Science.gov

Sample records for aligned silicon oxide

  1. Preparation of highly aligned silicon oxide nanowires with stable intensive photoluminescence

    NASA Astrophysics Data System (ADS)

    Duraia, El-Shazly M.; Mansurov, Z. A.; Tokmolden, S.; Beall, Gary W.

    2010-02-01

    In this work we report the successful formation of highly aligned vertical silicon oxide nanowires. The source of silicon was from the substrate itself without any additional source of silicon. X-ray measurement demonstrated that our nanowires are amorphous. Photoluminescence measurements were conducted through 18 months and indicated that there is a very good intensive emission peaks near the violet regions. The FTIR measurements indicated the existence of peaks at 463, 604, 795 and a wide peak at 1111 cm -1 and this can be attributed to Si-O-Si and Si-O stretching vibrations. We also report the formation of the octopus-like silicon oxide nanowires and the growth mechanism of these structures was discussed.

  2. Molten Pb as a catalyst for large-scale growth of highly aligned silicon oxide nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Jiang, Feihong; Yang, Yongdong; Li, Jianping

    2007-09-01

    Low melting point metal Pb can be used as an effective catalyst for the large-scale growth of highly aligned silicon oxide nanowire balls. Unlike any previously observed results using Au or Fe as catalyst, the molten Pb-catalyzed vapor-liquid-solid (VLS) growth exhibits many amazing growth phenomena. The scan electron microscopy (SEM) data indicate that the silicon oxide nanowires grow out perpendicularly from the surface of the metal Pb balls. For each ball, numerous nanowires simultaneously nucleate, grow at nearly the same rate and direction, and simultaneously stop growing. The pear-like, flower-like, chrysanthemum-like, and echinus-like SiO 2 nanostructures were formed. A growth model was proposed. The experimental results further expand the low melting point metal-catalyzed VLS mechanism to a broader range.

  3. Silicon oxides as alignment surfaces for vertically-aligned nematics in photonic devices

    NASA Astrophysics Data System (ADS)

    Oton, E.; López-Andrés, S.; Bennis, N.; Otón, J. M.; Geday, M. A.

    2014-06-01

    A comparative study on alignment performance and microstructure of inorganic layers used for liquid crystal cell conditioning has been carried out. The study has focused on two specific materials, SiOx and SiO2, deposited under different conditions. The purpose was to establish a relationship between layer microstructure and liquid crystal alignment. The surface morphology has been studied by FESEM and AFM. An analysis on liquid crystal alignment, pretilt angle, response time, contrast ratio and the conditions to develop backflow effect (significant rise time increase due to pure homeotropic alignment) on vertically-aligned nematic cells has been carried out. A technique to overcome the presence of backflow has been identified. The full comparative study of SiOx and SiO2 layer properties and their influence over liquid crystal alignment and electrooptic response is presented.

  4. Low-temperature growth of well-aligned zinc oxide nanorod arrays on silicon substrate and their photocatalytic application

    PubMed Central

    Azam, Ameer; Babkair, Saeed Salem

    2014-01-01

    Well-aligned and single-crystalline zinc oxide (ZnO) nanorod arrays were grown on silicon (Si) substrate using a wet chemical route for the photodegradation of organic dyes. Structural analysis using X-ray diffraction, high-resolution transmission electron microscopy, and selected area electron diffraction confirmed the formation of ZnO nanorods grown preferentially oriented in the (001) direction and with a single phase nature with a wurtzite structure. Field emission scanning electron microscopy and transmission electron microscopy micrographs showed that the length and diameter of the well-aligned rods were about ~350–400 nm and ~80–90 nm, respectively. Raman scattering spectra of ZnO nanorod arrays revealed the characteristic E2 (high) mode that is related to the vibration of oxygen atoms in the wurtzite ZnO. The photodegradation of methylene blue (MB) using ZnO nanorod arrays was performed under ultraviolet light irradiation. The results of photodegradation showed that ZnO nanorod arrays were capable of degrading ~80% of MB within 60 minutes of irradiation, whereas ~92% of degradation was achieved in 120 minutes. Complete degradation of MB was observed after 270 minutes of irradiation time. Owing to enhanced photocatalytic degradation efficiency and low-temperature growth method, prepared ZnO nanorod arrays may open up the possibility for the successful utilization of ZnO nanorod arrays as a future photocatalyst for environmental remediation. PMID:24812511

  5. Silicon on insulator self-aligned transistors

    DOEpatents

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  6. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  7. Alignment of the ATLAS silicon tracker

    NASA Astrophysics Data System (ADS)

    Morley, Anthony

    2008-10-01

    ATLAS is one of the four experiments currently under preparation at Large Hadron Collider. Charged particle track reconstruction in the ATLAS Inner Detector is performed both with silicon and drift-tube-based detectors. The alignment of the ATLAS tracking system is one of the challenges that the experiment must overcome in order to achieve its physics goals. This requires the determination of almost 35 000 degrees of freedom. The precision required for the most sensitive coordinate of the silicon devices is of the order of few microns. This precision will be attained with a combination of two techniques: a hardware system with Frequency Scan Interferometers, and track-based alignment. The latter requires the application of complex alignment algorithms that can be both CPU and memory intensive due to the possible requirement of large matrix inversion or many iterations. The alignment algorithms have been already exercised on several challenges such as a Combined Test Beam, cosmic ray runs and large scale computing simulation of physics samples. This note reports on the methods, their computing requirements and preliminary results.

  8. Aligned silicon nanofins via the directed self-assembly of PS-b-P4VP block copolymer and metal oxide enhanced pattern transfer

    NASA Astrophysics Data System (ADS)

    Cummins, Cian; Gangnaik, Anushka; Kelly, Roisin A.; Borah, Dipu; O'Connell, John; Petkov, Nikolay; Georgiev, Yordan M.; Holmes, Justin D.; Morris, Michael A.

    2015-04-01

    `Directing' block copolymer (BCP) patterns is a possible option for future semiconductor device patterning, but pattern transfer of BCP masks is somewhat hindered by the inherently low etch contrast between blocks. Here, we demonstrate a `fab' friendly methodology for forming well-registered and aligned silicon (Si) nanofins following pattern transfer of robust metal oxide nanowire masks through the directed self-assembly (DSA) of BCPs. A cylindrical forming poly(styrene)-block-poly(4-vinyl-pyridine) (PS-b-P4VP) BCP was employed producing `fingerprint' line patterns over macroscopic areas following solvent vapor annealing treatment. The directed assembly of PS-b-P4VP line patterns was enabled by electron-beam lithographically defined hydrogen silsequioxane (HSQ) gratings. We developed metal oxide nanowire features using PS-b-P4VP structures which facilitated high quality pattern transfer to the underlying Si substrate. This work highlights the precision at which long range ordered ~10 nm Si nanofin features with 32 nm pitch can be defined using a cylindrical BCP system for nanolithography application. The results show promise for future nanocircuitry fabrication to access sub-16 nm critical dimensions using cylindrical systems as surface interfaces are easier to tailor than lamellar systems. Additionally, the work helps to demonstrate the extension of these methods to a `high χ' BCP beyond the size limitations of the more well-studied PS-b-poly(methyl methylacrylate) (PS-b-PMMA) system.`Directing' block copolymer (BCP) patterns is a possible option for future semiconductor device patterning, but pattern transfer of BCP masks is somewhat hindered by the inherently low etch contrast between blocks. Here, we demonstrate a `fab' friendly methodology for forming well-registered and aligned silicon (Si) nanofins following pattern transfer of robust metal oxide nanowire masks through the directed self-assembly (DSA) of BCPs. A cylindrical forming poly

  9. Oxidation resistance of silicon ceramics

    NASA Technical Reports Server (NTRS)

    Yasutoshi, H.; Hirota, K.

    1984-01-01

    Oxidation resistance, and examples of oxidation of SiC, Si3N4 and sialon are reviewed. A description is given of the oxidation mechanism, including the oxidation product, oxidation reaction and the bubble size. The oxidation reactions are represented graphically. An assessment is made of the oxidation process, and an oxidation example of silicon ceramics is given.

  10. Stabilization of elusive silicon oxides.

    PubMed

    Wang, Yuzhong; Chen, Mingwei; Xie, Yaoming; Wei, Pingrong; Schaefer, Henry F; Schleyer, Paul von R; Robinson, Gregory H

    2015-06-01

    Molecular SiO2 and other simple silicon oxides have remained elusive despite the indispensable use of silicon dioxide materials in advanced electronic devices. Owing to the great reactivity of silicon-oxygen double bonds, as well as the low oxidation state of silicon atoms, the chemistry of simple silicon oxides is essentially unknown. We now report that the soluble disilicon compound, L:Si=Si:L (where L: = :C{N(2,6-(i)Pr2C6H3)CH}2), can be directly oxidized by N2O and O2 to give the carbene-stabilized Si2O3 and Si2O4 moieties, respectively. The nature of the silicon oxide units in these compounds is probed by spectroscopic methods, complementary computations and single-crystal X-ray diffraction.

  11. Silicon oxidation in fluoride solutions

    NASA Technical Reports Server (NTRS)

    Sancier, K. M.; Kapur, V.

    1980-01-01

    Silicon is produced in a NaF, Na2SiF6, and Na matrix when SiF4 is reduced by metallic sodium. Hydrogen is evolved during acid leaching to separate the silicon from the accompanying reaction products, NaF and Na2SiF6. The hydrogen evolution reaction was studied under conditions simulating leaching conditions by making suspensions of the dry silicon powder in aqueous fluoride solutions. The mechanism for the hydrogen evolution is discussed in terms of spontaneous oxidation of silicon resulting from the cooperative effects of (1) elemental sodium in the silicon that reacts with water to remove a protective silica layer, leaving clean reactive silicon, and (2) fluoride in solution that complexes with the oxidized silicon in solution and retards formation of a protective hydrous oxide gel.

  12. Structure, defects, and strain in silicon-silicon oxide interfaces

    SciTech Connect

    Kovačević, Goran Pivac, Branko

    2014-01-28

    The structure of the interfaces between silicon and silicon-oxide is responsible for proper functioning of MOSFET devices while defects in the interface can deteriorate this function and lead to their failure. In this paper we modeled this interface and characterized its defects and strain. MD simulations were used for reconstructing interfaces into a thermodynamically stable configuration. In all modeled interfaces, defects were found in the form of three-coordinated silicon atom, five coordinated silicon atom, threefold-coordinated oxygen atom, or displaced oxygen atom. Three-coordinated oxygen atom can be created if dangling bonds on silicon are close enough. The structure and stability of three-coordinated silicon atoms (P{sub b} defect) depend on the charge as well as on the electric field across the interface. The negatively charged P{sub b} defect is the most stable one, but the electric field resulting from the interface reduces that stability. Interfaces with large differences in periodic constants of silicon and silicon oxide can be stabilized by buckling of silicon layer. The mechanical stress resulted from the interface between silicon and silicon oxide is greater in the silicon oxide layer. Ab initio modeling of clusters representing silicon and silicon oxide shows about three time larger susceptibility to strain in silicon oxide than in silicon if exposed to the same deformation.

  13. Silicon Alignment Pins: An Easy Way to Realize a Wafer-to-Wafer Alignment

    NASA Technical Reports Server (NTRS)

    Jung-Kubiak, Cecile; Reck, Theodore J.; Lin, Robert H.; Peralta, Alejandro; Gill, John J.; Lee, Choonsup; Siles, Jose; Toda, Risaku; Chattopadhyay, Goutam; Cooper, Ken B.; Mehdi, Imran; Thomas, Bertrand

    2013-01-01

    Submillimeter heterodyne instruments play a critical role in addressing fundamental questions regarding the evolution of galaxies as well as being a crucial tool in planetary science. To make these instruments compatible with small platforms, especially for the study of the outer planets, or to enable the development of multi-pixel arrays, it is essential to reduce the mass, power, and volume of the existing single-pixel heterodyne receivers. Silicon micromachining technology is naturally suited for making these submillimeter and terahertz components, where precision and accuracy are essential. Waveguide and channel cavities are etched in a silicon bulk material using deep reactive ion etching (DRIE) techniques. Power amplifiers, multiplier and mixer chips are then integrated and the silicon pieces are stacked together to form a supercompact receiver front end. By using silicon micromachined packages for these components, instrument mass can be reduced and higher levels of integration can be achieved. A method is needed to assemble accurately these silicon pieces together, and a technique was developed here using etched pockets and silicon pins to align two wafers together.

  14. Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers

    NASA Astrophysics Data System (ADS)

    Cunning, Benjamin V.; Ahmed, Mohsin; Mishra, Neeraj; Ranjbar Kermany, Atieh; Wood, Barry; Iacopi, Francesca

    2014-08-01

    Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices.

  15. Method of forming buried oxide layers in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2000-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  16. Fabrication and optical simulation of vertically aligned silicon nanowires

    NASA Astrophysics Data System (ADS)

    Hossain, M. K.; Salhi, B.; Mukhaimer, A. W.; Al-Sulaiman, F. A.

    2016-10-01

    Silicon nanowires (Si-NWs) have been considered widely as a perfect light absorber with strong evidence of enhanced optical functionalities. Here we report finite-difference time-domain simulations for Si-NWs to elucidate the key factors that determine enhanced light absorption, energy flow behavior, electric field profile, and excitons generation rate distribution. To avoid further complexity, a single Si-NW of cylindrical shape was modeled on c-Si and optimized to elucidate the aforementioned characteristics. Light absorption and energy flow distribution confirmed that Si-NW facilitates to confine photon absorption of several orders of enhancement whereas the energy flow is also distributed along the wire itself. With reference to electric field and excitons generation distribution it was revealed that Si-NW possesses the sites of strongest field distributions compared to those of flat silicon wafer. To realize the potential of Si-NWs-based thin film solar cell, a simple process was adopted to acquire vertically aligned Si-NWs grown on c-Si wafer. Further topographic characterizations were conducted through scanning electron microscope and tunneling electron microscope-coupled energy-dispersive spectroscopy.

  17. Structural Evolution of Silicon Oxide Nanowires via Head-Growth Solid-Liquid-Solid Process

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Hang; Chan, Shih-Yu; Chen, Chia-Fu

    2007-11-01

    In this paper, we propose a growth mechanism for silicon oxide nanowires (SiONWs) as a unique solid-liquid-solid process. SiONWs were synthesized in a furnace at 1000 °C and cooled at a high rate. Nickel and gold were introduced as catalysts to dissolve and precipitate the silicon oxide originally prepared by wet oxidation. The ratio of nickel to gold determined the precipitation rate and different “octopus-like” structures were formed. At a specific cooling rate, composition and amount of a catalyst, aligned silicon oxide nanowires with unattached ends were obtained.

  18. Oxidation of evaporated porous silicon rugate filters.

    PubMed

    Robbie, Kevin; Cui, Yan; Elliott, Chelsea; Kaminska, Kate

    2006-11-10

    Rugate filters are thin-film optical interference coatings with sinusoidal variation of the refractive index. Several of these filters were fabricated with glancing angle deposition, which exploits atomic competition during growth to create nanoporous materials with controllable effective refractive index. This method enables the fabrication of devices with almost arbitrary refractive index profiles varying between the ambient, 1.0, and the index of the film material, in this case silicon with an index of 4.0 (at 600 nm). As these filters are inherently porous, oxidation of the silicon can occur throughout the device layer, and here we study the intentional oxidation of silicon filters by high-temperature reaction with gaseous oxygen. We find that a significant portion of the silicon filter oxidizes in approximately 10 min when heated to 600 degrees C-650 degrees C in an oxygen environment; oxidation then continues slowly over several hours. The presence of water vapor has little apparent effect on the oxidation reaction, and attempts to oxidize with ozone at room temperature were unsuccessful. As silicon filters oxidize to become silica, spectral blueshifts and increased short-wavelength transmittance are observed. Measured and calculated transmittance spectra generally agree, although the lack of absorption and dispersion in the theoretical model limits detailed comparison.

  19. Single crystal functional oxides on silicon

    PubMed Central

    Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Lee, Michelle; Yeung, Chun Wing; Sarker, Asis; Hsu, Shang-Lin; Yadav, Ajay Kumar; Dedon, Liv; You, Long; Khan, Asif Islam; Clarkson, James David; Hu, Chenming; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2016-01-01

    Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon. PMID:26853112

  20. Aligned carbon nanotube-silicon sheets: a novel nano-architecture for flexible lithium ion battery electrodes.

    PubMed

    Fu, Kun; Yildiz, Ozkan; Bhanushali, Hardik; Wang, Yongxin; Stano, Kelly; Xue, Leigang; Zhang, Xiangwu; Bradford, Philip D

    2013-09-25

    Aligned carbon nanotube sheets provide an engineered scaffold for the deposition of a silicon active material for lithium ion battery anodes. The sheets are low-density, allowing uniform deposition of silicon thin films while the alignment allows unconstrained volumetric expansion of the silicon, facilitating stable cycling performance. The flat sheet morphology is desirable for battery construction.

  1. Fabrication and characterization of well-aligned and ultra-sharp silicon nanotip array

    PubMed Central

    2012-01-01

    Well-defined, uniform, and large-area nanoscaled tips are of great interest for scanning probe microscopy and high-efficiency field emission. An ultra-sharp nanotip causes higher electrical field and, hence, improves the emission current. In this paper, a large-area and well-aligned ultra-sharp nanotip arrays by reactive ion etching and oxidation techniques are fabricated. The apex of nanotips can be further sharpened to reach 3-nm radius by subsequent oxidation and etching process. A schematic model to explain the formation of nanotip array is proposed. When increasing the etching time, the photoresist on top of the nanotip is also consumed, and the exposed silicon substrate is etched away to form the nanotip. At the end, the photoresist is consumed completely and a nanotip with pyramid-like shape is developed. The field emission property was measured, and the turn-on field and work function of the ultra-sharp nanotip was about 5.37 V/μm and 4.59 eV, respectively. A nanotip with an oxide layer capped on the sidewall is also fabricated in this paper. Comparing to the uncapped nanotip, the oxide-capped sample exhibits stable and excellent field emission property against environmental disturbance. PMID:22330967

  2. Oxide driven strength evolution of silicon surfaces

    SciTech Connect

    Grutzik, Scott J.; Zehnder, Alan T.; Milosevic, Erik; Boyce, Brad L.

    2015-11-21

    Previous experiments have shown a link between oxidation and strength changes in single crystal silicon nanostructures but provided no clues as to the mechanisms leading to this relationship. Using atomic force microscope-based fracture strength experiments, molecular dynamics modeling, and measurement of oxide development with angle resolved x-ray spectroscopy we study the evolution of strength of silicon (111) surfaces as they oxidize and with fully developed oxide layers. We find that strength drops with partial oxidation but recovers when a fully developed oxide is formed and that surfaces intentionally oxidized from the start maintain their high initial strengths. MD simulations show that strength decreases with the height of atomic layer steps on the surface. These results are corroborated by a completely separate line of testing using micro-scale, polysilicon devices, and the slack chain method in which strength recovers over a long period of exposure to the atmosphere. Combining our results with insights from prior experiments we conclude that previously described strength decrease is a result of oxidation induced roughening of an initially flat silicon (1 1 1) surface and that this effect is transient, a result consistent with the observation that surfaces flatten upon full oxidation.

  3. Alignment-enhancing feed-through conductors for stackable silicon-on-sapphire wafers

    NASA Technical Reports Server (NTRS)

    Anthony, Thomas R. (Inventor)

    1983-01-01

    Alignment-enhancing electrically conductive feed-through paths are provided for the high-speed low-loss transfer of electrical signals between integrated circuits of a plurality of silicon-on-sapphire bodies arrayed in a stack. The alignment-enhancing feed-throughs are made by a process involving the drilling of holes through the body, double-sided sputtering, electroplating, and the filling of the holes with solder by capillary action. The alignment-enhancing feed-throughs are activated by forming a stack of wafers and remelting the solder whereupon the wafers, and the feed-through paths, are pulled into alignment by surface tension forces.

  4. Liquid crystallinity driven highly aligned large graphene oxide composites

    SciTech Connect

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong; Kim, Sang Ouk

    2015-04-15

    Graphene is an emerging graphitic carbon materials, consisting of sp{sup 2} hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented within flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites. - Graphical abstract: Liquid crystalline LGO aqueous dispersions are spontaneous parallel aligned between geometric confinement for highly aligned LGO/polymer composite fabrication. - Highlights: • A simple fabrication method for highly aligned LGO/PDMS composites is proposed. • LGO aqueous dispersion shows nematic liquid crystalline phase at 0.8 mg/ml. • In nematic phase, LGO flakes are highly aligned by geometric confinement. • Infiltration of PDMS into freeze-dried LGO allows highly aligned LGO/PDMS composites.

  5. Silicon Carbide Nanotube Oxidation at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  6. Functionalised silicon oxide nanoparticles for fingermark detection.

    PubMed

    Moret, Sébastien; Bécue, Andy; Champod, Christophe

    2016-02-01

    Over the past decade, the use of nanotechnology for fingermark detection has been attracting a lot of attention. A substantial number of nanoparticle types has thus been studied and applied with varying success. However, despite all efforts, few publications present clear supporting evidence of their superiority over standard and commonly used techniques. This paper focuses on a rarely studied type of nanoparticles that regroups all desired properties for effective fingermark detection: silicon oxide. These nanoparticles offer optical and surface properties that can be tuned to provide optimal detection. This study explores their potential as a new method for fingermark detection. Detection conditions, outer functionalisations and optical properties were optimised and a first evaluation of the technique is presented. Dye-doped silicon oxide nanoparticles were assessed against a one-step luminescent cyanoacrylate. Both techniques were compared on natural fingermarks from three donors collected on four different non-porous substrates. On average, the two techniques performed similarly but silicon oxide detected marks with a better homogeneity and was less affected by donor inter-variability. The technique remains to be further optimised and yet silicon oxide nanoparticles already show great promises for effective fingermark detection.

  7. Method of making silicon carbide-silicon composite having improved oxidation resistance

    NASA Technical Reports Server (NTRS)

    Luthra, Krishan Lal (Inventor); Wang, Hongyu (Inventor)

    2002-01-01

    A Silicon carbide-silicon matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is provided. A method is given for sealing matrix cracks in situ in melt infiltrated silicon carbide-silicon matrix composites. The composite cracks are sealed by the addition of various additives, such as boron compounds, into the melt infiltrated silicon carbide-silicon matrix.

  8. Silicon carbide-silicon composite having improved oxidation resistance and method of making

    NASA Technical Reports Server (NTRS)

    Luthra, Krishan Lal (Inventor); Wang, Hongyu (Inventor)

    1999-01-01

    A Silicon carbide-silicon matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is provided. A method is given for sealing matrix cracks in situ in melt infiltrated silicon carbide-silicon matrix composites. The composite cracks are sealed by the addition of various additives, such as boron compounds, into the melt infiltrated silicon carbide-silicon matrix.

  9. Liquid crystallinity driven highly aligned large graphene oxide composites

    NASA Astrophysics Data System (ADS)

    Lee, Kyung Eun; Oh, Jung Jae; Yun, Taeyeong; Kim, Sang Ouk

    2015-04-01

    Graphene is an emerging graphitic carbon materials, consisting of sp2 hybridized two dimensinal honeycomb structure. It has been widely studied to incorporate graphene with polymer to utilize unique property of graphene and reinforce electrical, mechanical and thermal property of polymer. In composite materials, orientation control of graphene significantly influences the property of composite. Until now, a few method has been developed for orientation control of graphene within polymer matrix. Here, we demonstrate facile fabrication of high aligned large graphene oxide (LGO) composites in polydimethylsiloxane (PDMS) matrix exploiting liquid crystallinity. Liquid crystalline aqueous dispersion of LGO is parallel oriented within flat confinement geometry. Freeze-drying of the aligned LGO dispersion and subsequent infiltration with PDMS produce highly aligned LGO/PDMS composites. Owing to the large shape anisotropy of LGO, liquid crystalline alignment occurred at low concentration of 2 mg/ml in aqueous dispersion, which leads to the 0.2 wt% LGO loaded composites.

  10. Silica substrate or portion formed from oxidation of monocrystalline silicon

    DOEpatents

    Matzke, Carolyn M.; Rieger, Dennis J.; Ellis, Robert V.

    2003-07-15

    A method is disclosed for forming an inclusion-free silica substrate using a monocrystalline silicon substrate as the starting material and oxidizing the silicon substrate to convert it entirely to silica. The oxidation process is performed from both major surfaces of the silicon substrate using a conventional high-pressure oxidation system. The resulting product is an amorphous silica substrate which is expected to have superior etching characteristics for microfabrication than conventional fused silica substrates. The present invention can also be used to convert only a portion of a monocrystalline silicon substrate to silica by masking the silicon substrate and locally thinning a portion the silicon substrate prior to converting the silicon portion entirely to silica. In this case, the silica formed by oxidizing the thinned portion of the silicon substrate can be used, for example, as a window to provide optical access through the silicon substrate.

  11. Alignment of the CMS silicon strip tracker during stand-alone commissioning

    SciTech Connect

    Adam, W.; et al.

    2009-07-01

    The results of the CMS tracker alignment analysis are presented using the data from cosmic tracks, optical survey information, and the laser alignment system at the Tracker Integration Facility at CERN. During several months of operation in the spring and summer of 2007, about five million cosmic track events were collected with a partially active CMS Tracker. This allowed us to perform first alignment of the active silicon modules with the cosmic tracks using three different statistical approaches; validate the survey and laser alignment system performance; and test the stability of Tracker structures under various stresses and temperatures ranging from +15C to -15C. Comparison with simulation shows that the achieved alignment precision in the barrel part of the tracker leads to residual distributions similar to those obtained with a random misalignment of 50 (80) microns in the outer (inner) part of the barrel.

  12. Multipoint alignment monitoring with amorphous silicon position detectors in a complex light path

    NASA Astrophysics Data System (ADS)

    Alberdi, J.; Arce, P.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.; Calderón, A.; Gómez, G.; González-Sánchez, F. J.; Martínez-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Árbol, P.; Sobrón, M.; Vila, I.; Virto, A. L.

    2010-12-01

    This document presents an application of the new generation of amorphous silicon position detecting (ASPD) sensors to multipoint alignment. Twelve units are monitored along a 20 m long laser beam, where the light path is deflected by 90° using a pentaprism.

  13. Fabricating vertically aligned sub-20 nm Si nanowire arrays by chemical etching and thermal oxidation

    NASA Astrophysics Data System (ADS)

    Li, Luping; Fang, Yin; Xu, Cheng; Zhao, Yang; Zang, Nanzhi; Jiang, Peng; Ziegler, Kirk J.

    2016-04-01

    Silicon nanowires (SiNWs) are appealing building blocks in various applications, including photovoltaics, photonics, and sensors. Fabricating SiNW arrays with diameters <100 nm remains challenging through conventional top-down approaches. In this work, chemical etching and thermal oxidation are combined to fabricate vertically aligned, sub-20 nm SiNW arrays. Defect-free SiNWs with diameters between 95 and 200 nm are first fabricated by nanosphere (NS) lithography and chemical etching. The key aspects for defect-free SiNW fabrication are identified as: (1) achieving a high etching selectivity during NS size reduction; (2) retaining the circular NS shape with smooth sidewalls; and (3) using a directional metal deposition technique. SiNWs with identical spacing but variable diameters are demonstrated by changing the reactive ion etching power. The diameter of the SiNWs is reduced by thermal oxidation, where self-limiting oxidation is encountered after oxidizing the SiNWs at 950 °C for 1 h. A second oxidation is performed to achieve vertically aligned, sub-20 nm SiNW arrays. Si/SiO2 core/shell NWs are obtained before removing the oxidized shell. HRTEM imaging shows that the SiNWs have excellent crystallinity.

  14. Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates

    NASA Astrophysics Data System (ADS)

    Guerrera, S. A.; Akinwande, A. I.

    2016-07-01

    We developed a fabrication process for embedding a dense array (108 cm-2) of high-aspect-ratio silicon nanowires (200 nm diameter and 10 μm tall) in a dielectric matrix and then structured/exposed the tips of the nanowires to form self-aligned gate field emitter arrays using chemical mechanical polishing (CMP). Using this structure, we demonstrated a high current density (100 A cm-2), uniform, and long lifetime (>100 h) silicon field emitter array architecture in which the current emitted by each tip is regulated by the silicon nanowire current limiter connected in series with the tip. Using the current voltage characteristics and with the aid of numerical device models, we estimated the tip radius of our field emission arrays to be ≈4.8 nm, as consistent with the tip radius measured using a scanning electron microscope (SEM).

  15. Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates

    NASA Astrophysics Data System (ADS)

    Guerrera, S. A.; Akinwande, A. I.

    2016-07-01

    We developed a fabrication process for embedding a dense array (108 cm‑2) of high-aspect-ratio silicon nanowires (200 nm diameter and 10 μm tall) in a dielectric matrix and then structured/exposed the tips of the nanowires to form self-aligned gate field emitter arrays using chemical mechanical polishing (CMP). Using this structure, we demonstrated a high current density (100 A cm‑2), uniform, and long lifetime (>100 h) silicon field emitter array architecture in which the current emitted by each tip is regulated by the silicon nanowire current limiter connected in series with the tip. Using the current voltage characteristics and with the aid of numerical device models, we estimated the tip radius of our field emission arrays to be ≈4.8 nm, as consistent with the tip radius measured using a scanning electron microscope (SEM).

  16. Nanofabrication of arrays of silicon field emitters with vertical silicon nanowire current limiters and self-aligned gates.

    PubMed

    Guerrera, S A; Akinwande, A I

    2016-07-22

    We developed a fabrication process for embedding a dense array (10(8) cm(-2)) of high-aspect-ratio silicon nanowires (200 nm diameter and 10 μm tall) in a dielectric matrix and then structured/exposed the tips of the nanowires to form self-aligned gate field emitter arrays using chemical mechanical polishing (CMP). Using this structure, we demonstrated a high current density (100 A cm(-2)), uniform, and long lifetime (>100 h) silicon field emitter array architecture in which the current emitted by each tip is regulated by the silicon nanowire current limiter connected in series with the tip. Using the current voltage characteristics and with the aid of numerical device models, we estimated the tip radius of our field emission arrays to be ≈4.8 nm, as consistent with the tip radius measured using a scanning electron microscope (SEM). PMID:27292120

  17. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-03-01

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures.

  18. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles

    PubMed Central

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-01-01

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures. PMID:25757800

  19. Recent progress on the self-aligned, selective-emitter silicon solar cell

    SciTech Connect

    Ruby, D.S.; Yang, P.; Roy, M.

    1997-10-01

    We developed a self-aligned emitter etchback technique that requires only a single emitter diffusion and no alignments to form self-aligned, patterned-emitter profiles. Standard commercial, screen-printed gridlines mask a plasma-etchback of the emitter. A subsequent PECVD-nitride deposition provides good surface and bulk passivation and an antireflection coating. We succeeded in finding a set of parameters which resulted in good emitter uniformity and improved cell performance. We used full-size multicrystalline silicon (mc-Si) cells processed in a commercial production line and performed a statistically designed, multiparameter experiment to optimize the use of a hydrogenation treatment to increase performance. Our initial results found a statistically significant improvement of half an absolute percentage point in cell efficiency when the self-aligned emitter etchback was combined with a 3-step PECVD-nitride surface passivation and hydrogenation treatment. 12 refs., 4 figs., 3 tabs.

  20. Method for making alignment-enhancing feed-through conductors for stackable silicon-on-sapphire

    NASA Technical Reports Server (NTRS)

    Anthony, Thomas R. (Inventor)

    1985-01-01

    Alignment-enhancing electrically conductive feed-through paths are provided for the high-speed low-loss transfer of electrical signals between integrated circuits of a plurality of silicon-on-sapphire bodies arrayed in a stack. The alignment-enhancing feed-throughs are made by a process of this invention involving the drilling of holes through the body, double-sided sputtering, electroplating, and the filling of the holes with solder by capillary action. The alignment-enhancing feed-throughs are activated by forming a stack of wafers and remelting the solder whereupon the wafers, and the feed-through paths, are pulled into alignment by surface tension forces.

  1. Fouling Study of Silicon Oxide Pores Exposed to Tap Water

    SciTech Connect

    Nilsson, J.; Bourcier, W.L.; Lee, J.R.I.; Letant, S.E.; /LLNL, Livermore

    2007-07-12

    We report on the fouling of Focused Ion Beam (FIB)-fabricated silicon oxide nanopores after exposure to tap water for two weeks. Pore clogging was monitored by Scanning Electron Microscopy (SEM) on both bare silicon oxide and chemically functionalized nanopores. While fouling occurred on hydrophilic silicon oxide pore walls, the hydrophobic nature of alkane chains prevented clogging on the chemically functionalized pore walls. These results have implications for nanopore sensing platform design.

  2. Phonon processes in vertically aligned silicon nanowire arrays produced by low-cost all-solution galvanic displacement method

    NASA Astrophysics Data System (ADS)

    Banerjee, Debika; Trudeau, Charles; Gerlein, Luis Felipe; Cloutier, Sylvain G.

    2016-03-01

    The nanoscale engineering of silicon can significantly change its bulk optoelectronic properties to make it more favorable for device integration. Phonon process engineering is one way to enhance inter-band transitions in silicon's indirect band structure alignment. This paper demonstrates phonon localization at the tip of silicon nanowires fabricated by galvanic displacement using wet electroless chemical etching of a bulk silicon wafer. High-resolution Raman micro-spectroscopy reveals that such arrayed structures of silicon nanowires display phonon localization behaviors, which could help their integration into the future generations of nano-engineered silicon nanowire-based devices such as photodetectors and solar cells.

  3. Thermoelectrics from silicon nanoparticles: the influence of native oxide

    NASA Astrophysics Data System (ADS)

    Petermann, Nils; Stötzel, Julia; Stein, Niklas; Kessler, Victor; Wiggers, Hartmut; Theissmann, Ralf; Schierning, Gabi; Schmechel, Roland

    2015-06-01

    Thermoelectric materials were synthesized by current-assisted sintering of doped silicon nanoparticles produced in a microwave-plasma reactor. Due to their affinity to oxygen, the nanoparticles start to oxidize when handled in air and even a thin surface layer of native silicon oxide leads to a significant increase in the oxide volume ratio. This results in a considerable incorporation of oxygen into the sintered pellets, thus affecting the thermoelectric performance. To investigate the necessity of inert handling of the raw materials, the thermoelectric transport properties of sintered nanocrystalline silicon samples were characterized with respect to their oxygen content. An innovative method allowing a quantitative silicon oxide analysis by means of electron microscopy was applied: the contrast between areas of high and low electrical conductivity was attributed to the silicon matrix and silicon oxide precipitates, respectively. Thermoelectric characterization revealed that both, electron mobility and thermal conductivity decrease with increasing silicon oxide content. A maximum figure of merit with zT = 0.45 at 950 °C was achieved for samples with a silicon oxide mass fraction of 9.5 and 21.4% while the sample with more than 25% of oxygen clearly indicates a negative impact of the oxygen on the electron mobility. Contribution to the Topical Issue "Silicon and Silicon-related Materials for Thermoelectricity", edited by Dario Narducci.

  4. Evaluation of transition metal oxide as carrier-selective contacts for silicon heterojunction solar cells

    SciTech Connect

    Ding, L.; Boccard, Matthieu; Holman, Zachary; Bertoni, M.

    2015-04-06

    "Reducing light absorption in the non-active solar cell layers, while enabling the extraction of the photogenerated minority carriers at quasi-Fermi levels are two key factors to improve current generation and voltage, and therefore efficiency of silicon heterojunction solar devices. To address these two critical aspects, transition metal oxide materials have been proposed as alternative to the n- and p-type amorphous silicon used as electron and hole selective contacts, respectively. Indeed, transition metal oxides such as molybdenum oxide, titanium oxide, nickel oxide or tungsten oxide combine a wide band gap typically over 3 eV with a band structure and theoretical band alignment with silicon that results in high transparency to the solar spectrum and in selectivity for the transport of only one carrier type. Improving carrier extraction or injection using transition metal oxide has been a topic of investigation in the field of organic solar cells and organic LEDs; from these pioneering works a lot of knowledge has been gained on materials properties, ways to control these during synthesis and deposition, and their impact on device performance. Recently, the transfer of some of this knowledge to silicon solar cells and the successful application of some metal oxide to contact heterojunction devices have gained much attention. In this contribution, we investigate the suitability of various transition metal oxide films (molybdenum oxide, titanium oxide, and tungsten oxide) deposited either by thermal evaporation or sputtering as transparent hole or electron selective transport layer for silicon solar cells. In addition to systematically characterize their optical and structural properties, we use photoemission spectroscopy to relate compound stoichiometry to band structure and characterize band alignment to silicon. The direct silicon/metal oxide interface is further analyzed by quasi-steady state photoconductance decay method to assess the quality of surface

  5. Adaptive behaviour of silicon oxide memristive nanostructures

    NASA Astrophysics Data System (ADS)

    Korolev, D. S.; Mikhaylov, A. N.; Belov, A. I.; Sergeev, V. A.; Antonov, I. N.; Gorshkov, O. N.; Tetelbaum, D. I.

    2016-08-01

    The response to electrical pulses of various parameters has been studied for the CMOS-compatible memristive nanostructures on the basis of silicon oxide demonstrating reproducible resistive switching. It is established that an increase in the amplitude or width of a single programming pulse is followed by the gradual decrease in the device resistivity. By applying periodic pulse sequences of different polarity it is possible to obtain both lower and higher resistance states. This adaptive behavior is analogous to synaptic plasticity and considered as one of the main conditions for the application of memristive devices in neuromorphic systems and synaptic electronics.

  6. The Active Oxidation of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Myers, Dwight L.

    2009-01-01

    The high temperature oxidation of silicon carbide occurs in two very different modes. Passive oxidation forms a protective oxide film which limits further attack of the SiC: SiC(s) + 3/2 O2(g) = SiO2(s) + CO(g) Active oxidation forms a volatile oxide and may lead to extensive attack of the SiC: SiC(s) + O2(g) = SiO(g) + CO(g) Generally passive oxidation occurs at higher oxidant pressures and active oxidation occurs at lower oxidant pressures and elevated temperatures. Active oxidation is a concern for reentry, where the flight trajectory involves the latter conditions. Thus the transition points and rates of active oxidation are a major concern. Passive/active transitions have been studied by a number of investigators. An examination of the literature indicates many questions remain regarding the effect of impurity, the hysteresis of the transition (i.e. the difference between active-to-passive and passive-toactive), and the effect of total pressure. In this study we systematically investigate each of these effects. Experiments were done in both an alumina furnace tube and a quartz furnace tube. It is known that alumina tubes release impurities such as sodium and increase the kinetics in the passive region [1]. We have observed that the active-to-passive transition occurs at a lower oxygen pressure when the experiment is conducted in alumina tubes and the resultant passive silica scale contains sodium. Thus the tests in this study are conducted in quartz tubes. The hysteresis of the transition has been discussed in the detail in the original theoretical treatise of this problem for pure silicon by Wagner [2], yet there is little mention of it in subsequent literature. Essentially Wagner points out that the active-to-passive transition is governed by the criterion for a stable Si/SiO2 equilibria and the passive-to-active transition is governed by the decomposition of the SiO2 film. A series of experiments were conducted for active-to-passive and passive

  7. Ultrafast laser functionalized rare phased gold-silicon/silicon oxide nanostructured hybrid biomaterials.

    PubMed

    Premnath, P; Tan, B; Venkatakrishnan, K

    2015-12-01

    We introduce a hybrid nanostructured biomaterial that is a combination of rare phases of immiscible gold and silicon oxide, functionalized via ultrafast laser synthesis. For the first time, we show cancer controlling properties of rare phases of gold silicides, which include Au7Si, Au5Si, Au0.7Si2.3 and Au8Si2. Conventionally, pure forms of gold and silicon/silicon oxide are extensively employed in targeted therapy and drug delivery systems due to their unique properties. While silicon and silicon oxide nanoparticles have shown biocompatibility, gold nanoparticles show conflicting results based on their size and material properties. Several studies have shown that gold and silicon combinations produce cell controlling properties, however, these studies were not able to produce a homogenous combination of gold and silicon, owing to its immiscibility. A homogenous combination of gold and silicon may potentially enable properties that have not previously been reported. We describe rare phased gold-silicon oxide nanostructured hybrid biomaterials and its unique cancer controlling properties, owing to material properties, concentration, size and density. The gold-silicon oxide nanostructured hybrid is composed of individual gold-silicon oxide nanoparticles in various concentrations of gold and silicon, some nanoparticles possess a gold-core and silicon-shell like structure. The individual nanoparticles are bonded together forming a three dimensional nanostructured hybrid. The interaction of the nanostructured hybrids with cervical cancer cells showed a 96% reduction in 24h. This engineered nanostructured hybrid biomaterial presents significant potential due to the combination of immiscible gold and silicon oxide in varying phases and can potentially satiate the current vacuum in cancer therapy.

  8. Ultrafast laser functionalized rare phased gold-silicon/silicon oxide nanostructured hybrid biomaterials.

    PubMed

    Premnath, P; Tan, B; Venkatakrishnan, K

    2015-12-01

    We introduce a hybrid nanostructured biomaterial that is a combination of rare phases of immiscible gold and silicon oxide, functionalized via ultrafast laser synthesis. For the first time, we show cancer controlling properties of rare phases of gold silicides, which include Au7Si, Au5Si, Au0.7Si2.3 and Au8Si2. Conventionally, pure forms of gold and silicon/silicon oxide are extensively employed in targeted therapy and drug delivery systems due to their unique properties. While silicon and silicon oxide nanoparticles have shown biocompatibility, gold nanoparticles show conflicting results based on their size and material properties. Several studies have shown that gold and silicon combinations produce cell controlling properties, however, these studies were not able to produce a homogenous combination of gold and silicon, owing to its immiscibility. A homogenous combination of gold and silicon may potentially enable properties that have not previously been reported. We describe rare phased gold-silicon oxide nanostructured hybrid biomaterials and its unique cancer controlling properties, owing to material properties, concentration, size and density. The gold-silicon oxide nanostructured hybrid is composed of individual gold-silicon oxide nanoparticles in various concentrations of gold and silicon, some nanoparticles possess a gold-core and silicon-shell like structure. The individual nanoparticles are bonded together forming a three dimensional nanostructured hybrid. The interaction of the nanostructured hybrids with cervical cancer cells showed a 96% reduction in 24h. This engineered nanostructured hybrid biomaterial presents significant potential due to the combination of immiscible gold and silicon oxide in varying phases and can potentially satiate the current vacuum in cancer therapy. PMID:26539809

  9. Improved performance of self-aligned, selective-emitter silicon solar cells

    SciTech Connect

    Ruby, D.S.; Yang, P.; Zaidi, S.; Brueck, S.; Roy, M.; Narayanan, S.

    1998-08-01

    The authors improved a self-aligned emitter etchback technique that requires only a single emitter diffusion and no alignment to form self-aligned, patterned-emitter profiles. Standard commercial screen-printed gridlines mask a plasma-etchback of the emitter. A subsequent PECVD-nitride deposition provides good surface and bulk passivation and an antireflection coating. They used full-size multicrystalline silicon (mc-Si) cells processed in a commercial production line and performed a statistically designed multiparameter experiment to optimize the use of a hydrogenation treatment to increase performance. They obtained an improvement of almost a full percentage point in cell efficiency when the self-aligned emitter etchback was combined with an optimized 3-step PECVD-nitride surface passivation and hydrogenation treatment. They also investigated the inclusion of a plasma-etching process that results in a low-reflectance, textured surface on multicrystalline silicon cells. Preliminary results indicate reflectance can be significantly reduced without etching away the emitter diffusion.

  10. Improved performance of self-aligned, selective-emitter silicon solar cells

    SciTech Connect

    Ruby, D.S.; Yang, P.; Zaidi, S.; Brueck, S.; Roy, M.; Narayanan, S.

    1997-12-31

    The authors improved a self-aligned emitter etchback technique that requires only a single emitter diffusion and no alignments to form self-aligned, patterned-emitter profiles. Standard commercial screen-printed gridlines mask a plasma-etchback of the emitter. A subsequent PECVD-nitride deposition provides good surface and bulk passivation and an antireflection coating. They used full-size multicrystalline silicon (mc-Si) cells processed in a commercial production line and performed a statistically designed multiparameter experiment to optimize the use of a hydrogenation treatment to increase performance. They obtained an improvement of almost a full percentage point in cell efficiency when the self-aligned emitter etchback was combined with an optimized 3-step PECVD-nitride surface passivation and hydrogenation treatment. The authors also investigated the inclusion of a plasma-etching process that results in a low-reflectance, textured surface on multicrystalline silicon cells. Preliminary results indicate reflectance can be significantly reduced without etching away the emitter diffusion.

  11. Infrared Dielectric Properties of Low-Stress Silicon Oxide

    NASA Technical Reports Server (NTRS)

    Cataldo, Giuseppe; Wollack, Edward J.; Brown, Ari D.; Miller, Kevin H.

    2016-01-01

    Silicon oxide thin films play an important role in the realization of optical coatings and high-performance electrical circuits. Estimates of the dielectric function in the far- and mid-infrared regime are derived from the observed transmittance spectrum for a commonly employed low-stress silicon oxide formulation. The experimental, modeling, and numerical methods used to extract the dielectric function are presented.

  12. 25 Gbps silicon photonics multi-mode fiber link with highly alignment tolerant vertically illuminated germanium photodiode

    NASA Astrophysics Data System (ADS)

    Okumura, Tadashi; Wakayama, Yuki; Matsuoka, Yasunobu; Oda, Katsuya; Sagawa, Misuzu; Takemoto, Takashi; Nomoto, Etsuko; Arimoto, Hideo; Tanaka, Shigehisa

    2015-02-01

    For a multi mode fiber optical link, a high speed silicon photonics receiver based on a highly alignment tolerant vertically illuminated germanium photodiode was developed. The germanium photodiode has 20 GHz bandwidth and responsivity of 0.5 A/W with highly alignment tolerance for passive optical assembly. The receiver achieves 25 Gbps error free operation after 100 m multi mode fiber transmission.

  13. Silicon radiation detectors with oxide charge state compensation

    SciTech Connect

    Walton, J.T.; Goulding, F.S.

    1986-10-01

    This paper discusses the use of boron implantation on high resistivity P-type silicon before oxide growth to compensate for the presence of charge states in the oxide and oxide/silicon interface. The presence of these charge states on high resistivity P-type silicon produces an inversion layer which causes high leakage currents on N/sup +/P junctions and high surface conductance. Compensating the surface region by boron implantation is shown to result in oxide passivated N/sup +/P junctions with very low leakage currents and with low surface conductance.

  14. Towards a full integration of vertically aligned silicon nanowires in MEMS using silane as a precursor.

    PubMed

    Gadea, G; Morata, A; Santos, J D; Dávila, D; Calaza, C; Salleras, M; Fonseca, L; Tarancón, A

    2015-05-15

    Silicon nanowires present outstanding properties for electronics, energy, and environmental monitoring applications. However, their integration into microelectromechanical systems (MEMS) is a major issue so far due to low compatibility with mainstream technology, which complicates patterning and controlled morphology. This work addresses the growth of 〈111〉 aligned silicon nanowire arrays fully integrated into standard MEMS processing by means of the chemical vapor deposition-vapor liquid solid method (CVD-VLS) using silane as a precursor. A reinterpretation of the galvanic displacement method is presented for selectively depositing gold nanoparticles of controlled size and shape. Moreover, a comprehensive analysis of the effects of synthesis temperature and pressure on the growth rate and alignment of nanowires is presented for the most common silicon precursor, i.e., silane. Compared with previously reported protocols, the redefined galvanic displacement together with a silane-based CVD-VLS growth methodology provides a more standard and low-temperature (<650 °C) synthesis scheme and a compatible route to reliably grow Si nanowires in MEMS for advanced applications.

  15. Towards a full integration of vertically aligned silicon nanowires in MEMS using silane as a precursor.

    PubMed

    Gadea, G; Morata, A; Santos, J D; Dávila, D; Calaza, C; Salleras, M; Fonseca, L; Tarancón, A

    2015-05-15

    Silicon nanowires present outstanding properties for electronics, energy, and environmental monitoring applications. However, their integration into microelectromechanical systems (MEMS) is a major issue so far due to low compatibility with mainstream technology, which complicates patterning and controlled morphology. This work addresses the growth of 〈111〉 aligned silicon nanowire arrays fully integrated into standard MEMS processing by means of the chemical vapor deposition-vapor liquid solid method (CVD-VLS) using silane as a precursor. A reinterpretation of the galvanic displacement method is presented for selectively depositing gold nanoparticles of controlled size and shape. Moreover, a comprehensive analysis of the effects of synthesis temperature and pressure on the growth rate and alignment of nanowires is presented for the most common silicon precursor, i.e., silane. Compared with previously reported protocols, the redefined galvanic displacement together with a silane-based CVD-VLS growth methodology provides a more standard and low-temperature (<650 °C) synthesis scheme and a compatible route to reliably grow Si nanowires in MEMS for advanced applications. PMID:25902702

  16. Towards a full integration of vertically aligned silicon nanowires in MEMS using silane as a precursor

    NASA Astrophysics Data System (ADS)

    Gadea, G.; Morata, A.; Santos, J. D.; Dávila, D.; Calaza, C.; Salleras, M.; Fonseca, L.; Tarancón, A.

    2015-05-01

    Silicon nanowires present outstanding properties for electronics, energy, and environmental monitoring applications. However, their integration into microelectromechanical systems (MEMS) is a major issue so far due to low compatibility with mainstream technology, which complicates patterning and controlled morphology. This work addresses the growth of <111> aligned silicon nanowire arrays fully integrated into standard MEMS processing by means of the chemical vapor deposition-vapor liquid solid method (CVD-VLS) using silane as a precursor. A reinterpretation of the galvanic displacement method is presented for selectively depositing gold nanoparticles of controlled size and shape. Moreover, a comprehensive analysis of the effects of synthesis temperature and pressure on the growth rate and alignment of nanowires is presented for the most common silicon precursor, i.e., silane. Compared with previously reported protocols, the redefined galvanic displacement together with a silane-based CVD-VLS growth methodology provides a more standard and low-temperature (<650 °C) synthesis scheme and a compatible route to reliably grow Si nanowires in MEMS for advanced applications.

  17. Nitric oxide-releasing porous silicon nanoparticles.

    PubMed

    Kafshgari, Morteza Hasanzadeh; Cavallaro, Alex; Delalat, Bahman; Harding, Frances J; McInnes, Steven Jp; Mäkilä, Ermei; Salonen, Jarno; Vasilev, Krasimir; Voelcker, Nicolas H

    2014-01-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment.

  18. Nitric oxide-releasing porous silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kafshgari, Morteza Hasanzadeh; Cavallaro, Alex; Delalat, Bahman; Harding, Frances J.; McInnes, Steven JP; Mäkilä, Ermei; Salonen, Jarno; Vasilev, Krasimir; Voelcker, Nicolas H.

    2014-07-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment.

  19. Nitric oxide-releasing porous silicon nanoparticles

    PubMed Central

    2014-01-01

    In this study, the ability of porous silicon nanoparticles (PSi NPs) to entrap and deliver nitric oxide (NO) as an effective antibacterial agent is tested against different Gram-positive and Gram-negative bacteria. NO was entrapped inside PSi NPs functionalized by means of the thermal hydrocarbonization (THC) process. Subsequent reduction of nitrite in the presence of d-glucose led to the production of large NO payloads without reducing the biocompatibility of the PSi NPs with mammalian cells. The resulting PSi NPs demonstrated sustained release of NO and showed remarkable antibacterial efficiency and anti-biofilm-forming properties. These results will set the stage to develop antimicrobial nanoparticle formulations for applications in chronic wound treatment. PMID:25114633

  20. Low temperature oxidation of crystalline silicon using excimer laser irradiation

    NASA Astrophysics Data System (ADS)

    Nayar, Vishal; Boyd, Ian W.; Goodall, F. N.; Arthur, G.

    In this paper we present a study of ultra-violet laser oxidation of silicon at low temperature (< 650° C), using both 249 and 193 nm radiation. Calculation of the surface temperature rise during the laser pulses suggests that non-thermal oxidation mechanisms are present. In addition to the growth of planar thin oxides over macroscopic areas, a new technique for selectivity oxidising silicon by direct image projection, i.e., direct growth lithography (DGL) is also preliminarily presented.

  1. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOEpatents

    Ruby, Douglas S.; Schubert, William K.; Gee, James M.

    1999-01-01

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas.

  2. Silicon solar cells made by a self-aligned, selective-emitter, plasma-etchback process

    DOEpatents

    Ruby, D.S.; Schubert, W.K.; Gee, J.M.

    1999-02-16

    A potentially low-cost process for forming and passivating a selective emitter. The process uses a plasma etch of the heavily doped emitter to improve its performance. The grids of the solar cell are used to mask the plasma etch so that only the emitter in the region between the grids is etched, while the region beneath the grids remains heavily doped for low contact resistance. This process is potentially low-cost because it requires no alignment. After the emitter etch, a silicon nitride layer is deposited by plasma-enhanced, chemical vapor deposition, and the solar cell is annealed in a forming gas. 5 figs.

  3. Growth of silicon quantum dots by oxidation of the silicon nanocrystals embedded within silicon carbide matrix

    SciTech Connect

    Kole, Arindam; Chaudhuri, Partha

    2014-10-15

    A moderately low temperature (≤800 °C) thermal processing technique has been described for the growth of the silicon quantum dots (Si-QD) within microcrystalline silicon carbide (μc-SiC:H) dielectric thin films deposited by plasma enhanced chemical vapour deposition (PECVD) process. The nanocrystalline silicon grains (nc-Si) present in the as deposited films were initially enhanced by aluminium induced crystallization (AIC) method in vacuum at a temperature of T{sub v} = 525 °C. The samples were then stepwise annealed at different temperatures T{sub a} in air ambient. Analysis of the films by FTIR and XPS reveal a rearrangement of the μc-SiC:H network has taken place with a significant surface oxidation of the nc-Si domains upon annealing in air. The nc-Si grain size (D{sub XRD}) as calculated from the XRD peak widths using Scherrer formula was found to decrease from 7 nm to 4 nm with increase in T{sub a} from 250 °C to 800 °C. A core shell like structure with the nc-Si as the core and the surface oxide layer as the shell can clearly describe the situation. The results indicate that with the increase of the annealing temperature in air the oxide shell layer becomes thicker and the nc-Si cores become smaller until their size reduced to the order of the Si-QDs. Quantum confinement effect due to the SiO covered nc-Si grains of size about 4 nm resulted in a photoluminescence peak due to the Si QDs with peak energy at 1.8 eV.

  4. Self-aligned nanoforest in silicon nanowire for sensitive conductance modulation.

    PubMed

    Seol, Myeong-Lok; Ahn, Jae-Hyuk; Choi, Ji-Min; Choi, Sung-Jin; Choi, Yang-Kyu

    2012-11-14

    A self-aligned and localized nanoforest structure is constructed in a top-down fabricated silicon nanowire (SiNW). The surface-to-volume ratio (SVR) of the SiNW is enhanced due to the local nanoforest formation. The conductance modulation property of the SiNWs, which is an important characteristic in sensor and charge transfer based applications, can be largely enhanced. For the selective modification of the channel region, localized Joule-heating and subsequent metal-assisted chemical etching (mac-etch) are employed. The nanoforest is formed only in the channel region without misalignment due to the self-aligned process of Joule-heating. The modified SiNW is applied to a porphyrin-silicon hybrid device to verify the enhanced conductance modulation. The charge transfer efficiency between the porphyrin and the SiNW, which is caused by external optical excitation, is clearly increased compared to the initial SiNW. The effect of the local nanoforest formation is enhanced when longer etching times and larger widths are used. PMID:23066892

  5. Indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1982-12-28

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  6. Surface topography and alignment of liquid crystals on rubbed oxide surfaces

    NASA Astrophysics Data System (ADS)

    Nakamura, Minoru

    1981-07-01

    For several nematic liquid crystals (LC's), the relation between alignments of the LC's on rubbed oxide surfaces and rubbing pressures of the substrates is given. When the LC's take a parallel alignment to the surfaces, good homogeneous alignment is achieved at low pressures. High pressure rubbing also produces good homogeneous alignment of LC's, although alignment is perpendicular to the nonrubbed surfaces. Fine stripes of deposited cloth fibers can be observed on the cloth-rubbed oxide surfaces. The stripes consist of asymmetric projections ranging in the rubbed direction. On the basis of the asymmetric structure formed on the surface, the tilt direction of LC's and their tilt angles are interpreted.

  7. Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects.

    PubMed

    Sun, Shuangxi; Mu, Wei; Edwards, Michael; Mencarelli, Davide; Pierantoni, Luca; Fu, Yifeng; Jeppson, Kjell; Liu, Johan

    2016-08-19

    For future miniaturization of electronic systems using 3D chip stacking, new fine-pitch materials for through-silicon-via (TSV) applications are likely required. In this paper, we propose a novel carbon nanotube (CNT)/copper nanocomposite material consisting of high aspect ratio, vertically aligned CNT bundles coated with copper. These bundles, consisting of hundreds of tiny CNTs, were uniformly coated by copper through electroplating, and aspect ratios as high as 300:1 were obtained. The resistivity of this nanomaterial was found to be as low as ∼10(-8) Ω m, which is of the same order of magnitude as the resistivity of copper, and its temperature coefficient was found to be only half of that of pure copper. The main advantage of the composite TSV nanomaterial is that its coefficient of thermal expansion (CTE) is similar to that of silicon, a key reliability factor. A finite element model was set up to demonstrate the reliability of this composite material and thermal cycle simulations predicted very promising results. In conclusion, this composite nanomaterial appears to be a very promising material for future 3D TSV applications offering both a low resistivity and a low CTE similar to that of silicon. PMID:27383767

  8. Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects

    NASA Astrophysics Data System (ADS)

    Sun, Shuangxi; Mu, Wei; Edwards, Michael; Mencarelli, Davide; Pierantoni, Luca; Fu, Yifeng; Jeppson, Kjell; Liu, Johan

    2016-08-01

    For future miniaturization of electronic systems using 3D chip stacking, new fine-pitch materials for through-silicon-via (TSV) applications are likely required. In this paper, we propose a novel carbon nanotube (CNT)/copper nanocomposite material consisting of high aspect ratio, vertically aligned CNT bundles coated with copper. These bundles, consisting of hundreds of tiny CNTs, were uniformly coated by copper through electroplating, and aspect ratios as high as 300:1 were obtained. The resistivity of this nanomaterial was found to be as low as ˜10-8 Ω m, which is of the same order of magnitude as the resistivity of copper, and its temperature coefficient was found to be only half of that of pure copper. The main advantage of the composite TSV nanomaterial is that its coefficient of thermal expansion (CTE) is similar to that of silicon, a key reliability factor. A finite element model was set up to demonstrate the reliability of this composite material and thermal cycle simulations predicted very promising results. In conclusion, this composite nanomaterial appears to be a very promising material for future 3D TSV applications offering both a low resistivity and a low CTE similar to that of silicon.

  9. Versatile Particle-Based Route to Engineer Vertically Aligned Silicon Nanowire Arrays and Nanoscale Pores.

    PubMed

    Elnathan, Roey; Isa, Lucio; Brodoceanu, Daniel; Nelson, Adrienne; Harding, Frances J; Delalat, Bahman; Kraus, Tobias; Voelcker, Nicolas H

    2015-10-28

    Control over particle self-assembly is a prerequisite for the colloidal templating of lithographical etching masks to define nanostructures. This work integrates and combines for the first time bottom-up and top-down approaches, namely, particle self-assembly at liquid-liquid interfaces and metal-assisted chemical etching, to generate vertically aligned silicon nanowire (VA-SiNW) arrays and, alternatively, arrays of nanoscale pores in a silicon wafer. Of particular importance, and in contrast to current techniques, including conventional colloidal lithography, this approach provides excellent control over the nanowire or pore etching site locations and decouples nanowire or pore diameter and spacing. The spacing between pores or nanowires is tuned by adjusting the specific area of the particles at the liquid-liquid interface before deposition. Hence, the process enables fast and low-cost fabrication of ordered nanostructures in silicon and can be easily scaled up. We demonstrate that the fabricated VA-SiNW arrays can be used as in vitro transfection platforms for transfecting human primary cells.

  10. Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects

    NASA Astrophysics Data System (ADS)

    Sun, Shuangxi; Mu, Wei; Edwards, Michael; Mencarelli, Davide; Pierantoni, Luca; Fu, Yifeng; Jeppson, Kjell; Liu, Johan

    2016-08-01

    For future miniaturization of electronic systems using 3D chip stacking, new fine-pitch materials for through-silicon-via (TSV) applications are likely required. In this paper, we propose a novel carbon nanotube (CNT)/copper nanocomposite material consisting of high aspect ratio, vertically aligned CNT bundles coated with copper. These bundles, consisting of hundreds of tiny CNTs, were uniformly coated by copper through electroplating, and aspect ratios as high as 300:1 were obtained. The resistivity of this nanomaterial was found to be as low as ∼10‑8 Ω m, which is of the same order of magnitude as the resistivity of copper, and its temperature coefficient was found to be only half of that of pure copper. The main advantage of the composite TSV nanomaterial is that its coefficient of thermal expansion (CTE) is similar to that of silicon, a key reliability factor. A finite element model was set up to demonstrate the reliability of this composite material and thermal cycle simulations predicted very promising results. In conclusion, this composite nanomaterial appears to be a very promising material for future 3D TSV applications offering both a low resistivity and a low CTE similar to that of silicon.

  11. Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects.

    PubMed

    Sun, Shuangxi; Mu, Wei; Edwards, Michael; Mencarelli, Davide; Pierantoni, Luca; Fu, Yifeng; Jeppson, Kjell; Liu, Johan

    2016-08-19

    For future miniaturization of electronic systems using 3D chip stacking, new fine-pitch materials for through-silicon-via (TSV) applications are likely required. In this paper, we propose a novel carbon nanotube (CNT)/copper nanocomposite material consisting of high aspect ratio, vertically aligned CNT bundles coated with copper. These bundles, consisting of hundreds of tiny CNTs, were uniformly coated by copper through electroplating, and aspect ratios as high as 300:1 were obtained. The resistivity of this nanomaterial was found to be as low as ∼10(-8) Ω m, which is of the same order of magnitude as the resistivity of copper, and its temperature coefficient was found to be only half of that of pure copper. The main advantage of the composite TSV nanomaterial is that its coefficient of thermal expansion (CTE) is similar to that of silicon, a key reliability factor. A finite element model was set up to demonstrate the reliability of this composite material and thermal cycle simulations predicted very promising results. In conclusion, this composite nanomaterial appears to be a very promising material for future 3D TSV applications offering both a low resistivity and a low CTE similar to that of silicon.

  12. Ultrahigh-Q silicon resonators in a planarized local oxidation of silicon platform.

    PubMed

    Naiman, Alex; Desiatov, Boris; Stern, Liron; Mazurski, Noa; Shappir, Joseph; Levy, Uriel

    2015-05-01

    We describe a platform for the fabrication of smooth waveguides and ultrahigh-quality-factor (Q factor) silicon resonators using a modified local oxidation of silicon (LOCOS) technique. Unlike the conventional LOCOS process, our approach allows the fabrication of nearly planarized structures, supporting a multilayer silicon photonics configuration. Using this approach we demonstrate the fabrication and the characterization of a microdisk resonator with an intrinsic Q factor that is one of the highest Q factors achieved with a compact silicon-on-insulator platform.

  13. Discontinuous ion tracks on silicon oxide on silicon surfaces after grazing-angle heavy ion irradiation

    SciTech Connect

    Carvalho, A. M. J. F.; Marinoni, M.; Touboul, A. D.; Guasch, C.; Lebius, H.; Ramonda, M.; Bonnet, J.; Saigne, F.

    2007-02-12

    Thin silicon oxide layers on silicon have been characterized by atomic force microscopy before and after swift heavy ion irradiation with 0.63 MeV/u Pb ions at grazing angle of incidence. In this letter, the authors report the observation of extended intermittent tracks at the silicon oxide (SiO{sub 2}) surface. As a result, this raises the question of the discontinuous energy deposition at the nanometric scale. This experimental overlook is of major interest for nanostructuring and surface nanoprocessing as well as with regard to reliability of electronic components and systems.

  14. Formation of Mosaic Silicon Oxide Structure during Metal-Assisted Electrochemical Etching of Silicon at High Current Density

    NASA Astrophysics Data System (ADS)

    Cao, Dao Tran; Anh, Cao Tuan; Ngan, Luong Truc Quynh

    2016-05-01

    We have used constant-current, metal-assisted electrochemical etching of silicon in HF/H2O2/ethanol electrolyte to fabricate porous silicon. We found that, at large enough current density, the sponge-like porous silicon structure is replaced by a mosaic structure, which includes islands of various shapes emerging between trenches that have been etched downward. Energy-dispersive x-ray analysis showed that the surface of the mosaic pieces was covered with silicon oxide, while little silicon oxide developed on the surface of trenches. We suggest that the appearance of the mosaic structure can be explained by the increase in the oxidation rate of silicon when the anodic current density increases, combined with no change in the dissolution rate of silicon oxide into the solution. Consequently, above a certain value of anodic current density, there is sufficient residual silicon oxide on the etched surface to create a continuous thin film. However, if the silicon oxide layer is too thick (e.g., due to too high anodic current density or too long etching time), it will become cracked (formation of mosaic pieces), likely due to differences in thermal expansion coefficient between the amorphous silicon oxide layer and crystalline silicon substrate. The oxide is cracked at locations with many defects, and the cracks reveal the silicon substrate. Therefore, at the locations where cracks occur, etching will go sideways and downward, creating trenches.

  15. Extension of silicon emission model to silicon pillar oxidation

    NASA Astrophysics Data System (ADS)

    Kageshima, Hiroyuki; Shiraishi, Kenji; Endoh, Tetsuo

    2016-08-01

    Missing Si in the oxidation of Si pillar structures is investigated by extending the Si emission model to the oxidation of planar structures. The original Si emission model [H. Kageshima et al., Jpn. J. Appl. Phys. 38, L971 (1999)] assumes the emission of excess Si from the interface into the oxide during the oxidation process, the diffusion of the excess Si through the oxide, and the control of the oxidation rate by the concentration of remaining excess Si around the interface. By assuming the sublimation of the excess Si from the oxide surface in addition to the assumptions of the original Si emission model, the origin of the missing Si is consistently explained. It is suggested that the amount of the missing Si is enhanced by the geometrical effect of the pillar structure because the concentration of excess Si is inversely proportional to the radial position. This also suggests that the missing Si is inevitable for the thin pillar structures. Careful approaches to the oxidation process are recommended for pillar structures.

  16. Growth model of lantern-like amorphous silicon oxide nanowires

    NASA Astrophysics Data System (ADS)

    Wu, Ping; Zou, Xingquan; Chi, Lingfei; Li, Qiang; Xiao, Tan

    2007-03-01

    Silicon oxide nanowire assemblies with lantern-like morphology were synthesized by thermal evaporation of the mixed powder of SnO2 and active carbon at 1000 °C and using the silicon wafer as substrate and source. The nano-lanterns were characterized by a scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), energy-dispersive spectroscope (EDS) and selective area electron diffraction (SAED). The results show that the nano-lantern has symmetrical morphology, with one end connecting with the silicon wafer and the other end being the tin ball. The diameter of the nano-lantern is about 1.5-3.0 µm. Arc silicon oxide nanowire assemblies between the two ends have diameters ranging from 70 to 150 nm. One single catalyst tin ball catalyzes more than one amorphous nanowires' growth. In addition, the growth mechanism of the nano-lantern is discussed and a growth model is proposed. The multi-nucleation sites round the Sn droplet's perimeter are responsible for the formation of many SiOx nanowires. The growing direction of the nanowires is not in the same direction of the movement of the catalyst tin ball, resulting in the bending of the nanowires and forming the lantern-like silicon oxide morphology. The controllable synthesis of the lantern-like silicon oxide nanostructure may have potential applications in the photoelectronic devices field.

  17. Structure and method for controlling band offset and alignment at a crystalline oxide-on-semiconductor interface

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    2003-11-25

    A crystalline oxide-on-semiconductor structure and a process for constructing the structure involves a substrate of silicon, germanium or a silicon-germanium alloy and an epitaxial thin film overlying the surface of the substrate wherein the thin film consists of a first epitaxial stratum of single atomic plane layers of an alkaline earth oxide designated generally as (AO).sub.n and a second stratum of single unit cell layers of an oxide material designated as (A'BO.sub.3).sub.m so that the multilayer film arranged upon the substrate surface is designated (AO).sub.n (A'BO.sub.3).sub.m wherein n is an integer repeat of single atomic plane layers of the alkaline earth oxide AO and m is an integer repeat of single unit cell layers of the A'BO.sub.3 oxide material. Within the multilayer film, the values of n and m have been selected to provide the structure with a desired electrical structure at the substrate/thin film interface that can be optimized to control band offset and alignment.

  18. Surface chemistry dependence of native oxidation formation on silicon nanocrystals

    SciTech Connect

    Liptak, R. W.; Campbell, S. A.; Kortshagen, U.

    2009-09-15

    The growth of silicon oxide on bare and SF{sub 6}-etched silicon nanocrystals (Si-NCs), which were synthesized by an all gas phase approach, was investigated by examining the surface chemistry and optical properties of the NCs over time. Consistent with previous work in the low temperature oxidation of silicon, the oxidation follows the Cabrera-Mott mechanism, and the measured data are well fitted to the Elovich equation. The use of the SF{sub 6} plasma is found to reduce the surface Si-H bond density and dramatically increase the monolayer growth rate. This is believed to be due to the much larger volatility of Si-F bonds compared to Si-H bonds on the surface of the NC.

  19. Synthesis of nanoscale silicon oxide oxidation state distributions: The transformation from hydrophilicity to hydrophobicity

    NASA Astrophysics Data System (ADS)

    Laminack, William; Gole, James L.; White, Mark G.; Ozdemir, Serdar; Ogden, Andrew G.; Martin, Holly J.; Fang, Zongtang; Wang, Tsang-Hsiu; Dixon, David A.

    2016-06-01

    Silicon oxide nanostructures which span the range from hydrophilic to hydrophobic have been synthesized. The surface chemistry of these silicon-based nanostructures was analyzed using a combination of X-ray photoelectron spectroscopy, reflectance infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The dominant oxidation state for the nanostructured oxides shifts from an average oxidation state of +III to a combination of +II and +III oxidation states. A correlation of the ability to adsorb water with variations in the surface Si:O ratios was observed showing a transition from hydrophilic to hydrophobic character.

  20. Large flake graphene oxide fibers with unconventional 100% knot efficiency and highly aligned small flake graphene oxide fibers.

    PubMed

    Xiang, Changsheng; Young, Colin C; Wang, Xuan; Yan, Zheng; Hwang, Chi-Chau; Cerioti, Gabriel; Lin, Jian; Kono, Junichiro; Pasquali, Matteo; Tour, James M

    2013-09-01

    Two types of graphene oxide fibers are spun from high concentration aqueous dopes. Fibers extruded from large flake graphene oxide dope without drawing show unconventional 100% knot efficiency. Fibers spun from small sized graphene oxide dope with stable and continuous drawing yield in good intrinsic alignment with a record high tensile modulus of 47 GPa.

  1. The interface between silicon and a high-k oxide.

    PubMed

    Först, Clemens J; Ashman, Christopher R; Schwarz, Karlheinz; Blöchl, Peter E

    2004-01-01

    The ability of the semiconductor industry to continue scaling microelectronic devices to ever smaller dimensions (a trend known as Moore's Law) is limited by quantum mechanical effects: as the thickness of conventional silicon dioxide (SiO(2)) gate insulators is reduced to just a few atomic layers, electrons can tunnel directly through the films. Continued device scaling will therefore probably require the replacement of the insulator with high-dielectric-constant (high-k) oxides, to increase its thickness, thus preventing tunnelling currents while retaining the electronic properties of an ultrathin SiO(2) film. Ultimately, such insulators will require an atomically defined interface with silicon without an interfacial SiO(2) layer for optimal performance. Following the first reports of epitaxial growth of AO and ABO(3) compounds on silicon, the formation of an atomically abrupt crystalline interface between strontium titanate and silicon was demonstrated. However, the atomic structure proposed for this interface is questionable because it requires silicon atoms that have coordinations rarely found elsewhere in nature. Here we describe first-principles calculations of the formation of the interface between silicon and strontium titanate and its atomic structure. Our study shows that atomic control of the interfacial structure by altering the chemical environment can dramatically improve the electronic properties of the interface to meet technological requirements. The interface structure and its chemistry may provide guidance for the selection process of other high-k gate oxides and for controlling their growth.

  2. Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays

    NASA Astrophysics Data System (ADS)

    Sato, Keisuke; Dutta, Mrinal; Fukata, Naoki

    2014-05-01

    Inorganic/organic hybrid radial heterojunction solar cells that combine vertically-aligned n-type silicon nanowires (SiNWs) with poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) have great potential for replacing commercial Si solar cells. The chief advantage of such solar cells is that they exhibit higher absorbance for a given thickness than commercial Si solar cells, due to incident light-trapping within the NW arrays, thus enabling lower-cost solar cell production. We report herein on the effects of NW length, annealing and surface electrode on the device performance of SiNW/PEDOT:PSS hybrid radial heterojunction solar cells. The power conversion efficiency (PCE) of the obtained SiNW/PEDOT:PSS hybrid solar cells can be optimized by tuning the thickness of the surface electrode, and the etching conditions during NW formation and post-annealing. The PCE of 9.3% is obtained by forming efficient transport pathways for photogenerated charge carriers to electrodes. Our approach is a significant contribution to design of high-performance and low-cost inorganic/organic hybrid heterojunction solar cells.Inorganic/organic hybrid radial heterojunction solar cells that combine vertically-aligned n-type silicon nanowires (SiNWs) with poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) have great potential for replacing commercial Si solar cells. The chief advantage of such solar cells is that they exhibit higher absorbance for a given thickness than commercial Si solar cells, due to incident light-trapping within the NW arrays, thus enabling lower-cost solar cell production. We report herein on the effects of NW length, annealing and surface electrode on the device performance of SiNW/PEDOT:PSS hybrid radial heterojunction solar cells. The power conversion efficiency (PCE) of the obtained SiNW/PEDOT:PSS hybrid solar cells can be optimized by tuning the thickness of the surface electrode, and the etching conditions during NW formation and

  3. The Oxidation of CVD Silicon Carbide in Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Nguyen, QuynchGiao N.

    1997-01-01

    Chemically-vapor-deposited silicon carbide (CVD SiC) was oxidized in carbon dioxide (CO2) at temperatures of 1200-1400 C for times between 100 and 500 hours at several gas flow rates. Oxidation weight gains were monitored by thermogravimetric analysis (TGA) and were found to be very small and independent of temperature. Possible rate limiting kinetic laws are discussed. Oxidation of SiC by CO2 is negligible compared to the rates measured for other oxidants typically found in combustion environments: oxygen and water vapor.

  4. Structure-thermal property correlation of aligned silicon dioxide nanorod arrays

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Zhu, Yu; Wu, Xuewang; Song, Helun; Zhang, Yaohui; Wang, Xiaojia

    2016-06-01

    Quantitative characterization of thermal properties of nanorod (NR) arrays appears to be challenging due to the complex combination of high volume of air voids, anisotropy, and structural non-uniformity. This work investigates the structure-thermal property correlation of arrays consisting of either vertically aligned or slanted silicon dioxide (SiO2) NRs, fabricated by the dynamic shadowing growth technique. We apply the frequency-dependent time-domain thermoreflectance method to quantify the thermal properties of SiO2 NR arrays that may possess inhomogeneity along the depth direction. The effective thermal conductivities of four SiO2 NR array films and one reference capping layer for the SiO2 NR array are obtained. The impact of the structure on the effective thermal conductivities of the SiO2 NR array is discussed. The lowest effective thermal conductivity among all samples in this work is found to be 0.13 W m-1 K-1 for the slanted NR array. We attribute the reduction in the effective thermal conductivity of the NR array to the discontinuous nature of SiO2 NRs, which reduces the density of the thermal transport channels and thus prevents heat flux from propagating downwards along the through-plane direction. The results from this work facilitate the potential applications of NR-array-based thermal insulators for micro-thermal devices.

  5. Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays.

    PubMed

    Sato, Keisuke; Dutta, Mrinal; Fukata, Naoki

    2014-06-01

    Inorganic/organic hybrid radial heterojunction solar cells that combine vertically-aligned n-type silicon nanowires (SiNWs) with poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) have great potential for replacing commercial Si solar cells. The chief advantage of such solar cells is that they exhibit higher absorbance for a given thickness than commercial Si solar cells, due to incident light-trapping within the NW arrays, thus enabling lower-cost solar cell production. We report herein on the effects of NW length, annealing and surface electrode on the device performance of SiNW/PEDOT:PSS hybrid radial heterojunction solar cells. The power conversion efficiency (PCE) of the obtained SiNW/PEDOT:PSS hybrid solar cells can be optimized by tuning the thickness of the surface electrode, and the etching conditions during NW formation and post-annealing. The PCE of 9.3% is obtained by forming efficient transport pathways for photogenerated charge carriers to electrodes. Our approach is a significant contribution to design of high-performance and low-cost inorganic/organic hybrid heterojunction solar cells.

  6. Integration and characterization of aligned carbon nanotubes on metal/silicon substrates and effects of water

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Li, Ruying; Liu, Hao; Sun, Xueliang; Mérel, Philippe; Désilets, Sylvain

    2009-02-01

    We report here a facile way to grow aligned multi-walled carbon nanotubes (MWCNTs) on various metal (e.g. gold, tungsten, vanadium and copper)/silicon electrically conductive substrates by aerosol-assisted chemical vapor deposition (AACVD). Without using any buffer layers, integration of high quality MWCNTs to the conductive substrates has been achieved by introducing appropriate amount of water vapor into the growth system. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) determination indicate tidy morphology and narrow diameter distribution of the nanotubes as well as promising growth rate suitable for industrial applications. Raman spectra analysis illustrates that the structural order and purity of the nanotubes are significantly improved in the presence of water vapor. The growth mechanism of the nanotubes has been discussed. It is believed that water vapor plays a key role in the catalyst-substrate interaction and nucleation of the carbon nanotubes on the conductive substrates. This synthesis approach is expected to be extended to other catalyst-conductive substrate systems and provide some new insight in the direct integration of carbon nanotubes onto conductive substrates, which promises great potential for applications in electrical interconnects, contacts for field emitters, and other electronic nanodevices.

  7. Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM.

    PubMed

    Martínez, José Luis; Moreno, Ignacio; del Mar Sánchez-López, María; Vargas, Asticio; García-Martínez, Pascuala

    2014-10-20

    Multiple internal reflection effects on the optical modulation of a commercial reflective parallel-aligned liquid-crystal on silicon (PAL-LCoS) spatial light modulator (SLM) are analyzed. The display is illuminated with different wavelengths and different angles of incidence. Non-negligible Fabry-Perot (FP) effect is observed due to the sandwiched LC layer structure. A simplified physical model that quantitatively accounts for the observed phenomena is proposed. It is shown how the expected pure phase modulation response is substantially modified in the following aspects: 1) a coupled amplitude modulation, 2) a non-linear behavior of the phase modulation, 3) some amount of unmodulated light, and 4) a reduction of the effective phase modulation as the angle of incidence increases. Finally, it is shown that multiple reflections can be useful since the effect of a displayed diffraction grating is doubled on a beam that is reflected twice through the LC layer, thus rendering gratings with doubled phase modulation depth. PMID:25401619

  8. Oxide mediated liquid-solid growth of high aspect ratio aligned gold silicide nanowires on Si(110) substrates

    NASA Astrophysics Data System (ADS)

    Bhatta, Umananda M.; Rath, Ashutosh; Dash, Jatis K.; Ghatak, Jay; Yi-Feng, Lai; Liu, Chuan-Pu; Satyam, P. V.

    2009-11-01

    Silicon nanowires grown using the vapor-liquid-solid method are promising candidates for nanoelectronics applications. The nanowires grow from an Au-Si catalyst during silicon chemical vapor deposition. In this paper, the effect of temperature, oxide at the interface and substrate orientation on the nucleation and growth kinetics during formation of nanogold silicide structures is explained using an oxide mediated liquid-solid growth mechanism. Using real time in situ high temperature transmission electron microscopy (with 40 ms time resolution), we show the formation of high aspect ratio (≈15.0) aligned gold silicide nanorods in the presence of native oxide at the interface during in situ annealing of gold thin films on Si(110) substrates. Steps observed in the growth rate and real time electron diffraction show the existence of liquid Au-Si nano-alloy structures on the surface besides the un-reacted gold nanostructures. These results might enable us to engineer the growth of nanowires and similar structures with an Au-Si alloy as a catalyst.

  9. Oxide mediated liquid-solid growth of high aspect ratio aligned gold silicide nanowires on Si(110) substrates.

    PubMed

    Bhatta, Umananda M; Rath, Ashutosh; Dash, Jatis K; Ghatak, Jay; Yi-Feng, Lai; Liu, Chuan-Pu; Satyam, P V

    2009-11-18

    Silicon nanowires grown using the vapor-liquid-solid method are promising candidates for nanoelectronics applications. The nanowires grow from an Au-Si catalyst during silicon chemical vapor deposition. In this paper, the effect of temperature, oxide at the interface and substrate orientation on the nucleation and growth kinetics during formation of nanogold silicide structures is explained using an oxide mediated liquid-solid growth mechanism. Using real time in situ high temperature transmission electron microscopy (with 40 ms time resolution), we show the formation of high aspect ratio ( approximately 15.0) aligned gold silicide nanorods in the presence of native oxide at the interface during in situ annealing of gold thin films on Si(110) substrates. Steps observed in the growth rate and real time electron diffraction show the existence of liquid Au-Si nano-alloy structures on the surface besides the un-reacted gold nanostructures. These results might enable us to engineer the growth of nanowires and similar structures with an Au-Si alloy as a catalyst. PMID:19843987

  10. Tribological interaction between polytetrafluoroethylene and silicon oxide surfaces

    SciTech Connect

    Uçar, A.; Çopuroğlu, M.; Suzer, S.; Baykara, M. Z.; Arıkan, O.

    2014-10-28

    We investigated the tribological interaction between polytetrafluoroethylene (PTFE) and silicon oxide surfaces. A simple rig was designed to bring about a friction between the surfaces via sliding a piece of PTFE on a thermally oxidized silicon wafer specimen. A very mild inclination (∼0.5°) along the sliding motion was also employed in order to monitor the tribological interaction in a gradual manner as a function of increasing contact force. Additionally, some patterns were sketched on the silicon oxide surface using the PTFE tip to investigate changes produced in the hydrophobicity of the surface, where the approximate water contact angle was 45° before the transfer. The nature of the transferred materials was characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). XPS results revealed that PTFE was faithfully transferred onto the silicon oxide surface upon even at the slightest contact and SEM images demonstrated that stable morphological changes could be imparted onto the surface. The minimum apparent contact pressure to realize the PTFE transfer is estimated as 5 kPa, much lower than reported previously. Stability of the patterns imparted towards many chemical washing processes lead us to postulate that the interaction is most likely to be chemical. Contact angle measurements, which were carried out to characterize and monitor the hydrophobicity of the silicon oxide surface, showed that upon PTFE transfer the hydrophobicity of the SiO{sub 2} surface could be significantly enhanced, which might also depend upon the pattern sketched onto the surface. Contact angle values above 100° were obtained.

  11. Electron stimulated oxidation of silicon surfaces

    SciTech Connect

    Munoz, M.C.; Sacedon, J.L.

    1981-04-15

    Experimental evidence of electron stimulated oxidation (ESO) has been given for Si(111) 7 x 7 surface. In a first stage, the oxide thickness as a function of time shows a linear relationship; in a second stage, the growth rate quickly decreases and a pressure dependent saturation oxide thickness is reached. During the oxidation process an electrical potential does exist across the oxide, as is required in the Cabrera--Mott theory. The linear kinetics and the electrical potential are shown to be explicable in terms of a modified coupled-current approach based on the Cabrera--Mott theory, provided a semiphenomenological pressure dependent parameter is included. This represents a contribution of the surface reaction to the transport equation. The saturation has been explained as due to the decrease of the negative surface charge (donor levels) which produces a decrease of the electron current.

  12. Single layer of silicon quantum dots in silicon oxide matrix: Investigation of forming gas hydrogenation on photoluminescence properties and study of the composition of silicon rich oxide layers

    NASA Astrophysics Data System (ADS)

    Aliberti, P.; Shrestha, S. K.; Li, Ruoyu; Green, M. A.; Conibeer, G. J.

    2011-07-01

    Structures consisting of a single layer of silicon quantum dots in a SiO 2 matrix show interesting optoelectronic properties and potential use as energy selective filters, which are a crucial component for the realization of the hot carrier solar cell. In this work single layer silicon quantum dots in SiO 2 have been realized using a magnetron sputtering technique. Quantum dots are formed by annealing of a silicon rich oxide layer deposited between a thermally grown SiO 2 layer and a sputtered SiO 2 layer. The effects of a forming gas post-hydrogenation process on the photoluminescence of the single layer of quantum dots have been investigated in order to understand the photoluminescence mechanism. It was found that for sputtered silicon quantum dots in SiO 2 matrix the photoemission mechanisms are primarily due to quantum confinement and does not strongly rely on matrix defects. In addition, physical and optical properties of several thick silicon rich oxide layers, with different chemical compositions, have been investigated in order to optimize the stoichiometry of silicon rich oxide in the single layers.

  13. New insights into the effects of silicon content on the oxidation process in silicon-containing steels

    NASA Astrophysics Data System (ADS)

    Yuan, Qing; Xu, Guang; Zhou, Ming-xing; He, Bei

    2016-09-01

    Simultaneous thermal analysis (STA) was used to investigate the effects of silicon content on the oxidation kinetics of silicon- containing steels under an atmosphere and heating procedures similar to those used in industrial reheating furnaces for the production of hot-rolled strips. Our results show that when the heating temperature was greater than the melting point of Fe2SiO4, the oxidation rates of steels with different silicon contents were the same; the total mass gain decreased with increasing silicon content, whereas it increased with increasing oxygen content. The oxidation rates for steels with different silicon contents were constant with respect to time under isothermal conditions. In addition, the starting oxidation temperature, the intense oxidation temperature, and the finishing oxidation temperature increased with increasing silicon content; the intense oxidation temperature had no correlation with the melting of Fe2SiO4. Moreover, the silicon distributed in two forms: as Fe2SiO4 at the interface between the innermost layer of oxide scale and the iron matrix, and as particles containing silicon in grains and grain boundaries in the iron matrix.

  14. Silicon nanowire circuits fabricated by AFM oxidation nanolithography.

    PubMed

    Martínez, Ramses V; Martínez, Javier; Garcia, Ricardo

    2010-06-18

    We report a top-down process for the fabrication of single-crystalline silicon nanowire circuits and devices. Local oxidation nanolithography is applied to define very narrow oxide masks on top of a silicon-on-insulator substrate. In a plasma etching, the nano-oxide mask generates a nanowire with a rectangular section. The nanowire width coincides with the lateral size of the mask. In this way, uniform and well-defined transistors with channel widths in the 10-20 nm range have been fabricated. The nanowires can be positioned with sub-100 nm lateral accuracy. The transistors exhibit an on/off current ratio of 10(5). The atomic force microscope nanolithography offers full control of the nanowire's shape from straight to circular or a combination of them. It also enables the integration of several nanowires within the same circuit. The nanowire transistors have been applied to detect immunological processes.

  15. Origin of complex impact craters on native oxide coated silicon surfaces

    NASA Astrophysics Data System (ADS)

    Samela, Juha; Nordlund, Kai; Popok, Vladimir N.; Campbell, Eleanor E. B.

    2008-02-01

    Crater structures induced by impact of keV-energy Arn+ cluster ions on silicon surfaces are measured with atomic force microscopy. Complex crater structures consisting of a central hillock and outer rim are observed more often on targets covered with a native silicon oxide layer than on targets without the oxide layer. To explain the formation of these complex crater structures, classical molecular dynamics simulations of Ar cluster impacts on oxide coated silicon surfaces, as well as on bulk amorphous silica, amorphous Si, and crystalline Si substrates, are carried out. The diameter of the simulated hillock structures in the silicon oxide layer is in agreement with the experimental results, but the simulations cannot directly explain the height of hillocks and the outer rim structures when the oxide coated silicon substrate is free of defects. However, in simulations of 5keV /atom Ar12 cluster impacts, transient displacements of the amorphous silicon or silicon oxide substrate surfaces are induced in an approximately 50nm wide area surrounding the impact point. In silicon oxide, the transient displacements induce small topographical changes on the surface in the vicinity of the central hillock. The comparison of cluster stopping mechanisms in the various silicon oxide and silicon structures shows that the largest lateral momentum is induced in the silicon oxide layer during the impact; thus, the transient displacements on the surface are stronger than in the other substrates. This can be a reason for the higher frequency of occurrence of the complex craters on oxide coated silicon.

  16. Oxidation Protection of Porous Reaction-Bonded Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Fox, D. S.

    1994-01-01

    Oxidation kinetics of both as-fabricated and coated reaction-bonded silicon nitride (RBSN) were studied at 900 and 1000 C with thermogravimetry. Uncoated RBSN exhibited internal oxidation and parabolic kinetics. An amorphous Si-C-O coating provided the greatest degree of protection to oxygen, with a small linear weight loss observed. Linear weight gains were measured on samples with an amorphous Si-N-C coating. Chemically vapor deposited (CVD) Si3N4 coated RBSN exhibited parabolic kinetics, and the coating cracked severely. A continuous-SiC-fiber-reinforced RBSN composite was also coated with the Si-C-O material, but no substantial oxidation protection was observed.

  17. Efficient Direct Reduction of Graphene Oxide by Silicon Substrate

    PubMed Central

    Chan Lee, Su; Some, Surajit; Wook Kim, Sung; Jun Kim, Sun; Seo, Jungmok; Lee, Jooho; Lee, Taeyoon; Ahn, Jong-Hyun; Choi, Heon-Jin; Chan Jun, Seong

    2015-01-01

    Graphene has been studied for various applications due to its excellent properties. Graphene film fabrication from solutions of graphene oxide (GO) have attracted considerable attention because these procedures are suitable for mass production. GO, however, is an insulator, and therefore a reduction process is required to make the GO film conductive. These reduction procedures require chemical reducing agents or high temperature annealing. Herein, we report a novel direct and simple reduction procedure of GO by silicon, which is the most widely used material in the electronics industry. In this study, we also used silicon nanosheets (SiNSs) as reducing agents for GO. The reducing effect of silicon was confirmed by various characterization methods. Furthermore, the silicon wafer was also used as a reducing template to create a reduced GO (rGO) film on a silicon substrate. By this process, a pure rGO film can be formed without the impurities that normally come from chemical reducing agents. This is an easy and environmentally friendly method to prepare large scale graphene films on Si substrates. PMID:26194107

  18. Synthesis and oxidation of luminescent silicon nanocrystals from silicon tetrachloride by very high frequency nonthermal plasma

    NASA Astrophysics Data System (ADS)

    Gresback, Ryan; Nozaki, Tomohiro; Okazaki, Ken

    2011-07-01

    Silicon nanocrystals have recently attracted significant attention for applications in electronics, optoelectronics, and biological imaging due to their size-dependent optical and electronic properties. Here a method for synthesizing luminescent silicon nanocrystals from silicon tetrachloride with a nonthermal plasma is described. Silicon nanocrystals with mean diameters of 3-15 nm are synthesized and have a narrow size distribution with the standard deviation being less than 20% of the mean size. Control over crystallinity is achieved for plasma pressures of 1-12 Torr and hydrogen gas concentrations of 5-70% through adjustment of the plasma power. The size of nanocrystals, and resulting optical properties, is mainly dependent on the gas residence time in the plasma region. Additionally the surface of the nanocrystals is covered by both hydrogen and chlorine. Oxidation of the nanocrystals, which is found to follow the Cabrera-Mott mechanism under ambient conditions, is significantly faster than hydrogen terminated silicon due to partial termination of the nanocrystal surface by chlorine.

  19. Green light emission from terbium doped silicon rich silicon oxide films obtained by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Podhorodecki, A.; Zatryb, G.; Misiewicz, J.; Wojcik, J.; Wilson, P. R. J.; Mascher, P.

    2012-11-01

    The effect of silicon concentration and annealing temperature on terbium luminescence was investigated for thin silicon rich silicon oxide films. The structures were deposited by means of plasma enhanced chemical vapor deposition. The structural properties of these films were investigated by Rutherford backscattering spectrometry, transmission electron microscopy and Raman scattering. The optical properties were investigated by means of photoluminescence and photoluminescence decay spectroscopy. It was found that both the silicon concentration in the film and the annealing temperature have a strong impact on the terbium emission intensity. In this paper, we present a detailed discussion of these issues and determine the optimal silicon concentration and annealing temperature.

  20. Biocompatible silicon surfaces through orthogonal click chemistries and a high affinity silicon oxide binding peptide.

    PubMed

    Hassert, Rayk; Pagel, Mareen; Ming, Zhou; Häupl, Tilmann; Abel, Bernd; Braun, Klaus; Wiessler, Manfred; Beck-Sickinger, Annette G

    2012-10-17

    Multifunctionality is gaining more and more importance in the field of improved biomaterials. Especially peptides feature a broad chemical variability and are versatile mediators between inorganic surfaces and living cells. Here, we synthesized a unique peptide that binds to SiO(2) with nM affinity. We equipped the peptide with the bioactive integrin binding c[RGDfK]-ligand and a fluorescent probe by stepwise Diels-Alder reaction with inverse electron demand and copper(I) catalyzed azide-alkyne cycloaddition. For the first time, we report the generation of a multifunctional peptide by combining these innovative coupling reactions. The resulting peptide displayed an outstanding binding to silicon oxide and induced a significant increase in cell spreading and cell viability of osteoblasts on the oxidized silicon surface.

  1. Interfacial Structure in Silicon Nitride Sintered with Lanthanide Oxide

    SciTech Connect

    Dwyer, C.; Ziegler, A.; Shibata, Naoya; Winkelman, G. B.; Satet, R. L.; Hoffmann, M. J.; Cinibulk, M. K.; Becher, Paul F; Painter, Gayle S; Browning, N. D.; Cockayne, D.J.H.; Ritchie, R O; Pennycook, Stephen J

    2006-01-01

    Three independent research groups present a comparison of their structural analyses of prismatic interfaces in silicon nitride densified with the aid of lanthanide oxide Ln{sub 2}O{sub 3}. All three groups obtained scanning transmission electron microscope images which clearly reveal the presence of well-defined Ln segregation sites at the interfaces, and, moreover, reveal that these segregation sites are element-specific. While some results differ across the three research groups, the vast majority exhibits good reproducibility.

  2. Engineering functionalized multi-phased silicon/silicon oxide nano-biomaterials to passivate the aggressive proliferation of cancer.

    PubMed

    Premnath, P; Tan, B; Venkatakrishnan, K

    2015-07-20

    Currently, the use of nano silicon in cancer therapy is limited as drug delivery vehicles and markers in imaging, not as manipulative/controlling agents. This is due to limited properties that native states of nano silicon and silicon oxides offers. We introduce nano-functionalized multi-phased silicon/silicon oxide biomaterials synthesized via ultrashort pulsed laser synthesis, with tunable properties that possess inherent cancer controlling properties that can passivate the progression of cancer. This nanostructured biomaterial is composed of individual functionalized nanoparticles made of a homogenous hybrid of multiple phases of silicon and silicon oxide in increasing concentration outwards from the core. The chemical properties of the proposed nanostructure such as number of phases, composition of phases and crystal orientation of each functionalized nanoparticle in the three dimensional nanostructure is defined based on precisely tuned ultrashort pulsed laser-material interaction mechanisms. The amorphous rich phased biomaterial shows a 30 fold (95%) reduction in number of cancer cells compared to bulk silicon in 48 hours. Further, the size of the cancer cells reduces by 76% from 24 to 48 hours. This method exposes untapped properties of combination of multiple phases of silicon oxides and its applications in cancer therapy.

  3. Engineering functionalized multi-phased silicon/silicon oxide nano-biomaterials to passivate the aggressive proliferation of cancer

    PubMed Central

    Premnath, P.; Tan, B.; Venkatakrishnan, K.

    2015-01-01

    Currently, the use of nano silicon in cancer therapy is limited as drug delivery vehicles and markers in imaging, not as manipulative/controlling agents. This is due to limited properties that native states of nano silicon and silicon oxides offers. We introduce nano-functionalized multi-phased silicon/silicon oxide biomaterials synthesized via ultrashort pulsed laser synthesis, with tunable properties that possess inherent cancer controlling properties that can passivate the progression of cancer. This nanostructured biomaterial is composed of individual functionalized nanoparticles made of a homogenous hybrid of multiple phases of silicon and silicon oxide in increasing concentration outwards from the core. The chemical properties of the proposed nanostructure such as number of phases, composition of phases and crystal orientation of each functionalized nanoparticle in the three dimensional nanostructure is defined based on precisely tuned ultrashort pulsed laser-material interaction mechanisms. The amorphous rich phased biomaterial shows a 30 fold (95%) reduction in number of cancer cells compared to bulk silicon in 48 hours. Further, the size of the cancer cells reduces by 76% from 24 to 48 hours. This method exposes untapped properties of combination of multiple phases of silicon oxides and its applications in cancer therapy. PMID:26190009

  4. Engineering functionalized multi-phased silicon/silicon oxide nano-biomaterials to passivate the aggressive proliferation of cancer

    NASA Astrophysics Data System (ADS)

    Premnath, P.; Tan, B.; Venkatakrishnan, K.

    2015-07-01

    Currently, the use of nano silicon in cancer therapy is limited as drug delivery vehicles and markers in imaging, not as manipulative/controlling agents. This is due to limited properties that native states of nano silicon and silicon oxides offers. We introduce nano-functionalized multi-phased silicon/silicon oxide biomaterials synthesized via ultrashort pulsed laser synthesis, with tunable properties that possess inherent cancer controlling properties that can passivate the progression of cancer. This nanostructured biomaterial is composed of individual functionalized nanoparticles made of a homogenous hybrid of multiple phases of silicon and silicon oxide in increasing concentration outwards from the core. The chemical properties of the proposed nanostructure such as number of phases, composition of phases and crystal orientation of each functionalized nanoparticle in the three dimensional nanostructure is defined based on precisely tuned ultrashort pulsed laser-material interaction mechanisms. The amorphous rich phased biomaterial shows a 30 fold (95%) reduction in number of cancer cells compared to bulk silicon in 48 hours. Further, the size of the cancer cells reduces by 76% from 24 to 48 hours. This method exposes untapped properties of combination of multiple phases of silicon oxides and its applications in cancer therapy.

  5. Engineering functionalized multi-phased silicon/silicon oxide nano-biomaterials to passivate the aggressive proliferation of cancer.

    PubMed

    Premnath, P; Tan, B; Venkatakrishnan, K

    2015-01-01

    Currently, the use of nano silicon in cancer therapy is limited as drug delivery vehicles and markers in imaging, not as manipulative/controlling agents. This is due to limited properties that native states of nano silicon and silicon oxides offers. We introduce nano-functionalized multi-phased silicon/silicon oxide biomaterials synthesized via ultrashort pulsed laser synthesis, with tunable properties that possess inherent cancer controlling properties that can passivate the progression of cancer. This nanostructured biomaterial is composed of individual functionalized nanoparticles made of a homogenous hybrid of multiple phases of silicon and silicon oxide in increasing concentration outwards from the core. The chemical properties of the proposed nanostructure such as number of phases, composition of phases and crystal orientation of each functionalized nanoparticle in the three dimensional nanostructure is defined based on precisely tuned ultrashort pulsed laser-material interaction mechanisms. The amorphous rich phased biomaterial shows a 30 fold (95%) reduction in number of cancer cells compared to bulk silicon in 48 hours. Further, the size of the cancer cells reduces by 76% from 24 to 48 hours. This method exposes untapped properties of combination of multiple phases of silicon oxides and its applications in cancer therapy. PMID:26190009

  6. Fabrication of self-aligned, nanoscale, complex oxide varactors

    NASA Astrophysics Data System (ADS)

    Fu, Richard X.; Toonen, Ryan C.; Hirsch, Samuel G.; Ivill, Mathew P.; Cole, Melanie W.; Strawhecker, Kenneth E.

    2015-01-01

    Applications in ferroelectric random access memory and superparaelectric devices require the fabrication of ferroelectric capacitors at the nanoscale that exhibit extremely small leakage currents. To systematically study the material-size dependence of ferroelectric varactor performance, arrays of parallel-plate structures have been fabricated with nanoscale dielectric diameters. Electron beam lithography and inductively coupled plasma dry etching have been used to fabricate arrays of ferroelectric varactors using top electrodes as a self-aligned etch mask. Parallel-plate test structures using RF-sputtered Ba0.6Sr0.4TiO3 thin-films were used to optimize the fabrication process. Varactors with diameters down to 20 nm were successfully fabricated. Current-voltage (I-V) characteristics were measured to evaluate the significance of etch-damage and fabrication quality by ensuring low leakage currents through the structures.

  7. Method for removing oxide contamination from silicon carbide powders

    DOEpatents

    Brynestad, J.; Bamberger, C.E.

    1984-08-01

    The described invention is directed to a method for removing oxide contamination in the form of oxygen-containing compounds such as SiO/sub 2/ and B/sub 2/O/sub 3/ from a charge of finely divided silicon carbide. The silicon carbide charge is contacted with a stream of hydrogen fluoride mixed with an inert gas carrier such as argon at a temperature in the range of about 200/sup 0/ to 650/sup 0/C. The oxides in the charge react with the heated hydrogen fluoride to form volatile gaseous fluorides such as SiF/sub 4/ and BF/sub 3/ which pass through the charge along with unreacted hydrogen fluoride and the carrier gas. Any residual gaseous reaction products and hydrogen fluoride remaining in the charge are removed by contacting the charge with the stream of inert gas which also cools the powder to room temperature. The removal of the oxygen contamination by practicing the present method provides silicon carbide powders with desirable pressing and sintering characteristics. 1 tab.

  8. Fabrication and characterization of copper oxide-silicon nanowire heterojunction photodiodes

    NASA Astrophysics Data System (ADS)

    Akgul, Guvenc; Aksoy Akgul, Funda; Mulazimoglu, Emre; Emrah Unalan, Husnu; Turan, Rasit

    2014-02-01

    In this study, copper oxide (CuO) thin film/silicon (Si) nanowire heterojunctions have been fabricated and their optoelectronic performances have been investigated. Vertically aligned n-type Si nanowires have been fabricated using metal-assisted etching (MAE) technique. CuO thin films were synthesized by the sol-gel method and deposited onto the nanowires through spin-coating. Fabricated nanowire heterojunction devices exhibited excellent diode behaviour compared to the planar heterojunction control device. The rectification ratios were found to be 105 and 101 for nanowire and planar heterojunctions, respectively. The improved electrical properties and photosensitivity of the nanowire heterojunction diode was observed, which was related to the three-dimensional nature of the interface between the Si nanowires and the CuO film. Results obtained in this work reveal the potential of Si nanowire-based heterojunctions for various optoelectronic devices.

  9. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.

    PubMed

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun

    2015-11-01

    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.

  10. Low reflectance sputtered vanadium oxide thin films on silicon

    NASA Astrophysics Data System (ADS)

    Esther, A. Carmel Mary; Dey, Arjun; Rangappa, Dinesh; Sharma, Anand Kumar

    2016-07-01

    Vanadium oxide thin films on silicon (Si) substrate are grown by pulsed radio frequency (RF) magnetron sputtering technique at RF power in the range of 100-700 W at room temperature. Deposited thin films are characterized by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques to investigate microstructural, phase, electronic structure and oxide state characteristics. The reflectance and transmittance spectra of the films and the Si substrate are recorded at the solar region (200-2300 nm) of the spectral window. Substantial reduction in reflectance and increase in transmittance is observed for the films grown beyond 200 W. Further, optical constants viz. absorption coefficient, refractive index and extinction coefficient of the deposited vanadium oxide films are evaluated.

  11. Aligned Carbon Nanotube Reinforced Silicon Carbide Composites by Chemical Vapor Infiltration

    SciTech Connect

    Gu, Zhan Jun; Yang, Ying Chao; Li, Kai Yuan; Tao, Xin Yong; Eres, Gyula; Howe, Jane Y; Zhang, Li Tong; Li, Xiao Dong; Pan, Zhengwei

    2011-01-01

    Owing to their exceptional stiffness and strength1 4, carbon nanotubes (CNTs) have long been considered to be an ideal reinforcement for light-weight, high-strength, and high-temperature-resistant ceramic matrix composites (CMCs)5 10. However, the research and development in CNT-reinforced CMCs have been greatly hindered due to the challenges related to manufacturing including poor dispersion, damages during dispersion, surface modification, densification and sintering, weak tube/matrix interfaces, and agglomeration of tubes at the matrix grain boundaries5,11. Here we report the fabrication of high-quality aligned CNT/SiC composites by chemical vapor infiltration (CVI), a technique that is being widely used to fabricate commercial continuous-filament CMCs12 15. Using the CVI technique most of the challenges previously encountered in the fabrication of CNT composites were readily overcome. Nanotube pullouts, an important toughening mechanism for CMCs, were consistently observed on all fractured CNT/SiC samples. Indeed, three-point bending tests conducted on individual CNT/SiC nanowires (diameters: 50 200 nm) using an atomic force microscope show that the CNT-reinforced SiC nanowires are about an order of magnitude tougher than the bulk SiC. The tube/matrix interface is so intimate and the SiC matrix is so dense that a ~50-nm-thick SiC coating can effectively protect the inside nanotubes from being oxidized at 1600 C in air. The CVI method may be extended to produce nanotube composites from a variety of matrix

  12. Effect of hydrogen passivation on the photoluminescence of Tb ions in silicon rich silicon oxide films

    NASA Astrophysics Data System (ADS)

    Zatryb, G.; Klak, M. M.; Wojcik, J.; Misiewicz, J.; Mascher, P.; Podhorodecki, A.

    2015-12-01

    In this work, silicon-rich silicon oxide films containing terbium were prepared by means of plasma enhanced chemical vapor deposition. The influence of hydrogen passivation on defects-mediated non-radiative recombination of excited Tb3+ ions was investigated by photoluminescence, photoluminescence excitation, and photoluminescence decay measurements. Passivation was found to have no effect on shape and spectral position of the excitation spectra. In contrast, a gradual increase in photoluminescence intensity and photoluminescence decay time was observed upon passivation for the main 5D4-7F5 transition of Tb3+ ions. This observation was attributed to passivation of non-radiative recombination defects centers with hydrogen. It was found that the number of emitted photons increases upon passivation as a result of two effects: (1) longer Tb3+ lifetime in the 5D4 excited state and (2) optical activation of new Tb3+ emitters. The obtained results were discussed and compared with other experimental reports.

  13. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2000-01-01

    A process for producing polycrystalline silicon carbide includes heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  14. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  15. Oxidation Behavior of Carbon Fiber Reinforced Silicon Carbide Composites

    NASA Technical Reports Server (NTRS)

    Valentin, Victor M.

    1995-01-01

    Carbon fiber reinforced Silicon Carbide (C-SiC) composites offer high strength at high temperatures and good oxidation resistance. However, these composites present some matrix microcracks which allow the path of oxygen to the fiber. The aim of this research was to study the effectiveness of a new Silicon Carbide (SiC) coating developed by DUPONT-LANXIDE to enhance the oxidation resistance of C-SiC composites. A thermogravimetric analysis was used to determine the oxidation rate of the samples at different temperatures and pressures. The Dupont coat proved to be a good protection for the SiC matrix at temperatures lower than 1240 C at low and high pressures. On the other hand, at temperatures above 1340 C the Dupont coat did not seem to give good protection to the composite fiber and matrix. Even though some results of the tests have been discussed, because of time restraints, only a small portion of the desired tests could be completed. Therefore, no major conclusions or results about the effectiveness of the coat are available at this time.

  16. 4 channel × 10 Gb/s bidirectional optical subassembly using silicon optical bench with precise passive optical alignment.

    PubMed

    Kang, Eun Kyu; Lee, Yong Woo; Ravindran, Sooraj; Lee, Jun Ki; Choi, Hee Ju; Ju, Gun Wu; Min, Jung Wook; Song, Young Min; Sohn, Ik-Bu; Lee, Yong Tak

    2016-05-16

    We demonstrate an advanced structure for optical interconnect consisting of 4 channel × 10 Gb/s bidirectional optical subassembly (BOSA) formed using silicon optical bench (SiOB) with tapered fiber guiding holes (TFGHs) for precise and passive optical alignment of vertical-cavity surface-emitting laser (VCSEL)-to-multi mode fiber (MMF) and MMF-to-photodiode (PD). The co-planar waveguide (CPW) transmission line (Tline) was formed on the backside of silicon substrate to reduce the insertion loss of electrical data signal. The 4 channel VCSEL and PD array are attached at the end of CPW Tline using a flip-chip bonder and solder pad. The 12-channel ribbon fiber is simply inserted into the TFGHs of SiOB and is passively aligned to the VCSEL and PD in which no additional coupling optics are required. The fabricated BOSA shows high coupling efficiency and good performance with the clearly open eye patterns and a very low bit error rate of less than 10-12 order at a data rate of 10 Gb/s with a PRBS pattern of 231-1. PMID:27409898

  17. Origin of complex impact craters on native oxide coated silicon surfaces

    SciTech Connect

    Samela, Juha; Nordlund, Kai; Popok, Vladimir N.; Campbell, Eleanor E. B.

    2008-02-15

    Crater structures induced by impact of keV-energy Ar{sub n}{sup +} cluster ions on silicon surfaces are measured with atomic force microscopy. Complex crater structures consisting of a central hillock and outer rim are observed more often on targets covered with a native silicon oxide layer than on targets without the oxide layer. To explain the formation of these complex crater structures, classical molecular dynamics simulations of Ar cluster impacts on oxide coated silicon surfaces, as well as on bulk amorphous silica, amorphous Si, and crystalline Si substrates, are carried out. The diameter of the simulated hillock structures in the silicon oxide layer is in agreement with the experimental results, but the simulations cannot directly explain the height of hillocks and the outer rim structures when the oxide coated silicon substrate is free of defects. However, in simulations of 5 keV/atom Ar{sub 12} cluster impacts, transient displacements of the amorphous silicon or silicon oxide substrate surfaces are induced in an approximately 50 nm wide area surrounding the impact point. In silicon oxide, the transient displacements induce small topographical changes on the surface in the vicinity of the central hillock. The comparison of cluster stopping mechanisms in the various silicon oxide and silicon structures shows that the largest lateral momentum is induced in the silicon oxide layer during the impact; thus, the transient displacements on the surface are stronger than in the other substrates. This can be a reason for the higher frequency of occurrence of the complex craters on oxide coated silicon.

  18. Well-aligned zinc oxide nanorods and nanowires prepared without catalyst

    NASA Astrophysics Data System (ADS)

    Liu, F.; Cao, P. J.; Zhang, H. R.; Shen, C. M.; Wang, Z.; Li, J. Q.; Gao, H. J.

    2005-01-01

    Without catalyst and at a low temperature (550 °C), well-aligned ZnO nanorods and nanowires were prepared on porous silicon substrates using a simple method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results confirm that both the nanorods and the nanowires are perfect single crystals with the wurtzite structure. The diameters range from 40 to 100 nm. The growth directions are along the [0 0 0 1] axis. Photoluminescence (PL) spectra show that the UV emission shifts slightly to low frequency and the intensity of green emission decreases with the improvement of ZnO crystallization.

  19. Band alignment at memristive metal-oxide interfaces investigated by hard x-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Lenser, C.; Köhl, A.; Patt, M.; Schneider, C. M.; Waser, R.; Dittmann, R.

    2014-09-01

    The electronic structure and band alignment at metal/oxide interfaces for nonvolatile memory applications are investigated by hard x-ray photoelectron spectroscopy (HAXPES) and DC transport measurements, using acceptor doped SrTiO3 as a model memristive oxide. Metal-insulator-metal (MIM) structures with a noble metal (Pt) top electrode form a Schottky barrier and exhibit rectifying properties, while a reactive metal (Ti) as top electrode shows symmetric I(V) characteristics and a flat band situation at the interface. The transition from rectifying to ohmic I(V) relations with increasing Ti thickness is discussed with respect to the electrochemical reaction at the interface, the band alignment at the electrode/oxide interface, and the slope of the energy bands across the MIM structure.

  20. Enhanced room temperature oxidation in silicon and porous silicon under 10 keV x-ray irradiation

    SciTech Connect

    Ryckman, Judson D.; Reed, Robert A.; Weller, Robert A.; Fleetwood, D. M.; Weiss, S. M.

    2010-12-01

    We report the observation of enhanced oxidation on silicon and porous silicon samples exposed in air ambient to high-dose-rate 10 keV x-ray radiation at room temperature. The evolution of the radiation-induced oxide growth is monitored by ellipsometry and interferometric reflectance spectroscopy. Fourier transform infrared (FTIR) spectroscopy shows the emergence of Si-O-Si stretching modes and corresponding suppression of SiH{sub x} and Si-Si modes in the porous silicon samples. The radiation response depends strongly on initial native oxide thickness and Si-H surface species. The enhanced oxidation mechanism is attributed to photoinduced oxidation processes wherein energetic photons are used to dissociate molecular oxygen and promote the formation of more reactive oxygen species.

  1. Effect of Graphene Oxide on the Properties of Porous Silicon

    NASA Astrophysics Data System (ADS)

    Olenych, Igor B.; Aksimentyeva, Olena I.; Monastyrskii, Liubomyr S.; Horbenko, Yulia Yu.; Partyka, Maryan V.; Luchechko, Andriy P.; Yarytska, Lidia I.

    2016-02-01

    We studied an effect of the graphene oxide (GO) layer on the optical and electrical properties of porous silicon (PS) in hybrid PS-GO structure created by electrochemical etching of silicon wafer and deposition of GO from water dispersion on PS. With the help of scanning electron microscopy (SEM), atomic-force microscopy (AFM), and Fourier transform infrared (FTIR) spectroscopy, it was established that GO formed a thin film on the PS surface and is partly embedded in the pores of PS. A comparative analysis of the FTIR spectra for the PS and PS-GO structures confirms the passivation of the PS surface by the GO film. This film has a sufficient transparency for excitation and emission of photoluminescence (PL). Moreover, GO modifies PL spectrum of PS, shifting the PL maximum by 25 nm towards lower energies. GO deposition on the surface of the porous silicon leads to the change in the electrical parameters of PS in AC and DC modes. By means of current-voltage characteristics (CVC) and impedance spectroscopy, it is shown that the impact of GO on electrical characteristics of PS manifests in reduced capacitance and lower internal resistance of hybrid structures.

  2. Alignment of graphene oxide nanostructures between microgap electrodes via dielectrophoresis for hydrogen gas sensing applications

    SciTech Connect

    Singh, Budhi; Wang, Jianwei; Rathi, Servin; Kim, Gil-Ho

    2015-05-18

    Graphene oxide (GO) nanostructures have been aligned between conducting electrodes via dielectrophoresis (DEP) with different electrical configurations. The arrangement of ground with respect to peak-to-peak voltage (V{sub pp}) plays a crucial role in manipulating the GO nanostructures. Grounds on both sides of the V{sub pp} electrode give an excellent linking of GO nanostructures which is explained by scanning electron microscopy and current-voltage characteristics. A finite element method simulation explains the electric field and voltage variation profile during DEP process. The optimized aligned GO nanostructures are used as hydrogen gas sensor with a sensitivity of 6.0% for 800 ppm hydrogen gas.

  3. Alignment of graphene oxide nanostructures between microgap electrodes via dielectrophoresis for hydrogen gas sensing applications

    NASA Astrophysics Data System (ADS)

    Singh, Budhi; Wang, Jianwei; Rathi, Servin; Kim, Gil-Ho

    2015-05-01

    Graphene oxide (GO) nanostructures have been aligned between conducting electrodes via dielectrophoresis (DEP) with different electrical configurations. The arrangement of ground with respect to peak-to-peak voltage (Vpp) plays a crucial role in manipulating the GO nanostructures. Grounds on both sides of the Vpp electrode give an excellent linking of GO nanostructures which is explained by scanning electron microscopy and current-voltage characteristics. A finite element method simulation explains the electric field and voltage variation profile during DEP process. The optimized aligned GO nanostructures are used as hydrogen gas sensor with a sensitivity of 6.0% for 800 ppm hydrogen gas.

  4. Oxidation of silicon and germanium by atomic and molecular oxygen

    NASA Astrophysics Data System (ADS)

    Kisa, Maja

    2007-12-01

    Space vehicles residing in the low Earth orbit (LEO) are exposed to a harsh environment that rapidly degrades their materials. The LEO ranges from 200-700km in altitude from the Earth's surface, and the temperature varies between 200 and 400K. The most hazardous species in LEO is atomic oxygen (AO) containing 5eV kinetic energy due to the high velocity of the spacecrafts (8km/s). The goal of this research is the elucidation of the fundamental mechanisms of semiconductor degradation and passivation in LEO conditions by comparing the structural differences in the oxide films created by exposure to AO and molecular oxygen (MO). Silicon is the base material for solar cells used in LEO whereas Ge and SiOx films are common coatings to protect polymer materials that are used as structural materials in spacecrafts. Hyperthermal AO was created by the laser detonation of MO within a high vacuum (HV) chamber, that produces a high flux of AO. A variety of nano-characterization techniques, including high resolution transmission electron microscopy (HREM), and electron energy loss spectroscopy (EELS) were used to determine the microstructure and local chemistry of the oxide and the oxide/semiconductor interface. For Si, the amorphous silica formed by AO was nearly twice as thick, more ordered, and more homogeneous in composition, than the oxide formed by MO. The Si/SiOx interface formed by AO was atomically abrupt, with no suboxides detected near the interface or throughout the oxide. The oxide scale formed by MO on Si(100) consisted of transitional oxidation states. The oxide film formed on Ge(100) due to exposure to 5eV AO, is 2-3 times thicker and similarly to the Si/SiOx interfaces, the Ge/GeOx interface was found to be atomically abrupt. The oxidation kinetics of Si and Ge were monitored in situ using a research quartz crystal microbalance (RQCM) that was incorporated into the AO source. The oxidation kinetics in hyperthermal AO did not follow the standard linear to

  5. Study of the processes of carbonization and oxidation of porous silicon by Raman and IR spectroscopy

    SciTech Connect

    Vasin, A. V.; Okholin, P. N.; Verovsky, I. N.; Nazarov, A. N.; Lysenko, V. S.; Kholostov, K. I. Bondarenko, V. P.; Ishikawa, Y.

    2011-03-15

    Porous silicon layers were produced by electrochemical etching of single-crystal silicon wafers with the resistivity 10 {Omega} cm in the aqueous-alcohol solution of hydrofluoric acid. Raman spectroscopy and infrared absorption spectroscopy are used to study the processes of interaction of porous silicon with undiluted acetylene at low temperatures and the processes of oxidation of carbonized porous silicon by water vapors. It is established that, even at the temperature 550 Degree-Sign C, the silicon-carbon bonds are formed at the pore surface and the graphite-like carbon condensate emerges. It is shown that the carbon condensate inhibits oxidation of porous silicon by water vapors and contributes to quenching of white photoluminescence in the oxidized carbonized porous silicon nanocomposite layer.

  6. Silicon and tungsten oxide nanostructures for water splitting

    NASA Astrophysics Data System (ADS)

    Reyes Gil, Karla R.; Spurgeon, Joshua M.; Lewis, Nathan S.

    2009-08-01

    Inorganic semiconductors are promising materials for driving photoelectrochemical water-splitting reactions. However, there is not a single semiconductor material that can sustain the unassisted splitting of water into H2 and O2. Instead, we are developing a three part cell design where individual catalysts for water reduction and oxidation will be attached to the ends of a membrane. The job of splitting water is therefore divided into separate reduction and oxidation reactions, and each catalyst can be optimized independently for a single reaction. Silicon might be suitable to drive the water reduction. Inexpensive highly ordered Si wire arrays were grown on a single crystal wafer and transferred into a transparent, flexible polymer matrix. In this array, light would be absorbed along the longer axial dimension while the resulting electrons or holes would be collected along the much shorter radial dimension in a massively parallel array resembling carpet fibers on a microscale, hence the term "solar carpet". Tungsten oxide is a good candidate to drive the water oxidation. Self-organized porous tungsten oxide was successfully synthesized on the tungsten foil by anodization. This sponge-like structure absorbs light efficiently due to its high surface area; hence we called it "solar sponge".

  7. Transparent conductive oxides for thin-film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Löffler, J.

    2005-04-01

    This thesis describes research on thin-film silicon solar cells with focus on the transparent conductive oxide (TCO) for such devices. In addition to the formation of a transparent and electrically conductive front electrode for the solar cell allowing photocurrent collection with low ohmic losses, the front TCO plays an important role for the light enhancement of thin-film silicon pin type solar cells. If the TCO is rough, light scattering at rough interfaces in the solar cell in combination with a highly reflective back contact leads to an increase in optical path length of the light. Multiple (total) internal reflectance leads to virtual 'trapping' of the light in the solar cell structure, allowing a further decrease in absorber thickness and thus thin-film silicon solar cell devices with higher and more stable efficiency. Here, the optical mechanisms involved in the light trapping in thin-film silicon solar cells have been studied, and two types of front TCO materials have been investigated with respect to their suitability as front TCO in thin-film silicon pin type solar cells. Undoped and aluminum doped zinc oxide layers have been fabricated for the first time by the expanding thermal plasma chemical vapour deposition (ETP CVD) technique at substrate temperatures between 150 º C and 350 º C, and successfully implemented as a front electrode material for amorphous silicon pin superstrate type solar cells. Solar cells with efficiencies comparable to cells on Asahi U-type reference TCO have been reproducibly obtained. A higher haze is needed for the ZnO samples studied here than for Asahi U-type TCO in order to achieve comparable long wavelength response of the solar cells. This is attributed to the different angular distribution of the scattered light, showing higher scattering intensities at large angles for the Asahi U-type TCO. A barrier at the TCO/p interface and minor collection problems may explain the slightly lower fill factors obtained for the cells

  8. Enhanced photothermal effect of surface oxidized silicon nanocrystals anchored to reduced graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Afshani, Parichehr; Moussa, Sherif; Atkinson, Garrett; Kisurin, Vitaly Y.; Samy El-Shall, M.

    2016-04-01

    We demonstrate the coupling of the photothermal effects of silicon nanocrystals and graphene oxide (GO) dispersed in water. Using laser irradiation (532 nm or 355 nm) of suspended Si nanocrystals in an aqueous solution of GO, the synthesis of surface oxidized Si-reduced GO nanocomposites (SiOx/Si-RGO) is reported. The laser reduction of GO is accompanied by surface oxidation of the Si nanocrystals resulting in the formation of the SiOx/Si-RGO nanocomposites. The SiOx/Si-RGO nanocomposites are proposed as promising materials for photothermal therapy and for the efficient conversion of solar energy into usable heat for a variety of thermal and thermomechanical applications.

  9. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    SciTech Connect

    Geissbühler, Jonas Werner, Jérémie; Martin de Nicolas, Silvia; Hessler-Wyser, Aïcha; Tomasi, Andrea; Niesen, Bjoern; De Wolf, Stefaan; Barraud, Loris; Despeisse, Matthieu; Nicolay, Sylvain; Ballif, Christophe

    2015-08-24

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

  10. 22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector

    NASA Astrophysics Data System (ADS)

    Geissbühler, Jonas; Werner, Jérémie; Martin de Nicolas, Silvia; Barraud, Loris; Hessler-Wyser, Aïcha; Despeisse, Matthieu; Nicolay, Sylvain; Tomasi, Andrea; Niesen, Bjoern; De Wolf, Stefaan; Ballif, Christophe

    2015-08-01

    Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.

  11. Room-temperature near-infrared silicon carbide nanocrystalline emitters based on optically aligned spin defects

    NASA Astrophysics Data System (ADS)

    Muzha, A.; Fuchs, F.; Tarakina, N. V.; Simin, D.; Trupke, M.; Soltamov, V. A.; Mokhov, E. N.; Baranov, P. G.; Dyakonov, V.; Krueger, A.; Astakhov, G. V.

    2014-12-01

    Bulk silicon carbide (SiC) is a very promising material system for bio-applications and quantum sensing. However, its optical activity lies beyond the near infrared spectral window for in-vivo imaging and fiber communications due to a large forbidden energy gap. Here, we report the fabrication of SiC nanocrystals and isolation of different nanocrystal fractions ranged from 600 nm down to 60 nm in size. The structural analysis reveals further fragmentation of the smallest nanocrystals into ca. 10-nm-size clusters of high crystalline quality, separated by amorphization areas. We use neutron irradiation to create silicon vacancies, demonstrating near infrared photoluminescence. Finally, we detect room-temperature spin resonances of these silicon vacancies hosted in SiC nanocrystals. This opens intriguing perspectives to use them not only as in-vivo luminescent markers but also as magnetic field and temperature sensors, allowing for monitoring various physical, chemical, and biological processes.

  12. Room-temperature near-infrared silicon carbide nanocrystalline emitters based on optically aligned spin defects

    SciTech Connect

    Muzha, A.; Fuchs, F.; Simin, D.; Astakhov, G. V.; Tarakina, N. V.; Trupke, M.; Soltamov, V. A.; Mokhov, E. N.; Baranov, P. G.; Dyakonov, V.; and others

    2014-12-15

    Bulk silicon carbide (SiC) is a very promising material system for bio-applications and quantum sensing. However, its optical activity lies beyond the near infrared spectral window for in-vivo imaging and fiber communications due to a large forbidden energy gap. Here, we report the fabrication of SiC nanocrystals and isolation of different nanocrystal fractions ranged from 600 nm down to 60 nm in size. The structural analysis reveals further fragmentation of the smallest nanocrystals into ca. 10-nm-size clusters of high crystalline quality, separated by amorphization areas. We use neutron irradiation to create silicon vacancies, demonstrating near infrared photoluminescence. Finally, we detect room-temperature spin resonances of these silicon vacancies hosted in SiC nanocrystals. This opens intriguing perspectives to use them not only as in-vivo luminescent markers but also as magnetic field and temperature sensors, allowing for monitoring various physical, chemical, and biological processes.

  13. Fabrication of p-type porous silicon nanowire with oxidized silicon substrate through one-step MACE

    SciTech Connect

    Li, Shaoyuan; Ma, Wenhui; Zhou, Yang; Chen, Xiuhua; Xiao, Yongyin; Ma, Mingyu; Wei, Feng; Yang, Xi

    2014-05-01

    In this paper, the simple pre-oxidization process is firstly used to treat the starting silicon wafer, and then MPSiNWs are successfully fabricated from the moderately doped wafer by one-step MACE technology in HF/AgNO{sub 3} system. The PL spectrum of MPSiNWs obtained from the oxidized silicon wafers show a large blue-shift, which can be attributed to the deep Q. C. effect induced by numerous mesoporous structures. The effects of HF and AgNO{sub 3} concentration on formation of SiNWs were carefully investigated. The results indicate that the higher HF concentration is favorable to the growth of SiNWs, and the density of SiNWs is significantly reduced when Ag{sup +} ions concentrations are too high. The deposition behaviors of Ag{sup +} ions on oxidized and unoxidized silicon surface were studied. According to the experimental results, a model was proposed to explain the formation mechanism of porous SiNWs by etching the oxidized starting silicon. - Graphical abstract: Schematic cross-sectional views of PSiNWs array formation by etching oxidized silicon wafer in HF/AgNO{sub 3} solution. (A) At the starting point; (B) during the etching process; and (C) after Ag dendrites remove. - Highlights: • Prior to etching, a simple pre-oxidation is firstly used to treat silicon substrate. • The medially doped p-type MPSiNWs are prepared by one-step MACE. • Deposition behaviors of Ag{sup +} ions on oxidized and unoxidized silicon are studied. • A model is finally proposed to explain the formation mechanism of PSiNWs.

  14. Oxidation of silicon nanoparticles produced by nanosecond laser ablation in liquids

    NASA Astrophysics Data System (ADS)

    Vaccaro, L.; Camarda, P.; Messina, F.; Buscarino, G.; Agnello, S.; Gelardi, F. M.; Cannas, M.; Boscaino, R.

    2014-10-01

    We investigated nanoparticles produced by laser ablation of silicon in water by the fundamental harmonic (1064 nm) of a ns pulsed Nd:YAG. The silicon oxidation is evidenced by IR absorption features characteristic of amorphous SiO2 (silica). This oxide is highly defective and manifests a luminescence activity under UV excitation: two emission bands at 2.7 eV and 4.4 eV are associated with the twofold coordinated silicon, =SiO••.

  15. Research of materials for porous matrices in sol-gel systems based on silicon dioxide and metallic oxides

    NASA Astrophysics Data System (ADS)

    Maraeva, E. V.; Bobkov, A. A.; Maximov, A. I.; Moshnikov, V. A.; Nalimova, S. S.

    2015-11-01

    In this study silicon dioxide - stannic oxide and silicon dioxide - zinc nanomaterials oxide were obtained through sol-gel technology. The results of nitrogen thermal desorption measurements, atomic force microscopy measurements and particle sizes measurements are discussed.

  16. Solid oxide membrane (SOM) process for ytterbium and silicon production from their oxides

    NASA Astrophysics Data System (ADS)

    Jiang, Yihong

    The Solid oxide membrane (SOM) electrolysis is an innovative green technology that produces technologically important metals directly from their respective oxides. A yttria-stabilized zirconia (YSZ) tube, closed at one end is employed to separate the molten salt containing dissolved metal oxides from the anode inside the YSZ tube. When the applied electric potential between the cathode in the molten salt and the anode exceeds the dissociation potential of the desired metal oxides, oxygen ions in the molten salt migrate through the YSZ membrane and are oxidized at the anode while the dissolved metal cations in the flux are reduced to the desired metal at the cathode. Compared with existing metal production processes, the SOM process has many advantages such as one unit operation, less energy consumption, lower capital costs and zero carbon emission. Successful implementation of the SOM electrolysis process would provide a way to mitigate the negative environmental impact of the metal industry. Successful demonstration of producing ytterbium (Yb) and silicon (Si) directly from their respective oxides utilizing the SOM electrolysis process is presented in this dissertation. During the SOM electrolysis process, Yb2O3 was reduced to Yb metal on an inert cathode. The melting point of the supporting electrolyte (LiF-YbF3-Yb2O3) was determined by differential thermal analysis (DTA). Static stability testing confirmed that the YSZ tube was stable with the flux at operating temperature. Yb metal deposit on the cathode was confirmed by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). During the SOM electrolysis process for silicon production, a fluoride based flux based on BaF2, MgF2, and YF3 was engineered to serve as the liquid electrolyte for dissolving silicon dioxide. YSZ tube was used to separate the molten salt from an anode current collector in the liquid silver. Liquid tin was chosen as cathode to dissolve the reduced silicon during

  17. Oxide impurities in silicon oxide intermetal dielectrics and their potential to elevate via-resistances.

    PubMed

    Qin, Wentao; Alldredge, Donavan; Heleotes, Douglas; Elkind, Alexander; Theodore, N David; Fejes, Peter; Vadipour, Mostafa; Godek, Bill; Lerner, Norman

    2014-08-01

    Silicon oxide used as an intermetal dielectric (IMD) incorporates oxide impurities during both its formation and subsequent processing to create vias in the IMD. Without a sufficient degassing of the IMD, oxide impurities released from the IMD during the physical vapor deposition (PVD) of the glue layer of the vias had led to an oxidation of the glue layer and eventual increase of the via resistances, which correlated with the O-to-Si atomic ratio of the IMD being ~10% excessive as verified by transmission electron microscopy (TEM) analysis. A vacuum bake of the IMD was subsequently implemented to enhance outgassing of the oxide impurities in the IMD before the glue layer deposition. The implementation successfully reduced the via resistances to an acceptable level.

  18. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation.

    PubMed

    Chen, Yi Wei; Prange, Jonathan D; Dühnen, Simon; Park, Yohan; Gunji, Marika; Chidsey, Christopher E D; McIntyre, Paul C

    2011-06-19

    A leading approach for large-scale electrochemical energy production with minimal global-warming gas emission is to use a renewable source of electricity, such as solar energy, to oxidize water, providing the abundant source of electrons needed in fuel synthesis. We report corrosion-resistant, nanocomposite anodes for the oxidation of water required to produce renewable fuels. Silicon, an earth-abundant element and an efficient photovoltaic material, is protected by atomic layer deposition (ALD) of a highly uniform, 2 nm thick layer of titanium dioxide (TiO(2)) and then coated with an optically transmitting layer of a known catalyst (3 nm iridium). Photoelectrochemical water oxidation was observed to occur below the reversible potential whereas dark electrochemical water oxidation was found to have low-to-moderate overpotentials at all pH values, resulting in an inferred photovoltage of ~550 mV. Water oxidation is sustained at these anodes for many hours in harsh pH and oxidative environments whereas comparable silicon anodes without the TiO(2) coating quickly fail. The desirable electrochemical efficiency and corrosion resistance of these anodes is made possible by the low electron-tunnelling resistance (<0.006 Ω cm(2) for p(+)-Si) and uniform thickness of atomic-layer deposited TiO(2).

  19. Surface recombination velocity of phosphorus-diffused silicon solar cell emitters passivated with plasma enhanced chemical vapor deposited silicon nitride and thermal silicon oxide

    NASA Astrophysics Data System (ADS)

    Kerr, M. J.; Schmidt, J.; Cuevas, A.; Bultman, J. H.

    2001-04-01

    The emitter saturation current density (JOe) and surface recombination velocity (Sp) of various high quality passivation schemes on phosphorus-diffused solar cell emitters have been determined and compared. The passivation schemes investigated were (i) stoichiometric plasma enhanced chemical vapor deposited (PECVD) silicon nitride (SiN), (ii) forming gas annealed thermally grown silicon oxide, and (iii) aluminum annealed (alnealed) thermal silicon oxide. Emitters with sheet resistances ranging from 30 to 430 and 50 to 380 Ω/□ were investigated for planar and random-pyramid textured silicon surfaces, which covers both industrial and laboratory emitters. The electronic surface passivation quality provided by PECVD SiN films was found to be good, with Sp values ranging from 1400 to 25 000 cm/s for planar emitters. Thin thermal silicon oxides were found to provide superior passivation to PECVD SiN, with the best passivation provided by an alnealed thin oxide (Sp values between 250 and 21 000 cm/s). The optimized PECVD SiN films are, nevertheless, sufficiently good for most silicon solar cell applications.

  20. Liquid crystal terahertz phase shifters with functional indium-tin-oxide nanostructures for biasing and alignment

    SciTech Connect

    Yang, Chan-Shan; Tang, Tsung-Ta; Pan, Ru-Pin; Yu, Peichen; Pan, Ci-Ling

    2014-04-07

    Indium Tin Oxide (ITO) nanowhiskers (NWhs) obliquely evaporated by electron-beam glancing-angle deposition can serve simultaneously as transparent electrodes and alignment layer for liquid crystal (LC) devices in the terahertz (THz) frequency range. To demonstrate, we constructed a THz LC phase shifter with ITO NWhs. Phase shift exceeding π/2 at 1.0 THz was achieved in a ∼517 μm-thick cell. The phase shifter exhibits high transmittance (∼78%). The driving voltage required for quarter-wave operation is as low as 5.66 V (rms), compatible with complementary metal-oxide-semiconductor (CMOS) and thin-film transistor (TFT) technologies.

  1. Shrinking of silicon nanocrystals embedded in an amorphous silicon oxide matrix during rapid thermal annealing in a forming gas atmosphere

    NASA Astrophysics Data System (ADS)

    van Sebille, M.; Fusi, A.; Xie, L.; Ali, H.; van Swaaij, R. A. C. M. M.; Leifer, K.; Zeman, M.

    2016-09-01

    We report the effect of hydrogen on the crystallization process of silicon nanocrystals embedded in a silicon oxide matrix. We show that hydrogen gas during annealing leads to a lower sub-band gap absorption, indicating passivation of defects created during annealing. Samples annealed in pure nitrogen show expected trends according to crystallization theory. Samples annealed in forming gas, however, deviate from this trend. Their crystallinity decreases for increased annealing time. Furthermore, we observe a decrease in the mean nanocrystal size and the size distribution broadens, indicating that hydrogen causes a size reduction of the silicon nanocrystals.

  2. Tantalum oxide/silicon nitride: A negatively charged surface passivation stack for silicon solar cells

    SciTech Connect

    Wan, Yimao Bullock, James; Cuevas, Andres

    2015-05-18

    This letter reports effective passivation of crystalline silicon (c-Si) surfaces by thermal atomic layer deposited tantalum oxide (Ta{sub 2}O{sub 5}) underneath plasma enhanced chemical vapour deposited silicon nitride (SiN{sub x}). Cross-sectional transmission electron microscopy imaging shows an approximately 2 nm thick interfacial layer between Ta{sub 2}O{sub 5} and c-Si. Surface recombination velocities as low as 5.0 cm/s and 3.2 cm/s are attained on p-type 0.8 Ω·cm and n-type 1.0 Ω·cm c-Si wafers, respectively. Recombination current densities of 25 fA/cm{sup 2} and 68 fA/cm{sup 2} are measured on 150 Ω/sq boron-diffused p{sup +} and 120 Ω/sq phosphorus-diffused n{sup +} c-Si, respectively. Capacitance–voltage measurements reveal a negative fixed insulator charge density of −1.8 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5} film and −1.0 × 10{sup 12 }cm{sup −2} for the Ta{sub 2}O{sub 5}/SiN{sub x} stack. The Ta{sub 2}O{sub 5}/SiN{sub x} stack is demonstrated to be an excellent candidate for surface passivation of high efficiency silicon solar cells.

  3. Self Aligned Cell: Scaling Up Manufacture of a Cost Effective Cell Architecture for Multicrystalline Silicon Photovoltaics

    SciTech Connect

    Gabor, A.; van Mierlo, F.

    2010-12-01

    Two areas of technology for fabrication of higher efficiency Si-wafer solar cells were addressed: (1) the formation of structured texturing that is an improvement over the industry-standard isotexture process for multicrystalline wafers. (2) the formation of fine line (<50 micron) metallization seed layers in a self-aligned manner where the fingers can be automatically and perfectly lined up to a selective emitter and where expensive silver screen printing paste can be mostly replaced by plating up the seed layers with silver or copper. The benefits are: a) Lower reflectivity , b) Decoupling the performance of the texture from the saw damage, thus allowing for better advances in sawing and a more robust wet process. 1366 Technologies developed 2 pilot machines for 1) deposition and patterning of low-cost resist layers to enable simultaneous Honeycomb front texturing and groove formation for multicrystalline Si wafers, and 2) fine-line dispensing of materials that are self aligned to the grooves.

  4. Oxidatively Stable Nanoporous Silicon Photocathodes for Photoelectrochemical Hydrogen Evolution

    SciTech Connect

    Neale, Nathan R.; Zhao, Yixin; Zhu, Kai; Oh, Jihun; van de Lagemaat, Jao; Yuan, Hao-Chih; Branz, Howard M.

    2014-06-02

    Stable and high-performance nanoporous 'black silicon' photoelectrodes with electrolessly deposited Pt nanoparticle (NP) catalysts are made with two metal-assisted etching steps. Doubly etched samples exhibit >20 mA/cm2 photocurrent density at +0.2 V vs. reversible hydrogen electrode (RHE) for photoelectrochemical hydrogen evolution under 1 sun illumination. We find that the photocurrent onset voltage of black Si photocathodes prepared from single-crystal planar Si wafers increases in oxidative environments (e.g., aqueous electrolyte) owing to a positive flat-band potential shift caused by surface oxidation. However, this beneficial oxide layer becomes a kinetic barrier to proton reduction that inhibits hydrogen production after just 24 h. To mitigate this problem, we developed a novel second Pt-assisted etch process that buries the Pt NPs deeper into the nanoporous Si surface. This second etch shifts the onset voltage positively, from +0.25 V to +0.4 V vs. RHE, and reduces the charge-transfer resistance with no performance decrease seen for at least two months.

  5. Improved performance of microcrystalline silicon solar cell with graded-band-gap silicon oxide buffer layer

    NASA Astrophysics Data System (ADS)

    Shi, Zhen-Liang; Ji, Yun; Yu, Wei; Yang, Yan-Bin; Cong, Ri-Dong; Chen, Ying-Juan; Li, Xiao-Wei; Fu, Guang-Sheng

    2015-07-01

    Microcrystalline silicon (μc-Si:H) solar cell with graded band gap microcrystalline silicon oxide (μc-SiOx:H) buffer layer is prepared by plasma enhanced chemical vapor deposition and exhibits improved performance compared with the cell without it. The buffer layer moderates the band gap mismatch by reducing the barrier of the p/i interface, which promotes the nucleation of the i-layer and effectively eliminates the incubation layer, and then enhances the collection efficiency of the cell in the short wavelength region of the spectrum. The p/i interface defect density also decreases from 2.2 × 1012 cm-2 to 5.0 × 1011 cm-2. This graded buffer layer allows to simplify the deposition process for the μc-Si:H solar cell application. Project supported by the Key Basic Research Project of Hebei Province, China (Grant Nos. 12963930D and 12963929D), the Natural Science Foundation of Hebei Province, China (Grant Nos. F2013201250 and E2012201059), and the Science and Technology Research Projects of the Education Department of Hebei Province, China (Grant No. ZH2012030).

  6. Surface kinetics modeling of silicon and silicon oxide plasma etching. III. Modeling of silicon oxide etching in fluorocarbon chemistry using translating mixed-layer representation

    SciTech Connect

    Kwon, Ohseung; Bai Bo; Sawin, Herbert H.

    2006-09-15

    Silicon oxide etching was modeled using a translating mixed-layer model, a novel surface kinetic modeling technique, and the model showed good agreement with measured data. Carbon and fluorine were identified as the primary contributors to deposition and etching, respectively. Atomic fluorine flux is a major factor that determines the etching behavior. With a chemistry having a small amount of atomic fluorine (such as the C{sub 4}F{sub 8} chemistry), etching yield shows stronger dependence on the composition change in the gas flux.

  7. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.

    PubMed

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun

    2015-11-01

    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications. PMID:26726580

  8. Ion beam fabrication of aluminum-doped zinc oxide layer for high-performance liquid crystals alignment.

    PubMed

    Liu, Yang; Lee, Ju Hwan; Seo, Dae-Shik

    2016-07-25

    In this paper, a 1.8 keV ion beam (IB) sputtered thin layer of aluminum-doped zinc oxide (AZO) with columnar AZO bumps covering the surface working as an alignment layer for the homogeneous alignment of liquid crystals (LC) is investigated. Bumpy AZO alignment layers in twisted nematic (TN) cells generated larger LC pre-tilt angles and thus enabled accelerated switching of LC, and the highly conductive bumpy AZO thin layers allowed super-fast release of accumulated charges, and led to low residual DC performance. These results indicate the promising applications of AZO bumps layer as alignment layer in LC devices. PMID:27464189

  9. Investigations on the growth and characterization of vertically aligned zinc oxide nanowires by radio frequency magnetronsputtering

    SciTech Connect

    Venkatesh, P. Sundara; Jeganathan, K.

    2013-04-15

    Undoped vertically aligned ZnO nanowires have been grown on silicon (111) substrates by the rf magnetron sputtering technique without metal catalyst. The diameter, length and density distributions of the nanowires have been analyzed with respect to the different growth durations. The tapering of the nanowires is observed for the growth duration of 120 min owing to the insufficient adatoms on the growth front. In the X-ray diffraction pattern, the dominant (002) peak with narrow full width at half maximum (FWHM) of ZnO nanowires indicates the c-axis orientation and high crystalline nature with hexagonal wurtzite crystal structure. The narrow FWHM of E{sub 2}{sup low} and E{sub 2}{sup high} phonon modes (1.4 and 9.1 cm{sup −1}) provide an additional evidence for the high crystalline and optical properties of the nanowires. The low temperature photoluminescence spectra are dominated by the green emission at∼2.28 eV induced by the electron transitions between shallow donor and acceptor energy levels. - Graphical abstract: Coalescence free vertically aligned ZnO nanowires have been grown on silicon (111) substrate by the radio frequency magnetron sputtering technique. Highlights: ► ZnO nanowires have been grown by rf magnetron sputtering. ► A morphologically superior and coalescence free ZnO nanowires have been realized. ► ZnO nanowires exhibit hexagonal wurtzite crystal structure. ► A dominant visible emission indicates the presence of point defects in nanowires.

  10. Silicon cells made by self-aligned selective-emitter plasma-etchback process

    SciTech Connect

    Ruby, D.S.; Schubert, W.K.; Gee, J.M.; Zaidi, S.H.

    2000-07-18

    Photovoltaic cells and methods for making them are disclosed wherein the metallized grids of the cells are used to mask portions of cell emitter regions to allow selective etching of phosphorus-doped emitter regions. The preferred etchant is SF{sub 6} or a combination of SF{sub 6} and O{sub 2}. This self-aligned selective etching allows for enhanced blue response (versus cells with uniform heavy doping of the emitter) while preserving heavier doping in the region beneath the gridlines needed for low contact resistance. Embodiments are disclosed for making cells with or without textured surfaces. Optional steps include plasma hydrogenation and PECVD nitride deposition, each of which are suited to customized applications for requirements of given cells to be manufactured. The techniques disclosed could replace expensive and difficult alignment methodologies used to obtain selectively etched emitters, and they may be easily integrated with existing plasma processing methods and techniques of the invention may be accomplished in a single plasma-processing chamber.

  11. Silicon cells made by self-aligned selective-emitter plasma-etchback process

    DOEpatents

    Ruby, Douglas S.; Schubert, William K.; Gee, James M.; Zaidi, Saleem H.

    2000-01-01

    Photovoltaic cells and methods for making them are disclosed wherein the metallized grids of the cells are used to mask portions of cell emitter regions to allow selective etching of phosphorus-doped emitter regions. The preferred etchant is SF.sub.6 or a combination of SF.sub.6 and O.sub.2. This self-aligned selective etching allows for enhanced blue response (versus cells with uniform heavy doping of the emitter) while preserving heavier doping in the region beneath the gridlines needed for low contact resistance. Embodiments are disclosed for making cells with or without textured surfaces. Optional steps include plasma hydrogenation and PECVD nitride deposition, each of which are suited to customized applications for requirements of given cells to be manufactured. The techniques disclosed could replace expensive and difficult alignment methodologies used to obtain selectively etched emitters, and they may be easily integrated with existing plasma processing methods and techniques of the invention may be accomplished in a single plasma-processing chamber.

  12. Bioactivity behaviour of nano-hydroxyapatite/freestanding aligned carbon nanotube oxide composite.

    PubMed

    Siqueira, Idalia A W B; Oliveira, Ciliana A G S; Zanin, Hudson; Grinet, Marco A V M; Granato, Alessandro E C; Porcionatto, Marimelia A; Marciano, Fernanda R; Lobo, Anderson O

    2015-02-01

    Bioactive and low cytotoxic three dimensional nano-hydroxyapatite (nHAp) and aligned carbon nanotube oxide (a-CNTO) composite has been investigated. First, freestanding aligned carbon nanotubes porous scaffold was prepared by large-scale thermal chemical vapour deposition and functionalized by oxygen plasma treatment, forming a-CNTO. The a-CNTO was covered with plate-like nHAp crystals prepared by in situ electrodeposition techniques, forming nHAp/a-CNTO composite. After that nHAp/a-CNTO composite was immersed in simulated body fluid for composite consolidation. This novel nanobiomaterial promotes mesenchymal stem cell adhesion with the active formation of membrane projections, cell monolayer formation and high cell viability.

  13. Periodic alignment of Si quantum dots on hafnium oxide coated single wall carbon nanotubes

    SciTech Connect

    Olmedo, Mario; Martinez-Morales, Alfredo A.; Ozkan, Mihrimah; Liu Jianlin; Liu Gang; Lau, C.N.; Yengel, Emre; Ozkan, Cengiz S.

    2009-03-23

    We demonstrate a bottom up approach for the aligned epitaxial growth of Si quantum dots (QDs) on one-dimensional (1D) hafnium oxide (HfO{sub 2}) ridges created by the growth of HfO{sub 2} thin film on single wall carbon nanotubes. This growth process creates a high strain 1D ridge on the HfO{sub 2} film, which favors the formation of Si seeds over the surrounding flat HfO{sub 2} area. Periodic alignment of Si QDs on the 1D HfO{sub 2} ridge was observed, which can be controlled by varying different growth conditions, such as growth temperature, growth time, and disilane flow rate.

  14. Liquid Crystal Alignment on Solution Derived Zinc Oxide Films via Ion Beam Irradiation.

    PubMed

    Park, Hong-Gyu; Han, Jae-Jun; Seo, Dae-Shik

    2016-03-01

    A 75-nm-thick ZnO film was deposited by a sol-gel method on indium-tin oxide (ITO)-coated glass. This film served as a liquid crystal (LC) alignment layer. We report the fabrication and characteristics of this film after ion-beam (IB) irradiation. Uniform LC alignment was achieved at an IB incident energy above 2400 eV. The IB-treated ZnO surface was analyzed by X-ray photoelectron spectroscopy (XPS), monitoring the intensity of the Zn 2p and O 1s peaks as a function of IB-irradiation energy density. The electro-optical (EO) characteristics of a twisted nematic-liquid crystal display (TN-LCD) were comparable to rubbed polyimide. PMID:27455726

  15. Monolithic integration of rare-earth oxides and semiconductors for on-silicon technology

    SciTech Connect

    Dargis, Rytis Clark, Andrew; Erdem Arkun, Fevzi; Grinys, Tomas; Tomasiunas, Rolandas; O'Hara, Andy; Demkov, Alexander A.

    2014-07-01

    Several concepts of integration of the epitaxial rare-earth oxides into the emerging advanced semiconductor on silicon technology are presented. Germanium grows epitaxially on gadolinium oxide despite lattice mismatch of more than 4%. Additionally, polymorphism of some of the rare-earth oxides allows engineering of their crystal structure from hexagonal to cubic and formation of buffer layers that can be used for growth of germanium on a lattice matched oxide layer. Molecular beam epitaxy and metal organic chemical vapor deposition of gallium nitride on the rare-earth oxide buffer layers on silicon is discussed.

  16. X-ray reflectivity study of formation of multilayer porous anodic oxides of silicon.

    SciTech Connect

    Chu, Y.; Fenollosa, R.; Parkhutik, V.; You, H.

    1999-07-21

    The paper reports data on the kinetics of anodic oxide films growth on silicon in aqueous solutions of phosphoric acids as well as a study of the morphology of the oxides grown in a special regime of the oscillating anodic potential. X-ray reflectivity measurements were performed on the samples of anodic oxides using an intense synchrotron radiation source. They have a multilayer structure as revealed by theoretical fitting of the reflectivity data. The oscillations of the anodic potential are explained in terms of synchronized oxidation/dissolution reactions at the silicon surface and accumulation of mechanic stress in the oxide film.

  17. High-temperature oxidation behavior of reaction-formed silicon carbide ceramics

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.; Singh, M.

    1995-01-01

    The oxidation behavior of reaction-formed silicon carbide (RFSC) ceramics was investigated in the temperature range of 1100 to 1400 C. The oxidation weight change was recorded by TGA; the oxidized materials were examined by light and electron microscopy, and the oxidation product by x-ray diffraction analysis (XRD). The materials exhibited initial weight loss, followed by passive weight gain (with enhanced parabolic rates, k(sub p)), and ending with a negative (logarithmic) deviation from the parabolic law. The weight loss arose from the oxidation of residual carbon, and the enhanced k(sub p) values from internal oxidation and the oxidation of residual silicon, while the logarithmic kinetics is thought to have resulted from crystallization of the oxide. The presence of a small amount of MoSi, in the RFSC material caused a further increase in the oxidation rate. The only solid oxidation product for all temperatures studied was silica.

  18. Sub-50 nm positioning of organic compounds onto silicon oxide patterns fabricated by local oxidation nanolithography.

    PubMed

    Losilla, N S; Oxtoby, N S; Martinez, J; Garcia, F; Garcia, R; Mas-Torrent, M; Veciana, J; Rovira, C

    2008-11-12

    We present a process to fabricate molecule-based nanostructures by merging a bottom-up interaction and a top-down nanolithography. Direct nanoscale positioning arises from the attractive electrostatic interactions between the molecules and silicon dioxide nanopatterns. Local oxidation nanolithography is used to fabricate silicon oxide domains with variable gap separations ranging from 40 nm to several microns in length. We demonstrate that an ionic tetrathiafulvalene (TTF) semiconductor can be directed from a macroscopic liquid solution (1 µM) and selectively deposited onto predefined nanoscale regions of a 1 cm(2) silicon chip with an accuracy of 40 nm.

  19. Comparison of the synthesis of Ge nanocrystals in hafnium aluminum oxide and silicon oxide matrices.

    PubMed

    Chew, H G; Zheng, F; Choi, W K; Chim, W K; Fitzgerald, E A; Foo, Y L

    2009-02-01

    Growth of germanium (Ge) nanocrystals in silicon (Si) oxide and hafnium aluminum oxide (HfAlO) is examined. In Si oxide, nanocrystals were able to form at annealing temperatures of 800 degrees C to 1000 degrees C. Nanocrystals formed at 800 degrees C were round and approximately 8 nm in diameter, at 900 degrees C they become facetted and at 1000 degrees C they become spherical again. In HfAlO, at 800 degrees C nanocrystals formed are relatively smaller (approximately 3 nm in diameter) and lower in density. While at 900 degrees C and 1000 degrees C, nanocrystals did not form due to out-diffusion of Ge. Different nanocrystal formation characteristics in the matrices are attributed to differences in their crystallization temperatures.

  20. Structural alloy with a protective coating containing silicon or silicon-oxide

    DOEpatents

    Natesan, Ken

    1994-01-01

    An iron-based alloy containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100.degree. C.

  1. Structural alloy with a protective coating containing silicon or silicon-oxide

    DOEpatents

    Natesan, K.

    1992-01-01

    This invention is comprised of an iron-based alloy containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100{degrees}C.

  2. Structural alloy with a protective coating containing silicon or silicon-oxide

    DOEpatents

    Natesan, K.

    1994-12-27

    An iron-based alloy is described containing chromium and optionally, nickel. The alloy has a surface barrier of silicon or silicon plus oxygen which converts at high temperature to a protective silicon compound. The alloy can be used in oxygen-sulfur mixed gases at temperatures up to about 1100 C. 8 figures.

  3. Silicon nanoprofiling with the use of a solid aluminum oxide mask and combined 'dry' etching

    SciTech Connect

    Belov, A. N.; Demidov, Yu. A.; Putrya, M. G.; Golishnikov, A. A.; Vasilyev, A. A.

    2009-12-15

    Technological features of nanoprofiling of silicon protected by a solid mask based on porous aluminum oxide are considered. It is shown that, for a nanoprofiled silicon surface to be formed, it is advisable that combined dry etching be used including preliminary bombardment of structures with accelerated neutral atoms of an inert gas followed by reactive ion etching.

  4. Method of fabricating conducting oxide-silicon solar cells utilizing electron beam sublimation and deposition of the oxide

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1979-01-01

    In preparing tin oxide and indium tin oxide-silicon heterojunction solar cells by electron beam sublimation of the oxide and subsequent deposition thereof on the silicon, the engineering efficiency of the resultant cell is enhanced by depositing the oxide at a predetermined favorable angle of incidence. Typically the angle of incidence is between 40.degree. and 70.degree. and preferably between 55.degree. and 65.degree. when the oxide is tin oxide and between 40.degree. and 70.degree. when the oxide deposited is indium tin oxide. gi The Government of the United States of America has rights in this invention pursuant to Department of Energy Contract No. EY-76-C-03-1283.

  5. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition.

    PubMed

    D'Arcy, Julio M; Tran, Henry D; Stieg, Adam Z; Gimzewski, James K; Kaner, Richard B

    2012-05-21

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.

  6. Oxide/Water Interfaces: How the Surface Chemistry Modifies the Electronic Energy Alignment

    NASA Astrophysics Data System (ADS)

    Sprik, Michiel

    2014-03-01

    The minimum of the d-electron conduction band of an aqueous transition metal oxide electrode is typically no more than a few 100 mV away from the standard hydrogen electrode (SHE). Because of this favourable alignment of the electronic energy levels (near) metallic transition metal oxides with partly filled d bands can be used as electrocatalysts while the compounds with finite electronic gap can be used as photocatalysts. However, because of their ionic character, transition metal-oxide surfaces also show amphiphilic acid-base activity. At low pH the basic sites are protonated and at high pH the acidic sites deprotonated creating an electrical double layer with corresponding surface potential. The alignment of the electronic energy levels, and by implication their redox activity, is therefore pH dependent. In fact, even in absence of protonic surface charge, the coordination with water molecules is already capable of shifting the electronic energy levels of the oxide by 1 eV or more. Computation of the electronic energies in transition metal oxide electrodes requires therefore a detailed modeling of their aqueous surface chemistry. The solvation energy of the proton is the common energy reference for both redox potentials on the SHE scale and acidity constants (pKa). Computation of the H+ solvation energy is therefore a key component in a unified treatment of redox and acid-base chemistry. In this talk we outline the Density Functional Theory based Molecular Dynamics (DFTMD) method we have developed for this purpose. The central tool of our approach is a method for reversible insertion of protons in the aqueous part of the DFTMD model system. As an illustration we discuss the application to the rutile TiO2/water and MnO2/water interface.

  7. Mediator-less highly sensitive voltammetric detection of glutamate using glutamate dehydrogenase/vertically aligned CNTs grown on silicon substrate.

    PubMed

    Gholizadeh, Azam; Shahrokhian, Saeed; zad, Azam Iraji; Mohajerzadeh, Shamsoddin; Vosoughi, Manouchehr; Darbari, Sara; Sanaee, Zeinab

    2012-01-15

    A sensitive glutamate biosensor is prepared based on glutamate dehydrogenase/vertically aligned carbon nanotubes (GLDH, VACNTs). Vertically aligned carbon nanotubes were grown on a silicon substrate by direct current plasma enhanced chemical vapor deposition (DC-PECVD) method. The electrochemical behavior of the synthesized VACNTs was investigated by cyclic voltammetry and electrochemical impedance spectroscopic methods. Glutamate dehydrogenase covalently attached on tip of VACNTs. The electrochemical performance of the electrode for detection of glutamate was investigated by cyclic and differential pulse voltammetry. Differential pulse voltammetric determinations of glutamate are performed in mediator-less condition and also, in the presence of 1 and 5 μM thionine as electron mediator. The linear calibration curve of the concentration of glutamate versus peak current is investigated in a wide range of 0.1-500 μM. The mediator-less biosensor has a low detection limit of 57 nM and two linear ranges of 0.1-20 μM with a sensitivity of 0.976 mA mM(-1) cm(-2) and 20-300 μM with a sensitivity of 0.182 mA mM(-1) cm(-2). In the presence of 1 μM thionine as an electron mediator, the prepared biosensor shows a low detection limit of 68 nM and two linear ranges of 0.1-20 with a calibration sensitivity of 1.17 mA mM(-1) cm(-2) and 20-500 μM with a sensitivity of 0.153 mA mM(-1) cm(-2). The effects of the other biological compounds on the voltammetric behavior of the prepared biosensor and its response stability are investigated. The results are demonstrated that the GLDH/VACNTs electrode even without electron mediator is a suitable basic electrode for detection of glutamate. PMID:22040749

  8. Synchrotron x-ray reflectivity study of oxidation/passivation of copper and silicon.

    SciTech Connect

    Chu, Y.; Nagy, Z.; Parkhutik, V.; You, H.

    1999-07-21

    Synchrotron x-ray-scattering technique studies of copper and silicon electrochemical interfaces are reported. These two examples illustrate the application of synchrotron x-ray techniques for oxidation, passivation, and dissolution of metals and semiconductors.

  9. Large area nanoscale patterning of silicon surfaces by parallel local oxidation.

    PubMed

    Losilla, N S; Martínez, J; García, R

    2009-11-25

    The homogeneity and the reproducibility of parallel local oxidation have been improved by introducing a thin film of polymethylmethacrylate (PMMA) between the stamp and the silicon surface. The flexibility of the polymer film enables a homogeneous contact of the stamp with the silicon surface to be achieved. The oxides obtained yield better aspect ratios compared with the ones created with no PMMA layer. The pattern is formed when a bias voltage is applied between the stamp and the silicon surface for 1 min. The patterning can be done by a step and repeat technique and is reproducible across a centimetre length scale. Once the oxide nanostructures have been created, the polymer is removed by etching in acetone. Finally, parallel local oxidation is applied to fabricate silicon nanostructures and templates for the growth of organic molecules.

  10. Modelling and engineering of stress based controlled oxidation effects for silicon nanostructure patterning

    NASA Astrophysics Data System (ADS)

    Han, Xiang-Lei; Larrieu, Guilhem; Krzeminski, Christophe

    2013-12-01

    Silicon nanostructure patterning with tight geometry control is an important challenge at the bottom level. In that context, stress based controlled oxidation appears to be an efficient tool for precise nanofabrication. Here, we investigate the stress-retarded oxidation phenomenon in various silicon nanostructures (nanobeams, nanorings and nanowires) at both the experimental and the theoretical levels. Different silicon nanostructures have been fabricated by a top-down approach. Complex dependence of the stress build-up on the nano-object’s dimension, shape and size has been demonstrated experimentally and physically explained by modelling. For the oxidation of a two-dimensional nanostructure (nanobeam), relative independence to size effects has been observed. On the other hand, radial stress increase with geometry downscaling of a one-dimensional nanostructure (nanowire) has been carefully emphasized. The study of shape engineering by retarded oxidation effects for vertical silicon nanowires is finally discussed.

  11. Method for forming indium oxide/n-silicon heterojunction solar cells

    DOEpatents

    Feng, Tom; Ghosh, Amal K.

    1984-03-13

    A high photo-conversion efficiency indium oxide/n-silicon heterojunction solar cell is spray deposited from a solution containing indium trichloride. The solar cell exhibits an Air Mass One solar conversion efficiency in excess of about 10%.

  12. Role of atomic layer deposited aluminum oxide as oxidation barrier for silicon based materials

    SciTech Connect

    Fiorentino, Giuseppe Morana, Bruno; Forte, Salvatore; Sarro, Pasqualina Maria

    2015-01-15

    In this paper, the authors study the protective effect against oxidation of a thin layer of atomic layer deposited (ALD) aluminum oxide (Al{sub 2}O{sub 3}). Nitrogen doped silicon carbide (poly-SiC:N) based microheaters coated with ALD Al{sub 2}O{sub 3} are used as test structure to investigate the barrier effect of the alumina layers to oxygen and water vapor at very high temperature (up to 1000 °C). Different device sets have been fabricated changing the doping levels, to evaluate possible interaction between the dopants and the alumina layer. The as-deposited alumina layer morphology has been evaluated by means of AFM analysis and compared to an annealed sample (8 h at 1000 °C) to estimate the change in the grain structure and the film density. The coated microheaters are subjected to very long oxidation time in dry and wet environment (up to 8 h at 900 and 1000 °C). By evaluating the electrical resistance variation between uncoated reference devices and the ALD coated devices, the oxide growth on the SiC is estimated. The results show that the ALD alumina coating completely prevents the oxidation of the SiC up to 900 °C in wet environment, while an oxide thickness reduction of 50% is observed at 1000 °C compared to uncoated devices.

  13. Optimized lithography process for through-silicon vias-fabrication using a double-sided (structured) photomask for mask aligner lithography

    NASA Astrophysics Data System (ADS)

    Weichelt, Tina; Stuerzebecher, Lorenz; Zeitner, Uwe D.

    2015-07-01

    Through-silicon vias (TSV) are very important for wafer-level packaging as they provide patterning holes through thick silicon dies to integrate and interconnect devices which are stacked in the z-direction. For economic processing, TSV fabrication primarily needs to be cost effective, especially for a high throughput. Furthermore, a lithography process for TSV has to be stable enough to allow patterning on prestructured substrates with inhomogeneous topography. This can be addressed by an exposure process which offers a large depth of focus. We have developed a mask-aligner lithography process based on the use of a double-sided photomask to realize aerial images that meet these constraints.

  14. Enhanced field emission of vertically aligned core-shelled carbon nanotubes with molybdenum oxide encapsulation

    SciTech Connect

    Yu, J.; Chua, Daniel H. C.; Sow, C. H.; Wee, Andrew T. S.

    2009-06-01

    The field emission characteristics of the core-shelled nanostructures obtained by directly coating molybdenum oxide onto vertically aligned multiwalled carbon nanotubes (MWNTs) was investigated. A metal-organic chemical vapor deposition technique was used with Mo(CO){sub 6} as the precursor and films deposited at process temperatures of 200, 400, and 700 deg. C. X-ray photoelectron spectroscopy, scanning electron microscopy, and x-ray diffraction were used to study and understand the material properties of the deposited coatings. Enhanced field emission performance was observed for molybdenum oxide coated MWNT samples at 400 deg. C with a turn-on field of 1.33 V mum{sup -1} and a field enhancement factor beta estimated to be approx7000. The enhanced performance may be due to both the shape of the coated emitters and a decrease in the effective barrier height.

  15. Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells.

    PubMed

    Brittman, Sarah; Yoo, Youngdong; Dasgupta, Neil P; Kim, Si-in; Kim, Bongsoo; Yang, Peidong

    2014-08-13

    As a p-type semiconducting oxide that can absorb visible light, cuprous oxide (Cu2O) is an attractive material for solar energy conversion. This work introduces a high-temperature, vapor-phase synthesis that produces faceted Cu2O nanowires that grow epitaxially along the surface of a lattice-matched, single-crystal MgO substrate. Individual wires were then fabricated into single-wire, all-oxide diodes and solar cells using low-temperature atomic layer deposition (ALD) of TiO2 and ZnO films to form the heterojunction. The performance of devices made from pristine Cu2O wires and chlorine-exposed Cu2O wires was investigated under one-sun and laser illumination. These faceted wires allow the fabrication of well-controlled heterojunctions that can be used to investigate the interfacial properties of all-oxide solar cells. PMID:25014113

  16. Resistive Switching and Memory effects in Silicon Oxide Based Nanostructures

    NASA Astrophysics Data System (ADS)

    Yao, Jun

    Silicon oxide (SiOx 1 < x ≦2) has long been used and considered as a passive and insulating component in the construction of electronic devices. In contrast, here the active role of SiOx in constructing a type of resistive switching memory is studied. From electrode-independent electrical behaviors to the visualization of the conducting filament inside the SiOx matrix, the intrinsic switching picture in SiOx is gradually revealed. The thesis starts with the introduction of some similar phenomenological switching behaviors in different electronic structures (Chapter 1), and then generalizes the electrode-material-independent electrical behaviors on SiOx substrates, providing indirect evidence to the intrinsic SiOx switching (Chapter 2). From planar nanogap systems to vertical sandwiched structures, Chapter 3 further discusses the switching behaviors and properties in SiOx. By localization of the switching site, the conducting filament in SiOx is visualized under transmission electron microscope using both static and in situ imaging methods (Chapter 4). With the intrinsic conduction and switching in SiO x largely revealed, Chapter 5 discusses its impact and implications to the molecular electronics and nanoelectronics where SiOx is constantly used. As comparison, another type of memory effect in semiconductors (carbon nanotubes) based on charge trapping at the semiconductor/SiO x interface is discussed (Chapter 6).

  17. Simulation study of water/silicon oxide interface

    NASA Astrophysics Data System (ADS)

    Lorenz, Christian; Rempe, Susan; Stevens, Mark; Grest, Gary; Tsige, Mesfin

    2006-03-01

    The interaction of water with solid surfaces plays a crucial role in many phenomena. The water-silica interface is one of the typical systems encountered in technological and natural materials. Numerous technological applications of silica were found to rely on its specific surface properties. Large scale quantum mechanics (QM) and classical molecular dynamics (MD) simulations are used to study the molecular configurations and wetting properties of water at the interface of different silicon oxide surfaces. In order to understand how the surface coverage of silanols (-SiOH) affects the wetting behavior of the silica surfaces, both crystalline ((001) α-quartz (coverage 9.6 nm-2) and (100) β-cristobalite (7.8 nm-2)) and amorphous silica (5.0 nm-2) substrates have been studied. The binding energy of the water, the number of water molecules hydrogen-bonded to the surface and the configuration of the hydrogen-bonded water molecules are determined as a function of silanol coverage from QM simulations. The number of water molecules within a monolayer and the orientation of the water molecules within the monolayer and in the bulk are determined from MD simulations. Results from two classical force fields are compared to one another and to the relevant quantities from the QM simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  18. Silicon oxide permeation barrier coating of PET bottles and foils

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Deilmann, Michael; Awakowicz, Peter

    2009-10-01

    Modern packaging materials such as polyethylene terephthalate (PET) have displaced established materials in many areas of food and beverage packaging. Plastic packing materials offer are various advantages concerning production and handling. PET bottles for instance are non-breakable and lightweight compared to glass and metal containers. However, PET offers poor barrier properties against gas permeation. Therefore, the shelf live of packaged food is reduced. Permeation of gases can be reduced by depositing transparent plasma polymerized silicon oxide (SiOx) barrier coatings. A microwave (2.45 GHz) driven low pressure plasma reactor is developed based on a modified Plasmaline antenna to treat PET foils or bottles. To increase the barrier properties of the coatings furthermore a RF substrate bias (13.56 MHz) is applied. The composition of the coatings is analyzed by means of Fourier transform infrared (FTIR) spectroscopy regarding carbon and hydrogen content. Influence of gas phase composition and substrate bias on chemical composition of the coatings is discussed. A strong relation between barrier properties and film composition is found: good oxygen barriers are observed as carbon content is reduced and films become quartz-like. Regarding oxygen permeation a barrier improvement factor (BIF) of 70 is achieved.

  19. Alkyl monolayer passivated metal-semiconductor diodes: 2: Comparison with native silicon oxide.

    PubMed

    Liu, Yong-Jun; Yu, Hua-Zhong

    2003-04-14

    To understand the electrical properties at passivated metal-semiconductor interfaces, two types of mercury-insulator-silicon (n-type) junctions, Hg\\C10H21-Si and Hg\\SiO2-Si, were fabricated and their current-voltage and capacitance-voltage characteristics compared. Both of them exhibited near-ideal rectifying characteristics with an excellent saturation current at reverse bias, which is in contrast to the previously reported ohmic behavior of an unmodified mercury-silicon junction. The experimental results also indicated that the n-decyl monolayer passivated junction possesses a higher effective barrier height, a lower ideality factor (that is, closer to unity), and better reproducibility than that of native silicon oxide. In addition, the dopant density and build-in potential, extracted from capacitance-voltage measurements of these passivated mercury-silicon junctions, revealed that alkyl monolayer derivatization does not alter the intrinsic properties of the silicon substrate. The calculated surface state density at the alkyl monolayer\\silicon interface is lower than that of the silicon oxide\\silicon interface. The present study increases the possibility of using advanced organic materials as ultrathin insulator layers for miniaturized, silicon-based microelectronic devices.

  20. Process for depositing an oxide epitaxially onto a silicon substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1993-01-01

    A process and structure involving a silicon substrate utilizes an ultra high vacuum and molecular beam epitaxy (MBE) methods to grow an epitaxial oxide film upon a surface of the substrate. As the film is grown, the lattice of the compound formed at the silicon interface becomes stabilized, and a base layer comprised of an oxide having a sodium chloride-type lattice structure grows epitaxially upon the compound so as to cover the substrate surface. A perovskite may then be grown epitaxially upon the base layer to render a product which incorporates silicon, with its electronic capabilities, with a perovskite having technologically-significant properties of its own.

  1. In situ transmission infrared spectroscopy of high-kappa oxide atomic layer deposition onto silicon surfaces

    NASA Astrophysics Data System (ADS)

    Ho, Ming-Tsung

    Ultra-thin aluminum oxide (Al2O3) and hafnium oxide (HfO2) layers have been grown by atomic layer deposition (ALD) using tri-methyl-aluminum (TMA) and tetrakis-ethyl-methyl-amino-hafnium (TEMAH) respectively with heavy water (D2O) as the oxidizing agent. Several different silicon surfaces were used as substrates such as hydrogen terminated silicon (H/Si), SC2 (or RCA 2) cleaned native silicon oxide (SiO 2/Si), and silicon (oxy)nitride. In-situ transmission Fourier transform infrared spectroscopy (FTIR) has been adopted for the study of the growth mechanisms during ALD of these films. The vibrational spectra of gas phase TEMAH and its reaction byproducts with oxidants have also been investigated. Density functional theory (DFT) normal mode calculations show a good agreement with the experimental data when it is combined with linear wave-number scaling method and Fermi resonance mechanism. Ether (-C-O-C-) and tertiary alkylamine (N(R1R 2R3)) compounds are the two most dominant products of TEMAH reacting with oxygen gas and water. When ozone is used as the oxidant, gas phase CH2O, CH3NO2, CH3-N=C=O and other compounds containing -(C=O)- and --C-O-C- (or --O-C-) segments are observed. With substrate temperatures less than 400°C and 300°C for TMA and TEMAH respectively, Al oxide and Hf oxide ALD can be appropriately performed on silicon surfaces. Thin silicon (oxy)nitride thermally grown in ammonia on silicon substrate can significantly reduce silicon oxide interlayer formation during ALD and post-deposition annealing. The crystallization temperature of amorphous ALD grown HfO2 on nitridized silicon is 600°C, which is 100°C higher than on the other silicon surfaces. When HfO2 is grown on H/Si(111) at 100°C deposition temperature, minimum 5--10 ALD cycles are required for the full surface coverage. The steric effect can be seen by the evolution of the H-Si stretching mode at 2083 cm-1. The observed red shift of H-Si stretching to ˜ 2060 cm-1 can be caused by Si

  2. Effect of additive gases and injection methods on chemical dry etching of silicon nitride, silicon oxynitride, and silicon oxide layers in F{sub 2} remote plasmas

    SciTech Connect

    Yun, Y. B.; Park, S. M.; Kim, D. J.; Lee, N.-E.; Kim, K. S.; Bae, G. H.

    2007-07-15

    The authors investigated the effects of various additive gases and different injection methods on the chemical dry etching of silicon nitride, silicon oxynitride, and silicon oxide layers in F{sub 2} remote plasmas. N{sub 2} and N{sub 2}+O{sub 2} gases in the F{sub 2}/Ar/N{sub 2} and F{sub 2}/Ar/N{sub 2}/O{sub 2} remote plasmas effectively increased the etch rate of the layers. The addition of direct-injected NO gas increased the etch rates most significantly. NO radicals generated by the addition of N{sub 2} and N{sub 2}+O{sub 2} or direct-injected NO molecules contributed to the effective removal of nitrogen and oxygen in the silicon nitride and oxide layers, by forming N{sub 2}O and NO{sub 2} by-products, respectively, and thereby enhancing SiF{sub 4} formation. As a result of the effective removal of the oxygen, nitrogen, and silicon atoms in the layers, the chemical dry etch rates were enhanced significantly. The process regime for the etch rate enhancement of the layers was extended at elevated temperature.

  3. Method for one-to-one polishing of silicon nitride and silicon oxide

    NASA Technical Reports Server (NTRS)

    Babu, Suryadevara V. (Inventor); Natarajan, Anita (Inventor)

    2009-01-01

    The present invention provides a method of removing silicon nitride at about the same removal rate as silicon dioxide by CMP. The method utilizes a polishing slurry that includes colloidal silica abrasive particles dispersed in water and additives that modulate the silicon dioxide and silicon nitride removal rates such that they are about the same. In one embodiment of the invention, the additive is lysine or lysine mono hydrochloride in combination with picolinic acid, which is effective at a pH of about 8. In another embodiment of the invention, the additive is arginine in combination with picolinic acid, which is effective at a pH of about 10.

  4. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes.

    PubMed

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M; Gambhir, Sanjeev; Wallace, Gordon G; Kozlov, Mikhail E; Baughman, Ray H; Kim, Seon Jeong

    2012-01-01

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g(-1), far exceeding spider dragline silk (165 J g(-1)) and Kevlar (78 J g(-1)). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs. PMID:22337128

  5. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes

    PubMed Central

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M.; Gambhir, Sanjeev; Wallace, Gordon G.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2012-01-01

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g−1, far exceeding spider dragline silk (165 J g−1) and Kevlar (78 J g−1). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs. PMID:22337128

  6. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M.; Gambhir, Sanjeev; Wallace, Gordon G.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2012-01-01

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g-1, far exceeding spider dragline silk (165 J g-1) and Kevlar (78 J g-1). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

  7. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes.

    PubMed

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M; Gambhir, Sanjeev; Wallace, Gordon G; Kozlov, Mikhail E; Baughman, Ray H; Kim, Seon Jeong

    2012-01-31

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g(-1), far exceeding spider dragline silk (165 J g(-1)) and Kevlar (78 J g(-1)). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

  8. Fabrication of low-loss silicon-on-oxidized-porous-silicon strip waveguide using focused proton-beam irradiation.

    PubMed

    Teo, E J; Bettiol, A A; Yang, P; Breese, M B H; Xiong, B Q; Mashanovich, G Z; Headley, W R; Reed, G T

    2009-03-01

    We have successfully fabricated low-loss silicon-on-oxidized-porous-silicon (SOPS) strip waveguides with high-index contrast using focused proton-beam irradiation and electrochemical etching. Smooth surface quality with rms roughness of 3.1 nm is achieved for a fluence of 1x10(15)/cm(2) after postoxidation treatment. Optical characterization at a wavelength of 1550 nm shows a loss of 1.1+/-0.4 dB/cm and 1.2+/-0.4 dB/cm in TE and TM polarization respectively, which we believe is the lowest reported loss for SOPS waveguides. This opens up new opportunities for all-silicon-based optoelectronics applications.

  9. RF Reactive Magnetron Sputter Deposition of Silicon Sub-Oxides

    NASA Astrophysics Data System (ADS)

    van Hattum, E. D.

    2007-01-01

    RF reactive magnetron plasma sputter deposition of silicon sub oxide E.D. van Hattum Department of Physics and Astronomy, Faculty of Sciences, Utrecht University The work described in the thesis has been inspired and stimulated by the use of SiOx layers in the direct inductive printing technology, where the SiOx layer is used as the charge retention layer on the drums for copying and printing devices. The thesis describes investigations of the plasma and of processes taking place on the sputter target and on the SiOx growth surface in the room temperature, RF reactive magnetron plasma sputter deposition technology. The sputtering target consists of silicon and the reactive atmosphere consists of an Ar/O2 mixture. The composition of the grown SiOx layers has been varied between x=0 and x=2 by variation of the O2 partial pressure. The characteristics of the growth process have been related to the nanostructural properties of the grown films. The deposition system enables the characterisation of the plasma (Langmuir probe, energy resolved mass spectrometer) and of the growing film (Elastic Recoil Detection (ERD), Fourier transform infrared absorption spectroscopy) and is connected to a beamline of a 6MV tandem van de Graaff accelerator. Also Rutherford Backscattering Spectrometry and X-ray Photoelectron Spectroscopy have been applied. It is shown how ERD can be used as a real-time in-situ technique. The thesis presents spatially resolved values of the ion density, electron temperature and the quasi-electrostatic potential, determined using a Langmuir probe. The plasma potential has a maximum about 2 cm from the cathode erosion area, and decreases (more than 200 V typically) towards the floating sputter cathode. The potential decreases slightly in the direction towards the grounded growth surface and the positive, mainly Ar+, ions created in the large volume of the plasma closest to the substrate are accelerated towards the growth surface. These ions obtain a few eV of

  10. Metal-oxide-semiconductor characterization of silicon surfaces thermally oxidized after reactive ion etching and magnetically enhanced reactive ion etching

    SciTech Connect

    Settlemyer, K.T. Jr.; Ruzyllo, J.; Hwang, D.K.

    1993-03-01

    In this study the performance of reactive ion etching (RIE) and magnetically enhanced reactive ion etching (MERIE) processes in pregate oxidation etching of the field oxide are compared. The comparison is carried out through metal-oxide-semiconductor (MOS) characterization of oxides and interfaces formed on etched silicon surfaces. The results revealed differences in the outcome of RIE and MERIE processes with the latter displaying overall superior characteristics. MERIE induced surface damage is shallower, and is mostly removed during oxide growth. RIE damage propagates deeper into the Si bulk and still influences the MOS devices even after the top Si layers are converted into the oxide. The results obtained emphasize the importance of adequate cleaning of silicon surfaces following RIE/MERIE processes. 5 refs., 4 figs.

  11. Nanostructured Indium Oxide Coated Silicon Nanowire Arrays: A Hybrid Photothermal/Photochemical Approach to Solar Fuels.

    PubMed

    Hoch, Laura B; O'Brien, Paul G; Jelle, Abdinoor; Sandhel, Amit; Perovic, Douglas D; Mims, Charles A; Ozin, Geoffrey A

    2016-09-27

    The field of solar fuels seeks to harness abundant solar energy by driving useful molecular transformations. Of particular interest is the photodriven conversion of greenhouse gas CO2 into carbon-based fuels and chemical feedstocks, with the ultimate goal of providing a sustainable alternative to traditional fossil fuels. Nonstoichiometric, hydroxylated indium oxide nanoparticles, denoted In2O3-x(OH)y, have been shown to function as active photocatalysts for CO2 reduction to CO via the reverse water gas shift reaction under simulated solar irradiation. However, the relatively wide band gap (2.9 eV) of indium oxide restricts the portion of the solar irradiance that can be utilized to ∼9%, and the elevated reaction temperatures required (150-190 °C) reduce the overall energy efficiency of the process. Herein we report a hybrid catalyst consisting of a vertically aligned silicon nanowire (SiNW) support evenly coated by In2O3-x(OH)y nanoparticles that utilizes the vast majority of the solar irradiance to simultaneously produce both the photogenerated charge carriers and heat required to reduce CO2 to CO at a rate of 22.0 μmol·gcat(-1)·h(-1). Further, improved light harvesting efficiency of the In2O3-x(OH)y/SiNW films due to minimized reflection losses and enhanced light trapping within the SiNW support results in a ∼6-fold increase in photocatalytic conversion rates over identical In2O3-x(OH)y films prepared on roughened glass substrates. The ability of this In2O3-x(OH)y/SiNW hybrid catalyst to perform the dual function of utilizing both light and heat energy provided by the broad-band solar irradiance to drive CO2 reduction reactions represents a general advance that is applicable to a wide range of catalysts in the field of solar fuels. PMID:27598429

  12. Nanostructured Indium Oxide Coated Silicon Nanowire Arrays: A Hybrid Photothermal/Photochemical Approach to Solar Fuels.

    PubMed

    Hoch, Laura B; O'Brien, Paul G; Jelle, Abdinoor; Sandhel, Amit; Perovic, Douglas D; Mims, Charles A; Ozin, Geoffrey A

    2016-09-27

    The field of solar fuels seeks to harness abundant solar energy by driving useful molecular transformations. Of particular interest is the photodriven conversion of greenhouse gas CO2 into carbon-based fuels and chemical feedstocks, with the ultimate goal of providing a sustainable alternative to traditional fossil fuels. Nonstoichiometric, hydroxylated indium oxide nanoparticles, denoted In2O3-x(OH)y, have been shown to function as active photocatalysts for CO2 reduction to CO via the reverse water gas shift reaction under simulated solar irradiation. However, the relatively wide band gap (2.9 eV) of indium oxide restricts the portion of the solar irradiance that can be utilized to ∼9%, and the elevated reaction temperatures required (150-190 °C) reduce the overall energy efficiency of the process. Herein we report a hybrid catalyst consisting of a vertically aligned silicon nanowire (SiNW) support evenly coated by In2O3-x(OH)y nanoparticles that utilizes the vast majority of the solar irradiance to simultaneously produce both the photogenerated charge carriers and heat required to reduce CO2 to CO at a rate of 22.0 μmol·gcat(-1)·h(-1). Further, improved light harvesting efficiency of the In2O3-x(OH)y/SiNW films due to minimized reflection losses and enhanced light trapping within the SiNW support results in a ∼6-fold increase in photocatalytic conversion rates over identical In2O3-x(OH)y films prepared on roughened glass substrates. The ability of this In2O3-x(OH)y/SiNW hybrid catalyst to perform the dual function of utilizing both light and heat energy provided by the broad-band solar irradiance to drive CO2 reduction reactions represents a general advance that is applicable to a wide range of catalysts in the field of solar fuels.

  13. Dimethyl sulfoxide as a mild oxidizing agent for porous silicon and its effect on photoluminescence

    SciTech Connect

    Song, J.H.; Sailor, M.J.

    1998-06-29

    Dimethyl sulfoxide acts as a mild room-temperature oxidant of luminescent porous silicon. The oxidation reaction is accompanied by a loss in photoluminescence intensity from the silicon nanocrystallites, indicating that the oxide formed under these conditions is electronically defective. The rate of oxidation is reduced if the reaction is carried out in the presence of the radical traps 2,6-di-tert-butyl-4-methylphenol (butylated hydroxytoluene, BHT) or cumene. In addition, photoluminescence intensity is preserved if the DMSO oxidation reaction is carried out in the presence of high concentrations of BHT. The BHT is proposed to form a more electronically passive oxide layer by hydrogenating the surface radicals (dangling bonds) generated during the oxidation reaction.

  14. Optical absorption enhancement in 3D silicon oxide nano-sandwich type solar cell.

    PubMed

    Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo

    2014-01-13

    Recent research in the field of photovoltaic and solar cell fabrication has shown the potential to significantly enhance light absorption in thin-film solar cells by using surface texturing and nanostructure coating techniques. In this paper, for the first time, we propose a new method for nano sandwich type thin-film solar cell fabrication by combining the laser amorphization (2nd solar cell generation) and laser nanofibers generation (3rd solar cell generation) techniques. In this novel technique, the crystalline silicon is irradiated by megahertz frequency femtosecond laser pulses under ambient conditions and the multi-layer of amorphorized silicon and nano fibrous layer are generated in the single-step on top of the silicon substrate. Light spectroscopy results show significant enhancement of light absorption in the generated multi layers solar cells (Silicon Oxide nanofibers / thin-film amorphorized silicon). This method is single step and no additional materials are added and both layers of the amorphorized thin-film silicon and three-dimensional (3D) silicon oxide nanofibrous structures are grown on top of the silicon substrate after laser irradiation. Finally, we suggest how to maximize the light trapping and optical absorption of the generated nanofibers/thin-film cells by optimizing the laser pulse duration. PMID:24921988

  15. The complex interface chemistry of thin-film silicon/zinc oxide solar cell structures.

    PubMed

    Gerlach, D; Wimmer, M; Wilks, R G; Félix, R; Kronast, F; Ruske, F; Bär, M

    2014-12-21

    The interface between solid-phase crystallized phosphorous-doped polycrystalline silicon (poly-Si(n(+))) and aluminum-doped zinc oxide (ZnO:Al) was investigated using spatially resolved photoelectron emission microscopy. We find the accumulation of aluminum in the proximity of the interface. Based on a detailed photoemission line analysis, we also suggest the formation of an interface species. Silicon suboxide and/or dehydrated hemimorphite have been identified as likely candidates. For each scenario a detailed chemical reaction pathway is suggested. The chemical instability of the poly-Si(n(+))/ZnO:Al interface is explained by the fact that SiO2 is more stable than ZnO and/or that H2 is released from the initially deposited a-Si:H during the crystallization process. As a result, Zn (a deep acceptor in silicon) is "liberated" close to the silicon/zinc oxide interface presenting the inherent risk of forming deep defects in the silicon absorber. These could act as recombination centers and thus limit the performance of silicon/zinc oxide based solar cells. Based on this insight some recommendations with respect to solar cell design, material selection, and process parameters are given for further knowledge-based thin-film silicon device optimization. PMID:25363298

  16. Improvement of plasmonic enhancement of quantum dot emission via an intermediate silicon-aluminum oxide interface

    SciTech Connect

    Wing, Waylin J.; Sadeghi, Seyed M. Campbell, Quinn

    2015-01-05

    We studied the emission of quantum dots in the presence of plasmon-metal oxide substrates, which consist of arrays of metallic nanorods embedded in amorphous silicon coated with a nanometer-thin layer of aluminum oxide on the top. We showed that the combined effects of plasmons and the silicon-aluminum oxide interface can lead to significant enhancement of the quantum efficiency of quantum dots. Our results show that such an interface can significantly enhance plasmonic effects of the nanorods via quantum dot-induced exciton-plasmon coupling, leading to partial polarization of the quantum dots' emission.

  17. Self-Assembled Epitaxial Au-Oxide Vertically Aligned Nanocomposites for Nanoscale Metamaterials.

    PubMed

    Li, Leigang; Sun, Liuyang; Gomez-Diaz, Juan Sebastian; Hogan, Nicki L; Lu, Ping; Khatkhatay, Fauzia; Zhang, Wenrui; Jian, Jie; Huang, Jijie; Su, Qing; Fan, Meng; Jacob, Clement; Li, Jin; Zhang, Xinghang; Jia, Quanxi; Sheldon, Matthew; Alù, Andrea; Li, Xiaoqin; Wang, Haiyan

    2016-06-01

    Metamaterials made of nanoscale inclusions or artificial unit cells exhibit exotic optical properties that do not exist in natural materials. Promising applications, such as super-resolution imaging, cloaking, hyperbolic propagation, and ultrafast phase velocities have been demonstrated based on mostly micrometer-scale metamaterials and few nanoscale metamaterials. To date, most metamaterials are created using costly and tedious fabrication techniques with limited paths toward reliable large-scale fabrication. In this work, we demonstrate the one-step direct growth of self-assembled epitaxial metal-oxide nanocomposites as a drastically different approach to fabricating large-area nanostructured metamaterials. Using pulsed laser deposition, we fabricated nanocomposite films with vertically aligned gold (Au) nanopillars (∼20 nm in diameter) embedded in various oxide matrices with high epitaxial quality. Strong, broad absorption features in the measured absorbance spectrum are clear signatures of plasmon resonances of Au nanopillars. By tuning their densities on selected substrates, anisotropic optical properties are demonstrated via angular dependent and polarization resolved reflectivity measurements and reproduced by full-wave simulations and effective medium theory. Our model predicts exotic properties, such as zero permittivity responses and topological transitions. Our studies suggest that these self-assembled metal-oxide nanostructures provide an exciting new material platform to control and enhance optical response at nanometer scales.

  18. Self-Assembled Epitaxial Au-Oxide Vertically Aligned Nanocomposites for Nanoscale Metamaterials.

    PubMed

    Li, Leigang; Sun, Liuyang; Gomez-Diaz, Juan Sebastian; Hogan, Nicki L; Lu, Ping; Khatkhatay, Fauzia; Zhang, Wenrui; Jian, Jie; Huang, Jijie; Su, Qing; Fan, Meng; Jacob, Clement; Li, Jin; Zhang, Xinghang; Jia, Quanxi; Sheldon, Matthew; Alù, Andrea; Li, Xiaoqin; Wang, Haiyan

    2016-06-01

    Metamaterials made of nanoscale inclusions or artificial unit cells exhibit exotic optical properties that do not exist in natural materials. Promising applications, such as super-resolution imaging, cloaking, hyperbolic propagation, and ultrafast phase velocities have been demonstrated based on mostly micrometer-scale metamaterials and few nanoscale metamaterials. To date, most metamaterials are created using costly and tedious fabrication techniques with limited paths toward reliable large-scale fabrication. In this work, we demonstrate the one-step direct growth of self-assembled epitaxial metal-oxide nanocomposites as a drastically different approach to fabricating large-area nanostructured metamaterials. Using pulsed laser deposition, we fabricated nanocomposite films with vertically aligned gold (Au) nanopillars (∼20 nm in diameter) embedded in various oxide matrices with high epitaxial quality. Strong, broad absorption features in the measured absorbance spectrum are clear signatures of plasmon resonances of Au nanopillars. By tuning their densities on selected substrates, anisotropic optical properties are demonstrated via angular dependent and polarization resolved reflectivity measurements and reproduced by full-wave simulations and effective medium theory. Our model predicts exotic properties, such as zero permittivity responses and topological transitions. Our studies suggest that these self-assembled metal-oxide nanostructures provide an exciting new material platform to control and enhance optical response at nanometer scales. PMID:27186652

  19. Chemical Bath Deposition of Aluminum Oxide Buffer on Curved Surfaces for Growing Aligned Carbon Nanotube Arrays.

    PubMed

    Wang, Haitao; Na, Chongzheng

    2015-07-01

    Direct growth of vertically aligned carbon nanotube (CNT) arrays on substrates requires the deposition of an aluminum oxide buffer (AOB) layer to prevent the diffusion and coalescence of catalyst nanoparticles. Although AOB layers can be readily created on flat substrates using a variety of physical and chemical methods, the preparation of AOB layers on substrates with highly curved surfaces remains challenging. Here, we report a new solution-based method for preparing uniform layers of AOB on highly curved surfaces by the chemical bath deposition of basic aluminum sulfate and annealing. We show that the thickness of AOB layer can be increased by extending the immersion time of a substrate in the chemical bath, following the classical Johnson-Mehl-Avrami-Kolmogorov crystallization kinetics. The increase of AOB thickness in turn leads to the increase of CNT length and the reduction of CNT curviness. Using this method, we have successfully synthesized dense aligned CNT arrays of micrometers in length on substrates with highly curved surfaces including glass fibers, stainless steel mesh, and porous ceramic foam. PMID:26053766

  20. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications

    PubMed Central

    2016-01-01

    A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 μm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix. PMID:27172933

  1. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications.

    PubMed

    Ou, Canlin; Sanchez-Jimenez, Pedro E; Datta, Anuja; Boughey, Francesca L; Whiter, Richard A; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-06-01

    A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 μm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix.

  2. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications.

    PubMed

    Ou, Canlin; Sanchez-Jimenez, Pedro E; Datta, Anuja; Boughey, Francesca L; Whiter, Richard A; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-06-01

    A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 μm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix. PMID:27172933

  3. Hybrid Integration of Graphene Analog and Silicon Complementary Metal-Oxide-Semiconductor Digital Circuits.

    PubMed

    Hong, Seul Ki; Kim, Choong Sun; Hwang, Wan Sik; Cho, Byung Jin

    2016-07-26

    We demonstrate a hybrid integration of a graphene-based analog circuit and a silicon-based digital circuit in order to exploit the strengths of both graphene and silicon devices. This mixed signal circuit integration was achieved using a three-dimensional (3-D) integration technique where a graphene FET multimode phase shifter is fabricated on top of a silicon complementary metal-oxide-semiconductor field-effect transistor (CMOS FET) ring oscillator. The process integration scheme presented here is compatible with the conventional silicon CMOS process, and thus the graphene circuit can successfully be integrated on current semiconductor technology platforms for various applications. This 3-D integration technique allows us to take advantage of graphene's excellent inherent properties and the maturity of current silicon CMOS technology for future electronics. PMID:27403730

  4. Rapid Covalent Modification of Silicon Oxide Surfaces through Microwave-Assisted Reactions with Alcohols.

    PubMed

    Lee, Austin W H; Gates, Byron D

    2016-07-26

    We demonstrate the method of a rapid covalent modification of silicon oxide surfaces with alcohol-containing compounds with assistance by microwave reactions. Alcohol-containing compounds are prevalent reagents in the laboratory, which are also relatively easy to handle because of their stability against exposure to atmospheric moisture. The condensation of these alcohols with the surfaces of silicon oxides is often hindered by slow reaction kinetics. Microwave radiation effectively accelerates this condensation reaction by heating the substrates and/or solvents. A variety of substrates were modified in this demonstration, such as silicon oxide films of various thicknesses, glass substrates such as microscope slides (soda lime), and quartz. The monolayers prepared through this strategy demonstrated the successful formation of covalent surface modifications of silicon oxides with water contact angles of up to 110° and typical hysteresis values of 2° or less. An evaluation of the hydrolytic stability of these monolayers demonstrated their excellent stability under acidic conditions. The techniques introduced in this article were successfully applied to tune the surface chemistry of silicon oxides to achieve hydrophobic, oleophobic, and/or charged surfaces. PMID:27396288

  5. Synthesis of metal silicide at metal/silicon oxide interface by electronic excitation

    SciTech Connect

    Lee, J.-G.; Nagase, T.; Yasuda, H.; Mori, H.

    2015-05-21

    The synthesis of metal silicide at the metal/silicon oxide interface by electronic excitation was investigated using transmission electron microscopy. A platinum silicide, α-Pt{sub 2}Si, was successfully formed at the platinum/silicon oxide interface under 25–200 keV electron irradiation. This is of interest since any platinum silicide was not formed at the platinum/silicon oxide interface by simple thermal annealing under no-electron-irradiation conditions. From the electron energy dependence of the cross section for the initiation of the silicide formation, it is clarified that the silicide formation under electron irradiation was not due to a knock-on atom-displacement process, but a process induced by electronic excitation. It is suggested that a mechanism related to the Knotek and Feibelman mechanism may play an important role in silicide formation within the solid. Similar silicide formation was also observed at the palladium/silicon oxide and nickel/silicon oxide interfaces, indicating a wide generality of the silicide formation by electronic excitation.

  6. Rapid Covalent Modification of Silicon Oxide Surfaces through Microwave-Assisted Reactions with Alcohols.

    PubMed

    Lee, Austin W H; Gates, Byron D

    2016-07-26

    We demonstrate the method of a rapid covalent modification of silicon oxide surfaces with alcohol-containing compounds with assistance by microwave reactions. Alcohol-containing compounds are prevalent reagents in the laboratory, which are also relatively easy to handle because of their stability against exposure to atmospheric moisture. The condensation of these alcohols with the surfaces of silicon oxides is often hindered by slow reaction kinetics. Microwave radiation effectively accelerates this condensation reaction by heating the substrates and/or solvents. A variety of substrates were modified in this demonstration, such as silicon oxide films of various thicknesses, glass substrates such as microscope slides (soda lime), and quartz. The monolayers prepared through this strategy demonstrated the successful formation of covalent surface modifications of silicon oxides with water contact angles of up to 110° and typical hysteresis values of 2° or less. An evaluation of the hydrolytic stability of these monolayers demonstrated their excellent stability under acidic conditions. The techniques introduced in this article were successfully applied to tune the surface chemistry of silicon oxides to achieve hydrophobic, oleophobic, and/or charged surfaces.

  7. Crack healing behavior of hot pressed silicon nitride due to oxidation

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Tikare, V.

    1992-01-01

    It is shown that limited oxidation of an MgO-containing, hot-pressed silicon nitride ceramic at 800 deg C and above results in increased strength due to crack healing. Slight oxidation of the surface produces enstatite and cristobalite which fills in cracks. More extensive oxidation leads to strength degradation due to the formation of new flaws by the evolution of N2 gas at the surface. The apparent fracture toughness also increased at 800 deg C and above due to oxidation. Bonds formed between the two surfaces of the crack during oxidation leads to a reduction in stress intensity at the crack tip, suggesting that valid high-temperature toughness values cannot be obtained in an air environment. The increase in strength due to crack healing by oxidation can be achieved without compromising the fatigue properties of the silicon nitride ceramic.

  8. Corrosion resistant three-dimensional nanotextured silicon for water photo-oxidation

    NASA Astrophysics Data System (ADS)

    Carter, Rachel; Chatterjee, Shahana; Gordon, Evan; Share, Keith; Erwin, William R.; Cohn, Adam P.; Bardhan, Rizia; Pint, Cary L.

    2015-10-01

    We demonstrate the ability to chemically transform bulk silicon into a nanotextured surface that exhibits excellent electrochemical stability in aqueous conditions for water photo-oxidation. Conformal defective graphene coatings on nanotextured silicon formed by thermal treatment enable over 50× corrosion resistance in aqueous electrolytes based upon Tafel analysis and impedance spectroscopy. This enables nanotextured silicon as an effective oxygen-evolution photoanode for water splitting with saturation current density measured near 35 mA cm-2 under 100 mW cm-2 (1 sun) illumination. Our approach builds upon simple and scalable processing techniques with silicon to develop corrosion resistant electrodes that can benefit a broad range of catalytic and photocatalytic applications.We demonstrate the ability to chemically transform bulk silicon into a nanotextured surface that exhibits excellent electrochemical stability in aqueous conditions for water photo-oxidation. Conformal defective graphene coatings on nanotextured silicon formed by thermal treatment enable over 50× corrosion resistance in aqueous electrolytes based upon Tafel analysis and impedance spectroscopy. This enables nanotextured silicon as an effective oxygen-evolution photoanode for water splitting with saturation current density measured near 35 mA cm-2 under 100 mW cm-2 (1 sun) illumination. Our approach builds upon simple and scalable processing techniques with silicon to develop corrosion resistant electrodes that can benefit a broad range of catalytic and photocatalytic applications. Electronic supplementary information (ESI) available: (i) Experimental details, (ii) Nyquist plot from EIS data, (iii) FTIR of H-terminated silicon, (iv) reflectance measurements to quantify light trapping in nanotextured silicon, (v) LSV from Tafel analysis, and (vi) J-V curves for H-terminated flat samples, (vii) stability test of photoanode, and (viii) forward and reverse scans for each sample type. See DOI: 10

  9. Optimization of contaminated oxide inversion layer solar cell. [considering silicon oxide coating

    NASA Technical Reports Server (NTRS)

    Call, R. L.

    1976-01-01

    Contaminated oxide cells have been fabricated with efficiencies of 8.6% with values of I sub sc = 120 ma, V sub oc = .54 volts, and curve factor of .73. Attempts to optimize the fabrication step to yield a higher output have not been successful. The fundamental limitation is the inadequate antireflection coating afforded by the silicon dioxide coating used to hold the contaminating ions. Coatings of SiO, therefore, were used to obtain a good antireflection coating, but the thinness of the coatings prevented a large concentration of the contaminating ions, and the cells was weak. Data of the best cell were .52 volts V sub oc, 110 ma I sub sc, .66 CFF and 6.7% efficiency.

  10. Dispersion engineering of high-Q silicon microresonators via thermal oxidation

    SciTech Connect

    Jiang, Wei C.; Zhang, Jidong; Usechak, Nicholas G.; Lin, Qiang

    2014-07-21

    We propose and demonstrate a convenient and sensitive technique for precise engineering of group-velocity dispersion in high-Q silicon microresonators. By accurately controlling the surface-oxidation thickness of silicon microdisk resonators, we are able to precisely manage the zero-dispersion wavelength, while simultaneously further improving the high optical quality of our devices, with the optical Q close to a million. The demonstrated dispersion management allows us to achieve parametric generation with precisely engineerable emission wavelengths, which shows great potential for application in integrated silicon nonlinear and quantum photonics.

  11. The effect of nanocrystalline silicon host on magnetic properties of encapsulated iron oxide nanoparticles.

    PubMed

    Granitzer, P; Rumpf, K; Gonzalez-Rodriguez, R; Coffer, J L; Reissner, M

    2015-12-21

    The purpose of this work is a detailed comparison of the fundamental magnetic properties of nanocomposite systems consisting of Fe3O4 nanoparticle-loaded porous silicon as well as silicon nanotubes. Such composite structures are of potential merit in the area of magnetically guided drug delivery. For magnetic systems to be utilized in biomedical applications, there are certain magnetic properties that must be fulfilled. Therefore magnetic properties of embedded Fe3O4-nanoparticles in these nanostructured silicon host matrices, porous silicon and silicon nanotubes, are investigated. Temperature-dependent magnetic investigations have been carried out for four types of iron oxide particle sizes (4, 5, 8 and 10 nm). The silicon host, in interplay with the iron oxide nanoparticle size, plays a sensitive role. It is shown that Fe3O4 loaded porous silicon and SiNTs differ significantly in their magnetic behavior, especially the transition between superparamagnetic behavior and blocked state, due to host morphology-dependent magnetic interactions. Importantly, it is found that all investigated samples meet the magnetic precondition of possible biomedical applications of exhibiting a negligible magnetic remanence at room temperature.

  12. Quantification of silane molecules on oxidized silicon: are there options for a traceable and absolute determination?

    PubMed

    Dietrich, P M; Streeck, C; Glamsch, S; Ehlert, C; Lippitz, A; Nutsch, A; Kulak, N; Beckhoff, B; Unger, W E S

    2015-10-01

    Organosilanes are used routinely to functionalize various support materials for further modifications. Nevertheless, reliable quantitative information about surface functional group densities after layer formation is rarely available. Here, we present the analysis of thin organic nanolayers made from nitrogen containing silane molecules on naturally oxidized silicon wafers with reference-free total reflection X-ray fluorescence (TXRF) and X-ray photoelectron spectroscopy (XPS). An areic density of 2-4 silane molecules per nm(2) was calculated from the layer's nitrogen mass deposition per area unit obtained by reference-free TXRF. Complementary energy and angle-resolved XPS (ER/AR-XPS) in the Si 2p core-level region was used to analyze the outermost surface region of the organic (silane layer)-inorganic (silicon wafer) interface. Different coexisting silicon species as silicon, native silicon oxide, and silane were identified and quantified. As a result of the presented proof-of-concept, absolute and traceable values for the areic density of silanes containing nitrogen as intrinsic marker are obtained by calibration of the XPS methods with reference-free TXRF. Furthermore, ER/AR-XPS is shown to facilitate the determination of areic densities in (mono)layers made from silanes having no heteroatomic marker other than silicon. After calibration with reference-free TXRF, these areic densities of silane molecules can be determined when using the XPS component intensity of the silane's silicon atom.

  13. An Alignment Medium for Measuring Residual Dipolar Couplings in Pure DMSO: Liquid Crystals from Graphene Oxide Grafted with Polymer Brushes.

    PubMed

    Zong, Wen; Li, Gao-Wei; Cao, Jiang-Ming; Lei, Xinxiang; Hu, Mao-Lin; Sun, Han; Griesinger, Christian; Tan, Ren Xiang

    2016-03-01

    Residual dipolar couplings (RDCs) have attracted attention in light of their great impact on the structural elucidation of organic molecules. However, the effectiveness of RDC measurements is limited by the shortage of alignment media compatible with widely used organic solvents, such as DMSO. Herein, we present the first liquid crystal (LC) based alignment medium that is compatible with pure DMSO, thus enabling RDC measurements of polar and intermediate polarity molecules. The liquid crystals were obtained by grafting polymer brushes onto graphene oxide (GO) using free radical polymerization. The resulting new medium offers several advantages, such as absence of background signals, narrow line shapes, and tunable alignment. Importantly, this medium is compatible with π-conjugated molecules. Moreover, sonication-induced fragmentation can reduce the size of GO sheets. The resulting anisotropic medium has moderate alignment strength, which is a prerequisite for an accurate RDC measurement.

  14. Achievement of a high-mobility FET with a cloud-aligned composite oxide semiconductor

    NASA Astrophysics Data System (ADS)

    Yamazaki, Shunpei; Shima, Yukinori; Hosaka, Yasuharu; Okazaki, Kenichi; Koezuka, Junichi

    2016-11-01

    We have recently discovered that films of a widely used In–Ga–Zn oxide (IGZO) with \\text{In}:\\text{Ga}:\\text{Zn} = 1:1:1 have different material composition states when sputter-deposited under different conditions using the same polycrystalline IGZO target. Significant improvements in on-state current and mobility (as high as 40 cm2·V‑1·s‑1) are obtained. The results of local composition analysis indicate that the deposited film is not composed of any known homogeneous IGZO compound and that the components of this film are separated into two types of nanoparticle regions: one type is composed mainly of GaO x and GaZnO x , which contribute to on/off (switching) characteristics, and the other is composed mainly of InO x and InZnO x , which contribute to on-state characteristics. These regions constitute a new type of oxide semiconductor (OS) film. The nanoparticles with a blurry boundary extend like a cloud, probably complementing one another. We consider that this OS film has a novel composition, which can be described as a “cloud-aligned composite OS” (CAC-OS).

  15. Designing high performance precursors for atomic layer deposition of silicon oxide

    SciTech Connect

    Mallikarjunan, Anupama Chandra, Haripin; Xiao, Manchao; Lei, Xinjian; Pearlstein, Ronald M.; Bowen, Heather R.; O'Neill, Mark L.; Derecskei-Kovacs, Agnes; Han, Bing

    2015-01-15

    Conformal and continuous silicon oxide films produced by atomic layer deposition (ALD) are enabling novel processing schemes and integrated device structures. The increasing drive toward lower temperature processing requires new precursors with even higher reactivity. The aminosilane family of precursors has advantages due to their reactive nature and relative ease of use. In this paper, the authors present the experimental results that reveal the uniqueness of the monoaminosilane structure [(R{sub 2}N)SiH{sub 3}] in providing ultralow temperature silicon oxide depositions. Disubstituted aminosilanes with primary amines such as in bis(t-butylamino)silane and with secondary amines such as in bis(diethylamino)silane were compared with a representative monoaminosilane: di-sec-butylaminosilane (DSBAS). DSBAS showed the highest growth per cycle in both thermal and plasma enhanced ALD. These findings show the importance of the arrangement of the precursor's organic groups in an ALD silicon oxide process.

  16. Silicon Oxide Deposition into a Hole Using a Focused Ion Beam

    NASA Astrophysics Data System (ADS)

    Nakamura, Hiroko; Komano, Haruki; Norimatu, Kenji; Gomei, Yoshio

    1991-11-01

    Focused ion beam (FIB)-induced deposition of silicon oxide in terms of filling a hole is reported. It was found that a vacant space was formed when an ion beam was simply scanned through the hole area. To investigate the mechanism to form the vacancy, deposition on the sample, which has a step with a height of 0.8 μm, was carried out by using a Si2+ and a Be2+ ion beam. An extruded deposit resembling a pent roof was observed from the step ridge. The mechanism of the pent roof growth on the steplike sample was considered and the vacancy formation in the hole can be explained by the same mechanism. For silicon oxide, the high growth rate of the extruded deposit is thought to be the key to the vacancy formation. A useful way is proposed to fill the hole with silicon oxide with almost no vacancy.

  17. Silicon microlens structures fabricated by scanning-probe gray-scale oxidation.

    PubMed

    Chen, C F; Tzeng, S D; Chen, H Y; Gwo, S

    2005-03-15

    We report on the micromachining of silicon microlens structures by use of scanning-probe gray-scale anodic oxidation along with dry anisotropic etching. Convex, concave, and arbitrarily shaped silicon microlenses with diameters as small as 2 microm are demonstrated. We also confirm the high fidelity of pattern transfer between the probe-induced oxides and the etched silicon microlens structures. Besides the flexibility, the important features of scanning-probe gray-scale anodic oxidation are small pixel size and pitch (of the order of tens of nanometers), an unlimited number of gray-scale levels, and the possibility of creating arbitrarily designed microlens structures with exquisite precision and resolution. With this approach, refractive, diffractive, and hybrid microlens arrays can be developed to create innovative optical components.

  18. Titanium-silicon oxide film structures for polarization-modulated infrared reflection absorption spectroscopy

    PubMed Central

    Dunlop, Iain E.; Zorn, Stefan; Richter, Gunther; Srot, Vesna; Kelsch, Marion; van Aken, Peter A.; Skoda, Maximilian; Gerlach, Alexander; Spatz, Joachim P.; Schreiber, Frank

    2010-01-01

    We present a titanium-silicon oxide film structure that permits polarization modulated infrared reflection absorption spectroscopy on silicon oxide surfaces. The structure consists of a ~6 nm sputtered silicon oxide film on a ~200 nm sputtered titanium film. Characterization using conventional and scanning transmission electron microscopy, electron energy loss spectroscopy, X-ray photoelectron spectroscopy and X-ray reflectometry is presented. We demonstrate the use of this structure to investigate a selectively protein-resistant self-assembled monolayer (SAM) consisting of silane-anchored, biotin-terminated poly(ethylene glycol) (PEG). PEG-associated IR bands were observed. Measurements of protein-characteristic band intensities showed that this SAM adsorbed streptavidin whereas it repelled bovine serum albumin, as had been expected from its structure. PMID:20418963

  19. Vertically aligned graphitic carbon nanosheet arrays fabricated from graphene oxides for supercapacitors and Li-O2 batteries.

    PubMed

    Zhao, Guangyu; Zhang, Li; Lv, Jixian; Li, Changle; Sun, Kening

    2016-05-11

    Vertically aligned graphitic carbon nanosheet arrays were fabricated from graphene oxide solution by a hydrothermal method. The arrays exhibited a specific capacitance of 240 F g(-1) at 200 A g(-1) as a supercapacitor electrode and a capacity of 6500 mA h g(-1) as a Li-O2 battery cathode.

  20. Microstructural and physical properties of magnesium oxide-doped silicon nitride ceramics

    NASA Astrophysics Data System (ADS)

    Sirota, V.; Lukianova, O.; Krasilnikov, V.; Selemenev, V.; Dokalov, V.

    Silicon nitride based ceramics with aluminum, yttrium and magnesium oxides were produced by cold isostatic pressing and free sintering. The phase composition of the starting MgO powder obtained by the novel technology has been studied. The effect of magnesium oxide content on the structure of the produced materials has been investigated. It was found, that obtained materials with 1 and 2 wt.% of magnesium oxide and without it have a typical β-silicon nitride structure with elongated grains. Ceramics with 5 wt.% magnesia has a duplex α/β-structure with elongated and equiaxed grains. Ceramics with 2 wt.% magnesium oxide has a maximum density of 2.91 g/cm3. The increases in magnesium oxide content upto 5% led to decrease in the shrinkage (from 16% to 12%) and density (from 2.88 to 2.37 g/cm3).

  1. Resistance of Silicon Nitride Turbine Components to Erosion and Hot Corrosion/oxidation Attack

    NASA Technical Reports Server (NTRS)

    Strangmen, Thomas E.; Fox, Dennis S.

    1994-01-01

    Silicon nitride turbine components are under intensive development by AlliedSignal to enable a new generation of higher power density auxiliary power systems. In order to be viable in the intended applications, silicon nitride turbine airfoils must be designed for survival in aggressive oxidizing combustion gas environments. Erosive and corrosive damage to ceramic airfoils from ingested sand and sea salt must be avoided. Recent engine test experience demonstrated that NT154 silicon nitride turbine vanes have exceptional resistance to sand erosion, relative to superalloys used in production engines. Similarly, NT154 silicon nitride has excellent resistance to oxidation in the temperature range of interest - up to 1400 C. Hot corrosion attack of superalloy gas turbine components is well documented. While hot corrosion from ingested sea salt will attack silicon nitride substantially less than the superalloys being replaced in initial engine applications, this degradation has the potential to limit component lives in advanced engine applications. Hot corrosion adversely affects the strength of silicon nitride in the 850 to 1300 C range. Since unacceptable reductions in strength must be rapidly identified and avoided, AlliedSignal and the NASA Lewis Research Center have pioneered the development of an environmental life prediction model for silicon nitride turbine components. Strength retention in flexure specimens following 1 to 3300 hour exposures to high temperature oxidation and hot corrosion has been measured and used to calibrate the life prediction model. Predicted component life is dependent upon engine design (stress, temperature, pressure, fuel/air ratio, gas velocity, and inlet air filtration), mission usage (fuel sulfur content, location (salt in air), and times at duty cycle power points), and material parameters. Preliminary analyses indicate that the hot corrosion resistance of NT154 silicon nitride is adequate for AlliedSignal's initial engine

  2. Fabrication of OSOS cells by neutral ion beam sputtering. [Oxide Semiconductor On Silicon solar cells

    NASA Technical Reports Server (NTRS)

    Burk, D. E.; Dubow, J. B.; Sites, J. R.

    1976-01-01

    Oxide semiconductor on silicon (OSOS) solar cells have been fabricated from various indium tin oxide (In2O3)x(SnO2)1-x compositions sputtered onto p-type single crystal silicon substrates with a neutralized argon ion beam. High temperature processing or annealing was not required. The highest efficiency was achieved with x = 0.91 and was 12 percent. The cells are environmentally rugged, chemically stable, and show promise for still higher efficiencies. Moreover, the ion beam sputtering fabrication technique is amenable to low cost, continuous processing.

  3. High-Quality Solution-Processed Silicon Oxide Gate Dielectric Applied on Indium Oxide Based Thin-Film Transistors.

    PubMed

    Jaehnike, Felix; Pham, Duy Vu; Anselmann, Ralf; Bock, Claudia; Kunze, Ulrich

    2015-07-01

    A silicon oxide gate dielectric was synthesized by a facile sol-gel reaction and applied to solution-processed indium oxide based thin-film transistors (TFTs). The SiOx sol-gel was spin-coated on highly doped silicon substrates and converted to a dense dielectric film with a smooth surface at a maximum processing temperature of T = 350 °C. The synthesis was systematically improved, so that the solution-processed silicon oxide finally achieved comparable break downfield strength (7 MV/cm) and leakage current densities (<10 nA/cm(2) at 1 MV/cm) to thermally grown silicon dioxide (SiO2). The good quality of the dielectric layer was successfully proven in bottom-gate, bottom-contact metal oxide TFTs and compared to reference TFTs with thermally grown SiO2. Both transistor types have field-effect mobility values as high as 28 cm(2)/(Vs) with an on/off current ratio of 10(8), subthreshold swings of 0.30 and 0.37 V/dec, respectively, and a threshold voltage close to zero. The good device performance could be attributed to the smooth dielectric/semiconductor interface and low interface trap density. Thus, the sol-gel-derived SiO2 is a promising candidate for a high-quality dielectric layer on many substrates and high-performance large-area applications. PMID:26039187

  4. Plasma-Sprayed Refractory Oxide Coatings on Silicon-Base Ceramics

    NASA Technical Reports Server (NTRS)

    Tewari, Surendra

    1997-01-01

    Silicon-base ceramics are promising candidate materials for high temperature structural applications such as heat exchangers, gas turbines and advanced internal combustion engines. Composites based on these materials are leading candidates for combustor materials for HSCT gas turbine engines. These materials possess a combination of excellent physical and mechanical properties at high temperatures, for example, high strength, high toughness, high thermal shock resistance, high thermal conductivity, light weight and excellent oxidation resistance. However, environmental durability can be significantly reduced in certain conditions such as when molten salts, H2 or water vapor are present. The oxidation resistance of silicon-base materials is provided by SiO2 protective layer. Molten salt reacts with SiO2 and forms a mixture of SiO2 and liquid silicate at temperatures above 800C. Oxygen diffuses more easily through the chemically altered layer, resulting in a catastrophic degradation of the substrate. SiC and Si3N4 are not stable in pure H2 and decompose to silicon and gaseous species such as CH4, SiH, SiH4, N2, and NH3. Water vapor is known to slightly increase the oxidation rate of SiC and Si3N4. Refractory oxides such as alumina, yttria-stabilized zirconia, yttria and mullite (3Al2O3.2SiO2) possess excellent environmental durability in harsh conditions mentioned above. Therefore, refractory oxide coatings on silicon-base ceramics can substantially improve the environmental durability of these materials by acting as a chemical reaction barrier. These oxide coatings can also serve as a thermal barrier. The purpose of this research program has been to develop refractory oxide chemical/thermal barrier coatings on silicon-base ceramics to provide extended temperature range and lifetime to these materials in harsh environments.

  5. Role of an Oxidant Mixture as Surface Modifier of Porous Silicon Microstructures Evaluated by Spectroscopic Ellipsometry.

    PubMed

    Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J Antonio; Tagüeña-Martínez, Julia

    2016-04-21

    Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications.

  6. Role of an Oxidant Mixture as Surface Modifier of Porous Silicon Microstructures Evaluated by Spectroscopic Ellipsometry

    PubMed Central

    Montiel-González, Zeuz; Escobar, Salvador; Nava, Rocío; del Río, J. Antonio; Tagüeña-Martínez, Julia

    2016-01-01

    Current research on porous silicon includes the construction of complex structures with luminescent and/or photonic properties. However, their preparation with both characteristics is still challenging. Recently, our group reported a possible method to achieve that by adding an oxidant mixture to the electrolyte used to produce porous silicon. This mixture can chemically modify their microstructure by changing the thickness and surface passivation of the pore walls. In this work, we prepared a series of samples (with and without oxidant mixture) and we evaluated the structural differences through their scanning electron micrographs and their optical properties determined by spectroscopic ellipsometry. The results showed that ellipsometry is sensitive to slight variations in the porous silicon structure, caused by changes in their preparation. The fitting process, based on models constructed from the features observed in the micrographs, allowed us to see that the mayor effect of the oxidant mixture is on samples of high porosity, where the surface oxidation strongly contributes to the skeleton thinning during the electrochemical etching. This suggests the existence of a porosity threshold for the action of the oxidant mixture. These results could have a significant impact on the design of complex porous silicon structures for different optoelectronic applications. PMID:27097767

  7. Low-index nanopatterned barrier for hybrid oxide-free III-V silicon conductive bonding.

    PubMed

    Bougot-Robin, Kristelle; Talneau, Anne; Benisty, Henri

    2014-09-22

    Oxide-free bonding of a III-V active stack emitting at 1300-1600 nm to a silicon-on-insulator wafer offers the capability to electrically inject lasers from the silicon side. However, a typical 500-nm-thick silicon layer notably attracts the fundamental guided mode of the silicon + III-V stack, a detrimental feature compared to established III-V Separate-Confinement Heterostructure (SCH) stacks. We experimentally probe with photoluminescence as an internal light source the guiding behavior for oxide-free bonding to a nanopatterned silicon wafer that acts as a low-index barrier. We use a sub-wavelength square array of small holes as an effective "low-index silicon" medium. It is weakly modulated along one dimension (superperiodic array) to outcouple the resulting guided modes to free space, where we use an angle-resolved spectroscopy study. Analysis of experimental branches confirms the capability to operate with a fundamental mode well localized in the III-V heterostructures.

  8. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride.

    PubMed

    Kischkat, Jan; Peters, Sven; Gruska, Bernd; Semtsiv, Mykhaylo; Chashnikova, Mikaela; Klinkmüller, Matthias; Fedosenko, Oliana; Machulik, Stephan; Aleksandrova, Anna; Monastyrskyi, Gregorii; Flores, Yuri; Masselink, W Ted

    2012-10-01

    The complex refractive index components, n and k, have been studied for thin films of several common dielectric materials with a low to medium refractive index as functions of wavelength and stoichiometry for mid-infrared (MIR) wavelengths within the range 1.54-14.29 μm (700-6500 cm(-1)). The materials silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, and titanium oxide are prepared using room temperature reactive sputter deposition and are characterized using MIR variable angle spectroscopic ellipsometry. The investigation shows how sensitive the refractive index functions are to the O2 and N2 flow rates, and for which growth conditions the materials deposit homogeneously. It also allows conclusions to be drawn on the degree of amorphousness and roughness. To facilitate comparison of the materials deposited in this work with others, the index of refraction was also determined and provided for the near-IR and visible ranges of the spectrum. The results presented here should serve as a useful information base for designing optical coatings for the MIR part of the electromagnetic spectrum. The results are parameterized to allow them to be easily used for coating design.

  9. Large-area alignment of tungsten oxide nanowires over flat and patterned substrates for room-temperature gas sensing.

    PubMed

    Cheng, Wei; Ju, Yanrui; Payamyar, Payam; Primc, Darinka; Rao, Jingyi; Willa, Christoph; Koziej, Dorota; Niederberger, Markus

    2015-01-01

    Alignment of nanowires over a large area of flat and patterned substrates is a prerequisite to use their collective properties in devices such as gas sensors. In this work, uniform single-crystalline ultrathin W18 O49 nanowires with diameters less than 2 nm and aspect ratios larger than 100 have been synthesized, and, despite their flexibility, assembled into thin films with high orientational order over a macroscopic area by the Langmuir-Blodgett technique. Alignment of the tungsten oxide nanowires was also possible on top of sensor substrates equipped with electrodes. Such sensor devices were found to exhibit outstanding sensitivity to H2 at room temperature. PMID:25412600

  10. Oxidation of Chemically-Vapor-Deposited Silicon Carbide in Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Nguyen, QuynhGiao N.

    1998-01-01

    Chemically-vapor-deposited silicon carbide (CVD SiC) was oxidized in carbon dioxide (CO2) at temperatures of 1200-1400 C for times between 96 and 500 h at several gas flow rates. Oxidation weight gains were monitored by thermogravimetric analysis (TGA) and were found to be very small and independent of temperature. Possible rate limiting kinetic mechanisms are discussed. Passive oxidation of SiC by CO2 is negligible compared to the rates measured for other oxidants that are also found in combustion environments, oxygen and water vapor.

  11. Effect of dielectric stoichiometry and interface chemical state on band alignment between tantalum oxide and platinum

    NASA Astrophysics Data System (ADS)

    Lebedinskii, Yu. Yu.; Chernikova, A. G.; Markeev, A. M.; Kuzmichev, D. S.

    2015-10-01

    The tantalum oxide-platinum interface electronic properties determined by X-ray photoelectron spectroscopy are found to depend on the dielectric stoichiometry and platinum chemical state. We demonstrate the slow charging of the tantalum oxide in cases of Ta2O5/Pt and Ta2O5-y/Pt interfaces under the X-ray irradiation. This behavior is proposed to be related to the charge accumulation at oxygen vacancies induced traps. Based on the proposed methodology, we define the intrinsic conductive band offset (CBO) ˜1.3 eV (both for Ta2O5/Pt and Ta2O5-y/Pt) and CBO after the full saturation of the traps charging ˜0.5 eV, while the last one defines the energy position of charged traps below the bottom of conduction band. We demonstrate also the pining at the both Ta2O5/Pt and Ta2O5-y/Pt interfaces even in the "intrinsic" state, apparently induced by the presence of additional interfacial states. No shifts of Ta4f line and band alignment in over stoichiometric Ta2O5+x/Pt structure during X-ray irradiation, as well as the absence of pinning, resulting in increase of CBO up to 2.3 eV are found. This behavior is related to the PtO2 interfacing layer formation at Ta2O5+x/Pt, blocking the charging of the surface states and associated dipole formation.

  12. Heterojunction Solar Cells Based on Silicon and Composite Films of Graphene Oxide and Carbon Nanotubes.

    PubMed

    Yu, LePing; Tune, Daniel; Shearer, Cameron; Shapter, Joseph

    2015-09-01

    Graphene oxide (GO) sheets have been used as the surfactant to disperse single-walled carbon nanotubes (CNT) in water to prepare GO/CNT electrodes that are applied to silicon to form a heterojunction that can be used in solar cells. GO/CNT films with different ratios of the two components and with various thicknesses have been used as semitransparent electrodes, and the influence of both factors on the performance of the solar cell has been studied. The degradation rate of the GO/CNT-silicon devices under ambient conditions has also been explored. The influence of the film thickness on the device performance is related to the interplay of two competing factors, namely, sheet resistance and transmittance. CNTs help to improve the conductivity of the GO/CNT film, and GO is able to protect the silicon from oxidation in the atmosphere.

  13. Microstructure, oxidation behavior and mechanical behavior of lens deposited niobium-titanium-silicon and niobium-titanium-silicon based alloys

    NASA Astrophysics Data System (ADS)

    Dehoff, Ryan Richard

    With current high temperature structural materials such as nickel based superalloys being pushed to the limits of suitable operating conditions, there comes a need for replacement materials with even higher temperature capabilities. Niobium silicon based systems have been shown to have superior density normalized strength at elevated temperatures when compared to currently used alloys. The drawbacks associated with the niobium silicon system are due to catastrophic oxidation behavior at elevated temperatures. Alloying addition have been shown to increase the oxidation resistance near suitable levels, but also decrease the high temperature strength and increases creep rates when compared to the binary alloy system. The microstructure of the material is similar to metal matrix composites in which high melting temperature silicides are dispersed in a niobium based matrix phase. The silicides produce high temperature strength while the niobium based matrix increases the room temperature properties such as fracture toughness. The bulk of the research has been conducted on directionally solidified material which has a coarse microstructure due to the slow cooling rates associated with the processing condition. The current research uses a powder metallurgy process termed Laser Engineered Net Shaping, or LENS, to produce material with a significantly refined microstructure due to fast cooling rates associated with the laser process. Several compositions of alloys were examined and the ideal processing parameters were determined for each alloy. The resulting microstructures show a refinement of the microstructure as expected with a fine scale distribution of Nb5Si3 and Nb3Si dispersed in a niobium based matrix phase. The high temperature oxidation behavior of the LENS deposited alloys was comparable to alloys produced using other techniques. A non protective oxide scale formed on samples exposed for only 0.5 hours but was not protective and showed large amounts of

  14. Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting.

    PubMed

    Boughey, Francesca L; Davies, Timothy; Datta, Anuja; Whiter, Richard A; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-07-15

    A piezoelectric nanogenerator has been fabricated using a simple, fast and scalable template-assisted electrodeposition process, by which vertically aligned zinc oxide (ZnO) nanowires were directly grown within a nanoporous polycarbonate (PC) template. The nanowires, having average diameter 184 nm and length 12 μm, are polycrystalline and have a preferred orientation of the [100] axis parallel to the long axis. The output power density of a nanogenerator fabricated from the as-grown ZnO nanowires still embedded within the PC template was found to be 151 ± 25 mW m(-3) at an impedance-matched load, when subjected to a low-level periodic (5 Hz) impacting force akin to gentle finger tapping. An energy conversion efficiency of ∼4.2% was evaluated for the electrodeposited ZnO nanowires, and the ZnO-PC composite nanogenerator was found to maintain good energy harvesting performance through 24 h of continuous fatigue testing. This is particularly significant given that ZnO-based nanostructures typically suffer from mechanical and/or environmental degradation that otherwise limits their applicability in vibrational energy harvesting. Our template-assisted synthesis of ZnO nanowires embedded within a protective polymer matrix through a single growth process is thus attractive for the fabrication of low-cost, robust and stable nanogenerators.

  15. Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting

    NASA Astrophysics Data System (ADS)

    Boughey, Francesca L.; Davies, Timothy; Datta, Anuja; Whiter, Richard A.; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-07-01

    A piezoelectric nanogenerator has been fabricated using a simple, fast and scalable template-assisted electrodeposition process, by which vertically aligned zinc oxide (ZnO) nanowires were directly grown within a nanoporous polycarbonate (PC) template. The nanowires, having average diameter 184 nm and length 12 μm, are polycrystalline and have a preferred orientation of the [100] axis parallel to the long axis. The output power density of a nanogenerator fabricated from the as-grown ZnO nanowires still embedded within the PC template was found to be 151 ± 25 mW m-3 at an impedance-matched load, when subjected to a low-level periodic (5 Hz) impacting force akin to gentle finger tapping. An energy conversion efficiency of ˜4.2% was evaluated for the electrodeposited ZnO nanowires, and the ZnO-PC composite nanogenerator was found to maintain good energy harvesting performance through 24 h of continuous fatigue testing. This is particularly significant given that ZnO-based nanostructures typically suffer from mechanical and/or environmental degradation that otherwise limits their applicability in vibrational energy harvesting. Our template-assisted synthesis of ZnO nanowires embedded within a protective polymer matrix through a single growth process is thus attractive for the fabrication of low-cost, robust and stable nanogenerators.

  16. Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting.

    PubMed

    Boughey, Francesca L; Davies, Timothy; Datta, Anuja; Whiter, Richard A; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-07-15

    A piezoelectric nanogenerator has been fabricated using a simple, fast and scalable template-assisted electrodeposition process, by which vertically aligned zinc oxide (ZnO) nanowires were directly grown within a nanoporous polycarbonate (PC) template. The nanowires, having average diameter 184 nm and length 12 μm, are polycrystalline and have a preferred orientation of the [100] axis parallel to the long axis. The output power density of a nanogenerator fabricated from the as-grown ZnO nanowires still embedded within the PC template was found to be 151 ± 25 mW m(-3) at an impedance-matched load, when subjected to a low-level periodic (5 Hz) impacting force akin to gentle finger tapping. An energy conversion efficiency of ∼4.2% was evaluated for the electrodeposited ZnO nanowires, and the ZnO-PC composite nanogenerator was found to maintain good energy harvesting performance through 24 h of continuous fatigue testing. This is particularly significant given that ZnO-based nanostructures typically suffer from mechanical and/or environmental degradation that otherwise limits their applicability in vibrational energy harvesting. Our template-assisted synthesis of ZnO nanowires embedded within a protective polymer matrix through a single growth process is thus attractive for the fabrication of low-cost, robust and stable nanogenerators. PMID:27256619

  17. Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices

    SciTech Connect

    Zanin, H.; Saito, E.; Ceragioli, H.J.; Baranauskas, V.; Corat, E.J.

    2014-01-01

    Graphical abstract: - Highlights: • Graphene nanosheets were produced onto wire rods. • RGO and VACNT-O were evaluated and compared as supercapacitor electrode. • RGO and VACNT-O have structural and electrochemical properties quite similars. • The materials present good specific capacitance, energy storage and power delivery. - Abstract: Reduced graphene oxide (RGO) and vertically aligned carbon nanotubes (VACNT) superhydrophilic films were prepared by chemical vapor deposition techniques for electrical energy storage investigations. These electrodes were characterized in terms of their material and electrochemical properties by scanning electron microscopy (SEM), surface wettability, Fourier transform infrared spectroscopy (FTIR), energy dispersive and Raman spectroscopies, cyclic voltammetry (CV) and galvanostatic charge–discharge. We observed several physical structural and electrochemical similarities between these carbon-based materials with particular attention to very good specific capacitance, ultra-high energy storage and fast power delivery. Our results showed that the main difference between specific capacitance values is attributed to pseudocapacitive contribution and high density of multiwall nanotubes tips. In this work we have tested a supercapacitor device using the VACNT electrodes.

  18. Silicon oxide nanowire growth mechanisms revealed by real-time electron microscopy

    NASA Astrophysics Data System (ADS)

    Kolíbal, Miroslav; Novák, Libor; Shanley, Toby; Toth, Milos; Šikola, Tomáš

    2015-12-01

    Growth of one-dimensional materials is possible through numerous mechanisms that affect the nanowire structure and morphology. Here, we explain why a wide range of morphologies is observed when silicon oxide nanowires are grown on silicon substrates using liquid gallium catalyst droplets. We show that a gallium oxide overlayer is needed for nanowire nucleation at typical growth temperatures, and that it can decompose during growth and, hence, dramatically alter the nanowire morphology. Gallium oxide decomposition is attributed to etching caused by hydrogen that can be supplied by thermal dissociation of H2O (a common impurity). We show that H2O dissociation is catalyzed by silicon substrates at temperatures as low as 320 °C, identify the material supply pathways and processes that rate-limit nanowire growth under dry and wet atmospheres, and present a detailed growth model that explains contradictory results reported in prior studies. We also show that under wet atmospheres the Ga droplets can be mobile and promote nanowire growth as they traverse the silicon substrate.Growth of one-dimensional materials is possible through numerous mechanisms that affect the nanowire structure and morphology. Here, we explain why a wide range of morphologies is observed when silicon oxide nanowires are grown on silicon substrates using liquid gallium catalyst droplets. We show that a gallium oxide overlayer is needed for nanowire nucleation at typical growth temperatures, and that it can decompose during growth and, hence, dramatically alter the nanowire morphology. Gallium oxide decomposition is attributed to etching caused by hydrogen that can be supplied by thermal dissociation of H2O (a common impurity). We show that H2O dissociation is catalyzed by silicon substrates at temperatures as low as 320 °C, identify the material supply pathways and processes that rate-limit nanowire growth under dry and wet atmospheres, and present a detailed growth model that explains

  19. Microcrystalline silicon oxides for silicon-based solar cells: impact of the O/Si ratio on the electronic structure

    NASA Astrophysics Data System (ADS)

    Bär, M.; Starr, D. E.; Lambertz, A.; Holländer, B.; Alsmeier, J.-H.; Weinhardt, L.; Blum, M.; Gorgoi, M.; Yang, W.; Wilks, R. G.; Heske, C.

    2014-10-01

    Hydrogenated microcrystalline silicon oxide (μc-SiOx:H) layers are one alternative approach to ensure sufficient interlayer charge transport while maintaining high transparency and good passivation in Si-based solar cells. We have used a combination of complementary x-ray and electron spectroscopies to study the chemical and electronic structure of the (μc-SiOx:H) material system. With these techniques, we monitor the transition from a purely Si-based crystalline bonding network to a silicon oxide dominated environment, coinciding with a significant decrease of the material's conductivity. Most Si-based solar cell structures contain emitter/contact/passivation layers. Ideally, these layers fulfill their desired task (i.e., induce a sufficiently high internal electric field, ensure a good electric contact, and passivate the interfaces of the absorber) without absorbing light. Usually this leads to a trade-off in which a higher transparency can only be realized at the expense of the layer's ability to properly fulfill its task. One alternative approach is to use hydrogenated microcrystalline silicon oxide (μc-SiOx:H), a mixture of microcrystalline silicon and amorphous silicon (sub)oxide. The crystalline Si regions allow charge transport, while the oxide matrix maintains a high transparency. To date, it is still unclear how in detail the oxygen content influences the electronic structure of the μc-SiOx:H mixed phase material. To address this question, we have studied the chemical and electronic structure of the μc-SiOx:H (0 <= x = O/Si <=1) system with a combination of complementary x-ray and electron spectroscopies. The different surface sensitivities of the employed techniques help to reduce the impact of surface oxides on the spectral interpretation. For all samples, we find the valence band maximum to be located at a similar energy with respect to the Fermi energy. However, for x > 0.5, we observe a pronounced decrease of Si 3s - Si 3p hybridization in favor

  20. Facile preparation of highly-dispersed cobalt-silicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation

    PubMed Central

    2011-01-01

    Highly dispersed cobalt-silicon mixed oxide [Co-SiO2] nanosphere was successfully prepared with a modified reverse-phase microemulsion method. This material was characterized in detail by X-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance spectra, X-ray absorption spectroscopy near-edge structure, and N2 adsorption-desorption measurements. High valence state cobalt could be easily obtained without calcination, which is fascinating for the catalytic application for its strong oxidation ability. In the selective oxidation of cyclohexane, Co-SiO2 acted as an efficient catalyst, and good activity could be obtained under mild conditions. PMID:22067075

  1. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.

    PubMed

    Wang, Jing; Bao, Wurigumula; Ma, Lu; Tan, Guoqiang; Su, Yuefeng; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-12-01

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide-nickel-graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx /Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx /Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials.

  2. Metal Oxide Silicon /MOS/ transistors protected from destructive damage by wire

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.; Devine, E. J.

    1966-01-01

    Loop of flexible, small diameter, nickel wire protects metal oxide silicon /MOS/ transistors from a damaging electrostatic potential. The wire is attached to a music-wire spring, slipped over the MOS transistor case, and released so the spring tensions the wire loop around all the transistor leads, shorting them together. This allows handling without danger of damage.

  3. Scalable Preparation of Ternary Hierarchical Silicon Oxide-Nickel-Graphite Composites for Lithium-Ion Batteries.

    PubMed

    Wang, Jing; Bao, Wurigumula; Ma, Lu; Tan, Guoqiang; Su, Yuefeng; Chen, Shi; Wu, Feng; Lu, Jun; Amine, Khalil

    2015-12-01

    Silicon monoxide is a promising anode candidate because of its high theoretical capacity and good cycle performance. To solve the problems associated with this material, including large volume changes during charge-discharge processes, we report a ternary hierarchical silicon oxide-nickel-graphite composite prepared by a facile two-step ball-milling method. The composite consists of nano-Si dispersed silicon oxides embedded in nano-Ni/graphite matrices (Si@SiOx /Ni/graphite). In the composite, crystalline nano-Si particles are generated by the mechanochemical reduction of SiO by ball milling with Ni. These nano-Si dispersed oxides have abundant electrochemical activity and can provide high Li-ion storage capacity. Furthermore, the milled nano-Ni/graphite matrices stick well to active materials and interconnect to form a crosslinked framework, which functions as an electrical highway and a mechanical backbone so that all silicon oxide particles become electrochemically active. Owing to these advanced structural and electrochemical characteristics, the composite enhances the utilization efficiency of SiO, accommodates its large volume expansion upon cycling, and has good ionic and electronic conductivity. The composite electrodes thus exhibit substantial improvements in electrochemical performance. This ternary hierarchical Si@SiOx /Ni/graphite composite is a promising candidate anode material for high-energy lithium-ion batteries. Additionally, the mechanochemical ball-milling method is low cost and easy to reproduce, indicating potential for the commercial production of the composite materials. PMID:26548901

  4. Improved reaction sintered silicon nitride. [protective coatings to improve oxidation resistance

    NASA Technical Reports Server (NTRS)

    Baumgartner, H. R.

    1978-01-01

    Processing treatments were applied to as-nitrided reaction sintered silicon nitride (RSSN) with the purposes of improving strength after processing to above 350 MN/m2 and improving strength after oxidation exposure. The experimental approaches are divided into three broad classifications: sintering of surface-applied powders; impregnation of solution followed by further thermal processing; and infiltration of molten silicon and subsequent carburization or nitridation of the silicon. The impregnation of RSSN with solutions of aluminum nitrate and zirconyl chloride, followed by heating at 1400-1500 C in a nitrogen atmosphere containing silicon monoxide, improved RSSN strength and oxidation resistance. The room temperature bend strength of RSSN was increased nearly fifty percent above the untreated strength with mean absolute strengths up to 420 MN/m2. Strengths of treated samples that were measured after a 12 hour oxidation exposure in air were up to 90 percent of the original as-nitrided strength, as compared to retained strengths in the range of 35 to 60 percent for untreated RSSN after the same oxidation exposure.

  5. Labyrinth patterns of zinc oxide on porous silicon substrate

    NASA Astrophysics Data System (ADS)

    Martínez, L.; Kumar, Y.; Mayorga, D.; Goswami, N.; Agarwal, V.

    2014-03-01

    The substrate treatment dependent formation of different micro-morphologies of zinc oxide over PS substrate has been reported. Effect of substrate oxidation and annealing has been studied. Changes in the structural properties were seen in the form of labyrinth patterns developed on the surface and were studied with the help of scanning electron microscope (SEM), atomic force microscope (AFM). X-ray diffraction (XRD) along with UV-visible absorption and photoluminescence (PL) spectroscopy were performed for characterizing the zinc oxide film and the hybrid structure. A relatively flat film of nanostructured zinc oxide particles is found to form on the oxidized substrate as compared to the nanostructured labyrinth patterns formed on the un-oxidized substrate with enhanced aspect ratio. Such micromorphologies can be very promising for fabricating highly sensitive gas sensors.

  6. A Model for the Oxidation of Carbon Silicon Carbide Composite Structures

    NASA Technical Reports Server (NTRS)

    Sullivan, Roy M.

    2004-01-01

    A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of carbon silicon carbide (C/SiC) composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The numerical method is demonstrated by utilizing the method to model the carbon oxidation and weight loss behavior of C/SiC specimens during thermogravimetric experiments. The numerical method is used to study the physics of carbon oxidation in carbon silicon carbide composites.

  7. Influence of interlayer trapping and detrapping mechanisms on the electrical characterization of hafnium oxide/silicon nitride stacks on silicon

    SciTech Connect

    Garcia, H.; Duenas, S.; Castan, H.; Gomez, A.; Bailon, L.; Toledano-Luque, M.; Prado, A. del; Martil, I.; Gonzalez-Diaz, G.

    2008-11-01

    Al/HfO{sub 2}/SiN{sub x}:H/n-Si metal-insulator-semiconductor capacitors have been studied by electrical characterization. Films of silicon nitride were directly grown on n-type silicon substrates by electron cyclotron resonance assisted chemical vapor deposition. Silicon nitride thickness was varied from 3 to 6.6 nm. Afterwards, 12 nm thick hafnium oxide films were deposited by the high-pressure sputtering approach. Interface quality was determined by using current-voltage, capacitance-voltage, deep-level transient spectroscopy (DLTS), conductance transients, and flatband voltage transient techniques. Leakage currents followed the Poole-Frenkel emission model in all cases. According to the simultaneous measurement of the high and low frequency capacitance voltage curves, the interface trap density obtained for all the samples is in the 10{sup 11} cm{sup -2} eV{sup -1} range. However, a significant increase in this density of about two orders of magnitude was obtained by DLTS for the thinnest silicon nitride interfacial layers. In this work we probe that this increase is an artifact that must be attributed to traps existing at the HfO{sub 2}/SiN{sub x}:H intralayer interface. These traps are more easily charged or discharged as this interface comes near to the substrate, that is, as thinner the SiN{sub x}:H interface layer is. The trapping/detrapping mechanism increases the capacitance transient and, in consequence, the DLTS measurements have contributions not only from the insulator/substrate interface but also from the HfO{sub 2}/SiN{sub x}:H intralayer interface.

  8. Fabrication of disposable topographic silicon oxide from sawtoothed patterns: control of arrays of gold nanoparticles.

    PubMed

    Cho, Heesook; Yoo, Hana; Park, Soojin

    2010-05-18

    Disposable topographic silicon oxide patterns were fabricated from polymeric replicas of sawtoothed glass surfaces, spin-coating of poly(dimethylsiloxane) (PDMS) thin films, and thermal annealing at certain temperature and followed by oxygen plasma treatment of the thin PDMS layer. A simple imprinting process was used to fabricate the replicated PDMS and PS patterns from sawtoothed glass surfaces. Next, thin layers of PDMS films having different thicknesses were spin-coated onto the sawtoothed PS surfaces and annealed at 60 degrees C to be drawn the PDMS into the valley of the sawtoothed PS surfaces, followed by oxygen plasma treatment to fabricate topographic silicon oxide patterns. By control of the thickness of PDMS layers, silicon oxide patterns having various line widths were fabricated. The silicon oxide topographic patterns were used to direct the self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films via solvent annealing process. A highly ordered PS-b-P2VP micellar structure was used to let gold precursor complex with P2VP chains, and followed by oxygen plasma treatment. When the PS-b-P2VP thin films containing gold salts were exposed to oxygen plasma environments, gold salts were reduced to pure gold nanoparticles without changing high degree of lateral order, while polymers were completely degraded. As the width of trough and crest in topographic patterns increases, the number of gold arrays and size of gold nanoparticles are tuned. In the final step, the silicon oxide topographic patterns were selectively removed by wet etching process without changing the arrays of gold nanoparticles.

  9. The effect of nanocrystalline silicon host on magnetic properties of encapsulated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Granitzer, P.; Rumpf, K.; Gonzalez-Rodriguez, R.; Coffer, J. L.; Reissner, M.

    2015-11-01

    The purpose of this work is a detailed comparison of the fundamental magnetic properties of nanocomposite systems consisting of Fe3O4 nanoparticle-loaded porous silicon as well as silicon nanotubes. Such composite structures are of potential merit in the area of magnetically guided drug delivery. For magnetic systems to be utilized in biomedical applications, there are certain magnetic properties that must be fulfilled. Therefore magnetic properties of embedded Fe3O4-nanoparticles in these nanostructured silicon host matrices, porous silicon and silicon nanotubes, are investigated. Temperature-dependent magnetic investigations have been carried out for four types of iron oxide particle sizes (4, 5, 8 and 10 nm). The silicon host, in interplay with the iron oxide nanoparticle size, plays a sensitive role. It is shown that Fe3O4 loaded porous silicon and SiNTs differ significantly in their magnetic behavior, especially the transition between superparamagnetic behavior and blocked state, due to host morphology-dependent magnetic interactions. Importantly, it is found that all investigated samples meet the magnetic precondition of possible biomedical applications of exhibiting a negligible magnetic remanence at room temperature.The purpose of this work is a detailed comparison of the fundamental magnetic properties of nanocomposite systems consisting of Fe3O4 nanoparticle-loaded porous silicon as well as silicon nanotubes. Such composite structures are of potential merit in the area of magnetically guided drug delivery. For magnetic systems to be utilized in biomedical applications, there are certain magnetic properties that must be fulfilled. Therefore magnetic properties of embedded Fe3O4-nanoparticles in these nanostructured silicon host matrices, porous silicon and silicon nanotubes, are investigated. Temperature-dependent magnetic investigations have been carried out for four types of iron oxide particle sizes (4, 5, 8 and 10 nm). The silicon host, in interplay

  10. Graphene oxide-immobilized NH₂-terminated silicon nanoparticles by cross-linked interactions for highly stable silicon negative electrodes.

    PubMed

    Sun, Cheng; Deng, Yuanfu; Wan, Lina; Qin, Xusong; Chen, Guohua

    2014-07-23

    There is a great interest in the utilization of silicon-based anodes for lithium-ion batteries. However, its poor cycling stability, which is caused by a dramatic volume change during lithium-ion intercalation, and intrinsic low electric conductivity hamper its industrial applications. A facile strategy is reported here to fabricate graphene oxide-immobilized NH2-terminated silicon nanoparticles (NPs) negative electrode (Si@NH2/GO) directed by hydrogen bonding and cross-linked interactions to enhance the capacity retention of the anode. The NH2-modified Si NPs first form strong hydrogen bonds and covalent bonds with GO. The Si@NH2/GO composite further forms hydrogen bonds and covalent bonds with sodium alginate, which acts as a binder, to yield a stable composite negative electrode. These two chemical cross-linked/hydrogen bonding interactions-one between NH2-modified Si NPs and GO, and another between the GO and sodium alginate-along with highly mechanically flexible graphene oxide, produced a robust network in the negative electrode system to stabilize the electrode during discharge and charge cycles. The as-prepared Si@NH2/GO electrode exhibits an outstanding capacity retention capability and good rate performance, delivering a reversible capacity of 1000 mAh g(-1) after 400 cycles at a current of 420 mA g(-1) with almost 100% capacity retention. The results indicated the importance of system-level strategy for fabricating stable electrodes with improved electrochemical performance.

  11. Self-aligned graphene field-effect transistors on SiC (0001) substrates with self-oxidized gate dielectric

    NASA Astrophysics Data System (ADS)

    Jia, Li; Cui, Yu; Li, Wang; Qingbin, Liu; Zezhao, He; Shujun, Cai; Zhihong, Feng

    2014-07-01

    A scalable self-aligned approach is employed to fabricate monolayer graphene field-effect transistors on semi-insulated 4H-SiC (0001) substrates. The self-aligned process minimized access resistance and parasitic capacitance. Self-oxidized Al2O3, formed by deposition of 2 nm Al followed by exposure in air to be oxidized, is used as gate dielectric and shows excellent insulation. An intrinsic cutoff frequency of 34 GHz and maximum oscillation frequency of 36.4 GHz are realized for the monolayer graphene field-effect transistor with a gate length of 0.2 μm. These studies show a pathway to fabricate graphene transistors for future applications in ultra-high frequency circuits.

  12. Oxidation and sulfidation resistant alloys with silicon additions

    SciTech Connect

    Dunning, John S.; Alman, David E.; Poston, J.A., Jr.; Siriwardane, R.

    2003-01-01

    The Albany Research Center (ARC) has considerable experience in developing lean chromium, austenitic stainless steels with improved high temperature oxidation resistance. Using basic alloy design principles, a baseline composition of Fe-16Cr-16Ni-2Mn-1Mo alloys with Si and Al addition at a maximum of 5 weight percent was selected for potential application at temperatures above 700ºC for supercritical and ultra-supercritical power plant application. The alloys were fully austenitic. Cyclic oxidation tests in air for 1000 hours were carried out on alloys with Si only or combined Si and Al additions in the temperature range 700ºC to 800ºC. Oxidation resistances of alloys with Si only additions were outstanding, particularly at 800ºC (i.e., these alloys possessed weight gains 4 times less than a standard type-304 alloy). In addition, Si alloys pre-oxidized at 800ºC, showed a zero weight gain in subsequent testing for 1000 hours at 700ºC. Similar improvements were observed for Si only alloy after H2S exposure at 700ºC compared with type 304 stainless steel. SEM and ESCA analysis of the oxide films and base material at the oxide/base metal interface were conducted to study potential rate controlling mechanisms at ARC. Depth profile analysis and element concentration profiles (argon ion etching/x-ray photoelectron spectroscopy) were conducted on oxidized specimens and base material at the National Energy Technology Laboratory.

  13. Oxide thickness dependence of swift heavy ion-induced surface tracks formation in silicon dioxide on silicon structures at grazing incidence

    SciTech Connect

    Carvalho, A. M. J. F.; Touboul, A. D.; Marinoni, M.; Ramonda, M.; Guasch, C.; Saigne, F.; Bonnet, J.; Gasiot, J.

    2007-12-15

    The influence of the oxide thickness in the surface tracks formation in thin silicon dioxide layered-silicon substrate (SiO{sub 2}-Si) irradiated with swift heavy ion is dealt with. In this respect, SiO{sub 2}-Si samples with different oxide thicknesses have been characterized using atomic force microscopy before and after 7.51 MeV/u Xe ion irradiation at a grazing incident angle of 1 deg. relative to the surface plane. Experimental evidence of the existence of a threshold thickness in the formation of swift heavy ion-induced surface tracks has been addressed and discussed according to the thermal spike theory. This experimental upshot can be helpful when assessing metal-oxide-semiconductor ultrathin-gate oxide reliability issues and for growth of silicon-based nanostructures.

  14. Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition

    NASA Astrophysics Data System (ADS)

    Menges, F.; Dittberner, M.; Novotny, L.; Passarello, D.; Parkin, S. S. P.; Spieser, M.; Riel, H.; Gotsmann, B.

    2016-04-01

    The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.

  15. Modelling of silicon oxynitridation by nitrous oxide using the reaction rate approach

    SciTech Connect

    Dominique Krzeminski, Christophe

    2013-12-14

    Large technological progress in oxynitridation processing leads to the introduction of silicon oxynitride as ultra-thin gate oxide. On the theoretical side, few studies have been dedicated to the process modelling of oxynitridation. Such an objective is a considerable challenge regarding the various atomistic mechanisms occurring during this fabrication step. In this article, some progress performed to adapt the reaction rate approach for the modelling of oxynitride growth by a nitrous ambient are reported. The Ellis and Buhrman's approach is used for the gas phase decomposition modelling. Taking into account the mass balance of the species at the interface between the oxynitride and silicon, a minimal kinetic model describing the oxide growth has been calibrated and implemented. The influence of nitrogen on the reaction rate has been introduced in an empirical way. The oxidation kinetics predicted with this minimal model compares well with several experiments.

  16. The effect of oxide precipitates on minority carrier lifetime in n-type silicon

    NASA Astrophysics Data System (ADS)

    Murphy, J. D.; Al-Amin, M.; Bothe, K.; Olmo, M.; Voronkov, V. V.; Falster, R. J.

    2015-12-01

    Supersaturated levels of interstitial oxygen in Czochralski silicon can lead to the formation of oxide precipitates. Although beneficial from an internal gettering perspective, oxygen-related extended defects give rise to recombination which reduces minority carrier lifetime. The highest efficiency silicon solar cells are made from n-type substrates in which oxide precipitates can have a detrimental impact on cell efficiency. In order to quantify and to understand the mechanism of recombination in such materials, we correlate injection level-dependent minority carrier lifetime data measured with silicon nitride surface passivation with interstitial oxygen loss and precipitate concentration measurements in samples processed under substantially different conditions. We account for surface recombination, doping level, and precipitate morphology to present a generalised parameterisation of lifetime. The lifetime data are analysed in terms of recombination activity which is dependent on precipitate density or on the surface area of different morphologies of precipitates. Correlation of the lifetime data with interstitial oxygen loss data shows that the recombination activity is likely to be dependent on the precipitate surface area. We generalise our findings to estimate the impact of oxide precipitates with a given surface area on lifetime in both n-type and p-type silicon.

  17. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  18. Non-wettable, oxidation-stable, brightly luminescent, perfluorodecyl-capped silicon nanocrystal film.

    PubMed

    Qian, Chenxi; Sun, Wei; Wang, Liwei; Chen, Changlong; Liao, Kristine; Wang, Wendong; Jia, Jia; Hatton, Benjamin D; Casillas, Gilberto; Kurylowicz, Marty; Yip, Christopher M; Mastronardi, Melanie L; Ozin, Geoffrey A

    2014-11-12

    Here we describe for the first time the synthesis of colloidally stable, brightly luminescent perfluorodecyl-capped silicon nanocrystals and compare the properties of solutions and films made from them with those of their perhydrodecyl-capped relatives. The perfluorodecyl capping group compared to the perhydrodecyl capping group yields superior hydrophobicity and much greater resistance to air oxidation, the enhanced electron-withdrawing character induces blue shifts in the wavelength of photoluminescence, and the lower-frequency carbon-fluorine stretching modes disfavor non-radiative relaxation pathways and boost the absolute photoluminescence quantum yield. Together these attributes bode well for advanced materials and biomedical applications founded upon perfluorodecyl-protected silicon nanocrystals.

  19. Inelastic electron scattering in amorphous silicon nitride and aluminum oxide with multiple-scattering corrections

    NASA Astrophysics Data System (ADS)

    Livins, Peteris; Aton, T.; Schnatterly, S. E.

    1988-09-01

    Electron-energy-loss measurements for an amorphous chemical-vapor-deposited silicon nitride film and evaporated sapphire in the broad energy range 1-200 eV are investigated. A method, not requiring the zero-loss peak, to remove the multiple scattering is discussed, applied, and the optical constants obtained. An Elliot-type model used with aluminum oxide gives a valence-exciton binding energy of 1.36+/-0.2 eV with a band gap of 9.8+/-0.2 eV. The unexpected strength of the nitrogen 2s transition is noted in silicon nitride.

  20. Effect of dielectric stoichiometry and interface chemical state on band alignment between tantalum oxide and platinum

    SciTech Connect

    Lebedinskii, Yu. Yu.; Chernikova, A. G.; Markeev, A. M.; Kuzmichev, D. S.

    2015-10-05

    The tantalum oxide–platinum interface electronic properties determined by X-ray photoelectron spectroscopy are found to depend on the dielectric stoichiometry and platinum chemical state. We demonstrate the slow charging of the tantalum oxide in cases of Ta{sub 2}O{sub 5}/Pt and Ta{sub 2}O{sub 5−y}/Pt interfaces under the X-ray irradiation. This behavior is proposed to be related to the charge accumulation at oxygen vacancies induced traps. Based on the proposed methodology, we define the intrinsic conductive band offset (CBO) ∼1.3 eV (both for Ta{sub 2}O{sub 5}/Pt and Ta{sub 2}O{sub 5−y}/Pt) and CBO after the full saturation of the traps charging ∼0.5 eV, while the last one defines the energy position of charged traps below the bottom of conduction band. We demonstrate also the pining at the both Ta{sub 2}O{sub 5}/Pt and Ta{sub 2}O{sub 5−y}/Pt interfaces even in the “intrinsic” state, apparently induced by the presence of additional interfacial states. No shifts of Ta4f line and band alignment in over stoichiometric Ta{sub 2}O{sub 5+x}/Pt structure during X-ray irradiation, as well as the absence of pinning, resulting in increase of CBO up to 2.3 eV are found. This behavior is related to the PtO{sub 2} interfacing layer formation at Ta{sub 2}O{sub 5+x}/Pt, blocking the charging of the surface states and associated dipole formation.

  1. Improved the Surface Roughness of Silicon Nanophotonic Devices by Thermal Oxidation Method

    NASA Astrophysics Data System (ADS)

    Shi, Zujun; Shao, Shiqian; Wang, Yi

    2011-02-01

    The transmission loss of the silicon-on-insulator (SOI) waveguide and the coupling loss of the SOI grating are determined to a large extent by the surface roughness. In order to obtain smaller loss, thermal oxidation is a good choice to reduce the surface roughness of the SOI waveguide and grating. Before the thermal oxidation, the root mean square of the surface roughness is over 11 nm. After the thermal oxidation, the SEM figure shows that the bottom of the grating is as smooth as quartz surface, while the AFM shows that the root mean square of the surface is less than 5 nm.

  2. Destruction of monocrystalline silicon with nanosecond pulsed fiber laser accompanied by the oxidation of ablation microparticles

    NASA Astrophysics Data System (ADS)

    Veiko, V. P.; Skvortsov, A. M.; Huynh, C. T.; Petrov, A. A.

    2013-11-01

    In this work, we report an observation of process of local destruction monocrystalline silicon with a scanning beam irradiation of pulse ytterbium fiber laser with a wavelength λ= 1062 nm, accompanied by the oxidation of ablation microparticles. It is shown that depending on the power density of irradiation was observed a large scatter size of the microparticles. From a certain average power density is observed beginning oxidation particulate emitted from the surface of the irradiated area. By varying the parameters of the laser beam such as scanning speed, pulse repetition rate, overlap of laser spot, radiation dose can be achieved almost complete oxidation of all formed during the ablation of microparticles.

  3. Crack healing in silicon nitride due to oxidation

    SciTech Connect

    Choi, S.R.; Tikare, V.; Pawlik, R.

    1991-10-01

    The crack healing behavior of a commercial, MgO-containing, hot pressed Si3N4 was studied as a function of temperature in oxidizing and inert annealing environments. Crack healing occurred at a temperature 800 C or higher due to oxidation regardless of crack size, which ranged from 100 microns (indentation crack) to 1.7 mm (SEPB precrack). The resulting strength and apparent fracture toughness increased at crack healing temperature by 100 percent and 300 percent, respectively. The oxide layer present in the crack plane was found to be highly fatigue resistant, indicating that the oxide is not solely silicate glass, but a mixture of glass, enstatite, and/or cristobalite that was insensitive to fatigue in a room temperature water environment. 20 refs.

  4. Crack healing in silicon nitride due to oxidation

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Tikare, Veena; Pawlik, Ralph

    1991-01-01

    The crack healing behavior of a commercial, MgO-containing, hot pressed Si3N4 was studied as a function of temperature in oxidizing and inert annealing environments. Crack healing occurred at a temperature 800 C or higher due to oxidation regardless of crack size, which ranged from 100 microns (indentation crack) to 1.7 mm (SEPB precrack). The resulting strength and apparent fracture toughness increased at crack healing temperature by 100 percent and 300 percent, respectively. The oxide layer present in the crack plane was found to be highly fatigue resistant, indicating that the oxide is not solely silicate glass, but a mixture of glass, enstatite, and/or cristobalite that was insensitive to fatigue in a room temperature water environment.

  5. Using size-selected gold clusters on graphene oxide films to aid cryo-transmission electron tomography alignment

    NASA Astrophysics Data System (ADS)

    Arkill, Kenton P.; Mantell, Judith M.; Plant, Simon R.; Verkade, Paul; Palmer, Richard E.

    2015-03-01

    A three-dimensional reconstruction of a nano-scale aqueous object can be achieved by taking a series of transmission electron micrographs tilted at different angles in vitreous ice: cryo-Transmission Electron Tomography. Presented here is a novel method of fine alignment for the tilt series. Size-selected gold clusters of ~2.7 nm (Au561 +/- 14), ~3.2 nm (Au923 +/- 22), and ~4.3 nm (Au2057 +/- 45) in diameter were deposited onto separate graphene oxide films overlaying holes on amorphous carbon grids. After plunge freezing and subsequent transfer to cryo-Transmission Electron Tomography, the resulting tomograms have excellent (de-)focus and alignment properties during automatic acquisition. Fine alignment is accurate when the evenly distributed 3.2 nm gold particles are used as fiducial markers, demonstrated with a reconstruction of a tobacco mosaic virus. Using a graphene oxide film means the fiducial markers are not interfering with the ice bound sample and that automated collection is consistent. The use of pre-deposited size-selected clusters means there is no aggregation and a user defined concentration. The size-selected clusters are mono-dispersed and can be produced in a wide size range including 2-5 nm in diameter. The use of size-selected clusters on a graphene oxide films represents a significant technical advance for 3D cryo-electron microscopy.

  6. Exclusively Gas-Phase Passivation of Native Oxide-Free Silicon(100) and Silicon(111) Surfaces.

    PubMed

    Tao, Ye; Hauert, Roland; Degen, Christian L

    2016-05-25

    Reactions in the gas phase are of primary technological importance for applications in nano- and microfabrication technology and in the semiconductor industry. We present exclusively gas-phase protocols to chemically passivate oxide-free Si(111) and Si(100) surfaces with short-chain alkynes. The resulting surfaces showed equal or better oxidation resistance than most existing liquid-phase-derived surfaces and rivaled the outstanding stability of a full-coverage Si(111)-propenyl surface.1,2 The most stable surface (Si(111)-ethenyl) grew one-fifth of a monolayer of oxide (0.04 nm) after 1 month of air exposure. We monitored the regrowth of oxides on passivated Si(111) and Si(100) surfaces by X-ray photoelectron spectroscopy (XPS) and observed a significant crystal-orientation dependence of initial rates when total oxide thickness was below approximately one monolayer (0.2 nm). This difference was correlated with the desorption kinetics of residual surface Si-F bonds formed during HF treatment. We discuss applications of the technology and suggest future directions for process optimization. PMID:27153212

  7. Microcrystalline silicon oxides for silicon-based solar cells: impact of the O/Si ratio on the electronic structure

    NASA Astrophysics Data System (ADS)

    Bär, M.; Starr, D. E.; Lambertz, A.; Holländer, B.; Alsmeier, J.-H.; Weinhardt, L.; Blum, M.; Gorgoi, M.; Yang, W.; Wilks, R. G.; Heske, C.

    2014-10-01

    Hydrogenated microcrystalline silicon oxide (μc-SiOx:H) layers are one alternative approach to ensure sufficient interlayer charge transport while maintaining high transparency and good passivation in Si-based solar cells. We have used a combination of complementary x-ray and electron spectroscopies to study the chemical and electronic structure of the (μc-SiOx:H) material system. With these techniques, we monitor the transition from a purely Si-based crystalline bonding network to a silicon oxide dominated environment, coinciding with a significant decrease of the material's conductivity. Most Si-based solar cell structures contain emitter/contact/passivation layers. Ideally, these layers fulfill their desired task (i.e., induce a sufficiently high internal electric field, ensure a good electric contact, and passivate the interfaces of the absorber) without absorbing light. Usually this leads to a trade-off in which a higher transparency can only be realized at the expense of the layer's ability to properly fulfill its task. One alternative approach is to use hydrogenated microcrystalline silicon oxide (μc-SiOx:H), a mixture of microcrystalline silicon and amorphous silicon (sub)oxide. The crystalline Si regions allow charge transport, while the oxide matrix maintains a high transparency. To date, it is still unclear how in detail the oxygen content influences the electronic structure of the μc-SiOx:H mixed phase material. To address this question, we have studied the chemical and electronic structure of the μc-SiOx:H (0 <= x = O/Si <=1) system with a combination of complementary x-ray and electron spectroscopies. The different surface sensitivities of the employed techniques help to reduce the impact of surface oxides on the spectral interpretation. For all samples, we find the valence band maximum to be located at a similar energy with respect to the Fermi energy. However, for x > 0.5, we observe a pronounced decrease of Si 3s - Si 3p hybridization in favor

  8. Extracting mechanical properties of copper coatings on oxidized silicon substrates by nanoindentation

    NASA Astrophysics Data System (ADS)

    Moharrami, N.; Oila, A.; Bull, S. J.

    2014-08-01

    The thickness of the copper coatings that are used for the manufacture of conducting tracks in microelectronic devices are being aggressively scaled down and there is a need to monitor the mechanical response of metallization at a scale comparable to the material microstructure. When using indentation tests to assess the properties of thin films, the plastic zone dimensions are of a similar scale to the grain size. For the purposes of designs based on continuum mechanics approaches it is usually required that the grain size is much smaller than the deforming volume, which is not always observed in practice. Considerable differences between predicted and observed performance can be seen depending on the material tested and its grain size; the extent of oxidation of the copper after deposition is critical, as is that of its underlying silicon substrate. Whereas it is possible to make good measurements of metallization properties on stiff substrates such as silicon there are serious issues with the reliability of Young's modulus and hardness data from coatings on device quality wafers which may have been oxidized prior to use. The effects of grain size, shape and orientation on the mechanical response of metallic thin films used for semiconductor metallization on oxidized silicon are presented in this paper. The appropriate conditions for the successful use of continuum mechanics are discussed and the importance of considering the consequences of crystallographic anisotropy and oxidation on the selection of suitable design data is presented with regards to copper coatings.

  9. Effect of W and WC on the oxidation resistance of yttria-doped silicon nitride

    NASA Technical Reports Server (NTRS)

    Schuon, S.

    1980-01-01

    The effect of tungsten and tungsten carbide contamination on the oxidation and cracking in air of yttria-doped silicon nitride ceramics is investigated. Silicon nitride powder containing 8 wt % Y2O3 was doped with 2 wt % W, 4 wt % W, 2 wt % WC or left undoped, and sintered in order to simulate contamination during milling, and specimens were exposed in air to 500, 750 and 1350 C for various lengths of time. Scanning electron and optical microscopy and X-ray diffraction of the specimens in the as-sintered state reveals that the addition of W or WC does not affect the phase relationships in the system, composed of alpha and beta Si3N4, melilite and an amorphous phase. Catastrophic oxidation is observed at 750 C in specimens containing 2 and 4 wt % W, accompanied by the disappearance of alpha Si3N4 and melilite from the structure. At 1350 C, the formation of a protective glassy oxide layer was observed on all specimens without catastrophic oxidation, and it is found that pre-oxidation at 1350 C also improved the oxidation resistance at 750 C of bars doped with 4 wt % W. It is suggested that tungsten contamination from WC grinding balls may be the major cause of the intermediate-temperature cracking and instability frequently observed in Si3N4-8Y2O3.

  10. Thermal oxidation of silicon in a residual oxygen atmosphere—the RESOX process—for self-limiting growth of thin silicon dioxide films

    NASA Astrophysics Data System (ADS)

    Wright, Jason T.; Carbaugh, Daniel J.; Haggerty, Morgan E.; Richard, Andrea L.; Ingram, David C.; Kaya, Savas; Jadwisienczak, Wojciech M.; Rahman, Faiz

    2016-10-01

    We describe in detail the growth procedures and properties of thermal silicon dioxide grown in a limited and dilute oxygen atmosphere. Thin thermal oxide films have become increasingly important in recent years due to the continuing down-scaling of ultra large scale integration metal oxide silicon field effect transistors. Such films are also of importance for organic transistors where back-gating is needed. The technique described here is novel and allows self-limited formation of high quality thin oxide films on silicon surfaces. This technique is easy to implement in both research laboratory and industrial settings. Growth conditions and their effects on film growth have been described. Properties of the resulting oxide films, relevant for microelectronic device applications, have also been investigated and reported here. Overall, our findings are that thin, high quality, dense silicon dioxide films of thicknesses up to 100 nm can be easily grown in a depleted oxygen environment at temperatures similar to that used for usual silicon dioxide thermal growth in flowing dry oxygen.

  11. Efficient processing of reaction-sintered silicon carbide by anodically oxidation-assisted polishing

    NASA Astrophysics Data System (ADS)

    Tu, Qunzhang; Shen, Xinmin; Zhou, Jianzhao; He, Xiaohui; Yamamura, Kazuya

    2015-10-01

    Reaction-sintered silicon carbide (RS-SiC) is a promising optical material for the space telescope systems. Anodically oxidation-assisted polishing is a method to machine RS-SiC. The electrolyte used in this study is a mixture of hydrogen peroxide (H2O2) and hydrochloric acid (HCl), and the oxidation potential has two modes: constant potential and high-frequency-square-wave potential. Oxide morphologies are compared by scanning electron microscope/energy dispersive x-ray spectroscopy and scanning white-light interferometer. The results indicate that anodic oxidation under constant potential can not only obtain a relatively smooth surface but also be propitious to obtain high material removal rate. The oxidation depth in anodic oxidation under constant potential is calculated by comparing surface morphologies before and after hydrofluoric acid etching. The theoretical oxidation rate is 5.3 nm/s based on the linear Deal-Grove model. Polishing of the oxidized RS-SiC is conducted to validate the machinability of the oxide layer. The obtained surface roughness root-mean-square is around 4.5 nm. Thus, anodically oxidation-assisted polishing can be considered as an efficient method, which can fill the performance gap between the rough figuring and fine finishing of RS-SiC. It can improve the machining quality of RS-SiC parts and promote the application of RS-SiC products.

  12. Production of Silicon Oxide like Thin Films by the Use of Atmospheric Plasma Torch

    NASA Astrophysics Data System (ADS)

    Ozono, E. M.; Fachini, E. R.; Silva, M. L. P.; Ruchko, L. F.; Galvão, R. M. O.

    2015-03-01

    The advantages of HMDS (hexamethyldisilazane) APT-plasma films for sensor applications were explored producing films in a three-turn copper coil APT equipment. HMDS was introduced into the argon plasma at four different conditions. Additional flux of oxygen could modulate the presence of organic components in the film, the composition varying from pure inorganic oxides to organo-silane polymers. Oxygen promoted deposition rates as high as 900 nm/min on silicon, acrylic or piezoelectric quartz crystal substrates. Films with a clustered morphology and refractive index of 1.45 were obtained, mainly due to a silicon oxide structure. Raman spectroscopy and XPS data showed the presence of CHn and amorphous carbon in the inorganic matrix. The films were sensitive to the humidity of the air. The adsorptive capabilities of outstanding films were tested in a Quartz Crystal Microbalance (QCM). The results support that those films can be a useful and simple alternative for the development of sensors.

  13. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, Vinod K.

    1990-01-01

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al.sub.x N.sub.y O.sub.z layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al.sub.x N.sub.y O.sub.z layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  14. Oxidation resistant high temperature thermal cycling resistant coatings on silicon-based substrates and process for the production thereof

    DOEpatents

    Sarin, V.K.

    1990-08-21

    An oxidation resistant, high temperature thermal cycling resistant coated ceramic article for ceramic heat engine applications is disclosed. The substrate is a silicon-based material, i.e. a silicon nitride- or silicon carbide-based monolithic or composite material. The coating is a graded coating of at least two layers: an intermediate AlN or Al[sub x]N[sub y]O[sub z] layer and an aluminum oxide or zirconium oxide outer layer. The composition of the coating changes gradually from that of the substrate to that of the AlN or Al[sub x]N[sub y]O[sub z] layer and further to the composition of the aluminum oxide or zirconium oxide outer layer. Other layers may be deposited over the aluminum oxide layer. A CVD process for depositing the graded coating on the substrate is also disclosed.

  15. Silicon based solar cells using a multilayer oxide as emitter

    NASA Astrophysics Data System (ADS)

    Bao, Jie; Wu, Weiliang; Liu, Zongtao; Shen, Hui

    2016-08-01

    In this work, n-type silicon based solar cells with WO3/Ag/WO3 multilayer films as emitter (WAW/n-Si solar cells) were presented via simple physical vapor deposition (PVD). Microstructure and composition of WAW/n-Si solar cells were studied by TEM and XPS, respectively. Furthermore, the dependence of the solar cells performances on each WO3 layer thickness was investigated. The results indicated that the bottom WO3 layer mainly induced band bending and facilitated charge-carriers separation, while the top WO3 layer degraded open-circuit voltage but actually improved optical absorption of the solar cells. The WAW/n-Si solar cells, with optimized bottom and top WO3 layer thicknesses, exhibited 5.21% efficiency on polished wafer with area of 4 cm2 under AM 1.5 condition (25 °C and 100 mW/cm2). Compared with WO3 single-layer film, WAW multilayer films demonstrated better surface passivation quality but more optical loss, while the optical loss could be effectively reduced by implementing light-trapping structures. These results pave a new way for dopant-free solar cells in terms of low-cost and facile process flow.

  16. Hydrothermal growth and characterization of vertically well-aligned and dense ZnO nanorods on glass and silicon using a simple optimizer system

    NASA Astrophysics Data System (ADS)

    Mohammad, Sabah M.; Hassan, Z.; Ahmed, Naser M.; Talib, Rawnaq A.; Abd-Alghafour, Nabeel M.; Omar, A. F.

    2016-07-01

    Vertically, well-aligned and high density ZnO nanorods were successfully hydrothermally grown on glass and silicon substrates using a simple and low cost system. The mechanism of synthesis of ZnO nanorods, generated with our system under hydrothermal conditions, is investigated in this report. Field-emission scanning electron microscopy indicated that the fabricated ZnO nanorods on both substrates have hexagonal shape with diameters ranging from 20 nm to 70 nm which grew vertically from the substrate. XRD analysis confirms the formation of wurtzite ZnO phase with a preferred orientation along (002) direction perpendicular on the substrate and enhanced crystallinity. The low value of the tensile strain (0.126 %) revealed that ZnO nanorods preferred to grow along the c-axis for both substrates. Photoluminescence spectra exhibited a strong, sharp UV near band edge emission peak with narrow FWHM values for both samples.

  17. Controllability of self-aligned four-terminal planar embedded metal double-gate low-temperature polycrystalline-silicon thin-film transistors on a glass substrate

    NASA Astrophysics Data System (ADS)

    Ohsawa, Hiroki; Sasaki, Shun; Hara, Akito

    2016-03-01

    Self-aligned four-terminal n-channel (n-ch) and p-channel (p-ch) planar embedded metal double-gate polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) were fabricated on a glass substrate at a low temperature of 550 °C. This device includes a metal top gate (TG) and a metal bottom gate (BG), which are used as the drive and control gates or vice versa. The BG was embedded in a glass substrate, and a poly-Si channel with large lateral grains was fabricated by continuous-wave laser lateral crystallization. The threshold voltage modulation factors under various control gate voltages (γ = ΔVth/ΔVCG) were nearly equal to the theoretical predictions in both the n- and p-ch TFTs. By exploiting this high controllability, an enhancement depletion (ED) inverter was fabricated, and successful operation at 2.0 V was confirmed.

  18. Phosphorus-induced positive charge in native oxide of silicon wafers

    NASA Astrophysics Data System (ADS)

    Shimizu, Hirofumi; Munakata, Chusuke

    1994-06-01

    Alternating current surface photovoltage is enhanced in p-type silicon (Si) wafers, which are rinsed with a phosphorus (P)-contaminated water solution, whereas it is reduced in n-type Si wafers, indicating that the positive charge appears at wafer surfaces. This result suggests that P reacts with SiO2 in the form of (POSi)+ network, causing a positive charge in the native oxide.

  19. Mixed Brownian alignment and Néel rotations in superparamagnetic iron oxide nanoparticle suspensions driven by an ac field

    PubMed Central

    Shah, Saqlain A.; Reeves, Daniel B.; Ferguson, R. Matthew; Weaver, John B.

    2015-01-01

    Superparamagnetic iron oxide nanoparticles with highly nonlinear magnetic behavior are attractive for biomedical applications like magnetic particle imaging and magnetic fluid hyperthermia. Such particles display interesting magnetic properties in alternating magnetic fields and here we document experiments that show differences between the magnetization dynamics of certain particles in frozen and melted states. This effect goes beyond the small temperature difference (ΔT ~ 20 °C) and we show the dynamics to be a mixture of Brownian alignment of the particles and Néel rotation of their moments occurring in liquid particle suspensions. These phenomena can be modeled in a stochastic differential equation approach by postulating log-normal distributions and partial Brownian alignment of an effective anisotropy axis. We emphasize that precise particle-specific characterization through experiments and nonlinear simulations is necessary to predict dynamics in solution and optimize their behavior for emerging biomedical applications including magnetic particle imaging. PMID:26504371

  20. Magnetic NGF-releasing PLLA/iron oxide nanoparticles direct extending neurites and preferentially guide neurites along aligned electrospun microfibers.

    PubMed

    Zuidema, Jonathan M; Provenza, Christina; Caliendo, Tyler; Dutz, Silvio; Gilbert, Ryan J

    2015-11-18

    Nerve growth factor releasing composite nanoparticles (NGF-cNPs) were developed to direct the extension of neurite outgrowth from dorsal root ganglia (DRG). Iron oxide magnetic nanoparticles were incorporated into poly-l-lactic acid (PLLA) nanoparticles in order to position the NGF-cNPs in a culture dish. Neurites growing from DRG extended toward the NGF released from the NGF-cNPs. DRG were then cultured on aligned PLLA microfibers in the presence of NGF-cNPs, and these biomaterials combined to align DRG neurite extension along one axis and preferentially toward the NGF-cNPs. This combinatorial biomaterial approach shows promise as a strategy to direct the extension of regenerating neurites. PMID:26322376

  1. Interfacial energy level alignments between low-band-gap polymer PTB7 and indium zinc oxide anode

    NASA Astrophysics Data System (ADS)

    Shin, Dongguen; Lee, Jeihyun; Park, Soohyung; Jeong, Junkyeong; Seo, Ki-Won; Kim, Hyo-Joong; Kim, Han-Ki; Choi, Min-Jun; Chung, Kwun-Bum; Yi, Yeonjin

    2015-09-01

    The interfacial energy level alignments between poly(thieno[3,4-b]-thiophene)-co-benzodithiophene (PTB7) and indium zinc oxide (IZO) were investigated. In situ ultraviolet photoemission spectroscopy measurements were conducted with the step-by-step deposition of PTB7 on IZO substrate. All spectral changes were analyzed between each deposition step, and interfacial energy level alignments were estimated. The hole barrier of standard ultraviolet-ozone treated IZO is 0.58 eV, which is lower than the value of 1.09 eV obtained for bare IZO. The effect of barrier reduction on the hole transport was also confirmed with electrical measurements of hole-dominated devices.

  2. Room-temperature formation of low refractive index silicon oxide films using atmospheric-pressure plasma.

    PubMed

    Nakamura, Kei; Yamaguchi, Yoshihito; Yokoyama, Keiji; Higashida, Kosuke; Ohmi, Hiromasa; Kakiuchi, Hiroaki; Yasutake, Kiyoshi

    2011-04-01

    This study aims to apply atmospheric-pressure (AP) plasma to the fabrication of single-layer anti-reflection (AR) coatings with porous silicon oxide. 150 MHz very high-frequency (VHF) excitation of AP plasma permits to enhance the chemical reactions both in the gas phase and on the film-growing surface, increasing deposition rate significantly. Silicon oxide films were prepared from silane (SiH4) and carbon dioxide (CO2) dual sources diluted with helium. The microstructure and refractive index of the films were studied using infrared absorption and ellipsometry as a function of VHF power density. It was shown that significant increase in deposition rate at room temperature prevented the formation of a dense SiO2 network, decreasing refractive index of the resulting film effectively. As a result, a porous silicon oxide film, which had the lowest refractive index of 1.24 at 632.8 nm, was obtained with a very high deposition rate of 235 nm/s. The reflectance and transmittance spectra showed that the low refractive index film functioned as a quarter-wave AR coating of a glass plate.

  3. Thermal annealing of thin PECVD silicon-oxide films for airgap-based optical filters

    NASA Astrophysics Data System (ADS)

    Ghaderi, M.; de Graaf, G.; Wolffenbuttel, R. F.

    2016-08-01

    This paper investigates the mechanical and optical properties of thin PECVD silicon-oxide layers for optical applications. The different deposition parameters in PECVD provide a promising tool to manipulate and control the film structure. Membranes for use in optical filters typically are of ~λ/4n thickness and should be slightly tensile for remaining flat, thus avoiding scattering. The effect of the thermal budget of the process on the mechanical characteristics of the deposited films was studied. Films with compressive stress ranging from  ‑100 to 0 MPa were deposited. Multiple thermal annealing cycles were applied to wafers and the in situ residual stress and ex situ optical properties were measured. The residual stress in the films was found to be highly temperature dependent. Annealing during the subsequent process steps results in tensile stress from 100 to 300 MPa in sub-micron thick PECVD silicon-oxide films. However, sub-100 nm thick PECVD silicon-oxide layers exhibit a lower dependence on the thermal annealing cycles, resulting in lower stress variations in films after the annealing. It is also shown that the coefficient of thermal expansion, hence the residual stress in layers, varies with the thickness. Finally, several free-standing membranes were fabricated and the results are compared.

  4. Self-aligned process for forming microlenses at the tips of vertical silicon nanowires by atomic layer deposition

    SciTech Connect

    Dan, Yaping Chen, Kaixiang; Crozier, Kenneth B.

    2015-01-01

    The microlens is a key enabling technology in optoelectronics, permitting light to be efficiently coupled to and from devices such as image sensors and light-emitting diodes. Their ubiquitous nature motivates the development of new fabrication techniques, since existing methods face challenges as microlenses are scaled to smaller dimensions. Here, the authors demonstrate the formation of microlenses at the tips of vertically oriented silicon nanowires via a rapid atomic layer deposition process. The nature of the process is such that the microlenses are centered on the nanowires, and there is a self-limiting effect on the final sizes of the microlenses arising from the nanowire spacing. Finite difference time domain electromagnetic simulations are performed of microlens focusing properties, including showing their ability to enhance visible-wavelength absorption in silicon nanowires.

  5. Comparison of beryllium oxide and pyrolytic graphite crucibles for boron doped silicon epitaxy

    SciTech Connect

    Ali, Dyan; Richardson, Christopher J. K.

    2012-11-15

    This article reports on the comparison of beryllium oxide and pyrolytic graphite as crucible liners in a high-temperature effusion cell used for boron doping in silicon grown by molecular beam epitaxy. Secondary ion mass spectroscopy analysis indicates decomposition of the beryllium oxide liner, leading to significant incorporation of beryllium and oxygen in the grown films. The resulting films are of poor crystal quality with rough surfaces and broad x-ray diffraction peaks. Alternatively, the use of pyrolytic graphite crucible liners results in higher quality films.

  6. Patterns of discoloration and oxidation by direct and scattered fluxes, especially oxygen on silicon

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Filz, R. C.; Rich, F. J.; Sagalyn, Paul L.

    1991-01-01

    A number of interesting discoloration patterns are clearly evident on M0002-1 which resides on three faces of LDEF: front face, rear face, and earth face. Most interesting is the pattern of blue oxidation on polished single crystal silicon apparently produced by once-scattered ram oxygen atoms along the earth face. Most of the other patterns are seen in the Thermal Control Paint. Also, severe oxidation of CR-39 polycarbonate occurred on the front face of LDEF, as expected. A complete explanation for the patterns has not yet been obtained.

  7. Oxidation effects on the mechanical properties of SiC fiber-reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1989-01-01

    The room temperature mechanical properties of SiC fiber reinforced reaction bonded silicon nitride composites were measured after 100 hrs exposure at temperatures to 1400 C in nitrogen and oxygen environments. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The results indicate that composites heat treated in a nitrogen environment at temperatures to 1400 C showed deformation and fracture behavior equivalent to that of the as-fabricated composites. Also, the composites heat treated in an oxidizing environment beyond 400 C yielded significantly lower tensile strength values. Specifically in the temperature range from 600 to 1000 C, composites retained approx. 40 percent of their as-fabricated strength, and those heat treated in the temperatures from 1200 to 1400 C retained 70 percent. Nonetheless, for all oxygen heat treatment conditions, composite specimens displayed strain capability beyond the matrix fracture stress; a typical behavior of a tough composite.

  8. Coherent x-ray diffraction imaging of silicon oxide growth

    NASA Astrophysics Data System (ADS)

    Robinson, I. K.; Libbert, J. L.; Vartanyants, I. A.; Pitney, J. A.; Smilgies, D. M.; Abernathy, D. L.; Grübel, G.

    1999-10-01

    We have measured the morphology of Si samples as a function of time in air after stripping of the native oxide. For this purpose we examined the reflectivity of a coherent beam of x rays, which produces a structured diffraction pattern. We have made further progress in the development of an inversion algorithm for conversion of these patterns into one-dimensional height images. Nanometer-sized features are found to grow and evolve in waves across the surface on the time scale of minutes to hours.

  9. Simulation of Nanoscale Two-Bit Not-And-type Silicon-Oxide-Nitride-Oxide-Silicon Nonvolatile Memory Devices with a Separated Double-Gate Fin Field Effect Transistor Structure Containing Different Tunneling Oxide Thicknesses

    NASA Astrophysics Data System (ADS)

    Oh, Se Woong; Park, Sang Su; Kim, Dong Hun; Kim, Hyun Woo; Kim, Tae Whan

    2009-06-01

    Not-and (NAND)-type silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile memory (NVM) devices with a separated double-gate (SDG) Fin field effect transistor structure were proposed to reduce the unit cell size of such memory devices and increase their memory density in comparison with that of conventional NVM devices. The proposed memory device consisted of a pair of control gates separated along the length of the Fin channel direction. Each SDG had a different thickness of the tunneling oxide to operate the proposed memory device as a two-bit/cell device. A technology computer-aided design simulation was performed to investigate the program/erase and two-bit characteristics. The simulation results show that the proposed devices can be used to increase the scaling down capability and charge storage density of NAND-type SONOS NVM devices.

  10. Using size-selected gold clusters on graphene oxide films to aid cryo-transmission electron tomography alignment.

    PubMed

    Arkill, Kenton P; Mantell, Judith M; Plant, Simon R; Verkade, Paul; Palmer, Richard E

    2015-01-01

    A three-dimensional reconstruction of a nano-scale aqueous object can be achieved by taking a series of transmission electron micrographs tilted at different angles in vitreous ice: cryo-Transmission Electron Tomography. Presented here is a novel method of fine alignment for the tilt series. Size-selected gold clusters of ~2.7 nm (Au₅₆₁±₁₄ ), ~3.2 nm (Au₉₂₃± ₂₂ ), and ~4.3 nm (Au₂₀₅₇±₄₅) in diameter were deposited onto separate graphene oxide films overlaying holes on amorphous carbon grids. After plunge freezing and subsequent transfer to cryo-Transmission Electron Tomography, the resulting tomograms have excellent (de-)focus and alignment properties during automatic acquisition. Fine alignment is accurate when the evenly distributed 3.2 nm gold particles are used as fiducial markers, demonstrated with a reconstruction of a tobacco mosaic virus. Using a graphene oxide film means the fiducial markers are not interfering with the ice bound sample and that automated collection is consistent. The use of pre-deposited size-selected clusters means there is no aggregation and a user defined concentration. The size-selected clusters are mono-dispersed and can be produced in a wide size range including 2-5 nm in diameter. The use of size-selected clusters on a graphene oxide films represents a significant technical advance for 3D cryo-electron microscopy. PMID:25783049

  11. Structural silicon nitride materials containing rare earth oxides

    DOEpatents

    Andersson, Clarence A.

    1980-01-01

    A ceramic composition suitable for use as a high-temperature structural material, particularly for use in apparatus exposed to oxidizing atmospheres at temperatures of 400 to 1600.degree. C., is found within the triangular area ABCA of the Si.sub.3 N.sub.4 --SiO.sub.2 --M.sub.2 O.sub.3 ternary diagram depicted in FIG. 1. M is selected from the group of Yb, Dy, Er, Sc, and alloys having Yb, Y, Er, or Dy as one component and Sc, Al, Cr, Ti, (Mg +Zr) or (Ni+Zr) as a second component, said alloy having an effective ionic radius less than 0.89 A.

  12. Resistive switching characteristics and mechanisms in silicon oxide memory devices

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Wu, Xiaohan; Chen, Yen-Ting; Wang, Yanzhen; Xue, Fei; Lee, Jack C.

    2016-05-01

    Intrinsic unipolar SiOx-based resistance random access memories (ReRAM) characterization, switching mechanisms, and applications have been investigated. Device structures, material compositions, and electrical characteristics are identified that enable ReRAM cells with high ON/OFF ratio, low static power consumption, low switching power, and high readout-margin using complementary metal-oxide semiconductor transistor (CMOS)-compatible SiOx-based materials. These ideas are combined with the use of horizontal and vertical device structure designs, composition optimization, electrical control, and external factors to help understand resistive switching (RS) mechanisms. Measured temperature effects, pulse response, and carrier transport behaviors lead to compact models of RS mechanisms and energy band diagrams in order to aid the development of computer-aided design for ultralarge-v scale integration. This chapter presents a comprehensive investigation of SiOx-based RS characteristics and mechanisms for the post-CMOS device era.

  13. A template and catalyst-free metal-etching-oxidation method to synthesize aligned oxide nanowire arrays: NiO as an example.

    PubMed

    Wei, Zhi Peng; Arredondo, Miryam; Peng, Hai Yang; Zhang, Zhou; Guo, Dong Lai; Xing, Guo Zhong; Li, Yong Feng; Wong, Lai Mun; Wang, Shi Jie; Valanoor, Nagarajan; Wu, Tom

    2010-08-24

    Although NiO is one of the canonical functional binary oxides, there has been no report so far on the effective fabrication of aligned single crystalline NiO nanowire arrays. Here we report a novel vapor-based metal-etching-oxidation method to synthesize high-quality NiO nanowire arrays with good vertical alignment and morphology control. In this method, Ni foils are used as both the substrates and the nickel source; NiCl(2) powder serves as the additional Ni source and provides Cl(2) to initiate mild etching. No template is deliberately employed; instead a nanograined NiO scale formed on the NiO foil guides the vapor infiltration and assists the self-assembled growth of NiO nanowires via a novel process comprising simultaneous Cl(2) etching and gentle oxidation. Furthermore, using CoO nanowires and Co-doped NiO as examples, we show that this general method can be employed to produce nanowires of other oxides as well as the doped counterparts. PMID:20614899

  14. Growth Mechanisms of Vertically-aligned Carbon, Boron Nitride, and Zinc Oxide Nanotubes

    SciTech Connect

    Yap, Yoke Khin

    2009-07-07

    Nanotubes are one-dimensional nanomaterials with all atoms located near the surface. This article provides a brief review on the possible growth mechanisms of a series of inorganic nanotubes, in particular, vertically-aligned (VA) carbon nanotubes (CNTs), boron nitride nanotubes (BNNTs), and ZnO nanotubes (ZnO NTs).

  15. In situ investigation of mesoporous silicon oxidation kinetics using infrared emittance spectroscopy.

    PubMed

    Bardet, Benjamin; De Sousa Meneses, Domingos; Defforge, Thomas; Billoué, Jérôme; Gautier, Gaël

    2016-07-21

    In this paper, we study the thermal oxidation kinetics of mesoporous silicon layers, synthesized by electrochemical anodization, from 260 °C up to 1100 °C. A specific apparatus is employed to heat the mesoporous samples in air and to record at the same time their infrared emittance. Based on Bruggeman effective medium approximation, an optical model is set up to realistically approximate the dielectric function of the porous material with an emphasis on the surface chemistry and oxide content. A transition temperature of 600 °C is evidenced from data processing which gives evidence of two oxidation mechanisms with distinct kinetics. Between 260-600 °C, the oxidation is surface-limited with kinetics dependent on the hydrogen desorption rate. However, above 600 °C, the oxide growth is limited by oxygen diffusion through the existing oxide layer. A parabolic law is employed to fit the oxidation rate and to extract the high-temperature activation energy (EA = 1.5 eV). A precise control of the oxide growth can thus be achieved.

  16. In situ investigation of mesoporous silicon oxidation kinetics using infrared emittance spectroscopy.

    PubMed

    Bardet, Benjamin; De Sousa Meneses, Domingos; Defforge, Thomas; Billoué, Jérôme; Gautier, Gaël

    2016-07-21

    In this paper, we study the thermal oxidation kinetics of mesoporous silicon layers, synthesized by electrochemical anodization, from 260 °C up to 1100 °C. A specific apparatus is employed to heat the mesoporous samples in air and to record at the same time their infrared emittance. Based on Bruggeman effective medium approximation, an optical model is set up to realistically approximate the dielectric function of the porous material with an emphasis on the surface chemistry and oxide content. A transition temperature of 600 °C is evidenced from data processing which gives evidence of two oxidation mechanisms with distinct kinetics. Between 260-600 °C, the oxidation is surface-limited with kinetics dependent on the hydrogen desorption rate. However, above 600 °C, the oxide growth is limited by oxygen diffusion through the existing oxide layer. A parabolic law is employed to fit the oxidation rate and to extract the high-temperature activation energy (EA = 1.5 eV). A precise control of the oxide growth can thus be achieved. PMID:27333267

  17. Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping

    PubMed Central

    Rossi, Alessandro; Tanttu, Tuomo; Hudson, Fay E.; Sun, Yuxin; Möttönen, Mikko; Dzurak, Andrew S.

    2015-01-01

    As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization. PMID:26067215

  18. Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping.

    PubMed

    Rossi, Alessandro; Tanttu, Tuomo; Hudson, Fay E; Sun, Yuxin; Möttönen, Mikko; Dzurak, Andrew S

    2015-06-03

    As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization.

  19. Enhancing the far-ultraviolet sensitivity of silicon complementary metal oxide semiconductor imaging arrays

    NASA Astrophysics Data System (ADS)

    Retherford, Kurt D.; Bai, Yibin; Ryu, Kevin K.; Gregory, James A.; Welander, Paul B.; Davis, Michael W.; Greathouse, Thomas K.; Winters, Gregory S.; Suntharalingam, Vyshnavi; Beletic, James W.

    2015-10-01

    We report our progress toward optimizing backside-illuminated silicon P-type intrinsic N-type complementary metal oxide semiconductor devices developed by Teledyne Imaging Sensors (TIS) for far-ultraviolet (UV) planetary science applications. This project was motivated by initial measurements at Southwest Research Institute of the far-UV responsivity of backside-illuminated silicon PIN photodiode test structures, which revealed a promising QE in the 100 to 200 nm range. Our effort to advance the capabilities of thinned silicon wafers capitalizes on recent innovations in molecular beam epitaxy (MBE) doping processes. Key achievements to date include the following: (1) representative silicon test wafers were fabricated by TIS, and set up for MBE processing at MIT Lincoln Laboratory; (2) preliminary far-UV detector QE simulation runs were completed to aid MBE layer design; (3) detector fabrication was completed through the pre-MBE step; and (4) initial testing of the MBE doping process was performed on monitoring wafers, with detailed quality assessments.

  20. Optimization of oxidation processes to improve crystalline silicon solar cell emitters

    SciTech Connect

    Shen, L.; Liang, Z. C. Liu, C. F.; Long, T. J.; Wang, D. L.

    2014-02-15

    Control of the oxidation process is one key issue in producing high-quality emitters for crystalline silicon solar cells. In this paper, the oxidation parameters of pre-oxidation time, oxygen concentration during pre-oxidation and pre-deposition and drive-in time were optimized by using orthogonal experiments. By analyzing experimental measurements of short-circuit current, open circuit voltage, series resistance and solar cell efficiency in solar cells with different sheet resistances which were produced by using different diffusion processes, we inferred that an emitter with a sheet resistance of approximately 70 Ω/□ performed best under the existing standard solar cell process. Further investigations were conducted on emitters with sheet resistances of approximately 70 Ω/□ that were obtained from different preparation processes. The results indicate that emitters with surface phosphorus concentrations between 4.96 × 10{sup 20} cm{sup −3} and 7.78 × 10{sup 20} cm{sup −3} and with junction depths between 0.46 μm and 0.55 μm possessed the best quality. With no extra processing, the final preparation of the crystalline silicon solar cell efficiency can reach 18.41%, which is an increase of 0.4%{sub abs} compared to conventional emitters with 50 Ω/□ sheet resistance.

  1. Electrochemical Water Oxidation of Ultrathin Cobalt Oxide-Based Catalyst Supported onto Aligned ZnO Nanorods.

    PubMed

    Koteeswara Reddy, Nandanapalli; Winkler, Stefanie; Koch, Norbert; Pinna, Nicola

    2016-02-10

    A stable and durable electrochemical water oxidation catalyst based on CoO functionalized ZnO nanorods (NRs) is introduced. ZnO NRs were grown on fluorine-doped tin oxide (FTO) by using a low-temperature chemical solution method and were functionalized with cobalt oxide by electrochemical deposition. The electrochemical water oxidation performance of cobalt oxide functionalized ZnO NRs was studied under alkaline (pH = 10) conditions. From these studies, it is noticed that cobalt oxide functionalized ZnO NRs show electrocatalytic activity toward water oxidation with current density on the order of several mA cm(-2). Further, 30 s CoO deposited ZnO nanorods exhibited excellent galvanostatic stability at a current density of 1 mA cm(-2) and potentiostatic stability at 1.25 V vs Ag/AgCl over an electrolysis period of 1 h. PMID:26784675

  2. Structural and optical properties of silicon metal-oxide-semiconductor light-emitting devices

    NASA Astrophysics Data System (ADS)

    Xu, Kaikai; Zhang, Zhengyuan; Zhang, Zhengping

    2016-01-01

    A silicon p-channel metal oxide semiconductor field-effect transistor (Si-PMOSFET) that is fully compatible with the standard complementary metal oxide semiconductor process is investigated based on the phenomenon of optical radiation observed in the reverse-biased p-n junction in the Si-PMOSFET device. The device can be used either as a two-terminal silicon diode light-emitting device (Si-diode LED) or as a three-terminal silicon gate-controlled diode light-emitting device (Si gate-controlled diode LED). It is seen that the three-terminal operating mode could provide much higher power transfer efficiency than the two-terminal operating mode. A new solution based on the concept of a theoretical quantum efficiency model combined with calculated results is proposed for interpreting the evidence of light intensity reduction at high operating voltages. The Si-LED that can be easily integrated into CMOS fabrication process is an important step toward optical interconnects.

  3. In-Situ Fabrication of a Self-Aligned Selective Emitter Silicon Solar Cell Using the Gold Top Contacts To Facilitate the Synthesis of a Nanostructured Black Silicon Antireflective Layer Instead of an External Metal Nanoparticle Catalyst.

    PubMed

    Lu, Yen-Tien; Barron, Andrew R

    2015-06-10

    Silicon solar cells with nanopore-type black silicon (b-Si) antireflection (AR) layers and self-aligned selective emitter (SE) are reported in which the b-Si structure is prepared without the traditional addition of a nanoparticle (NP) catalyst. The contact-assisted chemical etching (CACE) method is reported here for the first time, in which the metal top contacts on silicon solar cell surfaces function as the catalysts for b-Si fabrication and the whole etching process can be done in minutes at room temperature. The CACE method is based on the metal-assisted chemical etching (MACE) solution but without or metal precursor in the Si etchant (HF:H2O2:H2O), and the Au top contacts, or catalysts, are not removed from the solar cell surface after the etching. The effects of etching time, HF and H2O2 concentration, and the HF:H2O2 ratio on the b-Si morphology, surface reflectivity, and solar cell efficiency have been investigated. Higher [HF] and [H2O2] with longer etching time cause collapse of the b-Si nanoporous structure and penetration of the p-n junctions, which are detrimental to the solar cell efficiency. The b-Si solar cell fabricated with the HF:H2O2:H2O volume ratio of 3:3:20 and a 3 min etch time shows the highest efficiency 8.99% along with a decrease of reflectivity from 36.1% to 12.6% compared to that of the nonetched Si solar cell.

  4. Oxidation of freestanding silicon nanocrystals probed with electron spin resonance of interfacial dangling bonds

    NASA Astrophysics Data System (ADS)

    Pereira, R. N.; Rowe, D. J.; Anthony, R. J.; Kortshagen, U.

    2011-04-01

    The oxidation of freestanding silicon nanocrystals (Si-NCs) passivated with Si-H bonds has been investigated for a wide range of oxidation times (from a few minutes to several months) by means of electron spin resonance (ESR) of dangling bonds (DBs) naturally incorporated at the interface between the NC core and the developing oxide shell. These measurements are complemented with surface chemistry analysis from Fourier transform infrared spectroscopy. Two surface phenomena with initiation time thresholds of 15 min and 30 h are inferred from the dependence of ESR spectra on oxidation time. The first initiates before oxidation of surface Si-Si bonds and destruction of the NC hydrogen termination takes place (induction period) and results in a decrease of the DB density and a localization of the DB orbital at the central Si atom. Within the Cabrera-Mott oxidation mechanism, we associate this process with the formation of intermediate interfacial configurations, resulting from surface adsorption of water and oxygen molecules. The second surface phenomenon leads to a steep increase of the defect density and correlates with the formation of surface Si-O-Si bridges, lending experimental support to theoretically proposed mechanisms for interfacial defect formation involving the emission of Si interstitials at the interface between crystalline Si and the growing oxide.

  5. Behavior of oxidized platinum nanoparticles on an aligned carbon nanotube forest

    NASA Astrophysics Data System (ADS)

    Matsuda, Keita; Norimatsu, Wataru; Arai, Shigeo; Kusunoki, Michiko

    2016-10-01

    We observed and analyzed the behavior of platinum nanoparticles (PtNPs) supported on aligned-carbon nanotubes (CNTs) at high temperatures by X-ray photoelectron spectroscopy and high-resolution transmission electron microscope observations. We found that the PtNPs moved toward the inner-side along each CNT on which they were deposited. The mechanism of this behavior is related to the redox reaction of Pt with the carbon atoms in the CNT. We also performed in-situ observation of this process at a high temperature using an environmental transmission electron microscope under an oxygen atmosphere. We found that the PtNPs penetrated down into a high-density aligned CNT forest along the tube axis and that the PtNPs changed their shape to fit the structure of the CNTs during their movement.

  6. Fluorinated alkyne-derived monolayers on oxide-free silicon nanowires via one-step hydrosilylation

    NASA Astrophysics Data System (ADS)

    Nguyen Minh, Quyen; Pujari, Sidharam P.; Wang, Bin; Wang, Zhanhua; Haick, Hossam; Zuilhof, Han; van Rijn, Cees J. M.

    2016-11-01

    Passivation of oxide-free silicon nanowires (Si NWs) by the formation of high-quality fluorinated 1-hexadecyne-derived monolayers with varying fluorine content has been investigated. Alkyl chain monolayers (C16H30-xFx) with a varying number of fluorine substituents (x = 0, 1, 3, 9, 17) were attached onto hydrogen-terminated silicon (Sisbnd H) surfaces with an effective one-step hydrosilylation. This surface chemistry gives well-defined monolayers on nanowires that have a cylindrical core-shell structure, as characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and static contact angle (SCA) analysis. The monolayers were stable under acidic and basic conditions, as well as under extreme conditions (such as UV exposure), and provide excellent surface passivation, which opens up applications in the fields of field effect transistors, optoelectronics and especially for disease diagnosis.

  7. Corrosion behavior of silicon nitride, magnesium oxide, and several metals in molten calcium chloride with chlorine

    SciTech Connect

    McLaughlin, D. . Research and Development Center); Sesions, C.E.; Marra, J.E. )

    1992-08-01

    In this paper corrosion studies are described in a molten calcium chloride environment sparged with chlorine gas at 850{degrees}C, both in the melt and in the gas phase above the salt, in support of efforts at Westinghouse Savannah River Company to develop more resistant materials of construction for molten salt processing of plutonium. Corrosion rates and electron microscope analyses are reported for Inconel alloys 601 and 617, tantalum, tungsten, magnesium oxide, and silicon nitride. Silicon nitride exhibited the greatest resistance, showing {lt}0.1 mg/cm{sup 2} {center dot} h loss in both melt and vapor None of the metallic coupons withstood the chlorine vapor environment, although Inconel indicated resistance immersed in the melt if protected from chlorine gas.

  8. Electrochemically reduced graphene oxide on silicon nanowire arrays for enhanced photoelectrochemical hydrogen evolution.

    PubMed

    Meng, Huan; Fan, Ke; Low, Jingxiang; Yu, Jiaguo

    2016-09-21

    Photoelectrochemical (PEC) water splitting into hydrogen and oxygen by sunlight is a promising approach to solve energy and environmental problems. In this work, silicon nanowire arrays (SiNWs) photocathodes decorated with reduced graphene oxide (rGO) for PEC water splitting were successfully prepared by a flexible and scalable electrochemical reduction method. The SiNWs photocathode with the optimized rGO decoration (SiNWs/rGO20) shows an enhanced activity with a much higher photocurrent density and significantly positive shift of onset potential compared to the bare SiNWs arrays for the hydrogen evolution reaction (HER). The enhanced PEC activity is ascribed to the high electrical conductivity of rGO and improved separation of the photogenerated charge carriers. This work not only demonstrates a facile, rapid and tunable electrochemical reduction method to produce rGO, but also exhibits an efficient protocol to enhance the PEC water splitting of silicon-based materials. PMID:27461187

  9. Electrochemically reduced graphene oxide on silicon nanowire arrays for enhanced photoelectrochemical hydrogen evolution.

    PubMed

    Meng, Huan; Fan, Ke; Low, Jingxiang; Yu, Jiaguo

    2016-09-21

    Photoelectrochemical (PEC) water splitting into hydrogen and oxygen by sunlight is a promising approach to solve energy and environmental problems. In this work, silicon nanowire arrays (SiNWs) photocathodes decorated with reduced graphene oxide (rGO) for PEC water splitting were successfully prepared by a flexible and scalable electrochemical reduction method. The SiNWs photocathode with the optimized rGO decoration (SiNWs/rGO20) shows an enhanced activity with a much higher photocurrent density and significantly positive shift of onset potential compared to the bare SiNWs arrays for the hydrogen evolution reaction (HER). The enhanced PEC activity is ascribed to the high electrical conductivity of rGO and improved separation of the photogenerated charge carriers. This work not only demonstrates a facile, rapid and tunable electrochemical reduction method to produce rGO, but also exhibits an efficient protocol to enhance the PEC water splitting of silicon-based materials.

  10. Preparation of a silicon heterojunction photodetector from colloidal indium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ismail, Raid A.; Ali, Abdulrahman K.; Hassoon, Khaleel I.

    2013-10-01

    A colloidal indium oxide (In2O3) nanoparticles (NPs) were synthesized by using a Q-switched Nd:YAG laser ablation of indium target in water at room temperature. Optical absorption and x-ray diffraction (XRD) investigation of the prepared samples confirm the formation of In2O3 NPs. A solution-processed silicon heterojunction photodetector, fabricated by drop cast film of colloidal In2O3 NPs onto n-type single crystal silicon wafer, is demonstrated. I-V characteristics of In2O3 NPs/Si heterojunction under dark and illumination conditions confirmed the rectifying behavior and the good photoresponse. The built-in-voltage was determined from the C-V measurements which revealed an abrupt junction.

  11. Monte Carlo study of interfacial silicon suboxide layers and oxidation kinetics

    NASA Astrophysics Data System (ADS)

    da Silva, E. F.; de Vasconcelos, E. A.; Stošić, B. D.

    2002-05-01

    A simple simulation scheme that simultaneously describes the growth kinetics of SiO 2 films at the nanometer scale and the SiO x/Si interface dynamics (its extent, and spatial/temporal evolution) is presented. The simulation successfully applies to experimental data in the region above and below 10 nm, reproduces the Deal and Grove linear-parabolic law and the oxide growth rate enhancement in the very thin film regime (the so-called anomalous region). According to the simulation, the oxidation is governed mainly by two processes: (a) the formation of a transition suboxide layer and (b) its subsequent drift towards the silicon bulk. We found that it is the superposition of these two processes that produces the crossover from the anomalous oxidation region behavior to the linear-parabolic law.

  12. Oxidative stress in bacteria (Pseudomonas putida) exposed to nanostructures of silicon carbide.

    PubMed

    Borkowski, Andrzej; Szala, Mateusz; Kowalczyk, Paweł; Cłapa, Tomasz; Narożna, Dorota; Selwet, Marek

    2015-09-01

    Silicon carbide (SiC) nanostructures produced by combustion synthesis can cause oxidative stress in the bacterium Pseudomonas putida. The results of this study showed that SiC nanostructures damaged the cell membrane, which can lead to oxidative stress in living cells and to the loss of cell viability. As a reference, micrometric SiC was also used, which did not exhibit toxicity toward cells. Oxidative stress was studied by analyzing the activity of peroxidases, and the expression of the glucose-6-phosphate dehydrogenase gene (zwf1) using real-time PCR and northern blot techniques. Damage to nucleic acid was studied by isolating and hydrolyzing plasmids with the formamidopyrimidine [fapy]-DNA glycosylase (also known as 8-oxoguanine DNA glycosylase) (Fpg), which is able to detect damaged DNA. The level of viable microbial cells was investigated by propidium iodide and acridine orange staining.

  13. Near-theoretical fracture strengths in native and oxidized silicon nanowires.

    PubMed

    DelRio, Frank W; White, Ryan M; Krylyuk, Sergiy; Davydov, Albert V; Friedman, Lawrence H; Cook, Robert F

    2016-08-01

    In this letter, fracture strengths σ f of native and oxidized silicon nanowires (SiNWs) were determined via atomic force microscopy bending experiments and nonlinear finite element analysis. In the native SiNWs, σ f in the Si was comparable to the theoretical strength of Si〈111〉, ≈22 GPa. In the oxidized SiNWs, σ f in the SiO2 was comparable to the theoretical strength of SiO2, ≈6 to 12 GPa. The results indicate a change in the failure mechanism between native SiNWs, in which fracture originated via inter-atomic bond breaking or atomic-scale defects in the Si, and oxidized SiNWs, in which fracture initiated from surface roughness or nano-scale defects in the SiO2.

  14. Near-theoretical fracture strengths in native and oxidized silicon nanowires

    NASA Astrophysics Data System (ADS)

    DelRio, Frank W.; White, Ryan M.; Krylyuk, Sergiy; Davydov, Albert V.; Friedman, Lawrence H.; Cook, Robert F.

    2016-08-01

    In this letter, fracture strengths σ f of native and oxidized silicon nanowires (SiNWs) were determined via atomic force microscopy bending experiments and nonlinear finite element analysis. In the native SiNWs, σ f in the Si was comparable to the theoretical strength of Si<111>, ≈22 GPa. In the oxidized SiNWs, σ f in the SiO2 was comparable to the theoretical strength of SiO2, ≈6 to 12 GPa. The results indicate a change in the failure mechanism between native SiNWs, in which fracture originated via inter-atomic bond breaking or atomic-scale defects in the Si, and oxidized SiNWs, in which fracture initiated from surface roughness or nano-scale defects in the SiO2.

  15. Enhanced electron-hole droplet emission from surface-oxidized silicon photonic crystal nanocavities.

    PubMed

    Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2016-01-25

    We have observed electron-hole droplet (EHD) emission enhanced by silicon photonic crystal (Si PhC) nanocavities with a surface oxide. The EHD is employed as a massive emitter that remains inside the nanocavity to achieve efficient cavity-emitter coupling. Time-resolved emission measurements demonstrate that the surface oxide greatly reduces the nonradiative annihilation of the EHDs and maintains them in the PhC nanocavities. It is found that the surface-oxidized Si PhC nanocavity enhances EHD emission in addition to the Purcell enhancement of the resonant cavity, which will contribute to works on Si light emission and the cavity quantum electrodynamics of electron-hole condensates. PMID:26832491

  16. Fabrication and evaluation of series-triple quantum dots by thermal oxidation of silicon nanowire

    SciTech Connect

    Uchida, Takafumi Jo, Mingyu; Tsurumaki-Fukuchi, Atsushi; Arita, Masashi; Takahashi, Yasuo; Fujiwara, Akira

    2015-11-15

    Series-connected triple quantum dots were fabricated by a simple two-step oxidation technique using the pattern-dependent oxidation of a silicon nanowire and an additional oxidation of the nanowire through the gap of the fine gates attached to the nanowire. The characteristics of multi-dot single-electron devices are obtained. The formation of each quantum dot beneath an attached gate is confirmed by analyzing the electrical characteristics and by evaluating the gate capacitances between all pairings of gates and quantum dots. Because the gate electrode is automatically attached to each dot, the device structure benefits from scalability. This technique promises integrability of multiple quantum dots with individual control gates.

  17. Self-limiting and complete oxidation of silicon nanostructures produced by laser ablation in water

    NASA Astrophysics Data System (ADS)

    Vaccaro, L.; Popescu, R.; Messina, F.; Camarda, P.; Schneider, R.; Gerthsen, D.; Gelardi, F. M.; Cannas, M.

    2016-07-01

    Oxidized Silicon nanomaterials produced by 1064 nm pulsed laser ablation in deionized water are investigated. High-resolution transmission electron microscopy coupled with energy dispersive X-ray spectroscopy allows to characterize the structural and chemical properties at a sub-nanometric scale. This analysis clarifies that laser ablation induces both self-limiting and complete oxidation processes which produce polycrystalline Si surrounded by a layer of SiO2 and amorphous fully oxidized SiO2, respectively. These nanostructures exhibit a composite luminescence spectrum which is investigated by time-resolved spectroscopy with a tunable laser excitation. The origin of the observed luminescence bands agrees with the two structural typologies: Si nanocrystals emit a μs-decaying red band; defects of SiO2 give rise to a ns-decaying UV band and two overlapping blue bands with lifetime in the ns and ms timescale.

  18. Effect of gate oxide thickness on the radiation hardness of silicon-gate CMOS

    SciTech Connect

    Nordstrom, T.V.; Gibbon, C.F.

    1981-01-01

    Significant improvements have been made in the radiation hardness of silicon-gate CMOS by reducing the gate oxide thickness. The device studied is an 8-bit arithmetic logic unit designed with Sandia's Expanded Linear Array (ELA) standard cells. Devices with gate oxide thicknesses of 400, 570 (standard), and 700 A were fabricated. Irradiations were done at a dose rate of 2 x 10/sup 6/ rads (Si) per hour. N- and P-channel maximum threshold shifts were reduced by 0.3 and 1.2 volts, respectively, for the thinnest oxide. Approximately, a linear relationship is found for threshold shift versus thickness. The functional radiation hardness of the full integrated circuit was also measured.

  19. Oxidation of silicon nitride sintered with rare-earth oxide additions

    NASA Technical Reports Server (NTRS)

    Mieskowski, D. M.; Sanders, W. A.

    1985-01-01

    The effects of rare-earth oxide additions on the oxidation of sintered Si3N4 were examined. Insignificant oxidation occurred at 700 and 1000 C, with no evidence of phase instability. At 1370 C, the oxidation rate was lowest for Y2O3 and increased for additions of La2O3, Sm2O3, and CeO2, in that order. Data obtained from X-ray diffraction, electron microprobe analysis, and scanning electron microscopy indicate that oxidation occurs via diffusion of cationic species from Si3N4 grain boundaries.

  20. A Modified Oxidative Refinement Process for Removing Boron from Molten Silicon Under Enhanced Electromagnetic Force.

    PubMed

    Lee, Jun-Kyu; Lee, Jin-Seok; Jang, Bo-Yun; Kim, Joon-Soo; Ahn, Young-Soo; Kang, Gi-Hwan; Cho, Churl-Hee

    2015-11-01

    The removal of boron is one of the main challenges in the purification of metallurgical grade silicon destined for low-cost photovoltaic applications. However, boron is very difficult to remove in its elemental form due to its large segregation coefficient in silicon and its low vapor pressure. The removal of boron by slag treatment is today regarded as a highly promising method, but its refining efficiency is relatively low. Also, the reduction of boron by plasma treatment exhibits a high refining efficiency, but the processing cost is high due to the large amount of electricity consumed by the process. In this regard, the use of an oxidizing reactive gas in the refinement process offers some advantages both in terms of low energy consumption and promising refinement rates. Boron can be extracted in various gaseous forms as B(x)O(y) and/or B(x)H(z)O(y) phases, but the vapor pressure of B(x)H(z)O(y) is much greater than that of the other specie at a temperature of 1700 K. The present study reports a modified oxidative refining method designed to enhance the vaporization of boron as B(x)H(z)O(y) by blowing gaseous water onto the silicon melt in a segmented crucible to enhance the electromagnetic force, whereby the processing cost can be dramatically reduced due to the use of a reusable quartz crucible in a graphite crucible. An initial boron content of 13 ppm in the metallurgical grade silicon was significantly decreased to 0.3 ppm by the employment of 1.7SLM Ar + 100 ml/h H2O. Also, a mechanism capable of reducing boron based on thermodynamic considerations is proposed.

  1. Composition, process, and apparatus, for removal of water and silicon mu-oxides from chlorosilanes

    DOEpatents

    Tom, Glenn M.; McManus, James V.

    1991-10-15

    A scavenger composition having utility for removal of water and silicon mu-oxide impurities from chlorosilanes, such scavenger composition comprising: (a) a support; and (b) associated with the support, one or more compound(s) selected from the group consisting of compounds of the formula: R.sub.a-x MCl.sub.x wherein: M is a metal selected from the group consisting of the monovalent metals lithium, sodium, and potassium; the divalent metals magnesium, strontium, barium, and calcium; and the trivalent metal aluminum; R is alkyl; a is a number equal to the valency of metal M; and x is a number having a value from 0 to a, inclusive; and wherein said compound(s) of the formula R.sub.a-x MCl.sub.x have been activated for impurity-removal service by a reaction scheme selected from those of the group consisting of: (i) reaction of such compound(s) with hydrogen chloride to form a first reaction product therefrom, followed by reaction of the first reaction product with a chlorosilane of the formula: SiH.sub.4"y Cl.sub.y, wherein y is a number having a value of from 1 to 3, inclusive; and (ii) reaction of such compound(s) with a chlorosilane of the formula: SiH.sub.4-y Cl.sub.y wherein y is a number having a value of 1 to 3, inclusive. A corresponding method of making the scavenger composition, and of purifying a chlorosilane which contains oxygen and silicon mu-oxide impurities, likewise are disclosed, together with a purifier apparatus, in which a bed of the scavenger composition is disposed. The composition, purification process, and purifier apparatus of the invention have utility in purifying gaseous chlorosilanes which are employed in the semiconductor industry as silicon source reagents for forming epitaxial silicon layers.

  2. Process for removal of water and silicon mu-oxides from chlorosilanes

    DOEpatents

    Tom, Glenn M.; McManus, James V.

    1992-03-10

    A scavenger composition having utility for removal of water and silicon mu-oxide impurities from chlorosilanes, such scavenger composition comprising: (a) a support; and (b) associated with the support, one or more compound(s) selected from the group consisting of compounds of the formula: R.sub.a-x MCl.sub.x wherein: M is a metal selected from the group consisting of the monovalent metals lithium, sodium, and potassium; the divalent metals magnesium, strontium, barium, and calcium; and the trivalent metal aluminum; R is alkyl; a is a number equal to the valency of metal M; and x is a number having a value of from 0 to a, inclusive; and wherein said compound(s) of the formula R.sub.a-x MCl.sub.x have been activated for impurity-removal service by a reaction scheme selected from those of the group consisting of: (i) reaction of such compound(s) with hydrogen chloride to form a first reaction product therefrom, followed by reaction of the first reaction product with a chlorosilane of the formula: SiH.sub.4-y Cl.sub.y, wherein y is a number having a value of from 1 to 3, inclusive; and (ii) reaction of such compound(s) with a chlorosilane of the formula: SiH.sub.4-y Cl.sub.y wherein y is a number having a value of 1 to 3, inclusive. A corresponding method of making the scavenger composition, and of purifying a chlorosilane which contains oxygen and silicon mu-oxide impurities, likewise are disclosed, together with a purifier apparatus, in which a bed of the scavenger composition is disposed. The composition, purification process, and purifier apparatus of the invention have utility in purifying gaseous chlorosilanes which are employed in the semiconductor industry as silicon source reagents for forming epitaxial silicon layers.

  3. A Modified Oxidative Refinement Process for Removing Boron from Molten Silicon Under Enhanced Electromagnetic Force.

    PubMed

    Lee, Jun-Kyu; Lee, Jin-Seok; Jang, Bo-Yun; Kim, Joon-Soo; Ahn, Young-Soo; Kang, Gi-Hwan; Cho, Churl-Hee

    2015-11-01

    The removal of boron is one of the main challenges in the purification of metallurgical grade silicon destined for low-cost photovoltaic applications. However, boron is very difficult to remove in its elemental form due to its large segregation coefficient in silicon and its low vapor pressure. The removal of boron by slag treatment is today regarded as a highly promising method, but its refining efficiency is relatively low. Also, the reduction of boron by plasma treatment exhibits a high refining efficiency, but the processing cost is high due to the large amount of electricity consumed by the process. In this regard, the use of an oxidizing reactive gas in the refinement process offers some advantages both in terms of low energy consumption and promising refinement rates. Boron can be extracted in various gaseous forms as B(x)O(y) and/or B(x)H(z)O(y) phases, but the vapor pressure of B(x)H(z)O(y) is much greater than that of the other specie at a temperature of 1700 K. The present study reports a modified oxidative refining method designed to enhance the vaporization of boron as B(x)H(z)O(y) by blowing gaseous water onto the silicon melt in a segmented crucible to enhance the electromagnetic force, whereby the processing cost can be dramatically reduced due to the use of a reusable quartz crucible in a graphite crucible. An initial boron content of 13 ppm in the metallurgical grade silicon was significantly decreased to 0.3 ppm by the employment of 1.7SLM Ar + 100 ml/h H2O. Also, a mechanism capable of reducing boron based on thermodynamic considerations is proposed. PMID:26726550

  4. Interaction of silicon-based quantum dots with gibel carp liver: oxidative and structural modifications

    NASA Astrophysics Data System (ADS)

    Stanca, Loredana; Petrache, Sorina Nicoleta; Serban, Andreea Iren; Staicu, Andrea Cristina; Sima, Cornelia; Munteanu, Maria Cristina; Zărnescu, Otilia; Dinu, Diana; Dinischiotu, Anca

    2013-05-01

    Quantum dots (QDs) interaction with living organisms is of central interest due to their various biological and medical applications. One of the most important mechanisms proposed for various silicon nanoparticle-mediated toxicity is oxidative stress. We investigated the basic processes of cellular damage by oxidative stress and tissue injury following QD accumulation in the gibel carp liver after intraperitoneal injection of a single dose of 2 mg/kg body weight Si/SiO2 QDs after 1, 3, and 7 days from their administration. QDs gradual accumulation was highlighted by fluorescence microscopy, and subsequent histological changes in the hepatic tissue were noted. After 1 and 3 days, QD-treated fish showed an increased number of macrophage clusters and fibrosis, while hepatocyte basophilia and isolated hepatolytic microlesions were observed only after substantial QDs accumulation in the liver parenchyma, at 7 days after IP injection. Induction of oxidative stress in fish liver was revealed by the formation of malondialdehyde and advanced oxidation protein products, as well as a decrease in protein thiol groups and reduced glutathione levels. The liver enzymatic antioxidant defense was modulated to maintain the redox status in response to the changes initiated by Si/SiO2 QDs. So, catalase and glutathione peroxidase activities were upregulated starting from the first day after injection, while the activity of superoxide dismutase increased only after 7 days. The oxidative damage that still occurred may impair the activity of more sensitive enzymes. A significant inhibition in glucose-6-phosphate dehydrogenase and glutathione-S-transferase activity was noted, while glutathione reductase remained unaltered. Taking into account that the reduced glutathione level had a deep decline and the level of lipid peroxidation products remained highly increased in the time interval we studied, it appears that the liver antioxidant defense of Carassius gibelio does not counteract the

  5. Hydrogen passivation of silicon(100) used as templates for low-temperature epitaxy and oxidation

    NASA Astrophysics Data System (ADS)

    Atluri, Vasudeva Prasad

    Epitaxial growth, oxidation and ohmic contacts require surfaces as free as possible of physical defects and chemical contaminants, especially, oxygen and hydrocarbons. Wet chemical cleaning typically involves a RCA clean to remove contaminants by stripping the native oxide and regrowing a chemical oxide with only trace levels of carbon and metallic impurities. Low temperature epitaxy, T<800sp° C, limits the thermal budget for the desorption of impurities and surface oxides, and can be performed on processed structures. But, silicon dioxide cannot be desorbed at temperatures lower than 800sp°C. Recently, hydrogen passivation of Si(111) has been reported to produce stable and ordered surfaces at low temperatures. Hydrogen can then be desorbed between 200sp°C and 600sp°C prior to deposition. In this work, Si(100) is passivated via a solution of hydrofluoric acid in alcohol (methanol, ethanol, or isopropyl alcohol) with HF concentrations between 0.5 to 10%. A rinse in water or alcohol is performed after etching to remove excess fluorine. This work investigates wet chemical cleaning of Si(100) to produce ordered, hydrogen-terminated, oxygen- and carbon-free surfaces to be used as templates for low temperature epitaxial growth and rapid thermal oxidation. Ion beam analysis, Tapping mode atomic force microscopy, Fourier transform infrared spectroscopy, Secondary ion mass spectroscopy, Chemical etching, Capacitance-voltage measurements and Ellipsometry are used to measure, at the surface and interface, impurities concentration, residual disorder, crystalline order, surface topography, roughness, chemical composition, defects density, electrical characteristics, thickness, and refractive index as a function of cleaning conditions for homoepitaxial silicon growth and oxidation. The wetting characteristics of the Si(100) surfaces are measured with a tilting plate technique. Different materials are analyzed by ion beam analysis for use as hydrogen standards in elastic

  6. The correlation between electron density and anchoring strength in the inorganic vertical alignment layer

    NASA Astrophysics Data System (ADS)

    Hwang, Byoung Har; Yoo, Young Bum; Oh, Jin Young; Chae, Soo Sang; Baik, Hong Koo; Lee, Se Jong; Song, Kie Moon

    2009-08-01

    The relationship between the liquid crystal (LC) alignment and the density of the silicon oxide alignment layer was studied by theoretical and experimental approaches. The thin films were deposited by various methods and conditions, and then their densities were analyzed by x-ray reflectivity measurement. The alignment of LC was highly dependent on their densities, which we found to be closely related to the number of interacting dipoles. Ultimately, a-SiOx thin film with lower density gives rise to the uniform vertical alignment of liquid crystal.

  7. Silicon improves seed germination and alleviates oxidative stress of bud seedlings in tomato under water deficit stress.

    PubMed

    Shi, Yu; Zhang, Yi; Yao, Hejin; Wu, Jiawen; Sun, Hao; Gong, Haijun

    2014-05-01

    The beneficial effects of silicon on plant growth and development under drought have been widely reported. However, little information is available on the effects of silicon on seed germination under drought. In this work, the effects of exogenous silicon (0.5 mM) on the seed germination and tolerance performance of tomato (Solanum lycopersicum L.) bud seedlings under water deficit stress simulated by 10% (w/v) polyethylene glycol (PEG-6000) were investigated in four cultivars ('Jinpengchaoguan', 'Zhongza No.9', 'Houpi L402' and 'Oubao318'). The results showed that the seed germination percentage was notably decreased in the four cultivars under water stress, and it was significantly improved by added silicon. Compared with the non-silicon treatment, silicon addition increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the production of superoxide anion (O2·) and hydrogen peroxide (H2O2) in the radicles of bud seedlings under water stress. Addition of silicon decreased the total phenol concentrations in radicles under water stress, which might contribute to the decrease of peroxidase (POD) activity, as observed in the in vivo and in vitro experiments. The decrease of POD activity might contribute to a less accumulation of hydroxyl radical (·OH) under water stress. Silicon addition also decreased the concentrations of malondialdehyde (MDA) in the radicles under stress, indicating decreased lipid peroxidation. These results suggest that exogenous silicon could improve seed germination and alleviate oxidative stress to bud seedling of tomato by enhancing antioxidant defense. The positive effects of silicon observed in a silicon-excluder also suggest the active involvement of silicon in biochemical processes in plants.

  8. Band offsets of a ruthenium gate on ultrathin high-{kappa} oxide films on silicon

    SciTech Connect

    Rangan, Sylvie; Bersch, Eric; Bartynski, Robert Allen; Garfunkel, Eric; Vescovo, Elio

    2009-02-15

    Valence-band and conduction-band edges of ultrathin oxides (SiO{sub 2}, HfO{sub 2}, Hf{sub 0.7}Si{sub 0.3}O{sub 2}, and Al{sub 2}O{sub 3} grown on silicon) and their shifts upon sequential metallization with ruthenium have been measured using synchrotron-radiation-excited x-ray, ultraviolet, and inverse photoemissions. From these techniques, the offsets between the valence-band and conduction-band edges of the oxides, and the ruthenium metal gate Fermi edge have been directly measured. In addition the core levels of the oxides and the ruthenium have been characterized. Upon deposition, Ru remains metallic and no chemical alteration of the underlying oxide gates, or interfacial SiO{sub 2} in the case of the high-{kappa} thin films, can be detected. However a clear shift of the band edges is measured for all samples due to the creation of an interface dipole at the ruthenium-oxide interface. Using the energy gap, the electron affinity of the oxides, and the ruthenium work function that have been directly measured on these samples, the experimental band offsets are compared to those predicted by the induced gap states model.

  9. The influence of oxidation properties on the electron emission characteristics of porous silicon

    NASA Astrophysics Data System (ADS)

    He, Li; Zhang, Xiaoning; Wang, Wenjiang; Wei, Haicheng

    2016-09-01

    In order to investigate the influence of oxidation properties such as oxygen content and its distribution gradient on the electron emission characteristics of porous silicon (PS) emitters, emitters with PS thickness of 8 μm, 5 μm, and 3 μm were prepared and then oxidized by electrochemical oxidation (ECO) and ECO-RTO (rapid thermal oxidation) to get different oxidation properties. The experimental results indicated that the emission current density, efficiency, and stability of the PS emitters are mainly determined by oxidation properties. The higher oxygen content and the smaller oxygen distribution gradient in the PS layer, the larger emission current density and efficiency we noted. The most favorable results occurred for the PS emitter with the smallest oxygen distribution gradient and the highest level of oxygen content, with an emission current density of 212.25 μA/cm2 and efficiency of 59.21‰. Additionally, it also demonstrates that thick PS layer benefits to the emission stability due to its longer electron acceleration tunnel. The FN fitting plots indicated that the effective emission areas of PS emitters can be enlarged and electron emission thresholds is decreased because of the higher oxygen content and smaller distribution gradient, which were approved by the optical micrographs of top electrode of PS emitters before and after electron emission.

  10. High Mobility and Stability of Thin-Film Transistors Using Silicon-Doped Amorphous Indium Tin Oxide Semiconductors

    NASA Astrophysics Data System (ADS)

    Seo, T. W.; Kim, Hyun-Suk; Lee, Kwang-Ho; Chung, Kwun-Bum; Park, Jin-Seong

    2014-09-01

    We report the fabrication of high-performance thin-film transistors (TFTs) with an amorphous silicon indium tin oxide ( a-SITO) channel, which was deposited by cosputtering a silicon dioxide and an indium tin oxide target. The effect of the silicon doping on the device performance and stability of the a-SITO TFTs was investigated. The field-effect mobility and stability under positive bias stress of the a-SITO TFTs with optimized Si content (0.22 at.% Si) dramatically improved to 28.7 cm2/Vs and 1.5 V shift of threshold voltage, respectively, compared with the values (0.72 cm2/Vs and 8.9 V shift) for a-SITO TFTs with 4.22 at.% Si. The role of silicon in a-SITO TFTs is discussed based on various physical and chemical analyses, including x-ray absorption spectroscopy, x-ray photoelectron spectroscopy, and spectroscopic ellipsometry measurements.

  11. In situ transmission electron microscopy probing of native oxide and artificial layers on silicon nanoparticles for lithium ion batteries.

    PubMed

    He, Yang; Piper, Daniela Molina; Gu, Meng; Travis, Jonathan J; George, Steven M; Lee, Se-Hee; Genc, Arda; Pullan, Lee; Liu, Jun; Mao, Scott X; Zhang, Ji-Guang; Ban, Chunmei; Wang, Chongmin

    2014-11-25

    Surface modification of silicon nanoparticles via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism of how this thin layer of coating functions is not known, which is complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, which essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation and therefore low Coulombic efficiency. In contrast, the alucone MLD-coated particles show extremely fast, thorough, and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li(+)/e(-) conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer, and therefore mitigates side reactions and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the Coulombic efficiency, preserves capacity, and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrates that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance to the coating layer itself.

  12. In-Situ Transmission Electron Microscopy Probing of Native Oxide and Artificial Layers on Silicon Nanoparticles for Lithium Ion Batteries

    SciTech Connect

    He, Yang; Piper, Daniela M.; Gu, Meng; Travis, Jonathan J.; George, Steven M.; Lee, Se-Hee; Genc, Arda; Pullan, Lee; Liu, Jun; Mao, Scott X.; Zhang, Jiguang; Ban, Chunmei; Wang, Chong M.

    2014-11-25

    Surface modification of silicon nanoparticle via molecular layer deposition (MLD) has been recently proved to be an effective way for dramatically enhancing the cyclic performance in lithium ion batteries. However, the fundamental mechanism as how this thin layer of coating function is not known, which is even complicated by the inevitable presence of native oxide of several nanometers on the silicon nanoparticle. Using in-situ TEM, we probed in detail the structural and chemical evolution of both uncoated and coated silicon particles upon cyclic lithiation/delithation. We discovered that upon initial lithiation, the native oxide layer converts to crystalline Li2O islands, which essentially increases the impedance on the particle, resulting in ineffective lithiation/delithiation, and therefore low coulombic efficiency. In contrast, the alucone MLD coated particles show extremely fast, thorough and highly reversible lithiation behaviors, which are clarified to be associated with the mechanical flexibility and fast Li+/e- conductivity of the alucone coating. Surprisingly, the alucone MLD coating process chemically changes the silicon surface, essentially removing the native oxide layer and therefore mitigates side reaction and detrimental effects of the native oxide. This study provides a vivid picture of how the MLD coating works to enhance the coulombic efficiency and preserve capacity and clarifies the role of the native oxide on silicon nanoparticles during cyclic lithiation and delithiation. More broadly, this work also demonstrated that the effect of the subtle chemical modification of the surface during the coating process may be of equal importance as the coating layer itself.

  13. Characteristics of electro-refractive modulating based on Graphene-Oxide-Silicon waveguide.

    PubMed

    Xu, Chao; Jin, Yichang; Yang, Longzhi; Yang, Jianyi; Jiang, Xiaoqing

    2012-09-24

    Graphene has attracted a high level of research interest because of its outstanding electronic transport properties and optical properties. Based on the Kubo formalism and the Maxwell equations, it's demonstrated that the optical conductivity of graphene can be controlled through the applied voltage. And we find that the graphene-oxide-silicon (GOS) based waveguide can be made into either the electro-absorptive or electron-refractive modulators. Using graphene as the active medium, we present a new electro-refractive Mach-Zender interferometer based on the GOS structure. This new GOS-based electron-refractive modulation mechanism can enable novel architectures for on-chip optical communications. PMID:23037388

  14. Ultrasensitive food toxin biosensor using frequency based signals of silicon oxide nanoporous structure

    NASA Astrophysics Data System (ADS)

    Ghosh, H.; RoyChaudhuri, C.

    2013-06-01

    We report an electrochemically fabricated silicon oxide nanoporous structure for ultrasensitive detection of AfB1 in food by shift in peak frequency corresponding to maximum sensitivity. It has been observed that the impedance sensitivity changes from 19% to 40% (which is only twice) where as the peak frequency shifts from 500 Hz to 50 kHz, for a change in concentration from 1 fg/ml to 1 pg/ml. This has been attributed to the combined effect of the significant pore narrowing with increasing AfB1 concentration and the opposing nature of impedance change within the nanopores and the conducting substrate immediately below the nanoporous layer.

  15. Epitaxial ferromagnetic oxide thin films on silicon with atomically sharp interfaces

    SciTech Connect

    Coux, P. de; Bachelet, R.; Fontcuberta, J.; Sánchez, F.; Warot-Fonrose, B.; Skumryev, V.; Lupina, L.; Niu, G.; Schroeder, T.

    2014-07-07

    A bottleneck in the integration of functional oxides with silicon, either directly grown or using a buffer, is the usual formation of an amorphous interfacial layer. Here, we demonstrate that ferromagnetic CoFe{sub 2}O{sub 4} films can be grown epitaxially on Si(111) using a Y{sub 2}O{sub 3} buffer layer, and remarkably the Y{sub 2}O{sub 3}/Si(111) interface is stable and remains atomically sharp. CoFe{sub 2}O{sub 4} films present high crystal quality and high saturation magnetization.

  16. Electronic detection of surface plasmon polaritons by metal-oxide-silicon capacitor

    NASA Astrophysics Data System (ADS)

    Peale, Robert E.; Smith, Evan; Smith, Christian W.; Khalilzadeh-Rezaie, Farnood; Ishigami, Masa; Nader, Nima; Vangala, Shiva; Cleary, Justin W.

    2016-09-01

    An electronic detector of surface plasmon polaritons (SPPs) is reported. SPPs optically excited on a metal surface using a prism coupler are detected by using a close-coupled metal-oxide-silicon (MOS) capacitor. Incidence-angle dependence is explained by Fresnel transmittance calculations, which also are used to investigate the dependence of photo-response on structure dimensions. Electrodynamic simulations agree with theory and experiment and additionally provide spatial intensity distributions on and off the SPP excitation resonance. Experimental dependence of the photoresponse on substrate carrier type, carrier concentration, and back-contact biasing is qualitatively explained by simple theory of MOS capacitors.

  17. Using nanopillars of silicon oxide as a versatile platform for visualizing a selective immunosorbent

    NASA Astrophysics Data System (ADS)

    Chen, Jem-Kun; Zhou, Gang-Yan; Huang, Chih-Feng; Ko, Fu-Hsiang

    2013-06-01

    In this study, we fabricated nanopillar arrays of silicon oxide for use as two-dimensional periodic relief gratings (2DPRGs) on Si surfaces. We deposited antibodies onto the pillar surfaces of 2DPRGs modified with protein G to obtain optical detectors that were specific for the targeted antigen; the antigen units that filled the spaces between the nanopillars of the 2DPRG lead to a dramatic change in the pillar scale. The effective refractive index (neff) of the 2DPRGs was related to the pillar scale of the 2DPRG; after coupling of the antigen, a color change from pure green to orange was observable.

  18. Oxidation behavior in reaction-bonded aluminum-silicon alloy/alumina powder compacts

    SciTech Connect

    Yokota, S.H.

    1992-12-01

    Goal of this research is to determine the feasibility of producing low-shrinkage mullite/alumina composites by applying the reaction-bonded alumina (RBAO) process to an aluminum-silicon alloy/alumina system. Mirostructural and compositional changes during heat treatment were studied by removing samples from the furnace at different steps in the heating schedule and then using optical and scanning electron microscopy, EDS and XRD to characterize the powder compacts. Results suggest that the oxidation behavior of the alloy compact is different from the model proposed for the pure Al/alumina system.

  19. Parallel aligned liquid crystal on silicon display based optical set-up for the generation of polarization spatial distributions

    NASA Astrophysics Data System (ADS)

    Estévez, Irene; Lizana, Angel; Zheng, Xuejie; Peinado, Alba; Ramírez, Claudio; Martínez, Jose Luis; Márquez, Andrés.; Moreno, Ignacio; Campos, Juan

    2015-06-01

    Liquid Crystals on Silicon (LCOS) displays are a type of LCDs that work in reflection. Such devices, due to the double pass that the light beam performs through the LC cells, lead to larger phase modulation than transmissive LCDs with the same thickness. By taking advantage of this modulation capability exhibited by LCOS displays, we propose a new experimental set-up which is able to provide customized state of polarization spatial distributions just by means of a single LCOS display. To this aim, a double reflection on different halves of the display is properly performed. This fact is achieved by including a compact optical system that steers the light and performs a proper polarization plane rotation. The set-up has been experimentally implemented and some experimental concerns are discussed. The suitability of the system is provided by generating different experimental spatial distributions of polarization. In this regard, well-known polarization distributions, as axial, azimuthal or spiral linear polarization patterns are here provided. Based on the excellent results obtained, the suitability of the system to generate different spatially variant distributions of polarization is validated.

  20. The electroluminescence mechanism of Er³⁺ in different silicon oxide and silicon nitride environments

    SciTech Connect

    Rebohle, L. Wutzler, R.; Braun, M.; Helm, M.; Skorupa, W.; Berencén, Y.; Ramírez, J. M.; Garrido, B.; Hiller, D.

    2014-09-28

    Rare earth doped metal-oxide-semiconductor (MOS) structures are of great interest for Si-based light emission. However, several physical limitations make it difficult to achieve the performance of light emitters based on compound semiconductors. To address this point, in this work the electroluminescence (EL) excitation and quenching mechanism of Er-implanted MOS structures with different designs of the dielectric stack are investigated. The devices usually consist of an injection layer made of SiO₂ and an Er-implanted layer made of SiO₂, Si-rich SiO₂, silicon nitride, or Si-rich silicon nitride. All structures implanted with Er show intense EL around 1540 nm with EL power efficiencies in the order of 2 × 10⁻³ (for SiO₂:Er) or 2 × 10⁻⁴(all other matrices) for lower current densities. The EL is excited by the impact of hot electrons with an excitation cross section in the range of 0.5–1.5 × 10⁻¹⁵cm⁻². Whereas the fraction of potentially excitable Er ions in SiO₂ can reach values up to 50%, five times lower values were observed for other matrices. The decrease of the EL decay time for devices with Si-rich SiO₂ or Si nitride compared to SiO₂ as host matrix implies an increase of the number of defects adding additional non-radiative de-excitation paths for Er³⁺. For all investigated devices, EL quenching cross sections in the 10⁻²⁰ cm² range and charge-to-breakdown values in the range of 1–10 C cm⁻² were measured. For the present design with a SiO₂ acceleration layer, thickness reduction and the use of different host matrices did not improve the EL power efficiency or the operation lifetime, but strongly lowered the operation voltage needed to achieve intense EL.

  1. The oxidized porous silicon vacuum microtriode: A revolutionary new type of field emission array

    SciTech Connect

    Smith, D.D.; Demroff, H.P.; Elliott, T.S.; Faber, J.S.; Lee, B.; Mazumdar, T.; McIntyre, P.M.; Trost, H.J.; Pang, Y.

    1997-08-01

    Yue began studying porous silicon-based vacuum microelectronic devices i n1990. Results from a device he dubbed the Oxidized Porous Silicon Field Emission Diode (OPSFED) showed that porous silicon (PS) offered an attractive alternative to standard field emission devices. Emission sites are reduced to near-atomic dimensions and site density is increased by six orders of magnitude. Yue, and later Madduri extracted electrons into the vacuum in a diode configuration, but no attempt to build a triode device had ever been successful. Using a novel metallization technique developed by Dr. R.C. Jaklevic et al. for use in STM imaging, the authors have successfully fabricated the first working PS-based vacuum microtriodes. Results are extremely encouraging. Collector currents up to 700 {micro}A were extracted across {approximately}3mm of vacuum with a pulsed DC gate bias of less than 20V. Simultaneous measurement of the gate current showed current densities to 700A/cm{sup 2}. Modulation of the emission to 5MH: was observed. Fowler-Nordheim plots show a slight curvature, as would be expected from extremely sharp emission tips, although it is stressed that the electroemissive mechanism is as yet unknown. Fowler-Nordheim plots for OPSFED`s made from the same material show an opposite curvature as predicted for emission from a large number of sites. Density of emitters approach a true two-dimensional limit, and many applications exist if the technology can be matured.

  2. Dependence of photovoltages of spray-deposited indium tin oxide/silicon oxide/silicon junction solar cells on spray solvents

    NASA Astrophysics Data System (ADS)

    Ishida, T.; Kouno, H.; Kobayashi, H.; Nakato, Y.

    1994-05-01

    The photovoltages of spray-deposited indium tin oxide/silicon oxide/n-Si junction solar cells are found to depend strongly on the spray solvents such as methanol, ethanol, ethyl acetate, water, etc. It is also found that the work function of the indium tin oxide (ITO) films is dependent on the spray solvents, and the higher the work function of the ITO films, the larger the photovoltage. X-ray photoelectron spectroscopy (XPS) measurements indicate that an In-OH species, probably formed by reactions of the ITO film with the spray solvents, is present in the deposited film in cases where its work function is high. The resistivity of the ITO films produced using the organic spray solvents is in the range of 2 approx. 4 x 10(sup -4) Omega cm, leading to high fill factors of the solar cells, while that of the films deposited using water as a spray solvent is as high as 1.2 x 10(sup -3) Omega cm, resulting in low fill factors. On the basis of the XPS measurements, the high resistivity of the latter ITO films is attributed to a small amount of tin ions in the films. X-raydiffraction measurements show that the crystal orientation of the ITO films also depends on the spray solvents, indicating that the film formation mechanism varies with the spray solvents. By use of a mixed solvent of methanol:ethyl acetate:water = 5:5:1, the photovoltage becomes the highest, and the conversion efficiency of 14% is achieved.

  3. Evaluation of silicon oxide cleaning using F2/Ar remote plasma processing

    NASA Astrophysics Data System (ADS)

    Kang, S. C.; Hwang, J. Y.; Lee, N.-E.; Joo, K. S.; Bae, G. H.

    2005-07-01

    In this study, chamber cleaning experiments using a F2/Ar remote plasma generated from a toroidal-type remote plasma source were carried out in a plasma enhanced chemical vapor deposition (PECVD) system. The cleaning processes for the various silicon oxide layers, including PE-oxide (deposited by PECVD using SiH4 and N2O), O3-TEOS oxide (deposited by thermal CVD using ozone and TEOS precursor), and BPSG (borophosphosilicate glass), were investigated by varying the various process parameters, such as the F2 gas flow rate, the F2/(F2+Ar) flow ratio, and the cleaning temperature. The species emitted during cleaning were monitored by Fourier transformed infrared spectroscopy and residual gas analysis. Under the current experimental conditions, the cleaning rate of the BPSG was 4.1-5.0 and 3.9-7.3 times higher than that those of the PE-oxide and O3-TEOS oxide layers, respectively, at room temperature and an F2/(F2+Ar) flow ratio of 28.5%-83%. As the cleaning temperature increased from 100 to 350 °C, the cleaning rates of the PE-oxide, O3-TEOS oxide, and BPSG layers were increased by factors of 2.0-3.0, 1.5-2.2, and 3.0-3.4, respectively, at an F2/(F2+Ar) flow ratio of 28%-68%. The F2/(F2+Ar) flow ratio and cleaning temperature were found to be the most critical parameters involved in determining the cleaning rate of the various oxide layers.

  4. Atomic Dynamics and Defect Evolution During Oxygen Precipitation and Oxidation of Silicon

    NASA Astrophysics Data System (ADS)

    Pantelides, Sokrates

    1998-03-01

    The results of first-principles calculations ( based on density functional theory, local-density approximation, pseudopotentials, supercells, and plane waves) provide a basis for a unified account of the atomic-scale processes that underlie oxygen precipitation (enhanced oxygen diffusion, nucleation of "thermal donors", their evolution into electrically inactive SiO2-like precipitates, and the continuing growth of the latter), thin-film oxidation, and the formation of a buried oxide film after O implantation for the formation of Silicon-On-Insulator (SOI) structures. Examination of the energetics and kinetics of the various processes leads to the realization that the intrinsic defect formed during thin-film oxidation and buried-oxide formation is akin to thermal donors, consisting of "frustrated" Si-O bonds (Si atoms bonded to one or more threefold-coordinated O atoms). It is shown that ejection of such frustrated Si atoms underlies the observed emission of Si interstitals in all cases (annealing of thermal donors and further growth of SiO2-like precipitates, thin-film oxidation, and buried-oxide formation). The emission occurs by a synergistic process that eliminates wrong-coordination defects, leaving behind perfectly-bonded structures. These results explain the high quality of Si-SiO2 interfaces and provide a novel family of defects that account for observations that, in addition to the well-known dangling bonds, another defect of unknown identity plays a major role in determining the electrical properties of the Si-SiO2 interface./footnoteE. Cartier and J. H. Stathis, Appl. Phys. Lett. 69, 103 (1996). The same defects are proposed to be the dominant electron traps in buried SOI oxides fabricated by O implantation. The role of H both during oxidation and in subsequent interactions with an Si-SiO2 interface is also elucidated and shown to be in accord with experiments.

  5. CO oxidation catalyzed by silicon carbide (SiC) monolayer: A theoretical study.

    PubMed

    Wang, Nan; Tian, Yu; Zhao, Jingxiang; Jin, Peng

    2016-05-01

    Developing metal-free catalysts for CO oxidation has been a key scientific issue in solving the growing environmental problems caused by CO emission. In this work, the potential of the silicon carbide (SiC) monolayer as a metal-free catalyst for CO oxidation was systematically explored by means of density functional theory (DFT) computations. Our results revealed that CO oxidation reaction can easily proceed on SiC nanosheet, and a three-step mechanism was proposed: (1) the coadsorption of CO and O2 molecules, followed by (2) the formation of the first CO2 molecule, and (3) the recovery of catalyst by a second CO molecule. The last step is the rate-determining one of the whole catalytic reaction with the highest barrier of 0.65eV. Remarkably, larger curvature is found to have a negative effect on the catalytic performance of SiC nanosheet for CO oxidation. Therefore, our results suggested that flat SiC monolayer is a promising metal-free catalyst for CO oxidation.

  6. CO oxidation catalyzed by silicon carbide (SiC) monolayer: A theoretical study.

    PubMed

    Wang, Nan; Tian, Yu; Zhao, Jingxiang; Jin, Peng

    2016-05-01

    Developing metal-free catalysts for CO oxidation has been a key scientific issue in solving the growing environmental problems caused by CO emission. In this work, the potential of the silicon carbide (SiC) monolayer as a metal-free catalyst for CO oxidation was systematically explored by means of density functional theory (DFT) computations. Our results revealed that CO oxidation reaction can easily proceed on SiC nanosheet, and a three-step mechanism was proposed: (1) the coadsorption of CO and O2 molecules, followed by (2) the formation of the first CO2 molecule, and (3) the recovery of catalyst by a second CO molecule. The last step is the rate-determining one of the whole catalytic reaction with the highest barrier of 0.65eV. Remarkably, larger curvature is found to have a negative effect on the catalytic performance of SiC nanosheet for CO oxidation. Therefore, our results suggested that flat SiC monolayer is a promising metal-free catalyst for CO oxidation. PMID:27135172

  7. Impact of Silicon Nanocrystal Oxidation on the Nonmetallic Growth of Carbon Nanotubes.

    PubMed

    Rocks, Conor; Mitra, Somak; Macias-Montero, Manuel; Maguire, Paul; Svrcek, Vladimir; Levchenko, Igor; Ostrikov, Kostya; Mariotti, Davide

    2016-07-27

    Carbon nanotube (CNT) growth has been demonstrated recently using a number of nonmetallic semiconducting and metal oxide nanoparticles, opening up pathways for direct CNT synthesis from a number of more desirable templates without the need for metallic catalysts. However, CNT growth mechanisms using these nonconventional catalysts has been shown to largely differ and reamins a challenging synthesis route. In this contribution we show CNT growth from partially oxidized silicon nanocrystals (Si NCs) that exhibit quantum confinement effects using a microwave plasma enhanced chemical vapor deposition (PECVD) method. On the basis of solvent and a postsynthesis frgamentation process, we show that oxidation of our Si NCs can be easily controlled. We determine experimentally and explain with theoretical simulations that the Si NCs morphology together with a necessary shell oxide of ∼1 nm is vital to allow for the nonmetallic growth of CNTs. On the basis of chemical analysis post-CNT-growth, we give insight into possible mechanisms for CNT nucleation and growth from our partially oxidized Si NCs. This contribution is of significant importance to the improvement of nonmetallic catalysts for CNT growth and the development of Si NC/CNT interfaces. PMID:27362537

  8. Selective growth of α-sexithiophene by using silicon oxides patterns.

    PubMed

    Albonetti, Cristiano; Barbalinardo, Marianna; Milita, Silvia; Cavallini, Massimiliano; Liscio, Fabiola; Moulin, Jean-François; Biscarini, Fabio

    2011-01-01

    A process for fabricating ordered organic films on large area is presented. The process allows growing sexithiophene ultra-thin films at precise locations on patterned Si/SiO(x) substrates by driving the orientation of growth. This process combines the parallel local anodic oxidation of Si/SiO(x) substrates with the selective arrangement of molecular ultra-thin film. The former is used to fabricate silicon oxide arrays of parallel lines of 400 nm in width over an area of 1 cm(2). Selective growth arises from the interplay between kinetic growth parameters and preferential interactions with the patterned surface. The result is an ultra-thin film of organic molecules that is conformal to the features of the fabricated motives.

  9. Selective Growth of α-Sexithiophene by Using Silicon Oxides Patterns

    PubMed Central

    Albonetti, Cristiano; Barbalinardo, Marianna; Milita, Silvia; Cavallini, Massimiliano; Liscio, Fabiola; Moulin, Jean-François; Biscarini, Fabio

    2011-01-01

    A process for fabricating ordered organic films on large area is presented. The process allows growing sexithiophene ultra-thin films at precise locations on patterned Si/SiOx substrates by driving the orientation of growth. This process combines the parallel local anodic oxidation of Si/SiOx substrates with the selective arrangement of molecular ultra-thin film. The former is used to fabricate silicon oxide arrays of parallel lines of 400 nm in width over an area of 1 cm2. Selective growth arises from the interplay between kinetic growth parameters and preferential interactions with the patterned surface. The result is an ultra-thin film of organic molecules that is conformal to the features of the fabricated motives. PMID:22016622

  10. Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly.

    PubMed

    Ou, Junfei; Wang, Jinqing; Liu, Sheng; Mu, Bo; Ren, Junfang; Wang, Honggang; Yang, Shengrong

    2010-10-19

    Reduced graphene oxide (RGO) sheets were covalently assembled onto silicon wafers via a multistep route based on the chemical adsorption and thermal reduction of graphene oxide (GO). The formation and microstructure of RGO were analyzed by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Raman spectroscopy, and water contact angle (WCA) measurements. Characterization by atomic force microscopy (AFM) was performed to evaluate the morphology and microtribological behaviors of the samples. Macrotribological performance was tested on a ball-on-plate tribometer. Results show that the assembled RGO possesses good friction reduction and antiwear ability, properties ascribed to its intrinsic structure, that is, the covalent bonding to the substrate and self-lubricating property of RGO.

  11. High k nanophase zinc oxide on biomimetic silicon nanotip array as supercapacitors.

    PubMed

    Han, Hsieh-Cheng; Chong, Cheong-Wei; Wang, Sheng-Bo; Heh, Dawei; Tseng, Chi-Ang; Huang, Yi-Fan; Chattopadhyay, Surojit; Chen, Kuei-Hsien; Lin, Chi-Feng; Lee, Jiun-Haw; Chen, Li-Chyong

    2013-04-10

    A 3D trenched-structure metal-insulator-metal (MIM) nanocapacitor array with an ultrahigh equivalent planar capacitance (EPC) of ~300 μF cm(-2) is demonstrated. Zinc oxide (ZnO) and aluminum oxide (Al2O3) bilayer dielectric is deposited on 1 μm high biomimetic silicon nanotip (SiNT) substrate using the atomic layer deposition method. The large EPC is achieved by utilizing the large surface area of the densely packed SiNT (!5 × 10(10) cm(-2)) coated conformally with an ultrahigh dielectric constant of ZnO. The EPC value is 30 times higher than those previously reported in metal-insulator-metal or metal-insulator-semiconductor nanocapacitors using similar porosity dimensions of the support materials.

  12. Charge separation technique for metal-oxide-silicon capacitors in the presence of hydrogen deactivated dopants

    SciTech Connect

    Witczak, Steven C.; Winokur, Peter S.; Lacoe, Ronald C.; Mayer, Donald C.

    2000-06-01

    An improved charge separation technique for metal-oxide-silicon (MOS) capacitors is presented which accounts for the deactivation of substrate dopants by hydrogen at elevated irradiation temperatures or small irradiation biases. Using high-frequency capacitance-voltage measurements, radiation-induced inversion voltage shifts are separated into components due to oxide trapped charge, interface traps, and deactivated dopants, where the latter is computed from a reduction in Si capacitance. In the limit of no radiation-induced dopant deactivation, this approach reduces to the standard midgap charge separation technique used widely for the analysis of room-temperature irradiations. The technique is demonstrated on a p-type MOS capacitor irradiated with {sup 60}Co {gamma} rays at 100 degree sign C and zero bias, where the dopant deactivation is significant.(c) 2000 American Institute of Physics.

  13. Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties.

    PubMed

    Wang, Xina; Zhu, Haojun; Xu, Yeming; Wang, Hao; Tao, Yin; Hark, Suikong; Xiao, Xudong; Li, Quan

    2010-06-22

    Vertically aligned ZnO/CdTe core-shell nanocable arrays-on-indium tin oxide (ITO) are fabricated by electrochemical deposition of CdTe on ZnO nanorod arrays in an electrolyte close to neutral pH. By adjusting the total charge quantity applied during deposition, the CdTe shell thickness can be tuned from several tens to hundreds of nanometers. The CdTe shell, which has a zinc-blende structure, is very dense and uniform both radially and along the axial direction of the nanocables, and forms an intact interface with the wurtzite ZnO nanorod core. The absorption of the CdTe shell above its band gap ( approximately 1.5 eV) and the type II band alignment between the CdTe shell and the ZnO core, respectively, demonstrated by absorption and photoluminescence measurements, make a nanocable array-on-ITO architecture a promising photoelectrode with excellent photovoltaic properties for solar energy applications. A photocurrent density of approximately 5.9 mA/cm(2) has been obtained under visible light illumination of 100 mW cm(-2) with zero bias potential (vs saturated calomel electrode). The neutral electrodeposition method can be generally used for plating CdTe on nanostructures made of different materials, which would be of interest in various applications. PMID:20446665

  14. Reactive atomization of silicon to form in situ oxide sintering aids

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Zeng, X.; Lavernia, E. J.; Schoenung, J. M.

    1996-08-01

    The present investigation demonstrated the feasibility of using reactive atomization to produce Si powder with in situ oxide sintering aids. With further process optimization, this powder may be an alternative starting material to the conventional, mechanically blended, Si-plus-oxide powder used to produce commercial sintered reaction bonded silicon nitride (SRBSN). In the reactive atomization approach, yttrium and aluminum additives were introduced into silicon metal during induction melting. Reactive atomization was accomplished using a N2-5 pct O2 mixture as the atomization gas. During atomization, oxygen in the atomization gas reacted with Y and Al in the Si melt to produce Y2O3 and Al2O3, which act as in situ sintering aids. The reactive atomized powder demonstrated a Gaussian distribution with a mean diameter of 36 μm. The powder fines (<38 μm) were used to produce cold isostatically pressed compacts that were subsequently reaction bonded and sintered. The results demonstrate that β-Si3N4 formed during reaction bonding and sintering. The density of the SRBSN was 77 pct of theoretical. Transmission electron microscopy (TEM) studies indicated the presence of a glassy phase on the grain boundaries, which is typical in SRBSN and indicative of the presence of the in situ sintering aids. A kinetic model was used to study the influence of processing parameters, such as droplet temperature and oxygen partial pressure, on the kinetics of oxide formation during reactive atomization. The results suggest that the volume fraction of oxides increases with increasing droplet temperature and oxygen partial pressure in the atomization gas mixture.

  15. Comparative analysis on surface property in anodic oxidation polishing of reaction-sintered silicon carbide and single-crystal 4H silicon carbide

    NASA Astrophysics Data System (ADS)

    Shen, Xinmin; Tu, Qunzhang; Deng, Hui; Jiang, Guoliang; He, Xiaohui; Liu, Bin; Yamamura, Kazuya

    2016-04-01

    For effective machining of difficult-to-machine materials, such as reaction-sintered silicon carbide (RS-SiC) and single-crystal 4H silicon carbide (4H-SiC), a novel polishing technique named anodic oxidation polishing was proposed, which combined with the anodic oxidation of substrate and slurry polishing of oxide. By scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX) observation and atomic force microscopy analysis, both the anodic oxidation behaviors of RS-SiC and 4H-SiC were investigated. Through comparison of the surfaces before and after hydrofluoric acid etching of the oxidized samples by the scanning white light interferometry (SWLI) measurement, the relationships between oxidation depth and oxidation time were obtained, and the calculated oxidation rate for RS-SiC was 5.3 nm/s and that for 4H-SiC was 5.8 nm/s based on the linear Deal-Grove model. Through anodic oxidation polishing of RS-SiC substrate and 4H-SiC substrate, respectively, the surface roughness rms obtained by SWLI was improved to 2.103 nm for RS-SiC and to 0.892 nm for 4H-SiC. Experimental results indicate that anodic oxidation polishing is an effective method for the machining of RS-SiC and 4H-SiC samples, which would improve the process level of SiC substrates and promote the application of SiC products in the fields of optics, ceramics, semiconductors, electronics, and so on.

  16. Enhanced field emission properties from well-aligned zinc oxide nanoneedles grown on the Au/Ti/n-Si substrate

    SciTech Connect

    Park, Chan Jun; Choi, Duck-Kyun; Yoo, Jinkyoung; Yi, Gyu-Chul; Lee, Cheol Jin

    2007-02-19

    The authors investigated the field emission from vertically well-aligned zinc oxide (ZnO) nanoneedles grown on the Au/Ti/n-Si (100) substrate using metal organic chemical vapor deposition. The turn-on field of ZnO nanoneedles was about 0.85 V/{mu}m at the current density of 0.1 {mu}A/cm{sup 2}, and the emission current density of 1 mA/cm{sup 2} was achieved at the applied electric field of 5.0 V/{mu}m. The low turn-on field of the ZnO nanoneedles was attributed to very sharp tip morphology, and the high emission current density was mainly caused by the formation of the stable Ohmic contact between the ZnO nanoneedles and Au film.

  17. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide.

    PubMed

    Akbari, Abozar; Sheath, Phillip; Martin, Samuel T; Shinde, Dhanraj B; Shaibani, Mahdokht; Banerjee, Parama Chakraborty; Tkacz, Rachel; Bhattacharyya, Dibakar; Majumder, Mainak

    2016-01-01

    Graphene-based membranes demonstrating ultrafast water transport, precise molecular sieving of gas and solvated molecules shows great promise as novel separation platforms; however, scale-up of these membranes to large-areas remains an unresolved problem. Here we demonstrate that the discotic nematic phase of graphene oxide (GO) can be shear aligned to form highly ordered, continuous, thin films of multi-layered GO on a support membrane by an industrially adaptable method to produce large-area membranes (13 × 14 cm(2)) in <5 s. Pressure driven transport data demonstrate high retention (>90%) for charged and uncharged organic probe molecules with a hydrated radius above 5 Å as well as modest (30-40%) retention of monovalent and divalent salts. The highly ordered graphene sheets in the plane of the membrane make organized channels and enhance the permeability (71 ± 5 l m(-2) hr(-1) bar(-1) for 150 ± 15 nm thick membranes). PMID:26947916

  18. Silicon carbide: A unique platform for metal-oxide-semiconductor physics

    SciTech Connect

    Liu, Gang; Tuttle, Blair R.; Dhar, Sarit

    2015-06-15

    A sustainable energy future requires power electronics that can enable significantly higher efficiencies in the generation, distribution, and usage of electrical energy. Silicon carbide (4H-SiC) is one of the most technologically advanced wide bandgap semiconductor that can outperform conventional silicon in terms of power handling, maximum operating temperature, and power conversion efficiency in power modules. While SiC Schottky diode is a mature technology, SiC power Metal Oxide Semiconductor Field Effect Transistors are relatively novel and there is large room for performance improvement. Specifically, major initiatives are under way to improve the inversion channel mobility and gate oxide stability in order to further reduce the on-resistance and enhance the gate reliability. Both problems relate to the defects near the SiO{sub 2}/SiC interface, which have been the focus of intensive studies for more than a decade. Here we review research on the SiC MOS physics and technology, including its brief history, the state-of-art, and the latest progress in this field. We focus on the two main scientific problems, namely, low channel mobility and bias temperature instability. The possible mechanisms behind these issues are discussed at the device physics level as well as the atomic scale, with the support of published physical analysis and theoretical studies results. Some of the most exciting recent progress in interface engineering for improving the channel mobility and fundamental understanding of channel transport is reviewed.

  19. Preparation and Characterization of Ophthalmic Lens Materials Containing Titanium Silicon Oxide and Silver Nanoparticles.

    PubMed

    No, Jung-Won; Kim, Dong-Hyun; Lee, Min-Jae; Kim, Duck-Hyun; Kim, Tae-Hun; Sung, A-Young

    2015-10-01

    Hydrogel ophthalmic lenses containing fluorine-substituted aniline group, titanium silicon oxide nartoparticles, and silver nanoparticles were copolymerized, and the physical and optical properties of the hydrogel lenses were measured. To produce the hydrophilic ophthalmic lenses, the additives were added to the mixture containing HEMA, NVP, MA, EGDMA, and AIBN. The cast mold method was used for the manufacture of the hydrogel ophthalmic lenses, and the produced lenses were completely soaked in a 0.9% NaCl normal saline solution for 24 hours for hydration. The physical properties of the produced macromolecule showed that the water content was 32.5-37.6%, the refractive index was 1.450-1.464, the UV-B transmittance was 0.5-35.2%, and the contact angle was between 56 and 69°. Also, the addition of aniline, titanium silicon oxide, and silver nanoparticles allowed the ophthalmic lenses to block UV. These results show that the produced macromolecule can be used as hydrophilic lenses for ophthalmologic purposes that can block UV. PMID:26726456

  20. Carrier Selective, Passivated Contacts for High Efficiency Silicon Solar Cells based on Transparent Conducting Oxides

    DOE PAGES

    Young, David L.; Nemeth, William; Grover, Sachit; Norman, Andrew; Yuan, Hao-Chih; Lee, Benjamin G.; LaSalvia, Vincenzo; Stradins, Paul

    2014-01-01

    We describe the design, fabrication and results of passivated contacts to n-type silicon utilizing thin SiO2 and transparent conducting oxide layers. High temperature silicon dioxide is grown on both surfaces of an n-type wafer to a thickness <50 Å, followed by deposition of tin-doped indium oxide (ITO) and a patterned metal contacting layer. As deposited, the thin-film stack has a very high J0,contact, and a non-ohmic, high contact resistance. However, after a forming gas anneal, the passivation quality and the contact resistivity improve significantly. The contacts are characterized by measuring the recombination parameter of the contact (J0,contact) and the specificmore » contact resistivity (ρcontact) using a TLM pattern. The best ITO/SiO2 passivated contact in this study has J0,contact = 92.5 fA/cm2 and ρcontact = 11.5 mOhm-cm2. These values are placed in context with other passivating contacts using an analysis that determines the ultimate efficiency and the optimal area fraction for contacts for a given set of (J0,contact, ρcontact) values. The ITO/SiO2 contacts are found to have a higher J0,contact, but a similar ρcontact compared to the best reported passivated contacts.« less

  1. Silicon carbide: A unique platform for metal-oxide-semiconductor physics

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Tuttle, Blair R.; Dhar, Sarit

    2015-06-01

    A sustainable energy future requires power electronics that can enable significantly higher efficiencies in the generation, distribution, and usage of electrical energy. Silicon carbide (4H-SiC) is one of the most technologically advanced wide bandgap semiconductor that can outperform conventional silicon in terms of power handling, maximum operating temperature, and power conversion efficiency in power modules. While SiC Schottky diode is a mature technology, SiC power Metal Oxide Semiconductor Field Effect Transistors are relatively novel and there is large room for performance improvement. Specifically, major initiatives are under way to improve the inversion channel mobility and gate oxide stability in order to further reduce the on-resistance and enhance the gate reliability. Both problems relate to the defects near the SiO2/SiC interface, which have been the focus of intensive studies for more than a decade. Here we review research on the SiC MOS physics and technology, including its brief history, the state-of-art, and the latest progress in this field. We focus on the two main scientific problems, namely, low channel mobility and bias temperature instability. The possible mechanisms behind these issues are discussed at the device physics level as well as the atomic scale, with the support of published physical analysis and theoretical studies results. Some of the most exciting recent progress in interface engineering for improving the channel mobility and fundamental understanding of channel transport is reviewed.

  2. Atomic scale alignment of copper-germanide contacts for ge nanowire metal oxide field effect transistors.

    PubMed

    Burchhart, T; Lugstein, A; Hyun, Y J; Hochleitner, G; Bertagnolli, E

    2009-11-01

    In this letter, we report on the formation, of copper-germanide/germanium nanowire (NW) heterostructures with atomically sharp interfaces. The copper-germanide (Cu3Ge) formation process is enabled by a chemical reaction between metallic Cu pads and vapor-liquid-solid (VLS) grown Ge-NWs. The atomic scale aligned formation of the Cu3Ge segments is controlled by in situ SEM monitoring at 310 degrees C thereby enabling length control of the intrinsic Ge-NW down to a few nanometers. The single crystal Cu3Ge/Ge/Cu3Ge heterostructures were used to fabricate p-type Ge-NW field effect transistors with Schottky Cu3Ge source/drain contacts. Temperature dependent I /V measurements revealed the metallic properties of the Cu3Ge contacts with a maximum current density of 5 x 10(7) A/cm2. According to the thermoionic emission theory, we determined an effective Schottky barrier height of 218 meV.

  3. Electrical and gas sensing properties of self-aligned copper-doped zinc oxide nanoparticles

    SciTech Connect

    Sonawane, Yogesh S.; Kanade, K.G.; Kale, B.B. Aiyer, R.C.

    2008-10-02

    Electrical and gas sensing properties of nanocrystalline ZnO:Cu, having Cu X wt% (X = 0.0, 0.5, 1.0, and 1.5) in ZnO, in the form of pellet were investigated. Copper chloride and zinc acetate were used as precursors along with oxalic acid as a precipitating reagent in methanol. Material characterization was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM) and inductive coupled plasma with optical emission spectrometry (ICP-OES). FE-SEM showed the self-aligned Cu-doped ZnO nano-clusters with particles in the range of 40-45 nm. The doping of 0.5% of copper changes the electrical conductivity by an order of magnitude whereas the temperature coefficient of resistance (TCR) reduces with increase in copper wt% in ZnO. The material has shown an excellent sensitivity for the H{sub 2}, LPG and CO gases with limited temperature selectivity through the optimized operating temperature of 130, 190 and 220 deg. C for H{sub 2}, LPG and CO gases, respectively at 625 ppm gas concentration. The %SF was observed to be 1460 for H{sub 2} at 1% Cu doping whereas the 0.5% Cu doping offered %SF of 950 and 520 for CO and LPG, respectively. The response and recovery time was found to be 6 to 8 s and 16 s, respectively.

  4. Optical and structural characterization of thermal oxidation effects of erbium thin films deposited by electron beam on silicon

    SciTech Connect

    Kamineni, Himani S.; Kamineni, Vimal K.; Moore, Richard L.; Gallis, Spyros; Diebold, Alain C.; Huang Mengbing; Kaloyeros, Alain E.

    2012-01-01

    Thermal oxidation effects on the structural, compositional, and optical properties of erbium films deposited on silicon via electron beam evaporation were analyzed by x-ray diffraction, x-ray photoelectron spectroscopy, Auger electron spectroscopy, and spectroscopic ellipsometry. A gradual rise in oxidation temperature from 700 to 900 deg. C resulted in a transition from ErO- to Er{sub 2}O{sub 3}-rich phase. Additional increase in oxidation temperature above 1000 deg. C led to the formation of erbium silicate due to further oxygen incorporation, as well as silicon out-diffusion from the substrate. A silicon oxide interfacial layer was also detected, with its thickness increasing with higher oxidation temperature. Additionally, film refractive index decreased, while its Tauc bandgap value increased from {approx}5.2 eV to {approx}6.4 eV, as the oxidation temperature was raised from 700 deg. C to above 900 deg. C. These transformations were accompanied by the appearance of an intense and broad absorption band below the optical gap. Thermal oxidation effects are discussed in the context of film structural characteristics and defect states.

  5. Behavior of incorporated nitrogen in plasma-nitrided silicon oxide formed by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Shinoda, Nao; Itokawa, Hiroshi; Fujitsuka, Ryota; Sekine, Katsuyuki; Onoue, Seiji; Tonotani, Junichi

    2016-04-01

    The behavior of nitrogen (N) atoms in plasma-nitrided silicon oxide (SiO2) formed by chemical vapor deposition (CVD) was characterized by physical analysis and from electrical properties. The changes in the chemical bonding and distribution of N in plasma-nitrided SiO2 were investigated for different subsequent processes. N-Si3, N-Si2O, and N2 are formed in a SiO2 film by plasma nitridation. N2 molecules diffuse out during annealing at temperatures higher than 900 °C. NH species are generated from N2 molecules and H in the SiO2 film with subsequent oxide deposition using O3 as an oxidant. The capacitance-voltage (C-V) curves of metal-oxide-semiconductor (MOS) capacitors are obtained. The negative shift of the C-V curve is caused by the increase in the density of positive fix charge traps in CVD-SiO2 induced by plasma nitridation. The C-V curve of plasma-nitrided SiO2 subjected to annealing shifts to the positive direction and that subjected to the subsequent oxide deposition shifts markedly to the negative direction. It is clarified that the density of positive charge fixed traps in plasma-nitrided SiO2 films decrease because the amount of N2 molecules is decreased by annealing, and that the density of traps increases because NH species are generated and move to the interface between SiO2 and the Si substrate with the subsequent oxide deposition.

  6. Design, microstructure, and high-temperature behavior of silicon nitride sintered with rate-earth oxides

    SciTech Connect

    Ciniculk, M.K. . Dept. of Materials Science and Mineral Engineering)

    1991-08-01

    The processing-microstructure-property relations of silicon nitride ceramics sintered with rare-earth oxide additives have been investigated with the aim of improving their high-temperature behavior. The additions of the oxides of Y, Sm, Gd, Dy, Er, or Yb were compositionally controlled to tailor the intergranular phase. The resulting microstructure consisted of {beta}-Si{sub 3}N{sub 4} grains and a crystalline secondary phase of RE{sub 2}Si{sub 2}O{sub 7}, with a thin residual amorphous phase present at grain boundaries. The lanthanide oxides were found to be as effective as Y{sub 2}O{sub 3} in densifying Si{sub 3}N{sub 4}, resulting in identical microstructures. The crystallization behavior of all six disilicates was similar, characterized by a limited nucleation and rapid growth mechanism resulting in large single crystals. Complete crystallization of the intergranular phase was obtained with the exception of a residual amorphous, observed at interfaces and believed to be rich in impurities, the cause of incomplete devitrification. The low resistance to oxidation of these materials was attributed to the minimization of amorphous phases via devitrification to disilicates, compatible with SiO{sub 2}, the oxidation product of Si{sub 3}N{sub 4}. The strength retention of these materials at 1300{degrees}C was found to be between 80% and 91% of room-temperature strength, due to crystallization of the secondary phase and a residual but refractory amorphous grain-boundary phase. The creep behavior was found to be strongly dependent on residual amorphous phase viscosity as well as on the oxidation behavior, as evidenced by the nonsteady-state creep rates of all materials. 122 refs., 51 figs., 12 tabs.

  7. Facile synthesis of binder-free reduced graphene oxide/silicon anode for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Zuo, Pengjian; Chen, Cheng; Ma, Yulin; Cheng, Xinqun; Du, Chunyu; Gao, Yunzhi; Yin, Geping

    2016-04-01

    A novel binder-free reduced graphene oxide/silicon (RGO/Si) composite anode has been fabricated by a facile doctor-blade coating method. The relatively low C/O ratio plays an important role for the fabrication of the bind-free multilayered RGO/Si electrode with silicon nanoparticles encapsulating among the RGO sheet layers. The RGO provides the electron transport pathway and prevents the electrode fracture caused by the volume changes of active silicon particles during cycling. The RGO/Si composite anode with a silicon content of 66.7% delivers a reversible capacity of 1931 mAh g-1 at 0.2 A g-1 and still remains 92% of the initial capacity after 50 cycles.

  8. Effective Infiltration of Gel Polymer Electrolyte into Silicon-Coated Vertically Aligned Carbon Nanofibers as Anodes for Solid-State Lithium-Ion Batteries.

    PubMed

    Pandey, Gaind P; Klankowski, Steven A; Li, Yonghui; Sun, Xiuzhi Susan; Wu, Judy; Rojeski, Ronald A; Li, Jun

    2015-09-23

    This study demonstrates the full infiltration of gel polymer electrolyte into silicon-coated vertically aligned carbon nanofibers (Si-VACNFs), a high-capacity 3D nanostructured anode, and the electrochemical characterization of its properties as an effective electrolyte/separator for future all-solid-state lithium-ion batteries. Two fabrication methods have been employed to form a stable interface between the gel polymer electrolyte and the Si-VACNF anode. In the first method, the drop-casted gel polymer electrolyte is able to fully infiltrate into the open space between the vertically aligned core-shell nanofibers and encapsulate/stabilize each individual nanofiber in the polymer matrix. The 3D nanostructured Si-VACNF anode shows a very high capacity of 3450 mAh g(-1) at C/10.5 (or 0.36 A g(-1)) rate and 1732 mAh g(-1) at 1C (or 3.8 A g(-1)) rate. In the second method, a preformed gel electrolyte film is sandwiched between an Si-VACNF electrode and a Li foil to form a half-cell. Most of the vertical core-shell nanofibers of the Si-VACNF anode are able to penetrate into the gel polymer film while retaining their structural integrity. The slightly lower capacity of 2800 mAh g(-1) at C/11 rate and ∼1070 mAh g(-1) at C/1.5 (or 2.6 A g(-1)) rate have been obtained, with almost no capacity fade for up to 100 cycles. Electrochemical impedance spectroscopy does not show noticeable changes after 110 cycles, further revealing the stable interface between the gel polymer electrolyte and the Si-VACNFs anode. These results show that the infiltrated flexible gel polymer electrolyte can effectively accommodate the stress/strain of the Si shell due to the large volume expansion/contraction during the charge-discharge processes, which is particularly useful for developing future flexible solid-state lithium-ion batteries incorporating Si-anodes.

  9. Improved gate oxide integrity of strained Si n-channel metal oxide silicon field effect transistors using thin virtual substrates

    NASA Astrophysics Data System (ADS)

    Yan, L.; Olsen, S. H.; Escobedo-Cousin, E.; O'Neill, A. G.

    2008-05-01

    This work presents a detailed study of ultrathin gate oxide integrity in strained Si metal oxide silicon field effect transistors (MOSFETs) fabricated on thin virtual substrates aimed at reducing device self-heating. The gate oxide quality and reliability of the devices are compared to those of simultaneously processed Si control devices and conventional thick virtual substrate devices that have the same Ge content (20%), strained Si channel thickness, and channel strain. The thin virtual substrates offer the same mobility enhancement as the thick virtual substrates (˜100% compared to universal mobility data) and are effective at reducing device self-heating. Up to 90% improvement in gate leakage current is demonstrated for the strained Si n-channel MOSFETs compared to that for the bulk Si controls. The lower leakage arises from the increased electron affinity in tensile strained Si and is significant due to the sizeable strain generated by using wafer-level stressors. The strain-induced leakage reductions also lead to major improvements in stress-induced leakage current (SILC) and oxide reliability. The lower leakage current of the thin and thick virtual substrate devices compares well to theoretical estimates based on the Wentzel-Kramers-Brillouin approximation. Breakdown characteristics also differ considerably between the devices, with the strained Si devices exhibiting a one order of magnitude increase in time to hard breakdown (THBD) compared to the Si control devices following high-field stressing at 17 MV cm-1. The strained Si devices are exempted from soft breakdown. Experimental based analytical leakage modeling has been carried out across the field range for the first time in thin oxides and demonstrates that Poole-Frenkel (PF) emissions followed by Fowler-Nordheim tunneling dominate gate leakage current at low fields in all of the devices. This contrasts to the frequently reported assumption that direct tunneling dominates gate leakage in ultrathin

  10. Alignment Control of Liquid Crystals Using Conductive Atomic Force Microscopy Nanolithography

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Chieh; Chao, Chih-Yu

    2008-06-01

    Conductive atomic force microscopy (CAFM) nanolithography was used to modify a silicon surface. This approach generating the silicon oxide grating by CAFM gives a control of liquid crystal (LC) alignment in the micron or submicron region. It establishes a pixel with a smaller size to achieve high-resolution images. Compared with the conventional cloth rubbing and AFM scratching techniques, the CAFM nanolithography prevents scratching damage, dust contamination and residual static electricity problems. Furthermore, this inorganic alignment method can also avoid the damage caused by UV light exposure and high-temperature environment.

  11. Silicon oxynitride films deposited by reactive high power impulse magnetron sputtering using nitrous oxide as a single-source precursor

    SciTech Connect

    Hänninen, Tuomas Schmidt, Susann; Jensen, Jens; Hultman, Lars; Högberg, Hans

    2015-09-15

    Silicon oxynitride thin films were synthesized by reactive high power impulse magnetron sputtering of silicon in argon/nitrous oxide plasmas. Nitrous oxide was employed as a single-source precursor supplying oxygen and nitrogen for the film growth. The films were characterized by elastic recoil detection analysis, x-ray photoelectron spectroscopy, x-ray diffraction, x-ray reflectivity, scanning electron microscopy, and spectroscopic ellipsometry. Results show that the films are silicon rich, amorphous, and exhibit a random chemical bonding structure. The optical properties with the refractive index and the extinction coefficient correlate with the film elemental composition, showing decreasing values with increasing film oxygen and nitrogen content. The total percentage of oxygen and nitrogen in the films is controlled by adjusting the gas flow ratio in the deposition processes. Furthermore, it is shown that the film oxygen-to-nitrogen ratio can be tailored by the high power impulse magnetron sputtering-specific parameters pulse frequency and energy per pulse.

  12. Amperometric Non-Enzymatic Hydrogen Peroxide Sensor Based on Aligned Zinc Oxide Nanorods

    PubMed Central

    Al-Hardan, Naif H.; Abdul Hamid, Muhammad Azmi; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim

    2016-01-01

    Zinc oxide (ZnO) nanorods (NRs) have been synthesized via the hydrothermal process. The NRs were grown over a conductive glass substrate. A non-enzymatic electrochemical sensor for hydrogen peroxide (H2O2), based on the prepared ZnO NRs, was examined through the use of current-voltage measurements. The measured currents, as a function of H2O2 concentrations ranging from 10 μM to 700 μM, revealed two distinct behaviours and good performance, with a lower detection limit (LOD) of 42 μM for the low range of H2O2 concentrations (first region), and a LOD of 143.5 μM for the higher range of H2O2 concentrations (second region). The prepared ZnO NRs show excellent electrocatalytic activity. This enables a measurable and stable output current. The results were correlated with the oxidation process of the H2O2 and revealed a good performance for the ZnO NR non-enzymatic H2O2 sensor. PMID:27367693

  13. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Reichel, Christian; Feldmann, Frank; Müller, Ralph; Reedy, Robert C.; Lee, Benjamin G.; Young, David L.; Stradins, Paul; Hermle, Martin; Glunz, Stefan W.

    2015-11-01

    Passivated contacts (poly-Si/SiOx/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF2), the ion implantation dose (5 × 1014 cm-2 to 1 × 1016 cm-2), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iVoc) of 725 and 720 mV, respectively. For p-type passivated contacts, BF2 implantations into intrinsic a-Si yield well passivated contacts and allow for iVoc of 690 mV, whereas implanted B gives poor passivation with iVoc of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved Voc of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF2 implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with Voc of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.

  14. Characterization of Interface State in Silicon Carbide Metal Oxide Semiconductor Capacitors

    NASA Astrophysics Data System (ADS)

    Kao, Wei-Chieh

    Silicon carbide (SiC) has always been considered as an excellent material for high temperature and high power devices. Since SiC is the only compound semiconductor whose native oxide is silicon dioxide (SiO2), it puts SiC in a unique position. Although SiC metal oxide semiconductor (MOS) technology has made significant progress in recent years, there are still a number of issues to be overcome before more commercial SiC devices can enter the market. The prevailing issues surrounding SiC MOSFET devices are the low channel mobility, the low quality of the oxide layer and the high interface state density at the SiC/SiO2 interface. Consequently, there is a need for research to be performed in order to have a better understanding of the factors causing the poor SiC/SiO2 interface properties. In this work, we investigated the generation lifetime in SiC materials by using the pulsed metal oxide semiconductor (MOS) capacitor method and measured the interface state density distribution at the SiC/SiO2 interface by using the conductance measurement and the high-low frequency capacitance technique. These measurement techniques have been performed on n-type and p-type SiC MOS capacitors. In the course of our investigation, we observed fast interface states at semiconductor-dielectric interfaces in SiC MOS capacitors that underwent three different interface passivation processes, such states were detected in the nitrided samples but not observed in PSG-passivated samples. This result indicate that the lack of fast states at PSG-passivated interface is one of the main reasons for higher channel mobility in PSG MOSFETs. In addition, the effect of mobile ions in the oxide on the response time of interface states has been investigated. In the last chapter we propose additional methods of investigation that can help elucidate the origin of the particular interface states, enabling a more complete understanding of the SiC/SiO2 material system.

  15. High performance of graphene oxide-doped silicon oxide-based resistance random access memory

    PubMed Central

    2013-01-01

    In this letter, a double active layer (Zr:SiO x /C:SiO x ) resistive switching memory device with outstanding performance is presented. Through current fitting, hopping conduction mechanism is found in both high-resistance state (HRS) and low-resistance state (LRS) of double active layer RRAM devices. By analyzing Raman and FTIR spectra, we observed that graphene oxide exists in C:SiO x layer. Compared with single Zr:SiO x layer structure, Zr:SiO x /C:SiO x structure has superior performance, including low operating current, improved uniformity in both set and reset processes, and satisfactory endurance characteristics, all of which are attributed to the double-layer structure and the existence of graphene oxide flakes formed by the sputter process. PMID:24261454

  16. High-Temperature (1200-1400°C) Dry Oxidation of 3C-SiC on Silicon

    NASA Astrophysics Data System (ADS)

    Sharma, Y. K.; Li, F.; Jennings, M. R.; Fisher, C. A.; Pérez-Tomás, A.; Thomas, S.; Hamilton, D. P.; Russell, S. A. O.; Mawby, P. A.

    2015-11-01

    In a novel approach, high temperatures (1200-1400°C) were used to oxidize cubic silicon carbide (3C-SiC) grown on silicon substrate. High-temperature oxidation does not significantly affect 3C-SiC doping concentration, 3C-SiC structural composition, or the final morphology of the SiO2 layer, which remains unaffected even at 1400°C (the melting point of silicon is 1414°C). Metal-oxide-semiconductor capacitors (MOS-C) and lateral channel metal-oxide-semiconductor field-effect-transistors (MOSFET) were fabricated by use of the high-temperature oxidation process to study 3C-SiC/SiO2 interfaces. Unlike 4H-SiC MOSFET, there is no extra benefit of increasing the oxidation temperature from 1200°C to 1400°C. All the MOSFET resulted in a maximum field-effect mobility of approximately 70 cm2/V s.

  17. Ion microprobe study of the scale formed during high temperature oxidation of high silicon EN-1.4301 stainless steel

    NASA Astrophysics Data System (ADS)

    Paúl, A.; Elmrabet, S.; Alves, L. C.; da Silva, M. F.; Soares, J. C.; Odriozola, J. A.

    2001-07-01

    A study of the oxide layer formed on the surface of high silicon (0.8%) EN-1.4301 (AISI-304) stainless steel after 125 h oxidation in air at 1273 K has been performed by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), RBS and proton microprobe. Oxidation experiments in synthetic air were performed in a thermobalance and the kinetic curve is compared to that of a standard EN-1.4301 austenitic stainless steel. These results show that the high silicon steel presents an enhanced oxidation resistance. XRD experiments show that the only crystalline species present in the scale is Cr 2O 3. Nevertheless, transversal section studies of the scale using proton microprobe show the development of a multilayered scale formed by an amorphous silicon rich layer in the scale to alloy interface and a Cr 2O 3 oxide layer in the external scale. Those results are confirmed by SEM experiments. The formation of the silica layer can be the responsible of the increase in the resistance to high temperature oxidation in this steel.

  18. Polycrystalline silicon ring resonator photodiodes in a bulk complementary metal-oxide-semiconductor process.

    PubMed

    Mehta, Karan K; Orcutt, Jason S; Shainline, Jeffrey M; Tehar-Zahav, Ofer; Sternberg, Zvi; Meade, Roy; Popović, Miloš A; Ram, Rajeev J

    2014-02-15

    We present measurements on resonant photodetectors utilizing sub-bandgap absorption in polycrystalline silicon ring resonators, in which light is localized in the intrinsic region of a p+/p/i/n/n+ diode. The devices, operating both at λ=1280 and λ=1550  nm and fabricated in a complementary metal-oxide-semiconductor (CMOS) dynamic random-access memory emulation process, exhibit detection quantum efficiencies around 20% and few-gigahertz response bandwidths. We observe this performance at low reverse biases in the range of a few volts and in devices with dark currents below 50 pA at 10 V. These results demonstrate that such photodetector behavior, previously reported by Preston et al. [Opt. Lett. 36, 52 (2011)], is achievable in bulk CMOS processes, with significant improvements with respect to the previous work in quantum efficiency, dark current, linearity, bandwidth, and operating bias due to additional midlevel doping implants and different material deposition. The present work thus offers a robust realization of a fully CMOS-fabricated all-silicon photodetector functional across a wide wavelength range. PMID:24562278

  19. Preparation and characterization of n-type microcrystalline hydrogenated silicon oxide films

    NASA Astrophysics Data System (ADS)

    Sarker, Arindam; Banerjee, Chandan; Barua, A. K.

    2002-06-01

    We have developed n-type microcrystalline hydrogenated silicon oxide (n-µc-SiO : H) thin films by the radio frequency plasma enhanced chemical vapour deposition (RF-PECVD, 13.56 MHz) method having suitable characteristics for use in the fabrication of single or multijunction amorphous silicon (a-Si) solar cells. The films have been characterized in detail for the study of structural and optoelectronic properties. Transmission electron microscopy, Raman spectroscopy, x-ray diffraction, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy have been used for the structural studies. The dependence of the structure and optoelectronic properties of n-µc-SiO : H films on the various deposition parameters such as hydrogen dilution, chamber pressure, RF-power density etc have also been studied. Comparison of the properties between n-µc-SiO : H and n-µc-Si : H films have been studied, too, which shows that the former has higher optical gap (2.17 eV) and lower activation energy (0.015 eV) with similar electrical conductivity (12.08 S cm-1).

  20. Field emission from zinc oxide nanorod bundles grown on silicon nanoporous pillar array

    NASA Astrophysics Data System (ADS)

    Wang, Ling Li; Gong, Shang Dong; Wu, Li Hong; Li, Xin Jian

    2013-04-01

    A large-area zinc oxide (ZnO) nanorod bundle array was grown on a silicon nanoporous pillar array (Si-NPA) substrate by a chemical vapor deposition method, and its field-emission properties was studied. The structural characterization disclosed that the bundles were composed of hexagonal ZnO nanorods growing along c-axis and taking roots into the silicon pillars of Si-NPA. The average diameter and length of the ZnO nanorods were ∼145 nm and ∼10 μm, respectively. The field-emission measurements showed that the turn-on field of ZnO/Si-NPA was 4.6 V/μm with an emission current density (ECD) of 1 μA/cm2, and an ECD of 420 μA/cm2 was achieved at an applied field of 8.89 V/μm. The field enhancement factor was calculated to be ∼1700 based on the Fowler-Nordheim theory. According to the obtained charge coupled device (CCD) image, the density and brightness of the emission dots increased with the applied field, and the high emission dot density was attributed to the formation of a large number of ZnO nanorod emitting tips. Our results indicated that ZnO/Si-NPA might be a promising electron emission source.

  1. Damp and dry heat degradation of thermal oxide passivation of p+ silicon

    NASA Astrophysics Data System (ADS)

    Thomson, Andrew; Gardner, Matthew; McIntosh, Keith; Shalav, Avi; Bullock, James

    2014-03-01

    Thermal SiO2 passivates both moderately and heavily doped silicon surfaces irrespective of the dopant type, which is advantageous in high-efficiency solar cell designs. Commercial photovoltaic cells are submitted to accelerated ageing tests, such as damp-heat exposure, to ensure they maintain their performance for at least 20 yr. We find damp-heat exposure causes a severe and rapid degradation of thermal SiO2 passivation on p+ silicon surfaces. The reaction is so severe that the diffused-region recombination in the degraded state is limited by the diffusion of minority carriers to the Si-SiO2 interface not the density of interface defects Dit. Certainly, this effect renders the thermal-oxide passivation useless if employed on a solar cell. To study the cause of the degradation, we also test the effects of storage in dry heat and room ambient conditions. Examination of the rate of degradation in the tested storage conditions in comparison with modelled diffusion of moisture in SiO2, we find a significant correlation between the time dependent J0e and moisture supplied to the interface, leading us to the conclusion that moisture ingression and subsequent reaction at the SiO2-Si interface are the cause of both damp-heat and room- ambient degradation.

  2. Density profile in thin films of polybutadiene on silicon oxide substrates: a TOF-NR study.

    PubMed

    Hoppe, E Tilo; Sepe, Alessandro; Haese-Seiller, Martin; Moulin, Jean-François; Papadakis, Christine M

    2013-08-27

    We have investigated thin films from fully deuterated polybutadiene (PB-d6) on silicon substrates with the aim of detecting and characterizing a possible interphase in the polymer film near the substrate using time-of-flight neutron reflectometry (TOF-NR). As substrates, thermally oxidized silicon wafers were either used as such or they were coated with triethylethoxysilyl modified 1,2-PB prior to deposition of the PB-d6 film. TOF-NR reveals that, for both substrates, the scattering length density (SLD) of the PB films decreases near the solid interface. The reduction of SLD is converted to an excess fraction of free volume. To further verify the existence of the interphase in PB-d6, we attempt to model the TOF-NR curves with density profiles which do not feature an interphase. These density profiles do not describe the TOF-NR curves adequately. We conclude that, near the solid interface, an interphase having an SLD lower than the bulk of the film is present. PMID:23941468

  3. Electronic passivation of silicon surfaces by thin films of atomic layer deposited gallium oxide

    SciTech Connect

    Allen, T. G. Cuevas, A.

    2014-07-21

    This paper proposes the application of gallium oxide (Ga{sub 2}O{sub 3}) thin films to crystalline silicon solar cells. Effective passivation of n- and p-type crystalline silicon surfaces has been achieved by the application of very thin Ga{sub 2}O{sub 3} films prepared by atomic layer deposition using trimethylgallium (TMGa) and ozone (O{sub 3}) as the reactants. Surface recombination velocities as low as 6.1 cm/s have been recorded with films less than 4.5 nm thick. A range of deposition parameters has been explored, with growth rates of approximately 0.2 Å/cycle providing optimum passivation. The thermal activation energy for passivation of the Si-Ga{sub 2}O{sub 3} interface has been found to be approximately 0.5 eV. Depassivation of the interface was observed for prolonged annealing at increased temperatures. The activation energy for depassivation was measured to be 1.9 eV.

  4. Hot-pressed silicon nitride with various lanthanide oxides as sintering additives

    NASA Technical Reports Server (NTRS)

    Ueno, K.; Toibana, Y.

    1984-01-01

    The effects of addition of various lanthanide oxides and their mixture with Y2O3 on the sintering of Si3N4 were investigated. The addition of simple and mixed lanthanide oxides promoted the densification of Si3N4 in hot-pressing at 1800 C under 300-400kg/ centimeters squared for 60 min. The crystallization of yttrium and lanthanide-silicon oxynitrides which was observed inn the sintered body containing yttrium-lanthanide mixed oxides as additives led to the formation of a highly refractory Si3N4 ceramic having a bending strength of 82 and 84 kg/millimeters squared at room temperature and 1300 C respectively. In a Y2O3+La2O3 system, a higher molar ratio of La2O3 to Y2O3 gave a higher hardness and strength at high temperatures. It was found that 90 min was an optimum sintering time for the highest strength.

  5. Comprehensive Analysis of an Isolation Area Obtained by Local Oxidation of Silicon Without Field Implant

    NASA Astrophysics Data System (ADS)

    Fay, Jean-Luc; Beluch, Jean; Allirand, Laurence; Brosset, Dominique; Despax, Bernard; Bafleur, Marise; Sarrabayrouse, Gerard

    1999-09-01

    Isolation area, obtained by local oxidation of silicon (LOCOS) without field implant, naturally shows a high sensitivity of the leakage current to fixed charges in metal oxide semiconductor (MOS) parasitic transistors. It has been shown that during the deposition of the nitride capacitor insulator-layer, fixed charges are generated in the underlying plasma-deposited oxides. The behavior of the P-channel MOS (PMOS) parasitic transistor can be well accounted for by considering fixed charge creation in the thick part of the gate insulator. In the case of the N-channel MOS (NMOS) transistor, the leakage current is controlled by the bird's beak region where a high interface state density exists. The NMOS behavior has been explained taking into account the charge creation as well as a decrease in interface state density during nitride deposition. A new “recipe” for the nitride deposition based on a very low thermal budget has been established. Finally, a high threshold voltage and a reasonably low leakage current have been achieved for both the NMOS and PMOS parasitic transistors.

  6. Silicon rib waveguide electro-absorption optical modulator using transparent conductive oxide bilayer

    NASA Astrophysics Data System (ADS)

    Ayata, Masafumi; Nakano, Yoshiaki; Tanemura, Takuo

    2016-04-01

    We propose a novel ultra compact electro-absorption optical modulator based on a silicon rib waveguide and numerically demonstrate its performance. The proposed design employs two types of transparent conductive oxide (TCO) layers with different carrier densities to achieve both high modulation efficiency and low optical insertion loss. The thin TCO layer with high carrier density enables efficient modulation through the metal-oxide-semiconductor structure. On the other hand, the upper TCO layer with low carrier density allows low-resistance electrical contact for the top electrode without large optical loss. Using an indium tin oxide bilayer with optimized carrier densities, we numerically demonstrate a 4.3 dB extinction ratio and a 2.6 dB optical insertion loss with 1 µm device length. We estimate that the modulator operates under a low driving voltage of 1.3 V, exhibiting an ultra low energy consumption of 22.5 fJ/bit and a broad RC modulation bandwidth of over 40 GHz.

  7. Silicon dioxide nanoparticles increase macrophage atherogenicity: Stimulation of cellular cytotoxicity, oxidative stress, and triglycerides accumulation.

    PubMed

    Petrick, Lauren; Rosenblat, Mira; Paland, Nicole; Aviram, Michael

    2016-06-01

    Nanoparticle research has focused on their toxicity in general, while increasing evidence points to additional specific adverse effects on atherosclerosis development. Arterial macrophage cholesterol and triglyceride (TG) accumulation and foam cell formation are the hallmark of early atherogenesis, leading to cardiovascular events. To investigate the in vitro atherogenic effects of silicon dioxide (SiO2 ), J774.1 cultured macrophages (murine cell line) were incubated with SiO2 nanoparticle (SP, d = 12 nm, 0-20 µg/mL), followed by cellular cytotoxicity, oxidative stress, TG and cholesterol metabolism analyses. A significant dose-dependent increase in oxidative stress (up to 164%), in cytotoxicity (up to 390% measured by lactate dehydrogenase (LDH) release), and in TG content (up to 63%) was observed in SiO2 exposed macrophages compared with control cells. A smaller increase in macrophage cholesterol mass (up to 22%) was noted. TG accumulation in macrophages was not due to a decrease in TG cell secretion or to an increased TG biosynthesis rate, but was the result of attenuated TG hydrolysis secondary to decreased lipase activity and both adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) protein expression (by 42 and 25%, respectively). Overall, SPs showed pro-atherogenic effects on macrophages as observed by cytotoxicity, increased oxidative stress and TG accumulation. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 713-723, 2016.

  8. Electrochemically Reduced Graphene Oxide on Well-Aligned Titanium Dioxide Nanotube Arrays for Betavoltaic Enhancement.

    PubMed

    Chen, Changsong; Wang, Na; Zhou, Peng; San, Haisheng; Wang, Kaiying; Chen, Xuyuan

    2016-09-21

    We report a novel betavoltaic device with significant conversion efficiency by using electrochemically reduced graphene oxide (ERGO) on TiO2 nanotube arrays (TNTAs) for enhancing the absorption of beta radiation as well as the transportation of carriers. ERGO on TNTAs (G-TNTAs) were prepared by electrochemical anodization and subsequently cyclic voltammetry techniques. A 10 mCi of (63)Ni/Ni source was assembled to G-TNTAs to form the sandwich-type betavoltaic devices (Ni/(63)Ni/G-TNTAs/Ti). By I-V measurements, the optimum betavoltaic device exhibits a significant effective energy conversion efficiency of 26.55% with an open-circuit voltage of 2.38 V and a short-circuit current of 14.69 nAcm(-2). The experimental results indicate that G-TNTAs are a high-potential nanocomposite for developing betavoltaic batteries. PMID:27575802

  9. Electrochemically Reduced Graphene Oxide on Well-Aligned Titanium Dioxide Nanotube Arrays for Betavoltaic Enhancement.

    PubMed

    Chen, Changsong; Wang, Na; Zhou, Peng; San, Haisheng; Wang, Kaiying; Chen, Xuyuan

    2016-09-21

    We report a novel betavoltaic device with significant conversion efficiency by using electrochemically reduced graphene oxide (ERGO) on TiO2 nanotube arrays (TNTAs) for enhancing the absorption of beta radiation as well as the transportation of carriers. ERGO on TNTAs (G-TNTAs) were prepared by electrochemical anodization and subsequently cyclic voltammetry techniques. A 10 mCi of (63)Ni/Ni source was assembled to G-TNTAs to form the sandwich-type betavoltaic devices (Ni/(63)Ni/G-TNTAs/Ti). By I-V measurements, the optimum betavoltaic device exhibits a significant effective energy conversion efficiency of 26.55% with an open-circuit voltage of 2.38 V and a short-circuit current of 14.69 nAcm(-2). The experimental results indicate that G-TNTAs are a high-potential nanocomposite for developing betavoltaic batteries.

  10. Fast Responsive Gas Sensor of Vertically Aligned Fluorine-Doped Tin Oxide Nanorod Thin Film

    NASA Astrophysics Data System (ADS)

    Cho, Chan-Woo; Lee, Jong-Heun; Riu, Doh-Hyung; Kim, Chang-Yeoul

    2012-04-01

    We prepared fluorine-doped tin oxide (FTO) nanorod films and a conventional FTO thin film for the application of a semiconducting gas sensor by spray pyrolysis method. The lengths of FTO nanorods (FTON, 100 and 500 nm) were controlled by changing deposition times, and FTO thin film (FTOT) was also prepared as a reference. The gas sensitivity test shows FTON with long nanorods had higher sensitivity for both hydrogen and ethanol gases but slow response and recovery times, despite an advantage of the higher gas sensitivity. FTO nanorod film with short length about 100 nm showed relatively lower sensitivity, but fast gas response and recovery characteristics. The fast response and recovery for the analyte gases are attributed to the conductance of FTO nanorods, which is closely related to the diameter and length of nanorods.

  11. Translocation of double-strand DNA through a silicon oxide nanopore.

    PubMed

    Storm, A J; Chen, J H; Zandbergen, H W; Dekker, C

    2005-05-01

    We report double-strand DNA translocation experiments using silicon oxide nanopores with a diameter of about 10 nm . By monitoring the conductance of a voltage-biased pore, we detect molecules with a length ranging from 6557 to 48 500 base pairs. We find that the molecules can pass the pore both in a straight linear fashion and in a folded state. Experiments on circular DNA further support this picture. We sort the molecular events according to their folding state and estimate the folding position. As a proof-of-principle experiment, we show that a nanopore can be used to distinguish the lengths of DNA fragments present in a mixture. These experiments pave the way for quantitative analytical techniques with solid-state nanopores.

  12. Quantum dot made in metal oxide silicon-nanowire field effect transistor working at room temperature.

    PubMed

    Lavieville, Romain; Triozon, François; Barraud, Sylvain; Corna, Andrea; Jehl, Xavier; Sanquer, Marc; Li, Jing; Abisset, Antoine; Duchemin, Ivan; Niquet, Yann-Michel

    2015-05-13

    We report the observation of an atomic like behavior from T = 4.2 K up to room temperature in n- and p-type Ω-gate silicon nanowire (NW) transistors. For that purpose, we modified the design of a NW transistor and introduced long spacers between the source/drain and the channel in order to separate the channel from the electrodes. The channel was made extremely small (3.4 nm in diameter with 10 nm gate length) with a thick gate oxide (7 nm) in order to enhance the Coulomb repulsion between carriers, which can be as large as 200 meV when surface roughness promotes charge confinement. Parasitic stochastic Coulomb blockade effect can be eliminated in our devices by choosing proper control voltages. Moreover, the quantum dot can be tuned so that the resonant current at T = 4.2 K exceeds that at room temperature.

  13. Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation

    SciTech Connect

    Dumpala, Santoshrupa; Broderick, Scott R.; Rajan, Krishna; Khalilov, Umedjon; Neyts, Erik C.; Duin, Adri C. T. van; Provine, J; Howe, Roger T.

    2015-01-05

    In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO{sub 2} and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature.

  14. Acoustic Properties of Polyurethane Composition Reinforced with Carbon Nanotubes and Silicon Oxide Nano-powder

    NASA Astrophysics Data System (ADS)

    Orfali, Wasim A.

    This article demonstrates the acoustic properties of added small amount of carbon-nanotube and siliconoxide nano powder (S-type, P-Type) to the host material polyurethane composition. By adding CNT and/or nano-silica in the form of powder at different concentrations up to 2% within the PU composition to improve the sound absorption were investigated in the frequency range up to 1600 Hz. Sound transmission loss measurement of the samples were determined using large impedance tube. The tests showed that addition of 0.2 wt.% Silicon Oxide Nano-powder and 0.35 wt.% carbon nanotube to polyurethane composition improved sound transmissions loss (Sound Absorption) up to 80 dB than that of pure polyurethane foam sample.

  15. Field emission behavior of cuboid zinc oxide nanorods on zinc-filled porous silicon

    NASA Astrophysics Data System (ADS)

    Yu, Ke; Zhang, Yongsheng; Xu, Rongli; Jiang, Desheng; Luo, Laiqiang; Li, Qiong; Zhu, Ziqiang; Lu, Wei

    2005-01-01

    Single-crystalline zinc oxide (ZnO) nanorods with cuboid morphology have been prepared on the zinc-filled porous silicon substrate using a vapor phase transport method. Field-emission measurements showed that the turn-on field and threshold field of the cuboid ZnO nanorods film were about 3.2 and 8.2 V/μm respectively. From the emitter surface, a homogeneous emission image was observed with emission site density (ESD) of ˜10 4 cm -2. The better emission uniformity and the high ESD may be attributed to a large number of ZnO nanocrystallites as emitter on the surface of the nanorod end contributing to emission.

  16. Growth and optical properties of quadrangular zinc oxide nanorods on copper-filled porous silicon

    NASA Astrophysics Data System (ADS)

    Yu, K.; Zhang, Y.; Luo, L.; Wang, W.; Zhu, Z.; Wang, J.; Cui, Y.; Ma, H.; Lu, W.

    Zinc oxide (ZnO) nanorods with quadrangular morphology have been successfully prepared on a copper-filled porous silicon substrate using a vapor phase transport method. Scanning electron microscopy showed that the diameters of the nanorods were scattered in a range of 100-400 nm and the lengths up to 2 μm. High-resolution transmission electron microscopy and a selected-area electron-diffraction pattern confirmed that the quadrangular ZnO nanorods had a single-crystal wurtzite structure and grew along the (0001) direction. The photoluminescence spectrum under excitation at 325 nm showed an ultraviolet emission at 386 nm and a strong broad green emission at 518 nm at room temperature.

  17. Nanocrystalline Zn2SiO4:Mn2+ grown in oxidized porous silicon

    NASA Astrophysics Data System (ADS)

    Taghavinia, N.; Lerondel, G.; Makino, H.; Yamamoto, A.; Yao, T.; Kawazoe, Y.; Goto, T.

    2001-12-01

    Zn2SiO4:Mn2+ nanocrystals were grown in an oxidized porous silicon layer using a chemical impregnation method. Apparently two classes of samples have been obtained. One is characterized by the formation of α-phase zinc silicate crystalline particles, which show green luminescence, and the other one is characterized by β-phase particles, showing yellow luminescence. It was found that in general prolonged annealing, as well as a high degree of impregnation leads to the formation of green-luminescent samples. The decay time of both yellow and green luminescence decreases with the concentration of Mn activator, while generally the decay time of yellow luminescence is considerably larger than that of green luminescence.

  18. Synthesis of magnetite-silica core-shell nanoparticles via direct silicon oxidation.

    PubMed

    Wang, Shuxian; Tang, Jing; Zhao, Hongfu; Wan, Jiaqi; Chen, Kezheng

    2014-10-15

    Magnetite-silica core-shell nanoparticles (Fe3O4@SiO2 NPs) were prepared from silicon powder by direct oxidation without using any expensive precursors (such as TEOS) and organic solvents. The as-prepared Fe3O4@SiO2 NPs were characterized by TEM, DLS, XRD, FT-IR, zeta potential and NMR Analyzer. The results show that the Fe3O4@SiO2 NPs are monodispersed core-shell nanostructures with single cores that were uniformly coated by silica shells. The relaxation property indicates that Fe3O4@SiO2 NPs have desirable characteristics for T2 MRI contrast agents. This facile and green method is promising for large-scale production, which would open new opportunities for preparing core-shell nanostructures for biomedical applications.

  19. Soft lithographic functionalization and patterning oxide-free silicon and germanium.

    PubMed

    Bowers, Carleen M; Toone, Eric J; Clark, Robert L; Shestopalov, Alexander A

    2011-12-16

    The development of hybrid electronic devices relies in large part on the integration of (bio)organic materials and inorganic semiconductors through a stable interface that permits efficient electron transport and protects underlying substrates from oxidative degradation. Group IV semiconductors can be effectively protected with highly-ordered self-assembled monolayers (SAMs) composed of simple alkyl chains that act as impervious barriers to both organic and aqueous solutions. Simple alkyl SAMs, however, are inert and not amenable to traditional patterning techniques. The motivation for immobilizing organic molecular systems on semiconductors is to impart new functionality to the surface that can provide optical, electronic, and mechanical function, as well as chemical and biological activity. Microcontact printing (μCP) is a soft-lithographic technique for patterning SAMs on myriad surfaces. Despite its simplicity and versatility, the approach has been largely limited to noble metal surfaces and has not been well developed for pattern transfer to technologically important substrates such as oxide-free silicon and germanium. Furthermore, because this technique relies on the ink diffusion to transfer pattern from the elastomer to substrate, the resolution of such traditional printing is essentially limited to near 1 μm. In contrast to traditional printing, inkless μCP patterning relies on a specific reaction between a surface-immobilized substrate and a stamp-bound catalyst. Because the technique does not rely on diffusive SAM formation, it significantly expands the diversity of patternable surfaces. In addition, the inkless technique obviates the feature size limitations imposed by molecular diffusion, facilitating replication of very small (<200 nm) features. However, up till now, inkless μCP has been mainly used for patterning relatively disordered molecular systems, which do not protect underlying surfaces from degradation. Here, we report a simple, reliable

  20. Soft lithographic functionalization and patterning oxide-free silicon and germanium.

    PubMed

    Bowers, Carleen M; Toone, Eric J; Clark, Robert L; Shestopalov, Alexander A

    2011-01-01

    The development of hybrid electronic devices relies in large part on the integration of (bio)organic materials and inorganic semiconductors through a stable interface that permits efficient electron transport and protects underlying substrates from oxidative degradation. Group IV semiconductors can be effectively protected with highly-ordered self-assembled monolayers (SAMs) composed of simple alkyl chains that act as impervious barriers to both organic and aqueous solutions. Simple alkyl SAMs, however, are inert and not amenable to traditional patterning techniques. The motivation for immobilizing organic molecular systems on semiconductors is to impart new functionality to the surface that can provide optical, electronic, and mechanical function, as well as chemical and biological activity. Microcontact printing (μCP) is a soft-lithographic technique for patterning SAMs on myriad surfaces. Despite its simplicity and versatility, the approach has been largely limited to noble metal surfaces and has not been well developed for pattern transfer to technologically important substrates such as oxide-free silicon and germanium. Furthermore, because this technique relies on the ink diffusion to transfer pattern from the elastomer to substrate, the resolution of such traditional printing is essentially limited to near 1 μm. In contrast to traditional printing, inkless μCP patterning relies on a specific reaction between a surface-immobilized substrate and a stamp-bound catalyst. Because the technique does not rely on diffusive SAM formation, it significantly expands the diversity of patternable surfaces. In addition, the inkless technique obviates the feature size limitations imposed by molecular diffusion, facilitating replication of very small (<200 nm) features. However, up till now, inkless μCP has been mainly used for patterning relatively disordered molecular systems, which do not protect underlying surfaces from degradation. Here, we report a simple, reliable

  1. Paralinear Oxidation of Silicon Nitride in a Water Vapor/Oxygen Environment

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Opila, Elizabeth J.; Nguyen, QuynhGiao; Humphrey, Donald L.; Lewton, Susan M.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Three silicon nitride materials were exposed to dry oxygen flowing at 0.44 cm/s at temperatures between 1200 and 1400 C. Reaction kinetics were measured with a continuously recording microbalance. Parabolic kinetics were observed. When the same materials were exposed to a 50% H2O - 50% O2 gas mixture flowing at 4.4 cm/s, all three types exhibited paralinear kinetics. The material is oxidized by water vapor to form solid silica. The protective silica is in turn volatilized by water vapor to form primarily gaseous Si(OH)4. Nonlinear least squares analysis and a paralinear kinetic model were used to determine both parabolic and linear rate constants from the kinetic data. Volatilization of the protective silica scale can result in accelerated consumption of Si3N4. Recession rates under conditions more representative of actual combustors are compared to the furnace data.

  2. The stability of tin silicon oxide thin-film transistors with different annealing temperatures

    NASA Astrophysics Data System (ADS)

    Yang, Jianwen; Fu, Ruofan; Han, Yanbing; Meng, Ting; Zhang, Qun

    2016-07-01

    The influence of annealing temperature on the electrical properties of tin silicon oxide (TSO) thin-film transistors (TFTs) and the corresponding bias stress stability have been investigated. With increasing annealing temperature, the TSO films present a structure which is closer to crystallization, and it is conducive to the improvement of the mobility of TSO TFTs. Meanwhile, the positive bias stress (PBS) stability of TSO TFTs is ameliorated due to the decreasing traps at the interface of dielectric layer and channel layer. The threshold voltage shifts in opposite direction after being stressed under negative bias stress (NBS), which is due to the competition between electrons captured by defects related to oxygen vacancies in the channel layer and water molecule adsorption on the back channel.

  3. Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst.

    PubMed

    Pijpers, Joep J H; Winkler, Mark T; Surendranath, Yogesh; Buonassisi, Tonio; Nocera, Daniel G

    2011-06-21

    Integrating a silicon solar cell with a recently developed cobalt-based water-splitting catalyst (Co-Pi) yields a robust, monolithic, photo-assisted anode for the solar fuels process of water splitting to O(2) at neutral pH. Deposition of the Co-Pi catalyst on the Indium Tin Oxide (ITO)-passivated p-side of a np-Si junction enables the majority of the voltage generated by the solar cell to be utilized for driving the water-splitting reaction. Operation under neutral pH conditions fosters enhanced stability of the anode as compared to operation under alkaline conditions (pH 14) for which long-term stability is much more problematic. This demonstration of a simple, robust construct for photo-assisted water splitting is an important step towards the development of inexpensive direct solar-to-fuel energy conversion technologies.

  4. A CMOS compatible Microbulk Micromegas-like detector using silicon oxide as spacer material

    NASA Astrophysics Data System (ADS)

    Blanco Carballo, V. M.; Fransen, M.; van der Graaf, H.; Lu, J.; Schmitz, J.

    2011-02-01

    We present a new Micro Pattern Gaseous Detector (MPGD) fabricated with nonpolymeric materials. The device structure is similar to a Microbulk Micromegas design, consisting of a punctured metal grid supported by a continuous perforated insulating structure. In this detector, the supporting structure is made out of silicon oxide. Devices were tested in He/ iC 4H 10 (80/20) and Ar/ iC 4H 10 (80/20) gas mixtures under 55Fe irradiation. Gas gain of 20,000 and energy resolution below 13% FWHM were achieved. The CMOS compatibility of the fabrication process has been studied in Timepix chips as well as individual 0.13-μm technology CMOS transistors. Complete detectors have been fabricated on top of Timepix chips. In an Ar/ iC 4H 10 (80/20) gas mixture 55Fe decay events were recorded operating the Timepix chip in 2D readout mode.

  5. Low Temperature STM Study of Adsoption of Nitric Oxide on Silicon(111)-7x7

    NASA Astrophysics Data System (ADS)

    Rezaei, M. A.; Stipe, B. C.; Ho, W.

    1997-03-01

    We have constructed a variable temperature (30 K to 300 K) scanning tunneling microscope for use in ultra high vacuum. In contrast to studies at room temperature and above, thermally induced dissociation can be minimized at low temperatures. The adsorption of nitric oxide on silicon(111)-7x7 at 32 K revealed several species in different sites on the surface. When the surface is scanned at 2 volt sample bias and 1 nA of tunneling current, all but one species are stable. This metastable species is observed to desorb. At -2 volts sample bias and 1 nA, we can induce changes in the bonding of other species on the surface. The dependence of the observed changes on the polarity of the sample bias suggests the need to consider both the empty and filled states of adsorbed NO-surface complex.

  6. Light-induced water oxidation at silicon electrodes functionalized with a cobalt oxygen-evolving catalyst

    PubMed Central

    Pijpers, Joep J. H.; Winkler, Mark T.; Surendranath, Yogesh; Buonassisi, Tonio; Nocera, Daniel G.

    2011-01-01

    Integrating a silicon solar cell with a recently developed cobalt-based water-splitting catalyst (Co-Pi) yields a robust, monolithic, photo-assisted anode for the solar fuels process of water splitting to O2 at neutral pH. Deposition of the Co-Pi catalyst on the Indium Tin Oxide (ITO)-passivated p-side of a np-Si junction enables the majority of the voltage generated by the solar cell to be utilized for driving the water-splitting reaction. Operation under neutral pH conditions fosters enhanced stability of the anode as compared to operation under alkaline conditions (pH 14) for which long-term stability is much more problematic. This demonstration of a simple, robust construct for photo-assisted water splitting is an important step towards the development of inexpensive direct solar-to-fuel energy conversion technologies. PMID:21646536

  7. Characterization and simulation on antireflective coating of amorphous silicon oxide thin films with gradient refractive index

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Jin, Qi; Qu, Xingling; Jin, Jing; Jiang, Chaochao; Yang, Weiguang; Wang, Linjun; Shi, Weimin

    2016-08-01

    The optical reflective properties of silicon oxide (SixOy) thin films with gradient refractive index are studied both theoretically and experimentally. The thin films are widely used in photovoltaic as antireflective coatings (ARCs). An effective finite difference time domain (FDTD) model is built to find the optimized reflection spectra corresponding to structure of SixOy ARCs with gradient refractive index. Based on the simulation analysis, it shows the variation of reflection spectra with gradient refractive index distribution. The gradient refractive index of SixOy ARCs can be obtained in adjustment of SiH4 to N2O ratio by plasma-enhanced chemical vapor deposition (PECVD) system. The optimized reflection spectra measured by UV-visible spectroscopy confirms to agree well with that simulated by FDTD method.

  8. Carrier Selective, Passivated Contacts for High Efficiency Silicon Solar Cells based on Transparent Conducting Oxides

    SciTech Connect

    Young, David L.; Nemeth, William; Grover, Sachit; Norman, Andrew; Yuan, Hao-Chih; Lee, Benjamin G.; LaSalvia, Vincenzo; Stradins, Paul

    2014-01-01

    We describe the design, fabrication and results of passivated contacts to n-type silicon utilizing thin SiO2 and transparent conducting oxide layers. High temperature silicon dioxide is grown on both surfaces of an n-type wafer to a thickness <50 Å, followed by deposition of tin-doped indium oxide (ITO) and a patterned metal contacting layer. As deposited, the thin-film stack has a very high J0,contact, and a non-ohmic, high contact resistance. However, after a forming gas anneal, the passivation quality and the contact resistivity improve significantly. The contacts are characterized by measuring the recombination parameter of the contact (J0,contact) and the specific contact resistivity (ρcontact) using a TLM pattern. The best ITO/SiO2 passivated contact in this study has J0,contact = 92.5 fA/cm2 and ρcontact = 11.5 mOhm-cm2. These values are placed in context with other passivating contacts using an analysis that determines the ultimate efficiency and the optimal area fraction for contacts for a given set of (J0,contact, ρcontact) values. The ITO/SiO2 contacts are found to have a higher J0,contact, but a similar ρcontact compared to the best reported passivated contacts.

  9. Design, analysis, and characterization of stress-engineered 3D microstructures comprised of PECVD silicon oxide and nitride

    NASA Astrophysics Data System (ADS)

    Pi, Chia-Hsing; Turner, Kevin T.

    2016-06-01

    Microelectromechanical systems (MEMS) are typically 2D or quasi-3D structures fabricated using surface and bulk micromachining processes. In this work, an approach for 3D structure fabrication based on stress engineering is demonstrated. Specifically, sub-mm 3D spherical cage-like structures are realized through the deformation of bilayers of residually-stressed silicon oxide and silicon nitride with micrometer-scale thicknesses. Analytical and finite models to predict the shape of stress-engineered structures based on geometry and residual stress are described and used for structure design. A systematic experimental study was performed to quantify residual stresses in silicon nitride films made by plasma-enhanced chemical vapor deposition (PECVD). The measurements show that the residual stress of PECVD silicon nitride can be tuned over a wide range of tensile stresses through the control of deposition parameters, such as flow rate and power. Stress engineered 3D cage-like structures comprised of PECVD silicon nitride and oxide films were fabricated. 3D structures with a range of curvatures were demonstrated. The measured geometry of the fabricated structures are in good agreement with predictions from analytical and finite element models.

  10. Enhancement of light extraction in silicon-rich oxide light-emitting diodes by one-dimensional photonic crystal gratings

    NASA Astrophysics Data System (ADS)

    Llorens, J. M.; Postigo, P. A.; Juvert, J.; González, A.; Domínguez, C.

    2013-09-01

    In this work we show the design of one-dimensional nanophotonic structures (photonic crystal gratings) for enhancement of extraction of light with specific wavelengths in light-emitting diodes (LEDs). The LEDs are made of silicon-rich oxide embedding silicon nanolayers with emission in the visible spectrum. The LED structure consists of a poly-silicon top layer 310 nm thick, a silicon-rich oxide layer with nanoparticles and a silicon substrate. The gratings are formed by grooves separated with periods ranging from 200 nm to 600 nm and widths 0.72 times the period engraved on the top layer. We have performed two dimensional finite-difference time-domain simulations to obtain the values for the internal and external quantum efficiency (EQE) in the normal direction in a spectral window from 400 nm to 500 nm. The results show that it is possible to achieve a strong enhancement in the EQE in the short wavelength region (400 nm) while it reaches 5-fold enhancement at longer wavelengths.

  11. Band Alignment at Molybdenum Disulphide/Boron Nitride/Aluminum Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    DiStefano, Jennifer; Lin, Yu-Chuan; Robinson, Joshua; Glavin, Nicholas R.; Voevodin, Andrey A.; Brockman, Justin; Kuhn, Markus; French, Benjamin; King, Sean W.

    2016-02-01

    To facilitate the design of future heterostructure devices employing two-dimensional (2D) materials such as molybdenum disulphide (MoS2) and hexagonal/sp2 boron nitride (BN), x-ray photoelectron spectroscopy (XPS) has been utilized to determine the valence band offset (VBO) present at interfaces formed between these materials. For MoS2 grown on a pulsed laser-deposited amorphous BN (a-BN) layer with sp2 bonding, the VBO was determined to be 1.4 ± 0.2 eV. Similarly, the VBO between the a-BN layer and the aluminum oxide (Al2O3) substrate was determined to be 1.1 ± 0.2 eV. Using the bandgaps established in the literature for MoS2, h-BN, and Al2O3, the conduction band offsets (CBOs) at the MoS2/a-BN and a-BN/Al2O3 interfaces were additionally calculated to be 3.3 ± 0.2 and 1.7 ± 0.2 eV, respectively. The resulting large VBOs and CBOs indicate BN and Al2O3 are attractive gate dielectrics and substrates for future 2D MoS2 devices.

  12. Valence band offset in heterojunctions between crystalline silicon and amorphous silicon (sub)oxides (a-SiO{sub x}:H, 0 < x < 2)

    SciTech Connect

    Liebhaber, M.; Mews, M.; Schulze, T. F.; Korte, L. Rech, B.; Lips, K.

    2015-01-19

    The heterojunction between amorphous silicon (sub)oxides (a-SiO{sub x}:H, 0 < x < 2) and crystalline silicon (c-Si) is investigated. We combine chemical vapor deposition with in-system photoelectron spectroscopy in order to determine the valence band offset ΔE{sub V} and the interface defect density, being technologically important junction parameters. ΔE{sub V} increases from ≈0.3 eV for the a-Si:H/c-Si interface to >4 eV for the a-SiO{sub 2}/c-Si interface, while the electronic quality of the heterointerface deteriorates. High-bandgap a-SiO{sub x}:H is therefore unsuitable for the hole contact in heterojunction solar cells, due to electronic transport hindrance resulting from the large ΔE{sub V}. Our method is readily applicable to other heterojunctions.

  13. Continuous-flow Mass Production of Silicon Nanowires via Substrate-Enhanced Metal-Catalyzed Electroless Etching of Silicon with Dissolved Oxygen as an Oxidant

    NASA Astrophysics Data System (ADS)

    Hu, Ya; Peng, Kui-Qing; Liu, Lin; Qiao, Zhen; Huang, Xing; Wu, Xiao-Ling; Meng, Xiang-Min; Lee, Shuit-Tong

    2014-01-01

    Silicon nanowires (SiNWs) are attracting growing interest due to their unique properties and promising applications in photovoltaic devices, thermoelectric devices, lithium-ion batteries, and biotechnology. Low-cost mass production of SiNWs is essential for SiNWs-based nanotechnology commercialization. However, economic, controlled large-scale production of SiNWs remains challenging and rarely attainable. Here, we demonstrate a facile strategy capable of low-cost, continuous-flow mass production of SiNWs on an industrial scale. The strategy relies on substrate-enhanced metal-catalyzed electroless etching (MCEE) of silicon using dissolved oxygen in aqueous hydrofluoric acid (HF) solution as an oxidant. The distinct advantages of this novel MCEE approach, such as simplicity, scalability and flexibility, make it an attractive alternative to conventional MCEE methods.

  14. Continuous-flow mass production of silicon nanowires via substrate-enhanced metal-catalyzed electroless etching of silicon with dissolved oxygen as an oxidant.

    PubMed

    Hu, Ya; Peng, Kui-Qing; Liu, Lin; Qiao, Zhen; Huang, Xing; Wu, Xiao-Ling; Meng, Xiang-Min; Lee, Shuit-Tong

    2014-01-13

    Silicon nanowires (SiNWs) are attracting growing interest due to their unique properties and promising applications in photovoltaic devices, thermoelectric devices, lithium-ion batteries, and biotechnology. Low-cost mass production of SiNWs is essential for SiNWs-based nanotechnology commercialization. However, economic, controlled large-scale production of SiNWs remains challenging and rarely attainable. Here, we demonstrate a facile strategy capable of low-cost, continuous-flow mass production of SiNWs on an industrial scale. The strategy relies on substrate-enhanced metal-catalyzed electroless etching (MCEE) of silicon using dissolved oxygen in aqueous hydrofluoric acid (HF) solution as an oxidant. The distinct advantages of this novel MCEE approach, such as simplicity, scalability and flexibility, make it an attractive alternative to conventional MCEE methods.

  15. A versatile sol-gel synthesis route to metal-silicon mixed oxide nanocomposites that contain metal oxides as the major phase

    SciTech Connect

    Clapsaddle, B J; Sprehn, D W; Gash, A E; Satcher, J H; Simpson, R L

    2003-12-08

    The general synthesis of metal-silicon mixed oxide nanocomposite materials, including a variety of both main group and transition metals, in which the metal oxide is the major component is described. In a typical synthesis, the metal oxide precursor, MCl{sub x}{times}{sub y}H{sub 2}O (x=3-6, y=0-7), was mixed with the silica precursor, tetramethylorthosilicate (TMOS), in ethanol and gelled using an organic epoxide. The successful preparation of homogeneous, monolithic materials depended on the oxidation state of the metal as well as the epoxide chosen for gelation. The composition of the resulting materials was varied from M/Si=1-5 (mol/mol) by adjusting the amount of TMOS added to the initial metal oxide precursor solution. Supercritical processing of the gels in CO{sub 2} resulted in monolithic, porous aerogel nanocomposite materials with surface areas ranging from 100 - 800 m{sup 2}/g. The bulk materials are composed of metal oxide/silica particles that vary in size from 5 - 20 nm depending on the epoxide used for gelation. Metal oxide and silica dispersion throughout the bulk material is extremely uniform on the nanoscale. The versatility and control of the synthesis method will be discussed as well as the properties of the resulting metal-silicon mixed oxide nanocomposite materials.

  16. Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate

    NASA Astrophysics Data System (ADS)

    Latifi, Afrooz; Imani, Mohammad; Khorasani, Mohammad Taghi; Daliri Joupari, Morteza

    2014-11-01

    Stainless steel 316L is one of the most widely used materials for fabricating of biomedical devices hence, improving its surface properties is still of great interest and challenging in biomaterial sciences. Plasma oxidation, in comparison to the conventional chemical or mechanical methods, is one of the most efficient methods recently used for surface treatment of biomaterials. Here, stainless steel specimens were surface oxidized by radio-frequency plasma irradiation operating at 34 MHz under pure oxygen atmosphere. Surface chemical composition of the samples was significantly changed after plasma oxidation by appearance of the chromium and iron oxides on the plasma-oxidized surface. A wettable surface, possessing high surface energy (83.19 mN m-1), was observed after plasma oxidation. Upon completion of the surface modification process, silicone rubber was spray coated on the plasma-treated stainless steel surface. Morphology of the silicone rubber coating was investigated by scanning electron microscopy (SEM). A uniform coating was formed on the oxidized surface with no delamination at polymer-metal interface. Pull-off tests showed the lowest adhesion strength of coating to substrate (0.12 MPa) for untreated specimens and the highest (0.89 MPa) for plasma-oxidized ones.

  17. Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro.

    PubMed

    Rajiv, S; Jerobin, J; Saranya, V; Nainawat, M; Sharma, A; Makwana, P; Gayathri, C; Bharath, L; Singh, M; Kumar, M; Mukherjee, A; Chandrasekaran, N

    2016-02-01

    Despite the extensive use of nanoparticles (NPs) in various fields, adequate knowledge of human health risk and potential toxicity is still lacking. The human lymphocytes play a major role in the immune system, and it can alter the antioxidant level when exposed to NPs. Identification of the hazardous NPs was done using in vitro toxicity tests and this study mainly focuses on the comparative in vitro cytotoxicity and genotoxicity of four different NPs including cobalt (II, III) oxide (Co3O4), iron (III) oxide (Fe2O3), silicon dioxide (SiO2), and aluminum oxide (Al2O3) on human lymphocytes. The Co3O4 NPs showed decrease in cellular viability and increase in cell membrane damage followed by Fe2O3, SiO2, and Al2O3 NPs in a dose-dependent manner after 24 h of exposure to human lymphocytes. The oxidative stress was evidenced in human lymphocytes by the induction of reactive oxygen species, lipid peroxidation, and depletion of catalase, reduced glutathione, and superoxide dismutase. The Al2O3 NPs showed the least DNA damage when compared with all the other NPs. Chromosomal aberration was observed at 100 µg/ml when exposed to Co3O4 NPs and Fe2O3 NPs. The alteration in the level of antioxidant caused DNA damage and chromosomal aberration in human lymphocytes.

  18. Magnetically aligned iron oxide/gold nanoparticle-decorated carbon nanotube hybrid structure as a humidity sensor.

    PubMed

    Lee, Jaewook; Mulmi, Suresh; Thangadurai, Venkataraman; Park, Simon S

    2015-07-22

    Functionalized carbon nanotubes (f-CNTs), particularly CNTs decorated with nanoparticles (NPs), are of great interest because of their synergic effects, such as surface-enhanced Raman scattering, plasmonic resonance energy transfer, magnetoplasmonic, magnetoelectric, and magnetooptical effects. In general, research has focused on a single type of NP, such as a metal or metal oxide, that has been modified on a CNT surface. In this study, however, a new strategy is introduced for the decoration of two different NP types on CNTs. In order to improve the functionality of modified CNTs, we successfully prepared binary NP-decorated CNTs, namely, iron oxide/gold (Au) NP-decorated CNTs (IA-CNTs), which were created through two simple reactions in deionized water, without high temperature, high pressure, or harsh reducing agents. The physicochemical properties of IA-CNTs were characterized by ultraviolet/visible spectroscopy, Fourier transform infrared spectroscopy, a superconducting quantum interference device, scanning electron microscopy, and transmission electron microscopy. In this study, IA-CNTs were utilized to detect humidity. Magnetic IA-CNTs were aligned on interdigitated platinum electrodes under external magnetic fields to create a humidity-sensing channel, and its electrical conductivity was monitored. As the humidity increased, the electrical resistance of the sensor also increased. In comparison with various gases, for example, H2, O2, CO, CO2, SO2, and dry air, the IA-CNT-based humidity sensor exhibited high-selectivity performances. IA-CNTs also responded to heavy water (D2O), and it was established that the humidity detection mechanism had D2O-sensing capabilities. Further, the humidity from human out-breathing was also successfully detected by this system. In conclusion, these unique IA-CNTs exhibited potential application as gas detection materials.

  19. Dielectric tunability of vertically aligned ferroelectric-metal oxide nanocomposite films controlled by out-of-plane misfit strain

    NASA Astrophysics Data System (ADS)

    Wu, Huaping; Ma, Xuefu; Zhang, Zheng; Zhu, Jun; Wang, Jie; Chai, Guozhong

    2016-04-01

    A nonlinear thermodynamic model based on the vertically aligned nanocomposite (VAN) thin films of ferroelectric-metal oxide system has been developed to investigate the physical properties of the epitaxial Ba0.6Sr0.4TiO3 (BST) films containing vertical Sm2O3 (SmO) nanopillar arrays on the SrTiO3 substrate. The phase diagrams of out-of-plane lattice mismatch vs. volume fraction of SmO are calculated by minimizing the total free energy. It is found that the phase transformation and dielectric response of BST-SmO VAN systems are extremely dependent on the in-plane misfit strain, the out-of-plane lattice mismatch, the volume fraction of SmO phase, and the external electric field applied to the nanocomposite films at room temperature. In particular, the BST-SmO VAN systems exhibit higher dielectric properties than pure BST films. Giant dielectric response and maximum tunability are obtained near the lattice mismatch where the phase transition occurs. Under the in-plane misfit strain of umf=0.3 % and the out-of-plane lattice mismatch of u3=0.002 , the dielectric tunability can be dramatically enhanced to 90% with the increase of SmO volume fraction, which is well consistent with previous experimental results. This work represents an approach to further understand the dependence of physical properties on the lattice mismatch (in-plane and out-of-plane) and volume fraction, and to manipulate or optimize functionalities in the nanocomposite oxide thin films.

  20. Magnetically aligned iron oxide/gold nanoparticle-decorated carbon nanotube hybrid structure as a humidity sensor.

    PubMed

    Lee, Jaewook; Mulmi, Suresh; Thangadurai, Venkataraman; Park, Simon S

    2015-07-22

    Functionalized carbon nanotubes (f-CNTs), particularly CNTs decorated with nanoparticles (NPs), are of great interest because of their synergic effects, such as surface-enhanced Raman scattering, plasmonic resonance energy transfer, magnetoplasmonic, magnetoelectric, and magnetooptical effects. In general, research has focused on a single type of NP, such as a metal or metal oxide, that has been modified on a CNT surface. In this study, however, a new strategy is introduced for the decoration of two different NP types on CNTs. In order to improve the functionality of modified CNTs, we successfully prepared binary NP-decorated CNTs, namely, iron oxide/gold (Au) NP-decorated CNTs (IA-CNTs), which were created through two simple reactions in deionized water, without high temperature, high pressure, or harsh reducing agents. The physicochemical properties of IA-CNTs were characterized by ultraviolet/visible spectroscopy, Fourier transform infrared spectroscopy, a superconducting quantum interference device, scanning electron microscopy, and transmission electron microscopy. In this study, IA-CNTs were utilized to detect humidity. Magnetic IA-CNTs were aligned on interdigitated platinum electrodes under external magnetic fields to create a humidity-sensing channel, and its electrical conductivity was monitored. As the humidity increased, the electrical resistance of the sensor also increased. In comparison with various gases, for example, H2, O2, CO, CO2, SO2, and dry air, the IA-CNT-based humidity sensor exhibited high-selectivity performances. IA-CNTs also responded to heavy water (D2O), and it was established that the humidity detection mechanism had D2O-sensing capabilities. Further, the humidity from human out-breathing was also successfully detected by this system. In conclusion, these unique IA-CNTs exhibited potential application as gas detection materials. PMID:26112318

  1. Ultra-violet Sensing Characteristic and Field Emission Properties of Vertically Aligned Aluminum Doped Zinc Oxide Nanorod Arrays

    SciTech Connect

    Mamat, M. H.; Malek, M. F.; Musa, M. Z.; Khusaimi, Z.; Rusop, M.

    2011-05-25

    Ultra-violet (UV) sensing behavior and field emission characteristic have been investigated on vertically aligned aluminum (Al) doped zinc oxide (ZnO) nanorod arrays prepared using sol-gel immersion method. Uniform and high coverage density of ZnO nanorod arrays have been successfully deposited on seeded-catalyst coated substrates. The synthesized nanorods have diameter sizes between 50 nm to 150 nm. The XRD spectra show Al doped ZnO nanorod array has high crystallinity properties with the dominancy of crystal growth along (002) plane or c-axis. UV photoresponse measurement indicates that Al doped ZnO nanorod array sensitively detects UV light as shown by conductance increment after UV illumination exposure. The nanorod array shows good field emission properties with low turn on field and threshold field at 2.1 V/{mu}m and 5.6 V/{mu}m, respectively. The result suggested that Al doped ZnO nanorod arrays prepared by low-cost sol-gel immersion method show promising result towards fabrication of multi applications especially in UV photoconductive sensor and field emission displays.

  2. Metal Oxide Induced Charge Transfer Doping and Band Alignment of Graphene Electrodes for Efficient Organic Light Emitting Diodes

    PubMed Central

    Meyer, Jens; Kidambi, Piran R.; Bayer, Bernhard C.; Weijtens, Christ; Kuhn, Anton; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Robertson, John; Hofmann, Stephan

    2014-01-01

    The interface structure of graphene with thermally evaporated metal oxide layers, in particular molybdenum trioxide (MoO3), is studied combining photoemission spectroscopy, sheet resistance measurements and organic light emitting diode (OLED) characterization. Thin (<5 nm) MoO3 layers give rise to an 1.9 eV large interface dipole and a downwards bending of the MoO3 conduction band towards the Fermi level of graphene, leading to a near ideal alignment of the transport levels. The surface charge transfer manifests itself also as strong and stable p-type doping of the graphene layers, with the Fermi level downshifted by 0.25 eV and sheet resistance values consistently below 50 Ω/sq for few-layer graphene films. The combination of stable doping and highly efficient charge extraction/injection allows the demonstration of simplified graphene-based OLED device stacks with efficiencies exceeding those of standard ITO reference devices. PMID:24946853

  3. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide

    PubMed Central

    Akbari, Abozar; Sheath, Phillip; Martin, Samuel T.; Shinde, Dhanraj B.; Shaibani, Mahdokht; Banerjee, Parama Chakraborty; Tkacz, Rachel; Bhattacharyya, Dibakar; Majumder, Mainak

    2016-01-01

    Graphene-based membranes demonstrating ultrafast water transport, precise molecular sieving of gas and solvated molecules shows great promise as novel separation platforms; however, scale-up of these membranes to large-areas remains an unresolved problem. Here we demonstrate that the discotic nematic phase of graphene oxide (GO) can be shear aligned to form highly ordered, continuous, thin films of multi-layered GO on a support membrane by an industrially adaptable method to produce large-area membranes (13 × 14 cm2) in <5 s. Pressure driven transport data demonstrate high retention (>90%) for charged and uncharged organic probe molecules with a hydrated radius above 5 Å as well as modest (30–40%) retention of monovalent and divalent salts. The highly ordered graphene sheets in the plane of the membrane make organized channels and enhance the permeability (71±5 l m−2 hr−1 bar−1 for 150±15 nm thick membranes). PMID:26947916

  4. Controllably Interfacing with Ferroelectric Layer: A Strategy for Enhancing Water Oxidation on Silicon by Surface Polarization.

    PubMed

    Cui, Wei; Xia, Zhouhui; Wu, Shan; Chen, Fengjiao; Li, Yanguang; Sun, Baoquan

    2015-11-25

    Silicon (Si) is an important material in photoelectrochemical (PEC) water splitting because of its good light-harvesting capability as well as excellent charge-transport properties. However, the shallow valence band edge of Si hinders its PEC performance for water oxidation. Generally, thanks to their deep valence band edge, metal oxides are incorporated with Si to improve the performance, but they also decrease the transportation of carriers in the electrode. Here, we integrated a ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] layer with Si to increase the photovoltage as well as the saturated current density. Because of the prominent ferroelectric property from P(VDF-TrFE), the Schottky barrier between Si and the electrolyte can be facially tuned by manipulating the poling direction of the ferroelectric domains. The photovoltage is improved from 460 to 540 mV with a forward-poled P(VDF-TrFE) layer, while the current density increased from 5.8 to 12.4 mA/cm(2) at 1.23 V bias versus reversible hydrogen electrode.

  5. Gamma Irradiation and Oxidative Degradation of a Silica-Filled Silicone Elastomer

    SciTech Connect

    Labouriau, Andrea; Cady, Carl Mcelhinney; Gill, John T.; Stull, Jamie Ann; Ortiz-Acosta, Denisse; Henderson, Kevin C.; Hartung, Vaughn; Quintana, Adam; Celina, Mathew C.

    2015-03-21

    The radiation oxidative degradation of a commonly used silica-filled silicone elastomer DC745 was investigated by a series of experimental techniques. This elastomer is known to be chemically and thermally stable, but insufficient data exist on the radiation resistance. In the present work, gamma doses up to 200 kGy were applied under air at RT and 1Gy/s. Radiation chemical changes were investigated by NMR, FT-IR, Raman, and mass spectroscopy. DSC and TGA experiments probed thermal transitions and thermal stability changes with exposure dose. SEM probed variations on the surface of the elastomer, and solvent swelling methods were used to investigate changes in the polymer network properties. Electron paramagnetic resonance was employed to detect and identify free radicals. Uniaxial compression load tests at variable temperatures were performed to assess changes in the material’s mechanical response as a function of radiation dose. Results demonstrate that, with increasing exposure, DC745 undergoes changes in chemistry that lead to an increase in thermal stability and cross-link density, formation of free radical species, decrease in heat of fusion and increase in stiffness at low temperatures. Taken together, these results indicate that oxidative cross-linking is the dominant radiolysis mechanism that occurs when this material is exposed to gamma irradiation in air at high dose rates.

  6. Gamma Irradiation and Oxidative Degradation of a Silica-Filled Silicone Elastomer

    DOE PAGES

    Labouriau, Andrea; Cady, Carl Mcelhinney; Gill, John T.; Stull, Jamie Ann; Ortiz-Acosta, Denisse; Henderson, Kevin C.; Hartung, Vaughn; Quintana, Adam; Celina, Mathew C.

    2015-03-21

    The radiation oxidative degradation of a commonly used silica-filled silicone elastomer DC745 was investigated by a series of experimental techniques. This elastomer is known to be chemically and thermally stable, but insufficient data exist on the radiation resistance. In the present work, gamma doses up to 200 kGy were applied under air at RT and 1Gy/s. Radiation chemical changes were investigated by NMR, FT-IR, Raman, and mass spectroscopy. DSC and TGA experiments probed thermal transitions and thermal stability changes with exposure dose. SEM probed variations on the surface of the elastomer, and solvent swelling methods were used to investigate changesmore » in the polymer network properties. Electron paramagnetic resonance was employed to detect and identify free radicals. Uniaxial compression load tests at variable temperatures were performed to assess changes in the material’s mechanical response as a function of radiation dose. Results demonstrate that, with increasing exposure, DC745 undergoes changes in chemistry that lead to an increase in thermal stability and cross-link density, formation of free radical species, decrease in heat of fusion and increase in stiffness at low temperatures. Taken together, these results indicate that oxidative cross-linking is the dominant radiolysis mechanism that occurs when this material is exposed to gamma irradiation in air at high dose rates.« less

  7. Electromigration in aluminum/silicon/copper metallization due to the presence of a thin oxide layer

    NASA Astrophysics Data System (ADS)

    Koh, K. A.; Chua, S. J.

    1997-09-01

    The effect of a thin layer of SiO2 (50 nm) on the electromigration behavior of Al/ 0.8wt.%Si/0.5wt.%Cu metallization, passivated by spin-on-glass, phosphorus silicate glass and silicon nitride as part of the complementary metal oxide semiconductor technology fabrication process was studied. It is found that voids were formed along the edge of the metallization line as opposed to formation at triple point of grain boundaries. At the same stress current of 1 × 106 A/cm2, thicker metallization layer (600 nm) showed an improvement in median time to failure (MTF) (1.4 times) with smaller void size (0.2 to 0.4 μm) over one without an underlying oxide, whereas if the metallization thickness is thin (300 nm), the MTF is degraded (0.6 times) with larger void size formed (0.3 to 1.0 μm).

  8. Deactivation of titanium dioxide photocatalyst by oxidation of polydimethylsiloxane and silicon sealant off-gas in a recirculating batch reactor.

    PubMed

    Chemweno, Maurice K; Cernohlavek, Leemer G; Jacoby, William A

    2008-01-01

    We have studied deactivation of titanium dioxide (TiO2) photocatalyst by oxidation of polydimethylsiloxane and silicone sealant off-gas in a recirculating batch reactor. Polydimethylsiloxane vapor is a model indoor air pollutant. It does not adsorb strongly on TiO2 in the dark, but undergoes oxidation when the ultraviolet (UV) photons are also present. Commercial silicone (room-temperature vulcanizing) sealant off-gas is an actual indoor air pollutant subject to short-term spikes in concentration. It does adsorb on the TiO2 surface in the dark, but UV photons also catalyze its oxidation. The oxidation of the Si-containing vapors was monitored using a Fourier transform infrared spectroscope equipped with a gas cell. Subsequent to each incremental exposure, a hexane oxidation reaction was performed to track the titania catalyst's activity. The exposures were repeated until substantial deactivation was achieved. We have also documented the regenerative effect of washing the catalyst surface with water. Surface science techniques were used to view the topography of the catalyst and to identify the elements causing the deactivation. Procedural observations of interest in the context of our recirculating batch reactor include the following: the rate of oxidation of hexane was used to assess the activity of a photocatalyst sample; hexane is an appropriate choice of a probe molecule because it does not adsorb in the dark and it undergoes photocatalytic oxidation (PCO) completely, forming CO2; and hexane does not deactivate the photocatalyst surface.

  9. Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate

    PubMed Central

    Jeong, Jin-Tak; Choi, Mun-Ki; Sim, Yumin; Lim, Jung-Taek; Kim, Gil-Sung; Seong, Maeng-Je; Hyung, Jung-Hwan; Kim, Keun Soo; Umar, Ahmad; Lee, Sang-Kwon

    2016-01-01

    Control of living cells on biocompatible materials or on modified substrates is important for the development of bio-applications, including biosensors and implant biomaterials. The topography and hydrophobicity of substrates highly affect cell adhesion, growth, and cell growth kinetics, which is of great importance in bio-applications. Herein, we investigate the adhesion, growth, and morphology of cultured breast cancer cells on a silicon substrate, on which graphene oxides (GO) was partially formed. By minimizing the size and amount of the GO-containing solution and the further annealing process, GO-coated Si samples were prepared which partially covered the Si substrates. The coverage of GO on Si samples decreases upon annealing. The behaviors of cells cultured on two samples have been observed, i.e. partially GO-coated Si (P-GO) and annealed partially GO-coated Si (Annealed p-GO), with a different coverage of GO. Indeed, the spreading area covered by the cells and the number of cells for a given culture period in the incubator were highly dependent on the hydrophobicity and the presence of oxygenated groups on GO and Si substrates, suggesting hydrophobicity-driven cell growth. Thus, the presented method can be used to control the cell growth via an appropriate surface modification. PMID:27652886

  10. Effect of graphene oxide ratio on the cell adhesion and growth behavior on a graphene oxide-coated silicon substrate

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Tak; Choi, Mun-Ki; Sim, Yumin; Lim, Jung-Taek; Kim, Gil-Sung; Seong, Maeng-Je; Hyung, Jung-Hwan; Kim, Keun Soo; Umar, Ahmad; Lee, Sang-Kwon

    2016-09-01

    Control of living cells on biocompatible materials or on modified substrates is important for the development of bio-applications, including biosensors and implant biomaterials. The topography and hydrophobicity of substrates highly affect cell adhesion, growth, and cell growth kinetics, which is of great importance in bio-applications. Herein, we investigate the adhesion, growth, and morphology of cultured breast cancer cells on a silicon substrate, on which graphene oxides (GO) was partially formed. By minimizing the size and amount of the GO-containing solution and the further annealing process, GO-coated Si samples were prepared which partially covered the Si substrates. The coverage of GO on Si samples decreases upon annealing. The behaviors of cells cultured on two samples have been observed, i.e. partially GO-coated Si (P-GO) and annealed partially GO-coated Si (Annealed p-GO), with a different coverage of GO. Indeed, the spreading area covered by the cells and the number of cells for a given culture period in the incubator were highly dependent on the hydrophobicity and the presence of oxygenated groups on GO and Si substrates, suggesting hydrophobicity-driven cell growth. Thus, the presented method can be used to control the cell growth via an appropriate surface modification.

  11. Transparent conducting oxide contacts and textured metal back reflectors for thin film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Franken, R. H.-J.

    2006-09-01

    With the growing population and the increasing environmental problems of the 'common' fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic (PV) systems, can play a major role in the urgently needed energy transition in electricity production. At the present time PV module production is dominated by the crystalline wafer technology. Thin film silicon technology is an alternative solar energy technology that operates at lower efficiencies, however, it has several significant advantages, such as the possibility of deposition on cheap (flexible) substrates and the much smaller silicon material consumption. Because of the small thickness of the solar cells, light trapping schemes are needed in order to obtain enough light absorption and current generation. This thesis describes the research on thin film silicon solar cells with the focus on the optimization of the transparent conducting oxide (TCO) layers and textured metal Ag substrate layers for the use as enhanced light scattering back reflectors in n-i-p type of solar cells. First we analyzed ZnO:Al (TCO) layers deposited in an radio frequent (rf) magnetron deposition system equipped with a 7 inch target. We have focused on the improvement of the electrical properties without sacrificing the optical properties by increasing the mobility and decreasing the grain boundary density. Furthermore, we described some of the effects on light trapping of ZnO:Al enhanced back reflectors. The described effects are able to explain the observed experimental data. Furthermore, we present a relation between the surface morphology of the Ag back contact and the current enhancement in microcrystalline (muc-Si:H) solar cells. We show the importance of the lateral feature sizes of the Ag surface on the light scattering and introduce a method to characterize the quality of the back reflector by combining the vertical and lateral feature sizes

  12. Hexagonal Ag nanoarrays induced enhancement of blue light emission from amorphous oxidized silicon nitride via localized surface plasmon coupling.

    PubMed

    Ma, Zhongyuan; Ni, Xiaodong; Zhang, Wenping; Jiang, Xiaofan; Yang, Huafeng; Yu, Jie; Wang, Wen; Xu, Ling; Xu, Jun; Chen, Kunji; Feng, Duan

    2014-11-17

    A significant enhancement of blue light emission from amorphous oxidized silicon nitride (a-SiNx:O) films is achieved by introduction of ordered and size-controllable arrays of Ag nanoparticles between the silicon substrate and a-SiNx:O films. Using hexagonal arrays of Ag nanoparticles fabricated by nanosphere lithography, the localized surface plasmons (LSPs) resonance can effectively increase the internal quantum efficiency from 3.9% to 13.3%. Theoretical calculation confirms that the electromagnetic field-intensity enhancement is through the dipole surface plasma coupling with the excitons of a-SiNx:O films, which demonstrates a-SiNx:O films with enhanced blue emission are promising for silicon-based light-emitting applications by patterned Ag arrays.

  13. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].

    PubMed

    Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong

    2013-06-01

    Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.

  14. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    SciTech Connect

    Reichel, Christian; Feldmann, Frank; Müller, Ralph; Hermle, Martin; Glunz, Stefan W.; Reedy, Robert C.; Lee, Benjamin G.; Young, David L.; Stradins, Paul

    2015-11-28

    Passivated contacts (poly-Si/SiO{sub x}/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF{sub 2}), the ion implantation dose (5 × 10{sup 14 }cm{sup −2} to 1 × 10{sup 16 }cm{sup −2}), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells. Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iV{sub oc}) of 725 and 720 mV, respectively. For p-type passivated contacts, BF{sub 2} implantations into intrinsic a-Si yield well passivated contacts and allow for iV{sub oc} of 690 mV, whereas implanted B gives poor passivation with iV{sub oc} of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved V{sub oc} of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF{sub 2} implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with V{sub oc} of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.

  15. On the role of Yb as an impurity in the excitation of Er 3+ emission in silicon-rich silicon oxide

    NASA Astrophysics Data System (ADS)

    Kozanecki, A.; Kuritsyn, D.; Jantsch, W.

    2006-05-01

    The aim of this work is to check if Yb 3+ ions can be used as sensitizers for the 4I 13/2- 4I 15/2 emission of Er 3+ ions at 1.54 μm in silicon-rich silicon oxide (SRSO). To answer this question, photoluminescence excitation (PLE) experiments were performed on the Er 3+ emission in a wide range of excitation wavelengths. The PLE spectra in the 420-650 nm range were excited using an optical parametric oscillator. In Er + Yb implanted silica we found an absorption band related to Yb at wavelengths shorter than 530 nm. Radiation defects were excluded as absorbing species in this range of wavelengths. In SRSO PLE by Yb is entirely suppressed by absorption due to silicon nanoclusters. As a result we conclude that Yb doping of SRSO:Er does not improve the PL efficiency of Er 3+ in comparison with SRSO:Er. We interpret a sensitization mechanism by Yb in the UV-green range in terms of the Yb 2+ → Yb 3+ recharging process, in which an Yb ion becomes excited into its 2+ state, leaving a hole, hVB, localized near Yb 2+. Recombination with a hole leaves Yb 3+ in its 2F 5/2 excited state from which energy is very efficiently transferred to Er 3+ ions.

  16. Effects of fine metal oxide particle dopant on the acoustic properties of silicone rubber lens for medical array probe.

    PubMed

    Hosono, Yasuharu; Yamashita, Yohachi; Itsumi, Kazuhiro

    2007-08-01

    The effects of fine metal oxide particles, particularly those of high-density elements (7.7 to 9.7 x 10(3) kg/m3), on the acoustic properties of silicone rubber have been investigated in order to develop an acoustic lens with a low acoustic attenuation. Silicone rubber doped with Yb2O3 powder having nanoparticle size of 16 nm showed a lower acoustic attenuation than silicone rubber doped with powders of CeO2, Bi2O3, Lu2O3 and HfO2. The silicone rubber doped with Yb2O3 powder showed a sound speed of 0.88 km/s, an acoustic impedance of 1.35 x 10(6) kg/m2s, an acoustic attenuation of 0.93 dB/mmMHz, and a Shore A hardness of 55 at 37 degrees C. Although typical silicone rubber doped with SiO2 (2.6 x 10(3) kg/m3) shows a sound speed of about 1.00 km/s, heavy metal oxide particles decreased the sound velocities to lower than 0.93 km/s. Therefore, an acoustic lens of silicone rubber doped with Yb2O3 powder provides increased sensitivity because it realizes a thinner acoustic lens than is conventionally used due to its low sound speed. Moreover, it has an advantage in that a focus point is not changed when the acoustic lens is pressed to a human body due to its reasonable hardness.

  17. Comparison between transient and frequency modulated excitation: application to silicon nitride and aluminum oxide coatings of silicon.

    PubMed

    Klein, D; Ohm, W; Fengler, S; Kunst, M

    2014-06-01

    Contactless measurements of the lifetime of charge carriers are presented with varying ways of photo excitation: with and without bias light and pulsed and frequency modulated. These methods are applied to the study of the surface passivation of single crystalline silicon by a-SiN(x):H and Al2O3 coatings. The properties of these coatings are investigated under consideration of the merits of the different methods.

  18. Oxidation Behavior of Germanium- and/or Silicon-Bearing Near-α Titanium Alloys in Air

    NASA Astrophysics Data System (ADS)

    Kitashima, Tomonori; Yamabe-Mitarai, Yoko

    2015-06-01

    The effect of germanium (Ge) and/or silicon (Si) addition on the oxidation behavior of the near-α alloy Ti-5Al-2Sn-4Zr-2Mo was investigated in air at 973 K (700 °C). Ge addition decreased the oxidation resistance because of the formation of a Ge-rich layer in the substrate at the TiO2/substrate interface, enhancing Sn segregation at the interface. In addition, a small amount of Ge dissolved in the external Al2O3 layer. These results reduced the aluminum activity at the interface, suppressed the formation of Al2O3, and increased the diffusivity of oxygen in the oxide scales. The addition of 0.2 and 0.9 wt pct Si was beneficial for improving oxidation resistance. The effect of germanide and silicide precipitates in the matrix on the oxide growth process was also discussed.

  19. A Silicon-Based Nanothin Film Solid Oxide Fuel Cell Array with Edge Reinforced Support for Enhanced Thermal Mechanical Stability.

    PubMed

    Baek, Jong Dae; Yu, Chen-Chiang; Su, Pei-Chen

    2016-04-13

    A silicon-based micro-solid oxide fuel cell (μ-SOFC) with electrolyte membrane array embedded in a thin silicon supporting membrane, featuring a unique edge reinforcement structure, was demonstrated by utilizing simple silicon micromachining processes. The square silicon supporting membrane, fabricated by combining deep reactive ion etching and through-wafer wet etching processes, has thicker edges and corners than the center portion of the membrane, which effectively improved the mechanical stability of the entire fuel cell array during cell fabrication and cell operation. The 20 μm thick single crystalline silicon membrane supports a large number of 80 nm thick free-standing yttria-stabilized zirconia (YSZ) electrolytes. The fuel cell array was stably maintained at the open circuit voltage (OCV) of 1.04 V for more than 30 h of operation at 350 °C. A high peak power density of 317 mW/cm(2) was obtained at 400 °C. During a rigorous in situ thermal cycling between 150 and 400 °C at a fast cooling and heating rate of 25 °C/min, the OCV of the μ-SOFC recovered to its high value of 1.07 V without any drop caused by membrane failure, which justifies the superior thermal stability of this novel cell architecture.

  20. A Silicon-Based Nanothin Film Solid Oxide Fuel Cell Array with Edge Reinforced Support for Enhanced Thermal Mechanical Stability.

    PubMed

    Baek, Jong Dae; Yu, Chen-Chiang; Su, Pei-Chen

    2016-04-13

    A silicon-based micro-solid oxide fuel cell (μ-SOFC) with electrolyte membrane array embedded in a thin silicon supporting membrane, featuring a unique edge reinforcement structure, was demonstrated by utilizing simple silicon micromachining processes. The square silicon supporting membrane, fabricated by combining deep reactive ion etching and through-wafer wet etching processes, has thicker edges and corners than the center portion of the membrane, which effectively improved the mechanical stability of the entire fuel cell array during cell fabrication and cell operation. The 20 μm thick single crystalline silicon membrane supports a large number of 80 nm thick free-standing yttria-stabilized zirconia (YSZ) electrolytes. The fuel cell array was stably maintained at the open circuit voltage (OCV) of 1.04 V for more than 30 h of operation at 350 °C. A high peak power density of 317 mW/cm(2) was obtained at 400 °C. During a rigorous in situ thermal cycling between 150 and 400 °C at a fast cooling and heating rate of 25 °C/min, the OCV of the μ-SOFC recovered to its high value of 1.07 V without any drop caused by membrane failure, which justifies the superior thermal stability of this novel cell architecture. PMID:26990604

  1. Role of surface oxides in the formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries.

    PubMed

    Schroder, Kjell W; Dylla, Anthony G; Harris, Stephen J; Webb, Lauren J; Stevenson, Keith J

    2014-12-10

    Nonaqueous solvents in modern battery technologies undergo electroreduction at negative electrodes, leading to the formation of a solid-electrolyte interphase (SEI). The mechanisms and reactions leading to a stable SEI on silicon electrodes in lithium-ion batteries are still poorly understood. This lack of understanding inhibits the rational design of electrolyte additives, active material coatings, and the prediction of Li-ion battery life in general. We prepared SEI with a common nonaqueous solvent (LiPF6 in PC and in EC/DEC 1:1 by wt %) on silicon oxide and etched silicon (001) surfaces in various states of lithiation to understand the role of surface chemistry on the SEI formation mechanism and SEI structure. Anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films, allowing for more accurate characterization of SEI chemical stratification and composition by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) depth profiling. Additionally, multivariate statistical methods were used to better understand TOF-SIMS depth profiling studies. We conclude that the absence of native-oxide layer on silicon has a significant impact on the formation, composition, structure, and thickness of the SEI. PMID:25402271

  2. On the photoluminescence of as-deposited Tb-doped silicon oxides and oxynitrides fabricated by ECR-PECVD

    NASA Astrophysics Data System (ADS)

    Ramírez, J. M.; Wojcik, J.; Berencén, Y.; Mascher, P.; Garrido, B.

    2014-05-01

    In-situ doping of Tb3+ ions in silicon oxides and oxynitrides deposited by electron-cyclotron-resonance plasma enhanced chemical-vapour (ECR-PECVD) has been performed. Oxygen and nitrogen gas flow rates were changed to produce a gradual substitution of oxygen by nitrogen in the host matrix. Bright green luminescence from as-deposited layers is observed by the naked eye under daylight conditions. Tbdoped nitrogen-rich samples showed a considerable photoluminescence (PL) enhancement compared to Tb-doped silicon oxides. An optimum layer composition for efficient Tb3+ excitation under non-resonant optical pumping is obtained. The combination of a low temperature treatment with bright luminescence could be instrumental for the development of light emitting devices in other platforms with more restrictive temperature requirements.

  3. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M.; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2015-09-08

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the gap region between the first electrical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  4. Electronic devices containing switchably conductive silicon oxides as a switching element and methods for production and use thereof

    DOEpatents

    Tour, James M; Yao, Jun; Natelson, Douglas; Zhong, Lin; He, Tao

    2013-11-26

    In various embodiments, electronic devices containing switchably conductive silicon oxide as a switching element are described herein. The electronic devices are two-terminal devices containing a first electrical contact and a second electrical contact in which at least one of the first electrical contact or the second electrical contact is deposed on a substrate to define a gap region therebetween. A switching layer containing a switchably conductive silicon oxide resides in the the gap region between the first electical contact and the second electrical contact. The electronic devices exhibit hysteretic current versus voltage properties, enabling their use in switching and memory applications. Methods for configuring, operating and constructing the electronic devices are also presented herein.

  5. High-contrast visualization of graphene oxide on dye-sensitized glass, quartz, and silicon by fluorescence quenching.

    PubMed

    Treossi, Emanuele; Melucci, Manuela; Liscio, Andrea; Gazzano, Massimo; Samorì, Paolo; Palermo, Vincenzo

    2009-11-01

    We present a novel approach for detecting and visualizing graphene oxide (GO) with high contrast on different substrates, including glass, quartz, and silicon. Visualization of GO sheets is accomplished through quenching the fluorescence of a thiophene dye, giving high optical contrast without the need to use interference methods. A comparison of fluorescence, AFM, and XRD measurements confirmed that even a single GO sheet can completely quench the fluorescence and thus be quickly visualized.

  6. Effects of silicon nanostructure evolution on Er{sup 3+} luminescence in silicon-rich silicon oxide/Er-doped silica multilayers

    SciTech Connect

    Chang, Jee Soo; Jhe, Ji-Hong; Yang, Moon-Seung; Shin, Jung H.; Kim, Kyung Joong; Moon, Dae Won

    2006-10-30

    The effect of silicon nanostructure evolution on Er{sup 3+} luminescence is investigated by using multilayers of 2.5 nm thin SiO{sub x} (x<2) and 10 nm thin Er-doped silica (SiO{sub 2}:Er). By separating excess Si and Er atoms into separate, nanometer-thin layers, the effect of silicon nanostructure evolution on np-Si sensitized Er{sup 3+} luminescence could be investigated while keeping the microscopic Er{sup 3+} environment the same. The authors find that while the presence of np-Si is necessary for efficient sensitization, the overall quality of np-Si layer has little effect on the Er{sup 3+} luminescence. On the other hand, intrusion of np-Si into Er-doped silica layers leads to deactivation of np-Si/Er{sup 3+} interaction, suggesting that there is a limit to excess Si and Er contents that can be used.

  7. Self-assembly-induced formation of high-density silicon oxide memristor nanostructures on graphene and metal electrodes.

    PubMed

    Park, Woon Ik; Yoon, Jong Moon; Park, Moonkyu; Lee, Jinsup; Kim, Sung Kyu; Jeong, Jae Won; Kim, Kyungho; Jeong, Hu Young; Jeon, Seokwoo; No, Kwang Soo; Lee, Jeong Yong; Jung, Yeon Sik

    2012-03-14

    We report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by a block copolymer self-assembly process. Optimized surface functionalization provides stacking structures of Si-containing block copolymer thin films to generate uniform memristor device structures. Both the silicon oxide film and nanodot memristors, which were formed by the plasma oxidation of the self-assembled block copolymer thin films, presented unipolar switching behaviors with appropriate set and reset voltages for resistive memory applications. This approach offers a very convenient pathway to fabricate ultrahigh-density resistive memory devices without relying on high-cost lithography and pattern-transfer processes.

  8. Performance enhancement of ITO/oxide/semiconductor MOS-structure silicon solar cells with voltage biasing

    NASA Astrophysics Data System (ADS)

    Ho, Wen-Jeng; Huang, Min-Chun; Lee, Yi-Yu; Hou, Zhong-Fu; Liao, Changn-Jyun

    2014-12-01

    In this study, we demonstrate the photovoltaic performance enhancement of a p-n junction silicon solar cell using a transparent-antireflective ITO/oxide film deposited on the spacing of the front-side finger electrodes and with a DC voltage applied on the ITO-electrode. The depletion width of the p-n junction under the ITO-electrode was induced and extended while the absorbed volume and built-in electric field were also increased when the biasing voltage was increased. The photocurrent and conversion efficiency were increased because more photo-carriers are generated in a larger absorbed volume and because the carriers transported and collected more effectively due to higher biasing voltage effects. Compared to a reference solar cell (which was biased at 0 V), a conversion efficiency enhancement of 26.57% (from 12.42% to 15.72%) and short-circuit current density enhancement of 42.43% (from 29.51 to 42.03 mA/cm2) were obtained as the proposed MOS-structure solar cell biased at 2.5 V. In addition, the capacitance-volt (C-V) measurement was also used to examine the mechanism of photovoltaic performance enhancement due to the depletion width being enlarged by applying a DC voltage on an ITO-electrode.

  9. Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Elam, David; Ayon, Arturo A.

    2013-06-01

    We report radial, p-n junction, sub-micrometre, pillar array textured solar cells, fabricated on an n-type Czochralski silicon wafer. Relatively simple processing schemes such as metal-assisted chemical etching and spin on dopant techniques were employed for the fabrication of the proposed solar cells. Atomic layer deposition (ALD) grown aluminum oxide (Al2O3) was employed as a surface passivation layer on the B-doped emitter surface. In spite of the fact that the sub-micrometre pillar array textured surface has a relatively high surface-to-volume ratio, we observed an open circuit voltage (VOC) and a short circuit current density (JSC) as high as 572 mV and 29.9 mA cm-2, respectively, which leads to a power conversion efficiency in excess of 11.30%, for the optimized structure of the solar cell described herein. Broadband omnidirectional antireflection effects along with the light trapping property of the sub-micrometre, pillar array textured surface and the excellent passivation quality of the ALD-grown Al2O3 on the B-doped emitter surface were responsible for the enhanced electrical performance of the proposed solar cells.

  10. Seed-layer-free hydrothermal growth of zinc oxide nanorods on porous silicon

    NASA Astrophysics Data System (ADS)

    Kim, Soaram; Kim, Min Su; Park, Hyunggil; Nam, Giwoong; Yoon, Hyunsik; Leem, Jae-Young

    2014-05-01

    Zinc oxide (ZnO) nanorods were grown on porous silicon (PS) using hydrothermal synthesis without a metal catalyst or a seed layer. Scanning electron microscopy, x-ray diffraction, and temperature-dependent photoluminescence (PL) were carried out to investigate the structural and optical properties of the ZnO-PS sample. Most of the nanorods had an average diameter about of 120 nm and an average length of 5 µm, and were assembled into flower-like clusters where several nanorods were joined at a central point. In some cases, ZnO nanorods were merged in parallel bundles. The ZnO nanorods exhibited an overall compressive residual stress. The Zn-O bond length was 1.953 Å. ZnO-PS exhibited one PL peak in the ultraviolet (UV) range, and two peaks in the visible range. The UV and green emission peak were generated from the ZnO nanorods, while the red emission peak was attributed to the PS. The fitting parameters for Varshni's empirical equation were α = 8 × 10-4 eV/K, β = 186 K, and E g (0) = 3.375 eV, and the thermal activation energy was about 32 meV.

  11. Observation of Nanometric Silicon Oxide Bifilms in a Water-Atomized Hypereutectic Cast Iron Powder

    NASA Astrophysics Data System (ADS)

    Boisvert, Mathieu; Christopherson, Denis; L'Espérance, Gilles

    2016-10-01

    This study investigated the reasons for the irregular structure of primary graphite nodules that were formed in a hypereutectic cast iron powder during water atomization. The graphite nodules contain a significant amount of micron-sized pores and multiple nanometric voids that formed from silicon oxide bifilms. The bifilms theory is often used to explain the mechanisms responsible for the presence of pores in castings. However, even if many results presented in the literature tend to corroborate the existence of bifilms, to this date, only indirect evidences of their existence were presented. The observations presented in this paper are the first to show the double-sided nature of these defects. These observations support the bifilms theory and give an explanation for the presence of porosities in castings. The bifilms were used as substrate for graphite growth during solidification. The irregular structure of the graphite nodules is a consequence of the rather random structure of the bifilms that were introduced in the melt as a result of turbulences on the surface of the melt during pouring. The confirmation of the existence of bifilms can contribute to the understanding of the mechanical properties of various metallic parts.

  12. Selective growth of vertical silicon nanowire array guided by anodic aluminum oxide template

    NASA Astrophysics Data System (ADS)

    Hoang Nguyen, Van; Hoshi, Yusuke; Usami, Noritaka; Konagai, Makoto

    2015-09-01

    We report on the selective growth of vertical silicon nanowire arrays guided by an anodic aluminum oxide (AAO) template without the introduction of any metallic catalyst. Gas-source molecular beam epitaxy using disilane as a source gas was carried out. The growth conditions such as flow rate and growth temperature were changed to optimize the Si nanowire growth. It was found that the selective growth was promoted at a flow rate of 0.5 sccm, whereas the selective growth was poor at high flow rates of 1 and 2 sccm. One-micrometer-long Si nanowire arrays were obtained at a low flow rate of 0.5 sccm only at the growth temperature of 700 °C. The obtained Si grown at a temperature of 650 °C exhibited conglomerated structures with Si grains piled up inside the nanopores of the AAO template. We found that increasing the growth temperature and decreasing the flow rate are useful for improving the growth selectivity.

  13. Observation of Nanometric Silicon Oxide Bifilms in a Water-Atomized Hypereutectic Cast Iron Powder

    NASA Astrophysics Data System (ADS)

    Boisvert, Mathieu; Christopherson, Denis; L'Espérance, Gilles

    2016-06-01

    This study investigated the reasons for the irregular structure of primary graphite nodules that were formed in a hypereutectic cast iron powder during water atomization. The graphite nodules contain a significant amount of micron-sized pores and multiple nanometric voids that formed from silicon oxide bifilms. The bifilms theory is often used to explain the mechanisms responsible for the presence of pores in castings. However, even if many results presented in the literature tend to corroborate the existence of bifilms, to this date, only indirect evidences of their existence were presented. The observations presented in this paper are the first to show the double-sided nature of these defects. These observations support the bifilms theory and give an explanation for the presence of porosities in castings. The bifilms were used as substrate for graphite growth during solidification. The irregular structure of the graphite nodules is a consequence of the rather random structure of the bifilms that were introduced in the melt as a result of turbulences on the surface of the melt during pouring. The confirmation of the existence of bifilms can contribute to the understanding of the mechanical properties of various metallic parts.

  14. Complementary metal oxide semiconductor-compatible silicon nanowire biofield-effect transistors as affinity biosensors.

    PubMed

    Duan, Xuexin; Rajan, Nitin K; Izadi, Mohammad Hadi; Reed, Mark A

    2013-11-01

    Affinity biosensors use biorecognition elements and transducers to convert a biochemical event into a recordable signal. They provides the molecule binding information, which includes the dynamics of biomolecular association and dissociation, and the equilibrium association constant. Complementary metal oxide semiconductor-compatible silicon (Si) nanowires configured as a field-effect transistor (NW FET) have shown significant advantages for real-time, label-free and highly sensitive detection of a wide range of biomolecules. Most research has focused on reducing the detection limit of Si-NW FETs but has provided less information about the real binding parameters of the biomolecular interactions. Recently, Si-NW FETs have been demonstrated as affinity biosensors to quantify biomolecular binding affinities and kinetics. They open new applications for NW FETs in the nanomedicine field and will bring such sensor technology a step closer to commercial point-of-care applications. This article summarizes the recent advances in bioaffinity measurement using Si-NW FETs, with an emphasis on the different approaches used to address the issues of sensor calibration, regeneration, binding kinetic measurements, limit of detection, sensor surface modification, biomolecule charge screening, reference electrode integration and nonspecific molecular binding.

  15. Plasma enhanced chemical vapor deposition of silicon oxide films with divinyldimethylsilane and tetravinylsilane

    SciTech Connect

    Park, Sung-Gyu; Rhee, Shi-Woo

    2006-03-15

    Carbon-doped silicon oxide (SiCOH) low-k films were deposited with plasma enhanced chemical vapor deposition (PECVD) using divinyldimethylsilane (DVDMS) with two vinyl groups and tetravinylsilane (TVS) with four vinyl groups compared with vinyltrimethylsilane (VTMS) with one vinyl group. With more vinyl groups in the precursor, due to the crosslinking of the vinyl groups, the film contains more of an organic phase and organic phase became less volatile. It was confirmed that the deposition rate, refractive index, and k value increase with more vinyl groups in the precursor molecule. After annealing, the SiCOH films deposited with DVDMS and TVS showed a low dielectric constant of 2.2 and 2.4 at optimum conditions, respectively. In both cases, the annealed film had low leakage current density (J=6.7x10{sup -7} A/cm{sup 2} for SiCOH film of DVDMS and J=1.18x10{sup -8} A/cm{sup 2} for SiCOH film of TVS at 1 MV/cm) and relatively high breakdown field strength (E>4.0 MV/cm at 1 mA/cm{sup 2}), which is comparable to those of PECVD SiO{sub 2}.

  16. Investigations of nanocomposite magnetic materials based on the oxides of iron, nickel, cobalt and silicon dioxide

    NASA Astrophysics Data System (ADS)

    Gracheva, Irina E.; Olchowik, Grazyna; Gareev, Kamil G.; Moshnikov, Vyatcheslav A.; Kuznetsov, Vladimir V.; Olchowik, Jan M.

    2013-05-01

    This paper is concerned with the study of magnetic nanocomposites containing silicon, iron, nickel, and cobalt oxides. These materials were produced in the form of thin films based on Fe-Si-O, Ni-Co-Si-O and Fe-Ni-Co-Si-O systems and powders based on Fe-Si-O, Ni-Si-O, Co-Si-O and Fe-Ni-Co-Si-O systems using sol-gel technology, through centrifugation, and deposition of ammonia solution. The morphology and magnetic properties of materials in the form of thin films were studied by using the atomic force microscopy. The phase composition, specific surface area and magnetic properties of materials in the form of powders were studied by using the X-ray phase analysis, thermal desorption, vibrational magnetometry and immittance measurements. The dependencies of the main parameters were derived for the magnetic materials from their structure and manufacturing conditions. Ways to optimise the technological processes were proposed, aimed at reducing the size of the magnetic particles in an amorphous lattice.

  17. Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide

    PubMed Central

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.

    2016-01-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2–based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology. PMID:26880381

  18. Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide.

    PubMed

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C

    2016-01-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiO(x)) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiO(x)-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology. PMID:26880381

  19. Demonstration of Synaptic Behaviors and Resistive Switching Characterizations by Proton Exchange Reactions in Silicon Oxide

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Pan, Chih-Hung; Chang, Ting-Chang; Lee, Jack C.

    2016-02-01

    We realize a device with biological synaptic behaviors by integrating silicon oxide (SiOx) resistive switching memory with Si diodes. Minimal synaptic power consumption due to sneak-path current is achieved and the capability for spike-induced synaptic behaviors is demonstrated, representing critical milestones for the use of SiO2-based materials in future neuromorphic computing applications. Biological synaptic behaviors such as long-term potentiation (LTP), long-term depression (LTD) and spike-timing dependent plasticity (STDP) are demonstrated systematically using a comprehensive analysis of spike-induced waveforms, and represent interesting potential applications for SiOx-based resistive switching materials. The resistive switching SET transition is modeled as hydrogen (proton) release from (SiH)2 to generate the hydrogen bridge defect, and the RESET transition is modeled as an electrochemical reaction (proton capture) that re-forms (SiH)2. The experimental results suggest a simple, robust approach to realize programmable neuromorphic chips compatible with large-scale CMOS manufacturing technology.

  20. Fabrication and characterization of a fuel flexible micro-reformer fully integrated in silicon for micro-solid oxide fuel cell applications

    NASA Astrophysics Data System (ADS)

    Pla, D.; Salleras, M.; Garbayo, I.; Morata, A.; Sabaté, N.; Divins, N. J.; Llorca, J.; Tarancón, A.

    2015-05-01

    A novel design of a fuel-flexible micro-reactor for hydrogen generation from ethanol and methane is proposed in this work. The micro-reactor is fully fabricated with mainstream MEMS technology and consists of an array of more than 20000 through-silicon vertically aligned micro-channels per cm2 of 50 μm in diameter. Due to this unique configuration, the micro-reformer presents a total surface per projected area of 16 cm2/cm2 and per volume of 320 cm2/cm3. The active surface of the micro-reformer, i.e. the walls of the micro-channels, is homogenously coated with a thin film of Rh- Pd/CeO2 catalyst. Excellent steam reforming of ethanol and dry reforming of methane are presented with hydrogen production rates above 3 mL/min·cm2 and hydrogen selectivity of ca. 50% on a dry basis at operations conditions suitable for application in micro-solid oxide fuel cells (micro-SOFCs), i.e. 700-800ºC and fuel flows of 0.02 mLL/min for ethanol and 36 mLG/min for methane (corresponding to a system able to produce one electrical watt).

  1. Excitation mechanism and thermal emission quenching of Tb ions in silicon rich silicon oxide thin films grown by plasma-enhanced chemical vapour deposition—Do we need silicon nanoclusters?

    SciTech Connect

    Podhorodecki, A. Golacki, L. W.; Zatryb, G.; Misiewicz, J.; Wang, J.; Jadwisienczak, W.; Fedus, K.

    2014-04-14

    In this work, we will discuss the excitation and emission properties of Tb ions in a Silicon Rich Silicon Oxide (SRSO) matrix obtained at different technological conditions. By means of electron cyclotron resonance plasma-enhanced chemical vapour deposition, undoped and doped SRSO films have been obtained with different Si content (33, 35, 39, 50 at. %) and were annealed at different temperatures (600, 900, 1100 °C). The samples were characterized optically and structurally using photoluminescence (PL), PL excitation, time resolved PL, absorption, cathodoluminescence, temperature dependent PL, Rutherford backscattering spectrometry, Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy. Based on the obtained results, we discuss how the matrix modifications influence excitation and emission properties of Tb ions.

  2. Contact doping of silicon wafers and nanostructures with phosphine oxide monolayers.

    PubMed

    Hazut, Ori; Agarwala, Arunava; Amit, Iddo; Subramani, Thangavel; Zaidiner, Seva; Rosenwaks, Yossi; Yerushalmi, Roie

    2012-11-27

    Contact doping method for the controlled surface doping of silicon wafers and nanometer scale structures is presented. The method, monolayer contact doping (MLCD), utilizes the formation of a dopant-containing monolayer on a donor substrate that is brought to contact and annealed with the interface or structure intended for doping. A unique feature of the MLCD method is that the monolayer used for doping is formed on a separate substrate (termed donor substrate), which is distinct from the interface intended for doping (termed acceptor substrate). The doping process is controlled by anneal conditions, details of the interface, and molecular precursor used for the formation of the dopant-containing monolayer. The MLCD process does not involve formation and removal of SiO(2) capping layer, allowing utilization of surface chemistry details for tuning and simplifying the doping process. Surface contact doping of intrinsic Si wafers (i-Si) and intrinsic silicon nanowires (i-SiNWs) is demonstrated and characterized. Nanowire devices were formed using the i-SiNW channel and contact doped using the MLCD process, yielding highly doped SiNWs. Kelvin probe force microscopy (KPFM) was used to measure the longitudinal dopant distribution of the SiNWs and demonstrated highly uniform distribution in comparison with in situ doped wires. The MLCD process was studied for i-Si substrates with native oxide and H-terminated surface for three types of phosphorus-containing molecules. Sheet resistance measurements reveal the dependency of the doping process on the details of the surface chemistry used and relation to the different chemical environments of the P═O group. Characterization of the thermal decomposition of several monolayer types formed on SiO(2) nanoparticles (NPs) using TGA and XPS provides insight regarding the role of phosphorus surface chemistry at the SiO(2) interface in the overall MLCD process. The new MLCD process presented here for controlled surface doping

  3. Transport properties of silicon complementary-metal-oxide semiconductor quantum well field-effect transistors

    NASA Astrophysics Data System (ADS)

    Naquin, Clint Alan

    Introducing explicit quantum transport into silicon (Si) transistors in a manner compatible with industrial fabrication has proven challenging, yet has the potential to transform the performance horizons of large scale integrated Si devices and circuits. Explicit quantum transport as evidenced by negative differential transconductances (NDTCs) has been observed in a set of quantum well (QW) n-channel metal-oxide-semiconductor (NMOS) transistors fabricated using industrial silicon complementary MOS processing. The QW potential was formed via lateral ion implantation doping on a commercial 45 nm technology node process line, and measurements of the transfer characteristics show NDTCs up to room temperature. Detailed gate length and temperature dependence characteristics of the NDTCs in these devices have been measured. Gate length dependence of NDTCs shows a correlation of the interface channel length with the number of NDTCs formed as well as with the gate voltage (VG) spacing between NDTCs. The VG spacing between multiple NDTCs suggests a quasi-parabolic QW potential profile. The temperature dependence is consistent with partial freeze-out of carrier concentration against a degenerately doped background. A folding amplifier frequency multiplier circuit using a single QW NMOS transistor to generate a folded current-voltage transfer function via a NDTC was demonstrated. Time domain data shows frequency doubling in the kHz range at room temperature, and Fourier analysis confirms that the output is dominated by the second harmonic of the input. De-embedding the circuit response characteristics from parasitic cable and contact impedances suggests that in the absence of parasitics the doubling bandwidth could be as high as 10 GHz in a monolithic integrated circuit, limited by the transresistance magnitude of the QW NMOS. This is the first example of a QW device fabricated by mainstream Si CMOS technology being used in a circuit application and establishes the feasibility

  4. Current, charge, and capacitance during scanning probe oxidation of silicon. I. Maximum charge density and lateral diffusion

    NASA Astrophysics Data System (ADS)

    Dagata, J. A.; Perez-Murano, F.; Martin, C.; Kuramochi, H.; Yokoyama, H.

    2004-08-01

    A comprehensive analysis of the electrical current passing through the tip-substrate junction during oxidation of silicon by scanning probe microscopy (SPM) is presented. This analysis of experimental results under dc-bias conditions resolves the role of electronic and ionic contributions, especially for the initial stages of the reaction, determines the effective contact area of the tip-substrate junction, and unifies the roles of space charge and meniscus formation. In Part I of this work, we demonstrate that SPM oxidation is governed by a maximum charge density generated by electronic species within the junction at the onset of the oxidation process. Excess charge is channeled into lateral diffusion, keeping the charge density within the reaction zone constant and reducing the aspect ratio of the resulting oxide features. A uniform charge density implies that SPM oxides contain a fixed defect concentration, in accordance with the space-charge model. The effective (electrical) thickness of SPM oxides determined by these defects is investigated by Fowler-Nordheim analysis. We conclude that most of the electrical current involved in high voltage SPM oxidation of Si does not actually induce surface oxide growth, and that lateral diffusion and small aspect ratios are unavoidable aspects of contact-mode conditions.

  5. Structural and optical properties of silicon rich oxide films in graded-stoichiometric multilayers for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Palacios-Huerta, L.; Cabañas-Tay, S. A.; Cardona-Castro, M. A.; Aceves-Mijares, M.; Domínguez-Horna, C.; Morales-Sánchez, A.

    2016-07-01

    Silicon nanocrystals (Si-ncs) are excellent candidates for the development of optoelectronic devices. Nevertheless, different strategies are still necessary to enhance their photo and electroluminescent properties by controlling their structural and compositional properties. In this work, the effect of the stoichiometry and structure on the optical properties of silicon rich oxide (SRO) films in a multilayered (ML) structure is studied. SRO MLs with silicon excess gradually increased towards the top and bottom and towards the center of the ML produced through the variation of the stoichiometry in each SRO layer were fabricated and confirmed by X-ray photoelectron spectroscopy. Si-ncs with three main sizes were observed by a transmission electron microscope, in agreement with the stoichiometric profile of each SRO layer. The presence of the three sized Si-ncs and some oxygen related defects enhances intense violet/blue and red photoluminescence (PL) bands. The SRO MLs were super-enriched with additional excess silicon by Si+ implantation, which enhanced the PL intensity. Oxygen-related defects and small Si-ncs (<2 nm) are mostly generated during ion implantation enhancing the violet/blue band to become comparable to the red band. The structural, compositional, and luminescent characteristics of the multilayers are the result of the contribution of the individual characteristics of each layer.

  6. Evaluation of Seebeck coefficients in n- and p-type silicon nanowires fabricated by complementary metal-oxide-semiconductor technology.

    PubMed

    Hyun, Younghoon; Park, Youngsam; Choi, Wonchul; Kim, Jaehyeon; Zyung, Taehyoung; Jang, Moongyu

    2012-10-12

    Silicon-based thermoelectric nanowires were fabricated by using complementary metal-oxide-semiconductor (CMOS) technology. 50 nm width n- and p-type silicon nanowires (SiNWs) were manufactured using a conventional photolithography method on 8 inch silicon wafer. For the evaluation of the Seebeck coefficients of the silicon nanowires, heater and temperature sensor embedded test patterns were fabricated. Moreover, for the elimination of electrical and thermal contact resistance issues, the SiNWs, heater and temperature sensors were fabricated monolithically using a CMOS process. For validation of the temperature measurement by an electrical method, scanning thermal microscopy analysis was carried out. The highest Seebeck coefficients were - 169.97 μV K(-1) and 152.82 μV K(-1) and the highest power factors were 2.77 mW m(-1) K(-2) and 0.65 mW m(-1) K(-2) for n- and p-type SiNWs, respectively, in the temperature range from 200 to 300 K. The larger power factor value for n-type SiNW was due to the higher electrical conductivity. The total Seebeck coefficient and total power factor for the n- and p-leg unit device were 157.66 μV K(-1) and 9.30 mW m(-1) K(-2) at 300 K, respectively.

  7. Electronic interface properties of silicon substrates after ozone based wet-chemical oxidation studied by SPV measurements

    NASA Astrophysics Data System (ADS)

    Angermann, Heike; Wolke, Klaus; Gottschalk, Christiane; Moldovan, Ana; Roczen, Maurizio; Fittkau, Jens; Zimmer, Martin; Rentsch, Jochen

    2012-08-01

    The preparation of ultra-thin oxide layers on mono-crystalline silicon substrate surfaces with ozone dissolved in ultra pure water at ambient temperature was investigated as a low cost alternative to current wet-chemical cleaning and passivation processes in solar cell manufacturing. Surface photovoltage technique was applied as fast, nondestructive, and surface sensitive method, to provide detailed information about the influence of oxidation rate and substrate surface morphology on electronic properties of the oxidised silicon interfaces and subsequently prepared hydrogen terminated surfaces. Sequences of wet-chemical oxidation in ozone containing ultra pure water and subsequent oxide removal in diluted hydrofluoric acid solution could be utilised to prepare hydrophobic substrates, which are predominantly required as starting point for layer deposition and contact formation. On so prepared hydrogen-terminated substrates values of interface state densities Dit,min ≈ 5 × 1011 eV-1 cm-2 could be achieved, comparable to values obtained on the same substrates by the standard RCA process followed by HF dip.

  8. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  9. One-Step Formation of Silicon-Graphene Composites from Silicon Sludge Waste and Graphene Oxide via Aerosol Process for Lithium Ion Batteries.

    PubMed

    Kim, Sun Kyung; Kim, Hyekyoung; Chang, Hankwon; Cho, Bong-Gyoo; Huang, Jiaxing; Yoo, Hyundong; Kim, Hansu; Jang, Hee Dong

    2016-01-01

    Over 40% of high-purity silicon (Si) is consumed as sludge waste consisting of Si, silicon carbide (SiC) particles and metal impurities from the fragments of cutting wire mixed in ethylene glycol based cutting fluid during Si wafer slicing in semiconductor fabrication. Recovery of Si from the waste Si sludge has been a great concern because Si particles are promising high-capacity anode materials for Li ion batteries. In this study, we report a novel one-step aerosol process that not only extracts Si particles but also generates Si-graphene (GR) composites from the colloidal mixture of waste Si sludge and graphene oxide (GO) at the same time by ultrasonic atomization-assisted spray pyrolysis. This process supports many advantages such as eco-friendly, low-energy, rapid, and simple method for forming Si-GR composite. The morphology of the as-formed Si-GR composites looked like a crumpled paper ball and the average size of the composites varied from 0.6 to 0.8 μm with variation of the process variables. The electrochemical performance was then conducted with the Si-GR composites for Lithium Ion Batteries (LIBs). The Si-GR composites exhibited very high performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic efficiency. PMID:27646853

  10. One-Step Formation of Silicon-Graphene Composites from Silicon Sludge Waste and Graphene Oxide via Aerosol Process for Lithium Ion Batteries

    PubMed Central

    Kim, Sun Kyung; Kim, Hyekyoung; Chang, Hankwon; Cho, Bong-Gyoo; Huang, Jiaxing; Yoo, Hyundong; Kim, Hansu; Jang, Hee Dong

    2016-01-01

    Over 40% of high-purity silicon (Si) is consumed as sludge waste consisting of Si, silicon carbide (SiC) particles and metal impurities from the fragments of cutting wire mixed in ethylene glycol based cutting fluid during Si wafer slicing in semiconductor fabrication. Recovery of Si from the waste Si sludge has been a great concern because Si particles are promising high-capacity anode materials for Li ion batteries. In this study, we report a novel one-step aerosol process that not only extracts Si particles but also generates Si-graphene (GR) composites from the colloidal mixture of waste Si sludge and graphene oxide (GO) at the same time by ultrasonic atomization-assisted spray pyrolysis. This process supports many advantages such as eco-friendly, low-energy, rapid, and simple method for forming Si-GR composite. The morphology of the as-formed Si-GR composites looked like a crumpled paper ball and the average size of the composites varied from 0.6 to 0.8 μm with variation of the process variables. The electrochemical performance was then conducted with the Si-GR composites for Lithium Ion Batteries (LIBs). The Si-GR composites exhibited very high performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic efficiency. PMID:27646853

  11. One-Step Formation of Silicon-Graphene Composites from Silicon Sludge Waste and Graphene Oxide via Aerosol Process for Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Kim, Sun Kyung; Kim, Hyekyoung; Chang, Hankwon; Cho, Bong-Gyoo; Huang, Jiaxing; Yoo, Hyundong; Kim, Hansu; Jang, Hee Dong

    2016-09-01

    Over 40% of high-purity silicon (Si) is consumed as sludge waste consisting of Si, silicon carbide (SiC) particles and metal impurities from the fragments of cutting wire mixed in ethylene glycol based cutting fluid during Si wafer slicing in semiconductor fabrication. Recovery of Si from the waste Si sludge has been a great concern because Si particles are promising high-capacity anode materials for Li ion batteries. In this study, we report a novel one-step aerosol process that not only extracts Si particles but also generates Si-graphene (GR) composites from the colloidal mixture of waste Si sludge and graphene oxide (GO) at the same time by ultrasonic atomization-assisted spray pyrolysis. This process supports many advantages such as eco-friendly, low-energy, rapid, and simple method for forming Si-GR composite. The morphology of the as-formed Si-GR composites looked like a crumpled paper ball and the average size of the composites varied from 0.6 to 0.8 μm with variation of the process variables. The electrochemical performance was then conducted with the Si-GR composites for Lithium Ion Batteries (LIBs). The Si-GR composites exhibited very high performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic efficiency.

  12. One-Step Formation of Silicon-Graphene Composites from Silicon Sludge Waste and Graphene Oxide via Aerosol Process for Lithium Ion Batteries.

    PubMed

    Kim, Sun Kyung; Kim, Hyekyoung; Chang, Hankwon; Cho, Bong-Gyoo; Huang, Jiaxing; Yoo, Hyundong; Kim, Hansu; Jang, Hee Dong

    2016-09-20

    Over 40% of high-purity silicon (Si) is consumed as sludge waste consisting of Si, silicon carbide (SiC) particles and metal impurities from the fragments of cutting wire mixed in ethylene glycol based cutting fluid during Si wafer slicing in semiconductor fabrication. Recovery of Si from the waste Si sludge has been a great concern because Si particles are promising high-capacity anode materials for Li ion batteries. In this study, we report a novel one-step aerosol process that not only extracts Si particles but also generates Si-graphene (GR) composites from the colloidal mixture of waste Si sludge and graphene oxide (GO) at the same time by ultrasonic atomization-assisted spray pyrolysis. This process supports many advantages such as eco-friendly, low-energy, rapid, and simple method for forming Si-GR composite. The morphology of the as-formed Si-GR composites looked like a crumpled paper ball and the average size of the composites varied from 0.6 to 0.8 μm with variation of the process variables. The electrochemical performance was then conducted with the Si-GR composites for Lithium Ion Batteries (LIBs). The Si-GR composites exhibited very high performance as Li ion battery anodes in terms of capacity, cycling stability, and Coulombic efficiency.

  13. EFFECT OF PRE-ANNEALING TEMPERATURE ON THE GROWTH OF ALIGNED α-Fe2O3 NANOWIRES VIA A TWO-STEP THERMAL OXIDATION

    NASA Astrophysics Data System (ADS)

    Rashid, Norhana Mohamed; Kishi, Naoki; Soga, Tetsuo

    2016-03-01

    Pre-annealing as part of a two-step thermal oxidation process has a significant effect on the growth of hematite (α-Fe2O3) nanowires on Fe foil. High-density aligned nanowires were obtained on iron foils pre-annealed at 300∘C under a dry air flow for 30min. The X-ray diffraction (XRD) patterns indicate that the nanowires are transformed from the small α-Fe2O3 grains and uniquely grow in the (110) direction. The formation of a high-density of small grains by pre-annealing improved the alignment and density of the α-Fe2O3 nanowires.

  14. Electronic states at the interface between indium tin oxide and silicon

    SciTech Connect

    Malmbekk, H.; Vines, L.; Monakhov, E. V.; Svensson, B. G.

    2011-10-01

    Electronic properties and thermal stability of interfacial states between indium tin oxide (ITO) and monocrystalline silicon (Si) have been investigated. ITO films with thicknesses of about 300 nm were deposited by dc magnetron sputtering on n- and p-type (100) Si at room temperature. The samples were then annealed for 30 min at different temperatures in the range 100-600 deg. C, and the ITO-Si junction was found to exhibit rectifying behavior. Current-voltage (IV), capacitance-voltage (CV), and deep-level transient spectroscopy (DLTS) measurements have been used to electrically characterize the ITO-Si interface. DLTS measurements on p-type Si samples reveal a dominant hole trap at around 0.37 eV above the valence band edge. In the n-type samples, a broad band of electron traps occur in the range 0.1-0.2 eV below the conduction band edge. These electron traps display wide DLTS peaks, indicating a band of electronic energy levels rather than well-defined states originating from isolated point defects. All the traps in both the p- and n-type samples are found to be located near the ITO-Si interface. Investigations of the thermal stability of the observed electronic states show that the dominant hole trap anneal out after 30 min at 250 deg. C, while the dominant electron traps can be stable up to 500 deg. C. IV and DLTS measurements demonstrate a clear correlation between the annealing of the dominant electronic states and increase in the junction rectification.

  15. Comparative toxicity of silicon dioxide, silver and iron oxide nanoparticles after repeated oral administration to rats.

    PubMed

    Yun, Jun-Won; Kim, Seung-Hyun; You, Ji-Ran; Kim, Woo Ho; Jang, Ja-June; Min, Seung-Kee; Kim, Hee Chan; Chung, Doo Hyun; Jeong, Jayoung; Kang, Byeong-Cheol; Che, Jeong-Hwan

    2015-06-01

    Although silicon dioxide (SiO2), silver (Ag) and iron oxide (Fe2O3) nanoparticles are widely used in diverse applications from food to biomedicine, in vivo toxicities of these nanoparticles exposed via the oral route remain highly controversial. To examine the systemic toxicity of these nanoparticles, well-dispersed nanoparticles were orally administered to Sprague-Dawley rats daily over a 13-week period. Based on the results of an acute toxicity and a 14-day repeated toxicity study, 975.9, 1030.5 and 1000 mg kg(-1) were selected as the highest dose of the SiO2 , Ag and Fe2O3 nanoparticles, respectively, for the 13-week repeated oral toxicity study. The SiO2 and Fe2O3 nanoparticles did not induce dose-related changes in a number of parameters associated with the systemic toxicity up to 975.9 and 1000 mg kg(-1) , respectively, whereas the Ag nanoparticles resulted in increases in serum alkaline phosphatase and calcium as well as lymphocyte infiltration in liver and kidney, raising the possibility of liver and kidney toxicity induced by the Ag nanoparticles. Compared with the SiO2 and Fe2O3 nanoparticles showing no systemic distribution in all tissues tested, the Ag concentration in sampled blood and organs in the Ag nanoparticle-treated group significantly increased with a positive and/or dose-related trend, meaning that the systemic toxicity of the Ag nanoparticles, including liver and kidney toxicity, might be explained by extensive systemic distribution of Ag originating from the Ag nanoparticles. Our current results suggest that further study is required to identify that Ag detected outside the gastrointestinal tract were indeed a nanoparticle form or ionized form.

  16. Structural and photoluminescence studies on catalytic growth of silicon/zinc oxide heterostructure nanowires

    PubMed Central

    2013-01-01

    Silicon/zinc oxide (Si/ZnO) core-shell nanowires (NWs) were prepared on a p-type Si(111) substrate using a two-step growth process. First, indium seed-coated Si NWs (In/Si NWs) were synthesized using a plasma-assisted hot-wire chemical vapor deposition technique. This was then followed by the growth of a ZnO nanostructure shell layer using a vapor transport and condensation method. By varying the ZnO growth time from 0.5 to 2 h, different morphologies of ZnO nanostructures, such as ZnO nanoparticles, ZnO shell layer, and ZnO nanorods were grown on the In/Si NWs. The In seeds were believed to act as centers to attract the ZnO molecule vapors, further inducing the lateral growth of ZnO nanorods from the Si/ZnO core-shell NWs via a vapor-liquid-solid mechanism. The ZnO nanorods had a tendency to grow in the direction of [0001] as indicated by X-ray diffraction and high resolution transmission electron microscopy analyses. We showed that the Si/ZnO core-shell NWs exhibit a broad visible emission ranging from 400 to 750 nm due to the combination of emissions from oxygen vacancies in ZnO and In2O3 structures and nanocrystallite Si on the Si NWs. The hierarchical growth of straight ZnO nanorods on the core-shell NWs eventually reduced the defect (green) emission and enhanced the near band edge (ultraviolet) emission of the ZnO. PMID:23590803

  17. Effects of N{sub 2} addition on chemical dry etching of silicon oxide layers in F{sub 2}/N{sub 2}/Ar remote plasmas

    SciTech Connect

    Hwang, J.Y.; Kim, D.J.; Lee, N.-E.; Jang, Y.C.; Bae, G.H.

    2006-07-15

    In this study, chemical dry etching characteristics of silicon oxide layers were investigated in the F{sub 2}/N{sub 2}/Ar remote plasmas. A toroidal-type remote plasma source was used for the generation of remote plasmas. The effects of additive N{sub 2} gas on the etch rates of various silicon oxide layers deposited using different deposition techniques and precursors were investigated by varying the various process parameters, such as the F{sub 2} flow rate, the additive N{sub 2} flow rate, and the substrate temperature. The etch rates of the various silicon oxide layers at room temperature were initially increased and then decreased with the N{sub 2} flow increased, which indicates an existence of the maximum etch rates. Increase in the oxide etch rates under the decreased optical emission intensity of the F radicals with the N{sub 2} flow increased implies that the chemical etching reaction is in the chemical reaction-limited regime, where the etch rate is governed by the surface chemical reaction rather than the F radical density. The etch rates of the silicon oxide layers were also significantly increased with the substrate temperature increased. In the present experiments, the F{sub 2} gas flow, the additive N{sub 2} flow rate, and the substrate temperature were found to be the critical parameters in determining the etch rate of the silicon oxide layers.

  18. A photoemission study of the effectiveness of nickel, manganese, and cobalt based corrosion barriers for silicon photo-anodes during water oxidation

    NASA Astrophysics Data System (ADS)

    O'Connor, Robert; Bogan, Justin; McCoy, Anthony; Byrne, Conor; Hughes, Greg

    2016-05-01

    Silicon is an attractive material for solar water splitting applications due to its abundance and its capacity to absorb a large fraction of incident solar radiation. However, it has not received as much attention as other materials due to its tendency to oxidize very quickly in aqueous environments, particularly when it is employed as the anode where it drives the oxygen evolution reaction. In recent years, several works have appeared in the literature examining the suitability of thin transition metal oxide films grown on top of the silicon to act as a corrosion barrier. The film should be transparent to solar radiation, allow hole transport from the silicon surface to the electrolyte, and stop the diffusion of oxygen from the electrolyte back to the silicon. In this work, we compare Mn-oxide, Co-oxide, and Ni-oxide thin films grown using physical vapor deposition in order to evaluate which material offers the best combination of photocurrent and corrosion protection. In addition to the electrochemical data, we also present a detailed before-and-after study of the surface chemistry of the films using x-ray photoelectron spectroscopy. This approach allows for a comprehensive analysis of the mechanisms by which the corrosion barriers protect the underlying silicon, and how they degrade during the water oxidation reaction.

  19. Low resistance Ohmic contact to p-type crystalline silicon via nitrogen-doped copper oxide films

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyu; Wan, Yimao; Bullock, James; Allen, Thomas; Cuevas, Andres

    2016-08-01

    This work explores the application of transparent nitrogen doped copper oxide (CuOx:N) films deposited by reactive sputtering to create hole-selective contacts for p-type crystalline silicon (c-Si) solar cells. It is found that CuOx:N sputtered directly onto crystalline silicon is able to form an Ohmic contact. X-ray photoelectron spectroscopy and Raman spectroscopy measurements are used to characterise the structural and physical properties of the CuOx:N films. Both the oxygen flow rate and the substrate temperature during deposition have a significant impact on the film composition, as well as on the resulting contact resistivity. After optimization, a low contact resistivity of ˜10 mΩ cm2 has been established. This result offers significant advantages over conventional contact structures in terms of carrier transport and device fabrication.

  20. Sponge-like Si-SiO{sub 2} nanocomposite—Morphology studies of spinodally decomposed silicon-rich oxide

    SciTech Connect

    Friedrich, D.; Schmidt, B.; Heinig, K. H.; Liedke, B.; Mücklich, A.; Hübner, R.; Wolf, D.; Kölling, S.; Mikolajick, T.

    2013-09-23

    Sponge-like Si nanostructures embedded in SiO{sub 2} were fabricated by spinodal decomposition of sputter-deposited silicon-rich oxide with a stoichiometry close to that of silicon monoxide. After thermal treatment a mean feature size of about 3 nm was found in the phase-separated structure. The structure of the Si-SiO{sub 2} nanocomposite was investigated by energy-filtered transmission electron microscopy (EFTEM), EFTEM tomography, and atom probe tomography, which revealed a percolated Si morphology. It was shown that the percolation of the Si network in 3D can also be proven on the basis of 2D EFTEM images by comparison with 3D kinetic Monte Carlo simulations.

  1. Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation.

    PubMed

    Wang, Xin; Peng, Kui-Qing; Hu, Ya; Zhang, Fu-Qiang; Hu, Bo; Li, Li; Wang, Meng; Meng, Xiang-Min; Lee, Shuit-Tong

    2014-01-01

    We report the facile fabrication of three-dimensional (3D) silicon/hematite core/shell nanowire arrays decorated with gold nanoparticles (AuNPs) and their potential application for sunlight-driven solar water splitting. The hematite and AuNPs respectively play crucial catalytic and plasmonic photosensitization roles, while silicon absorbs visible light and generates high photocurrent. Under simulated solar light illumination, solar water splitting with remarkable efficiency is achieved with no external bias applied. Such a nanocomposite photoanode design offers great promise for unassisted sunlight-driven water oxidation, and further stability and efficiency improvements to the device will lead to exciting prospects for practical solar water splitting and artificial photosynthesis.

  2. Facile synthesis of reduced graphene oxide-porous silicon composite as superior anode material for lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Jiao, Lian-Sheng; Liu, Jin-Yu; Li, Hong-Yan; Wu, Tong-Shun; Li, Fenghua; Wang, Hao-Yu; Niu, Li

    2016-05-01

    We report a new method for synthesizing reduced graphene oxide (rGO)-porous silicon composite for lithium-ion battery anodes. Rice husks were used as a as a raw material source for the synthesis of porous Si through magnesiothermic reduction process. The as-obtained composite exhibits good rate and cycling performance taking advantage of the porous structure of silicon inheriting from rice husks and the outstanding characteristic of graphene. A considerably high delithiation capacity of 907 mA h g-1 can be retained even at a rate of 16 A g-1. A discharge capacity of 830 mA h g-1 at a current density of 1 A g-1 was delivered after 200 cycles. This may contribute to the further advancement of Si-based composite anode design.

  3. Effects of Low Temperature Anneal on the Interface Properties of Thermal Silicon Oxide for Silicon Surface Passivation.

    PubMed

    Balaji, Nagarajan; Park, Cheolmin; Chung, Sungyoun; Ju, Minkyu; Raja, Jayapal; Yi, Junsin

    2016-05-01

    High quality surface passivation has gained a significant importance in photovoltaic industry for reducing the surface recombination and hence fabricating low cost and high efficiency solar cells using thinner wafers. The formation of good-quality SiO2 films and SiO2/Si interfaces at low processing temperatures is a prerequisite for improving the conversion efficiency of industrial solar cells with better passivation. High-temperature annealing in inert ambient is promising to improve the SiO2/Si interface. However, annealing treatments could cause negative effects on SiO2/Si interfaces due to its chemical at high temperatures. Low temperature post oxidation annealing has been carried out to investigate the structural and interface properties of Si-SiO2 system. Quasi Steady State Photo Conductance measurements shows a promising effective carrier lifetime of 420 μs, surface recombination velocity of 22 cm/s and a low interface trap density (D(it)) of 4 x 10(11) states/cm2/eV after annealing. The fixed oxide charge density was reduced to 1 x 10(11)/cm2 due to the annealing at 500 degrees C. The FWHM and the Si-O peak wavenumber corresponding to the samples annealed at 500 degrees C reveals that the Si dangling bonds in the SiO2 films due to the oxygen defects was reduced by the low temperature post oxidation annealing. PMID:27483822

  4. Low power zinc-oxide based charge trapping memory with embedded silicon nanoparticles via poole-frenkel hole emission

    SciTech Connect

    El-Atab, Nazek; Nayfeh, Ammar; Ozcan, Ayse; Alkis, Sabri; Okyay, Ali K.

    2014-01-06

    A low power zinc-oxide (ZnO) charge trapping memory with embedded silicon (Si) nanoparticles is demonstrated. The charge trapping layer is formed by spin coating 2 nm silicon nanoparticles between Atomic Layer Deposited ZnO steps. The threshold voltage shift (ΔV{sub t}) vs. programming voltage is studied with and without the silicon nanoparticles. Applying −1 V for 5 s at the gate of the memory with nanoparticles results in a ΔV{sub t} of 3.4 V, and the memory window can be up to 8 V with an excellent retention characteristic (>10 yr). Without nanoparticles, at −1 V programming voltage, the ΔV{sub t} is negligible. In order to get ΔV{sub t} of 3.4 V without nanoparticles, programming voltage in excess of 10 V is required. The negative voltage on the gate programs the memory indicating that holes are being trapped in the charge trapping layer. In addition, at 1 V the electric field across the 3.6 nm tunnel oxide is calculated to be 0.36 MV/cm, which is too small for significant tunneling. Moreover, the ΔV{sub t} vs. electric field across the tunnel oxide shows square root dependence at low fields (E < 1 MV/cm) and a square dependence at higher fields (E > 2.7 MV/cm). This indicates that Poole-Frenkel Effect is the main mechanism for holes emission at low fields and Phonon Assisted Tunneling at higher fields.

  5. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  6. Scanning capacitance microscopy and spectroscopy applied to local charge modifications and characterization of nitride-oxide-silicon heterostructures

    NASA Astrophysics Data System (ADS)

    Dreyer, M.; Wiesendanger, R.

    1995-10-01

    We have combined a home-built capacitance sensor with a commercial scanning force microscope to obtain a Scanning Capacitance Microscope (SCM). The SCM has been used to study Nitride-Oxide-Silicon (NOS) heterostructures which offer potential applications in charge storage technology. Charge writing and reading on a submicrometer scale is demonstrated with our SCM setup. In addition, SCM appears to be very useful for the characterization of subsurface defects in semiconductor devices which are inaccessible by most of the other scanning probe microscopies. Finally, we introduce a novel spectroscopic mode of SCM operation which offers combined voltage-dependent and spatially resolved information about inhomogeneous charge distributions in semiconductor devices.

  7. Study of the use of Metal-Oxide-Silicon (MOS) devices for particulate detection and monitoring in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Brooks, A. D.; Monteith, L. K.; Wortman, J. J.; Mulligan, J. C.

    1974-01-01

    A metal-oxide-silicon (MOS) capacitor-type particulate sensor was evaluated for use in atmospheric measurements. An accelerator system was designed and tested for the purpose of providing the necessary energy to trigger the MOS-type sensor. The accelerator system and the MOS sensor were characterized as a function of particle size and velocity. Diamond particles were used as particulate sources in laboratory tests. Preliminary tests were performed in which the detector was mounted on an aircraft and flown in the vicinity of coal-fired electric generating plants.

  8. Low-power bacteriorhodopsin-silicon n-channel metal-oxide field-effect transistor photoreceiver.

    PubMed

    Shin, Jonghyun; Bhattacharya, Pallab; Yuan, Hao-Chih; Ma, Zhenqiang; Váró, György

    2007-03-01

    A bacteriorhodopsin (bR)-silicon n-channel metal-oxide field-effect transistor (NMOSFET) monolithically integrated photoreceiver is demonstrated. The bR film is selectively formed on an external gate electrode of the transistor by electrophoretic deposition. A modified biasing circuit is incorporated, which helps to match the resistance of the bR film to the input impedance of the NMOSFET and to shift the operating point of the transistor to coincide with the maximum gain. The photoreceiver exhibits a responsivity of 4.7 mA/W. PMID:17392901

  9. Novel processing of bioglass ceramics from silicone resins containing micro- and nano-sized oxide particle fillers.

    PubMed

    Fiocco, L; Bernardo, E; Colombo, P; Cacciotti, I; Bianco, A; Bellucci, D; Sola, A; Cannillo, V

    2014-08-01

    Highly porous scaffolds with composition similar to those of 45S5 and 58S bioglasses were successfully produced by an innovative processing method based on preceramic polymers containing micro- and nano-sized fillers. Silica from the decomposition of the silicone resins reacted with the oxides deriving from the fillers, yielding glass ceramic components after heating at 1000°C. Despite the limited mechanical strength, the obtained samples possessed suitable porous architecture and promising biocompatibility and bioactivity characteristics, as testified by preliminary in vitro tests.

  10. Porous silicon oxide-PLGA composite microspheres for sustained ocular delivery of daunorubicin

    PubMed Central

    Nan, Kaihui; Ma, Feiyan; Hou, Huiyuan; Freeman, William R.; Sailor, Michael J.; Cheng, Lingyun

    2014-01-01

    A water-soluble anthracycline antibiotic drug (daunorubicin, DNR) was loaded into oxidized porous silicon (pSiO2) microparticles and then encapsulated with a layer of polymer (poly lactide-co-glycolide, PLGA) to investigate their synergistic effects in control of DNR release. Similarly fabricated PLGA-DNR microspheres without pSiO2, and pSiO2 microparticles without PLGA were used as control particles. The composite microparticles synthesized by a solid-in-oil-in-water (S/O/W) emulsion method have mean diameters of 52.33±16.37 μm for PLGA-pSiO2_21/40-DNR and the mean diameter of 49.31±8.87 μm for PLGA-pSiO2_6/20-DNR. The mean size, 26.00±8 μm, of PLGA-DNR was significantly smaller, compared with the other two (p<0.0001). Optical microscopy revealed that PLGA-pSiO2-DNR microsphere contained multiple pSiO2 particles. In vitro release experiments determined that control PLGA-DNR microspheres completely released DNR within 38 days and control pSiO2-DNR microparticles (with no PLGA coating) released DNR within 14 days, while the PLGA-pSiO2-DNR microspheres released DNR for 74 days. Temporal release profiles of DNR from PLGA-pSiO2 composite particles indicated that both PLGA and pSiO2 contribute to the sustained release of the payload. The PLGA-pSiO2 composite displayed a more constant rate of DNR release than the pSiO2 control formulation, and it displayed a significantly slower release of DNR than either the PLGA or pSiO2 formulations. We conclude that this system may be useful in managing unwanted ocular proliferation when formulated with anti-proliferation compounds such as DNR. PMID:24793657

  11. One-step Melt Synthesis of Water Soluble, Photoluminescent, Surface-Oxidized Silicon Nanoparticles for Cellular Imaging Applications

    PubMed Central

    Manhat, Beth A.; Brown, Anna L.; Black, Labe A.; Ross, J.B. Alexander; Fichter, Katye; Vu, Tania; Richman, Erik

    2012-01-01

    We have developed a versatile, one-step melt synthesis of water-soluble, highly emissive silicon nanoparticles using bi-functional, low-melting solids (such as glutaric acid) as reaction media. Characterization through transmission electron microscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy shows that the one-step melt synthesis produces nanoscale Si cores surrounded by a silicon oxide shell. Analysis of the nanoparticle surface using FT-IR, zeta potential, and gel electrophoresis indicates that the bi-functional ligand used in the one-step synthesis is grafted onto the nanoparticle, which allows for tuning of the particle surface charge, solubility, and functionality. Photoluminescence spectra of the as-prepared glutaric acid-synthesized silicon nanoparticles show an intense blue-green emission with a short (ns) lifetime suitable for biological imaging. These nanoparticles are found to be stable in biological media and have been used to examine cellular uptake and distribution in live N2a cells. PMID:23139440

  12. Enhancement of oxidation resistance of graphite foams by polymer derived-silicon carbide coating for concentrated solar power applications

    DOE PAGES

    Kim, T.; Singh, D.; Singh, M.

    2015-05-01

    Graphite foam with extremely high thermal conductivity has been investigated to enhance heat transfer of latent heat thermal energy storage (LHTES) systems. However, the use of graphite foam for elevated temperature applications (>600 °C) is limited due to poor oxidation resistance of graphite. In the present study, oxidation resistance of graphite foam coated with silicon carbide (SiC) was investigated. A pre-ceramic polymer derived coating (PDC) method was used to form a SiC coating on the graphite foams. Post coating deposition, the samples were analyzed by scanning electron microscopy and energy dispersive spectroscopy. The oxidation resistance of PDC-SiC coating was quantifiedmore » by measuring the weight of the samples at several measuring points. The experiments were conducted under static argon atmosphere in a furnace. After the experiments, oxidation rates (%/hour) were calculated to predict the lifetime of the graphite foams. The experimental results showed that the PDC-SiC coating could prevent the oxidation of graphite foam under static argon atmosphere up to 900 °C.« less

  13. Enhancement of oxidation resistance of graphite foams by polymer derived-silicon carbide coating for concentrated solar power applications

    SciTech Connect

    Kim, T.; Singh, D.; Singh, M.

    2015-05-01

    Graphite foam with extremely high thermal conductivity has been investigated to enhance heat transfer of latent heat thermal energy storage (LHTES) systems. However, the use of graphite foam for elevated temperature applications (>600 °C) is limited due to poor oxidation resistance of graphite. In the present study, oxidation resistance of graphite foam coated with silicon carbide (SiC) was investigated. A pre-ceramic polymer derived coating (PDC) method was used to form a SiC coating on the graphite foams. Post coating deposition, the samples were analyzed by scanning electron microscopy and energy dispersive spectroscopy. The oxidation resistance of PDC-SiC coating was quantified by measuring the weight of the samples at several measuring points. The experiments were conducted under static argon atmosphere in a furnace. After the experiments, oxidation rates (%/hour) were calculated to predict the lifetime of the graphite foams. The experimental results showed that the PDC-SiC coating could prevent the oxidation of graphite foam under static argon atmosphere up to 900 °C.

  14. Performance Improvements of Metal-Oxide-Nitride-Oxide-Silicon Nonvolatile Memory with ZrO2 Charge-Trapping Layer by Using Nitrogen Incorporation

    NASA Astrophysics Data System (ADS)

    Chen, Jian-Xiong; Xu, Jing-Ping; Liu, Lu; Lai, Pui-To

    2013-08-01

    The properties of ZrO2 and ZrON as the charge-trapping layer (CTL) of metal-oxide-nitride-oxide-silicon memory are investigated. The microstructure and chemical bonding are examined by X-ray diffraction and X-ray photoelectron spectroscopy. It is found that nitrogen incorporation in ZrO2 can induce more charge-trapping sites, effectively suppress the formation of zirconium silicate (leading to better interface quality between the CTL and the SiO2 tunneling layer), and increase the dielectric constant of ZrO2, thus improving the memory performances (large memory window, high program/erase speed, good endurance characteristics, and small charge loss).

  15. Oxygen impurity effects at metal/silicide interfaces - Formation of silicon oxide and suboxides in the Ni/Si system

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Grunthaner, F. J.; Scott, D. M.; Nicolet, M.-A.; Mayer, J. W.

    1981-01-01

    The effect of implanted oxygen impurities on the Ni/Ni2Si interface is investigated using X-ray photoelectron spectroscopy, He-4(+) backscattering and O(d, alpha)-16 N-14 nuclear reactions. Oxygen dosages corresponding to concentrations of 1, 2, and 3 atomic percent were implanted into Ni films evaporated on Si substrates. The oxygen, nickel, and silicon core lines were monitored as a function of time during in situ growth of the Ni silicide to determine the chemical nature of the diffusion barrier which forms in the presence of oxygen impurities. Analysis of the Ni, Si, and O core levels demonstrates that the formation of SiO2 is responsible for the Ni diffusion barrier rather than Ni oxide or mixed oxides, such as Ni2SiO4. It is determined that 2.2 x 10 to the 16th O/qu cm is sufficient to prevent Ni diffusion under UHV annealing conditions.

  16. The photoluminescence and structural properties of (Ce, Yb) co-doped silicon oxides after high temperature annealing

    SciTech Connect

    Heng, C. L. Li, J. T.; Su, W. Y.; Yin, P. G.; Finstad, T. G.

    2015-01-28

    We studied the photoluminescence (PL) and structural properties of Ce and Yb co-doped silicon oxide films after high temperature annealing. The PL spectra of Ce{sup 3+} and Yb{sup 3+} ions were sensitive to the structural variation of the films, and the Yb PL intensities were significantly enhanced especially upon 1200 °C annealing. X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy, indicated that rare earth silicates and the CeO{sub 2} phase had formed in the oxides. The proportions of the phases varied with the “nominal Si-richness” of the films. Energy transfer from the excited Ce{sup 3+} to Yb{sup 3+} can be inferred from both PL excitation and decay spectra.

  17. Formation and characterization of porous silicon-samarium/gadolinium nanocomposites: effect of substrate oxidation and biosynthesis process

    NASA Astrophysics Data System (ADS)

    Perdigon-Lagunes, P.; Ascencio, J. A.; Agarwal, V.

    2014-12-01

    Samarium and gadolinium nanoparticles synthesized by bioreduction process have been incorporated into nanostructured porous silicon template to form a nanocomposite. The structural and optical properties of PS-Gd and PS-Sm nanocomposites have been studied through TEM, SEM and UV-Vis spectroscopy. Extent of infiltration has been verified through reflectance interference Fourier transform spectroscopy as a function of substrate oxidation conditions. The substrates oxidized at 600 °C showed the maximum infiltration and the corresponding change of optical thickness due to nanoparticles. Such biodegradable nanocomposites in the form of particles can have potential applications in localized drug delivery and enhancement of the image contrast and optoelectronic devices. The results here reported open an energy-cheap procedure to take advantages of small rare earth nanoparticles and produced nanocomposites with their immersion in SiO2 substrates, with the perspective to be replied in other similar substrates under controlled conditions.

  18. Theory and experiments of electron-hole recombination at silicon/silicon dioxide interface traps and tunneling in thin oxide MOS transistors

    NASA Astrophysics Data System (ADS)

    Cai, Jin

    2000-10-01

    Surface recombination and channel have dominated the electrical characteristics, performance and reliability of p/n junction diodes and transistors. This dissertation uses a sensitive direct-current current voltage (DCIV) method to measure base terminal currents (IB) modulated by the gate bias (VGB) and forward p/n junction bias (VPN) in a MOS transistor (MOST). Base terminal currents originate from electron-hole recombination at Si/SiO2 interface traps. Fundamental theories which relate DCIV characteristics to device and material parameters are presented. Three theory-based applications are demonstrated on both the unstressed as well as hot-carrier-stressed MOSTs: (1) determination of interface trap density and energy levels, (2) spatial profile of interface traps in the drain/base junction-space-charge region and in the channel region, and (3) determination of gate oxide thickness and impurity doping concentrations. The results show that interface trap energy levels are discrete, which is consistent with those from silicon dangling bonds; in unstressed MOS transistors interface trap density in the channel region rises sharply toward source and drain, and after channel-hot-carrier stress, interface trap density increases mostly in the junction space-charge region. As the gate oxide thins below 3 nm, the gate oxide leakage current via quantum mechanical tunneling becomes significant. A gate oxide tunneling theory which refined the traditional WKB tunneling probability is developed for modeling tunneling currents at low electric fields through a trapezoidal SiO2 barrier. Correlation with experimental data on thin oxide MOSTs reveals two new results: (1) hole tunneling dominates over electron tunneling in p+gate p-channel MOSTs, and (2) the small gate/drain overlap region passes higher tunneling currents than the channel region under depletion to flatband gate voltages. The good theory-experimental correlation enables the extraction of impurity doping concentrations

  19. Improving ASM stepper alignment accuracy by alignment signal intensity simulation

    NASA Astrophysics Data System (ADS)

    Li, Gerald; Pushpala, Sagar M.; Bradford, Bradley; Peng, Zezhong; Gottipati, Mohan

    1993-08-01

    As photolithography technology advances into submicron regime, the requirement for alignment accuracy also becomes much tighter. The alignment accuracy is a function of the strength of the alignment signal. Therefore, a detailed alignment signal intensity simulation for 0.8 micrometers EPROM poly-1 layer on ASM stepper was done based on the process of record in the fab to reduce misalignment and improve die yield. Oxide thickness variation did not have significant impact on the alignment signal intensity. However, poly-1 thickness was the most important parameter to affect optical alignments. The real alignment intensity data versus resist thickness on production wafers was collected and it showed good agreement with the simulated results. Similar results were obtained for ONO dielectric layer at a different fab.

  20. Shadow-casted ultrathin surface coatings of titanium and titanium/silicon oxide sol particles via ultrasound-assisted deposition.

    PubMed

    Karahan, H Enis; Birer, Özgür; Karakuş, Kerem; Yıldırım, Cansu

    2016-07-01

    Ultrasound-assisted deposition (USAD) of sol nanoparticles enables the formation of uniform and inherently stable thin films. However, the technique still suffers in coating hard substrates and the use of fast-reacting sol-gel precursors still remains challenging. Here, we report on the deposition of ultrathin titanium and titanium/silicon hybrid oxide coatings using hydroxylated silicon wafers as a model hard substrate. We use acetic acid as the catalyst which also suppresses the reactivity of titanium tetraisopropoxide while increasing the reactivity of tetraethyl orthosilicate through chemical modifications. Taking the advantage of this peculiar behavior, we successfully prepared titanium and titanium/silicon hybrid oxide coatings by USAD. Varying the amount of acetic acid in the reaction media, we managed to modulate thickness and surface roughness of the coatings in nanoscale. Field-emission scanning electron microscopy and atomic force microscopy studies showed the formation of conformal coatings having nanoroughness. Quantitative chemical state maps obtained by x-ray photoelectron spectroscopy (XPS) suggested the formation of ultrathin (<10nm) coatings and thickness measurements by rotating analyzer ellipsometry supported this observation. For the first time, XPS chemical maps revealed the transport effect of ultrasonic waves since coatings were directly cast on rectangular substrates as circular shadows of the horn with clear thickness gradient from the center to the edges. In addition to the progress made in coating hard substrates, employing fast-reacting precursors and achieving hybrid coatings; this report provides the first visual evidence on previously suggested "acceleration and smashing" mechanism as the main driving force of USAD.