2015-12-15

    We report on the fabrication of a thermally resistant ultra-short distributed Bragg reflector (DBR) fiber laser based on the photo inscription of two wavelength-matched type IIa gratings in a thin-core Er-doped fiber. With continuous UV exposure, each Bragg reflector initially grows as a type I grating, followed by decay in strength, and then re-grows as a type IIa grating with enhanced thermal resistance. The DBR laser, with an entire length of 13 mm, can stably operate at 600°C with single longitude mode, which provides potential applications in high temperature environments. PMID:26670491

  3. State-of-the-art fiber optics for short distance frequency reference distribution

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.; Primas, L. E.

    1989-01-01

    A number of recently developed fiber-optic components that hold the promise of unprecedented stability for passively stabilized frequency distribution links are characterized. These components include a fiber-optic transmitter, an optical isolator, and a new type of fiber-optic cable. A novel laser transmitter exhibits extremely low sensitivity to intensity and polarization changes of reflected light due to cable flexure. This virtually eliminates one of the shortcomings in previous laser transmitters. A high-isolation, low-loss optical isolator has been developed which also virtually eliminates laser sensitivity to changes in intensity and polarization of reflected light. A newly developed fiber has been tested. This fiber has a thermal coefficient of delay of less than 0.5 parts per million per deg C, nearly 20 times lower than the best coaxial hardline cable and 10 times lower than any previous fiber-optic cable. These components are highly suitable for distribution systems with short extent, such as within a Deep Space Communications Complex. Here, these new components are described and the test results presented.

  4. Stability of short, single-mode erbium-doped fiber lasers

    SciTech Connect

    Svalgaard, M.; Gilbert, S.L.

    1997-07-01

    We conducted a detailed study of the stability of short, erbium-doped fiber lasers fabricated with two UV-induced Bragg gratings written into the doped fiber. We find that the relative intensity noise of single-longitudinal-mode fiber grating lasers is approximately 3 orders of magnitude lower than that of a single-frequency 1.523-{mu}m helium-neon laser. The frequency noise spectrum contains few resonances, none of which exceeds 0.6 kHz/Hz{sup 1/2} rms; the integrated rms frequency noise from 50 Hz to 63 kHz is 36 kHz. We also demonstrate a simple method for monitoring the laser power and number of oscillating modes during laser fabrication. {copyright} 1997 Optical Society of America

  5. Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers.

    PubMed

    Li, Z; Jung, Y; Daniel, J M O; Simakov, N; Tokurakawa, M; Shardlow, P C; Jain, D; Sahu, J K; Heidt, A M; Clarkson, W A; Alam, S U; Richardson, D J

    2016-05-15

    Short wavelength operation (1650-1800 nm) of silica-based thulium-doped fiber amplifiers (TDFAs) is investigated. We report the first demonstration of in-band diode-pumped silica-based TDFAs working in the 1700-1800 nm waveband. Up to 29 dB of small-signal gain is achieved in this spectral region, with an operation wavelength accessible by diode pumping as short as 1710 nm. Further gain extension toward shorter wavelengths is realized in a fiber laser pumped configuration. A silica-based TDFA working in the 1650-1700 nm range with up to 29 dB small-signal gain and noise figure as low as 6.5 dB is presented. PMID:27176961

  6. Dynamic properties of a pulse-pumped fiber laser with a short, high-gain cavity

    NASA Astrophysics Data System (ADS)

    Yang, Chaolin; Guo, Junhong; Wei, Pu; Wan, Hongdan; Xu, Ji; Wang, Jin

    2016-09-01

    We demonstrate a pulsed high-gain all-fiber laser without intracavity modulators, where a short and heavily Erbium-doped fiber is used as the gain medium in a ring cavity. By pulsed-pumping this short high gain cavity and tuning an intracavity variable optical coupler, the laser generates optical pulses with a pulse-width of μs at a repetition rate in the order of kHz down to one-shot operation. Furthermore, dynamic properties of this laser are investigated theoretically based on a traveling-wave-model, in which an adaptive-discrete-grid-finite-difference-method is applied. The simulation results validate the experimental results. The demonstrated pulsed laser is compact, flexible and cost-effective, which will have great potential for applications in all-optical sensing and communication systems.

  7. Reinforcement of freeze-dried chitosan scaffolds with multiphasic calcium phosphate short fibers.

    PubMed

    Mohammadi, Zahra; Mesgar, Abdorreza Sheikh-Mehdi; Rasouli-Disfani, Fariba

    2016-08-01

    The composite scaffolds of the chitosan and multiphasic calcium phosphate (HW) short fibers were prepared by freeze drying and characterized by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM and FE-SEM). The mechanical properties of the scaffolds were assessed by compression test. The incorporation of HW fibers consisting three phases of hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP) and calcium pyrophosphate (CPP) into the chitosan matrices was associated with an increase in pore size, density and compressive strength and modulus, and a decrease in porosity and swelling ratio of the scaffolds. The strongest composite scaffolds in this study with a chitosan: HW fibers weight ratio of 1:1 showed a mean porosity of 69% and a mean strength and modulus of 420kPa and 3.87MPa, respectively. The in vitro bioactivity of the composites was confirmed by the formation of a calcium phosphate rich layer on the surface of soaked scaffolds in simulated body fluid. The findings of this initial work indicate that the chitosan-multiphasic calcium phosphate short fibers may be a suitable material for bone scaffolding. PMID:27179144

  8. Syndecan-1-Induced ECM Fiber Alignment Requires Integrin αvβ3 and Syndecan-1 Ectodomain and Heparan Sulfate Chains

    PubMed Central

    Yang, Ning; Friedl, Andreas

    2016-01-01

    Expression of the cell surface proteoglycan syndecan-1 (Sdc1) is frequently induced in stromal fibroblasts of invasive breast carcinomas. We have recently identified a correlation between stromal Sdc1 expression and extracellular matrix (ECM) fiber alignment, both in vitro and in vivo. ECMs derived from Sdc1-positive human mammary fibroblasts (HMF) showed an aligned fiber architecture, which contrasted markedly with the more random fiber arrangement in the ECM produced by Sdc1-negative HMFs. We further demonstrated that aligned fiber architecture promotes the directional migration and invasion of breast carcinoma cells. To decipher the molecular mechanisms governing the formation of an aligned, invasion-permissive ECM, a series of Sdc1 mutants was introduced into HMF. We found that both the ectodomain and heparan sulfate chains of Sdc1 were required for full activity of Sdc1 in regulating ECM alignment, while transmembrane and cytoplasmic domains were dispensable. Sdc1 regulates the activities of several integrins via its ectodomain. Integrins are key players in the assembly of fibronectin-rich ECM. In addition, integrins are capable of regulating cell morphology and cell shape and orientation may affect ECM architecture. Therefore, we investigated the role of integrins in Sdc1-mediated ECM fiber alignment. Sdc1-overexpressing HMF gained an enhanced spindle-shaped morphology when cultured in an overconfluent state under conditions permissive for ECM production, which was partially reversed by siRNA-mediated silencing of β3 integrin expression. Moreover, suppression of αvβ3 integrin activity by a function-blocking antibody or β3 knockdown largely abolished the aligned ECM fiber architecture and consequently the invasion-permissive properties of the ECM induced by Sdc1. The results suggest that Sdc1 may modulate fibronectin fibrillogenesis and/or alter cell morphology during ECM production through αvβ3 integrin, thereby mediating ECM fiber alignment

  9. Low threshold mid-infrared supercontinuum generation in short fluoride-chalcogenide multimaterial fibers.

    PubMed

    Li, Xia; Chen, Wei; Xue, Tianfeng; Gao, Juanjuan; Gao, Weiqing; Hu, Lili; Liao, Meisong

    2014-10-01

    Mid-infrared supercontinuum generation (SCG) is mostly studied in fluoride glass fibers in which long fibers and high power pump sources are needed. Taking advantages of high nonlinearity and transparency, chalcogenide glass is also applied for SCG in mid-infrared region, where specific strategy is needed to compensate large normal material dispersion. We investigate multimaterial fibers (MMFs) combined with fluoride and chalcogenide glasses for SCG. The high refraction contrast allows the zero dispersion point of the fiber to shift to below 2 μm without air holes. These two materials have similar glass transition temperatures and thermal expansion coefficients. They are possible to be drawn together. Both step-index MMFs and microstructured MMFs (MS-MMFs) are considered. The chromatic dispersions and supercontinuum spectra are studied. A 20 dB bandwidth of over one octave SCG with high coherence can be obtained from a 1 cm MS-MMF at 1.95 μm with a pumping peak power of 175 W. As the pump power increased, the spectrum can extend to 5 μm. In this scheme the fiber is so short that the high level of loss, which is the feature of MMFs, will not cause problems. PMID:25321993

  10. Numerical and experimental studies of delamination detection in short fiber reinforced composites using Lamb waves

    NASA Astrophysics Data System (ADS)

    Kudela, Pawel; Radzienski, Maciej; Ostachowicz, Wieslaw

    2016-04-01

    The aim of this paper is to present aspects of Lamb wave propagation in randomly oriented short fiber reinforce composites with delamination. Prediction of elastic constants is based on mechanics of composites, rule of mixture and total mass balance tailored to the spectral element mesh composed of 3D brick elements. Piezoelectric excitation as well as glue layer are taken into account. Complex full wave field includes multiple reflections at short fibers. This wave pattern is also obtained by the use of laser vibrometry confirming good quality of the model. Further studies are related to symmetrical and non-symmetrical delamination in respect to the thickness of the composite plate. Square delamination of the side length 10 mm is investigated. It has been found that reflections from delamination are mostly superimposed with reflections coming from short fibers. Hence, delamination detection by direct analysis of wave propagation pattern on the surface of the plate is ineffective. However, adaptive wavenumber filtering method overcome these difficulties and enables not only to detect the delamination but also is helpful for delamination size estimation. Moreover, the method is more effective if the full wavefield measurements are acquired on the surface of the plate which is closer to the delamination.

  11. Dynamic mechanical analysis and high strain-rate energy absorption characteristics of vertically aligned carbon nanotube reinforced woven fiber-glass composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...

  12. Nondestructive evaluation of residual stress in short-fiber reinforced plastics by x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tanaka, Keisuke; Tokoro, Syouhei; Akiniwa, Yoshiaki; Egami, Noboru

    2014-06-01

    The X-ray diffraction method is used to measure the residual stress in injection-molded plates of short-fiber reinforced plastics (SFRP) made of crystalline thermoplastics, polyphenylene sulphide (PPS), reinforced by carbon fibers with 30 mass%. Based on the orientation of carbon fibers, injection molded plates can be modeled as three-layered lamella where the core layer is sandwiched by skin layers. The stress in the matrix in the skin layer was measured using Cr-Kα radiation with the sin2Ψ method. Since the X-ray penetration depth is shallow, the state of stresses measured by X-rays in FRP can be assumed to be plane stress. The X-ray measurement of stress in carbon fibers was not possible because of high texture. A new method was proposed to evaluate the macrostress in SFRP from the measurement of the matrix stress. According to micromechanics analysis of SFRP, the matrix stresses in the fiber direction, σ1m, and perpendicular to the fiber direction, σ2m, and shear stress τ12m can be expressed as the functions of the applied (macro-) stresses, σ1A, σ2A , τ12A as follows: σ1m = α11σ1A +α12σ2A, σ2m = α21σ1A + α22σ2A, τ12m = α66τ12A, where α11 ,α12, α21, α22, α66 are stress-partitioning coefficients. Using skin-layer strips cut parallel, perpendicular and 45° to the molding direction, the stress in the matrix was measured under the uniaxial applied stress and the stress-partitioning coefficients of the above equations were determined. Once these relations are established, the macrostress in SFRP can be determined from the measurements of the matrix stresses by X-rays.

  13. Axially aligned organic fibers and amorphous calcium phosphate form the claws of a terrestrial isopod (Crustacea).

    PubMed

    Vittori, Miloš; Srot, Vesna; Žagar, Kristina; Bussmann, Birgit; van Aken, Peter A; Čeh, Miran; Štrus, Jasna

    2016-08-01

    Skeletal elements that are exposed to heavy mechanical loads may provide important insights into the evolutionary solutions to mechanical challenges. We analyzed the microscopic architecture of dactylus claws in the woodlice Porcellio scaber and correlated these observations with analyses of the claws' mineral composition with energy dispersive X-ray spectrometry (EDX), electron energy loss spectroscopy (EELS) and selected area electron diffraction (SAED). Extraordinarily, amorphous calcium phosphate is the predominant mineral in the claw endocuticle. Unlike the strongly calcified exocuticle of the dactylus base, the claw exocuticle is devoid of mineral and is highly brominated. The architecture of the dactylus claw cuticle is drastically different from that of other parts of the exoskeleton. In contrast to the quasi-isotropic structure with chitin-protein fibers oriented in multiple directions, characteristic of the arthropod exoskeleton, the chitin-protein fibers and mineral components in the endocuticle of P. scaber claws are exclusively axially oriented. Taken together, these characteristics suggest that the claw cuticle is highly structurally anisotropic and fracture resistant and can be explained as adaptations to predominant axial loading of the thin, elongated claws. The nanoscale architecture of the isopod claw may inspire technological solutions in the design of durable machine elements subjected to heavy loading and wear.

  14. Axially aligned organic fibers and amorphous calcium phosphate form the claws of a terrestrial isopod (Crustacea).

    PubMed

    Vittori, Miloš; Srot, Vesna; Žagar, Kristina; Bussmann, Birgit; van Aken, Peter A; Čeh, Miran; Štrus, Jasna

    2016-08-01

    Skeletal elements that are exposed to heavy mechanical loads may provide important insights into the evolutionary solutions to mechanical challenges. We analyzed the microscopic architecture of dactylus claws in the woodlice Porcellio scaber and correlated these observations with analyses of the claws' mineral composition with energy dispersive X-ray spectrometry (EDX), electron energy loss spectroscopy (EELS) and selected area electron diffraction (SAED). Extraordinarily, amorphous calcium phosphate is the predominant mineral in the claw endocuticle. Unlike the strongly calcified exocuticle of the dactylus base, the claw exocuticle is devoid of mineral and is highly brominated. The architecture of the dactylus claw cuticle is drastically different from that of other parts of the exoskeleton. In contrast to the quasi-isotropic structure with chitin-protein fibers oriented in multiple directions, characteristic of the arthropod exoskeleton, the chitin-protein fibers and mineral components in the endocuticle of P. scaber claws are exclusively axially oriented. Taken together, these characteristics suggest that the claw cuticle is highly structurally anisotropic and fracture resistant and can be explained as adaptations to predominant axial loading of the thin, elongated claws. The nanoscale architecture of the isopod claw may inspire technological solutions in the design of durable machine elements subjected to heavy loading and wear. PMID:27320700

  15. Quantitative measurement of the distribution and alignment of collagen fibers in unfixed aortic tissues.

    PubMed

    Sugita, Shukei; Matsumoto, Takeo

    2013-04-26

    Determination of the local amount and direction of collagen fibers during deformation is crucial for an understanding of the mechanical behavior of aortic tissues. Since most conventional methods cannot be used for this purpose, we propose a method to quantify the local amount and direction of fibers by simply measuring the optical properties of the specimen. After confirming the linear correlation between the retardance and thickness of sections of porcine thoracic aortas (PTAs) ranging from 15 to 300 μm, we investigated the effects of their structural components, i.e., smooth muscle cells (SMCs), elastin and collagen, on the retardance of whole tissues. Decellularization of SMCs did not change the retardance of PTA sections significantly. Patterns in autofluorescent and immunofluorescent images of elastin purified from bovine nuchal ligaments did not match those in retardance images. Images of collagen in PTA sections stained with picrosirius red were similar to corresponding retardance images. The slow axis azimuth corresponded to the circumferential direction of the aorta. Results indicate that collagen in aortas can be quantified by measuring the retardance and slow axis azimuth of whole aortic tissues. Application of this technique to PTAs showed that retardance was higher in dorsal and distal regions than ventral and proximal regions, respectively, indicating that the aortas contain more collagen in distal and dorsal regions than proximal and ventral regions, respectively. Both results were in accordance with previous findings. Measurement of retardance is useful to quantify the amount of collagen in unfixed aortas.

  16. Transcriptome Analysis of Short Fiber Mutant Ligon lintless-1 (Li1) Reveals Critical Genes and Key Pathways in Cotton Fiber Elongation and Leaf Development

    PubMed Central

    Liang, Wenhua; Fang, Lei; Xiang, Dan; Hu, Yan; Feng, Hao; Chang, Lijing; Zhang, Tianzhen

    2015-01-01

    For efficient spinning and superior fabric production, long fiber length is a desired trait for cotton production. To unveil the molecular basis of the cotton fiber length regulation, a short fiber mutant, Ligon lintless-1 (Li1), is selected to compare with its corresponding wild type (WT). Li1 is a monogenic dominant cotton mutant causing extremely short fibers (<6mm) on mature seeds with visible pleiotropic effects on vegetative growth and development. In this research, we compared the transcriptome of fiber bearing ovules at 1 DPA, 3 DPA, 8 DPA and leaf between Li1 mutant and WT. A total of 7,852 differentially expressed genes (DEGs) were detected in ovules and leaves, which mainly participated in sugar, secondary metabolite and lipid metabolism pathways based on KEGG analysis. The common DEGs at 1 DPA and 3 DPA were involved in the responses to endogenous stimulus, signal transduction and long-chain fatty acid biosynthesis. For 3 DPA, 8 DPA and leaf, the common DEGs were involved in the responses to auxin and receptor kinases related pathway. Further analysis showed that 37 genes involved in very-long-chain fatty acid biosynthesis were suppressed in Li1 mutant during fiber fast elongation development. Most of the DEGs involved in cell wall metabolism, such cellulose synthase, expansin family, and glycosyl hydrolase were differentially expressed at 3 DPA and 8 DPA. Our results provide new insights into the mechanisms of fiber elongation, and offer novel genes as potential objects for fiber length improvement. PMID:26600249

  17. Transcriptome Analysis of Short Fiber Mutant Ligon lintless-1 (Li1) Reveals Critical Genes and Key Pathways in Cotton Fiber Elongation and Leaf Development.

    PubMed

    Liang, Wenhua; Fang, Lei; Xiang, Dan; Hu, Yan; Feng, Hao; Chang, Lijing; Zhang, Tianzhen

    2015-01-01

    For efficient spinning and superior fabric production, long fiber length is a desired trait for cotton production. To unveil the molecular basis of the cotton fiber length regulation, a short fiber mutant, Ligon lintless-1 (Li1), is selected to compare with its corresponding wild type (WT). Li1 is a monogenic dominant cotton mutant causing extremely short fibers (<6mm) on mature seeds with visible pleiotropic effects on vegetative growth and development. In this research, we compared the transcriptome of fiber bearing ovules at 1 DPA, 3 DPA, 8 DPA and leaf between Li1 mutant and WT. A total of 7,852 differentially expressed genes (DEGs) were detected in ovules and leaves, which mainly participated in sugar, secondary metabolite and lipid metabolism pathways based on KEGG analysis. The common DEGs at 1 DPA and 3 DPA were involved in the responses to endogenous stimulus, signal transduction and long-chain fatty acid biosynthesis. For 3 DPA, 8 DPA and leaf, the common DEGs were involved in the responses to auxin and receptor kinases related pathway. Further analysis showed that 37 genes involved in very-long-chain fatty acid biosynthesis were suppressed in Li1 mutant during fiber fast elongation development. Most of the DEGs involved in cell wall metabolism, such cellulose synthase, expansin family, and glycosyl hydrolase were differentially expressed at 3 DPA and 8 DPA. Our results provide new insights into the mechanisms of fiber elongation, and offer novel genes as potential objects for fiber length improvement.

  18. Broadband efficient directional coupling to short-range plasmons: towards hybrid fiber nanotips.

    PubMed

    Tuniz, Alessandro; Schmidt, Markus A

    2016-04-01

    We present a broadband and efficient short-range plasmonic directional coupler design, for the delivery and collection of deeply sub-wavelength radiation to tapered plasmonic nanowires. We show a proof-of-concept design using a planar geometry operating at wavelengths between 1.2 -2.4 μm, showing that the propagation characteristics predicted by an Eigenmode analysis are in excellent agreement with finite element simulations. This analytical formulation is straightforward to implement and immediately provides the power-exchange properties of hybrid plasmonic waveguides. An investigation of both waveguide delivery and collection performance to and from a plasmonic nano-tip is performed. We show that this design strategy can be straightforwardly adapted to a realistic hybrid fiber geometry, containing wire diameters more than one order of magnitude larger than the planar geometries, with important applications in all-fiber plasmonic superfocussing, and nonlinear plasmonics. PMID:27137040

  19. Pump-Induced, Dual-Frequency Switching in a Short-Cavity, Ytterbium-Doped Fiber Laser

    SciTech Connect

    Guan, W.; Marciante, J.R.

    2008-07-23

    Using a short linear cavity composed of a section of highly ytterbium-doped fiber surrounded by two fiber Bragg gratings, dual frequency switching is achieved by tuning the pump power of the laser. The dual-frequency switching is generated by the thermal effects of the absorbed pump in the ytterbium-doped fiber. At each frequency, the laser shows single-longitudinal-mode behavior. In each single-mode regime, the optical signal-to-noise ratio of the laser is greater than 50 dB. The dual-frequency, switchable, fiber laser can be designed for various applications by the careful selection of the two gratings.

  20. Experimental evaluation and simulation of volumetric shrinkage and warpage on polymeric composite reinforced with short natural fibers

    NASA Astrophysics Data System (ADS)

    Santos, Jonnathan D.; Fajardo, Jorge I.; Cuji, Alvaro R.; García, Jaime A.; Garzón, Luis E.; López, Luis M.

    2015-09-01

    A polymeric natural fiber-reinforced composite is developed by extrusion and injection molding process. The shrinkage and warpage of high-density polyethylene reinforced with short natural fibers of Guadua angustifolia Kunth are analyzed by experimental measurements and computer simulations. Autodesk Moldflow® and Solid Works® are employed to simulate both volumetric shrinkage and warpage of injected parts at different configurations: 0 wt.%, 20 wt.%, 30 wt.% and 40 wt.% reinforcing on shrinkage and warpage behavior of polymer composite. Become evident the restrictive effect of reinforcing on the volumetric shrinkage and warpage of injected parts. The results indicate that volumetric shrinkage of natural composite is reduced up to 58% with fiber increasing, whereas the warpage shows a reduction form 79% to 86% with major fiber content. These results suggest that it is a highly beneficial use of natural fibers to improve the assembly properties of polymeric natural fiber-reinforced composites.

  1. Efficient adsorption of waterborne short-lived radon decay products by glass fiber filters.

    PubMed

    von Philipsborn, H

    1997-02-01

    Glass fiber filters of a certain brand were found to be very efficient (retention > 95%) for adsorption of short-lived radon decay products during filtration of water. Carrier-free samples are obtained in a convenient geometry for efficient gross beta counting. Adsorption of "hot atoms" is not disturbed by the presence of "cold" lead ions. Approximate radioactive equilibrium between radon and its short-lived decay products may or may not exist in water at the source, but does exist after 3 h in PET bottles. These bottles are shown to be gas-tight for radon. Calibration of activity concentration in Bq L(-1) (radon gas concentration approximately equilibrium equivalent radon concentration) was performed by several standard procedures. Limit of detection is 2 Bq L(-1) within 10 min (total time) or 10 Bq L(-1) within 5 min for a net signal of 5 times standard deviation.

  2. Dry sliding wear behavior of epoxy composite reinforced with short palmyra fibers

    NASA Astrophysics Data System (ADS)

    Biswal, Somen; Satapathy, Alok

    2016-02-01

    The present work explores the possibility of using palmyra fiber as a replacement for synthetic fiber in conventional polymer composites for application against wear. An attempt has been made in this work to improve the sliding wear resistance of neat epoxy by reinforcing it with short palmyra fibers (SPF). Epoxy composites with different proportions (0, 4, 8 and 12 wt. %) of SPF are fabricated by conventional hand lay-up technique. Dry sliding wear tests are performed on the composite samples using a pin-on-disc test rig as per ASTM G 99-05 standards under various operating parameters. Design of experiment approach based on Taguchi's L16 Orthogonal Arrays is used for the analysis of the wear. This parametric analysis reveals that the SPF content is the most significant factor affecting the wear process followed by the sliding velocity. The sliding wear behavior of these composites under an extensive range of test conditions is predicted by a model based on the artificial neural network (ANN). A well trained ANN has been used to predict the sliding wear response of epoxy based composites over a wide range.

  3. Short Range Photoassociation of Rb2 by a high power fiber laser

    NASA Astrophysics Data System (ADS)

    Passagem, Henry; Rodriguez, Ricardo; Ventura, Paulo; Bouloufa, Nadia; Dulieu, Olivier; Marcassa, Luis

    2016-05-01

    Photoassociation has been studied using cold trapped atomic samples for the last 20 years. Due to poor Franck-Condon overlap, a free-to-bound transition followed by spontaneous decay results in a small production of electronic ground state molecules. If the photoassociation is done at short range, deeply bound ground state molecules can be formed. Optical pumping schemes can be used to populate a single state. In our experiment, we have performed trap loss spectroscopy on trapped 85 Rb atoms in a MOT using a high power fiber laser. Our single mode fiber laser (linewidth < 1 MHz) produces about 50 W, which can be tuned in the 1060-1070 nm range. Two vibrational bound states of the 0u+ potential were observed (ν = 137 and 138). The frequency positions as well as the rotational constants of these states are in good agreement with theoretical predictions. We have also measured the lifetime of a crossed optical dipole trap using such fiber laser. The lifetime on resonance is shorter than off resonance as expected. A simple theoretical model indicates that the molecules decay to deeply bound vibrational levels in the ground state. This work was supported by Fapesp and INCT-IQ.

  4. Crack-closing of cement mortar beams using NiTi cold-drawn SMA short fibers

    NASA Astrophysics Data System (ADS)

    Choi, Eunsoo; Kim, Dong Joo; Chung, Young-Soo; Kim, Hee Sun; Jung, Chungsung

    2015-01-01

    In this study, crack-closing tests of mortar beams reinforced by shape memory alloy (SMA) short fibers were performed. For this purpose, NiTi SMA fibers with a diameter of 0.965 mm and a length of 30 mm were made from SMA wires of 1.0 mm diameter by cold drawing. Four types of SMA fibers were prepared, namely, straight and dog-bone-shaped fiber and the two types of fibers with paper wrapping in the middle of the fibers. The paper provides an unbonded length of 15 mm. For bending tests, six types of mortar beams with the dimensions of 40 mm × 40 mm × 160 mm (B×H×L) were prepared. The SMA fibers were placed at the bottom center of the beams along with an artificial crack of 10 mm depth and 1 mm thickness. This study investigated the influence of SMA fibers on the flexural strength of the beams from the measured force- deflection curves. After cracking, the beams were heated at the bottom by fire to activate the SMA fibers. Then, the beams recovered the deflection, and the cracks were closed. This study evaluated crack-closing capacity using the degree of crack recovery and deflection-recovery factor. The first factor is estimated from the crack-width before and after crack-closing, and the second one is obtained from the downward deflection due to loading and the upward deflection due to the closing force of the SMA fibers.

  5. Slow and fast light via SBS in optical fibers for short pulses and broadband pump

    NASA Astrophysics Data System (ADS)

    Kalosha, V. P.; Chen, Liang; Bao, Xiaoyi

    2006-12-01

    Slow-light effect via stimulated Brillouin scattering (SBS) in single-mode optical fibers was considered for short probe pulses of nanosecond duration relevant to Gb/s data streams. Unlike recent estimations of delay versus pump based on steady-state small-signal approximation we have used numerical solution of three-wave equations describing SBS for a realistic fiber length. Both regimes of small signal and pump depletion (gain saturation) were considered. The physical origin of Stokes pulse distortion is revealed which is related to excitation of long-living acoustic field behind the pulse and prevents effective delay control by pump power increase at cw pumping. We have shown different slope of the gain-dependent delay for different pulse durations. Spectrally broadened pumping by multiple cw components, frequency-modulated pump and pulse train were studied for short pulses which allow to obtain large delay and suppress pulse distortion. In the pump-depletion regime of pumping by pulse train, both pulse delay and distortion decrease with increasing pump, and the pulse achieves advancement.

  6. Slow and fast light via SBS in optical fibers for short pulses and broadband pump.

    PubMed

    Kalosha, V P; Chen, Liang; Bao, Xiaoyi

    2006-12-25

    Slow-light effect via stimulated Brillouin scattering (SBS) in single-mode optical fibers was considered for short probe pulses of nanosecond duration relevant to Gb/s data streams. Unlike recent estimations of delay versus pump based on steady-state small-signal approximation we have used numerical solution of three-wave equations describing SBS for a realistic fiber length. Both regimes of small signal and pump depletion (gain saturation) were considered. The physical origin of Stokes pulse distortion is revealed which is related to excitation of long-living acoustic field behind the pulse and prevents effective delay control by pump power increase at cw pumping. We have shown different slope of the gain-dependent delay for different pulse durations. Spectrally broadened pumping by multiple cw components, frequency-modulated pump and pulse train were studied for short pulses which allow to obtain large delay and suppress pulse distortion. In the pump-depletion regime of pumping by pulse train, both pulse delay and distortion decrease with increasing pump, and the pulse achieves advancement. PMID:19532161

  7. Imaging of rat brain using short graded-index multimode fiber

    NASA Astrophysics Data System (ADS)

    Sato, Manabu; Kanno, Takahiro; Ishihara, Syoutarou; Suto, Hiroshi; Takahashi, Toshihiro; Kurotani, Reiko; Abe, Hiroyuki; Nishidate, Izumi

    2014-03-01

    Clinically it is important to image structures of brain at deeper areas with low invasions, for example, the pathological information is not obtained enough from the white matter. Preliminarily we have measured transmission images of rat brain using the short graded-index multimode fiber (SMMF) with the diameter of 140μm and length of 5mm. SMMF (core diameter, 100μm) was cut using a fiber cleaver and was fixed in a jig. Fiber lengths inside and outside jig were 3mm and 2mm, respectively. The jig was attached at the 20x objective lens. The conventional optical microscope was used to measure images. In basic characteristics, it was confirmed that the imaging conditions almost corresponded to calculations with the ray-transfer matrix and the spatial resolution was evaluated at about 4.4μm by measuring the test pattern. After euthanasia the rat parietal brain was excised with thickness around 1.5mm and was set on the slide glass. The tissue was illuminated through the slide glass by the bundle fiber with Halogen lamp. The tip of SMMF was inserted into the tissue by lifting the sample stage. The transmission image at each depth from 0.1mm to 1.53mm was measured. Around the depth of 1.45mm, granular structures with sizes of 4-5μm were recognized and corresponded to images by HE stained tissue. Total measurement time was within 2 hours. The feasibilities to image the depth of 5 mm with SMMF have been shown.

  8. Ionization and high-order harmonic generation in aligned benzene by a short intense circularly polarized laser pulse

    SciTech Connect

    Baer, Roi; Neuhauser, Daniel; Zdanska, Petra R.; Moiseyev, Nimrod

    2003-10-01

    We present a first-principles study of ionization and high-order harmonic generation by benzene aligned in the polarization plane of a short circularly polarized laser pulse. Time-dependent density-functional theory within the adiabatic local-density approximation is employed to describe the 30 valence-electron dynamics in three dimensions. The multielectron approach enables us to study the effect of very strong laser fields, 10{sup 14}-10{sup 15} W cm{sup -2}, where multiple ionization and high-order harmonic generation interplay. Large ionization currents are formed, causing ionization of 1-4 electron charges, while strong high-order harmonic generation is observed. The well-known recollision mechanism of high-order harmonic generation plays a part for moderate laser intensities but is fully suppressed for strong laser fields. The harmonic generation spectra are characterized by two distinguishable plateaus, where the structure of the first plateau is dominated by the 6k{+-}1 (k=0,1,...) selection rule. The number of harmonics in the second plateau is insensitive to the duration of the pulse. The peaks appear in pairs or in threesomes, depending on the pulse duration.

  9. Determination of local debonding stress and investigation of its effect on mechanical properties of glass short fiber reinforced polycarbonate composites

    NASA Astrophysics Data System (ADS)

    Zhao, Wenjie; Kim, Hyung-ick; Suhr, Jonghwan

    2012-04-01

    Thermoplastic polymers are often reinforced by adding short fibers to improve mechanical properties including Young's modulus and tensile strength of the polymers. In many engineering applications, energy absorbing characteristics in such particulate polymers is known to be a very important property to be considered in composite designs, and meanwhile debonding at the interface between fiber and matrix in the composites may affect the energy absorption properties. Here, the focus of this study is to employ a semi-empirical approach to determine the debonding stress and investigate the effect of the debonding stress on energy absorbing properties of short glass fiber reinforced polycarbonate composites. Glass short fiber reinforced polycarbonate composites are fabricated via a solution mixing technique. Tensile testing and acoustic emission measurement are simultaneously performed for the polycarbonate composites. The test results including toughness are compared for the composites over neat polycarbonate. Also the local debonding stress in the vicinity of each glass fiber in composites is estimated by combining modeling and experiments. A finite element model is developed to determine local debonding stress at the interface between the fiber and matrix. The local debonding stress appears to considerably affect the toughness of the composites.

  10. Effect of Forging Parameters on Low Cycle Fatigue Behaviour of Al/Basalt Short Fiber Metal Matrix Composites

    PubMed Central

    Karthigeyan, R.; Ranganath, G.

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface. PMID:24298207

  11. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    PubMed

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  12. Cutting and drilling of carbon fiber reinforced plastics (CFRP) by 70W short pulse nanosecond laser

    NASA Astrophysics Data System (ADS)

    Jaeschke, Peter; Stolberg, Klaus; Bastick, Stefan; Ziolkowski, Ewa; Roehner, Markus; Suttmann, Oliver; Overmeyer, Ludger

    2014-02-01

    Continuous carbon fibre reinforced plastics (CFRP) are recognized as having a significant lightweight construction potential for a wide variety of industrial applications. However, a today`s barrier for a comprehensive dissemination of CFRP structures is the lack of economic, quick and reliable manufacture processes, e.g. the cutting and drilling steps. In this paper, the capability of using pulsed disk lasers in CFRP machining is discussed. In CFRP processing with NIR lasers, carbon fibers show excellent optical absorption and heat dissipation, contrary to the plastics matrix. Therefore heat dissipation away from the laser focus into the material is driven by heat conduction of the fibres. The matrix is heated indirectly by heat transfer from the fibres. To cut CFRP, it is required to reach the melting temperature for thermoplastic matrix materials or the disintegration temperature for thermoset systems as well as the sublimation temperature of the reinforcing fibers simultaneously. One solution for this problem is to use short pulse nanosecond lasers. We have investigated CFRP cutting and drilling with such a laser (max. 7 mJ @ 10 kHz, 30 ns). This laser offers the opportunity of wide range parameter tuning for systematic process optimization. By applying drilling and cutting operations based on galvanometer scanning techniques in multi-cycle mode, excellent surface and edge characteristics in terms of delamination-free and intact fiber-matrix interface were achieved. The results indicate that nanosecond disk laser machining could consequently be a suitable tool for the automotive and aircraft industry for cutting and drilling steps.

  13. Thermoplastics Reinforced with Self-Welded Short Carbon Fibers: Nanoparticle-Promoted Structural Evolution.

    PubMed

    Zhang, Dongge; Liu, Yaohua; Lin, Yu; Wu, Guozhang

    2016-07-27

    The large volume of currently available fiber-reinforced polymer composites critically limits the intrinsic versatility of fibers such as high mechanical strength, heat resistance, and excellent thermal/electrical conductivity. We proposed a facile and widely applicable strategy to promote self-organization of randomly dispersed short carbon fibers (CFs) into a three-dimensionally continuous scaffold. The morphological evolution and structural reinforcement of the self-welded CF-polyamide 6 (PA6) scaffold in polystyrene (PS) matrix were investigated, with carbon black (CB) or titanium dioxide (TiO2) nanoparticles (NPs) selectively localized in the PA6 domains. Surprisingly, all of the PA6 droplets once dispersed in the PS matrix can migrate and evenly encapsulate onto the CF surface when 5.8 wt % CB is incorporated, whereas in the TiO2-filled system, the PA6 droplets preferentially segregate at the junction point of CFs to fasten the self-welded CF structure. In addition, a remarkable increase in the interfacial adhesive work between PA6 and CF was observed only when TiO2 is added, and a loading of even less than 0.8 wt % can effectively abruptly strengthen the self-welded CF scaffold. We clarified that the structural evolution is promoted by the nature of self-agglomeration of NPs. CB is highly capable of self-networking in the PA6 domain, resulting in high encapsulation of PA6, although the capillary force for preferential segregation of PA6 at the junction point of CFs is reduced. By contrast, the TiO2 particles tend to form compact aggregates. Such an agglomeration pattern, together with enhanced interfacial affinity, must contribute to a strong capillary force for the preferential segregation of PA6. PMID:27391703

  14. Thermoplastics Reinforced with Self-Welded Short Carbon Fibers: Nanoparticle-Promoted Structural Evolution.

    PubMed

    Zhang, Dongge; Liu, Yaohua; Lin, Yu; Wu, Guozhang

    2016-07-27

    The large volume of currently available fiber-reinforced polymer composites critically limits the intrinsic versatility of fibers such as high mechanical strength, heat resistance, and excellent thermal/electrical conductivity. We proposed a facile and widely applicable strategy to promote self-organization of randomly dispersed short carbon fibers (CFs) into a three-dimensionally continuous scaffold. The morphological evolution and structural reinforcement of the self-welded CF-polyamide 6 (PA6) scaffold in polystyrene (PS) matrix were investigated, with carbon black (CB) or titanium dioxide (TiO2) nanoparticles (NPs) selectively localized in the PA6 domains. Surprisingly, all of the PA6 droplets once dispersed in the PS matrix can migrate and evenly encapsulate onto the CF surface when 5.8 wt % CB is incorporated, whereas in the TiO2-filled system, the PA6 droplets preferentially segregate at the junction point of CFs to fasten the self-welded CF structure. In addition, a remarkable increase in the interfacial adhesive work between PA6 and CF was observed only when TiO2 is added, and a loading of even less than 0.8 wt % can effectively abruptly strengthen the self-welded CF scaffold. We clarified that the structural evolution is promoted by the nature of self-agglomeration of NPs. CB is highly capable of self-networking in the PA6 domain, resulting in high encapsulation of PA6, although the capillary force for preferential segregation of PA6 at the junction point of CFs is reduced. By contrast, the TiO2 particles tend to form compact aggregates. Such an agglomeration pattern, together with enhanced interfacial affinity, must contribute to a strong capillary force for the preferential segregation of PA6.

  15. Mechanical properties, volumetric shrinkage and depth of cure of short fiber-reinforced resin composite.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-01-01

    The mechanical properties, volumetric shrinkage and depth of cure of a short fiber-reinforced resin composite (SFRC) were investigated in this study and compared to both a bulk fill resin composite (BFRC) and conventional glass/ceramic-filled resin composite (CGRC). Fracture toughness, flexural properties, volumetric shrinkage and depth of cure of the SFRC, BFRC and CGRC were measured. SFRC had significantly higher fracture toughness than BFRCs and CGRCs. The flexural properties of SFRC were comparable with BFRCs and CGRCs. SFRC showed significantly lower volumetric shrinkage than the other tested resin composites. The depth of cure of the SFRC was similar to BFRCs and higher than CGRCs. The data from this laboratory investigation suggests that SFRC exhibits improvements in fracture toughness, volumetric shrinkage and depth of cure when compared with CGRC, but depth of cure of SFRC was similar to BFRC. PMID:27251997

  16. High Energy, Short Pulse Fiber Injection Lasers at Lawrence Livermore National Laboratory

    SciTech Connect

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2008-09-10

    A short pulse fiber injection laser for the Advanced Radiographic Capability (ARC) on the National Ignition Facility (NIF) has been developed at Lawrence Livermore National Laboratory (LLNL). This system produces 100 {micro}J pulses with 5 nm of bandwidth centered at 1053 nm. The pulses are stretched to 2.5 ns and have been recompressed to sub-ps pulse widths. A key feature of the system is that the pre-pulse power contrast ratio exceeds 80 dB. The system can also precisely adjust the final recompressed pulse width and timing and has been designed for reliable, hands free operation. The key challenges in constructing this system were control of the signal to noise ratio, dispersion management and managing the impact of self phase modulation on the chirped pulse.

  17. Mechanical properties, volumetric shrinkage and depth of cure of short fiber-reinforced resin composite.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-01-01

    The mechanical properties, volumetric shrinkage and depth of cure of a short fiber-reinforced resin composite (SFRC) were investigated in this study and compared to both a bulk fill resin composite (BFRC) and conventional glass/ceramic-filled resin composite (CGRC). Fracture toughness, flexural properties, volumetric shrinkage and depth of cure of the SFRC, BFRC and CGRC were measured. SFRC had significantly higher fracture toughness than BFRCs and CGRCs. The flexural properties of SFRC were comparable with BFRCs and CGRCs. SFRC showed significantly lower volumetric shrinkage than the other tested resin composites. The depth of cure of the SFRC was similar to BFRCs and higher than CGRCs. The data from this laboratory investigation suggests that SFRC exhibits improvements in fracture toughness, volumetric shrinkage and depth of cure when compared with CGRC, but depth of cure of SFRC was similar to BFRC.

  18. System simulation method for fiber-based homodyne multiple target interferometers using short coherence length laser sources

    NASA Astrophysics Data System (ADS)

    Fox, Maik; Beuth, Thorsten; Streck, Andreas; Stork, Wilhelm

    2015-09-01

    Homodyne laser interferometers for velocimetry are well-known optical systems used in many applications. While the detector power output signal of such a system, using a long coherence length laser and a single target, is easily modelled using the Doppler shift, scenarios with a short coherence length source, e.g. an unstabilized semiconductor laser, and multiple weak targets demand a more elaborated approach for simulation. Especially when using fiber components, the actual setup is an important factor for system performance as effects like return losses and multiple way propagation have to be taken into account. If the power received from the targets is in the same region as stray light created in the fiber setup, a complete system simulation becomes a necessity. In previous work, a phasor based signal simulation approach for interferometers based on short coherence length laser sources has been evaluated. To facilitate the use of the signal simulation, a fiber component ray tracer has since been developed that allows the creation of input files for the signal simulation environment. The software uses object oriented MATLAB code, simplifying the entry of different fiber setups and the extension of the ray tracer. Thus, a seamless way from a system description based on arbitrarily interconnected fiber components to a signal simulation for different target scenarios has been established. The ray tracer and signal simulation are being used for the evaluation of interferometer concepts incorporating delay lines to compensate for short coherence length.

  19. 820 Hz linewidth short-linear-cavity single-frequency fiber laser at 1.5 μm

    NASA Astrophysics Data System (ADS)

    Mo, Shupei; Li, Zebiao; Huang, Xiang; Xu, Shanhui; Feng, Zhouming; Zhang, Weinan; Li, Can; Yang, Changsheng; Qian, Qi; Chen, Dongdan; Yang, Zhongmin

    2014-03-01

    We proposed a short-linear-cavity fiber laser with a virtual-folded-ring configuration, which combines the advantages of ring lasers and short-linear-cavity lasers. An all-fiber quarter-wave plate was used inside the cavity to introduce polarization retardation. By retarding the polarization of the travelling waves, the spatial-hole-burning effect was weakened and the efficient cavity length was extended to nearly twice its physical length. As a result, a single-frequency laser output with a linewidth of less than 820 Hz was obtained from the free-running fiber laser. The relaxation oscillation frequency was observed to be around 280 kHz and the signal to noise ratio of the laser output was >72 dB.

  20. Fiber

    MedlinePlus

    ... it can help with weight control. Fiber aids digestion and helps prevent constipation . It is sometimes used ... fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  1. Hard plastic cladding fiber (HPCF) based optical components for high speed short reach optical communications

    NASA Astrophysics Data System (ADS)

    Kim, Jun Ki; Kim, Dong Uk; Kim, Tae Young; Park, Chang Soo; Oh, Kyunghwan

    2006-09-01

    We developed the primary components applicable to HPCF links for short reach (SR) and very short reach (VSR) data communication systems. We fabricated 4x4 HPCF fused taper splitter, HPCF pigtailed VCSEL and PIN photodiode for high speed short reach communications and characterized back to back transmission performance of the link composed of these components by measuring eye diagrams and jitters. Adapting the fusion-tapering technique for glass optical fiber, we successfully fabricated a 4x4 HPCF fused taper coupler. The HPCF with a core diameter of 200μm and an outer diameter of 230μm had step refractive index of 1.45 and 1.40 for the core and the clad. The optimized fusion length and tapering waist which make minimum insertion loss of about 7dB and uniform output power splitting ratio with less than 0.5dB are 13mm and 150µm, respectively. As a light source for VSR networks, we chose a vertical cavity surface emitting laser (VCSEL) and developed a package with a HPCF pigtail. After positioning VCSEL and HPCF that made a minimum coupling loss, we glued the HPCF inside ceramic ferrule housing. In HPCF-PIN PD packaging, we added a micro polymer lens tip onto the HPCF ends to match the mode field area to the sensitive area of GaAs or InGaAs PIN PD. Coupling between a PIN PD chip and the lensed HPCF was optimized with the radius of curvature of 156µm with a low coupling loss of 0.3dB, which is compatible to conventional MMF-PD packaging. For 1.25 Gbps data rate, the eyes adequate to eye mask in gigabit Ethernet were wide open after all HPCF transmission link and no significant power penalty was observed.

  2. Short-term in vitro responses of human peripheral blood monocytes to ferritic stainless steel fiber networks.

    PubMed

    Spear, Rose L; Brooks, Roger A; Markaki, Athina E

    2013-05-01

    Beneficial effects on bone-implant bonding may accrue from ferromagnetic fiber networks on implants which can deform in vivo inducing controlled levels of mechanical strain directly in growing bone. This approach requires ferromagnetic fibers that can be implanted in vivo without stimulating undue inflammatory cell responses or cytotoxicity. This study examines the short-term in vitro responses, including attachment, viability, and inflammatory stimulation, of human peripheral blood monocytes to 444 ferritic stainless steel fiber networks. Two types of 444 networks, differing in fiber cross section and thus surface area, were considered alongside austenitic stainless steel fiber networks, made of 316L, a widely established implant material. Similar high percent seeding efficiencies were measured by CyQuant® on all fiber networks after 48 h of cell culture. Extensive cell attachment was confirmed by fluorescence and scanning electron microscopy, which showed round monocytes attached at various depths into the fiber networks. Medium concentrations of lactate dehydrogenase (LDH) and tumor necrosis factor alpha (TNF-α) were determined as indicators of viability and inflammatory responses, respectively. Percent LDH concentrations were similar for both 444 fiber networks at all time points, whereas significantly lower than those of 316L control networks at 24 h. All networks elicited low-level secretions of TNF-α, which were significantly lower than that of the positive control wells containing zymosan. Collectively, the results indicate that 444 networks produce comparable responses to medical implant grade 316L networks and are able to support human peripheral blood monocytes in short-term in vitro cultures without inducing significant inflammatory or cytotoxic effects.

  3. Imaging Analysis of Collagen Fiber Networks in Cusps of Porcine Aortic Valves: Effect of their Local Distribution and Alignment on Valve Functionality

    PubMed Central

    Mega, Mor; Marom, Gil; Halevi, Rotem; Hamdan, Ashraf; Bluestein, Danny; Haj-Ali, Rami

    2015-01-01

    The cusps of native Aortic Valve (AV) are composed of collagen bundles embedded in soft tissue, creating a heterogenic tissue with asymmetric alignment in each cusp. This study compares native collagen fiber networks (CFNs) with a goal to better understand their influence on stress distribution and valve kinematics. Images of CFNs from five porcine tricuspid AVs are analyzed and fluid-structure interaction models are generated based on them. Although the valves had similar overall kinematics, the CFNs had distinctive influence on local mechanics. The regions with dilute CFN are more prone to damage since they are subjected to higher stress magnitudes. PMID:26406926

  4. Extra-broadband wavelength-tunable actively mode-locked short-cavity fiber ring laser using a bismuth-based highly nonlinear erbium-doped fiber

    NASA Astrophysics Data System (ADS)

    Fukuchi, Yutaka; Hirata, Kouji; Ikeoka, Hiroshi

    We demonstrate an ultra-wideband wavelength-tunable actively mode-locked short-cavity laser employing a 151-cm-long bismuth-based highly nonlinear erbium-doped fiber (Bi-HNL-EDF). A wavelength tuning range of 87 nm from 1533 nm to 1620 nm can be achieved because the Bi-HNL-EDF has an ultra-wide gain bandwidth. High nonlinearity of the Bi-HNL-EDF also collaborates with spectral filtering by an optical bandpass filter to suppress the supermode noise quite effectively. Total length of the fiber ring cavity is as short as 16 m. Thus, stable and clean 5.6-6.1 ps pulses with a repetition rate of 10 GHz are successfully obtained over the wavelength tuning range almost completely covering both the conventional wavelength band (1530-1565 nm) and the longer wavelength band (1565-1625 nm). The bismuth-based short-cavity fiber laser also shows good performance in the back-to-back bit-error-rate measurements, and maintains bit-error-free mode-locking operation throughout the entire wavelength tuning range.

  5. Low-loss passive alignment of single-mode fibers in low-temperature cofired ceramics using CO2 laser fabricated U-grooves.

    PubMed

    Nowak, K M; Baker, H J; Hall, D R; Liu, X; Bell, A

    2006-12-20

    We report a step toward optoelectronic integration on low-temperature cofired ceramics substrates in the form of fiber alignment U-grooves. The precision of the CO2 laser machining of green state ceramic for this purpose is investigated. The groove-writing process with a speed of 1 mm/s was carried out in air at room temperature and ambient pressure. The process is to a large extent self-cleaning without any gas jet assist. By analysis of groove profiles after firing of a near-zero shrinkage green tape formulation, it is shown that the cutting accuracy is approximately 2 microm, which is at the fundamental limit set by the particle size (1-5 microm). We demonstrate low-loss butt coupling of <1 dB for single-mode fibers using the laser written U-grooves. The technique exhibits a potential for fabrication of low-cost fiber ribbon and fiber array connectors. PMID:17151756

  6. Effect of Silane Treatment on Hybridized Use of Short Cellulose Fibers and Silica Particles for Natural Rubber Reinforcement

    NASA Astrophysics Data System (ADS)

    Lopattananon, Natinee; Jitkalong, Dolmalik; Seadan, Manus; Sakai, Tadamoto

    Processability, swelling and tensile properties of natural-rubber-based hybrid composites prepared by mixing short cellulose fibers and fine silica particles of equal contents with total loading of 20 phr using a two-roll mill were analyzed. Their properties were compared with those of natural rubber reinforced with single filler (silica or cellulose fiber) and corresponding unfilled natural rubber. The tensile test showed the reinforcing effect of both single filler system and hybrid filler system in relation to natural rubber. The tensile modulus and tensile strength of hybrid composites generally laid between those of fiber-reinforced and silica-reinforced natural rubber composites, whereas the elongation at break of hybrid composites was equal to that of single filler reinforcement system. The Mooney viscosity of silica-filled compound was much higher than that of unfilled natural rubber and short fiber-filled compounds, and was significantly reduced when hybridized fillers were used. Furthermore, a silane coupling agent, Si 69, was used to modify the surface properties of cellulose fibers and silica particles. Three microscopic evaluation techniques, that is, elemental X-ray mapping (EDX), 3D microfocus X-ray scanning, and N-ARC methods were applied to investigate the filler dispersion/mixing effects. It was found that both of the fillers were more homogeneously dispersed in the hybrid composites, and the affinity between the fillers and natural rubber was improved after the silane treatment. The results from this work suggested that the better dispersion of short cellulose fiber/silica hybrid fillers had great advantages in rubber processing, and allowed for equal or higher composite strength compared to a simply silica-filled composite system.

  7. Use of an advanced shear-lag model to obtain the optimum internal damping in short-fiber composites

    SciTech Connect

    Hajela, P.; Shih, C.J. )

    1989-11-01

    The present paper examines a modified shear-lag model for predicting the stress distribution in short fiber reinforced composite materials. The model assumes perfect bonding between the fiber and the matrix materials, and allows for the matrix material to partially sustain axial loads. The stress distribution obtained on the basis of this model is used to predict the internal damping characteristics of the composite materials. These characteristics are a function of both the material properties and the geometrical layout of the composite, and are optimized by combining the analytical model with a nonlinear programming optimization algorithm. Representative numerical results are obtained for glass-epoxy and graphite-epoxy composites.

  8. Fiber-optic ultrasonic hydrophone using short Fabry-Perot cavity with multilayer reflectors deposited on small stub.

    PubMed

    Kim, Kyung-Su; Mizuno, Yosuke; Nakamura, Kentaro

    2014-04-01

    A fiber-optic probe with dielectric multilayer films deposited on a small stub is studied for mega-hertz ultrasonic-wave detection in water. The small stub with a short Fabry-Perot cavity and distributed reflectors is attached on the fiber end. The structure is mechanically strong and withstands intense ultrasonic pressure. Ultrasonic waves at 1.56MHz are successfully detected in water with a good signal-to-noise ratio. The working principle and the characteristics are studied by comparing the ultrasonic sensitivity with that of a conventional piezoelectric hydrophone. The distance response and directional response are also investigated.

  9. Chronic inhalation of short asbestos: lung fiber burdens and histopathology for monkeys maintained for 11.5 years after exposure.

    PubMed

    Stettler, Lloyd E; Sharpnack, Douglas D; Krieg, Edward F

    2008-01-01

    In an earlier report, Platek et al. (1985) presented the results of an 18-month inhalation exposure of rats and monkeys to short chrysotile asbestos. The mean chamber exposure level was 1.0 mg/m(3) with an average of 0.79 fibers/ml > 5 microm in length. Gross and histopathological examination of exposed and control rats indicated no treatment-related lesions. Asbestos bodies adjacent to the terminal bronchioles, but no fibrosis, were found in lung biopsy tissue taken from the exposed monkeys at 10 months post-exposure. Fifteen monkeys (9 exposed and 6 controls) from this study were maintained for 11.5 years following exposure. Lung fiber burdens were determined by transmission electron microscopy. The mean lung burden (+/- standard deviation) for 59 samples from exposed monkeys was 63 +/- 30 x 10(6) fibers/g dry lung (range, 18-139 x 10(6)). The geometric mean fiber length was 3.5 microm with 35% of the fibers being > 5 microm in length. These data indicate some chrysotile fibers are durable in vivo for a significant period of time. Lungs were examined grossly and microscopically. No lesions attributable to the inhalation exposure were noted. Asbestos bodies were seen in the lungs of treated monkeys, primarily in the interstitium near bronchioles or small pulmonary blood vessels (which also may have been near to bronchioles just out of the plane of section).

  10. Non-linear creep modeling of short-fiber composites using Hermite polynomials, hyperbolic trigonometric functions and power series

    NASA Astrophysics Data System (ADS)

    Mondali, Mehdi; Monfared, Vahid; Abedian, Ali

    2013-07-01

    A novel analytical model is presented for analyzing the steady-state creep in short-fiber composites under axial load utilizing the previous shear-lag theory, the imaginary fiber technique and also new approaches of Hermite polynomials, hyperbolic trigonometric functions and power series. The steady-state creep behavior of the matrix is described by an exponential law, while the fibers behave elastically. In this model, in spite of the previous researches, some unknowns such as shear stress, displacement rates, and creep strain rates are correctly determined in all regions of the unit cell without using any further assumptions. In comparison with previous analytical approaches, the results of the present work are closer to the FEM simulations. This strong method can be used in various problems in applied physics and mechanics such as elastic and plastic analysis of nano-composites.

  11. Suppressing Short-term Polarization Noise and Related Spectral Decoherence in All-normal Dispersion Fiber Supercontinuum Generation

    PubMed Central

    Liu, Yuan; Zhao, Youbo; Lyngsø, Jens; You, Sixian; Wilson, William L.; Tu, Haohua; Boppart, Stephen A.

    2015-01-01

    The supercontinuum generated exclusively in the normal dispersion regime of a nonlinear fiber is widely believed to possess low optical noise and high spectral coherence. The recent development of flattened all-normal dispersion fibers has been motivated by this belief to construct a general-purpose broadband coherent optical source. Somewhat surprisingly, we identify a large short-term polarization noise in this type of supercontinuum generation that has been masked by the total-intensity measurement in the past, but can be easily detected by filtering the supercontinuum with a linear polarizer. Fortunately, this hidden intrinsic noise and the accompanied spectral decoherence can be effectively suppressed by using a polarization-maintaining all-normal dispersion fiber. A polarization-maintaining coherent supercontinuum laser is thus built with a broad bandwidth (780–1300 nm) and high spectral power (~1 mW/nm). PMID:26166939

  12. Polyethylene fiber-reinforced composite resin used as a short post in severely decayed primary anterior teeth: a case report.

    PubMed

    Bayrak, Sule; Tunc, Emine Sen; Tuloglu, Nuray

    2009-05-01

    The case report presented here is of a 4-year-old girl with severely decayed maxillary anterior teeth. After root canal treatment, the primary maxillary central and lateral incisors were reinforced using polyethylene fiber-reinforced composite resin short posts and restored using celluloid strip crowns. The technique described here offers a simple and effective method for restoring severely decayed primary anterior teeth that reestablishes function, shape, and esthetics. PMID:19272811

  13. Depolarization-contraction coupling in short frog muscle fibers. A voltage clamp study

    PubMed Central

    1984-01-01

    Short muscle fibers (1.5 mm) were dissected from hindlimb muscles of frogs and voltage clamped with two microelectrodes to study phenomena related to depolarization-contraction coupling. Isometric myograms obtained in response to depolarizing pulses of durations between 10 and 500 ms and amplitudes up to 140 mV had the following properties. For suprathreshold pulses of fixed duration (in the range of 20-100 ms), the peak tension achieved, the time to peak tension, and contraction duration increased as the internal potential was made progressively more positive. Peak tension eventually saturates with increasing internal potentials. For pulse durations of greater than or equal to 50 ms, the rate of tension development becomes constant for increasing internal potentials when peak tensions become greater than one-third of the maximum tension possible. Both threshold and maximum steepness of the relation between internal potential and peak tension depend on pulse duration. The relation between the tension-time integral and the stimulus amplitude-duration product was examined. The utility of this relation for excitation-contraction studies is based on the observation that once a depolarizing pulse configuration has elicited maximum tension, further increases in either stimulus duration or amplitude only prolong the contractile response, while the major portion of the relaxation phase after the end of a pulse is exponential, with a time constant that is not significantly affected by either the amplitude or the duration of the pulse. Hence, the area under the tension-response curve provides a measure of the availability to troponin of the calcium released from the sarcoplasmic reticulum in response to membrane depolarization. The results from this work complement those obtained in experiments in which intramembrane charge movements related to contractile activation were studied and those in which intracellular Ca++ transients were measured. PMID:6611386

  14. Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly.

    PubMed

    Cuervo, Adriana; Salazar, Nuria; Ruas-Madiedo, Patricia; Gueimonde, Miguel; González, Sonia

    2013-10-01

    It has recently been suggested that fiber exerts a considerable effect on microbiota composition and on fecal short-chain fatty acid (SCFA) production, the concentration of which in the colon is important for immune regulation and for maintaining gut and overall health. To test the hypothesis that the fiber consumed in a regular diet affects fecal SCFA concentrations in the elderly, the authors investigated the association between different types of fiber intake and fecal SCFA concentrations in 32 institutionalized elderly subjects aged between 76 and 95 years. Food intake was recorded by means of a validated food frequency questionnaire. Total, soluble (pectin and hemicellulose) and insoluble (pectin, hemicellulose, Klason lignin, and cellulose) fiber was determined using Marlett Food Composition Tables. Analysis of acetic, propionic, and butyric acid concentrations was performed using gas chromatography-mass spectrometry. Potato intake was directly associated with SCFA concentrations and apple intake with propionate concentration. Of the fibers, cellulose showed an independent association with acetate and butyrate concentrations, and insoluble pectin explained a part of the variation in propionate. In conclusion, our results provide further evidence regarding the relation between diet and SCFA concentration in the elderly. The identification of an association between the regular intake of foods such as potatoes and the production of SCFAs provides an opportunity to improve public health.

  15. Dual-Frequency Operation in a Short-Cavity Ytterbium-Doped Fiber Laser

    SciTech Connect

    Guan, W.; Maricante, J.R.

    2007-02-15

    A dual-frequency 2-cm silica fiber laser with a wavelength spacing of 0.3 nm has been demonstrated using a polarization-maintaining (PM) fiber-Bragg-grating (FBG) reflector. The birefringence of the PM FBG was used to generate the two single-mode (SM) lasing frequencies of orthogonal polarizations. The SM operation in each wavelength has been verified.

  16. Lecithin Prevents Cortical Cytoskeleton Reorganization in Rat Soleus Muscle Fibers under Short-Term Gravitational Disuse

    PubMed Central

    Biryukov, Nikolay S.

    2016-01-01

    The aim of this study was to prevent the cortical cytoskeleton reorganization of rat soleus muscle fibers under short-term gravitational disuse. Once a day, we injected the right soleus muscle with 0.5 ml lecithin at a concentration of 200 mg/ml and the left soleus muscle with a diluted solution in an equal volume for 3 days prior to the experiment. To simulate microgravity conditions in rats, an anti-orthostatic suspension was used according to the Ilyin-Novikov method modified by Morey-Holton et al. for 6 hours. The following groups of soleus muscle tissues were examined: «C», «C+L», «HS», and «HS+L». The transversal stiffness of rat soleus muscle fibers after 6 hours of suspension did not differ from that of the control group for the corresponding legs; there were no differences between the groups without lecithin «C» and «HS» or between the groups with lecithin «C+L» and «HS+L». However, lecithin treatment for three days resulted in an increase in cell stiffness; in the «C+L» group, cell stiffness was significantly higher by 22.7% (p < 0.05) compared with that of group «C». The mRNA content of genes encoding beta- and gamma-actin and beta-tubulin did not significantly differ before and after suspension in the corresponding groups. However, there was a significant increase in the mRNA content of these genes after lecithin treatment: the beta-actin and gamma-actin mRNA content in group «C+L» increased by 200% compared with that of group «C», and beta-tubulin increased by 100% (as well as the mRNA content of tubulin-binding proteins Ckap5, Tcp1, Cct5 and Cct7). In addition, desmin mRNA content remained unchanged in all of the experimental groups. As a result of the lecithin injections, there was a redistribution of the mRNA content of genes encoding actin monomer- and filament-binding proteins in the direction of increasing actin polymerization and filament stability; the mRNA content of Arpc3 and Lcp1 increased by 3- and 5-fold

  17. Watt-level short-length holmium-doped ZBLAN fiber lasers at 1.2  μm.

    PubMed

    Zhu, Xiushan; Zong, Jie; Wiersma, Kort; Norwood, R A; Prasad, Narasimha S; Obland, Michael D; Chavez-Pirson, Arturo; Peyghambarian, N

    2014-03-15

    In-band core-pumped Ho3+-doped ZBLAN fiber lasers at the 1.2 μm region were investigated with different gain fiber lengths. A 2.4 W 1190 nm all-fiber laser with a slope efficiency of 42% was achieved by using a 10 cm long gain fiber pumped at a maximum available 1150 nm pump power of 5.9 W. A 1178 nm all-fiber laser was demonstrated with an output power of 350 mW and a slope efficiency of 6.5%. High Ho3+ doping in ZBLAN is shown to be effective in producing single-frequency fiber lasers and short-length fiber amplifiers immune from stimulated Brillouin scattering.

  18. Determination of short-chain fatty acids in serum by hollow fiber supported liquid membrane extraction coupled with gas chromatography.

    PubMed

    Zhao, Guohua; Liu, Jing-Fu; Nyman, Margareta; Jönsson, Jan Ake

    2007-02-01

    A method based on hollow fiber supported liquid membrane extraction coupled with a gas chromatograph equipped with flame ionization detector (GC-FID) was developed for the determination of six short-chain fatty acids including acetic acid, propionic acid, i-butyric acid, n-butyric acid, i-valeric acid and n-valeric acid in serum. Hollow fiber supported liquid membrane extraction was employed for preconcentration and clean-up of the samples. The fatty acids were extracted from the acidic donor (diluted serum) into a liquid membrane formed in the wall of the hollow fiber with 10% tri-n-octylphoshphine oxide (TOPO) in di-n-hexyl ether, and then extracted back into a basic acceptor solution filled in the lumen of the hollow fiber. After being acidified with HCl, the acceptor was directly analyzed by GC-FID. The acceptor concentration, donor pH, membrane liquid and extracting time were optimized giving an enrichment factor up to 155 times. The good linearity (r(2)>0.980), reasonable recovery (87.2-121%), and satisfactory intra-assay (8.2-11.5%) and inter-assay (6.1-11.6%) precision illustrated the good performance of the present method. Limits of detection (LOD) ranged from 0.04 to 0.24 microM and limits of quantification (LOQ) varied from 0.13 to 0.80 microM. PMID:17070116

  19. The Surface Interface Characteristics of Vertically Aligned Carbon Nanotube and Graphitic Carbon Fiber Arrays Grown by Thermal and Plasma Enhanced Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance; Nguyen, Cattien; Li, Jun; Han, Jie; Meyyappan, M.

    2002-01-01

    The development of nano-arrays for sensors and devices requires the growth of arrays with the proper characteristics. One such application is the growth of vertically aligned carbon nanotubes (CNTs) and graphitic carbon fibers (GCFs) for the chemical attachment of probe molecules. The effectiveness of such an array is dependent not only upon the effectiveness of the probe and the interface between that probe and the array, but also the array and the underlaying substrate. If that array is a growth of vertically aligned CNTs or GCFs then the attachment of that array to the surface is of the utmost importance. This attachment provides the mechanical stability and durability of the array, as well as, the electrical properties of that array. If the detection is to be acquired through an electrical measurement, then the appropriate resistance between the array and the surface need to be fabricated into the device. I will present data on CNTs and GCFs grown from both thermal and plasma enhanced chemical vapor deposition. The focus will be on the characteristics of the metal film from which the CNTs and GCFs are grown and the changes that occur due to changes within the growth process.

  20. DAMAGE MODELING OF INJECTION-MOLDED SHORT- AND LONG-FIBER THERMOPLASTICS

    SciTech Connect

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.; Phelps, Jay; Tucker III, Charles L.

    2009-10-30

    This article applies the recent anisotropic rotary diffusion – reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.

  1. Resistance of plain and steel fiber-reinforced concrete slabs against short ogival projectiles impact

    NASA Astrophysics Data System (ADS)

    Mu, ZhongCheng; Zhang, Wei; Pang, PaoJun; Yang, ZhenQi

    2010-03-01

    Due to the enhanced energy absorption characteristics, the steel fiber-reinforced concrete (SFPC) structures gains more and more attention in the civilian and military ballistic protection structures when comparing with the plain concrete (PC) ones. By comparison on the penetration depth, the crater volume on impact face of the target and the debris cloud topography, the resistance of PC and SFPC slabs against projectiles impacting was investigated experimentally in a two-stage light-gas gun. In order to more widespread understand the effect of steel fibers against projectiles impacting, five different types of concrete slabs were done in the range of unconfined compressive strength from ordinary to high. Through the analysis of the test results it was found that the incorporation of steel fibers in the concrete reduced the crater diameter and restrained the initiation and propagation of cracking, but did not have a significant effect on the penetration depth.

  2. Resistance of plain and steel fiber-reinforced concrete slabs against short ogival projectiles impact

    NASA Astrophysics Data System (ADS)

    Mu, Zhongcheng; Zhang, Wei; Pang, Paojun; Yang, Zhenqi

    2009-12-01

    Due to the enhanced energy absorption characteristics, the steel fiber-reinforced concrete (SFPC) structures gains more and more attention in the civilian and military ballistic protection structures when comparing with the plain concrete (PC) ones. By comparison on the penetration depth, the crater volume on impact face of the target and the debris cloud topography, the resistance of PC and SFPC slabs against projectiles impacting was investigated experimentally in a two-stage light-gas gun. In order to more widespread understand the effect of steel fibers against projectiles impacting, five different types of concrete slabs were done in the range of unconfined compressive strength from ordinary to high. Through the analysis of the test results it was found that the incorporation of steel fibers in the concrete reduced the crater diameter and restrained the initiation and propagation of cracking, but did not have a significant effect on the penetration depth.

  3. The influence of the short-term ultraviolet radiation on the structure and properties of poly(p-phenylene terephthalaramide) fibers

    NASA Astrophysics Data System (ADS)

    Li, Shineng; Gu, Aijuan; Xue, Jie; Liang, Guozheng; Yuan, Li

    2013-01-01

    The influence of the short-term (<20 h) ultraviolet (UV) radiation (at 60 ± 3 °C with a relative humidity of 50 ± 1 RH%) on the integrated performance of poly(p-phenylene terephthalaramide) fibers was comprehensively studied, and the mechanism behind the influence was intensively discussed by detecting the overall changes in both chemical and morphological structures. Results demonstrate that the short-term UV radiation has different effect on the core part from the surface part of PPTA fibers. Specifically, the short-term UV radiation slightly decreases the crystalline index without changing the chemical structure of the core part of PPTA fibers; while that introduces a large amount of oxygen atoms on the surfaces of UV-KF fibers, and induces a distinctive increase in the surface roughness of fibers even the irradiation time is only 1 h. These structural changes make UV-KF fibers show decreased contact angle and improved wettability while remaining the outstanding glass transition temperature. All parameters of tensile properties including tenacity, break extension, energy to break and modulus almost linearly decrease as the irradiation time extends; however, these parameters almost level off when the irradiation time is longer than 3 h. After irradiated for 18 h, the tenacity, break extension, energy to break of UV-KF fiber is 88%, 90%, and 86% of the corresponding value of original fiber, respectively.

  4. Short sample training behavior of Nb-Ti fibers at 4. 2 K

    SciTech Connect

    Wright, L.S.; Judd, B.A.; Ocampo, G.; Hutchison, T.S.

    1987-05-01

    Experimental results are presented for the stress required to cause quenching during successive runs when bare fibers of Nb-Ti are carrying subcritical currents with no cross field. The data fall into two distinct regimes attributed to regions of magnetic flux stability and instability. Microplastic deformation is believed to supply the energy to initiate the flux jump process in the magnetic instability regime, and is the only source of heat available for triggering a quench when the fiber is magnetically stable. In both cases, quenching is observed at stresses well below the mechanically observed elastic limit. Simple techniques for one-step training and detraining are also described.

  5. Modeling the action-potential-sensitive nonlinear-optical response of myelinated nerve fibers and short-term memory

    NASA Astrophysics Data System (ADS)

    Shneider, M. N.; Voronin, A. A.; Zheltikov, A. M.

    2011-11-01

    The Goldman-Albus treatment of the action-potential dynamics is combined with a phenomenological description of molecular hyperpolarizabilities into a closed-form model of the action-potential-sensitive second-harmonic response of myelinated nerve fibers with nodes of Ranvier. This response is shown to be sensitive to nerve demyelination, thus enabling an optical diagnosis of various demyelinating diseases, including multiple sclerosis. The model is applied to examine the nonlinear-optical response of a three-neuron reverberating circuit—the basic element of short-term memory.

  6. Fiber

    MedlinePlus

    ... broccoli, spinach, and artichokes legumes (split peas, soy, lentils, etc.) almonds Look for the fiber content of ... salsa, taco sauce, and cheese for dinner. Add lentils or whole-grain barley to your favorite soups. ...

  7. Over 100 W ultra-flat broadband short-wave infrared supercontinuum generation in a thulium-doped fiber amplifier.

    PubMed

    Yin, Ke; Li, Lei; Yao, Jinmei; Zhang, Bin; Hou, Jing

    2015-10-15

    An ultra-flat high-power short-wave infrared super-continuum (SC) source generated in an all-fiber thulium-doped fiber amplifier (TDFA) is reported. The SC had a high-spectral flatness with a 10 dB spectral bandwidth spanning from 1970 to 2431 nm and a power spectral density >23  dBm/nm. The output SC beam had Gaussian-shape profiles with a maximum average power of 101.6 W, a SC pulse repetition rate of 2 MHz, and a temporal duration of ∼5  ns. Benefiting from the high duty cycle of the 2 μm seed pulses, the power conversion efficiency from the 793 nm pump light to the maximal SC output power in the TDFA was as high as 35.4%, and the slope efficiency of the TDFA was linearly fitted to be 36.5%. Long-term high-power operation of the SC source showed its outstanding temporal stability. To the best of the authors' knowledge, the results obtained in this Letter represent a new power record for ultra-flat SC in the short-wave infrared region. PMID:26469620

  8. Over 100 W ultra-flat broadband short-wave infrared supercontinuum generation in a thulium-doped fiber amplifier.

    PubMed

    Yin, Ke; Li, Lei; Yao, Jinmei; Zhang, Bin; Hou, Jing

    2015-10-15

    An ultra-flat high-power short-wave infrared super-continuum (SC) source generated in an all-fiber thulium-doped fiber amplifier (TDFA) is reported. The SC had a high-spectral flatness with a 10 dB spectral bandwidth spanning from 1970 to 2431 nm and a power spectral density >23  dBm/nm. The output SC beam had Gaussian-shape profiles with a maximum average power of 101.6 W, a SC pulse repetition rate of 2 MHz, and a temporal duration of ∼5  ns. Benefiting from the high duty cycle of the 2 μm seed pulses, the power conversion efficiency from the 793 nm pump light to the maximal SC output power in the TDFA was as high as 35.4%, and the slope efficiency of the TDFA was linearly fitted to be 36.5%. Long-term high-power operation of the SC source showed its outstanding temporal stability. To the best of the authors' knowledge, the results obtained in this Letter represent a new power record for ultra-flat SC in the short-wave infrared region.

  9. Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses

    SciTech Connect

    Kononenko, T. V.; Komlenok, M. S.; Konov, V. I.; Freitag, C.; Onuseit, V.; Weber, R.; Graf, T.

    2014-03-14

    Deep multipass cutting of bidirectional and unidirectional carbon fiber reinforced plastics (CFRP) with picosecond laser pulses was investigated in different static atmospheres as well as with the assistance of an oxygen or nitrogen gas flow. The ablation rate was determined as a function of the kerf depth and the resulting heat affected zone was measured. An assisting oxygen gas flow is found to significantly increase the cutting productivity, but only in deep kerfs where the diminished evaporative ablation due to the reduced laser fluence reaching the bottom of the kerf does not dominate the contribution of reactive etching anymore. Oxygen-supported cutting was shown to also solve the problem that occurs when cutting the CFRP parallel to the fiber orientation where a strong deformation and widening of the kerf, which temporarily slows down the process speed, is revealed to be typical for processing in standard air atmospheres.

  10. Alignment reference device

    DOEpatents

    Patton, Gail Y.; Torgerson, Darrel D.

    1987-01-01

    An alignment reference device provides a collimated laser beam that minimizes angular deviations therein. A laser beam source outputs the beam into a single mode optical fiber. The output end of the optical fiber acts as a source of radiant energy and is positioned at the focal point of a lens system where the focal point is positioned within the lens. The output beam reflects off a mirror back to the lens that produces a collimated beam.

  11. Determination of the nonlinear refractive index of multimode silica fiber with a dual-line ultra-short pulse laser source by using the induced grating autocorrelation technique.

    PubMed

    Traore, Aboubakar; Lalanne, Elaine; Johnson, Anthony M

    2015-06-29

    We measured, within 6% accuracy, the nonlinear refractive index (n2) of 10 meter long multimode silica fiber of 17μm core diameter, using a modified induced grating autocorrelation technique (IGA). This measurement technique, based on time-delayed two beam coupling in a photorefractive crystal has been used to accurately measure n2 in short lengths of single mode fibers. For the first time to our knowledge, IGA is used to measure n2 of multimode fiber with a passively modelocked Nd:YVO4 laser operating with a dual-line near 1342 nm. PMID:26191721

  12. Short-term modulation of cerebellar Purkinje cell activity after spontaneous climbing fiber input.

    PubMed

    Sato, Y; Miura, A; Fushiki, H; Kawasaki, T

    1992-12-01

    1. There are two opposite points of view concerning the way climbing fiber input in a Purkinje cell modifies simple spike (SS) activity transiently: depression versus enhancement of SS activity. The different groups of investigators favored one effect predominating over the other. In the decerebrate unanesthetized cat, we recorded spontaneous activity of single Purkinje cells and investigated time course of SS activity after the complex spike (CS). 2. In the peri-CS time histogram, there was a SS pause lasting, on average, 10.8 ms after onset of the CS in all of the 316 cells recorded. The pause was followed by a rapid increase in SS activity to a maximum, which was on average 175.6% of a pre-CS control level, and a gradual return to around the control level in the majority of the cells recorded (pause-facilitation type, 71.2%). The increase in SS activity was significant (P < 0.01, t test) during 20-100 ms. The SS activity during the 20-100 ms was, on average, 163.7% of the control level. In some cells (pure-pause type, 25.3%), no significant changes were found (P > 0.01) in the post-pause SS firing. In contrast, only 3.5% of the cells (pause-reduction type) showed a significant (P < 0.01) firing decrease (average 54.0% of the control level) lasting 20-60 ms after the pause period. 3. Analysis of the pre-CS time histogram revealed no significant differences (P > 0.01) in the SS activity between pre-CS periods in all of the cells recorded, suggesting that the SS activity enhancement is not due to a coactivated mossy fiber input just preceding the activation of the climbing fiber input. 4. Analysis of the raster diagram revealed variability of individual SS responses after the CS. The probability of occurrence of the increase in SS number during a post-CS period of 0-100 ms with respect to that during a pre-CS period of -100-0 ms in individual raster traces was high (on average 78.2%), medium (57.3%), and low (36.3%) in the pause-facilitation, pure-pause, and pause

  13. Effects of dietary fibers and their mixtures on short chain fatty acids and microbiota in mice guts.

    PubMed

    Peng, Xichun; Li, Shaoting; Luo, Jianming; Wu, Xiyang; Liu, Liu

    2013-06-01

    Dietary fiber (DF) can be broken down into short-chain fatty acids (SCFAs) such as acetic, propionic and n-butyric acid by gut microbiota to obtain energy. Therefore, dietary fibers have effects on the balance of gut microbiota and the production of SCFAs. In the four-week feeding, mice were fed with four dietary fibers, including pectin, resistant starch (RS), fructo-oligosaccharide (FOS) and cellulose. The results showed that the mice body-weight gain was the smallest (7.0 ± 2.3 g) when the mixture of RS-FOS-cellulose was ingested, followed by the mixture of RS-cellulose (7.2 ± 3.5 g) and FOS-cellulose (8.3 ± 2.5 g). Ingestion of the mixture of pectin-FOS-cellulose, RS-FOS and RS-FOS-cellulose can respectively increase the diversity of the gut microbiota with 12, 11 and 11 terminal restriction fragments (TRFs) detected (digested by Hha I). The maximum amount of total SCFAs were produced by the mixture of FOS-cellulose (5.504 ± 0.029 μmol mL(-1)), followed by pectin-FOS-cellulose (3.893 ± 0.024 μmol mL(-1)) and pectin-RS-FOS-cellulose (3.309 ± 0.047 μmol mL(-1)). In conclusion, the addition of DFs (pectin, RS, FOS and cellulose), in single or mixture pattern, can exert different effects. An amount of 10.7% of single DF in the diet cannot be conducive to the balance of gut microbiota after ingestion for a long time, however, it can help with body weight loss like the mixtures of DFs in this study; FOS is a very important component in the mixture of DFs for both the balance of the gut microbiota and the production of SCFAs.

  14. Molecular weight distribution of soluble fiber fractions and short chain fatty acids in ileal digesta of growing pigs.

    PubMed

    Ivarsson, E; Andersson, R; Lindberg, J E

    2012-12-01

    The effect of dietary fiber source on molecular weight (MW) distribution of soluble fiber fractions and short chain fatty acids (SCFA) in ileal digesta of 7 post valve T-cecum (PVTC) cannulated growing pigs was studied. Pigs were fed semisynthetic diets with sugar beet (Beta vulgaris) pulp (SBP) or chicory (Cichorium intybus) forage (CFO) as fiber sources of which the soluble nonstarch polysaccharide (NSP) fraction originated mainly from pectin. Three MW intervals were selected-large MW (MWL): 10,000,000 to 1,000,000 g/mol, medium MW (MWM): 1,000,000 to 200,000 g/mol, and small MW (MWS): 200,000 to 10,000 g/mol-and the relative distribution (% of total) of molecules in each interval was calculated. The MWM fraction was higher (P < 0.05) in ileal digesta of pigs fed diet SBP and the MWS fraction was higher (P < 0.05) in ileal digesta of pigs fed diet CFO. The mole/100 mole of propionic acid (HPr) was higher (P < 0.010) in pigs fed diet SBP whereas pigs fed diet CFO had higher (P < 0.010) mole/100 mole of acetic acid (HAc). The proportion of the MWL and MWM fractions in ileal digesta were negatively correlated to HAc (r = -0.52, P = 0.05, and r = -0.62, P = 0.02, respectively). The proportion of MWM in ileal digesta was positively correlated to HPr (r = 0.83; P = 0.001) whereas MWS and HPr were negatively correlated (r = -0.76; P = 0.002). In conclusion, the bacterial degradation of the soluble NSP fraction is selective and MW distribution may explain differences in SCFA production.

  15. Er(3)/Yb(3)-codoped phosphate glass for short-length high-gain fiber lasers and amplifiers.

    PubMed

    Wang, Fengxiao; Song, Feng; An, Shuangxin; Wan, Wenshun; Guo, Hao; Liu, Shujing; Tian, Jianguo

    2015-02-10

    Er(3)/Yb(3)-codoped phosphate glass with compositions of (78.2-x)P(2)O(5)-14Al(2)O(3)-5Li(2)O-1K(2)O-1.8Yb(2)O(3)-xEr(2)O(3)(x=0.2,0.4,0.6) in mol. % were investigated. Judd-Ofelt (JO) intensity parameters have been calculated to predict radiative properties based on absorption spectra. The stimulated emission cross section (σ(e)) calculated according to McCumber theory was 1.50×10(-20)  cm(2), almost twice larger than values reported before. The effective line width (Δ(eff)), full width at half-maximum (FWHM) and the quality parameters for designing optical amplifier devices were listed in the table compared with other types of phosphate glass matrices. A theoretical model of a Er(3)/Yb(3)-codoped system based on rate and power propagation equations was put forward to investigate the potential advantages of the materials applied for short-length, high-gain fiber amplifiers. A simulated gain of 32.2 and 2.6  dB/cm per unit length was achieved in 12.5-cm-long fiber. PMID:25968040

  16. No difference in fecal levels of bacteria or short chain fatty acids in humans, when consuming fruit juice beverages containing fruit fiber, fruit polyphenols, and their combination.

    PubMed

    Wallace, Alison J; Eady, Sarah L; Hunter, Denise C; Skinner, Margot A; Huffman, Lee; Ansell, Juliet; Blatchford, Paul; Wohlers, Mark; Herath, Thanuja D; Hedderley, Duncan; Rosendale, Douglas; Stoklosinski, Halina; McGhie, Tony; Sun-Waterhouse, Dongxiao; Redman, Claire

    2015-01-01

    This study examined the effect of a Boysenberry beverage (750 mg polyphenols), an apple fiber beverage (7.5 g dietary fiber), and a Boysenberry plus apple fiber beverage (750 mg polyphenols plus 7.5 g dietary fiber) on gut health. Twenty-five individuals completed the study. The study was a placebo-controlled crossover study, where every individual consumed 1 of the 4 treatments in turn. Each treatment phase was 4-week long and was followed by a 2-week washout period. The trial beverages were 350 g taken in 2 doses every day (ie, 175 mL taken twice daily). The hypothesis for the study was that the combination of polyphenols and fiber would have a greater benefit on gut health than the placebo product or the fiber or polyphenols on their own. There were no differences in fecal levels of total bacteria, Bacteroides-Prevotella-Porphyromonas group, Bifidobacteriumspecies, Clostridium perfringens, or Lactobacillus species among any of the treatment groups. Fecal short chain fatty acid concentrations did not vary among treatment groups, although prostaglandin E2 concentrations were higher after consumption of the Boysenberry juice beverage. No significant differences were found in quantitative measures of gut health between the Boysenberry juice beverage, the apple fiber beverage, the Boysenberry juice plus apple fiber beverage, and the placebo beverage.

  17. Understanding the cotton fiber elongation process using short fiber mutants, the Ligon lintless-1 (Li1) and -2 (Li2) as an experiment model system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The length of cotton fiber is an important agronomic trait that directly affects the quality of yarn and fabric. Understanding the molecular basis of fiber elongation would provide a means for improvement of fiber length. Ligon lintless-1 (Li1) and Ligon lintless-2 (Li2) are monogenic and dominant m...

  18. Industry/government collaborations on short-rotation woody crops for energy, fiber and wood products

    SciTech Connect

    Wright, L.L.; Berg, S.

    1996-12-31

    More than twenty-five organizations can be identified in the US and Canada that have research plantings of 20 ha in size or greater of short-rotation woody crops and most of those are well-established forest products companies. In 1990, only 9 forest products companies had commercial or substantial research plantings of short-rotation woody crops. The recent harvest and use of hybrid poplars for pulp and paper production in the Pacific Northwest has clearly stimulated interest in the use of genetically superior hybrid poplar clones across North America. Industry and government supported research cooperatives have been formed to develop sophisticated techniques for producing genetically superior hybrid poplars and willows suited for a variety of locations in the US. While the primary use of commercially planted short-rotation woody crops is for pulp and paper, energy is a co-product in most situations. A document defining a year 2020 technology vision for America`s forest, wood and paper industry affirms that {open_quotes}biomass will be used not only for building materials and paper and paperboard products, but also increasingly for steam, power, and liquid fuel production.{close_quotes} To accomplish the goals of {open_quotes}Agenda 2020{close_quotes} a new collaborative research effort on sustainable forestry has been initiated by the Department of Energy (DOE) and the American Forest and Paper Association (AF&PA). Both the new and old collaborative efforts are focusing on achieving substantial and sustainable gains in U.S. wood production for both energy and traditional wood products. AF&PA and DOE hope that industry and government partnerships addressing the competitiveness and energy efficiency of U.S. industries, can serve as a model for future research efforts.

  19. Fiber optic coupled optical sensor

    DOEpatents

    Fleming, Kevin J.

    2001-01-01

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  20. High-speed, bi-directional dual-core fiber transmission system for high-density, short-reach optical interconnects

    NASA Astrophysics Data System (ADS)

    Geng, Ying; Li, Shenping; Li, Ming-Jun; Sutton, Clifford G.; McCollum, Robert L.; McClure, Randy L.; Koklyushkin, Alexander V.; Matthews, Karen I.; Luther, James P.; Butler, Douglas L.

    2015-03-01

    A complete single mode dual-core fiber system for short-reach optical interconnects is fabricated and tested for high-speed data transmission. It includes dual-core fibers capable of bi-directional data transmission, dual-core simplex LC connectors, and fan-outs. The transmission system offers simplified bi-directional traffic engineering with integrated bidirectional transceivers and compact system design, utilizing simplex dual-core LC connectors that use half the space while increasing the bandwidth density by a factor of two. The fiber has two cores that are compatible with single mode fiber and conforms to the industry standard outer diameter of 125 μm. This reduces operational complexity by reducing the size and number of fibers, cables and connectors. Measured OTDR loss for both cores was 0.34 dB/km at 1310 nm and 0.19 dB/km at 1550 nm. Crosstalk for a piece of 5.8 km long dual-core fiber was measured to be below -75 dB at 1310 nm, and below -40 dB at 1550 nm. Both free-space optics fan-outs and tapered-fiber-coupler based MCF fan-outs were evaluated for the transmission system. Error-free and penalty-free 25 Gb/s bi-directional transmission performance was demonstrated for three different fiber lengths, 200 m, 2 km and 10 km, using the complete all-fiber-based system including connectors and fan-outs. This single mode, dual-core fiber transmission system adds complementary value to systems where additional increases in bandwidth density can come from wavelength division multiplexing and multiple bits per symbol.

  1. Short-Term Exposure of Zebrafish Embryos to Arecoline Leads to Retarded Growth, Motor Impairment, and Somite Muscle Fiber Changes

    PubMed Central

    Peng, Wei-Hau; Lee, Yen-Chia; Chau, Yat-Pang

    2015-01-01

    Abstract The areca nut-chewing habit is common in Southeast Asia, India, and Taiwan, and arecoline is the most abundant and potent component in the areca nut. The effects of arecoline on birth defects have been explored in many species, including chicken, mice, and zebrafish. The effects of arecoline on embryos after long-term exposure are well established; however, the effects of short-term embryo exposure to arecoline are not understood. Using zebrafish, we study the effects of short-term exposure of arecoline on embryos to model the human habit of areca nut-chewing during early pregnancy. Arecoline, at concentrations from 0.001% to 0.04%, was administered to zebrafish embryos from 4 to 24 hours post fertilization. The morphological changes, survival rates, body length, and skeletal muscle fiber structure were then investigated by immunohistochemistry, confocal microscopy, and conventional electron microscopy. With exposure of embryos to increasing arecoline concentrations, we observed a significant decline in the hatching and survival rates, general growth retardation, lower locomotor activity, and swimming ability impairment. Immunofluorescent staining demonstrated a loose arrangement of myosin heavy chains, and ultrastructural observations revealed altered myofibril arrangement and swelling of the mitochondria. In addition, the results of flow-cytometry and JC-1 staining to assay mitochondria activity, as well as reverse transcription–polymerase chain reaction analyses of functional gene expression, revealed mitochondrial dysfunctions after exposure to arecoline. We confirmed that short-term arecoline exposure resulted in retarded embryonic development and decreased locomotor activity due to defective somitic skeletal muscle development and mitochondrial dysfunction. PMID:25549301

  2. Short-term exposure of zebrafish embryos to arecoline leads to retarded growth, motor impairment, and somite muscle fiber changes.

    PubMed

    Peng, Wei-Hau; Lee, Yen-Chia; Chau, Yat-Pang; Lu, Kuo-Shyan; Kung, Hsiu-Ni

    2015-02-01

    The areca nut-chewing habit is common in Southeast Asia, India, and Taiwan, and arecoline is the most abundant and potent component in the areca nut. The effects of arecoline on birth defects have been explored in many species, including chicken, mice, and zebrafish. The effects of arecoline on embryos after long-term exposure are well established; however, the effects of short-term embryo exposure to arecoline are not understood. Using zebrafish, we study the effects of short-term exposure of arecoline on embryos to model the human habit of areca nut-chewing during early pregnancy. Arecoline, at concentrations from 0.001% to 0.04%, was administered to zebrafish embryos from 4 to 24 hours post fertilization. The morphological changes, survival rates, body length, and skeletal muscle fiber structure were then investigated by immunohistochemistry, confocal microscopy, and conventional electron microscopy. With exposure of embryos to increasing arecoline concentrations, we observed a significant decline in the hatching and survival rates, general growth retardation, lower locomotor activity, and swimming ability impairment. Immunofluorescent staining demonstrated a loose arrangement of myosin heavy chains, and ultrastructural observations revealed altered myofibril arrangement and swelling of the mitochondria. In addition, the results of flow-cytometry and JC-1 staining to assay mitochondria activity, as well as reverse transcription-polymerase chain reaction analyses of functional gene expression, revealed mitochondrial dysfunctions after exposure to arecoline. We confirmed that short-term arecoline exposure resulted in retarded embryonic development and decreased locomotor activity due to defective somitic skeletal muscle development and mitochondrial dysfunction.

  3. A novel approach for preparation of aligned electrospun polyacrylonitrile nanofibers

    NASA Astrophysics Data System (ADS)

    Heidari, Iman; Mosavi Mashhadi, Mahmoud; Faraji, Ghader

    2013-12-01

    In this Letter, a new type of collector named ‘rotating grid collector’ was introduced and its capability in aligning the nanofibers was examined. The results showed that electrospinning using rotating grid collector could produce well aligned fibers with fiber alignment percent of 76%. It was found that in a constant solution flow rate increasing collector rotation speed and eccentric distance improved the fiber alignments. Having prepared the fiber textiles, we found that increasing the rotation speed improved the tensile strength of the fiber textile. This new collector is promising for future application in aligning nanofibers.

  4. Use of the short-term inflammatory response in the mouse peritoneal cavity to assess the biological activity of leached vitreous fibers.

    PubMed Central

    Donaldson, K; Addison, J; Miller, B G; Cullen, R T; Davis, J M

    1994-01-01

    We used a special-purpose glass microfiber sample, Johns-Manville Code 100/475, to study the effects of various acid and alkali treatments on biological activity as assessed by inflammation in the mouse peritoneal cavity, the leaching of Si, and the phase contrast optical microscopy (PCOM) fiber number. We used mild and medium treatments with oxalic acid and Tris buffer and harsh treatment with concentrated HCl and NaOH. Mild oxalic acid and Tris treatment for 2 weeks had no effect on any of the end-points, but prolonging the mild oxalic acid treatment time to 2 months reduced the biological activity and the fiber number. Medium oxalic acid treatment reduced the biological activity and the fiber number and caused a loss of Si. Medium Tris alkali treatment reduced the PCOM-countable fibers and the biological activity but did not cause a substantial loss of Si. Harsh treatment with strong HCl did not affect the fiber number or cause leaching but the biological activity was reduced; strong NaOH reduced the fiber number and biological activity, and caused marked leaching of Si. The medium oxalic acid conditions (pH 1.4) were more acid than those found in lung cells but produced the same effects (reduction in fiber number and biological activity) as the more physiological mild treatment (pH 4.0), when prolonged. This study suggests that medium oxalic acid treatment can be used as a short-term assay to compare loss of Si, reduction in fiber number, and change in biological activity of vitreous fibers.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882922

  5. The influence of fiber orientation on the equilibrium properties of neutral and charged biphasic tissues.

    PubMed

    Nagel, Thomas; Kelly, Daniel J

    2010-11-01

    Constitutive models facilitate investigation into load bearing mechanisms of biological tissues and may aid attempts to engineer tissue replacements. In soft tissue models, a commonly made assumption is that collagen fibers can only bear tensile loads. Previous computational studies have demonstrated that radially aligned fibers stiffen a material in unconfined compression most by limiting lateral expansion while vertically aligned fibers buckle under the compressive loads. In this short communication, we show that in conjunction with swelling, these intuitive statements can be violated at small strains. Under such conditions, a tissue with fibers aligned parallel to the direction of load initially provides the greatest resistance to compression. The results are further put into the context of a Benninghoff architecture for articular cartilage. The predictions of this computational study demonstrate the effects of varying fiber orientations and an initial tare strain on the apparent material parameters obtained from unconfined compression tests of charged tissues.

  6. Tracing short connections of the temporo-parieto-occipital region in the human brain using diffusion spectrum imaging and fiber dissection.

    PubMed

    Wu, Yupeng; Sun, Dandan; Wang, Yong; Wang, Yunjie; Wang, Yibao

    2016-09-01

    The temporo-parieto-occipital (TPO) junction plays a unique role in human high-level neurological functions. Long-range fibers from and to this area have been described in detail but little is known about short TPO tracts mediating local connectivity. In this study, we performed high angular diffusion spectrum imaging (DSI) analyses to visualize the short TPO connections in the human brain. Fiber tracking was conducted on a subject-specific approach (10 subjects) and a template of 90 subjects (NTU-90 Atlas). Three tracts were identified: posterior segment of the superior longitudinal fasciculus (SLF-V), connecting the posterior part of the middle and inferior temporal gyri with the angular gyrus and supramarginal gyrus, vertical occipital fasciculus (VOF), connecting the inferior parietal with the lower temporal and occipital lobe, and a novel temporo-parietal (TP) connection, interconnecting the inferior temporal gyrus, middle temporal gyrus and fusiform gyrus, and inferior occipital lobe with the superior parietal lobe. These studies were complemented by fiber dissection techniques. It is the first study that demonstrated the trajectory and connectivity of the VOF using fiber dissection, as well as displayed the spatial relationship of the SLF-V with the cortex and the adjacent fiber bundles on one dissecting hemisphere. By providing a more accurate and detailed description of the local connectivity of the TPO junction, our findings help to develop new insights into its functional role in the human brain. PMID:27235864

  7. Short-Term Hypocaloric High-Fiber and High-Protein Diet Improves Hepatic Steatosis Assessed by Controlled Attenuation Parameter

    PubMed Central

    Arslanow, Anita; Teutsch, Melanie; Walle, Hardy; Grünhage, Frank; Lammert, Frank; Stokes, Caroline S

    2016-01-01

    OBJECTIVES: Non-alcoholic fatty liver disease is one of the most prevalent liver diseases and increases the risk of fibrosis and cirrhosis. Current standard treatment focuses on lifestyle interventions. The primary aim of this study was to assess the effects of a short-term low-calorie diet on hepatic steatosis, using the controlled attenuation parameter (CAP) as quantitative tool. METHODS: In this prospective observational study, 60 patients with hepatic steatosis were monitored during a hypocaloric high-fiber, high-protein diet containing 1,000 kcal/day. At baseline and after 14 days, we measured hepatic fat contents using CAP during transient elastography, body composition with bioelectrical impedance analysis, and serum liver function tests and lipid profiles using standard clinical–chemical assays. RESULTS: The median age was 56 years (25–78 years); 51.7% were women and median body mass index was 31.9 kg/m2 (22.4–44.8 kg/m2). After 14 days, a significant CAP reduction (14.0% P<0.001) was observed from 295 dB/m (216–400 dB/m) to 266 dB/m (100–353 dB/m). In parallel, body weight decreased by 4.6% (P<0.001), of which 61.9% was body fat. In addition, liver stiffness (P=0.002), γ-GT activities, and serum lipid concentrations decreased (all P<0.001). CONCLUSIONS: This study shows for the first time that non-invasive elastography can be used to monitor rapid effects of dietary treatment for hepatic steatosis. CAP improvements occur after only 14 days on short-term low-calorie diet, together with reductions of body composition parameters, serum lipids, and liver enzymes, pointing to the dynamics of hepatic lipid turnover. PMID:27311064

  8. Fixed-bed column study for hexavalent chromium removal and recovery by short-chain polyaniline synthesized on jute fiber.

    PubMed

    Kumar, Potsangbam Albino; Chakraborty, Saswati

    2009-03-15

    Fixed-bed column studies were conducted to evaluate performance of a short-chain polymer, polyaniline, synthesized on the surface of jute fiber (PANI-jute) for the removal of hexavalent chromium [Cr(VI)] in aqueous environment. Influent pH, column bed depth, influent Cr(VI) concentrations and influent flow rate were variable parameters for the present study. Optimum pH for total chromium removal was observed as 3 by electrostatic attraction of acid chromate ion (HCrO(4)(-)) with protonated amine group (NH(3)(+)) of PANI-jute. With increase in column bed depth from 40 to 60 cm, total chromium uptake by PANI-jute increased from 4.14 to 4.66 mg/g with subsequent increase in throughput volume from 9.84 to 12.6L at exhaustion point. The data obtained for total chromium removal were well described by BDST equation till 10% breakthrough. Adsorption rate constant and dynamic bed capacity at 10% breakthrough were observed as 0.01 L/mgh and 1069.46 mg/L, respectively. Adsorbed total chromium was recovered back from PANI-jute as non-toxic Cr(III) after ignition with more than 97% reduction in weight, minimizing the problem of solid waste disposal.

  9. A short baseline strainmeter using fiber-optic Bragg-Grating (FBG) sensor and a nano-optic interferometer

    NASA Astrophysics Data System (ADS)

    Coutant, O.; Demengin, M.; Le Coarer, E.; Gaffet, S.

    2013-12-01

    Strain recordings from tiltmeters or borehole volumetric strainmeters on volcanoes reveal extremely rich signal of deformation associated with eruptive processes. The ability to detect and record signals of the order of few tens of nanostrain is complementary to other monitoring techniques, and of great interest to monitor and model the volcanic processes. Strain recording remains however a challenge, for both the instrumental and the installation point of view. We present in this study the first results of strain recordings, using a new fiber-optic Bragg-Grating (FBG) sensor. FBG sensors are known for many years and used as strain gauges in civil engineering. They are however limited in this case to microstrain capability. We use here a newly developped interferometer named SWIFTS whose main characteristics are i) an extremely high optical wavelength precision and ii) a small design and low power requirements allowing an easy field deployment. Our FBG sensor uses a short baseline, 3cm long Bragg network. We show preliminary results obtained from a several months recordings in the low noise underground laboratory at Rustrel (LSBB), south of France.

  10. Tensile properties of short fiber-reinforced SiC/Ai composites: Part I. effects of matrix precipitates

    NASA Astrophysics Data System (ADS)

    Papazian, J. M.; Adler, P. N.

    1990-01-01

    The tensile behavior of aluminum matrix composites reinforced with 8 and 20 pet SiC whiskers or paniculate was characterized. Two matrix alloys were employed, a solution-hardened Al-Mg alloy (5456) and a precipitation-hardened Al-Cu-Mg alloy (2124). The precipitation-hardened alloy was aged to develop a variety of precipitate microstructures. It was found that additions of SiC caused monotonie increases in the elastic modulus, 0.2 pct offset yield stress, work-hardening rate, and ultimate tensile stress. The proportional limit, however, was found to first decrease and then increase with SiC content. Whiskers caused a greater increase in the longitudinal elastic modulus than particles. For the 2124 alloy, it was found that the proportional limit could be varied between 60 and 650 MPa by changing the precipitate microstructure, while changes in the SiC content had much smaller effects. These observations are discussed in relation to current theories of the strengthening of short fiber composites, with primary emphasis being placed on the effects of SiC additions on the elastic modulus and the work-hardening rate.

  11. Bonding performance and interfacial characteristics of short fiber-reinforced resin composite in comparison with other composite restoratives.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2016-06-01

    The purpose of this study was to investigate the shear bond strength (SBS) and surface free-energy (SFE) of short fiber-reinforced resin composite (SFRC), using different adhesive systems, in comparison with other composite restoratives. The resin composites used were everX Posterior (EP), Clearfil AP-X (CA), and Filtek Supreme Ultra Universal Restorative (FS). The adhesive systems used were Scotchbond Multi-Purpose (SM), Clearfil SE Bond (CS), and G-Premio Bond (GB). Resin composite was bonded to dentin, and SBS was determined after 24 h of storage in distilled water and after 10,000 thermal cycles (TCs). The SFEs of the resin composites and the adhesives were determined by measuring the contact angles of three test liquids. The SFE values and SFE characteristics were not influenced by the type of resin composite, but were influenced by the type of adhesive system. The results of this study suggest that the bonding performance and interfacial characteristics of SFRC are the same as for other composite restoratives, but that these parameters are affected by the type of adhesive system. The bonding performance of SFRC was enhanced by thermal cycling in a manner similar to that for other composite restoratives.

  12. Mechanical resistance evaluation of a novel anatomical short glass fiber reinforced post in artificial endodontically treated premolar under rotational/lateral fracture fatigue testing.

    PubMed

    Wang, Hsuan-Wen; Chang, Yen-Hsiang; Lin, Chun-Li

    2016-01-01

    This study develops a novel anatomical short glass fiber reinforced (anatomical SGFR) post and evaluates the mechanical performance in artificial endodontically treated premolars. An anatomical SGFR fiber post with an oval shape and slot/notch designs was manufactured using an injection-molding machine. The three-point bending test and crown/core restorations using the anatomical SGFR and commercial cylindrical fiber posts under fatigue test were executed to understand the mechanical resistances. The results showed that static and dynamic rotational resistance were found significantly higher in the anatomical SGFR fiber post than in the commercial post. The endurance limitations at 1.2×10(6) cycles were 66.81 and 64.77 N for the anatomical SGFR and commercial fiber posts, respectively. The anatomical SGFR fiber post presented acceptable value of flexural strength and modulus, better fit adaption in the root canal resist torque more efficiency but was not a key issue in the lateral fracture resistance in an endodontically treated premolar. PMID:27041013

  13. Mechanical resistance evaluation of a novel anatomical short glass fiber reinforced post in artificial endodontically treated premolar under rotational/lateral fracture fatigue testing.

    PubMed

    Wang, Hsuan-Wen; Chang, Yen-Hsiang; Lin, Chun-Li

    2016-01-01

    This study develops a novel anatomical short glass fiber reinforced (anatomical SGFR) post and evaluates the mechanical performance in artificial endodontically treated premolars. An anatomical SGFR fiber post with an oval shape and slot/notch designs was manufactured using an injection-molding machine. The three-point bending test and crown/core restorations using the anatomical SGFR and commercial cylindrical fiber posts under fatigue test were executed to understand the mechanical resistances. The results showed that static and dynamic rotational resistance were found significantly higher in the anatomical SGFR fiber post than in the commercial post. The endurance limitations at 1.2×10(6) cycles were 66.81 and 64.77 N for the anatomical SGFR and commercial fiber posts, respectively. The anatomical SGFR fiber post presented acceptable value of flexural strength and modulus, better fit adaption in the root canal resist torque more efficiency but was not a key issue in the lateral fracture resistance in an endodontically treated premolar.

  14. Short vegetal-fiber reinforced HDPE-A study of electron-beam radiation treatment effects on mechanical and morphological properties

    NASA Astrophysics Data System (ADS)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R.; Guven, Olgun; Moura, Esperidiana A. B.

    2014-08-01

    The effects of electron-beam radiation treatment on fiber-matrix adhesion and mechanical properties of short piassava fibers reinforced high density polyethylene (HDPE) matrix were studied. Glycidyl methacrylate (GMA) was added at 2.5% and 5.0% (on piassava fiber wt) as a cross-linking agent and the effects upon the properties of the resulting composites treated by electron-beam radiation were also examined. HDPE reinforced with short piassava fiber composites was prepared by melt-mixing processing, using a twin screw extruder machine. The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. Material samples were submitted to mechanical and thermo-mechanical tests and SEM analyses. Correlation between properties was discussed. The comparison of mechanical and thermo-mechanical properties of the composites showed that electron-beam radiation treatment produced a significant improvement in mechanical properties, when compared with the non-irradiated composite sample and neat HDPE. Scanning electron microscopy (SEM) studies of the composite failure surfaces indicated that there was an improved adhesion between fiber and matrix. Examination of the failure surfaces indicated dependence of the interfacial adhesion upon the radiation dose and GMA content. Better interfacial adhesion between fiber and HDPE matrix was observed for composites with 5.0% GMA addition and treated with electron-beam radiation dose of 200 kGy. It can be concluded that GMA addition followed by electron-beam irradiation treatment, at the doses studied in this work, effectively improved the HDPE properties and led to the obtaining of composite materials with superior properties suitable for several industrial applications.

  15. Fibrillogenesis in Continuously Spun Synthetic Collagen Fiber

    PubMed Central

    Caves, Jeffrey M.; Kumar, Vivek A.; Wen, Jing; Cui, Wanxing; Martinez, Adam; Apkarian, Robert; Coats, Julie E.; Berland, Keith; Chaikof, Elliot L.

    2013-01-01

    The universal structural role of collagen fiber networks has motivated the development of collagen gels, films, coatings, injectables, and other formulations. However, reported synthetic collagen fiber fabrication schemes have either culminated in short, discontinuous fiber segments at unsuitably low production rates, or have incompletely replicated the internal fibrillar structure that dictates fiber mechanical and biological properties. We report a continuous extrusion system with an off-line phosphate buffer incubation step for the manufacture of synthetic collagen fiber. Fiber with a cross-section of 53±14 by 21±3 µm and an ultimate tensile strength of 94±19 MPa was continuously produced at 60 m/hr from an ultrafiltered monomeric collagen solution. The effect of collagen solution concentration, flow rate, and spinneret size on fiber size was investigated. The fiber was further characterized by microdifferential scanning calorimetry, transmission electron microscopy (TEM), second harmonic generation (SHG) analysis, and in a subcutaneous murine implant model. Calorimetry demonstrated stabilization of the collagen triple helical structure, while TEM and SHG revealed a dense, axially aligned D-periodic fibril structure throughout the fiber cross-section. Implantation of glutaraldehyde crosslinked and non-crosslinked fiber in the subcutaneous tissue of mice demonstrated limited inflammatory response and biodegradation after a 6-week implant period. PMID:20024969

  16. Thin gas cell with GRIN fiber lens for intra-cavity fiber laser gas sensors

    NASA Astrophysics Data System (ADS)

    Li, Mo; Dai, Jing-min; Peng, Gang-ding

    2009-07-01

    Fiber laser gas sensors based on the intra-cavity absorption spectroscopy require the use of gas cells. We propose a simple and reliable gas cell using graded-index fiber lens (GFL) based all-fiber collimator. Conventional gas cells usually utilize direct fiber-to-fiber coupling without collimators or graded-index (GRIN) lens as collimators. Direct fiberto- fiber gas cell has simple configuration, but it suffers from high coupling loss and stray light interference. Gas cells applying fiber pigtailed GRIN lens are advantageous to achieve low coupling loss. However, fiber pigtailed GRIN lens requires accurate and complicated alignment and glue packaging which could compromise long term reliability and thermal stability. The proposed technique fabricates all-fiber collimators by simply splicing a short section of gradedindex fiber to single mode fiber which is both compact and durable. With that collimator, the gas cell can be fabricated very thin and are suitable for extreme environments with high temperature and vibration. In this paper, we have carried out experiment and analysis to evaluate the proposed technique. The coupling efficiency is studied versus different GFL gradient parameter profiles using ray matrix transformation of the complex beam parameter. Experiments are also done to prove the practical feasibility of the collimator. The analysis indicates that gas cell using GFLs can overcome the disadvantages of traditional design; it may replace the conventional gas cells in practical applications.

  17. Age, dietary fiber, breath methane, and fecal short chain fatty acids are interrelated in Archaea-positive humans.

    PubMed

    Fernandes, Judlyn; Wang, Angela; Su, Wen; Rozenbloom, Sari Rahat; Taibi, Amel; Comelli, Elena M; Wolever, Thomas M S

    2013-08-01

    Recent attention has focused on the significance of colonic Archaea in human health and energy metabolism. The main objectives of this study were to determine the associations among the number of fecal Archaea, body mass index (BMI), fecal short chain fatty acid (SCFA) concentrations, and dietary intakes of healthy humans. We collected demographic information, 3-d diet records, and breath and fecal samples from 95 healthy participants who were divided into 2 groups: detectable Archaea (>10(6) copies/g; Arch+ve) and undetectable Archaea. Dietary intakes, BMI, and fecal SCFAs were similar in both groups. The mean number of Archaea 16S rRNA gene copies detected in Arch+ve participants' feces was 8.9 ± 0.2 log/g wet weight. In Arch+ve participants, there were positive correlations between breath methane and age (r = 0.52; P = 0.001), total dietary fiber (TDF) intake (r = 0.57; P = 0.0003), and log number of fecal Archaea 16S rRNA gene copies (r = 0.35; P = 0.03). In the Arch+ve group, negative correlations were observed between TDF/1000 kcal and fecal total SCFA (r = -0.46; P ≤ 0.01) and between breath methane and fecal total SCFA (r = -0.42; P = 0.01). Principal component analysis identified a distinct Archaea factor with positive loadings of age, breath methane, TDF, TDF/1000 kcal, and number of log Archaea 16S rRNA gene copies. The results suggest that colonic Archaea is not associated with obesity in healthy humans. The presence of Archaea in humans may influence colonic fermentation by altering SCFA metabolism and fecal SCFA profile.

  18. Small RNA sequencing and degradome analysis of developing fibers of short fiber mutants Ligon-lintles-1 (Li1) and -2 (Li2) revealed a role for miRNAs and their targets in cotton fiber elongation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The length of cotton fiber is an important agronomic trait that directly affects the quality of yarn and fabric. Understanding the molecular basis of fiber elongation would provide a means for improvement of fiber length. Ligon-lintless-1 (Li1) and -2 (Li2) are monogenic and dominant mutations that ...

  19. Transcript profiling by microarray and marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant Ligon lintless-1 (Li1)

    PubMed Central

    2013-01-01

    Background Cotton fiber length is very important to the quality of textiles. Understanding the genetics and physiology of cotton fiber elongation can provide valuable tools to the cotton industry by targeting genes or other molecules responsible for fiber elongation. Ligon Lintless-1 (Li1) is a monogenic mutant in Upland cotton (Gossypium hirsutum) which exhibits an early cessation of fiber elongation resulting in very short fibers (< 6 mm) at maturity. This presents an excellent model system for studying the underlying molecular and cellular processes involved with cotton fiber elongation. Previous reports have characterized Li1 at early cell wall elongation and during later secondary cell wall synthesis, however there has been very limited analysis of the transition period between these developmental time points. Results Physical and morphological measurements of the Li1 mutant fibers were conducted, including measurement of the cellulose content during development. Affymetrix microarrays were used to analyze transcript profiles at the critical developmental time points of 3 days post anthesis (DPA), the late elongation stage of 12 DPA and the early secondary cell wall synthesis stage of 16 DPA. The results indicated severe disruption to key hormonal and other pathways related to fiber development, especially pertaining to the transition stage from elongation to secondary cell wall synthesis. Gene Ontology enrichment analysis identified several key pathways at the transition stage that exhibited altered regulation. Genes involved in ethylene biosynthesis and primary cell wall rearrangement were affected, and a primary cell wall-related cellulose synthase was transcriptionally repressed. Linkage mapping using a population of 2,553 F2 individuals identified SSR markers associated with the Li1 genetic locus on chromosome 22. Linkage mapping in combination with utilizing the diploid G. raimondii genome sequences permitted additional analysis of the region containing

  20. The formation of short-chain fatty acids is positively associated with the blood lipid-lowering effect of lupin kernel fiber in moderately hypercholesterolemic adults.

    PubMed

    Fechner, Anita; Kiehntopf, Michael; Jahreis, Gerhard

    2014-05-01

    Lupin kernel fiber beneficially modifies blood lipids because of its bile acid-binding capacity. The aim of this study was to evaluate the preventive effects of a lupin kernel fiber preparation on cardiovascular diseases and to clarify possible mechanisms. In a randomized, double-blind, controlled crossover trial, 60 moderately hypercholesterolemic adults (plasma total cholesterol: >5.2 mmol/L) passed 3 intervention periods in different orders with a 2-wk washout phase between each. Participants consumed either a high-fiber diet containing 25-g/d lupin kernel fiber (LF) or citrus fiber (CF), or a low-fiber control diet (CD) for 4 wk each. Anthropometric, plasma, and fecal variables were assessed at baseline and after the interventions. Contrary to the CF period, total (9%) and LDL (12%) cholesterol as well as triacylglycerols (10%) were lower after the LF period when compared with the CD period [P ≤ 0.02, adjusted for baseline, age, gender, and body mass index (BMI)]. HDL cholesterol remained unchanged. Moreover, the LF period reduced high-sensitivity C-reactive protein (P = 0.02) and systolic blood pressure (P = 0.01) when compared with baseline. Bile acid binding could not be shown because the excretion of total bile acids remained constant after the high-fiber diets. However, the LF period resulted in an enhanced formation of the main short-chain fatty acids in comparison with the CD period. During the CF period, only acetate increased significantly. Both high-fiber diets led to higher satiety and modified nutritional behavior, resulting in significantly lower body weight, BMI, and waist circumference compared with the CD period. The blood lipid-lowering effects of LF are apparently not a result of bile acid binding. Rather, we hypothesize for the first time, to our knowledge, that the blood lipid-lowering effects of LF may be mainly attributed to the formation of short-chain fatty acids, specifically propionate and acetate. This trial was registered at

  1. Using Formal Embedded Formative Assessments Aligned with a Short-Term Learning Progression to Promote Conceptual Change and Achievement in Science

    ERIC Educational Resources Information Center

    Yin, Yue; Tomita, Miki K.; Shavelson, Richard J.

    2014-01-01

    This study examined the effect of learning progression-aligned formal embedded formative assessment on conceptual change and achievement in middle-school science. Fifty-two sixth graders were randomly assigned to either an experimental group or a control group. Both groups were taught about sinking and floating by the same teacher with identical…

  2. Aligned-or Not?

    ERIC Educational Resources Information Center

    Roseman, Jo Ellen; Koppal, Mary

    2015-01-01

    When state leaders and national partners in the development of the Next Generation Science Standards met to consider implementation strategies, states and school districts wanted to know which materials were aligned to the new standards. The answer from the developers was short but not sweet: You won't find much now, and it's going to…

  3. Optical fiber stripper positioning apparatus

    DOEpatents

    Fyfe, Richard W.; Sanchez, Jr., Amadeo

    1990-01-01

    An optical fiber positioning apparatus for an optical fiber stripping device is disclosed which is capable of providing precise axial alignment between an optical fiber to be stripped of its outer jacket and the cutting blades of a stripping device. The apparatus includes a first bore having a width approximately equal to the diameter of an unstripped optical fiber and a counter bore axially aligned with the first bore and dimensioned to precisely receive a portion of the stripping device in axial alignment with notched cutting blades within the stripping device to thereby axially align the notched cutting blades of the stripping device with the axis of the optical fiber to permit the notched cutting blades to sever the jacket on the optical fiber without damaging the cladding on the optical fiber. In a preferred embodiment, the apparatus further includes a fiber stop which permits determination of the length of jacket to be removed from the optical fiber.

  4. Super-resolution fluorescence of huntingtin reveals growth of globular species into short fibers and coexistence of distinct aggregates.

    PubMed

    Duim, Whitney C; Jiang, Yan; Shen, Koning; Frydman, Judith; Moerner, W E

    2014-12-19

    Polyglutamine-expanded huntingtin, the protein encoded by HTT mutations associated with Huntington's disease, forms aggregate species in vitro and in vivo. Elucidation of the mechanism of growth of fibrillar aggregates from soluble monomeric protein is critical to understanding the progression of Huntington's disease and to designing therapeutics for the disease, as well as for aggregates implicated in Alzheimer's and Parkinson's diseases. We used the technique of multicolor single-molecule, super-resolution fluorescence imaging to characterize the growth of huntingtin exon 1 aggregates. The huntingtin exon 1 aggregation followed a pathway from exclusively spherical or globular species of ∼80 nm to fibers ∼1 μm in length that increased in width, but not length, over time with the addition of more huntingtin monomers. The fibers further aggregated with one another into aggregate assemblies of increasing size. Seeds created by sonication, which were comparable in shape and size to the globular species in the pathway, were observed to grow through multidirectional elongation into fibers, suggesting a mechanism for growth of globular species into fibers. The single-molecule sensitivity of our approach made it possible to characterize the aggregation pathway across a large range of size scales, from monomers to fiber assemblies, and revealed the coexistence of different aggregate species (globular species, fibers, fiber assemblies) even at late time points. PMID:25330023

  5. Super-Resolution Fluorescence of Huntingtin Reveals Growth of Globular Species into Short Fibers and Coexistence of Distinct Aggregates

    PubMed Central

    2015-01-01

    Polyglutamine-expanded huntingtin, the protein encoded by HTT mutations associated with Huntington’s disease, forms aggregate species in vitro and in vivo. Elucidation of the mechanism of growth of fibrillar aggregates from soluble monomeric protein is critical to understanding the progression of Huntington’s disease and to designing therapeutics for the disease, as well as for aggregates implicated in Alzheimer’s and Parkinson’s diseases. We used the technique of multicolor single-molecule, super-resolution fluorescence imaging to characterize the growth of huntingtin exon 1 aggregates. The huntingtin exon 1 aggregation followed a pathway from exclusively spherical or globular species of ∼80 nm to fibers ∼1 μm in length that increased in width, but not length, over time with the addition of more huntingtin monomers. The fibers further aggregated with one another into aggregate assemblies of increasing size. Seeds created by sonication, which were comparable in shape and size to the globular species in the pathway, were observed to grow through multidirectional elongation into fibers, suggesting a mechanism for growth of globular species into fibers. The single-molecule sensitivity of our approach made it possible to characterize the aggregation pathway across a large range of size scales, from monomers to fiber assemblies, and revealed the coexistence of different aggregate species (globular species, fibers, fiber assemblies) even at late time points. PMID:25330023

  6. Laser diode-to-singlemode fiber butt-coupling and extremely-short-external-cavity laser diodes: Analysis, realization and applications

    NASA Astrophysics Data System (ADS)

    Sidorin, Yakov Sergeevich

    1998-11-01

    The butt-coupling of a Fabry-Perot semiconductor laser diode and a singlemode optical fiber was realized and characterized in the near field. A novel butt-coupling model was developed and found very effective in describing all physical phenomena that occur when the butt-coupling parameters are varied over a wide range. The strong external optical feedback to the laser diode cavity that is present at extremely-short separations between the laser diode and the fiber is advantageously used to realize an extremely-short external cavity laser diode. By varying the length of the external cavity, the operational characteristics of this external cavity laser diode are controlled in a predictable and repeatable manner; a wavelength tunable laser diode source based on this effect was developed and analyzed. Another realization of an extremely short external cavity tunable laser diode, based on a closely spaced external filter with variable characteristics, was demonstrated. A potential application of the butt-coupling technique for light collection in an optical recording head is discussed. The work presented here is a research tool that can be used to facilitate the design of extremely- short external cavity laser diodes, which in many ways are technologically novel.

  7. Intrinsic Fabry-Perot interferometric fiber sensor based on ultra-short Bragg gratings for quasi-distributed strain and temperature measurements

    NASA Astrophysics Data System (ADS)

    Wang, Zhuang

    The health monitoring of smart structures in civil engineering is becoming more and more important as in-situ structural monitoring would greatly reduce structure life-cycle costs and improve reliability. The distributed strain and temperature sensing is highly desired in large structures where strain and temperature at over thousand points need to be measured simultaneously. It is difficult to carry out this task using conventional electrical strain sensors. Fiber optic sensors provide an excellent opportunity to fulfill this need due to their capability to multiplex many sensors along a single fiber cable. Numerous research studies have been conducted in past decades to increase the number of sensors to be multiplexed in a distributed sensor network. This dissertation presents detailed research work on the analysis, design, fabrication, testing, and evaluation of an intrinsic Fabry-Perot fiber optic sensor for quasi-distributed strain and temperature measurements. The sensor is based on two ultra-short and broadband reflection fiber Bragg gratings. One distinct feature of this sensor is its ultra low optical insertion loss, which allows a significant increase in the sensor multiplexing capability. Using a simple integrated sensor interrogation unit and an optical spectrum based signal processing algorithm, many sensors can be interrogated along a single optical fiber with high accuracy, high resolution and large dynamic range. Based on the experimental results and theoretical analysis, it is expected that more than 500 sensors can be multiplexed with little crosstalk using a frequency-division multiplexing technology. With this research, it is possible to build an easy fabrication, robust, high sensitivity and quasi-distributed fiber optic sensor network that can be operated reliably even in harsh environments or extended structures. This research was supported in part by U.S. National Science Foundation under grant CMS-0427951.

  8. An Investigation on the Interface in a NiTi Short-Fiber-Reinforced 6061 Aluminum Composite by Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Al-Matar, Basem; Newaz, Golam

    2008-11-01

    It has already been demonstrated that NiTi shape-memory alloy fiber-reinforced composites show enhanced mechanical properties by adding a compressive stress to the matrix when the shape-memory effect is activated. The bonding quality between NiTi fiber and the matrix directly affects the stress transfer across the interface, through which the novel functionality of the smart composite is achieved. In the present study, the interface in a NiTi short-fiber-reinforced 6061 aluminum matrix has been investigated by transmission electron microscopy and energy dispersive spectroscopy. Three layers at the interface between NiTi fiber and 6061 aluminum alloy matrix have been found and characterized, i.e., Al3Ti with DO22 ordered structure near the NiTi fiber, Al9FeNi with Al9Co2 (or Al9Fe2) type ordered structure near the Al alloy matrix, and Mg-O layer with 20 nm in thickness between Al3Ti and Al9FeNi layers. The potential effects of these layers on the mechanical properties of the composite are discussed. Evidence indicates that extensive diffusion from both NiTi fiber and Al alloy matrix occurred during the fabrication of the composite at 570 °C to 580 °C within 20 to 30 minutes. The minor elements in the matrix could be the major elements at the interface. By selecting the chemical composition of the Al alloy matrix, it is possible to control the chemical composition at the interface and further control the mechanical properties of the composites.

  9. Effects of dietary fiber on cecal short-chain fatty acid and cecal microbiota of broiler and laying-hen chicks.

    PubMed

    Walugembe, M; Hsieh, J C F; Koszewski, N J; Lamont, S J; Persia, M E; Rothschild, M F

    2015-10-01

    This experiment was conducted to evaluate the effects of feeding dietary fiber on cecal short-chain fatty acid (SCFA) concentration and cecal microbiota of broiler and laying-hen chicks. The lower fiber diet was based on corn-soybean meal (SBM) and the higher fiber diet was formulated using corn-SBM-dried distillers grains with solubles (DDGS) and wheat bran to contain 60.0 g/kg of both DDGS and wheat bran from 1 to 12 d and 80.0 g/kg of both DDGS and wheat bran from 13 to 21 d. Diets were formulated to meet or exceed NRC nutrient requirements. Broiler and laying-hen chicks were randomly assigned to the high and low fiber diets with 11 replicates of 8 chicks for each of the 4 treatments. One cecum from 3 chicks was collected from each replicate: one cecum underwent SCFA concentration analysis, one underwent bacterial DNA isolation for terminal restriction fragment length polymorphism (TRFLP), and the third cecum was used for metagenomics analyses. There were interactions between bird line and dietary fiber for acetic acid (P = 0.04) and total SCFA (P = 0.04) concentration. There was higher concentration of acetic acid (P = 0.02) and propionic acid (P < 0.01) in broiler chicks compared to laying-hen chicks. TRFLP analysis showed that cecal microbiota varied due to diet (P = 0.02) and chicken line (P = 0.03). Metagenomics analyses identified differences in the relative abundance of Helicobacter pullorum and Megamonas hypermegale and the genera Enterobacteriaceae, Campylobacter, Faecalibacterium, and Bacteroides in different treatment groups. These results provide insights into the effect of dietary fiber on SCFA concentration and modulation of cecal microbiota in broiler and laying-hen chicks. PMID:26316341

  10. Effects of dietary fiber on cecal short-chain fatty acid and cecal microbiota of broiler and laying-hen chicks.

    PubMed

    Walugembe, M; Hsieh, J C F; Koszewski, N J; Lamont, S J; Persia, M E; Rothschild, M F

    2015-10-01

    This experiment was conducted to evaluate the effects of feeding dietary fiber on cecal short-chain fatty acid (SCFA) concentration and cecal microbiota of broiler and laying-hen chicks. The lower fiber diet was based on corn-soybean meal (SBM) and the higher fiber diet was formulated using corn-SBM-dried distillers grains with solubles (DDGS) and wheat bran to contain 60.0 g/kg of both DDGS and wheat bran from 1 to 12 d and 80.0 g/kg of both DDGS and wheat bran from 13 to 21 d. Diets were formulated to meet or exceed NRC nutrient requirements. Broiler and laying-hen chicks were randomly assigned to the high and low fiber diets with 11 replicates of 8 chicks for each of the 4 treatments. One cecum from 3 chicks was collected from each replicate: one cecum underwent SCFA concentration analysis, one underwent bacterial DNA isolation for terminal restriction fragment length polymorphism (TRFLP), and the third cecum was used for metagenomics analyses. There were interactions between bird line and dietary fiber for acetic acid (P = 0.04) and total SCFA (P = 0.04) concentration. There was higher concentration of acetic acid (P = 0.02) and propionic acid (P < 0.01) in broiler chicks compared to laying-hen chicks. TRFLP analysis showed that cecal microbiota varied due to diet (P = 0.02) and chicken line (P = 0.03). Metagenomics analyses identified differences in the relative abundance of Helicobacter pullorum and Megamonas hypermegale and the genera Enterobacteriaceae, Campylobacter, Faecalibacterium, and Bacteroides in different treatment groups. These results provide insights into the effect of dietary fiber on SCFA concentration and modulation of cecal microbiota in broiler and laying-hen chicks.

  11. Characterization of hot-pressed short ZrO{sub 2} fiber toughened ZrB{sub 2}-based ultra-high temperature ceramics

    SciTech Connect

    Lin, Jia; Huang, Yu; Zhang, Houan; Jin, Hua

    2014-09-15

    Two different ZrB{sub 2}-based ultra-high temperature ceramics were produced by hot pressing: ZrB{sub 2} + 20 vol.% SiC particle + 15 vol.% ZrO{sub 2} fiber and ZrB{sub 2} + 20 vol.% SiC whisker + 15 vol.% ZrO{sub 2} fiber. The microstructures were analyzed by using transmission electron microscopy and high-resolution transmission electron microscopy. It was shown that a clean interface without any impurities was identified in ZrB{sub 2}-based hybrid ceramics with SiC whiskers and ZrO{sub 2} fibers, which would significantly improve the toughening mechanism. The results of high-resolution transmission electron microscopy showed that stacking faults in SiC whiskers resulted from an insertion of a (111) layer, which would be one of the main reasons for material anisotropy. However, the interface between the SiC particle and ZrO{sub 2} fiber was found to be ambiguous in ZrB{sub 2}-based hybrid ceramics with SiC particles and ZrO{sub 2} fibers due to the slight reaction. The orientation relationship between t-ZrO{sub 2} and m-ZrO{sub 2} phases obeyed the classical correspondence: (100){sub m}//(100){sub t} and [001]{sub m}//〈001〉{sub t}, which further verified the feasibility of phase transformation toughening mechanism. - Highlights: • ZrB{sub 2}-based ceramics toughened by short ZrO{sub 2} fiber are characterized by TEM and HRTEM. • The orientation relationship of t- and m-ZrO{sub 2} are (100){sub m}//(100){sub t}, [001]{sub m}//〈001〉{sub t} • The clean interface without any impurities leads to improve the toughening mechanism.

  12. Revolution in airplane construction? Grob G110: The first modern fiber glass composition airplane shortly before its maiden flight

    NASA Technical Reports Server (NTRS)

    Dorpinghaus, R.

    1982-01-01

    A single engine two passenger airplane, constructed completely from fiber reinforced plastic materials is introduced. The cockpit, controls, wing profile, and landing gear are discussed. Development of the airframe is also presented.

  13. The effects of short-term exercise training on peak-torque are time- and fiber-type dependent.

    PubMed

    Ureczky, Dóra; Vácz, Gabriella; Costa, Andreas; Kopper, Bence; Lacza, Zsombor; Hortobágyi, Tibor; Tihanyi, József

    2014-08-01

    We examined the susceptibility of fast and slow twitch muscle fibers in the quadriceps muscle to eccentric exercise-induced muscle damage. Nine healthy men (age: 22.5 ± 1.6 years) performed maximal eccentric quadriceps contractions at 120°·s-1 over a 120° of knee joint range of motion for 6 consecutive days. Biopsies were taken from the vastus lateralis muscle before repeated bouts of eccentric exercise on the third and seventh day. Immunohistochemical procedures were used to determine fiber composition and fibronectin activity. Creatine kinase (CK) and lactate dehydrogenase (LDH) were determined in serum. Average torque was calculated in each day for each subject. Relative to baseline, average torque decreased 37.4% till day 3 and increased 43.0% from the day 3 to day 6 (p < 0.001). Creatine kinase and LDH were 70.6 and 1.5 times higher on day 3 and 75.5 and 1.4 times higher on day 6. Fibronectin was found in fast fibers in subjects with high CK level on day 3 and 7 after exercise, but on day 7, fibronectin seemed in both slow and fast fibers except in muscles of 2 subjects with high fast fiber percentage. Peak torque and muscle fiber-type composition measured at baseline showed a strong positive association on day 3 (r = 0.76, p < 0.02) and strong negative association during recovery between day 3 and day 6 (r = -0.76, p < 0.02), and day 1 and day 6 (r = 0.84, p < 0.001). We conclude that the damage of fast fibers preceded the damage of slow fibers, and muscles with slow fiber dominance were more susceptible to repeated bouts of eccentric exercise than fast fiber dominance muscles. The data suggest that the responses to repeated bouts of eccentric exercise are fiber-type-dependent in the quadriceps muscle, which can be the basis for the design of individualized strength training protocols.

  14. On the failure mode in dry and hygrothermally aged short fiber-reinforced injection-molded polyarylamide composites by acoustic emission

    NASA Astrophysics Data System (ADS)

    Czigány, T.; Mohd Ishak, Z. A.; Karger-Kocsis, J.

    1995-09-01

    The failure mode in injection-molded short glass (GF) and carbon fiber (CF) reinforced polyarylamide (PAR) composites was studied on compact tension (CT) specimens in as-received (AR), hygrothermally aged (HA) and re-dried (RD) states, respectively, using acoustic emission (AE) and fractography. A significant difference was revealed in the failure manner characterized by the cumulative run, amplitude and energy distribution of the AE events as a function of the water content of the composites. Furthermore, a correlation was found between the cumulative AE events up to the maximum load and the fracture toughness of the composites. It was shown that the fracture response and thus the failure behavior of the water-saturated PAR composites can be restored by drying. This fact indicates that the water absorption and desorption are of a purely physical nature, i.e. they are reversible processes. It was established that chopped fiber-reinforced PAR composites fail by matrix deformation along with fiber/matrix debonding in the crack initiation, whereas fiber pull-out becomes dominant in the crack propagation range. Water uptake shifts both the AE amplitude and energy curves toward lower values, a phenomenon attributed to plastification of the PAR matrix by water.

  15. PDV Probe Alignment Technique

    SciTech Connect

    Whitworth, T L; May, C M; Strand, O T

    2007-10-26

    This alignment technique was developed while performing heterodyne velocimetry measurements at LLNL. There are a few minor items needed, such as a white card with aperture in center, visible alignment laser, IR back reflection meter, and a microscope to view the bridge surface. The work was performed on KCP flyers that were 6 and 8 mils wide. The probes used were Oz Optics manufactured with focal distances of 42mm and 26mm. Both probes provide a spot size of approximately 80?m at 1550nm. The 42mm probes were specified to provide an internal back reflection of -35 to -40dB, and the probe back reflections were measured to be -37dB and -33dB. The 26mm probes were specified as -30dB and both measured -30.5dB. The probe is initially aligned normal to the flyer/bridge surface. This provides a very high return signal, up to -2dB, due to the bridge reflectivity. A white card with a hole in the center as an aperture can be used to check the reflected beam position relative to the probe and launch beam, and the alignment laser spot centered on the bridge, see Figure 1 and Figure 2. The IR back reflection meter is used to measure the dB return from the probe and surface, and a white card or similar object is inserted between the probe and surface to block surface reflection. It may take several iterations between the visible alignment laser and the IR back reflection meter to complete this alignment procedure. Once aligned normal to the surface, the probe should be tilted to position the visible alignment beam as shown in Figure 3, and the flyer should be translated in the X and Y axis to reposition the alignment beam onto the flyer as shown in Figure 4. This tilting of the probe minimizes the amount of light from the bridge reflection into the fiber within the probe while maintaining the alignment as near normal to the flyer surface as possible. When the back reflection is measured after the tilt adjustment, the level should be about -3dB to -6dB higher than the probes

  16. Alignment validation

    SciTech Connect

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  17. Fiber Laser Replacement for Short Pulse Ti:Sapphire Oscillators -- Scalable Mode Locking to Record Pulse Energies

    SciTech Connect

    Dawson, J W; Messerly, M J; An, J

    2006-02-14

    We have investigated fiber-based lasers that mode-lock via three nonlinear mechanisms: pulse evolution, bend loss, and tunneling. Experiments with nonlinear pulse evolution proved especially promising; we report here a fiber laser that produces 25 nJ, sub-200 fs pulses, an energy that is 60% higher than previous reports. Experiments with nonlinear bend loss were inconclusive; though bend-loss data show that the effect exits, we were not able to use the phenomenon to lock a laser. New models suggest that nonlinear tunneling could provide an alternate path.

  18. A two-stage photonic crystal fiber / silicon photonic wire short-wave infrared wavelength converter/amplifier based on a 1064 nm pump source.

    PubMed

    Kuyken, B; Leo, F; Mussot, A; Kudlinski, A; Roelkens, G

    2015-05-18

    We demonstrate a two-stage wavelength converter that uses compact near-infrared sources to amplify and convert short-wave infrared signals. The first stage consists of a photonic crystal fiber wavelength converter pumped by a Q-switched 1064 nm pump source, while the second stage consists of a silicon photonic wire waveguide wavelength converter. The system enables on-chip amplification and conversion of up to 30 dB . We demonstrate amplification in a broad wavelength range around 2344 nm using temporally long pulses (>300ps).

  19. Influence of laser on the droplet behavior in short-circuiting, globular, and spray modes of hybrid fiber laser-MIG welding

    NASA Astrophysics Data System (ADS)

    Cai, Chuang; Feng, Jiecai; Li, Liqun; Chen, Yanbin

    2016-09-01

    The effects of laser on the droplet behavior in short-circuiting, globular, and spray modes of hybrid fiber laser-MIG welding were studied. Transfer sequence of a droplet, welding current wave and morphology of plasma in the three modes of arc welding and hybrid welding were comparatively investigated. Compared with arc welding, the transfer frequency and landing location of droplet in the three modes of hybrid welding changed. In short-circuiting and globular modes, the droplet transfer was promoted by the laser, while the droplet transfer was hindered by the laser in spray mode. The magnitudes and directions of electromagnetic force and plasma drag force acting on the droplet were the keys to affect the droplet behavior. The magnitudes and directions of electromagnetic force and plasma drag force were converted due to the variation of the current distribution into the droplet, which were caused by the laser induced plasma with low ionization potential.

  20. Alignment of the Fibrin Network Within an Autologous Plasma Clot.

    PubMed

    Gessmann, Jan; Seybold, Dominik; Peter, Elvira; Schildhauer, Thomas Armin; Köller, Manfred

    2016-01-01

    Autologous plasma clots with longitudinally aligned fibrin fibers could serve as a scaffold for longitudinal axonal regrowth in cases of traumatic peripheral nerve injuries. Three different techniques for assembling longitudinally oriented fibrin fibers during the fibrin polymerization process were investigated as follows: fiber alignment was induced by the application of either a magnetic field or-as a novel approach-electric field or by the induction of orientated flow. Fiber alignment was characterized by scanning electron microscopy analysis followed by image processing using fast Fourier transformation (FFT). Besides FFT output images, area xmin to xmax, as well as full width at half maximum (FWHM) of the FFT graph plot peaks, was calculated to determine the relative degree of fiber alignment. In addition, fluorescently labeled human fibrinogen and mesenchymal stem cells (MSCs) were used to visualize fibrin and cell orientation in aligned and nonaligned plasma clots. Varying degrees of fiber alignment were achieved by the three different methods, with the electric field application producing the highest degree of fiber alignment. The embedded MSCs showed a longitudinal orientation in the electric field-aligned plasma clots. The key feature of this study is the ability to produce autologous plasma clots with aligned fibrin fibers using physical techniques. This orientated internal structure of an autologous biomaterial is promising for distinct therapeutic applications, such as a guiding structure for cell migration and growth dynamics.

  1. Short-chain fatty acid production from mono- and disaccharides in a fecal incubation system: implications for colonic fermentation of dietary fiber in humans.

    PubMed

    Mortensen, P B; Holtug, K; Rasmussen, H S

    1988-03-01

    An in vitro fecal incubation system was used to demonstrate how lactose, lactulose and monosaccharides (mainly constituents of dietary fiber) influence short-chain fatty acid production in colon. Short-chain fatty acids were formed from all mono- and disaccharides tested (except L-glucose): D-glucose, D-galactose, D-fructose, D-mannose, L-rhamnose, D-sorbitol, D-arabinose, D-xylose, D-ribose, D-galacturonate, D-glucuronate, lactose and lactulose. All saccharides increased acetate formation; propionate production was increased from rhamnose, arabinose, xylose, ribose, galacturonic and glucuronic acid, whereas the synthesis of butyrate was elevated in assays incubated with sorbitol, galacturonic and glucuronic acid, and to a lesser degree ribose. Isobutyrate, valerate, isovalerate and hexanoate were produced in increased amounts in assays incubated with albumin, but in fact decreased in many incubations with saccharides. It is speculated that saccharide fermentation always results in formation of acetate, and that the relative production of acetate, propionate and butyrate is related to the monosaccharide composition of dietary fiber available for colonic bacteria. However, the production of isobutyrate, valerate, isovalerate and hexanoate is probably not due to saccharide fermentation, but is rather of polypeptide origin.

  2. Targeting of Adenovirus Serotype 5 Pseudotyped with Short Fiber from Serotype 41 to c-erbB2-Positive Cells Using Bispecific Single-Chain Diabody

    PubMed Central

    Kashentseva, Elena A.; Douglas, Joanne T.; Zinn, Kurt R.; Curiel, David T.; Dmitriev, Igor P.

    2009-01-01

    Summary The purpose of the current study was to alter the broad native tropism of human adenovirus for virus targeting to c-erbB2-positive cancer cells. First, we engineered a single-chain antibody (scFv) against the c-erbB2 oncoprotein into minor capsid protein IX (pIX) of adenovirus serotype 5 (Ad5) in a manner commensurate with virion integrity and binding to the soluble extracellular c-erbB2 domain. To ablate native viral tropism and facilitate binding of the pIX-incorporated scFv to cellular c-erbB2 we replaced the Ad5 fiber with the Ad41 short (41s) fiber devoid of all known cell-binding determinants. The resultant Ad5F41sIX6.5 vector demonstrated increased cell binding and gene transfer as compared to the Ad5F41s control, however, this augmentation of virus infectivity was not c-erbB2-specific. Incorporation of a six histidine (His6) peptide into the C-terminus of the 41s fiber protein resulted in markedly increased Ad5F41s6H infectivity in 293AR cells, which express a membrane-anchored scFv against the C-terminal oligo-histidine tag, as compared to the Ad5F41s vector and the parental 293 cells. These data suggested that a 41s fiber-incorporated His6 tag could serve for attachment of an adapter protein designed to guide Ad5F41s6H infection in a c-erbB2-specific manner. We therefore engineered a bispecific scFv diabody (scDb) combining affinities for both c-erbB2 and the His6 tag and showed its ability to provide up to 25-fold increase of Ad5F41s6H infectivity in c-erbB2-positive cells. Thus, Ad5 fiber replacement by a His6–tagged 41s fiber coupled with virus targeting mediated by an scDb adapter represents a promising strategy to confer Ad5 vector tropism for c-erbB2-positive cancer cells. PMID:19285990

  3. Alignment fixture

    DOEpatents

    Bell, Grover C.; Gibson, O. Theodore

    1980-01-01

    A part alignment fixture is provided which may be used for precise variable lateral and tilt alignment relative to the fixture base of various shaped parts. The fixture may be used as a part holder for machining or inspection of parts or alignment of parts during assembly and the like. The fixture includes a precisely machined diameter disc-shaped hub adapted to receive the part to be aligned. The hub is nested in a guide plate which is adapted to carry two oppositely disposed pairs of positioning wedges so that the wedges may be reciprocatively positioned by means of respective micrometer screws. The sloping faces of the wedges contact the hub at respective quadrants of the hub periphery. The lateral position of the hub relative to the guide plate is adjusted by positioning the wedges with the associated micrometer screws. The tilt of the part is adjusted relative to a base plate, to which the guide plate is pivotally connected by means of a holding plate. Two pairs of oppositely disposed wedges are mounted for reciprocative lateral positioning by means of separate micrometer screws between flanges of the guide plate and the base plate. Once the wedges are positioned to achieve the proper tilt of the part or hub on which the part is mounted relative to the base plate, the fixture may be bolted to a machining, inspection, or assembly device.

  4. Curriculum Alignment.

    ERIC Educational Resources Information Center

    Crowell, Ronald; Tissot, Paula

    Curriculum alignment (CA) refers to the congruence of all the elements of a school's curriculum: curriculum goals; instructional program--what is taught and the materials used; and tests used to judge outcomes. CA can be a very powerful can be a very powerful factor in improving schools. Although further research is needed on CA, there is…

  5. Fully passive-alignment pluggable compact parallel optical interconnection modules based on a direct-butt-coupling structure for fiber-optic applications

    NASA Astrophysics Data System (ADS)

    Lim, Kwon-Seob; Park, Hyoung-Jun; Kang, Hyun Seo; Kim, Young Sun; Jang, Jae-Hyung

    2016-02-01

    A low-cost packaging method utilizing a fully passive optical alignment and surface-mounting method is demonstrated for pluggable compact and slim multichannel optical interconnection modules using a VCSEL/PIN-PD chip array. The modules are based on a nonplanar bent right-angle electrical signal path on a silicon platform and direct-butt-optical coupling without a bulky and expensive microlens array. The measured optical direct-butt-coupling efficiencies of each channel without any bulky optics are as high as 33% and 95% for the transmitter and receiver, respectively. Excellent lateral optical alignment tolerance of larger than 60 μm for both the transmitter and receiver module significantly reduces the manufacturing and material costs as well as the packaging time. The clear eye diagrams, extinction ratios higher than 8 dB at 10.3 Gbps for the transmitter module, and receiver sensitivity of better than -13.1 dBm at 10.3 Gbps and a bit error rate of 10-12 for all channels are demonstrated. Considering that the optical output power of the transmitter is greater than 0 dBm, the module has a sufficient power margin of about 13 dB for 10.3 Gbps operations for all channels.

  6. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering.

    PubMed

    Shao, Weili; He, Jianxin; Sang, Feng; Ding, Bin; Chen, Li; Cui, Shizhong; Li, Kejing; Han, Qiming; Tan, Weilin

    2016-01-01

    The bone is a composite of inorganic and organic materials and possesses a complex hierarchical architecture consisting of mineralized fibrils formed by collagen molecules and coated with oriented hydroxyapatite. To regenerate bone tissue, it is necessary to provide a scaffold that mimics the architecture of the extracellular matrix in native bone. Here, we describe one such scaffold, a nanostructured composite with a core made of a composite of hydroxyapatite and tussah silk fibroin. The core is encased in a shell of tussah silk fibroin. The composite fibers were fabricated by coaxial electrospinning using green water solvent and were characterized using different techniques. In comparison to nanofibers of pure tussah silk, composite notably improved mechanical properties, with 90-fold and 2-fold higher initial modulus and breaking stress, respectively, obtained. Osteoblast-like MG-63 cells were cultivated on the composite to assess its suitability as a scaffold for bone tissue engineering. We found that the fiber scaffold supported cell adhesion and proliferation and functionally promoted alkaline phosphatase and mineral deposition relevant for biomineralization. In addition, the composite were more biocompatible than pure tussah silk fibroin or cover slip. Thus, the nanostructured composite has excellent biomimetic and mechanical properties and is a potential biocompatible scaffold for bone tissue engineering. PMID:26478319

  7. Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite-tussah silk fibroin nanoparticles for bone tissue engineering.

    PubMed

    Shao, Weili; He, Jianxin; Sang, Feng; Ding, Bin; Chen, Li; Cui, Shizhong; Li, Kejing; Han, Qiming; Tan, Weilin

    2016-01-01

    The bone is a composite of inorganic and organic materials and possesses a complex hierarchical architecture consisting of mineralized fibrils formed by collagen molecules and coated with oriented hydroxyapatite. To regenerate bone tissue, it is necessary to provide a scaffold that mimics the architecture of the extracellular matrix in native bone. Here, we describe one such scaffold, a nanostructured composite with a core made of a composite of hydroxyapatite and tussah silk fibroin. The core is encased in a shell of tussah silk fibroin. The composite fibers were fabricated by coaxial electrospinning using green water solvent and were characterized using different techniques. In comparison to nanofibers of pure tussah silk, composite notably improved mechanical properties, with 90-fold and 2-fold higher initial modulus and breaking stress, respectively, obtained. Osteoblast-like MG-63 cells were cultivated on the composite to assess its suitability as a scaffold for bone tissue engineering. We found that the fiber scaffold supported cell adhesion and proliferation and functionally promoted alkaline phosphatase and mineral deposition relevant for biomineralization. In addition, the composite were more biocompatible than pure tussah silk fibroin or cover slip. Thus, the nanostructured composite has excellent biomimetic and mechanical properties and is a potential biocompatible scaffold for bone tissue engineering.

  8. ALIGNING JIG

    DOEpatents

    Culver, J.S.; Tunnell, W.C.

    1958-08-01

    A jig or device is described for setting or aligning an opening in one member relative to another member or structure, with a predetermined offset, or it may be used for measuring the amount of offset with which the parts have previously been sct. This jig comprises two blocks rabbeted to each other, with means for securing thc upper block to the lower block. The upper block has fingers for contacting one of the members to be a1igmed, the lower block is designed to ride in grooves within the reference member, and calibration marks are provided to determine the amount of offset. This jig is specially designed to align the collimating slits of a mass spectrometer.

  9. Fabrication and characterization of vitamin B5 loaded poly (l-lactide-co-caprolactone)/silk fiber aligned electrospun nanofibers for schwann cell proliferation.

    PubMed

    Bhutto, M Aqeel; Wu, Tong; Sun, Binbin; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-08-01

    Bioengineering strategies for peripheral nerve regeneration have been focusing on the development of alternative treatments for nerve repair. In present study we have blended the Vitamin B5 (50mg) with 8% P(LLA-CL) and P(LLA-CL)/SF solutions and produced aligned electrospun nanofiber mashes and characterized the material for its physiochemical and mechanical characteristics. The vitamin loaded composites nanofibers showed tensile strength of 8.73±1.38 and 8.4±1.37 in P(LLA-CL)/Vt and P(LLA-CL)/SF/Vt nanofibers mashes, respectively. By the addition of vitamin B5 the P(LLA-CL) nanofibers become hydrophilic and the contact angle decreased from 96° to 0° in 6min of duration. The effect of vitamin B5 on Schwann cells proliferation and viability were analyzed by using MTT assay and the number of cells cultured on vitamin loaded nanofiber mashes was significantly higher than the without vitamin loaded nanofiber samples after 5th day (p<0.05) whereas, P (LLA-CL)/SF/Vt exhibit the consistently highest cell numbers after 7th days culture as compare to P (LLA-CL)/Vt. The in vitro vitamin release behavior was observed in PBS solution and released vitamin was calculated by revers phase HPLC method. The sustain release behavior of vitamin B5 were noted higher in P(LLA-CL)/Vt (80%) nanofibers as compared to P (LLA-CL)/SF/Vt (62%) nanofibers after 24h. The present work provided a basis for further studies of this novel aligned nanofibrous material in nerve tissue repair or regeneration.

  10. Fabrication and characterization of vitamin B5 loaded poly (l-lactide-co-caprolactone)/silk fiber aligned electrospun nanofibers for schwann cell proliferation.

    PubMed

    Bhutto, M Aqeel; Wu, Tong; Sun, Binbin; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-08-01

    Bioengineering strategies for peripheral nerve regeneration have been focusing on the development of alternative treatments for nerve repair. In present study we have blended the Vitamin B5 (50mg) with 8% P(LLA-CL) and P(LLA-CL)/SF solutions and produced aligned electrospun nanofiber mashes and characterized the material for its physiochemical and mechanical characteristics. The vitamin loaded composites nanofibers showed tensile strength of 8.73±1.38 and 8.4±1.37 in P(LLA-CL)/Vt and P(LLA-CL)/SF/Vt nanofibers mashes, respectively. By the addition of vitamin B5 the P(LLA-CL) nanofibers become hydrophilic and the contact angle decreased from 96° to 0° in 6min of duration. The effect of vitamin B5 on Schwann cells proliferation and viability were analyzed by using MTT assay and the number of cells cultured on vitamin loaded nanofiber mashes was significantly higher than the without vitamin loaded nanofiber samples after 5th day (p<0.05) whereas, P (LLA-CL)/SF/Vt exhibit the consistently highest cell numbers after 7th days culture as compare to P (LLA-CL)/Vt. The in vitro vitamin release behavior was observed in PBS solution and released vitamin was calculated by revers phase HPLC method. The sustain release behavior of vitamin B5 were noted higher in P(LLA-CL)/Vt (80%) nanofibers as compared to P (LLA-CL)/SF/Vt (62%) nanofibers after 24h. The present work provided a basis for further studies of this novel aligned nanofibrous material in nerve tissue repair or regeneration. PMID:27085042

  11. Fiber optics welder

    DOEpatents

    Higgins, R.W.; Robichaud, R.E.

    A system is described for welding fiber optic waveguides together. The ends of the two fibers to be joined together are accurately, collinearly aligned in a vertical orientation and subjected to a controlled, diffuse arc to effect welding and thermal conditioning. A front-surfaced mirror mounted at a 45/sup 0/ angle to the optical axis of a stereomicroscope mounted for viewing the junction of the ends provides two orthogonal views of the interface during the alignment operation.

  12. Image alignment

    SciTech Connect

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  13. Study and development of 22 kW peak power fiber coupled short pulse Nd:YAG laser for cleaning applications

    NASA Astrophysics Data System (ADS)

    Choubey, Ambar; Vishwakarma, S. C.; Vachhani, D. M.; Singh, Ravindra; Misra, Pushkar; Jain, R. K.; Arya, R.; Upadhyaya, B. N.; Oak, S. M.

    2014-11-01

    Free running short pulse Nd:YAG laser of microsecond pulse duration and high peak power has a unique capability to ablate material from the surface without heat propagation into the bulk. Applications of short pulse Nd:YAG lasers include cleaning and restoration of marble, stones, and a variety of metals for conservation. A study on the development of high peak power short pulses from Nd:YAG laser along with its cleaning and conservation applications has been performed. A pulse energy of 1.25 J with 55 μs pulse duration and a maximum peak power of 22 kW has been achieved. Laser beam has an M2 value of ~28 and a pulse-to-pulse stability of ±2.5%. A lower value of M2 means a better beam quality of the laser in multimode operation. A top hat spatial profile of the laser beam was achieved at the exit end of 200 μm core diameter optical fiber, which is desirable for uniform cleaning. This laser system has been evaluated for efficient cleaning of surface contaminations on marble, zircaloy, and inconel materials for conservation with cleaning efficiency as high as 98%. Laser's cleaning quality and efficiency have been analysed by using a microscope, a scanning electron microscope (SEM), and X-ray photon spectroscopy (XPS) measurements.

  14. Ultra-short pulse generation in the hybridly mode-locked erbium-doped all-fiber ring laser with a distributed polarizer

    NASA Astrophysics Data System (ADS)

    Krylov, Alexander A.; Sazonkin, Stanislav G.; Lazarev, Vladimir A.; Dvoretskiy, Dmitriy A.; Leonov, Stanislav O.; Pnev, Alexey B.; Karasik, Valeriy E.; Grebenyukov, Vyacheslav V.; Pozharov, Anatoly S.; Obraztsova, Elena D.; Dianov, Evgeny M.

    2015-06-01

    We report for the first time to the best of our knowledge on the ultra-short pulse (USP) generation in the dispersion-managed erbium-doped all-fiber ring laser hybridly mode-locked with boron nitride-doped single-walled carbon nanotubes in the co-action with a nonlinear polarization evolution in the ring cavity with a distributed polarizer. Stable 92.6 fs dechirped pulses were obtained via precise polarization state adjustment at a central wavelength of 1560 nm with 11.2 mW average output power, corresponding to the 2.9 kW maximum peak power. We have also observed the laser switching from a USP generation regime to a chirped pulse one with a corresponding pulse-width of 7.1 ps at the same intracavity dispersion.

  15. Liquid crystal alignment in cylindrical microcapillaries

    NASA Astrophysics Data System (ADS)

    Chychłowski, M.; Yaroshchuk, O.; Kravchuk, R.; Woliński, T.

    2011-09-01

    A variety of alignment configurations of liquid crystals (LCs) inside the glassy cylindrical capillaries is realized by using alignment materials providing different anchoring. The radial configuration with central disclination line is obtained for homeotropic boundary conditions. In turn, the axial, transversal and tilted alignment structures are realized by using materials for planar anchoring. The uniformity and controlling of the latter structures were provided by photoalignment method. This approach can be further used to control LC alignment in the photonic crystal fibers recognized as advanced elements for different optical devices.

  16. Liquid crystal alignment in cylindrical microcapillaries

    NASA Astrophysics Data System (ADS)

    Chychłowski, M.; Yaroshchuk, O.; Kravchuk, R.; Woliński, T.

    2012-03-01

    A variety of alignment configurations of liquid crystals (LCs) inside the glassy cylindrical capillaries is realized by using alignment materials providing different anchoring. The radial configuration with central disclination line is obtained for homeotropic boundary conditions. In turn, the axial, transversal and tilted alignment structures are realized by using materials for planar anchoring. The uniformity and controlling of the latter structures were provided by photoalignment method. This approach can be further used to control LC alignment in the photonic crystal fibers recognized as advanced elements for different optical devices.

  17. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production.

    PubMed

    Yang, Junyi; Martínez, Inés; Walter, Jens; Keshavarzian, Ali; Rose, Devin J

    2013-10-01

    The effects of six dietary fibers [pectin, guar gum, inulin, arabinoxylan, β-glucan, and resistant starch] on the human fecal microbiota during in vitro fermentation were determined. Bifidobacterium increased almost 25% on pectin compared with the control; a significant increase in Bifidobacterium adolescentis type-2 was observed on resistant starch. Bacteroides exhibited a positive correlation with propionate/short chain fatty acid (SCFA) production (r = 0.59, p < 0.01), while Ruminococcaceae and Faecalibacterium displayed positive correlations with butyrate/SCFA production (r = 0.39, 0.54, p < 0.01). A negative correlation was detected between inulin utilization and Subdoligranulum (r = -0.73, p ≤ 0.01), while strong positive relationships were found between β-glucan utilization and Firmicutes (r = 0.73, p ≤ 0.01) and resistant starch utilization and Blautia wexlerae (r = 0.82, p < 0.01). Dietary fibers have specific and unique impacts on intestinal microbiota composition and metabolism. These findings provide a rationale for the development of functional ingredients targeted towards a targeted modulation of the gut microbiota. PMID:23831725

  18. Improved delineation of short cortical association fibers and gray/white matter boundary using whole-brain three-dimensional diffusion tensor imaging at submillimeter spatial resolution.

    PubMed

    Song, Allen W; Chang, Hing-Chiu; Petty, Christopher; Guidon, Arnaud; Chen, Nan-Kuei

    2014-11-01

    Recent emergence of human connectome imaging has led to a high demand on angular and spatial resolutions for diffusion magnetic resonance imaging (MRI). While there have been significant growths in high angular resolution diffusion imaging, the improvement in spatial resolution is still limited due to a number of technical challenges, such as the low signal-to-noise ratio and high motion artifacts. As a result, the benefit of a high spatial resolution in the whole-brain connectome imaging has not been fully evaluated in vivo. In this brief report, the impact of spatial resolution was assessed in a newly acquired whole-brain three-dimensional diffusion tensor imaging data set with an isotropic spatial resolution of 0.85 mm. It was found that the delineation of short cortical association fibers is drastically improved as well as the definition of fiber pathway endings into the gray/white matter boundary-both of which will help construct a more accurate structural map of the human brain connectome.

  19. Assessment of MR-compatibility of SiPM PET insert using short optical fiber bundles for small animal research

    NASA Astrophysics Data System (ADS)

    Kang, H. G.; Hong, S. J.; Ko, G. B.; Yoon, H. S.; Song, I. C.; Rhee, J. T.; Lee, J. S.

    2015-12-01

    Simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) can provide new perspectives in human disease research because of their complementary in-vivo imaging techniques. Previously, we have developed an MR-compatible PET insert based on optical fibers using silicon photomultipliers (SiPM). However when echo planar imaging (EPI) sequence was performed, signal intensity was slowly decreased by -0.9% over the 5.5 minutes and significant geometrical distortion was observed as the PET insert was installed inside an MRI bore, indicating that the PET electronics and its shielding boxes might have been too close to an MR imaging object. In this paper, optical fiber bundles with a length of 54 mm instead of 31 mm were employed to minimize PET interference on MR images. Furthermore, the LYSO crystals with a size of 1.5 × 1.5 × 7.0 mm3 were used instead of 2.47 × 2.74 × 20.0 mm3 for preclinical PET/MR applications. To improve the MR image quality, two receive-only loop coils were used. The effects of the PET insert on the SNR of the MR image either for morphological or advanced MR pulse sequences such as diffusion weighted imaging (DWI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS) were investigated. The quantitative MR compatibility such as B0 and B1 field homogeneity without PET, with `PET OFF', and with `PET ON' was also evaluated. In conclusion, B0 maps were not affected by the proposed PET insert whereas B1 maps were significantly affected by the PET insert. The advanced MRI sequences such as DWI, EPI, and MRS can be performed without a significant MR image quality degradation.

  20. Synthetic approach to designing optical alignment systems.

    PubMed

    Whang, A J; Gallagher, N C

    1988-08-15

    The objective of this study is twofold: to design reticle patterns with desirable alignment properties; to build an automatic alignment system using these patterns. We design such reticle patterns via a synthetic approach; the resultant patterns, so-called pseudonoise arrays, are binary and their autocorrelation functions are bilevel. Both properties are desirable in optical alignment. Besides, these arrays have attractive signal-to-noise ratio performance when employed in alignment. We implement the pseudonoise array as a 2-D cross-grating structure of which the grating period is much less than the wavelength of impinging light used for alignment. The short grating period feature, together with the use of polarized light, enables us to perform essentially 2-D optical alignment in one dimension. This alignment separability allows us to build a system that performs alignment automatically according to a simple 1-D algorithm. PMID:20539412

  1. Fiber coating method

    DOEpatents

    Corman, Gregory Scot

    2003-04-15

    A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

  2. Fiber coating method

    DOEpatents

    Corman, Gregory Scot

    2001-01-01

    A coating is applied to reinforcing fibers arranged into a tow by coaxially aligning the tow with an adjacent separation layer and winding or wrapping the tow and separation layer onto a support structure in an interleaved manner so that the separation layer separates a wrap of the tow from an adjacent wrap of the tow. A coating can then be uniformly applied to the reinforcing fibers without defects caused by fiber tow to fiber tow contact. The separation layer can be a carbon fiber veil.

  3. Performance comparison of an all-fiber-based laser Doppler vibrometer for remote acoustical signal detection using short and long coherence length lasers.

    PubMed

    Li, Rui; Madampoulos, Nicholas; Zhu, Zhigang; Xie, Liangping

    2012-07-20

    All-fiber laser Doppler vibrometer systems have great potential in the application of remote acoustic detection. However, due to the requirement for a long operating distance, a long coherence length laser is required, which can drive the system cost high. In this paper, a system using a short coherence length laser is proposed and demonstrated. Experimental analysis indicates that the multi-longitudinal modes of the laser cause detection noise and that the unequal length between two paths (local oscillator path and transmission path) increases the intensity and the frequency components of the noise. In order to reduce the noise, the optical length of the two paths needs to be balanced, within the coherence length of the source. We demonstrate that adopting a tunable optical delay to compensate the unequal length significantly reduces the noise. In a comparison of the detection results by using a short coherence laser and a long coherence laser, our developed system gives a good performance on the acoustic signal detection from three meters away.

  4. Supramolecular chirality in organo-, hydro-, and metallogels derived from bis-amides of L-(+)-tartaric acid: formation of highly aligned 1D silica fibers and evidence of 5-c net SnS topology in a metallogel network.

    PubMed

    Das, Uttam Kumar; Dastidar, Parthasarathi

    2012-10-01

    A series of bis-amides derived from L-(+)-tartaric acid was synthesized as potential low-molecular-weight gelators. Out of 14 bis-amides synthesized, 13 displayed organo-, hydro-, and ambidextrous gelation behavior. The gels were characterized by methods including circular dichroism, differential scanning calorimetry, optical and electron microscopy, and rheology. One of the gels derived from di-3-pyridyltartaramide (D-3-PyTA) displayed intriguing nanotubular morphology of the gel network, which was exploited as a template to generate highly aligned 1D silica fibers. The gelator D-3-PyTA was also exploited to generate metallogels by treatment with various Cu(II) /Zn(II) salts under suitable conditions. A structure-property correlation on the basis of single-crystal and powder X-ray diffraction data was attempted to gain insight into the structures of the gel networks in both organo- and metallogels. Such study led to the determination of the gel-network structure of the Cu(II) coordination-polymer-based metallogel, which displayed a 2D sheet architecture made of a chloride-bridged double helix that resembled a 5-c net SnS topology.

  5. Global alignment: Finding rearrangements during alignment

    SciTech Connect

    Brudno, Michael; Malde, Sanket; Poliakov, Alexander; Do, Chuong B.; Couronne, Olivier; Dubchak, Inna; Batzoglou, Serafim

    2003-01-06

    Motivation: To compare entire genomes from different species, biologists increasingly need alignment methods that are efficient enough to handle long sequences, and accurate enough to correctly align the conserved biological features between distant species. The two main classes of pairwise alignments are global alignment, where one string is transformed into the other, and local alignment, where all locations of similarity between the two strings are returned. Global alignments are less prone to demonstrating false homology as each letter of one sequence is constrained to being aligned to only one letter of the other. Local alignments, on the other hand, can cope with rearrangements between non-syntenic, orthologous sequences by identifying similar regions in sequences; this, however, comes at the expense of a higher false positive rate due to the inability of local aligners to take into account overall conservation maps.

  6. Alignment algorithms for planar optical waveguides

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Duan, Ji-an

    2012-10-01

    Planar optical waveguides are the key elements in a modern, high-speed optical network. An important problem facing the optical fiber communication system is optical-axis alignment and coupling between waveguide chips and transmission fibers. The advantages and disadvantages of the various algorithms used for the optical-axis alignment, namely, hill-climbing, pattern search, and genetic algorithm are analyzed. A new optical-axis alignment for planar optical waveguides is presented which is a composite of a genetic algorithm and a pattern search algorithm. Experiments have proved the proposed alignment's feasibility; compared with hill climbing, the search process can reduce the number of movements by 88% and reduce the search time by 83%. Moreover, the search success rate in the experiment can reach 100%.

  7. Automated fiber pigtailing technology

    NASA Astrophysics Data System (ADS)

    Strand, O. T.; Lowry, M. E.; Lu, S. Y.; Nelson, D. C.; Nikkel, D. J.; Pocha, M. D.; Young, K. D.

    1994-02-01

    The high cost of optoelectronic (OE) devices is due mainly to the labor-intensive packaging process. Manually pigtailing such devices as single-mode laser diodes and modulators is very time consuming with poor quality control. The Photonics Program and the Engineering Research Division at LLNL are addressing several issues associated with automatically packaging OE devices. A furry automated system must include high-precision fiber alignment, fiber attachment techniques, in-situ quality control, and parts handling and feeding. This paper will present on-going work at LLNL in the areas of automated fiber alignment and fiber attachment. For the fiber alignment, we are building an automated fiber pigtailing machine (AFPM) which combines computer vision and object recognition algorithms with active feedback to perform sub-micron alignments of single-mode fibers to modulators and laser diodes. We expect to perform sub-micron alignments in less than five minutes with this technology. For fiber attachment, we are building various geometries of silicon microbenches which include on-board heaters to solder metal-coated fibers and other components in place; these designs are completely compatible with an automated process of OE packaging. We have manually attached a laser diode, a thermistor, and a thermo-electric heater to one of our microbenches in less than 15 minutes using the on-board heaters for solder reflow; an automated process could perform this same exercise in only a few minutes. Automated packaging techniques such as these will help lower the costs of OE devices.

  8. RNA-seq analysis of short fiber mutants Ligon-lintless-1 (Li1) and – 2 (Li2) revealed important role of aquaporins in cotton (Gossypium hirsutum L.) fiber elongation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber is the most prevalent natural raw material used in the textile industry. The length of the fiber is one of the most important characteristics and affects spinning efficiency and the quality of the resulting yarn. The identification of the genes that control fiber elongation is importa...

  9. Coatings for graphite fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature.

  10. Perturbation of cytosolic calcium by 2-aminoethoxydiphenyl borate and caffeine affects zebrafish myofibril alignment.

    PubMed

    Wu, Hsin-Ju; Fong, Tsorng-Harn; Chen, Shen-Liang; Wei, Jen-Cheng; Wang, I-Jong; Wen, Chi-Chung; Chang, Chao-Yuan; Chen, Xing-Guang; Chen, Wei-Yu; Chen, Hui-Min; Horng, Juin-Lin; Wang, Yun-Hsin; Chen, Yau-Hung

    2015-03-01

    The objective of the current study was to investigate the effects of Ca(2+) levels on myofibril alignment during zebrafish embryogenesis. To investigate how altered cytoplasmic Ca(2+) levels affect myofibril alignment, we exposed zebrafish embryos to 2-aminothoxyldiphenyl borate (2-APB; an inositol 1,4,5-trisphosphate receptor inhibitor that reduces cytosolic Ca(2+) levels) and caffeine (a ryanodine receptor activator that enhances cytosolic Ca(2+) levels). The results demonstrated that the most evident changes in zebrafish embryos treated with 2-APB were shorter body length, curved trunk and malformed somite boundary. In contrast, such malformed phenotypes were evident neither in untreated controls nor in caffeine-treated embryos. Subtle morphological changes, including changes in muscle fibers, F-actin and ultrastructures were easily observed by staining with specific monoclonal antibodies (F59 and α-laminin), fluorescent probes (phalloidin) and by transmission electron microscopy. Our data suggested that: (1) the exposure to 2-APB and/or caffeine led to myofibril misalignment; (2) 2-APB-treated embryos displayed split and short myofibril phenotypes, whereas muscle fibers from caffeine-treated embryos were twisted and wavy; and (3) zebrafish embryos co-exposed to 2-APB and caffeine resulted in normal myofibril alignment. In conclusion, we proposed that cytosolic Ca(2+) is important for myogenesis, particularly for myofibril alignment.

  11. Perturbation of cytosolic calcium by 2-aminoethoxydiphenyl borate and caffeine affects zebrafish myofibril alignment.

    PubMed

    Wu, Hsin-Ju; Fong, Tsorng-Harn; Chen, Shen-Liang; Wei, Jen-Cheng; Wang, I-Jong; Wen, Chi-Chung; Chang, Chao-Yuan; Chen, Xing-Guang; Chen, Wei-Yu; Chen, Hui-Min; Horng, Juin-Lin; Wang, Yun-Hsin; Chen, Yau-Hung

    2015-03-01

    The objective of the current study was to investigate the effects of Ca(2+) levels on myofibril alignment during zebrafish embryogenesis. To investigate how altered cytoplasmic Ca(2+) levels affect myofibril alignment, we exposed zebrafish embryos to 2-aminothoxyldiphenyl borate (2-APB; an inositol 1,4,5-trisphosphate receptor inhibitor that reduces cytosolic Ca(2+) levels) and caffeine (a ryanodine receptor activator that enhances cytosolic Ca(2+) levels). The results demonstrated that the most evident changes in zebrafish embryos treated with 2-APB were shorter body length, curved trunk and malformed somite boundary. In contrast, such malformed phenotypes were evident neither in untreated controls nor in caffeine-treated embryos. Subtle morphological changes, including changes in muscle fibers, F-actin and ultrastructures were easily observed by staining with specific monoclonal antibodies (F59 and α-laminin), fluorescent probes (phalloidin) and by transmission electron microscopy. Our data suggested that: (1) the exposure to 2-APB and/or caffeine led to myofibril misalignment; (2) 2-APB-treated embryos displayed split and short myofibril phenotypes, whereas muscle fibers from caffeine-treated embryos were twisted and wavy; and (3) zebrafish embryos co-exposed to 2-APB and caffeine resulted in normal myofibril alignment. In conclusion, we proposed that cytosolic Ca(2+) is important for myogenesis, particularly for myofibril alignment. PMID:25186829

  12. Effect of Wheat Dietary Fiber Particle Size during Digestion In Vitro on Bile Acid, Faecal Bacteria and Short-Chain Fatty Acid Content.

    PubMed

    Dziedzic, Krzysztof; Szwengiel, Artur; Górecka, Danuta; Gujska, Elżbieta; Kaczkowska, Joanna; Drożdżyńska, Agnieszka; Walkowiak, Jarosław

    2016-06-01

    The influence of bile acid concentration on the growth of Bifidobacterium spp. and Lactobacillus spp. bacteria was demonstrated. Exposing these bacteria to the environment containing bile acid salts, and very poor in nutrients, leads to the disappearance of these microorganisms due to the toxic effect of bile acids. A multidimensional analysis of data in the form of principal component analysis indicated that lactic acid bacteria bind bile acids and show antagonistic effect on E. coli spp. bacteria. The growth in E. coli spp. population was accompanied by a decline in the population of Bifidobacterium spp. and Lactobacillus spp. with a simultaneous reduction in the concentration of bile acids. This is direct proof of acid binding ability of the tested lactic acid bacteria with respect to cholic acid, lithocholic acid and deoxycholic acid. This research demonstrated that the degree of fineness of wheat dietary fibre does not affect the sorption of bile acids and growth of some bacteria species; however, it has an impact on the profile of synthesized short-chained fatty acids. During the digestion of a very fine wheat fibre fraction (WF 90), an increase in the concentration of propionic and butyric acids, as compared with the wheat fiber fraction of larger particles - WF 500, was observed. Our study suggested that wheat fibre did not affect faecal bacteria growth, however, we observed binding of bile acids by Bifidobacterium spp. and Lactobacillus spp.

  13. Effect of Wheat Dietary Fiber Particle Size during Digestion In Vitro on Bile Acid, Faecal Bacteria and Short-Chain Fatty Acid Content.

    PubMed

    Dziedzic, Krzysztof; Szwengiel, Artur; Górecka, Danuta; Gujska, Elżbieta; Kaczkowska, Joanna; Drożdżyńska, Agnieszka; Walkowiak, Jarosław

    2016-06-01

    The influence of bile acid concentration on the growth of Bifidobacterium spp. and Lactobacillus spp. bacteria was demonstrated. Exposing these bacteria to the environment containing bile acid salts, and very poor in nutrients, leads to the disappearance of these microorganisms due to the toxic effect of bile acids. A multidimensional analysis of data in the form of principal component analysis indicated that lactic acid bacteria bind bile acids and show antagonistic effect on E. coli spp. bacteria. The growth in E. coli spp. population was accompanied by a decline in the population of Bifidobacterium spp. and Lactobacillus spp. with a simultaneous reduction in the concentration of bile acids. This is direct proof of acid binding ability of the tested lactic acid bacteria with respect to cholic acid, lithocholic acid and deoxycholic acid. This research demonstrated that the degree of fineness of wheat dietary fibre does not affect the sorption of bile acids and growth of some bacteria species; however, it has an impact on the profile of synthesized short-chained fatty acids. During the digestion of a very fine wheat fibre fraction (WF 90), an increase in the concentration of propionic and butyric acids, as compared with the wheat fiber fraction of larger particles - WF 500, was observed. Our study suggested that wheat fibre did not affect faecal bacteria growth, however, we observed binding of bile acids by Bifidobacterium spp. and Lactobacillus spp. PMID:26924312

  14. Single-fiber expression and fiber-specific adaptability to short-term intense exercise training of Na+-K+-ATPase α- and β-isoforms in human skeletal muscle.

    PubMed

    Wyckelsma, V L; McKenna, M J; Serpiello, F R; Lamboley, C R; Aughey, R J; Stepto, N K; Bishop, D J; Murphy, R M

    2015-03-15

    The Na(+)-K(+)-ATPase (NKA) plays a key role in muscle excitability, but little is known in human skeletal muscle about fiber-type-specific differences in NKA isoform expression or adaptability. A vastus lateralis muscle biopsy was taken in 17 healthy young adults to contrast NKA isoform protein relative abundance between type I and IIa fibers. We further investigated muscle fiber-type-specific NKA adaptability in eight of these adults following 4-wk repeated-sprint exercise (RSE) training, comprising three sets of 5 × 4-s sprints, 3 days/wk. Single fibers were separated, and myosin heavy chain (I and IIa) and NKA (α1-3 and β1-3) isoform abundance were determined via Western blotting. All six NKA isoforms were expressed in both type I and IIa fibers. No differences between fiber types were found for α1-, α2-, α3-, β1-, or β3-isoform abundances. The NKA β2-isoform was 27% more abundant in type IIa than type I fibers (P < 0.05), with no other fiber-type-specific trends evident. RSE training increased β1 in type IIa fibers (pretraining 0.70 ± 0.25, posttraining 0.84 ± 0.24 arbitrary units, 42%, P < 0.05). No training effects were found for other NKA isoforms. Thus human skeletal muscle expresses all six NKA isoforms and not in a fiber-type-specific manner; this points to their different functional roles in skeletal muscle cells. Detection of elevated NKA β1 after RSE training demonstrates the sensitivity of the single-fiber Western blotting technique for fiber-type-specific intervention effects.

  15. Photovoltaic fibers

    NASA Astrophysics Data System (ADS)

    Gaudiana, Russell; Eckert, Robert; Cardone, John; Ryan, James; Montello, Alan

    2006-08-01

    It was realized early in the history of Konarka that the ability to produce fibers that generate power from solar energy could be applied to a wide variety of applications where fabrics are utilized currently. These applications include personal items such as jackets, shirts and hats, to architectural uses such as awnings, tents, large covers for cars, trucks and even doomed stadiums, to indoor furnishings such as window blinds, shades and drapes. They may also be used as small fabric patches or fiber bundles for powering or recharging batteries in small sensors. Power generating fabrics for clothing is of particular interest to the military where they would be used in uniforms and body armor where portable power is vital to field operations. In strong sunlight these power generating fabrics could be used as a primary source of energy, or they can be used in either direct sunlight or low light conditions to recharge batteries. Early in 2002, Konarka performed a series of proof-of-concept experiments to demonstrate the feasibility of building a photovoltaic cell using dye-sensitized titania and electrolyte on a metal wire core. The approach taken was based on the sequential coating processes used in making fiber optics, namely, a fiber core, e.g., a metal wire serving as the primary electrode, is passed through a series of vertically aligned coating cups. Each of the cups contains a coating fluid that has a specific function in the photocell. A second wire, used as the counter electrode, is brought into the process prior to entering the final coating cup. The latter contains a photopolymerizable, transparent cladding which hardens when passed through a UV chamber. Upon exiting the UV chamber, the finished PV fiber is spooled. Two hundred of foot lengths of PV fiber have been made using this process. When the fiber is exposed to visible radiation, it generates electrical power. The best efficiency exhibited by these fibers is 6% with an average value in the 4

  16. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach.

    PubMed

    Uyar, Tansel; Çökeliler, Dilek; Doğan, Mustafa; Koçum, Ismail Cengiz; Karatay, Okan; Denkbaş, Emir Baki

    2016-05-01

    Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling, however, when it is used in prosthetic dentistry, fracturing or cracking problems can be seen due to the relatively low strength issues. Besides, acrylic resin is the still prominent material for denture fabrication due to its handy and low cost features. Numerous proposed fillers that are used to produce PMMA composites, however electrospun polyvinylalcohol (PVA) nanofiber fillers for production of PMMA composite resins are not studied as much as the others. The other focus of the practice is to compare both mechanical properties and efficiency of aligned fibers versus non-aligned PVA nanofibers in PMMA based dental composites. Field-controlled electrospinning system is manufactured and provided good alignment in lab scale as one of contributions. Some novel auxiliary electrodes in controlled structure are augmented to obtain different patterns of alignment with a certain range of fiber diameters. Scanning electron microscopy is used for physical characterization to determine the range of fiber diameters. Non-woven fiber has no unique pattern due to chaotic nature of electrospinning process, but aligned fibers have round pattern or crossed lines. These produced fibers are structured as layer-by-layer form with different features, and these features are used in producing PMMA dental composites with different volume ratios. The maximum flexural strength figure shows that fiber load by weight of 0.25% w/w and above improves in the maximum level. As a result, mechanical properties of PMMA dental composites are improved by using PVA nanofibers as a filler, however the improvement was higher when aligned PVA nanofibers are used. The maximum values were 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), and 170 kJ/m(3) (toughness) in three-point bending test. In addition to the positive results of aligned and non-aligned nanofibers it was found

  17. The twilight zone of cis element alignments.

    PubMed

    Sebastian, Alvaro; Contreras-Moreira, Bruno

    2013-02-01

    Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein-DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein-DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments.

  18. Electrochromic fiber-shaped supercapacitors.

    PubMed

    Chen, Xuli; Lin, Huijuan; Deng, Jue; Zhang, Ye; Sun, Xuemei; Chen, Peining; Fang, Xin; Zhang, Zhitao; Guan, Guozhen; Peng, Huisheng

    2014-12-23

    An electrochromic fiber-shaped super-capacitor is developed by winding aligned carbon nanotube/polyaniline composite sheets on an elastic fiber. The fiber-shaped supercapacitors demonstrate rapid and reversible chromatic transitions under different working states, which can be directly observed by the naked eye. They are also stretchable and flexible, and are woven into textiles to display designed signals in addition to storing energy.

  19. Nanotube composite carbon fibers

    NASA Astrophysics Data System (ADS)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  20. Single mode fiber and twin-core fiber connection technique for in-fiber integrated interferometer

    NASA Astrophysics Data System (ADS)

    Yuan, Tingting; Zhang, Xiaotong; Guan, Chunying; Yang, Xinghua; Yuan, Libo

    2015-09-01

    A novel twin-core fiber connector has been made by two side-polished fibers. By using side polishing technique, we present a connector based on the twin-core fiber (TCF) and two D-shaped single-core fibers. After simple alignment and splicing, all fiber miniaturizing connector can be obtained. Two cores can operate independently and are non-interfering. The coupling loss of this connector is low and the fabrication technologies are mature. The connector device could be used for sensors or particle trapping.

  1. Fiber optics: A research paper

    NASA Technical Reports Server (NTRS)

    Drone, Melinda M.

    1987-01-01

    Some basic aspects concerning fiber optics are examined. Some history leading up to the development of optical fibers which are now used in the transmission of data in many areas of the world is discussed. Basic theory of the operation of fiber optics is discussed along with methods for improving performance of the optical fiber through much research and design. Splices and connectors are compared and short haul and long haul fiber optic networks are discussed. Fiber optics plays many roles in the commercial world. The use of fiber optics for communication applications is emphasized.

  2. Strain-Induced Alignment in Collagen Gels

    PubMed Central

    Vader, David; Kabla, Alexandre; Weitz, David; Mahadevan, Lakshminarayana

    2009-01-01

    Collagen is the most abundant extracellular-network-forming protein in animal biology and is important in both natural and artificial tissues, where it serves as a material of great mechanical versatility. This versatility arises from its almost unique ability to remodel under applied loads into anisotropic and inhomogeneous structures. To explore the origins of this property, we develop a set of analysis tools and a novel experimental setup that probes the mechanical response of fibrous networks in a geometry that mimics a typical deformation profile imposed by cells in vivo. We observe strong fiber alignment and densification as a function of applied strain for both uncrosslinked and crosslinked collagenous networks. This alignment is found to be irreversibly imprinted in uncrosslinked collagen networks, suggesting a simple mechanism for tissue organization at the microscale. However, crosslinked networks display similar fiber alignment and the same geometrical properties as uncrosslinked gels, but with full reversibility. Plasticity is therefore not required to align fibers. On the contrary, our data show that this effect is part of the fundamental non-linear properties of fibrous biological networks. PMID:19529768

  3. MAVID multiple alignment server.

    PubMed

    Bray, Nicolas; Pachter, Lior

    2003-07-01

    MAVID is a multiple alignment program suitable for many large genomic regions. The MAVID web server allows biomedical researchers to quickly obtain multiple alignments for genomic sequences and to subsequently analyse the alignments for conserved regions. MAVID has been successfully used for the alignment of closely related species such as primates and also for the alignment of more distant organisms such as human and fugu. The server is fast, capable of aligning hundreds of kilobases in less than a minute. The multiple alignment is used to build a phylogenetic tree for the sequences, which is subsequently used as a basis for identifying conserved regions in the alignment. The server can be accessed at http://baboon.math.berkeley.edu/mavid/.

  4. Nearest Alignment Space Termination

    2006-07-13

    Near Alignment Space Termination (NAST) is the Greengenes algorithm that matches up submitted sequences with the Greengenes database to look for similarities and align the submitted sequences based on those similarities.

  5. Design of practical alignment device in KSTAR Thomson diagnostic

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Lee, S. H.; Yamada, I.

    2016-11-01

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak's Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR's Thomson scattering diagnostics.

  6. Constitutive modelling of fiber-reinforced concrete under uniaxial tensile loading

    NASA Astrophysics Data System (ADS)

    Kullaa, Jyrki

    1993-01-01

    The mechanics of fiber reinforced concrete under uniaxial loading is studied. The focus is on the behavior after cracking. The interaction between the fiber and the matrix is the shear stress transfer. The stress can be elastic or frictional in nature. The bond parameters can be obtained by a simple pull-out test and theory. The load displacement curves for fibers of different lengths can be created by means of the calculated parameters. In a simple constitutive model, the main assumption is that the fibers are continuous and there exists multiple cracking in the matrix. After cracking, the fibers only carry the loading. The model uses efficiency factors in taking into account the short and randomly distributed fibers. Only the strengthening portion of the stress strain curve is analyzed. In the statistical model created, it is assumed that only one crack will develop. The theory ignores the strain of the matrix in fiber pull-out. The strain softening behavior is taken into consideration. A constitutive model which takes into account the strain softening part of the stress strain curve is developed. The crack distance and crack width are also calculated. The model takes into account one crack or multiple cracking states and different fracture mechanisms: fiber fracture or pull-out. The fibers are smooth and straight. They can be short or continuous, aligned or randomly distributed, brittle or ductile, and stiff or flexible. fibers may lie in the same matrix. &The results of the model are consistent with the other two models referred. The effects of different parameters can be studied and even new formulas can be found. The model can be used in the design of composite materials and is valid for other brittle matrix composites, such as fiber reinforced ceramics.

  7. Shear adhesion strength of aligned electrospun nanofibers.

    PubMed

    Najem, Johnny F; Wong, Shing-Chung; Ji, Guang

    2014-09-01

    Inspiration from nature such as insects' foot hairs motivates scientists to fabricate nanoscale cylindrical solids that allow tens of millions of contact points per unit area with material substrates. In this paper, we present a simple yet robust method for fabricating directionally sensitive shear adhesive laminates. By using aligned electrospun nylon-6, we create dry adhesives, as a succession of our previous work on measuring adhesion energies between two single free-standing electrospun polymer fibers in cross-cylinder geometry, randomly oriented membranes and substrate, and peel forces between aligned fibers and substrate. The synthetic aligned cylindrical solids in this study are electrically insulating and show a maximal Mode II shear adhesion strength of 27 N/cm(2) on a glass slide. This measured value, for the purpose of comparison, is 270% of that reported from gecko feet. The Mode II shear adhesion strength, based on a commonly known "dead-weight" test, is 97-fold greater than the Mode I (normal) adhesion strength of the same. The data indicate a strong shear binding on and easy normal lifting off. Anisotropic adhesion (Mode II/Mode I) is pronounced. The size and surface boundary effects, crystallinity, and bending stiffness of fibers are used to understand these electrospun nanofibers, which vastly differ from otherwise known adhesive technologies. The anisotropic strength distribution is attributed to a decreasing fiber diameter and an optimized laminate thickness, which, in turn, influences the bending stiffness and solid-state "wettability" of points of contact between nanofibers and surface asperities.

  8. FIBER LENGTH DISTRIBUTION MEASUREMENT FOR LONG GLASS AND CARBON FIBER REINFORCED INJECTION MOLDED THERMOPLASTICS

    SciTech Connect

    Kunc, Vlastimil; Frame, Barbara J; Nguyen, Ba N.; TuckerIII, Charles L.; Velez-Garcia, Gregorio

    2007-01-01

    Procedures for fiber length distribution (FLD) measurement of long fiber reinforced injection molded thermoplastics were refined for glass and carbon fibers. Techniques for sample selection, fiber separation, digitization and length measurement for both fiber types are described in detail. Quantitative FLD results are provided for glass and carbon reinforced polypropylene samples molded with a nominal original fiber length of 12.7 mm (1/2 in.) using equipment optimized for molding short fiber reinforced thermoplastics.

  9. Girder Alignment Plan

    SciTech Connect

    Wolf, Zackary; Ruland, Robert; LeCocq, Catherine; Lundahl, Eric; Levashov, Yurii; Reese, Ed; Rago, Carl; Poling, Ben; Schafer, Donald; Nuhn, Heinz-Dieter; Wienands, Uli; /SLAC

    2010-11-18

    The girders for the LCLS undulator system contain components which must be aligned with high accuracy relative to each other. The alignment is one of the last steps before the girders go into the tunnel, so the alignment must be done efficiently, on a tight schedule. This note documents the alignment plan which includes efficiency and high accuracy. The motivation for girder alignment involves the following considerations. Using beam based alignment, the girder position will be adjusted until the beam goes through the center of the quadrupole and beam finder wire. For the machine to work properly, the undulator axis must be on this line and the center of the undulator beam pipe must be on this line. The physics reasons for the undulator axis and undulator beam pipe axis to be centered on the beam are different, but the alignment tolerance for both are similar. In addition, the beam position monitor must be centered on the beam to preserve its calibration. Thus, the undulator, undulator beam pipe, quadrupole, beam finder wire, and beam position monitor axes must all be aligned to a common line. All relative alignments are equally important, not just, for example, between quadrupole and undulator. We begin by making the common axis the nominal beam axis in the girder coordinate system. All components will be initially aligned to this axis. A more accurate alignment will then position the components relative to each other, without incorporating the girder itself.

  10. Interstellar Dust Grain Alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Lazarian, A.; Vaillancourt, John E.

    2015-08-01

    Interstellar polarization at optical-to-infrared wavelengths is known to arise from asymmetric dust grains aligned with the magnetic field. This effect provides a potentially powerful probe of magnetic field structure and strength if the details of the grain alignment can be reliably understood. Theory and observations have recently converged on a quantitative, predictive description of interstellar grain alignment based on radiative processes. The development of a general, analytical model for this radiative alignment torque (RAT) theory has allowed specific, testable predictions for realistic interstellar conditions. We outline the theoretical and observational arguments in favor of RAT alignment, as well as reasons the "classical" paramagnetic alignment mechanism is unlikely to work, except possibly for the very smallest grains. With further detailed characterization of the RAT mechanism, grain alignment and polarimetry promise to not only better constrain the interstellar magnetic field but also provide new information on the dust characteristics.

  11. Autotract: automatic cleaning and tracking of fibers

    NASA Astrophysics Data System (ADS)

    Prieto, Juan C.; Yang, Jean Y.; Budin, François; Styner, Martin

    2016-03-01

    We propose a new tool named Autotract to automate fiber tracking in diffusion tensor imaging (DTI). Autotract uses prior knowledge from a source DTI and a set of corresponding fiber bundles to extract new fibers for a target DTI. Autotract starts by aligning both DTIs and uses the source fibers as seed points to initialize a tractography algorithm. We enforce similarity between the propagated source fibers and automatically traced fibers by computing metrics such as fiber length and fiber distance between the bundles. By analyzing these metrics, individual fiber tracts can be pruned. As a result, we show that both bundles have similar characteristics. Additionally, we compare the automatically traced fibers against bundles previously generated and validated in the target DTI by an expert. This work is motivated by medical applications in which known bundles of fiber tracts in the human brain need to be analyzed for multiple datasets.

  12. Autotract: Automatic cleaning and tracking of fibers

    PubMed Central

    Prieto, Juan C.; Yang, Jean Y.; Budin, François; Styner, Martin

    2016-01-01

    We propose a new tool named Autotract to automate fiber tracking in diffusion tensor imaging (DTI). Autotract uses prior knowledge from a source DTI and a set of corresponding fiber bundles to extract new fibers for a target DTI. Autotract starts by aligning both DTIs and uses the source fibers as seed points to initialize a tractography algorithm. We enforce similarity between the propagated source fibers and automatically traced fibers by computing metrics such as fiber length and fiber distance between the bundles. By analyzing these metrics, individual fiber tracts can be pruned. As a result, we show that both bundles have similar characteristics. Additionally, we compare the automatically traced fibers against bundles previously generated and validated in the target DTI by an expert. This work is motivated by medical applications in which known bundles of fiber tracts in the human brain need to be analyzed for multiple datasets. PMID:27065227

  13. Characterization of nonlinear saturation and mode-locking potential of ionically-doped colored glass filter for short-pulse fiber lasers.

    PubMed

    Zhang, M; Kelleher, E J R; Popov, S V; Taylor, J R

    2013-05-20

    The nonlinear saturable absorption of an ionically-doped colored glass filter is measured directly using a Z-scan technique. For the first time, we demonstrate the potential of this material as a saturable asborber in fiber lasers. We achieve mode-locking of an ytterbium doped system. Mode-locking of cavities with all-positive and net-negative group velocity dispersion are demonstrated, achieving pulse durations of 60 ps and 4.1 ps, respectively. This inexpensive and optically robust material, with the potential for broadband operation, could surplant other saturable absorber devices in affordable mode-locked fiber lasers.

  14. The optimal fiber volume fraction and fiber-matrix property compatibility in fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Pan, Ning

    1992-01-01

    Although the question of minimum or critical fiber volume fraction beyond which a composite can then be strengthened due to addition of fibers has been dealt with by several investigators for both continuous and short fiber composites, a study of maximum or optimal fiber volume fraction at which the composite reaches its highest strength has not been reported yet. The present analysis has investigated this issue for short fiber case based on the well-known shear lag (the elastic stress transfer) theory as the first step. Using the relationships obtained, the minimum spacing between fibers is determined upon which the maximum fiber volume fraction can be calculated, depending on the fiber packing forms within the composites. The effects on the value of this maximum fiber volume fraction due to such factors as fiber and matrix properties, fiber aspect ratio and fiber packing forms are discussed. Furthermore, combined with the previous analysis on the minimum fiber volume fraction, this maximum fiber volume fraction can be used to examine the property compatibility of fiber and matrix in forming a composite. This is deemed to be useful for composite design. Finally some examples are provided to illustrate the results.

  15. Physical and Biological Characterization of Ferromagnetic Fiber Networks: Effect of Fibrin Deposition on Short-Term In Vitro Responses of Human Osteoblasts

    PubMed Central

    Spear, Rose L.; Srigengan, Brajith; Neelakantan, Suresh; Bosbach, Wolfram; Brooks, Roger A.

    2015-01-01

    Ferromagnetic fiber networks have the potential to deform in vivo imparting therapeutic levels of strain on in-growing periprosthetic bone tissue. 444 Ferritic stainless steel provides a suitable material for this application due to its ability to support cultures of human osteoblasts (HObs) without eliciting undue inflammatory responses from monocytes in vitro. In the present article, a 444 fiber network, containing 17 vol% fibers, has been investigated. The network architecture was obtained by applying a skeletonization algorithm to three-dimensional tomographic reconstructions of the fiber networks. Elastic properties were measured using low-frequency vibration testing, providing globally averaged properties as opposed to mechanical methods that yield only local properties. The optimal region for transduction of strain to cells lies between the ferromagnetic fibers. However, cell attachment, at early time points, occurs primarily on fiber surfaces. Deposition of fibrin, a fibrous protein involved in acute inflammatory responses, can facilitate cell attachment within this optimal region at early time points. The current work compared physiological (3 and 5 g·L−1) and supraphysiological fibrinogen concentrations (10 g·L−1), using static in vitro seeding of HObs, to determine the effect of fibrin deposition on cell responses during the first week of cell culture. Early cell attachment within the interfiber spaces was observed in all fibrin-containing samples, supported by fibrin nanofibers. Fibrin deposition influenced the seeding, metabolic activity, and early stage differentiation of HObs cultured in the fibrin-containing fiber networks in a concentration-dependant manner. While initial cell attachment for networks with fibrin deposited from low physiological concentrations was similar to control samples without fibrin deposition, significantly higher HObs attached onto high physiological and supraphysiological concentrations. Despite higher cell

  16. Purification process for vertically aligned carbon nanofibers

    NASA Technical Reports Server (NTRS)

    Nguyen, Cattien V.; Delziet, Lance; Matthews, Kristopher; Chen, Bin; Meyyappan, M.

    2003-01-01

    Individual, free-standing, vertically aligned multiwall carbon nanotubes or nanofibers are ideal for sensor and electrode applications. Our plasma-enhanced chemical vapor deposition techniques for producing free-standing and vertically aligned carbon nanofibers use catalyst particles at the tip of the fiber. Here we present a simple purification process for the removal of iron catalyst particles at the tip of vertically aligned carbon nanofibers derived by plasma-enhanced chemical vapor deposition. The first step involves thermal oxidation in air, at temperatures of 200-400 degrees C, resulting in the physical swelling of the iron particles from the formation of iron oxide. Subsequently, the complete removal of the iron oxide particles is achieved with diluted acid (12% HCl). The purification process appears to be very efficient at removing all of the iron catalyst particles. Electron microscopy images and Raman spectroscopy data indicate that the purification process does not damage the graphitic structure of the nanotubes.

  17. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  18. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies.

  19. Orthodontics and Aligners

    MedlinePlus

    ... Repairing Chipped Teeth Teeth Whitening Tooth-Colored Fillings Orthodontics and Aligners Straighten teeth for a healthier smile. Orthodontics When consumers think about orthodontics, braces are the ...

  20. Tidal alignment of galaxies

    NASA Astrophysics Data System (ADS)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  1. Alignability of Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Beech, Russell Scott

    With the continuing drive towards higher speed, density, and functionality in electronics, electrical interconnects become inadequate. Due to optics' high speed and bandwidth, freedom from capacitive loading effects, and freedom from crosstalk, optical interconnects can meet more stringent interconnect requirements. But, an optical interconnect requires additional components, such as an optical source and detector, lenses, holographic elements, etc. Fabrication and assembly of an optical interconnect requires precise alignment of these components. The successful development and deployment of optical interconnects depend on how easily the interconnect components can be aligned and/or how tolerant the interconnect is to misalignments. In this thesis, a method of quantitatively specifying the relative difficulty of properly aligning an optical interconnect is described. Ways of using this theory of alignment to obtain design and packaging guidelines for optical interconnects are examined. The measure of the ease with which an optical interconnect can be aligned, called the alignability, uses the efficiency of power transfer as a measure of alignment quality. The alignability is related to interconnect package design through the overall cost measure, which depends upon various physical parameters of the interconnect, such as the cost of the components and the time required for fabrication and alignment. Through a mutual dependence on detector size, the relationship between an interconnect's alignability and its bandwidth, signal-to-noise ratio, and bit-error -rate is examined. The results indicate that a range of device sizes exists for which given performance threshold values are satisfied. Next, the alignability of integrated planar-optic backplanes is analyzed in detail. The resulting data show that the alignability can be optimized by varying the substrate thickness or the angle of reflection. By including the effects of crosstalk, in a multi-channel backplane, the

  2. Carbon nanotube fiber spun from wetted ribbon

    SciTech Connect

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  3. Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains.

    PubMed

    Hodor, P G; Illies, M R; Broadley, S; Ettensohn, C A

    2000-06-01

    The migratory primary mesenchyme cells (PMCs) of the sea urchin embryo are a model experimental system for the analysis of cell-extracellular matrix (ECM) interactions. Although the behavior of PMCs during gastrulation has been analyzed in considerable detail, it has proven difficult to identify specific substrate molecules with which these cells interact. Here, using a new monoclonal antibody (2.5C4) generated by an in vitro immunization procedure, we show that migrating PMCs interact with a distinct class of ECM fiber. The 2.5C4-positive fibers are distributed in a vegetal (high) to animal (low) gradient on the basal surface of the ectoderm. Three observations indicate that PMC filopodia interact directly with the fibers: (1) During gastrulation, 2.5C4-positive fibers gradually become oriented in a prominent circumferential belt that corresponds precisely to the position of the subequatorial PMC ring. (2) This fiber pattern is blocked by microsurgical removal of PMCs but is restored if PMCs are reintroduced into the embryo. (3) Examination of immunostained embryo whole mounts by confocal microscopy reveals a striking association between PMC filopodial roots and foci of fiber bundling. Double-immunostaining experiments using 2.5C4 and antibodies against previously identified matrix constituents show that the protein ECM3 is a component of the fibers. We have determined the complete amino acid sequence of ECM3 and find that this large protein (3103 amino acids) consists of an N-terminal domain similar to the mammalian chondroitin sulfate proteoglycan core protein NG2, a central region composed of five tandem repeats of a domain contained within the regulatory Ca2+-binding loop of Na+-Ca2+ exchange proteins, and a C-terminal region with no homology to known proteins. The general structure of ECM3 is similar in several respects to that of a sponge protein, MAFp4. MAFp4 is a major component of aggregation factor, an ECM complex that mediates the calcium

  4. Hole-Aligning Tool

    NASA Technical Reports Server (NTRS)

    Collins, Frank A.; Saude, Frank; Sep, Martin J.

    1996-01-01

    Tool designed for use in aligning holes in plates or other structural members to be joined by bolt through holes. Holes aligned without exerting forces perpendicular to planes of holes. Tool features screw-driven-wedge design similar to (but simpler than) that of some automotive exhaust-pipe-expanding tools.

  5. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Morey, W. W.; Glenn, W. H.; Snitzer, E.

    1983-01-01

    A temperature sensor has been developed that utilizes the temperature dependent absorption of a rare earth doped optical fiber. The temperature measurement is localized at a remote position by splicing a short section of the rare earth fiber into a loop of commercial data communication fiber that sends and returns an optical probe signal to the temperature sensitive section of fiber. The optical probe signal is generated from two different wavelength filtered LED sources. A four port fiber optic coupler combines the two separate wavelength signals into the fiber sensing loop. Time multiplexing is used so that each signal wavelength is present at a different time. A reference signal level measurement is also made from the LED sources and a ratio taken with the sensor signal to produce a transmission measurement of the fiber loop. The transmission is affected differently at each wavelength by the rare earth temperature sensitive fiber. The temperature is determined from a ratio of the two transmission measurements. This method eliminates any ambiguity with respect to changes in signal level in the fiber loop such as mating and unmating optical connectors. The temperature range of the sensor is limited to about 800 C by the temperature limit fo the feed fibers.

  6. Automated fiber pigtailing machine

    DOEpatents

    Strand, O.T.; Lowry, M.E.

    1999-01-05

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

  7. Automated fiber pigtailing machine

    DOEpatents

    Strand, Oliver T.; Lowry, Mark E.

    1999-01-01

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems.

  8. Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue.

    PubMed

    York, Timothy; Kahan, Lindsey; Lake, Spencer P; Gruev, Viktor

    2014-06-01

    A technique for creating maps of the direction and strength of fiber alignment in collagenous soft tissues is presented. The method uses a division of focal plane polarimeter to measure circularly polarized light transmitted through the tissue. The architecture of the sensor allows measurement of the retardance and fiber alignment at the full frame rate of the sensor without any moving optics. The technique compares favorably to the standard method of using a rotating polarizer. How the new technique enables real-time capture of the full angular spread of fiber alignment and retardance under various cyclic loading conditions is illustrated. PMID:24972359

  9. Multianode Photomultiplier Tube Alignment for the MINERvA Experiment at Fermilab

    NASA Astrophysics Data System (ADS)

    Bruno, Jorge

    2006-10-01

    The MINERvA experiment (Main INjector ExpeRiment vA) at FNAL will study the neutrino-nucleon and neutrino-nucleus interaction. The light collection from the detector will be done via optic fibers using Hamamatsu H8804 64-channel photomultiplier tubes (PMT). Each PMT channel needs to be precisely aligned with the corresponding optic fiber. The MINERvA PMT optical boxes contain precision machined optic ``cookies'' which capture the 8x8 array of optic fibers. Each PMT-cookie pair needs to be aligned as precisely as possible. This contribution will describe the alignment setup and procedure implemented at James Madison University.

  10. Precision alignment device

    DOEpatents

    Jones, Nelson E.

    1990-01-01

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.

  11. Precision alignment device

    DOEpatents

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  12. Galaxy Alignments: An Overview

    NASA Astrophysics Data System (ADS)

    Joachimi, Benjamin; Cacciato, Marcello; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Hoekstra, Henk; Kiessling, Alina; Kirk, Donnacha; Rassat, Anais

    2015-11-01

    The alignments between galaxies, their underlying matter structures, and the cosmic web constitute vital ingredients for a comprehensive understanding of gravity, the nature of matter, and structure formation in the Universe. We provide an overview on the state of the art in the study of these alignment processes and their observational signatures, aimed at a non-specialist audience. The development of the field over the past one hundred years is briefly reviewed. We also discuss the impact of galaxy alignments on measurements of weak gravitational lensing, and discuss avenues for making theoretical and observational progress over the coming decade.

  13. Radiative Grain Alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B. G.

    2015-12-01

    Polarization due to aligned dust grains was discovered in the interstellar medium more than 60 years ago. A quantitative, observationally well tested theory of the phenomenon has finally emerged in the last decade, promising not only an improved understanding of interstellar magnetic fields, but new tools for studying the dust environments and grain characteristics. This Radiative Alignment Torque (RAT) theory also has many potential applications in solar system physics, including for comet dust characteristics. I will review the main aspects of the theory and the observational tests performed to date, as well as some of the new possibilities for using polarization as a tool to study dust and its environment, with RAT alignment.

  14. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  15. Pairwise Sequence Alignment Library

    SciTech Connect

    Jeff Daily, PNNL

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.

  16. Pairwise Sequence Alignment Library

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprintmore » that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.« less

  17. Electrospun nanofiber reinforcement of dental composites with electromagnetic alignment approach.

    PubMed

    Uyar, Tansel; Çökeliler, Dilek; Doğan, Mustafa; Koçum, Ismail Cengiz; Karatay, Okan; Denkbaş, Emir Baki

    2016-05-01

    Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling, however, when it is used in prosthetic dentistry, fracturing or cracking problems can be seen due to the relatively low strength issues. Besides, acrylic resin is the still prominent material for denture fabrication due to its handy and low cost features. Numerous proposed fillers that are used to produce PMMA composites, however electrospun polyvinylalcohol (PVA) nanofiber fillers for production of PMMA composite resins are not studied as much as the others. The other focus of the practice is to compare both mechanical properties and efficiency of aligned fibers versus non-aligned PVA nanofibers in PMMA based dental composites. Field-controlled electrospinning system is manufactured and provided good alignment in lab scale as one of contributions. Some novel auxiliary electrodes in controlled structure are augmented to obtain different patterns of alignment with a certain range of fiber diameters. Scanning electron microscopy is used for physical characterization to determine the range of fiber diameters. Non-woven fiber has no unique pattern due to chaotic nature of electrospinning process, but aligned fibers have round pattern or crossed lines. These produced fibers are structured as layer-by-layer form with different features, and these features are used in producing PMMA dental composites with different volume ratios. The maximum flexural strength figure shows that fiber load by weight of 0.25% w/w and above improves in the maximum level. As a result, mechanical properties of PMMA dental composites are improved by using PVA nanofibers as a filler, however the improvement was higher when aligned PVA nanofibers are used. The maximum values were 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), and 170 kJ/m(3) (toughness) in three-point bending test. In addition to the positive results of aligned and non-aligned nanofibers it was found

  18. Fluorescent fiber diagnostics

    DOEpatents

    Toeppen, John S.

    1994-10-04

    A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).

  19. Fluorescent fiber diagnostics

    DOEpatents

    Toeppen, John S.

    1994-01-01

    A fluorescent fiber (13) having a doped core (16) is pumped (11) by light (18) of a relatively short wavelength to produce fluorescence at a longer wavelength that is detected by detector (24). The level of fluorescence is monitored (26) and evaluated to provide information as to the excitation of the fiber (13) or the environment thereof. In particular, the level of intensity of the detected fluorescence may be used to measure the intensity of a light beam (18) passing axially through an optical fiber system (12) (FIG. 1 ), or the intensity of a light beam (46) passing radially through a fluorescent fiber (13) (FIG. 2 ), or the level of a fluid (32) in a tank (31) (FIG. 3 ), or a scintillation event (37) in a fluorescent fiber (13) pumped to produce amplification of the scintillation event (FIG. 4 ).

  20. An Advanced Electrospinning Method of Fabricating Nanofibrous Patterned Architectures with Controlled Deposition and Desired Alignment

    NASA Astrophysics Data System (ADS)

    Rasel, Sheikh Md

    We introduce a versatile advanced method of electrospinning for fabricating various kinds of nanofibrous patterns along with desired alignment, controlled amount of deposition and locally variable density into the architectures. In this method, we employed multiple electrodes whose potentials have been altered in milliseconds with the help of microprocessor based control system. Therefore, key success of this method was that the electrical field as well as charge carrying fibers could be switched shortly from one electrode's location to another, as a result, electrospun fibers could be deposited on the designated areas with desired alignment. A wide range of nanofibrous patterned architectures were constructed using proper arrangement of multiple electrodes. By controlling the concurrent activation time of two adjacent electrodes, we demonstrated that amount of fibers going into the pattern can be adjusted and desired alignment in electrospun fibers can be obtained. We also revealed that the deposition density of electrospun fibers in different areas of patterned architectures can be varied. We showed that by controlling the deposition time between two adjacent electrodes, a number of functionally graded patterns can be generated with uniaxial alignment. We also demonstrated that this handy method was capable of producing random, aligned, and multidirectional nanofibrous mats by engaging a number of electrodes and switching them in desired patterns. A comprehensive study using finite element method was carried out to understand the effects of electrical field. Simulation results revealed that electrical field strength alters shortly based on electrode control switch patterns. Nanofibrous polyvinyl alcohol (PVA) scaffolds and its composite reinforced with wollastonite and wood flour were fabricated using rotating drum electrospinning technique. Morphological, mechanical, and thermal, properties were characterized on PVA/wollastonite and PVA/wood flour nanocomposites

  1. Numerical prediction of flow induced fibers orientation in injection molded polymer composites

    NASA Astrophysics Data System (ADS)

    Oumer, A. N.; Hamidi, N. M.; Mat Sahat, I.

    2015-12-01

    Since the filling stage of injection molding process has important effect on the determination of the orientation state of the fibers, accurate analysis of the flow field for the mold filling stage becomes a necessity. The aim of the paper is to characterize the flow induced orientation state of short fibers in injection molding cavities. A dog-bone shaped model is considered for the simulation and experiment. The numerical model for determination of the fibers orientation during mold-filling stage of injection molding process was solved using Computational Fluid Dynamics (CFD) software called MoldFlow. Both the simulation and experimental results showed that two different regions (or three layers of orientation structures) across the thickness of the specimen could be found: a shell region which is near to the mold cavity wall, and a core region at the middle of the cross section. The simulation results support the experimental observations that for thin plates the probability of fiber alignment to the flow direction near the mold cavity walls is high but low at the core region. It is apparent that the results of this study could assist in decisions regarding short fiber reinforced polymer composites.

  2. Mechanical alignment of particles for use in fabricating superconducting and permanent magnetic materials

    DOEpatents

    Nellis, William J.; Maple, M. Brian

    1992-01-01

    A method for mechanically aligning oriented superconducting or permanently magnetic materials for further processing into constructs. This pretreatment optimizes the final crystallographic orientation and, thus, properties in these constructs. Such materials as superconducting fibers, needles and platelets are utilized.

  3. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    ERIC Educational Resources Information Center

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  4. Electrospun Fibers as a Scaffolding Platform for Bone Tissue Repair

    PubMed Central

    Lyu, Seungyoun; Huang, Chunlan; Yang, Hong; Zhang, Xinping

    2014-01-01

    The purpose of the study is to investigate the effects of electrospun fiber diameter and orientation on differentiation and ECM organization of bone marrow stromal cells (BMSCs), in attempt to provide rationale for fabrication of a periosteum mimetic for bone defect repair. Cellular growth, differentiation, and ECM organization were analyzed on PLGA-based random and aligned fibers using fluorescent microscopy, gene analyses, electron scanning microscopy (SEM), and multiphoton laser scanning microscopy (MPLSM). BMSCs on aligned fibers had a reduced number of ALP+ colony at day 10 as compared to the random fibers of the same size. However, the ALP+ area in the aligned fibers increased to a similar level as the random fibers at day 21 following stimulation with osteogenic media. Compared with the random fibers, BMSCs on the aligned fibers showed a higher expression of OSX and RUNX2. Analyses of ECM on decellularized spun fibers showed highly organized ECM arranged according to the orientation of the spun fibers, with a broad size distribution of collagen fibers in a range of 40nm to 2.4µm. Taken together, our data support the use of submicron-sized electrospun fibers for engineering of oriented fibrous tissue mimetic, such as periosteum, for guided bone repair and reconstruction. PMID:23580466

  5. Critical reviews of fiber-optic communication technology Optical fibers

    NASA Astrophysics Data System (ADS)

    Kapron, F. P.

    The review begins with brief highlights of the history of fiber optics, followed by a discussion of the attributes of shortwave and longwave transmission. This leads to an investigation of various fiber types, short-haul considerations, and then single-mode aspects. Specialty fiber is briefly covered, followed by a survey of several research trends today that will lead to new systems capabilities in the future. No references are given, since hundreds would be necessary to make the list even partially complete.

  6. BBMap: A Fast, Accurate, Splice-Aware Aligner

    SciTech Connect

    Bushnell, Brian

    2014-03-17

    Alignment of reads is one of the primary computational tasks in bioinformatics. Of paramount importance to resequencing, alignment is also crucial to other areas - quality control, scaffolding, string-graph assembly, homology detection, assembly evaluation, error-correction, expression quantification, and even as a tool to evaluate other tools. An optimal aligner would greatly improve virtually any sequencing process, but optimal alignment is prohibitively expensive for gigabases of data. Here, we will present BBMap [1], a fast splice-aware aligner for short and long reads. We will demonstrate that BBMap has superior speed, sensitivity, and specificity to alternative high-throughput aligners bowtie2 [2], bwa [3], smalt, [4] GSNAP [5], and BLASR [6].

  7. Imaging characteristics of an 8.8  mm long and 125  μm thick graded-index short multimode fiber probe.

    PubMed

    Sato, Manabu; Shouji, Kou; Saito, Daisuke; Nishidate, Izumi

    2016-04-20

    We demonstrated the feasibility of an ultrathin imaging probe with a 50-μm core diameter, a 125 μm total diameter, and an 8.8 mm length, which is a typical graded-index multimode fiber for optical communications. We used an ABCD matrix to analyze the imaging conditions and magnification, which corresponded closely to the measured results. The lateral resolution was calculated at 1.2 μm with a wavelength of 730 nm, which reflects the image test pattern where a period of 4.38 μm was measured with a wavelength of 730 nm. In the numerical aperture of the objective lens, we experimentally evaluated the tradeoff between the magnification and the coupling efficiency. At four wavelengths of 540 nm, 632 nm, 730 nm, and 852 nm, the contrast and signal intensity versus the wavelength were investigated to show that the contrast at 632 and 730 nm is relatively high. By using a thin random phase screen model, we explained that as the wavelength decreases the greater the decrease in the optical transfer function at higher spatial frequencies. Using a 635 nm LED light source, we imaged the surfaces of chicken tendons in contact and the surface roughness was visible. PMID:27140102

  8. Surface topography and alignment of liquid crystals on rubbed oxide surfaces

    NASA Astrophysics Data System (ADS)

    Nakamura, Minoru

    1981-07-01

    For several nematic liquid crystals (LC's), the relation between alignments of the LC's on rubbed oxide surfaces and rubbing pressures of the substrates is given. When the LC's take a parallel alignment to the surfaces, good homogeneous alignment is achieved at low pressures. High pressure rubbing also produces good homogeneous alignment of LC's, although alignment is perpendicular to the nonrubbed surfaces. Fine stripes of deposited cloth fibers can be observed on the cloth-rubbed oxide surfaces. The stripes consist of asymmetric projections ranging in the rubbed direction. On the basis of the asymmetric structure formed on the surface, the tilt direction of LC's and their tilt angles are interpreted.

  9. Hadron calorimeter with reradiating fibers

    SciTech Connect

    Kostritskii, A.V.; Baliev, L.O.; Buzultskov, A.F.

    1995-03-01

    A hadron calorimeter in which scintillators are aligned in parallel with the particle beam and the light is output from the scintillators via optical fibers doped with a reradiating is described. The active element has been tested and the calorimeter`s operation simulated. The structure of a calorimeter unit is illustrated.

  10. Mode locked fiber lasers and their applications. Final report, December 1993-December 1994

    SciTech Connect

    Teegarden, K.J.

    1996-01-01

    This work has resulted in the development of a compact self-starting modelocked erbium fiber laser. The remarkable feature is the elimination of the need for any type of polarization control. Furthermore, all of the components are passive and are contained within the fiber cavity medium itself. This permits an ultra compact modular system that is portable. The laser employs a Fabry-Perot cavity with a fiber grating as one reflector, and a nonlinear multiple quantum well saturable absorber as the other. It operates at low pump power from a LP and produces pico second modelocked pulses with peak powers of over 20 W. When the saturable absorber is sized to a sub-millimeter dimension and micro-assembled on the fiber tip, all need for alignment is removed and the system is completely portable and fairly rugged. The transform limited chirp free characteristics of the ultra short pulses enable soliton propagation effects to minimize pulse broadening that limits the rates/distance in all present systems. These fiber lasers are presently suitable for device diagnostics, but may ultimately prove superior to the laser diode sources presently used in all high rate fiber optic communication and sensor systems.

  11. Alignment of the Fermilab D0 Detector

    SciTech Connect

    Babatunde O'Sheg Oshinowo

    2001-07-20

    The Fermilab D0 detector was used for the discovery of the top quark during Run I in 1996. It is currently being upgraded to exploit the physics potential to be presented by the Main Injector and the Tevatron Collider during Run II in the Fall of 2000. Some of the essential elements of this upgrade is the upgrade of the Solenoid Magnet, the Central Fiber Tracker, the Preshower Detectors, the Calorimeter System, and the Muon System. This paper discusses the survey and alignment of the these detectors with emphasis on the Muon detector system. The alignment accuracy is specified as better than 0.5mm. A combination of the Laser Tracker, BETS, and V-STARS systems are used for the survey.

  12. How genome complexity can explain the difficulty of aligning reads to genomes

    PubMed Central

    2015-01-01

    Background Although it is frequently observed that aligning short reads to genomes becomes harder if they contain complex repeat patterns, there has not been much effort to quantify the relationship between complexity of genomes and difficulty of short-read alignment. Existing measures of sequence complexity seem unsuitable for the understanding and quantification of this relationship. Results We investigated several measures of complexity and found that length-sensitive measures of complexity had the highest correlation to accuracy of alignment. In particular, the rate of distinct substrings of length k, where k is similar to the read length, correlated very highly to alignment performance in terms of precision and recall. We showed how to compute this measure efficiently in linear time, making it useful in practice to estimate quickly the difficulty of alignment for new genomes without having to align reads to them first. We showed how the length-sensitive measures could provide additional information for choosing aligners that would align consistently accurately on new genomes. Conclusions We formally established a connection between genome complexity and the accuracy of short-read aligners. The relationship between genome complexity and alignment accuracy provides additional useful information for selecting suitable aligners for new genomes. Further, this work suggests that the complexity of genomes sometimes should be thought of in terms of specific computational problems, such as the alignment of short reads to genomes. PMID:26678826

  13. Optics Alignment Panel

    NASA Technical Reports Server (NTRS)

    Schroeder, Daniel J.

    1992-01-01

    The Optics Alignment Panel (OAP) was commissioned by the HST Science Working Group to determine the optimum alignment of the OTA optics. The goal was to find the position of the secondary mirror (SM) for which there is no coma or astigmatism in the camera images due to misaligned optics, either tilt or decenter. The despace position was reviewed of the SM and the optimum focus was sought. The results of these efforts are as follows: (1) the best estimate of the aligned position of the SM in the notation of HDOS is (DZ,DY,TZ,TY) = (+248 microns, +8 microns, +53 arcsec, -79 arcsec), and (2) the best focus, defined to be that despace which maximizes the fractional energy at 486 nm in a 0.1 arcsec radius of a stellar image, is 12.2 mm beyond paraxial focus. The data leading to these conclusions, and the estimated uncertainties in the final results, are presented.

  14. Barrel alignment fixture

    NASA Astrophysics Data System (ADS)

    Sheeley, J. D.

    1981-04-01

    Fabrication of slapper type detonator cables requires bonding of a thin barrel over a bridge. Location of the barrel hole with respect to the bridge is critical: the barrel hole must be centered over the bridge uniform spacing on each side. An alignment fixture which permits rapid adjustment of the barrel position with respect to the bridge is described. The barrel is manipulated by pincer-type fingers which are mounted on a small x-y table equipped with micrometer adjustments. Barrel positioning, performed under a binocular microscopy, is rapid and accurate. After alignment, the microscope is moved out of position and an infrared (IR) heat source is aimed at the barrel. A 5-second pulse of infrared heat flows the adhesive under the barrel and bonds it to the cable. Sapphire and Fotoform glass barrels were bonded successfully with the alignment fixture.

  15. Magnetically aligned supramolecular hydrogels.

    PubMed

    Wallace, Matthew; Cardoso, Andre Zamith; Frith, William J; Iggo, Jonathan A; Adams, Dave J

    2014-12-01

    The magnetic-field-induced alignment of the fibrillar structures present in an aqueous solution of a dipeptide gelator, and the subsequent retention of this alignment upon transformation to a hydrogel upon the addition of CaCl2 or upon a reduction in solution pH is reported. Utilising the switchable nature of the magnetic field coupled with the slow diffusion of CaCl2 , it is possible to precisely control the extent of anisotropy across a hydrogel, something that is generally very difficult to do using alternative methods. The approach is readily extended to other compounds that form viscous solutions at high pH. It is expected that this work will greatly expand the utility of such low-molecular-weight gelators (LMWG) in areas where alignment is key. PMID:25345918

  16. Optimizing parameters on alignment of PCL/PGA nanofibrous scaffold: An artificial neural networks approach.

    PubMed

    Paskiabi, Farnoush Asghari; Mirzaei, Esmaeil; Amani, Amir; Shokrgozar, Mohammad Ali; Saber, Reza; Faridi-Majidi, Reza

    2015-11-01

    This paper proposes an artificial neural networks approach to finding the effects of electrospinning parameters on alignment of poly(ɛ-caprolactone)/poly(glycolic acid) blend nanofibers. Four electrospinning parameters, namely total polymer concentration, working distance, drum speed and applied voltage were considered as input and the standard deviation of the angles of nanofibers, introducing fibers alignments, as the output of the model. The results demonstrated that drum speed and applied voltage are two critical factors influencing nanofibers alignment, however their effect are entirely interdependent. Their effects also are not independent of other electrospinning parameters. In obtaining aligned electrospun nanofibers, the concentration and working distance can also be effective. In vitro cell culture study on random and aligned nanofibers showed directional growth of cells on aligned fibers.

  17. MUSE optical alignment procedure

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Loupias, Magali; Kosmalski, Johan; Anwand, Heiko; Bacon, Roland; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dubois, Jean-Pierre; Dupuy, Christophe; Kelz, Andreas; Lizon, Jean-Louis; Nicklas, Harald; Parès, Laurent; Remillieux, Alban; Seifert, Walter; Valentin, Hervé; Xu, Wenli

    2012-09-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation VLT integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently assembling and testing MUSE in the Integration Hall of the Observatoire de Lyon for the Preliminary Acceptance in Europe, scheduled for 2013. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2011, all MUSE subsystems were integrated, aligned and tested independently in each institute. After validations, the systems were shipped to the P.I. institute at Lyon and were assembled in the Integration Hall This paper describes the end-to-end optical alignment procedure of the MUSE instrument. The design strategy, mixing an optical alignment by manufacturing (plug and play approach) and few adjustments on key components, is presented. We depict the alignment method for identifying the optical axis using several references located in pupil and image planes. All tools required to perform the global alignment between each subsystem are described. The success of this alignment approach is demonstrated by the good results for the MUSE image quality. MUSE commissioning at the VLT (Very Large Telescope) is planned for 2013.

  18. Segment alignment control system

    NASA Technical Reports Server (NTRS)

    Aubrun, JEAN-N.; Lorell, Ken R.

    1988-01-01

    The segmented primary mirror for the LDR will require a special segment alignment control system to precisely control the orientation of each of the segments so that the resulting composite reflector behaves like a monolith. The W.M. Keck Ten Meter Telescope will utilize a primary mirror made up of 36 actively controlled segments. Thus the primary mirror and its segment alignment control system are directly analogous to the LDR. The problems of controlling the segments in the face of disturbances and control/structures interaction, as analyzed for the TMT, are virtually identical to those for the LDR. The two systems are briefly compared.

  19. PILOT optical alignment

    NASA Astrophysics Data System (ADS)

    Longval, Y.; Mot, B.; Ade, P.; André, Y.; Aumont, J.; Baustista, L.; Bernard, J.-Ph.; Bray, N.; de Bernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Charra, M.; Chaigneau, M.; Crane, B.; Crussaire, J.-P.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P..; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tapie, P.; Tauber, J.; Torre, J.-P.; Tucker, C.

    2016-07-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 μm with an angular resolution about two arcminutes. Pilot optics is composed an off-axis Gregorian type telescope and a refractive re-imager system. All optical elements, except the primary mirror, are in a cryostat cooled to 3K. We combined the optical, 3D dimensional measurement methods and thermo-elastic modeling to perform the optical alignment. The talk describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015.

  20. Highly Aligned Nanofibrous Scaffold Derived from Decellularized Human Fibroblasts

    PubMed Central

    Xing, Qi; Vogt, Caleb; Leong, Kam W.; Zhao, Feng

    2014-01-01

    Native tissues are endowed with a highly organized nanofibrous extracellular matrix (ECM) that directs cellular distribution and function. The objective of this study is to create a purely natural, uniform, and highly aligned nanofibrous ECM scaffold for potential tissue engineering applications. Synthetic nanogratings (130 nm in depth) were used to direct the growth of human dermal fibroblasts for up to 8 weeks, resulting in a uniform 70 μm–thick fibroblast cell sheet with highly aligned cells and ECM nanofibers. A natural ECM scaffold with uniformly aligned nanofibers of 78 ± 9 nm in diameter was generated after removing the cellular components from the detached fibroblast sheet. The elastic modulus of the scaffold was well maintained after the decellularization process because of the preservation of elastin fibers. Reseeding human mesenchymal stem cells (hMSCs) showed the excellent capacity of the scaffold in directing and supporting cell alignment and proliferation along the underlying fibers. The scaffold’s biocompatibility was further examined by an in vitro inflammation assay with seeded macrophages. The aligned ECM scaffold induced a significantly lower immune response compared to its unaligned counterpart, as detected by the pro-inflammatory cytokines secreted from macrophages. The aligned nanofibrous ECM scaffold holds great potential in engineering organized tissues. PMID:25484849

  1. Influence of fiber packing structure on permeability

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Berdichevsky, Alexander L.

    1993-01-01

    The study on the permeability of an aligned fiber bundle is the key building block in modeling the permeability of advanced woven and braided preforms. Available results on the permeability of fiber bundles in the literature show that a substantial difference exists between numerical and analytical calculations on idealized fiber packing structures, such as square and hexagonal packing, and experimental measurements on practical fiber bundles. The present study focuses on the variation of the permeability of a fiber bundle under practical process conditions. Fiber bundles are considered as containing openings and fiber clusters within the bundle. Numerical simulations on the influence of various openings on the permeability were conducted. Idealized packing structures are used, but with introduced openings distributed in different patterns. Both longitudinal and transverse flow are considered. The results show that openings within the fiber bundle have substantial effect on the permeability. In the longitudinal flow case, the openings become the dominant flow path. In the transverse flow case, the fiber clusters reduce the gap sizes among fibers. Therefore the permeability is greatly influenced by these openings and clusters, respectively. In addition to the porosity or fiber volume fraction, which is commonly used in the permeability expression, another fiber bundle status parameter, the ultimate fiber volume fraction, is introduced to capture the disturbance within a fiber bundle.

  2. Nanofiber alignment of a small diameter elastic electrospun scaffold

    NASA Astrophysics Data System (ADS)

    Patel, Jignesh

    Cardiovascular disease is the leading cause of death in western countries with coronary heart disease making up 50% of these deaths. As a treatment option, tissue engineered grafts have great potential. Elastic scaffolds that mimic arterial extracellular matrix (ECM) may hold the key to creating viable vascular grafts. Electrospinning is a widely used scaffold fabrication technique to engineer tubular scaffolds. In this study, we investigated how the collector rotation speed altered the nanofiber alignment which may improve mechanical characteristics making the scaffold more suitable for arterial grafts. The scaffold was fabricated from a blend of PCL/Elastin. 2D Fast Fourier Transform (FFT) image processing tool and MatLab were used to quantitatively analyze nanofiber orientation at different collector speeds (13500 to 15500 rpm). Both Image J and MatLab showed graphical peaks indicating predominant fiber orientation angles. A collector speed of 15000 rpm was found to produce the best nanofiber alignment with narrow peaks at 90 and 270 degrees, and a relative amplitude of 200. This indicates a narrow distribution of circumferentially aligned nanofibers. Collector speeds below and above 15000 rpm caused a decrease in fiber alignment with a broader orientation distribution. Uniformity of fiber diameter was also measured. Of 600 measures from the 15000 rpm scaffolds, the fiber diameter range from 500 nm to 899 nm was most prevalent. This diameter range was slightly larger than native ECM which ranges from 50 nm to 500 nm. The second most prevalent diameter range had an average of 404 nm which is within the diameter range of collagen. This study concluded that with proper electrospinning technique and collector speed, it is possible to fabricate highly aligned small diameter elastic scaffolds. Image J 2D FFT results confirmed MatLab findings for the analyses of circumferentially aligned nanofibers. In addition, MatLab analyses simplified the FFT orientation data

  3. Fiber biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber cells arising from seed epidermis is the most important agricultural textile commodity in the world. To produce fully mature fibers, approximately two months of fiber developmental process are required. The timing of four distinctive fiber development stages consisting of initiation, ...

  4. A Rosemary Extract Rich in Carnosic Acid Selectively Modulates Caecum Microbiota and Inhibits β-Glucosidase Activity, Altering Fiber and Short Chain Fatty Acids Fecal Excretion in Lean and Obese Female Rats

    PubMed Central

    Larrosa, Mar; Obiol, María; García-Villalba, Rocío; González-Barrio, Rocío; Issaly, Nicolas; Flanagan, John; Roller, Marc; Tomás-Barberán, Francisco A.; García-Conesa, María-Teresa

    2014-01-01

    Background Carnosic acid (CA) and rosemary extracts (RE) show body-weight, energy metabolism and inflammation regulatory properties in animal models but the mechanisms are not yet understood. Gut microbiota plays an important role in the host metabolism and inflammatory status and is modulated by the diet. The aim of this research was to investigate whether a RE enriched in CA affected caecum microbiota composition and activity in a rat model of genetic obesity. Methods and Principal Findings A RE (40% CA) was administered with the diet (0.5% w/w) to lean (fa/+) and obese (fa/fa) female Zucker rats for 64 days. Changes in the microbiota composition and β-glucosidase activity in the caecum and in the levels of macronutrients and short chain fatty acids (SCFA) in feces were examined. The RE increased the Blautia coccoides and Bacteroides/Prevotella groups and reduced the Lactobacillus/Leuconostoc/Pediococccus group in both types of animals. Clostridium leptum was significantly decreased and Bifidobacterium increased only in the lean rats. β-Glucosidase activity was significantly reduced and fecal fiber excretion increased in the two genotypes. The RE also increased the main SCFA excreted in the feces of the obese rats but decreased them in the lean rats reflecting important differences in the uptake and metabolism of these molecules between the two genotypes. Conclusions Our results indicate that the consumption of a RE enriched in CA modifies microbiota composition and decreases β-glucosidase activity in the caecum of female Zucker rats while it increases fiber fecal elimination. These results may contribute to explain the body weight gain reducing effects of the RE. The mutated leptin receptor of the obese animals significantly affects the microbiota composition, the SCFA fecal excretion and the host response to the RE intake. PMID:24733124

  5. Fast and sensitive protein alignment using DIAMOND.

    PubMed

    Buchfink, Benjamin; Xie, Chao; Huson, Daniel H

    2015-01-01

    The alignment of sequencing reads against a protein reference database is a major computational bottleneck in metagenomics and data-intensive evolutionary projects. Although recent tools offer improved performance over the gold standard BLASTX, they exhibit only a modest speedup or low sensitivity. We introduce DIAMOND, an open-source algorithm based on double indexing that is 20,000 times faster than BLASTX on short reads and has a similar degree of sensitivity.

  6. Experimental and analytical studies for the NASA carbon fiber risk assessment

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Various experimental and analytical studies performed for the NASA carbon fiber risk assessment program are described with emphasis on carbon fiber characteristics, sensitivity of electrical equipment and components to shorting or arcing by carbon fibers, attenuation effect of carbon fibers on aircraft landing aids, impact of carbon fibers on industrial facilities. A simple method of estimating damage from airborne carbon fibers is presented.

  7. Curriculum Alignment: Establishing Coherence

    ERIC Educational Resources Information Center

    Gagné, Philippe; Dumont, Laurence; Brunet, Sabine; Boucher, Geneviève

    2013-01-01

    In this paper, we present a step-by-step guide to implement a curricular alignment project, directed at professional development and student support, and developed in a higher education French as a second language department. We outline best practices and preliminary results from our experience and provide ways to adapt our experience to other…

  8. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  9. Aligning brains and minds

    PubMed Central

    Tong, Frank

    2012-01-01

    In this issue of Neuron, Haxby and colleagues describe a new method for aligning functional brain activity patterns across participants. Their study demonstrates that objects are similarly represented across different brains, allowing for reliable classification of one person’s brain activity based on another’s. PMID:22017984

  10. Tapered GRIN fiber microsensor.

    PubMed

    Beltrán-Mejía, Felipe; Biazoli, Claudecir R; Cordeiro, Cristiano M B

    2014-12-15

    The sensitivity of an optical fiber microsensor based on inter-modal interference can be considerably improved by tapering a short extension of the multimode fiber. In the case of Graded Index fibers with a parabolic refractive index profile, a meridional ray exhibits a sinusoidal path. When these fibers are tapered, the period of the propagated beam decrease down-taper and increase up-taper. We take advantage of this modulation -along with the enhanced overlap between the evanescent field and the external medium- to substantially increase the sensitivity of these devices by tuning the sensor's maximum sensitivity wavelength. Moreover, the extension of this device is reduced by one order of magnitude, making it more propitious for reduced space applications. Numerical and experimental results demonstrate the success and feasibility of this approach. PMID:25606989

  11. Engineering hybrid polymer-protein super-aligned nanofibers via rotary jet spinning.

    PubMed

    Badrossamay, Mohammad R; Balachandran, Kartik; Capulli, Andrew K; Golecki, Holly M; Agarwal, Ashutosh; Goss, Josue A; Kim, Hansu; Shin, Kwanwoo; Parker, Kevin Kit

    2014-03-01

    Cellular microenvironments are important in coaxing cells to behave collectively as functional, structured tissues. Important cues in this microenvironment are the chemical, mechanical and spatial arrangement of the supporting matrix in the extracellular space. In engineered tissues, synthetic scaffolding provides many of these microenvironmental cues. Key requirements are that synthetic scaffolds should recapitulate the native three-dimensional (3D) hierarchical fibrillar structure, possess biomimetic surface properties and demonstrate mechanical integrity, and in some tissues, anisotropy. Electrospinning is a popular technique used to fabricate anisotropic nanofiber scaffolds. However, it suffers from relatively low production rates and poor control of fiber alignment without substantial modifications to the fiber collector mechanism. Additionally, many biomaterials are not amenable for fabrication via high-voltage electrospinning methods. Hence, we reasoned that we could utilize rotary jet spinning (RJS) to fabricate highly aligned hybrid protein-polymer with tunable chemical and physical properties. In this study, we engineered highly aligned nanofiber constructs with robust fiber alignment from blends of the proteins collagen and gelatin, and the polymer poly-ε-caprolactone via RJS and electrospinning. RJS-spun fibers retain greater protein content on the surface and are also fabricated at a higher production rate compared to those fabricated via electrospinning. We measured increased fiber diameter and viscosity, and decreasing fiber alignment as protein content increased in RJS hybrid fibers. RJS nanofiber constructs also demonstrate highly anisotropic mechanical properties mimicking several biological tissue types. We demonstrate the bio-functionality of RJS scaffold fibers by testing their ability to support cell growth and maturation with a variety of cell types. Our highly anisotropic RJS fibers are therefore able to support cellular alignment

  12. MUSE alignment onto VLT

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dupuy, Christophe; Jarno, Aurélien; Lizon, Jean-Louis; Migniau, Jean-Emmanuel; Nicklas, Harald; Piqueras, Laure

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transported, fully aligned and without any optomechanical dismounting, onto VLT telescope where the first light was overcame the 7th of February, 2014. This paper describes the alignment procedure of the whole MUSE instrument with respect to the Very Large Telescope (VLT). It describes how 6 tons could be move with accuracy better than 0.025mm and less than 0.25 arcmin in order to reach alignment requirements. The success

  13. Preparation of silicon carbide fibers

    DOEpatents

    Wei, G.C.

    1983-10-12

    Silicon carbide fibers suitable for use in the fabrication of dense, high-strength, high-toughness SiC composites or as thermal insulating materials in oxidizing environments are fabricated by a new, simplified method wherein a mixture of short-length rayon fibers and colloidal silica is homogenized in a water slurry. Water is removed from the mixture by drying in air at 120/sup 0/C and the fibers are carbonized by (pyrolysis) heating the mixture to 800 to 1000/sup 0/C in argon. The mixture is subsequently reacted at 1550 to 1900/sup 0/C in argon to yield pure ..beta..-SiC fibers.

  14. Active-Transient Liquid Phase (A-TLP) Bonding of Pure Aluminum Matrix Composite Reinforced with Short Alumina Fiber Using Al-12Si- xTi Foils as Active Interlayer

    NASA Astrophysics Data System (ADS)

    Zhang, Guifeng; Su, Wei; Suzumura, Akio

    2016-06-01

    To optimize both the interlayer composition design route and pressure for joining aluminum matrix composite reinforced with short alumina fiber (as-cast 30 vol pct Al2O3sf/Al), traditional transient liquid phase (TLP) bonding using Al-12Si and Cu interlayer and active-TLP (A-TLP) bonding using an active Ti-containing interlayer (Al-12Si- xTi, x = 0.1, 0.5, and 1 wt pct) under the same condition [883 K (610 °C) × 30 minutes × 1 or 0.015 MPa in flowing argon] were compared in terms of interfacial wettability, bond seam microstructure, shear strength, and fracture path. It was found that not only the Ti content but also the pressure are critical factors affecting interfacial wettability and bond seam microstructure. The improvement in wettability by adding Ti as an active element were confirmed by reduction of expulsion of liquid interlayer, elimination of interfacial gap, higher shear strength and favorable fracture path (partially through bond seam and the composite). Because of the incubation period for wetting, reducing the pressure after melting of the interlayer could further increase joint shear strength by thickening the remaining bond seam of solid-solution matrix and decreasing fraction of the in situ newly formed Al-Si-Ti IMC phase (short bar shape) within the bond seam. The maximum shear strength of 88.6 MPa (99 pct of the as-cast composite) was obtained by adding trace Ti content (0.5 Ti wt pct) addition and using low pressure (0.015 MPa). The results showed that suitable combination of Ti content and pressure pattern is required for improving both wettability and bond seam microstructure.

  15. Inflation by alignment

    SciTech Connect

    Burgess, C.P.; Roest, Diederik

    2015-06-08

    Pseudo-Goldstone bosons (pGBs) can provide technically natural inflatons, as has been comparatively well-explored in the simplest axion examples. Although inflationary success requires trans-Planckian decay constants, f≳M{sub p}, several mechanisms have been proposed to obtain this, relying on (mis-)alignments between potential and kinetic energies in multiple-field models. We extend these mechanisms to a broader class of inflationary models, including in particular the exponential potentials that arise for pGB potentials based on noncompact groups (and so which might apply to moduli in an extra-dimensional setting). The resulting potentials provide natural large-field inflationary models and can predict a larger primordial tensor signal than is true for simpler single-field versions of these models. In so doing we provide a unified treatment of several alignment mechanisms, showing how each emerges as a limit of the more general setup.

  16. Size effects on pull-out of bone shaped fibers

    SciTech Connect

    Tippetts, T. B.; Beyerlein, Irene J.; Zhu, Y. T.

    2001-01-01

    Recent work has demonstrated that ductile bone shaped short (BSS) fibers, i.e. fibers with enlarged ends, can significantly increase toughness of brittle materials over that of conventional short fibers (CSS) [1]. In this work, we apply a recently developed micromechanical model for the pull-out force vs. displacement response of a ductile BSS fiber as it pulls completely out of a brittle matrix material. The pull-out process of BSS fibers absorbs more energy than that of CSS fibers, largely due to nonlinear deformation of the fiber end and surrounding matrix.

  17. Orbit IMU alignment: Error analysis

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    A comprehensive accuracy analysis of orbit inertial measurement unit (IMU) alignments using the shuttle star trackers was completed and the results are presented. Monte Carlo techniques were used in a computer simulation of the IMU alignment hardware and software systems to: (1) determine the expected Space Transportation System 1 Flight (STS-1) manual mode IMU alignment accuracy; (2) investigate the accuracy of alignments in later shuttle flights when the automatic mode of star acquisition may be used; and (3) verify that an analytical model previously used for estimating the alignment error is a valid model. The analysis results do not differ significantly from expectations. The standard deviation in the IMU alignment error for STS-1 alignments was determined to the 68 arc seconds per axis. This corresponds to a 99.7% probability that the magnitude of the total alignment error is less than 258 arc seconds.

  18. Nuclear reactor alignment plate configuration

    DOEpatents

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  19. Dynamic Alignment at SLS

    SciTech Connect

    Ruland, Robert E.

    2003-04-23

    The relative alignment of components in the storage ring of the Swiss Light Source (SLS) is guaranteed by mechanical means. The magnets are rigidly fixed to 48 girders by means of alignment rails with tolerances of less than {+-}15 {micro}m. The bending magnets, supported by 3 point ball bearings, overlap adjacent girders and thus establish virtual train links between the girders, located near the bending magnet centres. Keeping the distortion of the storage ring geometry within a tolerance of {+-}100 {micro}m in order to guarantee sufficient dynamic apertures, requires continuous monitoring and correction of the girder locations. Two monitoring systems for the horizontal and the vertical direction will be installed to measure displacements of the train link between girders, which are due to ground settings and temperature effects: The hydrostatic levelling system (HLS) gives an absolute vertical reference, while the horizontal positioning system (HPS), which employs low cost linear encoders with sub-micron resolution, measures relative horizontal movements. The girder mover system based on five DC motors per girder allows a dynamic realignment of the storage ring within a working window of more than {+-}1 mm for girder translations and {+-}1 mrad for rotations. We will describe both monitoring systems (HLS and HPS) as well as the applied correction scheme based on the girder movers. We also show simulations indicating that beam based girder alignment takes care of most of the static closed orbit correction.

  20. Biocompatibility, alignment degree and mechanical properties of an electrospun chitosan-P(LLA-CL) fibrous scaffold.

    PubMed

    Chen, Feng; Su, Yan; Mo, Xiumei; He, Chuanglong; Wang, Hongsheng; Ikada, Yoshito

    2009-01-01

    Chitosan-poly(L-lactide-co-epsilon-caprolactone) (P(LLA-CL)) complex fibers, fibrous mats and a tubular scaffold have been obtained through electrospinning. Due to their high porosity, there were more porcine iliac artery endothelial cells (PIECs) attached to fiber mats than to tissue-culture plate (TCP) and coverslips. The cells could grow and spread well on nanofiber mats. There were many of native extracellular matrix (ECM)-like colloids above and under the surface of fibrous mats after cell culturing. The two-dimensional fast Fourier transform (2-D FFT) approach was used to analysis alignment degree of fibers collected on a rotary mandrel. The relations among mechanical properties, alignment degree, fiber diameter and rotary speed are discussed. Aligned fibers with various alignment degrees could be found through adjusting rotary speed. Fiber alignment was the variable most closely associated with the regulation of stress and strain. In this study, we show a feasible approach for producing scaffold with controllable mechanical property for soft tissue engineering through electrospinning.

  1. Carbon/graphite composite material study. Appendix C: NASA studies on modification of carbon/graphite fibers and alternative materials

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The feasibility of modifying resin matrix composites to reduce the potential of electrical shorting from fire released fiber was explored. The effort included modifications to or coatings for graphite fibers, alternative fibers, modifications to matrix materials, and hybrid composites. The objectives included reduction of the conductivity of the graphite fiber, char formation to reduce fiber release, glass formation to prevent fiber release, catalysis to assure fiber consumption in a fire, and replacement of the graphite fibers with nonconductive fibers of similar mechanical potential.

  2. Alignment and alignment transition of bent core nematics

    NASA Astrophysics Data System (ADS)

    Elamain, Omaima; Hegde, Gurumurthy; Komitov, Lachezar

    2013-07-01

    We report on the alignment of nematics consisting of bimesogen bent core molecules of chlorine substituent of benzene derivative and their binary mixture with rod like nematics. It was found that the alignment layer made from polyimide material, which is usually used for promoting vertical (homeotropic) alignment of rod like nematics, promotes instead a planar alignment of the bent core nematic and its nematic mixtures. At higher concentration of the rod like nematic component in these mixtures, a temperature driven transition from vertical to planar alignment was found near the transition to isotropic phase.

  3. Polar cap arcs: Sun-aligned or cusp-aligned?

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paxton, L. J.; Zhang, Qinghe; Xing, Zanyang

    2016-08-01

    Polar cap arcs are often called sun-aligned arcs. Satellite observations reveal that polar cap arcs join together at the cusp and are actually cusp aligned. Strong ionospheric plasma velocity shears, thus field aligned currents, were associated with polar arcs and they were likely caused by Kelvin-Helmholtz waves around the low-latitude magnetopause under a northward IMF Bz. The magnetic field lines around the magnetopause join together in the cusp region so are the field aligned currents and particle precipitation. This explains why polar arcs are cusp aligned.

  4. A rank-based sequence aligner with applications in phylogenetic analysis.

    PubMed

    Dinu, Liviu P; Ionescu, Radu Tudor; Tomescu, Alexandru I

    2014-01-01

    Recent tools for aligning short DNA reads have been designed to optimize the trade-off between correctness and speed. This paper introduces a method for assigning a set of short DNA reads to a reference genome, under Local Rank Distance (LRD). The rank-based aligner proposed in this work aims to improve correctness over speed. However, some indexing strategies to speed up the aligner are also investigated. The LRD aligner is improved in terms of speed by storing [Formula: see text]-mer positions in a hash table for each read. Another improvement, that produces an approximate LRD aligner, is to consider only the positions in the reference that are likely to represent a good positional match of the read. The proposed aligner is evaluated and compared to other state of the art alignment tools in several experiments. A set of experiments are conducted to determine the precision and the recall of the proposed aligner, in the presence of contaminated reads. In another set of experiments, the proposed aligner is used to find the order, the family, or the species of a new (or unknown) organism, given only a set of short Next-Generation Sequencing DNA reads. The empirical results show that the aligner proposed in this work is highly accurate from a biological point of view. Compared to the other evaluated tools, the LRD aligner has the important advantage of being very accurate even for a very low base coverage. Thus, the LRD aligner can be considered as a good alternative to standard alignment tools, especially when the accuracy of the aligner is of high importance. Source code and UNIX binaries of the aligner are freely available for future development and use at http://lrd.herokuapp.com/aligners. The software is implemented in C++ and Java, being supported on UNIX and MS Windows.

  5. Glycated collagen decreased endothelial cell fibronectin alignment in response to cyclic stretch via interruption of actin alignment.

    PubMed

    Figueroa, Dannielle S; Kemeny, Steven F; Clyne, Alisa Morss

    2014-10-01

    Hyperglycemia is a defining characteristic of diabetes, and uncontrolled blood glucose in diabetes is associated with accelerated cardiovascular disease. Chronic hyperglycemia glycates extracellular matrix (ECM) collagen, which can lead to endothelial cell dysfunction. In healthy conditions, endothelial cells respond to mechanical stimuli such as cyclic stretch (CS) by aligning their actin cytoskeleton. Other cell types, specifically fibroblasts, align their ECM in response to CS. We previously demonstrated that glycated collagen inhibits endothelial cell actin alignment in response to CS. The aim of this study was to determine the effect of glycated collagen on ECM remodeling and protein alignment in response to stretch. Porcine aortic endothelial cells (PAEC) seeded on native or glycated collagen coated elastic substrates were exposed to 10% CS. Cells on native collagen aligned subcellular fibronectin fibers in response to stretch, whereas cells on glycated collagen did not. The loss of fibronectin alignment was due to inhibited actin alignment in response to CS, since fibronectin alignment did not occur in cells on native collagen when actin alignment was inhibited with cytochalasin. Further, while ECM protein content did not change in cells on native or glycated collagen in response to CS, degradation activity decreased in cells on glycated collagen. Matrix metalloproteinase 2 (MMP-2) and membrane-associated type 1 matrix metalloproteinase (MT1-MMP) protein levels decreased, and therefore MMP-2 activity also decreased. These MMP changes may relate to c-Jun N-terminal kinase (Jnk) phosphorylation inhibition with CS, which has previously been linked to focal adhesion kinase (FAK). These data demonstrate the importance of endothelial cell actin tension in remodeling and aligning matrix proteins in response to mechanical stimuli, which is critical to vascular remodeling in health and disease.

  6. Improving ASM stepper alignment accuracy by alignment signal intensity simulation

    NASA Astrophysics Data System (ADS)

    Li, Gerald; Pushpala, Sagar M.; Bradford, Bradley; Peng, Zezhong; Gottipati, Mohan

    1993-08-01

    As photolithography technology advances into submicron regime, the requirement for alignment accuracy also becomes much tighter. The alignment accuracy is a function of the strength of the alignment signal. Therefore, a detailed alignment signal intensity simulation for 0.8 micrometers EPROM poly-1 layer on ASM stepper was done based on the process of record in the fab to reduce misalignment and improve die yield. Oxide thickness variation did not have significant impact on the alignment signal intensity. However, poly-1 thickness was the most important parameter to affect optical alignments. The real alignment intensity data versus resist thickness on production wafers was collected and it showed good agreement with the simulated results. Similar results were obtained for ONO dielectric layer at a different fab.

  7. Short stature

    MedlinePlus

    Idiopathic short stature; Non-growth hormone deficient short stature ... Turner syndrome Williams syndrome Other reasons include: Growth hormone deficiency Infections of the developing baby before birth ...

  8. Harnessing the fiber fuse for sensing applications.

    PubMed

    Lin, Guei-Ru; Baiad, Mohamad Diaa; Gagne, Mathieu; Liu, Wen-Fung; Kashyap, Raman

    2014-04-21

    A simple refractive index sensor based on a small section of fiber damaged by the fiber fuse is proposed and demonstrated with a sensitivity of 350.58 nm/refractive index unit (RIU). For comparison, a hetero-core structure fiber sensor composed of a short no-core fiber (NCF) sandwiched between two pieces of single-mode fibers is demonstrated with a sensitivity of 157.29 nm/RIU. The fiber fuse technique can allow mass production of sensors by incorporating small sections of the damaged fiber of any type into each device. We believe this is the first application of the periodic damage tracks in optical fibers formed by the fiber fuse.

  9. The deterministic optical alignment of the HERMES spectrograph

    NASA Astrophysics Data System (ADS)

    Gers, Luke; Staszak, Nicholas

    2014-07-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) is a four channel, VPH-grating spectrograph fed by two 400 fiber slit assemblies whose construction and commissioning has now been completed at the Anglo Australian Telescope (AAT). The size, weight, complexity, and scheduling constraints of the system necessitated that a fully integrated, deterministic, opto-mechanical alignment system be designed into the spectrograph before it was manufactured. This paper presents the principles about which the system was assembled and aligned, including the equipment and the metrology methods employed to complete the spectrograph integration.

  10. AVID: A global alignment program.

    PubMed

    Bray, Nick; Dubchak, Inna; Pachter, Lior

    2003-01-01

    In this paper we describe a new global alignment method called AVID. The method is designed to be fast, memory efficient, and practical for sequence alignments of large genomic regions up to megabases long. We present numerous applications of the method, ranging from the comparison of assemblies to alignment of large syntenic genomic regions and whole genome human/mouse alignments. We have also performed a quantitative comparison of AVID with other popular alignment tools. To this end, we have established a format for the representation of alignments and methods for their comparison. These formats and methods should be useful for future studies. The tools we have developed for the alignment comparisons, as well as the AVID program, are publicly available. See Web Site References section for AVID Web address and Web addresses for other programs discussed in this paper. PMID:12529311

  11. Engineering cell alignment in vitro.

    PubMed

    Li, Yuhui; Huang, Guoyou; Zhang, Xiaohui; Wang, Lin; Du, Yanan; Lu, Tian Jian; Xu, Feng

    2014-01-01

    Cell alignment plays a critical role in various cell behaviors including cytoskeleton reorganization, membrane protein relocation, nucleus gene expression, and ECM remodeling. Cell alignment is also known to exert significant effects on tissue regeneration (e.g., neuron) and modulate mechanical properties of tissues including skeleton, cardiac muscle and tendon. Therefore, it is essential to engineer cell alignment in vitro for biomechanics, cell biology, tissue engineering and regenerative medicine applications. With advances in nano- and micro-scale technologies, a variety of approaches have been developed to engineer cell alignment in vitro, including mechanical loading, topographical patterning, and surface chemical treatment. In this review, we first present alignments of various cell types and their functionality in different tissues in vivo including muscle and nerve tissues. Then, we provide an overview of recent approaches for engineering cell alignment in vitro. Finally, concluding remarks and perspectives are addressed for future improvement of engineering cell alignment.

  12. AVID: A global alignment program.

    PubMed

    Bray, Nick; Dubchak, Inna; Pachter, Lior

    2003-01-01

    In this paper we describe a new global alignment method called AVID. The method is designed to be fast, memory efficient, and practical for sequence alignments of large genomic regions up to megabases long. We present numerous applications of the method, ranging from the comparison of assemblies to alignment of large syntenic genomic regions and whole genome human/mouse alignments. We have also performed a quantitative comparison of AVID with other popular alignment tools. To this end, we have established a format for the representation of alignments and methods for their comparison. These formats and methods should be useful for future studies. The tools we have developed for the alignment comparisons, as well as the AVID program, are publicly available. See Web Site References section for AVID Web address and Web addresses for other programs discussed in this paper.

  13. Electrospun amplified fiber optics.

    PubMed

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  14. Electrospun Amplified Fiber Optics

    PubMed Central

    2015-01-01

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm–1). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics. PMID:25710188

  15. Fiber optics for controls

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1987-11-01

    The challenge of those involved in control-system hardware development is to accommodate an ever-increasing complexity in aircraft control, while limiting the size and weight of the components and improving system reliability. A technology that displays promise towards this end is the area of fiber optics for controls. The primary advantages of employing optical fibers, passive optical sensors, and optically controlled actuators are weight and volume reduction, immunity from electromagnetic effects, superior bandwidth capabilities, and freedom from short circuits and sparking contacts. Since 1975, NASA Lewis has performed in-house, contract, and grant research in fiber optic sensors, high-temperature electro-optic switches, and fly-by-light control-system architecture. Passive optical sensor development is an essential yet challenging area of work and has therefore received much attention during this period. A major effort to develop fly-by-light control-system technology, known as the Fiber-Optic Control System Integration (FOCSI) program, was initiated in 1985 as a cooperative effort between NASA and DOD. Phase 1 of FOCSI, completed in 1986, was aimed at the design of a fiber-optic integrated propulsion/flight control system. Phase 2, yet to be initiated, will provide subcomponent and system development, and a system engine test. In addition to a summary of the benefits of fiber optics, the FOCSI program, sensor advances, and future directions in the NASA Lewis program will be discussed.

  16. Fiber optics for controls

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1987-01-01

    The challenge of those involved in control-system hardware development is to accommodate an ever-increasing complexity in aircraft control, while limiting the size and weight of the components and improving system reliability. A technology that displays promise towards this end is the area of fiber optics for controls. The primary advantages of employing optical fibers, passive optical sensors, and optically controlled actuators are weight and volume reduction, immunity from electromagnetic effects, superior bandwidth capabilities, and freedom from short circuits and sparking contacts. Since 1975, NASA Lewis has performed in-house, contract, and grant research in fiber optic sensors, high-temperature electro-optic switches, and fly-by-light control-system architecture. Passive optical sensor development is an essential yet challenging area of work and has therefore received much attention during this period. A major effort to develop fly-by-light control-system technology, known as the Fiber-Optic Control System Integration (FOCSI) program, was initiated in 1985 as a cooperative effort between NASA and DOD. Phase 1 of FOCSI, completed in 1986, was aimed at the design of a fiber-optic integrated propulsion/flight control system. Phase 2, yet to be initiated, will provide subcomponent and system development, and a system engine test. In addition to a summary of the benefits of fiber optics, the FOCSI program, sensor advances, and future directions in the NASA Lewis program will be discussed.

  17. Automatic alignment of double optical paths in excimer laser amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  18. TSGC and JSC Alignment

    NASA Technical Reports Server (NTRS)

    Sanchez, Humberto

    2013-01-01

    NASA and the SGCs are, by design, intended to work closely together and have synergistic Vision, Mission, and Goals. The TSGC affiliates and JSC have been working together, but not always in a concise, coordinated, nor strategic manner. Today we have a couple of simple ideas to present about how TSGC and JSC have started to work together in a more concise, coordinated, and strategic manner, and how JSC and non-TSG Jurisdiction members have started to collaborate: Idea I: TSGC and JSC Technical Alignment Idea II: Concept of Clusters.

  19. CELT optics Alignment Procedure

    NASA Astrophysics Data System (ADS)

    Mast, Terry S.; Nelson, Jerry E.; Chanan, Gary A.; Noethe, Lothar

    2003-01-01

    The California Extremely Large Telescope (CELT) is a project to build a 30-meter diameter telescope for research in astronomy at visible and infrared wavelengths. The current optical design calls for a primary, secondary, and tertiary mirror with Ritchey-Chretién foci at two Nasmyth platforms. The primary mirror is a mosaic of 1080 actively-stabilized hexagonal segments. This paper summarizes a CELT report that describes a step-by-step procedure for aligning the many degrees of freedom of the CELT optics.

  20. Characterization of mode-locking in an all-fiber, all normal dispersion ytterbium based fiber oscillator

    NASA Astrophysics Data System (ADS)

    Cserteg, András.; Sági, Veronika; Drozdy, András.; Varallyay, Zoltán.; Gajdátsy, Gábor

    2015-03-01

    An ytterbium based all fiber, all normal dispersion fiber oscillator with integrated SESAM can have several operation modes like mode-locked, Q-switched and noise-like. To know and to control the quality of the mode-locking is essential for the application of such laser oscillators, otherwise the whole laser setup can be damaged or the expected operation characteristics of the oscillator driven systems cannot be achieved. Usually the two-photon signal generated by the short pulses is used to indicate the mode locked operation, however such detection can be misleading in certain cases and not always able to predict the forthcoming degradation or vanishing of mode locking. The characterization method that we propose uses only the radio frequency spectrum of the oscillator output and can identify the different operation regimes of our laser setup. The optical spectra measured simultaneously with the RF signals proves the reliability of our method. With this kind of characterization stable mode locking can be initiated and maintained during the laser operation. The method combined with the ability to align the polarization states automatically in the laser cavity leads to the possibility to record a polarization map where the stability domains can be identified and classified. With such map the region where the mode locking is self starting and maintainable with minimal polarization alignment can be selected. The developed oscillator reported here with its compact setup and self alignment ability can be a reliable source with long term error free operation without the need of expensive monitoring tools.

  1. Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter.

    PubMed

    Grey, Casey P; Newton, Scott T; Bowlin, Gary L; Haas, Thomas W; Simpson, David G

    2013-07-01

    We characterize layered, delamination resistant, tissue engineering scaffolds produced by gradient electrospinning using computational fluid dynamics, measurements of fiber diameter with respect to dynamic changes in polymer concentration, SEM analysis, and materials testing. Gradient electrospinning delivers a continuously variable concentration of polymer to the electrospinning jet, resulting in scaffolds that exhibit controlled transitions in fiber diameter across the Z-axis. This makes it possible to produce scaffolds that exhibit very different fiber sizes and material properties on opposing surfaces while eliminating the boundary layers that lead to delamination failures. In materials testing bi-layered laminated electrospun scaffolds (layer 1 = <250 nm, layer 2 = 1000 nm diameter polycaprolactone fibers) exhibit ductile properties and undergo multiphasic failure. In contrast, scaffolds, produced by gradient electrospinning fabricated with fibers of this type on opposing surfaces fracture and fail as unified, and mechanically integrated, structures. Gradient electrospinning also eliminates the anisotropic strain properties observed in scaffolds composed of highly aligned fibers. In burst testing, scaffolds composed of aligned fibers produced using gradient electrospinning exhibit superior material properties with respect to scaffolds composed of random or aligned fibers produced from a single polymer concentration or as bi-layered, laminated structures.

  2. Overcoming low-alignment signal contrast induced alignment failure by alignment signal enhancement

    NASA Astrophysics Data System (ADS)

    Lee, Byeong Soo; Kim, Young Ha; Hwang, Hyunwoo; Lee, Jeongjin; Kong, Jeong Heung; Kang, Young Seog; Paarhuis, Bart; Kok, Haico; de Graaf, Roelof; Weichselbaum, Stefan; Droste, Richard; Mason, Christopher; Aarts, Igor; de Boeij, Wim P.

    2016-03-01

    Overlay is one of the key factors which enables optical lithography extension to 1X node DRAM manufacturing. It is natural that accurate wafer alignment is a prerequisite for good device overlay. However, alignment failures or misalignments are commonly observed in a fab. There are many factors which could induce alignment problems. Low alignment signal contrast is one of the main issues. Alignment signal contrast can be degraded by opaque stack materials or by alignment mark degradation due to processes like CMP. This issue can be compounded by mark sub-segmentation from design rules in combination with double or quadruple spacer process. Alignment signal contrast can be improved by applying new material or process optimization, which sometimes lead to the addition of another process-step with higher costs. If we can amplify the signal components containing the position information and reduce other unwanted signal and background contributions then we can improve alignment performance without process change. In this paper we use ASML's new alignment sensor (as was introduced and released on the NXT:1980Di) and sample wafers with special stacks which can induce poor alignment signal to demonstrate alignment and overlay improvement.

  3. Langevin dynamics modeling of the water diffusion tensor in partially aligned collagen networks

    NASA Astrophysics Data System (ADS)

    Powell, Sean K.; Momot, Konstantin I.

    2012-09-01

    In this work, a Langevin dynamics model of the diffusion of water in articular cartilage was developed. Numerical simulations of the translational dynamics of water molecules and their interaction with collagen fibers were used to study the quantitative relationship between the organization of the collagen fiber network and the diffusion tensor of water in model cartilage. Langevin dynamics was used to simulate water diffusion in both ordered and partially disordered cartilage models. In addition, an analytical approach was developed to estimate the diffusion tensor for a network comprising a given distribution of fiber orientations. The key findings are that (1) an approximately linear relationship was observed between collagen volume fraction and the fractional anisotropy of the diffusion tensor in fiber networks of a given degree of alignment, (2) for any given fiber volume fraction, fractional anisotropy follows a fiber alignment dependency similar to the square of the second Legendre polynomial of cos(θ), with the minimum anisotropy occurring at approximately the magic angle (θMA), and (3) a decrease in the principal eigenvalue and an increase in the transverse eigenvalues is observed as the fiber orientation angle θ progresses from 0∘ to 90∘. The corresponding diffusion ellipsoids are prolate for θ<θMA, spherical for θ≈θMA, and oblate for θ>θMA. Expansion of the model to include discrimination between the combined effects of alignment disorder and collagen fiber volume fraction on the diffusion tensor is discussed.

  4. Optical fiber-based photocathode

    NASA Astrophysics Data System (ADS)

    Cǎsǎndruc, Albert; Bücker, Robert; Kassier, Günther; Miller, R. J. Dwayne

    2016-08-01

    We present the design of a back-illuminated photocathode for electron diffraction experiments based on an optical fiber, and experimental characterization of emitted electron bunches. Excitation light is guided through the fiber into the experimental vacuum chamber, eliminating typical alignment difficulties between the emitter metal and the optical trigger and position instabilities, as well as providing reliable control of the laser spot size and profile. The in-vacuum fiber end is polished and coated with a 30 nm gold (Au) layer on top of 3 nm of chromium (Cr), which emits electrons by means of single-photon photoemission when femtosecond pulses in the near ultraviolet (257 nm) are fed into the fiber on the air side. The emission area can be adjusted to any value between a few nanometers (using tapered fibers) and the size of a multi-mode fiber core (100 μm or larger). In this proof-of-principle experiment, two different types of fibers were tested, with emission spot diameters of 50 μm and 100 μm, respectively. The normalized thermal electron beam emittance (TE) was measured by means of the aperture scan technique, and a TE of 4.0 π nm was measured for the smaller spot diameter. Straightforward enhancements to the concept allowed to demonstrate operation in an electric field environment of up to 7 MV/m.

  5. Pareto optimal pairwise sequence alignment.

    PubMed

    DeRonne, Kevin W; Karypis, George

    2013-01-01

    Sequence alignment using evolutionary profiles is a commonly employed tool when investigating a protein. Many profile-profile scoring functions have been developed for use in such alignments, but there has not yet been a comprehensive study of Pareto optimal pairwise alignments for combining multiple such functions. We show that the problem of generating Pareto optimal pairwise alignments has an optimal substructure property, and develop an efficient algorithm for generating Pareto optimal frontiers of pairwise alignments. All possible sets of two, three, and four profile scoring functions are used from a pool of 11 functions and applied to 588 pairs of proteins in the ce_ref data set. The performance of the best objective combinations on ce_ref is also evaluated on an independent set of 913 protein pairs extracted from the BAliBASE RV11 data set. Our dynamic-programming-based heuristic approach produces approximated Pareto optimal frontiers of pairwise alignments that contain comparable alignments to those on the exact frontier, but on average in less than 1/58th the time in the case of four objectives. Our results show that the Pareto frontiers contain alignments whose quality is better than the alignments obtained by single objectives. However, the task of identifying a single high-quality alignment among those in the Pareto frontier remains challenging.

  6. Rugged fiber optic probe for raman measurement

    DOEpatents

    O'Rourke, Patrick E.; Toole, Jr., William R.; Nave, Stanley E.

    1998-01-01

    An optical probe for conducting light scattering analysis is disclosed. The probe comprises a hollow housing and a probe tip. A fiber assembly made up of a transmitting fiber and a receiving bundle is inserted in the tip. A filter assembly is inserted in the housing and connected to the fiber assembly. A signal line from the light source and to the spectrometer also is connected to the filter assembly and communicates with the fiber assembly. By using a spring-loaded assembly to hold the fiber connectors together with the in-line filters, complex and sensitive alignment procedures are avoided. The close proximity of the filter assembly to the probe tip eliminates or minimizes self-scattering generated by the optical fiber. Also, because the probe can contact the sample directly, sensitive optics can be eliminated.

  7. Electrothermal MEMS fiber scanner for optical endomicroscopy.

    PubMed

    Seo, Yeong-Hyeon; Hwang, Kyungmin; Park, Hyeon-Cheol; Jeong, Ki-Hun

    2016-02-22

    We report a novel MEMS fiber scanner with an electrothermal silicon microactuator and a directly mounted optical fiber. The microactuator comprises double hot arm and cold arm structures with a linking bridge and an optical fiber is aligned along a silicon fiber groove. The unique feature induces separation of resonant scanning frequencies of a single optical fiber in lateral and vertical directions, which realizes Lissajous scanning during the resonant motion. The footprint dimension of microactuator is 1.28 x 7 x 0.44 mm3. The resonant scanning frequencies of a 20 mm long optical fiber are 239.4 Hz and 218.4 Hz in lateral and vertical directions, respectively. The full scanned area indicates 451 μm x 558 μm under a 16 Vpp pulse train. This novel laser scanner can provide many opportunities for laser scanning endomicroscopic applications.

  8. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    NASA Astrophysics Data System (ADS)

    Nguyen Thi, T. B.; Yokoyama, A.; Ota, K.; Kodama, K.; Yamashita, K.; Isogai, Y.; Furuichi, K.; Nonomura, C.

    2014-05-01

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.

  9. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    SciTech Connect

    Nguyen Thi, T. B. E-mail: yokoyama@kit.ac.jp; Yokoyama, A. E-mail: yokoyama@kit.ac.jp; Ota, K. E-mail: katsuhiro-kodama@toyobo.jp E-mail: yumiko-isogai@toyobo.jp E-mail: chisato-nonomura@toyobo.jp; Kodama, K. E-mail: katsuhiro-kodama@toyobo.jp E-mail: yumiko-isogai@toyobo.jp E-mail: chisato-nonomura@toyobo.jp; Yamashita, K. E-mail: katsuhiro-kodama@toyobo.jp E-mail: yumiko-isogai@toyobo.jp E-mail: chisato-nonomura@toyobo.jp; Isogai, Y. E-mail: katsuhiro-kodama@toyobo.jp E-mail: yumiko-isogai@toyobo.jp E-mail: chisato-nonomura@toyobo.jp; Furuichi, K. E-mail: katsuhiro-kodama@toyobo.jp E-mail: yumiko-isogai@toyobo.jp E-mail: chisato-nonomura@toyobo.jp; Nonomura, C. E-mail: katsuhiro-kodama@toyobo.jp E-mail: yumiko-isogai@toyobo.jp E-mail: chisato-nonomura@toyobo.jp

    2014-05-15

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.

  10. Polyaniline/Carbon Nanotube Composite Fiber-Based Dye-Sensitized Photovoltaic Wire.

    PubMed

    Pan, Shaowu; Yang, Jinhu

    2015-09-01

    Polyaniline/carbon nanotube composite fiber was prepared from aligned multi-walled carbon nano- tube fiber coupling with subsequent electrochemical polymerization of aniline. Novel wire-shaped dye-sensitized solar cells were obtained by using the composite fiber as counter electrode. Photovoltaic wire based on the composite fiber showed a conversion efficiency of 3.8%, which is 63% higher than the pure carbon nanotube fiber. PMID:26716346

  11. Nova laser alignment control system

    SciTech Connect

    Van Arsdall, P.J.; Holloway, F.W.; McGuigan, D.L.; Shelton, R.T.

    1984-03-29

    Alignment of the Nova laser requires control of hundreds of optical components in the ten beam paths. Extensive application of computer technology makes daily alignment practical. The control system is designed in a manner which provides both centralized and local manual operator controls integrated with automatic closed loop alignment. Menudriven operator consoles using high resolution color graphics displays overlaid with transport touch panels allow laser personnel to interact efficiently with the computer system. Automatic alignment is accomplished by using image analysis techniques to determine beam references points from video images acquired along the laser chain. A major goal of the design is to contribute substantially to rapid experimental turnaround and consistent alignment results. This paper describes the computer-based control structure and the software methods developed for aligning this large laser system.

  12. Dust alignment in astrophysical environments

    NASA Astrophysics Data System (ADS)

    Lazarian, Alex; Thiem Hoang, Chi

    Dust is known to be aligned in interstellar medium and the arising polarization is extensively used to trace magnetic fields. What process aligns dust grains was one of the most long-standing problems of astrophysics in spite of the persistent efforts to solve it. For years the Davis-Greenstein paramagnetic alignment was the primary candidate for explaining grain alignment. However, the situation is different now and the most promising mechanism is associated with radiative torques (RATs) acting on irregular grains. I shall present the analytical theory of RAT alignment, discuss the observational tests that support this theory. I shall also discuss in what situations we expect to see the dominance of paramagnetic alignment.

  13. Nuclear reactor internals alignment configuration

    DOEpatents

    Gilmore, Charles B.; Singleton, Norman R.

    2009-11-10

    An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

  14. Onorbit IMU alignment error budget

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.

  15. Automated quantification of aligned collagen for human breast carcinoma prognosis

    PubMed Central

    Bredfeldt, Jeremy S.; Liu, Yuming; Conklin, Matthew W.; Keely, Patricia J.; Mackie, Thomas R.; Eliceiri, Kevin W.

    2014-01-01

    Background: Mortality in cancer patients is directly attributable to the ability of cancer cells to metastasize to distant sites from the primary tumor. This migration of tumor cells begins with a remodeling of the local tumor microenvironment, including changes to the extracellular matrix and the recruitment of stromal cells, both of which facilitate invasion of tumor cells into the bloodstream. In breast cancer, it has been proposed that the alignment of collagen fibers surrounding tumor epithelial cells can serve as a quantitative image-based biomarker for survival of invasive ductal carcinoma patients. Specific types of collagen alignment have been identified for their prognostic value and now these tumor associated collagen signatures (TACS) are central to several clinical specimen imaging trials. Here, we implement the semi-automated acquisition and analysis of this TACS candidate biomarker and demonstrate a protocol that will allow consistent scoring to be performed throughout large patient cohorts. Methods: Using large field of view high resolution microscopy techniques, image processing and supervised learning methods, we are able to quantify and score features of collagen fiber alignment with respect to adjacent tumor-stromal boundaries. Results: Our semi-automated technique produced scores that have statistically significant correlation with scores generated by a panel of three human observers. In addition, our system generated classification scores that accurately predicted survival in a cohort of 196 breast cancer patients. Feature rank analysis reveals that TACS positive fibers are more well-aligned with each other, are of generally lower density, and terminate within or near groups of epithelial cells at larger angles of interaction. Conclusion: These results demonstrate the utility of a supervised learning protocol for streamlining the analysis of collagen alignment with respect to tumor stromal boundaries. PMID:25250186

  16. Fiber breakage phenomena in long fiber reinforced plastic preparation

    NASA Astrophysics Data System (ADS)

    Huang, Chao-Tsai; Tseng, Huan-Chang; Vlcek, Jiri; Chang, Rong-Yeu

    2015-07-01

    Due to the high demand of smart green, the lightweight technologies have become the driving force for the development of automotives and other industries in recent years. Among those technologies, using short and long fiber-reinforced plastics (FRP) to replace some metal components can reduce the weight of an automotive significantly. However, the microstructures of fibers inside plastic matrix are too complicated to manage and control during the injection molding through the screw, the runner, the gate, and then into the cavity. This study focuses on the fiber breakage phenomena during the screw plastification. Results show that fiber breakage is strongly dependent on screw design and operation. When the screw geometry changes, the fiber breakage could be larger even with lower compression ratio.

  17. [Alignment of malpositioned canines].

    PubMed

    Wagner, L

    1991-03-01

    This article presents a system for aligning impacted canines. The base of this system is the lingual arch, a rigid reaction unit of four teeth, molars and premolars. From this base unit an impacted canine can be extruded, moved distally, jumped over the occlusion and derotated by segment arches, coil springs and elastic ligatures. The efficiency of this appliance is due to the elimination of undesired reactive forces, the safe moving of teeth, the possibility of an exact force application and the simple manipulation; also the esthetic inconvenience is minimal. All this results in a better prognosis and an essentially shorter treatment time. This appliance can be used in the upper and the lower jaw. Schematic drawings and clinical examples demonstrate this method.

  18. Lunar Alignments - Identification and Analysis

    NASA Astrophysics Data System (ADS)

    González-García, A. César

    Lunar alignments are difficult to establish given the apparent lack of written accounts clearly pointing toward lunar alignments for individual temples. While some individual cases are reviewed and highlighted, the weight of the proof must fall on statistical sampling. Some definitions for the lunar alignments are provided in order to clarify the targets, and thus, some new tools are provided to try to test the lunar hypothesis in several cases, especially in megalithic astronomy.

  19. Hollow fiber clinostat for simulating microgravity in cell culture

    NASA Technical Reports Server (NTRS)

    Rhodes, Percy H. (Inventor); Miller, Teresa Y. (Inventor); Snyder, Robert S. (Inventor)

    1992-01-01

    A clinostat for simulating microgravity on cell systems carried in a fiber fixedly mounted in a rotatable culture vessel is disclosed. The clinostat is rotated horizontally along its longitudinal axis to simulate microgravity or vertically as a control response. Cells are injected into the fiber and the ends of the fiber are sealed and secured to spaced end pieces of a fiber holder assembly which consists of the end pieces, a hollow fiber, a culture vessel, and a tension spring with three alignment pins. The tension spring is positioned around the culture vessel with its ends abutting the end pieces for alignment of the spring. After the fiber is secured, the spring is decompressed to maintain tension on the fiber while it is being rotated. This assures that the fiber remains aligned along the axis of rotation. The fiber assembly is placed in the culture vessel and culture medium is added. The culture vessel is then inserted into the rotatable portion of the clinostat and subjected to rotate at selected rpms. The internal diameter of the hollow fiber determines the distance the cells are from the axis of rotation.

  20. Aligned-to-random” nanofiber scaffolds for mimicking the structure of the tendon-to-bone insertion site

    PubMed Central

    Xie, Jingwei; Li, Xiaoran; Lipner, Justin; Manning, Cionne N.; Schwartz, Annie G.; Thomopoulos, Stavros; Xia, Younan

    2013-01-01

    We have demonstrated the fabrication of “aligned-to-random” electrospun nanofiber scaffolds that mimic the structural organization of collagen fibers at the tendon-to-bone insertion site. Tendon fibroblasts cultured on such a scaffold exhibited highly organized and haphazardly oriented morphologies, respectively, on the aligned and random portions. PMID:20648290

  1. Processing-structure-property studies of: (I) submicron polymeric fibers produced by electrospinning and (II) films of linear low density polyethylenes as influenced by the short chain branch length in copolymers of ethylene/1-butene, ethylene/1-hexene and ethylene/1-octene synthesized by a single site metallocene catalyst

    NASA Astrophysics Data System (ADS)

    Gupta, Pankaj

    The overall theme of the research discussed in this dissertation has been to explore processing-structure-property relationships for submicron polymeric fibers produced by electrospinning (Part I) and to ascertain whether or not the length of the short chain branch has any effect on the physical properties of films of linear low-density polyethylenes (LLDPEs) (Part II). The research efforts discussed in Part I of this dissertation relate to some fundamental as well as more applied investigations involving electrospinning. These include investigating the effects of solution rheology on fiber formation and developing novel methodologies to fabricate polymeric mats comprising of high specific surface submicron fibers of more than one polymer, high chemical resistant substrates produced by in situ photo crosslinking during electrospinning, superparamagnetic flexible substrates by electrospinning a solution of an elastomeric polymer containing ferrite nanoparticles of Mn-Zn-Ni and substrates for filtration applications. Bicomponent electrospinning of poly(vinyl chloride)-polyurethane and poly(vinylidiene fluoride)-polyurethane was successfully performed. In addition, filtration properties of single and bicomponent electrospun mats of polyacrylonitrile and polystyrene were investigated. Results indicated lower aerosol penetration or higher filtration efficiencies of the filters based on submicron electrospun fibers in comparison to the conventional filter materials. In addition, Part II of this dissertation explores whether or not the length of the short chain branch affects the physical properties of blown and compression molded films of LLDPEs that were synthesized by a single site metallocene catalyst. Here, three resins based on copolymers of ethylene/1-butene, ethylene/1-hexene, and ethylene/1-octene were utilized that were very similar in terms of their molecular weight and distribution, melt rheology, density, crystallinity and short chain branching content and

  2. Monitoring techniques for the manufacture of tapered optical fibers.

    PubMed

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber. PMID:26479631

  3. Polymeric templating and alignment of fullerenes

    NASA Astrophysics Data System (ADS)

    Kincer, Matthew Ryan

    Fullerene research has advanced to elevated levels in a short period of time due to the unique chemical and physical properties of the caged molecule that have been utilized in numerous applications. Due to the spherical shape of the fullerene molecule which allows for a hollow cavity, encapsulation of atoms or small molecules can occur within the ball structure. This encapsulation creates an endohedral component that is limited from interacting with other molecules which creates potential of control over electronic information of the isolated molecule. Endohedral fullerenes have the potential as serving as the base unit in a quantum computer if control over global alignment is attained. Thus, by using the inherent self-assembling capabilities of some organic materials, ordered endohedral fullerenes can be achieved. This dissertation investigates the ability to use self-assembling strategies to obtain alignment which include ordering within a morphologically controlled copolymer matrix, forming a supramolecular polymer complex with cyclodextrin, and encapsulation within the helical wrap of polymer chains. The ultimate goal is to understand the dynamics that control association and orientation of varying fullerene-based molecules in each strategy in order to maximize control over the final alignment of endohedral elements.

  4. Femtosecond laser inscription of asymmetric directional couplers for in-fiber optical taps and fiber cladding photonics.

    PubMed

    Grenier, Jason R; Fernandes, Luís A; Herman, Peter R

    2015-06-29

    Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits. PMID:26191688

  5. DC Plasma Synthesis of Vertically Aligned Carbon Nanofibers for Biointerfacing

    NASA Astrophysics Data System (ADS)

    Pearce, Ryan Christopher

    Vertically aligned carbon nanofibers (VACNFs) are a class of materials whose nanoscale dimensions and physical properties makes them uniquely suitable as functional elements in many applications for biodetection and biointerfacing on a cellular level. Control of VACNF synthesis by catalytic plasma enhanced chemical vapor deposition (PECVD) presents many challenges in integration into devices and structures designed for biointerfacing, such as transparent or flexible substrates. This dissertation addresses ways to overcome many of these issues in addition to deepening the fundamental understanding of nano-synthesis in catalytic PECVD. First, a survey of the field of VACNF synthesis and biointerfacing is presented, identifying the present challenges and greatest experimental applications. It is followed by experimental observations that elucidate the underlying mechanism to fiber alignment during synthesis, a critical step for deterministic control of fiber growth. Using a grid of electrodes patterned by photolithography on an insulating substrate, it was found that the alignment of the fibers is controlled by the anisotropic etching provided by ions during dc-PECVD synthesis. The VACNFs that have been utilized for many cellular interfacing experiments have unique mechanical and fluorescent properties due to a SiNx coating. The mechanism for SiNx deposition to VACNF sidewalls during synthesis is explored in addition to a detailed study of the optical properties of the coating. To explain the optical properties of this coating it is proposed that the source of photoluminescence for the SiNx coated VACNFs is quantum confinement effects due to the presence of silicon nanoclusters embedded in a Si3N4 matrix. These luminescent fibers have proven useful as registry markers in cell impalefection studies. To realize VACNF arrays used as an inflatable angioplasty balloon with embedded fibers to deliver drugs across the blood-brain barrier, a method for transferring fibers to

  6. Lexical alignment in triadic communication.

    PubMed

    Foltz, Anouschka; Gaspers, Judith; Thiele, Kristina; Stenneken, Prisca; Cimiano, Philipp

    2015-01-01

    Lexical alignment refers to the adoption of one's interlocutor's lexical items. Accounts of the mechanisms underlying such lexical alignment differ (among other aspects) in the role assigned to addressee-centered behavior. In this study, we used a triadic communicative situation to test which factors may modulate the extent to which participants' lexical alignment reflects addressee-centered behavior. Pairs of naïve participants played a picture matching game and received information about the order in which pictures were to be matched from a voice over headphones. On critical trials, participants did or did not hear a name for the picture to be matched next over headphones. Importantly, when the voice over headphones provided a name, it did not match the name that the interlocutor had previously used to describe the object. Participants overwhelmingly used the word that the voice over headphones provided. This result points to non-addressee-centered behavior and is discussed in terms of disrupting alignment with the interlocutor as well as in terms of establishing alignment with the voice over headphones. In addition, the type of picture (line drawing vs. tangram shape) independently modulated lexical alignment, such that participants showed more lexical alignment to their interlocutor for (more ambiguous) tangram shapes compared to line drawings. Overall, the results point to a rather large role for non-addressee-centered behavior during lexical alignment.

  7. Drive alignment pays maintenance dividends

    SciTech Connect

    Fedder, R.

    2008-12-15

    Proper alignment of the motor and gear drive on conveying and processing equipment will result in longer bearing and coupling life, along with lower maintenance costs. Selecting an alignment free drive package instead of a traditional foot mounted drive and motor is a major advancement toward these goals. 4 photos.

  8. CATO: The Clone Alignment Tool.

    PubMed

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow.

  9. Transformation and Alignment in Similarity

    ERIC Educational Resources Information Center

    Hodgetts, Carl J.; Hahn, Ulrike; Chater, Nick

    2009-01-01

    This paper contrasts two structural accounts of psychological similarity: structural alignment (SA) and Representational Distortion (RD). SA proposes that similarity is determined by how readily the structures of two objects can be brought into alignment; RD measures similarity by the complexity of the transformation that "distorts" one…

  10. CATO: The Clone Alignment Tool.

    PubMed

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow. PMID:27459605

  11. CATO: The Clone Alignment Tool

    PubMed Central

    Henstock, Peter V.; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow. PMID:27459605

  12. Lexical alignment in triadic communication

    PubMed Central

    Foltz, Anouschka; Gaspers, Judith; Thiele, Kristina; Stenneken, Prisca; Cimiano, Philipp

    2015-01-01

    Lexical alignment refers to the adoption of one’s interlocutor’s lexical items. Accounts of the mechanisms underlying such lexical alignment differ (among other aspects) in the role assigned to addressee-centered behavior. In this study, we used a triadic communicative situation to test which factors may modulate the extent to which participants’ lexical alignment reflects addressee-centered behavior. Pairs of naïve participants played a picture matching game and received information about the order in which pictures were to be matched from a voice over headphones. On critical trials, participants did or did not hear a name for the picture to be matched next over headphones. Importantly, when the voice over headphones provided a name, it did not match the name that the interlocutor had previously used to describe the object. Participants overwhelmingly used the word that the voice over headphones provided. This result points to non-addressee-centered behavior and is discussed in terms of disrupting alignment with the interlocutor as well as in terms of establishing alignment with the voice over headphones. In addition, the type of picture (line drawing vs. tangram shape) independently modulated lexical alignment, such that participants showed more lexical alignment to their interlocutor for (more ambiguous) tangram shapes compared to line drawings. Overall, the results point to a rather large role for non-addressee-centered behavior during lexical alignment. PMID:25762955

  13. Curriculum Alignment: Theory to Practice.

    ERIC Educational Resources Information Center

    Leitzel, Thomas C.; Vogler, Daniel E.

    Curriculum alignment is the conscious congruence of three educational elements: curriculum, instruction, and assessment. Alignment is rooted in the belief that instructional plans are established through outcomes-based content goals and the goal of assuring that delivery and assessment are congruent. Platform unity, based on the Principles of…

  14. Well-pump alignment system

    DOEpatents

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  15. Short efficient ejector systems

    NASA Technical Reports Server (NTRS)

    Presz, Walter M., Jr.; Morin, Bruce L.; Blinn, Roger F.

    1987-01-01

    A research program was conducted to improve the performance of low pressure ratio ejector systems. The results show that short, efficient ejectors operating at nearly ideal performance are possible through the use of forced mixer lobes. Forced mixer lobes generate large scale axial vorticity which results in rapid mixing and improved diffuser performance. Ejector testing was conducted using both an ejector wind tunnel. Numerous mixer lobe variations were tested to develop lobe design guidelines. The improved performance of mixer-ejectors is presented over a range of operating conditions. Results of mixer lobe angle, penetration, and alignment are presented. Lobe angles of up to 25 deg, coupled with diffuser wall angles over 20 deg, operate without separation, allowing efficient, short ejector systems. Both warm and cold flow test results are presented. Temperature similarity expressions previously developed are further formulated and verified.

  16. Experimental development of advanced air filtration media based on electrospun polymer fibers

    NASA Astrophysics Data System (ADS)

    Ghochaghi, Negar

    Electrospinning is a process by which polymer fibers can be produced using an electrostatically driven fluid jet. Electrospun fibers can be produced at the micro- or nano-scale and are, therefore, very promising for air filtration applications. However, because electrospun fibers are electrically charged, it is difficult to control the morphology of filtration media. Fiber size, alignment and uniformity are very important factors that affect filter performance. The focus of this project is to understand the relationship between filter morphology and performance and to develop new methods to create filtration media with optimum morphology. This study is divided into three focus areas: unimodal and bimodal microscale fibrous media with aligned, orthogonal and random fiber orientations; unimodal and bimodal nanoscale fibers in random orientations; bimodal micrometer and nanometer fiber media with orthogonally aligned orientations. The results indicate that the most efficient filters, which are those with the highest ratio of particle collection efficiency divided by pressure drop, can be obtained through fabricating filters in orthogonal layers of aligned fibers with two different fiber diameters. Moreover, our results show that increasing the number of layers increases the performance of orthogonally layered fibers. Also, controlling fiber spacing in orthogonally layered micrometer fiber media can be an alternative way to study the filtration performance. Finally, such coatings presented throughout this research study can be designed and placed up-stream, down-stream, and/or in between conventional filters.

  17. Improved Fiber-Optic-Coupled Pressure And Vibration Sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Cuomo, Frank W.

    1994-01-01

    Improved fiber-optic coupler enables use of single optical fiber to carry light to and from sensor head. Eliminates problem of alignment of multiple fibers in sensor head and simplifies calibration by making performance both more predictable and more stable. Sensitivities increased, sizes reduced. Provides increased margin for design of compact sensor heads not required to contain amplifier circuits and withstand high operating temperatures.

  18. Dynamics of flexible fibers in shear flow

    SciTech Connect

    Słowicka, Agnieszka M.; Wajnryb, Eligiusz; Ekiel-Jeżewska, Maria L.

    2015-09-28

    Dynamics of flexible non-Brownian fibers in shear flow at low-Reynolds-number are analyzed numerically for a wide range of the ratios A of the fiber bending force to the viscous drag force. Initially, the fibers are aligned with the flow, and later they move in the plane perpendicular to the flow vorticity. A surprisingly rich spectrum of different modes is observed when the value of A is systematically changed, with sharp transitions between coiled and straightening out modes, period-doubling bifurcations from periodic to migrating solutions, irregular dynamics, and chaos.

  19. Production of aligned microfibers and nanofibers and derived functional monoliths

    DOEpatents

    Hu, Michael Z.; DePaoli, David W.; Kuritz, Tanya; Omatete, Ogbemi

    2007-08-14

    The present invention comprises a method for producing microfibers and nanofibers and further fabricating derived solid monolithic materials having aligned uniform micro- or nanofibrils. A method for producing fibers ranging in diameter from micrometer-sized to nanometer-sized comprises the steps of producing an electric field and preparing a solid precipitative reaction media wherein the media comprises at least one chemical reactive precursor and a solvent having low electrical conductivity and wherein a solid precipitation reaction process for nucleation and growth of a solid phase occurs within the media. Then, subjecting the media to the electric field to induce in-situ growth of microfibers or nanofibers during the reaction process within the media causing precipitative growth of solid phase particles wherein the reaction conditions and reaction kinetics control the size, morphology and composition of the fibers. The fibers can then be wet pressed while under electric field into a solid monolith slab, dried and consolidated.

  20. Fiber alignment analysis of a receiver with integrated MEMS VOA

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Hickey, Ryan; Irwin, Rob; Li, Ming; Wang, Zhengxuan

    2006-09-01

    The structure of the optical path of a novel VOA integrated receiver is presented. The method to enhance the attenuation performance of the Receiver is described in detail. The standard coplanar package module exhibits a fluent attenuation curve and can achieve more than -20dB attenuation at ~ 6.5V drive voltage. S21, S22 performance and specifications of the module are explained in the paper. All these features provide customers considerable benefits, including high quality, low power consumption and cost, board real estate flexibility and ease of use.

  1. Botulinum alignment for congenital esotropia.

    PubMed Central

    Ing, M R

    1992-01-01

    This is the first report of a group of patients with congenital esotropia examined for motor and sensory evidence of binocularity a minimum of 3 years after alignment by botulinum. Evidence for binocularity was clearly present in approximately one half of the patients. Lag time to satisfactory alignment was at least 1 month (average, 5 months) following the initial botulinum injection. The results must be considered preliminary. However, when these results are compared with those of patients with congenital esotropia aligned by incisional surgery by age 2 years and examined with the same testing devices by this same investigator, botulinum alignment appears to be less effective than surgical alignment in establishing evidence for binocularity (P < 0.005). PMID:1494828

  2. Direct writing of fiber optic components in photonic crystal fibers and other specialty fibers

    NASA Astrophysics Data System (ADS)

    Fernandes, Luis Andre; Sezerman, Omur; Best, Garland; Ng, Mi Li; Kane, Saidou

    2016-04-01

    Femtosecond direct laser writing has recently shown great potential for the fabrication of complex integrated devices in the cladding of optical fibers. Such devices have the advantage of requiring no bulk optical components and no breaks in the fiber path, thus reducing the need for complicated alignment, eliminating contamination, and increasing stability. This technology has already found applications using combinations of Bragg gratings, interferometers, and couplers for the fabrication of optical filters, sensors, and power monitors. The femtosecond laser writing method produces a local modification of refractive index through non-linear absorption of the ultrafast laser pulses inside the dielectric material of both the core and cladding of the fiber. However, fiber geometries that incorporate air or hollow structures, such as photonic crystal fibers (PCFs), still present a challenge since the index modification regions created by the writing process cannot be generated in the hollow regions of the fiber. In this work, the femtosecond laser method is used together with a pre-modification method that consists of partially collapsing the hollow holes using an electrical arc discharge. The partial collapse of the photonic band gap structure provides a path for femtosecond laser written waveguides to couple light from the core to the edge of the fiber for in-line power monitoring. This novel approach is expected to have applications in other specialty fibers such as suspended core fibers and can open the way for the integration of complex devices and facilitate miniaturization of optical circuits to take advantage of the particular characteristics of the PCFs.

  3. Space Mirror Alignment System

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.

    2011-01-01

    An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.

  4. Magnetic alignment and the Poisson alignment reference system

    NASA Astrophysics Data System (ADS)

    Griffith, L. V.; Schenz, R. F.; Sommargren, G. E.

    1990-08-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This article begins with a review of the motivation for developing an alignment system that will assure better than 100-μm accuracy in the alignment of the magnetic axis throughout an FEL. The 100-μm accuracy is an error circle about an ideal axis for 300 m or more. The article describes techniques for identifying the magnetic axes of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development of a straight-line reference based on the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. The Poisson alignment reference system should be accurate to 25 μm over 300 m, which is believed to be a factor-of-4 improvement over earlier techniques. An error budget shows that only 25% of the total budgeted tolerance is used for the alignment reference system, so the remaining tolerances should fall within the allowable range for FEL alignment.

  5. Alignment technology for backside integration

    NASA Astrophysics Data System (ADS)

    Bauer, J.; Kulse, P.; Haak, U.; Old, G.; Scheuring, G.; Döbereiner, St.; Hillmann, F.; Brück, H.-J.; Kaynak, M.; Ehwald, K.-E.; Marschmeyer, St.; Birkholz, M.; Schulz, K.

    2011-03-01

    This paper presents a backside-to-frontside alignment technique for the backside processing of Si wafers. Integrated MEMS components like BiCMOS-embedded RF-MEMS switches require accurate (1-2μm) alignment. We demonstrate an alignment technique providing overlay values of less than 500 nm by using a backside alignment layer. The approach is enabled by a new non-contact wafer pre-alignment system of the Nikon Scanner S207D allowing precise loading (<5μm) of the wafer onto the exposure stage. Before starting the back-side MEMS process, the misalignment between frontside devices and backside alignment layer has to be measured. The alignment errors are applied as lithography overlay corrections to the backside MEMS process. For the specific application of deep Si etching (Bosch process), moreover, one has to consider the etch profile angle deviation across the wafer (tilting), which turned out in our experiments to amount up to 8 μm. During initial experiments with a Nikon i-line stepper NSR-2205 i- 11D the overlay has been corrected by the stepper offset parameters. These parameters have been obtained by summing up both the wafer and intra-field scaling errors caused by deep Si etching and backside-to-frontside alignment errors. Misalignments and tilting errors were all measured with a MueTec MT 3000 IR optical metrology system using overlay marks. The developed alignment technique is applied to BiCMOS-embedded MEMS devices, i.e. mm-wave RF switches and a viscosity sensor chip based on the IHP's high-speed SiGe technology. It turned out to be very promising for backside processed MEMS components with critical alignment requirements.

  6. Testing the tidal alignment model of galaxy intrinsic alignment

    SciTech Connect

    Blazek, Jonathan; Seljak, Uroš; McQuinn, Matthew E-mail: mmcquinn@berkeley.edu

    2011-05-01

    Weak gravitational lensing has become a powerful probe of large-scale structure and cosmological parameters. Precision weak lensing measurements require an understanding of the intrinsic alignment of galaxy ellipticities, which can in turn inform models of galaxy formation. It is hypothesized that elliptical galaxies align with the background tidal field and that this alignment mechanism dominates the correlation between ellipticities on cosmological scales (in the absence of lensing). We use recent large-scale structure measurements from the Sloan Digital Sky Survey to test this picture with several statistics: (1) the correlation between ellipticity and galaxy overdensity, w{sub g+}; (2) the intrinsic alignment auto-correlation functions; (3) the correlation functions of curl-free, E, and divergence-free, B, modes, the latter of which is zero in the linear tidal alignment theory; (4) the alignment correlation function, w{sub g}(r{sub p},θ), a recently developed statistic that generalizes the galaxy correlation function to account for the angle between the galaxy separation vector and the principle axis of ellipticity. We show that recent measurements are largely consistent with the tidal alignment model and discuss dependence on galaxy luminosity. In addition, we show that at linear order the tidal alignment model predicts that the angular dependence of w{sub g}(r{sub p},θ) is simply w{sub g+}(r{sub p})cos (2θ) and that this dependence is consistent with recent measurements. We also study how stochastic nonlinear contributions to galaxy ellipticity impact these statistics. We find that a significant fraction of the observed LRG ellipticity can be explained by alignment with the tidal field on scales ∼> 10 \\hMpc. These considerations are relevant to galaxy formation and evolution.

  7. Alignment of the ATLAS inner detector tracking system

    NASA Astrophysics Data System (ADS)

    Moles-Valls, Regina

    2010-05-01

    The CERN's Large Hadron Collider (LHC) is the world largest particle accelerator. ATLAS (A Toroidal LHC ApparatuS) is one of the two general purpose experiments equipped with a charged particle tracking system built on two technologies: silicon and drift tube based detectors, composing the ATLAS Inner Detector (ID). The alignment of the tracking system poses a challenge as one should solve a linear equation with almost 36 000 degrees of freedom. The required precision for the alignment of the most sensitive coordinates of the silicon sensors is just few microns. This limit comes from the requirement that the misalignment should not worsen the resolution of the track parameter measurements by more than 20%. Therefore the alignment of the ATLAS ID requires complex algorithms with extensive CPU and memory usage. So far the proposed alignment algorithms are exercised on several applications. We will present the outline of the alignment approach and results from Cosmic Ray runs and large scale computing simulation of physics samples mimicking the ATLAS operation during real data taking. For the later application the trigger of the experiment is simulated and the event filter is applied in order to produce an alignment input data stream. The full alignment chain is tested using that stream and alignment constants are produced and validated within 24 h. Cosmic ray data serves to produce an early alignment of the real ATLAS Inner Detector even before the LHC start up. Beyond all tracking information, the assembly survey database contains essential information in order to determine the relative position of one module with respect to its neighbors. Finally a hardware system measuring an array of grid lines in the modules support structure with a Frequency Scan Interferometer monitors short time system deformations.

  8. [Fiber-reinforced composite in fixed prosthodontics].

    PubMed

    Pilo, R; Abu Rass, Z; Shmidt, A

    2010-07-01

    Fiber reinforced composite (FRC) is composed of resin matrix and fibers filler. Common types of fibers: polyethylene, carbon and glass. Fibers can be continuous and aligned, discontinuous and aligned, discontinuous and randomly oriented. The architecture of the fibers is unidirectional, woven or braided. The two main types are: dry fibers or impregnated. Inclusion of fibers to resin composite increased its average flexural strength in 100-200 MPa. FRC can be utilized by the dentist in direct approach (splinting, temporary winged bridge) or indirect approach (laboratory made fixed partial denture). Laboratory fixed partial denture (FPD) is made from FRC substructure and Hybrid/Microfill particulate composite veneer. Main indications: interim temporary FPD or FPD in cases of questionable abutment teeth, in aesthetic cases where All Ceram FPD is not feasible. Retention is attained by adhesive cementation to minimally prepared teeth or to conventionally prepared teeth; other options are inlay-onlay bridges or hybrid bridges. Contraindications are: poor hygiene, inability to control humidity, parafunction habits, and more than two pontics. Survival rate of FRC FPD over 5 years is 75%, lower compared to porcelain fused to metal FPD which is 95%. Main reasons for failure are: fracture of framework and delamination of the veneer. Part of the failures is repairable. PMID:21485555

  9. [Fiber-reinforced composite in fixed prosthodontics].

    PubMed

    Pilo, R; Abu Rass, Z; Shmidt, A

    2010-07-01

    Fiber reinforced composite (FRC) is composed of resin matrix and fibers filler. Common types of fibers: polyethylene, carbon and glass. Fibers can be continuous and aligned, discontinuous and aligned, discontinuous and randomly oriented. The architecture of the fibers is unidirectional, woven or braided. The two main types are: dry fibers or impregnated. Inclusion of fibers to resin composite increased its average flexural strength in 100-200 MPa. FRC can be utilized by the dentist in direct approach (splinting, temporary winged bridge) or indirect approach (laboratory made fixed partial denture). Laboratory fixed partial denture (FPD) is made from FRC substructure and Hybrid/Microfill particulate composite veneer. Main indications: interim temporary FPD or FPD in cases of questionable abutment teeth, in aesthetic cases where All Ceram FPD is not feasible. Retention is attained by adhesive cementation to minimally prepared teeth or to conventionally prepared teeth; other options are inlay-onlay bridges or hybrid bridges. Contraindications are: poor hygiene, inability to control humidity, parafunction habits, and more than two pontics. Survival rate of FRC FPD over 5 years is 75%, lower compared to porcelain fused to metal FPD which is 95%. Main reasons for failure are: fracture of framework and delamination of the veneer. Part of the failures is repairable.

  10. Alignment of "Phrase Accent" Lows in Dutch Falling Rising Questions: Theoretical and Methodological Implications

    ERIC Educational Resources Information Center

    Lickley, Robin J.; Schepman, Astrid; Ladd, D. Robert

    2005-01-01

    In the first part of this study, we measured the alignment (relative to segmental landmarks) of the low F0 turning points between the accentual fall and the final boundary rise in short Dutch falling-rising questions of the form "Do you live in [place name]?" produced as read speech in a laboratory setting. We found that the alignment of these…

  11. Directed alignment of conjugated polymers for enhanced long-range photocurrent collection

    NASA Astrophysics Data System (ADS)

    Li, Anton; Bilby, David; Dong, Ban; Kim, Jinsang; Green, Peter

    2015-03-01

    To realize the full potential of conjugated polymers, possessing anisotropic structure and properties, it is often desirable to extend their organization to larger length scales. An epitaxy-directing solvent additive 1,3,5-trichlorobenzene was combined with an off-center spin-casting technique to produce poly(3-hexylthiophene) (P3HT) fibers with uniaxial in-plane alignment on the centimeter scale, which were incorporated into planar heterojunction solar cells with PCBM acceptor. Topography and photocurrent were mapped by photoconductive AFM; in devices with aligned P3HT, local photocurrent measured on fibers was over 4 times higher than in control devices with unaligned polymer. Even at large distances (>200 μm) between laser spot (carrier excitation) and conductive probe (charge extraction), significant long-range photocurrent was measured in the aligned devices, especially when the separation was oriented parallel to the fiber alignment. Complementary TFT measurements of neat P3HT fibers revealed that the anisotropy of in-plane carrier mobilities was greater than a factor of 3. Together, these findings highlight the importance of conjugated polymer alignment for improving carrier transport and ultimately the performance of solar cells and other devices.

  12. The alignment of carbon nanotubes: an effective route to extend their excellent properties to macroscopic scale.

    PubMed

    Sun, Xuemei; Chen, Tao; Yang, Zhibin; Peng, Huisheng

    2013-02-19

    To improve the practical application of carbon nanotubes, it is critically important to extend their physical properties from the nanoscale to the macroscopic scale. Recently, chemists aligned continuous multiwalled carbon nanotube (MWCNT) sheets and fibers to produce materials with high mechanical strength and electrical conductivity. This provided an important clue to the use of MWCNTs at macroscopic scale. Researchers have made multiple efforts to optimize this aligned structure and improve the properties of MWCNT sheets and fibers. In this Account, we briefly highlight the new synthetic methods and promising applications of aligned MWCNTs for organic optoelectronic materials and devices. We describe several general methods to prepare both horizontally and perpendicularly aligned MWCNT/polymer composite films, through an easy solution or melting process. The composite films exhibit the combined properties of being flexible, transparent, and electrically conductive. These advances may pave the way to new flexible substrates for organic solar cells, sensing devices, and other related applications. Similarly, we discuss the synthesis of aligned MWCNT/polymer composite fibers with interesting mechanical and electrical properties. Through these methods, we can incorporate a wide variety of soluble or fusible polymers for such composite films and fibers. In addition, we can later introduce functional polymers with conjugated backbones or side chains to improve the properties of these composite materials. In particular, cooperative interactions between aligned MWCNTs and polymers can produce novel properties that do not occur individually. Common examples of this are two types of responsive polymers, photodeformable azobenzene-containing liquid crystalline polymer and chromatic polydiacetylene. Aligning the structure of MWCNTs induces the orientation of azobenzene-containing mesogens, and produces photodeformable polymer elastomers. This strategy also solves the long

  13. Structural and mechanical properties of single-wall carbon nanotube fibers

    NASA Astrophysics Data System (ADS)

    Pichot, V.; Badaire, S.; Albouy, P. A.; Zakri, C.; Poulin, P.; Launois, P.

    2006-12-01

    We report quantitative experimental study correlating the structure and mechanical properties of fibers made from single-walled carbon nanotubes (SWNTs) and polyvinyl alcohol (PVA). A post-synthesis solvent drawing treatment is used to vary nanotube alignment, whose detailed understanding is a prerequisite for fiber development. Quantitative analysis of nanotube alignment within the fibers with different draw ratios is performed using x-ray scattering. The method is described in detail, and we also show that the improvement of nanotube alignment with draw ratio can be understood within a model of induced orientation at constant volume. Young’s modulus and tensile strength increase with nanotube alignment. This is modeled using continuum mechanics in qualitative agreement with experiment, however quantitative differences show that nanotube alignment is not the only parameter controlling the fiber mechanical properties. We suggest that interaction between the SWNTs and PVA chains should also play a significant role.

  14. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  15. Fabrication of highly aligned fibrous scaffolds for tissue regeneration by centrifugal spinning technology.

    PubMed

    Loordhuswamy, Amalorpava Mary; Krishnaswamy, Venkat Raghavan; Korrapati, Purna Sai; Thinakaran, Senthilram; Rengaswami, Giri Dev Venkateshwarapuram

    2014-09-01

    Centrifugal spinning (C-Spin) is an emerging technology which uses centrifugal force to produce ultrafine fibers. Being a voltage free technique it can overcome the limitations of electrospinning. Owing to the unique characteristic features such as high surface area to volume ratio, porosity, mechanical strength and fiber alignment, centrifugal spun (C-spun) fibrous mat has a wide range of scope in various biomedical applications. Higher degree of fiber alignment can be effortlessly achieved by the C-Spin process. In order to prove the versatility of C-Spin system with respect to fiber alignment, Polycaprolactone (PCL) and gelatin were spun taking them as model polymers. The morphological analysis revealed that highly aligned ultrafine fibers with smooth surface are achieved by C-Spinning. Hydrophilicity, porosity and mechanical property results confirm that the C-spun mat is more suitable for tissue engineering applications. In vitro and in vivo experiments proved that the scaffolds are biocompatible and can be efficiently used as a wound dressing material.

  16. CMP-compatible alignment strategy

    NASA Astrophysics Data System (ADS)

    Rouchouze, Eric; Darracq, Jean-Michel; Gemen, Jack

    1997-07-01

    As semiconductor technology continues its way towards smaller geometries, CMP has gained acceptance as the planarization technique for interconnect layers. Its benefits are well known, especially in terms of imaging. However, one of its major drawbacks is to make difficult the alignment of interconnect layers, since a planarized alignment mark is less visible for the stepper's alignment system. Usual workarounds include the clearing of process layers from the alignment mark before exposing the product layer. Although these workarounds provide a temporary solution, they are too costly to be viable in a mass production environment. In this experiment, a non-zero alignment strategy using new mark designs has been tested on the backend layers of a 0.35 micrometers CMOS process. New mark designs have been evaluated, where the space part of the gratings has been filled with 'segments' of various width, the purpose being to minimize the planarization effect of the metallization process. For the selection of the best mark design, several criteria have been taken into account: the stepper's built-in alignment diagnostic software provides information on the quality of the alignment signal. The most important criterion is the product overlay measurement and its repeatability. Marks cross sections using a FIB/SEM tool give indications on the mark profile after metal deposition.

  17. Galaxy Alignments: Theory, Modelling & Simulations

    NASA Astrophysics Data System (ADS)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  18. Advanced Mask Aligner Lithography (AMALITH)

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Vogler, Uwe; Bramati, Arianna

    2015-03-01

    Mask aligner lithography is very attractive for less-critical lithography layers and is widely used for LED, display, CMOS image sensor, micro-fluidics and MEMS manufacturing. Mask aligner lithography is also a preferred choice the semiconductor back-end for 3D-IC, TSV interconnects, advanced packaging (AdP) and wafer-level-packaging (WLP). Mask aligner lithography is a mature technique based on shadow printing and has not much changed since the 1980s. In shadow printing lithography a geometric pattern is transferred by free-space propagation from a photomask to a photosensitive layer on a wafer. The inherent simplicity of the pattern transfer offers ease of operation, low maintenance, moderate capital expenditure, high wafers-per-hour (WPH) throughput, and attractive cost-of-ownership (COO). Advanced mask aligner lithography (AMALITH) comprises different measures to improve shadow printing lithography beyond current limits. The key enabling technology for AMALITH is a novel light integrator systems, referred to as MO Exposure Optics® (MOEO). MOEO allows to fully control and shape the properties of the illumination light in a mask aligner. Full control is the base for accurate simulation and optimization of the shadow printing process (computational lithography). Now photolithography enhancement techniques like customized illumination, optical proximity correction (OPC), phase masks (AAPSM), half-tone lithography and Talbot lithography could be used in mask aligner lithography. We summarize the recent progress in advanced mask aligner lithography (AMALITH) and discuss possible measures to further improve shadow printing lithography.

  19. Aligning for Innovation - Alignment Strategy to Drive Innovation

    NASA Technical Reports Server (NTRS)

    Johnson, Hurel; Teltschik, David; Bussey, Horace, Jr.; Moy, James

    2010-01-01

    With the sudden need for innovation that will help the country achieve its long-term space exploration objectives, the question of whether NASA is aligned effectively to drive the innovation that it so desperately needs to take space exploration to the next level should be entertained. Authors such as Robert Kaplan and David North have noted that companies that use a formal system for implementing strategy consistently outperform their peers. They have outlined a six-stage management systems model for implementing strategy, which includes the aligning of the organization towards its objectives. This involves the alignment of the organization from the top down. This presentation will explore the impacts of existing U.S. industrial policy on technological innovation; assess the current NASA organizational alignment and its impacts on driving technological innovation; and finally suggest an alternative approach that may drive the innovation needed to take the world to the next level of space exploration, with NASA truly leading the way.

  20. Optical Fibers

    NASA Astrophysics Data System (ADS)

    Ghatak, Ajoy; Thyagarajan, K.

    With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken fiber glass place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier wave waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

  1. Design, Construction, Alignment, and Calibration of a Compact Velocimetry Experiment

    SciTech Connect

    Kaufman, Morris I.; Malone, Robert M.; Frogget, Brent C.; Esquibel, David L.; Romero, Vincent T.; Lare, Gregory A.; Briggs, Bart; Iverson, Adam J.; Frayer, Daniel K.; DeVore, Douglas; Cata, Brian

    2007-09-21

    A velocimetry experiment has been designed to measure shock properties for small cylindrical metal targets (8-mm-diameter by 2-mm thick). A target is accelerated by high explosives, caught, and retrieved for later inspection. The target is expected to move at a velocity of 0.1 to 3 km/sec. The complete experiment canister is approximately 105 mm in diameter and 380 mm long. Optical velocimetry diagnostics include the Velocity Interferometer System for Any Reflector (VISAR) and Photon Doppler Velocimetry (PDV). The packaging of the velocity diagnostics is not allowed to interfere with the catchment or an X-ray imaging diagnostic. A single optical relay, using commercial lenses, collects Doppler-shifted light for both VISAR and PDV. The use of fiber optics allows measurement of point velocities on the target surface during accelerations occurring over 15 mm of travel. The VISAR operates at 532 nm and has separate illumination fibers requiring alignment. The PDV diagnostic operates at 1550 nm, but is aligned and focused at 670 nm. The VISAR and PDV diagnostics are complementary measurements and they image spots in close proximity on the target surface. Because the optical relay uses commercial glass, the axial positions of the optical fibers for PDV and VISAR are offset to compensate for chromatic aberrations. The optomechanical design requires careful attention to fiber management, mechanical assembly and disassembly, positioning of the foam catchment, and X-ray diagnostic field-of-view. Calibration and alignment data are archived at each stage of the assembly sequence.

  2. Fusion bonding and alignment fixture

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  3. Multiple sequence alignment with DIALIGN.

    PubMed

    Morgenstern, Burkhard

    2014-01-01

    DIALIGN is a software tool for multiple sequence alignment by combining global and local alignment features. It composes multiple alignments from local pairwise sequence similarities. This approach is particularly useful to discover conserved functional regions in sequences that share only local homologies but are otherwise unrelated. An anchoring option allows to use external information and expert knowledge in addition to primary-sequence similarity alone. The latest version of DIALIGN optionally uses matches to the PFAM database to detect weak homologies. Various versions of the program are available through Göttingen Bioinformatics Compute Server (GOBICS) at http://www.gobics.de/department/software.

  4. Magnetic axis alignment and the Poisson alignment reference system

    NASA Astrophysics Data System (ADS)

    Griffith, Lee V.; Schenz, Richard F.; Sommargren, Gary E.

    1989-01-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This paper begins with a review of the motivation for developing an alignment system that will assure better than 100 micrometer accuracy in the alignment of the magnetic axis throughout an FEL. The paper describes techniques for identifying the magnetic axis of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development and use of the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. An error budget shows that the Poisson alignment reference system will make it possible to meet the alignment tolerances for an FEL.

  5. Electrospun Aligned Fibrous Arrays and Twisted Ropes: Fabrication, Mechanical and Electrical Properties, and Application in Strain Sensors

    NASA Astrophysics Data System (ADS)

    Zheng, Jie; Yan, Xu; Li, Meng-Meng; Yu, Gui-Feng; Zhang, Hong-Di; Pisula, Wojciech; He, Xiao-Xiao; Duvail, Jean-Luc; Long, Yun-Ze

    2015-12-01

    Electrospinning (e-spinning) is a versatile technique to fabricate ultrathin fibers from a rich variety of functional materials. In this paper, a modified e-spinning setup with two-frame collector is proposed for the fabrication of highly aligned arrays of polystyrene (PS) and polyvinylidene fluoride (PVDF) nanofibers, as well as PVDF/carbon nanotube (PVDF/CNT) composite fibers. Especially, it is capable of producing fibrous arrays with excellent orientation over a large area (more than 14 cm × 12 cm). The as-spun fibers are suspended and can be easily transferred to other rigid or flexible substrates. Based on the aligned fibrous arrays, twisted long ropes are also prepared. Compared with the aligned arrays, twisted PVDF/CNT fiber ropes show enhanced mechanical and electrical properties and have potential application in microscale strain sensors.

  6. Electrospun Aligned Fibrous Arrays and Twisted Ropes: Fabrication, Mechanical and Electrical Properties, and Application in Strain Sensors.

    PubMed

    Zheng, Jie; Yan, Xu; Li, Meng-Meng; Yu, Gui-Feng; Zhang, Hong-Di; Pisula, Wojciech; He, Xiao-Xiao; Duvail, Jean-Luc; Long, Yun-Ze

    2015-12-01

    Electrospinning (e-spinning) is a versatile technique to fabricate ultrathin fibers from a rich variety of functional materials. In this paper, a modified e-spinning setup with two-frame collector is proposed for the fabrication of highly aligned arrays of polystyrene (PS) and polyvinylidene fluoride (PVDF) nanofibers, as well as PVDF/carbon nanotube (PVDF/CNT) composite fibers. Especially, it is capable of producing fibrous arrays with excellent orientation over a large area (more than 14 cm × 12 cm). The as-spun fibers are suspended and can be easily transferred to other rigid or flexible substrates. Based on the aligned fibrous arrays, twisted long ropes are also prepared. Compared with the aligned arrays, twisted PVDF/CNT fiber ropes show enhanced mechanical and electrical properties and have potential application in microscale strain sensors. PMID:26646688

  7. Visual attitude orientation and alignment system

    NASA Technical Reports Server (NTRS)

    Beam, R. A.; Morris, D. B.

    1967-01-01

    Active vehicle optical alignment aid and a passive vehicle three-dimensional alignment target ensure proper orientation and alignment plus control of the closure range and rate between two bodies, one in controlled motion and one at rest.

  8. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  9. Theory of grain alignment in molecular clouds

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne G.

    1993-01-01

    Research accomplishments are presented and include the following: (1) mathematical theory of grain alignment; (2) super-paramagnetic alignment of molecular cloud grains; and (3) theory of grain alignment by ambipolar diffusion.

  10. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  11. Protein structure alignment beyond spatial proximity.

    PubMed

    Wang, Sheng; Ma, Jianzhu; Peng, Jian; Xu, Jinbo

    2013-01-01

    Protein structure alignment is a fundamental problem in computational structure biology. Many programs have been developed for automatic protein structure alignment, but most of them align two protein structures purely based upon geometric similarity without considering evolutionary and functional relationship. As such, these programs may generate structure alignments which are not very biologically meaningful from the evolutionary perspective. This paper presents a novel method DeepAlign for automatic pairwise protein structure alignment. DeepAlign aligns two protein structures using not only spatial proximity of equivalent residues (after rigid-body superposition), but also evolutionary relationship and hydrogen-bonding similarity. Experimental results show that DeepAlign can generate structure alignments much more consistent with manually-curated alignments than other automatic tools especially when proteins under consideration are remote homologs. These results imply that in addition to geometric similarity, evolutionary information and hydrogen-bonding similarity are essential to aligning two protein structures.

  12. Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber.

    PubMed

    Nicholson, J W; Bise, R; Alonzo, J; Stockert, T; Trevor, D J; Dimarcello, F; Monberg, E; Fini, J M; Westbrook, P S; Feder, K; Grüner-Nielsen, L

    2008-01-01

    Supercontinuum extending to visible wavelengths is generated in a hybrid silica nonlinear fiber pumped at 1560 nm by a femtosecond, erbium-doped fiber laser. The hybrid nonlinear fiber consists of a short length of highly nonlinear, germano-silicate fiber (HNLF) spliced to a length of photonic crystal fiber (PCF). A 2 cm length of HNLF provides an initial stage of continuum generation due to higher-order soliton compression and dispersive wave generation before launching into the PCF. The visible radiation is generated in the fundamental mode of the PCF. PMID:18157247

  13. Long Read Alignment with Parallel MapReduce Cloud Platform

    PubMed Central

    Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki

    2015-01-01

    Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms. PMID:26839887

  14. Long Read Alignment with Parallel MapReduce Cloud Platform.

    PubMed

    Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki

    2015-01-01

    Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms.

  15. Long Read Alignment with Parallel MapReduce Cloud Platform.

    PubMed

    Al-Absi, Ahmed Abdulhakim; Kang, Dae-Ki

    2015-01-01

    Genomic sequence alignment is an important technique to decode genome sequences in bioinformatics. Next-Generation Sequencing technologies produce genomic data of longer reads. Cloud platforms are adopted to address the problems arising from storage and analysis of large genomic data. Existing genes sequencing tools for cloud platforms predominantly consider short read gene sequences and adopt the Hadoop MapReduce framework for computation. However, serial execution of map and reduce phases is a problem in such systems. Therefore, in this paper, we introduce Burrows-Wheeler Aligner's Smith-Waterman Alignment on Parallel MapReduce (BWASW-PMR) cloud platform for long sequence alignment. The proposed cloud platform adopts a widely accepted and accurate BWA-SW algorithm for long sequence alignment. A custom MapReduce platform is developed to overcome the drawbacks of the Hadoop framework. A parallel execution strategy of the MapReduce phases and optimization of Smith-Waterman algorithm are considered. Performance evaluation results exhibit an average speed-up of 6.7 considering BWASW-PMR compared with the state-of-the-art Bwasw-Cloud. An average reduction of 30% in the map phase makespan is reported across all experiments comparing BWASW-PMR with Bwasw-Cloud. Optimization of Smith-Waterman results in reducing the execution time by 91.8%. The experimental study proves the efficiency of BWASW-PMR for aligning long genomic sequences on cloud platforms. PMID:26839887

  16. Fixture for aligning motor assembly

    DOEpatents

    Shervington, Roger M.; Vaghani, Vallabh V.; Vanek, Laurence D.; Christensen, Scott A.

    2009-12-08

    An alignment fixture includes a rotor fixture, a stator fixture and a sensor system which measures a rotational displacement therebetween. The fixture precisely measures rotation of a generator stator assembly away from a NULL position referenced by a unique reference spline on the rotor shaft. By providing an adjustable location of the stator assembly within the housing, the magnetic axes within each generator shall be aligned to a predetermined and controlled tolerance between the generator interface mounting pin and the reference spline on the rotor shaft. Once magnetically aligned, each generator is essentially a line replaceable unit which may be readily mounted to any input of a multi-generator gearbox assembly with the assurance that the magnetic alignment will be within a predetermined tolerance.

  17. Fiber optics for controls

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1990-01-01

    The design, development, and testing of a fiber optic integrated propulsion/flight control system for an advanced supersonic dash aircraft (flies at supersonic speeds for short periods of time) is the goal of the joint NASA/DOD Fiber Optic Control System Integration (FOCSI) program. Phase 1 provided a comparison of electronic and optical control systems, identified the status of current optical sensor technology, defined the aircraft sensor/actuator environment, proposed architectures for fully optical control systems, and provided schedules for development. Overall, it was determined that there are sufficient continued efforts to develop such a system. It was also determined that it is feasible to build a fiber optic control system for the development of a data base for this technology, but that further work is necessary in sensors, actuators, and components to develop an optimum design, fully fiber optic integrated control system compatible with advanced aircraft environments. Phase 2 is to design, construct, and ground test a fly by light control system. Its first task is to provide a detailed design of the electro-optic architecture.

  18. Understanding the Dynamics of Magnetic Field Alignment for Rod-Coil Block Copolymers

    NASA Astrophysics Data System (ADS)

    McCulloch, Bryan; Portale, Giuseppe; Bras, Wim; Hexemer, Alexander; Segalman, Rachel A.

    2012-02-01

    Alignment of semiconducting block copolymer nanostructures is crucial to optimize charge transport in these materials. Magnetic fields can act on the liquid crystalline conjugated polymers, inducing alignment in rod-coil block copolymers. By using a combination of small angle x-ray scattering (SAXS) and transmission electron microscopy (TEM) we have studied the magnetic field alignment of poly(alkoxy phenylene vinylene-b-isoprene) (PPV-PI) rod-coil block copolymers. In situ measurements have also shown the magnetic field leads to a stabilization of the ordered phase. Furthermore, there appear to be two distinct timescales for alignment: at short times the alignment of these materials is fast likely caused by preferential growth of aligned domains, and at long times alignment increases by the very slow process of defect annihilation. Further, there is an optimum temperature where the kinetics and thermodynamic driving forces for alignment are balanced, producing very highly aligned samples. Understanding the mechanisms by which alignment occurs has lead to knowledge helping to rationally optimize the magnetic alignment of rod-coil block copolymers.

  19. Short communication: Using diurnal patterns of (13)C enrichment of CO2 to evaluate the effects of nitrate and docosahexaenoic acid on fiber degradation in the rumen of lactating dairy cows.

    PubMed

    Klop, G; Bannink, A; Dieho, K; Gerrits, W J J; Dijkstra, J

    2016-09-01

    Nitrate decreases enteric CH4 production in ruminants, but may also negatively affect fiber degradation. In this experiment, 28 lactating Holstein dairy cows were grouped into 7 blocks. Within blocks, cows were randomly assigned to 1 of 4 isonitrogenous treatments in a 2×2 factorial arrangement: control (CON); NO3 [21g of nitrate/kg of dry matter (DM)]; DHA [3g of docosahexaenoic acid (DHA)/kg of DM]; or NO3+DHA (21g of nitrate/kg of DM and 3g of DHA/kg of DM). Cows were fed a total mixed ration consisting of 21% grass silage, 49% corn silage, and 30% concentrates on a DM basis. Based on the difference in natural (13)C enrichment and neutral detergent fiber and starch content between grass silage and corn silage, we investigated whether a negative effect on rumen fiber degradation could be detected by evaluating diurnal patterns of (13)C enrichment of exhaled carbon dioxide. A significant nitrate × DHA interaction was found for neutral detergent fiber digestibility, which was reduced on the NO3 treatment to an average of 55%, as compared with 61, 64, and 65% on treatments CON, DHA, and NO3+DHA, respectively. Feeding nitrate, but not DHA, resulted in a pronounced increase in (13)C enrichment of CO2 in the first 3 to 4 h after feeding only. Results support the hypothesis that effects of a feed additive on the rate of fiber degradation in the rumen can be detected by evaluating diurnal patterns of (13)C enrichment of CO2. To be able to detect this, the main ration components have to differ considerably in fiber and nonfiber carbohydrate content as well as in natural (13)C enrichment. PMID:27344384

  20. Well-pump alignment system

    DOEpatents

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.