Science.gov

Sample records for aligned silicon nanowire

  1. Aligned silicon carbide nanowire crossed nets with high superhydrophobicity.

    PubMed

    Niu, Jun Jie; Wang, Jian Nong; Xu, Qian Feng

    2008-06-01

    Aligned silicon carbide nanowire crossed nets (a-SiCNWNs) were directly synthesized by using a vapor-solid reaction at 1100 degrees C. Zinc sulfide was used as catalyst to assist the growth of a-SiCNWNs with small size and crystal structure. After functionalization with perfluoroalkysilane, a-SiCNWNs showed excellent superhydrophobic property with a high water contact angle more than 156 +/- 2 degrees , compared to random nanowires (147 +/- 2 degrees ) and pure silicon wafers (101 +/- 2 degrees ). The topographic roughness and chemical modification with CF 2/CF 3 groups contributed the better superhydrophobicity. Furthermore, the as-grown SiCNWNs can be scraped off and coated on other substrates such as pure silicon wafers. The novel nanowire coating with good superhydrophobicity displays extensive applications in silicon-related fields such as solar cells, radar, etc.

  2. Fabrication and optical simulation of vertically aligned silicon nanowires

    NASA Astrophysics Data System (ADS)

    Hossain, M. K.; Salhi, B.; Mukhaimer, A. W.; Al-Sulaiman, F. A.

    2016-10-01

    Silicon nanowires (Si-NWs) have been considered widely as a perfect light absorber with strong evidence of enhanced optical functionalities. Here we report finite-difference time-domain simulations for Si-NWs to elucidate the key factors that determine enhanced light absorption, energy flow behavior, electric field profile, and excitons generation rate distribution. To avoid further complexity, a single Si-NW of cylindrical shape was modeled on c-Si and optimized to elucidate the aforementioned characteristics. Light absorption and energy flow distribution confirmed that Si-NW facilitates to confine photon absorption of several orders of enhancement whereas the energy flow is also distributed along the wire itself. With reference to electric field and excitons generation distribution it was revealed that Si-NW possesses the sites of strongest field distributions compared to those of flat silicon wafer. To realize the potential of Si-NWs-based thin film solar cell, a simple process was adopted to acquire vertically aligned Si-NWs grown on c-Si wafer. Further topographic characterizations were conducted through scanning electron microscope and tunneling electron microscope-coupled energy-dispersive spectroscopy.

  3. Spectroscopic investigations of arrays containing vertically and horizontally aligned silicon nanowires

    NASA Astrophysics Data System (ADS)

    Volpati, Diogo; Mårtensson, Niklas; Anttu, Nicklas; Viklund, Per; Sundvall, Christian; Åberg, Ingvar; Bäckström, Joakim; Olin, Håkan; Björk, Mikael T.; Castillo-Leon, Jaime

    2016-12-01

    The properties of nanowire arrays have been investigated mainly in comparison with isolated nanowires or thin films, owing to the difficulty in controlling the nanowire alignment. In this study, we report on arrays containing vertically or horizontally aligned silicon nanowires, whose alignment and structure were determined using x-ray diffraction and scanning electron microscopy. The Raman spectra of the nanowire arrays differ from those of isolated nanowires because of distinct heat dissipation rates of the absorbed energy from the laser, in agreement with recent theoretical calculations. The tailored alignment of the nanowires on solid substrates up to 1 inch of diameter also enabled the observation of resonance modes associated with light trapped into the nanowires. This was proven by comparing the light absorbed and scattered by the arrays, and may be exploited to enhance light harvesting in tandem solar cells. Significantly, the control of the assembly of nanowire arrays may have a direct impact on bottom-up technologies of high anisotropy nanomaterials.

  4. Hyperbolic and plasmonic properties of silicon/Ag aligned nanowire arrays.

    PubMed

    Prokes, S M; Glembocki, Orest J; Livenere, J E; Tumkur, T U; Kitur, J K; Zhu, G; Wells, B; Podolskiy, V A; Noginov, M A

    2013-06-17

    The hyperbolic and plasmonic properties of silicon nanowire/Ag arrays have been investigated. The aligned nanowire arrays were formed and coated by atomic layer deposition of Ag, which itself is a metamaterial due to its unique mosaic film structure. The theoretical and numerical studies suggest that the fabricated arrays have hyperbolic dispersion in the visible and IR ranges of the spectrum. The theoretical predictions have been indirectly confirmed by polarized reflection spectra, showing reduction of the reflection in p polarization in comparison to that in s polarization. Studies of dye emission on top of Si/Ag nanowire arrays show strong emission quenching and shortening of dye emission kinetics. This behavior is also consistent with the predictions for hyperbolic media. The measured SERS signals were enhanced by almost an order of magnitude for closely packed and aligned nanowires, compared to random nanowire composites. These results agree with electric field simulations of these array structures.

  5. Preparation of highly aligned silicon oxide nanowires with stable intensive photoluminescence

    NASA Astrophysics Data System (ADS)

    Duraia, El-Shazly M.; Mansurov, Z. A.; Tokmolden, S.; Beall, Gary W.

    2010-02-01

    In this work we report the successful formation of highly aligned vertical silicon oxide nanowires. The source of silicon was from the substrate itself without any additional source of silicon. X-ray measurement demonstrated that our nanowires are amorphous. Photoluminescence measurements were conducted through 18 months and indicated that there is a very good intensive emission peaks near the violet regions. The FTIR measurements indicated the existence of peaks at 463, 604, 795 and a wide peak at 1111 cm -1 and this can be attributed to Si-O-Si and Si-O stretching vibrations. We also report the formation of the octopus-like silicon oxide nanowires and the growth mechanism of these structures was discussed.

  6. Shear induced simultaneous consolidation and alignment of silicon nanowires into ingots using equal channel angular extrusion (ECAE)

    NASA Astrophysics Data System (ADS)

    Vasiraju, Venkata; Brockway, Lance; Balachandran, Shreyas; Srinivasa, Arun; Vaddiraju, Sreeram

    2015-01-01

    Shear induced simultaneous consolidation and assembly of nanowires accomplished using equal channel angular extrusion (ECAE) is studied and reported. The intent is to use processing of large quantities of nanowires directly in their original solid state to not only consolidate them, but also to align them, without destroying or altering their morphologies in the process. The results indicate that ECAE is useful to consolidate nanowire powders into mechanically robust pellets at room temperature, without the need for any elevated temperature processing. The preliminary results also indicate that in certain regions of the consolidated nanowire pellets, alignment of the nanowires is also possible. The interlocking of the rough surfaces of the silicon nanowires during ECAE is believed to be responsible for the mechanical robustness of the nanowire pellets. It is believed that such simultaneous consolidation and alignment of nanowires allows for using the anisotropic properties of nanowires in energy conversion device fabrication.

  7. Phonon processes in vertically aligned silicon nanowire arrays produced by low-cost all-solution galvanic displacement method

    NASA Astrophysics Data System (ADS)

    Banerjee, Debika; Trudeau, Charles; Gerlein, Luis Felipe; Cloutier, Sylvain G.

    2016-03-01

    The nanoscale engineering of silicon can significantly change its bulk optoelectronic properties to make it more favorable for device integration. Phonon process engineering is one way to enhance inter-band transitions in silicon's indirect band structure alignment. This paper demonstrates phonon localization at the tip of silicon nanowires fabricated by galvanic displacement using wet electroless chemical etching of a bulk silicon wafer. High-resolution Raman micro-spectroscopy reveals that such arrayed structures of silicon nanowires display phonon localization behaviors, which could help their integration into the future generations of nano-engineered silicon nanowire-based devices such as photodetectors and solar cells.

  8. Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates

    NASA Astrophysics Data System (ADS)

    Guerrera, S. A.; Akinwande, A. I.

    2016-07-01

    We developed a fabrication process for embedding a dense array (108 cm-2) of high-aspect-ratio silicon nanowires (200 nm diameter and 10 μm tall) in a dielectric matrix and then structured/exposed the tips of the nanowires to form self-aligned gate field emitter arrays using chemical mechanical polishing (CMP). Using this structure, we demonstrated a high current density (100 A cm-2), uniform, and long lifetime (>100 h) silicon field emitter array architecture in which the current emitted by each tip is regulated by the silicon nanowire current limiter connected in series with the tip. Using the current voltage characteristics and with the aid of numerical device models, we estimated the tip radius of our field emission arrays to be ≈4.8 nm, as consistent with the tip radius measured using a scanning electron microscope (SEM).

  9. Vapor detection performance of vertically aligned, ordered arrays of silicon nanowires with a porous electrode.

    PubMed

    Field, Christopher R; In, Hyun Jin; Begue, Nathan J; Pehrsson, Pehr E

    2011-06-15

    Vertically aligned, ordered arrays of silicon nanowires capped with a porous top electrode are used to detect gas phase ammonia and nitrogen dioxide in humidified air. The sensors had very fast response times and large signal-to-noise ratios. Calibration curves were created using both an initial slope method and a fixed-time point method. The initial-slope method had a power law dependence that correlates well with concentration, demonstrating a viable alternative for eventual quantitative vapor detection and enabling shorter sampling and regeneration times.

  10. Alignment of nanoparticles, nanorods, and nanowires during chemical vapor deposition of silicon

    NASA Astrophysics Data System (ADS)

    Swain, Bhabani Sankar; Park, Jin-Woo; Yang, Seung-Min; Mahmood, Khalid; Swain, Bibhu Prasad; Lee, Jae-Gab; Hwang, Nong-Moon

    2015-09-01

    We fabricated silicon nanostructures (Si-NSs) on SiO x /Si substrate in chemical vapor deposition. During the synthesis of Si-NSs, Si sunflower-shaped structures of one to hundred microns were observed, therein the nanoparticles (NPs), nanowires, and nanorods were aligned in an ordered manner. We suggest that the NSs reported here are evolved by the electrostatic force exerted by charged NPs in gas phase. This NS would help in understanding the role of spontaneous charging of NPs in the gas phase and the role of charged NPs in the gas phase for NSs growth.

  11. Hybrid solar cells with conducting polymers and vertically aligned silicon nanowire arrays: The effect of silicon conductivity

    NASA Astrophysics Data System (ADS)

    Woo, Sungho; Hoon Jeong, Jae; Kun Lyu, Hong; Jeong, Seonju; Hyoung Sim, Jun; Hyun Kim, Wook; Soo Han, Yoon; Kim, Youngkyoo

    2012-08-01

    Organic/inorganic hybrid solar cells, based on vertically aligned n-type silicon nanowires (n-Si NWs) and p-type conducting polymers (PEDOT:PSS), were investigated as a function of Si conductivity. The n-Si NWs were easily prepared from the n-Si wafer by employing a silver nanodot-mediated micro-electrochemical redox reaction. This investigation shows that the photocurrent-to-voltage characteristics of the n-Si NW/PEDOT:PSS cells clearly exhibit a stable rectifying diode behavior. The increase in current density and fill factor using high conductive silicon is attributed to an improved charge transport towards the electrodes achieved by lowering the device's series resistance. Our results also show that the surface area of the nanowire that can form heterojunction domains significantly influences the device performance.

  12. Self-aligned nanoforest in silicon nanowire for sensitive conductance modulation.

    PubMed

    Seol, Myeong-Lok; Ahn, Jae-Hyuk; Choi, Ji-Min; Choi, Sung-Jin; Choi, Yang-Kyu

    2012-11-14

    A self-aligned and localized nanoforest structure is constructed in a top-down fabricated silicon nanowire (SiNW). The surface-to-volume ratio (SVR) of the SiNW is enhanced due to the local nanoforest formation. The conductance modulation property of the SiNWs, which is an important characteristic in sensor and charge transfer based applications, can be largely enhanced. For the selective modification of the channel region, localized Joule-heating and subsequent metal-assisted chemical etching (mac-etch) are employed. The nanoforest is formed only in the channel region without misalignment due to the self-aligned process of Joule-heating. The modified SiNW is applied to a porphyrin-silicon hybrid device to verify the enhanced conductance modulation. The charge transfer efficiency between the porphyrin and the SiNW, which is caused by external optical excitation, is clearly increased compared to the initial SiNW. The effect of the local nanoforest formation is enhanced when longer etching times and larger widths are used.

  13. Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Sato, Keisuke; Dutta, Mrinal; Fukata, Naoki

    2014-05-01

    Inorganic/organic hybrid radial heterojunction solar cells that combine vertically-aligned n-type silicon nanowires (SiNWs) with poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) have great potential for replacing commercial Si solar cells. The chief advantage of such solar cells is that they exhibit higher absorbance for a given thickness than commercial Si solar cells, due to incident light-trapping within the NW arrays, thus enabling lower-cost solar cell production. We report herein on the effects of NW length, annealing and surface electrode on the device performance of SiNW/PEDOT:PSS hybrid radial heterojunction solar cells. The power conversion efficiency (PCE) of the obtained SiNW/PEDOT:PSS hybrid solar cells can be optimized by tuning the thickness of the surface electrode, and the etching conditions during NW formation and post-annealing. The PCE of 9.3% is obtained by forming efficient transport pathways for photogenerated charge carriers to electrodes. Our approach is a significant contribution to design of high-performance and low-cost inorganic/organic hybrid heterojunction solar cells.Inorganic/organic hybrid radial heterojunction solar cells that combine vertically-aligned n-type silicon nanowires (SiNWs) with poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) have great potential for replacing commercial Si solar cells. The chief advantage of such solar cells is that they exhibit higher absorbance for a given thickness than commercial Si solar cells, due to incident light-trapping within the NW arrays, thus enabling lower-cost solar cell production. We report herein on the effects of NW length, annealing and surface electrode on the device performance of SiNW/PEDOT:PSS hybrid radial heterojunction solar cells. The power conversion efficiency (PCE) of the obtained SiNW/PEDOT:PSS hybrid solar cells can be optimized by tuning the thickness of the surface electrode, and the etching conditions during NW formation and

  14. Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays.

    PubMed

    Sato, Keisuke; Dutta, Mrinal; Fukata, Naoki

    2014-06-07

    Inorganic/organic hybrid radial heterojunction solar cells that combine vertically-aligned n-type silicon nanowires (SiNWs) with poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) have great potential for replacing commercial Si solar cells. The chief advantage of such solar cells is that they exhibit higher absorbance for a given thickness than commercial Si solar cells, due to incident light-trapping within the NW arrays, thus enabling lower-cost solar cell production. We report herein on the effects of NW length, annealing and surface electrode on the device performance of SiNW/PEDOT:PSS hybrid radial heterojunction solar cells. The power conversion efficiency (PCE) of the obtained SiNW/PEDOT:PSS hybrid solar cells can be optimized by tuning the thickness of the surface electrode, and the etching conditions during NW formation and post-annealing. The PCE of 9.3% is obtained by forming efficient transport pathways for photogenerated charge carriers to electrodes. Our approach is a significant contribution to design of high-performance and low-cost inorganic/organic hybrid heterojunction solar cells.

  15. Self-aligned multi-channel silicon nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Zhu, Hao; Li, Qiliang; Yuan, Hui; Baumgart, Helmut; Ioannou, Dimitris E.; Richter, Curt A.

    2012-12-01

    Si nanowire field effect transistors (SiNW FETs) with multiple nanowire channels and different gate lengths have been fabricated by using a directed assembly approach combined with a standard photolithographic process. The electrical characteristics of SiNW FETs containing different numbers of nanowire channels were measured and compared. The multi-channel SiNW FETs show excellent performance: small subthreshold slope (≈75 mV/dec), large ON/OFF ratio (≈108), good break-down voltage (>30 V) and good carrier mobility (μp ≈ 100 cm2 V-1s-1). These excellent device properties were achieved by using a clean self-alignment process and an improved device structure with Schottky barriers at the source and drain contacts. Such high-performance multi-nanowire FETs are attractive for logic, memory, and sensor applications.

  16. Vertically aligned crystalline silicon nanowires with controlled diameters for energy conversion applications: Experimental and theoretical insights

    SciTech Connect

    Razek, Sara Abdel; Swillam, Mohamed A.; Allam, Nageh K.

    2014-05-21

    Vertically orientated single crystalline silicon nanowire (SiNW) arrays with controlled diameters are fabricated via a metal-assisted chemical etching method. The diameter of the fabricated nanowires is controlled by simply varying the etching time in HF/H{sub 2}O{sub 2} electrolytes. The fabricated SiNWs have diameters ranging from 117 to 650 nm and lengths from 8 to 18 μm. The optical measurements showed a significant difference in the reflectance/absorption of the SiNWs with different diameters, where the reflectance increases with increasing the diameter of the SiNWs. The SiNWs showed significant photoluminescence (PL) emission spectra with peaks lying between 380 and 670 nm. The PL intensity increases as the diameter increases and shows red shift for peaks at ∼670 nm. The increase or decrease of reflectivity is coincident with PL intensity at wavelength ∼660 nm. The x-ray diffraction patterns confirm the high crystallinity of the fabricated SiNWs. In addition, the Raman spectra showed a shift in the first order transverse band toward lower frequencies compared to that usually seen for c-Si. Finite difference time domain simulations have been performed to confirm the effect of change of diameter on the optical properties of the nanowires. The simulation results showed good agreement with the experimental results for the SiNWs of different diameters.

  17. Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions.

    PubMed

    Huang, Zhipeng; Shimizu, Tomohiro; Senz, Stephan; Zhang, Zhang; Zhang, Xuanxiong; Lee, Woo; Geyer, Nadine; Gösele, Ulrich

    2009-07-01

    The metal-assisted etching direction of Si(110) substrates was found to be dependent upon the morphology of the deposited metal catalyst. The etching direction of a Si(110) substrate was found to be one of the two crystallographically preferred 100 directions in the case of isolated metal particles or a small area metal mesh with nanoholes. In contrast, the etching proceeded in the vertical [110] direction, when the lateral size of the catalytic metal mesh was sufficiently large. Therefore, the direction of etching and the resulting nanostructures obtained by metal-assisted etching can be easily controlled by an appropriate choice of the morphology of the deposited metal catalyst. On the basis of this finding, a generic method was developed for the fabrication of wafer-scale vertically aligned arrays of epitaxial [110] Si nanowires on a Si(110) substrate. The method utilized a thin metal film with an extended array of pores as an etching catalyst based on an ultrathin porous anodic alumina mask, while a prepatterning of the substrate prior to the metal depostion is not necessary. The diameter of Si nanowires can be easily controlled by a combination of the pore diameter of the porous alumina film and varying the thickness of the deposited metal film.

  18. Multicolored Vertical Silicon Nanowires

    SciTech Connect

    Seo, Kwanyong; Wober, Munib; Steinvurzel, P.; Schonbrun, E.; Dan, Yaping; Ellenbogen, T.; Crozier, K. B.

    2011-04-13

    We demonstrate that vertical silicon nanowires take on a surprising variety of colors covering the entire visible spectrum, in marked contrast to the gray color of bulk silicon. This effect is readily observable by bright-field microscopy, or even to the naked eye. The reflection spectra of the nanowires each show a dip whose position depends on the nanowire radii. We compare the experimental data to the results of finite difference time domain simulations to elucidate the physical mechanisms behind the phenomena we observe. The nanowires are fabricated as arrays, but the vivid colors arise not from scattering or diffractive effects of the array, but from the guided mode properties of the individual nanowires. Each nanowire can thus define its own color, allowing for complex spatial patterning. We anticipate that the color filter effect we demonstrate could be employed in nanoscale image sensor devices.

  19. Porous silicon nanowires.

    PubMed

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-10-05

    In this mini-review, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures-single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion batteries, gas sensors and drug delivery.

  20. Self-aligned process for forming microlenses at the tips of vertical silicon nanowires by atomic layer deposition

    SciTech Connect

    Dan, Yaping Chen, Kaixiang; Crozier, Kenneth B.

    2015-01-01

    The microlens is a key enabling technology in optoelectronics, permitting light to be efficiently coupled to and from devices such as image sensors and light-emitting diodes. Their ubiquitous nature motivates the development of new fabrication techniques, since existing methods face challenges as microlenses are scaled to smaller dimensions. Here, the authors demonstrate the formation of microlenses at the tips of vertically oriented silicon nanowires via a rapid atomic layer deposition process. The nature of the process is such that the microlenses are centered on the nanowires, and there is a self-limiting effect on the final sizes of the microlenses arising from the nanowire spacing. Finite difference time domain electromagnetic simulations are performed of microlens focusing properties, including showing their ability to enhance visible-wavelength absorption in silicon nanowires.

  1. Roll up nanowire battery from silicon chips.

    PubMed

    Vlad, Alexandru; Reddy, Arava Leela Mohana; Ajayan, Anakha; Singh, Neelam; Gohy, Jean-François; Melinte, Sorin; Ajayan, Pulickel M

    2012-09-18

    Here we report an approach to roll out Li-ion battery components from silicon chips by a continuous and repeatable etch-infiltrate-peel cycle. Vertically aligned silicon nanowires etched from recycled silicon wafers are captured in a polymer matrix that operates as Li(+) gel-electrolyte and electrode separator and peeled off to make multiple battery devices out of a single wafer. Porous, electrically interconnected copper nanoshells are conformally deposited around the silicon nanowires to stabilize the electrodes over extended cycles and provide efficient current collection. Using the above developed process we demonstrate an operational full cell 3.4 V lithium-polymer silicon nanowire (LIPOSIL) battery which is mechanically flexible and scalable to large dimensions.

  2. Roll up nanowire battery from silicon chips

    PubMed Central

    Vlad, Alexandru; Reddy, Arava Leela Mohana; Ajayan, Anakha; Singh, Neelam; Gohy, Jean-François; Melinte, Sorin; Ajayan, Pulickel M.

    2012-01-01

    Here we report an approach to roll out Li-ion battery components from silicon chips by a continuous and repeatable etch-infiltrate-peel cycle. Vertically aligned silicon nanowires etched from recycled silicon wafers are captured in a polymer matrix that operates as Li+ gel-electrolyte and electrode separator and peeled off to make multiple battery devices out of a single wafer. Porous, electrically interconnected copper nanoshells are conformally deposited around the silicon nanowires to stabilize the electrodes over extended cycles and provide efficient current collection. Using the above developed process we demonstrate an operational full cell 3.4 V lithium-polymer silicon nanowire (LIPOSIL) battery which is mechanically flexible and scalable to large dimensions. PMID:22949696

  3. Single crystalline mesoporous silicon nanowires.

    PubMed

    Hochbaum, Allon I; Gargas, Daniel; Hwang, Yun Jeong; Yang, Peidong

    2009-10-01

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  4. Single crystalline mesoporous silicon nanowires

    SciTech Connect

    Hochbaum, A.I.; Gargas, Daniel; Jeong Hwang, Yun; Yang, Peidong

    2009-08-04

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. These porous nanowires also retain the crystallographic orientation of the wafer from which they are etched. Electron microscopy and diffraction confirm their single-crystallinity and reveal the silicon surrounding the pores is as thin as several nanometers. Confocal fluorescence microscopy showed that the photoluminescence (PL) of these arrays emanate from the nanowires themselves, and their PL spectrum suggests that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices.

  5. Silicon nanowire hot electron electroluminescence

    NASA Astrophysics Data System (ADS)

    du Plessis, Monuko; Joubert, Trudi-Heleen

    2016-02-01

    This paper investigates the avalanche electroluminescence characteristics of pn junctions formed in silicon nanowires fabricated in a silicon-on-insula*tor (SOI) technology. Since carriers are confined to the nanowires, it is possible to study the effect of electric field strength on device performance while the current density and carrier concentrations are kept constant. This is achieved by varying the nanowire length while keeping the bias current constant, eventually driving the pn junction into the reach-through bias condition. It is observed that photon emission for photon energies higher than 1.2 eV increases when the nanowire length is reduced, while photon emission with energies less than 1.2 eV decreases. The higher electric field in the nanowire at shorter nanowire lengths enhances the high-energy photon emission and attenuates the low energy photon emission.

  6. Single crystalline mesoporous silicon nanowires

    SciTech Connect

    Hochbaum, Allon; Dargas, Daniel; Hwang, Yun Jeong; Yang, Peidong

    2009-08-18

    Herein we demonstrate a novel electroless etching synthesis of monolithic, single-crystalline, mesoporous silicon nanowire arrays with a high surface area and luminescent properties consistent with conventional porous silicon materials. The photoluminescence of these nanowires suggest they are composed of crystalline silicon with small enough dimensions such that these arrays may be useful as photocatalytic substrates or active components of nanoscale optoelectronic devices. A better understanding of this electroless route to mesoporous silicon could lead to facile and general syntheses of different narrow bandgap semiconductor nanostructures for various applications.

  7. Fabrication and characterization of porous silicon nanowires

    NASA Astrophysics Data System (ADS)

    Jung, Daeyoon; Cho, Soo Gyeong; Moon, Taeho; Sohn, Honglae

    2016-01-01

    We report the synthesis of porous silicon nanowires through the metalassisted chemical etching of porous silicon in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of porous silicon nanowires was characterized by scanning electron microscopy and transmission electron microscopy. The etch rate of the porous silicon nanowires was faster than that of silicon nanowires, but slower than that of porous silicon. The porous silicon nanowires distributed uniformly on the entire porous silicon layer and the tips of the porous silicon nanowires congregated together. The single crystalline and sponge-like porous structure with the pore diameters of less than 5 nm was confirmed for the porous silicon nanowires. [Figure not available: see fulltext.

  8. Silicon Nanowire Photocathodes for Photoelectrochemical Hydrogen Production

    PubMed Central

    Chandrasekaran, Soundarrajan; Nann, Thomas; Voelcker, Nicolas H.

    2016-01-01

    The performance of silicon for water oxidation and hydrogen production can be improved by exploiting the antireflective properties of nanostructured silicon substrates. In this work, silicon nanowires were fabricated by metal-assisted electroless etching of silicon. An enhanced photocurrent density of −17 mA/cm2 was observed for the silicon nanowires coated with an iron sulphur carbonyl catalyst when compared to bare silicon nanowires (−5 mA/cm2). A substantial amount of 315 µmol/h hydrogen gas was produced at low bias potentials for the silicon nanowires coated with an iron sulphur carbonyl catalyst. PMID:28335272

  9. Photocatalytic Properties of Porous Silicon Nanowires.

    PubMed

    Qu, Yongquan; Zhong, Xing; Li, Yujing; Liao, Lei; Huang, Yu; Duan, Xiangfeng

    2010-01-01

    Porous silicon nanowires are synthesized through metal assisted wet-chemical etch of highly-doped silicon wafer. The resulted porous silicon nanowires exhibit a large surface area of 337 m(2)·g(-1) and a wide spectrum absorption across the entire ultraviolet, visible and near infrared regime. We further demonstrate that platinum nanoparticles can be loaded onto the surface of the porous silicon nanowires with controlled density. These combined advancements make the porous silicon nanowires an interesting material for photocatalytic applications. We show that the porous silicon nanowires and platinum nanoparticle loaded porous silicon nanowires can be used as effective photocatalysts for photocatalytic degradation of organic dyes and toxic pollutants under visible irradiation, and thus are of significant interest for organic waste treatment and environmental remediation.

  10. Silicon nanowires as intracellular devices

    NASA Astrophysics Data System (ADS)

    Zimmerman, John F.

    Semiconductor nanowire devices are an exciting class of materials for biomedical and electrophysiology applications, with current studies primarily delivering substrate bound devices through mechanical abrasion or electroporation. However, the ability to distribute these devices in a drug-like fashion is an important step in developing next-generation active therapeutic devices. In this work, we will discuss the interaction of label free Silicon nanowires (SiNWs) with cellular systems, showing that they can be internalized in multiple cell lines, and undergo an active 'burst-like' transport process. (Abstract shortened by ProQuest.).

  11. Optical absorption of silicon nanowires

    SciTech Connect

    Xu, T.; Lambert, Y.; Krzeminski, C.; Grandidier, B.; Stievenard, D.; Leveque, G.; Akjouj, A.; Pennec, Y.; Djafari-Rouhani, B.

    2012-08-01

    We report on simulations and measurements of the optical absorption of silicon nanowires (NWs) versus their diameter. We first address the simulation of the optical absorption based on two different theoretical methods: the first one, based on the Green function formalism, is useful to calculate the scattering and absorption properties of a single or a finite set of NWs. The second one, based on the finite difference time domain (FDTD) method, is well-adapted to deal with a periodic set of NWs. In both cases, an increase of the onset energy for the absorption is found with increasing diameter. Such effect is experimentally illustrated, when photoconductivity measurements are performed on single tapered Si nanowires connected between a set of several electrodes. An increase of the nanowire diameter reveals a spectral shift of the photocurrent intensity peak towards lower photon energies that allow to tune the absorption onset from the ultraviolet radiations to the visible light spectrum.

  12. Photocarrier Transport and Carrier Recombination Efficiency in Vertically Aligned Si Nanowire Arrays Synthesized Via Metal-Assisted Chemical Etching

    NASA Astrophysics Data System (ADS)

    Muldera, Joselito; Cabello, Neil Irvin; Ragasa, Joseph Christopher; Mabilangan, Arvin; Herminia Balgos, Ma.; Jaculbia, Rafael; Somintac, Armando; Estacio, Elmer; Salvador, Arnel

    2013-08-01

    The carrier dynamics and recombination characteristics of vertically aligned silicon nanowires are investigated using terahertz emission and photoluminescence spectroscopy, respectively. It is observed that the presence of pores on the walls in two-step-synthesized silicon nanowires greatly affects the carrier dynamics, compared with nanowires synthesized using a one-step process. These pores become efficient carrier recombination sites wherein carriers are collected upon photoexcitation. Additionally, pores effectively diminish the surface electric field thereby inhibiting the terahertz emission. Finally, nanowire-length-dependent terahertz emission is observed only for the one-step-synthesized nanowires whereas the two-step-synthesized nanowire samples exhibited length dependence of their photoluminescence intensity.

  13. Circular photogalvanic effect in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Dhara, Sajal; Mele, E. J.; Agarwal, Ritesh

    Circular photogalvanic effect (CPGE), the generation of a photocurrent whose magnitude and polarity depends on chirality of optical excitation, is demonstrated in the visible optical range in silicon nanowires, a bulk non-gyrotropic material with weak spin-orbit coupling. CPGE, which is absent in bulk Si is found to arise from interband transitions only at the metal-semiconductor contacts to Si nanowires where inversion symmetry is broken by a Schottky electric field. Furthermore, by applying a bias voltage that modulates this field, the sign and magnitude of the CPGE can be controlled. From excitation energy dependent measurements and symmetry considerations, it is argued that the [10] surface states due to Si chains that are not aligned with the nanowire growth direction and the Schottky field produce an artificial gyrotropic optical medium that supports CPGE. This work reveals the role of the surface states in the generation of chirality-dependent photocurrents in silicon with a purely orbital-based mechanism, and also opens up new possibilities of engineering new functionalities in Si that can be integrated with conventional electronics.

  14. Enhancement of programming speed on gate-all-around poly-silicon nanowire nonvolatile memory using self-aligned NiSi Schottky barrier source/drain

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Yuan; Chang, Yaw-Jen; Chiou, Y. L.

    2013-08-01

    The programming characteristics of gate-all-around silicon-oxide-nitride-oxide silicon (SONOS) nonvolatile memories are presented using NiSi/poly-Si nanowires (SiNW) Schottky barrier (SB) heterojunctions. The non-uniform thermal stress distribution on SiNW channels due to joule heating affected the carrier transport behavior. Under a high drain voltage, impact ionization was found as a large lateral field enhances carrier velocity. As gate voltage (Vg) increased, the difference in the drain current within a range of various temperature conditions can be mitigated because a high gate field lowers the SB height of a NiSi source/SiNW/NiSi drain junction to ensure efficient hot-carrier generation. By applying the Fowler-Nordheim programming voltage to the SONOS nanowire memory, the SB height (Φn = 0.34 eV) could be reduced by image force; thus, hot electrons could be injected from SB source/drain electrodes into the SiN storage node. To compare both SiNW and Si nanocrystal SONOS devices, the SB SiNW SONOS device was characterized experimentally to propose a wider threshold-voltage window, exhibiting efficient programming characteristics.

  15. Studies of Silicon Nanowires with Different Parameters — By PECVD

    NASA Astrophysics Data System (ADS)

    Leela, S.; Abirami, T.; Bhattacharya, Sekhar; Ahmed, Nafis; Monika, S.; Priya, R. Nivedha

    2016-10-01

    One-dimensional nanostructures such as nanowires have a wide range of applications. Silicon is the best competitive material for the carbon nanotubes (CNTs). Carbon and silicon have some similar and peculiar properties. Silicon nanowires (SiNWs) were synthesized using plasma enhanced chemical vapor deposition (PECVD) on p-Si (111) wafer. Gold is used as a catalyst for the growth of the SiNWs. Based on our fundamental understanding of vapor-liquid-solid (VLS) nanowire growth mechanism, different levels of growth controls have been achieved. Gold catalyst deposited and annealed at different temperatures with different thicknesses (450∘C, 500∘C and 550∘C, 600∘C, 650∘C for 4min and 8min and 3nm, 5nm, 30nm Au thickness). SiNW grown by PECVD with different carrier gases varies with flow rate. We observed the different dimensions of Si nanowires by FESEM and optimized the growth parameters to get the vertical aligned and singular Si nanowires. Optical phonon of the Si nanowires and crystallinity nature were identified by Raman spectral studies.

  16. Permanent bending and alignment of ZnO nanowires.

    PubMed

    Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten

    2011-05-06

    Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.

  17. Synthesis of silicon and germanium nanowires.

    SciTech Connect

    Clement, Teresa J.; Hsu, Julia W. P.

    2007-11-01

    The vapor-liquid-solid growth process for synthesis of group-IV semiconducting nanowires using silane, germane, disilane and digermane precursor gases has been investigated. The nanowire growth process combines in situ gold seed formation by vapor deposition on atomically clean silicon (111) surfaces, in situ growth from the gaseous precursor(s), and real-time monitoring of nanowire growth as a function of temperature and pressure by a novel optical reflectometry technique. A significant dependence on precursor pressure and growth temperature for the synthesis of silicon and germanium nanowires is observed, depending on the stability of the specific precursor used. Also, the presence of a nucleation time for the onset of nanowire growth has been found using our new in situ optical reflectometry technique.

  18. Superconductive silicon nanowires using gallium beam lithography.

    SciTech Connect

    Henry, Michael David; Jarecki, Robert Leo,

    2014-01-01

    This work was an early career LDRD investigating the idea of using a focused ion beam (FIB) to implant Ga into silicon to create embedded nanowires and/or fully suspended nanowires. The embedded Ga nanowires demonstrated electrical resistivity of 5 m-cm, conductivity down to 4 K, and acts as an Ohmic silicon contact. The suspended nanowires achieved dimensions down to 20 nm x 30 nm x 10 m with large sensitivity to pressure. These structures then performed well as Pirani gauges. Sputtered niobium was also developed in this research for use as a superconductive coating on the nanowire. Oxidation characteristics of Nb were detailed and a technique to place the Nb under tensile stress resulted in the Nb resisting bulk atmospheric oxidation for up to years.

  19. Desorption/ionization on silicon nanowires.

    PubMed

    Go, E P; Apon, J V; Luo, G; Saghatelian, A; Daniels, R H; Sahi, V; Dubrow, R; Cravatt, B F; Vertes, A; Siuzdak, G

    2005-03-15

    Dense arrays of single-crystal silicon nanowires (SiNWs) have been used as a platform for laser desorption/ionization mass spectrometry of small molecules, peptides, protein digests, and endogenous and xenobiotic metabolites in biofluids. Sensitivity down to the attomole level has been achieved on the nanowire surfaces by optimizing laser energy, surface chemistry, nanowire diameter, length, and growth orientation. An interesting feature of the nanowire surface is that it requires lower laser energy as compared to porous silicon and MALDI to desorb/ionize small molecules, therefore reducing background ion interference. Taking advantage of their high surface area and fluid wicking capabilities, SiNWs were used to perform chromatographic separation followed by mass analysis of the separated molecules providing a unique platform that can integrate separation and mass spectrometric detection on a single surface.

  20. Highly doped silicon nanowires by monolayer doping.

    PubMed

    Veerbeek, Janneke; Ye, Liang; Vijselaar, Wouter; Kudernac, Tibor; van der Wiel, Wilfred G; Huskens, Jurriaan

    2017-02-23

    Controlling the doping concentration of silicon nanostructures is challenging. Here, we investigated three different monolayer doping techniques to obtain silicon nanowires with a high doping dose. These routes were based on conventional monolayer doping, starting from covalently bound dopant-containing molecules, or on monolayer contact doping, in which a source substrate coated with a monolayer of a carborane silane was the dopant source. As a third route, both techniques were combined to retain the benefits of conformal monolayer formation and the use of an external capping layer. These routes were used for doping fragile porous nanowires fabricated by metal-assisted chemical etching. Differences in porosity were used to tune the total doping dose inside the nanowires, as measured by X-ray photoelectron spectroscopy and secondary ion mass spectrometry measurements. The higher the porosity, the higher was the surface available for dopant-containing molecules, which in turn led to a higher doping dose. Slightly porous nanowires could be doped via all three routes, which resulted in highly doped nanowires with (projected areal) doping doses of 10(14)-10(15) boron atoms per cm(2) compared to 10(12) atoms per cm(2) for a non-porous planar sample. Highly porous nanowires were not compatible with the conventional monolayer doping technique, but monolayer contact doping and the combined route resulted for these highly porous nanowires in tremendously high doping doses up to 10(17) boron atoms per cm(2).

  1. Mechanical Properties of Crystalline Silicon Carbide Nanowires.

    PubMed

    Zhang, Huan; Ding, Weiqiang; Aidun, Daryush K

    2015-02-01

    In this paper, the mechanical properties of crystalline silicon carbide nanowires, synthesized with a catalyst-free chemical vapor deposition method, were characterized with nanoscale tensile testing and mechanical resonance testing methods inside a scanning electron microscope. Tensile testing of individual silicon carbide nanowire was performed to determine the tensile properties of the material including the tensile strength, failure strain and Young's modulus. The silicon carbide nanowires were also excited to mechanical resonance in the scanning electron microscope vacuum chamber using mechanical excitation and electrical excitation methods, and the corresponding resonance frequencies were used to determine the Young's modulus of the material according to the simple beam theory. The Young's modulus values from tensile tests were in good agreement with the ones obtained from the mechanical resonance tests.

  2. Core-shell silicon nanowire solar cells.

    PubMed

    Adachi, M M; Anantram, M P; Karim, K S

    2013-01-01

    Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as < 4% over a broad wavelength range of 400 nm < λ < 650 nm. These anti-reflective properties together with enhanced infrared absorption in the core-shell nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices.

  3. Porous silicon nanowires for lithium rechargeable batteries.

    PubMed

    Yoo, Jung-Keun; Kim, Jongsoon; Lee, Hojun; Choi, Jaesuk; Choi, Min-Jae; Sim, Dong Min; Jung, Yeon Sik; Kang, Kisuk

    2013-10-25

    Porous silicon nanowire is fabricated by a simple electrospinning process combined with a magnesium reduction; this material is investigated for use as an anode material for lithium rechargeable batteries. We find that the porous silicon nanowire electrode from the simple and scalable method can deliver a high reversible capacity with an excellent cycle stability. The enhanced performance in terms of cycling stability is attributed to the facile accommodation of the volume change by the pores in the interconnect and the increased electronic conductivity due to a multi-level carbon coating during the fabrication process.

  4. Porous silicon nanowires for lithium rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Yoo, Jung-Keun; Kim, Jongsoon; Lee, Hojun; Choi, Jaesuk; Choi, Min-Jae; Sim, Dong Min; Jung, Yeon Sik; Kang, Kisuk

    2013-10-01

    Porous silicon nanowire is fabricated by a simple electrospinning process combined with a magnesium reduction; this material is investigated for use as an anode material for lithium rechargeable batteries. We find that the porous silicon nanowire electrode from the simple and scalable method can deliver a high reversible capacity with an excellent cycle stability. The enhanced performance in terms of cycling stability is attributed to the facile accommodation of the volume change by the pores in the interconnect and the increased electronic conductivity due to a multi-level carbon coating during the fabrication process.

  5. Preparation of superhydrophobic silicon oxide nanowire surfaces.

    PubMed

    Coffinier, Yannick; Janel, Sébastien; Addad, Ahmed; Blossey, Ralf; Gengembre, Léon; Payen, Edmond; Boukherroub, Rabah

    2007-02-13

    The paper reports on the preparation of superhydrophobic amorphous silicon oxide nanowires (a-SiONWs) on silicon substrates with a contact angle greater than 150 degrees by means of surface roughness and self-assembly. Nanowires with an average mean diameter in the range 20-150 nm and 15-20 microm in length were obtained by the so-called solid-liquid-solid (SLS) technique. The porous nature and the high roughness of the resulting surfaces were confirmed by AFM imaging. The superhydrophobicity resulted from the combined effects of surface roughness and chemical modification with fluorodecyl trichlorosilane.

  6. Anomalous piezoresistance effect in ultrastrained silicon nanowires.

    PubMed

    Lugstein, A; Steinmair, M; Steiger, A; Kosina, H; Bertagnolli, E

    2010-08-11

    In this paper we demonstrate that under ultrahigh strain conditions p-type single crystal silicon nanowires possess an anomalous piezoresistance effect. The measurements were performed on vapor-liquid-solid (VLS) grown Si nanowires, monolithically integrated in a microelectro-mechanical loading module. The special setup enables the application of pure uniaxial tensile strain along the <111> growth direction of individual, 100 nm thick Si nanowires while simultaneously measuring the resistance of the nanowires. For low strain levels (nanowire elongation less than 0.8%), our measurements revealed the expected positive piezoresistance effect, whereas for ultrahigh strain levels a transition to anomalous negative piezoresistance was observed. For the maximum tensile strain of 3.5%, the resistance of the Si nanowires decreased by a factor of 10. Even at these high strain amplitudes, no fatigue failures are observed for several hundred loading cycles. The ability to fabricate single-crystal nanowires that are widely free of structural defects will it make possible to apply high strain without fracturing to other materials as well, therefore in any application where crystallinity and strain are important, the idea of making nanowires should be of a high value.

  7. Contact printing of horizontally-aligned p-type Zn₃P₂ nanowire arrays for rigid and flexible photodetectors.

    PubMed

    Yu, Gang; Liang, Bo; Huang, Hongtao; Chen, Gui; Liu, Zhe; Chen, Di; Shen, Guozhen

    2013-03-08

    Zn(3)P(2) is an important p-type semiconductor with the ability to detect almost all visible and ultraviolet light. By using the simple and efficient contact printing process, we reported the assembly of horizontally-aligned p-type Zn(3)P(2) nanowire arrays to be used as building blocks for high performance photodetectors. Horizontally-aligned Zn(3)P(2) nanowire arrays were first printed on silicon substrate to make thin-film transistors, exhibiting typical p-type transistor behavior with a high on/off ratio of 10(3). Besides, the Zn(3)P(2) nanowire array based devices showed a substantial response to illuminated lights with a wide range of wavelengths and densities. Flexible photodetectors were also fabricated by contact printing of horizontally-aligned Zn(3)P(2) nanowire arrays on flexible PET substrate, showing a comparable performance to the device on rigid silicon substrate.

  8. Method of fabricating vertically aligned group III-V nanowires

    DOEpatents

    Wang, George T; Li, Qiming

    2014-11-25

    A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

  9. Networks of silicon nanowires: A large-scale atomistic electronic structure analysis

    SciTech Connect

    Keleş, Ümit; Bulutay, Ceyhun; Liedke, Bartosz; Heinig, Karl-Heinz

    2013-11-11

    Networks of silicon nanowires possess intriguing electronic properties surpassing the predictions based on quantum confinement of individual nanowires. Employing large-scale atomistic pseudopotential computations, as yet unexplored branched nanostructures are investigated in the subsystem level as well as in full assembly. The end product is a simple but versatile expression for the bandgap and band edge alignments of multiply-crossing Si nanowires for various diameters, number of crossings, and wire orientations. Further progress along this line can potentially topple the bottom-up approach for Si nanowire networks to a top-down design by starting with functionality and leading to an enabling structure.

  10. Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching

    NASA Astrophysics Data System (ADS)

    de Boor, Johannes; Geyer, Nadine; Wittemann, Jörg V.; Gösele, Ulrich; Schmidt, Volker

    2010-03-01

    By combining laser interference lithography and metal-assisted etching we were able to produce arrays of silicon nanowires with uniform diameters as small as 65 nm and densities exceeding 2 × 107 mm - 2. The wires are single crystalline, vertically aligned, arranged in a square pattern and obey strict periodicity over several cm2. The applied technique allows for a tailoring of nanowire size and density. Using a controlled and scalable process to fabricate sub-100 nm silicon nanowires is an important step towards the realization of cost-effective electronic and thermoelectric devices.

  11. Flexible transparent and free-standing silicon nanowires paper.

    PubMed

    Pang, Chunlei; Cui, Hao; Yang, Guowei; Wang, Chengxin

    2013-10-09

    If the flexible transparent and free-standing paper-like materials that would be expected to meet emerging technological demands, such as components of transparent electrical batteries, flexible solar cells, bendable electronics, paper displays, wearable computers, and so on, could be achieved in silicon, it is no doubt that the traditional semiconductor materials would be rejuvenated. Bulk silicon cannot provide a solution because it usually exhibits brittleness at below their melting point temperature due to high Peierls stress. Fortunately, when the silicon's size goes down to nanoscale, it possesses the ultralarge straining ability, which results in the possibility to design flexible transparent and self-standing silicon nanowires paper (FTS-SiNWsP). However, realization of the FTS-SiNWsP is still a challenging task due largely to the subtlety in the preparation of a unique interlocking alignment with free-catalyst controllable growth. Herein, we present a simple synthetic strategy by gas flow directed assembly of a unique interlocking alignment of the Si nanowires (SiNWs) to produce, for the first time, the FTS-SiNWsP, which consisted of interconnected SiNWs with the diameter of ~10 nm via simply free-catalyst thermal evaporation in a vertical high-frequency induction furnace. This approach opens up the possibility for creating various flexible transparent functional devices based on the FTS-SiNWsP.

  12. Multispectral imaging with vertical silicon nanowires

    PubMed Central

    Park, Hyunsung; Crozier, Kenneth B.

    2013-01-01

    Multispectral imaging is a powerful tool that extends the capabilities of the human eye. However, multispectral imaging systems generally are expensive and bulky, and multiple exposures are needed. Here, we report the demonstration of a compact multispectral imaging system that uses vertical silicon nanowires to realize a filter array. Multiple filter functions covering visible to near-infrared (NIR) wavelengths are simultaneously defined in a single lithography step using a single material (silicon). Nanowires are then etched and embedded into polydimethylsiloxane (PDMS), thereby realizing a device with eight filter functions. By attaching it to a monochrome silicon image sensor, we successfully realize an all-silicon multispectral imaging system. We demonstrate visible and NIR imaging. We show that the latter is highly sensitive to vegetation and furthermore enables imaging through objects opaque to the eye. PMID:23955156

  13. Novel synthetic methodology for controlling the orientation of zinc oxide nanowires grown on silicon oxide substrates

    NASA Astrophysics Data System (ADS)

    Cho, Jinhyun; Salleh, Najah; Blanco, Carlos; Yang, Sungwoo; Lee, Chul-Jin; Kim, Young-Woo; Kim, Jungsang; Liu, Jie

    2014-03-01

    This study presents a simple method to reproducibly obtain well-aligned vertical ZnO nanowire arrays on silicon oxide (SiOx) substrates using seed crystals made from a mixture of ammonium hydroxide (NH4OH) and zinc acetate (Zn(O2CCH3)2) solution. In comparison, high levels of OH- concentration obtained using NaOH or KOH solutions lead to incorporation of Na or K atoms into the seed crystals, destroying the c-axis alignment of the seeds and resulting in the growth of misaligned nanowires. The use of NH4OH eliminates the metallic impurities and ensures aligned nanowire growth in a wide range of OH- concentrations in the seed solution. The difference of crystalline orientations between NH4OH- and NaOH-based seeds is directly observed by lattice-resolved images and electron diffraction patterns using a transmission electron microscope (TEM). This study obviously suggests that metallic impurities incorporated into the ZnO nanocrystal seeds are one of the factors that generates the misaligned ZnO nanowires. This method also enables the use of silicon oxide substrates for the growth of vertically aligned nanowires, making ZnO nanostructures compatible with widely used silicon fabrication technology.This study presents a simple method to reproducibly obtain well-aligned vertical ZnO nanowire arrays on silicon oxide (SiOx) substrates using seed crystals made from a mixture of ammonium hydroxide (NH4OH) and zinc acetate (Zn(O2CCH3)2) solution. In comparison, high levels of OH- concentration obtained using NaOH or KOH solutions lead to incorporation of Na or K atoms into the seed crystals, destroying the c-axis alignment of the seeds and resulting in the growth of misaligned nanowires. The use of NH4OH eliminates the metallic impurities and ensures aligned nanowire growth in a wide range of OH- concentrations in the seed solution. The difference of crystalline orientations between NH4OH- and NaOH-based seeds is directly observed by lattice-resolved images and electron

  14. Hydrogen passivation of silicon nanowire structures

    NASA Astrophysics Data System (ADS)

    Aouida, S.; Benabderrahmane Zaghouani, R.; Bachtouli, N.; Bessais, B.

    2016-05-01

    In this work, we focus on hydrogen passivation of silicon nanowire structures (SiNWs) obtained by metal assisted chemical etching (MACE) intended to be used in silicon-based solar cells. SiNWs present high surface defects density causing the minority carrier lifetime reduction. Our results show that hydrogen passivation of SiNWs ameliorates minority carrier lifetime by reducing the dangling bonds and then the surface recombination velocity. This enhancement is limited by SiNWs distribution.

  15. Electrically conductive and optically active porous silicon nanowires.

    PubMed

    Qu, Yongquan; Liao, Lei; Li, Yujing; Zhang, Hua; Huang, Yu; Duan, Xiangfeng

    2009-12-01

    We report the synthesis of vertical silicon nanowire array through a two-step metal-assisted chemical etching of highly doped n-type silicon (100) wafers in a solution of hydrofluoric acid and hydrogen peroxide. The morphology of the as-grown silicon nanowires is tunable from solid nonporous nanowires, nonporous/nanoporous core/shell nanowires, to entirely nanoporous nanowires by controlling the hydrogen peroxide concentration in the etching solution. The porous silicon nanowires retain the single crystalline structure and crystallographic orientation of the starting silicon wafer and are electrically conductive and optically active with visible photoluminescence. The combination of electronic and optical properties in the porous silicon nanowires may provide a platform for novel optoelectronic devices for energy harvesting, conversion, and biosensing.

  16. Silicon nanowires for photovoltaic solar energy conversion.

    PubMed

    Peng, Kui-Qing; Lee, Shuit-Tong

    2011-01-11

    Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

  17. Silicon on insulator self-aligned transistors

    DOEpatents

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  18. A stamped PEDOT:PSS-silicon nanowire hybrid solar cell.

    PubMed

    Moiz, Syed Abdul; Nahhas, Ahmed Muhammad; Um, Han-Don; Jee, Sang-Won; Cho, Hyung Koun; Kim, Sang-Woo; Lee, Jung-Ho

    2012-04-13

    A novel stamped hybrid solar cell was proposed using the stamping transfer technique by stamping an active PEDOT:PSS thin layer onto the top of silicon nanowires (SiNWs). Compared to a bulk-type counterpart that fully embeds SiNWs inside PEDOT:PSS, an increase in the photovoltaic efficiency was observed by a factor of ∼4.6, along with improvements in both electrical and optical responses for the stamped hybrid cell. Such improvements for hybrid cells was due to the formation of well-connected and linearly aligned active PEDOT:PSS channels at the top ends of the nanowires after the stamping process. These stamped channels facilitated not only to improve the charge transport, light absorption, but also to decrease the free carriers as well as exciton recombination losses for stamped hybrid solar cells.

  19. Nanomanufacturing Strategy for Aligned Assembly of Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Shin, Kyeong-Sik; Chui, Chi On

    2012-05-01

    The work reported here concerns a proposed nanomanufacturing strategy to assemble aligned quasi-one-dimensional nanostructure arrays with intrinsic and concurrent control over the resultant number, pitch, and linewidth. For the first time, a standard lithography and crystallographic etching approach have been combined to synthesize periodic, sublithographic, and line edge roughness (LER)-free surface arrays for selective conjugation of nanowires. Key experimental modules have been developed, including the formation of LER-free substrate arrays, formation of periodically dissimilar surfaces, selective conjugation of nanowires, and stamping transfer of nanowire arrays. In particular, successful assembly of Si nanowires onto periodic Si/SiO x surfaces and subsequent transfer of the resultant aligned Si nanowire arrays onto a different substrate surface have been repeatedly demonstrated. The dependences and probability of nanowire aligned assembly have also been examined. The proposed strategy is based on a wafer-scale and very large-scale integration (VLSI)-compatible philosophy, and alignment to pre-existing features on the target substrate is also inherently allowed as a side benefit. Besides, LER-free features could be created, which arguably enables extreme linewidth scaling with suppressed variations.

  20. Ultra-sensitive detection of adipocytokines with CMOS-compatible silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Pui, Tze-Sian; Agarwal, Ajay; Ye, Feng; Tou, Zhi-Qiang; Huang, Yinxi; Chen, Peng

    2009-09-01

    Perfectly aligned arrays of single-crystalline silicon nanowires were fabricated using top-down CMOS-compatible techniques. We demonstrate that these nanowire devices are able to detect adipocytokines secreted by adipose cells with femtomolar sensitivity, high specificity, wide detection range, and ability for parallel monitoring. The nanowire sensors also provide a novel tool to reveal the poorly understood signaling mechanisms of these newly recognized signaling molecules, as well as their relevance in common diseases such as obesity and diabetes.Perfectly aligned arrays of single-crystalline silicon nanowires were fabricated using top-down CMOS-compatible techniques. We demonstrate that these nanowire devices are able to detect adipocytokines secreted by adipose cells with femtomolar sensitivity, high specificity, wide detection range, and ability for parallel monitoring. The nanowire sensors also provide a novel tool to reveal the poorly understood signaling mechanisms of these newly recognized signaling molecules, as well as their relevance in common diseases such as obesity and diabetes. Electronic supplementary information (ESI) available: Process diagram of nanowire fabrication; specificity of nanowire detection; induced differentiation of 3T3-L1 cells. See DOI: 10.1039/b9nr00092e

  1. Energy harvesting from vertically aligned PZT nanowire arrays

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Zhou, Zhi; Sodano, Henry A.

    2016-04-01

    In this paper, a nanostructured piezoelectric beam is fabricated using vertically aligned lead zirconate titanate (PZT) nanowire arrays and its capability of continuous power generation is demonstrated through direct vibration tests. The lead zirconate titanate nanowires are grown on a PZT thin film coated titanium foil using a hydrothermal reaction. The PZT thin film serves as a nucleation site while the titanium foil is used as the bottom electrode. Electromechanical frequency response function (FRF) analysis is performed to evaluate the power harvesting efficiency of the fabricated device. Furthermore, the feasibility of the continuous power generation using the nanostructured beam is demonstrated through measuring output voltage from PZT nanowires when beam is subjected to a sinusoidal base excitation. The effect of tip mass on the voltage generation of the PZT nanowire arrays is evaluated experimentally. The final results show the great potential of synthesized piezoelectric nanowire arrays in a wide range of applications, specifically power generation at nanoscale.

  2. Fabrication of Si3N4 nanowire membranes: free standing disordered nanopapers and aligned nanowire assemblies

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Fang, Minghao; Huang, Zhaohui; Huang, Juntong; Liu, Yan-gai; Wu, Xiaowen

    2016-08-01

    Herein, ultralong silicon nitride nanowires were synthesized via a chemical vapor deposition method by using the low-cost quartz and silicon powder as raw materials. Simple processes were used for the fabrication of disordered and ordered nanowire membranes of pure silicon nitride nanowires. The nanowires in the disordered nanopapers are intertwined with each other to form a paper-like structure which exhibit excellent flame retardancy and mechanical properties. Fourier-transform infrared spectroscopy and thermal gravity analysis were employed to characterize the refractory performance of the disordered nanopapers. Highly ordered nanowire membranes were also assembled through a three-phase assembly approach which make the Si3N4 nanowires have potential use in textured ceramics and semiconductor field. Moreover, the surface nanowires can also be modified to be hydrophobic; this characteristic make the as-prepared nanowires have the potential to be assembled by the more effective Langmuir-Blodgett method and also make the disordered nanopapers possess a super-hydrophobic surface.

  3. The influence of H2O2 concentration to the structure of silicon nanowire growth by metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Omar, Hafsa; Jani, Abdul Mutalib Md.; Rusop, Mohamad; Abdullah, Saifollah

    2016-07-01

    A simple and low cost method to produce well aligned silicon nanowires at large areas using Ag-assisted chemical etching at room temperature were presented. The structure of silicon nanowires growth by metal-assisted chemical etching was observed. Prior to the etching, the silicon nanowires were prepared by electroless metal deposited (EMD) in solution containing hydrofluoric acid and hydrogen peroxide in Teflon vessel. The silver particle was deposited on substrate by immersion in hydrofluoric acid and silver nitrate solution for sixty second. The silicon nanowires were growth in different hydrogen peroxide concentration which are 0.3M, 0.4M, 0.5M and 0.6M and 0.7M.The influence of hydrogen peroxide concentration to the formation of silicon nanowires was studied. The morphological properties of silicon nanowires were investigated using field emission scanning electron microscopy (FESEM) and Energy Dispersive X-Ray Spectroscopy (EDS).

  4. Selective surface functionalization of silicon nanowires via nanoscale joule heating.

    PubMed

    Park, Inkyu; Li, Zhiyong; Pisano, Albert P; Williams, R Stanley

    2007-10-01

    In this letter, we report a novel approach to selectively functionalize the surface of silicon nanowires located on silicon-based substrates. This method is based upon highly localized nanoscale Joule heating along silicon nanowires under an applied electrical bias. Numerical simulation shows that a high-temperature (>800 K) with a large thermal gradient can be achieved by applying an appropriate electrical bias across silicon nanowires. This localized heating effect can be utilized to selectively ablate a protective polymer layer from a region of the chosen silicon nanowire. The exposed surface, with proper postprocessing, becomes available for surface functionalization with chemical linker molecules, such as 3-mercaptopropyltrimethoxysilanes, while the surrounding area is still protected by the chemically inert polymer layer. This approach is successfully demonstrated on silicon nanowire arrays fabricated on SOI wafers and visualized by selective attachment of gold nanoparticles.

  5. Reliable Fabrication of Metal Contacts on Silicon Nanowire Forests.

    PubMed

    Dimaggio, Elisabetta; Pennelli, Giovanni

    2016-07-13

    We present a technique for the fabrication of an electrical (and thermal) contact on the top ends of a large number of vertical silicon nanowires, which are fabricated perpendicularly to a silicon wafer (silicon nanowire forest). The technique is based on electrochemical deposition of copper and has been developed on silicon nanowire forests, fabricated by metal assisted chemical etching. We demonstrate that copper grows selectively only on the top end of the silicon nanowires, forming a layer onto the top of the forest. The presence of a predeposited metal seed is fundamental for the selective growth, meanwhile the process is very strong with respect to other parameters, such as concentration of the electrolytic solution and current density, used during the metal deposition. Typical I-V characteristics of top-to-bottom conduction through silicon nanowire forests with different n-doping are shown and discussed.

  6. Field emission from in situ-grown vertically aligned SnO2 nanowire arrays

    PubMed Central

    2012-01-01

    Vertically aligned SnO2 nanowire arrays have been in situ fabricated on a silicon substrate via thermal evaporation method in the presence of a Pt catalyst. The field emission properties of the SnO2 nanowire arrays have been investigated. Low turn-on fields of 1.6 to 2.8 V/μm were obtained at anode-cathode separations of 100 to 200 μm. The current density fluctuation was lower than 5% during a 120-min stability test measured at a fixed applied electric field of 5 V/μm. The favorable field-emission performance indicates that the fabricated SnO2 nanowire arrays are promising candidates as field emitters. PMID:22330800

  7. Atypical quantum confinement effect in silicon nanowires.

    PubMed

    Sorokin, Pavel B; Avramov, Pavel V; Chernozatonskii, Leonid A; Fedorov, Dmitri G; Ovchinnikov, Sergey G

    2008-10-09

    The quantum confinement effect (QCE) of linear junctions of silicon icosahedral quantum dots (IQD) and pentagonal nanowires (PNW) was studied using DFT and semiempirical AM1 methods. The formation of complex IQD/PNW structures leads to the localization of the HOMO and LUMO on different parts of the system and to a pronounced blue shift of the band gap; the typical QCE with a monotonic decrease of the band gap upon the system size breaks down. A simple one-electron one-dimensional Schrodinger equation model is proposed for the description and explanation of the unconventional quantum confinement behavior of silicon IQD/PNW systems. On the basis of the theoretical models, the experimentally discovered deviations from the typical QCE for nanocrystalline silicon are explained.

  8. Controlling the Sensing Properties of Silicon Nanowires via the Bonds Nearest to the Silicon Nanowire Surface.

    PubMed

    Halpern, Jeffrey Mark; Wang, Bin; Haick, Hossam

    2015-06-03

    Controlling the sensing properties of a silicon nanowire field effect transistor is dependent on the surface chemistry of the silicon nanowire. A standard silicon nanowire has a passive oxide layer (native oxide), which has trap states that cause sensing inaccuracies and desensitize the surface to nonpolar molecules. In this paper, we successfully modified the silicon nanowire surface with different nonoxide C3 alkyl groups, specifically, propyl (Si-CH2-CH2-CH3), propenyl (Si-CH═CH-CH3), and propynyl (Si-C≡C-CH3) modifications. The effect of the near surface bond on the sensor sensitivity and stability was explored by comparing three C3 surface modifications. A reduction of trap-states led to greater sensor stability and accuracy. The propenyl-modified sensor was consistently the most stable and sensitive sensor, among the applied sensors. The propenyl- and propynyl-modified sensors consistently performed with the best accuracy in identifying specific analytes with similar polarity or similar molecular weights. A combination of features from different sensing surfaces led to the best rubric for specific analytes identification. These results indicate that nonoxide sensor surfaces are useful in identifying specific analytes and that a combination of sensors with different surfaces in a cross-reactive array can lead to specific analytes detection.

  9. Growth of epitaxial silicon nanowires on a Si substrate by a metal-catalyst-free process

    PubMed Central

    Ishiyama, Takeshi; Nakagawa, Shuhei; Wakamatsu, Toshiki

    2016-01-01

    The growth of epitaxial Si nanowires by a metal-catalyst-free process has been investigated as an alternative to the more common metal-catalyzed vapor–liquid–solid process. The well-aligned Si nanowires are successfully grown on a (111)-oriented Si substrate without any metal catalysts by a thermal treatment using silicon sulfide as a Si source at approximately 1200 °C. The needle-shaped Si nanowires, which have a core–shell structure that consists of a single-crystalline Si core along the <111> direction consistent with the substrate direction and a surface coating of silicon oxide, are grown by a metal-catalyst-free process. In this process, the silicon sulfide in the liquid phase facilitates the nucleation and nanowire growth. In contrast, oxygen-rich nanowires that consist of crystalline Si at the tip and lumpy silicon oxide on the body are observed in a sample grown at 1300 °C, which disturbs the epitaxial growth of Si nanowires. PMID:27465800

  10. Thermal conductivity in porous silicon nanowire arrays.

    PubMed

    Weisse, Jeffrey M; Marconnet, Amy M; Kim, Dong Rip; Rao, Pratap M; Panzer, Matthew A; Goodson, Kenneth E; Zheng, Xiaolin

    2012-10-06

    The nanoscale features in silicon nanowires (SiNWs) can suppress phonon propagation and strongly reduce their thermal conductivities compared to the bulk value. This work measures the thermal conductivity along the axial direction of SiNW arrays with varying nanowire diameters, doping concentrations, surface roughness, and internal porosities using nanosecond transient thermoreflectance. For SiNWs with diameters larger than the phonon mean free path, porosity substantially reduces the thermal conductivity, yielding thermal conductivities as low as 1 W/m/K in highly porous SiNWs. However, when the SiNW diameter is below the phonon mean free path, both the internal porosity and the diameter significantly contribute to phonon scattering and lead to reduced thermal conductivity of the SiNWs.

  11. Thermal conductivity in porous silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Weisse, Jeffrey M.; Marconnet, Amy M.; Kim, Dong Rip; Rao, Pratap M.; Panzer, Matthew A.; Goodson, Kenneth E.; Zheng, Xiaolin

    2012-10-01

    The nanoscale features in silicon nanowires (SiNWs) can suppress phonon propagation and strongly reduce their thermal conductivities compared to the bulk value. This work measures the thermal conductivity along the axial direction of SiNW arrays with varying nanowire diameters, doping concentrations, surface roughness, and internal porosities using nanosecond transient thermoreflectance. For SiNWs with diameters larger than the phonon mean free path, porosity substantially reduces the thermal conductivity, yielding thermal conductivities as low as 1 W/m/K in highly porous SiNWs. However, when the SiNW diameter is below the phonon mean free path, both the internal porosity and the diameter significantly contribute to phonon scattering and lead to reduced thermal conductivity of the SiNWs.

  12. Self-limiting lithiation in silicon nanowires.

    PubMed

    Liu, Xiao Hua; Fan, Feifei; Yang, Hui; Zhang, Sulin; Huang, Jian Yu; Zhu, Ting

    2013-02-26

    The rates of charging and discharging in lithium-ion batteries (LIBs) are critically controlled by the kinetics of Li insertion and extraction in solid-state electrodes. Silicon is being intensively studied as a high-capacity anode material for LIBs. However, the kinetics of Li reaction and diffusion in Si remain unclear. Here we report a combined experimental and theoretical study of the lithiation kinetics in individual Si nanowires. By using in situ transmission electron microscopy, we measure the rate of growth of a surface layer of amorphous Li(x)Si in crystalline Si nanowires during the first lithiation. The results show the self-limiting lithiation, which is attributed to the retardation effect of the lithiation-induced stress. Our work provides a direct measurement of the nanoscale growth kinetics in lithiated Si, and has implications on nanostructures for achieving the high capacity and high rate in the development of high performance LIBs.

  13. Silicon nanowire field effect transistor for biosensing

    NASA Astrophysics Data System (ADS)

    Chen, Yu

    Detection and recognition of chemical ions and biological molecules are important in basic science as well as in pharmacology and medicine. Nanotechnology has made it possible to greatly enhance detection sensitivity through the use of nanowires, nanotubes, nanocrystals, nanocantilevers, and quantum dots as sensing platforms. In this work silicon nanowires are used as the conductance channel between the source and drain of a FET (field effect transistor) device and the biomolecular binding on the surface of nanowire modifies the conductance like a change in gate voltage. Due to the high surface-to-volume ratio and unique character of the silicon nanowires, this device has significant advantages in real-time, label-free and highly sensitive detection of a wide range of species, including proteins, nucleic acids and other small molecules. Here we present a biosensor fabricated from CMOS (complementary metal-oxide-semiconductor) compatible top-down methods including electron beam lithography. This method enables scalable manufacturing of multiple sensor arrays with high efficiency. In a systematic study of the device characteristics with different wire widths, we have found the sensitivity of the device increases when wire width decreases. By operating the device in appropriate bias region, the sensitivity of the device can be improved without doping or high temperature annealing. Not only can this device be used to detect the concentration of proteins and metabolites like urea or glucose, but also dynamic information like the dissociation constant can be extracted from the measurement. The device is also used to detect the clinically related cancer antigen CA 15.3 and shows potential application in cancer studies.

  14. Atomic scale investigation of silicon nanowires and nanoclusters

    PubMed Central

    2011-01-01

    In this study, we have performed nanoscale characterization of Si-clusters and Si-nanowires with a laser-assisted tomographic atom probe. Intrinsic and p-type silicon nanowires (SiNWs) are elaborated by chemical vapor deposition method using gold as catalyst, silane as silicon precursor, and diborane as dopant reactant. The concentration and distribution of impurity (gold) and dopant (boron) in SiNW are investigated and discussed. Silicon nanoclusters are produced by thermal annealing of silicon-rich silicon oxide and silica multilayers. In this process, atom probe tomography (APT) provides accurate information on the silicon nanoparticles and the chemistry of the nanolayers. PMID:21711788

  15. Ballistic thermal transport in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Maire, Jeremie; Anufriev, Roman; Nomura, Masahiro

    2017-02-01

    We have experimentally investigated the impact of dimensions and temperature on the thermal conductivity of silicon nanowires fabricated using a top-down approach. Both the width and temperature dependences of thermal conductivity agree with those in the existing literature. The length dependence of thermal conductivity exhibits a transition from semi-ballistic thermal phonon transport at 4 K to fully diffusive transport at room temperature. We additionally calculated the phonon dispersion in these structures in the framework of the theory of elasticity and showed that the thermal conductance increases with width. This agrees with our experimental observations and supports the pertinence of using the modified phonon dispersion at low temperatures.

  16. Wavelength multicasting in silicon photonic nanowires.

    PubMed

    Biberman, Aleksandr; Lee, Benjamin G; Turner-Foster, Amy C; Foster, Mark A; Lipson, Michal; Gaeta, Alexander L; Bergman, Keren

    2010-08-16

    We demonstrate a scalable, energy-efficient, and pragmatic method for high-bandwidth wavelength multicasting using FWM in silicon photonic nanowires. We experimentally validate up to a sixteen-way multicast of 40-Gb/s NRZ data using spectral and temporal responses, and evaluate the resulting data integrity degradation using BER measurements and power penalty performance metrics. We further examine the impact of this wavelength multicasting scalability on conversion efficiency. Finally, we experimentally evaluate up to a three-way multicast of 160-Gb/s pulsed-RZ data using spectral and temporal responses, representing the first on-chip wavelength multicasting of pulsed-RZ data.

  17. Epitaxial growth of aligned AlGalnN nanowires by metal-organic chemical vapor deposition

    DOEpatents

    Han, Jung; Su, Jie

    2008-08-05

    Highly ordered and aligned epitaxy of III-Nitride nanowires is demonstrated in this work. <1010> M-axis is identified as a preferential nanowire growth direction through a detailed study of GaN/AlN trunk/branch nanostructures by transmission electron microscopy. Crystallographic selectivity can be used to achieve spatial and orientational control of nanowire growth. Vertically aligned (Al)GaN nanowires are prepared on M-plane AlN substrates. Horizontally ordered nanowires, extending from the M-plane sidewalls of GaN hexagonal mesas or islands demonstrate new opportunities for self-aligned nanowire devices, interconnects, and networks.

  18. Facile Pyrolytic Synthesis of Silicon Nanowires

    PubMed Central

    Chan, Joo C.; Tran, Hoang; Pattison, James W.; Rananavare, Shankar B.

    2010-01-01

    One-dimensional nanostructures such as silicon nanowires (SiNW) are attractive candidates for low power density electronic and optoelectronic devices including sensors. A new simple method for SiNW bulk synthesis[1, 2] is demonstrated in this work, which is inexpensive and uses low toxicity materials, thereby offering a safe, energy efficient and green approach. The method uses low flammability liquid phenylsilanes, offering a safer avenue for SiNW growth compared with using silane gas. A novel, duo-chamber glass vessel is used to create a low-pressure environment where SiNWs are grown through vapor-liquid-solid mechanism using gold nanoparticles as a catalyst. The catalyst decomposes silicon precursor vapors of diphenylsilane and triphenylsilane and precipitates single crystal SiNWs, which appear to grow parallel to the substrate surface. This opens up possibilities for synthesizing nano-junctions amongst wires which is important for the grid architecture of nanoelectronics proposed by Likharev[3]. Even bulk synthesis of SiNW is feasible using sacrificial substrates such as CaCO3 that can be dissolved post-synthesis. Furthermore, by dissolving appropriate dopants in liquid diphenylsilane, a controlled doping of the nanowires is realized without the use of toxic gases and expensive mass flow controllers. Upon boron doping, we observe a characteristic red shift in photoluminescence spectra. In summary, an inexpensive and versatile method for SiNW is presented that makes these exotic materials available to any lab at low cost. PMID:20711489

  19. Increasing the efficiency of polymer solar cells by silicon nanowires.

    PubMed

    Eisenhawer, B; Sensfuss, S; Sivakov, V; Pietsch, M; Andrä, G; Falk, F

    2011-08-05

    Silicon nanowires have been introduced into P3HT:[60]PCBM solar cells, resulting in hybrid organic/inorganic solar cells. A cell efficiency of 4.2% has been achieved, which is a relative improvement of 10% compared to a reference cell produced without nanowires. This increase in cell performance is possibly due to an enhancement of the electron transport properties imposed by the silicon nanowires. In this paper, we present a novel approach for introducing the nanowires by mixing them into the polymer blend and subsequently coating the polymer/nanowire blend onto a substrate. This new onset may represent a viable pathway to producing nanowire-enhanced polymer solar cells in a reel to reel process.

  20. Silicon nanowire photodetectors made by metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Ni, Chuan; Sarangan, Andrew

    2016-09-01

    Silicon nanowires have unique optical effects, and have potential applications in photodetectors. They can exhibit simple optical effects such as anti-reflection, but can also produce quantum confined effects. In this work, we have fabricated silicon photodetectors, and then post-processed them by etching nanowires on the incident surface. These nanowires were produced by a wet-chemical etching process known as the metal-assisted-chemical etching, abbreviated as MACE. N-type silicon substrates were doped by thermal diffusion from a solid ceramic source, followed by etching, patterning and contact metallization. The detectors were first tested for functionality and optical performance. The nanowires were then made by depositing an ultra-thin film of gold below its percolation thickness to produce an interconnected porous film. This was then used as a template to etch high aspect ratio nanowires into the face of the detectors with a HF:H2O2 mixture.

  1. Self assembled silicon nanowire Schottky junction assisted by collagen

    NASA Astrophysics Data System (ADS)

    Stievenard, Didier; Sahli, Billel; Coffinier, Yannick; Boukherroub, Rabah; Melnyk, Oleg

    2008-03-01

    We present results on self assembled silicon nanowire Schottky junction assisted by collagen fibrous. The collagen is the principle protein of connective human tissues. It presents the double interest to be a low cost biological material with the possibility to be combed as the DNA molecule. First, the collagen was combed on OTS modified surface with gold electrodes. Second, silicon nanowires were grown on silicon substrate by CVD of silane gas (SiH4) at high temperature (500 C) using a vapor-liquid-solid (VLS) process and gold particles as catalysts. In order to increase electrostatic interaction between the collagen and the nanowires, these latters were chemically modified by mercaptopropylmethoxysilane (MPTS), then chemically oxidized. Therefore, the nanowires were transferred from their substrate into water and a drop of it deposited on the surface. Nanowires are only bound to collagen and in particular, in electrode gaps. The formation of spontaneous Schotkty junction is demonstrated by current-voltage characteristics.

  2. Biodiagnostics using oriented and aligned inorganic semiconductor nanotubes and nanowires.

    PubMed

    Kar, Piyush; Shankar, Karthik

    2013-07-01

    The simplicity of synthesis of deterministically positioned inorganic semiconductor nanorods (NRs) and nanotubes (NTs) coupled with their chemical stability, high surface area, controllable optical properties and tunable surface functionality, have sparked worldwide research efforts towards biodiagnostic applications. Biosensors based on oriented and aligned one-dimensional (1-D) inorganic semiconductor nanostructures have demonstrated remarkable detection sensitivity, high throughput and label-free operability. In comparison to suspensions of nanoparticles and discrete randomly oriented nanowires, nanowire (NW) and nanotube arrays offer continuous charge transport pathways, a major advantage for all-electrical detection and in exploiting electrokinetic effects. We review highly sensitive biosensors based on oriented and aligned NTs/NRs/NWs employing conventional detection methods, inclusive of fluorescence, electrochemistry and electromechanical sensing as well as detection methods unique to nanowires such as field-effect transistors. Entirely new types of sensing applications such as the impaling of living cells to monitor cellular events in situ, and substrates with electrically controlled wetting for surface-assisted laser desorption and ionization are emerging to take advantage of the unique properties of nanowire arrays. Concurrently, we explain the semiconductor materials and architectures employed, and the functionalization procedures used to construct the biosensors. Aligned semiconductor array-based approaches are critically examined in relation to prevailing technologies to get a sense of the exclusive niches that nanotube/nanorod array biosensors inhabit. The versatility of the detection principles that nanowire/nanotube arrays are compatible with are enabling hybrid approaches where combinations of detection methods are used. Such advantages offset the complexity associated with changing the status quo with respect to the current state-of-the-art in

  3. Highly aligned vertical GaN nanowires using submonolayer metal catalysts

    DOEpatents

    Wang, George T.; Li, Qiming; Creighton, J. Randall

    2010-06-29

    A method for forming vertically oriented, crystallographically aligned nanowires (nanocolumns) using monolayer or submonolayer quantities of metal atoms to form uniformly sized metal islands that serve as catalysts for MOCVD growth of Group III nitride nanowires.

  4. Shear Alignment of Diblock Copolymers for Patterning Nanowire Meshes

    SciTech Connect

    Gustafson, Kyle T.

    2016-09-08

    Metallic nanowire meshes are useful as cheap, flexible alternatives to indium tin oxide – an expensive, brittle material used in transparent conductive electrodes. We have fabricated nanowire meshes over areas up to 2.5 cm2 by: 1) mechanically aligning parallel rows of diblock copolymer (diBCP) microdomains; 2) selectively infiltrating those domains with metallic ions; 3) etching away the diBCP template; 4) sintering to reduce ions to metal nanowires; and, 5) repeating steps 1 – 4 on the same sample at a 90° offset. We aligned parallel rows of polystyrene-b-poly(2-vinylpyridine) [PS(48.5 kDa)-b-P2VP(14.5 kDa)] microdomains by heating above its glass transition temperature (Tg ≈ 100°C), applying mechanical shear pressure (33 kPa) and normal force (13.7 N), and cooling below Tg. DiBCP samples were submerged in aqueous solutions of metallic ions (15 – 40 mM ions; 0.1 – 0.5 M HCl) for 30 – 90 minutes, which coordinate to nitrogen in P2VP. Subsequent ozone-etching and sintering steps yielded parallel nanowires. We aimed to optimize alignment parameters (e.g. shear and normal pressures, alignment duration, and PDMS thickness) to improve the quality, reproducibility, and scalability of meshes. We also investigated metals other than Pt and Au that may be patterned using this technique (Cu, Ag).

  5. Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications

    NASA Astrophysics Data System (ADS)

    Hainey, Mel F.; Redwing, Joan M.

    2016-12-01

    Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis on methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.

  6. Phonon Trapping in Pearl-Necklace-Shaped Silicon Nanowires.

    PubMed

    Miao, Chunyang; Tai, Guoan; Zhou, Jianxin; Guo, Wanlin

    2015-12-22

    A pearl-necklace-shaped silicon nanowire, in contrast to a smooth nanowire, presents a much lower thermal conductivity due to the phonon trapping effect. By precisely controlling the pearl size and density, this reduction can be more than 70% for the structures designed in the study, which provides a unique approach for designing high-performance nanoscale thermoelectric devices.

  7. Silicon-on-Insulator Nanowire Based Optical Waveguide Biosensors

    NASA Astrophysics Data System (ADS)

    Li, Mingyu; Liu, Yong; Chen, Yangqing; He, Jian-Jun

    2016-01-01

    Optical waveguide biosensors based on silicon-on-insulator (SOI) nanowire have been developed for label free molecular detection. This paper reviews our work on the design, fabrication and measurement of SOI nanowire based high-sensitivity biosensors employing Vernier effect. Biosensing experiments using cascaded double-ring sensor and Mach-Zehnder- ring sensor integrated with microfluidic channels are demonstrated

  8. Reversible Modulation of Spontaneous Emission by Strain in Silicon Nanowires

    PubMed Central

    Shiri, Daryoush; Verma, Amit; Selvakumar, C. R.; Anantram, M. P.

    2012-01-01

    We computationally study the effect of uniaxial strain in modulating the spontaneous emission of photons in silicon nanowires. Our main finding is that a one to two orders of magnitude change in spontaneous emission time occurs due to two distinct mechanisms: (A) Change in wave function symmetry, where within the direct bandgap regime, strain changes the symmetry of wave functions, which in turn leads to a large change of optical dipole matrix element. (B) Direct to indirect bandgap transition which makes the spontaneous photon emission to be of a slow second order process mediated by phonons. This feature uniquely occurs in silicon nanowires while in bulk silicon there is no change of optical properties under any reasonable amount of strain. These results promise new applications of silicon nanowires as optoelectronic devices including a mechanism for lasing. Our results are verifiable using existing experimental techniques of applying strain to nanowires. PMID:22708056

  9. Percolating silicon nanowire networks with highly reproducible electrical properties.

    PubMed

    Serre, Pauline; Mongillo, Massimo; Periwal, Priyanka; Baron, Thierry; Ternon, Céline

    2015-01-09

    Here, we report the morphological and electrical properties of self-assembled silicon nanowires networks, also called Si nanonets. At the macroscopic scale, the nanonets involve several millions of nanowires. So, the observed properties should result from large scale statistical averaging, minimizing thus the discrepancies that occur from one nanowire to another. Using a standard filtration procedure, the so-obtained Si nanonets are highly reproducible in terms of their morphology, with a Si nanowire density precisely controlled during the nanonet elaboration. In contrast to individual Si nanowires, the electrical properties of Si nanonets are highly consistent, as demonstrated here by the similar electrical properties obtained in hundreds of Si nanonet-based devices. The evolution of the Si nanonet conductance with Si nanowire density demonstrates that Si nanonets behave like standard percolating media despite the presence of numerous nanowire-nanowire intersecting junctions into the nanonets and the native oxide shell surrounding the Si nanowires. Moreover, when silicon oxidation is prevented or controlled, the electrical properties of Si nanonets are stable over many months. As a consequence, Si nanowire-based nanonets constitute a promising flexible material with stable and reproducible electrical properties at the macroscopic scale while being composed of nanoscale components, which confirms the Si nanonet potential for a wide range of applications including flexible electronic, sensing and photovoltaic applications.

  10. Silicon nanowire synthesis by a vapor-liquid-solid approach

    NASA Technical Reports Server (NTRS)

    Mao, Aaron; Ng, H. T.; Nguyen, Pho; McNeil, Melanie; Meyyappan, M.

    2005-01-01

    Synthesis of silicon nanowires is studied by using a vapor-liquid-solid growth technique. Silicon tetrachloride reduction with hydrogen in the gas phase is used with gold serving as catalyst to facilitate growth. Only a narrow set of conditions of SiCl4 concentration and temperature yield straight nanowires. High concentrations and temperatures generally result in particulates, catalyst coverage and deactivation, and coatinglike materials.

  11. Steering epitaxial alignment of Au, Pd, and AuPd nanowire arrays by atom flux change.

    PubMed

    Yoo, Youngdong; Seo, Kwanyong; Han, Sol; Varadwaj, Kumar S K; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo; Ahn, Jae Pyoung; Ihee, Hyotcherl; Kim, Bongsoo

    2010-02-10

    We have synthesized epitaxial Au, Pd, and AuPd nanowire arrays in vertical or horizontal alignment on a c-cut sapphire substrate. We show that the vertical and horizontal nanowire arrays grow from half-octahedral seeds by the correlations of the geometry and orientation of seed crystals with those of as-grown nanowires. The alignment of nanowires can be steered by changing the atom flux. At low atom deposition flux vertical nanowires grow, while at high atom flux horizontal nanowires grow. Similar vertical/horizontal epitaxial growth is also demonstrated on SrTiO(3) substrates. This orientation-steering mechanism is visualized by molecular dynamics simulations.

  12. Ballistic thermal transport in silicon nanowires

    PubMed Central

    Maire, Jeremie; Anufriev, Roman; Nomura, Masahiro

    2017-01-01

    We have experimentally investigated the impact of dimensions and temperature on the thermal conductivity of silicon nanowires fabricated using a top-down approach. Both the width and temperature dependences of thermal conductivity agree with those in the existing literature. The length dependence of thermal conductivity exhibits a transition from semi-ballistic thermal phonon transport at 4 K to fully diffusive transport at room temperature. We additionally calculated the phonon dispersion in these structures in the framework of the theory of elasticity and showed that the thermal conductance increases with width. This agrees with our experimental observations and supports the pertinence of using the modified phonon dispersion at low temperatures. PMID:28150724

  13. Assembly and magnetic properties of nickel nanoparticles on silicon nanowires

    SciTech Connect

    Picraux, Samuel T; Manandhar, Pradeep; Nazaretski, E; Thompson, J

    2009-01-01

    The directed assembly of magnetic Ni nanoparticles at the tips of silicon nanowires is reported. Using electrodeposition Ni shells of thickness from 10 to 100 nm were selectively deposited on Au catalytic seeds at the ends of nanowires. Magnetic characterization confirms a low coercivity ({approx}115 Oe) ferromagnetic behavior at 300 K. This approach to multifunctional magnetic-semiconducting nanostructure assembly could be extended to electrodeposition of other materials on the nanowire ends, opening up novel ways of device integration. Such magnetically functionalized nanowires offer a new approach to developing novel highly localized magnetic probes for high resolution magnetic resonance force microscopy.

  14. Gold-enhanced oxidation of MBE-grown silicon nanowires

    NASA Astrophysics Data System (ADS)

    Büttner, C. C.; Zakharov, N. D.; Pippel, E.; Gösele, U.; Werner, P.

    2008-07-01

    Thermal oxidation of MBE-grown silicon nanowires with a gold droplet on their tips was investigated. Two kinds of oxidation behavior were observed: (i) enhanced axial oxidation, if there was a direct contact between the gold droplet and the nanowire, and (ii) conventional oxidation for nanowires when there was no direct contact between the gold and silicon. For a dry atmosphere, such enhanced oxidation takes place at temperatures down to 500 °C. Under a wet atmosphere, remarkable oxidation was observed even for temperatures down to 250 °C.

  15. Controllable positioning and alignment of silver nanowires by tunable hydrodynamic focusing.

    PubMed

    Liu, Mei; Chen, Ying; Guo, Qiuquan; Li, Ruying; Sun, Xueliang; Yang, Jun

    2011-03-25

    Assembly and alignment of nanowires or nanotubes are critical steps for integrating functional nanodevices by the bottom-up strategy. However, it is still challenging to manipulate either an array of nanowires or individual nanowires in a controllable manner. Here we present a simple but versatile method of positioning and aligning nanowires by hydrodynamic focusing that functions as 'hydro-tweezers'. By adjusting the flow duration and flow rates of the sheath flows and sample flow, the density, width and position of the nanowire arrays, as building blocks of nanodevices, can be readily tuned in the hydrodynamic focusing process. This approach exhibits great potentials in the assembly of an array of functional nanodevices. With this method, multiple nanowire arrays can be positioned and aligned on predefined locations. Further focusing the sample flow, nanowires flow in single file. Thus single nanowires can also be lined up and located to desired positions.

  16. Design of two dimensional silicon nanowire arrays for antireflection and light trapping in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Ding, Wuchang; Jia, Rui; Li, Haofeng; Chen, Chen; Sun, Yun; Jin, Zhi; Liu, Xinyu

    2014-01-01

    Silicon nitride coated nanowire arrays have been investigated as an efficient antireflection structure for silicon solar cells. The minimum average reflectance could reach 1.62% under AM1.5 spectrum. Scattering effects of silicon nanowire arrays also result in enhanced absorption in the substrate, and analytical results show that the scattered light can be well trapped in silicon substrate when the back surface is passivated by silicon dioxide. This ultra-low surface reflection property combined with light trapping effect may have potential applications in silicon solar cells with thin substrate.

  17. Indirect measurement of thermal conductivity in silicon nanowires

    SciTech Connect

    Pennelli, Giovanni Nannini, Andrea; Macucci, Massimo

    2014-02-28

    We report indirect measurements of thermal conductivity in silicon nanostructures. We have exploited a measurement technique based on the Joule self-heating of silicon nanowires. A standard model for the electron mobility has been used to determine the temperature through the accurate measurement of the nanowire resistance. We have applied this technique to devices fabricated with a top-down process that yields nanowires together with large silicon areas used both as electrical and as thermal contacts. As there is crystalline continuity between the nanowires and the large contact areas, our thermal conductivity measurements are not affected by any temperature drop due to the contact thermal resistance. Our results confirm the observed reduction of thermal conductivity in nanostructures and are comparable with those previously reported in the literature, achieved with more complex measurement techniques.

  18. High-performance silicon nanowire bipolar phototransistors

    NASA Astrophysics Data System (ADS)

    Tan, Siew Li; Zhao, Xingyan; Chen, Kaixiang; Crozier, Kenneth B.; Dan, Yaping

    2016-07-01

    Silicon nanowires (SiNWs) have emerged as sensitive absorbing materials for photodetection at wavelengths ranging from ultraviolet (UV) to the near infrared. Most of the reports on SiNW photodetectors are based on photoconductor, photodiode, or field-effect transistor device structures. These SiNW devices each have their own advantages and trade-offs in optical gain, response time, operating voltage, and dark current noise. Here, we report on the experimental realization of single SiNW bipolar phototransistors on silicon-on-insulator substrates. Our SiNW devices are based on bipolar transistor structures with an optically injected base region and are fabricated using CMOS-compatible processes. The experimentally measured optoelectronic characteristics of the SiNW phototransistors are in good agreement with simulation results. The SiNW phototransistors exhibit significantly enhanced response to UV and visible light, compared with typical Si p-i-n photodiodes. The near infrared responsivities of the SiNW phototransistors are comparable to those of Si avalanche photodiodes but are achieved at much lower operating voltages. Compared with other reported SiNW photodetectors as well as conventional bulk Si photodiodes and phototransistors, the SiNW phototransistors in this work demonstrate the combined advantages of high gain, high photoresponse, low dark current, and low operating voltage.

  19. Silicon Nanowire Growth at Chosen Positions and Orientations

    NASA Technical Reports Server (NTRS)

    Getty, Stephanie A.

    2009-01-01

    It is now possible to grow silicon nanowires at chosen positions and orientations by a method that involves a combination of standard microfabrication processes. Because their positions and orientations can be chosen with unprecedented precision, the nanowires can be utilized as integral parts of individually electronically addressable devices in dense arrays. Nanowires made from silicon and perhaps other semiconductors hold substantial promise for integration into highly miniaturized sensors, field-effect transistors, optoelectronic devices, and other electronic devices. Like bulk semiconductors, inorganic semiconducting nanowires are characterized by electronic energy bandgaps that render them suitable as means of modulating or controlling electronic signals through electrostatic gating, in response to incident light, or in response to molecules of interest close to their surfaces. There is now potential for fabricating arrays of uniform, individually electronically addressable nanowires tailored to specific applications. The method involves formation of metal catalytic particles at the desired positions on a substrate, followed by heating the substrate in the presence of silane gas. The figure illustrates an example in which a substrate includes a silicon dioxide surface layer that has been etched into an array of pillars and the catalytic (in this case, gold) particles have been placed on the right-facing sides of the pillars. The catalytic thermal decomposition of the silane to silicon and hydrogen causes silicon columns (the desired nanowires) to grow outward from the originally catalyzed spots on the substrate, carrying the catalytic particles at their tips. Thus, the position and orientation of each silicon nanowire is determined by the position of its originally catalyzed spot on the substrate surface, and the orientation of the nanowire is perpendicular to the substrate surface at the originally catalyzed spot.

  20. Recent progress in patterned silicon nanowire arrays: fabrication, properties and applications.

    PubMed

    Zhang, Yan; Qiu, Teng; Zhang, Wenjun; Chu, Paul K

    2011-01-01

    Currently there is great interest in patterned silicon nanowire arrays and applications. The accurately controlled fabrication of patterned silicon nanowire arrays with the desirable axial crystallographic orientation using simpler and quicker ways is very desirable and of great importance to material synthesis and future nanoscale optoelectronic devices that employ silicon. The recent advances in manipulating patterned silicon nanowire arrays and patents are reviewed with a focus on the progress of nanowire fabrication and applications.

  1. Biodegradable porous silicon barcode nanowires with defined geometry.

    PubMed

    Chiappini, Ciro; Liu, Xuewu; Fakhoury, Jean Raymond; Ferrari, Mauro

    2010-07-23

    Silicon nanowires are of proven importance in diverse fields such as energy production and storage, flexible electronics, and biomedicine due to the unique characteristics emerging from their one-dimensional semiconducting nature and their mechanical properties. Here we report the synthesis of biodegradable porous silicon barcode nanowires by metal assisted electroless etch of single crystal silicon with resistivity ranging from 0.0008 Ω-cm to 10 Ω-cm. We define the geometry of the barcode nanowiresby nanolithography and we characterize their multicolor reflectance and photoluminescence. We develop phase diagrams for the different nanostructures obtained as a function of metal catalyst, H(2)O(2) concentration, ethanol concentration and silicon resistivity, and propose a mechanism that explains these observations. We demonstrate that these nanowires are biodegradable, and their degradation time can be modulated by surface treatments.

  2. Unveiling the formation pathway of single crystalline porous silicon nanowires.

    PubMed

    Zhong, Xing; Qu, Yongquan; Lin, Yung-Chen; Liao, Lei; Duan, Xiangfeng

    2011-02-01

    Porous silicon nanowire is emerging as an interesting material system due to its unique combination of structural, chemical, electronic, and optical properties. To fully understand their formation mechanism is of great importance for controlling the fundamental physical properties and enabling potential applications. Here we present a systematic study to elucidate the mechanism responsible for the formation of porous silicon nanowires in a two-step silver-assisted electroless chemical etching method. It is shown that silicon nanowire arrays with various porosities can be prepared by varying multiple experimental parameters such as the resistivity of the starting silicon wafer, the concentration of oxidant (H(2)O(2)) and the amount of silver catalyst. Our study shows a consistent trend that the porosity increases with the increasing wafer conductivity (dopant concentration) and oxidant (H(2)O(2)) concentration. We further demonstrate that silver ions, formed by the oxidation of silver, can diffuse upwards and renucleate on the sidewalls of nanowires to initiate new etching pathways to produce a porous structure. The elucidation of this fundamental formation mechanism opens a rational pathway to the production of wafer-scale single crystalline porous silicon nanowires with tunable surface areas ranging from 370 to 30 m(2) g(-1) and can enable exciting opportunities in catalysis, energy harvesting, conversion, storage, as well as biomedical imaging and therapy.

  3. Ultralow thermal conductivity in Electrolessly Etched (EE) Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Hippalgaonkar, Kedar; Chen, Renkun; Budaev, Bair; Tang, Jinyao; Andrews, Sean; Murphy, Padraig; Mukerjee, Subroto; Moore, Joel; Yang, Peidong; Majumdar, Arun

    2009-03-01

    EE process produces single-crystalline Silicon nanowires with rough walls. We use suspended structures to directly compute the heat transfer through single nanowires. Nanowires with diameters less than the mean free path of phonons impede transport by boundary scattering. The roughness acts as a secondary scattering mechanism to further reduce phonon transport. By controlling the amount of roughness it is possible to push limits to the extent that nanowire conductance close to quanta of thermal conductance,πkB^2 T / πkB^2 T 6 . - 6 is observed. Traditionally, the lower limit of conductivity is amorphous Silicon at 1 W/mK at room temperature. The measured conductivity of our nanostructures challenges even this amorphous limit pointing towards previously unstudied mechanisms of thermal resistance. We measure thermal conductivity of ˜150nm diameter EE wires to be ˜1 W/mK.

  4. A deep etching mechanism for trench-bridging silicon nanowires.

    PubMed

    Tasdemir, Zuhal; Wollschläger, Nicole; Österle, Werner; Leblebici, Yusuf; Alaca, B Erdem

    2016-03-04

    Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with the surrounding microscale features up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 μm. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping.

  5. Large area, dense silicon nanowire array chemical sensors

    SciTech Connect

    Talin, A. Alec; Hunter, Luke L.; Leonard, Francois; Rokad, Bhavin

    2006-10-09

    The authors present a simple top-down approach based on nanoimprint lithography to create dense arrays of silicon nanowires over large areas. Metallic contacts to the nanowires and a bottom gate allow the operation of the array as a field-effect transistor with very large on/off ratios. When exposed to ammonia gas or cyclohexane solutions containing nitrobenzene or phenol, the threshold voltage of the field-effect transistor is shifted, a signature of charge transfer between the analytes and the nanowires. The threshold voltage shift is proportional to the Hammett parameter and the concentration of the nitrobenzene and phenol analytes.

  6. Multi-diameter silicon nanowires: Fabrication, characterization, and modeling

    NASA Astrophysics Data System (ADS)

    Alagoz, Arif Sinan

    Nanotechnology is a rapidly expanding interdisciplinary field offering novel devices for broad range of applications. Quantum effects and surface to volume ratio of nanostructures are strongly size dependent, and redefine material properties at nanoscale. Silicon is one of the most promising materials for next generation nanostructured transistors, photonics devices, Li-ion batteries, photovoltaic solar cells, and thermoelectric energy generators. Since electrical, optical, and mechanical properties of nanostructures strongly depend on their shape, size, periodicity, and crystal structure; it is crucial to control these parameters in order to optimize device performance for targeted applications. This dissertation is intended to develop a low-cost, low-temperature, high-throughput, and large-area nanowire fabrication method that can produce well-ordered arrays of hierarchical single-crystal silicon nanowires at large scale by using nanosphere lithography and metal-assisted chemical etching. Nanowire morphology was characterized by using scanning electron microscope and optical properties of nanowire arrays were modeled with the help of finite-difference-time domain method. These novel multi-diameter silicon nanowire arrays have the potential applications in many fields including but not limited to next generation nanowire solar cells to field ionization gas sensors.

  7. Pressure-induced structural phase transformations in silicon nanowires.

    PubMed

    Poswal, H K; Garg, Nandini; Sharma, Surinder M; Busetto, E; Sikka, S K; Gundiah, Gautam; Deepak, F L; Rao, C N R

    2005-05-01

    High-pressure structural behavior of silicon nanowires is investigated up to approximately 22 GPa using angle dispersive X-ray diffraction measurements. Silicon nanowires transform from the cubic to the beta-tin phase at 7.5-10.5 GPa, to the Imma phase at approximately 14 GPa, and to the primitive hexagonal structure at approximately 16.2 GPa. On complete release of pressure, it transforms to the metastable R8 phase. The observed sequence of phase transitions is the same as that of bulk silicon. Though the X-ray diffraction experiments do not reveal any size effect, the pressure dependence of Raman modes shows that the behavior of nanowires is in between that of the bulk crystal and porous Si.

  8. Microspheres for the growth of silicon nanowires via vapor-liquid-solid mechanism

    DOE PAGES

    Gomez-Martinez, Arancha; Marquez, Francisco; Elizalde, Eduardo; ...

    2014-01-01

    Silicon nanowires have been synthesized by a simple process using a suitable support containing silica and carbon microspheres. Nanowires were grown by thermal chemical vapor deposition via a vapor-liquid-solid mechanism with only the substrate as silicon source. The curved surface of the microsized spheres allows arranging the gold catalyst as nanoparticles with appropriate dimensions to catalyze the growth of nanowires. Here, the resulting material is composed of the microspheres with the silicon nanowires attached on their surface.

  9. Rational defect introduction in silicon nanowires.

    PubMed

    Shin, Naechul; Chi, Miaofang; Howe, Jane Y; Filler, Michael A

    2013-05-08

    The controlled introduction of planar defects, particularly twin boundaries and stacking faults, in group IV nanowires remains challenging despite the prevalence of these structural features in other nanowire systems (e.g., II-VI and III-V). Here we demonstrate how user-programmable changes to precursor pressure and growth temperature can rationally generate both transverse twin boundaries and angled stacking faults during the growth of <111> oriented Si nanowires. We leverage this new capability to demonstrate prototype defect superstructures. These findings yield important insight into the mechanism of defect generation in semiconductor nanowires and suggest new routes to engineer the properties of this ubiquitous semiconductor.

  10. Colossal injection of catalyst atoms into silicon nanowires.

    PubMed

    Moutanabbir, Oussama; Isheim, Dieter; Blumtritt, Horst; Senz, Stephan; Pippel, Eckhard; Seidman, David N

    2013-04-04

    The incorporation of impurities during the growth of nanowires from the vapour phase alters their basic properties substantially, and this process is critical in an extended range of emerging nanometre-scale technologies. In particular, achieving precise control of the behaviour of group III and group V dopants has been a crucial step in the development of silicon (Si) nanowire-based devices. Recently it has been demonstrated that the use of aluminium (Al) as a growth catalyst, instead of the usual gold, also yields an effective p-type doping, thereby enabling a novel and efficient route to functionalizing Si nanowires. Besides the technological implications, this self-doping implies the detachment of Al from the catalyst and its injection into the growing nanowire, involving atomic-scale processes that are crucial for the fundamental understanding of the catalytic assembly of nanowires. Here we present an atomic-level, quantitative study of this phenomenon of catalyst dissolution by three-dimensional atom-by-atom mapping of individual Al-catalysed Si nanowires using highly focused ultraviolet-laser-assisted atom-probe tomography. Although the observed incorporation of the catalyst atoms into nanowires exceeds by orders of magnitude the equilibrium solid solubility and solid-solution concentrations in known non-equilibrium processes, the Al impurities are found to be homogeneously distributed in the nanowire and do not form precipitates or clusters. As well as the anticipated effect on the electrical properties, this kinetics-driven colossal injection also has direct implications for nanowire morphology. We discuss the observed strong deviation from equilibrium using a model of solute trapping at step edges, and identify the key growth parameters behind this phenomenon on the basis of a kinetic model of step-flow growth of nanowires. The control of this phenomenon provides opportunities to create a new class of nanoscale devices by precisely tailoring the shape and

  11. Incorporation of a self-aligned selective emitter to realize highly efficient (12.8%) Si nanowire solar cells.

    PubMed

    Um, Han-Don; Park, Kwang-Tae; Jung, Jin-Young; Li, Xiaopeng; Zhou, Keya; Jee, Sang-Won; Lee, Jung-Ho

    2014-05-21

    Formation of a selective emitter in crystalline silicon solar cells improves photovoltaic conversion efficiency by decoupling emitter regions for light absorption (moderately doped) and metallization (degenerately doped). However, use of a selective emitter in silicon nanowire (Si NW) solar cells is technologically challenging because of difficulties in forming robust Ohmic contacts that interface directly with the top-ends of nanowires. Here we describe a self-aligned selective emitter successfully integrated into an antireflective Si NW solar cell. By one-step metal-assisted chemical etching, NW arrays formed only at light-absorbing areas between top-metal grids while selectively retaining Ohmic contact regions underneath the metal grids. We observed a remarkable ∼40% enhancement in blue responses of internal quantum efficiency, corresponding to a conversion efficiency of 12.8% in comparison to the 8.05% of a conventional NW solar cell.

  12. Coaxial silicon nanowires as solar cells and nanoelectronic power sources.

    PubMed

    Tian, Bozhi; Zheng, Xiaolin; Kempa, Thomas J; Fang, Ying; Yu, Nanfang; Yu, Guihua; Huang, Jinlin; Lieber, Charles M

    2007-10-18

    Solar cells are attractive candidates for clean and renewable power; with miniaturization, they might also serve as integrated power sources for nanoelectronic systems. The use of nanostructures or nanostructured materials represents a general approach to reduce both cost and size and to improve efficiency in photovoltaics. Nanoparticles, nanorods and nanowires have been used to improve charge collection efficiency in polymer-blend and dye-sensitized solar cells, to demonstrate carrier multiplication, and to enable low-temperature processing of photovoltaic devices. Moreover, recent theoretical studies have indicated that coaxial nanowire structures could improve carrier collection and overall efficiency with respect to single-crystal bulk semiconductors of the same materials. However, solar cells based on hybrid nanoarchitectures suffer from relatively low efficiencies and poor stabilities. In addition, previous studies have not yet addressed their use as photovoltaic power elements in nanoelectronics. Here we report the realization of p-type/intrinsic/n-type (p-i-n) coaxial silicon nanowire solar cells. Under one solar equivalent (1-sun) illumination, the p-i-n silicon nanowire elements yield a maximum power output of up to 200 pW per nanowire device and an apparent energy conversion efficiency of up to 3.4 per cent, with stable and improved efficiencies achievable at high-flux illuminations. Furthermore, we show that individual and interconnected silicon nanowire photovoltaic elements can serve as robust power sources to drive functional nanoelectronic sensors and logic gates. These coaxial silicon nanowire photovoltaic elements provide a new nanoscale test bed for studies of photoinduced energy/charge transport and artificial photosynthesis, and might find general usage as elements for powering ultralow-power electronics and diverse nanosystems.

  13. Terahertz detectors arrays based on orderly aligned InN nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Xuechen; Liu, Huiqiang; Li, Qiuguo; Chen, Hao; Peng, Rufang; Chu, Sheng; Cheng, Binbin

    2015-08-01

    Nanostructured terahertz detectors employing a single semiconducting nanowire or graphene sheet have recently generated considerable interest as an alternative to existing THz technologies, for their merit on the ease of fabrication and above-room-temperature operation. However, the lack of alignment in nanostructure device hindered their potential toward practical applications. The present work reports ordered terahertz detectors arrays based on neatly aligned InN nanowires. The InN nanostructures (nanowires and nano-necklaces) were achieved by chemical vapor deposition growth, and then InN nanowires were successfully transferred and aligned into micrometer-sized groups by a “transfer-printing” method. Field effect transistors on aligned nanowires were fabricated and tested for terahertz detection purpose. The detector showed good photoresponse as well as low noise level. Besides, dense arrays of such detectors were also fabricated, which rendered a peak responsivity of 1.1 V/W from 7 detectors connected in series.

  14. Terahertz detectors arrays based on orderly aligned InN nanowires

    PubMed Central

    Chen, Xuechen; Liu, Huiqiang; Li, Qiuguo; Chen, Hao; Peng, Rufang; Chu, Sheng; Cheng, Binbin

    2015-01-01

    Nanostructured terahertz detectors employing a single semiconducting nanowire or graphene sheet have recently generated considerable interest as an alternative to existing THz technologies, for their merit on the ease of fabrication and above-room-temperature operation. However, the lack of alignment in nanostructure device hindered their potential toward practical applications. The present work reports ordered terahertz detectors arrays based on neatly aligned InN nanowires. The InN nanostructures (nanowires and nano-necklaces) were achieved by chemical vapor deposition growth, and then InN nanowires were successfully transferred and aligned into micrometer-sized groups by a “transfer-printing” method. Field effect transistors on aligned nanowires were fabricated and tested for terahertz detection purpose. The detector showed good photoresponse as well as low noise level. Besides, dense arrays of such detectors were also fabricated, which rendered a peak responsivity of 1.1 V/W from 7 detectors connected in series. PMID:26289498

  15. Facile morphological control of single-crystalline silicon nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Shao-long; Zhang, Ting; Zheng, Rui-ting; Cheng, Guo-an

    2012-10-01

    To realize wider potentials of silicon nanowires (SiNWs), the morphological controllability is desirable. In this paper, we synthesized well vertically- and slantingly-aligned SiNWs with ultra-high aspect ratio in metal-assisted chemical etching method, and wafer-scale zigzag SiNWs with three types of turning angle were also obtained. The formation of the curved SiNWs is a result of the alternation of moving direction of Ag nanoparticles between the preferred <1 0 0> and other directions in Si substrates. The as-prepared SiNWs are single-crystalline and their orientations are mostly along the <1 0 0> or <1 1 1> directions. The surface of the resulting SiNWs can be controlled to be smooth or rough, with or without mesopores, by adjusting the etching conditions and using various Si substrates with different crystal orientations and doping levels. Moreover, the effects of the etching conditions (etching time, oxidant concentration, deposition time of Ag nanoparticles and etching temperature) and substrate properties (crystal orientation and doping level) on the as-prepared SiNWs have been discussed.

  16. Synthesis and characterization of silicon nanowire arrays for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Eichfeld, Sarah M.

    The overall objective of this thesis was the development of processes for the fabrication of radial p-n silicon nanowires (SiNWs) using bottom-up nanowire growth techniques on silicon and glass substrates. Vapor-liquid-solid (VLS) growth was carried out on Si(111) substrates using SiCl4 as the silicon precursor. Growth conditions including temperature, PSiCl4, PH2, and position were investigated to determine the optimum growth conditions for epitaxially oriented silicon nanowire arrays. The experiments revealed that the growth rate of the silicon nanowires exhibits a maximum as a function of PSiCl4 and P H2. Gas phase equilibrium calculations were used in conjunction with a mass transport model to explain the experimental data. The modeling results demonstrate a similar maximum in the mass of solid silicon predicted to form as a function of PSiCl4 and PH2, which results from a change in the gas phase concentration of SiHxCly and SiClx species. This results in a shift in the process from growth to etching with increasing PSiCl4. In general, for the atmospheric pressure conditions employed in this study, growth at higher temperatures >1000°C and higher SiCl4 concentrations gave the best results. The growth of silicon nanowire arrays on anodized alumina (AAO)-coated glass substrates was also investigated. Glass will not hold up to the high temperatures required for Si nanowire growth with SiCl4 so SiH 4 was used as the Si precursor instead. Initial studies were carried out to measure the resistivity of p-type and n-type silicon nanowires grown in freestanding AAO membranes. A series of nanowire samples were grown in which the doping and the nanowire length inside the membrane were varied. Circular metal contacts were deposited on the top surface of the membranes and the resistance of the nanowire arrays was measured. The measured resistance versus nanowire length was plotted and the nanowire resistivity was extracted from the slope. The resistivity of the silicon

  17. A simple route to growth of silicon nanowires.

    PubMed

    Pan, Hui; Ni, Zhenhua; Poh, Cheekok; Feng, Yuan Ping; Lin, Jianyi; Shen, Zexiang

    2008-11-01

    Silicon nanowires (SiNWs) have been produced by a simple thermal heating method with gold as a catalyst. The grown silicon nanowires were highly crystalline with little impurities such as amorphous Si and silicon oxides. Photoluminescence (PL) study has indicated that the Si band gap increases from 1.1 eV of bulk Si to 1.59 eV for the as-grown SiNWs due to quantum confinement effect. A strong PL peak around 540 nm (2.28 eV) is attributed to the relaxation of photon-induced self-trapped state in the form of surface Si-Si dimmers, while the blue light emission around 390 nm is attributed to the silicon oxide impurity on the SiNWs surface.

  18. Electrical Contacts on Silicon Nanowires Produced by Metal-Assisted Etching: a Comparative Approach

    NASA Astrophysics Data System (ADS)

    D'Ortenzi, L.; Monsù, R.; Cara, E.; Fretto, M.; Kara, S.; Rezvani, S. J.; Boarino, L.

    2016-10-01

    Silicon nanowires fabricated by metal-assisted chemical etching can present low porosity and a rough surface depending on the doping level of the original silicon wafer. In this case, wiring of silicon nanowires may represent a challenging task. We investigated two different approaches to realize the electrical contacts in order to enable electrical measurement on a rough silicon nanowire device: we compared FIB-assisted platinum deposition for the fabrication of electrical contact with EBL technique.

  19. Electrical Contacts on Silicon Nanowires Produced by Metal-Assisted Etching: a Comparative Approach.

    PubMed

    D'Ortenzi, L; Monsù, R; Cara, E; Fretto, M; Kara, S; Rezvani, S J; Boarino, L

    2016-12-01

    Silicon nanowires fabricated by metal-assisted chemical etching can present low porosity and a rough surface depending on the doping level of the original silicon wafer. In this case, wiring of silicon nanowires may represent a challenging task. We investigated two different approaches to realize the electrical contacts in order to enable electrical measurement on a rough silicon nanowire device: we compared FIB-assisted platinum deposition for the fabrication of electrical contact with EBL technique.

  20. Joule-assisted silicidation for short-channel silicon nanowire devices.

    PubMed

    Mongillo, Massimo; Spathis, Panayotis; Katsaros, Georgios; Gentile, Pascal; Sanquer, Marc; De Franceschi, Silvano

    2011-09-27

    We report on a technique enabling electrical control of the contact silicidation process in silicon nanowire devices. Undoped silicon nanowires were contacted by pairs of nickel electrodes, and each contact was selectively silicided by means of the Joule effect. By a real-time monitoring of the nanowire electrical resistance during the contact silicidation process we were able to fabricate nickel-silicide/silicon/nickel-silicide devices with controlled silicon channel length down to 8 nm.

  1. Enhanced field emission from ZnO nanowire arrays utilizing MgO buffer between seed layer and silicon substrate

    NASA Astrophysics Data System (ADS)

    Chen, Si; Chen, Jiangtao; Liu, Jianlin; Qi, Jing; Wang, Yuhua

    2016-11-01

    Field emitters based on ZnO nanowires and other nanomaterials are promising high-brightness electron sources for field emission display, microscopy and other applications. The performance of a ZnO nanowire field emitter is linked to the quality, conductivity and alignment of the nanowires on a substrate, therefore requiring ways to improve these parameters. Here, ZnO nanowire arrays were grown on ZnO seed layer on silicon substrate with MgO buffer between the seed layer and Si. The turn-on field and enhancement factor of these nanowire arrays are 3.79 V/μm and 3754, respectively. These properties are improved greatly compared to those of ZnO nanowire arrays grown on ZnO seed layer without MgO buffer, which are 5.06 V/μm and 1697, respectively. The enhanced field emission properties can be attributed to better electron transport in seed layer, and better nanowire alignment because of MgO buffer.

  2. Coordination number model to quantify packing morphology of aligned nanowire arrays.

    PubMed

    Stein, Itai Y; Wardle, Brian L

    2013-03-21

    The average inter-wire spacing in aligned nanowire systems strongly influences both the physical and transport properties of the bulk material. Because most studies assume that the nanowire coordination is constant, a model that provides an analytical relationship between the average inter-wire spacings and measurable physical properties, such as nanowire volume fraction, is necessary. Here we report a continuous coordination number model with an analytical relationship between the average nanowire coordination, diameter, and volume fraction. The model is applied to vertically aligned carbon nanotube (VACNT) and nanofiber (VACNF) arrays, and the effective nanowire coordination number is established from easily accessible measures, such as the nanowire spacing and diameter. VACNT analysis shows that the coordination number increases with increasing nanowire volume fraction, leading the measured inter-CNT spacing values to deviate by as much as 13% from the spacing values predicted by the typically assumed hexagonal packing. VACNF analysis suggests that, by predicting an inter-fiber spacing that is within 6% of the reported value, the continuous coordination model outperforms both square and hexagonal packing in real nanowire arrays. Using this model, the average inter-wire spacing of nanowire arrays can be predicted, thus allowing more precise morphology descriptions, and thereby supporting the development of more accurate structure-property models of bulk materials comprised of aligned nanowires.

  3. Understanding self-aligned planar growth of InAs nanowires.

    PubMed

    Zi, Yunlong; Jung, Kyooho; Zakharov, Dmitri; Yang, Chen

    2013-06-12

    Semiconducting nanowires have attracted lots of attention because of their potential applications. Compared with free-standing nanowires, self-aligned planar nanowires grown epitaxially on the substrate have shown advantageous properties such as being twin defect free and ready for device fabrication, opening potentials for the large-scale device applications. Understanding of planar nanowire growth, which is essential for selective growth of planar vs free-standing wires, is still limited. In this paper, we reported different growth behaviors for self-aligned planar and free-standing InAs nanowires under identical growth conditions. We present a new model based on a revised Gibbs–Thomson equation for the planar nanowires. Using this model, we predicted and successfully confirmed through experiments that higher arsenic vapor partial pressure promoted free-standing InAs nanowire growth. A smaller critical diameter for planar nanowire growth was predicted and achieved experimentally. Successful control and understanding of planar and free-standing nanowire growth established in our work opens up the potential of large-scale integration of self-aligned nanowires for practical device applications.

  4. Anomalous Plastic Deformation and Sputtering of Ion Irradiated Silicon Nanowires

    PubMed Central

    2015-01-01

    Silicon nanowires of various diameters were irradiated with 100 keV and 300 keV Ar+ ions on a rotatable and heatable stage. Irradiation at elevated temperatures above 300 °C retains the geometry of the nanostructure and sputtering can be gauged accurately. The diameter dependence of the sputtering shows a maximum if the ion range matches the nanowire diameter, which is in good agreement with Monte Carlo simulations based on binary collisions. Nanowires irradiated at room temperature, however, amorphize and deform plastically. So far, plastic deformation has not been observed in bulk silicon at such low ion energies. The magnitude and direction of the deformation is independent of the ion-beam direction and cannot be explained with mass-transport in a binary collision cascade but only by collective movement of atoms in the collision cascade with the given boundary conditions of a high surface to volume ratio. PMID:25951108

  5. Anomalous Plastic Deformation and Sputtering of Ion Irradiated Silicon Nanowires.

    PubMed

    Johannes, Andreas; Noack, Stefan; Wesch, Werner; Glaser, Markus; Lugstein, Alois; Ronning, Carsten

    2015-06-10

    Silicon nanowires of various diameters were irradiated with 100 keV and 300 keV Ar(+) ions on a rotatable and heatable stage. Irradiation at elevated temperatures above 300 °C retains the geometry of the nanostructure and sputtering can be gauged accurately. The diameter dependence of the sputtering shows a maximum if the ion range matches the nanowire diameter, which is in good agreement with Monte Carlo simulations based on binary collisions. Nanowires irradiated at room temperature, however, amorphize and deform plastically. So far, plastic deformation has not been observed in bulk silicon at such low ion energies. The magnitude and direction of the deformation is independent of the ion-beam direction and cannot be explained with mass-transport in a binary collision cascade but only by collective movement of atoms in the collision cascade with the given boundary conditions of a high surface to volume ratio.

  6. Silicon nanowire device and method for its manufacture

    DOEpatents

    Okandan, Murat; Draper, Bruce L.; Resnick, Paul J.

    2017-01-03

    There is provided an electronic device and a method for its manufacture. The device comprises an elongate silicon nanowire less than 0.5 .mu.m in cross-sectional dimensions and having a hexagonal cross-sectional shape due to annealing-induced energy relaxation.

  7. Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis

    SciTech Connect

    Bowland, Christopher C.; Zhou, Zhi; Malakooti, Mohammad H.; Sodano, Henry A.

    2015-06-01

    We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growth in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting.

  8. Alignment control and atomically-scaled heteroepitaxial interface study of GaN nanowires.

    PubMed

    Liu, Qingyun; Liu, Baodan; Yang, Wenjin; Yang, Bing; Zhang, Xinglai; Labbé, Christophe; Portier, Xavier; An, Vladimir; Jiang, Xin

    2017-04-11

    Well-aligned GaN nanowires are promising candidates for building high-performance optoelectronic nanodevices. In this work, we demonstrate the epitaxial growth of well-aligned GaN nanowires on a [0001]-oriented sapphire substrate in a simple catalyst-assisted chemical vapor deposition process and their alignment control. It is found that the ammonia flux plays a key role in dominating the initial nucleation of GaN nanocrystals and their orientation. Typically, significant improvement of the GaN nanowire alignment can be realized at a low NH3 flow rate. X-ray diffraction and cross-sectional scanning electron microscopy studies further verified the preferential orientation of GaN nanowires along the [0001] direction. The growth mechanism of GaN nanowire arrays is also well studied based on cross-sectional high-resolution transmission electron microscopy (HRTEM) characterization and it is observed that GaN nanowires have good epitaxial growth on the sapphire substrate following the crystallographic relationship between (0001)GaN∥(0001)sapphire and (101[combining macron]0)GaN∥(112[combining macron]0)sapphire. Most importantly, periodic misfit dislocations are also experimentally observed in the interface region due to the large lattice mismatch between the GaN nanowire and the sapphire substrate, and the formation of such dislocations will favor the release of structural strain in GaN nanowires. HRTEM analysis also finds the existence of "type I" stacking faults and voids inside the GaN nanowires. Optical investigation suggests that the GaN nanowire arrays have strong emission in the UV range, suggesting their crystalline nature and chemical purity. The achievement of aligned GaN nanowires will further promote the wide applications of GaN nanostructures toward diverse high-performance optoelectronic nanodevices including nano-LEDs, photovoltaic cells, photodetectors etc.

  9. Smartly aligning nanowires by a stretching strategy and their application as encoded sensors.

    PubMed

    Wu, Yuchen; Su, Bin; Jiang, Lei

    2012-10-23

    The nanotechnology world is being more and more attracted toward high aspect ratio one-dimensional nanostructures due to their potentials as building blocks for electronic/optical devices. Here, we propose a novel method to generate nanowire patterns with assistance of superhydrophobic flexible polydimethylsiloxane (PDMS) substrates. Micropillar gaps are tunable via a stretching process of the PDMS surface; thus, diverse nanowire patterns can be formed by stretching the same PDMS surface in various ways. Importantly, square nanowire loops with alternative compositions can be generated through a double-stretching process, showing an advanced methodology in controlling the alignment of nanowires. Since alternative fluorescent molecules will be quenched by diverse chemical substances, this alternative nanowire loop shows a selective detection for diverse target compounds, which greatly improves the application of this nanowire patterning approach. Furthermore, such alternative nanowire patterns can be transferred from pillar-structured surfaces to flat films, indicating further potentials in microcircuits, sensitive sensors, and other organic functional nanodevices.

  10. Silicon nanowire charge-trap memory incorporating self-assembled iron oxide quantum dots.

    PubMed

    Huang, Ruo-Gu; Heath, James R

    2012-11-19

    Charge-trap non-volatile memory devices based upon the precise integration of quantum dot storage elements with silicon nanowire field-effect transistors are described. Template-assisted assembly yields an ordered array of FeO QDs within the trenches that separate highly aligned SiNWs, and injected charges are reversibly stored via Fowler-Nordheim tunneling into the QDs. Stored charges shift the transistor threshold voltages, providing the basis for a memory device. Quantum dot size is found to strongly influence memory performance metrics.

  11. Silicon-nanowire based attachment of silicon chips for mouse embryo labelling.

    PubMed

    Durán, S; Novo, S; Duch, M; Gómez-Martínez, R; Fernández-Regúlez, M; San Paulo, A; Nogués, C; Esteve, J; Ibañez, E; Plaza, J A

    2015-03-21

    The adhesion of small silicon chips to cells has many potential applications as direct interconnection of the cells to the external world can be accomplished. Hence, although some typical applications of silicon nanowires integrated into microsystems are focused on achieving a cell-on-a-chip strategy, we are interested in obtaining chip-on-a-cell systems. This paper reports the design, technological development and characterization of polysilicon barcodes featuring silicon nanowires as nanoscale attachment to identify and track living mouse embryos during their in vitro development. The chips are attached to the outer surface of the Zona Pellucida, the cover that surrounds oocytes and embryos, to avoid the direct contact between the chip and the embryo cell membrane. Two attachment methodologies, rolling and pushpin, which allow two entirely different levels of applied forces to attach the chips to living embryos, are evaluated. The former consists of rolling the mouse embryos over one barcode with the silicon nanowires facing upwards, while in the latter, the barcode is pushed against the embryo with a micropipette. The effect on in vitro embryo development and the retention rate related to the calculated applied forces are stated. Field emission scanning electron microscopy inspection, which allowed high-resolution imaging, also confirms the physical attachment of the nanowires with some of them piercing or wrapped by the Zona Pellucida and revealed extraordinary bent silicon nanowires.

  12. Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Brodoceanu, D.; Alhmoud, H. Z.; Elnathan, R.; Delalat, B.; Voelcker, N. H.; Kraus, T.

    2016-02-01

    We present an elegant route for the fabrication of ordered arrays of vertically-aligned silicon nanowires with tunable geometry at controlled locations on a silicon wafer. A monolayer of transparent microspheres convectively assembled onto a gold-coated silicon wafer acts as a microlens array. Irradiation with a single nanosecond laser pulse removes the gold beneath each focusing microsphere, leaving behind a hexagonal pattern of holes in the gold layer. Owing to the near-field effects, the diameter of the holes can be at least five times smaller than the laser wavelength. The patterned gold layer is used as catalyst in a metal-assisted chemical etching to produce an array of vertically-aligned silicon nanowires. This approach combines the advantages of direct laser writing with the benefits of parallel laser processing, yielding nanowire arrays with controlled geometry at predefined locations on the silicon surface. The fabricated VA-SiNW arrays can effectively transfect human cells with a plasmid encoding for green fluorescent protein.

  13. Synthesis and Photoluminescence Properties of Porous Silicon Nanowire Arrays.

    PubMed

    Lin, Linhan; Guo, Siping; Sun, Xianzhong; Feng, Jiayou; Wang, Yan

    2010-08-05

    Herein, we prepare vertical and single crystalline porous silicon nanowires (SiNWs) via a two-step metal-assisted electroless etching method. The porosity of the nanowires is restricted by etchant concentration, etching time and doping lever of the silicon wafer. The diffusion of silver ions could lead to the nucleation of silver nanoparticles on the nanowires and open new etching ways. Like porous silicon (PS), these porous nanowires also show excellent photoluminescence (PL) properties. The PL intensity increases with porosity, with an enhancement of about 100 times observed in our condition experiments. A "red-shift" of the PL peak is also found. Further studies prove that the PL spectrum should be decomposed into two elementary PL bands. The peak at 850 nm is the emission of the localized excitation in the nanoporous structure, while the 750-nm peak should be attributed to the surface-oxidized nanostructure. It could be confirmed from the Fourier transform infrared spectroscopy analyses. These porous SiNW arrays may be useful as the nanoscale optoelectronic devices.

  14. Shape controlled flower-like silicon oxide nanowires and their pH response

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Que, Rong-hui; Shao, Ming-wang; Zhou, Qing; Ma, Dorothy Duo Duo; Lee, Shuit-Tong

    2011-04-01

    Silicon oxide nanowires were synthesized with high-temperature evaporation using silicon monoxide as starting materials and tin and gallium as catalysts. The products take the shape of flowers with petals composed of silicon oxide nanowires. The pH response of the products reveals excellent linear relation due to their vast surface area.

  15. Thermal conductivity of silicon nanowire arrays with controlled roughness

    SciTech Connect

    Feser, JP; Sadhu, JS; Azeredo, BP; Hsu, KH; Ma, J; Kim, J; Seong, M; Fang, NX; Li, XL; Ferreira, PM; Sinha, S; Cahill, DG

    2012-12-01

    A two-step metal assisted chemical etching technique is used to systematically vary the sidewall roughness of Si nanowires in vertically aligned arrays. The thermal conductivities of nanowire arrays are studied using time domain thermoreflectance and compared to their high-resolution transmission electron microscopy determined roughness. The thermal conductivity of nanowires with small roughness is close to a theoretical prediction based on an upper limit of the mean-free-paths of phonons given by the nanowire diameter. The thermal conductivity of nanowires with large roughness is found to be significantly below this prediction. Raman spectroscopy reveals that nanowires with large roughness also display significant broadening of the one-phonon peak; the broadening correlates well with the reduction in thermal conductivity. The origin of this broadening is not yet understood, as it is inconsistent with phonon confinement models, but could derive from microstructural changes that affect both the optical phonons observed in Raman scattering and the acoustic phonons that are important for heat conduction. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767456

  16. Influence of substrates on formation of polycrystalline silicon nanowire films

    NASA Astrophysics Data System (ADS)

    Kato, Shinya; Yamazaki, Tatsuya; Miyajima, Shinsuke; Konagai, Makoto

    2014-10-01

    Polycrystalline silicon nanowires (poly-SiNWs) films were successfully prepared by using metal assisted chemical etching of polycrystalline silicon (poly-Si) films. The poly-Si films were prepared by solid-phase crystallization of amorphous silicon (a-Si) deposited by different deposition techniques on different substrates. In the case of the electron beam evaporated a-Si on a quartz substrate, the formation of poly-SiNWs was not observed and the structure was found to be porous silicon. On the other hand, poly-SiNWs successfully formed from poly-Si on a silicon substrate. We also found that deposition techniques for a-Si films affect the formation of poly-SiNWs.

  17. Thin film polycrystalline silicon nanowire biosensors.

    PubMed

    Hakim, Mohammad M A; Lombardini, Marta; Sun, Kai; Giustiniano, Francesco; Roach, Peter L; Davies, Donna E; Howarth, Peter H; de Planque, Maurits R R; Morgan, Hywel; Ashburn, Peter

    2012-04-11

    Polysilicon nanowire biosensors have been fabricated using a top-down process and were used to determine the binding constant of two inflammatory biomarkers. A very low cost nanofabrication process was developed, based on simple and mature photolithography, thin film technology, and plasma etching, enabling an easy route to mass manufacture. Antibody-functionalized nanowire sensors were used to detect the proteins interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) over a wide range of concentrations, demonstrating excellent sensitivity and selectivity, exemplified by a detection sensitivity of 10 fM in the presence of a 100,000-fold excess of a nontarget protein. Nanowire titration curves gave antibody-antigen dissociation constants in good agreement with low-salt enzyme-linked immunosorbent assays (ELISAs). This fabrication process produces high-quality nanowires that are suitable for low-cost mass production, providing a realistic route to the realization of disposable nanoelectronic point-of-care (PoC) devices.

  18. Electric field effect thermoelectric transport in individual silicon and germanium/silicon nanowires

    NASA Astrophysics Data System (ADS)

    Brovman, Yuri M.; Small, Joshua P.; Hu, Yongjie; Fang, Ying; Lieber, Charles M.; Kim, Philip

    2016-06-01

    We have simultaneously measured conductance and thermoelectric power (TEP) of individual silicon and germanium/silicon core/shell nanowires in the field effect transistor device configuration. As the applied gate voltage changes, the TEP shows distinctly different behaviors while the electrical conductance exhibits the turn-off, subthreshold, and saturation regimes, respectively. At room temperature, peak TEP value of ˜300 μ V/K is observed in the subthreshold regime of the Si devices. The temperature dependence of the saturated TEP values is used to estimate the carrier doping of Si nanowires.

  19. Approaching the ideal elastic strain limit in silicon nanowires

    PubMed Central

    Zhang, Hongti; Tersoff, Jerry; Xu, Shang; Chen, Huixin; Zhang, Qiaobao; Zhang, Kaili; Yang, Yong; Lee, Chun-Sing; Tu, King-Ning; Li, Ju; Lu, Yang

    2016-01-01

    Achieving high elasticity for silicon (Si) nanowires, one of the most important and versatile building blocks in nanoelectronics, would enable their application in flexible electronics and bio-nano interfaces. We show that vapor-liquid-solid–grown single-crystalline Si nanowires with diameters of ~100 nm can be repeatedly stretched above 10% elastic strain at room temperature, approaching the theoretical elastic limit of silicon (17 to 20%). A few samples even reached ~16% tensile strain, with estimated fracture stress up to ~20 GPa. The deformations were fully reversible and hysteresis-free under loading-unloading tests with varied strain rates, and the failures still occurred in brittle fracture, with no visible sign of plasticity. The ability to achieve this “deep ultra-strength” for Si nanowires can be attributed mainly to their pristine, defect-scarce, nanosized single-crystalline structure and atomically smooth surfaces. This result indicates that semiconductor nanowires could have ultra-large elasticity with tunable band structures for promising “elastic strain engineering” applications. PMID:27540586

  20. Low-field mobility in ultrathin silicon nanowire junctionless transistors

    NASA Astrophysics Data System (ADS)

    Soree, Bart; Magnus, Wim; Vandenberghe, William

    2012-02-01

    We theoretically investigate the phonon, surface roughness and ionized impurity limited low-field mobility of ultrathin silicon n-type nanowire junctionless transistors in the long channel approximation with wire radii ranging from 2 to 5 nm, as function of gate voltage. A few years ago, the junctionless nanowire transistor (JNT) or pinch-off nanowire was proposed by several research groups and was recently fabricated for the first time. The JNT is a uniformly doped nanowire with no junctions, i.e. source, channel and drain are doped with the same doping type. The main motivation for introducing this novel device concept are the absence of doping junctions which makes the fabrication easier, and the reduction of detrimental interactions occuring at the interface between the silicon body of the wire and the insulator (surface roughness). We investigate the case where due to quantum mechanical confinement the surface roughness scattering becomes again important and we report on the behavior of phonon, ionized impurity and surface roughness limited mobility as a function of radius and gate voltage.

  1. MOCVD growth of vertically aligned InGaN nanowires

    NASA Astrophysics Data System (ADS)

    Kuo, H. C.; Su Oh, Tae; Ku, P.-C.

    2013-05-01

    In this work, we report the growth of vertically aligned bulk InGaN nanowires (NWs) on r-plane sapphire substrate by metal organic chemical vapor deposition (MOCVD). Through the optimization process of growth conditions, such as growth temperature and pressure, we obtained high density InGaN NWs consisting of one (0001) polar- and two equivalent {1101} semi-polar planes. We have shown the highest InGaN NWs wire density of 8×108 cm-2,with an average diameter of 300 nm and a length of 2 μm. From results of photoluminescence (PL) at 30 K and 300 K, we observed the intense and broad emission peak from InGaN NWs at around 595 nm, and confirmed that the luminescence could be tuned from 580 nm to 660 nm by controlling the indium flow (TMIn) rate. Our results indicate that MOCVD-grown InGaN NWs can be effective absorbers of the blue-green range of solar spectrum and may be one of the good candidates for high efficiency photovoltaic devices targeting at blue-green photons.

  2. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.

    PubMed

    Barako, Michael T; Roy-Panzer, Shilpi; English, Timothy S; Kodama, Takashi; Asheghi, Mehdi; Kenny, Thomas W; Goodson, Kenneth E

    2015-09-02

    The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries.

  3. Silicon nanowire degradation and stabilization during lithium cycling by SEI layer formation.

    PubMed

    Cho, Jeong-Hyun; Picraux, S Tom

    2014-06-11

    Silicon anodes are of great interest for advanced lithium-ion battery applications due to their order of magnitude higher energy capacity than graphite. Below a critical diameter, silicon nanowires enable the ∼300% volume expansion during lithiation without pulverization. However, their high surface-to-volume ratio is believed to contribute to fading of their capacity retention during cycling due to solid-electrolyte-interphase (SEI) growth on surfaces. To better understand this issue, previous studies have examined the composition and morphology of the SEI layers. Here we report direct measurements of the reduction in silicon nanowire diameter with number of cycles due to SEI formation. The results reveal significantly greater Si loss near the nanowire base. From the change in silicon volume we can accurately predict the measured specific capacity reduction for silicon nanowire half cells. The enhanced Si loss near the nanowire/metal current collector interface suggests new strategies for stabilizing nanowires for long cycle life performance.

  4. Epitaxial growth of silicon nanowires using an aluminium catalyst.

    PubMed

    Wang, Yewu; Schmidt, Volker; Senz, Stephan; Gösele, Ulrich

    2006-12-01

    Silicon nanowires have been identified as important components for future electronic and sensor nanodevices. So far gold has dominated as the catalyst for growing Si nanowires via the vapour-liquid-solid (VLS) mechanism. Unfortunately, gold traps electrons and holes in Si and poses a serious contamination problem for Si complementary metal oxide semiconductor (CMOS) processing. Although there are some reports on the use of non-gold catalysts for Si nanowire growth, either the growth requires high temperatures and/or the catalysts are not compatible with CMOS requirements. From a technological standpoint, a much more attractive catalyst material would be aluminium, as it is a standard metal in Si process lines. Here we report for the first time the epitaxial growth of Al-catalysed Si nanowires and suggest that growth proceeds via a vapour-solid-solid (VSS) rather than a VLS mechanism. It is also found that the tapering of the nanowires can be strongly reduced by lowering the growth temperature.

  5. Silicon nanowires: where mechanics and optics meet at the nanoscale

    NASA Astrophysics Data System (ADS)

    Ramos, Daniel; Gil-Santos, Eduardo; Malvar, Oscar; Llorens, Jose M.; Pini, Valerio; Paulo, Alvaro San; Calleja, Montserrat; Tamayo, Javier

    2013-12-01

    Mechanical transducers based on nanowires promise revolutionary advances in biological sensing and force microscopy/spectroscopy. A crucial step is the development of simple and non-invasive techniques able to detect displacements with subpicometer sensitivity per unit bandwidth. Here, we design suspended tapered silicon nanowires supporting a range of optical resonances that confine and efficiently scatter light in the visible range. Then, we develop an optical method for efficiently coupling the evanescent field to the regular interference pattern generated by an incoming laser beam and the reflected beam from the substrate underneath the nanowire. This optomechanical coupling is here applied to measure the displacement of 50 nm wide nanowires with sensitivity on the verge of 1 fm/Hz1/2 at room temperature with a simple laser interferometry set-up. This method opens the door to the measurement of the Brownian motion of ultrashort nanowires for the detection of single biomolecular recognition events in liquids, and single molecule spectroscopy in vacuum.

  6. Epitaxial growth of silicon nanowires using an aluminium catalyst

    NASA Astrophysics Data System (ADS)

    Wang, Yewu; Schmidt, Volker; Senz, Stephan; Gösele, Ulrich

    2006-12-01

    Silicon nanowires have been identified as important components for future electronic and sensor nanodevices. So far gold has dominated as the catalyst for growing Si nanowires via the vapour-liquid-solid (VLS) mechanism. Unfortunately, gold traps electrons and holes in Si and poses a serious contamination problem for Si complementary metal oxide semiconductor (CMOS) processing. Although there are some reports on the use of non-gold catalysts for Si nanowire growth, either the growth requires high temperatures and/or the catalysts are not compatible with CMOS requirements. From a technological standpoint, a much more attractive catalyst material would be aluminium, as it is a standard metal in Si process lines. Here we report for the first time the epitaxial growth of Al-catalysed Si nanowires and suggest that growth proceeds via a vapour-solid-solid (VSS) rather than a VLS mechanism. It is also found that the tapering of the nanowires can be strongly reduced by lowering the growth temperature.

  7. Magnetic Properties of ni Nanowires Grown in Mesoporous Silicon Templates

    NASA Astrophysics Data System (ADS)

    Dolgiy, A. L.; Redko, S. V.; Yanushkevich, K. I.

    2013-05-01

    Magnetic properties of Ni nanowires electrochemically deposited into pores of mesoporous silicon template under the stationary galvanostatic regime were investigated by measuring the temperature dependence (77-700 K) of the specific magnetization σ. The measured σ values were lower with respect to that of bulk Ni. The Curie temperature, TC, derived from σ(T) for low deposition times of Ni was less (575 K) than that for bulk Ni (630 K). This is caused by dimensional effects of Ni nanoparticles.

  8. Silicon nanowire based Pirani sensor for vacuum measurements

    NASA Astrophysics Data System (ADS)

    Brun, T.; Mercier, D.; Koumela, A.; Marcoux, C.; Duraffourg, L.

    2012-10-01

    Nano-Pirani vacuum gauges based on the physical properties of suspended silicon nanowires have been fabricated and characterized. With a 160 × 260 nm2 rectangular section and a 5.2 μm length, they are 50 times smaller than the smallest silicon based vacuum sensor and they exhibits much lower power consumption. The nano-Pirani constructed are capable of measuring pressures from 50 to 105 Pa. Moreover, their fabrication is compatible with microelectronic and micromachining fabrication techniques making them suitable for in-situ monitoring of micro and nano systems vacuum packaging.

  9. Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Monastyrskii, Liubomyr S.; Boyko, Yaroslav V.; Sokolovskii, Bogdan S.; Potashnyk, Vasylyna Ya.

    2016-01-01

    An investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method—the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use of hybrid exchange-correlation potentials (B3LYP), the quantitative agreement of the calculated value of band gap in the bulk material with experimental data is achieved. The obtained results show that passivation of dangling bonds with hydrogen atoms leads to substantial transformation of electronic energy structure. At complete passivation of the dangling silicon bonds by hydrogen atoms, the band gap value takes the magnitude which substantially exceeds that for bulk silicon. The incomplete passivation gives rise to opposite effect when the band gap value decreases down the semimetallic range.

  10. Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations.

    PubMed

    Monastyrskii, Liubomyr S; Boyko, Yaroslav V; Sokolovskii, Bogdan S; Potashnyk, Vasylyna Ya

    2016-12-01

    An investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method-the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use of hybrid exchange-correlation potentials (B3LYP), the quantitative agreement of the calculated value of band gap in the bulk material with experimental data is achieved. The obtained results show that passivation of dangling bonds with hydrogen atoms leads to substantial transformation of electronic energy structure. At complete passivation of the dangling silicon bonds by hydrogen atoms, the band gap value takes the magnitude which substantially exceeds that for bulk silicon. The incomplete passivation gives rise to opposite effect when the band gap value decreases down the semimetallic range.

  11. Enhanced thermoelectric performance of rough silicon nanowires.

    PubMed

    Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz; Liang, Wenjie; Garnett, Erik C; Najarian, Mark; Majumdar, Arun; Yang, Peidong

    2008-01-10

    Approximately 90 per cent of the world's power is generated by heat engines that use fossil fuel combustion as a heat source and typically operate at 30-40 per cent efficiency, such that roughly 15 terawatts of heat is lost to the environment. Thermoelectric modules could potentially convert part of this low-grade waste heat to electricity. Their efficiency depends on the thermoelectric figure of merit ZT of their material components, which is a function of the Seebeck coefficient, electrical resistivity, thermal conductivity and absolute temperature. Over the past five decades it has been challenging to increase ZT > 1, since the parameters of ZT are generally interdependent. While nanostructured thermoelectric materials can increase ZT > 1 (refs 2-4), the materials (Bi, Te, Pb, Sb, and Ag) and processes used are not often easy to scale to practically useful dimensions. Here we report the electrochemical synthesis of large-area, wafer-scale arrays of rough Si nanowires that are 20-300 nm in diameter. These nanowires have Seebeck coefficient and electrical resistivity values that are the same as doped bulk Si, but those with diameters of about 50 nm exhibit 100-fold reduction in thermal conductivity, yielding ZT = 0.6 at room temperature. For such nanowires, the lattice contribution to thermal conductivity approaches the amorphous limit for Si, which cannot be explained by current theories. Although bulk Si is a poor thermoelectric material, by greatly reducing thermal conductivity without much affecting the Seebeck coefficient and electrical resistivity, Si nanowire arrays show promise as high-performance, scalable thermoelectric materials.

  12. Fabricating vertically aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidation.

    PubMed

    Li, Luping; Fang, Yin; Xu, Cheng; Zhao, Yang; Zang, Nanzhi; Jiang, Peng; Ziegler, Kirk J

    2016-04-22

    Silicon nanowires (SiNWs) are appealing building blocks in various applications, including photovoltaics, photonics, and sensors. Fabricating SiNW arrays with diameters <100 nm remains challenging through conventional top-down approaches. In this work, chemical etching and thermal oxidation are combined to fabricate vertically aligned, sub-20 nm SiNW arrays. Defect-free SiNWs with diameters between 95 and 200 nm are first fabricated by nanosphere (NS) lithography and chemical etching. The key aspects for defect-free SiNW fabrication are identified as: (1) achieving a high etching selectivity during NS size reduction; (2) retaining the circular NS shape with smooth sidewalls; and (3) using a directional metal deposition technique. SiNWs with identical spacing but variable diameters are demonstrated by changing the reactive ion etching power. The diameter of the SiNWs is reduced by thermal oxidation, where self-limiting oxidation is encountered after oxidizing the SiNWs at 950 °C for 1 h. A second oxidation is performed to achieve vertically aligned, sub-20 nm SiNW arrays. Si/SiO2 core/shell NWs are obtained before removing the oxidized shell. HRTEM imaging shows that the SiNWs have excellent crystallinity.

  13. Direct alignment and patterning of silver nanowires by electrohydrodynamic jet printing.

    PubMed

    Lee, Hyungdong; Seong, Baekhoon; Kim, Jihoon; Jang, Yonghee; Byun, Doyoung

    2014-10-15

    Highly aligned and patterned silver nanowires (Ag NWs) are investigated by using electrohydrodynamic (EHD) jet printing. Interaction between the flow field and the electric field as well as the mechanical stretching of the fiber jet can successfully align the Ag NWs inside the jet fiber. This technique can be applied in fabricating 1D nanostructures-based printed micro/nanoscale devices.

  14. Expanding the versatility of silicon carbide thin films and nanowires

    NASA Astrophysics Data System (ADS)

    Luna, Lunet

    Silicon carbide (SiC) based electronics and sensors hold promise for pushing past the limits of current technology to achieve small, durable devices that can function in high-temperature, high-voltage, corrosive, and biological environments. SiC is an ideal material for such conditions due to its high mechanical strength, excellent chemical stability, and its biocompatibility. Consequently, SiC thin films and nanowires have attracted interest in applications such as micro- and nano-electromechanical systems, biological sensors, field emission cathodes, and energy storage devices. However to fully realize SiC in such technologies, the reliability of metal contacts to SiC at high temperatures must be improved and the nanowire growth mechanism must be understood to enable strict control of nanowire crystal structure and orientation. Here, we present a novel metallization scheme, utilizing solid-state graphitization of SiC, to improve the long-term reliability of Pt/Ti contacts to polycrystalline n-type SiC films at high temperature. The metallization scheme includes an alumina protection layer and exhibits low, stable contact resistivity even after long-term (500 hr) testing in air at 450 ºC. We also report the crystal structure and growth mechanism of Ni-assisted silicon carbide nanowires using single-source precursor, methyltrichlorosilane. The effects of growth parameters, such as substrate and temperature, on the structure and morphology of the resulting nanowires will also be presented. Overall, this study provides new insights towards the realization of novel SiC technologies, enabled by advanced electron microscopy techniques located in the user facilities at the Molecular Foundry in Berkeley, California. This work was performed in part at the Molecular Foundry, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  15. Raman study of phase transformation from diamond structure to wurtzite structure in the silicon nanowires

    NASA Astrophysics Data System (ADS)

    Shukla, A. K.; Dixit, Saurabh

    2016-07-01

    Hexagonal silicon has emerged as an exciting material due to its novel vibrational and electronic properties. Synthesis of the wurtzite silicon nanowires (w-SiNWs) is studied here using metal assisted chemical etching (MACE) technique. Stress induced in the SiNWs during wet chemical etching is attributed to formation of the w-SiNWs. Presence of the w-SiNWs is revealed by first-order and second-order Raman spectra. The effect of variation of deposition time of silver (catalyst) is explicitly studied for growth of w-SiNWs. The deposition time enhances the density of SiNWs in an island of vertically aligned SiNWs. Absorption coefficient studies of the w-SiNWs are also conducted using UV-vis spectroscopy as a function of deposition time. Increase in the absorption coefficient in SiNWs is noticed with increasing deposition time. The prominent quantum confinement along with stress and porosity is shown to be mainly responsible for the transformation from diamond structure to wurtzite structure in the silicon nanowires.

  16. High-stability Finite-Length Silicon Nanowires: A Real Space Theoretical Study

    NASA Astrophysics Data System (ADS)

    Koukaras, E. N.; Zdetsis, A. D.; Garoufalis, C. S.

    2007-12-01

    We demonstrate by real-space density functional calculations that unreconstructed low-stability finite size hydrogenated silicon nanowires could bend through relaxation under the influence of internal strains, contrary to high-stability "magic" nanowires. The strains and the resulting bending depend on the distribution and orientation of silicon dihydrides on the nanowire's surface. This and other related effects cannot be accounted for by the usual k-space supercell techniques. We also demonstrate that reconstructed (2×1) nanowires, although bend they are practically as stable as the "magic" unreconstructed nanowires. Our calculations are in full agreement with the experimental work of Ma et al. [Science 299, 1874, (2003)].

  17. Heterogeneous nucleation of catalyst-free InAs nanowires on silicon

    NASA Astrophysics Data System (ADS)

    Gomes, U. P.; Ercolani, D.; Zannier, V.; Battiato, S.; Ubyivovk, E.; Mikhailovskii, V.; Murata, Y.; Heun, S.; Beltram, F.; Sorba, L.

    2017-02-01

    We report on the heterogeneous nucleation of catalyst-free InAs nanowires on Si(111) substrates by chemical beam epitaxy. We show that nanowire nucleation is enhanced by sputtering the silicon substrate with energetic particles. We argue that particle bombardment introduces lattice defects on the silicon surface that serve as preferential nucleation sites. The formation of these nucleation sites can be controlled by the sputtering parameters, allowing the control of nanowire density in a wide range. Nanowire nucleation is accompanied by unwanted parasitic islands, but careful choice of annealing and growth temperature allows us to strongly reduce the relative density of these islands and to realize samples with high nanowire yield.

  18. Focused ion beam-assisted fabrication of soft high-aspect ratio silicon nanowire atomic force microscopy probes.

    PubMed

    Knittel, Peter; Hibst, Nicolas; Mizaikoff, Boris; Strehle, Steffen; Kranz, Christine

    2017-03-28

    In this study, high-aspect ratio silicon nanowire (SiNW) - modified atomic force microscopy (AFM) probes are fabricated using focused ion beam (FIB) microfabrication technology and vapor-solid-solid synthesis. Commercially available soft silicon nitride probes are used for localized nanowire growth yielding soft high-aspect ratio AFM probes. The SiNW-modified cantilevers are used here for imaging in PeakForce Tappingۛ (PFT) mode, which offers high force control along with valuable information about tip-sample adhesion. A platinum catalyst, deposited accurately at a truncated AFM tip by ion beam-induced deposition (IBID), was used for localized nanowire synthesis. It could be shown that the deposition of a thin silicon dioxide layer prior to the catalyst deposition resulted in controlled SiNW growth on silicon as well as silicon nitride probes. In addition, a FIB-based method for post-growth alignment of the fabricated SiNW tips is presented, which allows tilt-compensation specifically tailored to the specifications of the used AFM instrumentation. To demonstrate the capability of such soft, high-aspect ratio AFM probes, optical gratings fabricated in GaAs and silver halide fibers were imaged in PFT mode. Additionally, the mechanical stability of these high-aspect AFM probes was evaluated on a sapphire substrate.

  19. Microspheres for the growth of silicon nanowires via vapor-liquid-solid mechanism

    SciTech Connect

    Gomez-Martinez, Arancha; Marquez, Francisco; Elizalde, Eduardo; Morant, Carmen

    2014-01-01

    Silicon nanowires have been synthesized by a simple process using a suitable support containing silica and carbon microspheres. Nanowires were grown by thermal chemical vapor deposition via a vapor-liquid-solid mechanism with only the substrate as silicon source. The curved surface of the microsized spheres allows arranging the gold catalyst as nanoparticles with appropriate dimensions to catalyze the growth of nanowires. Here, the resulting material is composed of the microspheres with the silicon nanowires attached on their surface.

  20. Electrodeposition at room temperature of amorphous silicon and germanium nanowires in ionic liquid

    NASA Astrophysics Data System (ADS)

    Martineau, F.; Namur, K.; Mallet, J.; Delavoie, F.; Endres, F.; Troyon, M.; Molinari, M.

    2009-11-01

    The electrodeposition at room temperature of silicon and germanium nanowires from the air- and water-stable ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (P1,4) containing SiCl4 as Si source or GeCl4 as Ge source is investigated by cyclic voltammetry. By using nanoporous polycarbonate membranes as templates, it is possible to reproducibly grow pure silicon and germanium nanowires of different diameters. The nanowires are composed of pure amorphous silicon or germanium. The nanowires have homogeneous cylindrical shape with a roughness of a few nanometres on the wire surfaces. The nanowires' diameters and lengths well match with the initial membrane characteristics. Preliminary photoluminescence experiments exhibit strong emission in the near infrared for the amorphous silicon nanowires.

  1. Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks

    SciTech Connect

    Kyoung Ryu, Yu; Garcia, Ricardo; Aitor Postigo, Pablo; Garcia, Fernando

    2014-06-02

    Silicon nanowires are key elements to fabricate very sensitive mechanical and electronic devices. We provide a method to fabricate sub-12 nm silicon nanowires in thickness by combining oxidation scanning probe lithography and anisotropic dry etching. Extremely thin oxide masks (0.3–1.1 nm) are transferred into nanowires of 2–12 nm in thickness. The width ratio between the mask and the silicon nanowire is close to one which implies that the nanowire width is controlled by the feature size of the nanolithography. This method enables the fabrication of very small single silicon nanowires with cross-sections below 100 nm{sup 2}. Those values are the smallest obtained with a top-down lithography method.

  2. Monolayer contact doping of silicon surfaces and nanowires using organophosphorus compounds.

    PubMed

    Hazut, Ori; Agarwala, Arunava; Subramani, Thangavel; Waichman, Sharon; Yerushalmi, Roie

    2013-12-02

    Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures(1). MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms. In this article a detailed procedure for surface doping of silicon substrate as well as silicon nanowires is demonstrated. Phosphorus dopant source was formed using tetraethyl methylenediphosphonate monolayer on a silicon substrate. This monolayer containing substrate was brought to contact with a pristine intrinsic silicon target substrate and annealed while in contact. Sheet resistance of the target substrate was measured using 4 point probe. Intrinsic silicon nanowires were synthesized by chemical vapor deposition (CVD) process using a vapor-liquid-solid (VLS) mechanism; gold nanoparticles were used as catalyst for nanowire growth. The nanowires were suspended in ethanol by mild sonication. This suspension was used to dropcast the nanowires on silicon substrate with a silicon nitride dielectric top layer. These nanowires were doped with phosphorus in similar manner as used for the intrinsic silicon wafer. Standard photolithography process was used to fabricate metal electrodes for the formation of nanowire based field effect transistor (NW-FET). The electrical properties of a representative nanowire device were measured by a semiconductor device analyzer and a probe station.

  3. Monolayer Contact Doping of Silicon Surfaces and Nanowires Using Organophosphorus Compounds

    PubMed Central

    Hazut, Ori; Agarwala, Arunava; Subramani, Thangavel; Waichman, Sharon; Yerushalmi, Roie

    2013-01-01

    Monolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures1. MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms. In this article a detailed procedure for surface doping of silicon substrate as well as silicon nanowires is demonstrated. Phosphorus dopant source was formed using tetraethyl methylenediphosphonate monolayer on a silicon substrate. This monolayer containing substrate was brought to contact with a pristine intrinsic silicon target substrate and annealed while in contact. Sheet resistance of the target substrate was measured using 4 point probe. Intrinsic silicon nanowires were synthesized by chemical vapor deposition (CVD) process using a vapor-liquid-solid (VLS) mechanism; gold nanoparticles were used as catalyst for nanowire growth. The nanowires were suspended in ethanol by mild sonication. This suspension was used to dropcast the nanowires on silicon substrate with a silicon nitride dielectric top layer. These nanowires were doped with phosphorus in similar manner as used for the intrinsic silicon wafer. Standard photolithography process was used to fabricate metal electrodes for the formation of nanowire based field effect transistor (NW-FET). The electrical properties of a representative nanowire device were measured by a semiconductor device analyzer and a probe station. PMID:24326774

  4. Electrical properties of nominally undoped silicon nanowires grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bauer, Jan; Fleischer, Frank; Breitenstein, Otwin; Schubert, Luise; Werner, Peter; Gösele, Ulrich; Zacharias, Margit

    2007-01-01

    Single undoped Si nanowires were electrically characterized. The nanowires were grown by molecular-beam epitaxy on n+ silicon substrates and were contacted by platinum/iridium tips. I-V curves were measured and electron beam induced current investigations were performed on single nanowires. It was found that the nanowires have an apparent resistivity of 0.85Ωcm, which is much smaller than expected for undoped Si nanowires. The conductance is explained by hopping conductivity at the Si -SiO2 interface of the nanowire surface.

  5. Improving nanowire sensing capability by electrical field alignment of surface probing molecules.

    PubMed

    Chu, Chia-Jung; Yeh, Chia-Sen; Liao, Chun-Kai; Tsai, Li-Chu; Huang, Chun-Ming; Lin, Hung-Yi; Shyue, Jing-Jong; Chen, Yit-Tsong; Chen, Chii-Dong

    2013-06-12

    We argue that the structure ordering of self-assembled probing molecular monolayers is essential for the reliability and sensitivity of nanowire-based field-effect sensors because it can promote the efficiency for molecular interactions as well as strengthen the molecular dipole field experienced by the nanowires. In the case of monolayers, we showed that structure ordering could be improved by means of electrical field alignment. This technique was then employed to align multilayer complexes for nanowire sensing applications. The sensitivity we achieved for detection of hybridization between 15-base single-strand DNA molecules is 0.1 fM and for alcohol sensors is 0.5 ppm. The reliability was confirmed by repeated tests on chips that contain multiple nanowire sensors.

  6. Synthesis and Photoluminescence Property of Silicon Carbide Nanowires Via Carbothermic Reduction of Silica

    NASA Astrophysics Data System (ADS)

    Luo, Xiaogang; Ma, Wenhui; Zhou, Yang; Liu, Dachun; Yang, Bin; Dai, Yongnian

    2010-11-01

    Silicon carbide nanowires have been synthesized at 1400 °C by carbothermic reduction of silica with bamboo carbon under normal atmosphere pressure without metallic catalyst. X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy and Fourier transformed infrared spectroscopy were used to characterize the silicon carbide nanowires. The results show that the silicon carbide nanowires have a core-shell structure and grow along <111> direction. The diameter of silicon carbide nanowires is about 50-200 nm and the length from tens to hundreds of micrometers. The vapor-solid mechanism is proposed to elucidate the growth process. The photoluminescence of the synthesized silicon carbide nanowires shows significant blueshifts, which is resulted from the existence of oxygen defects in amorphous layer and the special rough core-shell interface.

  7. Synthesis and Photoluminescence Property of Silicon Carbide Nanowires Via Carbothermic Reduction of Silica.

    PubMed

    Luo, Xiaogang; Ma, Wenhui; Zhou, Yang; Liu, Dachun; Yang, Bin; Dai, Yongnian

    2009-11-11

    Silicon carbide nanowires have been synthesized at 1400 degrees C by carbothermic reduction of silica with bamboo carbon under normal atmosphere pressure without metallic catalyst. X-ray diffraction, scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy and Fourier transformed infrared spectroscopy were used to characterize the silicon carbide nanowires. The results show that the silicon carbide nanowires have a core-shell structure and grow along <111> direction. The diameter of silicon carbide nanowires is about 50-200 nm and the length from tens to hundreds of micrometers. The vapor-solid mechanism is proposed to elucidate the growth process. The photoluminescence of the synthesized silicon carbide nanowires shows significant blueshifts, which is resulted from the existence of oxygen defects in amorphous layer and the special rough core-shell interface.

  8. Electrochemical synthesis of vertically aligned zinc nanowires using track-etched polycarbonate membranes as templates.

    PubMed

    Liu, Z; Zein El Abedin, S; Ghazvini, M S; Endres, F

    2013-07-21

    In the present paper, vertically aligned arrays of zinc nanowires were synthesized by electrochemical deposition into ion track-etched polycarbonate membranes in the ionic liquid electrolyte 1-ethyl-3-methylimidazolium trifluoromethylsulfonate ([EMIm]TfO)/Zn(TfO)2. Cyclic voltammetry and chronoamperometry were performed to investigate the electrochemical growth of zinc nanowires inside of the membranes. The transport processes and mechanisms of the nanowire growth in the membranes are also discussed. A supporting zinc or copper layer was deposited on the sputtered side in order to make the back layer thick enough to stabilize the wires. Zinc nanowires with a diameter of 90 nm and a length of up to 18 μm were obtained after removing the template. Furthermore, short nanowires with lengths less than 5 μm and a sandwich-like structure with nanowires in the middle were also synthesized. Vertically aligned zinc nanowire structures on such a substrate might be a potential anode candidate for future generation lithium ion batteries.

  9. Exploring the Potential of Turbulent Flow Control Using Vertically Aligned Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Bailey, Sean; Calhoun, John; Guskey, Christopher; Seigler, Michael; Koka, Aneesh; Sodano, Henry

    2012-11-01

    We present evidence that turbulent flow can be influenced by oscillating nanowires. A substrate coated with vertically aligned nanowires was installed in the boundary wall of fully-developed turbulent channel flow, and the substrate was excited by a piezoceramic actuator to oscillate the nanowires. Because the nanowires are immersed in the viscous sublayer, it was previously unclear whether the small scale flow oscillations imparted into the bulk flow by the nanowires would influence the turbulent flow or be dissipated by the effects of viscosity. Our experiments demonstrated that the nanowires produced perturbations in the flow and contributed energy throughout the depth of the turbulent layer. A parallel investigation using a dynamically scaled surface of vertically aligned wires in laminar flow found that, even at low Reynolds numbers, significant momentum transport can be produced in the flow by the introduction of a travelling wave motion into the surface. These findings reflect the potential for using oscillating nanowires as a novel method of near-wall turbulent flow control. This work was supported by the Air Force Office of Scientific Research under FA9550-11-1-0140.

  10. Monolithically Integrated High-β Nanowire Lasers on Silicon.

    PubMed

    Mayer, B; Janker, L; Loitsch, B; Treu, J; Kostenbader, T; Lichtmannecker, S; Reichert, T; Morkötter, S; Kaniber, M; Abstreiter, G; Gies, C; Koblmüller, G; Finley, J J

    2016-01-13

    Reliable technologies for the monolithic integration of lasers onto silicon represent the holy grail for chip-level optical interconnects. In this context, nanowires (NWs) fabricated using III-V semiconductors are of strong interest since they can be grown site-selectively on silicon using conventional epitaxial approaches. Their unique one-dimensional structure and high refractive index naturally facilitate low loss optical waveguiding and optical recirculation in the active NW-core region. However, lasing from NWs on silicon has not been achieved to date, due to the poor modal reflectivity at the NW-silicon interface. We demonstrate how, by inserting a tailored dielectric interlayer at the NW-Si interface, low-threshold single mode lasing can be achieved in vertical-cavity GaAs-AlGaAs core-shell NW lasers on silicon as measured at low temperature. By exploring the output characteristics along a detection direction parallel to the NW-axis, we measure very high spontaneous emission factors comparable to nanocavity lasers (β = 0.2) and achieve ultralow threshold pump energies ≤11 pJ/pulse. Analysis of the input-output characteristics of the NW lasers and the power dependence of the lasing emission line width demonstrate the potential for high pulsation rates ≥250 GHz. Such highly efficient nanolasers grown monolithically on silicon are highly promising for the realization of chip-level optical interconnects.

  11. Reduction of heat capacity and phonon group velocity in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Marchbanks, Christopher; Wu, Zhigang

    2015-02-01

    We report on ab initio linear-response calculations of lattice vibrations in narrow silicon nanowires on the order of 1 nm along the [001], [011], and [111] growth directions. The confinement and nanowire structure substantially alter phonon distributions, resulting in an 15% to 23% reduction in heat capacity and an averaged decrease of 31% in acoustic velocities compared with bulk silicon. Based on these, we estimate an improvement up to 4 fold on thermoelectric performance due solely to the modified lattice vibrations in narrow silicon nanowires over bulk silicon.

  12. Significant thermal conductivity reduction of silicon nanowire forests through discrete surface doping of germanium

    SciTech Connect

    Pan, Ying; Hong, Guo; Raja, Shyamprasad N.; Zimmermann, Severin; Poulikakos, Dimos; Tiwari, Manish K.

    2015-03-02

    Silicon nanowires (SiNWs) are promising materials for the realization of highly-efficient and cost effective thermoelectric devices. Reduction of the thermal conductivity of such materials is a necessary and viable pathway to achieve sufficiently high thermoelectric efficiencies, which are inversely proportional to the thermal conductivity. In this article, vertically aligned forests of SiNW and germanium (Ge)-doped SiNW with diameters around 100 nm have been fabricated, and their thermal conductivity has been measured. The results show that discrete surface doping of Ge on SiNW arrays can lead to 23% reduction in thermal conductivity at room temperature compared to uncoated SiNWs. Such reduction can be further enhanced to 44% following a thermal annealing step. By analyzing the binding energy changes of Ge-3d and Si-2p using X-ray photoelectron spectroscopy, we demonstrate that surface doped Ge interacts strongly with Si, enhancing phonon scattering at the Si-Ge interface as has also been shown in non-equilibrium molecular dynamics studies of single nanowires. Overall, our results suggest a viable pathway to improve the energy conversion efficiency of nanowire-forest thermoelectric nanomaterials.

  13. Cellular uptake and dynamics of unlabeled freestanding silicon nanowires

    PubMed Central

    Zimmerman, John F.; Parameswaran, Ramya; Murray, Graeme; Wang, Yucai; Burke, Michael; Tian, Bozhi

    2016-01-01

    The ability to seamlessly merge electronic devices with biological systems at the cellular length scale is an exciting prospect for exploring new fundamental cell biology and in designing next-generation therapeutic devices. Semiconductor nanowires are well suited for achieving this goal because of their intrinsic size and wide range of possible configurations. However, current studies have focused primarily on delivering substrate-bound nanowire devices through mechanical abrasion or electroporation, with these bulkier substrates negating many of the inherent benefits of using nanoscale materials. To improve on this, an important next step is learning how to distribute these devices in a drug-like fashion, where cells can naturally uptake and incorporate these electronic components, allowing for truly noninvasive device integration. We show that silicon nanowires (SiNWs) can potentially be used as such a system, demonstrating that label-free SiNWs can be internalized in multiple cell lines (96% uptake rate), undergoing an active “burst-like” transport process. Our results show that, rather than through exogenous manipulation, SiNWs are internalized primarily through an endogenous phagocytosis pathway, allowing cellular integration of these materials. To study this behavior, we have developed a robust set of methodologies for quantitatively examining high–aspect ratio nanowire-cell interactions in a time-dependent manner on both single-cell and ensemble levels. This approach represents one of the first dynamic studies of semiconductor nanowire internalization and offers valuable insight into designing devices for biomolecule delivery, intracellular sensing, and photoresponsive therapies. PMID:28028534

  14. Crystallographic alignment of high-density gallium nitride nanowire arrays.

    PubMed

    Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong

    2004-08-01

    Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

  15. Incorporation and redistribution of impurities into silicon nanowires during metal-particle-assisted growth.

    PubMed

    Chen, Wanghua; Yu, Linwei; Misra, Soumyadeep; Fan, Zheng; Pareige, Philippe; Patriarche, Gilles; Bouchoule, Sophie; Roca i Cabarrocas, Pere

    2014-06-12

    The incorporation of metal atoms into silicon nanowires during metal-particle-assisted growth is a critical issue for various nanowire-based applications. Here we have been able to access directly the incorporation and redistribution of metal atoms into silicon nanowires produced by two different processes at growth rates ranging from 3 to 40 nm s(-1), by using laser-assisted atom probe tomography and scanning transmission electron microscopy. We find that the concentration of metal impurities in crystalline silicon nanowires increases with the growth rate and can reach a level of two orders of magnitude higher than that in their equilibrium solubility. Moreover, we demonstrate that the impurities are first incorporated into nanowire volume and then segregate at defects such as the twin planes. A dimer-atom-insertion kinetic model is proposed to account for the impurity incorporation into nanowires.

  16. Synthesis of silicon nanowires using tin catalyst by hot wire chemical vapor processing

    SciTech Connect

    Meshram, Nagsen; Kumbhar, Alka; Dusane, R.O.

    2013-06-01

    Highlights: ► Silicon nanowires are grown by hot wire chemical vapor processing at 400 °C using Sn as catalyst material via VLS. ► For nanowire synthesis Sn nanotemplates are formed with hot wire generated atomic hydrogen. ► The TEM image reveals the crystalline nature of nanowire. - Abstract: Silicon nanowires (SiNWs) have been synthesized at temperatures in the range 300–400 °C by the hot wire chemical vapor processing (HWCVP) using tin nanotemplate. The tin nano-template is formed by hot wire atomic hydrogen treatment of thermally evaporated Sn films (∼300 nm thick) on glass substrates. Silicon nanowires are then grown using hot wire induced dissociation of SiH{sub 4} gas over the nanotemplate. Growth conditions like growth time and temperature were varied to study their effect on the tin nanoparticle size and on the silicon nanowire dimensions thereafter. From the observations, it is clear that the nanowire diameters and lengths depend on the size of nanoparticles and the growth time respectively. Though SiNWs were observed to grow at temperatures as low as 300 °C, nanowires with a narrow diameter distribution were achieved at 400 °C. Raman spectra and transmission electron microscope (TEM) reveal the crystalline nature of the silicon nanowires.

  17. Smart integration of silicon nanowire arrays in all-silicon thermoelectric micro-nanogenerators

    NASA Astrophysics Data System (ADS)

    Fonseca, Luis; Santos, Jose-Domingo; Roncaglia, Alberto; Narducci, Dario; Calaza, Carlos; Salleras, Marc; Donmez, Inci; Tarancon, Albert; Morata, Alex; Gadea, Gerard; Belsito, Luca; Zulian, Laura

    2016-08-01

    Micro and nanotechnologies are called to play a key role in the fabrication of small and low cost sensors with excellent performance enabling new continuous monitoring scenarios and distributed intelligence paradigms (Internet of Things, Trillion Sensors). Harvesting devices providing energy autonomy to those large numbers of microsensors will be essential. In those scenarios where waste heat sources are present, thermoelectricity will be the obvious choice. However, miniaturization of state of the art thermoelectric modules is not easy with the current technologies used for their fabrication. Micro and nanotechnologies offer an interesting alternative considering that silicon in nanowire form is a material with a promising thermoelectric figure of merit. This paper presents two approaches for the integration of large numbers of silicon nanowires in a cost-effective and practical way using only micromachining and thin-film processes compatible with silicon technologies. Both approaches lead to automated physical and electrical integration of medium-high density stacked arrays of crystalline or polycrystalline silicon nanowires with arbitrary length (tens to hundreds microns) and diameters below 100 nm.

  18. Fabrication of flexible and vertical silicon nanowire electronics.

    PubMed

    Weisse, Jeffrey M; Lee, Chi Hwan; Kim, Dong Rip; Zheng, Xiaolin

    2012-06-13

    Vertical silicon nanowire (SiNW) array devices directly connected on both sides to metallic contacts were fabricated on various non-Si-based substrates (e.g., glass, plastics, and metal foils) in order to fully exploit the nanomaterial properties for final applications. The devices were realized with uniform length Ag-assisted electroless etched SiNW arrays that were detached from their fabrication substrate, typically Si wafers, reattached to arbitrary substrates, and formed with metallic contacts on both sides of the NW array. Electrical characterization of the SiNW array devices exhibits good current-voltage characteristics consistent with the SiNW morphology.

  19. Size-sensitive Young's modulus of kinked silicon nanowires.

    PubMed

    Jiang, Jin-Wu; Zhao, Jun-Hua; Rabczuk, Timon

    2013-05-10

    We perform both classical molecular dynamics simulations and beam model calculations to investigate the Young's modulus of kinked silicon nanowires (KSiNWs). The Young's modulus is found to be highly sensitive to the arm length of the kink and is essentially inversely proportional to the arm length. The mechanism underlying the size dependence is found to be the interplay between the kink angle potential and the arm length potential, where we obtain an analytic relationship between the Young's modulus and the arm length of the KSiNW. Our results provide insight into the application of this novel building block in nanomechanical devices.

  20. Classical Coulomb blockade of a silicon nanowire dot

    NASA Astrophysics Data System (ADS)

    Huang, Shaoyun; Fukata, Naoki; Shimizu, Maki; Yamaguchi, Tomohiro; Sekiguchi, Takashi; Ishibashi, Koji

    2008-05-01

    Single electron transistors (SETs) have been fabricated with an individual n-type single-crystal silicon nanowire (SiNW) that was grown by a catalytic chemical vapor deposition technique, and their transport properties have been measured in low temperatures. The SiNW-SET in the present work exhibited well pronounced Coulomb oscillations in a wide gate voltage range from -10to10V, featuring in uniform peak height, uniform full width at half maximum, and equidistant peak spacing. The charging energy turned out to be 64μeV. The temperature dependence of Coulomb oscillations revealed that the dot worked within the classical Coulomb blockade model.

  1. Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode.

    PubMed

    Oh, Ilwhan; Kye, Joohong; Hwang, Seongpil

    2012-01-11

    Herein we report that silicon nanowires (SiNWs) fabricated via metal-catalyzed electroless etching yielded a photoelectrochemical hydrogen generation performance superior to that of a planar Si, which is attributed to a lower kinetic overpotential due to a higher surface roughness, favorable shift in the flat-band potential, and light-trapping effects of the SiNW surface. The SiNW photocathode yielded a photovoltage of 0.42 V, one of the highest values ever reported for hydrogen generation on p-type Si/electrolyte interfaces.

  2. Polymer chain alignment and transistor properties of nanochannel-templated poly(3-hexylthiophene) nanowires

    NASA Astrophysics Data System (ADS)

    Oh, Seungjun; Hayakawa, Ryoma; Pan, Chengjun; Sugiyasu, Kazunori; Wakayama, Yutaka

    2016-08-01

    Nanowires of semiconducting poly(3-hexylthiophene) (P3HT) were produced by a nanochannel-template technique. Polymer chain alignment in P3HT nanowires was investigated as a function of nanochannel widths (W) and polymer chain lengths (L). We found that the ratio between chain length and channel width (L/W) was a key parameter as regards promoting polymer chain alignment. Clear dichroism was observed in polarized ultraviolet-visible (UV-Vis) absorption spectra only at a ratio of approximately L/W = 2, indicating that the L/W ratio must be optimized to achieve uniaxial chain alignment in the nanochannel direction. We speculate that an appropriate L/W ratio is effective in confining the geometries and conformations of polymer chains. This discussion was supported by theoretical simulations based on molecular dynamics. That is, the geometry of the polymer chains, including the distance and tilting angles of the chains in relation to the nanochannel surface, was dominant in determining the longitudinal alignment along the nanochannels. Thus prepared highly aligned polymer nanowire is advantageous for electrical carrier transport and has great potential for improving the device performance of field-effect transistors. In fact, a one-order improvement in carrier mobility was observed in a P3HT nanowire transistor.

  3. Reliable fabrication of sub-10 nm silicon nanowires by optical lithography

    NASA Astrophysics Data System (ADS)

    Ramadan, Sami; Kwa, Kelvin; King, Peter; O'Neill, Anthony

    2016-10-01

    The reliable and controllable fabrication of silicon nanowires is achieved, using mature CMOS technology processes. This will enable a low-cost route to integrating novel nanostructures with CMOS logic. The challenge of process repeatability has been overcome by careful study of material properties for processes such as etching and oxidation. By controlling anisotropic wet etching conditions, selection of nitride mask layer properties and sidewall oxidation, a robust process was achieved to realize silicon nanowires with sub 10 nm features. Surface roughness of nanowires was improved by a suitable oxidation step. The influence of process conditions on the shape of the nanowire was studied using TCAD simulation.

  4. Thermoelectric properties of electrolessly etched silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Sadhu, Jyothi; Tian, Hongxiang; Ma, Jun; Valavala, Krishna; Singh, Piyush; Sinha, Sanjiv

    2013-03-01

    Patterning silicon as nanowires with roughened sidewalls enhances the thermoelectric figure-of-merit ZT by order of magnitude compared to the bulk at 300 K. The enhancement is mainly achieved by the remarkable reduction in the thermal conductivity below 5 W/mK at 300 K with only a negligible effect on the power factor of these nanowires. While the focus remained on understanding the implications of surface disorder on the thermal conductivity, the phonon transport effects on the Seebeck coefficient of these wires remains largely unexplored. We developed an electroless etching technique to generate nanowire arrays (NWAs) with controlled surface roughness, morphology, porosity and doping. We conduct the simultaneous device-level measurements of the Seebeck coefficient and thermal conductivity of the NWAs using frequency domain techniques. We observe that nano-structuring quenches the phonon drag in NWAs thereby reducing the Seebeck coefficient by ~25% compared to the bulk at degenerate doping levels. Further, we observe that the sidewall roughness greater than 3 nm roughness height lowers the thermal conductivity 75% below the Casimir limit with 10% - 15% increase in Seebeck coefficient. The porous NWAs show thermal conductivity close to the amorphous limit of Si with enhancement in the Seebeck coefficient primarily due to the carrier depletion.

  5. Interactive effect of hysteresis and surface chemistry on gated silicon nanowire gas sensors.

    PubMed

    Paska, Yair; Haick, Hossam

    2012-05-01

    Gated silicon nanowire gas sensors have emerged as promising devices for chemical and biological sensing applications. Nevertheless, the performance of these devices is usually accompanied by a "hysteresis" phenomenon that limits their performance under real-world conditions. In this paper, we use a series of systematically changed trichlorosilane-based organic monolayers to study the interactive effect of hysteresis and surface chemistry on gated silicon nanowire gas sensors. The results show that the density of the exposed or unpassivated Si-OH groups (trap states) on the silicon nanowire surface play by far a crucial effect on the hysteresis characteristics of the gated silicon nanowire sensors, relative to the effect of hydrophobicity or molecular density of the organic monolayer. Based on these findings, we provide a tentative model-based understanding of (i) the relation between the adsorbed organic molecules, the hysteresis, and the related fundamental parameters of gated silicon nanowire characteristics and of (ii) the relation between the hysteresis drift and possible screening effect on gated silicon nanowire gas sensors upon exposure to different analytes at real-world conditions. The findings reported in this paper could be considered as a launching pad for extending the use of the gated silicon nanowire gas sensors for discriminations between polar and nonpolar analytes in complex, real-world gas mixtures.

  6. Thermal Transport in Silicon Nanowires at High Temperature up to 700 K.

    PubMed

    Lee, Jaeho; Lee, Woochul; Lim, Jongwoo; Yu, Yi; Kong, Qiao; Urban, Jeffrey J; Yang, Peidong

    2016-07-13

    Thermal transport in silicon nanowires has captured the attention of scientists for understanding phonon transport at the nanoscale, and the thermoelectric figure-of-merit (ZT) reported in rough nanowires has inspired engineers to develop cost-effective waste heat recovery systems. Thermoelectric generators composed of silicon target high-temperature applications due to improved efficiency beyond 550 K. However, there have been no studies of thermal transport in silicon nanowires beyond room temperature. High-temperature measurements also enable studies of unanswered questions regarding the impact of surface boundaries and varying mode contributions as the highest vibrational modes are activated (Debye temperature of silicon is 645 K). Here, we develop a technique to investigate thermal transport in nanowires up to 700 K. Our thermal conductivity measurements on smooth silicon nanowires show the classical diameter dependence from 40 to 120 nm. In conjunction with Boltzmann transport equation, we also probe an increasing contribution of high-frequency phonons (optical phonons) in smooth silicon nanowires as the diameter decreases and the temperature increases. Thermal conductivity of rough silicon nanowires is significantly reduced throughout the temperature range, demonstrating a potential for efficient thermoelectric generation (e.g., ZT = 1 at 700 K).

  7. SERS detection and antibacterial activity from uniform incorporation of Ag nanoparticles with aligned Si nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Yun; Hsu, Li-Jen; Hsiao, Po-Hsuan; Yu, Chang-Tze Ricky

    2015-11-01

    We present a facile, reliable and controllable two-steps electroless deposition for uniformly decorating the silver (Ag) nanoparticles (NPs) on the highly aspect ratio of silicon (Si) nanowire arrays. Different from the direct Ag-loading process, which is normally challenged by the non-uniform coating of Ag, the formation of Ag NPs using such innovative electroless process is no longer to be limited at top nanowire surfaces solely; instead, each Ag+/Si interface can initiate the galvanic reduction of Ag+ ions, thus resulting in the uniform formation of Ag NPs on the entire Si nanowire arrays. In addition, systematic explorations of surface-enhanced Raman scattering (SERS) capability as well as antibacterial activity of the Ag/Si-incorporated nanostructures were performed, and the optimized Ag loadings on Si nanowire-based substrates along with the kinetic investigations were further revealed, which may benefit their practical applications in sensing, medical and biological needs.

  8. Photonic Torque Microscopy of the Nonconservative Force Field for Optically Trapped Silicon Nanowires.

    PubMed

    Irrera, Alessia; Magazzù, Alessandro; Artoni, Pietro; Simpson, Stephen H; Hanna, Simon; Jones, Philip H; Priolo, Francesco; Gucciardi, Pietro Giuseppe; Maragò, Onofrio M

    2016-07-13

    We measure, by photonic torque microscopy, the nonconservative rotational motion arising from the transverse components of the radiation pressure on optically trapped, ultrathin silicon nanowires. Unlike spherical particles, we find that nonconservative effects have a significant influence on the nanowire dynamics in the trap. We show that the extreme shape of the trapped nanowires yields a transverse component of the radiation pressure that results in an orbital rotation of the nanowire about the trap axis. We study the resulting motion as a function of optical power and nanowire length, discussing its size-scaling behavior. These shape-dependent nonconservative effects have implications for optical force calibration and optomechanics with levitated nonspherical particles.

  9. Directed growth of horizontally aligned gallium nitride nanowires for nanoelectromechanical resonator arrays.

    PubMed

    Henry, Tania; Kim, Kyungkon; Ren, Zaiyuan; Yerino, Christopher; Han, Jung; Tang, Hong X

    2007-11-01

    We report the growth of horizontally aligned arrays and networks of GaN nanowires (NWs) as resonant components in nanoelectromechanical systems (NEMS). A combination of top-down selective area growth (SAG) and bottom-up vapor-liquid-solid (VLS) synthesis enables flexible fabrication of highly ordered nanowire arrays in situ with no postgrowth dispersion. Mechanical resonance of free-standing nanowires are measured, with quality factors (Q) ranging from 400 to 1000. We obtained a Young's modulus (E) of approximately 338 GPa from an array of NWs with varying diameters and lengths. The measurement allows detection of nanowire motion with a rotating frame and reveals dual fundamental resonant modes in two orthogonal planes. A universal ratio between the resonant frequencies of these two fundamental modes, irrespective of their dimensions, is observed and attributed to an isosceles cross section of GaN NWs.

  10. Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte

    PubMed Central

    2010-01-01

    A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO) template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current–time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) methods and X-Ray diffraction (XRD). It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm−2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially. PMID:20596417

  11. Vertically aligned cadmium chalcogenide nanowire arrays on muscovite mica: a demonstration of epitaxial growth strategy.

    PubMed

    Utama, Muhammad Iqbal Bakti; Peng, Zeping; Chen, Rui; Peng, Bo; Xu, Xinlong; Dong, Yajie; Wong, Lai Mun; Wang, Shijie; Sun, Handong; Xiong, Qihua

    2011-08-10

    We report a strategy for achieving epitaxial, vertically aligned cadmium chalcogenide (CdS, CdSe, and CdTe) nanowire arrays utilizing van der Waals epitaxy with (001) muscovite mica substrate. The nanowires, grown from a vapor transport process, exhibited diameter uniformity throughout their length, sharp interface to the substrate, and positive correlation between diameter and length with preferential growth direction of [0001] for the monocrystalline wurtzite CdS and CdSe nanowires, but of [111] for zinc blende CdTe nanowires, which also featured abundant twinning boundaries. Self-catalytic vapor-liquid-solid mechanism with hydrogen-assisted thermal evaporation is proposed to intepret the observations. Optical absorption from the as-grown CdSe nanowire arrays on mica at 10 K revealed intense first-order exciton absorption and its longitudinal optical phonon replica. A small Stokes shift (∼1.3 meV) was identified, suggesting the high quality of the nanowires. This study demonstrated the generality of van der Waals epitaxy for the growth of nanowire arrays and their potential applications in optical and energy related devices.

  12. Synthesis of Vertically-Aligned Zinc Oxide Nanowires and Their Application as a Photocatalyst

    PubMed Central

    Zhou, Qiong; Wen, John Z.; Zhao, Pei; Anderson, William A.

    2017-01-01

    Vertically aligned zinc oxide (ZnO) nanowires were hydrothermally synthesized on a glass substrate with the assistance of a pre-coated ZnO seeding layer. The crystalline structure, morphology and transmission spectrum of the as-synthesized sample were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and ultraviolet-visible (UV-Vis) spectrophotometry, respectively, indicating a wurzite ZnO material of approximately 100 nm wire diameter and absorbance at 425 nm and lower wavelengths. The photocatalytic activity of the sample was tested via the degradation of methyl orange in aqueous solution under UV-A irradiation. The synthesized nanowires showed a high photocatalytic activity, which increased up to 90% degradation in 2 h as pH was increased to 12. It was shown that the photocatalytic activity of the nanowires was proportional to the length to diameter ratio of the nanowires, which was in turn controlled by the growth time and grain size of the seed layer. Estimates suggest that diffusion into the regions between nanowires may be significantly hindered. Finally, the reusability of the prepared ZnO nanowire samples was also investigated, with results showing that the nanowires still showed 97% of its original photoactivity after ten cycles of use. PMID:28336843

  13. Horizontal transfer of aligned Si nanowire arrays and their photoconductive performance

    PubMed Central

    2014-01-01

    An easy and low-cost method to transfer large-scale horizontally aligned Si nanowires onto a substrate is reported. Si nanowires prepared by metal-assisted chemical etching were assembled and anchored to fabricate multiwire photoconductive devices with standard Si technology. Scanning electron microscopy images showed highly aligned and successfully anchored Si nanowires. Current-voltage tests showed an approximately twofold change in conductivity between the devices in dark and under laser irradiation. Fully reversible light switching ON/OFF response was also achieved with an ION/IOFF ratio of 230. Dynamic response measurement showed a fast switching feature with response and recovery times of 10.96 and 19.26 ms, respectively. PMID:25520603

  14. Incubation behavior of silicon nanowire growth investigated by laser-assisted rapid heating

    NASA Astrophysics Data System (ADS)

    Ryu, Sang-gil; Kim, Eunpa; Allen, Frances I.; Hwang, David J.; Minor, Andrew M.; Grigoropoulos, Costas P.

    2016-08-01

    We investigate the early stage of silicon nanowire growth by the vapor-liquid-solid mechanism using laser-localized heating combined with ex-situ chemical mapping analysis by energy-filtered transmission electron microscopy. By achieving fast heating and cooling times, we can precisely determine the nucleation times for nanowire growth. We find that the silicon nanowire nucleation process occurs on a time scale of ˜10 ms, i.e., orders of magnitude faster than the times reported in investigations using furnace processes. The rate-limiting step for silicon nanowire growth at temperatures in the vicinity of the eutectic temperature is found to be the gas reaction and/or the silicon crystal growth process, whereas at higher temperatures it is the rate of silicon diffusion through the molten catalyst that dictates the nucleation kinetics.

  15. High efficiency silicon solar cell based on asymmetric nanowire.

    PubMed

    Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M; Baek, Chang-Ki

    2015-07-08

    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm(2) and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells.

  16. High efficiency silicon solar cell based on asymmetric nanowire

    PubMed Central

    Ko, Myung-Dong; Rim, Taiuk; Kim, Kihyun; Meyyappan, M.; Baek, Chang-Ki

    2015-01-01

    Improving the efficiency of solar cells through novel materials and devices is critical to realize the full potential of solar energy to meet the growing worldwide energy demands. We present here a highly efficient radial p-n junction silicon solar cell using an asymmetric nanowire structure with a shorter bottom core diameter than at the top. A maximum short circuit current density of 27.5 mA/cm2 and an efficiency of 7.53% were realized without anti-reflection coating. Changing the silicon nanowire (SiNW) structure from conventional symmetric to asymmetric nature improves the efficiency due to increased short circuit current density. From numerical simulation and measurement of the optical characteristics, the total reflection on the sidewalls is seen to increase the light trapping path and charge carrier generation in the radial junction of the asymmetric SiNW, yielding high external quantum efficiency and short circuit current density. The proposed asymmetric structure has great potential to effectively improve the efficiency of the SiNW solar cells. PMID:26152914

  17. Formation of Luminescent Silicon Nanowires and Porous Silicon by Metal-Assisted Electroless Etching

    NASA Astrophysics Data System (ADS)

    Karbassian, F.; Mousavi, B. Kheyraddini; Rajabali, S.; Talei, R.; Mohajerzadeh, S.; Asl-Soleimani, E.

    2014-04-01

    Metal-assisted etching of silicon in HF/H2O2 aqueous solutions has been used to fabricate luminescent silicon nanowires (SiNWs) and porous silicon. The impact of the gold catalyst layer thickness and the etching solution on the morphology of the synthesized nanostructures and the diameter of the obtained nanowires were systematically investigated. Scanning electron microscopy (SEM) analyses reveal that the morphology of the fabricated structures strongly depends on the composition of the solution and the thickness of the catalyst layer. It has been observed that SiNWs are formed in solutions with H2O2 ratios (ξ) below 10 %; increasing the H2O2 concentration above this critical value leads to mesoporous (10 % < ξ < 14 %) and macroporous (14 % < ξ < 17 %) structures. Photoluminescence measurements show that SiNWs emit light at about 430 nm. Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) analyses were utilized to determine the origin of the emission in the silicon nanostructures. TEM imaging demonstrates that SiNWs are covered by a thin layer of porous silicon, which is assumed to be responsible for their light emission.

  18. A silicon-nanowire memory driven by optical gradient force induced bistability

    SciTech Connect

    Dong, B.; Cai, H. Gu, Y. D.; Kwong, D. L.; Chin, L. K.; Ng, G. I.; Ser, W.; Huang, J. G.; Yang, Z. C.; Liu, A. Q.

    2015-12-28

    In this paper, a bistable optical-driven silicon-nanowire memory is demonstrated, which employs ring resonator to generate optical gradient force over a doubly clamped silicon-nanowire. Two stable deformation positions of a doubly clamped silicon-nanowire represent two memory states (“0” and “1”) and can be set/reset by modulating the light intensity (<3 mW) based on the optical force induced bistability. The time response of the optical-driven memory is less than 250 ns. It has applications in the fields of all optical communication, quantum computing, and optomechanical circuits.

  19. Synthesis of silicon carbide nanowires in a catalyst-assisted process

    NASA Astrophysics Data System (ADS)

    Deng, S. Z.; Wu, Z. S.; Zhou, Jun; Xu, N. S.; Chen, Jian; Chen, Jun

    2002-04-01

    At elevated temperatures, silicon carbide nanowires were synthesized in a catalyst-assisted process using aluminum as a catalyst. Transmission electron microscopy shows that the nanowires are around 20 nm in diameter and around 2 μm in length. High resolution transmission electron microscopy shows that the nanowires are crystalline β-SiC. Raman spectra show the typical features of nano-SiC. A model based on vapor-liquid-solid process is proposed to explain our finding.

  20. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Yuping; Li, Chengchen; Chen, Mingming; Yu, Xiao; Chang, Yunwei; Chen, Anqi; Zhu, Hai; Tang, Zikang

    2016-12-01

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future.

  1. Beam-deposited platinum as versatile catalyst for bottom-up silicon nanowire synthesis

    SciTech Connect

    Hibst, N.; Strehle, S.; Knittel, P.; Kranz, C.; Mizaikoff, B.

    2014-10-13

    The controlled localized bottom-up synthesis of silicon nanowires on arbitrarily shaped surfaces is still a persisting challenge for functional device assembly. In order to address this issue, electron beam and focused ion beam-assisted catalyst deposition have been investigated with respect to platinum expected to form a PtSi alloy catalyst for a subsequent bottom-up nanowire synthesis. The effective implementation of pure platinum nanoparticles or thin films for silicon nanowire growth has been demonstrated recently. Beam-deposited platinum contains significant quantities of amorphous carbon due to the organic precursor and gallium ions for a focused ion beam-based deposition process. Nevertheless, silicon nanowires could be grown on various substrates regardless of the platinum purity. Additionally, p-type doping could be realized with diborane whereas n-type doping suppressed a nanowire growth. The rational utilization of this beam-assisted approach enables us to control the localized synthesis of single silicon nanowires at planar surfaces but succeeded also in single nanowire growth at the three-dimensional apex of an atomic force microscopy tip. Therefore, this catalyst deposition method appears to be a unique extension of current technologies to assemble complex nanowire-based devices.

  2. Fabrication Characteristics of Silicon Nanowires via the Electrochemical Electroless Etching Method.

    PubMed

    Kang, ByeongSu; Jeong, Chae Hwan; Kim, Changheon; Kim, Min-Young; Choi, Bum Ho; Lee, Moo Sung; Kim, Ho-Sung

    2015-07-01

    A silicon nanowire structure was fabricated using the electrochemical electroless etching method, involving electroless plating and the electrochemical etching process. The reflection of the absorption layer with the nanowires' structure was about 5%, which is better than a bulk-type solar cell (10%).

  3. Glucose-Derived Porous Carbon-Coated Silicon Nanowires as Efficient Electrodes for Aqueous Micro-Supercapacitors.

    PubMed

    Devarapalli, Rami Reddy; Szunerits, Sabine; Coffinier, Yannick; Shelke, Manjusha V; Boukherroub, Rabah

    2016-02-01

    In this study, we report on carbon coating of vertically aligned silicon nanowire (SiNWs) arrays via a simple hydrothermal process using glucose as carbon precursor. Using this process, a thin carbon layer is uniformly deposited on the SiNWs. Under optimized conditions, the coated SiNWs electrode showed better electrochemical energy storage capacity as well as exceptional stability in aqueous system as compared to uncoated SiNWs. The as-measured capacitance reached 25.64 mF/cm(2) with a good stability up to 25000 charging/discharging cycles in 1 M Na2SO4 aqueous solution.

  4. Synthesize of barium ferrite nanowire array by self-fabricated porous silicon template

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Han, Mangui; Deng, Jiangxia; Zheng, Liang; Wu, Jun; Deng, Longjiang; Qin, Huibin

    2014-08-01

    In this work, we synthesize barium ferrite (BaFe12O19) nanowire array in porous silicon template. The porous silicon templates are prepared via gold-assisted chemical etching method. The gold (Au) nanoparticles with mean diameter of 30 nm and distance of 100 nm were ordered on the surface of Si substrate through the Polystyrene (510000)-block-poly (2-vinylpyridine) (31000) (PS510000-b-P2VP31000) diblock copolymer. Porous silicon templates with mean diameter of 500 nm and distance between the pores of 500 nm were fabricated by two etching steps. BaFe12O19 nanowires with mean diameter of 200 nm were synthesized into a porous silicon template by a sol-gel method. Magnetic hysteresis loops show an isotropic feature of the BaFe12O19 nanowires array. The coercivity (Hc) and squareness ratio (Mr/Ms) of nanowire arrays are 2560 Oe and 0.6, respectively.

  5. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes.

    PubMed

    Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong

    2015-09-04

    In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H₂O₂) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM⁻¹·cm⁻²) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  6. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    PubMed Central

    Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong

    2015-01-01

    In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303

  7. TiO₂ nanowire dispersions in viscous polymer matrix: electrophoretic alignment and optical properties.

    PubMed

    Šutka, Andris; Saal, Kristjan; Kisand, Vambola; Lõhmus, Rünno; Joost, Urmas; Timusk, Martin

    2014-10-17

    The changes in optical properties during TiO₂ nanowire orientation in polydimethylsiloxane (PDMS) matrix under the influence of an electric field are strongly influenced by nanowire (NW) diameter. It was demonstrated for the first time that either positive or negative change in transmittance can be induced by NW alignment parallel to the electric field depending on the NW diameter. These effects can be explained by the interplay between scattering and reflectance. Experimental findings reported could be important for smart window applications for the regulation of visible or even infrared transparency, thus reducing the energy consumption by air conditioning systems in buildings and automobiles in the future.

  8. Conductive-probe atomic force microscopy characterization of silicon nanowire

    PubMed Central

    2011-01-01

    The electrical conduction properties of lateral and vertical silicon nanowires (SiNWs) were investigated using a conductive-probe atomic force microscopy (AFM). Horizontal SiNWs, which were synthesized by the in-plane solid-liquid-solid technique, are randomly deployed into an undoped hydrogenated amorphous silicon layer. Local current mapping shows that the wires have internal microstructures. The local current-voltage measurements on these horizontal wires reveal a power law behavior indicating several transport regimes based on space-charge limited conduction which can be assisted by traps in the high-bias regime (> 1 V). Vertical phosphorus-doped SiNWs were grown by chemical vapor deposition using a gold catalyst-driving vapor-liquid-solid process on higly n-type silicon substrates. The effect of phosphorus doping on the local contact resistance between the AFM tip and the SiNW was put in evidence, and the SiNWs resistivity was estimated. PMID:21711623

  9. Surface-decorated silicon nanowires: a route to high-ZT thermoelectrics.

    PubMed

    Markussen, Troels; Jauho, Antti-Pekka; Brandbyge, Mads

    2009-07-31

    Based on atomistic calculations of electron and phonon transport, we propose to use surface-decorated silicon nanowires for thermoelectric applications. Two examples of surface decorations are studied to illustrate the underlying ideas: nanotrees and alkyl functionalized silicon nanowires. For both systems we find (i) that the phonon conductance is significantly reduced compared to the electronic conductance leading to high thermoelectric figure of merit ZT, and (ii) for ultrathin wires, surface decoration leads to significantly better performance than surface disorder.

  10. Silicon Alignment Pins: An Easy Way to Realize a Wafer-to-Wafer Alignment

    NASA Technical Reports Server (NTRS)

    Jung-Kubiak, Cecile; Reck, Theodore J.; Lin, Robert H.; Peralta, Alejandro; Gill, John J.; Lee, Choonsup; Siles, Jose; Toda, Risaku; Chattopadhyay, Goutam; Cooper, Ken B.; Mehdi, Imran; Thomas, Bertrand

    2013-01-01

    Submillimeter heterodyne instruments play a critical role in addressing fundamental questions regarding the evolution of galaxies as well as being a crucial tool in planetary science. To make these instruments compatible with small platforms, especially for the study of the outer planets, or to enable the development of multi-pixel arrays, it is essential to reduce the mass, power, and volume of the existing single-pixel heterodyne receivers. Silicon micromachining technology is naturally suited for making these submillimeter and terahertz components, where precision and accuracy are essential. Waveguide and channel cavities are etched in a silicon bulk material using deep reactive ion etching (DRIE) techniques. Power amplifiers, multiplier and mixer chips are then integrated and the silicon pieces are stacked together to form a supercompact receiver front end. By using silicon micromachined packages for these components, instrument mass can be reduced and higher levels of integration can be achieved. A method is needed to assemble accurately these silicon pieces together, and a technique was developed here using etched pockets and silicon pins to align two wafers together.

  11. Thermal conductivity of silicon nanowires embedded on thermoelectric platforms

    NASA Astrophysics Data System (ADS)

    Choi, JinYong; Cho, Kyoungah; Yoon, Dae Sung; Kim, Sangsig

    2016-10-01

    In this study, we propose a simple method for obtaining the thermal conductivity of silicon nanowires (SiNWs) embedded on a thermoelectric platform. The approximation of the heat flux in SiNWs with temperature differences enables the determination of thermal conductivity. Using this method, the thermal conductivities of our n- and p-type SiNWs are found to be 18.06  ±  0.12 and 20.29  ±  0.77 W m-1 · K-1, respectively. The atomic weight of arsenic ions in the n-type SiNWs is responsible for a lower thermal conductivity than that of boron ions in the p-type SiNWs. Our results demonstrate that this simple method is capable of measuring the thermal conductivity of thermoelectric nanomaterials embedded on thermoelectric devices.

  12. Silicon nanowires for biosensing, energy storage, and conversion.

    PubMed

    Wang, Yanli; Wang, Tianyu; Da, Peimei; Xu, Ming; Wu, Hao; Zheng, Gengfeng

    2013-10-04

    Semiconducting silicon nanowires (SiNWs) represent one of the most interesting research directions in nanoscience and nanotechnology, with capabilities of realizing structural and functional complexity through rational design and synthesis. The exquisite control of chemical composition, structure, morphology, doping, and assembly of SiNWs, in both individual and array format, as well as incorporation with other materials, offers a nanoscale building block with unique electronic, optoelectronic, and catalytic properties, thus allowing for a variety of exciting opportunities in the fields of life sciences and renewable energy. This review provides a brief summary of SiNW research in the past decade, from the SiNW synthesis by both the top-down approaches and the bottom-up approaches, to several important biological and energy applications including biomolecule sensing, interfacing with cells and tissues, lithium-ion batteries, solar cells, and photoelectrochemical conversion.

  13. Silicon Nanowires Light Emitting Devices at Room Temperature

    NASA Astrophysics Data System (ADS)

    Artoni, Pietro; Irrera, A.; Franzò', G.; Fazio, B.; Galli, M.; Pecora, E.; Iacona, F.; Priolo, F.

    Group-IV semiconductor nanowires (NWs) are attracting interest among the scientific community as building blocks for a wide range of future nanoscaled devices. Vapor-liquid-Solid (VLS) is the most used technique for semiconductor NWs growth. Si NWs are promising as building blocks for photovoltaic elements, sensors and high-performance batteries; however, Si NWs are less explored for photonic applications, probably since there are many drawbacks due to the NW structure obtained by VLS. In fact, there is a minimum obtainable size which reduces the possibility to have quantum confinement effects without high temperature oxidation processes; metal used as a catalyst may be incorporated inside the NW thus affecting its electrical and optical properties. Moreover, by VLS method the doping is no easily controllable because of the segregation of the dopants at the NWs interface. Indeed, the possibility of obtaining light from silicon at room temperature under optical and electrical pumping is strategic for the communication technology.

  14. Silicon nanowires for high-sensitivity glucose detection

    NASA Astrophysics Data System (ADS)

    Chen, Weiwei; Yao, Hui; Tzang, Chi Hung; Zhu, Junjie; Yang, Mengsu; Lee, Shuit-Tong

    2006-05-01

    Silicon nanowires (SiNWs) were investigated as supporting matrices for enzyme immobilization to construct glucose biosensors. Glucose oxidase was adsorbed onto SiNWs after different treatments, either as grown, HF etched, or carboxylic acid (COOH) functionalized. The amperometric biosensor with COOH-functionalized SiNWs performed the best with a detection limit of 0.01mM glucose (signal-to-noise ratio=3). For real-time detection of glucose, SiNW biosensor showed a linear response in the range of 0.1-15mM. This work demonstrates the utility of SiNWs as a biosensor component and provides a general method to modify the surface of semiconducting nanomaterials for potential biomedical applications.

  15. Silicon nanowire biologically sensitive field effect transistors: electrical characteristics and applications.

    PubMed

    Rim, Taiuk; Baek, Chang-Ki; Kim, Kihyun; Jeong, Yoon-Ha; Lee, Jeong-Soo; Meyyappan, M

    2014-01-01

    The interest in biologically sensitive field effect transistors (BioFETs) is growing explosively due to their potential as biosensors in biomedical, environmental monitoring and security applications. Recently, adoption of silicon nanowires in BioFETs has enabled enhancement of sensitivity, device miniaturization, decreasing power consumption and emerging applications such as the 3D cell probe. In this review, we describe the device physics and operation of the silicon nanowire BioFETs along with recent advances in the field. The silicon nanowire BioFETs are basically the same as the conventional field-effect transistors (FETs) with the exceptions of nanowire channel instead of thin film and a liquid gate instead of the conventional gate. Therefore, the silicon device physics is important to understand the operation of the BioFETs. Herein, physical characteristics of the silicon nanowire FETs are described and the operational principles of the BioFETs are classified according to the number of gates and the analysis domain of the measured signal. Even the bottom-up process has merits on low-cost fabrication; the top-down process technique is highlighted here due to its reliability and reproducibility. Finally, recent advances in the silicon nanowire BioFETs in the literature are described and key features for commercialization are discussed.

  16. Engineering island-chain silicon nanowires via a droplet mediated Plateau-Rayleigh transformation

    NASA Astrophysics Data System (ADS)

    Xue, Zhaoguo; Xu, Mingkun; Zhao, Yaolong; Wang, Jimmy; Jiang, Xiaofan; Yu, Linwei; Wang, Junzhuan; Xu, Jun; Shi, Yi; Chen, Kunji; Roca I Cabarrocas, Pere

    2016-09-01

    The ability to program highly modulated morphology upon silicon nanowires (SiNWs) has been fundamental to explore new phononic and electronic functionalities. We here exploit a nanoscale locomotion of metal droplets to demonstrate a large and readily controllable morphology engineering of crystalline SiNWs, from straight ones into continuous or discrete island-chains, at temperature <350 °C. This has been accomplished via a tin (Sn) droplet mediated in-plane growth where amorphous Si thin film is consumed as precursor to produce crystalline SiNWs. Thanks to a significant interface-stretching effect, a periodic Plateau-Rayleigh instability oscillation can be stimulated in the liquid Sn droplet, and the temporal oscillation of the Sn droplets is translated faithfully, via the deformable liquid/solid deposition interface, into regular spatial modulation upon the SiNWs. Combined with a unique self-alignment and positioning capability, this new strategy could enable a rational design and single-run fabrication of a wide variety of nanowire-based optoelectronic devices.

  17. Engineering island-chain silicon nanowires via a droplet mediated Plateau-Rayleigh transformation

    PubMed Central

    Xue, Zhaoguo; Xu, Mingkun; Zhao, Yaolong; Wang, Jimmy; Jiang, Xiaofan; Yu, Linwei; Wang, Junzhuan; Xu, Jun; Shi, Yi; Chen, Kunji; Roca i Cabarrocas, Pere

    2016-01-01

    The ability to program highly modulated morphology upon silicon nanowires (SiNWs) has been fundamental to explore new phononic and electronic functionalities. We here exploit a nanoscale locomotion of metal droplets to demonstrate a large and readily controllable morphology engineering of crystalline SiNWs, from straight ones into continuous or discrete island-chains, at temperature <350 °C. This has been accomplished via a tin (Sn) droplet mediated in-plane growth where amorphous Si thin film is consumed as precursor to produce crystalline SiNWs. Thanks to a significant interface-stretching effect, a periodic Plateau-Rayleigh instability oscillation can be stimulated in the liquid Sn droplet, and the temporal oscillation of the Sn droplets is translated faithfully, via the deformable liquid/solid deposition interface, into regular spatial modulation upon the SiNWs. Combined with a unique self-alignment and positioning capability, this new strategy could enable a rational design and single-run fabrication of a wide variety of nanowire-based optoelectronic devices. PMID:27682161

  18. Silicon-nanowire transistors with intruded nickel-silicide contacts.

    PubMed

    Weber, Walter M; Geelhaar, Lutz; Graham, Andrew P; Unger, Eugen; Duesberg, Georg S; Liebau, Maik; Pamler, Werner; Chèze, Caroline; Riechert, Henning; Lugli, Paolo; Kreupl, Franz

    2006-12-01

    Schottky barrier field effect transistors based on individual catalytically-grown and undoped Si-nanowires (NW) have been fabricated and characterized with respect to their gate lengths. The gate length was shortened by the axial, self-aligned formation of nickel-silicide source and drain segments along the NW. The transistors with 10-30 nm NW diameters displayed p-type behaviour, sustained current densities of up to 0.5 MA/cm2, and exhibited on/off current ratios of up to 10(7). The on-currents were limited and kept constant by the Schottky contacts for gate lengths below 1 microm, and decreased exponentially for gate lengths exceeding 1 microm.

  19. Silicon Alignment Pins: An Easy Way to Realize a Wafer-To-Wafer Alignment

    NASA Technical Reports Server (NTRS)

    Jung-Kubiak, Cecile (Inventor); Reck, Theodore (Inventor); Thomas, Bertrand (Inventor); Lin, Robert H. (Inventor); Peralta, Alejandro (Inventor); Gill, John J. (Inventor); Lee, Choonsup (Inventor); Siles, Jose V. (Inventor); Toda, Risaku (Inventor); Chattopadhyay, Goutam (Inventor)

    2016-01-01

    A silicon alignment pin is used to align successive layers of components made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.

  20. Chemically Etched Silicon Nanowires as Anodes for Lithium-Ion Batteries

    SciTech Connect

    West, Hannah Elise

    2015-08-01

    This study focused on silicon as a high capacity replacement anode for Lithium-ion batteries. The challenge of silicon is that it expands ~270% upon lithium insertion which causes particles of silicon to fracture, causing the capacity to fade rapidly. To account for this expansion chemically etched silicon nanowires from the University of Maine were studied as anodes. They were built into electrochemical half-cells and cycled continuously to measure the capacity and capacity fade.

  1. Orientation-enhanced growth and optical properties of ZnO nanowires grown on porous silicon substrates.

    PubMed

    Hsu, Hsu-Cheng; Cheng, Ching-Sheng; Chang, Chia-Chieh; Yang, Song; Chang, Chen-Shiung; Hsieh, Wen-Feng

    2005-02-01

    ZnO nanowires have been synthesized on porous silicon substrates with different porosities via the vapour-liquid-solid method. The texture coefficient analysed from the XRD spectra indicates that the nanowires are more highly orientated on the appropriate porosity of porous silicon substrate than on the smooth surface of silicon. The Raman spectrum reveals the high quality of the ZnO nanowires. From the temperature-dependent photoluminescence spectra, we deduced the activation energies of free and bound excitons.

  2. Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers.

    PubMed

    Cunning, Benjamin V; Ahmed, Mohsin; Mishra, Neeraj; Kermany, Atieh Ranjbar; Wood, Barry; Iacopi, Francesca

    2014-08-15

    Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices.

  3. A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells

    NASA Astrophysics Data System (ADS)

    Li, Yingfeng; Li, Meicheng; Fu, Pengfei; Li, Ruike; Song, Dandan; Shen, Chao; Zhao, Yan

    2015-06-01

    Silicon nanorod based radial-junction solar cells are competitive alternatives to traditional planar silicon solar cells. In various silicon nanorods, nanocone is always considered to be better than nanowire in light-absorption. Nevertheless, we find that this notion isn’t absolutely correct. Silicon nanocone is indeed significantly superior over nanowire in light-concentration due to its continuous diameters, and thus resonant wavelengths excited. However, the concentrated light can’t be effectively absorbed and converted to photogenerated carriers, since its propagation path in silicon nanocone is shorter than that in nanowire. The results provide critical clues for the design of silicon nanorod based radial-junction solar cells.

  4. A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells.

    PubMed

    Li, Yingfeng; Li, Meicheng; Fu, Pengfei; Li, Ruike; Song, Dandan; Shen, Chao; Zhao, Yan

    2015-06-26

    Silicon nanorod based radial-junction solar cells are competitive alternatives to traditional planar silicon solar cells. In various silicon nanorods, nanocone is always considered to be better than nanowire in light-absorption. Nevertheless, we find that this notion isn't absolutely correct. Silicon nanocone is indeed significantly superior over nanowire in light-concentration due to its continuous diameters, and thus resonant wavelengths excited. However, the concentrated light can't be effectively absorbed and converted to photogenerated carriers, since its propagation path in silicon nanocone is shorter than that in nanowire. The results provide critical clues for the design of silicon nanorod based radial-junction solar cells.

  5. Gold-free GaAs/GaAsSb heterostructure nanowires grown on silicon

    NASA Astrophysics Data System (ADS)

    Plissard, S.; Dick, K. A.; Wallart, X.; Caroff, P.

    2010-03-01

    Growth of GaAs/GaAsSb heterostructure nanowires on silicon without the need for gold seed particles is presented. A high vertical yield of GaAs nanowires is first obtained, and then GaAsxSb1-x segments are successfully grown axially in these nanowires. GaAsSb can also be integrated as a shell around the GaAs core. Finally, two GaAsSb segments are grown inside a GaAs nanowire and passivated using an AlxGa1-xAs shell. It is found that no stacking faults or twin planes occur in the GaAsSb segments.

  6. Light-induced electrical switching of porphyrin-covered silicon nanowire FETs (presentation video)

    NASA Astrophysics Data System (ADS)

    Cuniberti, Gianaurelio

    2014-03-01

    Nanowires represent excellent building blocks for future nanoelectronics, due to their efficient charge transport characteristics. Here we present light-induced switching behaviour of porphyrin-coated silicon nanowire field effect transistors (Si NW FETs) and demonstrate their capabilities for design of hybrid nanodevices - consisting of organic complexes and inorganic nanowires. Switching of Si NW FETs highly reflects the electrical change of porphyrin molecules by light. To demonstrate significant factors of concentration-dependent switching of porphyrin-covered devices, electrical charging mechanism through molecules and nanowires has been understood, that allows the systematic integration of the hybrid devices.

  7. Tensile and compressive mechanical behavior of twinned silicon carbide nanowires

    SciTech Connect

    Wang, Zhiguo; Li, Jingbo; Gao, Fei; Weber, William J.

    2010-04-01

    Molecular dynamics simulations with the Tersoff potential were used to study the response of twinned SiC nanowires under tensile and compressive strains. The critical strain of the twinned nanowires can be enhanced by twin-stacking faults, and their critical strains are larger than those of perfect nanowires with the same diameters. Under axial tensile strain, the bonds of the nanowires are just stretched before failure. The failure behavior is found to depend on the twin segment thickness and the diameter of the nanowires. An atomic chain is observed for the thin nanowires with small twin segment thickness under tension strain. Under axial compressive strain, the collapse of the twinned SiC nanowires exhibits two differently failure modes, depending on the length and diameter of the nanowires, i.e. shell buckling for short length nanowires and columnar buckling for longer length nanowires.

  8. Plasma-Assisted Growth of Silicon Nanowires by Sn Catalyst: Step-by-Step Observation

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Maurice, Jean-Luc; Chen, Wanghua; Misra, Soumyadeep; Foldyna, Martin; Johnson, Erik V.; Roca i Cabarrocas, Pere

    2016-10-01

    A comprehensive study of the silicon nanowire growth process has been carried out. Silicon nanowires were grown by plasma-assisted-vapor-solid method using tin as a catalyst. We have focused on the evolution of the silicon nanowire density, morphology, and crystallinity. For the first time, the initial growth stage, which determines the nanowire (NW) density and growth direction, has been observed step by step. We provide direct evidence of the merging of Sn catalyst droplets and the formation of Si nanowires during the first 10 s of growth. We found that the density of Sn droplets decreases from 9000 Sn droplets/μm2 to 2000 droplets/μm2 after just 10 s of growth. Moreover, the long and straight nanowire density decreases from 170/μm2 after 2 min of growth to less than 10/μm2 after 90 min. This strong reduction in nanowire density is accompanied by an evolution of their morphology from cylindrical to conical, then to bend conical, and finally, to a bend inverted conical shape. Moreover, the changes in the crystalline structure of nanowires are from (i) monocrystalline to (ii) monocrystalline core/defective crystalline shell and then to (iii) monocrystalline core/defective crystalline shell/amorphous shell. The evolutions of NW properties have been explained in detail.

  9. Porous doped silicon nanowires for lithium ion battery anode with long cycle life.

    PubMed

    Ge, Mingyuan; Rong, Jiepeng; Fang, Xin; Zhou, Chongwu

    2012-05-09

    Porous silicon nanowires have been well studied for various applications; however, there are only very limited reports on porous silicon nanowires used for energy storage. Here, we report both experimental and theoretical studies of porous doped silicon nanowires synthesized by direct etching of boron-doped silicon wafers. When using alginate as a binder, porous silicon nanowires exhibited superior electrochemical performance and long cycle life as anode material in a lithium ion battery. Even after 250 cycles, the capacity remains stable above 2000, 1600, and 1100 mAh/g at current rates of 2, 4, and 18 A/g, respectively, demonstrating high structure stability due to the high porosity and electron conductivity of the porous silicon nanowires. A mathematic model coupling the lithium ion diffusion and the strain induced by lithium intercalation was employed to study the effect of porosity and pore size on the structure stability. Simulation shows silicon with high porosity and large pore size help to stabilize the structure during charge/discharge cycles.

  10. Study of optical absorbance in porous silicon nanowires for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Charrier, Joël; Najar, Adel; Pirasteh, Parastesh

    2013-10-01

    Porous silicon nanowires (PSiNWs) layers fabrication was reported. Reflectance spectra were measured as a function of the nanowire length and were inferior to 0.1% and a strong photoluminescence (PL) signal was measured from samples. Models based on cone shape of nanowires located in circular and rectangular bases were used to calculate the reflectance using the transfer matrix formalism (TMF) of PSiNWs layer. The modeling of the reflectance permits to explain this value by taking account into the shape of the nanowires and its porosity. Optical absorbance and transmission were also theoretically studied. The absorbance was superior to that obtained with silicon nanowires and the ultimate efficiency was about equal to 25% for normal incidence angle. These results could be applied to the potential application in low-cost and high efficiency PSiNWs based solar cells.

  11. Comparison of ordered and disordered silicon nanowire arrays: experimental evidence of photonic crystal modes.

    PubMed

    Dhindsa, Navneet; Saini, Simarjeet S

    2016-05-01

    We experimentally compared the reflectance between ordered and disordered silicon nanowires to observe the evidence of photonic crystal modes. For similar diameters, the resonance peaks for the ordered nanowires at a spacing of 400 nm was at a shorter wavelength than the disordered nanowires, consistent to the excitation of photonic crystal modes. Furthermore, the resonant wavelength didn't shift while changing the density of the disordered nanowires, whereas there was a significant shift observed in the ordered ones. At an ordered spacing of 800 nm, the resonance wavelength approached that of the disordered structures, indicating that the ordered structures were starting to behave like individual waveguides. To our knowledge, this is the first direct experimental observation of photonic crystal modes in vertical periodic silicon nanowire arrays.

  12. Electrical characteristics of silicon nanowire transistors fabricated by scanning probe and electron beam lithographies.

    PubMed

    Ryu, Yu Kyoung; Chiesa, Marco; Garcia, Ricardo

    2013-08-09

    Silicon nanowire (SiNW) field-effect transistors have been fabricated by oxidation scanning probes and electron beam lithographies. The analysis and comparison of the electron mobility and subthreshold swing shows that the device performance is not affected by the top-down fabrication method. The two methods produce silicon nanowire transistors with similar electrical features, although oxidation scanning probe lithography generates nanowires with smaller channel widths. The values of the electron mobility and the subthreshold swing, 200 cm(2) V(-1) s(-1) and 500 mV dec(-1), respectively, are similar to those obtained from bottom-up methods. The compatibility of top-down methods with CMOS (complementary metal-oxide-semiconductor) procedures, the good electrical properties of the nanowire devices and the potential for making sub-10 nanowires, in particular by using oxidation scanning probe lithography, make those methods attractive for device fabrication.

  13. Long-persistent luminescence in near-ultraviolet from silicon nanowires

    SciTech Connect

    Zhao, Yonglin; Zhou, Jianfeng; Zheng, Liqiu; Zhong, Chonggui; Wrensford, Louise V.; Chan, Kwaichow

    2013-01-15

    Graphical abstract: Silicon-rich nanowires with persistent near-ultraviolet luminescence were fabricated with thermal evaporation of silicon monoxide (SiO) powder at 1350 K. They contain quantum-confined elemental silicon structures of the order of nm dimension, and are capped by silicon oxide. The samples exhibit orderly color distribution along the direction of the carrier gas flow. When excited with the 280 nm light, the samples emit broad photoluminescence band from 330 to 470 nm with a long afterglow of more than 10 s, and the color shifts from near-ultraviolet to blue and green gradually. Display Omitted Highlights: ► We synthesized Si-rich nanowire from thermal evaporation of silicon monoxide. ► The Si-rich nanowires exhibit orderly color distribution along the direction of the gas flow. ► The Si-rich nanowires emit broad photoluminescence band from 330 to 470 nm under UV irradiation for >10 s. ► The color shifts from near-ultraviolet to blue and green gradually. -- Abstract: Silicon-rich nanowires with persistent near-ultraviolet luminescence were fabricated with thermal evaporation of silicon monoxide (SiO) powder at 1350 K. They contain quantum-confined elemental silicon structures of the order of nm dimension, and are capped by silicon oxide. The samples exhibit orderly color distribution along the direction of the carrier gas flow. When excited with the 280 nm light, the samples emit broad photoluminescence band from 330 to 470 nm with a long afterglow of more than 10 s, and the color shifts from near-ultraviolet to blue and green gradually. The morphology dependent luminescence might be attributed to the emission from the quantum-confined silicon crystallites of various sizes embedded in the oxide layer, and near surface states in the nanowires.

  14. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces.

    PubMed

    Tong, Lianming; Miljković, Vladimir D; Käll, Mikael

    2010-01-01

    We demonstrate optical alignment and rotation of individual plasmonic nanostructures with lengths from tens of nanometers to several micrometers using a single beam of linearly polarized near-infrared laser light. Silver nanorods and dimers of gold nanoparticles align parallel to the laser polarization because of the high long-axis dipole polarizability. Silver nanowires, in contrast, spontaneously turn perpendicular to the incident polarization and predominantly attach at the wire ends, in agreement with electrodynamics simulations. Wires, rods, and dimers all rotate if the incident polarization is turned. In the case of nanowires, we demonstrate spinning at an angular frequency of approximately 1 Hz due to transfer of spin angular momentum from circularly polarized light.

  15. Ab initio design of nanostructures for solar energy conversion: a case study on silicon nitride nanowire.

    PubMed

    Pan, Hui

    2014-01-01

    Design of novel materials for efficient solar energy conversion is critical to the development of green energy technology. In this work, we present a first-principles study on the design of nanostructures for solar energy harvesting on the basis of the density functional theory. We show that the indirect band structure of bulk silicon nitride is transferred to direct bandgap in nanowire. We find that intermediate bands can be created by doping, leading to enhancement of sunlight absorption. We further show that codoping not only reduces the bandgap and introduces intermediate bands but also enhances the solubility of dopants in silicon nitride nanowires due to reduced formation energy of substitution. Importantly, the codoped nanowire is ferromagnetic, leading to the improvement of carrier mobility. The silicon nitride nanowires with direct bandgap, intermediate bands, and ferromagnetism may be applicable to solar energy harvesting.

  16. Modulation of thermal conductivity in kinked silicon nanowires: phonon interchanging and pinching effects.

    PubMed

    Jiang, Jin-Wu; Yang, Nuo; Wang, Bing-Shen; Rabczuk, Timon

    2013-04-10

    We perform molecular dynamics simulations to investigate the reduction of the thermal conductivity by kinks in silicon nanowires. The reduction percentage can be as high as 70% at room temperature. The temperature dependence of the reduction is also calculated. By calculating phonon polarization vectors, two mechanisms are found to be responsible for the reduced thermal conductivity: (1) the interchanging effect between the longitudinal and transverse phonon modes and (2) the pinching effect, that is, a new type of localization, for the twisting and transverse phonon modes in the kinked silicon nanowires. Our work demonstrates that the phonon interchanging and pinching effects, induced by kinking, are brand-new and effective ways in modulating heat transfer in nanowires, which enables the kinked silicon nanowires to be a promising candidate for thermoelectric materials.

  17. A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells

    NASA Astrophysics Data System (ADS)

    Misra, Soumyadeep; Yu, Linwei; Chen, Wanghua; Foldyna, Martin; Cabarrocas, Pere Roca i.

    2014-10-01

    Incorporation of nanostructures is a recent trend in the photovoltaic community, aimed at improving light absorption and consequently cell efficiency. In this regard, semiconductor nanowires provide an attractive research platform for a new generation of cost-effective and efficient solar cells. Thanks to their unique geometry, silicon nanowires enhance light trapping and anti-reflection effects by means of multiple scattering between individual nanowires, and by coupling the light into confined eigenmodes over a broad range of the solar spectrum. Moreover, radial junction solar cells built around nanowires decouple the light absorption and carrier collection directions, which allows for a higher internal field and better carrier collection. Thus, arrays of radial junction solar cells bring advantages of high efficiency with reduced material amount. This is particularly attractive for devices based on hydrogenated amorphous and microcrystalline silicon thin films. In this paper, after reviewing different approaches to fabricate silicon nanowires, we focus on nanowires grown using the plasma-assisted vapour-liquid-solid method because of the simplicity and compatibility with current silicon thin-film technology. Their application to a-Si : H based radial junction solar cells has already resulted in ˜8% of stable devices with an absorber layer thickness of only 100 nm. Moreover, current challenges and perspectives such as the use of a microcrystalline silicon absorber are also reviewed.

  18. Bandgap tuning of silicon nanowire arrays for application to all-silicon tandem solar cells

    NASA Astrophysics Data System (ADS)

    Kurokawa, Yasuyoshi; Yano, Mitsugu; Miyajima, Shinsuke; Yamada, Akira

    2017-04-01

    To reduce the diameter of silicon nanowire (SiNW) arrays for bandgap tuning, a diameter reduction (DR) process incorporating H3PO4 oxidation and HF etching was conducted for SiNW arrays with a diameter of 30 nm and a length of 15 µm. After the DR process, the diameter of SiNW arrays around the tip was successfully reduced to below 10 nm. From the cathode luminescence measurement, the bandgap around the tip of SiNW arrays was estimated to be 1.2 eV, suggesting that bandgap widening occurred owing to the quantum size effect.

  19. Generation of reactive oxygen species from silicon nanowires.

    PubMed

    Leonard, Stephen S; Cohen, Guy M; Kenyon, Allison J; Schwegler-Berry, Diane; Fix, Natalie R; Bangsaruntip, Sarunya; Roberts, Jenny R

    2014-01-01

    Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs) were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor-liquid-solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS) can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H2O2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H2O2, RAW 264.7 cells, and rat alveolar macrophages) for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H2O2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals.

  20. The electromechanical response of silicon nanowires to buckling mode transitions.

    PubMed

    Wong, Chee Chung; Reboud, Julien; Neuzil, Pavel; Soon, Jeffrey; Agarwal, Ajay; Balasubramanian, Naranayan; Liao, Kin

    2010-10-08

    Here we show how the electromechanical properties of silicon nanowires (NWs) are modified when they are subjected to extreme mechanical deformations (buckling and buckling mode transitions), such as those appearing in flexible devices. Flexible devices are prone to frequent dynamic stress variations, especially buckling, while the small size of NWs could give them an advantage as ultra-sensitive electromechanical stress sensors embedded in such devices. We evaluated the NWs post-buckling behavior and the effects of buckling mode transition on their piezoresistive gauge factor (GF). Polycrystalline silicon NWs were embedded in SiO(2) microbridges to facilitate concurrent monitoring of their electrical resistance without problematic interference, while an external stylus performed controlled deformations of the microbridges. At points of instability, the abrupt change in the buckling configuration of the microbridge corresponded to a sharp resistance change in the embedded NWs, without altering the NWs' GF. These results also highlight the importance of strategically positioning the NW in the devices, since electrical monitoring of buckling mode transitions is feasible when the deformations impact a region where the NW is placed. The highly flexible NWs also exhibited unusually large fracture strength, sustaining tensile strains up to 5.6%; this will prove valuable in demanding flexible sensors.

  1. Generation of Reactive Oxygen Species from Silicon Nanowires

    PubMed Central

    Leonard, Stephen S; Cohen, Guy M; Kenyon, Allison J; Schwegler-Berry, Diane; Fix, Natalie R; Bangsaruntip, Sarunya; Roberts, Jenny R

    2014-01-01

    Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs) were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor–liquid–solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS) can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H2O2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H2O2, RAW 264.7 cells, and rat alveolar macrophages) for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H2O2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals. PMID:25452695

  2. Multiscale Study of Plasmonic Scattering and Light Trapping Effect in Silicon Nanowire Array Solar Cells.

    PubMed

    Meng, Lingyi; Zhang, Yu; Yam, ChiYung

    2017-02-02

    Nanometallic structures that support surface plasmons provide new ways to confine light at deep-subwavelength scales. The effect of light scattering in nanowire array solar cells is studied by a multiscale approach combining classical electromagnetic (EM) and quantum mechanical simulations. A photovoltaic device is constructed by integrating a silicon nanowire array with a plasmonic silver nanosphere. The light scatterings by plasmonic element and nanowire array are obtained via classical EM simulations, while current-voltage characteristics and optical properties of the nanowire cells are evaluated quantum mechanically. We found that the power conversion efficiency (PCE) of photovoltaic device is substantially improved due to the local field enhancement of the plasmonic effect and light trapping by the nanowire array. In addition, we showed that there exists an optimal nanowire number density in terms of optical confinement and solar cell PCE.

  3. Direct Writing of Patterned, Lead-Free Nanowire Aligned Flexible Piezoelectric Device.

    PubMed

    Gao, Meng; Li, Lihong; Li, Wenbo; Zhou, Haihua; Song, Yanlin

    2016-08-01

    A high-performance flexible piezoelectric nanogenerator (PNG) is fabricated by a direct writing method, which acquires both patterned piezoelectric structure and aligned piezoelectric nanowires simultaneously. The voltage output of the as-prepared PNG is nearly 400% compared with that of the traditional spin-coated device due to the effective utilization of stress. This facile printing approach provides an efficient strategy for significant improvement of the piezoresponse.

  4. Matrix replacement route to vertically aligned nickel nanowire array/polydimethylsiloxane nanocomposite film

    NASA Astrophysics Data System (ADS)

    Meng, Xin; Zhou, Liang-Tian; Zhu, Ji-Xiang; Song, Jie; Wang, Xuan-Rui; Qiao, Zheng-Ping

    2008-12-01

    Vertically aligned magnetic anisotropic nickel (Ni) nanowire (NW) array/polydimethylsiloxane (PDMS) film was prepared from (Ni NW array)/anodic aluminum oxide by a simple matrix replacement route. The main challenge is to preserve the parallelly aligned Ni NW during replacement. The diameter and thickness of the as-prepared Ni NW and the Ni NW array/PDMS film are 8 mm and 60 μm, respectively. The magnetic property measurement shows that the film has remarkably enhanced coercivity and remanence ratio compared to that of bulk nickel and exhibits perpendicular magnetic anisotropy.

  5. Selective formation of tungsten nanowires

    PubMed Central

    2011-01-01

    We report on a process for fabricating self-aligned tungsten (W) nanowires with polycrystalline silicon core. Tungsten nanowires as thin as 10 nm were formed by utilizing polysilicon sidewall transfer technology followed by selective deposition of tungsten by chemical vapor deposition (CVD) using WF6 as the precursor. With selective CVD, the process is self-limiting whereby the tungsten formation is confined to the polysilicon regions; hence, the nanowires are formed without the need for lithography or for additional processing. The fabricated tungsten nanowires were observed to be perfectly aligned, showing 100% selectivity to polysilicon and can be made to be electrically isolated from one another. The electrical conductivity of the nanowires was characterized to determine the effect of its physical dimensions. The conductivity for the tungsten nanowires were found to be 40% higher when compared to doped polysilicon nanowires of similar dimensions. PMID:21970543

  6. Fast growth of well-aligned ZnO nanowire arrays by a microwave heating method and their photocatalytic properties.

    PubMed

    Cao, Guangxia; Hong, Kunquan; Wang, Wenda; Liu, Liqing; Xu, Mingxiang

    2016-10-28

    The fast growth of aligned ZnO nanowire arrays with optimized structure is attractive for electrical and optical devices. In this paper, we report a controllable and rapid growth of ZnO nanowire arrays by a microwave-assisted hydrothermal method. When using different zinc salts as the precursors, the morphology of the samples changes a lot and the length growth rate is several times different. The growth mechanism is also investigated. It is found that the solution near neutral pH value is ideal for fast nanowire growth, in which the length of the nanowires increases linearly with growth time and the growth rate is over ten times faster than that in the traditional hydrothermal method. Therefore, aligned ZnO nanowire arrays can grow up to tens of microns in a few hours, while the density and sizes of these nanowires can be well controlled. The ZnO nanowire arrays used as photocatalysts present good photocatalytic performance to the degradation of methyl orange (MO) due to the large surface area. So this paper provides an effective method to obtain vertically aligned ZnO nanowire arrays for practical applications.

  7. Fast growth of well-aligned ZnO nanowire arrays by a microwave heating method and their photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Cao, Guangxia; Hong, Kunquan; Wang, Wenda; Liu, Liqing; Xu, Mingxiang

    2016-10-01

    The fast growth of aligned ZnO nanowire arrays with optimized structure is attractive for electrical and optical devices. In this paper, we report a controllable and rapid growth of ZnO nanowire arrays by a microwave-assisted hydrothermal method. When using different zinc salts as the precursors, the morphology of the samples changes a lot and the length growth rate is several times different. The growth mechanism is also investigated. It is found that the solution near neutral pH value is ideal for fast nanowire growth, in which the length of the nanowires increases linearly with growth time and the growth rate is over ten times faster than that in the traditional hydrothermal method. Therefore, aligned ZnO nanowire arrays can grow up to tens of microns in a few hours, while the density and sizes of these nanowires can be well controlled. The ZnO nanowire arrays used as photocatalysts present good photocatalytic performance to the degradation of methyl orange (MO) due to the large surface area. So this paper provides an effective method to obtain vertically aligned ZnO nanowire arrays for practical applications.

  8. Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics

    PubMed Central

    2014-01-01

    Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°). PMID:25435833

  9. Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics.

    PubMed

    Kayes, Md Imrul; Leu, Paul W

    2014-01-01

    Silicon nanowire arrays have been shown to demonstrate light trapping properties and promising potential for next-generation photovoltaics. In this paper, we show that the absorption enhancement in vertical nanowire arrays on a perfectly electric conductor can be further improved through tilting. Vertical nanowire arrays have a 66.2% improvement in ultimate efficiency over an ideal double-pass thin film of the equivalent amount of material. Tilted nanowire arrays, with the same amount of material, exhibit improved performance over vertical nanowire arrays across a broad range of tilt angles (from 38° to 72°). The optimum tilt of 53° has an improvement of 8.6% over that of vertical nanowire arrays and 80.4% over that of the ideal double-pass thin film. Tilted nanowire arrays exhibit improved absorption over the solar spectrum compared with vertical nanowires since the tilt allows for the excitation of additional modes besides the HE 1m modes that are excited at normal incidence. We also observed that tilted nanowire arrays have improved performance over vertical nanowire arrays for a large range of incidence angles (under about 60°).

  10. Silicon nanowire growth and transistor fabrication by self-assembling "grow-in-place" approach

    NASA Astrophysics Data System (ADS)

    Shan, Yinghui

    Nanowires have attracted much attention recently owing to their ability to serve as critical building blocks for emerging nanotechnologies. Silicon nanowires (SiNWs) are particularly promising because of the central role of silicon in semiconductor industry. SiNWs would allow device fabrication with high density and their high surface to volume ratio offers high sensitivity. In addition, the possible quantum confinement in SiNWs may further enhance device performances and open windows for exploiting fundamental properties. Intense researches have been carried out in SiNW growth and device fabrication. However, there are still challenges in SiNW growth controls, such as size, number, shape, position, orientation, and inter-wire spacings. To make devices from these SiNWs, post-growth processing steps are needed, such as SiNW collecting, picking, positioning, aligning, and assembling. Due to the extremely small size of SiNWs, there are also challenges in SiNW device fabrication. To solve these challenges in both SiNW growth control and device fabrication, we introduced a novel self-assembling "grow-in-place" approach. Our approach combined vapor-liquid-solid (VLS) nanowire growth mechanism and pre-fabricated nanochannel template. The VLS growth mechanism offers the ability of controlling nanowire size and shape by nanochannel templates. The pre-fabricated nanochannel template guides nanowire growth and offers good SiNW growth control. SiNWs and silicon nanoribbons (SiNRs) with different sizes have been successfully grown in our nanochannel templates. Characterizations on their size, shape, composition, and crystallinity of the SiNW/Rs have confirmed that our "grow-in-place" approach offers good controls on crystalline SiNW/Rs size, shape, number, orientation, position, and inter-wire spacing. So our approach solved the challenges in SiNW growth control. Our grow-in-place approach also solved the challenges in SiNW device fabrication. We introduced two versions of

  11. Synthesis, characterization and application of electroless metal assisted silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Sahoo, Sumanta Kumar; Marikani, Arumugam

    2015-12-01

    Vertically aligned silicon nanowire arrays (SiNWs) have been synthesized by electroless metal deposition process. The fabricated SiNWs have an average diameter of 75 nm and 3.5-4.0 μm length, as confirmed from scanning electron microscopy. A characteristic asymmetric peak broadening at 520 cm-1 from Raman spectroscopy was obtained for the SiNWs as compared to the bulk silicon crystal due to phonon confinement. The as-prepared SiNWs exhibit good electron field-emission properties with turn-on field of about 8.26 V μm-1 at a current density of 4.9 μA cm-2. The SiNWs was functionalized by coating with a thin gold metallic film for 60 s, and then used as bio-probe for the detection of bovine serum albumin (BSA) protein molecules. From the linear sweep voltammetry analysis, the Au coated SiNWs, exhibit linear response to the BSA analyte with increase in concentration. The minimum detection limit of the protein molecule was calculated of about 1.16 μM by the as-synthesized SiNWs probe.

  12. Surface trap mediated electronic transport in biofunctionalized silicon nanowires

    NASA Astrophysics Data System (ADS)

    Puppo, F.; Traversa, F. L.; Di Ventra, M.; De Micheli, G.; Carrara, S.

    2016-08-01

    Silicon nanowires (SiNWs), fabricated via a top-down approach and then functionalized with biological probes, are used for electrically-based sensing of breast tumor markers. The SiNWs, featuring memristive-like behavior in bare conditions, show, in the presence of biomarkers, modified hysteresis and, more importantly, a voltage memory component, namely a voltage gap. The voltage gap is demonstrated to be a novel and powerful parameter of detection thanks to its high-resolution dependence on charges in proximity of the wire. This unique approach of sensing has never been studied and adopted before. Here, we propose a physical model of the surface electronic transport in Schottky barrier SiNW biosensors, aiming at reproducing and understanding the voltage gap based behavior. The implemented model describes well the experimental I-V characteristics of the device. It also links the modification of the voltage gap to the changing concentration of antigens by showing the decrease of this parameter in response to increasing concentrations of the molecules that are detected with femtomolar resolution in real human samples. Both experiments and simulations highlight the predominant role of the dynamic recombination of the nanowire surface states, with the incoming external charges from bio-species, in the appearance and modification of the voltage gap. Finally, thanks to its compactness, and strict correlation with the physics of the nanodevice, this model can be used to describe and predict the I-V characteristics in other nanostructured devices, for different than antibody-based sensing as well as electronic applications.

  13. Electrowetting properties of atomic layer deposited Al2O3 decorated silicon nanowires

    NASA Astrophysics Data System (ADS)

    Rajkumar, K.; Rajavel, K.; Cameron, D. C.; Mangalaraj, D.; Rajendrakumar, R. T.

    2015-06-01

    This paper reports the electrowetting properties of liquid droplet on superhydrophobic silicon nanowires with Atomic layer deposited (ALD) Al2O3 as dielectric layer. Silicon wafer were etched by metal assisted wet chemical etching with silver as catalyst. ALD Al2O3 films of 10nm thickness were conformally deposited over silicon nanowires. Al2O3 dielectric film coated silicon nanowires was chemically modified with Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane to make it superhydrophobic(SHP). The contact angle was measured and all the samples exhibited superhydrophobic nature with maximum contact angles of 163° and a minimum contact angle hysteresis of 6°. Electrowetting induced a maximum reversible decrease of the contact angle of 20°at 150V in air.

  14. Synthesis and Characterization of Microwave-Exfoliated Graphene Oxide-Wrapped Silicon Nanowire via Hydrosilylation.

    PubMed

    Shin, Donghee; Cho, Bomin; Ahn, Jihoon; Kim, Sungsoo; Ko, Young Chun; Sohn, Honglae

    2015-02-01

    Single-crystalline silicon nanowires (SiNWs) were fabricated by using an electroless metal-assisted etching of bulk silicon wafers with silver nanoparticles obtained by wet electroless deposition. The etching of SiNWs is based on sequential treatment in aqueous solutions of silver nitrate followed by hydrofluoric acid and hydrogen peroxide. Free-standing SiNWs were then obtained using ultra-sono method in toluene. Graphene oxide was prepared using the modified Hummers' process. Activated microwave-exfoliated graphite oxide (MEGO) was prepared and used for composition of silicon nanowires and graphene oxide via hydrosilylation. The silicon nanowire-graphene composite materials were characterized using XPS and FE-SEM.

  15. Field emission enhancement of Au-Si nano-particle-decorated silicon nanowires

    PubMed Central

    2011-01-01

    Au-Si nano-particle-decorated silicon nanowire arrays have been fabricated by Au film deposition on silicon nanowire array substrates and then post-thermal annealing under hydrogen atmosphere. Field emission measurements illustrated that the turn-on fields of the non-annealed Au-coated SiNWs were 6.02 to 7.51 V/μm, higher than that of the as-grown silicon nanowires, which is about 5.01 V/μm. Meanwhile, after being annealed above 650°C, Au-Si nano-particles were synthesized on the top surface of the silicon nanowire arrays and the one-dimensional Au-Si nano-particle-decorated SiNWs had a much lower turn-on field, 1.95 V/μm. The results demonstrated that annealed composite silicon nanowire array-based electron field emitters may have great advantages over many other emitters. PMID:21711684

  16. Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper toward High Thermal Conductivity.

    PubMed

    Yao, Yimin; Zeng, Xiaoliang; Pan, Guiran; Sun, Jiajia; Hu, Jiantao; Huang, Yun; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2016-11-16

    Polymer composites with high thermal conductivity have attracted much attention, along with the rapid development of electronic devices toward higher speed and better performance. However, high interfacial thermal resistance between fillers and matrix or between fillers and fillers has been one of the primary bottlenecks for the effective thermal conduction in polymer composites. Herein, we report on engineering interfacial structure of silicon carbide nanowire/cellulose microcrystal paper by generating silver nanostructures. We show that silver nanoparticle-deposited silicon carbide nanowires as fillers can effectively enhance the thermal conductivity of the matrix. The in-plane thermal conductivity of the resultant composite paper reaches as high as 34.0 W/m K, which is one order magnitude higher than that of conventional polymer composites. Fitting the measured thermal conductivity with theoretical models qualitatively demonstrates that silver nanoparticles bring the lower interfacial thermal resistances both at silicon carbide nanowire/cellulose microcrystal and silicon carbide nanowire/silicon carbide nanowire interfaces. This interfacial engineering approach provides a powerful tool for sophisticated fabrication of high-performance thermal-management materials.

  17. Feasibility Study of Extended-Gate-Type Silicon Nanowire Field-Effect Transistors for Neural Recording.

    PubMed

    Kang, Hongki; Kim, Jee-Yeon; Choi, Yang-Kyu; Nam, Yoonkey

    2017-03-28

    In this research, a high performance silicon nanowire field-effect transistor (transconductance as high as 34 µS and sensitivity as 84 nS/mV) is extensively studied and directly compared with planar passive microelectrode arrays for neural recording application. Electrical and electrochemical characteristics are carefully characterized in a very well-controlled manner. We especially focused on the signal amplification capability and intrinsic noise of the transistors. A neural recording system using both silicon nanowire field-effect transistor-based active-type microelectrode array and platinum black microelectrode-based passive-type microelectrode array are implemented and compared. An artificial neural spike signal is supplied as input to both arrays through a buffer solution and recorded simultaneously. Recorded signal intensity by the silicon nanowire transistor was precisely determined by an electrical characteristic of the transistor, transconductance. Signal-to-noise ratio was found to be strongly dependent upon the intrinsic 1/f noise of the silicon nanowire transistor. We found how signal strength is determined and how intrinsic noise of the transistor determines signal-to-noise ratio of the recorded neural signals. This study provides in-depth understanding of the overall neural recording mechanism using silicon nanowire transistors and solid design guideline for further improvement and development.

  18. Graphene enhances Li storage capacity of porous single-crystalline silicon nanowires.

    PubMed

    Wang, Xiao-Liang; Han, Wei-Qiang

    2010-12-01

    We demonstrated that graphene significantly enhances the reversible capacity of porous silicon nanowires used as the anode in Li-ion batteries. We prepared our experimental nanomaterials, viz., graphene and porous single-crystalline silicon nanowires, respectively, using a liquid-phase graphite exfoliation method and an electroless HF/AgNO3 etching process. The Si porous nanowire/graphene electrode realized a charge capacity of 2470 mAh g(-1) that is much higher than the 1256 mAh g(-1) of porous Si nanowire/C-black electrode and 6.6 times the theoretical capacity of commercial graphite. This relatively high capacity could originate from the favorable charge-transportation characteristics of the combination of graphene with the porous Si 1D nanostructure.

  19. Graphene Enhances Li Storage Capacity of Porous Single-crystalline Silicon Nanowires

    SciTech Connect

    Wang, X.; Han, W.

    2010-12-01

    We demonstrated that graphene significantly enhances the reversible capacity of porous silicon nanowires used as the anode in Li-ion batteries. We prepared our experimental nanomaterials, viz., graphene and porous single-crystalline silicon nanowires, respectively, using a liquid-phase graphite exfoliation method and an electroless HF/AgNO{sub 3} etching process. The Si porous nanowire/graphene electrode realized a charge capacity of 2470 mAh g{sup -1} that is much higher than the 1256 mAh g{sup -1} of porous Si nanowire/C-black electrode and 6.6 times the theoretical capacity of commercial graphite. This relatively high capacity could originate from the favorable charge-transportation characteristics of the combination of graphene with the porous Si 1D nanostructure.

  20. Ultralow thermal conductivity of silicon nanowire arrays by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Xiong, Xue; Liu, Meng; Cheng, Guoan; Zheng, Ruiting; Xu, Ju; Wei, Lei

    2017-02-01

    We investigate the thermal conductivities of silicon nanowires (SiNWs) and their arrays based on molecular dynamics simulations. It is found that diminishing diameter, roughing surface and doping impurity of SiNWs can reduce their thermal conductivities by two or three orders of magnitude compared with that of bulk silicon crystals due to the strong phonon boundary and phonon impurity scattering. The simulated thermal conductivities of SiNW arrays demonstrate that arraying nanowires can further lower the thermal conductivity owing to the laterally-coupled effect, and the thermal conductivity of arrays decreases notably with the increased nanowire volume fraction, resulting in an ultralow thermal conductivity for the doped SiNW arrays with rough surfaces, which provides theoretical guidance of thermal management for semiconductor nanowire based microelectronic and thermoelectric devices.

  1. Silicon nanowires with permanent electrostatic charges for nanogenerators.

    PubMed

    Que, Ronghui; Shao, Mingwang; Wang, Suidong; Ma, Dorothy Duo Duo; Lee, Shuit-Tong

    2011-11-09

    Electrets are dielectric materials possessing a quasi-permanent electric charge or dipole polarization. Frequently, the electrets are adversely affected by environmental temperature and humidity, leading to charge instability, which severely restricts applications. Here we show that silicon nanowires (SiNWs) via modified oxide-assisted growth can surprisingly serve as electrets with permanent electrostatic charges and surface potential up to 7.7 mV. Significantly, the extraordinary electret behavior of SiNWs is extremely robust, remaining stable against immersion in water for over 2 months. The SiNWs were utilized to fabricate a nanogenerator, which yielded an output electrical power of 2.19 × 10(-11) W with a conversion efficiency of 2.2%. The nanogenerator consists of only one movable part, giving highly sustainable and stable output signals, and thus holds promise for various self-powered applications. The permanent electrostatic charges on SiNWs are attributed to the formation of α-quartz in SiNWs.

  2. Frequency Domain Detection of Biomolecules using Silicon Nanowire Biosensors

    PubMed Central

    Zheng, Gengfeng; Gao, Xuan P. A.; Lieber, Charles M.

    2010-01-01

    We demonstrate a new protein detection methodology based upon frequency domain electrical measurement using silicon nanowire field-effect transistor (SiNW FET) biosensors. The power spectral density of voltage from a current-biased SiNW FET shows 1/f-dependence in frequency domain for measurements of antibody functionalized SiNW devices in buffer solution or in the presence of protein not specific to the antibody receptor. In the presence of protein (antigen) recognized specifically by the antibody-functionalized SiNW FET, the frequency spectrum exhibits a Lorentzian shape with a characteristic frequency of several kHz. Frequency and conventional time domain measurements carried out with the same device as a function of antigen concentration show more than 10-fold increase in detection sensitivity in the frequency domain data. These concentration dependent results together with studies of antibody receptor density effect further address possible origins of the Lorentzian frequency spectrum. Our results show that frequency domain measurements can be used as a complementary approach to conventional time domain measurements for ultra-sensitive electrical detection of proteins and other biomolecules using nanoscale FETs. PMID:20698634

  3. Static friction between silicon nanowires and elastomeric substrates.

    PubMed

    Qin, Qingquan; Zhu, Yong

    2011-09-27

    This paper reports the first direct measurements of static friction force and interfacial shear strength between silicon (Si) nanowires (NWs) and poly(dimethylsiloxane) (PDMS). A micromanipulator is used to manipulate and deform the NWs under a high-magnification optical microscope in real time. The static friction force is measured based on "the most-bent state" of the NWs. The static friction and interface shear strength are found to depend on the ultraviolet/ozone (UVO) treatment of PDMS. The shear strength starts at 0.30 MPa without UVO treatment, increases rapidly up to 10.57 MPa at 60 min of treatment and decreases for longer treatment. Water contact angle measurements suggest that the UVO-induced hydrophobic-to-hydrophilic conversion of PDMS surface is responsible for the increase in the static friction, while the hydrophobic recovery effect contributes to the decrease. The static friction between NWs and PDMS is of critical relevance to many device applications of NWs including NW-based flexible/stretchable electronics, NW assembly and nanocomposites (e.g., supercapacitors). Our results will enable quantitative interface design and control for such applications.

  4. Effects of lithium insertion on thermal conductivity of silicon nanowires

    SciTech Connect

    Xu, Wen; Zhang, Gang; Li, Baowen

    2015-04-27

    Recently, silicon nanowires (SiNWs) have been applied as high-performance Li battery anodes, since they can overcome the pulverization and mechanical fracture during lithiation. Although thermal stability is one of the most important parameters that determine safety of Li batteries, thermal conductivity of SiNWs with Li insertion remains unclear. In this letter, using molecular dynamics simulations, we study room temperature thermal conductivity of SiNWs with Li insertion. It is found that compared with the pristine SiNW, there is as much as 60% reduction in thermal conductivity with 10% concentration of inserted Li atoms, while under the same impurity concentration the reduction in thermal conductivity of the mass-disordered SiNW is only 30%. With lattice dynamics calculations and normal mode decomposition, it is revealed that the phonon lifetimes in SiNWs decrease greatly due to strong scattering of phonons by vibrational modes of Li atoms, especially for those high frequency phonons. The observed strong phonon scattering phenomenon in Li-inserted SiNWs is similar to the phonon rattling effect. Our study serves as an exploration of thermal properties of SiNWs as Li battery anodes or weakly coupled with impurity atoms.

  5. Single-crystal CdSe nanowires prepared via vapor-phase growth assisted with silicon.

    PubMed

    Wang, Z Y; Zhang, L D; Ye, C H; Fang, X S; Xiao, Z D; Kong, M G

    2005-12-01

    Hexagonal cadmium selenide (CdSe) nanowires, with diameter around 20 nm, were synthesized using a simple vapor-phase growth. Silicon (Si) powder acts as a source material assisting the synthesis, which is very important to the formation of the CdSe nanowires. We also suggest that self-catalysis at the Cd-terminated (0001) surface, together with the assistance action of Si, leads to the formation of wire-like structures to be formed. Meanwhile, the assistance of Si is responsible for the fineness and uniformity of the CdSe nanowires. The possible growth mechanism of the CdSe nanowires is proposed, and the optical property of the as-grown CdSe nanowires is characterized.

  6. Coating and enhanced photocurrent of vertically aligned zinc oxide nanowire arrays with metal sulfide materials.

    PubMed

    Volokh, Michael; Diab, Mahmud; Magen, Osnat; Jen-La Plante, Ilan; Flomin, Kobi; Rukenstein, Pazit; Tessler, Nir; Mokari, Taleb

    2014-08-27

    Hybrid nanostructures combining zinc oxide (ZnO) and a metal sulfide (MS) semiconductor are highly important for energy-related applications. Controlled filling and coating of vertically aligned ZnO nanowire arrays with different MS materials was achieved via the thermal decomposition approach of single-source precursors in the gas phase by using a simple atmospheric-pressure chemical vapor deposition system. Using different precursors allowed us to synthesize multicomponent structures such as nanowires coated with alloy shell or multishell structures. Herein, we present the synthesis and structural characterization of the different structures, as well as an electrochemical characterization and a photovoltaic response of the ZnO-CdS system, in which the resulting photocurrent upon illumination indicates charge separation at the interface.

  7. Photon lifetime correlated increase of Raman scattering and third-harmonic generation in silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zabotnov, S. V.; Kholodov, M. M.; Georgobiani, V. A.; Presnov, D. E.; Golovan, L. A.; Kashkarov, P. K.

    2016-03-01

    Light propagation in silicon nanowire layers is studied via Raman scattering, third-harmonic generation and cross-correlation function measurements. The studied silicon nanowire arrays are characterized by a wire diameter of 50-100 nm and a layer thickness ranging from 0.2-16 μm. These structures are mesoscopic for light in the visible and near infrared ranges. The Raman signal increases monotonically with layer thickness increases at a 1.064 μm pump wavelength. The Stokes component for silicon nanowire arrays with a thickness larger than 2 μm exceeds that for crystalline silicon by more than an order. At the mentioned thicknesses, an increase is also registered for the third-harmonic signal, one that is up to fourfold greater than that for crystalline silicon for a 1.25 μm pump wavelength. Measurements of cross-correlation functions for the scattered photons evidence the significant photon lifetime increase in the silicon nanowire layers at their thickness increase. This fact can be connected with multiple scattering inside the studied mesoscopic structures and the increase of the interaction length for the Raman and third-harmonic generation processes.

  8. Nanowire-integrated microporous silicon membrane for continuous fluid transport in micro cooling device

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Cheng, Jim C.; Pisano, Albert P.

    2013-10-01

    We report an efficient passive micro pump system combining the physical properties of nanowires and micropores. This nanowire-integrated microporous silicon membrane was created to feed coolant continuously onto the surface of the wick in a micro cooling device to ensure it remains hydrated and in case of dryout, allow for regeneration of the system. The membrane was fabricated by photoelectrochemical etching to form micropores followed by hydrothermal growth of nanowires. This study shows a promising approach to address thermal management challenges for next generation electronic devices with absence of external power.

  9. Nanowire-integrated microporous silicon membrane for continuous fluid transport in micro cooling device

    SciTech Connect

    So, Hongyun; Pisano, Albert P.; Cheng, Jim C.

    2013-10-14

    We report an efficient passive micro pump system combining the physical properties of nanowires and micropores. This nanowire-integrated microporous silicon membrane was created to feed coolant continuously onto the surface of the wick in a micro cooling device to ensure it remains hydrated and in case of dryout, allow for regeneration of the system. The membrane was fabricated by photoelectrochemical etching to form micropores followed by hydrothermal growth of nanowires. This study shows a promising approach to address thermal management challenges for next generation electronic devices with absence of external power.

  10. Highly conductive indium nanowires deposited on silicon by dip-pen nanolithography

    SciTech Connect

    Kozhukhov, Anton; Volodin, Vladimir; Klimenko, Anatoliy; Shcheglov, Dmitriy; Karnaeva, Natalya; Latyshev, Alexander

    2015-04-14

    In this paper, we developed a new dip-pen nanolithography (DPN) method. Using this method, we fabricated conductive nanowires with diameters of 30–50 nm on silicon substrates. To accomplish this, indium was transferred from an atomic force microscopy tip to the surface by applying a potential difference between the tip and substrate. The fabricated indium nanowires were several micrometers in length. Unlike thermal DPN, our DPN method hardly oxidized the indium, producing nanowires with conductivities from 5.7 × 10{sup −3} to 4 × 10{sup −2} Ω cm.

  11. Structural and optical properties of axial silicon-germanium nanowire heterojunctions

    SciTech Connect

    Wang, X.; Tsybeskov, L.; Kamins, T. I.; Wu, X.; Lockwood, D. J.

    2015-12-21

    Detailed studies of the structural and optical properties of axial silicon-germanium nanowire heterojunctions show that despite the 4.2% lattice mismatch between Si and Ge they can be grown without a significant density of structural defects. The lattice mismatch induced strain is partially relieved due to spontaneous SiGe intermixing at the heterointerface during growth and lateral expansion of the Ge segment of the nanowire. The mismatch in Ge and Si coefficients of thermal expansion and low thermal conductivity of Si/Ge nanowire heterojunctions are proposed to be responsible for the thermally induced stress detected under intense laser radiation in photoluminescence and Raman scattering measurements.

  12. Structural properties and magic structures in hydrogenated finite and infinite silicon nanowires

    NASA Astrophysics Data System (ADS)

    Zdetsis, A. D.; Koukaras, E. N.; Garoufalis, C. S.

    2007-11-01

    Unusual effects such as bending and "canting," related with the stability, have been identified by ab initio real-space calculations for hydrogenated silicon nanowires. We have examined in detail the electronic and structural properties of finite and infinite nanowires as a function of length (and width) and have developed stability and bending rules, demonstrating that "magic" wires do not bend. Reconstructed 2×1 nanowires are practically as stable as the magic ones. Our calculations are in good agreement with the experimental data of Ma et al. [Science 299, 1874 (2003).].

  13. Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires.

    PubMed

    Dan, Yaping; Seo, Kwanyong; Takei, Kuniharu; Meza, Jhim H; Javey, Ali; Crozier, Kenneth B

    2011-06-08

    Nanowires have unique optical properties and are considered as important building blocks for energy harvesting applications such as solar cells. However, due to their large surface-to-volume ratios, the recombination of charge carriers through surface states reduces the carrier diffusion lengths in nanowires a few orders of magnitude, often resulting in the low efficiency (a few percent or less) of nanowire-based solar cells. Reducing the recombination by surface passivation is crucial for the realization of high-performance nanosized optoelectronic devices but remains largely unexplored. Here we show that a thin layer of amorphous silicon (a-Si) coated on a single-crystalline silicon nanowire, forming a core-shell structure in situ in the vapor-liquid-solid process, reduces the surface recombination nearly 2 orders of magnitude. Under illumination of modulated light, we measure a greater than 90-fold improvement in the photosensitivity of individual core-shell nanowires, compared to regular nanowires without shell. Simulations of the optical absorption of the nanowires indicate that the strong absorption of the a-Si shell contributes to this effect, but we conclude that the effect is mainly due to the enhanced carrier lifetime by surface passivation.

  14. Fabrication of carbon-coated silicon nanowires and their application in dye-sensitized solar cells.

    PubMed

    Kim, Junhee; Lim, Jeongmin; Kim, Minsoo; Lee, Hae-Seok; Jun, Yongseok; Kim, Donghwan

    2014-11-12

    We report the fabrication of silicon/carbon core/shell nanowire arrays using a two-step process, involving electroless metal deposition and chemical vapor deposition. In general, foreign shell materials that sheath core materials change the inherent characteristics of the core materials. The carbon coating functionalized the silicon nanowire arrays, which subsequently showed electrocatalytic activities for the reduction of iodide/triiodide. This was verified by cyclic voltammetry and electrochemical impedance spectroscopy. We employed the carbon-coated silicon nanowire arrays in dye-sensitized solar cells as counter electrodes. We optimized the carbon shells to maximize the photovoltaic performance of the resulting devices, and subsequently, a peak power conversion efficiency of 9.22% was achieved.

  15. Improvement of silicon nanowire solar cells made by metal catalyzed electroless etching and nano imprint lithography

    NASA Astrophysics Data System (ADS)

    Chen, Junyi; Subramani, Thiyagu; Jevasuwan, Wipakorn; Fukata, Naoki

    2017-04-01

    Silicon nanowires were fabricated by metal catalyzed electroless etching (MCEE) and nano imprint lithography (NIL), then a shell p-type layer was grown by thermal chemical vapor deposition (CVD) techniques. To reduce back surface recombination and also to activate the dopant, we used two techniques, back surface field (BSF) treatment and rapid thermal annealing (RTA), to improve device performance. In this study, we investigated BSF and RTA treatments in silicon nanowire solar cells, and improved the device performance and efficiency from 4.1 to 7.4% (MCEE device) and from 1.1 to 6.6% (NIL device) after introducing BSF and RTA treatments. Moreover, to achieve better metal contact without sacrificing the reflectance after the shell formation, the selective-area etching method was investigated. Finally, after combining all processes, silicon nanowire solar cells fabricated via the MCEE process exhibited 8.7% efficiency.

  16. Light trapping in horizontally aligned silicon microwire solar cells.

    PubMed

    Martinsen, Fredrik A; Smeltzer, Benjamin K; Ballato, John; Hawkins, Thomas; Jones, Max; Gibson, Ursula J

    2015-11-30

    In this study, we demonstrate a solar cell design based on horizontally aligned microwires fabricated from 99.98% pure silicon via the molten core fiber drawing method. A similar structure consisting of 50 μm diameter close packed wires (≈ 0.97 packing density) on a Lambertian white back-reflector showed 86 % absorption for incident light of wavelengths up to 850 nm. An array with a packing fraction of 0.35 showed an absorption of 58 % over the same range, demonstrating the potential for effective light trapping. Prototype solar cells were fabricated to demonstrate the concept. Horizontal wire cells offer several advantages as they can be flexible, and partially transparent, and absorb light efficiently over a wide range of incident angles.

  17. Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires.

    PubMed

    Dawood, M K; Liew, T H; Lianto, P; Hong, M H; Tripathy, S; Thong, J T L; Choi, W K

    2010-05-21

    We report a simple and cost effective method for the synthesis of large-area, precisely located silicon nanocones from nanowires. The nanowires were obtained from our interference lithography and catalytic etching (IL-CE) method. We found that porous silicon was formed near the Au catalyst during the fabrication of the nanowires. The porous silicon exhibited enhanced oxidation ability when exposed to atmospheric conditions or in wet oxidation ambient. Very well located nanocones with uniform sharpness resulted when these oxidized nanowires were etched in 10% HF. Nanocones of different heights were obtained by varying the doping concentration of the silicon wafers. We believe this is a novel method of producing large-area, low cost, well defined nanocones from nanowires both in terms of the control of location and shape of the nanocones. A wide range of potential applications of the nanocone array can be found as a master copy for nanoimprinted polymer substrates for possible biomedical research; as a candidate for making sharp probes for scanning probe nanolithography; or as a building block for field emitting tips or photodetectors in electronic/optoelectronic applications.

  18. Horizontal Silicon Nanowires with Radial p-n Junctions: A Platform for Unconventional Solar Cells.

    PubMed

    Zhang, Xing; Pinion, Christopher W; Christesen, Joseph D; Flynn, Cory J; Celano, Thomas A; Cahoon, James F

    2013-06-20

    The silicon p-n junction is the most successful solar energy technology to date, yet it accounts for a marginal percentage of worldwide energy production. To change the status quo, a disruptive technological breakthrough is needed. In this Perspective, we discuss the potential for complex silicon nanowires to serve as a platform for next-generation photovoltaic devices. We review the synthesis, electrical characteristics, and optical properties of core/shell silicon nanowires that are subwavelength in diameter and contain radial p-n junctions. We highlight the unique features of these nanowires, such as optical antenna effects that concentrate light and intense built-in electric fields that enable ultrafast charge-carrier separation. We advocate a paradigm in which nanowires are arranged in periodic horizontal arrays to form ultrathin devices. Unlike conventional planar silicon, nanowire structures provide the flexibility to incorporate multiple semiconductor, dielectric, and metallic materials in a single system, providing the foundation for a disruptive, unconventional solar energy technology.

  19. Electrochromic nanostructures grown on a silicon nanowire template.

    PubMed

    Kim, Yuna; Baek, Jehoon; Kim, Myoung-Ha; Choi, Heon-Jin; Kim, Eunkyoung

    2008-09-01

    Vertically grown Si nanowires were prepared as a nanotemplate for conducting polymers. Electrochromic (EC) PEDOT (poly(3,4-ethylenedioxythiophene)) layer was successfully grown on Si nanowires by electrochemical polymerization method to form PEDOT nanowires having average wall thickness of approximately 60 nm. As-prepared conductive nanowire electrode was applied to a low voltage working EC device by fabricating an all solid state EC device. The EC properties of the device were enhanced in the nanowire structure, showing reversible fast optical transition by applying +/-2 V. The response time (t(R)) of the EC device from the PEDOT grown on Si nanowires was approximately 0.7 s, which was much faster than that from PEDOT film coated on ITO glass electrochemically (t(R)=1.9 s).

  20. Ultrahigh Density Array of Vertically Aligned Small-molecular Organic Nanowires on Arbitrary Substrates

    PubMed Central

    Starko-Bowes, Ryan; Pramanik, Sandipan

    2013-01-01

    In recent years π-conjugated organic semiconductors have emerged as the active material in a number of diverse applications including large-area, low-cost displays, photovoltaics, printable and flexible electronics and organic spin valves. Organics allow (a) low-cost, low-temperature processing and (b) molecular-level design of electronic, optical and spin transport characteristics. Such features are not readily available for mainstream inorganic semiconductors, which have enabled organics to carve a niche in the silicon-dominated electronics market. The first generation of organic-based devices has focused on thin film geometries, grown by physical vapor deposition or solution processing. However, it has been realized that organic nanostructures can be used to enhance performance of above-mentioned applications and significant effort has been invested in exploring methods for organic nanostructure fabrication. A particularly interesting class of organic nanostructures is the one in which vertically oriented organic nanowires, nanorods or nanotubes are organized in a well-regimented, high-density array. Such structures are highly versatile and are ideal morphological architectures for various applications such as chemical sensors, split-dipole nanoantennas, photovoltaic devices with radially heterostructured "core-shell" nanowires, and memory devices with a cross-point geometry. Such architecture is generally realized by a template-directed approach. In the past this method has been used to grow metal and inorganic semiconductor nanowire arrays. More recently π-conjugated polymer nanowires have been grown within nanoporous templates. However, these approaches have had limited success in growing nanowires of technologically important π-conjugated small molecular weight organics, such as tris-8-hydroxyquinoline aluminum (Alq3), rubrene and methanofullerenes, which are commonly used in diverse areas including organic displays, photovoltaics, thin film transistors

  1. Ultrahigh density array of vertically aligned small-molecular organic nanowires on arbitrary substrates.

    PubMed

    Starko-Bowes, Ryan; Pramanik, Sandipan

    2013-06-18

    In recent years π-conjugated organic semiconductors have emerged as the active material in a number of diverse applications including large-area, low-cost displays, photovoltaics, printable and flexible electronics and organic spin valves. Organics allow (a) low-cost, low-temperature processing and (b) molecular-level design of electronic, optical and spin transport characteristics. Such features are not readily available for mainstream inorganic semiconductors, which have enabled organics to carve a niche in the silicon-dominated electronics market. The first generation of organic-based devices has focused on thin film geometries, grown by physical vapor deposition or solution processing. However, it has been realized that organic nanostructures can be used to enhance performance of above-mentioned applications and significant effort has been invested in exploring methods for organic nanostructure fabrication. A particularly interesting class of organic nanostructures is the one in which vertically oriented organic nanowires, nanorods or nanotubes are organized in a well-regimented, high-density array. Such structures are highly versatile and are ideal morphological architectures for various applications such as chemical sensors, split-dipole nanoantennas, photovoltaic devices with radially heterostructured "core-shell" nanowires, and memory devices with a cross-point geometry. Such architecture is generally realized by a template-directed approach. In the past this method has been used to grow metal and inorganic semiconductor nanowire arrays. More recently π-conjugated polymer nanowires have been grown within nanoporous templates. However, these approaches have had limited success in growing nanowires of technologically important π-conjugated small molecular weight organics, such as tris-8-hydroxyquinoline aluminum (Alq3), rubrene and methanofullerenes, which are commonly used in diverse areas including organic displays, photovoltaics, thin film transistors

  2. From Si nanowires to porous silicon: the role of excitonic effects.

    PubMed

    Bruno, Mauro; Palummo, Maurizia; Marini, Andrea; Del Sole, Rodolfo; Ossicini, Stefano

    2007-01-19

    We show that the electronic and optical properties of silicon nanowires, with different size and orientation, are dominated by important many-body effects. The electronic and excitonic gaps, calculated within first principles, agree with the available experimental data. Huge excitonic effects, which depend strongly on wire orientation and size, characterize the optical spectra. Modeling porous silicon as a collection of interacting nanowires, we find an absorption spectrum which is in very good agreement with experimental measurements only when the electron-hole interaction is included.

  3. Silicon-Nanowire Based Lithium Ion Batteries for Vehicles With Double the Energy Density

    SciTech Connect

    Stefan, Ionel; Cohen, Yehonathan

    2015-03-31

    Amprius researched and developed silicon nanowire anodes. Amprius then built and delivered high-energy lithium-ion cells that met the project’s specific energy goal and exceeded the project’s energy density goal. But Amprius’ cells did not meet the project’s cycle life goal, suggesting additional manufacturing process development is required. With DOE support, Amprius developed a new anode material, silicon, and a new anode structure, nanowire. During the project, Amprius also began to develop a new multi-step manufacturing process that does not involve traditional anode production processes (e.g. mixing, drying and calendaring).

  4. In situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates.

    PubMed

    Zhang, Weixin; Yang, Shihe

    2009-10-20

    The full potential of nanotechnology can be unleashed only when one is able not only to synthesize a rich variety of nanoscale building blocks but also assemble them into various patterns at the supramolecular and supracluster levels. In particular, the application of nanoparticle and nanowire materials often requires their assembly in the form of thin films, preferably on conductive surfaces for electrical addressing, control, and detection. Although a dazzling array of nanostructures has been fabricated by bottom-up approaches, one of the contemporary challenges is to assemble these nanostructures so that they introduce and realize functionalities. An alluring avenue is to simultaneously accomplish both the nanostructure synthesis and assembly on a useful substrate in a parallel fashion, affording the advantages of simplicity, low cost, and high throughput. In this Account, we review our recent work on growing inorganic nanowires (for example, metal sulfides, metal oxides, and so forth) directly from and on metal substrates in arrays without using templates and catalysts. This method of engineering nanowire arrays on metal substrates integrates the nanowire synthesis and assembly into a parallel process, both in time and in space, by exploiting in situ chemistry on the metal substrates. Both gas-phase and solution-phase approaches have been developed to synthesize the aligned nanowires; here, full advantage is taken of interfacial kinetics of restricted diffusion and surface-specific reactions, often accompanied by new interfacial growth mechanisms. The setting of nanowire arrays on metal substrates has allowed exploration of their application potentials in areas such as field electron emission and chemical sensing. The approaches described here are general, and we predict that they will be extended to more inorganic materials, such as metal halides. Moreover, as more control is achieved with synthetic methods, inorganic nanowire arrays should provide unusual

  5. Synthesis and room-temperature NO2 gas sensing properties of a WO3 nanowires/porous silicon hybrid structure

    NASA Astrophysics Data System (ADS)

    Zeng, Peng; Zhang, Ping; Hu, Ming; Ma, Shuang-Yun; Yan, Wen-Jun

    2014-05-01

    We report on the fabrication and performance of a room-temperature NO2 gas sensor based on a WO3 nanowires/porous silicon hybrid structure. The W18O49 nanowires are synthesized directly from a sputtered tungsten film on a porous silicon (PS) layer under heating in an argon atmosphere. After a carefully controlled annealing treatment, WO3 nanowires are obtained on the PS layer without losing the morphology. The morphology, phase structure, and crystallinity of the nanowires are investigated by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and high-resolution transmission electron microscopy (HRTEM). Comparative gas sensing results indicate that the sensor based on the WO3 nanowires exhibits a much higher sensitivity than that based on the PS and pure WO3 nanowires in detecting NO2 gas at room temperature. The mechanism of the WO3 nanowires/PS hybrid structure in the NO2 sensing is explained in detail.

  6. Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires

    SciTech Connect

    Uran, Can; Erdem, Talha; Guzelturk, Burak; Perkgöz, Nihan Kosku; Jun, Shinae; Jang, Eunjoo; Demir, Hilmi Volkan

    2014-10-06

    In this work, we demonstrate a proof-of-concept system for generating highly polarized light from colloidal quantum dots (QDs) coupled with magnetically aligned segmented Au/Ni/Au nanowires (NWs). Optical characterizations reveal that the optimized QD-NW coupled structures emit highly polarized light with an s-to p-polarization (s/p) contrast as high as 15:1 corresponding to a degree of polarization of 0.88. These experimental results are supported by the finite-difference time-domain simulations, which demonstrate the interplay between the inter-NW distance and the degree of polarization.

  7. High speed graphene transistors with a self-aligned nanowire gate

    PubMed Central

    Liao, Lei; Lin, Yung-Chen; Bao, Mingqiang; Cheng, Rui; Bai, Jingwei; Liu, Yuan; Qu, Yongquan; Wang, Kang L.; Huang, Yu; Duan, Xiangfeng

    2010-01-01

    Graphene has attracted considerable interest as a potential new electronic material1–11. With the highest carrier mobility exceeding 200,000 cm2/V·s, graphene is of particular interest for ultra-high speed radio frequency (RF) electronics12–18. However, the conventional dielectric integration and device fabrication processes cannot be readily applied to fabricate high speed graphene transistors because they can often introduce significant defects into the monolayer of carbon lattices and severely degrade the device performance19–21. Here we report a new approach to fabricate high-speed graphene transistors with a self-aligned nanowire gate to enable unprecedented performance. The graphene transistors are fabricated using a Co2Si/Al2O3 core/shell nanowire as the gate, with the source and drain electrodes defined through a self-alignment process and the channel length defined by the nanowire diameter. The physical assembly of nanowire gate preserves the high carrier mobility in graphene, and the self-aligned process ensures that the edges of the source, drain, and gate electrodes are automatically and precisely positioned so that no overlapping or significant gaps exist between these electrodes and thus minimizes access resistance. It therefore enables transistor performance not previously possible. Graphene transistors with channel length down to 140 nm have been fabricated with the highest scaled on-current (3.32 mA μm−1) and transconductance (1.27 mS μm−1) reported to date. Significantly, on-chip microwave measurements demonstrate that the self-aligned devices exhibit a record high intrinsic cutoff frequency (fT) in the range of 100–300 GHz, with the extrinsic fT in the range of a few gigahertz largely limited by parasitic pad capacitance. The reported intrinsic cutoff frequency of the graphene transistors is comparable to that of the very best high electron mobility transistors with similar gate lengths10. It therefore marks an important milestone

  8. Top-Down Nanofabrication and Characterization of 20 nm Silicon Nanowires for Biosensing Applications.

    PubMed

    M Nuzaihan, M N; Hashim, U; Md Arshad, M K; Rahim Ruslinda, A; Rahman, S F A; Fathil, M F M; Ismail, Mohd H

    2016-01-01

    A top-down nanofabrication approach is used to develop silicon nanowires from silicon-on-insulator (SOI) wafers and involves direct-write electron beam lithography (EBL), inductively coupled plasma-reactive ion etching (ICP-RIE) and a size reduction process. To achieve nanometer scale size, the crucial factors contributing to the EBL and size reduction processes are highlighted. The resulting silicon nanowires, which are 20 nm in width and 30 nm in height (with a triangular shape) and have a straight structure over the length of 400 μm, are fabricated precisely at the designed location on the device. The device is applied in biomolecule detection based on the changes in drain current (Ids), electrical resistance and conductance of the silicon nanowires upon hybridization to complementary target deoxyribonucleic acid (DNA). In this context, the scaled-down device exhibited superior performances in terms of good specificity and high sensitivity, with a limit of detection (LOD) of 10 fM, enables for efficient label-free, direct and higher-accuracy DNA molecules detection. Thus, this silicon nanowire can be used as an improved transducer and serves as novel biosensor for future biomedical diagnostic applications.

  9. Top-Down Nanofabrication and Characterization of 20 nm Silicon Nanowires for Biosensing Applications

    PubMed Central

    M. N, M. Nuzaihan; Hashim, U.; Md Arshad, M. K.; Ruslinda, A. Rahim; Rahman, S. F. A.; Fathil, M. F. M.; Ismail, Mohd. H.

    2016-01-01

    A top-down nanofabrication approach is used to develop silicon nanowires from silicon-on-insulator (SOI) wafers and involves direct-write electron beam lithography (EBL), inductively coupled plasma-reactive ion etching (ICP-RIE) and a size reduction process. To achieve nanometer scale size, the crucial factors contributing to the EBL and size reduction processes are highlighted. The resulting silicon nanowires, which are 20 nm in width and 30 nm in height (with a triangular shape) and have a straight structure over the length of 400 μm, are fabricated precisely at the designed location on the device. The device is applied in biomolecule detection based on the changes in drain current (Ids), electrical resistance and conductance of the silicon nanowires upon hybridization to complementary target deoxyribonucleic acid (DNA). In this context, the scaled-down device exhibited superior performances in terms of good specificity and high sensitivity, with a limit of detection (LOD) of 10 fM, enables for efficient label-free, direct and higher-accuracy DNA molecules detection. Thus, this silicon nanowire can be used as an improved transducer and serves as novel biosensor for future biomedical diagnostic applications. PMID:27022732

  10. Enhancement of field emission and hydrophobic properties of silicon nanowires by chemical vapor deposited carbon nanoflakes coating

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Das, N. S.; Chattopadhyay, K. K.

    2012-11-01

    Vertically aligned silicon nanowires (SiNWs) have been synthesized by chemical etching process on commercially available p-type silicon wafer substrates. The surfaces of the as-synthesized nanowires have been modified with plasma enhanced chemical vapor deposited carbon nanoflakes. All the pure and coated SiNWs have been characterized by field emission scanning electron microscope, high resolution transmission electron microscope, Raman spectrometer and photoluminescence spectrometer. Surface wettability of the pure and carbon coated SiNWs has been studied and calculation of porosity has been done by using Cassie's equation. It has been found that hydrophobicity of the coated SiNWs varied with deposition time of carbon and for deposition time of 3 min the surface showed super hydrophobicity. For showing versatility of applications of the carbon coated SiNWs we have also investigated its electron field emission characteristics. Our results showed significant improvement of emission characteristics after carbon flakes with turn-on field downshifted from 9.30 to 2.77 V/μm. The results were explained due to enhanced surface roughness leading to higher enhancement factor, favorable band bending for electron emission and overall reduction of potential barrier on application of external electric field.

  11. Microstructures of the silicon carbide nanowires obtained by annealing the mechanically-alloyed amorphous powders

    SciTech Connect

    Zhang, Pengfei Li, Xinli

    2015-07-15

    Silicon, graphite and boron nitride powders were mechanically alloyed for 40 h in argon. The as-milled powders were annealed at 1700 °C in nitrogen for 30 min. The annealed powders are covered by a thick layer of gray–green SiC nanowires, which are 300 nm to 1000 nm in diameter and several hundred microns in length. Trace iron in the raw powders acts as a catalyst, promoting the V–L–S process. It follows that the actual substances contributing to the growth of the SiC nanowires may be silicon, graphite and the metal impurities in the raw powders. The results from HRTEM and XRD reveal that the products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. It is interestingly found that 6H–SiC coexists with 3C–SiC in one nodular nanowire. This novel structure may introduce periodic potential field along the longitudinal direction of the nanowires, and may find applications in the highly integrated optoelectronic devices. - Graphical abstract: Display Omitted - Highlights: • SiC nanowires were prepared by annealing the mechanically alloyed amorphous powders. • SiC nanowires are 300 nm to 1000 nm in diameter and several hundred microns in length. • The products contain both straight α/β-SiC nanowires and nodular α/β-SiC nanochains. • Trace Fe in the raw powders acts as a catalyst, promoting the V–L–S process. • 6H–SiC coexists with 3C–SiC in one nodular SiC nanowire.

  12. Surface states and conductivity of silicon nano-wires

    NASA Astrophysics Data System (ADS)

    Kumar Bhaskar, Umesh; Pardoen, Thomas; Passi, Vikram; Raskin, Jean-Pierre

    2013-04-01

    The transport characteristics of low dimensional semiconductors like silicon nano-wires (SiNWs) rarely conform to expectations from geometry and dopant density, exhibiting significant variations as a function of different surface terminations/conditions. The association of these mechanisms with surface states and their exact influence on practical SiNW devices still remains largely unclear. Herein, we report on the influence of surface state charge distributions on SiNW transport characteristics. For this study, p-type SiNW devices with widths of 50, 100, and 2000 nm are fabricated from 25, 50, and 200 nm-thick SOI wafers. A ˜five order difference in effective carrier concentration was observed in the initial SiNWs characteristics, when comparing SiNWs fabricated with and without a thermal oxide. The removal of the surface oxide by a hydrogen fluoride (HF) treatment results in a SiNW conductance drop up to ˜six orders of magnitude. This effect is from a surface depletion of holes in the SiNW induced by positive surface charges deposited as a result of the HF treatment. However, it is observed that this charge density is transient and is dissipated with the re-growth of an oxide layer. In summary, the SiNW conductance is shown to vary by several orders of magnitude, while comparing its characteristics for the three most studied surface conditions: with a native oxide, thermal oxide and HF induced H-terminations. These results emphasize the necessity to interpret the transport characteristics of SiNWs with respect to its surface condition, during future investigations pertaining to the physical properties of SiNWs, like its piezo-resistance. As a sequel, prospects for efficiently sensing an elementary reduction/oxidation chemical process by monitoring the variation of SiNW surface potential, or in practice the SiNW conductance, is demonstrated.

  13. A silicon carbide nanowire field effect transistor for DNA detection.

    PubMed

    Fradetal, L; Bano, E; Attolini, G; Rossi, F; Stambouli, V

    2016-06-10

    This work reports on the label-free electrical detection of DNA molecules for the first time, using silicon carbide (SiC) as a novel material for the realization of nanowire field effect transistors (NWFETs). SiC is a promising semiconductor for this application due to its specific characteristics such as chemical inertness and biocompatibility. Non-intentionally n-doped SiC NWs are first grown using a bottom-up vapor-liquid-solid (VLS) mechanism, leading to the NWs exhibiting needle-shaped morphology, with a length of approximately 2 μm and a diameter ranging from 25 to 60 nm. Then, the SiC NWFETs are fabricated and functionalized with DNA molecule probes via covalent coupling using an amino-terminated organosilane. The drain current versus drain voltage (I d-V d) characteristics obtained after the DNA grafting and hybridization are reported from the comparative and simultaneous measurements carried out on the SiC NWFETs, used either as sensors or references. As a representative result, the current of the sensor is lowered by 22% after probe DNA grafting and by 7% after target DNA hybridization, while the current of the reference does not vary by more than ±0.6%. The current decrease confirms the field effect induced by the negative charges of the DNA molecules. Moreover, the selectivity, reproducibility, reversibility and stability of the studied devices are emphasized by de-hybridization, non-complementary hybridization and re-hybridization experiments. This first proof of concept opens the way for future developments using SiC-NW-based sensors.

  14. Defect level characterization of silicon nanowire arrays: Towards novel experimental paradigms

    SciTech Connect

    Carapezzi, Stefania; Castaldini, Antonio; Cavallini, Anna

    2014-02-21

    The huge amount of knowledge, and infrastructures, brought by silicon (Si) technology, make Si Nanowires (NWs) an ideal choice for nano-electronic Si-based devices. This, in turn, challenges the scientific research to adapt the technical and theoretical paradigms, at the base of established experimental techniques, in order to probe the properties of these systems. Metal-assisted wet-Chemical Etching (MaCE) [1, 2] is a promising fast, easy and cheap method to grow high aspect-ratio aligned Si NWs. Further, contrary to other fabrication methods, this method avoids the possible detrimental effects related to Au diffusion into NWs. We investigated the bandgap level diagram of MaCE Si NW arrays, phosphorous-doped, by means of Deep Level Transient Spectroscopy. The presence of both shallow and deep levels has been detected. The results have been examined in the light of the specificity of the MaCE growth. The study of the electronic levels in Si NWs is, of course, of capital importance in view of the integration of Si NW arrays as active layers in actual devices.

  15. Polymer-free Vertical Transfer of Silicon Nanowires and their Application to Energy Storage.

    PubMed

    Kim, Han-Jung; Lee, Jihye; Lee, Sang Eon; Kim, Wanjung; Kim, Hwan Jin; Choi, Dae-Geun; Park, Jong Hyeok

    2013-11-01

    Silicon nanowires (SiNWs) for use as lithium-ion battery (LIB) anode materials have been studied for their one-dimensional (1D) properties and ability to accommodate large volume changes and avoid rapid capacity fading during cycling. Although the vertical transfer of SiNWs from their original substrate onto a conducting electrode is very important, to date, there has been no report of a direct integration method without polymer binders. Here, we propose for the first time a vertical transfer method for SiNWs grown on a Si substrate directly to the current-collecting electrode without using a polymer adhesive for the use as a binder-free LIB anode. The vertical SiNWs produced using a low-cost wafer-scale metal-assisted chemical etching (MaCE) process have been successfully transferred directly to a copper electrode coated with a thin Ag layer by using a simple hot pressing method. When evaluated as an LIB anode without using conventional polymeric binder and a conducting additive, the transferred vertically aligned SiNWs showed a high specific capacity (≈2150 mAh g(-1) ) and excellent rate performance. It is believed that the anode-manufacturing process is simple and fast, thus enabling a large-scale production that is of low-cost, broadly applicable, and provides new avenues for the rational engineering of Si-based electrode materials with enhanced power density and conductivity.

  16. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures.

    PubMed

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N; Rocca, Jorge J

    2017-01-01

    Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10(8) J cm(-3) and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 10(19) W cm(-2), we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10(22) W cm(-2) will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10(10) J cm(-3), equivalent to a pressure of 0.35 Tbar.

  17. Metal-organic framework templated synthesis of ultrathin, well-aligned metallic nanowires.

    PubMed

    Volosskiy, Boris; Niwa, Kenta; Chen, Yu; Zhao, Zipeng; Weiss, Nathan O; Zhong, Xing; Ding, Mengning; Lee, Chain; Huang, Yu; Duan, Xiangfeng

    2015-03-24

    With well-defined porous structures and dimensions, metal-organic frameworks (MOFs) can function as versatile templates for the growth of metallic nanostructures with precisely controlled shapes and sizes. Using MOFs as templates, metallic nanostructures can be grown without the need of bulky surfactants and thus preserve their intrinsic surface. Additionally, the high surface area of MOFs can also ensure that the surface of the template metallic nanostructures is readily accessible, which is critical for the proper function of catalysts or sensors. The hybrid metal@MOF structures have been demonstrated to exhibit useful properties not found in either component separately. Here we report the growth of ultrafine metallic nanowires inside one-dimensional MOF pores with well-controlled shape and size. Our study shows that solvent selection plays an important role in controlling precursor loading and the reduction rate inside the MOF pores for the formation of the nanowires. The growth of the well-aligned, ultrathin nanowires was monitored and characterized by transmission electron microscopy, X-ray diffraction, UV-vis spectroscopy, fluorescence studies, and Brunauer-Emmet-Teller surface area analysis.

  18. Energy Density in Aligned Nanowire Arrays Irradiated with Relativistic Intensities: Path to Terabar Pressure Plasmas

    NASA Astrophysics Data System (ADS)

    Rocca, J.; Bargsten, C.; Hollinger, R.; Shylaptsev, V.; Wang, S.; Rockwood, A.; Wang, Y.; Keiss, D.; Capeluto, M.; Kaymak, V.; Pukhov, A.; Tommasini, R.; London, R.; Park, J.

    2016-10-01

    Ultra-high-energy-density (UHED) plasmas, characterized by energy densities >1 x 108 J cm-3 and pressures greater than a gigabar are encountered in the center of stars and in inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto aligned nanowire array targets. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations validated by these measurements predict that irradiation of nanostructures at increased intensity will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy, and by the Defense Threat Reduction Agency.

  19. Field emission behavior of vertically aligned ZnO nanowire planar cathodes

    SciTech Connect

    Semet, V.; Binh, Vu Thien; Pauporte, Th.; Joulaud, L.; Vermersch, F. J.

    2011-03-01

    A field emission (FE) study by scanning anode field emission microscopy was performed to evaluate the FE properties of vertically aligned zinc oxide (ZnO) nanowire arrays electrodeposited on a plane conductive surface. The specific FE behaviors of the cathode observed experimentally are (1) a turn-on macroscopic field of about 6 V/{mu}m for a FE current density J{sub FE} 5 x 10{sup -4} A/cm{sup 2}, (2) a stable FE characteristics for 5 x 10{sup -4} < J{sub FE} < 5 x 10{sup -2} A/cm{sup 2}, and (3) a brutal shut down of FE when J{sub FE} crossed a limiting value of {approx}0.05 A/cm{sup 2} due to a rapid evolution of the nanowires toward a bulbous tip geometry or a complete melting. A physical process of FE from ZnO nanostructures is proposed from the experimental data analyses. An effective surface barrier of about 1 eV was determined from the experimental Fowler-Nordheim plot and the presence of a Zn enriched surface was assumed in considering the possibility of important modifications of the crystallography and charge transfers at the surface of ZnO nanowires during the application of the strong electric field required for FE.

  20. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures

    PubMed Central

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N.; Rocca, Jorge J.

    2017-01-01

    Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 108 J cm−3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 1019 W cm−2, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 1022 W cm−2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 1010 J cm−3, equivalent to a pressure of 0.35 Tbar. PMID:28097218

  1. Room temperature-synthesized vertically aligned InSb nanowires: electrical transport and field emission characteristics

    PubMed Central

    2013-01-01

    Vertically aligned single-crystal InSb nanowires were synthesized via the electrochemical method at room temperature. The characteristics of Fourier transform infrared spectrum revealed that in the syntheses of InSb nanowires, energy bandgap shifts towards the short wavelength with the occurrence of an electron accumulation layer. The current–voltage curve, based on the metal–semiconductor–metal model, showed a high electron carrier concentration of 2.0 × 1017 cm−3 and a high electron mobility of 446.42 cm2 V−1 s−1. Additionally, the high carrier concentration of the InSb semiconductor with the surface accumulation layer induced a downward band bending effect that reduces the electron tunneling barrier. Consequently, the InSb nanowires exhibit significant field emission properties with an extremely low turn-on field of 1.84 V μm−1 and an estimative threshold field of 3.36 V μm−1. PMID:23399075

  2. Cell number per spheroid and electrical conductivity of nanowires influence the function of silicon nanowired human cardiac spheroids.

    PubMed

    Tan, Yu; Richards, Dylan; Coyle, Robert C; Yao, Jenny; Xu, Ruoyu; Gou, Wenyu; Wang, Hongjun; Menick, Donald R; Tian, Bozhi; Mei, Ying

    2017-03-15

    Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provide an unlimited cell source to treat cardiovascular diseases, the leading cause of death worldwide. However, current hiPSC-CMs retain an immature phenotype that leads to difficulties for integration with adult myocardium after transplantation. To address this, we recently utilized electrically conductive silicon nanowires (e-SiNWs) to facilitate self-assembly of hiPSC-CMs to form nanowired hiPSC cardiac spheroids. Our previous results showed addition of e-SiNWs effectively enhanced the functions of the cardiac spheroids and improved the cellular maturation of hiPSC-CMs. Here, we examined two important factors that can affect functions of the nanowired hiPSC cardiac spheroids: (1) cell number per spheroid (i.e., size of the spheroids), and (2) the electrical conductivity of the e-SiNWs. To examine the first factor, we prepared hiPSC cardiac spheroids with four different sizes by varying cell number per spheroid (∼0.5k, ∼1k, ∼3k, ∼7k cells/spheroid). Spheroids with ∼3k cells/spheroid was found to maximize the beneficial effects of the 3D spheroid microenvironment. This result was explained with a semi-quantitative theory that considers two competing factors: 1) the improved 3D cell-cell adhesion, and 2) the reduced oxygen supply to the center of spheroids with the increase of cell number. Also, the critical role of electrical conductivity of silicon nanowires has been confirmed in improving tissue function of hiPSC cardiac spheroids. These results lay down a solid foundation to develop suitable nanowired hiPSC cardiac spheroids as an innovative cell delivery system to treat cardiovascular diseases.

  3. Random telegraph signal and spin characteristics of the gate-all-around poly-silicon nanowire

    SciTech Connect

    Lee, Tsung-Han; Li, Yan-Ting; Hu, Shu-Fen E-mail: sfhu.hu@gmail.com

    2014-11-07

    An arsenic (As)-doped poly-silicon nanowire gate-all-around transistor fabricated using standard semiconductor methods was used to measure the Coulomb blockade effect by applying a tunable gate voltage. Two-level trapping states due to the random telegraph signal of fluctuating drain current were observed in the silicon transport channel. Under high magnetic fields, the superposition points of differential conductance revealed weak 2-electron singlet-triplet splitting states of the arsenic magnetic impurity. The weak spin-orbital coupling suggests that the electron-spin-polarization in the As-doped silicon nanowire and the two-level trapping state coexisted in the Coulomb blockade oscillations. These characteristics indicate that a few arsenic donors strongly affect the quantum behavior of the poly-silicon material.

  4. Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth.

    PubMed

    Munshi, A Mazid; Dheeraj, Dasa L; Fauske, Vidar T; Kim, Dong-Chul; van Helvoort, Antonius T J; Fimland, Bjørn-Ove; Weman, Helge

    2012-09-12

    By utilizing the reduced contact area of nanowires, we show that epitaxial growth of a broad range of semiconductors on graphene can in principle be achieved. A generic atomic model is presented which describes the epitaxial growth configurations applicable to all conventional semiconductor materials. The model is experimentally verified by demonstrating the growth of vertically aligned GaAs nanowires on graphite and few-layer graphene by the self-catalyzed vapor-liquid-solid technique using molecular beam epitaxy. A two-temperature growth strategy was used to increase the nanowire density. Due to the self-catalyzed growth technique used, the nanowires were found to have a regular hexagonal cross-sectional shape, and are uniform in length and diameter. Electron microscopy studies reveal an epitaxial relationship of the grown nanowires with the underlying graphitic substrates. Two relative orientations of the nanowire side-facets were observed, which is well explained by the proposed atomic model. A prototype of a single GaAs nanowire photodetector demonstrates a high-quality material. With GaAs being a model system, as well as a very useful material for various optoelectronic applications, we anticipate this particular GaAs nanowire/graphene hybrid to be promising for flexible and low-cost solar cells.

  5. Carbon-assisted growth and high visible-light optical reflectivity of amorphous silicon oxynitride nanowires

    PubMed Central

    2011-01-01

    Large amounts of amorphous silicon oxynitride nanowires have been synthesized on silicon wafer through carbon-assisted vapor-solid growth avoiding the contamination from metallic catalysts. These nanowires have the length of up to 100 μm, with a diameter ranging from 50 to 150 nm. Around 3-nm-sized nanostructures are observed to be homogeneously distributed within a nanowire cross-section matrix. The unique configuration might determine the growth of ternary amorphous structure and its special splitting behavior. Optical properties of the nanowires have also been investigated. The obtained nanowires were attractive for their exceptional whiteness, perceived brightness, and optical brilliance. These nanowires display greatly enhanced reflection over the whole visible wavelength, with more than 80% of light reflected on most of the wavelength ranging from 400 to 700 nm and the lowest reflectivity exceeding 70%, exhibiting performance superior to that of the reported white beetle. Intense visible photoluminescence is also observed over a broad spectrum ranging from 320 to 500 nm with two shoulders centered at around 444 and 468 nm, respectively. PMID:21787429

  6. Effects of surface passivation by lithium on the mechanical and electronic properties of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Salazar, F.; Pérez, L. A.; Cruz-Irisson, M.

    2016-12-01

    In this work, we present a density functional theory study of the mechanical and electronic properties of silicon nanowires (SiNWs) grown along the [111] crystallographic direction with a diamond structure and surface passivated with hydrogen (H) and lithium (Li) atoms. The study is performed within the local density approximation by applying the supercell method. The results indicate that the energy gap is a function of the Li concentration and the nanowire diameter. Furthermore, the Young's modulus (Y) increases as the nanowire diameter increases, consistent with experimental reports. The increase in the Li concentration at the surface leads to a larger Y value compared to the Y value of the completely H-passivated SiNWs, except for the thinner nanowires. Moreover, the structure of the latter nanowires experiences important changes when the Li concentration increases up to the maximum Li atoms per cell. These results demonstrate that it is possible to simultaneously control the energy gap and the Young's modulus by tuning the Li concentration on the surface of the SiNWs and could help to understand the structural changes that the silicon nanowire arrays experience during the lithiation process in Li batteries.

  7. Silicon-erbium ytterbium silicate nanowire waveguides with optimized optical gain

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Xia; Zheng, Wei-Hao; Zhang, Qing-Lin; Zhu, Xiao-Li; Zhou, Hong; Zhuang, Xiu-Juan; Pan, An-Lian; Duan, Xiang-Feng

    2017-02-01

    Single-crystal erbium silicate nanowires have attracted considerable attention because of their high optical gain. In this work, we report the controlled synthesis of silicon-erbium ytterbium silicate core-shell nanowires and fine-tuning the erbium mole fraction in the shell from x = 0:3 to x = 1:0, which corresponds to changing the erbium concentration from 4:8 × 1021 to 1:6 × 1022 cm-3. By controlling and properly optimizing the composition of erbium and ytterbium in the nanowires, we can effectively suppress upconversion photoluminescence while simultaneously enhancing near-infrared emission. The composition-optimized nanowires have very long photoluminescence lifetimes and large emission cross-sections, which contribute to the high optical gain that we observed. We suspended these concentration-optimized nanowires in the air to measure and analyze their propagation loss and optical gain in the near-infrared communication band. Through systematic measurements using wires with different core sizes, we obtained a maximum net gain of 20±8 dB·mm-1, which occurs at a wavelength of 1534 nm, for a nanowire with a diameter of 600 nm and a silicon core diameter of 300 nm.

  8. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method.

    PubMed

    Ouertani, Rachid; Hamdi, Abderrahmen; Amri, Chohdi; Khalifa, Marouan; Ezzaouia, Hatem

    2014-01-01

    In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films.

  9. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method

    PubMed Central

    2014-01-01

    In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films. PMID:25349554

  10. Formation of silicon nanowire packed films from metallurgical-grade silicon powder using a two-step metal-assisted chemical etching method

    NASA Astrophysics Data System (ADS)

    Ouertani, Rachid; Hamdi, Abderrahmen; Amri, Chohdi; Khalifa, Marouan; Ezzaouia, Hatem

    2014-10-01

    In this work, we use a two-step metal-assisted chemical etching method to produce films of silicon nanowires shaped in micrograins from metallurgical-grade polycrystalline silicon powder. The first step is an electroless plating process where the powder was dipped for few minutes in an aqueous solution of silver nitrite and hydrofluoric acid to permit Ag plating of the Si micrograins. During the second step, corresponding to silicon dissolution, we add a small quantity of hydrogen peroxide to the plating solution and we leave the samples to be etched for three various duration (30, 60, and 90 min). We try elucidating the mechanisms leading to the formation of silver clusters and silicon nanowires obtained at the end of the silver plating step and the silver-assisted silicon dissolution step, respectively. Scanning electron microscopy (SEM) micrographs revealed that the processed Si micrograins were covered with densely packed films of self-organized silicon nanowires. Some of these nanowires stand vertically, and some others tilt to the silicon micrograin facets. The thickness of the nanowire films increases from 0.2 to 10 μm with increasing etching time. Based on SEM characterizations, laser scattering estimations, X-ray diffraction (XRD) patterns, and Raman spectroscopy, we present a correlative study dealing with the effect of the silver-assisted etching process on the morphological and structural properties of the processed silicon nanowire films.

  11. Probing photo-carrier collection efficiencies of individual silicon nanowire diodes on a wafer substrate

    NASA Astrophysics Data System (ADS)

    Schmitt, S. W.; Brönstrup, G.; Shalev, G.; Srivastava, S. K.; Bashouti, M. Y.; Döhler, G. H.; Christiansen, S. H.

    2014-06-01

    Vertically aligned silicon nanowire (SiNW) diodes are promising candidates for the integration into various opto-electronic device concepts for e.g. sensing or solar energy conversion. Individual SiNW p-n diodes have intensively been studied, but to date an assessment of their device performance once integrated on a silicon substrate has not been made. We show that using a scanning electron microscope (SEM) equipped with a nano-manipulator and an optical fiber feed-through for tunable (wavelength, power using a tunable laser source) sample illumination, the dark and illuminated current-voltage (I-V) curve of individual SiNW diodes on the substrate wafer can be measured. Surprisingly, the I-V-curve of the serially coupled system composed of SiNW/wafers is accurately described by an equivalent circuit model of a single diode and diode parameters like series and shunting resistivity, diode ideality factor and photocurrent can be retrieved from a fit. We show that the photo-carrier collection efficiency (PCE) of the integrated diode illuminated with variable wavelength and intensity light directly gives insight into the quality of the device design at the nanoscale. We find that the PCE decreases for high light intensities and photocurrent densities, due to the fact that considerable amounts of photo-excited carriers generated within the substrate lead to a decrease in shunting resistivity of the SiNW diode and deteriorate its rectification. The PCE decreases systematically for smaller wavelengths of visible light, showing the possibility of monitoring the effectiveness of the SiNW device surface passivation using the shown measurement technique. The integrated device was pre-characterized using secondary ion mass spectrometry (SIMS), TCAD simulations and electron beam induced current (EBIC) measurements to validate the properties of the characterized material at the single SiNW diode level.Vertically aligned silicon nanowire (SiNW) diodes are promising candidates for

  12. 15% Power Conversion Efficiency from a Gated Nanotube/Silicon Nanowire Array Solar Cell

    NASA Astrophysics Data System (ADS)

    Petterson, Maureen K.; Lemaitre, Maxime G.; Shen, Yu; Wadhwa, Pooja; Hou, Jie; Vasilyeva, Svetlana V.; Kravchenko, Ivan I.; Rinzler, Andrew G.

    2015-03-01

    Despite their enhanced light trapping ability the performance of silicon nanowire array solar cells have, been stagnant with power conversion efficiencies barely breaking 10%. The problem is understood to be the consequence of a high photo-carrier recombination at the large surface area of the Si nanowire sidewalls. Here, by exploiting 1) electronic gating via an ionic liquid electrolyte to induce inversion in the n-type Si nanowires and 2) using a layer of single wall carbon nanotubes engineered to contact each nanowire tip and extract the minority carriers, we demonstrate silicon nanowire array solar cells with power conversion efficiencies of 15%. Our results allow for discrimination between the two principle means of avoiding front surface recombination: surface passivation and the use of local fields. A deleterious electrochemical reaction of the silicon due to the electrolyte gating is shown to be caused by oxygen/water entrained in the ionic liquid electrolyte. While encapsulation can avoid the issue a non-encapsulation based solution is also described. We gratefully acknowledge support from the National Science Foundation under ECCS-1232018.

  13. Chemical and molecular beam epitaxy of III-V nanowires on silicon for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Gokul

    Nanowires, due to their unique structure and carrier transport abilities, have sparked huge interest in the semiconductor industry. An array of nanometric size wires inserted between the p and n conductivity regions of a conventional solar cell or core shell type p-n junction nanowires synergized with semiconductor nanocrystals can lead to faster carrier collection, thereby improving device performance. This work investigates the growth of GaAs and InP semiconductor nanowires on silicon (111) using Chemical Beam Epitaxy (CBE) and Molecular Beam Epitaxy (MBE). Uniform gold nanoparticles acting as growth centers in the Vapor Liquid Solid mode of growth were generated by using the cheap and rapid technique called Nanosphere Lithography (NSL). Variation of the experimental parameters during NSL resulted in honeycomb and hexagonal patterns of gold nanoparticles. A high degree of selectivity was obtained for CBE grown nanowires whereas the MBE grown GaAs nanowires revealed the formation of a thick polycrystalline wetting layer at the interface. The CBE grown InP nanowires mostly maintained the honeycomb structure although they were found to be oriented contrary to the expected <111> direction. SEM analysis of GaAs nanowires grown by CBE showed that during growth, the nanowires may coalesce with each other resulting in unique structures such as bipods, tripods and multipods. High resolution TEM analysis of single GaAs nanowires revealed periodic formation of contrasting materials. Diffraction patterns recorded at these dark contrast areas confirmed the formation of hexagonal wurtzite single crystal structures interspaced with cubic zincblende single crystal structures. These nanowires can be used for photovoltaic applications or as light emitting devices. In addition, the formation of superlattices of different crystal structures can pave the way for novel quantum confined optoelectronic devices.

  14. Radial junction amorphous silicon solar cells on PECVD-grown silicon nanowires.

    PubMed

    Yu, Linwei; O'Donnell, Benedict; Foldyna, Martin; Roca i Cabarrocas, Pere

    2012-05-17

    Constructing radial junction hydrogenated amorphous silicon (a-Si:H) solar cells on top of silicon nanowires (SiNWs) represents a promising approach towards high performance and cost-effective thin film photovoltaics. We here develop an all-in situ strategy to grow SiNWs, via a vapour-liquid-solid (VLS) mechanism on top of ZnO-coated glass substrate, in a plasma-enhanced chemical vapour deposition (PECVD) reactor. Controlling the distribution of indium catalyst drops allows us to tailor the as-grown SiNW arrays into suitable size and density, which in turn results in both a sufficient light trapping effect and a suitable arrangement allowing for conformal coverage of SiNWs by subsequent a-Si:H layers. We then demonstrate the fabrication of radial junction solar cells and carry on a parametric study designed to shed light on the absorption and quantum efficiency response, as functions of the intrinsic a-Si:H layer thickness and the density of SiNWs. These results lay a solid foundation for future structural optimization and performance ramp-up of the radial junction thin film a-Si:H photovoltaics.

  15. Alignment of human cardiomyocytes on laser patterned biphasic core/shell nanowire assemblies

    NASA Astrophysics Data System (ADS)

    Kiefer, Karin; Lee, Juseok; Haidar, Ayman; Martinez Miró, Marina; Akkan, Cagri Kaan; Veith, Michael; Cenk Aktas, Oral; Abdul-Khaliq, Hashim

    2014-12-01

    The management of end stage heart failure patients is only possible by heart transplantation or by the implantation of artificial hearts as a bridge for later transplantation. However, these therapeutic strategies are limited by a lack of donor hearts and by the associated complications, such as coagulation and infection, due to the used artificial mechanical circulatory assist devices. Therefore, new strategies for myocardial regenerative approaches are under extensive research to produce contractile myocardial tissue in the future to replace non-contractile myocardial ischemic and scarred tissue. Different approaches, such as cell transplantation, have been studied intensively. Although successful approaches have been observed, there are still limitations to the application. It is envisaged that myocardial tissue engineering can be used to help replace infarcted non-contractile tissue. The developed tissue should later mimic the aligned fibrillar structure of the extracellular matrix and provide important guidance cues for the survival, function and the needed orientation of cardiomyocytes. Nanostructured surfaces have been tested to provide a guided direction that cells can follow. In the present study, the cellular adhesion/alignment of human cardiomyocytes and the biocompatibility have been investigated after cultivation on different laser-patterned nanowires compared with unmodified nanowires. As a result, the nanostructured surfaces possessed good biocompatibility before and after laser modification. The laser-induced scalability of the pattern enabled the growth and orientation of the adhered myocardial tissue. Such approaches may be used to modify the surface of potential scaffolds to develop myocardial contractile tissue in the future.

  16. A comprehensive study of thermoelectric and transport properties of β-silicon carbide nanowires

    SciTech Connect

    Valentín, L. A.; Betancourt, J.; Fonseca, L. F.; Pettes, M. T.; Shi, L.; Soszyński, M.; Huczko, A.

    2013-11-14

    The temperature dependence of the Seebeck coefficient, the electrical and thermal conductivities of individual β-silicon carbide nanowires produced by combustion in a calorimetric bomb were studied using a suspended micro-resistance thermometry device that allows four-point probe measurements to be conducted on each nanowire. Additionally, crystal structure and growth direction for each measured nanowire was directly obtained by transmission electron microscopy analysis. The Fermi level, the carrier concentration, and mobility of each nanostructure were determined using a combination of Seebeck coefficient and electrical conductivity measurements, energy band structure and transport theory calculations. The temperature dependence of the thermal and electrical conductivities of the nanowires was explained in terms of contributions from boundary, impurity, and defect scattering.

  17. A thin silicon thermoelectric nanowire characterization platform (TNCP) equipped with nanoporous electrodes for electrical contact formation

    NASA Astrophysics Data System (ADS)

    Hoda Moosavi, S.; Kroener, Michael; Frei, Maxi; Frick, Fabian; Kerzenmacher, Sven; Woias, Peter

    2016-10-01

    We report on the fabrication of a silicon platform for the thermoelectric and structural characterization of single nanowires, equipped with nanoporous electrodes. Controlled wafer thinning to a thickness of 160 μm results in platform chips, which can be inserted into Transmission Electron Microscopes (TEM) for the nanowire's structural composition analysis. Our fabrication approach comprises the Bosch process (ICP), and "dicing before grinding" techniques to achieve this small thickness. To study the idea of developing a “plug-and-measure” platform, we have developed a novel approach for selfadhesion between a contact electrode and a nanowire by nanoporous electrodes. Due to the increased surface-to-volume ratio and increased van-der-Walls forces nanowires stick firmly to the electrodes for a good thermal and electrical connection. This innovative technique does also avoids, in best case, separate steps for contact formation.

  18. Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon

    NASA Astrophysics Data System (ADS)

    Heo, Junseok; Guo, Wei; Bhattacharya, Pallab

    2011-01-01

    Optically pumped lasing at room temperature in a silicon based monolithic single GaN nanowire with a two-dimensional photonic crystal microcavity is demonstrated. Catalyst-free nanowires with low density (˜108 cm-2) are grown on Si by plasma-assisted molecular beam epitaxy. High resolution transmission electron microscopy images reveal that the nanowires are of wurtzite structure and they have no observable defects. A single nanowire laser fabricated on Si is characterized by a lasing transition at λ =371.3 nm with a linewidth of 0.55 nm. The threshold is observed at a pump power density of ˜120 kW/cm2 and the spontaneous emission factor β is estimated to be 0.08.

  19. Synthesis of silicon oxide nanowires and nanotubes with cobalt-palladium or palladium catalysts

    NASA Astrophysics Data System (ADS)

    Esterina, Ria; Liu, X. M.; Ross, C. A.; Adeyeye, A. O.; Choi, W. K.

    2012-07-01

    The dewetting behaviors of cobalt (Co), cobalt palladium (CoPd), and palladium (Pd) thin films on oxidized silicon substrates were examined. We observed the formation of craters in the oxide layer and pits in the Si substrate for larger CoPd or Pd catalyst particles and thinner oxide. Nanowires and nanotubes were observed near the Si pits. The nanowires and nanotubes grow via a vapor-solid-solid or vapor-liquid-solid mechanism with the silicon vapor source provided from the substrate. The original Si atoms that form the nanowires or nanotubes were oxidized in situ by the residual oxygen atoms present in the chamber. Some of the nanotubes had a series of embedded sub-catalysts that formed branches from the primary nanotube.

  20. Improved photoluminescence and sensing stability of porous silicon nanowires by surface passivation.

    PubMed

    Gan, Lu; He, Haiping; Sun, Luwei; Ye, Zhizhen

    2014-01-21

    Core-shell structured silicon nanowires (Si NWs) were obtained by coating Si NWs with an HfO2 layer. Enhanced photoluminescence (PL) and a slightly decreased PL lifetime are achieved by HfO2 coating. Furthermore, the sensing stability is strongly improved. The improvement of PL properties is interpreted in terms of surface passivation and the Purcell effect.

  1. Energy efficient nonlinear optics in silicon: are slow-light structures more efficient than nanowires?

    PubMed

    Husko, Chad; Eggleton, Benjamin J

    2012-07-15

    We compare the energy performance of four-wave mixing in nanowires and slow-light photonic crystals and outline the regimes where each platform exhibits salient advantages and limitations, including analysis of the impact of future fabrication improvement. These results suggest a route towards energy efficient silicon integrated photonics.

  2. Novel poly-silicon nanowire field effect transistor for biosensing application.

    PubMed

    Hsiao, Cheng-Yun; Lin, Chih-Heng; Hung, Cheng-Hsiung; Su, Chun-Jung; Lo, Yen-Ren; Lee, Cheng-Che; Lin, Horng-Chin; Ko, Fu-Hsiang; Huang, Tiao-Yuan; Yang, Yuh-Shyong

    2009-01-01

    A simple and low-cost method to fabricate poly-silicon nanowire field effect transistor (poly-Si NW FET) for biosensing application was demonstrated. The poly-silicon nanowire (poly-Si NW) channel was fabricated by employing the poly-silicon (poly-Si) sidewall spacer technique, which approach was comparable with current commercial semiconductor process and forsaken expensive E-beam lithography tools. The electronic properties of the poly-Si NW FET in aqueous solution were found to be similar to those of single-crystal silicon nanowire field effect transistors reported in the literature. A model biotin and avidin/streptavidin sensing system was used to demonstrate the biosensing capacity of poly-Si NW FET. The changes of I(D)-V(G) curves were consistent with an n-type FET affected by a nearby negatively (streptavidin) and positively (avidin) charged molecules, respectively. Specific electric changes were observed for streptavidin and avidin sensing when nanowire surface of poly-Si NW FET was modified with biotin and streptavidin at sub pM to nM range could be distinguished. With its excellent electric properties and the potential for mass commercial production, poly-Si NW FET can be a very useful transducer for a variety of biosensing applications.

  3. Gamma ray irradiated silicon nanowires: An effective model to investigate defects at the interface of Si/SiOx

    SciTech Connect

    Yin, Kui; Zhao, Yi; Liu, Liangbin; Lee, Shuit-Tong; Shao, Mingwang E-mail: xuegi@nju.edu.cn; Wang, Xiaoliang E-mail: xuegi@nju.edu.cn Xue, Gi E-mail: xuegi@nju.edu.cn

    2014-01-20

    The effect of gamma ray irradiation on silicon nanowires was investigated. Here, an additional defect emerged in the gamma-ray-irradiated silicon nanowires and was confirmed with electron spin resonance spectra. {sup 29}Si nuclear magnetic resonance spectroscopy showed that irradiation doses had influence on the Q{sup 4} unit structure. This phenomenon indicated that the unique core/shell structure of silicon nanowires might contribute to induce metastable defects under gamma ray irradiation, which served as a satisfactory model to investigate defects at the interface of Si/SiOx.

  4. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers

    NASA Astrophysics Data System (ADS)

    Gorisse, Therese; Dupré, Ludovic; Gentile, Pascal; Martin, Mickael; Zelsmann, Marc; Buttard, Denis

    2013-06-01

    In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>-oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm-2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors.

  5. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers.

    PubMed

    Gorisse, Therese; Dupré, Ludovic; Gentile, Pascal; Martin, Mickael; Zelsmann, Marc; Buttard, Denis

    2013-06-17

    In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>-oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm-2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors.

  6. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers

    PubMed Central

    2013-01-01

    In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>−oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm−2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors. PMID:23773702

  7. High throughput nanofabrication of silicon nanowire and carbon nanotube tips on AFM probes by stencil-deposited catalysts.

    PubMed

    Engstrom, Daniel S; Savu, Veronica; Zhu, Xueni; Bu, Ian Y Y; Milne, William I; Brugger, Juergen; Boggild, Peter

    2011-04-13

    A new and versatile technique for the wafer scale nanofabrication of silicon nanowire (SiNW) and multiwalled carbon nanotube (MWNT) tips on atomic force microscope (AFM) probes is presented. Catalyst material for the SiNW and MWNT growth was deposited on prefabricated AFM probes using aligned wafer scale nanostencil lithography. Individual vertical SiNWs were grown epitaxially by a catalytic vapor-liquid-solid (VLS) process and MWNTs were grown by a plasma-enhanced chemical vapor (PECVD) process on the AFM probes. The AFM probes were tested for imaging micrometers-deep trenches, where they demonstrated a significantly better performance than commercial high aspect ratio tips. Our method demonstrates a reliable and cost-efficient route toward wafer scale manufacturing of SiNW and MWNT AFM probes.

  8. Characteristics of a silicon nanowires/PEDOT:PSS heterojunction and its effect on the solar cell performance.

    PubMed

    Liang, Zhimin; Su, Mingze; Wang, Hao; Gong, Yuting; Xie, Fangyan; Gong, Li; Meng, Hui; Liu, Pengyi; Chen, Huanjun; Xie, Weiguang; Chen, Jian

    2015-03-18

    The interfacial energy-level alignment of a silicon nanowires (SiNWs)/PEDOT:PSS heterojunction is investigated using Kelvin probe force microscopy. The potential difference and electrical distribution in the junction are systematically revealed. When the PEDOT:PSS layer is covered at the bottom of the SiNW array, an abrupt junction is formed at the interface whose characteristics are mainly determined by the uniformly doped Si bulk. When the PEDOT:PSS layer is covered on the top, a hyperabrupt junction localized at the top of the SiNWs forms, and this characteristic depends on the surface properties of the SiNWs. Because the calculation shows that the absorption of light from the SiNWs and the Si bulk are equally important, the bottom-coverage structure leads to better position matching between the depletion and absorption area and therefore shows better photovoltaic performance. The dependence of JSC and VOC on the junction characteristic is discussed.

  9. Fabrication of silicon nanowire arrays by macroscopic galvanic cell-driven metal catalyzed electroless etching in aerated HF solution.

    PubMed

    Liu, Lin; Peng, Kui-Qing; Hu, Ya; Wu, Xiao-Ling; Lee, Shuit-Tong

    2014-03-05

    Macroscopic galvanic cell-driven metal catalyzed electroless etching (MCEE) of silicon in aqueous hydrofluoric acid (HF) solution is devised to fabricate silicon nanowire (SiNW) arrays with dissolved oxygen acting as the one and only oxidizing agent. The key aspect of this strategy is the use of a graphite or other noble metal electrode that is electrically coupled with silicon substrate.

  10. DNA-templated gold nanowires

    NASA Astrophysics Data System (ADS)

    Mohammadzadegan, Reza; Mohabatkar, Hassan; Sheikhi, Mohammad Hossein; Safavi, Afsaneh; Khajouee, Mahmood Barati

    2008-10-01

    We have developed simple methods of reproducibly creating deoxyribonucleic acid (DNA)-templated gold nanowires on silicon. First DNA nanowires were aligned on silicon surfaces. Briefly, modified silicon wafer was soaked in the DNA solution, and then the solution was removed using micropipettes; the surface tension at the moving air-solution interface is sufficient to align the DNA nanowires on the silicon wafer. In another attempt, an aqueous dispersion of sodium azide-stabilized gold nanoparticles was prepared. The nanoparticles aligned double-stranded λ-DNA to form a linear nanoparticle array. Continuous gold nanowires were obtained. The above nanowires were structurally characterized using scanning electron microscopy. The results of the characterizations show the wires to be 57-323 nm wide, to be continuous with a length of 2.8-9.5 μm. The use of DNA as a template for the self-assembly of conducting nanowires represents a potentially important approach in the fabrication of nanoscale interconnects.

  11. Electrocatalytic activity of NiO on silicon nanowires with a carbon shell and its application in dye-sensitized solar cell counter electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Junhee; Jung, Cho-Long; Kim, Minsoo; Kim, Soomin; Kang, Yoonmook; Lee, Hae-Seok; Park, Jeounghee; Jun, Yongseok; Kim, Donghwan

    2016-03-01

    To improve the catalytic activity of a material, it is critical to maximize the effective surface area by directly contacting the electrolyte. Nanowires are a promising building block for catalysts in electrochemical applications because of their large surface area. Nickel oxide (NiO) decoration was achieved by drop-casting a nickel-dissolved solution onto vertically aligned silicon nanowire arrays with a carbon shell (SiNW/C). Based on the hybridization of the NiO and silicon nanowire arrays with a carbon shell this study aimed to achieve a synergic effect for the catalytic activity performance. This study demonstrated that the resulting nanomaterial exhibits excellent electrocatalytic activity and performs well as a counter electrode for dye-sensitized solar cells (DSSCs). The compositions of the materials were examined using X-ray diffraction, X-ray photoelectron spectroscopy, and energy dispersive spectroscopy. Their micro- and nano-structures were investigated using scanning electron microscopy and transmission electron microscopy. The electrochemical activity toward I-/I3- was examined using cyclic voltammetry and electrochemical impedance spectroscopy. The obtained peak power conversion efficiency of the DSSC based on the NiO@SiNW/C counter electrode was 9.49%, which was greater than that of the DSSC based on the Pt counter electrode.To improve the catalytic activity of a material, it is critical to maximize the effective surface area by directly contacting the electrolyte. Nanowires are a promising building block for catalysts in electrochemical applications because of their large surface area. Nickel oxide (NiO) decoration was achieved by drop-casting a nickel-dissolved solution onto vertically aligned silicon nanowire arrays with a carbon shell (SiNW/C). Based on the hybridization of the NiO and silicon nanowire arrays with a carbon shell this study aimed to achieve a synergic effect for the catalytic activity performance. This study demonstrated that the

  12. FDTD modeling of solar energy absorption in silicon branched nanowires.

    PubMed

    Lundgren, Christin; Lopez, Rene; Redwing, Joan; Melde, Kathleen

    2013-05-06

    Thin film nanostructured photovoltaic cells are increasing in efficiency and decreasing the cost of solar energy. FDTD modeling of branched nanowire 'forests' are shown to have improved optical absorption in the visible and near-IR spectra over nanowire arrays alone, with a factor of 5 enhancement available at 1000 nm. Alternate BNW tree configurations are presented, achieving a maximum absorption of over 95% at 500 nm.

  13. Fabrication of a Silicon Nanowire on a Bulk Substrate by Use of a Plasma Etching and Total Ionizing Dose Effects on a Gate-All-Around Field-Effect Transistor

    NASA Technical Reports Server (NTRS)

    Moon, Dong-Il; Han, Jin-Woo; Meyyappan, Meyya

    2016-01-01

    The gate all around transistor is investigated through experiment. The suspended silicon nanowire for the next generation is fabricated on bulk substrate by plasma etching method. The scallop pattern generated by Bosch process is utilized to form a floating silicon nanowire. By combining anisotropic and istropic silicon etch process, the shape of nanowire is accurately controlled. From the suspended nanowire, the gate all around transistor is demonstrated. As the silicon nanowire is fully surrounded by the gate, the device shows excellent electrostatic characteristics.

  14. Atomistic simulations of the mechanical properties of silicon carbide nanowires

    SciTech Connect

    Wang, Zhiguo; Zu, Xiaotao T.; Gao, Fei; Weber, William J.

    2008-06-25

    Molecular dynamics methods using the Tersoff bond-order potential are performed to study the nanomechanical behavior of [111]-oriented β-SiC nanowires under tension, compression, torsion, combined tension-torsion and combined compression-torsion. Under axial tensile strain, the bonds of the nanowires are just stretched before the failure of nanowires by bond breakage. The failure behavior is found to depend on size and temperatures. Under axial compressive strain, the collapse of the SiC nanowires by yielding or column buckling mode depends on the length and diameters of the nanowires, and the latter is consistent with the analysis of equivalent continuum structures using Euler buckling theory. The nanowires collapse through a phase transformation from crystal to amorphous structure in several atomic layers under torsion strain. Under combined loading the failure and buckling modes are not affected by the torsion with a small torsion rate, but the critical stress decreases with increasing the torsion rate. Torsion buckling occurs before the failure and buckling with a big torsion rate. Plastic deformation appears in the buckling zone with further increasing the combined loading.

  15. Influence of pre-surface treatment on the morphology of silicon nanowires fabricated by metal-assisted etching

    NASA Astrophysics Data System (ADS)

    Shiu, Shu-Chia; Lin, Shin-Bo; Hung, Shih-Che; Lin, Ching-Fuh

    2011-01-01

    Herein we demonstrate an improved metal-assisted etching method to achieve highly dense and uniform silicon nanowire arrays. A pre-surface treatment was applied on a silicon wafer before the process of metal-assisted etching in silver nitrate and hydrogen fluoride solution. The treatment made silver ion continuously reduce on silver nuclei adherence on the silicon surface, leading to formation of dense silver nanoparticles. Silver nanoparticles acting as local redox centers cause the formation of dense silicon nanowire arrays. In contrast, an H-terminated silicon surface made silver ion reduce uniformly on the silicon surface to form silver flakes. The silicon nanowires fabricated with a pre-surface treatment reveals higher density than those fabricated without a pre-surface treatment. The volume fraction improves from 18 to 38%. This improvement reduces the solar-weighted reflectance to as low as 3.3% for silicon nanowires with a length of only 0.87 μm. In comparison, the silicon nanowires fabricated without a pre-surface treatment have to be as long as 1.812 μm to achieve the same reflectance.

  16. Exotic reaction front migration and stage structure in lithiated silicon nanowires.

    PubMed

    Wang, Lifen; Liu, Donghua; Yang, Shize; Tian, Xuezeng; Zhang, Guangyu; Wang, Wenlong; Wang, Enge; Xu, Zhi; Bai, Xuedong

    2014-08-26

    Nanostructured silicon anodes, which possess extremely high energy density and accommodate large strain without pulverization, have been developed rapidly for high-power lithium ion batteries. Here, using in situ transmission electron microscopy, the lithiation behavior of silicon nanowires with diameters smaller than 60 nm was investigated. The study demonstrated a direct dependence of the self-limiting lithiation on the pristine diameter. A "punch-through" lithiation process at the core of nanowires with pristine diameters slightly larger than the self-limiting threshold is suggested to occur with the consequent formation of a stage structure. Our work demonstrates the crucial role of mechanical stress and local defects in determining the migration and geometry of the reaction front at the mesoscopic scale. This intriguing finding holds critical significance for the application of silicon nanostructures in high-power lithium ion batteries.

  17. Aluminum-Catalyzed Growth of ‹110› Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Hainey, Mel; Eichfeld, Sarah M.; Shen, Haoting; Yim, Joanne; Black, Marcie R.; Redwing, Joan M.

    2015-05-01

    The growth of silicon nanowires in the ‹110› direction is reported using a vapor-liquid-solid mechanism with aluminum as the catalyst and SiH4 as the source gas in a low pressure chemical vapor deposition process. The effects of growth conditions on the yield of ‹110› versus ‹111› nanowires were investigated. Increasing reactor pressure beyond 300 Torr was found to improve ‹110› wire yield by suppressing vapor-solid thin film deposition on the nanowire sidewalls during growth that promoted nanowire kinking. Additionally, ‹110› growth was found to occur only at temperatures below the Al-Si eutectic temperature (577°C). At temperatures approximately equal to 577°C or higher, the preferential growth direction was observed to shift from ‹110› to ‹111›. The growth of ‹110› Si nanowires at sub-eutectic temperatures was attributed to a reduction in the silicon concentration in the catalyst droplet which promotes (110) surface nucleation and subsequent growth in the ‹110› direction.

  18. A comparison of light-harvesting performance of silicon nanocones and nanowires for radial-junction solar cells

    PubMed Central

    Li, Yingfeng; Li, Meicheng; Fu, Pengfei; Li, Ruike; Song, Dandan; Shen, Chao; Zhao, Yan

    2015-01-01

    Silicon nanorod based radial-junction solar cells are competitive alternatives to traditional planar silicon solar cells. In various silicon nanorods, nanocone is always considered to be better than nanowire in light-absorption. Nevertheless, we find that this notion isn’t absolutely correct. Silicon nanocone is indeed significantly superior over nanowire in light-concentration due to its continuous diameters, and thus resonant wavelengths excited. However, the concentrated light can’t be effectively absorbed and converted to photogenerated carriers, since its propagation path in silicon nanocone is shorter than that in nanowire. The results provide critical clues for the design of silicon nanorod based radial-junction solar cells. PMID:26113194

  19. Effect of Biointerfacing Linker Chemistries on the Sensitivity of Silicon Nanowires for Protein Detection

    PubMed Central

    Dorvel, Brian; Reddy, Bobby; Bashir, Rashid

    2013-01-01

    Point-of-care diagnostics show promise in removing reliance on centralized lab testing facilities, and may help increase both the survival rate for infectious diseases as well as monitoring of chronic illnesses. CMOS compatible diagnostic platforms are currently being considered possible solution as they can be easily miniaturized and can be cost-effective. Top-down fabricated silicon nanowires are a CMOS-compatible technology which have demonstrated high sensitivities in detecting biological analytes, such as proteins, DNA, and RNA. However, the reported response of nanowires to these analytes has varied widely since several different functionalization protocols have been attempted with little characterization and comparison. Here we report protocols for fabrication and functionalization of silicon nanowires which yield highly stable nanowires in aqueous solutions, and limits of detection to ~1pg/mL of the model protein used in the study. A thorough characterization was done into optimizing the release of the silicon nanowires using combined dry and wet etch techniques, which yielded nanowires that could be directly compared to increase output statistics. Moreover, a range of different linker chemistries were tried for reacting the primary antibody, and its response to target and non-specific antigens, with polyethylene glycol based linker BS(PEG)5 providing the best response. Consequently, this chemistry was used to characterize different oxide thicknesses and their responses to the mouse IgG antigen, which with the smallest oxide thickness yielded 0.1–1pg/mL limits of detection and a dynamic range over 3 orders of magnitude. PMID:24040958

  20. Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Dong, Zhenning; André, Yamina; Dubrovskii, Vladimir G.; Bougerol, Catherine; Leroux, Christine; Ramdani, Mohammed R.; Monier, Guillaume; Trassoudaine, Agnès; Castelluci, Dominique; Gil, Evelyne

    2017-03-01

    Gold-free GaAs nanowires on silicon substrates can pave the way for monolithic integration of photonic nanodevices with silicon electronic platforms. It is extensively documented that the self-catalyzed approach works well in molecular beam epitaxy but is much more difficult to implement in vapor phase epitaxies. Here, we report the first gallium-catalyzed hydride vapor phase epitaxy growth of long (more than 10 μm) GaAs nanowires on Si(111) substrates with a high integrated growth rate up to 60 μm h‑1 and pure zincblende crystal structure. The growth is achieved by combining a low temperature of 600 °C with high gaseous GaCl/As flow ratios to enable dechlorination and formation of gallium droplets. GaAs nanowires exhibit an interesting bottle-like shape with strongly tapered bases, followed by straight tops with radii as small as 5 nm. We present a model that explains the peculiar growth mechanism in which the gallium droplets nucleate and rapidly swell on the silicon surface but then are gradually consumed to reach a stationary size. Our results unravel the necessary conditions for obtaining gallium-catalyzed GaAs nanowires by vapor phase epitaxy techniques.

  1. Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy.

    PubMed

    Dong, Zhenning; André, Yamina; Dubrovskii, Vladimir G; Bougerol, Catherine; Leroux, Christine; Ramdani, Mohammed R; Monier, Guillaume; Trassoudaine, Agnès; Castelluci, Dominique; Gil, Evelyne

    2017-03-24

    Gold-free GaAs nanowires on silicon substrates can pave the way for monolithic integration of photonic nanodevices with silicon electronic platforms. It is extensively documented that the self-catalyzed approach works well in molecular beam epitaxy but is much more difficult to implement in vapor phase epitaxies. Here, we report the first gallium-catalyzed hydride vapor phase epitaxy growth of long (more than 10 μm) GaAs nanowires on Si(111) substrates with a high integrated growth rate up to 60 μm h(-1) and pure zincblende crystal structure. The growth is achieved by combining a low temperature of 600 °C with high gaseous GaCl/As flow ratios to enable dechlorination and formation of gallium droplets. GaAs nanowires exhibit an interesting bottle-like shape with strongly tapered bases, followed by straight tops with radii as small as 5 nm. We present a model that explains the peculiar growth mechanism in which the gallium droplets nucleate and rapidly swell on the silicon surface but then are gradually consumed to reach a stationary size. Our results unravel the necessary conditions for obtaining gallium-catalyzed GaAs nanowires by vapor phase epitaxy techniques.

  2. Maxwell stress to explain the mechanism for the anisotropic expansion in lithiated silicon nanowires

    NASA Astrophysics Data System (ADS)

    Boone, Donald C.

    2016-12-01

    This computational research study attempts to explain the process that leads to volume expansion during insertion of lithium ions into a silicon nanowire. During lithiation, electrons flow through the nanowire in the opposing direction of lithium ions insertion. This causes an applied electromagnetic field which is described as being a quantum mechanical version of photon density wave theory. A series of events are calculated as the individual electrons and photons travels through the lithiated silicon nanowire. The hypothesis that will be presented employs the Maxwell stress tensor to calculate the refractive indices in three orthogonal directions during lithiation. The quantum harmonic oscillator and the electromagnetic intensity will be utilized in this presentation to calculate the energy of electrons and optical amplification of the electromagnetic field respectively. The main focus of this research study will use electron scattering theory, spontaneous and stimulated emission theory to model the breaking of cohesion bonds between silicon atoms that ultimately leads to excessive volume expansion that is witnessed during the lithiation process in Si nanowires.

  3. Alignment nature of ZnO nanowires grown on polished and nanoscale etched lithium niobate surface through self-seeding thermal evaporation method

    SciTech Connect

    Mohanan, Ajay Achath; Parthiban, R.; Ramakrishnan, N.

    2015-08-15

    Highlights: • ZnO nanowires were grown directly on LiNbO{sub 3} surface for the first time by thermal evaporation. • Self-alignment of the nanowires due to step bunching of LiNbO{sub 3} surface is observed. • Increased roughness in surface defects promoted well-aligned growth of nanowires. • Well-aligned growth was then replicated in 50 nm deep trenches on the surface. • Study opens novel pathway for patterned growth of ZnO nanowires on LiNbO{sub 3} surface. - Abstract: High aspect ratio catalyst-free ZnO nanowires were directly synthesized on lithium niobate substrate for the first time through thermal evaporation method without the use of a buffer layer or the conventional pre-deposited ZnO seed layer. As-grown ZnO nanowires exhibited a crisscross aligned growth pattern due to step bunching of the polished lithium niobate surface during the nanowire growth process. On the contrary, scratches on the surface and edges of the substrate produced well-aligned ZnO nanowires in these defect regions due to high surface roughness. Thus, the crisscross aligned nature of high aspect ratio nanowire growth on the lithium niobate surface can be changed to well-aligned growth through controlled etching of the surface, which is further verified through reactive-ion etching of lithium niobate. The investigations and discussion in the present work will provide novel pathway for self-seeded patterned growth of well-aligned ZnO nanowires on lithium niobate based micro devices.

  4. Fabrication and photoluminescence of hyperbranched silicon nanowire networks on silicon substrates by laser-induced forward transfer.

    PubMed

    Rigout, Muriel LA; Niu, Haijun; Qin, Chuanli; Zhang, Li; Li, Chenming; Bai, Xuduo; Fan, Naiying

    2008-06-18

    The structure and photoluminescent properties of films obtained by modified laser-induced forward transfer of silicon are presented. Strong variations in structure with ambient gas composition are observed: in Ar, porous films of mutually agglomerated silicon nanoparticles are observed, while in air the films consist of a network of hyperbranched nanowires (SiHBNWs) whose diameter varies periodically along their length, and which are composed of crystalline silicon nanoparticles surrounded and interconnected by amorphous silicon oxide of varying stoichiometry. The mechanisms of formation of the structures are dwelt upon and explained in term of dynamics within the plume. For the SiHBNWs, the pioneering use of fluorescence imaging was employed to obtain evidence for the photoluminescence originating from the crystalline nanoparticles themselves, and origins of the emission bands are thus attributed to radiative recombination of excitons at the Si/SiO(2) interface accordingly.

  5. Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires.

    PubMed

    Balasundaram, Karthik; Sadhu, Jyothi S; Shin, Jae Cheol; Azeredo, Bruno; Chanda, Debashis; Malik, Mohammad; Hsu, Keng; Rogers, John A; Ferreira, Placid; Sinha, Sanjiv; Li, Xiuling

    2012-08-03

    We report the fabrication of degenerately doped silicon (Si) nanowires of different aspect ratios using a simple, low-cost and effective technique that involves metal-assisted chemical etching (MacEtch) combined with soft lithography or thermal dewetting metal patterning. We demonstrate sub-micron diameter Si nanowire arrays with aspect ratios as high as 180:1, and present the challenges in producing solid nanowires using MacEtch as the doping level increases in both p- and n-type Si. We report a systematic reduction in the porosity of these nanowires by adjusting the etching solution composition and temperature. We found that the porosity decreases from top to bottom along the axial direction and increases with etching time. With a MacEtch solution that has a high [HF]:[H(2)O(2)] ratio and low temperature, it is possible to form completely solid nanowires with aspect ratios of less than approximately 10:1. However, further etching to produce longer wires renders the top portion of the nanowires porous.

  6. Porosity control in metal-assisted chemical etching of degenerately doped silicon nanowires

    NASA Astrophysics Data System (ADS)

    Balasundaram, Karthik; Sadhu, Jyothi S.; Shin, Jae Cheol; Azeredo, Bruno; Chanda, Debashis; Malik, Mohammad; Hsu, Keng; Rogers, John A.; Ferreira, Placid; Sinha, Sanjiv; Li, Xiuling

    2012-08-01

    We report the fabrication of degenerately doped silicon (Si) nanowires of different aspect ratios using a simple, low-cost and effective technique that involves metal-assisted chemical etching (MacEtch) combined with soft lithography or thermal dewetting metal patterning. We demonstrate sub-micron diameter Si nanowire arrays with aspect ratios as high as 180:1, and present the challenges in producing solid nanowires using MacEtch as the doping level increases in both p- and n-type Si. We report a systematic reduction in the porosity of these nanowires by adjusting the etching solution composition and temperature. We found that the porosity decreases from top to bottom along the axial direction and increases with etching time. With a MacEtch solution that has a high [HF]:[H2O2] ratio and low temperature, it is possible to form completely solid nanowires with aspect ratios of less than approximately 10:1. However, further etching to produce longer wires renders the top portion of the nanowires porous.

  7. Simulation Analysis on Photoelectric Conversion Characteristics of Silicon Nanowire Array Photoelectrodes.

    PubMed

    Zhao, Yong; Yu, Jin; Fang, Li-Guang; Zheng, Jun; Wang, Hui-Qin; Yuan, Ji-Ren; Wu, Shaolong; Cheng, Guo-An

    2015-12-01

    Semiconductor nanowire photoelectrochemical cells have attracted extensive attention in the light-conversion field owing to the low-cost preparation, excellent optical absorption, and short distance of carrier collection. Although there are numbers of experimental investigations to improve the device performance, the understanding of the detailed process of photoelectric conversion needs to be further improved. In this work, a thorough optoelectronic simulation is employed to figure out how the nanowire diameter, doping concentration, and illumination wavelength affect the photoelectric conversion characteristics of the silicon nanowire array photoelectrodes. We find that two balances should be carefully weighted between optical absorption and photogenerated-carrier collection, along with between short-circuit photocurrent density and open-circuit voltage. For the small-diameter nanowire array photoelectrodes, the overall absorption is higher than that of the larger-diameter ones with the most contribution from the nanowires. However, the substrate shows increasing absorption with increasing illumination wavelength. Higher doping density leads to a larger open-circuit voltage; while lower doping density can guarantee a relatively higher short-circuit photocurrent. To obtain high-light-conversion-efficiency photoelectrodes, the doping density should be carefully chosen with considerations of illumination wavelength and surface recombination. Suppressing the surface recombination velocity can effectively enhance the short-circuit photocurrent (open-circuit voltage) for the lightly (heavily) doped nanowire array photoelectrodes. Our systematical results provide a theoretical guidance for the photoelectrochemical devices based on semiconductor nanostructures.

  8. Density Detection of Aligned Nanowire Arrays Using Terahertz Time-Domain Spectroscopy.

    PubMed

    Xiang, Wenfeng; Wang, Xin; Liu, Yuan; Zhang, JiaQi; Zhao, Kun

    2016-12-01

    A rapid technique is necessary to quantitatively detect the density of nanowire (NW) and nanotube arrays in one-dimensional devices which have been identified as useful building blocks for nanoelectronics, optoelectronics, biomedical devices, etc. Terahertz (THz) time-domain spectroscopy was employed in this research to detect the density of aligned Ni NW arrays. The transmitted amplitude of THz peaks and optical thickness of NW arrays was found to be the effective parameters to analyze the density change of NW arrays. Owing to the low multiple scattering and high order of Ni NW arrays, a linear relationship was observed for the transmitted amplitude and optical thickness regarding NW density, respectively. Therefore, THz technique may be used as a promising tool to characterize the density of one-dimensional structures in the large-scale integrated nanodevice fabrication.

  9. Factors affecting the shape of MBE-grown laterally aligned Fe nanowires

    NASA Astrophysics Data System (ADS)

    Lok, Shu K.; Tian, Jia C.; Wang, Yuxing; Lai, Ying H.; Lortz, Rolf; Petrovic, Alexander; Panagopoulos, Christos; Wong, George K. L.; Wang, Gan; Sou, Iam K.

    2012-12-01

    Various microstructural and chemical analysis techniques were applied to study two types (type-A and B) of self-assembled laterally aligned Fe nanowires (NWs) fabricated by molecular beam epitaxy on a ZnS buffer layer. The formation of the three-dimensional shapes of these NWs was found to be driven by the principle of surface energy minimization. We have provided phenomenological models to address the factors affecting the observed topological shape of these NWs, including the role of the lattice relationship between the Fe NWs and the underlying buffer layer, growth temperature, Fe nominal coverage and substrate orientation. Magnetic hysteresis measurements were performed at different temperature, demonstrating the Fe NWs possess a coercivity about 30 times larger than that of a Fe thin film. The observed gradual magnetization reversal indicates the magnetization process is accomplished by the rotation of magnetic moments within a single domain.

  10. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications

    PubMed Central

    2016-01-01

    A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 μm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix. PMID:27172933

  11. Factors affecting the shape of MBE-grown laterally aligned Fe nanowires.

    PubMed

    Lok, Shu K; Tian, Jia C; Wang, Yuxing; Lai, Ying H; Lortz, Rolf; Petrovic, Alexander; Panagopoulos, Christos; Wong, George K L; Wang, Gan; Sou, Iam K

    2012-12-07

    Various microstructural and chemical analysis techniques were applied to study two types (type-A and B) of self-assembled laterally aligned Fe nanowires (NWs) fabricated by molecular beam epitaxy on a ZnS buffer layer. The formation of the three-dimensional shapes of these NWs was found to be driven by the principle of surface energy minimization. We have provided phenomenological models to address the factors affecting the observed topological shape of these NWs, including the role of the lattice relationship between the Fe NWs and the underlying buffer layer, growth temperature, Fe nominal coverage and substrate orientation. Magnetic hysteresis measurements were performed at different temperature, demonstrating the Fe NWs possess a coercivity about 30 times larger than that of a Fe thin film. The observed gradual magnetization reversal indicates the magnetization process is accomplished by the rotation of magnetic moments within a single domain.

  12. Absorption enhancement in silicon nanowire-optical nanoantenna system for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Robak, Elżbieta; Grześkiewicz, Bartłomiej; Kotkowiak, Michał

    2014-11-01

    The rapidly growing green energy sector has prompted the search for new solutions to increase the performance of solar cells. In this area there is still room for the silicon-based photovoltaic, although the main problem is to find a way to increase the efficiency of the silicon solar cells, at the lowest possible cost. In this work we investigate the influence of a gold bowtie nanoantenna on the absorption profile of silicon nanowire. Because of the energy band gap and low effective absorption cross section, bulk silicon absorbs rather poorly in longer wavelengths of visible light and near-infrared range. Our calculations with frequency domain solver show the absorption boost in nanowire at long-wavelengths due to the coupling of the large local near-field of metallic bowtie nanoantenna to the semiconductor layer. The enhancement was observed at various levels although it was correlated with the shift of localized surface plasmon resonance thus making it dependent on the bowtie geometry. The results suggest that by incorporating metallic nanostructures as well as nanoparticles to the nanowire system, the performance of photovoltaic device can be improved thanks to greater generation of a electron-hole pairs.

  13. A monolithic electrically-injected nanowire array edge-emitting laser on (001) silicon

    NASA Astrophysics Data System (ADS)

    Stark, E.; Frost, T.; Jahangir, S.; Hazari, A.; Deshpande, S.; Bhattacharya, P.

    2015-03-01

    A silicon-based laser remains an important goal in science and technology. Unfortunately silicon is ill-suited as a light-emitter, prompting the need for alternative high quality light sources integrated with silicon. One such alternative, presented here, is a monolithic III-N edge-emitting laser comprised of a planarized nanowire array. Nanowire heterostructures with InGaN/GaN disk-in-nanowire active regions were grown on (001)silicon and planarized with parylene, forming a composite slab heterostructure supporting a guided mode propagating transverse to the growth direction. From this composite slab, ridge-geometry lasers were fabricated. Lasers with emission at 533 nm (green) and 610 nm (red) are presented here. The lasers are characterized by Jth = 1.76 kA/cm2 (green) and 2.94kA/cm2 (red) under continuous wave current injection. The green lasers have device lifetime of ~7000 hrs. Small-signal modulation measurements have also been performed. The -3dB modulation bandwidth of the green laser is 5.7 GHz.

  14. Enhanced photocatalytic degradation of methylene blue by metal-modified silicon nanowires

    SciTech Connect

    Brahiti, N.; Hadjersi, T.; Menari, H.; Amirouche, S.; El Kechai, O.

    2015-02-15

    Highlights: • SiNWs modified with Pd, Au and Pt were used as photocatalysts to degrade MB. • Yield of photodegardation increases with UV irradiation time. • SiNWs modified with Pd nanoparticles show the best photocatalytic activity. • A degradation of 97% was obtained after 200 min of UV irradiation. - Abstract: Silicon nanowires (SiNWs) modified with Au, Pt and Pd nanoparticles were used as heterogeneous photocatalysts for the photodegradation of methylene blue in water under UV light irradiation. The modification of SiNWs was carried out by deposition of metal nanoparticles using the electroless metal deposition (EMD) technique. The effect of metal nanoparticles deposition time on the photocatalytic activity was studied. It was found that the photocatalytic activity of modified SiNWs was enhanced when the deposition time of metal nanoparticles was increased. In addition of modified SiNWs with Pt, Au and Pd nanoparticles, oxidized silicon substrate (Ox-Si), oxidized silicon nanowires (Ox-SiNWs) and hydrogen-terminated silicon nanowires (H-SiNWs) were also evaluated for the photodegradation of methylene blue.

  15. Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes.

    PubMed

    Fu, Kun; Yildiz, Ozkan; Bhanushali, Hardik; Wang, Yongxin; Stano, Kelly; Xue, Leigang; Zhang, Xiangwu; Bradford, Philip D

    2013-09-25

    Aligned carbon nanotube sheets provide an engineered scaffold for the deposition of a silicon active material for lithium ion battery anodes. The sheets are low-density, allowing uniform deposition of silicon thin films while the alignment allows unconstrained volumetric expansion of the silicon, facilitating stable cycling performance. The flat sheet morphology is desirable for battery construction.

  16. KOH post-etching-induced rough silicon nanowire array for H2 gas sensing application

    NASA Astrophysics Data System (ADS)

    Qin, Yuxiang; Wang, Yongyao; Liu, Yi; Zhang, Xiaojuan

    2016-11-01

    The limited surface area and compacted configuration of silicon nanowires (SiNWs), which are made by one-step metal-assisted chemical etching (MACE) go against target gas diffusion and adsorbtion for gas sensing application. To harvest suitable gas sensitivity and fast response-recovery characteristics, an aligned, rough SiNW array with loose configuration and high surface area was fabricated by a two-step etching process. The MACE technique was first employed to fabricate a smooth SiNW array, and then a KOH post-etching method was developed to roughen the NW surface further. The influence of the KOH post-etching time on the array density and surface roughness of the SiNWs was investigated, and the H2-sensing properties of the sensor based on the as-fabricated rough SiNW array were evaluated systematically at room temperature. It was revealed that the post-etching of KOH roughens the NW surface effectively, and also decreases the wire diameter and array density considerably. The resulting configuration of the SiNW array with high active surface and loose geometry is favorable for gas sensing. Consequently, the rough SiNW array-based sensor exhibited a linear response to H2 with a wide range of concentrations (50-10 000 ppm) at room temperature. Good stability and selectivity, satisfying response-recovery characteristics were also achieved. However, over-etching of SiNWs by KOH solution results in a considerable decrease in surface roughness and then in the H2-sensing response of the NWs.

  17. Nanostructured Indium Oxide Coated Silicon Nanowire Arrays: A Hybrid Photothermal/Photochemical Approach to Solar Fuels.

    PubMed

    Hoch, Laura B; O'Brien, Paul G; Jelle, Abdinoor; Sandhel, Amit; Perovic, Douglas D; Mims, Charles A; Ozin, Geoffrey A

    2016-09-27

    The field of solar fuels seeks to harness abundant solar energy by driving useful molecular transformations. Of particular interest is the photodriven conversion of greenhouse gas CO2 into carbon-based fuels and chemical feedstocks, with the ultimate goal of providing a sustainable alternative to traditional fossil fuels. Nonstoichiometric, hydroxylated indium oxide nanoparticles, denoted In2O3-x(OH)y, have been shown to function as active photocatalysts for CO2 reduction to CO via the reverse water gas shift reaction under simulated solar irradiation. However, the relatively wide band gap (2.9 eV) of indium oxide restricts the portion of the solar irradiance that can be utilized to ∼9%, and the elevated reaction temperatures required (150-190 °C) reduce the overall energy efficiency of the process. Herein we report a hybrid catalyst consisting of a vertically aligned silicon nanowire (SiNW) support evenly coated by In2O3-x(OH)y nanoparticles that utilizes the vast majority of the solar irradiance to simultaneously produce both the photogenerated charge carriers and heat required to reduce CO2 to CO at a rate of 22.0 μmol·gcat(-1)·h(-1). Further, improved light harvesting efficiency of the In2O3-x(OH)y/SiNW films due to minimized reflection losses and enhanced light trapping within the SiNW support results in a ∼6-fold increase in photocatalytic conversion rates over identical In2O3-x(OH)y films prepared on roughened glass substrates. The ability of this In2O3-x(OH)y/SiNW hybrid catalyst to perform the dual function of utilizing both light and heat energy provided by the broad-band solar irradiance to drive CO2 reduction reactions represents a general advance that is applicable to a wide range of catalysts in the field of solar fuels.

  18. Resonant tunnelling features in a suspended silicon nanowire single-hole transistor

    SciTech Connect

    Llobet, Jordi; Pérez-Murano, Francesc E-mail: z.durrani@imperial.ac.uk; Krali, Emiljana; Wang, Chen; Jones, Mervyn E.; Durrani, Zahid A. K. E-mail: z.durrani@imperial.ac.uk; Arbiol, Jordi

    2015-11-30

    Suspended silicon nanowires have significant potential for a broad spectrum of device applications. A suspended p-type Si nanowire incorporating Si nanocrystal quantum dots has been used to form a single-hole transistor. Transistor fabrication uses a novel and rapid process, based on focused gallium ion beam exposure and anisotropic wet etching, generating <10 nm nanocrystals inside suspended Si nanowires. Electrical characteristics at 10 K show Coulomb diamonds with charging energy ∼27 meV, associated with a single dominant nanocrystal. Resonant tunnelling features with energy spacing ∼10 meV are observed, parallel to both diamond edges. These may be associated either with excited states or hole–acoustic phonon interactions, in the nanocrystal. In the latter case, the energy spacing corresponds well with reported Raman spectroscopy results and phonon spectra calculations.

  19. Fabrication and evaluation of series-triple quantum dots by thermal oxidation of silicon nanowire

    SciTech Connect

    Uchida, Takafumi Jo, Mingyu; Tsurumaki-Fukuchi, Atsushi; Arita, Masashi; Takahashi, Yasuo; Fujiwara, Akira

    2015-11-15

    Series-connected triple quantum dots were fabricated by a simple two-step oxidation technique using the pattern-dependent oxidation of a silicon nanowire and an additional oxidation of the nanowire through the gap of the fine gates attached to the nanowire. The characteristics of multi-dot single-electron devices are obtained. The formation of each quantum dot beneath an attached gate is confirmed by analyzing the electrical characteristics and by evaluating the gate capacitances between all pairings of gates and quantum dots. Because the gate electrode is automatically attached to each dot, the device structure benefits from scalability. This technique promises integrability of multiple quantum dots with individual control gates.

  20. Fabrication and optical property of silicon oxide layer coated semiconductor gallium nitride nanowires.

    PubMed

    Zhang, Jun; Zhang, Lide; Jiang, Feihong; Yang, Yongdong; Li, Jianping

    2005-01-13

    Quasi one-dimensional GaN-SiO(2) nanostructures, with a silicon oxide layer coated on semiconductor GaN nanowires, were successfully synthesized through as-synthesized SiO(2) nanoparticles-assisted reaction. The experimental results indicate that the nanostructure consists of single-crystalline wurtzite GaN nanowire core, an amorphous SiO(2) outer shell separated in the radial direction. These quasi one-dimensional nanowires have the diameters of a few tens of nanometers and lengths up to several hundreds of micrometers. The photoluminescence spectrum of the GaN-SiO(2) nanostructures consists of one broad blue-light emission peak at 480 nm and another weak UV emission peak at 345 nm. The novel method, which may results in high yield and high reproducibility, is demonstrated to be a unique technique for producing nanostructures with controlled morphology.

  1. Local and CMOS-compatible synthesis of CuO nanowires on a suspended microheater on a silicon substrate.

    PubMed

    Zhang, Kaili; Yang, Yang; Pun, E Y B; Shen, Ruiqi

    2010-06-11

    This paper presents the synthesis of CuO nanowires using a localized thermal heating method in ambient air. It employs local heat sources defined in micro-resistive heaters fabricated by a standard polysilicon-based surface micromachining process instead of a global furnace heating. Since the synthesis is performed globally at room temperature, the presented process is compatible with standard CMOS. The synthesized CuO nanowires are characterized by scanning electron microscopy, transmission electron microscopy and high resolution transmission electron microscopy. It is found that this approach provides a simple method to locally synthesize suspended CuO nanowires on polysilicon microbridges on silicon substrates, thus allowing for integration of CuO nanowires into silicon-based devices. It provides a significant step towards the process integration of CuO nanowires with MEMS to realize functional devices.

  2. Localized absorption in aluminum mask in visible spectrum due to longitudinal modes in vertical silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Dhindsa, Navneet; Saini, Simarjeet Singh

    2015-06-01

    Localized optical absorption in aluminum masks used for vertical silicon nanowire fabrication is demonstrated experimentally and supported using computer simulations. The mask is in the form of 30 nm thick aluminum nano-disks on top of silicon nanowires arranged in square lattices. The nanowires are 1 μm long, with diameters ranging from 60 nm to 100 nm and spaced 400 nm apart. New spectral features appear in the 500 nm-700 nm wavelengths range and are dependent on both the nanowire diameter and length. The former is due to the excitation of radial modes, whereas the latter stems from longitudinal (Fabry-Perot) resonances. The salient features associated with absorption in the aluminum mask and the role nanowire plays in this connection are discussed.

  3. Bio-functionalization of silicon carbide nanostructures for SiC nanowire-based sensors realization.

    PubMed

    Fradetal, L; Stambouli, V; Bano, E; Pelissier, B; Choi, J H; Ollivier, M; Latu-Romain, L; Boudou, T; Pignot-Paintrand, I

    2014-05-01

    The bio-functionalization process consisting in grafting desoxyribo nucleic acid via aminopropyl-triethoxysilane is performed on several kinds of silicon carbide nanostructures. Prior, the organic layer is characterized on planar surface with fluorescence microscopy and X-ray photoelectron spectroscopy. Then, the functionalization is performed on two kinds of nanopillar arrays. One is composed of top-down SiC nanopillars with a wide pitch of 5 microm while the other one is a dense array (pitch: 200 nm) of core-shell Si-SiC nanowires obtained by carburization of silicon nanowires. Depending on both the pillar morphology and the pitch, different results in term of DNA surface coverages are obtained, as seen from fluorescence microscopy images. Particularly, in the case of the wide pitch array, it has been shown that the DNA molecules are located all along the nanopillars. To achieve a DNA sensor based on a nanowire-field effect transistor, the functionalization must be conducted on a single SiC nanowire or nanopillar that constitutes the channel of the field effect transistor. The localization of the functionalization in a small area around the nanostructures guarantees high performances to the sensor. In this aim, the functionalization process is combined with common microelectronics techniques of lithography and lift-off. The DNA immobilization is investigated by fluorescence microscopy and atomic force microscopy.

  4. Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs

    NASA Astrophysics Data System (ADS)

    He, Ying; Wang, Jun-An; Pei, Chang-Long; Song, Ji-Zhong; Zhu, Di; Chen, Jie

    2010-10-01

    A novel high transparent thermolytic epoxy-silicone for high-brightness light-emitting diode (HB-LED) is introduced, which was synthesized by polymerization using silicone matrix via diglycidyl ether bisphenol-A epoxy resin (DGEBA) as reinforcing agent, and filling ZnO nanowires to modify thermal conductivity and control refractive index of the hybrid material. The interactions of ZnO nanowires with polymers are mediated by the ligands attached to the nanoparticles. Thus, the ligands markedly influence the properties of ZnO nanowires/epoxy-silicone composites. The refractive indices of the prepared hybrid adhesives can be tuned by the ZnO nanowires from 1.4711 to 1.5605. Light transmittance can be increased by 20% from 80 to 95%. The thermal conductivity of the transparent packaging adhesives is 0.89-0.90 W/mK.

  5. Multiband Hot Photoluminescence from Nanocavity-Embedded Silicon Nanowire Arrays with Tunable Wavelength.

    PubMed

    Mu, Zhiqiang; Yu, Haochi; Zhang, Miao; Wu, Aimin; Qi, Gongmin; Chu, Paul K; An, Zhenghua; Di, Zengfeng; Wang, Xi

    2017-03-08

    Besides the well-known quantum confinement effect, hot luminescence from indirect bandgap Si provides a new and promising approach to realize monolithically integrated silicon optoelectronics due to phonon-assisted light emission. In this work, multiband hot photoluminescence is generated from Si nanowire arrays by introducing trapezoid-shaped nanocavities that support hybrid photonic-plasmonic modes. By continuously adjusting the geometric parameters of the Si nanowires with trapezoidal nanocavities, the multiband hot photoluminescence can be tuned in the range from visible to near-infrared independent of the excitation laser wavelength. The highly tunable wavelength bands and concomitant compatibility with Si-integrated electronics enable tailoring of silicon-based light sources suitable for next-generation optoelectronics devices.

  6. Quenched phonon drag in silicon nanowires reveals significant effect in the bulk at room temperature.

    PubMed

    Sadhu, Jyothi; Tian, Hongxiang; Ma, Jun; Azeredo, Bruno; Kim, Junhwan; Balasundaram, Karthik; Zhang, Chen; Li, Xiuling; Ferreira, P M; Sinha, S

    2015-05-13

    Existing theory and data cannot quantify the contribution of phonon drag to the Seebeck coefficient (S) in semiconductors at room temperature. We show that this is possible through comparative measurements between nanowires and the bulk. Phonon boundary scattering completely quenches phonon drag in silicon nanowires enabling quantification of its contribution to S in bulk silicon in the range 25-500 K. The contribution is surprisingly large (∼34%) at 300 K even at doping of ∼3 × 10(19) cm(-3). Our results contradict the notion that phonon drag is negligible in degenerate semiconductors at temperatures relevant for thermoelectric energy conversion. A revised theory of electron-phonon momentum exchange that accounts for a phonon mean free path spectrum agrees well with the data.

  7. Fluorinated alkyne-derived monolayers on oxide-free silicon nanowires via one-step hydrosilylation

    NASA Astrophysics Data System (ADS)

    Nguyen Minh, Quyen; Pujari, Sidharam P.; Wang, Bin; Wang, Zhanhua; Haick, Hossam; Zuilhof, Han; van Rijn, Cees J. M.

    2016-11-01

    Passivation of oxide-free silicon nanowires (Si NWs) by the formation of high-quality fluorinated 1-hexadecyne-derived monolayers with varying fluorine content has been investigated. Alkyl chain monolayers (C16H30-xFx) with a varying number of fluorine substituents (x = 0, 1, 3, 9, 17) were attached onto hydrogen-terminated silicon (Sisbnd H) surfaces with an effective one-step hydrosilylation. This surface chemistry gives well-defined monolayers on nanowires that have a cylindrical core-shell structure, as characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and static contact angle (SCA) analysis. The monolayers were stable under acidic and basic conditions, as well as under extreme conditions (such as UV exposure), and provide excellent surface passivation, which opens up applications in the fields of field effect transistors, optoelectronics and especially for disease diagnosis.

  8. Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically-integrated silicon nanowires.

    PubMed

    Li, D; Wu, G S; Wang, W; Wang, Y D; Liu, Dong; Zhang, D C; Chen, Y F; Peterson, G P; Yang, Ronggui

    2012-07-11

    Thermal management has become a critical issue for high heat flux electronics and energy systems. Integrated two-phase microchannel liquid-cooling technology has been envisioned as a promising solution, but with great challenges in flow instability. In this work, silicon nanowires were synthesized in situ in parallel silicon microchannel arrays for the first time to suppress the flow instability and to augment flow boiling heat transfer. Significant enhancement in flow boiling heat transfer performance was demonstrated for the nanowire-coated microchannel heat sink, such as an early onset of nucleate boiling, a delayed onset of flow oscillation, suppressed oscillating amplitudes of temperature and pressure drop, and an increased heat transfer coefficient.

  9. Critical Role of Diels–Adler Adducts to Realise Stretchable Transparent Electrodes Based on Silver Nanowires and Silicone Elastomer

    PubMed Central

    Heo, Gaeun; Pyo, Kyoung-hee; Lee, Da Hee; Kim, Youngmin; Kim, Jong-Woong

    2016-01-01

    This paper presents the successful fabrication of a transparent electrode comprising a sandwich structure of silicone/Ag nanowires (AgNWs)/silicone equipped with Diels–Alder (DA) adducts as crosslinkers to realise highly stable stretchability. Because of the reversible DA reaction, the crosslinked silicone successfully bonds with the silicone overcoat, which should completely seal the electrode. Thus, any surrounding liquid cannot leak through the interfaces among the constituents. Furthermore, the nanowires are protected by the silicone cover when they are stressed by mechanical loads such as bending, folding, and stretching. After delicate optimisation of the layered silicone/AgNW/silicone sandwich structure, a stretchable transparent electrode which can withstand 1000 cycles of 50% stretching–releasing with an exceptionally high stability and reversibility was fabricated. This structure can be used as a transparent strain sensor; it possesses a strong piezoresistivity with a gauge factor greater than 11. PMID:27140436

  10. Growth and Characterization of Silicon Carbide (SiC) Nanowires by Chemical Vapor Deposition (CVD) for Electronic Device Applications

    NASA Astrophysics Data System (ADS)

    Moore, Karina

    In recent years nanowires have gained a generous amount of interest because of the possible application of nanowires within electronic devices. A nanowire is a one dimensional semiconductor nanostructure with a diameter less than 100 nm. Nanowires have the potential to be a replacement for the present day complimentary metal oxide semiconductor (CMOS) technology; it is believed by 2020, a 5--6 nm gate length within field effect transistors (FET) would be realized and cease further miniaturization of electronic devices. SiC processes several unique chemical and physical properties that make it an attractive alternative to Si as a semiconductor material. Silicon carbide's properties make it a perfect candidate for applications such as high temperature sensors, x-ray emitters and high radiation sensors. The main objective of this thesis is to successfully grow silicon carbide nanowires on silicon substrates with the assistance of a metal catalyst, by the process of chemical vapor deposition (CVD). The contributions made by the work carried out in this thesis are broad. This is the first study that has carried out a comprehensive investigation into a wide range of metal catalyst for the growth of SiC nanowires by the process of chemical vapor deposition. The study proved that the surface tension interactions between the silicon substrate and the metal catalyst are the controlling factor in the determination of the diameter of the nanowires grown. This study also proved that the silicon substrate orientation has no impact on the growth of the nanowires, similar growth patterns occurred on both Si <100> and Si <111> substrates. The nanowires grown were characterized by a variety of different methods including scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and raman spectroscopy. The effect of temperature, growth temperature, growth time and the catalyst type used are investigated to determine the most suitable conditions necessary for Si

  11. Room temperature NO2 gas sensing of Au-loaded tungsten oxide nanowires/porous silicon hybrid structure

    NASA Astrophysics Data System (ADS)

    Deng-Feng, Wang; Ji-Ran, Liang; Chang-Qing, Li; Wen-Jun, Yan; Ming, Hu

    2016-02-01

    In this work, we report an enhanced nitrogen dioxide (NO2) gas sensor based on tungsten oxide (WO3) nanowires/porous silicon (PS) decorated with gold (Au) nanoparticles. Au-loaded WO3 nanowires with diameters of 10 nm-25 nm and lengths of 300 nm-500 nm are fabricated by the sputtering method on a porous silicon substrate. The high-resolution transmission electron microscopy (HRTEM) micrographs show that Au nanoparticles are uniformly distributed on the surfaces of WO3 nanowires. The effect of the Au nanoparticles on the NO2-sensing performance of WO3 nanowires/porous silicon is investigated over a low concentration range of 0.2 ppm-5 ppm of NO2 at room temperature (25 °C). It is found that the 10-Å Au-loaded WO3 nanowires/porous silicon-based sensor possesses the highest gas response characteristic. The underlying mechanism of the enhanced sensing properties of the Au-loaded WO3 nanowires/porous silicon is also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274074 and 61271070) and the Key Research Program of Application Foundation and Advanced Technology of Tianjin, China (Grant No. 11JCZDJC15300).

  12. Self-Aligned Cu-Si Core-Shell Nanowire Array as a High-Performance Anode for Li-Ion Batteries

    SciTech Connect

    Qu, Jun; Li, Huaqing; Henry Jr, John James; Martha, Surendra K; Dudney, Nancy J; Lance, Michael J; Mahurin, Shannon Mark; Besmann, Theodore M; Dai, Sheng

    2012-01-01

    Silicon nanowires (NWs) have been reported as a promising anode that demonstrated high capacity without pulverization during cycling, however, they present some technical issues that remain to be solved. The high aspect ratio of the NWs and their small contact areas with the current collector cause high electrical resistance, which results in inefficient electron transport. The nano-size interface between a NW and the substrate experiences high shear stress during lithiation, causing the wire to separate from the current collector. In addition, most reported methods for producing silicon NWs involve high-temperature processing and require catalysts that later become contaminants. This study developed a new self-aligned Cu-Si core-shell NW array using a low-temperature, catalyst-free process to address the issues described. The silicon shell is amorphous as synthesized and accommodates Li-ions without phase transformation. The copper core functions as a built-in current collector to provide very short (nm) electron transport pathways as well as backbone to improve mechanical strength. Initial electrochemical evaluation has demonstrated good capacity retention and high Coulombic efficiency for this new anode material in a half-cell configuration. No wire fracture or core-shell separation was observed after cycling. However, electrolyte decomposition products largely covered the top surface of the NW array, restricting electrolyte access and causing capacity reduction at high charging rates.

  13. Core-shell homojunction silicon vertical nanowire tunneling field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yoon, Jun-Sik; Kim, Kihyun; Baek, Chang-Ki

    2017-01-01

    We propose three-terminal core-shell (CS) silicon vertical nanowire tunneling field-effect transistors (TFETs), which can be fabricated by conventional CMOS technology. CS TFETs show lower subthreshold swing (SS) and higher on-state current than conventional TFETs through their high surface-to-volume ratio, which increases carrier-tunneling region with no additional device area. The on-state current can be enhanced by increasing the nanowire height, decreasing equivalent oxide thickness (EOT) or creating a nanowire array. The off-state current is also manageable for power saving through selective epitaxial growth at the top-side nanowire region. CS TFETs with an EOT of 0.8 nm and an aspect ratio of 20 for the core nanowire region provide the largest drain current ranges with point SS values below 60 mV/dec and superior on/off current ratio under all operation voltages of 0.5, 0.7, and 1.0 V. These devices are promising for low-power applications at low fabrication cost and high device density.

  14. Core-shell homojunction silicon vertical nanowire tunneling field-effect transistors

    PubMed Central

    Yoon, Jun-Sik; Kim, Kihyun; Baek, Chang-Ki

    2017-01-01

    We propose three-terminal core-shell (CS) silicon vertical nanowire tunneling field-effect transistors (TFETs), which can be fabricated by conventional CMOS technology. CS TFETs show lower subthreshold swing (SS) and higher on-state current than conventional TFETs through their high surface-to-volume ratio, which increases carrier-tunneling region with no additional device area. The on-state current can be enhanced by increasing the nanowire height, decreasing equivalent oxide thickness (EOT) or creating a nanowire array. The off-state current is also manageable for power saving through selective epitaxial growth at the top-side nanowire region. CS TFETs with an EOT of 0.8 nm and an aspect ratio of 20 for the core nanowire region provide the largest drain current ranges with point SS values below 60 mV/dec and superior on/off current ratio under all operation voltages of 0.5, 0.7, and 1.0 V. These devices are promising for low-power applications at low fabrication cost and high device density. PMID:28112273

  15. Tunable electronic properties of silicon nanowires under strain and electric bias

    SciTech Connect

    Nduwimana, Alexis; Wang, Xiao-Qian

    2014-07-15

    The electronic structure characteristics of silicon nanowires under strain and electric bias are studied using first-principles density functional theory. The unique wire-like structure leads to distinct spatial distribution of carriers, which can be tailored by applying tensile and compressive strains, as well as by an electric bias. Our results indicate that the combined effect of strain and electric bias leads to tunable electronic structures that can be used for piezo-electric devices.

  16. Nanoparticles prepared from porous silicon nanowires for bio-imaging and sonodynamic therapy

    NASA Astrophysics Data System (ADS)

    Osminkina, Liubov A.; Sivakov, Vladimir A.; Mysov, Grigory A.; Georgobiani, Veronika A.; Natashina, Ulyana A.; Talkenberg, Florian; Solovyev, Valery V.; Kudryavtsev, Andrew A.; Timoshenko, Victor Yu

    2014-09-01

    Evaluation of cytotoxicity, photoluminescence, bio-imaging, and sonosensitizing properties of silicon nanoparticles (SiNPs) prepared by ultrasound grinding of porous silicon nanowires (SiNWs) have been investigated. SiNWs were formed by metal (silver)-assisted wet chemical etching of heavily boron-doped (100)-oriented single crystalline silicon wafers. The prepared SiNWs and aqueous suspensions of SiNPs exhibit efficient room temperature photoluminescence (PL) in the spectral region of 600 to 1,000 nm that is explained by the radiative recombination of excitons confined in small silicon nanocrystals, from which SiNWs and SiNPs consist of. On the one hand, in vitro studies have demonstrated low cytotoxicity of SiNPs and possibilities of their bio-imaging applications. On the other hand, it has been found that SiNPs can act as efficient sensitizers of ultrasound-induced suppression of the viability of Hep-2 cancer cells.

  17. Nanoparticles prepared from porous silicon nanowires for bio-imaging and sonodynamic therapy.

    PubMed

    Osminkina, Liubov A; Sivakov, Vladimir A; Mysov, Grigory A; Georgobiani, Veronika A; Natashina, Ulyana А; Talkenberg, Florian; Solovyev, Valery V; Kudryavtsev, Andrew A; Timoshenko, Victor Yu

    2014-01-01

    Evaluation of cytotoxicity, photoluminescence, bio-imaging, and sonosensitizing properties of silicon nanoparticles (SiNPs) prepared by ultrasound grinding of porous silicon nanowires (SiNWs) have been investigated. SiNWs were formed by metal (silver)-assisted wet chemical etching of heavily boron-doped (100)-oriented single crystalline silicon wafers. The prepared SiNWs and aqueous suspensions of SiNPs exhibit efficient room temperature photoluminescence (PL) in the spectral region of 600 to 1,000 nm that is explained by the radiative recombination of excitons confined in small silicon nanocrystals, from which SiNWs and SiNPs consist of. On the one hand, in vitro studies have demonstrated low cytotoxicity of SiNPs and possibilities of their bio-imaging applications. On the other hand, it has been found that SiNPs can act as efficient sensitizers of ultrasound-induced suppression of the viability of Hep-2 cancer cells.

  18. Nanowires and sidewall Bragg gratings in silicon as enabling technologies for microwave photonic filters.

    PubMed

    Chen, Lawrence R; Li, Jia; Spasojevic, Mina; Adams, Rhys

    2013-08-26

    We describe the use of various silicon photonic device technologies to implement microwave photonic filters (MPFs). We demonstrate four-wave mixing in a silicon nanowire waveguide (SNW) to increase the number of taps for MPFs based on finite impulse response filter designs. Using a 12 mm long SNW reduces the footprint by five orders of magnitude compared to silica highly nonlinear fiber while only requiring approximately two times more input power. We also demonstrate optical delays based on serial sidewall Bragg grating arrays and step-chirped sidewall Bragg gratings in silicon waveguides. We obtain up to 63 ps delay in discrete steps from 15 ps to 32 ps over a wide bandwidth range from 33 nm to at least 62 nm. These components can be integrated with other silicon-based components such as integrated spectral shapers and modulators to realize a fully integrated MPF.

  19. Thermal Conductivity Suppression in Nanostructured Silicon and Germanium Nanowires

    NASA Astrophysics Data System (ADS)

    Özden, Ayberk; Kandemir, Ali; Ay, Feridun; Perkgöz, Nihan Kosku; Sevik, Cem

    2016-03-01

    The inherent low lattice thermal conductivity (TC) of semiconductor nanowires (s-NW) due to one-dimensional phonon confinement might provide a solution for the long-lasting figure-of-merit problem for highly efficient thermoelectric (TE) applications. Standalone diameter modulation or alloying of s-NW serve as a toolkit for TC control, but realizing the full potential of nanowires requires new atomic-scale designs, growth, characterization, and understanding of the physical mechanisms behind the structure-property (TC) relationship. Before undertaking time-consuming and expensive experimental work, molecular dynamics (MD) simulations serve as an excellent probe to investigate new designs and understand how nanostructures affect thermal transport properties through their capability to capture various phenomena such as phonon boundary scattering, phonon coherence resonance, and phonon backscattering. On the other hand, because different research groups use different structural and MD parameters in their simulations, it is rather difficult to make comparisons between different nanostructures and select appropriate ones for potential TE applications. Therefore, in this work, we systematically investigated pristine, core-shell (C-S), holey (H-N), superlattice (SL), sawtooth (ST), and superlattice sawtooth (SL-ST) nanowires with identical structural parameters. Specifically, we aim to compare the relative TC reduction achieved by these nanostructures with respect to pristine nanowires in order to propose the best structural design with the lowest lattice TC, using Green-Kubo method-based equilibrium molecular dynamics simulations at 300 K. Our results show that the TC can be minimized by changing specific parameters such as the core diameter and monolayer separation for C-S, H-N, and ST structures. In the case of SL structures, the TC is found to be independent of these parameters. However, surface roughness in the form of a ST morphology provides a TC value below 2 W

  20. Technology for fabrication of sub-20 nm silicon planar nanowires array

    NASA Astrophysics Data System (ADS)

    Miakonkikh, Andrey V.; Tatarintsev, Andrey A.; Rogozhin, Alexander E.; Rudenko, Konstantin V.

    2016-12-01

    The results presented on Silicon one-dimensional structures fabrication which are promising for application in nanoelectronics, sensors, THz-applications. We employ two-stage technology of precise anizotropic plasma etching of silicon over e-beam resist and isotropic removal of thermally oxidised defected surface layer of silicon by wet etch. As first the process for nano-fins fabrication on SOI substrate was developed. HSQ resist was used as a negative-tone electron beam resist with good etch-resistance, high resolution and high mechanical stability. The etching was performed by RIE in mix of SF6 + C4F8. plasma. By changing the ratio SF6:C4F8, the sidewall profile angle can be controlled thoroughly. Next step to minimize lateral size of structures and reduce impact of surface defects on electron mobility in core of nanowires was the application of surface thermal oxidation to defected layer. It was used for selective removal of damaged silicon layer and polymer residues. Oxidation was performed with controlled flow of dry oxygen and water vapour. Oxidation rate was precisely controlled by ex-situ spectral ellipsometry on unpatterned chips As a result the arrays of planar sub-20 nm Silicon nanowires with length in the range 200 nm - 500 um were made.

  1. Hydrogen-terminated silicon nanowire photocatalysis: Benzene oxidation and methyl red decomposition

    SciTech Connect

    Lian, Suoyuan; Tsang, Chi Him A.; Kang, Zhenhui; Liu, Yang; Wong, Ningbew; Lee, Shuit-Tong

    2011-12-15

    Graphical abstract: H-SiNWs can catalyze hydroxylation of benzene and degradation of methyl red under visible light irradiation. Highlights: Black-Right-Pointing-Pointer Hydrogen-terminated silicon nanowires were active photocatalyst in the hydroxylation of benzene under light. Black-Right-Pointing-Pointer Hydrogen-terminated silicon nanowires were also effective in the decomposition of methyl red dye. Black-Right-Pointing-Pointer The Si/SiO{sub x} core-shell structure is the main reason of the obtained high selectivity during the hydroxylation. -- Abstract: Hydrogen-terminated silicon nanowires (H-SiNWs) were used as heterogeneous photocatalysts for the hydroxylation of benzene and for the decomposition of methyl red under visible light irradiation. The above reactions were monitored by GC-MS and UV-Vis spectrophotometry, respectively, which shows 100% selectivity for the transformation of benzene to phenol. A complete decomposition of a 2 Multiplication-Sign 10{sup -4} M methyl red solution was achieved within 30 min. The high selectivity for the hydroxylation of benzene and the photodecomposition demonstrate the catalytic activity of ultrafine H-SiNWs during nanocatalysis.

  2. Improved performance of silicon nanowire/cadmium telluride quantum dots/organic hybrid solar cells

    NASA Astrophysics Data System (ADS)

    Ge, Zhaoyun; Xu, Ling; Zhang, Renqi; Xue, Zhaoguo; Wang, Hongyu; Xu, Jun; Yu, Yao; Su, Weining; Ma, Zhongyuan; Chen, Kunji

    2015-04-01

    We fabricated silicon nanowire/cadmium telluride quantum dots (CdTe QDs)/organic hybrid solar cells and investigated their structure and electrical properties. Transmission electron microscope revealed that CdTe QDs were uniformly distributed on the surface of the silicon nanowires, which made PEDOT:PSS easily filled the space between SiNWs. The current density-voltage (J-V) characteristics of hybrid solar cells were investigated both in dark and under illumination. The result shows that the performance of the hybrid solar cells with CdTe QDs layer has an obvious improvement. The optimal short-circuit current density (Jsc) of solar cells with CdTe QDs layer can reach 33.5 mA/cm2. Compared with the solar cells without CdTe QDs, Jsc has an increase of 15.1%. Power conversion efficiency of solar cells also increases by 28.8%. The enhanced performance of the hybrid solar cells with CdTe QDs layers are ascribed to down-shifting effect of CdTe QDs and the modification of the silicon nanowires surface with CdTe QDs. The result of our experiments suggests that hybrid solar cells with CdTe QDs modified are promising candidates for solar cell application.

  3. Designing Morphology in Epitaxial Silicon Nanowires: The Role of Gold, Surface Chemistry, and Phosphorus Doping.

    PubMed

    Kim, Seokhyoung; Hill, David J; Pinion, Christopher W; Christesen, Joseph D; McBride, James R; Cahoon, James F

    2017-03-28

    Vertically aligned semiconductor nanowires (NWs) have many potential applications for NW-based technologies, ranging from solar cells to intracellular sensors. Aligned NWs can be fabricated by top-down etching of planar wafers or synthesized from the bottom up using the vapor-liquid-solid (VLS) mechanism to induce epitaxial growth on lattice-matched substrates. The VLS process permits the modulation of dopants along the NW growth axis, which if combined with dopant-dependent wet-chemical etching, can be used to encode precise morphology. However, the synthesis of vertical and linear NWs with complex morphology is nontrivial, requiring control over multiple interdependent aspects of the VLS process. Here, we demonstrate sub-10 nm morphology in ⟨111⟩ epitaxial silicon (Si) NWs grown by the VLS mechanism on (111) Si substrates with gold (Au) catalysts. Using silane (SiH4), phosphine (PH3), and hydrochloric acid (HCl) precursor gases at 480 °C, precise morphology is encoded through abrupt phosphorus (P) dopant transitions, which are found to be less than 5 nm in width. The results highlight three mechanistic attributes of the process. First, NW growth in the ⟨111⟩ direction is found to be unstable at high SiH4 partial pressures and growth rates unless using HCl, which stabilizes NW growth through chlorination of the NW sidewall. Second, aggregated Au deposited on the NW surface by the VLS catalyst is found to be immobile on the chlorinated surface and to impede selective wet-chemical etching by potassium hydroxide (KOH) solution, preventing the design of precise morphology. Third, the aggregation of Au is found to be strongly dependent on the SiH4 partial pressure and NW growth rate, and values exceeding ∼100 mTorr and ∼150 nm/min, respectively, are required to minimize Au and thereby enable selective wet-chemical etching. Under optimized growth conditions, we find that abrupt, complex, and arbitrary dopant profiles and morphologies can be encoded in

  4. Electrical detection of dengue virus (DENV) DNA oligomer using silicon nanowire biosensor with novel molecular gate control.

    PubMed

    Nuzaihan M N, M; Hashim, U; Md Arshad, M K; Kasjoo, S R; Rahman, S F A; Ruslinda, A R; Fathil, M F M; Adzhri, R; Shahimin, M M

    2016-09-15

    In this paper, a silicon nanowire biosensor with novel molecular gate control has been demonstrated for Deoxyribonucleic acid (DNA) detection related to dengue virus (DENV). The silicon nanowire was fabricated using the top-down nanolithography approach, through nanostructuring of silicon-on-insulator (SOI) layers achieved by combination of the electron-beam lithography (EBL), plasma dry etching and size reduction processes. The surface of the fabricated silicon nanowire was functionalized by means of a three-step procedure involving surface modification, DNA immobilization and hybridization. This procedure acts as a molecular gate control to establish the electrical detection for 27-mers base targets DENV DNA oligomer. The electrical detection is based on the changes in current, resistance and conductance of the sensor due to accumulation of negative charges added by the immobilized probe DNA and hybridized target DNA. The sensitivity of the silicon nanowire biosensors attained was 45.0µAM(-1), which shows a wide-range detection capability of the sensor with respect to DNA. The limit of detection (LOD) achieved was approximately 2.0fM. The demonstrated results show that the silicon nanowire has excellent properties for detection of DENV with outstanding repeatability and reproducibility performances.

  5. Thermal Test of an Improved Platform for Silicon Nanowire-Based Thermoelectric Micro-generators

    NASA Astrophysics Data System (ADS)

    Calaza, C.; Fonseca, L.; Salleras, M.; Donmez, I.; Tarancón, A.; Morata, A.; Santos, J. D.; Gadea, G.

    2016-03-01

    This work reports on an improved design intended to enhance the thermal isolation between the hot and cold parts of a silicon-based thermoelectric microgenerator. Micromachining techniques and silicon on insulator substrates are used to obtain a suspended silicon platform surrounded by a bulk silicon rim, in which arrays of bottom-up silicon nanowires are integrated later on to join both parts with a thermoelectric active material. In previous designs the platform was linked to the rim by means of bulk silicon bridges, used as mechanical support and holder for the electrical connections. Such supports severely reduce platform thermal isolation and penalise the functional area due to the need of longer supports. A new technological route is planned to obtain low thermal conductance supports, making use of a particular geometrical design and a wet bulk micromachining process to selectively remove silicon shaping a thin dielectric membrane. Thermal conductance measurements have been performed to analyse the influence of the different design parameters of the suspended platform (support type, bridge/membrane length, separation between platform and silicon rim,) on overall thermal isolation. A thermal conductance reduction from 1.82 mW/K to 1.03 mW/K, has been obtained on tested devices by changing the support type, even though its length has been halved.

  6. Low-temperature study of array of dopant atoms on transport behaviors in silicon junctionless nanowire transistor

    SciTech Connect

    Wang, Hao; Han, Weihua Li, Xiaoming; Zhang, Yanbo; Yang, Fuhua

    2014-09-28

    We demonstrate temperature-dependent quantum transport characteristics in silicon junctionless nanowire transistor fabricated on Silicon-on-Insulator substrate by the femtosecond laser lithography. Clear drain-current oscillations originated from dopant-induced quantum dots are observed in the initial stage of the conduction for the silicon nanowire channel at low temperatures. Arrhenius plot of the conductance indicates the transition temperature of 30 K from variable-range hopping to nearest-neighbor hopping, which can be well explained under Mott formalism. The transition of electron hopping behavior is the interplay result between the thermal activation and the Coulomb interaction.

  7. Electrowetting properties of atomic layer deposited Al{sub 2}O{sub 3} decorated silicon nanowires

    SciTech Connect

    Rajkumar, K.; Rajavel, K.; Cameron, D. C.; Mangalaraj, D.; Rajendrakumar, R. T.

    2015-06-24

    This paper reports the electrowetting properties of liquid droplet on superhydrophobic silicon nanowires with Atomic layer deposited (ALD) Al{sub 2}O{sub 3} as dielectric layer. Silicon wafer were etched by metal assisted wet chemical etching with silver as catalyst. ALD Al{sub 2}O{sub 3} films of 10nm thickness were conformally deposited over silicon nanowires. Al{sub 2}O{sub 3} dielectric film coated silicon nanowires was chemically modified with Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane to make it superhydrophobic(SHP). The contact angle was measured and all the samples exhibited superhydrophobic nature with maximum contact angles of 163° and a minimum contact angle hysteresis of 6°. Electrowetting induced a maximum reversible decrease of the contact angle of 20°at 150V in air.

  8. Self-assembly and hierarchical patterning of aligned organic nanowire arrays by solvent evaporation on substrates with patterned wettability.

    PubMed

    Bao, Rong-Rong; Zhang, Cheng-Yi; Zhang, Xiu-Juan; Ou, Xue-Mei; Lee, Chun-Sing; Jie, Jian-Sheng; Zhang, Xiao-Hong

    2013-06-26

    The controlled growth and alignment of one-dimensional organic nanostructures at well-defined locations considerably hinders the integration of nanostructures for electronic and optoelectronic applications. Here, we demonstrate a simple process to achieve the growth, alignment, and hierarchical patterning of organic nanowires on substrates with controlled patterns of surface wettability. The first-level pattern is confined by the substrate patterns of wettability. Organic nanostructures are preferentially grown on solvent wettable regions. The second-level pattern is the patterning of aligned organic nanowires deposited by controlling the shape and movement of the solution contact lines during evaporation on the wettable regions. This process is controlled by the cover-hat-controlled method or vertical evaportation method. Therefore, various new patterns of organic nanostructures can be obtained by combing these two levels of patterns. This simple method proves to be a general approach that can be applied to other organic nanostructure systems. Using the as-prepared patterned nanowire arrays, an optoelectronic device (photodetector) is easily fabricated. Hence, the proposed simple, large-scale, low-cost method of preparing patterns of highly ordered organic nanostructures has high potential applications in various electronic and optoelectronic devices.

  9. Sensing properties of assembled Bi2S3 nanowire arrays

    NASA Astrophysics Data System (ADS)

    Kunakova, G.; Meija, R.; Bite, I.; Prikulis, J.; Kosmaca, J.; Varghese, J.; Holmes, J. D.; Erts, Donats

    2015-09-01

    Bismuth sulfide (Bi2S3) nanowires were grown in porous aluminium oxide template and a selective chemical etching was applied to transfer the nanowires to a solution. Well aligned nanowire arrays were assembled on pre-patterned silicon substrates employing dielectrophoresis. Electron beam lithography was used to connect aligned individual nanowires to the common macroelectrode. In order to evaluate the conductometric sensing performance of the Bi2S3 nanowires, current-voltage characteristics were measured at different relative humidity (RH) levels (5-80%) / argon medium. The response of the Bi2S3 nanowires depending of RH is found to be considerably different from those reported for other types of nanowire RH sensor devices.

  10. Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application.

    PubMed

    Zhang, Fute; Song, Tao; Sun, Baoquan

    2012-05-17

    The hybrid Schottky diode based on silicon nanowire arrays (SiNWs) and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) has been fabricated for high performance solar cells. The length of SiNWs on a silicon substrate, which is prepared by metal-assisted chemical etching, can be tuned by adjusting the length of the etching time. In addition, the average distances between the adjacent silicon nanowires can be controlled by changing the immersing time in a saturated PCl(5) solution. The hybrid devices are made from the SiNWs with different wire lengths and various distances between adjacent wires by spin-casting PEDOT:PSS on the silicon substrates. It is found that the length and density play leading roles in the electric output characteristics. The device made from SiNWs with optimum morphology can achieve a power conversion efficiency of 7.3%, which is much improved in comparison with that of the planar one. The measurement of the transient photovoltage decay and the analysis of the current versus voltage curve indicate that the charge recombination process is a dominant factor on the device performance.

  11. Conjugated polymer-silicon nanowire array hybrid Schottky diode for solar cell application

    NASA Astrophysics Data System (ADS)

    Zhang, Fute; Song, Tao; Sun, Baoquan

    2012-05-01

    The hybrid Schottky diode based on silicon nanowire arrays (SiNWs) and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) has been fabricated for high performance solar cells. The length of SiNWs on a silicon substrate, which is prepared by metal-assisted chemical etching, can be tuned by adjusting the length of the etching time. In addition, the average distances between the adjacent silicon nanowires can be controlled by changing the immersing time in a saturated PCl5 solution. The hybrid devices are made from the SiNWs with different wire lengths and various distances between adjacent wires by spin-casting PEDOT:PSS on the silicon substrates. It is found that the length and density play leading roles in the electric output characteristics. The device made from SiNWs with optimum morphology can achieve a power conversion efficiency of 7.3%, which is much improved in comparison with that of the planar one. The measurement of the transient photovoltage decay and the analysis of the current versus voltage curve indicate that the charge recombination process is a dominant factor on the device performance.

  12. Novel Iron-oxide Catalyzed CNT Formation on Semiconductor Silicon Nanowire

    PubMed Central

    Adam, Tijjani; U, Hashim

    2014-01-01

    An aqueous ferric nitrate nonahydrate (Fe(NO3)3.9H2O) and magnesium oxide (MgO) were mixed and deposited on silicon nanowires (SiNWs), the carbon nanotubes (CNTs) formed by the concentration of Fe3O4/MgO catalysts with the mole ratio set at 0.15:9.85 and 600°C had diameter between 15.23 to 90nm with high-density distribution of CNT while those with the mole ratio set at 0.45:9.55 and 730°C had diameter of 100 to 230nm. The UV/Vis/NIR and FT-IR spectroscopes clearly confirmed the presence of the silicon-CNTs hybrid structure. UV/Vis/NIR, FT-IR spectra and FESEM images confirmed the silicon-CNT structure exists with diameters ranging between 15-230nm. Thus, the study demonstrated cost effective method of silicon-CNT composite nanowire formation via Iron-oxide Catalyze synthesis. PMID:25237290

  13. High-Temperature Performance of Stacked Silicon Nanowires for Thermoelectric Power Generation

    NASA Astrophysics Data System (ADS)

    Stranz, Andrej; Waag, Andreas; Peiner, Erwin

    2013-07-01

    Deep reactive-ion etching at cryogenic temperatures (cryo-DRIE) has been used to produce arrays of silicon nanowires (NWs) for thermoelectric (TE) power generation devices. Using cryo-DRIE, we were able to fabricate NWs of large aspect ratios (up to 32) using a photoresist mask. Roughening of the NW sidewalls occurred, which has been recognized as beneficial for low thermal conductivity. Generated NWs, which were 7 μm in length and 220 nm to 270 nm in diameter, were robust enough to be stacked with a bulk silicon chip as a common top contact to the NWs. Mechanical support of the NW array, which can be created by filling the free space between the NWs using silicon oxide or polyimide, was not required. The Seebeck voltage, measured across multiple stacks of up to 16 bulk silicon dies, revealed negligible thermal interface resistance. With stacked silicon NWs, we observed Seebeck voltages that were an order of magnitude higher than those observed for bulk silicon. Degradation of the TE performance of silicon NWs was not observed for temperatures up to 470°C and temperature gradients up to 170 K.

  14. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    DOEpatents

    Wang, Zhong L; Das, Suman; Xu, Sheng; Yuan, Dajun; Guo, Rui; Wei, Yaguang; Wu, Wenzhuo

    2013-02-05

    In a method for growing a nanowire array, a photoresist layer is placed onto a nanowire growth layer configured for growing nanowires therefrom. The photoresist layer is exposed to a coherent light interference pattern that includes periodically alternately spaced dark bands and light bands along a first orientation. The photoresist layer exposed to the coherent light interference pattern along a second orientation, transverse to the first orientation. The photoresist layer developed so as to remove photoresist from areas corresponding to areas of intersection of the dark bands of the interference pattern along the first orientation and the dark bands of the interference pattern along the second orientation, thereby leaving an ordered array of holes passing through the photoresist layer. The photoresist layer and the nanowire growth layer are placed into a nanowire growth environment, thereby growing nanowires from the nanowire growth layer through the array of holes.

  15. Strain- and defect-mediated thermal conductivity in silicon nanowires.

    PubMed

    Murphy, Kathryn F; Piccione, Brian; Zanjani, Mehdi B; Lukes, Jennifer R; Gianola, Daniel S

    2014-07-09

    The unique thermal transport of insulating nanostructures is attributed to the convergence of material length scales with the mean free paths of quantized lattice vibrations known as phonons, enabling promising next-generation thermal transistors, thermal barriers, and thermoelectrics. Apart from size, strain and defects are also known to drastically affect heat transport when introduced in an otherwise undisturbed crystalline lattice. Here we report the first experimental measurements of the effect of both spatially uniform strain and point defects on thermal conductivity of an individual suspended nanowire using in situ Raman piezothermography. Our results show that whereas phononic transport in undoped Si nanowires with diameters in the range of 170-180 nm is largely unaffected by uniform elastic tensile strain, another means of disturbing a pristine lattice, namely, point defects introduced via ion bombardment, can reduce the thermal conductivity by over 70%. In addition to discerning surface- and core-governed pathways for controlling thermal transport in phonon-dominated insulators and semiconductors, we expect our novel approach to have broad applicability to a wide class of functional one- and two-dimensional nanomaterials.

  16. High efficiency silicon nanowire/organic hybrid solar cells with two-step surface treatment

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiong; Wang, Hao; Prakoso, Ari Bimo; Togonal, Alienor Svietlana; Hong, Lei; Jiang, Changyun; Rusli, Affa Affc

    2015-02-01

    A simple two-step surface treatment process is proposed to boost the efficiency of silicon nanowire/PEDOT:PSS hybrid solar cells. The Si nanowires (SiNWs) are first subjected to a low temperature ozone treatment to form a surface sacrificial oxide, followed by a HF etching process to partially remove the oxide. TEM investigation demonstrates that a clean SiNW surface is achieved after the treatment, in contrast to untreated SiNWs that have Ag nanoparticles left on the surface from the metal-catalyzed etching process that is used to form the SiNWs. The cleaner SiNW surface achieved and the thin layer of residual SiO2 on the SiNWs have been found to improve the performance of the hybrid solar cells. Overall, the surface recombination of the hybrid SiNW solar cells is greatly suppressed, resulting in a remarkably improved open circuit voltage of 0.58 V. The power conversion efficiency has also increased from about 10% to 12.4%. The two-step surface treatment method is promising in enhancing the photovoltaic performance of the hybrid silicon solar cells, and can also be applied to other silicon nanostructure based solar cells.A simple two-step surface treatment process is proposed to boost the efficiency of silicon nanowire/PEDOT:PSS hybrid solar cells. The Si nanowires (SiNWs) are first subjected to a low temperature ozone treatment to form a surface sacrificial oxide, followed by a HF etching process to partially remove the oxide. TEM investigation demonstrates that a clean SiNW surface is achieved after the treatment, in contrast to untreated SiNWs that have Ag nanoparticles left on the surface from the metal-catalyzed etching process that is used to form the SiNWs. The cleaner SiNW surface achieved and the thin layer of residual SiO2 on the SiNWs have been found to improve the performance of the hybrid solar cells. Overall, the surface recombination of the hybrid SiNW solar cells is greatly suppressed, resulting in a remarkably improved open circuit voltage of 0

  17. Gold-Free Ternary III–V Antimonide Nanowire Arrays on Silicon: Twin-Free down to the First Bilayer

    PubMed Central

    2013-01-01

    With the continued maturation of III–V nanowire research, expectations of material quality should be concomitantly raised. Ideally, III–V nanowires integrated on silicon should be entirely free of extended planar defects such as twins, stacking faults, or polytypism, position-controlled for convenient device processing, and gold-free for compatibility with standard complementary metal–oxide–semiconductor (CMOS) processing tools. Here we demonstrate large area vertical GaAsxSb1–x nanowire arrays grown on silicon (111) by molecular beam epitaxy. The nanowires’ complex faceting, pure zinc blende crystal structure, and composition are mapped using characterization techniques both at the nanoscale and in large-area ensembles. We prove unambiguously that these gold-free nanowires are entirely twin-free down to the first bilayer and reveal their three-dimensional composition evolution, paving the way for novel infrared devices integrated directly on the cost-effective Si platform. PMID:24329502

  18. Large-size, high-uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells.

    PubMed

    Xie, Shouyi; Ouyang, Zi; Jia, Baohua; Gu, Min

    2013-05-06

    Metal nanowire networks are emerging as next generation transparent electrodes for photovoltaic devices. We demonstrate the application of random silver nanowire networks as the top electrode on crystalline silicon wafer solar cells. The dependence of transmittance and sheet resistance on the surface coverage is measured. Superior optical and electrical properties are observed due to the large-size, highly-uniform nature of these networks. When applying the nanowire networks on the solar cells with an optimized two-step annealing process, we achieved as large as 19% enhancement on the energy conversion efficiency. The detailed analysis reveals that the enhancement is mainly caused by the improved electrical properties of the solar cells due to the silver nanowire networks. Our result reveals that this technology is a promising alternative transparent electrode technology for crystalline silicon wafer solar cells.

  19. Vertically aligned CdSe nanowire arrays for energy harvesting and piezotronic devices.

    PubMed

    Zhou, Yu Sheng; Wang, Kai; Han, Weihua; Rai, Satish Chandra; Zhang, Yan; Ding, Yong; Pan, Caofeng; Zhang, Fang; Zhou, Weilie; Wang, Zhong Lin

    2012-07-24

    We demonstrated the energy harvesting potential and piezotronic effect in vertically aligned CdSe nanowire (NW) arrays for the first time. The CdSe NW arrays were grown on a mica substrate by the vapor-liquid-solid process using a CdSe thin film as seed layer and platinum as catalyst. High-resolution transmission electron microscopy image and selected area electron diffraction pattern indicate that the CdSe NWs have a wurtzite structure and growth direction along (0001). Using conductive atomic force microscopy (AFM), an average output voltage of 30.7 mV and maximum of 137 mV were obtained. To investigate the effect of strain on electron transport, the current-voltage characteristics of the NWs were studied by positioning an AFM tip on top of an individual NW. By applying normal force/stress on the NW, the Schottky barrier between the Pt and CdSe was found to be elevated due to the piezotronic effect. With the change of strain of 0.12%, a current decreased from 84 to 17 pA at 2 V bias. This paper shows that the vertical CdSe NW array is a potential candidate for future piezo-phototronic devices.

  20. Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics

    PubMed Central

    Park, Byoungchoo; Bae, In-Gon; Huh, Yoon Ho

    2016-01-01

    We herein report on a remarkably simple, fast, and economic way of fabricating homogeneous and well oriented silver nanowires (AgNWs) that exhibit strong in-plane electrical and optical anisotropies. Using a small quantity of AgNW suspension, the horizontal-dip (H-dip) coating method was applied, in which highly oriented AgNWs were deposited unidirectionally along the direction of coating over centimetre-scale lengths very rapidly. In applying the H-dip-coating method, we adjusted the shear strain rate of the capillary flow in the Landau-Levich meniscus of the AgNW suspension, which induced a high degree of uniaxial orientational ordering (0.37–0.43) of the AgNWs, comparable with the ordering seen in archetypal nematic liquid crystal (LC) materials. These AgNWs could be used to fabricate not only transparent electrodes, but also LC-alignment electrodes for LC devices and/or polarising electrodes for organic photovoltaic devices, having the potential to revolutionise the architectures of a number of polarisation-selective opto-electronic devices for use in printed/organic electronics. PMID:26778621

  1. Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires

    PubMed Central

    2011-01-01

    We report on the major improvement in UV photosensitivity and faster photoresponse from vertically aligned ZnO nanowires (NWs) by means of rapid thermal annealing (RTA). The ZnO NWs were grown by vapor-liquid-solid method and subsequently RTA treated at 700°C and 800°C for 120 s. The UV photosensitivity (photo-to-dark current ratio) is 4.5 × 103 for the as-grown NWs and after RTA treatment it is enhanced by a factor of five. The photocurrent (PC) spectra of the as-grown and RTA-treated NWs show a strong peak in the UV region and two other relatively weak peaks in the visible region. The photoresponse measurement shows a bi-exponential growth and bi-exponential decay of the PC from as-grown as well as RTA-treated ZnO NWs. The growth and decay time constants are reduced after the RTA treatment indicating a faster photoresponse. The dark current-voltage characteristics clearly show the presence of surface defects-related trap centers on the as-grown ZnO NWs and after RTA treatment it is significantly reduced. The RTA processing diminishes the surface defect-related trap centers and modifies the surface of the ZnO NWs, resulting in enhanced PC and faster photoresponse. These results demonstrated the effectiveness of RTA processing for achieving improved photosensitivity of ZnO NWs. PMID:21859456

  2. Surface Characteristics of Silicon Nanowires/Nanowalls Subjected to Octadecyltrichlorosilane Deposition and n-octadecane Coating

    NASA Astrophysics Data System (ADS)

    Yilbas, Bekir Sami; Salhi, Billel; Yousaf, Muhammad Rizwan; Al-Sulaiman, Fahad; Ali, Haider; Al-Aqeeli, Nasser

    2016-12-01

    In this study, nanowires/nanowalls were generated on a silicon wafer through a chemical etching method. Octadecyltrichlorosilane (OTS) was deposited onto the nanowire/nanowall surfaces to alter their hydrophobicity. The hydrophobic characteristics of the surfaces were further modified via a 1.5-μm-thick layer of n-octadecane coating on the OTS-deposited surface. The hydrophobic characteristics of the resulting surfaces were assessed using the sessile water droplet method. Scratch and ultraviolet (UV)-visible reflectivity tests were conducted to measure the friction coefficient and reflectivity of the surfaces. The nanowires formed were normal to the surface and uniformly extended 10.5 μm to the wafer surface. The OTS coating enhanced the hydrophobic state of the surface, and the water contact angle increased from 27° to 165°. The n-octadecane coating formed on the OTS-deposited nanowires/nanowalls altered the hydrophobic state of the surface. This study provides the first demonstration that the surface wetting characteristics change from hydrophobic to hydrophilic after melting of the n-octadecane coating. In addition, this change is reversible; i.e., the hydrophilic surface becomes hydrophobic after the n-octadecane coating solidifies at the surface, and the process again occurs in the opposite direction after the n-octadecane coating melts.

  3. Surface Characteristics of Silicon Nanowires/Nanowalls Subjected to Octadecyltrichlorosilane Deposition and n-octadecane Coating

    PubMed Central

    Yilbas, Bekir Sami; Salhi, Billel; Yousaf, Muhammad Rizwan; Al-Sulaiman, Fahad; Ali, Haider; Al-Aqeeli, Nasser

    2016-01-01

    In this study, nanowires/nanowalls were generated on a silicon wafer through a chemical etching method. Octadecyltrichlorosilane (OTS) was deposited onto the nanowire/nanowall surfaces to alter their hydrophobicity. The hydrophobic characteristics of the surfaces were further modified via a 1.5-μm-thick layer of n-octadecane coating on the OTS-deposited surface. The hydrophobic characteristics of the resulting surfaces were assessed using the sessile water droplet method. Scratch and ultraviolet (UV)-visible reflectivity tests were conducted to measure the friction coefficient and reflectivity of the surfaces. The nanowires formed were normal to the surface and uniformly extended 10.5 μm to the wafer surface. The OTS coating enhanced the hydrophobic state of the surface, and the water contact angle increased from 27° to 165°. The n-octadecane coating formed on the OTS-deposited nanowires/nanowalls altered the hydrophobic state of the surface. This study provides the first demonstration that the surface wetting characteristics change from hydrophobic to hydrophilic after melting of the n-octadecane coating. In addition, this change is reversible; i.e., the hydrophilic surface becomes hydrophobic after the n-octadecane coating solidifies at the surface, and the process again occurs in the opposite direction after the n-octadecane coating melts. PMID:27934970

  4. Dissipative quantum transport in silicon nanowires based on Wigner transport equation

    NASA Astrophysics Data System (ADS)

    Barraud, Sylvain

    2011-11-01

    In this work, we present a one-dimensional model of quantum electron transport for silicon nanowire transistor that makes use of the Wigner function formalism and that takes into account the carrier scattering. Effect of scattering on the current-voltage (I-V) characteristics is assessed using both the relaxation time approximation and the Boltzmann collision operator. Similarly to the classical transport theory, the scattering mechanisms are included in the Wigner formulation through the addition of a collision term in the Liouville equation. As compared to the relaxation time, the Boltzmann collision operator approach is considered to be more realistic because it provides a better description of the scattering events. Within the Fermi golden rule approximation, the standard collision term is described for both acoustic phonon and surface-roughness interactions. It is introduced in the discretized version of the Liouville equation to obtain the Wigner distribution function and the current density. The model is then applied to study the impact of each scattering mechanism on short-channel electrical performance of silicon nanowire transistors for different gate lengths and nanowire widths.

  5. Electronic transport properties of silicon junctionless nanowire transistors fabricated by femtosecond laser direct writing

    NASA Astrophysics Data System (ADS)

    Liu-Hong, Ma; Wei-Hua, Han; Hao, Wang; Qi-feng, Lyu; Wang, Zhang; Xiang, Yang; Fu-Hua, Yang

    2016-06-01

    Silicon junctionless nanowire transistor (JNT) is fabricated by femtosecond laser direct writing on a heavily n-doped SOI substrate. The performances of the transistor, i.e., current drive, threshold voltage, subthreshold swing (SS), and electron mobility are evaluated. The device shows good gate control ability and low-temperature instability in a temperature range from 10 K to 300 K. The drain currents increasing by steps with the gate voltage are clearly observed from 10 K to 50 K, which is attributed to the electron transport through one-dimensional (1D) subbands formed in the nanowire. Besides, the device exhibits a better low-field electron mobility of 290 cm2·V-1·s-1, implying that the silicon nanowires fabricated by femtosecond laser have good electrical properties. This approach provides a potential application for nanoscale device patterning. Project supported by the National Natural Science Foundation of China (Grant Nos. 61376096, 61327813, and 61404126) and the National Basic Research Program of China (Grant No. 2010CB934104).

  6. APPLIED OPTICS. Voltage-tunable circular photogalvanic effect in silicon nanowires.

    PubMed

    Dhara, Sajal; Mele, Eugene J; Agarwal, Ritesh

    2015-08-14

    Electronic bands in crystals can support nontrivial topological textures arising from spin-orbit interactions, but purely orbital mechanisms can realize closely related dynamics without breaking spin degeneracies, opening up applications in materials containing only light elements. One such application is the circular photogalvanic effect (CPGE), which is the generation of photocurrents whose magnitude and polarity depend on the chirality of optical excitation. We show that the CPGE can arise from interband transitions at the metal contacts to silicon nanowires, where inversion symmetry is locally broken by an electric field. Bias voltage that modulates this field further controls the sign and magnitude of the CPGE. The generation of chirality-dependent photocurrents in silicon with a purely orbital-based mechanism will enable new functionalities in silicon that can be integrated with conventional electronics.

  7. Characteristics of AlN/GaN nanowire Bragg mirror grown on (001) silicon by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Heo, Junseok; Zhou, Zifan; Guo, Wei; Ooi, Boon S.; Bhattacharya, Pallab

    2013-10-01

    GaN nanowires containing AlN/GaN distributed Bragg reflector (DBR) heterostructures have been grown on (001) silicon substrate by molecular beam epitaxy. A peak reflectance of 70% with normal incidence at 560 nm is derived from angle resolved reflectance measurements on the as-grown nanowire DBR array. The measured peak reflectance wavelength is significantly blue-shifted from the ideal calculated value. The discrepancy is explained by investigating the reflectance of the nanoscale DBRs with a finite difference time domain technique. Ensemble nanowire microcavities with In0.3Ga0.7N nanowires clad by AlN/GaN DBRs have also been characterized. Room temperature emission from the microcavity exhibits considerable linewidth narrowing compared to that measured for unclad In0.3Ga0.7N nanowires. The resonant emission is characterized by a peak wavelength and linewidth of 575 nm and 39 nm, respectively.

  8. Enhanced light trapping in periodically truncated cone silicon nanowire structure

    NASA Astrophysics Data System (ADS)

    Kai, Qiu; Yuhua, Zuo; Tianwei, Zhou; Zhi, Liu; Jun, Zheng; Chuanbo, Li; Buwen, Cheng

    2015-10-01

    Light trapping plays an important role in improving the conversion efficiency of thin-film solar cells. The good wideband light trapping is achieved using our periodically truncated cone Si nanowire (NW) structures, and their inherent mechanism is analyzed and simulated by FDTD solution software. Ordered cylinder Si NW structure with initial size of 80 nm and length of 200 nm is grown by pattern transfer and selective epitaxial growth. Truncated cone Si NW array is then obtained by thermal oxidation treatment. Its mean reflection in the range of 300-900 nm is lowered to be 5% using 140 nm long truncated cone Si NW structure, compared with that of 20% using cylinder counterparts. It indicates that periodically truncated Si cone structures trap the light efficiently to enhance the light harvesting in a wide spectral range and have the potential application in highly efficient NW solar cells. Project supported by the National Natural Science Foundation of China (Nos. 51072194, 61021003, 61036001, 61376057).

  9. Surface modification of silicon nanowires via copper-free click chemistry.

    PubMed

    Henriksson, Anders; Friedbacher, Gernot; Hoffmann, Helmuth

    2011-06-21

    A two-step process based on copper-free click chemistry is described, by which the surface of silicon nanowires can be functionalized with specific organic substituents. A hydrogen-terminated nanowire surface is first primed with a monolayer of an α,ω-diyne and thereby turned into an alkyne-terminated, clickable platform, which is subsequently coupled with an overlayer of an organic azide carrying the desired terminal functionality. The reactive, electron-deficient character of the employed diyne enabled a quantitative coupling reaction at 50 °C without metal catalysis, which opens up a simple and versatile route for surface functionalization under mild conditions without any potentially harmful additives.

  10. Strain Effect on the Absorption Threshold Energy of Silicon Circular Nanowires

    NASA Astrophysics Data System (ADS)

    Khordad, R.; Bahramiyan, H.

    2016-01-01

    In this work, the influence of strain on threshold energy of absorption in Silicon circular nanowires is investigated. For this purpose, we first have used the density functional theory (DFT) to calculate the electron and hole effective masses. Then, we have obtained absorption threshold energy with two different procedures, DFT and effective mass approximation (EMA). We have also obtained the band structures of Si nanowires both DFT and EMA. The results show that: i) the expansive strain increases the hole effective mass while compressive strain increases the electron effective mass, ii) the electron and hole effective masses reduce with decreasing the wire size, iii) the absorption threshold energy decreases by increasing strain for compressive and tensile strain and its behavior as a function of strain is approximately parabolic, iv) the absorption threshold energy (for all sizes) obtained using EMA is greater than the DFT results.

  11. Silicon nanowires used as the anode of a lithium-ion battery

    SciTech Connect

    Prosini, Pier Paolo; Rufoloni, Alessandro; Rondino, Flaminia; Santoni, Antonino

    2015-06-23

    In this paper the synthesis and characterization of silicon nanowires to be used as the anode of a lithium-ion battery cell are reported. The nanowires were synthesized by CVD and characterized by SEM. The nanostructured material was used as an electrode in a lithium cell and its electrochemical properties were investigated by galvanostatic charge/discharge cycles at C/10 rate as a function of the cycle number and at various rates as a function of the charge current. The electrode was then coupled with a LiFePO{sub 4} cathode to fabricate a lithium-ion battery cell and the cell performance evaluated by galvanostatic charge/discharge cycles.

  12. Enhanced light-harvesting capability for silicon single-nanowire solar cells coupled with metallic cavity.

    PubMed

    Gai, Feng; Zhang, Cheng; Zhan, Yaohui; Li, Xiaofeng

    2016-12-26

    Single-nanowire solar cells (SNSCs) are attracting increasing interest due to their unique optical antenna effect beneficial for achieving higher light-trapping capability. However, for conventional circular-cross-sectional SNSCs, the light-trapping performance is still far from the expectation. Here we demonstrate that integrating a silicon single nanowire into a metallic slit can dramatically enhance the absorption efficiency over almost the whole spectral band due to strengthened optical antenna effect. Especially, it is found that by using finite-size metallic blocks to form a nanoscale metallic cavity, the light-trapping performance of the SNSCs can be further improved. Through examining the detailed optical spectral response, electric field distribution, and cavity dispersion characteristics, the metallic-coupled SNSC system is optimized and the underlying physics are provided. Simulation results indicate that the photocurrent density of the SNSCs coupled with the designed metallic cavity can be enhanced by 44.4% than that of the conventional bare SNSCs.

  13. Crosstalk analysis of silicon-on-insulator nanowire-arrayed waveguide grating

    NASA Astrophysics Data System (ADS)

    Li, Kai-Li; An, Jun-Ming; Zhang, Jia-Shun; Wang, Yue; Wang, Liang-Liang; Li, Jian-Guang; Wu, Yuan-Da; Yin, Xiao-Jie; Hu, Xiong-Wei

    2016-12-01

    The factors influencing the crosstalk of silicon-on-insulator (SOI) nanowire arrayed waveguide grating (AWG) are analyzed using the transfer function method. The analysis shows that wider and thicker arrayed waveguides, outsider fracture of arrayed waveguide, and larger channel space, could mitigate the deterioration of crosstalk. The SOI nanowire AWGs with different arrayed waveguide widths are fabricated by using deep ultraviolet lithography (DUV) and inductively coupled plasma etching (ICP) technology. The measurement results show that the crosstalk performance is improved by about 7 dB through adopting 800 nm arrayed waveguide width. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA016902), the National Natural Science Foundation of China (Grant Nos. 61274047, 61435013, 61307034, and 61405188), and the National Key Research and Development Program of China (Grant No. 2016YFB0402504).

  14. Highly efficient biocompatible single silicon nanowire electrodes with functional biological pore channels.

    PubMed

    Martinez, Julio A; Misra, Nipun; Wang, Yinmin; Stroeve, Pieter; Grigoropoulos, Costas P; Noy, Aleksandr

    2009-03-01

    Nanoscale electrodes based on one-dimensional inorganic conductors could possess significant advantages for electrochemical measurements over their macroscopic counterparts in a variety of electrochemical applications. We show that the efficiency of the electrodes constructed of individual highly doped silicon nanowires greatly exceeds the efficiency of flat Si electrodes. Modification of the surfaces of the nanowire electrodes with phospholipid bilayers produces an efficient biocompatible barrier to transport of the solution redox species to the nanoelectrode surface. Incorporating functional alpha-hemolysin protein pores in the lipid bilayer results in a partial recovery of the Faradic current due to the specific transport through the protein pore. These assemblies represent a robust and versatile platform for building a new generation of highly specific biosensors and nano/bioelectronic devices.

  15. Sensitive and Selective Detection of HIV-1 RRE RNA Using Vertical Silicon Nanowire Electrode Array

    NASA Astrophysics Data System (ADS)

    Lee, Jaehyung; Hong, Min-Ho; Han, Sanghun; Na, Jukwan; Kim, Ilsoo; Kwon, Yong-Joon; Lim, Yong-beom; Choi, Heon-Jin

    2016-07-01

    In this study, HIV-1 Rev response element (RRE) RNA was detected via an Au-coated vertical silicon nanowire electrode array (VSNEA). The VSNEA was fabricated by combining bottom-up and top-down approaches and then immobilized by artificial peptides for the recognition of HIV-1 RRE. Differential pulse voltammetry (DPV) analysis was used to measure the electrochemical response of the peptide-immobilized VSNEA to the concentration and types of HIV-1 RRE RNA. DPV peaks showed linearity to the concentration of RNA with a detection limit down to 1.513 fM. It also showed the clear different peaks to the mutated HIV-1 RRE RNA. The high sensitivity and selectivity of VSNEA for the detection of HIV-1 RRE RNA may be attributed to the high surface-to-volume ratio and total overlap diffusion mode of ions of the one-dimensional nanowire electrodes.

  16. Effects of Defects on the Mechanical Properties of Kinked Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Zhang, Cheng; Li, Liyi; Tuan, Chia-Chi; Chen, Xin; Gao, Jian; He, Yunbo; Wong, Ching-Ping

    2017-03-01

    Kinked silicon nanowires (KSiNWs) have many special properties that make them attractive for a number of applications. The mechanical properties of KSiNWs play important roles in the performance of sensors. In this work, the effects of defects on the mechanical properties of KSiNWs are studied using molecular dynamics simulations and indirectly validated by experiments. It is found that kinks are weak points in the nanowire (NW) because of inharmonious deformation, resulting in a smaller elastic modulus than that of straight NWs. In addition, surface defects have more significant effects on the mechanical properties of KSiNWs than internal defects. The effects of the width or the diameter of the defects are larger than those of the length of the defects. Overall, the elastic modulus of KSiNWs is not sensitive to defects; therefore, KSiNWs have a great potential as strain or stress sensors in special applications.

  17. Effects of Defects on the Mechanical Properties of Kinked Silicon Nanowires.

    PubMed

    Chen, Yun; Zhang, Cheng; Li, Liyi; Tuan, Chia-Chi; Chen, Xin; Gao, Jian; He, Yunbo; Wong, Ching-Ping

    2017-12-01

    Kinked silicon nanowires (KSiNWs) have many special properties that make them attractive for a number of applications. The mechanical properties of KSiNWs play important roles in the performance of sensors. In this work, the effects of defects on the mechanical properties of KSiNWs are studied using molecular dynamics simulations and indirectly validated by experiments. It is found that kinks are weak points in the nanowire (NW) because of inharmonious deformation, resulting in a smaller elastic modulus than that of straight NWs. In addition, surface defects have more significant effects on the mechanical properties of KSiNWs than internal defects. The effects of the width or the diameter of the defects are larger than those of the length of the defects. Overall, the elastic modulus of KSiNWs is not sensitive to defects; therefore, KSiNWs have a great potential as strain or stress sensors in special applications.

  18. Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties.

    PubMed

    Liu, Xing-Rui; Deng, Xin; Liu, Ran-Ran; Yan, Hui-Juan; Guo, Yu-Guo; Wang, Dong; Wan, Li-Jun

    2014-11-26

    Silicon nanowires (SiNWs) have attracted great attention as promising anode materials for lithium ion batteries (LIBs) on account of their high capacity and improved cyclability compared with bulk silicon. The interface behavior, especially the solid electrolyte interphase (SEI), plays a significant role in the performance and stability of the electrodes. We report herein an in situ single nanowire atomic force microscopy (AFM) method to investigate the interface electrochemistry of silicon nanowire (SiNW) electrode. The morphology and Young's modulus of the individual SiNW anode surface during the SEI growth were quantitatively tracked. Three distinct stages of the SEI formation on the SiNW anode were observed. On the basis of the potential-dependent morphology and Young's modulus evolution of SEI, a mixture-packing structural model was proposed for the SEI film on SiNW anode.

  19. Fundamental understanding of the growth, doping and characterization of aligned ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Shen, Gang

    Zinc oxide (ZnO) is a II-VI semiconductor whose wide direct bandgap (3.37 eV) and large exciton binding energy (60 meV) make it compelling for optoelectronic devices such as light emitting diodes, lasers, photodetectors, solar cells, and mechanical energy harvesting devices. One dimensional structures of ZnO (nanowires) have become significant due to their unique physical properties arising from quantum confinement, and they are ideal for studying transport mechanisms in one-dimensional systems. In this doctoral research work, ZnO nanowire (NW) arrays were synthesized on sapphire substrates through carbo-thermal reduction of ZnO powders, and the effects of growth parameters on the properties of ZnO NW arrays were studied by scanning and transmission electron microscopy, X-ray diffraction, photoluminescence and Raman spectroscopy. Based on the phonon mode selection rules in wurtzite ZnO, confocal Raman spectroscopy was used to assess the alignment of ZnO NWs in an array, thereby complementing X-ray diffraction. Al doped ZnO NW arrays were achieved by mixing Al powder into the ZnO and graphite source mixture, and the presence of Al was confirmed by Energy-dispersive X-ray spectroscopy. The incorporation of Al had the effects of lowering the electrical resistivity, slightly deteriorating crystal quality and suppressing defect related green emission. Two models of ZnO NW growth were developed by establishing the relationship between NW length and diameter for undoped and Al doped ZnO NWs separately. The growth of undoped ZnO NWs followed the diffusion-induced model which was characterized by thin wires being longer than thick wires, while the growth of Al doped ZnO was controlled by Gibbs-Thomson effect which was characterized by thin wires being shorter than thin wires. Local electrode atom probe analysis of ZnO NWs was carried out to study the crystal stoichiometry and Al incorporation. Undoped ZnO NWs were found to be high purity with no detectable impurities

  20. Alignment of the CMS silicon strip tracker during stand-alone commissioning

    SciTech Connect

    Adam, W.; et al.

    2009-07-01

    The results of the CMS tracker alignment analysis are presented using the data from cosmic tracks, optical survey information, and the laser alignment system at the Tracker Integration Facility at CERN. During several months of operation in the spring and summer of 2007, about five million cosmic track events were collected with a partially active CMS Tracker. This allowed us to perform first alignment of the active silicon modules with the cosmic tracks using three different statistical approaches; validate the survey and laser alignment system performance; and test the stability of Tracker structures under various stresses and temperatures ranging from +15C to -15C. Comparison with simulation shows that the achieved alignment precision in the barrel part of the tracker leads to residual distributions similar to those obtained with a random misalignment of 50 (80) microns in the outer (inner) part of the barrel.

  1. Metal-catalyzed electroless etching and nanoimprinting silicon nanowire-based solar cells: Silicon nanowire defect reduction and efficiency enhancement by two-step H2 annealing

    NASA Astrophysics Data System (ADS)

    Jevasuwan, Wipakorn; Nakajima, Kiyomi; Sugimoto, Yoshimasa; Fukata, Naoki

    2016-06-01

    The effects of H2 annealing on material properties including defects of silicon nanowire (SiNW) surface and Si film layer for solar cell application were investigated. Single-junction solar cells consisting of n-SiNWs and chemical vapor deposition grown p-Si matrix were demonstrated using two-step H2 annealing. n-SiNWs formed by two different methods of metal-catalyzed electroless etching and nanoimprinting followed by the Bosch process were compared. Two-step H2 annealing at 900 °C for 10 min after both n-SiNW formations and subsequent p-Si matrix deposition effectively improved SiNW surface and p-Si crystallinity, resulting in higher solar cell efficiency.

  2. Influence of Fabrication Processes and Annealing Treatment on the Minority Carrier Lifetime of Silicon Nanowire Films.

    PubMed

    Kato, Shinya; Yamazaki, Tatsuya; Kurokawa, Yasuyoshi; Miyajima, Shinsuke; Konagai, Makoto

    2017-12-01

    Surface passivation and bulk carrier lifetime of silicon nanowires (SiNWs) are essential for their application in solar cell devices. The effective minority carrier lifetime of a semiconductor material is influenced by both its surface passivation and bulk carrier lifetime. We found that the effective carrier lifetime of SiNWs passivated with aluminum oxide (Al2O3) was significantly influenced by the fabrication process of SiNWs. We could not measure the effective lifetime of SiNWs fabricated by thermal annealing of amorphous silicon nanowires. Nevertheless, the SiNWs fabricated by metal-assisted chemical etching of polycrystalline silicon displayed an effective lifetime of 2.86 μs. Thermal annealing of SiNWs at 400 °C in a forming gas improved the effective carrier lifetime from 2.86 to 15.9 μs because of the improvement in surface passivation at the interface between the SiNWs and Al2O3 layers.

  3. Surface passivation of silicon nanowires based metal nano-particle assisted chemical etching for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Ben Rabha, Mohamed; Khezami, Lotfi; Jemai, Abdelbasset Bessadok; Alhathlool, Raed; Ajbar, Abdelhamid

    2017-03-01

    Metal Nano-particle Assisted Chemical Etching (MNpACE) is an extraordinary developed wet etching method for producing uniform semiconductor nanostructure (silicon nanowires) from patterned metallic film on crystalline silicon surface. The metal films facilitate the etching in HF and H2O2 solution and produce silicon nanowires (SiNWs).The creation of different SiNWs morphologies by changing the etching time and its effects on optical and optoelectronic properties was investigated. The combination effect of formed SiNWs and stain etching treatment in acid (HF/HNO3/H2O) solution on the surface morphology of Si wafers as well as on the optical and optoelectronic properties especially a PL response at 640 nm are presented. As a results, the effective lifetime (τeff) and surface recombination velocity (Seff) evolution of SiNWs after stain etching treatment showed significant improvements and less than 1% reflectance was achieved over the wavelength range of 400-800 nm and more than 36% reduction was observed compared to untreated surface. It has, thus, been demonstrated that all these factors may lead to improved energy efficiency from 8% to nearly 14.2% for a cell with SiNWs treated in acid (HF/HNO3/H2O) solution.

  4. Optically efficient InAsSb nanowires for silicon-based mid-wavelength infrared optoelectronics.

    PubMed

    Zhuang, Q D; Alradhi, H; Jin, Z M; Chen, X R; Shao, J; Chen, X; Sanchez, Ana M; Cao, Y C; Liu, J Y; Yates, P; Durose, K; Jin, C J

    2017-03-10

    InAsSb nanowires (NWs) with a high Sb content have potential in the fabrication of advanced silicon-based optoelectronics such as infrared photondetectors/emitters and highly sensitive phototransistors, as well as in the generation of renewable electricity. However, producing optically efficient InAsSb NWs with a high Sb content remains a challenge, and optical emission is limited to 4.0 μm due to the quality of the nanowires. Here, we report, for the first time, the success of high-quality and optically efficient InAsSb NWs enabling silicon-based optoelectronics operating in entirely mid-wavelength infrared. Pure zinc-blende InAsSb NWs were realized with efficient photoluminescence emission. We obtained room-temperature photoluminescence emission in InAs NWs and successfully extended the emission wavelength in InAsSb NWs to 5.1 μm. The realization of this optically efficient InAsSb NW material paves the way to realizing next-generation devices, combining advances in III-V semiconductors and silicon.

  5. Improved Thermal Behavior of Multiple Linked Arrays of Silicon Nanowires Integrated into Planar Thermoelectric Microgenerators

    NASA Astrophysics Data System (ADS)

    Dávila, Diana; Tarancón, Albert; Calaza, Carlos; Salleras, Marc; Fernández-Regúlez, Marta; Paulo, Alvaro San; Fonseca, Luis

    2013-07-01

    Low-dimensional structures have been shown to be promising candidates for enhancing the thermoelectric properties of semiconductors, paving the way for integration of thermoelectric generators into silicon microtechnology. With this aim, dense arrays of well-oriented and size-controlled silicon nanowires (Si NWs) obtained by the chemical vapor deposition (CVD)-vapor-liquid-solid (VLS) mechanism have been implemented into microfabricated structures to develop planar unileg thermoelectric microgenerators ( μTEGs). Different low-thermal-mass suspended structures have been designed and microfabricated on silicon-on-insulator (SOI) substrates to operate as microthermoelements using p-type Si NW arrays as the thermoelectric material. To obtain nanowire arrays with effective lengths larger than normally attained by the VLS technique, structures composed of multiple ordered arrays consecutively bridged by transversal microspacers have been fabricated. The successive linkage of multiple Si NW arrays enabled the development of larger temperature differences while preserving good electrical contact. This gives rise to small internal thermoelement resistances, enhancing the performance of the devices as energy harvesters.

  6. High efficiency silicon nanowire/organic hybrid solar cells with two-step surface treatment.

    PubMed

    Wang, Jianxiong; Wang, Hao; Prakoso, Ari Bimo; Togonal, Alienor Svietlana; Hong, Lei; Jiang, Changyun; Rusli

    2015-03-14

    A simple two-step surface treatment process is proposed to boost the efficiency of silicon nanowire/PEDOT:PSS hybrid solar cells. The Si nanowires (SiNWs) are first subjected to a low temperature ozone treatment to form a surface sacrificial oxide, followed by a HF etching process to partially remove the oxide. TEM investigation demonstrates that a clean SiNW surface is achieved after the treatment, in contrast to untreated SiNWs that have Ag nanoparticles left on the surface from the metal-catalyzed etching process that is used to form the SiNWs. The cleaner SiNW surface achieved and the thin layer of residual SiO2 on the SiNWs have been found to improve the performance of the hybrid solar cells. Overall, the surface recombination of the hybrid SiNW solar cells is greatly suppressed, resulting in a remarkably improved open circuit voltage of 0.58 V. The power conversion efficiency has also increased from about 10% to 12.4%. The two-step surface treatment method is promising in enhancing the photovoltaic performance of the hybrid silicon solar cells, and can also be applied to other silicon nanostructure based solar cells.

  7. Optically efficient InAsSb nanowires for silicon-based mid-wavelength infrared optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhuang, Q. D.; Alradhi, H.; Jin, Z. M.; Chen, X. R.; Shao, J.; Chen, X.; Sanchez, Ana M.; Cao, Y. C.; Liu, J. Y.; Yates, P.; Durose, K.; Jin, C. J.

    2017-03-01

    InAsSb nanowires (NWs) with a high Sb content have potential in the fabrication of advanced silicon-based optoelectronics such as infrared photondetectors/emitters and highly sensitive phototransistors, as well as in the generation of renewable electricity. However, producing optically efficient InAsSb NWs with a high Sb content remains a challenge, and optical emission is limited to 4.0 μm due to the quality of the nanowires. Here, we report, for the first time, the success of high-quality and optically efficient InAsSb NWs enabling silicon-based optoelectronics operating in entirely mid-wavelength infrared. Pure zinc-blende InAsSb NWs were realized with efficient photoluminescence emission. We obtained room-temperature photoluminescence emission in InAs NWs and successfully extended the emission wavelength in InAsSb NWs to 5.1 μm. The realization of this optically efficient InAsSb NW material paves the way to realizing next-generation devices, combining advances in III-V semiconductors and silicon.

  8. Silicon nanowire field-effect transistors for the detection of proteins

    NASA Astrophysics Data System (ADS)

    Madler, Carsten

    In this dissertation I present results on our efforts to increase the sensitivity and selectivity of silicon nanowire ion-sensitive field-effect transistors for the detection of biomarkers, as well as a novel method for wireless power transfer based on metamaterial rectennas for their potential use as implantable sensors. The sensing scheme is based on changes in the conductance of the semiconducting nanowires upon binding of charged entities to the surface, which induces a field-effect. Monitoring the differential conductance thus provides information of the selective binding of biological molecules of interest to previously covalently linked counterparts on the nanowire surface. In order to improve on the performance of the nanowire sensing, we devised and fabricated a nanowire Wheatstone bridge, which allows canceling out of signal drift due to thermal fluctuations and dynamics of fluid flow. We showed that balancing the bridge significantly improves the signal-to-noise ratio. Further, we demonstrated the sensing of novel melanoma biomarker TROY at clinically relevant concentrations and distinguished it from nonspecific binding by comparing the reaction kinetics. For increased sensitivity, an amplification method was employed using an enzyme which catalyzes a signal-generating reaction by changing the redox potential of a redox pair. In addition, we investigated the electric double layer, which forms around charges in an electrolytic solution. It causes electrostatic screening of the proteins of interest, which puts a fundamental limitation on the biomarker detection in solutions with high salt concentrations, such as blood. We solved the coupled Nernst-Planck and Poisson equations for the electrolyte under influence of an oscillating electric field and discovered oscillations of the counterion concentration at a characteristic frequency. In addition to exploring different methods for improved sensing capabilities, we studied an innovative method to supply power

  9. Magnetic field alignment of randomly oriented, high aspect ratio silicon microwires into vertically oriented arrays.

    PubMed

    Beardslee, Joseph A; Sadtler, Bryce; Lewis, Nathan S

    2012-11-27

    External magnetic fields have been used to vertically align ensembles of silicon microwires coated with ferromagnetic nickel films. X-ray diffraction and image analysis techniques were used to quantify the degree of vertical orientation of the microwires. The degree of vertical alignment and the minimum field strength required for alignment were evaluated as a function of the wire length, coating thickness, magnetic history, and substrate surface properties. Nearly 100% of 100 μm long, 2 μm diameter, Si microwires that had been coated with 300 nm of Ni could be vertically aligned by a 300 G magnetic field. For wires ranging from 40 to 60 μm in length, as the length of the wire increased, a higher degree of alignment was observed at lower field strengths, consistent with an increase in the available magnetic torque. Microwires that had been exposed to a magnetic sweep up to 300 G remained magnetized and, therefore, aligned more readily during subsequent magnetic field alignment sweeps. Alignment of the Ni-coated Si microwires occurred at lower field strengths on hydrophilic Si substrates than on hydrophobic Si substrates. The magnetic field alignment approach provides a pathway for the directed assembly of solution-grown semiconductor wires into vertical arrays, with potential applications in solar cells as well as in other electronic devices that utilize nano- and microscale components as active elements.

  10. Silicon Nanowires for Solar Thermal Energy Harvesting: an Experimental Evaluation on the Trade-off Effects of the Spectral Optical Properties.

    PubMed

    Sekone, Abdoul Karim; Chen, Yu-Bin; Lu, Ming-Chang; Chen, Wen-Kai; Liu, Chia-An; Lee, Ming-Tsang

    2016-12-01

    Silicon nanowire possesses great potential as the material for renewable energy harvesting and conversion. The significantly reduced spectral reflectivity of silicon nanowire to visible light makes it even more attractive in solar energy applications. However, the benefit of its use for solar thermal energy harvesting remains to be investigated and has so far not been clearly reported. The purpose of this study is to provide practical information and insight into the performance of silicon nanowires in solar thermal energy conversion systems. Spectral hemispherical reflectivity and transmissivity of the black silicon nanowire array on silicon wafer substrate were measured. It was observed that the reflectivity is lower in the visible range but higher in the infrared range compared to the plain silicon wafer. A drying experiment and a theoretical calculation were carried out to directly evaluate the effects of the trade-off between scattering properties at different wavelengths. It is clearly seen that silicon nanowires can improve the solar thermal energy harnessing. The results showed that a 17.8 % increase in the harvest and utilization of solar thermal energy could be achieved using a silicon nanowire array on silicon substrate as compared to that obtained with a plain silicon wafer.

  11. Silicon Nanowires for Solar Thermal Energy Harvesting: an Experimental Evaluation on the Trade-off Effects of the Spectral Optical Properties

    NASA Astrophysics Data System (ADS)

    Sekone, Abdoul Karim; Chen, Yu-Bin; Lu, Ming-Chang; Chen, Wen-Kai; Liu, Chia-An; Lee, Ming-Tsang

    2016-01-01

    Silicon nanowire possesses great potential as the material for renewable energy harvesting and conversion. The significantly reduced spectral reflectivity of silicon nanowire to visible light makes it even more attractive in solar energy applications. However, the benefit of its use for solar thermal energy harvesting remains to be investigated and has so far not been clearly reported. The purpose of this study is to provide practical information and insight into the performance of silicon nanowires in solar thermal energy conversion systems. Spectral hemispherical reflectivity and transmissivity of the black silicon nanowire array on silicon wafer substrate were measured. It was observed that the reflectivity is lower in the visible range but higher in the infrared range compared to the plain silicon wafer. A drying experiment and a theoretical calculation were carried out to directly evaluate the effects of the trade-off between scattering properties at different wavelengths. It is clearly seen that silicon nanowires can improve the solar thermal energy harnessing. The results showed that a 17.8 % increase in the harvest and utilization of solar thermal energy could be achieved using a silicon nanowire array on silicon substrate as compared to that obtained with a plain silicon wafer.

  12. Lipid bilayer supported on silicon nanowire sensors with functional ion channels

    NASA Astrophysics Data System (ADS)

    Matinez, Julio Alberto

    The next generation of silicon nanowire (SiNW) based sensors will benefit from a possibility of using biological molecules embedded in biomimetic matrices such as lipid membranes. We demonstrate the integration of a 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine (DOPC) lipid bilayer with SiNW substrates. Fluidity measurements for supported DOPC bilayer on SiNWs show that they fully recover after photobleaching with diffusion coefficients comparable to flat membranes. Electrochemical characterization of DOPC bilayer supported onto highly-doped SiNW electrodes indicates the formation of a highly insulating membrane that blocks the transport of solution redox species to the SiNW surface. We also observe that the reaction efficiency of electroactive species on the electrodes constructed of highly-doped silicon nanowires greatly exceeds the efficiency of flat Si electrodes at similar doping level. Incorporating a functional pore forming protein, alpha-hemolysin, in the lipid bilayer results in a partial recovery of the Faradic current due to the specific transport of electroactive species through the protein pore. We also engineer a highly organized biosurface for cell deposition and subsequent growth by the chemical modification of a surface with electrostatically adsorbed peptide, poly L-arginine, adsorbs onto surface hemi-micelles of sodium dodecyl sulfate on a hydrophobic self-assembled monolayer. Finally, we incorporate these assemblies into functional semiconducting silicon nanowire transistors and show that these devices could detect the binding events to ligand-gated ion channel. We particularly study the binding of calcium ions in solution to Gramidicin-A. Ion transport trough the voltage-gated ion channel, Alamethicin, is also observed for the proposed detection platform. These assemblies represent a robust and versatile platform for building a new generation of specific electrically based biosensors and nanobioelectronic devices.

  13. Electronic structures and optical properties of silicon nanowires

    NASA Astrophysics Data System (ADS)

    Li, Jun; Freeman, Arthur

    2006-03-01

    Recent optical spectroscopic and theoretical/computational studies challenge the previous consensus on the nature of the optical properties of Si nanowires (SiNW). Here, we present results of precise theoretical FLAPW determinations of the electronic structures and optical properties of (001) and (111) one nm SiNW. The electronic states at the gaps demonstrate a strong orientation dependent parabolic character in the Brillouin zone and a clear entanglement in real space between 1D and 2D dimensions of the wire. The local symmetry imposed by quantum confinement quenches the transitions around the gap, yielding an optically inactive direct gap. The observed (001) photoluminescence is attributed to a transition rooted in an Si8 ring. The optical structure in the experimental range is well reproduced by our first-principles calculations that include the screened exchange-LDA correction to the well-known failure of the LDA. Our predictions about the anisotropy and orientation dependent optical absorption are easily verified experimentally. Work supported by DARPA B529527//W-7405-Eng-48. Holmes, Johnston, Doty, and Korgel, Science 287, 1471 (2000) Zhao, Wei, Yang, and Chou, Phys. Rev. Lett. 92, 236805 (2004) Wimmer, Krakauer, Weinert, and Freeman, PRB 24, 864 (1981)

  14. Self-transducing silicon nanowire electromechanical systems at room temperature.

    PubMed

    He, Rongrui; Feng, X L; Roukes, M L; Yang, Peidong

    2008-06-01

    Electronic readout of the motions of genuinely nanoscale mechanical devices at room temperature imposes an important challenge for the integration and application of nanoelectromechanical systems (NEMS). Here, we report the first experiments on piezoresistively transduced very high frequency Si nanowire (SiNW) resonators with on-chip electronic actuation at room temperature. We have demonstrated that, for very thin (~90 nm down to ~30 nm) SiNWs, their time-varying strain can be exploited for self-transducing the devices' resonant motions at frequencies as high as approximately 100 MHz. The strain of wire elongation, which is only second-order in doubly clamped structures, enables efficient displacement transducer because of the enhanced piezoresistance effect in these SiNWs. This intrinsically integrated transducer is uniquely suited for a class of very thin wires and beams where metallization and multilayer complex patterning on devices become impractical. The 30 nm thin SiNW NEMS offer exceptional mass sensitivities in the subzeptogram range. This demonstration makes it promising to advance toward NEMS sensors based on ultrathin and even molecular-scale SiNWs, and their monolithic integration with microelectronics on the same chip.

  15. A palladium-nanoparticle and silicon-nanowire-array hybrid: a platform for catalytic heterogeneous reactions.

    PubMed

    Yamada, Yoichi M A; Yuyama, Yoshinari; Sato, Takuma; Fujikawa, Shigenori; Uozumi, Yasuhiro

    2014-01-03

    We report the development of a silicon nanowire array-stabilized palladium nanoparticle catalyst, SiNA-Pd. Its use in the palladium-catalyzed Mizoroki-Heck reaction, the hydrogenation of an alkene, the hydrogenolysis of nitrobenzene, the hydrosilylation of an α,β-unsaturated ketone, and the C-H bond functionalization reactions of thiophenes and indoles achieved a quantitative production with high reusability. The catalytic activity reached several hundred-mol ppb of palladium, reaching a TON of 2 000 000.

  16. Hybrid heterojunction and photoelectrochemistry solar cell based on silicon nanowires and double-walled carbon nanotubes.

    PubMed

    Shu, Qinke; Wei, Jinquan; Wang, Kunlin; Zhu, Hongwei; Li, Zhen; Jia, Yi; Gui, Xuchun; Guo, Ning; Li, Xinming; Ma, Chaoran; Wu, Dehai

    2009-12-01

    A hybrid solar cell model composed of a heterojunction cell and a photoelectrochemical (PEC) cell has been proposed and characterized. In the hybrid cell, a thin film of double-walled carbon nanotubes forms a heterojunction with the silicon nanowire (SiNW) array and also functions as the transparent counter electrode of the PEC cell. The cell performance can be readily tuned by controlling the SiNW density. Under AM 1.5G illumination, a power conversion efficiency of 1.29%, higher than those reported for SiNW array-based PEC cells, has been obtained.

  17. Field-effect modulation of the thermoelectric characteristics of silicon nanowires on plastic substrates

    NASA Astrophysics Data System (ADS)

    Choi, Jinyong; Jeon, Youngin; Cho, Kyoungah; Kim, Sangsig

    2016-12-01

    In this study, we demonstrate the substantial enhancement of the thermoelectric power factors of silicon nanowires (SiNWs) on plastic substrates achievable by field-effect modulation. The Seebeck coefficient and electrical conductivity are adjusted by varying the charge carrier concentration via electrical modulation with a gate voltage in the 0 to ±5 range, thus enhancing the power factors from 2.08 to 935 μW K-2 m-1) for n-type SiNWs, and from 453 to 944 μW K-2 m-1) for p-type SiNWs. The electrically modulated thermoelectric characteristics of SiNWs are analyzed and discussed.

  18. Design and simulation of temperature-insensitive arrayed waveguide gratings based on silicon nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Lang, Tingting; Zou, Jun; He, J.-J.

    2011-12-01

    The design and simulation results of temperature-insensitive arrayed waveguide gratings based on silicon nanowires are presented. The temperature dependent wavelength shift is minimized by using negative thermo-optic coefficient material SU-8 as the upper-cladding. Simulation results show that by using an appropriate thickness and width of the waveguide, quasi-athermal operation can be achieved. For temperature varying from 0°C to 80°C, the TD-CWS can be controlled down to 0.036nm with little polarization dependence for 272nm×253nm waveguide.

  19. Tunable narrowband microwave photonic filter created by stimulated Brillouin scattering from a silicon nanowire.

    PubMed

    Casas-Bedoya, Alvaro; Morrison, Blair; Pagani, Mattia; Marpaung, David; Eggleton, Benjamin J

    2015-09-01

    We demonstrate the first, to the best of our knowledge, functional signal processing device based on stimulated Brillouin scattering in a silicon nanowire. We use only 1 dB of on-chip stimulated Brillouin scattering gain to create an RF photonic notch filter with 48 dB of suppression, 98 MHz linewidth, and 6 GHz frequency tuning. This device has potential applications in on-chip microwave signal processing and establishes the foundation for the first CMOS-compatible high-performance RF photonic filter.

  20. Controlled in situ boron doping of short silicon nanowires grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Das Kanungo, Pratyush; Zakharov, Nikolai; Bauer, Jan; Breitenstein, Otwin; Werner, Peter; Goesele, Ulrich

    2008-06-01

    Epitaxial silicon nanowires (NWs) of short heights (˜280nm) on Si ⟨111⟩ substrate were grown and doped in situ with boron on a concentration range of 1015-1019cm-3 by coevaporation of atomic Si and B by molecular beam epitaxy. Transmission electron microscopy revealed a single-crystalline structure of the NWs. Electrical measurements of the individual NWs confirmed the doping. However, the low doped (1015cm-3) and medium doped (3×1016 and 1×1017cm-3) NWs were heavily depleted by the surface states while the high doped (1018 and 1019cm-3) ones showed volume conductivities expected for the corresponding intended doping levels.

  1. Synthesis and optimization of the magnetic properties of aligned strontium ferrite nanowires

    SciTech Connect

    Ebrahimi, Fatemeh; Bakhshi, Saeed Reza; Ashrafizadeh, Fakhreddin; Ghasemi, Ali

    2016-04-15

    Highlights: • Dip coating method was used to synthesize strontium ferrite nanowires in template. • Size of nanowires was controlled via anodization parameters. • Fe/Sr ratio was optimized in precursor. • Magnetic properties of nanowires and nanopowders were compared. - Abstract: High aspect ratio strontium hexaferrite nanowires were fabricated by dip coating in alumina template. Fe/Sr ratio was changed from 10 to 12 in precursor, and the samples were annealed at a range of temperatures 500–900 °C in order to optimize the magnetic properties of strontium ferrite in the form of nanowires. Field emission scanning electron microscope (FESEM) proved the formation of nanowires in the templates, while TEM images revealed a high degree of crystallinity. The ferrites were further characterized by X-ray diffraction (XRD) and energy dispersive X-ray spectrometer (EDS). Magnetic properties of the specimens were studied by a SQUID at 10–300 K. The results showed that the coercivity of packed density nanowires in the template was much less than that of the nanopowders. On the other hand, the coercivity of nanowires at ambient temperature was less than low temperature coercivity.

  2. Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Liu, Ruiyuan; Zhang, Fute; Con, Celal; Cui, Bo; Sun, Baoquan

    2013-04-01

    We demonstrated a novel, simple, and low-cost method to fabricate silicon nanowire (SiNW) arrays and silicon nanohole (SiNH) arrays based on thin silver (Ag) film dewetting process combined with metal-assisted chemical etching. Ag mesh with holes and semispherical Ag nanoparticles can be prepared by simple thermal annealing of Ag thin film on a silicon substrate. Both the diameter and the distribution of mesh holes as well as the nanoparticles can be manipulated by the film thickness and the annealing temperature. The silicon underneath Ag coverage was etched off with the catalysis of metal in an aqueous solution containing HF and an oxidant, which form silicon nanostructures (either SiNW or SiNH arrays). The morphologies of the corresponding etched SiNW and SiNH arrays matched well with that of Ag holes and nanoparticles. This novel method allows lithography-free fabrication of the SiNW and SiNH arrays with control of the size and distribution.

  3. Silicon carbide nanowires and composites obtained from carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Yuejian

    In this dissertation a simple route has been developed to synthesize Silicon Carbide (beta-SiC) nanothreads and C-SiC coaxial nanotubes by solid/liquid-state reaction between multiwall carbon nanotubes and silicon conducted at 1473 K and 1723 K, respectively. Through the kinetics study of SiC formation from carbon nanotubes and Si, our results demonstrated that carbon nanotubes may have higher chemical reactivity than other forms of elemental Carbon. Based on the above investigation, CNT/SiC and diamond/CNT/SiC were manufactured. Key factors influencing the mechanical properties of final products, such as phase composition, grain size, stress-strain, sintering time, and sintering temperature were thoroughly studied with Raman spectroscopy, x-ray diffraction, SEM and TEM techniques. Taking advantage of high elasticity of Carbon nanotube and its ability to block the microcrack propagation and dislocation movement, both composites showed enhanced fracture toughness. Carbon nanotubes composites trigger a new field in fundamental science and manifest potential application in multiple industries.

  4. Direct electrical contact of slanted ITO film on axial p-n junction silicon nanowire solar cells.

    PubMed

    Lee, Ya-Ju; Yao, Yung-Chi; Yang, Chia-Hao

    2013-01-14

    A novel scheme of direct electrical contact on vertically aligned silicon nanowire (SiNW) axial p-n junction is demonstrated by means of oblique-angle deposition of slanted indium-tin-oxide (ITO) film for photovoltaic applications. The slanted ITO film exhibits an acceptable resistivity of 1.07 x 10⁻³Ω-cm underwent RTA treatment of T = 450°C, and the doping concentration and carrier mobility by Hall measurement amount to 3.7 x 10²⁰ cm⁻³ and 15.8 cm²/V-s, respectively, with an n-type doping polarity. Because of the shadowing effect provided by the SiNWs, the incident ITO vapor-flow is deposited preferentially on the top of SiNWs, which coalesces and eventually forms a nearly continuous film for the subsequent fabrication of grid electrode. Under AM 1.5 G normal illumination, our axial p-n junction SiNW solar cell exhibits an open circuit voltage of VOC = 0.56 V, and a short circuit current of JSC = 1.54 mA/cm² with a fill factor of FF = 30%, resulting in a total power conversion efficiency of PEC = 0.26%.

  5. EFFECT OF PRE-ANNEALING TEMPERATURE ON THE GROWTH OF ALIGNED α-Fe2O3 NANOWIRES VIA A TWO-STEP THERMAL OXIDATION

    NASA Astrophysics Data System (ADS)

    Rashid, Norhana Mohamed; Kishi, Naoki; Soga, Tetsuo

    2016-03-01

    Pre-annealing as part of a two-step thermal oxidation process has a significant effect on the growth of hematite (α-Fe2O3) nanowires on Fe foil. High-density aligned nanowires were obtained on iron foils pre-annealed at 300∘C under a dry air flow for 30min. The X-ray diffraction (XRD) patterns indicate that the nanowires are transformed from the small α-Fe2O3 grains and uniquely grow in the (110) direction. The formation of a high-density of small grains by pre-annealing improved the alignment and density of the α-Fe2O3 nanowires.

  6. A junctionless SONOS nonvolatile memory device constructed with in situ-doped polycrystalline silicon nanowires

    PubMed Central

    2012-01-01

    In this paper, a silicon-oxide-nitride-silicon nonvolatile memory constructed on an n+-poly-Si nanowire [NW] structure featuring a junctionless [JL] configuration is presented. The JL structure is fulfilled by employing only one in situ heavily phosphorous-doped poly-Si layer to simultaneously serve as source/drain regions and NW channels, thus greatly simplifying the manufacturing process and alleviating the requirement of precise control of the doping profile. Owing to the higher carrier concentration in the channel, the developed JL NW device exhibits significantly enhanced programming speed and larger memory window than its counterpart with conventional undoped-NW-channel. Moreover, it also displays acceptable erase and data retention properties. Hence, the desirable memory characteristics along with the much simplified fabrication process make the JL NW memory structure a promising candidate for future system-on-panel and three-dimensional ultrahigh density memory applications. PMID:22373446

  7. Disorder-free localization around the conduction band edge of crossing and kinked silicon nanowires

    SciTech Connect

    Keleş, Ümit; Çakan, Aslı; Bulutay, Ceyhun

    2015-02-14

    We explore ballistic regime quantum transport characteristics of oxide-embedded crossing and kinked silicon nanowires (NWs) within a large-scale empirical pseudopotential electronic structure framework, coupled to the Kubo-Greenwood transport analysis. A real-space wave function study is undertaken and the outcomes are interpreted together with the findings of ballistic transport calculations. This reveals that ballistic transport edge lies tens to hundreds of millielectron volts above the lowest unoccupied molecular orbital, with a substantial number of localized states appearing in between, as well as above the former. We show that these localized states are not due to the oxide interface, but rather core silicon-derived. They manifest the wave nature of electrons brought to foreground by the reflections originating from NW junctions and bends. Hence, we show that the crossings and kinks of even ultraclean Si NWs possess a conduction band tail without a recourse to atomistic disorder.

  8. High-quality GaN nanowires grown on Si and porous silicon by thermal evaporation

    NASA Astrophysics Data System (ADS)

    Shekari, L.; Ramizy, A.; Omar, K.; Hassan, H. Abu; Hassan, Z.

    2012-12-01

    Nanowires (NWs) of GaN thin films were prepared on as-grown Si (1 1 1) and porous silicon (PS) substrates using thermal evaporation method. The film growth produced high-quality wurtzite GaN NWs. The size, morphology, and nanostructures of the crystals were investigated through scanning electron microscopy, high-resolution X-ray diffraction and photoluminescence spectroscopy. The NWs grown on porous silicon were thinner, longer and denser compared with those on as-grown Si. The energy band gap of the NWs grown on PS was larger than that of NWs on as-grown Si. This is due to the greater quantum confinement effects of the crystalline structure of the NWs grown on PS.

  9. Thermally activated tunneling in porous silicon nanowires with embedded Si quantum dots

    NASA Astrophysics Data System (ADS)

    Rezvani, S. J.; Pinto, N.; Enrico, E.; D'Ortenzi, L.; Chiodoni, A.; Boarino, L.

    2016-03-01

    Electronic transport properties of porous Si nanowires either with embedded Si quantum dots or with a percolative crystalline path are studied as a function of the temperature for the first time. We show that unlike bulk porous Si, the predesigned structure of the wires results in a single distinct conduction mechanism such as tunneling in the former case and variable range hopping in the latter case. We demonstrate that the geometry of the systems with a large internal surface area and high density of the Si quantum dots have a significant conduction enhancement compared to bulk porous silicon. These results can also improve the understanding of the basis of the different electronic transport mechanisms reported in bulk porous silicon.

  10. Solid-phase crystallization of amorphous silicon nanowire array and optical properties

    NASA Astrophysics Data System (ADS)

    Ishikawa, Ryousuke; Kato, Shinya; Yamazaki, Tatsuya; Kurokawa, Yasuyoshi; Miyajima, Shinsuke; Konagai, Makoto

    2014-02-01

    An amorphous silicon nanowire (a-SiNW) array perpendicular to a glass substrate can be successfully obtained through the metal-assisted chemical etching of amorphous silicon (a-Si) thin films. The solid-phase crystallization of a-SiNWs was carried out by thermal annealing in a forming gas in the temperature range from 600 to 900 °C. The effects of hydrogen in the film and the film morphology on the crystallization of a-SiNWs were investigated by Raman spectroscopy and transmission electron microscopy. A higher hydrogen concentration of a-SiNWs reduced the crystallization temperature, as in a-Si thin films. It was also revealed that the large surface area of the a-SiNW array affected the crystallization process. We also studied the optical property of the fabricated SiNW array and demonstrated its high potential as an active layer in solar cells.

  11. High-yield synthesis of silicon carbide nanowires by solar and lamp ablation

    NASA Astrophysics Data System (ADS)

    Lu, Hai-bo; Chan, Benjamin C. Y.; Wang, Xiaolin; Tong Chua, Hui; Raston, Colin L.; Albu-Yaron, Ana; Levy, Moshe; Popowitz-Biro, Ronit; Tenne, Reshef; Feuermann, Daniel; Gordon, Jeffrey M.

    2013-08-01

    We report a reasonably high yield (∼50%) synthesis of silicon carbide (SiC) nanowires from silicon oxides and carbon in vacuum, by novel solar and lamp photothermal ablation methods that obviate the need for catalysis, and allow relatively short reaction times (∼10 min) in a nominally one-step process that does not involve toxic reagents. The one-dimensional core/shell β-SiC/SiOx nanostructures—characterized by SEM, TEM, HRTEM, SAED, XRD and EDS—are typically several microns long, with core and outer diameters of about 10 and 30 nm, respectively. HRTEM revealed additional distinctive nanoscale structures that also shed light on the formation pathways.

  12. Optimal design of laterally assembled hexagonal silicon nanowires for broadband absorption enhancement in ultrathin solar cells

    NASA Astrophysics Data System (ADS)

    Shahraki, Mojtaba; Salehi, Mohammad Reza; Abiri, Ebrahim

    2015-11-01

    Design approaches to carry out broadband absorption in laterally assembled hexagonal silicon nanowire (NW) solar cells are investigated. Two different methods are proposed to improve the current density of silicon NW solar cells. It is observed that the key to the broadband absorption is disorder and irregularity. The first approach to reach the broadband absorption is using multiple NWs with different geometries. Nevertheless, the maximum enhancement is obtained by introducing irregular NWs. They can support more cavity modes, while scattering by NWs leads to broadening of the absorption spectra. An array of optimized irregular NWs also has preferable features compared to other broadband structures. Using irregular NW arrays, it is possible to improve the absorption enhancement of solar cells without introducing more absorbing material.

  13. A junctionless SONOS nonvolatile memory device constructed with in situ-doped polycrystalline silicon nanowires.

    PubMed

    Su, Chun-Jung; Su, Tuan-Kai; Tsai, Tzu-I; Lin, Horng-Chih; Huang, Tiao-Yuan

    2012-02-29

    In this paper, a silicon-oxide-nitride-silicon nonvolatile memory constructed on an n+-poly-Si nanowire [NW] structure featuring a junctionless [JL] configuration is presented. The JL structure is fulfilled by employing only one in situ heavily phosphorous-doped poly-Si layer to simultaneously serve as source/drain regions and NW channels, thus greatly simplifying the manufacturing process and alleviating the requirement of precise control of the doping profile. Owing to the higher carrier concentration in the channel, the developed JL NW device exhibits significantly enhanced programming speed and larger memory window than its counterpart with conventional undoped-NW-channel. Moreover, it also displays acceptable erase and data retention properties. Hence, the desirable memory characteristics along with the much simplified fabrication process make the JL NW memory structure a promising candidate for future system-on-panel and three-dimensional ultrahigh density memory applications.

  14. Disorder-free localization around the conduction band edge of crossing and kinked silicon nanowires

    NASA Astrophysics Data System (ADS)

    Keleş, Ümit; ćakan, Aslı; Bulutay, Ceyhun

    2015-02-01

    We explore ballistic regime quantum transport characteristics of oxide-embedded crossing and kinked silicon nanowires (NWs) within a large-scale empirical pseudopotential electronic structure framework, coupled to the Kubo-Greenwood transport analysis. A real-space wave function study is undertaken and the outcomes are interpreted together with the findings of ballistic transport calculations. This reveals that ballistic transport edge lies tens to hundreds of millielectron volts above the lowest unoccupied molecular orbital, with a substantial number of localized states appearing in between, as well as above the former. We show that these localized states are not due to the oxide interface, but rather core silicon-derived. They manifest the wave nature of electrons brought to foreground by the reflections originating from NW junctions and bends. Hence, we show that the crossings and kinks of even ultraclean Si NWs possess a conduction band tail without a recourse to atomistic disorder.

  15. Electrical properties of high density arrays of silicon nanowire field effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Hye-Young; Lee, Kangho; Lee, Jae Woo; Kim, Sangwook; Kim, Gyu-Tae; Duesberg, Georg S.

    2013-10-01

    Proximity effect corrected e-beam lithography of hydrogen silsesquioxane on silicon on insulator was used to fabricate multi-channel silicon nanowire field-effect transistors (SiNW FETs). Arrays of 15-channels with a line width of 18 nm and pitch as small as 50 nm, the smallest reported for electrically functional devices, were fabricated. These high density arrays were back-gated by the substrate and allowed for investigation of the effects of scaling on the electrical performance of this multi-channel SiNW FET. It was revealed that the drain current and the transconductance (gm) are both reduced with decreasing pitch size. The drain induced barrier lowering and the threshold voltage (Vth) are also decreased, whereas the subthreshold swing (S) is increased. The results are in agreement with our simulations of the electric potential profile of the devices. The study contains valuable information on SiNW FET integration and scaling for future devices.

  16. Effects of Ordered Stacking Faults on Electrical Transport Properties in Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Collette, Marc; Moutanabbir, Oussama; Champagne, Alexandre

    Lattice defects in silicon nanowires (SiNWs) allow the exploration of the fundamental physics governing transport mechanisms. We study charge transport in SiNW transistors with stacking faults in the 3C sequence, producing local hexagonal ordering. This structure leads to polytype SiNWs with distinct properties for novel applications in thermoelectronics. Since charge carrier and phonon behavior depend on crystal structure, these planar defects affect the transport properties of the nanowire. We grow our SiNWs using a VLS method, with stacking faults induced during growth. Structural characterization of each SiNW is done with Raman spectroscopy to quantify hexagonality. Individual nanowires are located and contacted using different metals to understand the Schottky barrier of the contacts at the SiNWs. We suspend 2 μm-long SiNW devices using a wet oxide etch to uncouple the SiNW from the substrate. We study the electrical properties by I-V measurements across the FET device while modulating the applied back gate voltage. Our initial data show that the presence of stacking faults causes an increase in resistivity by two orders of magnitude, thus greatly hindering charge transport through the SiNW.

  17. Vertical Silicon Nanowire Field Effect Transistors with Nanoscale Gate-All-Around

    NASA Astrophysics Data System (ADS)

    Guerfi, Youssouf; Larrieu, Guilhem

    2016-04-01

    Nanowires are considered building blocks for the ultimate scaling of MOS transistors, capable of pushing devices until the most extreme boundaries of miniaturization thanks to their physical and geometrical properties. In particular, nanowires' suitability for forming a gate-all-around (GAA) configuration confers to the device an optimum electrostatic control of the gate over the conduction channel and then a better immunity against the short channel effects (SCE). In this letter, a large-scale process of GAA vertical silicon nanowire (VNW) MOSFETs is presented. A top-down approach is adopted for the realization of VNWs with an optimum reproducibility followed by thin layer engineering at nanoscale. Good overall electrical performances were obtained, with excellent electrostatic behavior (a subthreshold slope (SS) of 95 mV/dec and a drain induced barrier lowering (DIBL) of 25 mV/V) for a 15-nm gate length. Finally, a first demonstration of dual integration of n-type and p-type VNW transistors for the realization of CMOS inverter is proposed.

  18. A vertical tip-tip contact silicon nanowire array for gas sensing.

    PubMed

    Lin, Leimiao; Liu, Dong; Chen, Qiaofen; Zhou, Hongzhi; Wu, Jianmin

    2016-10-20

    Novel chemiresistive gas sensors based on a vertical tip-tip contact silicon nanowire (TTC-SiNW) array were constructed. The welding of TTC-SiNWs after joule heating treatment was confirmed by a current-voltage curve (I-V curve). The TTC-SiNW structure not only resolved the problem of electrode contact encountered in conventional nanowire sensors, but also elongated the nanowire length to increase the void space for fast gas diffusion. The TTC-SiNW sensor comprising the same two types of SiNW arrays responded to NO2 very sensitively. The LOD for the p-p and n-n contact SiNW arrays is around 150 ppb and 3 ppb (S/N = 3), respectively. Furthermore, the highly oriented nano-junction formed on the TTC structure provided solid evidence to clarify the contribution of the nanojunction to gas sensing behavior. The TTC-SiNW sensor with a p-n junction displays a significant rectification effect. The sensitive response towards NO2 (LOD is about 18 ppb) was observed at a reverse bias voltage, whereas the response at a forward bias voltage was insignificant. Finally, the mechanism of gas sensing behavior on different types of TTC structures was proposed.

  19. Investigating the performance limits of silicon-nanowire and carbon-nanotube FETs

    NASA Astrophysics Data System (ADS)

    Marchi, A.; Gnani, E.; Reggiani, S.; Rudan, M.; Baccarani, G.

    2006-01-01

    In this work we investigate and compare the electrostatics of fully depleted cylindrical silicon-nanowire (SiCNW) FETs, four-gate rectangular nanowire (4G RNW) FETs, tri-gate rectangular nanowire (3G RNW) FETs and gate-all-around carbon-nanotube (GAA-CNT) FETs at advanced miniaturization limits. In doing so, we rigorously solve the coupled Schrödinger-Poisson equations within the device cross-sections and fully account for quantum-mechanical effects. The investigation, carried out for the 65 and 45 nm technology nodes, leads to the unexpected conclusion that, for an assigned threshold voltage, the gate-all-around CNT-FET offers only a slightly better performance with respect to the SiCNW and the 4G RNW-FETs. This is due to the compensation of two different mechanisms, namely a higher gate effectiveness and a lower density of states. The 3G RNW yields instead an electron density within the channel which is about 25% lower than the SiCNW and 4G RNW-FETs at a given gate voltage. Such a reduced performance is due to its inherent asymmetry, which negatively affects the gate control on the channel charge.

  20. Specific rare cell capture using micro-patterned silicon nanowire platform.

    PubMed

    Lee, Sang-Kwon; Kim, Dong-Joo; Lee, GeeHee; Kim, Gil-Sung; Kwak, Minsuk; Fan, Rong

    2014-04-15

    We report on the rapid and direct quantification of specific cell captures using a micro-patterned streptavidin (STR)-functionalized silicon nanowire (SiNW) platform, which was prepared by Ag-assisted wet chemical etching and a photo-lithography process. This platform operates by high-affinity cell capture rendered by the combination of antibody-epithelial cell surface-binding, biotin-streptavidin binding, and the topologically enhanced cell-substrate interaction on a 3-dimensional SiNWs array. In this work, we developed a micro-patterned nanowire platform, with which we were able to directly evaluate the performance enhancement due to nanotopography. An excellent capture efficiency of ~96.6±6.7%, which is the highest value achieved thus far for the targeting specific A549 cells on a selective area of patterned SiNWs, is demonstrated. Direct comparison between the nanowire region and the planar region on the same substrate indicates dramatically elevated cell-capture efficiency on nanotopological surface identical surface chemistry (<2% cell-capture efficiency). An excellent linear response was seen for quantifying captured A549 cells with respect to loaded cells. This study suggests that the micro-patterned STR-functionalized SiNWs platform provides additional advantage for detecting rare cells populations in a more quantitative and specific manner.

  1. Tuning the electronic band-gap of fluorinated 3C-silicon carbide nanowires

    NASA Astrophysics Data System (ADS)

    Miranda Durán, Álvaro; Trejo Baños, Alejandro; Pérez, Luis Antonio; Cruz Irisson, Miguel

    The possibility of control and modulation of the electronic properties of silicon carbide nanowires (SiCNWs) by varying the wire diameter is well known. SiCNWs are particularly interesting and technologically important, due to its electrical and mechanical properties, allowing the development of materials with specific electronic features for the design of stable and robust electronic devices. Tuning the band gap by chemical surface passivation constitutes a way for the modification of the electronic band gap of these nanowires. We present, the structural and electronic properties of fluorinated SiCNWs, grown along the [111] crystallographic direction, which are investigated by first principles. We consider nanowires with six diameters, varying from 0.35 nm to 2.13 nm, and eight random covering schemes including fully hydrogen- and fluorine terminated ones. Gibbs free energy of formation and electronic properties were calculated for the different surface functionalization schemes and diameters considered. The results indicate that the stability and band gap of SiCNWs can be tuned by surface passivation with fluorine atoms This work was supported by CONACYT infrastructure project 252749 and UNAM-DGAPA-PAPIIT IN106714. A.M. would like to thank for financial support from CONACyT-Retención. Computing resources from proyect SC15-1-IR-27 of DGTIC-UNAM are acknowledged.

  2. Spin transport and Hanle effect in silicon nanowires using graphene tunnel barriers.

    PubMed

    van 't Erve, O M J; Friedman, A L; Li, C H; Robinson, J T; Connell, J; Lauhon, L J; Jonker, B T

    2015-06-19

    Spin-based devices offer non-volatile, scalable, low power and reprogrammable functionality for emerging device technologies. Here we fabricate nanoscale spintronic devices with ferromagnetic metal/single-layer graphene tunnel barriers used to generate spin accumulation and spin currents in a silicon nanowire transport channel. We report the first observation of spin precession via the Hanle effect in both local three-terminal and non-local spin-valve geometries, providing a direct measure of spin lifetimes and confirmation of spin accumulation and pure spin transport. The use of graphene as the tunnel barrier provides a low-resistance area product contact and clean magnetic switching characteristics, because it smoothly bridges the nanowire and minimizes complicated magnetic domains that otherwise compromise the magnetic behaviour. Utilizing intrinsic two-dimensional layers such as graphene or hexagonal boron nitride as tunnel contacts on nanowires offers many advantages over conventional materials deposited by vapour deposition, enabling a path to highly scaled electronic and spintronic devices.

  3. Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy

    SciTech Connect

    Goodman, Kevin D.; Protasenko, Vladimir V.; Verma, Jai; Kosel, Thomas H.; Xing, Huili G.; Jena, Debdeep

    2011-04-15

    Indium gallium nitride nanowires show promise as being prime candidates for optical devices since they can be grown with band gaps spanning the visible spectra, while at the same time can be composed of stress free material. The goal of the work presented here was to obtain InGaN nanowires producing green emission at room temperature. Two growth recipes were found to yield InGaN nanowire growth on silicon substrates using plasma-assisted molecular beam epitaxy. At room temperature the photoluminescence (PL) of wire ensembles indeed peaked at 530 nm but, in addition, it was discovered that at low temperatures the emission often covered a broader (360-700 nm) spectrum. This broad optical range indicated indium content fluctuations in individual wires, wire-to-wire fluctuations, or a combination of the two. EDX measurements performed on single wires confirmed this hypothesis and correlated well with PL data. Low temperature PL studies of InGaN individual wires also revealed interwire and intrawire inhomogeneity of emission spectra stemming from a nonuniform indium distribution. The emission quantum yield for bright single wires was extracted to be more than 50% at 4 K. The findings suggest that the wire surfaces do not efficiently quench optical emission at low temperatures. These defect-free wires offer not only a potential path for green emitters, but also as integrated phosphors for broad spectral emission.

  4. Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Goodman, Kevin D.; Protasenko, Vladimir V.; Verma, Jai; Kosel, Thomas H.; Xing, Huili G.; Jena, Debdeep

    2011-04-01

    Indium gallium nitride nanowires show promise as being prime candidates for optical devices since they can be grown with band gaps spanning the visible spectra, while at the same time can be composed of stress free material. The goal of the work presented here was to obtain InGaN nanowires producing green emission at room temperature. Two growth recipes were found to yield InGaN nanowire growth on silicon substrates using plasma-assisted molecular beam epitaxy. At room temperature the photoluminescence (PL) of wire ensembles indeed peaked at 530 nm but, in addition, it was discovered that at low temperatures the emission often covered a broader (360-700 nm) spectrum. This broad optical range indicated indium content fluctuations in individual wires, wire-to-wire fluctuations, or a combination of the two. EDX measurements performed on single wires confirmed this hypothesis and correlated well with PL data. Low temperature PL studies of InGaN individual wires also revealed interwire and intrawire inhomogeneity of emission spectra stemming from a nonuniform indium distribution. The emission quantum yield for bright single wires was extracted to be more than 50% at 4 K. The findings suggest that the wire surfaces do not efficiently quench optical emission at low temperatures. These defect-free wires offer not only a potential path for green emitters, but also as integrated phosphors for broad spectral emission.

  5. Modeling and theoretical efficiency of a silicon nanowire based thermoelectric junction with area enhancement

    SciTech Connect

    Seong, M; Sadhu, JS; Ma, J; Ghossoub, MG; Sinha, S

    2012-06-15

    Recent experimental work suggests that individual silicon nanowires with rough surfaces possess a thermoelectric figure of merit as high as 0.6 near room temperature. This paper addresses the possibility of using an array of such nanowires in a thermoelectric junction for generation. Employing a model of frequency dependent phonon boundary scattering, we estimate the effective thermal conductivity of the array and investigate heat flow through the junction. We show that charge transport is largely unaffected by the roughness scales considered. Enhancing the area for heat exchange at an individual 200 mu m x 200 mu m p-n junction yields significant temperature differences across the junction leading to power >0.6 mW and efficiency >1.5% for a junction with effective thermal conductivity <5 W/mK, when the source and sink are at 450 K and 300 K, respectively. We show that relatively short nanowires of similar to 50 mu m length are sufficient for obtaining peak power and reasonable efficiency. This substantially reduces the challenge of engineering low resistivity electrical contacts that critically affect power and efficiency. This paper provides insight into how fundamental transport in relation to bulk heat transfer and charge transport, affects the performance of thermoelectric junctions based on nanostructured materials. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4728189

  6. Spin transport and Hanle effect in silicon nanowires using graphene tunnel barriers

    NASA Astrophysics Data System (ADS)

    van't Erve, O. M. J.; Friedman, A. L.; Li, C. H.; Robinson, J. T.; Connell, J.; Lauhon, L. J.; Jonker, B. T.

    2015-06-01

    Spin-based devices offer non-volatile, scalable, low power and reprogrammable functionality for emerging device technologies. Here we fabricate nanoscale spintronic devices with ferromagnetic metal/single-layer graphene tunnel barriers used to generate spin accumulation and spin currents in a silicon nanowire transport channel. We report the first observation of spin precession via the Hanle effect in both local three-terminal and non-local spin-valve geometries, providing a direct measure of spin lifetimes and confirmation of spin accumulation and pure spin transport. The use of graphene as the tunnel barrier provides a low-resistance area product contact and clean magnetic switching characteristics, because it smoothly bridges the nanowire and minimizes complicated magnetic domains that otherwise compromise the magnetic behaviour. Utilizing intrinsic two-dimensional layers such as graphene or hexagonal boron nitride as tunnel contacts on nanowires offers many advantages over conventional materials deposited by vapour deposition, enabling a path to highly scaled electronic and spintronic devices.

  7. Self-bridging of vertical silicon nanowires and a universal capacitive force model for spontaneous attraction in nanostructures.

    PubMed

    Sun, Zhelin; Wang, Deli; Xiang, Jie

    2014-11-25

    Spontaneous attractions between free-standing nanostructures have often caused adhesion or stiction that affects a wide range of nanoscale devices, particularly nano/microelectromechanical systems. Previous understandings of the attraction mechanisms have included capillary force, van der Waals/Casimir forces, and surface polar charges. However, none of these mechanisms universally applies to simple semiconductor structures such as silicon nanowire arrays that often exhibit bunching or adhesions. Here we propose a simple capacitive force model to quantitatively study the universal spontaneous attraction that often causes stiction among semiconductor or metallic nanostructures such as vertical nanowire arrays with inevitably nonuniform size variations due to fabrication. When nanostructures are uniform in size, they share the same substrate potential. The presence of slight size differences will break the symmetry in the capacitive network formed between the nanowires, substrate, and their environment, giving rise to electrostatic attraction forces due to the relative potential difference between neighboring wires. Our model is experimentally verified using arrays of vertical silicon nanowire pairs with varied spacing, diameter, and size differences. Threshold nanowire spacing, diameter, or size difference between the nearest neighbors has been identified beyond which the nanowires start to exhibit spontaneous attraction that leads to bridging when electrostatic forces overcome elastic restoration forces. This work illustrates a universal understanding of spontaneous attraction that will impact the design, fabrication, and reliable operation of nanoscale devices and systems.

  8. High Efficiency Organic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion Layer

    NASA Astrophysics Data System (ADS)

    Yu, Xuegong; Shen, Xinlei; Mu, Xinhui; Zhang, Jie; Sun, Baoquan; Zeng, Lingsheng; Yang, Lifei; Wu, Yichao; He, Hang; Yang, Deren

    2015-11-01

    Organic/silicon nanowires (SiNWs) hybrid solar cells have recently been recognized as one of potentially low-cost candidates for photovoltaic application. Here, we have controllably prepared a series of uniform silicon nanowires (SiNWs) with various diameters on silicon substrate by metal-assisted chemical etching followed by thermal oxidization, and then fabricated the organic/SiNWs hybrid solar cells with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). It is found that the reflective index of SiNWs layer for sunlight depends on the filling ratio of SiNWs. Compared to the SiNWs with the lowest reflectivity (LR-SiNWs), the solar cell based on the SiNWs with low filling ratio (LF-SiNWs) has a higher open-circuit voltage and fill factor. The capacitance-voltage measurements have clarified that the built-in potential barrier at the LF-SiNWs/PEDOT:PSS interface is much larger than that at the LR-SiNWs/PEDOT one, which yields a strong inversion layer generating near the silicon surface. The formation of inversion layer can effectively suppress the carrier recombination, reducing the leakage current of solar cell, and meanwhile transfer the LF-SiNWs/PEDOT:PSS device into a p-n junction. As a result, a highest efficiency of 13.11% is achieved for the LF-SiNWs/PEDOT:PSS solar cell. These results pave a way to the fabrication of high efficiency organic/SiNWs hybrid solar cells.

  9. High Efficiency Organic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion Layer

    PubMed Central

    Yu, Xuegong; Shen, Xinlei; Mu, Xinhui; Zhang, Jie; Sun, Baoquan; Zeng, Lingsheng; Yang, Lifei; Wu, Yichao; He, Hang; Yang, Deren

    2015-01-01

    Organic/silicon nanowires (SiNWs) hybrid solar cells have recently been recognized as one of potentially low-cost candidates for photovoltaic application. Here, we have controllably prepared a series of uniform silicon nanowires (SiNWs) with various diameters on silicon substrate by metal-assisted chemical etching followed by thermal oxidization, and then fabricated the organic/SiNWs hybrid solar cells with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). It is found that the reflective index of SiNWs layer for sunlight depends on the filling ratio of SiNWs. Compared to the SiNWs with the lowest reflectivity (LR-SiNWs), the solar cell based on the SiNWs with low filling ratio (LF-SiNWs) has a higher open-circuit voltage and fill factor. The capacitance-voltage measurements have clarified that the built-in potential barrier at the LF-SiNWs/PEDOT:PSS interface is much larger than that at the LR-SiNWs/PEDOT one, which yields a strong inversion layer generating near the silicon surface. The formation of inversion layer can effectively suppress the carrier recombination, reducing the leakage current of solar cell, and meanwhile transfer the LF-SiNWs/PEDOT:PSS device into a p-n junction. As a result, a highest efficiency of 13.11% is achieved for the LF-SiNWs/PEDOT:PSS solar cell. These results pave a way to the fabrication of high efficiency organic/SiNWs hybrid solar cells. PMID:26610848

  10. Polycrystalline nanowires of gadolinium-doped ceria via random alignment mediated by supercritical carbon dioxide

    PubMed Central

    Kim, Sang Woo; Ahn, Jae-Pyoung

    2013-01-01

    This study proposes a seed/template-free method that affords high-purity semiconducting nanowires from nanoclusters, which act as basic building blocks for nanomaterials, under supercritical CO2 fluid. Polycrystalline nanowires of Gd-doped ceria (Gd-CeO2) were formed by CO2-mediated non-oriented attachment of the nanoclusters resulting from the dissociation of single-crystalline aggregates. The unique formation mechanism underlying this morphological transition may be exploited for the facile growth of high-purity polycrystalline nanowires. PMID:23572061

  11. Reducing the porosity and reflection loss of silicon nanowires by a sticky tape

    NASA Astrophysics Data System (ADS)

    Liu, Junjun; Huang, Zhifeng

    2015-05-01

    Engineering the porosity of silicon nanowires (SiNWs) is of fundamental importance, and this work introduces a new method for doing so. Metal-assisted chemical etching (MACE) of heavily doped Si(100) creates mesoporous silicon nanowires (mp-SiNWs). mp-SiNWs are transferred from the MACE-treated wafer to a sticky tape, leaving residues composed of broken mp-SiNWs and a mesoporous Si layer on the wafer. Then the taped wafer is re-treated by MACE, without changing the etching conditions. The second MACE treatment generates mp-SiNWs that are less porous and longer than those generated by the first MACE treatment, which can be attributed to the difference in the surface topography at the beginning of the etching process. Less porous mp-SiNWs reduce optical scattering from the porous Si skeletons, and vertically protrude on the wafer without aggregation to facilitate optical trapping. Consequently, less porous mp-SiNWs effectively reduce ultraviolet-visible reflection loss.

  12. Reducing the porosity and reflection loss of silicon nanowires by a sticky tape.

    PubMed

    Liu, Junjun; Huang, Zhifeng

    2015-05-08

    Engineering the porosity of silicon nanowires (SiNWs) is of fundamental importance, and this work introduces a new method for doing so. Metal-assisted chemical etching (MACE) of heavily doped Si(100) creates mesoporous silicon nanowires (mp-SiNWs). mp-SiNWs are transferred from the MACE-treated wafer to a sticky tape, leaving residues composed of broken mp-SiNWs and a mesoporous Si layer on the wafer. Then the taped wafer is re-treated by MACE, without changing the etching conditions. The second MACE treatment generates mp-SiNWs that are less porous and longer than those generated by the first MACE treatment, which can be attributed to the difference in the surface topography at the beginning of the etching process. Less porous mp-SiNWs reduce optical scattering from the porous Si skeletons, and vertically protrude on the wafer without aggregation to facilitate optical trapping. Consequently, less porous mp-SiNWs effectively reduce ultraviolet-visible reflection loss.

  13. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells

    PubMed Central

    Shalek, Alex K.; Robinson, Jacob T.; Karp, Ethan S.; Lee, Jin Seok; Ahn, Dae-Ro; Yoon, Myung-Han; Sutton, Amy; Jorgolli, Marsela; Gertner, Rona S.; Gujral, Taranjit S.; MacBeath, Gavin; Yang, Eun Gyeong; Park, Hongkun

    2010-01-01

    A generalized platform for introducing a diverse range of biomolecules into living cells in high-throughput could transform how complex cellular processes are probed and analyzed. Here, we demonstrate spatially localized, efficient, and universal delivery of biomolecules into immortalized and primary mammalian cells using surface-modified vertical silicon nanowires. The method relies on the ability of the silicon nanowires to penetrate a cell’s membrane and subsequently release surface-bound molecules directly into the cell’s cytosol, thus allowing highly efficient delivery of biomolecules without chemical modification or viral packaging. This modality enables one to assess the phenotypic consequences of introducing a broad range of biological effectors (DNAs, RNAs, peptides, proteins, and small molecules) into almost any cell type. We show that this platform can be used to guide neuronal progenitor growth with small molecules, knock down transcript levels by delivering siRNAs, inhibit apoptosis using peptides, and introduce targeted proteins to specific organelles. We further demonstrate codelivery of siRNAs and proteins on a single substrate in a microarray format, highlighting this technology’s potential as a robust, monolithic platform for high-throughput, miniaturized bioassays. PMID:20080678

  14. Growth Mechanisms of Inductively-Coupled Plasma Torch Synthesized Silicon Nanowires and their associated photoluminescence properties.

    PubMed

    Agati, M; Amiard, G; Le Borgne, V; Castrucci, P; Dolbec, R; De Crescenzi, M; El Khakani, M A; Boninelli, S

    2016-11-22

    Ultra-thin Silicon Nanowires (SiNWs) were produced by means of an industrial inductively-coupled plasma (ICP) based process. Two families of SiNWs have been identified, namely long SiNWs (up to 2-3 micron in length) and shorter ones (~100 nm). SiNWs were found to consist of a Si core (with diameter as thin as 2 nm) and a silica shell, of which the thickness varies from 5 to 20 nm. By combining advanced transmission electron microscopy (TEM) techniques, we demonstrate that the growth of the long SiNWs occurred via the Oxide Assisted Growth (OAG) mechanism, while the Vapor Liquid Solid (VLS) mechanism is responsible for the growth of shorter ones. Energy filtered TEM analyses revealed, in some cases, the existence of chapelet-like Si nanocrystals embedded in an otherwise silica nanowire. Such nanostructures are believed to result from the exposure of some OAG SiNWs to high temperatures prevailing inside the reactor. Finally, the intense photoluminescence (PL) of these ICP-grown SiNWs in the 620-950 nm spectral range is a clear indication of the occurrence of quantum confinement. Such a PL emission is in accordance with the TEM results which revealed that the size of nanostructures are indeed below the exciton Bohr radius of silicon.

  15. Probing protein complexes inside living cells using a silicon nanowire-based pull-down assay

    NASA Astrophysics Data System (ADS)

    Choi, Sojoong; Kim, Hyunju; Kim, So Yeon; Yang, Eun Gyeong

    2016-06-01

    Most proteins perform their functions as interacting complexes. Here we propose a novel method for capturing an intracellular protein and its interacting partner out of living cells by utilizing intracellular access of antibody modified vertical silicon nanowire arrays whose surface is covered with a polyethylene glycol layer to prevent strong cell adhesion. Such a feature facilitates the removal of cells by simple washing, enabling subsequent detection of a pulled-down protein and its interacting partner, and further assessment of a drug-induced change in the interacting complex. Our new SiNW-based tool is thus suitable for authentication of protein networks inside living cells.Most proteins perform their functions as interacting complexes. Here we propose a novel method for capturing an intracellular protein and its interacting partner out of living cells by utilizing intracellular access of antibody modified vertical silicon nanowire arrays whose surface is covered with a polyethylene glycol layer to prevent strong cell adhesion. Such a feature facilitates the removal of cells by simple washing, enabling subsequent detection of a pulled-down protein and its interacting partner, and further assessment of a drug-induced change in the interacting complex. Our new SiNW-based tool is thus suitable for authentication of protein networks inside living cells. Electronic supplementary information (ESI) available: Materials, experimental methods and Fig. S1-S8. See DOI: 10.1039/c6nr00171h

  16. Characterization of peptide attachment on silicon nanowires by X-ray photoelectron spectroscopy and mass spectrometry.

    PubMed

    Kurylo, Ievgen; Dupré, Mathieu; Cantel, Sonia; Enjalbal, Christine; Drobecq, Hervé; Szunerits, Sabine; Melnyk, Oleg; Boukherroub, Rabah; Coffinier, Yannick

    2017-03-13

    In this paper, we report an original method to immobilize a model peptide on silicon nanowires (SiNWs) via a photolinker attached to the SiNWs' surface. The silicon nanowires were fabricated by a metal assisted chemical etching (MACE) method. Then, direct characterization of the peptide immobilization on SiNWs was performed either by X-ray photoelectron spectroscopy (XPS) or by laser-desorption/ionization mass spectrometry (LDI-MS). XPS allowed us to follow the peptide immobilization and its photorelease by recording the variation of the signal intensities of the different elements present on the SiNW surface. Mass spectrometry was performed without the use of an organic matrix and peptide ions were produced via a photocleavage mechanism. Indeed, thanks to direct photorelease achieved upon laser irradiation, a recorded predictable peak related to the molecular peptide ion has been detected, allowing the identification of the model peptide. Additional MS/MS experiments confirmed the photodissociation site and confirmed the N-terminal immobilization of the peptide on SiNWs.

  17. Bonding and electronic states of boron in silicon nanowires characterized by an infrared synchrotron radiation beam

    NASA Astrophysics Data System (ADS)

    Fukata, N.; Jevasuwan, W.; Ikemoto, Y.; Moriwaki, T.

    2015-04-01

    The infrared synchrotron radiation (IR-SR) beamline of SPring-8 as an IR light source was applied to characterize boron (B) atoms in silicon nanowires (SiNWs). The use of an IR-SR beam with much higher brilliance than conventional IR light sources and a wide range of wavenumbers from visible to far IR regions made it possible to detect a local vibrational mode of B in SiNWs. The use of this technique has also made it possible to detect other IR peaks related to transitions of a bound hole from the ground state of a B acceptor atom to excited states, clarifying the electronic state of B acceptors in SiNWs.The infrared synchrotron radiation (IR-SR) beamline of SPring-8 as an IR light source was applied to characterize boron (B) atoms in silicon nanowires (SiNWs). The use of an IR-SR beam with much higher brilliance than conventional IR light sources and a wide range of wavenumbers from visible to far IR regions made it possible to detect a local vibrational mode of B in SiNWs. The use of this technique has also made it possible to detect other IR peaks related to transitions of a bound hole from the ground state of a B acceptor atom to excited states, clarifying the electronic state of B acceptors in SiNWs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00427f

  18. Silicon nanowire arrays-induced graphene oxide reduction under UV irradiation.

    PubMed

    Fellahi, Ouarda; Das, Manash R; Coffinier, Yannick; Szunerits, Sabine; Hadjersi, Toufik; Maamache, Mustapha; Boukherroub, Rabah

    2011-11-01

    This paper reports on efficient UV irradiation-induced reduction of exfoliated graphene oxide. Direct illumination of an aqueous solution of graphene oxide at λ = 312 nm for 6 h resulted in the formation of graphene nanosheets dispersible in water. X-Ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, atomic force microscopy (AFM) and electrochemical measurements (cyclic voltammetry and electrochemical impedance spectroscopy) suggest a restoration of the sp(2) carbon network. The results were compared with graphene nanosheets prepared by photochemical irradiation of a GO aqueous solution in the presence of hydrogenated silicon nanowire (SiNW) arrays or silicon nanowire arrays decorated with silver (SiNW/Ag NPs) or copper nanoparticles (SiNW/Cu NPs). Graphene nanosheets obtained by illumination of the GO aqueous solution at 312 nm for 6 h in the presence of SiNW/Cu NPs exhibited superior electrochemical charge transfer characteristics. This is mainly due to the higher amount of sp(2)-hybridized carbon in these graphene sheets found by XPS analysis. The high level of extended conjugated carbon network was also evident by the water insoluble nature of the resulting graphene nanosheets, which precipitated upon photochemical reduction.

  19. High frequency top-down junction-less silicon nanowire resonators

    NASA Astrophysics Data System (ADS)

    Koumela, Alexandra; Hentz, Sébastien; Mercier, Denis; Dupré, Cécilia; Ollier, Eric; X-L Feng, Philip; Purcell, Stephen T.; Duraffourg, Laurent

    2013-11-01

    We report here the first realization of top-down silicon nanowires (SiNW) transduced by both junction-less field-effect transistor (FET) and the piezoresistive (PZR) effect. The suspended SiNWs are among the smallest top-down SiNWs reported to date, featuring widths down to ˜20 nm. This has been achieved thanks to a 200 mm-wafer-scale, VLSI process fully amenable to monolithic CMOS co-integration. Thanks to the very small dimensions, the conductance of the silicon nanowire can be controlled by a nearby electrostatic gate. Both the junction-less FET and the previously demonstrated PZR transduction have been performed with the same SiNW. These self-transducing schemes have shown similar signal-to-background ratios, and the PZR transduction has exhibited a relatively higher output signal. Allan deviation (σA) of the same SiNW has been measured with both schemes, and we obtain σA ˜ 20 ppm for the FET detection and σA ˜ 3 ppm for the PZR detection at room temperature and low pressure. Orders of magnitude improvements are expected from tighter electrostatic control via changes in geometry and doping level, as well as from CMOS integration. The compact, simple topology of these elementary SiNW resonators opens up new paths towards ultra-dense arrays for gas and mass sensing, time keeping or logic switching systems on the SiNW-CMOS platform.

  20. High frequency top-down junction-less silicon nanowire resonators.

    PubMed

    Koumela, Alexandra; Hentz, Sébastien; Mercier, Denis; Dupré, Cécilia; Ollier, Eric; Feng, Philip X-L; Purcell, Stephen T; Duraffourg, Laurent

    2013-11-01

    We report here the first realization of top-down silicon nanowires (SiNW) transduced by both junction-less field-effect transistor (FET) and the piezoresistive (PZR) effect. The suspended SiNWs are among the smallest top-down SiNWs reported to date, featuring widths down to ~20 nm. This has been achieved thanks to a 200 mm-wafer-scale, VLSI process fully amenable to monolithic CMOS co-integration. Thanks to the very small dimensions, the conductance of the silicon nanowire can be controlled by a nearby electrostatic gate. Both the junction-less FET and the previously demonstrated PZR transduction have been performed with the same SiNW. These self-transducing schemes have shown similar signal-to-background ratios, and the PZR transduction has exhibited a relatively higher output signal. Allan deviation (σA) of the same SiNW has been measured with both schemes, and we obtain σ(A) ~ 20 ppm for the FET detection and σ(A) ~ 3 ppm for the PZR detection at room temperature and low pressure. Orders of magnitude improvements are expected from tighter electrostatic control via changes in geometry and doping level, as well as from CMOS integration. The compact, simple topology of these elementary SiNW resonators opens up new paths towards ultra-dense arrays for gas and mass sensing, time keeping or logic switching systems on the SiNW-CMOS platform.

  1. Nano-cross-junction effect on phonon transport in silicon nanowire cages

    NASA Astrophysics Data System (ADS)

    Ma, Dengke; Ding, Hongru; Meng, Han; Feng, Lei; Wu, Yue; Shiomi, Junichiro; Yang, Nuo

    2016-10-01

    Wave effects of phonons can give rise to controllability of heat conduction in nanostructures beyond that by particle scattering at surfaces and interfaces. In this paper, we propose a new class of three-dimensional nanostructures: a silicon-nanowire-cage (SiNWC) structure consisting of silicon nanowires (SiNWs) connected by nano-cross-junctions. We perform equilibrium molecular dynamics simulations and find an ultralow value of thermal conductivity of SiNWC, 0.173 W m-1K-1 , which is one order lower than that of SiNWs. By further modal analysis and atomistic Green's function calculations, we identify that the large reduction is due to significant phonon localization induced by the phonon local resonance and hybridization at the junction part in a wide range of phonon modes. This localization effect does not require the cage to be periodic, unlike the phononic crystals, and can be realized in structures that are easier to synthesize, for instance in a form of randomly oriented SiNW network.

  2. Growth Mechanisms of Inductively-Coupled Plasma Torch Synthesized Silicon Nanowires and their associated photoluminescence properties

    PubMed Central

    Agati, M.; Amiard, G.; Le Borgne, V.; Castrucci, P.; Dolbec, R.; De Crescenzi, M.; El Khakani, M. A.; Boninelli, S.

    2016-01-01

    Ultra-thin Silicon Nanowires (SiNWs) were produced by means of an industrial inductively-coupled plasma (ICP) based process. Two families of SiNWs have been identified, namely long SiNWs (up to 2–3 micron in length) and shorter ones (~100 nm). SiNWs were found to consist of a Si core (with diameter as thin as 2 nm) and a silica shell, of which the thickness varies from 5 to 20 nm. By combining advanced transmission electron microscopy (TEM) techniques, we demonstrate that the growth of the long SiNWs occurred via the Oxide Assisted Growth (OAG) mechanism, while the Vapor Liquid Solid (VLS) mechanism is responsible for the growth of shorter ones. Energy filtered TEM analyses revealed, in some cases, the existence of chapelet-like Si nanocrystals embedded in an otherwise silica nanowire. Such nanostructures are believed to result from the exposure of some OAG SiNWs to high temperatures prevailing inside the reactor. Finally, the intense photoluminescence (PL) of these ICP-grown SiNWs in the 620–950 nm spectral range is a clear indication of the occurrence of quantum confinement. Such a PL emission is in accordance with the TEM results which revealed that the size of nanostructures are indeed below the exciton Bohr radius of silicon. PMID:27874057

  3. Growth Mechanisms of Inductively-Coupled Plasma Torch Synthesized Silicon Nanowires and their associated photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Agati, M.; Amiard, G.; Le Borgne, V.; Castrucci, P.; Dolbec, R.; de Crescenzi, M.; El Khakani, M. A.; Boninelli, S.

    2016-11-01

    Ultra-thin Silicon Nanowires (SiNWs) were produced by means of an industrial inductively-coupled plasma (ICP) based process. Two families of SiNWs have been identified, namely long SiNWs (up to 2–3 micron in length) and shorter ones (~100 nm). SiNWs were found to consist of a Si core (with diameter as thin as 2 nm) and a silica shell, of which the thickness varies from 5 to 20 nm. By combining advanced transmission electron microscopy (TEM) techniques, we demonstrate that the growth of the long SiNWs occurred via the Oxide Assisted Growth (OAG) mechanism, while the Vapor Liquid Solid (VLS) mechanism is responsible for the growth of shorter ones. Energy filtered TEM analyses revealed, in some cases, the existence of chapelet-like Si nanocrystals embedded in an otherwise silica nanowire. Such nanostructures are believed to result from the exposure of some OAG SiNWs to high temperatures prevailing inside the reactor. Finally, the intense photoluminescence (PL) of these ICP-grown SiNWs in the 620–950 nm spectral range is a clear indication of the occurrence of quantum confinement. Such a PL emission is in accordance with the TEM results which revealed that the size of nanostructures are indeed below the exciton Bohr radius of silicon.

  4. Preparation of Silicon Nanowire Field-effect Transistor for Chemical and Biosensing Applications.

    PubMed

    Wu, Jennifer Yun-Shin; Lin, Chih-Heng; Feng, Mei-Huei; Chen, Chien-Hung; Su, Ping-Chia; Yang, Po-Wen; Zheng, Jian-Ming; Fu, Chang-Wei; Yang, Yuh-Shyong

    2016-04-21

    Surveillance using biomarkers is critical for the early detection, rapid intervention, and reduction in the incidence of diseases. In this study, we describe the preparation of polycrystalline silicon nanowire field-effect transistors (pSNWFETs) that serve as biosensing devices for biomarker detection. A protocol for chemical and biomolecular sensing by using pSNWFETs is presented. The pSNWFET device was demonstrated to be a promising transducer for real-time, label-free, and ultra-high-sensitivity biosensing applications. The source/drain channel conductivity of a pSNWFET is sensitive to changes in the environment around its silicon nanowire (SNW) surface. Thus, by immobilizing probes on the SNW surface, the pSNWFET can be used to detect various biotargets ranging from small molecules (dopamine) to macromolecules (DNA and proteins). Immobilizing a bioprobe on the SNW surface, which is a multistep procedure, is vital for determining the specificity of the biosensor. It is essential that every step of the immobilization procedure is correctly performed. We verified surface modifications by directly observing the shift in the electric properties of the pSNWFET following each modification step. Additionally, X-ray photoelectron spectroscopy was used to examine the surface composition following each modification. Finally, we demonstrated DNA sensing on the pSNWFET. This protocol provides step-by-step procedures for verifying bioprobe immobilization and subsequent DNA biosensing application.

  5. High density micro-pyramids with silicon nanowire array for photovoltaic applications.

    PubMed

    Rahman, Tasmiat; Navarro-Cía, Miguel; Fobelets, Kristel

    2014-12-05

    We use a metal assisted chemical etch process to fabricate silicon nanowire arrays (SiNWAs) onto a dense periodic array of pyramids that are formed using an alkaline etch masked with an oxide layer. The hybrid micro-nano structure acts as an anti-reflective coating with experimental reflectivity below 1% over the visible and near-infrared spectral regions. This represents an improvement of up to 11 and 14 times compared to the pyramid array and SiNWAs on bulk, respectively. In addition to the experimental work, we optically simulate the hybrid structure using a commercial finite difference time domain package. The results of the optical simulations support our experimental work, illustrating a reduced reflectivity in the hybrid structure. The nanowire array increases the absorbed carrier density within the pyramid by providing a guided transition of the refractive index along the light path from air into the silicon. Furthermore, electrical simulations which take into account surface and Auger recombination show an efficiency increase for the hybrid structure of 56% over bulk, 11% over pyramid array and 8.5% over SiNWAs.

  6. Optical Properties of Silicon Nanowires Fabricated by Environment-Friendly Chemistry

    NASA Astrophysics Data System (ADS)

    Gonchar, Kirill A.; Zubairova, Alsu A.; Schleusener, Alexander; Osminkina, Liubov A.; Sivakov, Vladimir

    2016-08-01

    Silicon nanowires (SiNWs) were fabricated by metal-assisted chemical etching (MACE) where hydrofluoric acid (HF), which is typically used in this method, was changed into ammonium fluoride (NH4F). The structure and optical properties of the obtained SiNWs were investigated in details. The length of the SiNW arrays is about 2 μm for 5 min of etching, and the mean diameter of the SiNWs is between 50 and 200 nm. The formed SiNWs demonstrate a strong decrease of the total reflectance near 5-15 % in the spectral region λ < 1 μm in comparison to crystalline silicon (c-Si) substrate. The interband photoluminescence (PL) and Raman scattering intensities increase strongly for SiNWs in comparison with the corresponding values of the c-Si substrate. These effects can be interpreted as an increase of the excitation intensity of SiNWs due to the strong light scattering and the partial light localization in an inhomogeneous optical medium. Along with the interband PL was also detected the PL of SiNWs in the spectral region of 500-1100 nm with a maximum at 750 nm, which can be explained by the radiative recombination of excitons in small Si nanocrystals at nanowire sidewalls in terms of a quantum confinement model. So SiNWs, which are fabricated by environment-friendly chemistry, have a great potential for use in photovoltaic and photonics applications.

  7. Self-aligned imprint lithography for top-gate amorphous silicon thin-film transistor fabrication

    NASA Astrophysics Data System (ADS)

    Lausecker, E.; Huang, Y.; Fromherz, T.; Sturm, J. C.; Wagner, S.

    2010-06-01

    We developed self-aligned imprint lithography (SAIL) for top-gate amorphous silicon (a-Si) thin-film transistors (TFTs). Our SAIL process enables a device pattern definition in a single imprint step that uses a three-level mold. The various levels of the mold are defined by a stepwise opening of a chromium hardmask and subsequent dry-etching. For TFT fabrication we imprint, and consecutively etch the imprint resist levels and device layers. The imprinted top-gate a-Si TFTs have nickel silicide source/drain self-aligned to the gate with mobilities of ˜0.4 cm2/V s.

  8. Fabrication and characterization of p-Si nanowires/ZnO film heterojunction diode

    NASA Astrophysics Data System (ADS)

    Choi, Ji-Hyuk; Das, Sachindra Nath; Moon, Kyeong-Ju; Kar, Jyoti Prakash; Myoung, Jae-Min

    2010-12-01

    Vertical aligned p-Si nanowires were fabricated by electroless wet chemical etching of Si wafer. p-Si nanowires/ZnO thin film heterojunction diode was fabricated by depositing ZnO thin film on vertically aligned p-Si nanowire arrays. Optical studies revealed that the Si nanowire surface has porous silicon like structure. The junction properties were evaluated by measuring I- V and C- V characteristics. I- V characteristics exhibited well defined rectifying behavior with a turn-on voltage of 2.26 V and ideality factor of 4.5.

  9. Stable field emission from arrays of vertically aligned free-standing metallic nanowires

    NASA Astrophysics Data System (ADS)

    Xavier, Stephane; Mátéfi-Tempfli, Stefan; Ferain, Etienne; Purcell, Stephen; Enouz-Védrenne, Shaïma; Gangloff, Laurent; Minoux, Eric; Hudanski, Ludovic; Vincent, Pascal; Schnell, Jean-Philippe; Pribat, Didier; Piraux, Luc; Legagneux, Pierre

    2008-05-01

    We present a fully elaborated process to grow arrays of metallic nanowires with controlled geometry and density, based on electrochemical filling of nanopores in track-etched templates. Nanowire growth is performed at room temperature, atmospheric pressure and is compatible with low cost fabrication and large surfaces. This technique offers an excellent control of the orientation, shape and nanowires density. It is applied to fabricate field emission arrays with a good control of the emission site density. We have prepared Co, Ni, Cu and Rh nanowires with a height of 3 µm, a diameter of 80 nm and a density of ~107 cm-2. The electron field emission measurements and total energy distributions show that the as-grown nanowires exhibit a complex behaviour, first with emission activation under high field, followed by unstable emission. A model taking into account the effect of an oxide layer covering the nanowire surface is developed to explain this particular field emission behaviour. Finally, we present an in situ cleaning procedure by ion bombardment that collectively removes this oxide layer, leading to a stable and reproducible emission behaviour. After treatment, the emission current density is ~1 mA cm-2 for a 30 V µm-1 applied electric field.

  10. One-step synthesis of lightly doped porous silicon nanowires in HF/AgNO3/H2O2 solution at room temperature

    NASA Astrophysics Data System (ADS)

    Bai, Fan; Li, Meicheng; Song, Dandan; Yu, Hang; Jiang, Bing; Li, Yingfeng

    2012-12-01

    One-step synthesis of lightly doped porous silicon nanowire arrays was achieved by etching the silicon wafer in HF/AgNO3/H2O2 solution at room temperature. The lightly doped porous silicon nanowires (pNWs) have circular nanopores on the sidewall, which can emit strong green fluorescence. The surface morphologies of these nanowires could be controlled by simply adjusting the concentration of H2O2, which influences the distribution of silver nanoparticles (Ag NPs) along the nanowire axis. A mechanism based on Ag NPs-induced lateral etching of nanowires was proposed to explain the formation of pNWs. The controllable and widely applicable synthesis of pNWs will open their potential application to nanoscale photoluminescence devices.

  11. Salt-induced self-assembly of bacteria on nanowire arrays.

    PubMed

    Sakimoto, Kelsey K; Liu, Chong; Lim, Jongwoo; Yang, Peidong

    2014-09-10

    Studying bacteria-nanostructure interactions is crucial to gaining controllable interfacing of biotic and abiotic components in advanced biotechnologies. For bioelectrochemical systems, tunable cell-electrode architectures offer a path toward improving performance and discovering emergent properties. As such, Sporomusa ovata cells cultured on vertical silicon nanowire arrays formed filamentous cells and aligned parallel to the nanowires when grown in increasing ionic concentrations. Here, we propose a model describing the kinetic and the thermodynamic driving forces of bacteria-nanowire interactions.

  12. Broadband High Efficiency Fractal-Like and Diverse Geometry Silicon Nanowire Arrays for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    AL-Zoubi, Omar H.

    Solar energy has many advantages over conventional sources of energy. It is abundant, clean and sustainable. One way to convert solar energy directly into electrical energy is by using the photovoltaic solar cells (PVSC). Despite PVSC are becoming economically competitive, they still have high cost and low light to electricity conversion efficiency. Therefore, increasing the efficiency and reducing the cost are key elements for producing economically more competitive PVSC that would have significant impact on energy market and saving environment. A significant percentage of the PVSC cost is due to the materials cost. For that, thin films PVSC have been proposed which offer the benefits of the low amount of material and fabrication costs. Regrettably, thin film PVSC show poor light to electricity conversion efficiency because of many factors especially the high optical losses. To enhance conversion efficiency, numerous techniques have been proposed to reduce the optical losses and to enhance the absorption of light in thin film PVSC. One promising technique is the nanowire (NW) arrays in general and the silicon nanowire (SiNW) arrays in particular. The purpose of this research is to introduce vertically aligned SiNW arrays with enhanced and broadband absorption covering the entire solar spectrum while simultaneously reducing the amount of material used. To this end, we apply new concept for designing SiNW arrays based on employing diversity of physical dimensions, especially radial diversity within certain lattice configurations. In order to study the interaction of light with SiNW arrays and compute their optical properties, electromagnetic numerical modeling is used. A commercial numerical electromagnetic solver software package, high frequency structure simulation (HFSS), is utilized to model the SiNW arrays and to study their optical properties. We studied different geometries factors that affect the optical properties of SiNW arrays. Based on this study, we

  13. Analytical modeling to design the vertically aligned Si-nanowire metal-oxide-semiconductor photosensors for direct color sensing with high spectral resolution

    NASA Astrophysics Data System (ADS)

    Sikdar, Subhrajit; Chowdhury, Basudev Nag; Ghosh, Ajay; Chattopadhyay, Sanatan

    2017-03-01

    In the current work, an analytical model for the design of vertically aligned silicon (Si) nanowire metal-oxide-semiconductor (MOS) capacitor based multi-color photodetectors has been developed for the detection of entire visible spectrum with high spectral resolution. The photogeneration phenomena within the nanostructures are analyzed in detail by developing a quantum field model associated with second quantization electron-photon field operators. The non-equilibrium Green's function (NEGF) formalism is employed to solve the relevant equations. The study shows that the proposed device with specified design of diameter-voltage combinations is capable of detecting 64 spectral bands of the entire visible spectrum (380 nm to700 nm) directly with a very high resolution of 5 nm wavelength. Such direct sensing of each wavelength is observed to be independent of the fluctuations of illumination intensity. The device is designed to obtain a full-width-at-half-maximum (FWHM) smaller than the spectral resolution (5 nm) for each wavelength of the visible range, which indicates a very high quality digital imaging/sensing method. Such devices may be a potential alternative for the future nanoelectronics based photodevices for superior sensing/imaging applications.

  14. Analytical modeling of the lattice and thermo-elastic coefficient mismatch-induced stress into silicon nanowires horizontally embedded on insulator-on-silicon substrates

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sulagna; Chattopadhyay, Sanatan

    2017-01-01

    In the current work, an analytical model has been developed to estimate the amount of induced stress in nanowires which are horizontally embedded with different fractions within an Insulator-on-Silicon substrate. For estimating such stress, different crystallographic orientations of substrates and embedded nanowires have been considered. The induced stress for both the difference in thermo-elastic constants and lattice-mismatch is included and accuracy of the analytical model has been verified with the similar results obtained from ANSYS Multiphysics. Induced stress is observed to be insensitive of the nanowire size, however, depends significantly on the fractional insertion of the nanowires. A tensile stress of 1.95 GPa and a compressive stress of -1.0719 GPa have been obtained for the <100> oriented Si-nanowires. Hole mobility of 850 cm2/Vs can be achieved for the 3/4th insertion of the nanowires which is comparable to electron mobility and therefore can be utilized for the design of symmetric nano-electronic devices.

  15. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells

    PubMed Central

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  16. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells.

    PubMed

    Li, Kuntang; Wang, Xiuqin; Lu, Pengfei; Ding, Jianning; Yuan, Ningyi

    2013-09-23

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed.

  17. Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale.

    PubMed

    Bian, Yusheng; Gong, Qihuang

    2015-03-14

    The simultaneous realization of nanoscale field localization and low transmission loss remains one of the major challenges in nanophotonics. Metal nanowire waveguides can fulfill this goal to a certain extent by confining light within subwavelength space, yet their optical performances are still restricted by the tradeoff between confinement and loss, which results in quite limited propagation distances when their mode sizes are reduced down to the nanometer scale. Here we introduce a class of low-loss guiding schemes by integrating silicon-on-insulator (SOI) waveguides with plasmon nanowire structures. The closely spaced silicon and metal configurations allow efficient light squeezing within the nanometer, low-index silica gaps between them, enabling deep-subwavelength light transmission with low modal attenuation. Optimizations of key structural parameters unravel the wide-range existence of the high-performance hybrid nanowire plasmon mode, which demonstrates improved guiding properties compared to the conventional hybrid and nanowire plasmon polaritons. The excitation strategy of the guided mode and the feasibility of the waveguide for compact photonic integration as well as active components are also discussed to lay the foundation for its practical implementation. The remarkable properties of these metallic-nanowire-loaded SOI waveguides potentially lend themselves to the implementation of high performance nanophotonic components, and open up promising opportunities for a variety of intriguing applications on the nanoscale.

  18. Surface-passivated GaAsP single-nanowire solar cells exceeding 10% efficiency grown on silicon.

    PubMed

    Holm, Jeppe V; Jørgensen, Henrik I; Krogstrup, Peter; Nygård, Jesper; Liu, Huiyun; Aagesen, Martin

    2013-01-01

    Continued development of high-efficiency multi-junction solar cells requires growth of lattice-mismatched materials. Today, the need for lattice matching both restricts the bandgap combinations available for multi-junctions solar cells and prohibits monolithic integration of high-efficiency III-V materials with low-cost silicon solar cells. The use of III-V nanowires is the only known method for circumventing this lattice-matching constraint, and therefore it is necessary to develop growth of nanowires with bandgaps >1.4 eV. Here we present the first gold-free gallium arsenide phosphide nanowires grown on silicon by means of direct epitaxial growth. We demonstrate that their bandgap can be controlled during growth and fabricate core-shell nanowire solar cells. We further demonstrate that surface passivation is of crucial importance to reach high efficiencies, and present a record efficiency of 10.2% for a core-shell single-nanowire solar cell.

  19. In Situ TEM Observations of Sn-Containing Silicon Nanowires Undergoing Reversible Pore Formation Due to Fast Lithiation/Delithiation Kinetics

    SciTech Connect

    Lu, Xiaotang; Bogart, Timothy D.; Gu, Meng; Wang, Chong M.; Korgel, Brian

    2015-09-03

    In situ transmission electron microscopy (TEM) studies were carried out to observe directly in real time the lithiation and delithiation of silicon (Si) nanowires with significant amounts of tin (Sn). The incorporation of Sn significantly enhances the lithiation rate compared to typical Si nanowires. For instance, surface diffusion is enhanced by two orders of magnitude and the bulk lithiation rate by one order of magnitude, resulting in a sequential surface-then-core lithiation mechanism. Pore formation was observed in the nanowires during delithiation, most likely as a result of the fast delithiation kinetics of the nanowires. Pore formation was reversible and the pores disappeared during subsequent lithiation. When an amorphous Si shell was applied to the nanowires, pore formation was not observed during the in situ TEM experimences. Ex situ TEM analysis of Sn-containing Si nanowires cycled in coin cell batteries also showed that the application of an a-Si shell significantly retards pore formation in these nanowires.

  20. Silicon nanowires, carbon nanotubes, and magnetic nanocrystals: Synthesis, properties, and applications

    NASA Astrophysics Data System (ADS)

    Lee, Doh Chang

    Central to the practical use of nanoscale materials is the controlled growth in technologically meaningful quantities. Many of the proposed applications of the nanomaterials potentially require inexpensive production of the building blocks. Solution-based synthetic approach offers controllability, high throughput, and scalability, which make the process attractive for the potential scale-up. Growth kinetics could be readily influenced by chemical interactions between the precursor and the solvent. In order to fully utilize its benefits, it is therefore pivotal to understand the decomposition chemistry of the precursors used in the reactions. Supercritical fluids were used as solvent in which high temperature reactions could take place. Silicon nanowires with diameters of 20˜30 nm was synthesized in supercritical fluids with metal nanocrystals as seeds for the nanowire growth. To unravel the effect of silicon precursors, several silicon precursors were reacted and the resulting products were investigated. The scalability of the system is discussed based on the experimental data. The nanowires were characterized with various characterization tools, including high-resolution transmission electron microscopy and electron energy loss spectroscopy. The crystallographic signatures were analyzed through the transmission electron microscopic study, and fundamental electrical and optical properties were probed by electron energy loss spectroscopy. Carbon nanotubes were prepared by reacting carbon-containing chemicals in supercritical fluids with organometallic compounds that form metal seed particles in-situ. A batch reaction, in which the temperature control was relatively poor, yielded a mixture of multiwall nanotubes and amorphous carbon nanofilaments with a low selectivity of nanotubes in the product. When reaction parameters were translated into a continuous flow-through reaction, nanotube selectivity as well as the throughput of the total product significantly