Science.gov

Sample records for aligned zno nanowires

  1. Permanent bending and alignment of ZnO nanowires.

    PubMed

    Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten

    2011-05-06

    Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.

  2. Controlled growth of well-aligned ZnO nanowire arrays using the improved hydrothermal method

    NASA Astrophysics Data System (ADS)

    Zhitao, Han; Sisi, Li; Jinkui, Chu; Yong, Chen

    2013-06-01

    Well-aligned ZnO nanowires were hydrothermally synthesized based on a facile method for preparing the ZnO seed layer which was derived from the combination of a sol—gel process and the spin-coating technique. The effect of the contents of growth solution and the growth duration on the morphology of ZnO nanowires has been investigated. The results indicated that long and vertically aligned ZnO nanowires could be obtained by adjusting the contents of ammonia and polyethyleneimine (PEI) in the growth solution. Under the optimized condition, the length of ZnO nanowires increased fast and almost linearly with the growth duration. After 10 h incubation, ZnO nanowires more than 25 μm in length were obtained. By combining the conventional photolithographic method with this hydrothermal approach, long and well-aligned ZnO nanowire arrays were selectively grown on the substrate. In addition, the bottom fusion at the foot of the nanowires has been obviously improved. The results demonstrated that the improved hydrothermal process is favorable to synthesize long and well-aligned ZnO nanowires, and possesses good process compatibility with the conventional photolithographic technique for preparing ZnO nanowire arrays. So it has great potential in applications such as display and field emission devices.

  3. Patterned growth of aligned ZnO nanowire arrays on sapphire and GaN layers

    NASA Astrophysics Data System (ADS)

    Fan, H. J.; Fleischer, F.; Lee, W.; Nielsch, K.; Scholz, R.; Zacharias, M.; Gösele, U.; Dadgar, A.; Krost, A.

    2004-07-01

    Patterned growth of vertically aligned ZnO nanowire arrays on the micrometer and nanometer scale on sapphire and GaN epilayers is reported. In order to control the position and distribution density of the ZnO nanowires, Au seeding nanodots are defined, as regular arrays, with the assistance of deposition shadow masks. Electron micrographs reveal that the wires are single crystals having wire axes along the hexagonal c-axes. The epitaxial growth of ZnO nanowires on sapphire and GaN films on Si substrates was further verified by cross sectional electron microscopy investigations. Compared to the sapphire case, the perfect epitaxial growth on a GaN film on a Si substrate is believed to be more suitable for potential electronic device applications of ZnO nanowire arrays.

  4. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Yuping; Li, Chengchen; Chen, Mingming; Yu, Xiao; Chang, Yunwei; Chen, Anqi; Zhu, Hai; Tang, Zikang

    2016-12-01

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future.

  5. Growth of vertically aligned one-dimensional ZnO nanowire arrays on sol-gel derived ZnO thin films

    NASA Astrophysics Data System (ADS)

    Kitazawa, Nobuaki; Aono, Masami; Watanabe, Yoshihisa

    2014-11-01

    Vertically aligned one-dimensional ZnO nanowire arrays have been synthesized by a hydrothermal method on sol-gel derived ZnO films. Sol-gel derived ZnO films and corresponding ZnO nanowire arrays have been characterized by X-ray diffraction and field-emission scanning electron microscopy. The effect of sol-gel derived ZnO film surface on the morphology of ZnO nanowire arrays has been investigated. The authors suggest from our investigation that sol-gel derived ZnO films affect the growth of one-dimensional ZnO nanostructures. Not only crystalline ZnO films but also amorphous ones can act as a scaffold for ZnO nucleus. Tilted ZnO micro-rods are grown on ZnO gel films, whereas vertically aligned ZnO nanowire arrays are grown on nanometer-sized ZnO grains. The average diameter of ZnO nanowire arrays are correlated strongly with the grain size of sol-gel derived ZnO films.

  6. Fundamental understanding of the growth, doping and characterization of aligned ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Shen, Gang

    Zinc oxide (ZnO) is a II-VI semiconductor whose wide direct bandgap (3.37 eV) and large exciton binding energy (60 meV) make it compelling for optoelectronic devices such as light emitting diodes, lasers, photodetectors, solar cells, and mechanical energy harvesting devices. One dimensional structures of ZnO (nanowires) have become significant due to their unique physical properties arising from quantum confinement, and they are ideal for studying transport mechanisms in one-dimensional systems. In this doctoral research work, ZnO nanowire (NW) arrays were synthesized on sapphire substrates through carbo-thermal reduction of ZnO powders, and the effects of growth parameters on the properties of ZnO NW arrays were studied by scanning and transmission electron microscopy, X-ray diffraction, photoluminescence and Raman spectroscopy. Based on the phonon mode selection rules in wurtzite ZnO, confocal Raman spectroscopy was used to assess the alignment of ZnO NWs in an array, thereby complementing X-ray diffraction. Al doped ZnO NW arrays were achieved by mixing Al powder into the ZnO and graphite source mixture, and the presence of Al was confirmed by Energy-dispersive X-ray spectroscopy. The incorporation of Al had the effects of lowering the electrical resistivity, slightly deteriorating crystal quality and suppressing defect related green emission. Two models of ZnO NW growth were developed by establishing the relationship between NW length and diameter for undoped and Al doped ZnO NWs separately. The growth of undoped ZnO NWs followed the diffusion-induced model which was characterized by thin wires being longer than thick wires, while the growth of Al doped ZnO was controlled by Gibbs-Thomson effect which was characterized by thin wires being shorter than thin wires. Local electrode atom probe analysis of ZnO NWs was carried out to study the crystal stoichiometry and Al incorporation. Undoped ZnO NWs were found to be high purity with no detectable impurities

  7. Fast growth of well-aligned ZnO nanowire arrays by a microwave heating method and their photocatalytic properties.

    PubMed

    Cao, Guangxia; Hong, Kunquan; Wang, Wenda; Liu, Liqing; Xu, Mingxiang

    2016-10-28

    The fast growth of aligned ZnO nanowire arrays with optimized structure is attractive for electrical and optical devices. In this paper, we report a controllable and rapid growth of ZnO nanowire arrays by a microwave-assisted hydrothermal method. When using different zinc salts as the precursors, the morphology of the samples changes a lot and the length growth rate is several times different. The growth mechanism is also investigated. It is found that the solution near neutral pH value is ideal for fast nanowire growth, in which the length of the nanowires increases linearly with growth time and the growth rate is over ten times faster than that in the traditional hydrothermal method. Therefore, aligned ZnO nanowire arrays can grow up to tens of microns in a few hours, while the density and sizes of these nanowires can be well controlled. The ZnO nanowire arrays used as photocatalysts present good photocatalytic performance to the degradation of methyl orange (MO) due to the large surface area. So this paper provides an effective method to obtain vertically aligned ZnO nanowire arrays for practical applications.

  8. Fast growth of well-aligned ZnO nanowire arrays by a microwave heating method and their photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Cao, Guangxia; Hong, Kunquan; Wang, Wenda; Liu, Liqing; Xu, Mingxiang

    2016-10-01

    The fast growth of aligned ZnO nanowire arrays with optimized structure is attractive for electrical and optical devices. In this paper, we report a controllable and rapid growth of ZnO nanowire arrays by a microwave-assisted hydrothermal method. When using different zinc salts as the precursors, the morphology of the samples changes a lot and the length growth rate is several times different. The growth mechanism is also investigated. It is found that the solution near neutral pH value is ideal for fast nanowire growth, in which the length of the nanowires increases linearly with growth time and the growth rate is over ten times faster than that in the traditional hydrothermal method. Therefore, aligned ZnO nanowire arrays can grow up to tens of microns in a few hours, while the density and sizes of these nanowires can be well controlled. The ZnO nanowire arrays used as photocatalysts present good photocatalytic performance to the degradation of methyl orange (MO) due to the large surface area. So this paper provides an effective method to obtain vertically aligned ZnO nanowire arrays for practical applications.

  9. Field emission behavior of vertically aligned ZnO nanowire planar cathodes

    SciTech Connect

    Semet, V.; Binh, Vu Thien; Pauporte, Th.; Joulaud, L.; Vermersch, F. J.

    2011-03-01

    A field emission (FE) study by scanning anode field emission microscopy was performed to evaluate the FE properties of vertically aligned zinc oxide (ZnO) nanowire arrays electrodeposited on a plane conductive surface. The specific FE behaviors of the cathode observed experimentally are (1) a turn-on macroscopic field of about 6 V/{mu}m for a FE current density J{sub FE} 5 x 10{sup -4} A/cm{sup 2}, (2) a stable FE characteristics for 5 x 10{sup -4} < J{sub FE} < 5 x 10{sup -2} A/cm{sup 2}, and (3) a brutal shut down of FE when J{sub FE} crossed a limiting value of {approx}0.05 A/cm{sup 2} due to a rapid evolution of the nanowires toward a bulbous tip geometry or a complete melting. A physical process of FE from ZnO nanostructures is proposed from the experimental data analyses. An effective surface barrier of about 1 eV was determined from the experimental Fowler-Nordheim plot and the presence of a Zn enriched surface was assumed in considering the possibility of important modifications of the crystallography and charge transfers at the surface of ZnO nanowires during the application of the strong electric field required for FE.

  10. Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires

    PubMed Central

    2011-01-01

    We report on the major improvement in UV photosensitivity and faster photoresponse from vertically aligned ZnO nanowires (NWs) by means of rapid thermal annealing (RTA). The ZnO NWs were grown by vapor-liquid-solid method and subsequently RTA treated at 700°C and 800°C for 120 s. The UV photosensitivity (photo-to-dark current ratio) is 4.5 × 103 for the as-grown NWs and after RTA treatment it is enhanced by a factor of five. The photocurrent (PC) spectra of the as-grown and RTA-treated NWs show a strong peak in the UV region and two other relatively weak peaks in the visible region. The photoresponse measurement shows a bi-exponential growth and bi-exponential decay of the PC from as-grown as well as RTA-treated ZnO NWs. The growth and decay time constants are reduced after the RTA treatment indicating a faster photoresponse. The dark current-voltage characteristics clearly show the presence of surface defects-related trap centers on the as-grown ZnO NWs and after RTA treatment it is significantly reduced. The RTA processing diminishes the surface defect-related trap centers and modifies the surface of the ZnO NWs, resulting in enhanced PC and faster photoresponse. These results demonstrated the effectiveness of RTA processing for achieving improved photosensitivity of ZnO NWs. PMID:21859456

  11. Alignment nature of ZnO nanowires grown on polished and nanoscale etched lithium niobate surface through self-seeding thermal evaporation method

    SciTech Connect

    Mohanan, Ajay Achath; Parthiban, R.; Ramakrishnan, N.

    2015-08-15

    Highlights: • ZnO nanowires were grown directly on LiNbO{sub 3} surface for the first time by thermal evaporation. • Self-alignment of the nanowires due to step bunching of LiNbO{sub 3} surface is observed. • Increased roughness in surface defects promoted well-aligned growth of nanowires. • Well-aligned growth was then replicated in 50 nm deep trenches on the surface. • Study opens novel pathway for patterned growth of ZnO nanowires on LiNbO{sub 3} surface. - Abstract: High aspect ratio catalyst-free ZnO nanowires were directly synthesized on lithium niobate substrate for the first time through thermal evaporation method without the use of a buffer layer or the conventional pre-deposited ZnO seed layer. As-grown ZnO nanowires exhibited a crisscross aligned growth pattern due to step bunching of the polished lithium niobate surface during the nanowire growth process. On the contrary, scratches on the surface and edges of the substrate produced well-aligned ZnO nanowires in these defect regions due to high surface roughness. Thus, the crisscross aligned nature of high aspect ratio nanowire growth on the lithium niobate surface can be changed to well-aligned growth through controlled etching of the surface, which is further verified through reactive-ion etching of lithium niobate. The investigations and discussion in the present work will provide novel pathway for self-seeded patterned growth of well-aligned ZnO nanowires on lithium niobate based micro devices.

  12. Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improvement of photovoltaic performance

    PubMed Central

    2012-01-01

    In this work, we report a direct synthesis of vertically aligned ZnO nanowires on fluorine-doped tin oxide-coated substrates using the chemical vapor deposition (CVD) method. ZnO nanowires with a length of more than 30 μm were synthesized, and dye-sensitized solar cells (DSSCs) based on the as-grown nanowires were fabricated, which showed improvement of the device performance compared to those fabricated using transferred ZnO nanowires. Dependence of the cell performance on nanowire length and annealing temperature was also examined. This synthesis method provided a straightforward, one-step CVD process to grow relatively long ZnO nanowires and avoided subsequent nanowire transfer process, which simplified DSSC fabrication and improved cell performance. PMID:22673046

  13. Ultra-fast microwave-assisted hydrothermal synthesis of long vertically aligned ZnO nanowires for dye-sensitized solar cell application.

    PubMed

    Mahpeykar, S M; Koohsorkhi, J; Ghafoori-Fard, H

    2012-04-27

    Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200 nm min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.

  14. Low-temperature growth of well-aligned ZnO nanorods/nanowires on flexible graphite sheet and their photoluminescence properties

    SciTech Connect

    Zhong, Guo; Kalam, Abul; Al-Shihri, Ayed Sad; Su, Qingmei; Li, Jie; Du, Gaohui

    2012-06-15

    Highlights: ► Well-aligned ZnO nanostructures were grown on flexible graphite sheets at 500–650 °C. ► ZnO nanostructures are formed via self-catalytic vapor–solid process assisted by immiscibility of ZnO with graphite. ► The ZnO nanostructures show intensive green emission. ► The photoluminescence property can be easily tuned by changing growth condition or annealing treatment. -- Abstract: We have grown large-scale well-aligned ZnO nanorods/nanowires on commercial flexible graphite sheet (FGS) at low temperature via chemical vapor deposition method. The products were characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The effects of the growth temperature and oxygen flow rate on the morphology of ZnO nanostructures have been investigated. The growth mechanism of ZnO is found to be a self-catalytic vapor–solid process assisted by the immiscibility of ZnO with graphite. The as-grown ZnO/FGS products show strong green emission and their photoluminescence properties can be tuned by changing growth condition or annealing treatment.

  15. Miniaturized accelerometer made with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Song, Sangho; Kim, Jeong Woong; Kim, Hyun Chan; Yun, Youngmin; Kim, Jaehwan

    2017-04-01

    Miniaturized accelerometer is required in many applications, such as, robotics, haptic devices, gyroscopes, simulators and mobile devices. ZnO is an essential semiconductor material with wide direct band gap, thermal stability and piezoelectricity. Especially, well aligned ZnO nanowire is appropriate for piezoelectric applications since it can produce high electrical signal under mechanical load. To miniaturize accelerometer, an aligned ZnO nanowire is adopted to implement active piezoelectric layer of the accelerometer and copper is chosen for the head mass. To grow ZnO nanowire on the copper head mass, hydrothermal synthesis is conducted and the effect of ZnO nanowire length on the accelerometer performance is investigated. Refresh hydrothermal synthesis can increase the length of ZnO nanowire. The performance of the fabricated ZnO accelerometers is compared with a commercial accelerometer. Sensitivity and linearity of the fabricated accelerometers are investigated.

  16. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    DOEpatents

    Wang, Zhong L; Das, Suman; Xu, Sheng; Yuan, Dajun; Guo, Rui; Wei, Yaguang; Wu, Wenzhuo

    2013-02-05

    In a method for growing a nanowire array, a photoresist layer is placed onto a nanowire growth layer configured for growing nanowires therefrom. The photoresist layer is exposed to a coherent light interference pattern that includes periodically alternately spaced dark bands and light bands along a first orientation. The photoresist layer exposed to the coherent light interference pattern along a second orientation, transverse to the first orientation. The photoresist layer developed so as to remove photoresist from areas corresponding to areas of intersection of the dark bands of the interference pattern along the first orientation and the dark bands of the interference pattern along the second orientation, thereby leaving an ordered array of holes passing through the photoresist layer. The photoresist layer and the nanowire growth layer are placed into a nanowire growth environment, thereby growing nanowires from the nanowire growth layer through the array of holes.

  17. Growth and properties of aligned ZnO nanowires and their applications to n-ZnO/p-Si heterojunction diodes.

    PubMed

    Al-Heniti, S H

    2010-10-01

    Aligned n-ZnO nanowires were synthesized via simple thermal evaporation process by using metallic zinc powder in the presence of oxygen on p-silicon (Si) substrate. The as-synthesized aligned ZnO nanowires were characterized in terms of their structural and optical properties by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction process (XRD) and room-temperature photoluminescence (PL) properties. The detailed structural and optical studies revealed that the as-grown nanowires are single crystalline with the wurtzite hexagonal phase and exhibit good optical properties. From application point of view, the as-grown aligned n-ZnO nanowires on p-Si substrates were used to fabricate heterojunction diodes. The fabricated heterojunction diodes exhibited good electrical (I-V) properties with the turn-on voltage of approximately 1.0 V. A temperature-dependant (from 25 degrees C approximately 130 degrees C), I-V characteristics for the fabricated device was also demonstrated in this paper. The presented results demonstrate that the simply grown aligned n-ZnO nanowires on p-Si substrate can be efficiently used for the fabrication of efficient heterojunction devices.

  18. Feasibility study of ZnO nanowire made accelerometer

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Chan; Ko, Hyun-U.; Song, Sangho; Yun, Youngmin; Kim, Jaehwan

    2016-04-01

    Vertically aligned arrays of ZnO nanowire can be used for many applications such as energy harvesters, UV sensors and mechanical sensors. Here we report the feasibility of a miniaturized accelerometer made with ZnO nanowire. For improving the sensitivity of miniaturized piezoelectric accelerometer, size of piezoelectric ceramic should be large which results in heavy accelerometer and low resonance frequency. To resolve the problem for the miniaturized accelerometer fabrication, ZnO nanowire is chosen. ZnO nanowire, which has piezoelectric property with Wurtzite structure. Since it has high aspect ratio, the use of ZnO nanowire leads to increase deformation and piezoelectric response output. The vertically ZnO nanowire array is grown on a copper substrate by hydrothermal synthesis process. Detail Fabrication process of the miniaturized accelerometer is illustrated. To prove the feasibility of the fabricated accelerometer, dynamic response test is performed in comparison with a commercial accelerometer.

  19. ZnO nanowire lasers.

    PubMed

    Vanmaekelbergh, Daniël; van Vugt, Lambert K

    2011-07-01

    The pathway towards the realization of optical solid-state lasers was gradual and slow. After Einstein's paper on absorption and stimulated emission of light in 1917 it took until 1960 for the first solid state laser device to see the light. Not much later, the first semiconductor laser was demonstrated and lasing in the near UV spectral range from ZnO was reported as early as 1966. The research on the optical properties of ZnO showed a remarkable revival since 1995 with the demonstration of room temperature lasing, which was further enhanced by the first report of lasing by a single nanowire in 2001. Since then, the research focussed increasingly on one-dimensional nanowires of ZnO. We start this review with a brief description of the opto-electronic properties of ZnO that are related to the wurtzite crystal structure. How these properties are modified by the nanowire geometry is discussed in the subsequent sections, in which we present the confined photon and/or polariton modes and how these can be investigated experimentally. Next, we review experimental studies of laser emission from single ZnO nanowires under different experimental conditions. We emphasize the special features resulting from the sub-wavelength dimensions by presenting our results on single ZnO nanowires lying on a substrate. At present, the mechanism of lasing in ZnO (nanowires) is the subject of a strong debate that is considered at the end of this review.

  20. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    DOEpatents

    Wang, Zhong Lin; Hu, Youfan; Zhang, Yan; Xu, Chen; Zhu, Guang

    2014-09-09

    A generator includes a substrate, a first electrode layer, a dense plurality of vertically-aligned piezoelectric elongated nanostructures, an insulating layer and a second electrode layer. The substrate has a top surface and the first electrode layer is disposed on the top surface of the substrate. The dense plurality of vertically-aligned piezoelectric elongated nanostructures extends from the first electrode layer. Each of the nanostructures has a top end. The insulating layer is disposed on the top ends of the nanostructures. The second electrode layer is disposed on the non-conductive layer and is spaced apart from the nanostructures.

  1. ZnO nanowire-based UV photodetector.

    PubMed

    Lu, Chien-Yuan; Chang, Sheng-Po; Chang, Shoou-Jinn; Hsu, Cheng-Liang; Chiou, Yu-Zung; Chen, I-Cherng

    2010-02-01

    ZnO nanowire-based ultraviolet (UV) photodetector was proposed and fabricated by depositing interdigitated Au film on vertically well aligned ZnO nanowires. It was found that the deposited Au film form good ohmic contact with the underneath ZnO nanowires. Upon UV irradiation, it was found that the detector current was increased by more than 2.5 times. It was also found that the corresponding time constant for turn-on transient was tau(on) = 3.125 ms while that for turn-off transient was tau(off) = 36.92 ms.

  2. Growth of Ga-doped ZnO nanowires by two-step vapor phase method

    SciTech Connect

    Xu, C.; Kim, M.; Chun, J.; Kim, D.

    2005-03-28

    A two-step route is presented to dope Ga into ZnO nanowires and also fabricate heterostructures of Ga-doped ZnO nanowires on ZnO. The content of Ga in ZnO nanowires is about 7 at. % from energy-dispersive x-ray analysis. The single crystal Ga doped ZnO nanowires with the diameter of 40 nm and the length of 300-500 nm are well aligned on the ZnO bulk. The growth direction is along [001]. Raman scattering analysis shows that the doping of Ga into ZnO nanowires depresses Raman E{sub 1L} mode of ZnO, manifesting that Ga sites in ZnO are Zn sites (Ga{sub Zn}). The formation mechanism of Zn{sub 1-x}Ga{sub x}O nanowires/ZnO heterostructures is proposed.

  3. Cytotoxicity of ZnO Nanowire Arrays on Excitable Cells.

    PubMed

    Wang, Yongchen; Wu, Yu; Quadri, Farhan; Prox, Jordan D; Guo, Liang

    2017-04-07

    Zinc oxide (ZnO) nanowires have been widely studied for their applications in electronics, optics, and catalysts. Their semiconducting, piezoelectric, fluorescent, and antibacterial properties have also attracted broad interest in their biomedical applications. Thus, it is imperative to evaluate the biosafety of ZnO nanowires and their biological effects. In this study, the cellular level biological effects of ZnO nanowire arrays are specifically tested on three types of excitable cells, including NG108-15 neuronal cell line, HL-1 cardiac muscle cell line, and neonatal rat cardiomyocytes. Vertically aligned and densely packed ZnO nanowire arrays are synthesized using a solution-based method and used as a substrate for cell culture. The metabolism levels of all three types of cells cultured on ZnO nanowire arrays are studied using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays of a full factorial design. Under the studied settings, the results show statistically significant inhibitory effects of ZnO nanowire arrays on the metabolism of NG108-15 and HL-1 cells in comparison to gold, glass, and polystyrene substrates, and on the metabolism of cardiomyocytes in comparison to gold substrate.

  4. Selective area growth of well-ordered ZnO nanowire arrays with controllable polarity.

    PubMed

    Consonni, Vincent; Sarigiannidou, Eirini; Appert, Estelle; Bocheux, Amandine; Guillemin, Sophie; Donatini, Fabrice; Robin, Ivan-Christophe; Kioseoglou, Joseph; Robaut, Florence

    2014-05-27

    Controlling the polarity of ZnO nanowires in addition to the uniformity of their structural morphology in terms of position, vertical alignment, length, diameter, and period is still a technological and fundamental challenge for real-world device integration. In order to tackle this issue, we specifically combine the selective area growth on prepatterned polar c-plane ZnO single crystals using electron-beam lithography, with the chemical bath deposition. The formation of ZnO nanowires with a highly controlled structural morphology and a high optical quality is demonstrated over large surface areas on both polar c-plane ZnO single crystals. Importantly, the polarity of ZnO nanowires can be switched from O- to Zn-polar, depending on the polarity of prepatterned ZnO single crystals. This indicates that no fundamental limitations prevent ZnO nanowires from being O- or Zn-polar. In contrast to their catalyst-free growth by vapor-phase deposition techniques, the possibility to control the polarity of ZnO nanowires grown in solution is remarkable, further showing the strong interest in the chemical bath deposition and hydrothermal techniques. The single O- and Zn-polar ZnO nanowires additionally exhibit distinctive cathodoluminescence spectra. To a broader extent, these findings open the way to the ultimate fabrication of well-organized heterostructures made from ZnO nanowires, which can act as building blocks in a large number of electronic, optoelectronic, and photovoltaic devices.

  5. Performance improvement of miniaturized ZnO nanowire accelerometer fabricated by refresh hydrothermal synthesis.

    PubMed

    Song, Sangho; Kim, Hyun Chan; Kim, Jung Woong; Kim, Debora; Kim, Jaehwan

    2017-09-01

    Miniaturized accelerometers are necessary for evaluating the performance of small devices, such as haptics, robotics and simulators. In this study, we fabricated miniaturized accelerometers using well-aligned ZnO nanowires. The layer of ZnO nanowires is used for active piezoelectric layer of the accelerometer, and copper was chosen as a head mass. Seedless and refresh hydrothermal synthesis methods were conducted to grow ZnO nanowires on the copper substrate and the effect of ZnO nanowire length on the accelerometer performance was investigated. The refresh hydrothermal synthesis exhibits longer ZnO nanowires, 12 µm, than the seedless hydrothermal synthesis, 6 µm. Performance of the fabricated accelerometers was verified by comparing with a commercial accelerometer. The sensitivity of the fabricated accelerometer by the refresh hydrothermal synthesis is shown to be 37.7 pA g(-1), which is about 30 times larger than the previous result.

  6. Laser doping of Sb into ZnO nanowires in the Sb nanoparticle-dispersed liquid

    NASA Astrophysics Data System (ADS)

    Kawahara, Hirotaka; Shimogaki, Tetsuya; Higashihata, Mitsuhiro; Ikenoue, Hiroshi; Nakamura, Daisuke; Okada, Tatsuo

    2015-06-01

    We succeed in fabricating Sb-doped ZnO nanowires by laser doping using Sb nanoparticles (Sb NPs). Vertically aligned ZnO nanowires with a diameter of 100 nm were synthesized by the nanoparticles-assisted pulsed laser deposition. Sb NPs were prepared by laser ablation in liquid. The average size of 50 nm Sb NPs was successfully fabricated by laser ablation in ethanol. Subsequently, laser doping was performed by irradiating Nd:YAG laser beam (355 nm) in Sb-dispersed ethanol. After laser doping, the tip of ZnO nanowires was slightly deformed into spherical shape by laser heating. A rectifying property with a threshold voltage of 4.5 V was observed between n-type ZnO nanowires and Sb-doped ZnO nanowires.

  7. Effect of Ga-doping on the properties of ZnO nanowire

    SciTech Connect

    Ishiyama, Takeshi Nakane, Takaya Fujii, Tsutomu

    2015-02-27

    Arrays of single-crystal zinc oxide (ZnO) nanowires have been synthesized on silicon substrates by vapor-liquid-solid growth techniques. The effect of growth conditions including substrate temperature and Ar gas flow rate on growth properties of ZnO nanowire arrays were studied. Structural and optical characterization was performed using scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. SEM images of the ZnO nanowire arrays grown at various Ar gas flow rates indicated that the alignment and structural features of ZnO nanowires were affected by the gas flow rate. The PL of the ZnO nanowire arrays exhibited strong ultraviolet (UV) emission at 380 nm and green emission around 510 nm. Moreover, the green emission reduced in Ga-doped sample.

  8. Growth of vertically aligned ZnO nanorods using textured ZnO films

    PubMed Central

    2011-01-01

    A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD) is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100) substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells. PACS 61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.) PMID:21899743

  9. Structure and photovoltaic properties of ZnO nanowire for dye-sensitized solar cells.

    PubMed

    Kao, Ming-Cheng; Chen, Hone-Zern; Young, San-Lin; Lin, Chen-Cheng; Kung, Chung-Yuan

    2012-05-18

    Aligned ZnO nanowires with different lengths (1 to approximately 4 μm) have been deposited on indium titanium oxide-coated glass substrates by using the solution phase deposition method for application as a work electrode in dye-sensitized solar cells (DSSC). From the results, the increases in length of zinc oxide (ZnO) nanowires can increase adsorption of the N3 dye through ZnO nanowires to improve the short-circuit photocurrent (Jsc) and open-circuit voltage (Voc), respectively. However, the Jsc and Voc values of DSSC with ZnO nanowires length of 4.0 μm (4.8 mA/cm2 and 0.58 V) are smaller than those of DSSC with ZnO nanowires length of 3.0 μm (5.6 mA/cm2 and 0.62 V). It could be due to the increased length of ZnO nanowires also resulted in a decrease in the transmittance of ZnO nanowires thus reducing the incident light intensity on the N3 dye. Optimum power conversion efficiency (η) of 1.49% was obtained in a DSSC with the ZnO nanowires length of 3 μm.

  10. Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor.

    PubMed

    Suehiro, Junya; Nakagawa, Nobutaka; Hidaka, Shin-Ichiro; Ueda, Makoto; Imasaka, Kiminobu; Higashihata, Mitsuhiro; Okada, Tatsuo; Hara, Masanori

    2006-05-28

    Wide-gap semiconductors with nanostructures such as nanoparticles, nanorods, nanowires are promising as a new type of UV photosensor. Recently, ZnO (zinc oxide) nanowires have been extensively investigated for electronic and optoelectronic device applications. ZnO nanowires are expected to have good UV response due to their large surface area to volume ratio, and they might enhance the performance of UV photosensors. In this paper, a new fabrication method of a UV photosensor based on ZnO nanowires using dielectrophoresis is demonstrated. Dielectrophoresis (DEP) is the electrokinetic motion of dielectrically polarized materials in non-uniform electric fields. ZnO nanowires, which were synthesized by nanoparticle-assisted pulsed-laser deposition (NAPLD) and suspended in ethanol, were trapped in the microelectrode gap where the electric field became higher. The trapped ZnO nanowires were aligned along the electric field line and bridged the electrode gap. Under UV irradiation, the conductance of the DEP-trapped ZnO nanowires exponentially increased with a time constant of a few minutes. The slow UV response of ZnO nanowires was similar to that observed with ZnO thin films and might be attributed to adsorption and photodesorption of ambient gas molecules such as O(2) or H(2)O. At higher UV intensity, the conductance response became larger. The DEP-fabricated ZnO nanowire UV photosensor could detect UV light down to 10 nW cm(-2) intensity, indicating a higher UV sensitivity than ZnO thin films or ZnO nanowires assembled by other methods.

  11. Superhydrophobicity of Hierarchical and ZNO Nanowire Coatings

    DTIC Science & Technology

    2014-01-01

    constructed by growing various lengths of ZnO nanowires on micro- scale Si pyramids produced by chemical etching. The nano-size effect on wettability of...Chemistry A PAPER Pu bl is he d on 1 8 D ec em be r 20 13 . D ow nl oa de d by A ir F or ce B as e R es ea rc h L ab or at or y (A FR L ) D...The nano-size effect on wettability of nano/micro complex structures has been investigated by adjusting the ZnO nanowire length. As the nanowire

  12. Nanowire Array Gratings with ZnO Combs

    SciTech Connect

    Pan, Zhengwei; Mahurin, Shannon Mark; Dai, Sheng; Lowndes, Douglas H

    2005-01-01

    Diffraction gratings are mainly manufactured by mechanical ruling, interference lithography, or resin replication, which generally require expensive equipment, complicated procedures, and a stable environment. We describe the controlled growth of self-organized microscale ZnO comb gratings by a simple one-step thermal evaporation and condensation method. The ZnO combs consist of an array of very uniform, perfectly aligned, evenly spaced and long single-crystalline ZnO nanowires or nanobelts with periods in the range of 0.2 to 2 {mu}m. Diffraction experiments show that the ZnO combs can function as a tiny three-beam divider that may find applications in miniaturized integrated optics such as three-beam optical pickup systems.

  13. A novel maskless approach towards aligned, density modulated and multi-junction ZnO nanowires for enhanced surface area and light trapping solar cells.

    PubMed

    Kevin, M; Fou, Y H; Wong, A S W; Ho, G W

    2010-08-06

    A maskless method of employing polymer growth inhibitor layers is used to modulate the conflicting parameters of density and alignment of multi-junction nanowires via large-scale low temperature chemical route. This low temperature chemical route is shown to synthesize multi-junction nanostructures without compromising the crystal quality at the interfaces. The final morphology of optimized multi-junctions nanowire arrays can be demonstrated on various substrates due to substrate independence and low temperature processing. Here, we also fabricated devices based on density modulated multi-junction nanowires tuned to infiltrate nanoparticles. The fabrication of hierarchically structured nanowire/nanoparticles composites presents an advantageous structure, one that allows nanoparticles to provide large surface areas for dye adsorption, whilst the nanowires can enhance the light harvesting, electron transport rate, and also the mechanical properties of the films. This work can be of great scientific and commercial interest since the technique employed is of low temperature (<90 degrees C) and economical for large-scale solution processing, much valued in today's flexible display and photovoltaic industries.

  14. Selective growth of vertical ZnO nanowires with the control of hydrothermal synthesis and nano-imprint technology.

    PubMed

    Song, Jaejin; Baek, Seonghoon; Lee, Heon; Lim, Sangwoo

    2009-06-01

    Nano-imprint technology is one of the most advanced technologies for the fabrication of nano-size patterning. In this study, nano-imprint technology was used for the selective growth of ZnO nanowires on the Si wafer. When the poly methyl-methacrylate (PMMA) was first patterned by a nano-imprint process and ZnO seed layer was deposited and patterned by lift-off, ZnO nanowires were not vertically grown on the whole area of the patterned seed layer. Synthesis in zinc sulfate solution exhibited well-structured ZnO nanowires compared to the zinc nitrate solution, but uniformly aligned vertical growth of ZnO nanowires was not observed in either cases. On the other hand, when the PMMA was patterned using a nano-imprint process in the presence of seed layer, and ZnO nanowires were synthesized in zinc sulfate solution, selective growth of vertically aligned ZnO nanowires on 0.5 microm pattern sizes was achieved. The observation in this study suggests that the selective growth of ZnO nanowires on a defined pattern size can be obtained with the modification of pattering sequence and the control of low temperature hydrothermal synthesis of ZnO nanowires.

  15. Surface-diffusion induced growth of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Kim, D. S.; Gösele, U.; Zacharias, M.

    2009-05-01

    The growth rate of ZnO nanowires grown epitaxially on GaN/sapphire substrates is studied. An inverse proportional relation between diameter and length of the nanowires is observed, i.e., nanowires with smaller diameters grow faster than larger ones. This unexpected result is attributed to surface diffusion of ZnO admolecules along the sidewalls of the nanowires. In addition, the unique c-axis growth of ZnO nanowires, which does not require a catalytic particle at the tip of the growing nanowires is discussed by taking into account polarity, surface free energy, and ionicity. Activation energies of the nanowire growth are determined as well.

  16. Depth resolved luminescence from oriented ZnO nanowires.

    SciTech Connect

    Rosenberg, R. A.; Abu Haija, M.; Vijayalakshmi, K.; Zhou, J.; Xu, S.; Wang, Z. L.; Georgia Inst. of Tech.

    2009-12-14

    We have utilized the limited penetration depth of x-rays to study the near-surface properties of vertically aligned ZnO nanowires. For an energy of 600 eV the penetration depth varies between 3 and 132 nm as the incidence angle changes from 2{sup o} to 33{sup o}. Thus, by obtaining optical luminescence spectra as a function of incidence angle, it is possible to probe the near-surface region with nanometer-scale resolution. We will present angle dependent optical luminescence data from oriented ZnO nanowires. By fitting the results to a simple model, we extract a depth for the surface defect regions of -14 nm.

  17. Nanofabrication on ZnO nanowires

    SciTech Connect

    Zhan Jinhua; Bando, Yoshio; Hu, Junqing; Golberg, Dmitri

    2006-12-11

    ZnO nanowires were subjected to convergent electron beam irradiation in a 300 kV transmission electron microscope. The size of perforated hexagonal pores generated by irradiation can vary with the beam size. An irradiated area is denuded layer by layer via removal of Zn and O atoms. The polar ZnO surfaces have a higher resistance to irradiation than the unpolar ones. Ultrathin nanobridges, {approx}1 nm thick or less, were generated through deliberate removal of Zn and O atomic monolayers.

  18. Electrical properties of individual ZnO nanowires.

    PubMed

    Sakurai, M; Wang, Y G; Uemura, T; Aono, M

    2009-04-15

    The electrical properties of individual ZnO nanowires were investigated for two methods of fabricating nanowire-electrode junctions. The number of carriers in the nanowires was increased by electrostatically doping them by applying a gate voltage. The nanowires were chemically doped by introducing impurities during growth. The Ga-doped nanowires had a linear current-voltage relationship over a wide voltage region. The nanowire-electrode junctions were formed either by using lithography to form electrodes on the nanowire or by using an AFM probe to move a nanowire onto prepared electrodes. With both methods, electrodes made of Ga-doped ZnO were found to make better electrical contact with the nanowire than those made of Ti/Au.

  19. Enhanced field emission from ZnO nanowire arrays utilizing MgO buffer between seed layer and silicon substrate

    NASA Astrophysics Data System (ADS)

    Chen, Si; Chen, Jiangtao; Liu, Jianlin; Qi, Jing; Wang, Yuhua

    2016-11-01

    Field emitters based on ZnO nanowires and other nanomaterials are promising high-brightness electron sources for field emission display, microscopy and other applications. The performance of a ZnO nanowire field emitter is linked to the quality, conductivity and alignment of the nanowires on a substrate, therefore requiring ways to improve these parameters. Here, ZnO nanowire arrays were grown on ZnO seed layer on silicon substrate with MgO buffer between the seed layer and Si. The turn-on field and enhancement factor of these nanowire arrays are 3.79 V/μm and 3754, respectively. These properties are improved greatly compared to those of ZnO nanowire arrays grown on ZnO seed layer without MgO buffer, which are 5.06 V/μm and 1697, respectively. The enhanced field emission properties can be attributed to better electron transport in seed layer, and better nanowire alignment because of MgO buffer.

  20. Doped ZnO nanowires obtained by thermal annealing.

    PubMed

    Shan, C X; Liu, Z; Wong, C C; Hark, S K

    2007-02-01

    Doped ZnO nanowires were prepared in a very simple and inexpensive thermal annealing method using ZnSe nanowires as a precursor. As doped, P doped, and As/P codoped ZnO nanowires were obtained in this method. X-ray diffraction shows that the zincblende ZnSe nanowires were converted to doped wurtzite ZnO nanowires. The incorporation of the dopants was confirmed by energy dispersive X-ray spectroscopy. The doping concentration could be adjusted by changing the annealing temperature and duration. Scanning electron microscopy indicated that the morphology of the ZnSe nanowires was essentially retained after the annealing and doping process. Photoluminescence spectroscopy also verified the incorporation of the dopants into the nanowires.

  1. In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field.

    PubMed

    Zhang, Lichao; Dou, Xiujie; Min, Changjun; Zhang, Yuquan; Du, Luping; Xie, Zhenwei; Shen, Junfeng; Zeng, Yujia; Yuan, Xiaocong

    2016-05-14

    In general, when a semiconductor nanowire is trapped by conventional laser beam tweezers, it tends to be aligned with the trapping beam axis rather than confined in the horizontal plane, and this limits the application of these nanowires in many in-plane nanoscale optoelectronic devices. In this work, we achieve the in-plane trapping and manipulation of a single ZnO nanowire by a hybrid plasmonic tweezer system on a flat metal surface. The gap between the nanowire and the metallic substrate leads to an enhanced gradient force caused by deep subwavelength optical energy confinement. As a result, the nanowire can be securely trapped in-plane at the center of the excited surface plasmon polariton field, and can also be dynamically moved and rotated by varying the position and polarization direction of the incident laser beam, which cannot be performed using conventional optical tweezers. The theoretical results show that the focused plasmonic field induces a strong in-plane trapping force and a high rotational torque on the nanowire, while the focused optical field produces a vertical trapping force to produce the upright alignment of the nanowire; this is in good agreement with the experimental results. Finally, some typical ZnO nanowire structures are built based on this technique, which thus further confirms the potential of this method for precise manipulation of components during the production of nanoelectronic and nanophotonic devices.

  2. Synthesis of Vertically-Aligned Zinc Oxide Nanowires and Their Application as a Photocatalyst

    PubMed Central

    Zhou, Qiong; Wen, John Z.; Zhao, Pei; Anderson, William A.

    2017-01-01

    Vertically aligned zinc oxide (ZnO) nanowires were hydrothermally synthesized on a glass substrate with the assistance of a pre-coated ZnO seeding layer. The crystalline structure, morphology and transmission spectrum of the as-synthesized sample were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and ultraviolet-visible (UV-Vis) spectrophotometry, respectively, indicating a wurzite ZnO material of approximately 100 nm wire diameter and absorbance at 425 nm and lower wavelengths. The photocatalytic activity of the sample was tested via the degradation of methyl orange in aqueous solution under UV-A irradiation. The synthesized nanowires showed a high photocatalytic activity, which increased up to 90% degradation in 2 h as pH was increased to 12. It was shown that the photocatalytic activity of the nanowires was proportional to the length to diameter ratio of the nanowires, which was in turn controlled by the growth time and grain size of the seed layer. Estimates suggest that diffusion into the regions between nanowires may be significantly hindered. Finally, the reusability of the prepared ZnO nanowire samples was also investigated, with results showing that the nanowires still showed 97% of its original photoactivity after ten cycles of use. PMID:28336843

  3. Synthesizing tubular and trapezoidal shaped ZnO nanowires by an aqueous solution method

    NASA Astrophysics Data System (ADS)

    Taghavi, Majid; Mattoli, Virgilio; Mazzolai, Barbara; Filippeschi, Carlo; Beccai, Lucia

    2013-03-01

    In this paper we present a novel bottom-up method suitable for developing vertically aligned hollow ZnO nanowires, ZnO nanotubes as well as longitudinally half ZnO nanowires. The procedures used for synthesizing such crystals combine chemical and electrochemical growth processes in aqueous solution at low temperatures (<90 °C), with a growth block process. A thin layer of gold, deposited when the nanowire growth process is at half way, has the crucial role of blocking the growth along the intended directions. The possibility of fabricating highly aligned crystals on a wide range of polymeric substrates, including flexible or transparent ones, is also illustrated. Our proposed methods hold potential for new developments in piezotronics and piezophotonics by allowing fabrication of nanodevices in the inner region of the hollow nanowires and nanotubes.In this paper we present a novel bottom-up method suitable for developing vertically aligned hollow ZnO nanowires, ZnO nanotubes as well as longitudinally half ZnO nanowires. The procedures used for synthesizing such crystals combine chemical and electrochemical growth processes in aqueous solution at low temperatures (<90 °C), with a growth block process. A thin layer of gold, deposited when the nanowire growth process is at half way, has the crucial role of blocking the growth along the intended directions. The possibility of fabricating highly aligned crystals on a wide range of polymeric substrates, including flexible or transparent ones, is also illustrated. Our proposed methods hold potential for new developments in piezotronics and piezophotonics by allowing fabrication of nanodevices in the inner region of the hollow nanowires and nanotubes. Electronic supplementary information (ESI) available: The images taken by SEM including: the results of ECG-CG-H-NW, CG-ECG-H-NW and CG-CG-NT growth using the same typical conditions which were used for the first generation of NW growth, the bottom sides of ZnO-NWs after

  4. Power generation from base excitation of a Kevlar composite beam with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Hwang, Hyun-Sik; Sodano, Henry A.

    2015-04-01

    One-dimensional nanostructures such as nanowires, nanorods, and nanotubes with piezoelectric properties have gained interest in the fabrication of small scale power harvesting systems. However, the practical applications of the nanoscale materials in structures with true mechanical strengths have not yet been demonstrated. In this paper, piezoelectric ZnO nanowires are integrated into the fiber reinforced polymer composites serving as an active phase to convert the induced strain energy from ambient vibration into electrical energy. Arrays of ZnO nanowires are grown vertically aligned on aramid fibers through a low-cost hydrothermal process. The modified fabrics with ZnO nanowires whiskers are then placed between two carbon fabrics as the top and the bottom electrodes. Finally, vacuum resin transfer molding technique is utilized to fabricate these multiscale composites. The fabricated composites are subjected to a base excitation using a shaker to generate charge due to the direct piezoelectric effect of ZnO nanowires. Measuring the generated potential difference between the two electrodes showed the energy harvesting application of these multiscale composites in addition to their superior mechanical properties. These results propose a new generation of power harvesting systems with enhanced mechanical properties.

  5. Synthesis and properties of Pr3+-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Antipova, S. A.

    2017-07-01

    Well-aligned Pr3+-doped ZnO nanowires (NWs) were obtained by chemical vapor deposition (CVD) method without catalysts on silicon substrates by vapor-solid process. The length and diameter of ZnO NWs were 1-2 μm and 50-100 nm, respectively. X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) have been used to characterize the obtained Pr3+-doped ZnO nanowires. The concentration of dopant in the synthesized nanowires was 0.7 at %, according to EDX measurements. XPS was also used to characterize the samples and to confirm their composition. Pr3+-doped ZnO sensors were fabricated using a focused ion beam (FIB) with Au/Ti electrodes. A nanosensor is invented from an individual zinc oxide nanowire (80 nm in diameter). Response characteristics of the single nanowire towards dinitrogen monoxide (N2O), hydrogen (H2), ammonia (NH3) were examined at room temperature at different concentrations of gases.

  6. High mobility ZnO nanowires for terahertz detection applications

    SciTech Connect

    Liu, Huiqiang; Peng, Rufang E-mail: chusheng@mail.sysu.edu.cn; Chu, Shijin; Chu, Sheng E-mail: chusheng@mail.sysu.edu.cn

    2014-07-28

    An oxide nanowire material was utilized for terahertz detection purpose. High quality ZnO nanowires were synthesized and field-effect transistors were fabricated. Electrical transport measurements demonstrated the nanowire with good transfer characteristics and fairly high electron mobility. It is shown that ZnO nanowires can be used as building blocks for the realization of terahertz detectors based on a one-dimensional plasmon detection configuration. Clear terahertz wave (∼0.3 THz) induced photovoltages were obtained at room temperature with varying incidence intensities. Further analysis showed that the terahertz photoresponse is closely related to the high electron mobility of the ZnO nanowire sample, which suggests that oxide nanoelectronics may find useful terahertz applications.

  7. Quantum Efficiency of ZnO Nanowire Nanolasers

    SciTech Connect

    Zhang, Yanfeng; Russo, Richard E.; Mao, Samuel S.

    2005-03-28

    Crystalline ZnO nanowires were grown on sapphire and silicon substrates using pulsed-laser deposition. The optical properties of nanowire nanolasers, including their absolute light emission intensity and external and internal quantum efficiencies were experimentally determined. The external differential quantum efficiency was measured to be as high as 60% for lasing ZnO nanowires of 7.5 {micro}m in length, compared to a value of approximately 10% for photoluminescence. The absolute light emission intensity for individual nanowires was found to be in the vicinity of 0.1 mW. By measuring the dependence of external differential quantum efficiency on the cavity length, the internal quantum efficiency of ZnO nanowire nanolasers was determined to be about 85%.

  8. Development of multifunctional fiber reinforced polymer composites through ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Patterson, Brendan A.; Hwang, Hyun-Sik; Sodano, Henry A.

    2016-04-01

    Piezoelectric nanowires, in particular zinc oxide (ZnO) nanowires, have been vastly used in the fabrication of electromechanical devices to convert wasted mechanical energy into useful electrical energy. Over recent years, the growth of vertically aligned ZnO nanowires on various structural fibers has led to the development of fiber-based nanostructured energy harvesting devices. However, the development of more realistic energy harvesters that are capable of continuous power generation requires a sufficient mechanical strength to withstand typical structural loading conditions. Yet, a durable, multifunctional material system has not been developed thoroughly enough to generate electrical power without deteriorating the mechanical performance. Here, a hybrid composite energy harvester is fabricated in a hierarchical design that provides both efficient power generating capabilities while enhancing the structural properties of the fiber reinforced polymer composite. Through a simple and low-cost process, a modified aramid fabric with vertically aligned ZnO nanowires grown on the fiber surface is embedded between woven carbon fabrics, which serve as the structural reinforcement as well as the top and the bottom electrodes of the nanowire arrays. The performance of the developed multifunctional composite is characterized through direct vibration excitation and tensile strength examination.

  9. Defect properties of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Stehr, J. E.; Devika, M.; Reddy, N. Koteeswara; Tu, C. W.; Chen, W. M.; Buyanova, I. A.

    2014-02-01

    In this work we examined optical and defect properties of as-grown and Ni-coated ZnO nanowires (NWs) grown by rapid thermal chemical vapor deposition by means of optically detected magnetic resonance (ODMR). Several grown-in defects are revealed by monitoring visible photoluminescence (PL) emissions and are attributed to Zn vacancies, O vacancies, a shallow (but not effective mass) donor and exchange-coupled pairs of a Zn vacancy and a Zn interstitial. It is also found that the same ODMR signals are detected in the as-grown and Ni-coated NWs, indicating that metal coatings does not significantly affect formation of the aforementioned defects and that the observed defects are located in the bulk of the NWs.

  10. Controlled growth of ZnO nanowires by nanoparticle-assisted laser ablation deposition

    NASA Astrophysics Data System (ADS)

    Okada, T.; Guo, R.; Nishimura, J.; Matsumoto, M.; Higashihata, M.; Nakamura, D.

    2008-02-01

    Vertically aligned ZnO nanowires have been successfully synthesized on c-cut sapphire substrates by a catalyst-free nanoparticle-assisted pulsed-laser ablation deposition (NAPLD) in Ar and N II background gases. In NAPLD, the nanoparticles formed in a background gas by laser ablation are used as a starting material for the growth of the nanowires. The surface density of the nanowires can be controlled by varying the density of nanoparticles, which are accomplished by changing the energy of the ablation laser, the repetition rate of the laser and so on. When single ZnO nanowire synthesized in a N II background gas was excited by 355 nm laser-pulse with a pulse-width of 8 ns, stimulated emission was clearly observed, indicating high quality of the nanowire. These nanowires were used as building blocks for an ultraviolet light emitting diode with a structure of n-ZnO/ZnO nanowire/p-GaN.

  11. Hierarchical Carbon Fibers with ZnO Nanowires for Volatile Sensing in Composite Curing (Postprint)

    DTIC Science & Technology

    2014-07-01

    AFRL-RX-WP-JA-2014-0171 HIERARCHICAL CARBON FIBERS WITH ZnO NANOWIRES FOR VOLATILE SENSING IN COMPOSITE CURING (POSTPRINT) Gregory...REPORT TYPE Interim 3. DATES COVERED (From – To) 16 April 2012 – 02 June 2014 4. TITLE AND SUBTITLE HIERARCHICAL CARBON FIBERS WITH ZnO NANOWIRES ...needed to demonstrate the use of Zinc Oxide (ZnO) nanowire coated carbon fibers as a volatile sensor. ZnO nanowires are demonstrated to function as

  12. Pressure-dependent photoluminescence study of ZnO nanowires

    SciTech Connect

    Shan, W.; Walukiewicz, W.; Ager III, J.W.; Yu, K.M.; Zhang, Y.; Mao, S.S.; Kling, R.

    2004-09-13

    The pressure dependence of the photoluminescence (PL) transition associated with the fundamental band gap of ZnO nanowires has been studied at pressures up to 15 GPa. ZnO nanowires are found to have a higher structural phase transition pressure around 12 GPa as compared to 9.0 GPa for bulk ZnO. The pressure-induced energy shift of the near band-edge luminescence emission yields a linear pressure coefficient of 29.6 meV/GPa with a small sublinear term of -0.43 meV/GPa{sup 2}. An effective hydrostatic deformation potential -3.97 eV for the direct band gap of the ZnO nanowires is derived from the result.

  13. Mechanical transfer of ZnO nanowires for a flexible and conformal piezotronic strain sensor

    NASA Astrophysics Data System (ADS)

    Jenkins, Kory; Yang, Rusen

    2017-07-01

    We demonstrate a truly conformal and flexible piezotronic strain sensor using zinc oxide (ZnO) nanowires. Well-aligned, vertical ZnO nanowires are grown by chemical vapor deposition on a silicon wafer with a hydrothermally grown ZnO seed layer. The nanowires are infiltrated with polydimethylsiloxane and mechanically transferred from the silicon substrate. Plasma etching exposes the top surface of the nanowires before deposition of a gold (Au) top electrode. The bottom electrode is formed by silver paint which also adheres the sensor to the measured structure. To demonstrate the sensor’s ability to conform to complex surfaces, a stepped shaft with a shoulder fillet is used. The sensor is attached to the shoulder fillet of the stepped shaft, conforming to both the circumference of the shaft, and the radius of the fillet. A periodic bending displacement is applied to the end of the shaft. The strain induces a piezoelectric potential in the ZnO nanowires which controls the barrier height and conductivity at the gold/ZnO interface, by what is known as the piezotronic effect. The conductivity change is measured for periodically applied strains. The nonlinear current-voltage (I-V) response of the device is due to the Schottky contact between the ZnO nanowires and gold electrode. The geometry of the stepped shaft corresponds to a known stress concentration factor, and the strain experienced by the shaft is estimated with a COMSOL FEA study. The conformal nature of the strain sensor makes it suitable for structural monitoring applications involving complex geometries and stress concentrators.

  14. Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting

    NASA Astrophysics Data System (ADS)

    Boughey, Francesca L.; Davies, Timothy; Datta, Anuja; Whiter, Richard A.; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-07-01

    A piezoelectric nanogenerator has been fabricated using a simple, fast and scalable template-assisted electrodeposition process, by which vertically aligned zinc oxide (ZnO) nanowires were directly grown within a nanoporous polycarbonate (PC) template. The nanowires, having average diameter 184 nm and length 12 μm, are polycrystalline and have a preferred orientation of the [100] axis parallel to the long axis. The output power density of a nanogenerator fabricated from the as-grown ZnO nanowires still embedded within the PC template was found to be 151 ± 25 mW m-3 at an impedance-matched load, when subjected to a low-level periodic (5 Hz) impacting force akin to gentle finger tapping. An energy conversion efficiency of ˜4.2% was evaluated for the electrodeposited ZnO nanowires, and the ZnO-PC composite nanogenerator was found to maintain good energy harvesting performance through 24 h of continuous fatigue testing. This is particularly significant given that ZnO-based nanostructures typically suffer from mechanical and/or environmental degradation that otherwise limits their applicability in vibrational energy harvesting. Our template-assisted synthesis of ZnO nanowires embedded within a protective polymer matrix through a single growth process is thus attractive for the fabrication of low-cost, robust and stable nanogenerators.

  15. Selective growth of catalyst-free ZnO nanowire arrays on Al:ZnO for device application

    SciTech Connect

    Chung, T. F.; Luo, L. B.; He, Z. B.; Leung, Y. H.; Shafiq, I.; Yao, Z. Q.; Lee, S. T.

    2007-12-03

    Vertically aligned ZnO nanowire (NW) arrays have been synthesized selectively on patterned aluminum-doped zinc oxide (AZO) layer deposited on silicon substrates without using any metal catalysts. The growth region was defined by conventional photolithography with an insulating template. Careful control of the types of template materials and growth conditions allows good alignment and growth selectivity for ZnO NW arrays. Sharp ultraviolet band-edge peak observed in the photoluminescence spectra of the patterned ZnO NW arrays reveals good optical qualities. The current-voltage characteristics of ZnO NWs/AZO/p-Si device suggest that patterned and aligned ZnO NW arrays on AZO may be used in optoelectronic devices.

  16. Fabrication and Performance Study on Individual Zno Nanowires Based Bioelectrode

    NASA Astrophysics Data System (ADS)

    Zhao, Yanguang; Yan, Xiaoqin; Kang, Zhuo; Lin, Pei

    2012-08-01

    One-dimensional zinc oxide nanowires (ZnO NWs) have unique advantages for use in biosensors as follows: oxide stable surface, excellent biosafety, high specific surface area, high isoelectric point (IEP = 9.5). In this work, we have prepared a kind of electrochemical bioelectrode based on individual ZnO NWs. Here, ZnO NWs with high quality were successfully synthesized by CVD method, which were characterized by scanning electron microscopy, X-ray diffraction and photoluminescence. Then the Raman spectra and electrical characterization demonstrated the adsorption of uricase on ZnO wires. At last, a series of electrochemical measurements were carried out by using an electrochemical workstation with a conventional three-electrode system to obtain the cyclic voltammetry characteristics of the bioelectrodes. The excellent performance of the fabricated bioelectrode implies the potential application for single ZnO nanowire to construct electrochemical biosensor for the detection of uric acid.

  17. Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays

    PubMed Central

    2011-01-01

    Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices. PMID:27502660

  18. Flexible Dye-Sensitized Solar Cell based on Vertical ZnO Nanowire Arrays

    SciTech Connect

    Chu, Sheng; Li, Dongdong; Chang, Pai-Chun; Lu, Jia Grace

    2010-09-26

    Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices.

  19. In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field

    NASA Astrophysics Data System (ADS)

    Zhang, Lichao; Dou, Xiujie; Min, Changjun; Zhang, Yuquan; Du, Luping; Xie, Zhenwei; Shen, Junfeng; Zeng, Yujia; Yuan, Xiaocong

    2016-05-01

    In general, when a semiconductor nanowire is trapped by conventional laser beam tweezers, it tends to be aligned with the trapping beam axis rather than confined in the horizontal plane, and this limits the application of these nanowires in many in-plane nanoscale optoelectronic devices. In this work, we achieve the in-plane trapping and manipulation of a single ZnO nanowire by a hybrid plasmonic tweezer system on a flat metal surface. The gap between the nanowire and the metallic substrate leads to an enhanced gradient force caused by deep subwavelength optical energy confinement. As a result, the nanowire can be securely trapped in-plane at the center of the excited surface plasmon polariton field, and can also be dynamically moved and rotated by varying the position and polarization direction of the incident laser beam, which cannot be performed using conventional optical tweezers. The theoretical results show that the focused plasmonic field induces a strong in-plane trapping force and a high rotational torque on the nanowire, while the focused optical field produces a vertical trapping force to produce the upright alignment of the nanowire; this is in good agreement with the experimental results. Finally, some typical ZnO nanowire structures are built based on this technique, which thus further confirms the potential of this method for precise manipulation of components during the production of nanoelectronic and nanophotonic devices.In general, when a semiconductor nanowire is trapped by conventional laser beam tweezers, it tends to be aligned with the trapping beam axis rather than confined in the horizontal plane, and this limits the application of these nanowires in many in-plane nanoscale optoelectronic devices. In this work, we achieve the in-plane trapping and manipulation of a single ZnO nanowire by a hybrid plasmonic tweezer system on a flat metal surface. The gap between the nanowire and the metallic substrate leads to an enhanced gradient force

  20. Tunable band offset and recombination in ZnO nanowire-CdTe quantum dot heterostructures

    NASA Astrophysics Data System (ADS)

    He, Haiping; Gan, Lu; Sun, Luwei; Ye, Zhizhen

    2017-10-01

    ZnO nanowire (NW)-CdTe quantum dot (QD) type-II heterostructures were constructed using hydrothermally grown ZnO and colloidal CdTe QDs. Photoluminescence (PL) spectroscopy was used to investigate the charge transfer and band offset between CdTe QDs and ZnO NWs. The results demonstrated that the PL shows obvious redshift and prolonged lifetime in the heterostructure, indicating that it originates from recombination between electrons localized in ZnO and holes localized in CdTe. The results reveal that the band offset and charge recombination can be tuned by the growth time or size of CdTe QDs. Our results demonstrate that PL can be a useful tool to evaluate the band alignment and charge recombination in type-II semiconductor heterostructures.

  1. Growth of ZnO nanowires on nonwoven polyethylene fibers

    NASA Astrophysics Data System (ADS)

    Baruah, Sunandan; Thanachayanont, Chanchana; Dutta, Joydeep

    2008-04-01

    We report the growth of ZnO nanowires on nonwoven polyethylene fibers using a simple hydrothermal method at a temperature below the boiling point of water. The ZnO nanowires were grown from seed ZnO nanoparticles affixed onto the fibers. The seed ZnO nanoparticles, with diameters of about 6-7 nm, were synthesized in isopropanol by reducing zinc acetate hydrate with sodium hydroxide. The growth process was carried out in a sealed chemical bath containing an equimolar solution of zinc nitrate hexahydrate and hexamethylene tetramine at a temperature of 95 °C over a period of up to 20 h. The thickness and length of the nanowires can be controlled by using different concentrations of the starting reactants and growth durations. A 0.5 mM chemical bath yielded nanowires with an average diameter of around 50 nm, while a 25 mM bath resulted in wires with a thickness of up to about 1 μm. The length of the wires depends both on the concentration of the precursor solution as well as the growth duration, and in 20 h, nanowires as long as 10 μm can be grown. The nonwoven mesh of polyethylene fibers covered with ZnO nanowires can be used for novel applications such as water treatment by degrading pollutants by photocatalysis. Photocatalysis tests carried out on standard test contaminants revealed that the polyethylene fibers with ZnO nanowires grown on them could accelerate the photocatalytic degradation process by a factor of 3.

  2. Gold as an intruder in ZnO nanowires.

    PubMed

    Méndez-Reyes, José M; Monroy, B Marel; Bizarro, Monserrat; Güell, Frank; Martínez, Ana; Ramos, Estrella

    2015-09-07

    Several techniques for obtaining ZnO nanowires (ZnO NWs) have been reported in the literature. In particular, vapour-liquid-solid (VLS) with Au as a catalyst is widely used. During this process, Au impurities in the ZnO NWs can be incorporated accidentally, and for this reason we named these impurities as intruders. It is thought that these intruders may produce interesting alterations in the electronic characteristics of nanowires. In the experiment, it is not easy to detect either Au atoms in these nanowires, or the modification that intruders produce in different electrical, optical and other properties. For this reason, in this density functional theory investigation, the effect of Au intruders on ZnO NWs is analysed. Au extended (thread) and point defects (atoms replacing Zn or O, or Au interstitials) are used to simulate the presence of gold atoms. Optimised geometries, band-gaps and density of states indicate that the presence of small amounts of Au drastically modifies the electronic states of ZnO NWs. The results reported here clearly indicate that small amounts of Au have a strong impact on the electronic properties of ZnO NWs, introducing states in the band edges that may promote transitions in the visible spectral region. The presence of Au as an intruder in ZnO NWs enhances the potential use of this system for photonic and photovoltaic applications.

  3. Fabrication and characterization of ZnO nanowires grown on Ti substrate

    NASA Astrophysics Data System (ADS)

    Meng, Gang; Fang, Xiaodong; Tao, Ruhua; Dong, Weiwei; Deng, Zanhong; Zhou, Shu

    2009-07-01

    Zinc oxide (ZnO) with a wide band gap of 3.37 eV, and a large exciton binding energy of 60 mV at room temperature, is one of the most important n-type semiconductor, that has potential applications in the area of short-wavelength optoelectronic devices, gas sensors, solar cells, and field emitters. Some advanced nanodevices based on one-dimensional (1-D) ZnO nanomaterials have been successfully demonstrated in the past few years. The types of substrate have a great influence on the properties of ZnO nanostrctural devices. Semiconductor substrates such as Si and Al2O3 were widely used for the collection or epitaxial growth of ZnO nanostructures, for metal substrate, Fe and Cu foil has also been used as substrate, there are few reports on ZnO nanowires grown on Ti foil, Ti is an important electrode metal that ohmic contact can be appropriately achieved, which is critical for semiconductor device application. Besides, both Ti and ZnO show good biocompatibility, it is expected that ZnO nanowires/ Ti show good performance on bio-sensors. In this paper, 1-D ZnO nanostructures have been successfully fabricated on the conductive Ti substrate via a vapor phase transport (VPT) method by carbothermal reduction of ZnO and graphite powder mixture in a tube furnace at 850°C. The final products were characterized by means of field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), high-solution transmission electron microscope (HRTEM) (equipped with selected area electron diffraction, SAED), and photoluminescence (PL) spectroscopy. FE SEM results show that dense, ultra-long (>10μm), and locally aligned ZnO nanowire arrays were grown on the Ti foil. The diameter of nanowires exhibits a wide range from 150 nm to about 500nm. Structural characterizations (XRD, SAED, HRTEM) indicate the as synthesized nanostructures have a ZnO wurtzite structure and are perfect single crystalline without any defects or impurities. The growth direction is [0001]. Optical

  4. Oxygen sensing characteristics of individual ZnO nanowire transistors

    SciTech Connect

    Li, Q.H.; Liang, Y.X.; Wan, Q.; Wang, T.H.

    2004-12-27

    Individual ZnO nanowire transistors are fabricated, and their sensing properties are investigated. The transistors show a carrier density of 2300 {mu}m{sup -1} and mobility up to 6.4 cm{sup 2}/V s, which are obtained from the I{sub SD}-V{sub G} curves. The threshold voltage shifts in the positive direction and the source-drain current decreases as ambient oxygen concentration increases. However, the opposite occurs when the transistors are under illumination. Surface adsorbates on the ZnO nanowires affect both the mobility and the carrier density. Our data are helpful in understanding the sensing mechanism of the gas sensors.

  5. ZnO nanowire-based CO sensor

    NASA Astrophysics Data System (ADS)

    Ho, Mon-Shu; Chen, Wei-Hao; Chen, Yu-Lin; Chang, Meng-Fan

    This study applied ZnO nanowires to the fabrication of a CO gas sensor operable at room temperature. Following the deposition of a seed layer by spin coating, an aqueous solution method was used to grow ZnO nanowires. This was followed by the self-assembly of an electrode array via dielectrophoresis prior to the fabrication of the CO sensing device. The material characteristics were analyzed using FE-SEM, EDS, GIXRD, FE-TEM, and the measurement of photoluminescence (PL). Our results identified the ZnO nanowires as a single crystalline wurtzite structure. Extending the growth period from 30 min to 360 min led to an increase in the length and diameter of the nanowires. After two hours, the ZnO presented a preferred crystal orientation of [002]. Sensor chips were assembled using 60 pairs of electrodes with gaps of 2 μm, over which were lain nanowires to complete the sensing devices. The average sensing response was 48.37 s and the average recovery time was 65.61 s, with a sensing response magnitude of approximately 6.8% at room temperature.

  6. Synthesis of nanograined ZnO nanowires and their enhanced gas sensing properties.

    PubMed

    Park, Sunghoon; An, Soyeon; Ko, Hyunsung; Jin, Changhyun; Lee, Chongmu

    2012-07-25

    Polycrystalline ZnO nanowires with grain sizes ranging from 20 to 100 nm were synthesized using a newly designed two-step process: (first step) synthesis of ZnSe nanowires by vapor transportation of a mixture of ZnSe powders; and (second step) thermal oxidation of the ZnSe nanowires at 650 °C. Compared to the single-crystal ZnO nanowire gas sensors and other nanomaterial gas sensors reported previously, the multiple networked nanowire gas sensors fabricated from the nanograined ZnO nanowires showed substantially enhanced electrical responses to NO2 gas at 300 °C. The NO2 gas sensing properties of the nanograined ZnO nanowires increased dramatically with increasing NO2 concentration. The multiple-networked nanograined ZnO nanowire sensor showed a response value of 237,263% at 10 ppm NO2 and 300 °C, whereas the single-crystal ZnO nanowire sensors showed a response of only 6.5% under the same conditions. The recovery time of the nanograined ZnO nanowire sensor was much shorter than that of the normal ZnO nanowire sensor over the NO2 concentration range of 1-10 ppm, even though the response time of the former was somewhat longer than that of the latter. The origin of the enhanced NO2 gas sensing properties of the nanograined ZnO nanowire sensor is discussed.

  7. High performance hydrogen sensor based on Mn implanted ZnO nanowires array fabricated on ITO substrate.

    PubMed

    Renitta, A; Vijayalakshmi, K

    2017-08-01

    In the present research, we propose a novel approach for the detection of hydrogen gas using Mn implanted ZnO nanowires fabricated onto ITO coated glass substrate by chemical spray pyrolysis deposition. The effect of Mn concentration on the structural, optical and morphological properties of ZnO films were investigated. X-ray diffraction studies showed that the Mn implanted ZnO films were grown as a polycrystalline hexagonal wurtzite phase without any impurities. The (101) peak position of ZnO-Mn films was shifted towards a lower angle with increasing Mn concentration. The optical band gap decreased from 3.45eV to 3.23eV with increasing Mn content. PL spectra, revealed sharp and strong near band edge emission which suggests that ZnO nanowires exhibit high crystalline quality. FE-SEM images of Mn implanted ZnO show perfectly aligned nanowires for all the films fabricated on ITO. The material (Zn, O, Mn) was confirmed by EDX spectra. The hydrogen sensing mechanism of the Mn implanted ZnO nanowire sensor was also discussed. It was found that H2 response was significantly enhanced by more than one order of magnitude with increasing Mn doping concentrations. The studied ZnO-Mn films coated on ITO substrate can be used as a low cost and easy-fabrication hydrogen sensing material. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthesis and characterization of ZnO nanowires for nanosensor applications

    SciTech Connect

    Lupan, O.; Emelchenko, G.A.; Ursaki, V.V.; Chai, G.; Redkin, A.N.; Gruzintsev, A.N.; Tiginyanu, I.M.; Chow, L.; Ono, L.K.; and others

    2010-08-15

    In this paper we report the synthesis of ZnO nanowires via chemical vapor deposition (CVD) at 650 {sup o}C. It will be shown that these nanowires are suitable for sensing applications. ZnO nanowires were grown with diameters ranging from 50 to 200 nm depending on the substrate position in a CVD synthesis reactor and the growth regimes. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and Raman spectroscopy (RS) have been used to characterize the ZnO nanowires. To investigate the suitability of the CVD synthesized ZnO nanowires for gas sensing applications, a single ZnO nanowire device (50 nm in diameter) was fabricated using a focused ion beam (FIB). The response to H{sub 2} of a gas nanosensor based on an individual ZnO nanowire is also reported.

  9. Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation

    SciTech Connect

    Lee, Woong; Jeong, Min-Chang; Myoung, Jae-Min

    2004-08-02

    ZnO nanowires were grown on GaAs(0 0 2) substrates using metal-organic chemical vapour deposition (MOCVD) and on Si(0 0 1) substrates using thermal evaporation of source powders, respectively. It was demonstrated that well-aligned single crystalline nanowires could be grown with controlled sizes using a typical thin film deposition technique without catalysts. Arsenic doping of the ZnO nanowires grown on GaAs substrate was possible using post-growth heat-treatment, proposing a possible way of producing p-type ZnO nanowires. It was also shown that simplified process of carrier-free thermal evaporation without catalyst could be employed to grow nanowires with high yield while maintaining good crystalline and optical properties. Application potential of the nanowires as probes of atomic force microscopes (AFMs) was discussed by predicting their structural compatibility with AFM cantilevers based on continuum elasticity. It was predicted that the nanowires fabricated herein are structurally compatible with typical AFM cantilevers suggesting that they are promising candidates for high aspect ratio probes.

  10. An optimal thermal evaporation synthesis of c-axis oriented ZnO nanowires with excellent UV sensing and emission characteristics

    SciTech Connect

    Saha, Tridib; Achath Mohanan, Ajay; Swamy, Varghese; Guo, Ningqun; Ramakrishnan, N.

    2016-05-15

    Highlights: • c-Axis alignment of ZnO nanowires was optimized using self-seeding thermal evaporation method. • Influence of purified air on the morphology and optoelectronic properties were studied. • Nanowires grown under optimal conditions exhibit strong UV emission peak in PL spectrum. • Optimized growth condition establish nanowires of excellent UV sensing characteristics - Abstract: Well-aligned (c-axis oriented) ZnO nanowire arrays were successfully synthesized on Si (1 0 0) substrates through an optimized self-seeding thermal evaporation method. An open-ended chemical vapor deposition (CVD) setup was used in the experiment, with argon and purified air as reaction gases. Epitaxial growth of c-axis oriented ZnO nanowires was observed for 5 sccm flow rate of purified air, whereas Zn/Zn suboxide layers and multiple polycrystalline layers of ZnO were obtained for absence and excess of purified air, respectively. Ultraviolet (UV) sensing and emission properties of the as-grown ZnO nanostructures were investigated through the current–voltage (I–V) characteristics of the nanowires under UV (λ = 365 nm) illumination of 8 mW/cm{sup 2} and using photoluminescence spectra. Nanowires grown under optimum flow of air emitted four times higher intensity of 380 nm UV light as well as exhibited 34 times higher UV radiation sensitivity compared to that of other nanostructures synthesized in this study.

  11. Co doped ZnO nanowires as visible light photocatalysts

    NASA Astrophysics Data System (ADS)

    Šutka, Andris; Käämbre, Tanel; Pärna, Rainer; Juhnevica, Inna; Maiorov, Mihael; Joost, Urmas; Kisand, Vambola

    2016-06-01

    High aspect ratio cobalt doped ZnO nanowires showing strong photocatalytic activity and moderate ferromagnetic behaviour were successfully synthesized using a solvothermal method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), vibrating sample magnetometry (VSM) and UV-visible absorption spectroscopy. The photocatalytic activities evaluated for visible light driven degradation of an aqueous methylene orange (MO) solution were higher than for Co doped ZnO nanoparticles at the same doping level and synthesized by the same synthesis route. The rate constant for MO visible light photocatalytic degradation was 1.9·10-3 min-1 in case of nanoparticles and 4.2·10-3 min-1 in case of nanowires. We observe strongly enhanced visible light photocatalytic activity for moderate Co doping levels, with an optimum at a composition of Zn0.95Co0.05O. The enhanced photocatalytic activities of Co doped ZnO nanowires were attributed to the combined effects of enhanced visible light absorption at the Co sites in ZnO nanowires, and improved separation efficiency of photogenerated charge carriers at optimal Co doping.

  12. Thermal Conductivity of ZnO Single Nanowire.

    PubMed

    Yuldashev, Sh U; Yalishev, V Sh; Cho, H D; Kang, T W

    2016-02-01

    The thermal conductivity of a single ZnO nanowire with diameter of ~150 nm was measured using a four-point-probe 3omega method over a temperature range of 140-300 K. The measured ther- mal conductivity of ZnO nanowire is strongly reduced compared to bulk ZnO crystal due to the enhanced phonon-boundary and impurity (isotope) scattering. The maximum of the thermal conductivity is shifted to a higher temperature than that of bulk counterpart. Temperature dependent measurements show that beyond the low-temperature maximum, the thermal conductivity decreases with temperature as T(-1.5) indicating strong impurity (isotope) scattering at intermediate and high temperatures.

  13. Patterned synthesis of laterally oriented ultrafine ZnO nanowires by controlled metalorganic chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Lee, D. H.; Son, K.; Park, W. I.

    2010-06-01

    Selective and lateral growth of ultrafine ZnO nanowires using metalorganic chemical vapour deposition (MOCVD) is studied. For selective growth of ZnO nanowires, oxidized substrates were patterned with Au layers, which serve as nucleation sites for the initial stage of ZnO nanowire growth. Electron microscopy confirmed that ultrafine ZnO nanowires with a mean diameter in the range ~8-20 nm were rooted selectively in Au patterns and laterally extended to several micrometres on the substrate surfaces. Interestingly, nanowire bridges crosslinking the Au patterns or nanowire link-ups were frequently observed, indicating that self-organizing electrical interconnects and optical networks can be developed. Photoresponse measurements showed that exposure of the ultrafine ZnO nanowires to ultraviolet light rapidly increased the channel current from ~150 to ~400 nA at an applied bias voltage of 1 V.

  14. Coating and enhanced photocurrent of vertically aligned zinc oxide nanowire arrays with metal sulfide materials.

    PubMed

    Volokh, Michael; Diab, Mahmud; Magen, Osnat; Jen-La Plante, Ilan; Flomin, Kobi; Rukenstein, Pazit; Tessler, Nir; Mokari, Taleb

    2014-08-27

    Hybrid nanostructures combining zinc oxide (ZnO) and a metal sulfide (MS) semiconductor are highly important for energy-related applications. Controlled filling and coating of vertically aligned ZnO nanowire arrays with different MS materials was achieved via the thermal decomposition approach of single-source precursors in the gas phase by using a simple atmospheric-pressure chemical vapor deposition system. Using different precursors allowed us to synthesize multicomponent structures such as nanowires coated with alloy shell or multishell structures. Herein, we present the synthesis and structural characterization of the different structures, as well as an electrochemical characterization and a photovoltaic response of the ZnO-CdS system, in which the resulting photocurrent upon illumination indicates charge separation at the interface.

  15. Oligo and Poly-thiophene/Zno Hybrid Nanowire Solar Cells

    SciTech Connect

    Briseno, Alejandro L.; Holcombe, Thomas W.; Boukai, Akram I.; Garnett, Erik C.; Shelton, Steve W.; Frechet, Jean J. M.; Yang, Peidong

    2009-11-03

    We demonstrate the basic operation of an organic/inorganic hybrid single nanowire solar cell. End-functionalized oligo- and polythiophenes were grafted onto ZnO nanowires to produce p-n heterojunction nanowires. The hybrid nanostructures were characterized via absorption and electron microscopy to determine the optoelectronic properties and to probe the morphology at the organic/inorganic interface. Individual nanowire solar cell devices exhibited well-resolved characteristics with efficiencies as high as 0.036percent, Jsc = 0.32 mA/cm2, Voc = 0.4 V, and a FF = 0.28 under AM 1.5 illumination with 100 mW/cm2 light intensity. These individual test structures will enable detailed analysis to be carried out in areas that have been difficult to study in bulk heterojunction devices.

  16. Role of Au in the growth and nanoscale optical properties of ZnO nanowires

    SciTech Connect

    Brewster, M.; Zhou, Xiang; Lim, S. K.; Gradecak, S.

    2011-03-17

    Metallic nanoparticles play a crucial role in nanowire growth and have profound consequences on nanowire morphology and their physical properties. Here, we investigate the evolving role of the Au nanoparticle during ZnO nanowire growth and its effects on nanoscale photoemission of the nanowires. We observe the transition from Au-assisted to non-assisted growth mechanisms during a single nanowire growth, with significant changes in growth rates during these two regimes. This transition occurs through the reduction of oxygen partial pressure, which modifies the ZnO facet stability and increases Au diffusion. Nanoscale quenching of ZnO cathodoluminescence occurs near the Au nanoparticle due to excited electron diffusion to the nanoparticle. Thus, the Au nanoparticle is critically linked to the nanowire growth mechanism and corresponding growth rate through the energy of its interface with the ZnO nanowire, and its presence modifies nanowire optical properties on the nanoscale.

  17. Liquid crystal alignment on ZnO nanostructure films

    NASA Astrophysics Data System (ADS)

    Chung, Yueh-Feng; Chen, Mu-Zhe; Yang, Sheng-Hsiung; Jeng, Shie-Chang

    2016-03-01

    The study of liquid crystal (LC) alignment is important for fundamental researches and industrial applications. The tunable pretilt angles of liquid crystal (LC) molecules aligned on the inorganic zinc oxide (ZnO) nanostructure films with controllable surface wettability are demonstrated in this work. The ZnO nanostructure films are deposited on the ITO- glass substrates by the two-steps hydrothermal process, and their wettability can be modified by annealing. Our experimental results show that the pretilt angles of LCs on ZnO nanostructure films can be successfully adjusted over a wide range from ~90° to ~0° as the surface energy on the ZnO nanostructure films changes from ~30 to ~70 mJ/m. Finally we have applied this technique to fabricate a no-bias optically-compensated bend (OCB) LCD with ZnO nanostructure films annealed at 235 °C.

  18. Catalyst free growth of ZnO nanowires on graphene and graphene oxide and its enhanced photoluminescence and photoresponse

    NASA Astrophysics Data System (ADS)

    Biroju, Ravi K.; Tilak, Nikhil; Rajender, Gone; Dhara, S.; Giri, P. K.

    2015-04-01

    We demonstrate the graphene assisted catalyst free growth of ZnO nanowires (NWs) on chemical vapor deposited (CVD) and chemically processed graphene buffer layers at a relatively low growth temperature (580 °C) in the presence and absence of ZnO seed layers. In the case of CVD graphene covered with rapid thermal annealed ZnO buffer layer, the growth of vertically aligned ZnO NWs takes place, while the direct growth on CVD graphene, chemically derived graphene (graphene oxide and graphene quantum dots) without ZnO seed layer resulted in randomly oriented sparse ZnO NWs. Growth mechanism was studied from high resolution transmission electron microscopy and Raman spectroscopy of the hybrid structure. Further, we demonstrate strong UV, visible photoluminescence (PL) and enhanced photoconductivity (PC) from the CVD graphene-ZnO NWs hybrids as compared to the ZnO NWs grown without the graphene buffer layer. The evolution of crystalinity in ZnO NWs grown with ZnO seed layer and graphene buffer layer is correlated with the Gaussian line shape of UV and visible PL. This is further supported by the strong Raman mode at 438 cm-1 significant for the wurtzite phase of the ZnO NWs grown on different graphene substrates. The effect of the thickness of ZnO seed layers and the role of graphene buffer layers on the aligned growth of ZnO NWs and its enhanced PC are investigated systematically. Our results demonstrate the catalyst free growth and superior performance of graphene-ZnO NW hybrid UV photodetectors as compared to the bare ZnO NW based photodetectors.

  19. Localized ultraviolet photoresponse in single bent ZnO micro/nanowires

    SciTech Connect

    Guo Wen; Yang Ya; Qi Junjie; Zhao Jing; Zhang Yue

    2010-09-27

    The localized ultraviolet photoresponse in single bent ZnO micro/nanowires bridging two Ohmic contacts has been investigated. The ZnO micro/nanowire has a higher photoresponse sensitivity of about 190% at the bent region (bending strain: about 4%) than that at the straight region (about 50%). The rise and decay time constants are almost the same in the straight and bent regions of the ZnO micro/nanowire. A possible mechanism has been proposed and discussed. The bent ZnO micro/nanowires could be potentially useful for fabricating the coupled piezoelectric and optoelectronic nanodevices.

  20. Growth and optical properties of phosphorus-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Kim, D. S.; Fallert, J.; Lotnyk, A.; Scholz, R.; Pippel, E.; Senz, S.; Kalt, H.; Gösele, U.; Zacharias, M.

    2007-09-01

    Single-crystal phosphorus-doped ZnO nanowires were synthesized by using a single-source precursor-based vapor transport method. The photoluminescence spectra of phosphorus-doped ZnO nanowires and undoped nanowires are compared. While both show several shallow bound exciton complexes, the phosphorus-doped nanowires reveal an additional distinct emission feature at 3.316 eV. Additionally, the time-resolved PL measurements were conducted to characterize the recombination dynamics.

  1. Method of fabricating vertically aligned group III-V nanowires

    DOEpatents

    Wang, George T; Li, Qiming

    2014-11-25

    A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.

  2. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications

    PubMed Central

    2016-01-01

    A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 μm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix. PMID:27172933

  3. Simulation of wavelength selection using ZnO nanowires array

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Zhang, Yan

    2017-06-01

    A new nanometer sized optical device dividing a beam of multi-wavelength light into constituent spectral wavelengths based on ZnO nanowires arrays has been presented, inspired by the diameter dependent energy bandgap of the nanowires. The theoretical validations based on the quantum optics theory have been conducted. It is shown from the simulation results that the output optical spectrum changes upon the energy bandgap of the material, which is determined by the diameter of the wire. The intensity of the optical spectrum is modeled depending on the charge density of the material. Potential applications of the proposed device on pressure sensitive imaging are discussed.

  4. ZnO single nanowire-based UV detectors

    NASA Astrophysics Data System (ADS)

    Das, Sachindra Nath; Moon, Kyeong-Ju; Kar, Jyoti Prakash; Choi, Ji-Hyuk; Xiong, Junjie; Lee, Tae Il; Myoung, Jae-Min

    2010-07-01

    In this report, ZnO single nanowire (NW)-based devices were fabricated on the same nanowire by e-beam lithography so that both sides had Ohmic contact and one side had Schottky contact. Information about the mechanism for low-power UV detection by these devices was unambiguously provided by I-V measurements. Adsorption and desorption of oxygen molecules at the NW surface are responsible for the UV detection by the device with Ohmic contacts on both sides. Barrier height modulations and interface states are responsible for UV detection by the device with Schottky contact on one side.

  5. Paper-based, sound driven piezoelectric ZnO nanowire devices

    NASA Astrophysics Data System (ADS)

    Bu, Ian Yi-Yu

    2017-04-01

    Vertically aligned ZnO nanowire arrays on the paper substrate are integrated into a novel, sound-driven, piezoelectric nanogenerator device. The intrinsic impedance of the circuit causes phase differences between the input and output signals. For the input sound of around 40 db, an AC output voltage of about 5 mV is achieved. Because of the paper substrate allows the acoustic energy to dissipate, the fabricated device has detected a 4.88 db loss in the input sound signal.

  6. Dilute Magnetic Semiconductors from Electrodeposited ZnO Nanowires

    SciTech Connect

    Athavan, Nadarajah; Konenkamp, R.

    2011-02-02

    We present experimental results on the magnetic properties of doped ZnO nanowires grown at 80 8C in electrodeposition. We show that impurities such as Al, Mn, Co, and Cu can be incorporated in the nanowires by adding the corresponding metal salts to the electrolyte solution. At concentration levels of a few atomic percent we find the impurity concentration in the solid to be approximately proportional to the precursor concentration in solution. ZnO nanowrires doped with Cu, Co, and Mn show superparamagnetic response at room temperature, while undoped and Al-doped wires show no discernible magnetic response. The results indicate that with Cu, Mn, and Co doping dilute magnetic semiconductors can be prepared.

  7. MOCVD growth of ZnO nanowire arrays for advanced UV detectors

    NASA Astrophysics Data System (ADS)

    Rivera, Abdiel; Mazady, Anas; Zeller, John; Anwar, Mehdi; Manzur, Tariq; Sood, Ashok

    2013-03-01

    Zinc oxide (ZnO) is a biocompatible and versatile functional material having a bandgap of 3.37 eV that exhibits both semiconducting and piezoelectric properties and has a diverse group of growth morphologies. We have grown highly ordered vertical arrays of ZnO nanowires (NWs) using a metal organic chemical vapor deposition (MOCVD) growth process on various substrates. The NWs were grown on p-Si (100), SiO2, and m-plane sapphire substrates. The structural and optical properties of the grown vertically aligned ZnO NW arrays were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) measurements. The unique diffraction pattern for ZnO (002) concurred with the SEM inspection indicating vertical orientation of the NWs. UV detectors based on ZnO NWs offer high UV sensitivity and low visible sensitivity for applications such as missile plume detection and threat warning. Compared to the photomultiplier tubes (PMTs) prevalent in current missile warning systems, the NW detector arrays are expected to exhibit low noise, extended lifetimes, and low power requirements for UV detector applications.

  8. Highly Ordered Vertical Arrays of TiO2/ZnO Hybrid Nanowires: Synthesis and Electrochemical Characterization.

    PubMed

    Gujarati, Tanvi P; Ashish, Ajithan G; Rai, Maniratnam; Shaijumon, Manikoth M

    2015-08-01

    We report the fabrication of vertically aligned hierarchical arrays of TiO2/ZnO hybrid nanowires, consisting of ZnO nanowires grown directly from within the pores of TiO2 nanotubes, through a combination of electrochemical anodization and hydrothermal techniques. These novel nano-architectured hybrid nanowires with its unique properties show promise as high performance supercapacitor electrodes. The electrochemical behaviour of these hybrid nanowires has been studied using Cyclic voltammetry, Galvanostatic charge-discharge and Electrochemical impedance spectroscopy (EIS) measurements using 1.5 M tetraethylammoniumtetrafluoroborate in acetonitrile as the electrolyte. Excellent electrochemical performances with a maximum specific capacitance of 2.6 mF cm-2 at a current density of 10 µA cm-2, along with exceptional cyclic stability, have been obtained for TiO2/ZnO-1 h hybrid material. The obtained results demonstrate the possibility of fabricating new geometrical architectures of inorganic hybrid nanowires with well adhered interfaces for the development of hybrid energy devices.

  9. Electrically pumped waveguide lasing from ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chu, Sheng; Wang, Guoping; Zhou, Weihang; Lin, Yuqing; Chernyak, Leonid; Zhao, Jianze; Kong, Jieying; Li, Lin; Ren, Jingjian; Liu, Jianlin

    2011-08-01

    Ultraviolet semiconductor lasers are widely used for applications in photonics, information storage, biology and medical therapeutics. Although the performance of gallium nitride ultraviolet lasers has improved significantly over the past decade, demand for lower costs, higher powers and shorter wavelengths has motivated interest in zinc oxide (ZnO), which has a wide direct bandgap and a large exciton binding energy. ZnO-based random lasing has been demonstrated with both optical and electrical pumping, but random lasers suffer from reduced output powers, unstable emission spectra and beam divergence. Here, we demonstrate electrically pumped Fabry-Perot type waveguide lasing from laser diodes that consist of Sb-doped p-type ZnO nanowires and n-type ZnO thin films. The diodes exhibit highly stable lasing at room temperature, and can be modelled with finite-difference time-domain methods.

  10. Electrically pumped waveguide lasing from ZnO nanowires.

    PubMed

    Chu, Sheng; Wang, Guoping; Zhou, Weihang; Lin, Yuqing; Chernyak, Leonid; Zhao, Jianze; Kong, Jieying; Li, Lin; Ren, Jingjian; Liu, Jianlin

    2011-07-03

    Ultraviolet semiconductor lasers are widely used for applications in photonics, information storage, biology and medical therapeutics. Although the performance of gallium nitride ultraviolet lasers has improved significantly over the past decade, demand for lower costs, higher powers and shorter wavelengths has motivated interest in zinc oxide (ZnO), which has a wide direct bandgap and a large exciton binding energy. ZnO-based random lasing has been demonstrated with both optical and electrical pumping, but random lasers suffer from reduced output powers, unstable emission spectra and beam divergence. Here, we demonstrate electrically pumped Fabry-Perot type waveguide lasing from laser diodes that consist of Sb-doped p-type ZnO nanowires and n-type ZnO thin films. The diodes exhibit highly stable lasing at room temperature, and can be modelled with finite-difference time-domain methods.

  11. Angle-dependent photodegradation over ZnO nanowire arrays on flexible paper substrates.

    PubMed

    Lu, Ming-Yen; Tseng, Yen-Ti; Chiu, Cheng-Yao

    2014-01-01

    In this study, we grew zinc oxide (ZnO) nanowire arrays on paper substrates using a two-step growth strategy. In the first step, we formed single-crystalline ZnO nanoparticles of uniform size distribution (ca. 4 nm) as seeds for the hydrothermal growth of the ZnO nanowire arrays. After spin-coating of these seeds onto paper, we grew ZnO nanowire arrays conformally on these substrates. The crystal structure of a ZnO nanowire revealed that the nanowires were single-crystalline and had grown along the c axis. Further visualization through annular bright field scanning transmission electron microscopy revealed that the hydrothermally grown ZnO nanowires possessed Zn polarity. From photocatalytic activity measurements of the ZnO nanowire (NW) arrays on paper substrate, we extracted rate constants of 0.415, 0.244, 0.195, and 0.08 s(-1) for the degradation of methylene blue at incident angles of 0°, 30°, 60°, and 75°, respectively; that is, the photocatalytic activity of these ZnO nanowire arrays was related to the cosine of the incident angle of the UV light. Accordingly, these materials have promising applications in the design of sterilization systems and light-harvesting devices.

  12. Synthesis of ZnO nanowires and their applications as an ultraviolet photodetector.

    PubMed

    Lin, Chih-Cheng; Lin, Wang-Hua; Li, Yuan-Yao

    2009-05-01

    High purity ZnO nanowire arrays were synthesized uniformly on a 1.5 cm x 2 cm tin-doped indium oxide (ITO) glass substrate. The ZnO nanowire arrays were formed with a uniform diameter distribution of 30-50 nm and a length of about 5 microm, synthesized via thermal decomposition of zinc acetate at 300 degrees C in air. Analysis by X-ray diffraction and transmission electron microscopy showed that the ZnO nanowires are of single crystal structure with a preferred growth orientation of [001]. A study of the growth mechanism showed that it is a vapor-solid (VS) growth process. The synthesis of these nanowires begins with the processes of dehydration, vaporization, decomposition, and oxidation of the zinc acetate. Next, the ZnO clusters are deposited to form seeds that give rise to selective epitaxial growth of the ZnO nanowires. Optical analysis of ZnO nanowires was performed by UV-visible and fluorescence spectrophotometry, investigating both the photocurrent characteristics and UV photoresponse of the ZnO nanowire photodetectors. A study of optical properties showed that the as-produced ZnO nanowires have great potential as UV photodetectors/sensors.

  13. Synthesis of high crystallinity ZnO nanowire array on polymer substrate and flexible fiber-based sensor.

    PubMed

    Liu, Jinmei; Wu, Weiwei; Bai, Suo; Qin, Yong

    2011-11-01

    Well aligned ZnO nanowire (NW) arrays are grown on Kevlar fiber and Kapton film via the chemical vapor deposition (CVD) method. These NWs have better crystallinity than those synthesized through the low-temperature hydrothermal method. The average length and diameter of ZnO NWs grown on Kevlar fiber can be controlled from 0.5 to 2.76 μm and 30 to 300 nm, respectively. A flexible ultraviolet (UV) sensor based on Kevlar fiber/ZnO NWs hybrid structure is made to detect UV illumination quantificationally.

  14. Thiol-capped ZnO nanowire/nanotube arrays with tunable magnetic properties at room temperature.

    PubMed

    Deng, Su-Zi; Fan, Hai-Ming; Wang, Miao; Zheng, Min-Rui; Yi, Jia-Bao; Wu, Rong-Qin; Tan, Hui-Ru; Sow, Chorng-Haur; Ding, Jun; Feng, Yuan-Ping; Loh, Kian-Ping

    2010-01-26

    The present study reports room-temperature ferromagnetic behaviors in three-dimensional (3D)-aligned thiol-capped single-crystalline ZnO nanowire (NW) and nanotube (NT) arrays as well as polycrystalline ZnO NT arrays. Besides the observation of height-dependent saturation magnetization, a much higher M(s) of 166 microemu cm(-2) has been found in NTs compared to NWs (36 microemu cm(-2)) due to larger surface area in ZnO NTs, indicating morphology-dependent magnetic properties in ZnO NW/NT systems. Density functional calculations have revealed that the origin of ferromagnetism is mainly attributed to spin-polarized 3p electrons in S sites and, therefore, has a strong correlation with Zn-S bond anisotropy. The preferential magnetization direction of both single-crystalline NTs and NWs lies perpendicular to the tube/wire axis due to the aligned high anisotropy orientation of the Zn-S bonds on the lateral (100) face of ZnO NWs and NTs. Polycrystalline ZnO NTs, however, exhibit a preferential magnetization direction parallel to the tube axis which is ascribed to shape anisotropy dominating the magnetic response. Our results demonstrate the interplay of morphology, dimensions, and crystallinity on spin alignment and magnetic anisotropy in a 3D semiconductor nanosystem with interfacial magnetism.

  15. Room temperature sputter deposited catalyst-free nanowires with wurtzite/zinc blende ZnO superstructure and their application in electromechanical nanogenerators on polymer and paper substrates

    NASA Astrophysics Data System (ADS)

    Borysiewicz, M. A.; Gryglas-Borysiewicz, M.; Masłyk, M.; Wojciechowski, T.; Wzorek, M.; Kaczmarski, J.; Wojtowicz, T.; Kamińska, E.

    2017-02-01

    Catalyst-free growth of ZnO nanowires using reactive magnetron sputtering at room temperature is reported. We discuss the growth of the nanowires using reactive magnetron sputtering as a function of argon and oxygen flow values changing at a set ratio of 10:2. A transition from nanostructured Zn to nanowire ZnO growth is observed at 20 sccm Ar and 4 sccm O2. Densification and improved alignment of the nanowires is visible for increasing flow values up to 50 sccm Ar and 10 sccm O2. Nanowires exhibit stacking fault regions of zinc blende ZnO in wurtzite ZnO. The regions encompass the whole width of the nanowires and their quantum well behavior is manifested in the photoluminescence spectra. The nanowires were subsequently deposited on paper and PET substrates and electromechanical nanogenerators were fabricated. Manual pressing and depressing of the devices induced voltages of 50 μV and 2 μV for the devices on PET and paper substrates, respectively.

  16. Room temperature sputter deposited catalyst-free nanowires with wurtzite/zinc blende ZnO superstructure and their application in electromechanical nanogenerators on polymer and paper substrates.

    PubMed

    Borysiewicz, M A; Gryglas-Borysiewicz, M; Masłyk, M; Wojciechowski, T; Wzorek, M; Kaczmarski, J; Wojtowicz, T; Kamińska, E

    2017-02-24

    Catalyst-free growth of ZnO nanowires using reactive magnetron sputtering at room temperature is reported. We discuss the growth of the nanowires using reactive magnetron sputtering as a function of argon and oxygen flow values changing at a set ratio of 10:2. A transition from nanostructured Zn to nanowire ZnO growth is observed at 20 sccm Ar and 4 sccm O2. Densification and improved alignment of the nanowires is visible for increasing flow values up to 50 sccm Ar and 10 sccm O2. Nanowires exhibit stacking fault regions of zinc blende ZnO in wurtzite ZnO. The regions encompass the whole width of the nanowires and their quantum well behavior is manifested in the photoluminescence spectra. The nanowires were subsequently deposited on paper and PET substrates and electromechanical nanogenerators were fabricated. Manual pressing and depressing of the devices induced voltages of 50 μV and 2 μV for the devices on PET and paper substrates, respectively.

  17. Fast switching electrochromic display using a viologen-modified ZnO nanowire array electrode.

    PubMed

    Sun, X W; Wang, J X

    2008-07-01

    We report an electrochromic (EC) display using a viologen-modified ZnO nanowire array as the EC electrode. The ZnO nanowire array was grown directly on an indium tin oxide (ITO) glass by a low temperature aqueous thermal decomposition method and then modified with viologen molecules. The ZnO nanowire electrochromic device shows fast switching time (170 and 142 ms for coloration and bleaching respectively for a 1 cm (2) cell), high coloration efficiency (196 C (-1) cm (2)) and good stability. The improved performance of the ZnO nanowires EC device can be attributed to the large surface area and high crystalline and good electron transport properties of the ZnO nanowire array.

  18. Aligned hierarchical Ag/ZnO nano-heterostructure arrays via electrohydrodynamic nanowire template for enhanced gas-sensing properties.

    PubMed

    Yin, Zhouping; Wang, Xiaomei; Sun, Fazhe; Tong, Xiaohu; Zhu, Chen; Lv, Qiying; Ye, Dong; Wang, Shuai; Luo, Wei; Huang, YongAn

    2017-09-22

    Gas sensing performance can be improved significantly by the increase in both the effective gas exposure area and the surface reactivitiy of ZnO nanorods. Here, we propose aligned hierarchical Ag/ZnO nano-heterostructure arrays (h-Ag/ZnO-NAs) via electrohydrodynamic nanowire template, together with a subsequent hydrothermal synthesis and photoreduction reaction. The h-Ag/ZnO-NAs scatter at top for higher specific surface areas with the air, simultaneously contact at root for the electrical conduction. Besides, the ZnO nanorods are uniformly coated with dispersed Ag nanoparticles, resulting in a tremendous enhancement of the surface reactivity. Compared with pure ZnO, such h-Ag/ZnO-NAs exhibit lower electrical resistance and faster responses. Moreover, they demonstrate enhanced NO2 gas sensing properties. Self-assembly via electrohydrodynamic nanowire template paves a new way for the preparation of high performance gas sensors.

  19. Effect of intrinsic point defect on the magnetic properties of ZnO nanowire.

    PubMed

    Yun, Jiangni; Zhang, Zhiyong; Yin, Tieen

    2013-01-01

    The effect of intrinsic point defect on the magnetic properties of ZnO nanowire is investigated by the first-principles calculation based on the density functional theory (DFT). The calculated results reveal that the pure ZnO nanowire without intrinsic point defect is nonmagnetic and ZnO nanowire with V(O), Zn(i), O(i), O(Zn), or Zn(O) point defect also is nonmagnetic. However, a strong spin splitting phenomenon is observed in ZnO nanowire with V(Zn) defect sitting on the surface site. The Mulliken population analysis reveals that the oxygen atoms which are close to the V(Zn) defect do major contribution to the magnetic moment. Partial density states calculation further suggests that the appearance of the half-metallic ferromagnetism in ZnO nanorod with V(Zn) originates from the hybridization of the O2p states with Zn 3d states.

  20. Nanomanufacturing Strategy for Aligned Assembly of Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Shin, Kyeong-Sik; Chui, Chi On

    2012-05-01

    The work reported here concerns a proposed nanomanufacturing strategy to assemble aligned quasi-one-dimensional nanostructure arrays with intrinsic and concurrent control over the resultant number, pitch, and linewidth. For the first time, a standard lithography and crystallographic etching approach have been combined to synthesize periodic, sublithographic, and line edge roughness (LER)-free surface arrays for selective conjugation of nanowires. Key experimental modules have been developed, including the formation of LER-free substrate arrays, formation of periodically dissimilar surfaces, selective conjugation of nanowires, and stamping transfer of nanowire arrays. In particular, successful assembly of Si nanowires onto periodic Si/SiO x surfaces and subsequent transfer of the resultant aligned Si nanowire arrays onto a different substrate surface have been repeatedly demonstrated. The dependences and probability of nanowire aligned assembly have also been examined. The proposed strategy is based on a wafer-scale and very large-scale integration (VLSI)-compatible philosophy, and alignment to pre-existing features on the target substrate is also inherently allowed as a side benefit. Besides, LER-free features could be created, which arguably enables extreme linewidth scaling with suppressed variations.

  1. Efficient nitrogen incorporation in ZnO nanowires

    PubMed Central

    Stehr, Jan E.; Chen, Weimin M.; Reddy, Nandanapalli Koteeswara; Tu, Charles W.; Buyanova, Irina A.

    2015-01-01

    One-dimensional ZnO nanowires (NWs) are a promising materials system for a variety of applications. Utilization of ZnO, however, requires a good understanding and control of material properties that are largely affected by intrinsic defects and contaminants. In this work we provide experimental evidence for unintentional incorporation of nitrogen in ZnO NWs grown by rapid thermal chemical vapor deposition, from electron paramagnetic resonance spectroscopy. The incorporated nitrogen atoms are concluded to mainly reside at oxygen sites (NO). The NO centers are suggested to be located in proximity to the NW surface, based on their reduced optical ionization energy as compared with that in bulk. This implies a lower defect formation energy at the NW surface as compared with its bulk value, consistent with theoretical predictions. The revealed facilitated incorporation of nitrogen in ZnO nanostructures may be advantageous for realizing p-type conducting ZnO via N doping. The awareness of this process can also help to prevent such unintentional doping in structures with desired n-type conductivity. PMID:26299157

  2. Theoretical investigation of the effects of doping on the electronic structure and thermoelectric properties of ZnO nanowires.

    PubMed

    Wang, Chao; Wang, Yuanxu; Zhang, Guangbiao; Peng, Chengxiao; Yang, Gui

    2014-02-28

    The effects of doping ZnO nanowires with Al, Ga and Sb on their electronic structure and thermoelectric properties are investigated by first-principles calculations. We find that the band gap of ZnO nanowires is narrowed after doping with Al and Ga, while band gap broadening is observed in Sb doped ZnO nanowires. The lattice thermal conductivity of ZnO nanowires is obtained based on the Debye-Callaway model. The thermoelectric properties of ZnO nanowires were calculated using the BoltzTraP code. The results show that there exists an optimal carrier concentration yielding the maximum value of ZT for Al, Ga and Sb doped ZnO nanowires at room temperature. The maximum value of ZT, 0.147, is obtained for Ga doped ZnO nanowires, when the carrier concentration is 3.62 × 10(19) cm(-3). The figure of merit ZT of Sb doped ZnO nanowires is higher than that of Ga doped ZnO nanowires when the temperature is between 400 K and 1200 K. We also find that Al doped ZnO nanowires always have poor thermoelectric properties, which means that the Al dopant may not be the optimal choice for ZnO nanowires in thermoelectric applications.

  3. Light trapping in ZnO nanowire arrays covered with an absorbing shell for solar cells.

    PubMed

    Michallon, Jérôme; Bucci, Davide; Morand, Alain; Zanuccoli, Mauro; Consonni, Vincent; Kaminski-Cachopo, Anne

    2014-06-30

    The absorption properties of ZnO nanowire arrays covered with a semiconducting absorbing shell for extremely thin absorber solar cells are theoretically investigated by optical computations of the ideal short-circuit current density with three-dimensional rigorous coupled wave analysis. The effects of nanowire geometrical dimensions on the light trapping and absorption properties are reported through a comprehensive optical mode analysis. It is shown that the high absorptance of these heterostructures is driven by two different regimes originating from the combination of individual nanowire effects and nanowire arrangement effects. In the short wavelength regime, the absorptance is likely dominated by optical modes efficiently coupled with the incident light and interacting with the nearby nanowires (i.e. diffraction), induced by the period of core shell ZnO nanowire arrays. In contrast, in the long wavelength regime, the absorptance is governed by key optically guided modes, related to the diameter of individual core shell ZnO nanowires.

  4. Excitonic effects in ZnO nanowires and hollow nanotubes

    NASA Astrophysics Data System (ADS)

    Willander, M.; Lozovik, Y. E.; Zhao, Q. X.; Nur, O.; Hu, Q.-H.; Klason, P.

    2007-02-01

    Energy levels and wave functions of ground and excited states of an exciton are calculated by the method of imaginary time. Energy levels as functions of radius of single and double wall nanotube are studied. Asymptotic behavior of energy levels at large and small values of the radius using perturbation theory and adiabatic approximation is considered. Spatially indirect exciton in semiconductor nanowire is also investigated. Experimental result from high quality reproducible ZnO nanowires grown by low temperature chemical engineering is presented. State of the art high brightness white light emitting diodes (HB-LEDs) are demonstrated from the grown ZnO nano-wires. The color temperature and color rendering index (CRI) of the HB-LEDs values was found to be (3250 K, 82), and (14000 K, 93), for the best LEDs, which means that the quality of light is superior to one obtained from GaN LEDs available on the market today. The role of V Zn and V ° on the emission responsible for the white light band as well as the peak position of this important wide band is thoroughly investigated in a systematic way.

  5. Fabrication and morphology of uniaxially aligned perylenediimide nanowires

    NASA Astrophysics Data System (ADS)

    Machida, Shinjiro; Tanikatsu, Makoto; Itaya, Akira; Ikeda, Noriaki

    2017-06-01

    Uniaxial alignment of crystalline nanowires consisting of N,N‧-dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) was achieved on poly(tetrafluoroethylene) (PTFE) layers prepared by friction transfer method on a glass substrate. The nanowires were formed by spin-coating a trifluoroacetic acid (TFA) solution of PTCDI-C8 on the PTFE layers and were further grown under TFA vapor atmosphere. The morphology of the PTCDI-C8 nanowires were characterized using atomic force microscope (AFM) and fluorescence optical microscope with changing the dye concentration in the spin coating solution, annealing time in the TFA vapor, and substrate materials. The nanowires prepared on the PTFE layer on a silica-coated silicon or a mica substrate did not grow so well as those on the glass substrate. This result suggests that the surface roughness would affect the PTFE layer and the growth of the PTCDI nanowires.

  6. Energy harvesting from vertically aligned PZT nanowire arrays

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Zhou, Zhi; Sodano, Henry A.

    2016-04-01

    In this paper, a nanostructured piezoelectric beam is fabricated using vertically aligned lead zirconate titanate (PZT) nanowire arrays and its capability of continuous power generation is demonstrated through direct vibration tests. The lead zirconate titanate nanowires are grown on a PZT thin film coated titanium foil using a hydrothermal reaction. The PZT thin film serves as a nucleation site while the titanium foil is used as the bottom electrode. Electromechanical frequency response function (FRF) analysis is performed to evaluate the power harvesting efficiency of the fabricated device. Furthermore, the feasibility of the continuous power generation using the nanostructured beam is demonstrated through measuring output voltage from PZT nanowires when beam is subjected to a sinusoidal base excitation. The effect of tip mass on the voltage generation of the PZT nanowire arrays is evaluated experimentally. The final results show the great potential of synthesized piezoelectric nanowire arrays in a wide range of applications, specifically power generation at nanoscale.

  7. Harvesting Mechanical and Thermal Energy by Combining ZnO Nanowires and NiTi Shape Memory Alloy

    DOE PAGES

    Radousky, Harry; Qian, Fang; An, Yonghao; ...

    2017-02-19

    In the expanding world of small scale energy harvesting, the ability to combine thermal and mechanical harvesting is growing ever more important. Here, we demonstrate the feasibility of using ZnO nanowires to harvest both mechanical and low-quality thermal energy in simple, scalable devices. These devices were fabricated on kapton films and used ZnO nanowires with the same growth direction to assure alignment of the piezoelectric potentials of all of the wires. Mechanical harvesting from these devices was demonstrated using a periodic application of force, modeling the motion of the human body. Tapping the device from the top of the devicemore » with a wood stick, for example yielded an Open Circuit Voltage (OCV) of 0.2 - 4 V, which is in an ideal range for device applications. In order to demonstrate thermal harvesting from low quality heat sources, a commercially available Nitinol (Ni-Ti alloy) foil was attached to the nanowire piezoelectric device to create a compound thermoelectric. When bent at room temperature and then heated to 50°C, the Nitinol foil was restored to its original flat shape, which yielded an output voltage of nearly 1 V from the ZnO nanowire device.« less

  8. Temperature-Dependent Photoluminescence Property of Self-Assembly ZnO Nanowires via Chemical Vapor Deposition Combined with Hydrothermal Pretreatment.

    PubMed

    Li, Zongxiao; Liu, Xiangli

    2015-11-11

    Vertically aligned ZnO nanowires with high aspect ratio were prepared by chemical vapor deposition on Si substrate, which had been catalyzed by the polar plane in [0001] direction of ZnO nanorods prepared by the hydrothermal method. Morphology and structure characterizations showed that the as-grown nanowires had the single-crystal hexagonal wurtzite structure with a [0001] growth direction. Energy Dispersive X-ray (EDX) measurement indicated the as-grown ZnO nanowires had a good deal of oxygen vacancies owing to the high operation temperature. Temperature-dependent photoluminescence measurement revealed that the peak of near-band-edge emission shifted from 380 to 387 nm with the increase of temperature from 150 to 300 K. The high intensity of the green peak at 525 nm highlighted the potential application in visible light emitting diodes.

  9. MOCVD growth and characterization of ZnO nanowire arrays for advanced ultraviolet detectors

    NASA Astrophysics Data System (ADS)

    Rivera, Abdiel; Zeller, John; Manzur, Tariq; Sood, Ashok; Anwar, Mehdi

    2012-10-01

    Zinc oxide (ZnO) provides a unique wide bandgap biocompatible material system exhibiting both semiconducting and piezoelectric properties, and is a versatile functional material that has a diverse group of growth morphologies. Bulk ZnO has a bandgap of 3.37 eV that corresponds to emissions in the solar blind ultraviolet (UV) spectral band (240-280 nm). We have grown highly ordered vertical arrays of ZnO nanowires (NWs) and nanorods using a metal organic chemical vapor deposition (MOCVD) growth process on Si(111), SiO2, and sapphire substrates. The structural and optical properties of the grown vertically aligned ZnO nanostructure arrays were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) measurements. The unique diffraction pattern for ZnO(002) concurred with the SEM inspection indicating vertical orientation of the NWs and nanorods. UV detectors based on ZnO NWs offer high UV sensitivity and low visible sensitivity for applications such as missile plume detection and threat warning. An analytical model that can predict sensor performance with and without gain for a desired UV band of interest has also been developed that has the potential for substantial improvements in sensor performance and reduction in size for a variety of threat warning applications. In addition, testing and characterization of photomultiplier tubes (PMTs) exposed to eight individual UV LEDs having peak wavelengths ranging from 248 nm to 370 nm has been performed to provide a relative UV detection performance benchmark. Compared to PMTs, the NW arrays are expected to exhibit low noise, extended lifetimes, high quantum efficiency, and very low power requirements.

  10. On the difficulties in characterizing ZnO nanowires.

    PubMed

    Schlenker, E; Bakin, A; Weimann, T; Hinze, P; Weber, D H; Gölzhäuser, A; Wehmann, H-H; Waag, A

    2008-09-10

    The electrical properties of single ZnO nanowires grown by vapor phase transport were investigated. While some samples were contacted by Ti/Au electrodes, another set of samples was investigated using a manipulator tip in a low energy electron point-source microscope. The deduced resistivities range from 1 to 10(3) Ωcm. Additionally, the resistivities of nanowires from multiple publications were brought together and compared to the values obtained from our measurements. The overview of all data shows enormous differences (10(-3)-10(5) Ωcm) in the measured resistivities. In order to reveal the origin of the discrepancies, the influence of growth parameters, measuring methods, contact resistances, crystal structures and ambient conditions are investigated and discussed in detail.

  11. Ammonia plasma modification towards a rapid and low temperature approach for tuning electrical conductivity of ZnO nanowires on flexible substrates.

    PubMed

    Ong, Wei Li; Zhang, Chun; Ho, Ghim Wei

    2011-10-05

    Though the fabrication of ZnO nanostructures is economical and low temperature, the lack of a facile, reliable and low temperature methodology to tune its electrical conductivity has prevented it from competing with other semiconductors. Here, we carried out surface modification of ZnO nanowires using ammonia plasma with no heat treatment, and studied their electrical properties over an extended time frame of more than a year. The fabrication of flexible devices was demonstrated via various methods of transferring and aligning as-synthesized ZnO nanowires onto plastic substrates. Hall measurements of the plasma modified ZnO nanowires revealed p-type conductivity. The N1s peak was present in the X-ray photoelectron spectrum of the surface modified ZnO, showing the presence of ammonia complexes. Low temperature photoluminescence showed evidence of acceptor-bound exciton emission. The resulting electrical devices, a chemical sensor and p-n homojunction, show the tunable electrical response of the surface modified ZnO nanowires.

  12. Synthesis of Fe Doped ZnO Nanowire Arrays that Detect Formaldehyde Gas.

    PubMed

    Jeon, Yoo Sang; Seo, Hyo Won; Kim, Su Hyo; Kim, Young Keun

    2016-05-01

    Owing to their chemical and thermal stability and doping effects on providing electrons to the conduction band, doped ZnO nanowires have generated interest for use in electronic devices. Here we report hydrothermally grown Fe-doped ZnO nanowires and their gas-sensing properties. The synthesized nanowires have a high crystallinity and are 60 nm in diameter and 1.7 μm in length. Field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) are employed to understand the doping effects on the microstructures and gas sensing properties. When the Fe-doped ZnO nanowire arrays were evaluated for gas sensing, responses were recorded through changes in temperature and gas concentration. Gas sensors consisting of ZnO nanowires doped with 3-5 at.% Fe showed optimum formaldehyde (HCHO) sensing performance at each working temperature.

  13. A controllable interface performance through varying ZnO nanowires dimensions on the carbon fibers

    NASA Astrophysics Data System (ADS)

    Wang, Ben; Duan, Yugang; Zhang, Jingjing

    2016-12-01

    The fiber/matrix interface was reinforced by introducing nanostructure on the fiber surface, which enlarged the interphase area for stress transfer across the interface. To study the relationship between the interphase area and the interface performance, a low-temperature method for varying the dimensions of ZnO nanowires grown on the carbon fiber surface was proposed. The surface area with ZnO nanowires introduced was controlled by the conditions for growth: ultrasonic dispersion time, reaction time and Polyethylene glycol concentration. The effects of that varying ZnO the nanowires dimensions on interface performance was evaluated using wettability test and interfacial shear strength (IFSS). ZnO nanowires affect the liquid-motion on the fiber surface, and a shift to hydrophobicity was observed with decreasing the surface coverage of ZnO nanowires. A nonlinear relationship between IFSS and the ratio of the area of the introduced ZnO nanowires suggested unfavorable wettability impeded resin infiltration into ZnO nanowires.

  14. Optical modulation of persistent photoconductivity in ZnO nanowires

    SciTech Connect

    Wang Yao; Liao Zhaoliang; Chen Dongmin; She Guangwei; Mu Lixuan; Shi Wensheng

    2011-05-16

    In this study, ZnO nanowires (ZNWs)-based optoelectric devices are found to exhibit strong persistent photoconductivity (PPC) effect. An optical modulation on the PPC effect of the ZNWs with 980 nm infrared (IR) laser has been investigated. It was found that the decay time for the PPC can be significantly shortened by IR irradiation. The modulation mechanism related with the oxygen vacancies and the subband gap excitation is proposed. Based on this mechanism, the modulation behavior of the IR can be well explained. The present optical modulation on the PPC is suggested to have potential applications in enhancing the performance of ZnO-based photodetectors.

  15. ZnO nanowire growth by chemical vapor deposition with spatially controlled density on Zn2GeO4:Mn polycrystalline substrates

    NASA Astrophysics Data System (ADS)

    Ma, Siwei; Kitai, Adrian H.

    2017-06-01

    Aligned ZnO nanowires were successfully synthesized by CVD growth on polycrystalline Zn2GeO4:Mn substrates. The density of the nanowires was explored as a function of gold catalyst thickness as well as the geometry of the growth system. For the first time we demonstrated that the density of ZnO nanowires can be directly tailored by adjusting the lateral distance between a Zn2GeO4:Mn substrate and source powders, and symmetric growth was observed when source powders were placed both upstream and downstream in two separated zones during the synthesis process in a tube furnace. Electric field modelling was employed to predict a desired nanowire density range for future application of the Zn2GeO4:Mn/ZnO structures to electroluminescent devices.

  16. Towards high-performance, low-cost quartz sensors with high-density, well-separated, vertically aligned ZnO nanowires by low-temperature, seed-less, single-step, double-sided growth

    NASA Astrophysics Data System (ADS)

    Orsini, Andrea; Gianni Medaglia, Pier; Scarpellini, David; Pizzoferrato, Roberto; Falconi, Christian

    2013-09-01

    Resonant sensors with nanostructured surfaces have long been considered as an emergent platform for high-sensitivity transduction because of the potentially very large sensing areas. Nevertheless, until now only complex, time-consuming, expensive and sub-optimal fabrication procedures have been described; in fact, especially with reference to in-liquid applications, very few devices have been reported. Here, we first demonstrate that, by immersing standard, ultra-low-cost quartz resonators with un-polished silver electrodes in a conventional zinc nitrate/HMTA equimolar nutrient solution, the gentle contamination from the metallic package allows direct growth on the electrodes of arrays of high-density (up to 10 μm-2) and well-separated (no fusion at the roots) ZnO nanowires without any seed layer or thermal annealing. The combination of high-density and good separation is ideal for increasing the sensing area; moreover, this uniquely simple, single-step process is suitable for conventional, ultra-low-cost and high-frequency quartzes, and results in devices that are already packaged and ready to use. As an additional advantage, the process parameters can be effectively optimized by measuring the quartz admittance before and after growth. As a preliminary test, we show that the sensitivity to the liquid properties of high-frequency (i.e. high sensitivity) quartzes can be further increased by nearly one order of magnitude and thus show the highest ever reported frequency shifts of an admittance resonance in response to immersion in both ethanol and water.

  17. Effect of gaseous atmosphere on photoinduced water wetting of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Yadav, Kavita; Mehta, B. R.; Singh, J. P.

    2016-05-01

    ZnO nanowires were synthesized by using chemical vapor deposition system at 1000°C temperature. The as synthesized ZnO nanowires show superhydrophilic nature with water contact angle value of 0°. After dark storage for about 50 days, the nanowires show superhydrophobic nature with contact angle value of about 155°. When these nanowires were exposed to ultraviolet light in air atmosphere, the nanowires becomes superhydrophilic. It was found that the rate of change of contact angle depends on the gases atmosphere during UV light illumination. The rate of change of contact angle with UV light illumination is higher in presence of oxygen gas whereas it is very slow in presence of hydrogen gas. Possible mechanism for the dependence of photo induced water wetting on ZnO nanowires in gaseous atmosphere is discussed.

  18. Enhanced photocatalytic activity of ultra-high aspect ratio ZnO nanowires due to Cu induced defects

    NASA Astrophysics Data System (ADS)

    Pasupathi Sugavaneshwar, Ramu; Duy Dao, Thang; Nanda, Karuna Kar; Nagao, Tadaaki; Hishita, Shunichi; Sakaguchi, Isao

    2015-12-01

    We report the synthesis of ZnO nanowires in ambient air at 650°C by a single-step vapor transport method using two different sources Zn (ZnO nanowires-I) and Zn:Cu (ZnO nanowires-II). The Zn:Cu mixed source co-vaporize Zn with a small amount of Cu at temperatures where elemental Cu source does not vaporize. This method provides us a facile route for Cu doping into ZnO. The aspect ratio of the grown ZnO nanowires-II was found to be higher by more than five times compared ZnO nanowires-I. Photocatalytic activity was measured by using a solar simulator and its ultraviolet-filtered light. The ZnO nanowires-II shows higher catalytic activity due to increased aspect ratio and higher content of surface defects because of incorporation of Cu impurities.

  19. Localized joule heating as a mask-free technique for the local synthesis of ZnO nanowires on silicon nanodevices.

    PubMed

    Chen, C C; Lin, Y S; Sang, C H; Sheu, J-T

    2011-11-09

    We report a mask-free technique for the local synthesis of ZnO nanowires (NWs) on polysilicon nanobelts and polysilicon NW devices. First, we used localized joule heating to generate a poly(methyl methacrylate) (PMMA) nanotemplate, allowing the rapid and self-aligned ablation of PMMA within a short period of time (ca. 5 μs). Next, we used ion-beam sputtering to prepare an ultrathin Au film and a ZnO seed layer; a subsequent lift-off process left the seed layers selectively within the PMMA nanotemplate. Gold nanoparticles and ZnO NWs were formed selectively in the localized joule heating region.

  20. Ultraviolet photodetection of flexible ZnO nanowire sheets in polydimethylsiloxane polymer

    PubMed Central

    Motta, Nunzio; Lee, Soonil

    2012-01-01

    Summary ZnO nanowires are normally exposed to an oxygen atmosphere to achieve high performance in UV photodetection. In this work we present results on a UV photodetector fabricated using a flexible ZnO nanowire sheet embedded in polydimethylsiloxane (PDMS), a gas-permeable polymer, showing reproducible UV photoresponse and enhanced photoconduction. PDMS coating results in a reduced response speed compared to that of a ZnO nanowire film in air. The rising speed is slightly reduced, while the decay time is prolonged by about a factor of four. We conclude that oxygen molecules diffusing in PDMS are responsible for the UV photoresponse. PMID:23016139

  1. A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Hung; Chang, Shoou-Jinn; Hsueh, Ting-Jen

    2016-09-01

    In this work, a low-temperature ZnO nanowire ethanol gas sensor was prepared on plastic substrate. The operating temperature of the ZnO nanowire ethanol gas sensor was reduced to room temperature using ultraviolet illumination. The experimental results indicate a favorable sensor response at low temperature, with the best response at 60 °C. The results also reveal that the ZnO nanowire ethanol gas sensor can be easily integrated into portable products, whose waste heat can improve sensor response and achieve energy savings, while energy consumption can be further reduced by solar irradiation.

  2. Finite element method calculations of ZnO nanowires for nanogenerators

    NASA Astrophysics Data System (ADS)

    Schubert, M. A.; Senz, S.; Alexe, M.; Hesse, D.; Gösele, U.

    2008-03-01

    The bending of a nonconducting piezoelectric ZnO nanowire is simulated by finite element method calculations. The top part is bent by a lateral force, which could be applied by an atomic force microscope tip. The generated electrical potential is ±0.3V. This relatively high signal is, however, difficult to measure due to the low capacitance of the ZnO nanowire (˜4×10-5pF) as compared to the capacitance of most preamplifiers (˜5pF). A further problem arises from the semiconducting properties of experimentally fabricated ZnO nanowires which causes the disappearance of the voltage signal within picoseconds.

  3. Optical and morphological properties of graphene sheets decorated with ZnO nanowires via polyol enhancement

    SciTech Connect

    Sharma, Vinay Rajaura, Rajveer Singh; Sharma, Preetam K.; Srivastava, Subodh; Vijay, Y. K.; Sharma, S. S.

    2014-04-24

    Graphene-ZnO nanocomposites have proven to be very useful materials for photovoltaic and sensor applications. Here, we report a facile, one-step in situ polymerization method for synthesis of graphene sheets randomly decorated with zinc oxide nanowires using ethylene glycol as solvent. We have used hydrothermal treatment for growth of ZnO nanowires. UV-visible spectra peak shifting around 288nm and 307 nm shows the presence of ZnO on graphene structure. Photoluminiscence spectra (PL) in 400nm-500nm region exhibits the luminescence quenching effect. Scanning electron microscopy (SEM) image confirms the growth of ZnO nanowires on graphene sheets.

  4. Hierarchically assembled ZnO nanoparticles on high diffusion coefficient ZnO nanowire arrays for high efficiency dye-sensitized solar cells.

    PubMed

    Chen, Liang-Yih; Yin, Yu-Tung

    2013-03-07

    In this study, ZnO nanoparticles (ZnO NPs) were conformally covered on the surfaces of ZnO nanowires (ZnO NWs) with high diffusion coefficient (1.2 × 10(-2) cm(2) s(-1)) to make a composite photoanode. By using N719 to sensitize the composite photoanode, the conversion efficiency can reach 7.14%.

  5. A ZnO nanowire bio-hybrid solar cell

    NASA Astrophysics Data System (ADS)

    Yaghoubi, Houman; Schaefer, Michael; Yaghoubi, Shayan; Jun, Daniel; Schlaf, Rudy; Beatty, J. Thomas; Takshi, Arash

    2017-02-01

    Harvesting solar energy as a carbon free source can be a promising solution to the energy crisis and environmental pollution. Biophotovoltaics seek to mimic photosynthesis to harvest solar energy and to take advantage of the low material costs, negative carbon footprint, and material abundance. In the current study, we report on a combination of zinc oxide (ZnO) nanowires with monolayers of photosynthetic reaction centers which are self-assembled, via a cytochrome c linker, as photoactive electrode. In a three-probe biophotovoltaics cell, a photocurrent density of 5.5 μA cm-2 and photovoltage of 36 mV was achieved, using methyl viologen as a redox mediator in the electrolyte. Using ferrocene as a redox mediator a transient photocurrent density of 8.0 μA cm-2 was obtained, which stabilized at 6.4 μA cm-2 after 20 s. In-depth electronic structure characterization using photoemission spectroscopy in conjunction with electrochemical analysis suggests that the fabricated photoactive electrode can provide a proper electronic path for electron transport all the way from the conduction band of the ZnO nanowires, through the protein linker to the RC, and ultimately via redox mediator to the counter electrode.

  6. A ZnO nanowire bio-hybrid solar cell.

    PubMed

    Yaghoubi, Houman; Schaefer, Michael; Yaghoubi, Shayan; Jun, Daniel; Schlaf, Rudy; Beatty, J Thomas; Takshi, Arash

    2017-02-03

    Harvesting solar energy as a carbon free source can be a promising solution to the energy crisis and environmental pollution. Biophotovoltaics seek to mimic photosynthesis to harvest solar energy and to take advantage of the low material costs, negative carbon footprint, and material abundance. In the current study, we report on a combination of zinc oxide (ZnO) nanowires with monolayers of photosynthetic reaction centers which are self-assembled, via a cytochrome c linker, as photoactive electrode. In a three-probe biophotovoltaics cell, a photocurrent density of 5.5 μA cm(-2) and photovoltage of 36 mV was achieved, using methyl viologen as a redox mediator in the electrolyte. Using ferrocene as a redox mediator a transient photocurrent density of 8.0 μA cm(-2) was obtained, which stabilized at 6.4 μA cm(-2) after 20 s. In-depth electronic structure characterization using photoemission spectroscopy in conjunction with electrochemical analysis suggests that the fabricated photoactive electrode can provide a proper electronic path for electron transport all the way from the conduction band of the ZnO nanowires, through the protein linker to the RC, and ultimately via redox mediator to the counter electrode.

  7. Resistive switching characteristics of ZnO nanowires.

    PubMed

    Yoo, Eun Ji; Shin, Il Kwon; Yoon, Tae Sik; Choi, Young Jin; Kang, Chi Jung

    2014-12-01

    Binary transition metal oxides such as ZnO, TiO2, and MnO; and their various structures such as thin film, nanowire, and nanoparticle assembly; have been widely investigated for use in insulators in resistive random access memory (ReRAM), considered a next-generation nonvolatile memory device. Among the various driving mechanisms of resistive switching in insulating materials, the conductive filament model is one of the most widely accepted. Studies on spatially confined structures such as one-dimensional nanostructures and zero-dimensional nanoparticles to reveal the detailed filament constructing mechanism are warranted because low-dimensional nanostructures can provide more localized properties with a narrow dispersion of operational parameter values compared with thin-film structures. We investigated the resistive switching characteristics of ZnO nanowire (NW) structures. The NWs were grown on an Au/Ti/SiO2/Si substrate via the hydrothermal method. The empty space between the top and bottom electrodes was filled with a photoresist to prevent direct connection between the electrodes. The top electrode (Cr) and bottom electrode (Au), both with a thickness of -100 nm, were deposited by DC sputtering. The current-voltage (I-V) measurements were performed using a semiconductor characterization system. Additionally, the local current image and the point I-V characteristics for each NW were examined by replacing the top electrode with a conducting atomic force microscope tip. The Au-ZnO NW-Cr devices exhibited bipolar resistive switching behavior.

  8. CMOS Alcohol Sensor Employing ZnO Nanowire Sensing Films

    NASA Astrophysics Data System (ADS)

    Santra, S.; Ali, S. Z.; Guha, P. K.; Hiralal, P.; Unalan, H. E.; Dalal, S. H.; Covington, J. A.; Milne, W. I.; Gardner, J. W.; Udrea, F.

    2009-05-01

    This paper reports on the utilization of zinc oxide nanowires (ZnO NWs) on a silicon on insulator (SOI) CMOS micro-hotplate for use as an alcohol sensor. The device was designed in Cadence and fabricated in a 1.0 μm SOI CMOS process at XFAB (Germany). The basic resistive gas sensor comprises of a metal micro-heater (made of aluminum) embedded in an ultra-thin membrane. Gold plated aluminum electrodes, formed of the top metal, are used for contacting with the sensing material. This design allows high operating temperatures with low power consumption. The membrane was formed by using deep reactive ion etching. ZnO NWs were grown on SOI CMOS substrates by a simple and low-cost hydrothermal method. A few nanometer of ZnO seed layer was first sputtered on the chips, using a metal mask, and then the chips were dipped in a zinc nitrate hexahydrate and hexamethylenetramine solution at 90° C to grow ZnO NWs. The chemical sensitivity of the on-chip NWs were studied in the presence of ethanol (C2H5OH) vapour (with 10% relative humidity) at two different temperatures: 200 and 250° C (the corresponding power consumptions are only 18 and 22 mW). The concentrations of ethanol vapour were varied from 175-1484 ppm (pers per million) and the maximum response was observed 40% (change in resistance in %) at 786 ppm at 250° C. These preliminary measurements showed that the on-chip deposited ZnO NWs could be a promising material for a CMOS based ethanol sensor.

  9. Rapid large-scale preparation of ZnO nanowires for photocatalytic application

    PubMed Central

    2011-01-01

    ZnO nanowires are a promising nanomaterial for applications in the fields of photocatalysis, nano-optoelectronics, and reinforced composite materials. However, the challenge of producing large-scale ZnO nanowires has stunted the development and practical utilization of ZnO nanowires. In this study, a modified carbothermal reduction method for preparing large-scale ZnO nanowires in less than 5 min is reported. The preparation was performed in a quartz tube furnace at atmospheric pressure without using any catalysts. A mixed gas of air and N2 with a volume ratio of 45:1 was used as the reactive and carrier gas. About 0.8 g ZnO nanowires was obtained using 1 g ZnO and 1 g graphite powder as source materials. The obtained nanowires exhibited a hexagonal wurtzite crystal structure with an average diameter of about 33 nm. Good photocatalytic activity of the nanowires toward the photodegradation of methylene blue dye under UV irradiation was also demonstrated. PMID:21968032

  10. Realizing field-dependent conduction in ZnO nanowires without annealing

    NASA Astrophysics Data System (ADS)

    Burke-Govey, C. P.; Castanet, U.; Warring, H.; Nau, A.; Ruck, B. J.; Majimel, J.; Plank, N. O. V.

    2017-03-01

    We report on the low-temperature fabrication of field-effect transistors by bridging pre-patterned electrodes using ZnO nanowires grown in situ, which operate without requiring post-growth processing or annealing. The devices show good performance using as-grown nanowires, with on–off ratios of 105 and threshold voltages of 2 V. Electron microscopy shows the field-dependent nanowires hierarchically nucleate from larger ZnO nanorods, and both are oriented along a common c-axis. A high nanowire surface-to-volume ratio allows depleting electron traps on the nanowire surface to compensate intrinsic electron donors present throughout the nanowire bulk. This eliminates the need to reduce the electron concentration through high-temperature annealing, making the nanowires naturally field-dependent in their as-grown state.

  11. Realizing field-dependent conduction in ZnO nanowires without annealing.

    PubMed

    Burke-Govey, C P; Castanet, U; Warring, H; Nau, A; Ruck, B J; Majimel, J; Plank, N O V

    2017-03-24

    We report on the low-temperature fabrication of field-effect transistors by bridging pre-patterned electrodes using ZnO nanowires grown in situ, which operate without requiring post-growth processing or annealing. The devices show good performance using as-grown nanowires, with on-off ratios of 10(5) and threshold voltages of 2 V. Electron microscopy shows the field-dependent nanowires hierarchically nucleate from larger ZnO nanorods, and both are oriented along a common c-axis. A high nanowire surface-to-volume ratio allows depleting electron traps on the nanowire surface to compensate intrinsic electron donors present throughout the nanowire bulk. This eliminates the need to reduce the electron concentration through high-temperature annealing, making the nanowires naturally field-dependent in their as-grown state.

  12. ZnO nanowire growth and characterization for UV detection and imaging applications

    NASA Astrophysics Data System (ADS)

    Rivera, Abdiel; Mazady, M. Anas; Zeller, John; Anwar, Mehdi; Manzur, Tariq; Sood, Ashok

    2013-06-01

    Zinc oxide (ZnO) is a unique wide bandgap biocompatible material system exhibiting both semiconducting and piezoelectric properties that has a diverse group of growth morphologies. Bulk ZnO has a bandgap of 3.37 eV that corresponds to emissions in the ultraviolet (UV) spectral band. Highly ordered vertical arrays of ZnO nanowires (NWs) have been grown on substrates including silicon, SiO2, GaN, and sapphire using a metal organic chemical vapor deposition (MOCVD) growth process. The structural and optical properties of the grown vertically aligned ZnO NW arrays were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) measurements. Compared to conventional UV sensors, detectors based on ZnO NWs offer high UV sensitivity and low visible sensitivity, and are expected to exhibit low noise, high quantum efficiency, extended lifetimes, and have low power requirements. The photoresponse switching properties of NW array based sensing devices have been measured with intermittent exposure to UV radiation, where the devices were found to switch between low and high conductivity states at time intervals on the order of a few seconds. Furthermore, NW based UV sensors and focal plane arrays (FPAs) show promise for imaging in the near marine boundary layer, an area extending up to about six meters above the ocean surface characterized by a relatively high degree of aerosols and turbulence. Envisioned applications for such sensors/FPAs potentially integrated into submarine photonic masts (which would maintain their effectiveness even in bright daylight conditions) include threat detection and threat warning.

  13. Spontaneous Growth of ZnCO3 Nanowires on ZnO Nanostructures in Normal Ambient Environment: Unstable ZnO Nanostructures

    SciTech Connect

    Pan, Z.; Tao, J.; Zhu, Y.; Huang, J.-F.; Paranthaman, M.P.

    2009-12-09

    ZnO nanowires, one of the most investigated nanostructures that promise numerous applications in nanophotonics, opto-electronics, and energy, are generally thought to be highly stable under ambient conditions because of their oxide nature. Here, we report that ZnO nanowires are actually extremely unstable even in normal ambient environment (70% RH, and {approx}350 ppm CO{sub 2}) because of atmospheric corrosion. When placed on an oxide substrate (e.g., glass slide) and exposed in air, ZnO nanowires tend to react with airborne moisture and CO{sub 2} to form amorphous ZnCO{sub 3} thin films and nanowires. The factors that specially affect the corrosion of ZnO nanowires in a laboratory environment include CO{sub 2}, humidity, and substrates. Our results suggest that a CO{sub 2}{sup -} and/or moisture-free environment are required in order for optimal applications of ZnO nanowires.

  14. "Spontaneous Growth of ZnCO3 Nanowires on ZnO Nanostructures in Normal Ambient Environment: Unstable ZnO Nanostructures:

    SciTech Connect

    Pan, Zhengwei; Tao, Jing; Zhu, Yimei; Huang, Jing-Fang; Paranthaman, Mariappan Parans

    2010-01-01

    ZnO nanowires, one of the most investigated nanostructures that promise numerous applications in nanophotonics, opto-electronics, and energy, are generally thought to be highly stable under ambient conditions because of their oxide nature. Here, we report that ZnO nanowires are actually extremely unstable even in normal ambient environment (70% RH, and 350 ppm CO2) because of atmospheric corrosion.When placed on an oxide substrate (e.g., glass slide) and exposed in air, ZnO nanowires tend to react with airborne moisture and CO2 to form amorphous ZnCO3 thin films and nanowires. The factors that specially affect the corrosion of ZnO nanowires in a laboratory environment include CO2, humidity, and substrates. Our results suggest that a CO2- and/or moisture-free environment are required in order for optimal applications of ZnO nanowires.

  15. Nanoscale piezoelectric response of ZnO nanowires measured using a nanoindentation technique.

    PubMed

    Broitman, Esteban; Soomro, Muhammad Yousuf; Lu, Jun; Willander, Magnus; Hultman, Lars

    2013-07-14

    We report the piezoelectric properties of ZnO nanowires (NWs) obtained by using a nanoindenter with a conductive boron-doped diamond tip. The direct piezoelectric effect was measured by performing nanoindentations under load control, and the generated piezoelectric voltage was characterized as a function of the applied loads in the range 0.2-6 mN. The converse piezoelectric effect was measured by applying a DC voltage to the sample while there was a low applied force to allow the tip being always in physical contact with the NWs. Vertically aligned ZnO NWs were grown on inexpensive, flexible, and disposable paper substrates using a template-free low temperature aqueous chemical growth method. When using the nanoindenter to measure the direct piezoelectric effect, piezopotential values of up to 26 mV were generated. Corresponding measurement of the converse piezoelectric effect gave an effective piezoelectric coefficient d33(eff) of ∼9.2 pm V(-1). The ZnO NWs were also characterized using scanning electron microscopy, X-ray diffraction, and high-resolution transmission electron microscopy. The new nanoindentation approach provides a straightforward method to characterize piezoelectric material deposited on flexible and disposable substrates for the next generation of nanodevices.

  16. InGaN-based photoanode with ZnO nanowires for water splitting

    NASA Astrophysics Data System (ADS)

    Kang, Junjie; Dang, Vinhquang; Li, Hongjian; Moon, Sungjin; Li, Panpan; Kim, Yangdoo; Kim, Chaehyun; Choi, Hakjong; Liu, Zhiqiang; Lee, Heon

    2016-12-01

    The water splitting properties of InGaN photoanodes equipped with ZnO nanowires were examined in this study. Over the solar spectrum range, the absorbance exhibited a remarkable increase due to the enhanced light absorption caused by the ZnO nanowires. By varying the ZnO nanowires length, the photo-to-current density of photoanodes was increased from 0.017 to 0.205 mA/cm2 at 1.23 V versus reversible hydrogen electrode. Consequently, the incident-photon-to-current efficiency was increased by a factor of 5.5 as the ZnO nanowires growth time increased from 2 to 4 h. The results of this research demonstrate the importance of light absorbance and the surface reaction sites of photoanodes on energy harvesting.

  17. Optical and piezoelectric properties of p-type ZnO nanowires on transparent flexible substrate for energy harvesting

    NASA Astrophysics Data System (ADS)

    Liu, Guocheng; Tam, Man Chun; Hu, Lilei; EI-Rayes, Karim; Guo, Qiuquan; Yang, Jun; Mrad, Nezih; Ban, Dayan

    2014-09-01

    High quality, controlled-structure nanowires (NWs), grown on a transparent flexible substrate, have attracted great interest as a mean of harvesting solar and mechanical energy. Clarifying their optical and piezoelectric properties is essential for this application. In this paper, vertically aligned lithium (Li) doped p-type ZnO NWs were grown, on a micro-patterned transparent flexible polyethylene naphthalate (PEN) substrate, by electrochemical deposition at 88 °C. The substrate was coated with aluminum-doped ZnO (AZO) thin layer, which served as a good seed layer and a transparent conductive oxide layer. Varying the seed layer thickness gave control of the individual NWs' diameter, density and alignment. The effect of doping on the optical band-gap, crystalline quality and Schottky barrier were investigated by X-ray diffraction (XRD) spectroscopy and piezoelectric characterization. The piezoelectric polarization induced piezo-potential in strained ZnO NWs can drive the flow of electrons without an applied electric bias, thus can be used to harvest mechanical energy and convert it into electricity. To prove this concept, flexible piezoelectric energy harvesters based on an array of ZnO NWs were fabricated. Results show that the patterned p-type NW-based energy harvester produces 26-fold output voltage and 19-fold current compared to the conventional un-doped ZnO NW energy harvester from the same acceleration input.

  18. Growth Mechanism Studies of ZnO Nanowires: Experimental Observations and Short-Circuit Diffusion Analysis

    PubMed Central

    Shih, Po-Hsun

    2017-01-01

    Plenty of studies have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since analyzing the growth mechanism along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Two-dimensional energy dispersive spectroscopy (EDS) mapping with a diffusion model was used to obtain the diffusion length and the activation energy ratio. The ratio value is close to 0.3, revealing that the growth of ZnO nanowires was attributed to the short-circuit diffusion. PMID:28754030

  19. Negative Differential Resistance in ZnO Nanowires Bridging Two Metallic Electrodes

    PubMed Central

    2010-01-01

    The electrical transport through nanoscale contacts of ZnO nanowires bridging the interdigitated Au electrodes shows the negative differential resistance (NDR) effect. The NDR peaks strongly depend on the starting sweep voltage. The origin of NDR through nanoscale contacts between ZnO nanowires and metal electrodes is the electron charging and discharging of the parasitic capacitor due to the weak contact, rather than the conventional resonant tunneling mechanism. PMID:20730121

  20. Epitaxial growth of aligned AlGalnN nanowires by metal-organic chemical vapor deposition

    DOEpatents

    Han, Jung; Su, Jie

    2008-08-05

    Highly ordered and aligned epitaxy of III-Nitride nanowires is demonstrated in this work. <1010> M-axis is identified as a preferential nanowire growth direction through a detailed study of GaN/AlN trunk/branch nanostructures by transmission electron microscopy. Crystallographic selectivity can be used to achieve spatial and orientational control of nanowire growth. Vertically aligned (Al)GaN nanowires are prepared on M-plane AlN substrates. Horizontally ordered nanowires, extending from the M-plane sidewalls of GaN hexagonal mesas or islands demonstrate new opportunities for self-aligned nanowire devices, interconnects, and networks.

  1. Flexible high-output nanogenerator based on lateral ZnO nanowire array.

    PubMed

    Zhu, Guang; Yang, Rusen; Wang, Sihong; Wang, Zhong Lin

    2010-08-11

    We report here a simple and effective approach, named scalable sweeping-printing-method, for fabricating flexible high-output nanogenerator (HONG) that can effectively harvesting mechanical energy for driving a small commercial electronic component. The technique consists of two main steps. In the first step, the vertically aligned ZnO nanowires (NWs) are transferred to a receiving substrate to form horizontally aligned arrays. Then, parallel stripe type of electrodes are deposited to connect all of the NWs together. Using a single layer of HONG structure, an open-circuit voltage of up to 2.03 V and a peak output power density of approximately 11 mW/cm(3) have been achieved. The generated electric energy was effectively stored by utilizing capacitors, and it was successfully used to light up a commercial light-emitting diode (LED), which is a landmark progress toward building self-powered devices by harvesting energy from the environment. This research opens up the path for practical applications of nanowire-based piezoelectric nanogeneragtors for self-powered nanosystems.

  2. Effects of synthesizing parameters on surface roughness and contact angles of ZnO nanowire films.

    PubMed

    Jing, Weixuan; Wang, Bing; Niu, Lingling; Jiang, Zhuangde; Qi, Han; Chen, Lujia; Zhou, Fan

    2014-06-01

    Effects of the synthesizing parameters on the surface roughness and the contact angles of ZnO nanowire films were studied in this paper. ZnO nanowire films were synthesized with the hydrothermal method on glass substrates, and the synthesizing parameters include the concentrations of the growth solution and the seed layer solution, the growth time span as well as the temperature. Atomic force microscopy and scanning electron microscopy were employed respectively to characterize the surface and the profile roughness of ZnO nanowire films. The measurement results by atomic force microscopy were in agreement with that by scanning electron microscopy, hence the former was used for the investigation of aforementioned effects. Relationships between the synthesizing parameters, the surface roughness and the contact angles of ZnO nanowire films were established, revealing that the synthesizing parameters affected significantly not only the surface roughness but also the contact angles of ZnO nanowire films. The results can be used for batch fabrication of ZnO nanowire-based structures and these structures-based sensors in a wide variety of applications.

  3. Large-scale solution-phase growth of Cu-doped ZnO nanowire networks.

    PubMed

    Xu, Chunju; Koo, Tae-Woong; Kim, Byung-Sung; Lee, Jae-Hyun; Hwang, Sung Woo; Whang, Dongmok

    2011-07-01

    Film-like networks of Cu-doped (0.8-2.5 at.%) ZnO nanowires were successfully synthesized through a facile solution process at a low temperature (<100 degrees C). The pH value of solution plays a key role in controlling the density and quality of the Cu-doped ZnO nanowires and the dopant concentration of ZnO nanowires was controlled by adjusting the Cu2+/Zn2+ concentration ratio during the synthesis. The structural study showed that the as-prepared Cu-doped ZnO nanowires with a narrow diameter range of 20-30 nm were single crystal and grew along [0001] direction. Photoluminescence and electrical conductivity measurements showed that Cu doping can lead to a redshift in bandgap energy and an increase in the resistivity of ZnO. The thermal annealing of the as-grown nanowires at a low temperature (300 degrees C) decreased the defect-related emission within the visible range and increased the electrical conductivity. The high-quality ZnO nanowire network with controlled doping will enable further application to flexible and transparent electronics.

  4. Investigation on the electrical conductivity of ZnO nanoparticles-decorated bacterial nanowires

    NASA Astrophysics Data System (ADS)

    Maruthupandy, Muthuchamy; Anand, Muthusamy; Maduraiveeran, Govindhan; Suresh, Santhanakrishnan; Sait Hameedha Beevi, Akbar; Jeeva Priya, Radhakrishnan

    2016-12-01

    Electrical conductivity of zinc oxide nanoparticles (ZnO NPs)-decorated bacterial nanowires is investigated in the present work. The ZnO NPs are prepared through a simple precipitation method and characterized by UV-vis spectrophotometer, Fourier transform infrared spectroscopy, x-ray diffraction, atomic force microscopy (AFM), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The SEM analysis discloses that the prepared ZnO NPs are spherical in shape with an average particle size of 3.5 nm. The ZnO NPs are decorated on the surface of bacterial nanowires and the same are characterized by AFM and HRTEM. The electrochemical performance of the bare bacterial nanowires and ZnO NPs-decorated bacterial nanowires is analyzed by cyclic voltammetry and linear sweep voltammetry, whereas their electrical conductivity is measured by electrochemical impedance spectroscopy. The results of the electrochemical investigations indicate that the ZnO NPs coating on the surface of bacterial nanowires improve the electrical conductivity of the bacterial nanowires.

  5. Two-step epitaxial synthesis and layered growth mechanism of bisectional ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Wang, Wenduo; Zhang, Zheng; Liao, Qingliang; Yu, Tong; Shen, Yanwei; Li, Peifeng; Huang, Yunhua; Zhang, Yue

    2013-01-01

    Here a two-step epitaxial synthesis method of bisectional ZnO nanowire arrays (ZNWAs) on silicon substrates has been demonstrated incorporating hydrothermal growth (HG) and CVD process. The as-received well-aligned ZNWAs are confirmed to be single-crystal and growing along <001> direction, normal to the substrate. Interestingly, they show significant tapering behavior at the conjunctions, which is consistent with theoretical predictions. Therefore a layered growth mechanism is promoted involving the classical two-dimensional nucleation theory. In the proposed mechanism, the HG ZNWA provides nucleation sites for successive growth. The growth mechanism is verified by complementary investigation into conjunction morphology, which is dependent on regional Zn vapor pressure (ZVP) in the CVD process. Three types of conjunction morphologies are differentiated and the difference is explained with the growth model.

  6. One-dimensional (1D) ZnO nanowires dye sensitized solar cell.

    PubMed

    Kiliç, Bayram; Wang, Lianzhou; Ozdemir, Orhan; Lu, Max; Tüzemen, Sebahattin

    2013-01-01

    High ordered one-dimensional (1D) Zinc oxide (ZnO) nanowires were grown on FTO substrate by using the hydrothermal method. Nanowires structures were used as the wide band-gap semiconducting photo-electrode in dye sensitized solar cell (DSSCs). Solar cell made from ZnO nanowire at 50 nm radius and several tens micron lengths showed high solar conversion efficiency (eta) of 2.1% and incident photon current efficiency (IPCE) 35% using nanowire/N719 dye/I-/I3- electrolyte. We also compared Ru N719 dye and N3 dye on ZnO nanowire against each other in respect to solar conversion efficiency and IPCE measurements. In the case of the N3 dye on ZnO nanowire conversion efficiency (eta) of 1.32% and IPCE 23% were obtained under an illumination of 100 mW/cm2. It was found that the performance of the Ru N719 dyes was better than about 50% that of the N3 dye in ZnO nanowire dye-sensitized solar cells.

  7. Imaging Single ZnO Vertical Nanowire Laser Cavities using UV-Laser Scanning Confocal Microscopy

    SciTech Connect

    Gargas, D.J.; Toimil-Molares, M.E.; Yang, P.

    2008-11-17

    We report the fabrication and optical characterization of individual ZnO vertical nanowire laser cavities. Dilute nanowire arrays with interwire spacing>10 ?m were produced by a modified chemical vapor transport (CVT) method yielding an ideal platform for single nanowire imaging and spectroscopy. Lasing characteristics of a single vertical nanowire are presented, as well as high-resolution photoluminescence imaging by UV-laser scanning confocal microscopy. In addition, three-dimensional (3D) mapping of the photoluminescence emission performed in both planar and vertical dimensions demonstrates height-selective imaging useful for vertical nanowires and heteronanostructures emerging in the field of optoelectronics and nanophotonics.

  8. ZnO Quantum Dot Decorated Zn2SnO4 Nanowire Heterojunction Photodetectors with Drastic Performance Enhancement and Flexible Ultraviolet Image Sensors.

    PubMed

    Li, Ludong; Gu, Leilei; Lou, Zheng; Fan, Zhiyong; Shen, Guozhen

    2017-03-27

    Here we report the fabrication of high-performance ultraviolet photodetectors based on a heterojunction device structure in which ZnO quantum dots were used to decorate Zn2SnO4 nanowires. Systematic investigations have shown their ultrahigh light-to-dark current ratio (up to 6.8 × 10(4)), specific detectivity (up to 9.0 × 10(17) Jones), photoconductive gain (up to 1.1 × 10(7)), fast response, and excellent stability. Compared with a pristine Zn2SnO4 nanowire, a quantum dot decorated nanowire demonstrated about 10 times higher photocurrent and responsivity. Device physics modeling showed that their high performance originates from the rational energy band engineering, which allows efficient separation of electron-hole pairs at the interfaces between ZnO quantum dots and a Zn2SnO4 nanowire. As a result of band engineering, holes migrate to ZnO quantum dots, which increases electron concentration and lifetime in the nanowire conduction channel, leading to significantly improved photoresponse. The enhancement mechanism found in this work can also be used to guide the design of high-performance photodetectors based on other nanomaterials. Furthermore, flexible ultraviolet photodetectors were fabricated and integrated into a 10 × 10 device array, which constitutes a high-performance flexible ultraviolet image sensor. These intriguing results suggest that the band alignment engineering on nanowires can be rationally achieved using compound semiconductor quantum dots. This can lead to largely improved device performance. Particularly for ZnO quantum dot decorated Zn2SnO4 nanowires, these decorated nanowires may find broad applications in future flexible and wearable electronics.

  9. Maximizing integrated optical and electrical properties of a single ZnO nanowire through native interfacial doping.

    PubMed

    Ding, Huaiyi; Pan, Nan; Ma, Chao; Wu, Yukun; Li, Junwen; Cai, Hongbing; Zhang, Kun; Zhang, Guanghui; Ren, Wenzhen; Li, Jianqi; Luo, Yi; Wang, Xiaoping; Hou, J G

    2014-05-21

    A native interfacial doping layer introduced in core-shell type ZnO nano-wires by a simple vapor phase re-growth procedure endows the produced nano-wires with both excellent electrical and optical performances compared to conventional homogeneous ZnO nanowires. The unique Zn-rich interfacial structure in the core-shell nanowires plays a crucial role in the outstanding performances.

  10. Using the hydrothermal method to grow p-type ZnO nanowires on Al-doped ZnO thin film to fabricate a homojunction diode.

    PubMed

    Tseng, Yung-Kuan; Hung, Meng-Chun; Su, Shun-Lung; Li, Sheng-Kai

    2014-10-01

    In this study, the hydrothermal method is used to grow phosphorus-doped ZnO nanowires on Si/SiO2 substrates deposited with Al-doped ZnO thin film. This structure forms a homogeneous p-n junction. In this study, we are the pioneers to use ammonium hypophosphite (NH4H2PO2) as a source of phosphorus to prepare the precursor solution. Ammonium hypophosphite of different concentration levels is used to observe its effects on the growth of nanowires. The results show that the precursor solution prepared from ammonium hypophosphite can produce good crystalline ZnO nanowires while there is no linear relationship between the amounts and concentration levels of phosphorus doped into the nanowires. Whether the phosphorus-doped ZnO nanowires have the characteristics of a p-type semiconductor is indirectly verified by measuring whether the p-n junction made up of Al-doped ZnO thin film and phosphorus-doped ZnO nanowires shows rectifying behavior. I-V measurements are made on the specimens. The results show good rectifying behavior, proving that the phosphorus-doped ZnO nanowires and Al-doped AZO films have p-type and n-type semiconductor properties, constituting a good p-n junction. This result also proves that ammonium hypophosphite is a better source of phosphorus in the hydrothermal method to synthesize phosphorus-doped ZnO nanowires.

  11. Electrical anisotropy in coatings of aligned silver nanowires

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Galderon-Ortiz, Gabriel; Exarhos, Annemarie; Alsayed, Ahmed; Winey, Karen; Kikkawa, Jay; Yodh, Arjun

    2015-03-01

    Conductive and transparent coatings consisting of silver nanowires (AgNWs) have been suggested as a promising candidate to replace traditional ITO coatings for emerging flexible electronics applications. The electrical properties of such AgNW coatings depend strongly on the structure of nanowire networks formed by various processing methods. In this work, we study how the alignment of nanowires affects the electrical anisotropy in AgNW coatings. Specifically, we introduce a robust method to prepare coatings of well-aligned AgNWs on glass substrates; the method utilizes the rapid flow of AgNW suspensions through a confined geometry. The angle-dependent sheet resistance of the coatings was measured, and large anisotropy in surface conductivity was found to characterize the aligned AgNW networks. We also explore the degree of alignment and surface coverage of AgNWs in the networks, thereby establishing connections between microscopy network structures and macroscopic electrical anisotropy. This work was supported by the NSF DMR12-05463, DMR-1305199, PENN MRSEC DMR11-20901, NASA NNX08AO0G grants, and Solvay.

  12. Plasmonic Properties of Vertically Aligned Nanowire Arrays

    DTIC Science & Technology

    2012-01-01

    slurry, with a diameter of 300 nm, was further diluted in a mixture of the surfactant Triton X-100 and methanol (1 : 400 by volume), with a dilution... mixture powder of ZnO : C (1 : 1 by weight) used as the source was placed at one end of an alumina boat, and the substrate with the gold pattern was put...directly above the material sources, face down. The furnace was heated to 900◦C while flowing simultaneously a mixture of argon and oxygen gases in a

  13. Aligned silicon carbide nanowire crossed nets with high superhydrophobicity.

    PubMed

    Niu, Jun Jie; Wang, Jian Nong; Xu, Qian Feng

    2008-06-01

    Aligned silicon carbide nanowire crossed nets (a-SiCNWNs) were directly synthesized by using a vapor-solid reaction at 1100 degrees C. Zinc sulfide was used as catalyst to assist the growth of a-SiCNWNs with small size and crystal structure. After functionalization with perfluoroalkysilane, a-SiCNWNs showed excellent superhydrophobic property with a high water contact angle more than 156 +/- 2 degrees , compared to random nanowires (147 +/- 2 degrees ) and pure silicon wafers (101 +/- 2 degrees ). The topographic roughness and chemical modification with CF 2/CF 3 groups contributed the better superhydrophobicity. Furthermore, the as-grown SiCNWNs can be scraped off and coated on other substrates such as pure silicon wafers. The novel nanowire coating with good superhydrophobicity displays extensive applications in silicon-related fields such as solar cells, radar, etc.

  14. Luminance behavior of lithium-doped ZnO nanowires with p-type conduction characteristics.

    PubMed

    Ko, Won Bae; Lee, Jun Seok; Lee, Sang Hyo; Cha, Seung Nam; Sohn, Jung Inn; Kim, Jong Min; Park, Young Jun; Kim, Hyun Jung; Hong, Jin Pyo

    2013-09-01

    The present study describes the room-temperature cathodeluminescence (CL) and temperature-dependent photoluminescence (PL) properties of p-type lithium (Li)-doped zinc oxide (ZnO) nanowires (NWs) grown by hydrothermal doping and post-annealing processes. A ZnO thin film was used as a seed layer in NW growth. The emission wavelengths and intensities of undoped ZnO NWs and p-type Li-doped ZnO NWs were analyzed for comparison. CL and PL observations of post-annealed p-type Li-doped ZnO NWs clearly exhibited a dominant sharp band-edge emission. Finally, a n-type ZnO thin film/p-type annealed Li-doped ZnO NW homojunction diode was prepared to confirm the p-type conduction of annealed Li-doped ZnO NWs as well as the structural properties measured by transmission electron microscopy.

  15. Biodiagnostics using oriented and aligned inorganic semiconductor nanotubes and nanowires.

    PubMed

    Kar, Piyush; Shankar, Karthik

    2013-07-01

    The simplicity of synthesis of deterministically positioned inorganic semiconductor nanorods (NRs) and nanotubes (NTs) coupled with their chemical stability, high surface area, controllable optical properties and tunable surface functionality, have sparked worldwide research efforts towards biodiagnostic applications. Biosensors based on oriented and aligned one-dimensional (1-D) inorganic semiconductor nanostructures have demonstrated remarkable detection sensitivity, high throughput and label-free operability. In comparison to suspensions of nanoparticles and discrete randomly oriented nanowires, nanowire (NW) and nanotube arrays offer continuous charge transport pathways, a major advantage for all-electrical detection and in exploiting electrokinetic effects. We review highly sensitive biosensors based on oriented and aligned NTs/NRs/NWs employing conventional detection methods, inclusive of fluorescence, electrochemistry and electromechanical sensing as well as detection methods unique to nanowires such as field-effect transistors. Entirely new types of sensing applications such as the impaling of living cells to monitor cellular events in situ, and substrates with electrically controlled wetting for surface-assisted laser desorption and ionization are emerging to take advantage of the unique properties of nanowire arrays. Concurrently, we explain the semiconductor materials and architectures employed, and the functionalization procedures used to construct the biosensors. Aligned semiconductor array-based approaches are critically examined in relation to prevailing technologies to get a sense of the exclusive niches that nanotube/nanorod array biosensors inhabit. The versatility of the detection principles that nanowire/nanotube arrays are compatible with are enabling hybrid approaches where combinations of detection methods are used. Such advantages offset the complexity associated with changing the status quo with respect to the current state-of-the-art in

  16. Photovoltaic effect and charge storage in single ZnO nanowires

    SciTech Connect

    Liao Zhimin; Xu Jun; Zhang Jingmin; Yu Dapeng

    2008-07-14

    Asymmetric Schottky barriers between ZnO nanowire and metal electrode have been fabricated at the two ends of the nanowire. An obvious photocurrent generated from the device at zero voltage bias can be switched on/off with quick response by controlling the light irradiation. Moreover, the device can still afford a current at zero bias after switching off light illumination, which is ascribed to the charge storage effect in single ZnO nanowires. The underlying mechanisms related to the photovoltaic effect and charge storage were discussed.

  17. Controlled Growth of Parallel Oriented ZnO Nanostructural Arrays on Ga2O3 Nanowires

    DTIC Science & Technology

    2008-11-01

    Controlled Growth of Parallel Oriented ZnO Nanostructural Arrays on Ga2O3 Nanowires Lena Mazeina,* Yoosuf N. Picard, and Sharka M. Prokes Electronics...Manuscript ReceiVed NoVember 6, 2008 ABSTRACT: Novel hierarchical ZnO- Ga2O3 nanostructures were fabricated via a two stage growth process. Nanowires of Ga2O3 ...nanobrushes (NBs) with Ga2O3 as the core and ZnO as the branches self-assembling symmetrically in six equiangular directions around the core

  18. Controllable morphologies of ZnO nanocrystals: nanowire attracted nanosheets, nanocartridges and hexagonal nanotowers

    NASA Astrophysics Data System (ADS)

    Hu, P. A.; Liu, Y. Q.; Fu, L.; Wang, X. B.; Zhu, D. B.

    2005-01-01

    ZnO nanowire attracted nanosheets, nanocartridges and hexagonal nanotowers are fabricated by evaporation of ZnS in the presence of trace oxygen under controlled conditions. The nanosheet has an irregular structure, and nanowires sprout from the flange of the nanosheet. The nanocartridge has one row of prismatic nanorods grown on the (0001) surface of the ZnO nanobelts. The hexagonal nanotower, which grows along the c axis, shows an interesting layer structure and seems to form by piling up hexagonal ZnO nanocrystals layer on layer. These nanomaterials might have potential applications in optoelectronics.

  19. Water-repellent ZnO nanowires films obtained by octadecylsilane self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Badre, C.; Pauporté, T.; Turmine, M.; Dubot, P.; Lincot, D.

    2008-05-01

    Zinc oxide (ZnO) films with well-controlled morphologies have been prepared by electrochemical deposition. A seed layer of nanocrystallites of ZnO was prepared from which ZnO nanowires were grown from a low concentration of ZnCl 2. The nanowires are rough and dense and their superhydrophilicity is enhanced. A treatment with an alkylsilane (octadecylsilane) yields superhydrophobic surfaces with very high advancing and receding contact angles 173°/172° and a very low roll-off angle. Our superhydrophobic films are stable for more than 6 months.

  20. Single ZnO nanowire ultraviolet detector with free-recovered contact performance

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Wang, Liang; Li, Xin; Li, Zhenhu; Feng, Shuanglong; Lu, Wenqiang

    2016-06-01

    In this paper, a single ZnO nanowire ultraviolet detector was firstly fabricated by a single ZnO nanowire and silver paint, which can be free-recovered from a Schottky contact to an Ohmic contact. Key effect factors such as the illumination and bias voltage of the free-recovered performance were also investigated. Meanwhile, the reason for the recoverable contact was further confirmed in detail. This result is beneficial for developing the highly sensitive ZnO based ultraviolet detector.

  1. Highly aligned vertical GaN nanowires using submonolayer metal catalysts

    DOEpatents

    Wang, George T [Albuquerque, NM; Li, Qiming [Albuquerque, NM; Creighton, J Randall [Albuquerque, NM

    2010-06-29

    A method for forming vertically oriented, crystallographically aligned nanowires (nanocolumns) using monolayer or submonolayer quantities of metal atoms to form uniformly sized metal islands that serve as catalysts for MOCVD growth of Group III nitride nanowires.

  2. Electrical properties of ZnO single nanowires.

    PubMed

    Stiller, Markus; Barzola-Quiquia, José; Zoraghi, Mahsa; Esquinazi, Pablo

    2015-10-02

    We have investigated the electrical resistance R(T) of ZnO nanowires of ≈ 400 nm diameter as a function of temperature, between 30 K and 300 K, and frequency in the range 40 Hz to 30 MHz. The measurements were done on the as-prepared and after low-energy proton implantation at room temperature. The temperature dependence of the resistance of the wire, before proton implantation, can be well described by two processes in parallel. One process is the fluctuation induced tunneling conductance (FITC) and the other the usual thermally activated process. The existence of a tunneling conductance was also observed in the current-voltage ([Formula: see text]) results, and can be well described by the FITC model. Impedance spectroscopy measurements in the as-prepared state and at room temperature, indicate and support the idea of two contributions of these two transport processes in the nanowires. Electron backscatter diffraction confirms the existence of different crystalline regions. After the implantation of H(+) a third thermally activated process is found that can be explained by taking into account the impurity band splitting due to proton implantation.

  3. ZnO nanowire UV photodetectors with high internal gain.

    PubMed

    Soci, C; Zhang, A; Xiang, B; Dayeh, S A; Aplin, D P R; Park, J; Bao, X Y; Lo, Y H; Wang, D

    2007-04-01

    ZnO nanowire (NW) visible-blind UV photodetectors with internal photoconductive gain as high as G approximately 108 have been fabricated and characterized. The photoconduction mechanism in these devices has been elucidated by means of time-resolved measurements spanning a wide temporal domain, from 10-9 to 102 s, revealing the coexistence of fast (tau approximately 20 ns) and slow (tau approximately 10 s) components of the carrier relaxation dynamics. The extremely high photoconductive gain is attributed to the presence of oxygen-related hole-trap states at the NW surface, which prevents charge-carrier recombination and prolongs the photocarrier lifetime, as evidenced by the sensitivity of the photocurrrent to ambient conditions. Surprisingly, this mechanism appears to be effective even at the shortest time scale investigated of t < 1 ns. Despite the slow relaxation time, the extremely high internal gain of ZnO NW photodetectors results in gain-bandwidth products (GB) higher than approximately 10 GHz. The high gain and low power consumption of NW photodetectors promise a new generation of phototransistors for applications such as sensing, imaging, and intrachip optical interconnects.

  4. Shear Alignment of Diblock Copolymers for Patterning Nanowire Meshes

    SciTech Connect

    Gustafson, Kyle T.

    2016-09-08

    Metallic nanowire meshes are useful as cheap, flexible alternatives to indium tin oxide – an expensive, brittle material used in transparent conductive electrodes. We have fabricated nanowire meshes over areas up to 2.5 cm2 by: 1) mechanically aligning parallel rows of diblock copolymer (diBCP) microdomains; 2) selectively infiltrating those domains with metallic ions; 3) etching away the diBCP template; 4) sintering to reduce ions to metal nanowires; and, 5) repeating steps 1 – 4 on the same sample at a 90° offset. We aligned parallel rows of polystyrene-b-poly(2-vinylpyridine) [PS(48.5 kDa)-b-P2VP(14.5 kDa)] microdomains by heating above its glass transition temperature (Tg ≈ 100°C), applying mechanical shear pressure (33 kPa) and normal force (13.7 N), and cooling below Tg. DiBCP samples were submerged in aqueous solutions of metallic ions (15 – 40 mM ions; 0.1 – 0.5 M HCl) for 30 – 90 minutes, which coordinate to nitrogen in P2VP. Subsequent ozone-etching and sintering steps yielded parallel nanowires. We aimed to optimize alignment parameters (e.g. shear and normal pressures, alignment duration, and PDMS thickness) to improve the quality, reproducibility, and scalability of meshes. We also investigated metals other than Pt and Au that may be patterned using this technique (Cu, Ag).

  5. Steering epitaxial alignment of Au, Pd, and AuPd nanowire arrays by atom flux change.

    PubMed

    Yoo, Youngdong; Seo, Kwanyong; Han, Sol; Varadwaj, Kumar S K; Kim, Hyun You; Ryu, Ji Hoon; Lee, Hyuck Mo; Ahn, Jae Pyoung; Ihee, Hyotcherl; Kim, Bongsoo

    2010-02-10

    We have synthesized epitaxial Au, Pd, and AuPd nanowire arrays in vertical or horizontal alignment on a c-cut sapphire substrate. We show that the vertical and horizontal nanowire arrays grow from half-octahedral seeds by the correlations of the geometry and orientation of seed crystals with those of as-grown nanowires. The alignment of nanowires can be steered by changing the atom flux. At low atom deposition flux vertical nanowires grow, while at high atom flux horizontal nanowires grow. Similar vertical/horizontal epitaxial growth is also demonstrated on SrTiO(3) substrates. This orientation-steering mechanism is visualized by molecular dynamics simulations.

  6. ZnO quantum dots-decorated ZnO nanowires for the enhancement of antibacterial and photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Wu, Jyh Ming; Tsay, Li-Yi

    2015-10-01

    We demonstrate highly antibacterial activities for killing off Staphylococcus aureus and Escherichia coli using ZnO nanowires decorated with ZnO quantum dots (so-called ZnO QDs/NWs) under visible-light irradiation and dark conditions. The average size of the ZnO QDs is in the range of 3-5 nm; these were uniformly dispersed on the ZnO nanowires’ surface to form the ZnO QDs/NWs. A significant blue-shift effect was observed using photoluminescence (PL) spectra. The size of the ZnO QDs is strongly dependent on the material’s synthesis time. The ZnO QDs/NWs exhibited an excellent photocatalytic activity under visible-light irradiation. The ZnO QDs’ active sites (i.e. the O-H bond and Zn2+) accelerate the photogenerated-carrier migration from the QDs to the NWs. As a consequence, the electrons reacted with the dissolved oxygen to form oxygen ions and produced hydroperoxyl radicals to enhance photocatalytic activity. The antibacterial activities (as indicated by R-factor-inhibiting activity) of the ZnO QDs/NWs for killing off Staphylococcus aureus and Escherichia coli is around 4.9 and 5.5 under visible-light irradiation and dark conditions, respectively. The hydroxyl radicals served as an efficient oxidized agent for decomposing the organic dye and microorganism species. The antibacterial activities of the ZnO QDs/NWs in the dark may be attributed to the Zn2+ ions that were released from the ZnO QDs and infused into the microbial solution against the growth of bacteria thus disrupting the microorganism. The highly antibacterial and photocatalytic activity of the ZnO QDs/NWs can be well implanted on a screen window, thus offering a promising solution to inhibit the spread of germs under visible-light and dark conditions.

  7. Gate-tunable photocurrent in ZnO nanowires mediated by nanowire-substrate interface states

    SciTech Connect

    Yang, Liangliang; Wang, Qiaoming; Tao, Xin; Taylor, Shelby P.; Gu, Yi

    2015-03-02

    We report the observation of gate-tunable photocurrent in ZnO nanowires under optical excitation in the visible regime. Particularly, the photocurrent can be tuned by one order of magnitude with moderate changes in the backgate voltages (from −10 V to 10 V), and by more than two orders of magnitude within an extended range of the backgate voltage (several tens of volts). Using scanning photocurrent microscopy, single-nanowire photocurrent spectroscopy, and numerical calculations, we suggest that this gate tunability originates from the nanowire/substrate (Si{sub 3}N{sub 4}) interface states, where the electron occupation of these states and the excitation of electrons are controlled by the backgate voltage. This external gate tunability of the photocarrier generation facilitated by interface states provides an additional way to control photodetecting and photovoltaic properties, and this approach can also be extended to other nanostructures, such as two-dimensional semiconductors, where the surface effects are significant.

  8. Luminescence dynamics of bound exciton of hydrogen doped ZnO nanowires

    DOE PAGES

    Yoo, Jinkyoung; Yi, Gyu -Chul; Chon, Bonghwan; ...

    2016-04-11

    In this study, all-optical camera, converting X-rays into visible photons, is a promising strategy for high-performance X-ray imaging detector requiring high detection efficiency and ultrafast detector response time. Zinc oxide is a suitable material for all-optical camera due to its fast radiative recombination lifetime in sub-nanosecond regime and its radiation hardness. ZnO nanostructures have been considered as proper building blocks for ultrafast detectors with spatial resolution in sub-micrometer scale. To achieve remarkable enhancement of luminescence efficiency n-type doping in ZnO has been employed. However, luminescence dynamics of doped ZnO nanostructures have not been thoroughly investigated whereas undoped ZnO nanostructures havemore » been employed to study their luminescence dynamics. Here we report a study of luminescence dynamics of hydrogen doped ZnO nanowires obtained by hydrogen plasma treatment. Hydrogen doping in ZnO nanowires gives rise to significant increase in the near-band-edge emission of ZnO and decrease in averaged photoluminescence lifetime from 300 to 140 ps at 10 K. The effects of hydrogen doping on the luminescent characteristics of ZnO nanowires were changed by hydrogen doping process variables.« less

  9. Luminescence dynamics of bound exciton of hydrogen doped ZnO nanowires

    SciTech Connect

    Yoo, Jinkyoung; Yi, Gyu -Chul; Chon, Bonghwan; Joo, Taiha; Wang, Zhehui

    2016-04-11

    In this study, all-optical camera, converting X-rays into visible photons, is a promising strategy for high-performance X-ray imaging detector requiring high detection efficiency and ultrafast detector response time. Zinc oxide is a suitable material for all-optical camera due to its fast radiative recombination lifetime in sub-nanosecond regime and its radiation hardness. ZnO nanostructures have been considered as proper building blocks for ultrafast detectors with spatial resolution in sub-micrometer scale. To achieve remarkable enhancement of luminescence efficiency n-type doping in ZnO has been employed. However, luminescence dynamics of doped ZnO nanostructures have not been thoroughly investigated whereas undoped ZnO nanostructures have been employed to study their luminescence dynamics. Here we report a study of luminescence dynamics of hydrogen doped ZnO nanowires obtained by hydrogen plasma treatment. Hydrogen doping in ZnO nanowires gives rise to significant increase in the near-band-edge emission of ZnO and decrease in averaged photoluminescence lifetime from 300 to 140 ps at 10 K. The effects of hydrogen doping on the luminescent characteristics of ZnO nanowires were changed by hydrogen doping process variables.

  10. Opto-electrical properties of Sb-doped p-type ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Kao, Tzu-Hsuan; Chen, Jui-Yuan; Chiu, Chung-Hua; Huang, Chun-Wei; Wu, Wen-Wei

    2014-03-01

    P-type ZnO nanowires (NWs) have attracted much attention in the past years due to the potential applications for optoelectronics and piezotronics. In this study, we have synthesized Sb-doped p-type ZnO NWs on Si (100) substrates by chemical vapor deposition with Aucatalyst. The Sb-doped ZnO NWs are single crystalline with high density, grown along [1-1-2] direction. The doping percentage of Sb is about 2.49%, which has been confirmed by X-ray photoelectron spectroscopy. The ZnO NW field effect transistor demonstrated its p-type characteristics. A high responsivity to ultraviolet photodetection was also observed. In addition, compared to intrinsic ZnO NWs, the conductivity of the Sb-doped ZnO NWs exhibited ˜2 orders of magnitude higher. These properties make the p-type ZnO NWs a promising candidate for electronic and optoelectronic devices.

  11. Opto-electrical properties of Sb-doped p-type ZnO nanowires

    SciTech Connect

    Kao, Tzu-Hsuan; Chen, Jui-Yuan; Chiu, Chung-Hua; Huang, Chun-Wei; Wu, Wen-Wei

    2014-03-17

    P-type ZnO nanowires (NWs) have attracted much attention in the past years due to the potential applications for optoelectronics and piezotronics. In this study, we have synthesized Sb-doped p-type ZnO NWs on Si (100) substrates by chemical vapor deposition with Aucatalyst. The Sb-doped ZnO NWs are single crystalline with high density, grown along [1-1-2] direction. The doping percentage of Sb is about 2.49%, which has been confirmed by X-ray photoelectron spectroscopy. The ZnO NW field effect transistor demonstrated its p-type characteristics. A high responsivity to ultraviolet photodetection was also observed. In addition, compared to intrinsic ZnO NWs, the conductivity of the Sb-doped ZnO NWs exhibited ∼2 orders of magnitude higher. These properties make the p-type ZnO NWs a promising candidate for electronic and optoelectronic devices.

  12. Conducting properties of nearly depleted ZnO nanowire UV sensors fabricated by dielectrophoresis.

    PubMed

    García Núñez, C; García Marín, A; Nanterne, P; Piqueras, J; Kung, P; Pau, J L

    2013-10-18

    ZnO nanowires (NWs) with different radii (rNW) have been aligned between pre-patterned electrodes using dielectrophoresis (DEP) for the fabrication of high gain UV sensors. The DEP conditions (voltage amplitude and frequency) and electrode material, geometry and size were optimized to enhance the efficiency during the DEP process. To understand the alignment mechanism of the ZnO NWs, the dielectrophoretic force (FDEP) was analyzed as a function of the DEP conditions and NW dimensions. These studies showed that the DEP alignment process tends to trap NWs with a smaller radius. The effects of NW size on device performance were analyzed by means of I-V measurements in darkness and under illumination (200 nm < λ < 600 nm). In darkness, the NW resistance increases as rNW decreases due to the reduction of the conduction volume, until saturation is reached for rNW < 65 nm. On the other hand, the NW spectral photoresponse shows high values around 10(8) A W(-1) (measured at 5 V and λ < 370 nm) and follows a linear trend as a function of the NW cross section. In addition, the cut-off wavelength depends on rNW, presenting a clear blue-shift for NWs with a lower radius (rNW < 50 nm). Transient photoresponse studies show that NWs with lower radii have longer rise times and shorter decay times mainly due to surface trapping effects. Regardless of NW size, passivation of the surface using a dielectric capping layer of SiO2 reduces the dynamic range of the photoresponse due to a strong increase of the dark current.

  13. Controllable positioning and alignment of silver nanowires by tunable hydrodynamic focusing.

    PubMed

    Liu, Mei; Chen, Ying; Guo, Qiuquan; Li, Ruying; Sun, Xueliang; Yang, Jun

    2011-03-25

    Assembly and alignment of nanowires or nanotubes are critical steps for integrating functional nanodevices by the bottom-up strategy. However, it is still challenging to manipulate either an array of nanowires or individual nanowires in a controllable manner. Here we present a simple but versatile method of positioning and aligning nanowires by hydrodynamic focusing that functions as 'hydro-tweezers'. By adjusting the flow duration and flow rates of the sheath flows and sample flow, the density, width and position of the nanowire arrays, as building blocks of nanodevices, can be readily tuned in the hydrodynamic focusing process. This approach exhibits great potentials in the assembly of an array of functional nanodevices. With this method, multiple nanowire arrays can be positioned and aligned on predefined locations. Further focusing the sample flow, nanowires flow in single file. Thus single nanowires can also be lined up and located to desired positions.

  14. Enhanced photoelectric performance in self-powered UV detectors based on ZnO nanowires with plasmonic Au nanoparticles scattered electrolyte

    NASA Astrophysics Data System (ADS)

    Zeng, Yiyu; Ye, Zhizhen; Lu, Bin; Dai, Wei; Pan, Xinhua

    2016-04-01

    Vertically aligned ZnO nanowires (NWs) were grown on a fluorine-doped tin-oxide-coated glass substrate by a hydrothermal method. Au nanoparticles were well dispersed in the mixed solution of ethanol and deionized water. A simple self-powered ultraviolet detector based on solid-liquid heterojunction was fabricated, utilizing ZnO NWs as active photoanode and such prepared mixed solution as electrolyte. The introduction of Au nanoparticles results in considerable improvements in the responsivity and sensitivity of the device compared with the one using deionized water as electrolyte, which is attributed to the enhanced light harvesting by Au nanoparticles.

  15. Investigation of the fill factor of dye-sensitized solar cell based on ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Tian, Yongshu; Hu, Chenguo; Wu, Qing; Wu, Xiaohui; Li, Xiaoyan; Hashim, Muhammad

    2011-10-01

    The fill factor of dye-sensitized solar cells based on the ZnO nanowire array is very low, which is usually ascribed to a rapid charge recombination. In this article, the influence on the fill factor of ZnO nanowire array cell is investigated and discussed by comparing dark current and decay rate of open circuit potential of the ZnO nanowire array cell with those of the ZnO nanoparticle cell, TiO 2 nanoparticle cell and TiO 2-coated ZnO nanowire array cell. The results demonstrate that the low fill factor of the ZnO nanowire array cell is largely caused by a rapid decrease of electron injection efficiency rather than a rapid charge recombination, which is decided by the absorption nature of Ru-complexed dye molecules on ZnO surface and repellency of radial electric field. The fill factor of the ZnO nanowire array cell can be improved by coating ZnO nanowires with a wide band gap semiconductor material or metal oxide insulator.

  16. An Sb-doped p-type ZnO nanowire based random laser diode.

    PubMed

    Bashar, Sunayna B; Suja, Mohammad; Morshed, Muhammad; Gao, Fan; Liu, Jianlin

    2016-02-12

    An electrically pumped Sb-doped ZnO nanowire/Ga-doped ZnO p-n homojunction random laser is demonstrated. Catalyst-free Sb-doped ZnO nanowires were grown on a Ga-doped ZnO thin film on a Si substrate by chemical vapor deposition. The morphology of the as-grown titled nanowires was observed by scanning electron microscopy. X-ray photoelectron spectroscopy results indicated the incorporation of Sb dopants. Shallow acceptor states of Sb-doped nanowires were confirmed by photoluminescence measurements. Current-voltage measurements of ZnO nanowire structures assembled from p- and n-type materials showed a typical p-n diode characteristic with a threshold voltage of about 7.5 V. Very good photoresponse was observed in the UV region operated at 0 V and different reverse biases. Random lasing behavior with a low-threshold current of around 10 mA was demonstrated at room temperature. The output power was 170 nW at 30 mA.

  17. An Sb-doped p-type ZnO nanowire based random laser diode

    NASA Astrophysics Data System (ADS)

    Bashar, Sunayna B.; Suja, Mohammad; Morshed, Muhammad; Gao, Fan; Liu, Jianlin

    2016-02-01

    An electrically pumped Sb-doped ZnO nanowire/Ga-doped ZnO p-n homojunction random laser is demonstrated. Catalyst-free Sb-doped ZnO nanowires were grown on a Ga-doped ZnO thin film on a Si substrate by chemical vapor deposition. The morphology of the as-grown titled nanowires was observed by scanning electron microscopy. X-ray photoelectron spectroscopy results indicated the incorporation of Sb dopants. Shallow acceptor states of Sb-doped nanowires were confirmed by photoluminescence measurements. Current-voltage measurements of ZnO nanowire structures assembled from p- and n-type materials showed a typical p-n diode characteristic with a threshold voltage of about 7.5 V. Very good photoresponse was observed in the UV region operated at 0 V and different reverse biases. Random lasing behavior with a low-threshold current of around 10 mA was demonstrated at room temperature. The output power was 170 nW at 30 mA.

  18. Microfabricated environmental barrier using ZnO nanowire on metal mesh

    NASA Astrophysics Data System (ADS)

    Shin, Young-Min; Lee, Seung-Ki; Lee, Joo-Yong; Kim, Jun-Ho; Park, Jae-Hyoung; Ji, Chang-Hyeon

    2013-12-01

    In this study, a waterproof environmental barrier for microsensor package has been developed using metal mesh covered with zinc oxide (ZnO) nanowire. A near superhydrophobic surface with two-dimensional array of holes has been fabricated by hydrothermal growth of ZnO nanowire on an off-the-shelf steel use stainless (SUS) mesh. For a twill-woven SUS wire mesh having wire thickness of 30 µm and gap of 33 µm, a maximum contact angle of 160.40° and a minimum contact angle hysteresis of 15.23° have been achieved using ZnO nanowire grown on the wire surface and further deposition of FC film. The mesh was able to withstand a maximum water pressure of 2,459.8 Pa. The measured height of ZnO nanowire was approximately 2-3 µm. The fabricated SUS mesh covered with ZnO nanowire has been assembled with a microphone package, and waterproof characteristics have been measured by cyclic dipping test at various water levels. For a microphone package having two acoustic ports on top and bottom covered with fabricated mesh, no visible change in acoustic characteristics has been observed up to 1,372.9 Pa of water pressure. Total volume of the package was 6.8 × 9.8 × 1.9 mm3.

  19. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires

    NASA Astrophysics Data System (ADS)

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-01

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  20. Morphology engineering of ZnO nanostructures for high performance supercapacitors: Enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires.

    PubMed

    He, Xiaoli; Yoo, Joung; Lee, Min; Bae, Joonho

    2017-04-06

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kind of electrodes in three electrode cell confirms that ZnO NCs exhibit high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and EIS measurements also clearly results in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric spuercapacitors are fabricated using activated carbon (AC) as negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC//AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW//AC displays 63% of capacitance obtained from ZnO NC//AC supercapacitor. The enhanced performances of NCs are attributed to higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  1. Orientation-enhanced growth and optical properties of ZnO nanowires grown on porous silicon substrates.

    PubMed

    Hsu, Hsu-Cheng; Cheng, Ching-Sheng; Chang, Chia-Chieh; Yang, Song; Chang, Chen-Shiung; Hsieh, Wen-Feng

    2005-02-01

    ZnO nanowires have been synthesized on porous silicon substrates with different porosities via the vapour-liquid-solid method. The texture coefficient analysed from the XRD spectra indicates that the nanowires are more highly orientated on the appropriate porosity of porous silicon substrate than on the smooth surface of silicon. The Raman spectrum reveals the high quality of the ZnO nanowires. From the temperature-dependent photoluminescence spectra, we deduced the activation energies of free and bound excitons.

  2. "High Quantum Efficiency of Band-Edge Emission from ZnO Nanowires"

    SciTech Connect

    GARGAS, DANIEL; GAO, HANWEI; WANG, HUNGTA; PEIDONG, YANG

    2010-12-01

    External quantum efficiency (EQE) of photoluminescence as high as 20 percent from isolated ZnO nanowires were measured at room temperature. The EQE was found to be highly dependent on photoexcitation density, which underscores the importance of uniform optical excitation during the EQE measurement. An integrating sphere coupled to a microscopic imaging system was used in this work, which enabled the EQE measurement on isolated ZnO nanowires. The EQE values obtained here are significantly higher than those reported for ZnO materials in forms of bulk, thin films or powders. Additional insight on the radiative extraction factor of one-dimensional nanostructures was gained by measuring the internal quantum efficiency of individual nanowires. Such quantitative EQE measurements provide a sensitive, noninvasive method to characterize the optical properties of low-dimensional nanostructures and allow tuning of synthesis parameters for optimization of nanoscale materials.

  3. Ethanol-Sensing Characteristics of Nanostructured ZnO: Nanorods, Nanowires, and Porous Nanoparticles

    NASA Astrophysics Data System (ADS)

    Quy, Chu Thi; Hung, Chu Manh; Van Duy, Nguyen; Hoa, Nguyen Duc; Jiao, Mingzhi; Nguyen, Hugo

    2017-06-01

    The morphology and crystalline size of metal oxide-sensing materials are believed to have a strong influence on the performance of gas sensors. In this paper, we report a comparative study on the ethanol-sensing characteristics of ZnO nanorods, nanowires, and porous nanoparticles. The porous ZnO nanoparticles were prepared using a simple thermal decomposition of a sheet-like hydrozincite, whereas the nanorods and nanowires were grown by hydrothermal and chemical vapor deposition methods, respectively. The morphology and crystal structure of the synthesized materials were characterized by field-emission scanning electron microscopy and x-ray diffraction. Ethanol gas-sensing characteristics were systematically studied at different temperatures. Our findings show that for ethanol gas-sensing applications, ZnO porous nanoparticles exhibited the best sensitivity, followed by the nanowires and nanorods. Gas-sensing properties were also examined with respect to the role of crystal growth orientation, crystal size, and porosity.

  4. Surface ferromagnetic p-type ZnO nanowires through charge transfer doping.

    PubMed

    Lee, Sung-Hoon; Kim, Jongseob; Hong, Ki-Ha; Shin, Jaikwang; Kim, Sungjin; Kim, Kinam

    2012-03-01

    We report first-principles theoretical investigation of p-type charge transfer doping of zinc oxide (ZnO) nanowires by molecular adsorption. We find that spontaneous dissociative adsorption of fluorine molecules introduces half-emptying of otherwise fully filled oxygen-derived surface states. The resulting surface Fermi level is so close to the valence band maximum of the ZnO nanowire that the nanowire undergoes significant p-type charge transfer doping. Those half-filled surface states are fully spin-polarized and lead to surface ferromagnetism that is stable at room temperature. We also analyze the kinetic control regime of the surface transfer doping and find that it may result in nonequilibrium steady states. The present results suggest that postgrowth engineering of surface states has high potential in manipulating ZnO nanostructures useful for both electronics and spintronics. © 2012 American Chemical Society

  5. Templateless electrodeposition ZnO nanowires for charge transport optimization in OLED structures

    NASA Astrophysics Data System (ADS)

    Polosan, S.; Matei, E.; Ciobotaru, I. C.; Ciobotaru, C. C.

    2016-10-01

    Passivated zinc oxide nanowires (NW) were used to improve the charge injection in organic light-emitting diode (OLED) structures. Conducting polymers, deposited on the well-dispersed ZnO NW, were used to modify the electrical conductivity across the OLED structure because the charge transport is influenced by the interface interactions. Passivation with polymers improves the transport characteristics of the device due to the interaction between ZnO NW and PEDOT:PSS polymer. The hole current density increases with the ZnO NW concentration, which made the current injection more balanced and therefore enhanced the electroluminescence efficiency. A templateless electrochemical deposition method was used to grow zinc oxide nanowires on an ITO/glass substrate because parameters such as the densities and dimensions of the nanowires can be controlled to produce thin and well dispersed structures.

  6. Ethanol-Sensing Characteristics of Nanostructured ZnO: Nanorods, Nanowires, and Porous Nanoparticles

    NASA Astrophysics Data System (ADS)

    Quy, Chu Thi; Hung, Chu Manh; Van Duy, Nguyen; Hoa, Nguyen Duc; Jiao, Mingzhi; Nguyen, Hugo

    2017-01-01

    The morphology and crystalline size of metal oxide-sensing materials are believed to have a strong influence on the performance of gas sensors. In this paper, we report a comparative study on the ethanol-sensing characteristics of ZnO nanorods, nanowires, and porous nanoparticles. The porous ZnO nanoparticles were prepared using a simple thermal decomposition of a sheet-like hydrozincite, whereas the nanorods and nanowires were grown by hydrothermal and chemical vapor deposition methods, respectively. The morphology and crystal structure of the synthesized materials were characterized by field-emission scanning electron microscopy and x-ray diffraction. Ethanol gas-sensing characteristics were systematically studied at different temperatures. Our findings show that for ethanol gas-sensing applications, ZnO porous nanoparticles exhibited the best sensitivity, followed by the nanowires and nanorods. Gas-sensing properties were also examined with respect to the role of crystal growth orientation, crystal size, and porosity.

  7. Synthesis of high aspect ratio ZnO nanowires with an inexpensive handcrafted electrochemical setup

    NASA Astrophysics Data System (ADS)

    Taheri, Ali; Saramad, Shahyar; Setayeshi, Saeed

    2016-12-01

    In this work, high aspect ratio zinc oxide nanowires are synthesized using templated one-step electrodeposition technique. Electrodeposition of the nanowires is done using a handcrafted electronic system. Nuclear track-etched polycarbonate membrane is used as a template to form the high aspect ratio nanowires. The result of X-ray diffraction and scanning electron microscopy shows that nanowires with a good crystallinity and an aspect ratio of more than 30 can be achieved in a suitable condition. The height of electrodeposited nanowires reaches to about 11 μm. Based on the obtained results, high aspect ratio ZnO nanowires can be formed using inexpensive electrodeposition setup with an acceptable quality.

  8. Twinning-induced kinking of Sb-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Li, Su; Zhang, Xiaozhong; Zhang, Lihuan; Gao, Min

    2010-10-01

    Sb-doped ZnO nanowires with kinking structures have been synthesized by a catalyst-free thermal evaporation method with the addition of Sb2O3. Transmission electron microscopy (TEM) observations revealed that the kinks of the nanowires are induced by twinning structures. \\{01\\bar {1}1\\} , \\{01\\bar {1}3\\} twins and heavy stacking faults in the (0001) plane were observed in these kinked nanowires. High-resolution TEM and energy dispersive x-ray spectroscopy showed that there exists an Sb-rich segregation layer in the twin boundaries of some nanowires. A formation mechanism of the kinked nanowires was proposed. The optical property of the synthesized nanowires was investigated by room-temperature photoluminescence.

  9. Twinning-induced kinking of Sb-doped ZnO nanowires.

    PubMed

    Li, Su; Zhang, Xiaozhong; Zhang, Lihuan; Gao, Min

    2010-10-29

    Sb-doped ZnO nanowires with kinking structures have been synthesized by a catalyst-free thermal evaporation method with the addition of Sb(2)O(3). Transmission electron microscopy (TEM) observations revealed that the kinks of the nanowires are induced by twinning structures. [0111], [0113] twins and heavy stacking faults in the (0001) plane were observed in these kinked nanowires. High-resolution TEM and energy dispersive x-ray spectroscopy showed that there exists an Sb-rich segregation layer in the twin boundaries of some nanowires. A formation mechanism of the kinked nanowires was proposed. The optical property of the synthesized nanowires was investigated by room-temperature photoluminescence.

  10. Eu-doped ZnO nanowire arrays grown by electrodeposition

    NASA Astrophysics Data System (ADS)

    Lupan, O.; Pauporté, T.; Viana, B.; Aschehoug, P.; Ahmadi, M.; Cuenya, B. Roldan; Rudzevich, Y.; Lin, Y.; Chow, L.

    2013-10-01

    The preparation of efficient light emitting diodes requires active optical layers working at low voltage for light emission. Trivalent lanthanide doped wide-bandgap semiconducting oxide nanostructures are promising active materials in opto-electronic devices. In this work we report on the electrochemical deposition (ECD) of Eu-doped ZnO (ZnO:Eu) nanowire arrays on glass substrates coated with F-doped polycrystalline SnO2. The structural, chemical and optical properties of ZnO:Eu nanowires have been systematically characterized by X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and photoluminescence. XRD results suggest the substitution of Zn2+ by Eu ions in the crystalline lattice. High-resolution TEM and associated electron diffraction studies indicate an interplanar spacing of 0.52 nm which corresponds to the (0 0 0 1) crystal plane of the hexagonal ZnO, and a growth along the c-direction. The ZnO:Eu nanowires have a single crystal structure, without noticeable defects. According to EDX, SIMS and XPS studies, cationic Eu species are detected in these samples showing the incorporation of Eu into the ZnO matrix. The oxidation states of europium ions in the nanowires are determined as +3 (74%) and +2 (26%). Photoluminescence studies demonstrated red emission from the Eu-doped ZnO nanowire arrays. When Eu was incorporated during the nanowire growth, the sharp 5D0-7F2 transition of the Eu3+ ion at around 612 nm was observed. These results suggest that Eu doped ZnO nanowires could pave the way for efficient, multispectral LEDs and optical devices.

  11. Single ZnO Nanowire-Based Gas Sensors to Detect Low Concentrations of Hydrogen

    PubMed Central

    Cardoza-Contreras, Marlene N.; Romo-Herrera, José M.; Ríos, Luis A.; García-Gutiérrez, R.; Zepeda, T. A.; Contreras, Oscar E.

    2015-01-01

    Low concentrations of hazardous gases are difficult to detect with common gas sensors. Using semiconductor nanostructures as a sensor element is an alternative. Single ZnO nanowire gas sensor devices were fabricated by manipulation and connection of a single nanowire into a four-electrode aluminum probe in situ in a dual-beam scanning electron microscope-focused ion beam with a manipulator and a gas injection system in/column. The electrical response of the manufactured devices shows response times up to 29 s for a 121 ppm of H2 pulse, with a variation in the nanowire resistance appreciable at room temperature and at 373.15 K of approximately 8% and 14% respectively, showing that ZnO nanowires are good candidates to detect low concentrations of H2. PMID:26690158

  12. Hydrothermal Growth and Application of ZnO Nanowire Films with ZnO and TiO2 Buffer Layers in Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Yang, Weiguang; Wan, Farong; Chen, Siwei; Jiang, Chunhua

    2009-12-01

    This paper reports the effects of the seed layers prepared by spin-coating and dip-coating methods on the morphology and density of ZnO nanowire arrays, thus on the performance of ZnO nanowire-based dye-sensitized solar cells (DSSCs). The nanowire films with the thick ZnO buffer layer (~0.8-1 μm thick) can improve the open circuit voltage of the DSSCs through suppressing carrier recombination, however, and cause the decrease of dye loading absorbed on ZnO nanowires. In order to further investigate the effect of TiO2 buffer layer on the performance of ZnO nanowire-based DSSCs, compared with the ZnO nanowire-based DSSCs without a compact TiO2 buffer layer, the photovoltaic conversion efficiency and open circuit voltage of the ZnO DSSCs with the compact TiO2 layer (~50 nm thick) were improved by 3.9-12.5 and 2.4-41.7%, respectively. This can be attributed to the introduction of the compact TiO2 layer prepared by sputtering method, which effectively suppressed carrier recombination occurring across both the film-electrolyte interface and the substrate-electrolyte interface.

  13. Enhanced Visible Light Photocatalytic Activity of ZnO Nanowires Doped with Mn2+ and Co2+ Ions

    PubMed Central

    Li, Wei; Wang, Guojing; Chen, Chienhua; Liao, Jiecui; Li, Zhengcao

    2017-01-01

    In this research, ZnO nanowires doped with Mn2+ and Co2+ ions were synthesized through a facile and inexpensive hydrothermal approach, in which Mn2+ and Co2+ ions successfully substituted Zn2+ in the ZnO crystal lattice without changing the morphology and crystalline structure of ZnO. The atomic percentages of Mn and Co were 6.29% and 1.68%, respectively, in the doped ZnO nanowires. The photocatalytic results showed that Mn-doped and Co-doped ZnO nanowires both exhibited higher photocatalytic activities than undoped ZnO nanowires. Among the doped ZnO nanowires, Co-doped ZnO, which owns a twice active visible-light photocatalytic performance compared to pure ZnO, is considered a more efficient photocatalyst material. The enhancement of its photocatalytic performance originates from the doped metal ions, which enhance the light absorption ability and inhibit the recombination of photo-generated electron-hole pairs as well. The effect of the doped ion types on the morphology, crystal lattice and other properties of ZnO was also investigated. PMID:28336854

  14. Enhanced Visible Light Photocatalytic Activity of ZnO Nanowires Doped with Mn(2+) and Co(2+) Ions.

    PubMed

    Li, Wei; Wang, Guojing; Chen, Chienhua; Liao, Jiecui; Li, Zhengcao

    2017-01-19

    In this research, ZnO nanowires doped with Mn(2+) and Co(2+) ions were synthesized through a facile and inexpensive hydrothermal approach, in which Mn(2+) and Co(2+) ions successfully substituted Zn(2+) in the ZnO crystal lattice without changing the morphology and crystalline structure of ZnO. The atomic percentages of Mn and Co were 6.29% and 1.68%, respectively, in the doped ZnO nanowires. The photocatalytic results showed that Mn-doped and Co-doped ZnO nanowires both exhibited higher photocatalytic activities than undoped ZnO nanowires. Among the doped ZnO nanowires, Co-doped ZnO, which owns a twice active visible-light photocatalytic performance compared to pure ZnO, is considered a more efficient photocatalyst material. The enhancement of its photocatalytic performance originates from the doped metal ions, which enhance the light absorption ability and inhibit the recombination of photo-generated electron-hole pairs as well. The effect of the doped ion types on the morphology, crystal lattice and other properties of ZnO was also investigated.

  15. Growth and characterization of Cu-catalyzed ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Zhao, Y. M.; Li, Y. H.; Jin, Y. Z.; Zhang, X. P.; Hu, W. B.; Ahmad, I.; McCartney, G.; Zhu, Y. Q.

    2007-04-01

    Cu-catalyzed ZnO nanowires have been synthesized by thermal evaporation of Cu- Zn powder alloys in a water vapor atmosphere. The diameters of the nanowires can be controlled by the amount of water vapor introduced into in the reaction tube. Raman spectroscopic characterization reveals two additional modes at 621 and 671cm-1 which are indicative of the existence of host-lattice defects caused by Cu doping or other intrinsic lattice defects that formed during the nanowire growth. Field emission and photoluminescence (PL) properties of Cu-catalyzed ZnO nanowires have also been investigated using nanowires with a diameter of 20 nm and 200 nm. The field emission results show that the thinner nanowires have a lower turn-on electrical field than the thicker ones, whilst both nanowires exhibit a similar field emission enhancement factor in the high electric field region. In the PL spectra, we have observed a blue-shift of the UV emission peak and a red-shift of the green emission peak when the nanowire diameters decreased from 200 nm to 20 nm.

  16. Ion bombardment effects on ZnO nanowires during plasma treatment

    SciTech Connect

    Ra, H.-W.; Choi, K. S.; Ok, C. W.; Jo, S. Y.; Im, Y. H.; Bai, K. H.

    2008-07-21

    We present the effects of ion bombardment on ZnO nanowires caused by their exposure to an Ar inductively coupled plasma. The conductivity of the individual ZnO nanowire was increased in up to 3 orders of magnitude due to increase in both carrier concentration and mobility, with a substantial negative shift in the threshold gate voltage also being observed. The drastic changes in the electrical properties were attributed to the decrease in species adsorbed on the surface, as well as to the increase in oxygen vacancies near the surface caused by ion bombardment.

  17. Self-assembled ZnO agave-like nanowires and anomalous superhydrophobicity

    NASA Astrophysics Data System (ADS)

    Yang, Y. H.; Li, Z. Y.; Wang, B.; Wang, C. X.; Chen, D. H.; Yang, G. W.

    2005-09-01

    Thin films of ZnO agave-like nanowires were prepared on amorphous carbon thin layers on silicon substrates using thermal chemical vapour transport and condensation without any metal catalysts. The unusual superhydrophobicity of the fabricated surface was measured; the water contact angle reaches 151.1°. On the basis of experimental and theoretical analyses, it appears likely that the biomimetic microcomposite and nanocomposite surfaces of the prepared thin films of ZnO agave-like nanowires are responsible for the excellent superhydrophobicity.

  18. Hydrothermal growth of ZnO nanowire arrays: fine tuning by precursor supersaturation

    DOE PAGES

    Yan, Danhua; Cen, Jiajie; Zhang, Wenrui; ...

    2016-12-20

    In this paper, we develop a technique that fine tunes the hydrothermal growth of ZnO nanowires to address the difficulties in controlling their growth in a conventional one-pot hydrothermal method. In our technique, precursors are separately and slowly supplied with the assistance of a syringe pump, through the entire course of the growth. Compared to the one-pot method, the significantly lowered supersaturation of precursors helps eliminating competitive homogeneous nucleation and improves the reproducibility. The supersaturation degree can be readily tuned by the precursor quantity and injection rate, thus forming ZnO nanowire arrays of various geometries and packing densities in amore » highly controllable fashion. The precise control of ZnO nanowire growth enables systematic studies on the correlation between the material's properties and its morphology. Finally, in this work, ZnO nanowire arrays of various morphologies are studied as photoelectrochemical (PEC) water splitting photoanodes, in which we establish clear correlations between the water splitting performance and the nanowires' size, shape, and packing density.« less

  19. Hydrothermal growth of ZnO nanowire arrays: fine tuning by precursor supersaturation

    SciTech Connect

    Yan, Danhua; Cen, Jiajie; Zhang, Wenrui; Orlov, Alexander; Liu, Mingzhao

    2016-12-20

    In this paper, we develop a technique that fine tunes the hydrothermal growth of ZnO nanowires to address the difficulties in controlling their growth in a conventional one-pot hydrothermal method. In our technique, precursors are separately and slowly supplied with the assistance of a syringe pump, through the entire course of the growth. Compared to the one-pot method, the significantly lowered supersaturation of precursors helps eliminating competitive homogeneous nucleation and improves the reproducibility. The supersaturation degree can be readily tuned by the precursor quantity and injection rate, thus forming ZnO nanowire arrays of various geometries and packing densities in a highly controllable fashion. The precise control of ZnO nanowire growth enables systematic studies on the correlation between the material's properties and its morphology. Finally, in this work, ZnO nanowire arrays of various morphologies are studied as photoelectrochemical (PEC) water splitting photoanodes, in which we establish clear correlations between the water splitting performance and the nanowires' size, shape, and packing density.

  20. Characterizations of Ohmic and Schottky-behaving contacts of a single ZnO nanowire.

    PubMed

    Bercu, Bogdan; Geng, Wei; Simonetti, Olivier; Kostcheev, Sergei; Sartel, Corinne; Sallet, Vincent; Lérondel, Gilles; Molinari, Michaël; Giraudet, Louis; Couteau, Christophe

    2013-10-18

    Current-voltage and Kelvin probe force microscopy (KPFM) measurements were performed on single ZnO nanowires. Measurements are shown to be strongly correlated with the contact behavior, either Ohmic or diode-like. The ZnO nanowires were obtained by metallo-organic chemical vapor deposition (MOCVD) and contacted using electronic-beam lithography. Depending on the contact geometry, good quality Ohmic contacts (linear I-V behavior) or non-linear (diode-like) contacts were obtained. Current-voltage and KPFM measurements on both types of contacted ZnO nanowires were performed in order to investigate their behavior. A clear correlation could be established between the I-V curve, the electrical potential profile along the device and the nanowire geometry. Some arguments supporting this behavior are given based on technological issues and on depletion region extension. This work will help to better understand the electrical behavior of Ohmic contacts on single ZnO nanowires, for future applications in nanoscale field-effect transistors and nano-photodetectors.

  1. Persistent photoconductivity in ZnO nanowires: Influence of oxygen and argon ambient

    NASA Astrophysics Data System (ADS)

    Madel, M.; Huber, F.; Mueller, R.; Amann, B.; Dickel, M.; Xie, Y.; Thonke, K.

    2017-03-01

    ZnO nanowires typically show persistent photoconductivity (PPC), which depends in their temporal behaviour on the ambient. We investigate ZnO nanowires in oxygen and argon ambient and analyze the PPC both on the short and on the long time scale to sort out the underlying mechanisms. Wavelength dependent excitation shows the energy barrier for the PPC to be around 150 meV below the band gap of ZnO, independent of the ambient atmosphere. In photocurrent measurements at constant wavelength, a log-logistic dependence of the conductivity on the partial oxygen pressure is observed. The experimental results are compared to a model of Bonasewicz et al. [J. Electrochem. Soc. 133, 2270 (1986)] and can be explained by oxygen adsorption processes occurring on the surface of the ZnO nanowires. From temperature dependent measurements of the decay times in oxygen and argon ambient, the related activation energies for the fast and slow decay processes are determined. Comparing our results to theoretical calculations of energy levels of intrinsic defects [Janotti and Van de Walle, Phys. Status Solidi B 248, 799 (2011)], we find oxygen vacancies to be related to the fast decay processes, whereas adsorption and desorption processes of oxygen on the ZnO nanowire surface account for the slow part.

  2. Growth of ZnO Nanowire Arrays for Advanced Ultraviolet Detectors

    NASA Astrophysics Data System (ADS)

    Zeller, John; Manzur, Tariq; Anwar, A. F. Mehdi; Sood, Ashok K.

    2012-02-01

    Zinc oxide (ZnO) provides a unique wide bandgap biocompatible material system exhibiting both semiconducting and piezoelectric properties. Bulk ZnO has a bandgap of 3.37 eV that corresponds to emissions in the solar blind ultraviolet (UV) spectral band (240-280 nm). We have grown highly ordered vertical arrays of ZnO nanowires using the metal organic chemical vapor deposition (MOCVD) technique on Si, silicon dioxide, c-plane sapphire, and GaN epitaxial substrates. UV detectors based on ZnO nanowires offer the highest UV sensitivity and lowest visible sensitivity for applications such as missile plume detection and threat warning. The development of UV detectors based on vertical nanowire arrays requires an innovative fabrication approach involving precise deposition of metal contacts, where UV sensor performance depends to a large extent on the growth conditions as well as on the substrate used. We will present experimental results on the structural, electrical, and optical properties of ZnO nanowires grown for UV sensing applications.

  3. ZnO Nanowire-Based Corona Discharge Devices Operated Under Hundreds of Volts.

    PubMed

    Yang, Wenming; Zhu, Rong; Zong, Xianli

    2016-12-01

    Minimizing the voltage of corona discharges, especially when using nanomaterials, has been of great interest in the past decade or so. In this paper, we report a new corona discharge device by using ZnO nanowires operated in atmospheric air to realize continuous corona discharge excited by hundreds of volts. ZnO nanowires were synthesized on microelectrodes using electric-field-assisted wet chemical method, and a thin tungsten film was deposited on the microchip to enhance discharging performance. The testing results showed that the corona inception voltages were minimized greatly by using nanowires compared to conventional dischargers as a result of the local field enhancement of nanowires. The corona could be continuously generated and self-sustaining. It was proved that the law of corona inception voltage obeyed the conventional Peek's breakdown criterion. An optimal thickness of tungsten film coated over ZnO nanowires was figured out to obtain the lowest corona inception voltage. The ion concentration of the nanowire-based discharger attained 10(17)/m(3) orders of magnitude, which is practicable for most discharging applications.

  4. ZnO Nanowire-Based Corona Discharge Devices Operated Under Hundreds of Volts

    NASA Astrophysics Data System (ADS)

    Yang, Wenming; Zhu, Rong; Zong, Xianli

    2016-02-01

    Minimizing the voltage of corona discharges, especially when using nanomaterials, has been of great interest in the past decade or so. In this paper, we report a new corona discharge device by using ZnO nanowires operated in atmospheric air to realize continuous corona discharge excited by hundreds of volts. ZnO nanowires were synthesized on microelectrodes using electric-field-assisted wet chemical method, and a thin tungsten film was deposited on the microchip to enhance discharging performance. The testing results showed that the corona inception voltages were minimized greatly by using nanowires compared to conventional dischargers as a result of the local field enhancement of nanowires. The corona could be continuously generated and self-sustaining. It was proved that the law of corona inception voltage obeyed the conventional Peek's breakdown criterion. An optimal thickness of tungsten film coated over ZnO nanowires was figured out to obtain the lowest corona inception voltage. The ion concentration of the nanowire-based discharger attained 1017/m3 orders of magnitude, which is practicable for most discharging applications.

  5. Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth.

    PubMed

    McPeak, Kevin M; Le, Thinh P; Britton, Nathan G; Nickolov, Zhorro S; Elabd, Yossef A; Baxter, Jason B

    2011-04-05

    Chemical bath deposition (CBD) is an inexpensive and reproducible method for depositing ZnO nanowire arrays over large areas. The aqueous Zn(NO(3))(2)-hexamethylenetetramine (HMTA) chemistry is one of the most common CBD chemistries for ZnO nanowire synthesis, but some details of the reaction mechanism are still not well-understood. Here, we report the use of in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy to study HMTA adsorption from aqueous solutions onto ZnO nanoparticle films and show that HMTA does not adsorb on ZnO. This result refutes earlier claims that the anisotropic morphology arises from HMTA adsorbing onto and capping the ZnO {10 1 0} faces. We conclude that the role of HMTA in the CBD of ZnO nanowires is only to control the saturation index of ZnO. Furthermore, we demonstrate the first deposition of ZnO nanowire arrays at 90 °C and near-neutral pH conditions without HMTA. Nanowires were grown using the pH buffer 2-(N-morpholino)ethanesulfonic acid (MES) and continuous titratation with KOH to maintain the same pH conditions where growth with HMTA occurs. This semi-batch synthetic method opens many new opportunities to tailor the ZnO morphology and properties by independently controlling temperature and pH.

  6. Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate

    NASA Astrophysics Data System (ADS)

    Kwon, Jinhyeong; Hong, Sukjoon; Lee, Habeom; Yeo, Junyeob; Lee, Seung S.; Ko, Seung Hwan

    2013-11-01

    Inkjet printing of functional materials has drawn tremendous interest as an alternative to the conventional photolithography-based microelectronics fabrication process development. We introduce direct selective nanowire array growth by inkjet printing of Zn acetate precursor ink patterning and subsequent hydrothermal ZnO local growth without nozzle clogging problem which frequently happens in nanoparticle inkjet printing. The proposed process can directly grow ZnO nanowires in any arbitrary patterned shape, and it is basically very fast, low cost, environmentally benign, and low temperature. Therefore, Zn acetate precursor inkjet printing-based direct nanowire local growth is expected to give extremely high flexibility in nanomaterial patterning for high-performance electronics fabrication especially at the development stage. As a proof of concept of the proposed method, ZnO nanowire network-based field effect transistors and ultraviolet photo-detectors were demonstrated by direct patterned grown ZnO nanowires as active layer.

  7. Direct selective growth of ZnO nanowire arrays from inkjet-printed zinc acetate precursor on a heated substrate

    PubMed Central

    2013-01-01

    Inkjet printing of functional materials has drawn tremendous interest as an alternative to the conventional photolithography-based microelectronics fabrication process development. We introduce direct selective nanowire array growth by inkjet printing of Zn acetate precursor ink patterning and subsequent hydrothermal ZnO local growth without nozzle clogging problem which frequently happens in nanoparticle inkjet printing. The proposed process can directly grow ZnO nanowires in any arbitrary patterned shape, and it is basically very fast, low cost, environmentally benign, and low temperature. Therefore, Zn acetate precursor inkjet printing-based direct nanowire local growth is expected to give extremely high flexibility in nanomaterial patterning for high-performance electronics fabrication especially at the development stage. As a proof of concept of the proposed method, ZnO nanowire network-based field effect transistors and ultraviolet photo-detectors were demonstrated by direct patterned grown ZnO nanowires as active layer. PMID:24252130

  8. Room temperature large magneto-absorption effect in Co-coated ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Hsu, Hua-Shu; Yeih, Syun-Long; Liu, Keng-Wen

    2017-06-01

    We report a room temperature sizable magneto-absorption (MA) effect in Co-coated ZnO nanowires. The MA effect is energy dependent, and its value reaches a maximum in the ultraviolet region. The appearance of the MA effect strongly depends on the spin-polarized semiconductor band in ZnO, which is supposedly induced by the interfacial hybridization between the Co d-orbitals and the defect-related band near the ZnO surfaces. A two-peaked density of states related to magnetic field-dependent spin splitting has been proposed to describe the MA, which is controlled by the energy and the magnetic field.

  9. Fast synthesis of ultrathin ZnO nanowires by oxidation of Cu/Zn stacks in low-pressure afterglow

    NASA Astrophysics Data System (ADS)

    Altaweel, A.; Imam, A.; Ghanbaja, J.; Mangin, D.; Miska, P.; Gries, T.; Belmonte, T.

    2017-02-01

    The synthesis of ultrathin, single-crystalline zinc oxide nanowires was achieved by treating in a flowing microwave plasma oxidation process, zinc films coated beforehand by a sputtered thin buffer layer of copper. The aspect ratio of the nanowires can be controlled by the following experimental parameters: treatment duration, furnace temperature, oxygen concentration. An average diameter of 6 nm correlated with a mean length of 750 nm can be reached with a fairly high surface number density for very short treatments, typically less than 1 min. The oxidized samples are characterized by means of SEM, XRD, SIMS, HRTEM and EDX techniques. Structural characterization reveals that these nanowires are single-crystalline, with the wurtzite phase of ZnO. Nanowires are only composed of ZnO without copper particles inside or at the end of the nanowires. Temperature-dependent photoluminescence measurements confirm that ZnO nanowires are of high crystalline quality and thin enough to produce quantum confinement.

  10. Fast synthesis of ultrathin ZnO nanowires by oxidation of Cu/Zn stacks in low-pressure afterglow.

    PubMed

    Altaweel, A; Imam, A; Ghanbaja, J; Mangin, D; Miska, P; Gries, T; Belmonte, T

    2017-02-24

    The synthesis of ultrathin, single-crystalline zinc oxide nanowires was achieved by treating in a flowing microwave plasma oxidation process, zinc films coated beforehand by a sputtered thin buffer layer of copper. The aspect ratio of the nanowires can be controlled by the following experimental parameters: treatment duration, furnace temperature, oxygen concentration. An average diameter of 6 nm correlated with a mean length of 750 nm can be reached with a fairly high surface number density for very short treatments, typically less than 1 min. The oxidized samples are characterized by means of SEM, XRD, SIMS, HRTEM and EDX techniques. Structural characterization reveals that these nanowires are single-crystalline, with the wurtzite phase of ZnO. Nanowires are only composed of ZnO without copper particles inside or at the end of the nanowires. Temperature-dependent photoluminescence measurements confirm that ZnO nanowires are of high crystalline quality and thin enough to produce quantum confinement.

  11. Synthesis of ZnO nanowire arrays/3D graphene foam and application for determination of levodopa in the presence of uric acid.

    PubMed

    Yue, Hong Yan; Zhang, Hong; Huang, Shuo; Lin, Xuan Yu; Gao, Xin; Chang, Jing; Yao, Long Hui; Guo, Er Jun

    2017-03-15

    Three-dimensional (3D) graphene foam (GF) was prepared by chemical vapor deposition (CVD) using nickel foam as the template. ZnO nanowire arrays (ZnO NWAs) were vertically grown on the 3D GF by hydrothermal synthesis to prepare ZnO NWAs/GF. This hybrid combines the properties of ZnO NWAs and 3D GF, which has favorable electrocatalysis and outstanding electrical conductivity. The vertically aligned ZnO NWAs grown on the GF enlarged the electroactive surface area, which was investigated from the Fe(CN)6(3-4+) redox kinetic study. The ZnO NWAs/GF was used as an electrochemical electrode for the determination of Levodopa (LD) in the presence of uric acid (UA). The electrochemical responses of the ZnO NWAs/GF electrode were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results show that the sensitivity of the electrode for LD is 3.15μAμM(-1) in the concentration range of 0.05-20μM and the measured detection limit of the electrode for LD is 50nM. The electrode also shows good selectivity, reproducibility and stability. The proposed electrode is succsefully used to determine LD in human plasma samples and it is potential for use in clinical research.

  12. Hydrothermal growth of ZnO nanowires on flexible fabric substrates

    NASA Astrophysics Data System (ADS)

    Hong, Gwang-Wook; Yun, Sang-Ho; Kim, Joo-Hyung

    2016-04-01

    ZnO nanowires (NWs) would provide significant enhancement in sensitivity due to high surface to volume ratio. We investigated the first methodical study on the quantitative relationship between the process parameters of solution concentration ratio, structure, and physical and properties of ZnO NWs grown on different flexible fabric surfaces. To develop a fundamental following concerning various substrates, we controlled the growth speed of ZnO NWs and nanowires on cotton surface with easy and moderate cost fabrication method. Using ammonium hydroxide as the reactant with zinc nitrate hexahydrate, ZnO NWs layer have been grown on metal layers, instead of seed layer. ZnO NWs fabrication was done on different fabric substrates such as wool, nylon and polypropylene (PP). After the ZnO NWs grown to each substrates, we coated insulating layer with polyurethane (PU) and ethyl cellulose for prevent external intervention. Detailed electrical characterization was subsequently performed to reveal the working characteristics of the hybrid fabric. For electrical verification of fabricated ZnO NWs, we implemented measurement impact test and material properties with FFT analyzer and LCR meter.

  13. The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation

    SciTech Connect

    Liao, L.; Lu, H. B.; Li, J. C.; Liu, C.; Fu, D. J.; Liu, Y. L.

    2007-10-22

    In this letter, we present a gas sensor using a single ZnO nanowire as a sensing unit. This ZnO nanowire-based sensor has quick and high sensitive response to H{sub 2}S in air at room temperature. It has also been found that the gas sensitivity of the ZnO nanowires could be modulated and enhanced by He{sup +} implantation at an appropriate dose. A possible explanation is given based on the modulation model of the depletion layer.

  14. Electrodeposition and room temperature ferromagnetic anisotropy of Co and Ni-doped ZnO nanowire arrays

    SciTech Connect

    Cui, J.B.; Gibson, U.J.

    2005-09-26

    Cobalt and nickel doped ZnO nanowire arrays were synthesized by an electrochemical process at a temperature of 90 deg. C. Energy dispersive x-ray spectroscopy and x-ray diffraction show that the dopants are incorporated into the wurtzite-structure ZnO. Anisotropic ferromagnetism with an easy direction of magnetization either perpendicular or parallel to the wire axis, depending on the wire geometry and density, was observed in 1.7% Co and 2.2% Ni-doped ZnO nanowires at room temperature. The anisotropic magnetism was explained in terms of a competition between self-demagnetization and magnetostatic coupling among the nanowires.

  15. Enhanced sputtering and incorporation of Mn in implanted GaAs and ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Johannes, A.; Noack, S.; Paschoal, W., Jr.; Kumar, S.; Jacobsson, D.; Pettersson, H.; Samuelson, L.; Dick, K. A.; Martinez-Criado, G.; Burghammer, M.; Ronning, C.

    2014-10-01

    We simulated and experimentally investigated the sputter yield of ZnO and GaAs nanowires, which were implanted with energetic Mn ions at room temperature. The resulting thinning of the nanowires and the dopant concentration with increasing Mn ion fluency were measured by accurate scanning electron microscopy (SEM) and nano-x-Ray Fluorescence (nanoXRF) quantification, respectively. We observed a clearly enhanced sputter yield for the irradiated nanowires compared to bulk, which is also corroborated by iradina simulations. These show a maximum if the ion range matches the nanowire diameter. As a consequence of the erosion thinning of the nanowire, the incorporation of the Mn dopants is also enhanced and increases non-linearly with increasing ion fluency.

  16. Controlled growth and alignment of palladium nanowires prepared by template-assisted electrodeposition

    NASA Astrophysics Data System (ADS)

    Saidin, Nur Ubaidah; Kok, Kuan-Ying; Jumali, Mohammad Hafizuddin Haji; Fuzi, Siti Aishah Ahmad

    2017-05-01

    Palladium nanowires are good candidates for hydrogen sensing due to the many advantages. In this paper, we discuss the controlled growth of palladium nanowires into the nanopores of anodized alumina oxide (AAO) via template-assisted electrodeposition. This technique provides precise control for the dimensional growth of Pd nanowires. The potential range for electrochemical deposition of palladium nanowires was determined by Linear Sweep Voltammetry (LSV). Crystallinity and microstructural studies of the palladium nanowires were carried out using X-ray diffractometry (XRD) and scanning electron microscopy (SEM) as characterization tools. Systematic study on nanowire alignment across 3 µm-gaps between pairs of microfabricated gold electrodes was carried out using a.c. dielectrophoresis technique. Optimized conditions for good nanowire alignment were reported.

  17. ZnO nanowire photodetectors based on Schottky contact with surface passivation

    NASA Astrophysics Data System (ADS)

    Zhang, Dakuan; Sheng, Yun; Wang, Jianyu; Gao, Fan; Yan, Shancheng; Wang, Junzhuan; Pan, Lijia; Wan, Qing; Shi, Yi

    2017-07-01

    Performance characteristics, such as dark current and response time, of ZnO nanowire (NW) photodetectors are usually degraded by H2O/O2 adsorption on the NW surfaces. In this work, ZnO NW photodetectors based on Au Schottky contact through passivating surface states were investigated. ZnO NW photodetectors were fabricated with a lateral electrode structure, in which Au served as Au/ZnO Schottky contact and semi-transparent top electrode. Specifically, passivation of the surface states of ZnO NWs by using highly intensive UV irradiation effectively improved the photoresponse. A physical model based on surface band theory was developed to understand the origin of the performance improvement of the photodetector. The present device architecture prevents ZnO NWs photodetector from H2O/O2 adsorption in air and efficiently extracts photogenerated carriers across a diametrical direction.

  18. Electronic Structure and Magnetism of Mn-Doped ZnO Nanowires

    PubMed Central

    Zhang, Fuchun; Chao, Dandan; Cui, Hongwei; Zhang, Weihu; Zhang, Weibin

    2015-01-01

    The geometric structures, electronic and magnetic properties of Mn-doped ZnO nanowires were investigated using density functional theory. The results indicated that all the calculated energy differences were negative, and the energy of the ground state was 0.229 eV lower than ferromagnetic coupling, which show higher stability in antiferromagnetic coupling. The calculated results indicated that obvious spin splitting phenomenon occurred near the Femi level. The Zn atoms on the inner layer of ZnO nanowires are easily substituted by Mn atoms along the [0001] direction. It was also shown that the Mn2+-O2−-Mn2+ magnetic coupling formed by intermediate O atom was proved to be caused by orbital hybridization between Mn 3d and O 2p states. The magnetic moments were mainly attributed to the unpaired Mn 3d orbitals, but not relevant with doping position of Mn atoms. Moreover, the optical properties of Mn-doped ZnO nanowires exhibited a novel blue-shifted optical absorption and enhanced ultraviolet-light emission. The above results show that the Mn-doped ZnO nanowires are a new type of magneto-optical materials with great promise.

  19. Terahertz detectors arrays based on orderly aligned InN nanowires

    PubMed Central

    Chen, Xuechen; Liu, Huiqiang; Li, Qiuguo; Chen, Hao; Peng, Rufang; Chu, Sheng; Cheng, Binbin

    2015-01-01

    Nanostructured terahertz detectors employing a single semiconducting nanowire or graphene sheet have recently generated considerable interest as an alternative to existing THz technologies, for their merit on the ease of fabrication and above-room-temperature operation. However, the lack of alignment in nanostructure device hindered their potential toward practical applications. The present work reports ordered terahertz detectors arrays based on neatly aligned InN nanowires. The InN nanostructures (nanowires and nano-necklaces) were achieved by chemical vapor deposition growth, and then InN nanowires were successfully transferred and aligned into micrometer-sized groups by a “transfer-printing” method. Field effect transistors on aligned nanowires were fabricated and tested for terahertz detection purpose. The detector showed good photoresponse as well as low noise level. Besides, dense arrays of such detectors were also fabricated, which rendered a peak responsivity of 1.1 V/W from 7 detectors connected in series. PMID:26289498

  20. Terahertz detectors arrays based on orderly aligned InN nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Xuechen; Liu, Huiqiang; Li, Qiuguo; Chen, Hao; Peng, Rufang; Chu, Sheng; Cheng, Binbin

    2015-08-01

    Nanostructured terahertz detectors employing a single semiconducting nanowire or graphene sheet have recently generated considerable interest as an alternative to existing THz technologies, for their merit on the ease of fabrication and above-room-temperature operation. However, the lack of alignment in nanostructure device hindered their potential toward practical applications. The present work reports ordered terahertz detectors arrays based on neatly aligned InN nanowires. The InN nanostructures (nanowires and nano-necklaces) were achieved by chemical vapor deposition growth, and then InN nanowires were successfully transferred and aligned into micrometer-sized groups by a “transfer-printing” method. Field effect transistors on aligned nanowires were fabricated and tested for terahertz detection purpose. The detector showed good photoresponse as well as low noise level. Besides, dense arrays of such detectors were also fabricated, which rendered a peak responsivity of 1.1 V/W from 7 detectors connected in series.

  1. Effects of surface defects on the mechanical properties of ZnO nanowires.

    PubMed

    Roy, Aditi; Mead, James; Wang, Shiliang; Huang, Han

    2017-08-25

    The elastic modulus of ZnO nanowires was measured using a resonance method based on laser Doppler effect and their fracture strains were determined via two-point bending with the aid of optical nanomanipulation. The elastic moduli of ZnO nanowires with diameters of 78 to 310 nm vary from 123 to 154 GPa, which are close to the bulk value of 140 GPa and independent of the diameters and surface defects. However, the fracture strains of the ZnO nanowires depend significantly on their diameters, increasing from 2.1% to 6.0% with the decrease in diameter from 316 to 114 nm. Post-mortem TEM analysis of the ends of the fractured nanowires revealed that fracture initiated at surface defects. The Weibull statistical analysis demonstrated that a greater defect depth led to a smaller fracture strain. The surface-defect dominated fracture should be an important consideration for the design and application of nanowire-based nanoelectromechanical systems.

  2. Ferromagnetism in Gd doped ZnO nanowires: A first principles study

    SciTech Connect

    Aravindh, S. Assa; Schwingenschloegl, Udo E-mail: iman.roqan@kaust.edu.sa; Roqan, Iman S. E-mail: iman.roqan@kaust.edu.sa

    2014-12-21

    In several experimental studies, room temperature ferromagnetism in Gd-doped ZnO nanostructures has been achieved. However, the mechanism and the origin of the ferromagnetism remain controversial. We investigate the structural, magnetic, and electronic properties of Zn{sub 48}O{sub 48} nanowires doped with Gd, using density functional theory. Our findings indicate that substitutionally incorporated Gd atoms prefer occupying the surface Zn sites. Moreover, the formation energy increases with the distance between Gd atoms, signifying that no Gd-Gd segregation occurs in the nanowires within the concentration limit of ≤2%. Gd induces ferromagnetism in ZnO nanowires with magnetic coupling energy up to 21 meV in the neutral state, which increases with additional electron and O vacancy, revealing the role of carriers in magnetic exchange. The potential for achieving room temperature ferromagnetism and high T{sub C} in ZnO:Gd nanowires is evident from the large ferromagnetic coupling energy (200 meV) obtained with the O vacancy. Density of states shows that Fermi level overlaps with Gd f states with the introduction of O vacancy, indicating the possibility of s-f coupling. These results will assist in understanding experimental findings in Gd-doped ZnO nanowires.

  3. Synthesis and characterization of ZnO nanowires by thermal oxidation of Zn thin films at various temperatures.

    PubMed

    Khanlary, Mohammad Reza; Vahedi, Vahid; Reyhani, Ali

    2012-05-02

    In this research high-quality zinc oxide (ZnO) nanowires have been synthesized by thermal oxidation of metallic Zn thin films. Metallic Zn films with thicknesses of 250 nm have been deposited on a glass substrate by the PVD technique. The deposited zinc thin films were oxidized in air at various temperatures ranging between 450 °C to 650 °C. Surface morphology, structural and optical properties of the ZnO nanowires were examined by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) and photoluminescence (PL) measurements. XRD analysis demonstrated that the ZnO nanowires has a wurtzite structure with orientation of (002), and the nanowires prepared at 600 °C has a better crystalline quality than samples prepared at other temperatures. SEM results indicate that by increasing the oxidation temperature, the dimensions of the ZnO nanowires increase. The optimum temperature for synthesizing high density, ZnO nanowires was determined to be 600 °C. EDX results revealed that only Zn and O are present in the samples, indicating a pure ZnO composition. The PL spectra of as-synthesized nanowires exhibited a strong UV emission and a relatively weak green emission.

  4. A comparative study of magnetic and optical properties of Mn-, Gd-, and Nd-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arup; Jong, Chol-Sam; Ganguli, Nirmal; Dasgupta, I.

    2017-01-01

    We present a comparative study of magnetism and optical properties for 3d transition metal (TM) (Mn)-doped and 4f rare-earth metals (Gd and Nd)-doped ultrathin ZnO nanowires using ab-initio density functional calculation. Our calculations indicate Nd-doped ZnO nanowires with oxygen vacancies are more favorable for ferromagnetism. Calculations including spin-orbit coupling for Nd-doped ZnO nanowires reveal not only giant anisotropy where magnetism parallel to the nanowire axis is found to be favorable but also stabilized ferromagnetism. We have calculated the absorption spectra for Mn-, Gd- and Nd-doped ZnO nanowires and found that the absorption intensity increases upon increasing the concentration of dopant ions. While Mn-doped ZnO nanowire allows absorption of light in the large energy window ranging from visible to ultraviolet, Gd- and Nd-doped systems absorb light primarily in the ultraviolet region. Our result indicates transition-metal-doped as well as rare-earth-doped ZnO nanowires may be ideal for spintronics and optoelectronic devices.

  5. Morphology-dependent field emission properties and wetting behavior of ZnO nanowire arrays

    PubMed Central

    2011-01-01

    The fabrication of three kinds of ZnO nanowire arrays with different structural parameters over Au-coated silicon (100) by facile thermal evaporation of ZnS precursor is reported, and the growth mechanism are proposed based on structural analysis. Field emission (FE) properties and wetting behavior were revealed to be strongly morphology dependent. The nanowire arrays in small diameter and high aspect ratio exhibited the best FE performance showing a low turn-on field (4.1 V/μm) and a high field-enhancement factor (1745.8). The result also confirmed that keeping large air within the films was an effective way to obtain super water-repellent properties. This study indicates that the preparation of ZnO nanowire arrays in an optimum structural model is crucial to FE efficiency and wetting behavior. PMID:21711609

  6. Fabrication of large-scale ultra-fine Cd-doped ZnO nanowires

    SciTech Connect

    Zhou Shaomin . E-mail: shaominzhou@yahoo.com; Zhang Xiaohong; Meng Xiangmin; Wu Shikang; Lee Shuittong

    2006-02-02

    We demonstrate bulk synthesis of highly crystal Cd-doped ZnO nanowires by using (Cd + Zn) powders at 600 deg. C. These mass ultra-fine ZnO nanowires with about 0%, 1%, 4% and 8% Cd so obtained have been characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED) and high-resolution TEM (HRTEM). They have the uniform diameter of about 20 nm and several hundred microns in length. The growth of the as-synthesized nanowires is suggested for self-catalyzed vapor-liquid-solid.

  7. Characterization and Fabrication of ZnO Nanowires Grown on AlN Thin Film

    SciTech Connect

    Yousefi, Ramin; Kamaluddin, Burhanuddin; Ghoranneviss, Mahmood; Hajakbari, Fatemeh

    2009-07-07

    In this paper, we report ZnO nanowires grown on AlN thin film deposited on glass as substrate by physical vapour deposition. The temperature of substrates was kept between 600 deg. C and 500 deg. C during the growth. The typical average diameters of the obtained nanowires on substrate at 600 deg. C and 500 deg. C was about 57 nm and 22 nm, respectively with several micrometers in lengths. X-ray diffraction and Auger spectroscopy results showed Al diffused from AlN thin film into ZnO nanowires for sample at high temperature zone. In the photoluminescence spectra two emission bands appeared, one related to ultraviolet emission with a strong peak at 380-382 nm, and another related to deep level emission with a weak peak at 510 nm.

  8. High-performance UV detector made of ultra-long ZnO bridging nanowires.

    PubMed

    Li, Yanbo; Della Valle, Florent; Simonnet, Mathieu; Yamada, Ichiro; Delaunay, Jean-Jacques

    2009-01-28

    A nanowatt UV photoconductive detector made up of ultra-long (approximately 100 microm) ZnO bridging nanowires has been fabricated by a single-step chemical vapor deposition (CVD) process. The electrodes, forming comb-shaped thick ZnO layers, and the sensing elements, consisting of ZnO nanowires bridging the electrodes, were fabricated simultaneously in a single-step CVD process. The device showed drastic changes (10-10(5) times) in current under a wide range of UV irradiances (10(-8)-10(-2) W cm(-2)). Moreover, the detector exhibited fast response (rise and decay times of the order of 1 s) to UV illumination in air, but no response to visible light (hnu<3.2 eV). Our approach provides a simple and cost-effective way to fabricate high-performance 'visible-blind' UV detectors.

  9. Optimization of dielectric matrix for ZnO nanowire based nanogenerators

    NASA Astrophysics Data System (ADS)

    Kannan, Santhosh; Parmar, Mitesh; Tao, Ran; Ardila, Gustavo; Mouis, Mireille

    2016-11-01

    This paper reports the role of selection of suitable dielectric layer in nanogenerator (NG) structure and its influence on the output performance. The basic NG structure is a composite material integrating hydrothermally grown vertical piezoelectric zinc oxide (ZnO) nanowires (NWs) into a dielectric matrix. To accomplish this study, three materials - poly methyl methacrylate (PMMA), silicon nitride (Si3N4) and aluminium oxide (Al2O3) are selected, processed and used as matrix dielectric in NGs. Scanning electron microscopy (SEM) analysis shows the well-aligned NWs with a diameter of 200±50 nm and length of 3.5±0.3 μm. This was followed by dielectric material deposition as a matrix material. After fabricating NG devices, the output generated voltage under manual and automatic bending were recorded, observed and analyzed for the selection of the best dielectric material to obtain an optimum output. The maximum peak-to-peak open-circuit voltage output for PMMA, Si3N4 and Al2O3 under manual bending was recorded as approximately 880 mV, 1.2 V and 2.1 V respectively. These preliminary results confirm the predicted effect of using more rigid dielectrics as matrix material for the NGs. The generated voltage is increased by about 70% using Si3N4 or Al2O3, instead of a less rigid material as PMMA.

  10. One-pot synthesis of ZnO nanowires and belts through orientation attachment mechanism

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Kamal

    2017-01-01

    Zinc oxide (ZnO) is one of the promising materials for optoelectronics and advanced electronics-based device fabrication. Nanostructured features include further flavor to the applications as well due to inherent and unprecedented properties. With this view, a sol-gel route for the synthesis of nanostructured ZnO, such as nanoparticles, nanowires and nanobelts subsequently obtained in one-pot has been reported. The process includes synthesis of monodispersed nanoparticles that can find potential applications as gas sensing layers and transparent conducting layers. Hexagonal wurtzite crystal structure with cell constants, a = 3.2427 Ǻ and c = 5.1948 Ǻ was confirmed by X-ray diffraction. Strong preferential growth along {101} plane indicated the growth of ZnO crystallites along c-axis. Vibrational band for Zn-O stretching and deformation modes was confirmed by Fourier transform infrared absorption spectroscopy. A reasonably well-coverage of ZnO nanoparticles, ca. 1 × 107 nanoparticles/cm2 along with size distribution of (13.5 ± 9.0) nm diameter, was obtained by topographic observation of scanning electron microscopy. A series of scanning electron micrographs revealed that as-synthesized nanoparticles were further processed to obtain nanometric wires and belts under controlled conditions. The nanowires were formed from anisotropic agglomeration of nanometric particles, and the belts were formed by agglomeration of these nanometric wires into bundles. A close observation indicated that ZnO nanowires of diameter 40-50 nm were consisted of one to three constituent colloids. Control of these selective agglomeration processes is a key challenge for application of nanowires and belts into useful devices.

  11. Coordination number model to quantify packing morphology of aligned nanowire arrays.

    PubMed

    Stein, Itai Y; Wardle, Brian L

    2013-03-21

    The average inter-wire spacing in aligned nanowire systems strongly influences both the physical and transport properties of the bulk material. Because most studies assume that the nanowire coordination is constant, a model that provides an analytical relationship between the average inter-wire spacings and measurable physical properties, such as nanowire volume fraction, is necessary. Here we report a continuous coordination number model with an analytical relationship between the average nanowire coordination, diameter, and volume fraction. The model is applied to vertically aligned carbon nanotube (VACNT) and nanofiber (VACNF) arrays, and the effective nanowire coordination number is established from easily accessible measures, such as the nanowire spacing and diameter. VACNT analysis shows that the coordination number increases with increasing nanowire volume fraction, leading the measured inter-CNT spacing values to deviate by as much as 13% from the spacing values predicted by the typically assumed hexagonal packing. VACNF analysis suggests that, by predicting an inter-fiber spacing that is within 6% of the reported value, the continuous coordination model outperforms both square and hexagonal packing in real nanowire arrays. Using this model, the average inter-wire spacing of nanowire arrays can be predicted, thus allowing more precise morphology descriptions, and thereby supporting the development of more accurate structure-property models of bulk materials comprised of aligned nanowires.

  12. Understanding self-aligned planar growth of InAs nanowires.

    PubMed

    Zi, Yunlong; Jung, Kyooho; Zakharov, Dmitri; Yang, Chen

    2013-06-12

    Semiconducting nanowires have attracted lots of attention because of their potential applications. Compared with free-standing nanowires, self-aligned planar nanowires grown epitaxially on the substrate have shown advantageous properties such as being twin defect free and ready for device fabrication, opening potentials for the large-scale device applications. Understanding of planar nanowire growth, which is essential for selective growth of planar vs free-standing wires, is still limited. In this paper, we reported different growth behaviors for self-aligned planar and free-standing InAs nanowires under identical growth conditions. We present a new model based on a revised Gibbs–Thomson equation for the planar nanowires. Using this model, we predicted and successfully confirmed through experiments that higher arsenic vapor partial pressure promoted free-standing InAs nanowire growth. A smaller critical diameter for planar nanowire growth was predicted and achieved experimentally. Successful control and understanding of planar and free-standing nanowire growth established in our work opens up the potential of large-scale integration of self-aligned nanowires for practical device applications.

  13. Spectroscopic investigations of arrays containing vertically and horizontally aligned silicon nanowires

    NASA Astrophysics Data System (ADS)

    Volpati, Diogo; Mårtensson, Niklas; Anttu, Nicklas; Viklund, Per; Sundvall, Christian; Åberg, Ingvar; Bäckström, Joakim; Olin, Håkan; Björk, Mikael T.; Castillo-Leon, Jaime

    2016-12-01

    The properties of nanowire arrays have been investigated mainly in comparison with isolated nanowires or thin films, owing to the difficulty in controlling the nanowire alignment. In this study, we report on arrays containing vertically or horizontally aligned silicon nanowires, whose alignment and structure were determined using x-ray diffraction and scanning electron microscopy. The Raman spectra of the nanowire arrays differ from those of isolated nanowires because of distinct heat dissipation rates of the absorbed energy from the laser, in agreement with recent theoretical calculations. The tailored alignment of the nanowires on solid substrates up to 1 inch of diameter also enabled the observation of resonance modes associated with light trapped into the nanowires. This was proven by comparing the light absorbed and scattered by the arrays, and may be exploited to enhance light harvesting in tandem solar cells. Significantly, the control of the assembly of nanowire arrays may have a direct impact on bottom-up technologies of high anisotropy nanomaterials.

  14. Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices.

    PubMed

    Leschkies, Kurtis S; Divakar, Ramachandran; Basu, Joysurya; Enache-Pommer, Emil; Boercker, Janice E; Carter, C Barry; Kortshagen, Uwe R; Norris, David J; Aydil, Eray S

    2007-06-01

    We combine CdSe semiconductor nanocrystals (or quantum dots) and single-crystal ZnO nanowires to demonstrate a new type of quantum-dot-sensitized solar cell. An array of ZnO nanowires was grown vertically from a fluorine-doped tin oxide conducting substrate. CdSe quantum dots, capped with mercaptopropionic acid, were attached to the surface of the nanowires. When illuminated with visible light, the excited CdSe quantum dots injected electrons across the quantum dot-nanowire interface. The morphology of the nanowires then provided the photoinjected electrons with a direct electrical pathway to the photoanode. With a liquid electrolyte as the hole transport medium, quantum-dot-sensitized nanowire solar cells exhibited short-circuit currents ranging from 1 to 2 mA/cm2 and open-circuit voltages of 0.5-0.6 V when illuminated with 100 mW/cm2 simulated AM1.5 spectrum. Internal quantum efficiencies as high as 50-60% were also obtained.

  15. Cobalt(II/III) redox electrolyte in ZnO nanowire-based dye-sensitized solar cells.

    PubMed

    Fan, Jiandong; Hao, Yan; Cabot, Andreu; Johansson, Erik M J; Boschloo, Gerrit; Hagfeldt, Anders

    2013-03-01

    In this work, we explore the use of cobalt complex redox shuttles in dye sensitized solar cells (DSCs) based on ZnO nanowires (NWs). Arrays of vertically aligned ZnO NWs produced by a low-cost hydrothermal method are used to fabricate DSCs with [Co(bpy)3](2+/3+) as electrolyte. A direct comparison of the performance of [Co(bpy)3](2+/3+)-based ZnO DSC with I(-)/I3(-)-based ones demonstrates the higher suitability of the cobalt complex, both in terms of a larger open circuit voltage (VOC) and a higher photocurrent. The [Co(bpy)3](2+/3+) electrolyte results in VOC enhancements above 200 mV. This VOC increase is associated to the better match between the cobalt complex redox potential and the oxidation potential of the dye. The incident photon-to-current efficiency (IPCE) enhancement is attributed to a less competitive visible light absorption of the cobalt redox couple. Thus the present study opens new opportunities to improve energy conversion efficiency in ZnO-based DSCs.

  16. High-performance flexible ZnO nanorod UV photodetectors with a network-structured Cu nanowire electrode.

    PubMed

    Kwon, Do-Kyun; Lee, Su Jeong; Myoung, Jae-Min

    2016-09-22

    In this work, vertically aligned zinc oxide (ZnO) nanorod (NR)-based flexible ultraviolet (UV) photodetectors were successfully fabricated on a polyimide (PI) substrate with a copper (Cu) nanowire (NW) electrode. To enhance the flexibility and sensing properties, the entangled networks of Cu NWs were applied to UV photodetectors as a flexible electrode. Here, Cu NWs have a high conductivity with a low cost compared to other metals to achieve a Schottky contact with ZnO NRs. Moreover, because of forming a network structure, the surface of the sensing material has a large contact area with oxygen molecules, resulting in a faster response time. The Cu NW electrode exhibited a high optical transmittance of 90%, a considerable sheet resistance of 50 Ω sq(-1), and a work function of 5.12 eV. Consequentially, the fabricated UV photodetector with Cu NW electrodes showed excellent UV sensing properties with a very fast rising time of 0.7 s and a decay time of 1.9 s in the dark and under UV illumination (365 nm, 0.40 mW cm(-2)) at a reverse bias of -2.0 V. Furthermore, during the bending test at a radius of curvature of 5 mm, the flexible ZnO NR UV photodetectors with Cu NW electrodes exhibited almost unchanged UV sensing properties even after 5000 cycles.

  17. Compared growth mechanisms of Zn-polar ZnO nanowires on O-polar ZnO and on sapphire.

    PubMed

    Perillat-Merceroz, G; Thierry, R; Jouneau, P H; Ferret, P; Feuillet, G

    2012-03-30

    Controlling the growth of zinc oxide nanowires is necessary to optimize the performance of nanowire-based devices such as photovoltaic solar cells, nano-generators, or light-emitting diodes. With this in mind, we investigate the nucleation and growth mechanisms of ZnO nanowires grown by metalorganic vapor phase epitaxy either on O-polar ZnO or on sapphire substrates. Whatever the substrate, ZnO nanowires are Zn-polar, as demonstrated by convergent beam electron diffraction. For growth on O-polar ZnO substrate, the nanowires are found to sit on O-polar pyramids. As growth proceeds, the inversion domain boundary moves up in order to remain at the top of the O-polar pyramids. For growth on sapphire substrates, the nanowires may also originate from the sapphire/ZnO interface. The presence of atomic steps and the non-polar character of sapphire could be the cause of the Zn-polar crystal nucleation on sapphire, whereas it is proposed that the segregation of aluminum impurities could account for the nucleation of inverted domains for growth on O-polar ZnO.

  18. Functionalized ZnO nanowires for microcantilever biosensors with enhanced binding capability.

    PubMed

    Stassi, Stefano; Chiadò, Alessandro; Cauda, Valentina; Palmara, Gianluca; Canavese, Giancarlo; Laurenti, Marco; Ricciardi, Carlo

    2017-04-01

    An efficient way to increase the binding capability of microcantilever biosensors is here demonstrated by growing zinc oxide nanowires (ZnO NWs) on their active surface. A comprehensive evaluation of the chemical compatibility of ZnO NWs brought to the definition of an innovative functionalization method able to guarantee the proper immobilization of biomolecules on the nanostructured surface. A noteworthy higher amount of grafted molecules was evidenced with colorimetric assays on ZnO NWs-coated devices, in comparison with functionalized and activated silicon flat samples. ZnO NWs grown on silicon microcantilever arrays and activated with the proposed immobilization strategy enhanced the sensor binding capability (and thus the dynamic range) of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices. Graphical Abstract An efficient way to increase the binding capability of microcantilever biosensors is represented by growing zinc oxide nanowires (ZnO NWs) on their active surface. ZnO NWs grown on silicon microcantilever arrays and activated with an innovative immobilization strategy enhanced the sensor binding capability of nearly 1 order of magnitude, with respect to the commonly employed flat functionalized silicon devices.

  19. A novel approach to grow ZnO nanowires and nanoholes by combined colloidal lithography and MOCVD deposition.

    PubMed

    Fragalà, Maria Elena; Satriano, Cristina; Malandrino, Graziella

    2009-02-21

    A hybrid approach of colloidal lithography and metalorganic chemical vapour deposition (MOCVD) has been used to fabricate ZnO nanowire bundles and nanoholes by using a silver metalorganic precursor as the growth catalyst.

  20. Effect of chemically reactive species on properties of ZnO nanowires exposed to oxygen and hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Ra, Hyun-Wook; Im, Yeon-Ho

    2008-12-01

    We present a systematic study on the effect of oxygen and hydrogen plasma-generated reactive species on the properties of ZnO nanowires. Upon exposure to oxygen plasma, the electrical conductivity of an individual ZnO nanowire decreased with substantial changes in the surface chemistry, indicating a decrease in the number of donor-like defects and an increase in the number of electron-trapping species. In contrast, an individual ZnO nanowire exposed to hydrogen plasma showed a drastic increase in conductivity up to two orders of magnitude due to the incorporated hydrogen acting as a shallow donor inside the ZnO nanowires without a sputtering process.

  1. Novel epoxy-silicone thermolytic transparent packaging adhesives chemical modified by ZnO nanowires for HB LEDs

    NASA Astrophysics Data System (ADS)

    He, Ying; Wang, Jun-An; Pei, Chang-Long; Song, Ji-Zhong; Zhu, Di; Chen, Jie

    2010-10-01

    A novel high transparent thermolytic epoxy-silicone for high-brightness light-emitting diode (HB-LED) is introduced, which was synthesized by polymerization using silicone matrix via diglycidyl ether bisphenol-A epoxy resin (DGEBA) as reinforcing agent, and filling ZnO nanowires to modify thermal conductivity and control refractive index of the hybrid material. The interactions of ZnO nanowires with polymers are mediated by the ligands attached to the nanoparticles. Thus, the ligands markedly influence the properties of ZnO nanowires/epoxy-silicone composites. The refractive indices of the prepared hybrid adhesives can be tuned by the ZnO nanowires from 1.4711 to 1.5605. Light transmittance can be increased by 20% from 80 to 95%. The thermal conductivity of the transparent packaging adhesives is 0.89-0.90 W/mK.

  2. ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells.

    PubMed

    Hu, Qichang; Li, Yafeng; Huang, Feng; Zhang, Zhaojun; Ding, Kai; Wei, Mingdeng; Lin, Zhang

    2015-06-23

    High quality ZnO nanowires arrays were homoepitaxial grown on Ga-doped ZnO single crystal (GZOSC), which have the advantages of high conductivity, high carrier mobility and high thermal stability. When it was employed as a photoanode in the DSSCs, the cell exhibited a 1.44% power-conversion efficiency under the illumination of one sun (AM 1.5G). The performance is superior to our ZnO nanowires/FTO based DSSCs under the same condition. This enhanced performance is mainly attributed to the perfect interface between the ZnO nanowires and the GZOSC substrate that contributes to lower carrier scattering and recombination rates compared with that grown on traditional FTO substrate.

  3. ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells

    PubMed Central

    Hu, Qichang; Li, Yafeng; Huang, Feng; Zhang, Zhaojun; Ding, Kai; Wei, Mingdeng; Lin, Zhang

    2015-01-01

    High quality ZnO nanowires arrays were homoepitaxial grown on Ga-doped ZnO single crystal (GZOSC), which have the advantages of high conductivity, high carrier mobility and high thermal stability. When it was employed as a photoanode in the DSSCs, the cell exhibited a 1.44% power-conversion efficiency under the illumination of one sun (AM 1.5G). The performance is superior to our ZnO nanowires/FTO based DSSCs under the same condition. This enhanced performance is mainly attributed to the perfect interface between the ZnO nanowires and the GZOSC substrate that contributes to lower carrier scattering and recombination rates compared with that grown on traditional FTO substrate. PMID:26099568

  4. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    SciTech Connect

    Zhang, C.; Golberg, D. E-mail: golberg.dmitri@nims.go.jp; Xu, Z. E-mail: golberg.dmitri@nims.go.jp; Kvashnin, D. G.; Tang, D.-M.; Xue, Y. M.; Bando, Y.; Sorokin, P. B.

    2015-08-31

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  5. Opto-mechano-electrical tripling in ZnO nanowires probed by photocurrent spectroscopy in a high-resolution transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Xu, Z.; Kvashnin, D. G.; Tang, D.-M.; Xue, Y. M.; Bando, Y.; Sorokin, P. B.; Golberg, D.

    2015-08-01

    Photocurrent spectroscopy of individual free-standing ZnO nanowires inside a high-resolution transmission electron microscope (TEM) is reported. By using specially designed optical in situ TEM system capable of scanning tunneling microscopy probing paired with light illumination, opto-mechano-electrical tripling phenomenon in ZnO nanowires is demonstrated. Splitting of photocurrent spectra at around 3.3 eV under in situ TEM bending of ZnO nanowires directly corresponds to nanowire deformation and appearance of expanded and compressed nanowire sides. Theoretical simulation of a bent ZnO nanowire has an excellent agreement with the experimental data. The splitting effect could be explained by a change in the valence band structure of ZnO nanowires due to a lattice strain. The strain-induced splitting provides important clues for future flexible piezo-phototronics.

  6. Structure and opto-electrochemical properties of ZnO nanowires grown on n-Si substrate.

    PubMed

    Ladanov, Mikhail; Ram, Manoj K; Matthews, Garrett; Kumar, Ashok

    2011-07-19

    Zinc oxide (ZnO) nanostructures have attracted great attention as a promising functional material with unique properties suitable for applications in UV lasers, light emitting diodes, field emission devices, sensors, field effect transistors, and solar cells. In the present work, ZnO nanowires have been synthesized on an n-type Si substrate using a hydrothermal method where surfactant acted as a modifying and protecting agent. The surface morphology, electrochemical properties, and opto-electrochemical properties of ZnO nanowires are investigated by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), cyclic voltammetry, and impedance spectroscopy techniques. The cycling characteristics and rate capability of the ZnO nanowires are explored through electrochemical studies performed under varying electrolytes. The photo response is observed using UV radiation. It is demonstrated that crystallinity, particle size, and morphology all play significant roles in the electrochemical performance of the ZnO electrodes.

  7. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes.

    PubMed

    Forticaux, Audrey; Hacialioglu, Salih; DeGrave, John P; Dziedzic, Rafal; Jin, Song

    2013-09-24

    We report a three-dimensional (3D) mesoscale heterostructure composed of one-dimensional (1D) nanowire (NW) arrays epitaxially grown on two-dimensional (2D) nanoplates. Specifically, three facile syntheses are developed to assemble vertical ZnO NWs on CuGaO2 (CGO) nanoplates in mild aqueous solution conditions. The key to the successful 3D mesoscale integration is the preferential nucleation and heteroepitaxial growth of ZnO NWs on the CGO nanoplates. Using transmission electron microscopy, heteroepitaxy was found between the basal planes of CGO nanoplates and ZnO NWs, which are their respective (001) crystallographic planes, by the observation of a hexagonal Moiré fringes pattern resulting from the slight mismatch between the c planes of ZnO and CGO. Careful analysis shows that this pattern can be described by a hexagonal supercell with a lattice parameter of almost exactly 11 and 12 times the a lattice constants for ZnO and CGO, respectively. The electrical properties of the individual CGO-ZnO mesoscale heterostructures were measured using a current-sensing atomic force microscopy setup to confirm the rectifying p-n diode behavior expected from the band alignment of p-type CGO and n-type ZnO wide band gap semiconductors. These 3D mesoscale heterostructures represent a new motif in nanoassembly for the integration of nanomaterials into functional devices with potential applications in electronics, photonics, and energy.

  8. Plasma versus thermal annealing for the Au-catalyst growth of ZnO nanocones and nanowires on Al-doped ZnO buffer layers

    NASA Astrophysics Data System (ADS)

    Güell, Frank; Martínez-Alanis, Paulina R.; Roso, Sergio; Salas-Pérez, Carlos I.; García-Sánchez, Mario F.; Santana, Guillermo; Marel Monroy, B.

    2016-06-01

    We successfully synthesized ZnO nanocones and nanowires over polycrystalline Al-doped ZnO (AZO) buffer layers on fused silica substrates by a vapor-transport process using Au-catalyst thin films. Different Au film thicknesses were thermal or plasma annealed in order to analyze their influence on the ZnO nanostructure growth morphology. Striking differences have been observed. Thermal annealing generates a distribution of Au nanoclusters and plasma annealing induces a fragmentation of the Au thin films. While ZnO nanowires are found in the thermal-annealed samples, ZnO nanocones and nanowires have been obtained on the plasma-annealed samples. Enhancement of the preferred c-axis (0001) growth orientation was demonstrated by x-ray diffraction when the ZnO nanocones and nanowires have been grown over the AZO buffer layer. The transmittance spectra of the ZnO nanocones and nanowires show a gradual increase from 375 to 900 nm, and photoluminescence characterization pointed out high concentration of defects leading to observation of a broad emission band in the visible range from 420 to 800 nm. The maximum emission intensity peak position of the broad visible band is related to the thickness of the Au-catalyst for the thermal-annealed samples and to the plasma power for the plasma-annealed samples. Finally, we proposed a model for the plasma versus thermal annealing of the Au-catalyst for the growth of the ZnO nanocones and nanowires. These results are promising for renewable energy applications, in particular for its potential application in solar cells.

  9. Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis

    SciTech Connect

    Bowland, Christopher C.; Zhou, Zhi; Malakooti, Mohammad H.; Sodano, Henry A.

    2015-06-01

    We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growth in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting.

  10. ZnO Hemisphere Pits Nanowire/CdS Photoelectrode for High-Efficiency Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Chen, Peiyang; Liu, Zhifeng; Geng, Xuemin; Wang, Jialu; Zhang, Min; Liu, Junqi; Yan, Lu

    2017-03-01

    In this paper, a ZnO hemisphere pits nanowire (HPW) photoelectrode is fabricated by using polystyrene (PS) nanospheres as templates, and CdS is deposited on ZnO nanowires to improve further its photoelectrochemical performance. Firstly, PS nanospheres are deposited on ZnO seed layers by air-liquid interface self-assembling method. Subsequently, ZnO HPWs are grown which effected by PS nanospheres. Finally, CdS nanoparticles were deposited on the ZnO HPWs to construct ZnO/CdS heterojunction photoanodes by successive ionic layer adsorption and reaction method. This hemisphere pits nanowires composite structure demonstrated a highly efficient photoelectrocatalytic performance with a remarkable photocurrent density of 2.27 mA cm-2 determined at 0.8 V versus Ag/AgCl. The enhanced performance of ZnO hemisphere pits nanowires/CdS nanoparticles (ZnO/CdS) composite photoanodes originated from the enhanced light absorption in the visible region and reduced photogenerated charges recombination rate. Furthermore, compared with ordinary nanowire arrays, hemisphere pits nanowire structure can reflect light more times to facilitate light harvesting. This work exhibits the important significance in constructing photoelectrodes for photoelectrochemical water splitting and other photoelectric devices.

  11. ZnO Hemisphere Pits Nanowire/CdS Photoelectrode for High-Efficiency Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Chen, Peiyang; Liu, Zhifeng; Geng, Xuemin; Wang, Jialu; Zhang, Min; Liu, Junqi; Yan, Lu

    2016-12-01

    In this paper, a ZnO hemisphere pits nanowire (HPW) photoelectrode is fabricated by using polystyrene (PS) nanospheres as templates, and CdS is deposited on ZnO nanowires to improve further its photoelectrochemical performance. Firstly, PS nanospheres are deposited on ZnO seed layers by air-liquid interface self-assembling method. Subsequently, ZnO HPWs are grown which effected by PS nanospheres. Finally, CdS nanoparticles were deposited on the ZnO HPWs to construct ZnO/CdS heterojunction photoanodes by successive ionic layer adsorption and reaction method. This hemisphere pits nanowires composite structure demonstrated a highly efficient photoelectrocatalytic performance with a remarkable photocurrent density of 2.27 mA cm-2 determined at 0.8 V versus Ag/AgCl. The enhanced performance of ZnO hemisphere pits nanowires/CdS nanoparticles (ZnO/CdS) composite photoanodes originated from the enhanced light absorption in the visible region and reduced photogenerated charges recombination rate. Furthermore, compared with ordinary nanowire arrays, hemisphere pits nanowire structure can reflect light more times to facilitate light harvesting. This work exhibits the important significance in constructing photoelectrodes for photoelectrochemical water splitting and other photoelectric devices.

  12. Alignment control and atomically-scaled heteroepitaxial interface study of GaN nanowires.

    PubMed

    Liu, Qingyun; Liu, Baodan; Yang, Wenjin; Yang, Bing; Zhang, Xinglai; Labbé, Christophe; Portier, Xavier; An, Vladimir; Jiang, Xin

    2017-04-11

    Well-aligned GaN nanowires are promising candidates for building high-performance optoelectronic nanodevices. In this work, we demonstrate the epitaxial growth of well-aligned GaN nanowires on a [0001]-oriented sapphire substrate in a simple catalyst-assisted chemical vapor deposition process and their alignment control. It is found that the ammonia flux plays a key role in dominating the initial nucleation of GaN nanocrystals and their orientation. Typically, significant improvement of the GaN nanowire alignment can be realized at a low NH3 flow rate. X-ray diffraction and cross-sectional scanning electron microscopy studies further verified the preferential orientation of GaN nanowires along the [0001] direction. The growth mechanism of GaN nanowire arrays is also well studied based on cross-sectional high-resolution transmission electron microscopy (HRTEM) characterization and it is observed that GaN nanowires have good epitaxial growth on the sapphire substrate following the crystallographic relationship between (0001)GaN∥(0001)sapphire and (101[combining macron]0)GaN∥(112[combining macron]0)sapphire. Most importantly, periodic misfit dislocations are also experimentally observed in the interface region due to the large lattice mismatch between the GaN nanowire and the sapphire substrate, and the formation of such dislocations will favor the release of structural strain in GaN nanowires. HRTEM analysis also finds the existence of "type I" stacking faults and voids inside the GaN nanowires. Optical investigation suggests that the GaN nanowire arrays have strong emission in the UV range, suggesting their crystalline nature and chemical purity. The achievement of aligned GaN nanowires will further promote the wide applications of GaN nanostructures toward diverse high-performance optoelectronic nanodevices including nano-LEDs, photovoltaic cells, photodetectors etc.

  13. The Influence of Short-Range Correlation on the Phonon Confinement of a Single ZnO Nanowire.

    PubMed

    Shih, Po-Hsun; Wu, Sheng Yun

    2017-12-01

    Plenty of researches have been performed to probe the diverse properties of ZnO nanowires, but only a few have focused on the physical properties of a single nanowire since to analyze the optical confinement and their correlation lengths along a single nanowire is difficult. In this study, a single ZnO nanowire was synthesized using a Ti-assisted chemical vapor deposition (CVD) method to avoid the appearance of catalytic contamination. Confocal Raman spectroscopy is a powerful tool for probing the phonon confinement effect in a single ZnO nanowire. A confinement model was used to calculate the correlation lengths along the growth direction. The Raman mapping of ZnO nanowires was obtained by a confocal Raman spectrometer. A phonon confinement model was used to fit the Raman curves of the E2 mode and to obtain the correlation lengths along the growth direction of the ZnO nanowire. The correlation lengths are related to the phonon confined region by boundaries and/or defects.

  14. Catalyst-free ZnO nanowires on silicon by pulsed laser deposition with tunable density and aspect ratio

    NASA Astrophysics Data System (ADS)

    Susner, M. A.; Carnevale, S. D.; Kent, T. F.; Gerber, L. M.; Phillips, P. J.; Sumption, M. D.; Myers, R. C.

    2014-08-01

    ZnO nanostructures were grown on Si(1 1 1) via pulsed laser deposition. The morphology of the ZnO was tunable based on the pressure of the atmosphere during deposition: deposition in vacuum produced a thin film, deposition at intermediate pressures (75 mTorr) yielded nanoclusters of ZnO and deposition at higher pressures (>250 mTorr) produced c-axis oriented nanowires. Through variation of the deposition temperature and pressure it was possible to control the nanowire density, height, and diameter. Room temperature photoluminescence spectroscopy reveals exciton to defect peak ratios greater than 100 suggesting much greater stoichiometry and reduced defect density than found in catalyst-formed ZnO nanowires. The evolution of the ZnO nanowire growth was examined through X-ray diffraction and electron microscopy. Using a two-step deposition procedure involving depositing a seed layer at a low temperature with further deposition at a higher temperature we were able to increase the height of the nanowires without increasing the diameter. These two-step structures were seen to come in two morphological forms - ZnO needles and porous, nested ZnO nanostructures.

  15. Nonvolatile memory functionality of ZnO nanowire transistors controlled by mobile protons.

    PubMed

    Yoon, Jongwon; Hong, Woong-Ki; Jo, Minseok; Jo, Gunho; Choe, Minhyeok; Park, Woojin; Sohn, Jung Inn; Nedic, Stanko; Hwang, Hyungsang; Welland, Mark E; Lee, Takhee

    2011-01-25

    We demonstrated the nonvolatile memory functionality of ZnO nanowire field effect transistors (FETs) using mobile protons that are generated by high-pressure hydrogen annealing (HPHA) at relatively low temperature (400 °C). These ZnO nanowire devices exhibited reproducible hysteresis, reversible switching, and nonvolatile memory behaviors in comparison with those of the conventional FET devices. We show that the memory characteristics are attributed to the movement of protons between the Si/SiO(2) interface and the SiO(2)/ZnO nanowire interface by the applied gate electric field. The memory mechanism is explained in terms of the tuning of interface properties, such as effective electric field, surface charge density, and surface barrier potential due to the movement of protons in the SiO(2) layer, consistent with the UV photoresponse characteristics of nanowire memory devices. Our study will further provide a useful route of creating memory functionality and incorporating proton-based storage elements onto a modified CMOS platform for FET memory devices using nanomaterials.

  16. Smartly aligning nanowires by a stretching strategy and their application as encoded sensors.

    PubMed

    Wu, Yuchen; Su, Bin; Jiang, Lei

    2012-10-23

    The nanotechnology world is being more and more attracted toward high aspect ratio one-dimensional nanostructures due to their potentials as building blocks for electronic/optical devices. Here, we propose a novel method to generate nanowire patterns with assistance of superhydrophobic flexible polydimethylsiloxane (PDMS) substrates. Micropillar gaps are tunable via a stretching process of the PDMS surface; thus, diverse nanowire patterns can be formed by stretching the same PDMS surface in various ways. Importantly, square nanowire loops with alternative compositions can be generated through a double-stretching process, showing an advanced methodology in controlling the alignment of nanowires. Since alternative fluorescent molecules will be quenched by diverse chemical substances, this alternative nanowire loop shows a selective detection for diverse target compounds, which greatly improves the application of this nanowire patterning approach. Furthermore, such alternative nanowire patterns can be transferred from pillar-structured surfaces to flat films, indicating further potentials in microcircuits, sensitive sensors, and other organic functional nanodevices.

  17. High efficiency dye-sensitized solar cells based on three-dimensional multilayered ZnO nanowire arrays with "caterpillar-like" structure.

    PubMed

    McCune, Mallarie; Zhang, Wei; Deng, Yulin

    2012-07-11

    A 3D ZnO nanowire-based dye-sensitized solar cell (DSSC) with unique "caterpillar-like" structure was designed. Because of the significant improvement of the total ZnO nanowire surface area, the amount of light absorption was substantially increased. This increase in the light harvesting efficiency enables us to achieve an overall power conversion efficiency as high as 5.20%, which is the highest reported value to date for ZnO nanowire-based DSSCs. A branched-multilayered design of ZnO nanowire arrays grown from ZnO nanofiber seed layers proves to be very successful in fabricating 3D ZnO nanowire arrays. Practically, electrospun ZnO nanowires were used as the seeds in multilayer growth of ZnO nanowire arrays with a unique "caterpillar-like" structure. This unique structure significantly enhances the surface area of the ZnO nanowire arrays, leading to higher short-circuit currents. Additionally, this design resulted in closer spacing between the nanowires and more direct conduction pathways for electron transfer. Thus, the open-circuit voltage was so significantly improved as a direct result of the reduction in electron recombination.

  18. First principles investigations on the electronic structure of anchor groups on ZnO nanowires and surfaces

    SciTech Connect

    Dominguez, A.; Lorke, M.; Rosa, A. L.; Frauenheim, Th.; Schoenhalz, A. L.; Dalpian, G. M.; Rocha, A. R.

    2014-05-28

    We report on density functional theory investigations of the electronic properties of monofunctional ligands adsorbed on ZnO-(1010) surfaces and ZnO nanowires using semi-local and hybrid exchange-correlation functionals. We consider three anchor groups, namely thiol, amino, and carboxyl groups. Our results indicate that neither the carboxyl nor the amino group modify the transport and conductivity properties of ZnO. In contrast, the modification of the ZnO surface and nanostructure with thiol leads to insertion of molecular states in the band gap, thus suggesting that functionalization with this moiety may customize the optical properties of ZnO nanomaterials.

  19. Photoelectric properties and charge dynamics in ZnO nanowires/Cu4Bi4S9 and ZnO nanowires/In2O3/Cu4Bi4S9 heterostructures

    NASA Astrophysics Data System (ADS)

    Liu, Xiangyang; Wang, Shun; Zhang, Jingwei; Zhang, Jiwei; Gu, Yuzong

    2014-12-01

    ZnO nanowires arrays were preformed in a horizontal double-tube system. Two types of heterostructures (ZnO nanowires/Cu4Bi4S9 and ZnO nanowires/In2O3/Cu4Bi4S9) and three-dimensional solar cells were fabricated with ZnO nanowires arrays as working electrode, In2O3 as buffer layer, and Cu4Bi4S9 as inorganic dye and hole collector. It is suggested that two types of heterostructures have the similar absorption properties with single Cu4Bi4S9. However, the results of steady state and electric field-induced surface photovoltage indicate that ZnO nanowires/In2O3/Cu4Bi4S9 exhibits the higher photovoltaic response than ZnO nanowires/Cu4Bi4S9. Using the transient surface photovoltage spectroscopy, we further studied the separation and transport mechanism of photogenerated charges. Furthermore, Cu4Bi4S9/In2O3/ZnO cells presents the better performance than Cu4Bi4S9/ZnO cells and the highest efficiencies are about 6.4% and 5.2%, respectively. It is suggested that direct paths, interface barrier, built-in electric field, and double energy level matchings between conduction bands (Cu4Bi4S9 and In2O3, In2O3 and ZnO) have obvious effect on the separation of photogenerated charges. Then we discussed the synthetic action on the charge dynamics from these factors.

  20. Tuning physical and optical properties of ZnO nanowire arrays grown on cotton fibers.

    PubMed

    Athauda, Thushara J; Hari, Parameswar; Ozer, Ruya R

    2013-07-10

    This article reports the first systematic study on the quantitative relationship between the process parameters of solution concentration ratio, structure, and physical and optical properties of ZnO nanowires grown on cotton surfaces. To develop a fundamental understanding concerning the process-structure-activity relations, we grew a series of well-defined, radially oriented, highly dense, and uniform single-crystalline ZnO nanorods and nanoneedles on cotton surfaces by a simple and inexpensive two-step optimized hydrothermal process at a relatively low temperature. This process involves seed treatment of a cotton substrate with ZnO nanocrystals that will serve as the nucleation sites for subsequent anisotropic growth of single crystalline ZnO nanowires. All of the ZnO nanowires exhibit wurtzite crystal structure oriented along the c-axis. For investigating structure-controlled properties, seed-to-growth solutions concentrations ratio ([S]/[G]) of the synthesis process was varied over six different values. Superhydrophobicity was achieved for all morphologies after 1-dodecanethiol modification, which was highly durable after prolonged UV irradiation. Durability of the ZnO materials under laundry condition was also verified. Variation of the [S]/[G] ratio resulted in a morphological transform from nanorods to needle-like structures in conjunction with a drastic change in the physical and optical properties of the ZnO modified cotton surfaces. Higher [S]/[G] ratios yielded formation of ZnO nanoneedles with high degree of crystallinity and higher aspect ratio compared to nanorods. Increasing [S]/[G] ratio resulted in the amount of ZnO grown on the cotton surface to drop significantly, which also caused a decrease in the surface hydrophobicity and UV absorption. In addition, room temperature photoluminescence measurements revealed that the band gap of ZnO widened and the structural defects were reduced as the morphology changed from nanorods to nanoneedles. A similar

  1. Reconstruction of perfect ZnO nanowires facets with high optical quality

    NASA Astrophysics Data System (ADS)

    Zehani, E.; Hassani, S.; Lusson, A.; Vigneron, J.; Etcheberry, A.; Galtier, P.; Sallet, V.

    2017-07-01

    ZnO nanowires were grown on sapphire substrates using metalorganic chemical vapor deposition. The samples were subsequently annealed under zinc pressure in a vacuum-sealed ampoule, at temperature ranging from 500 to 800 °C. The originality and the main motivation to provide a zinc-rich atmosphere were to prevent the out-diffusion of zinc from the nanowires. In doing so, the perfect structural properties and the morphology of the nanowires are kept. Interestingly, photoluminescence experiments performed on nanowires annealed in a narrow window of temperature [580-620 °C] show a spectacular improvement of the optical quality, as transitions commonly observable in high quality bulk samples are found. In addition, the intensity of the so-called ;surface excitons; (SX) is strongly decreased. To accurately investigate the chemical modifications of the surface, XPS experiments were carried out and show that zinc hydroxide species and/or Zn(OH)2 sublayer were partially removed from the surface. These results suggest that the annealing process in zinc vapor helps to properly reconstruct the surface of ZnO nanowires, and improves the optical quality of their core. Such a thermal treatment at moderate temperature should be beneficial to nanodevices involving surface reaction, e.g. gas sensors.

  2. Shear induced simultaneous consolidation and alignment of silicon nanowires into ingots using equal channel angular extrusion (ECAE)

    NASA Astrophysics Data System (ADS)

    Vasiraju, Venkata; Brockway, Lance; Balachandran, Shreyas; Srinivasa, Arun; Vaddiraju, Sreeram

    2015-01-01

    Shear induced simultaneous consolidation and assembly of nanowires accomplished using equal channel angular extrusion (ECAE) is studied and reported. The intent is to use processing of large quantities of nanowires directly in their original solid state to not only consolidate them, but also to align them, without destroying or altering their morphologies in the process. The results indicate that ECAE is useful to consolidate nanowire powders into mechanically robust pellets at room temperature, without the need for any elevated temperature processing. The preliminary results also indicate that in certain regions of the consolidated nanowire pellets, alignment of the nanowires is also possible. The interlocking of the rough surfaces of the silicon nanowires during ECAE is believed to be responsible for the mechanical robustness of the nanowire pellets. It is believed that such simultaneous consolidation and alignment of nanowires allows for using the anisotropic properties of nanowires in energy conversion device fabrication.

  3. Low-Temperature Preparation of Ag-Doped ZnO Nanowire Arrays, DFT Study, and Application to Light-Emitting Diode.

    PubMed

    Pauporté, Thierry; Lupan, Oleg; Zhang, Jie; Tugsuz, Tugba; Ciofini, Ilaria; Labat, Frédéric; Viana, Bruno

    2015-06-10

    Doping ZnO nanowires (NWs) by group IB elements is an important challenge for integrating nanostructures into functional devices with better and tuned performances. The growth of Ag-doped ZnO NWs by electrodeposition at 90 °C using a chloride bath and molecular oxygen precursor is reported. Ag acts as an electrocatalyst for the deposition and influences the nucleation and growth of the structures. The silver atomic concentration in the wires is controlled by the additive concentration in the deposition bath and a content up to 3.7 atomic % is reported. XRD analysis shows that the integration of silver enlarges the lattice parameters of ZnO. The optical measurements also show that the direct optical bandgap of ZnO is reduced by silver doping. The bandgap shift and lattice expansion are explained by first principle calculations using the density functional theory (DFT) on the silver impurity integration as an interstitial (Ag(i)) and as a substitute of zinc atom (Ag(Zn)) in the crystal lattice. They notably indicate that Ag(Zn) doping forms an impurity band because of Ag 4d and O 2p orbital interactions, shifting the Fermi level toward the valence band. At least, Ag-doped ZnO vertically aligned nanowire arrays have been epitaxially grown on GaN(001) substrate. The heterostructure has been inserted in a light emitting device. UV-blue light emission has been achieved with a low emission threshold of 5 V and a tunable red-shifted emission spectrum related to the bandgap reduction induced by silver doping of the ZnO emitter material.

  4. In-situ optical transmission electron microscope study of exciton phonon replicas in ZnO nanowires by cathodoluminescence

    SciTech Connect

    Yang, Shize; Tian, Xuezeng; Wang, Lifen; Wei, Jiake; Qi, Kuo; Li, Xiaomin; Xu, Zhi E-mail: xdbai@iphy.ac.cn Wang, Wenlong; Zhao, Jimin; Bai, Xuedong E-mail: xdbai@iphy.ac.cn; Wang, Enge E-mail: xdbai@iphy.ac.cn

    2014-08-18

    The cathodoluminescence spectrum of single zinc oxide (ZnO) nanowires is measured by in-situ optical Transmission Electron Microscope. The coupling between exciton and longitudinal optical phonon is studied. The band edge emission varies for different excitation spots. This effect is attributed to the exciton propagation along the c axis of the nanowire. Contrary to free exciton emission, the phonon replicas are well confined in ZnO nanowire. They travel along the c axis and emit at the end surface. Bending strain increases the relative intensity of second order phonon replicas when excitons travel along the c-axis.

  5. Aligned carbon nanotube/zinc oxide nanowire hybrids as high performance electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Al-Asadi, Ahmed S.; Henley, Luke Alexander; Wasala, Milinda; Muchharla, Baleeswaraiah; Perea-Lopez, Nestor; Carozo, Victor; Lin, Zhong; Terrones, Mauricio; Mondal, Kanchan; Kordas, Krisztian; Talapatra, Saikat

    2017-03-01

    Carbon nanotube/metal oxide based hybrids are envisioned as high performance electrochemical energy storage electrodes since these systems can provide improved performances utilizing an electric double layer coupled with fast faradaic pseudocapacitive charge storage mechanisms. In this work, we show that high performance supercapacitor electrodes with a specific capacitance of ˜192 F/g along with a maximum energy density of ˜3.8 W h/kg and a power density of ˜ 28 kW/kg can be achieved by synthesizing zinc oxide nanowires (ZnO NWs) directly on top of aligned multi-walled carbon nanotubes (MWCNTs). In comparison to pristine MWCNTs, these constitute a 12-fold of increase in specific capacitance as well as corresponding power and energy density values. These electrodes also possess high cycling stability and were able to retain ˜99% of their specific capacitance value over 2000 charging discharging cycles. These findings indicate potential use of a MWCNT/ZnO NW hybrid material for future electrochemical energy storage applications.

  6. Integration of ZnO and CuO nanowires into a thermoelectric module

    PubMed Central

    Dalola, Simone; Faglia, Guido; Comini, Elisabetta; Ferroni, Matteo; Soldano, Caterina; Ferrari, Vittorio; Sberveglieri, Giorgio

    2014-01-01

    Summary Zinc oxide (ZnO, n-type) and copper oxide (CuO, p-type) nanowires have been synthesized and preliminarily investigated as innovative materials for the fabrication of a proof-of-concept thermoelectric device. The Seebeck coefficients, electrical conductivity and thermoelectric power factors (TPF) of both semiconductor materials have been determined independently using a custom experimental set-up, leading to results in agreement with available literature with potential improvement. Combining bundles of ZnO and CuO nanowires in a series of five thermocouples on alumina leads to a macroscopic prototype of a planar thermoelectric generator (TEG) unit. This demonstrates the possibility of further integration of metal oxide nanostructures into efficient thermoelectric devices. PMID:24991531

  7. Depletion-mode ZnO nanowire field-effect transistor

    SciTech Connect

    Heo, Y.W.; Tien, L.C.; Kwon, Y.; Norton, D.P.; Pearton, S.J.; Kang, B.S.; Ren, F.

    2004-09-20

    Single ZnO nanowire metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated using nanowires grown by site selective molecular-beam epitaxy. When measured in the dark at 25 deg. C, he depletion-mode transistors exhibit good saturation behavior, a threshold voltage of {approx}-3 V, and a maximum transconductance of order 0.3 mS/mm. Under ultraviolet (366 nm) illumination, the drain-source current increase by approximately a factor of 5 and the maximum transconductance is {approx}5 mS/mm. The channel mobility is estimated to be {approx}3 cm{sup 2}/V s, which is comparable to that reported for thin film ZnO enhancement mode MOSFETs, and the on/off ratio was {approx}25 in the dark and {approx}125 under UV illumination.

  8. Surface gradient dependence of bandgap energy and dielectric constant of ZnO tapered nanowires

    NASA Astrophysics Data System (ADS)

    Yu, Wangbing; He, Yan; Ouyang, Gang

    2017-09-01

    In order to gain a better understanding of the surface gradient effect on the electronic properties of ZnO tapered nanowires (TNWs), we establish an analytical relationship to elucidate the band offset and dielectric change by considering the joint effect from the nanowire size and surface gradient based on the atomic-bond-relaxation correlation mechanism and the Kramers-Kronig relation. It is found that a pronounced blue shift of the bandgap and dielectric suppression of ZnO TNWs are shown compared to those of NWs with a cylindrical shape. Our results are validated by comparing them with the available evidence, suggesting that the developed method is helpful for shape design on tunable electronic properties of nanostructures.

  9. Hyperbolic and plasmonic properties of silicon/Ag aligned nanowire arrays.

    PubMed

    Prokes, S M; Glembocki, Orest J; Livenere, J E; Tumkur, T U; Kitur, J K; Zhu, G; Wells, B; Podolskiy, V A; Noginov, M A

    2013-06-17

    The hyperbolic and plasmonic properties of silicon nanowire/Ag arrays have been investigated. The aligned nanowire arrays were formed and coated by atomic layer deposition of Ag, which itself is a metamaterial due to its unique mosaic film structure. The theoretical and numerical studies suggest that the fabricated arrays have hyperbolic dispersion in the visible and IR ranges of the spectrum. The theoretical predictions have been indirectly confirmed by polarized reflection spectra, showing reduction of the reflection in p polarization in comparison to that in s polarization. Studies of dye emission on top of Si/Ag nanowire arrays show strong emission quenching and shortening of dye emission kinetics. This behavior is also consistent with the predictions for hyperbolic media. The measured SERS signals were enhanced by almost an order of magnitude for closely packed and aligned nanowires, compared to random nanowire composites. These results agree with electric field simulations of these array structures.

  10. Enhanced output voltage generation via ZnO nanowires (50 nm): Effect of diameter thinning on voltage enhancement

    NASA Astrophysics Data System (ADS)

    Ahmad, Mansoor; Iqbal, Muhammad Azhar; Kiely, Janice; Luxton, Richard; Jabeen, Musarrat

    2017-05-01

    50 nm ZnO nanowires were grown on indium tin oxide (ITO) coated poly ethylene terephthalate (PET) substrates by adapting facile aqueous growth technique using low temperature and vacuum conditions. Prior to growth of ZnO nanowires, pure hexagonal wurtzite structured seed layer was grown on flexible substrates. Surface morphology of nanostructure has been examined by scanning electron microscopy (SEM). Vertical growth orientation has been evidenced in XRD patterns. Minute external mechanical force ( 50 nN) has produced periodic voltage peaks. 2.5 nm and 7.5 nm thick sputtered Pt electrode have been tested to obtain output voltages. 50 nm ZnO nanowires has produced a maximum output voltage of 2.717 volts having an output power density of 397.1 mW/cm2. By squeezing the diameter, we have reduced reverse leakage current through nanowires and enhanced output voltage.

  11. Solution-process coating of vertical ZnO nanowires with ferroelectrics.

    PubMed

    Kawasaki, Susumu; Fan, Hong Jin; Catalan, Gustau; Morrison, Finlay D; Tatsuta, Toshiaki; Tsuji, Osamu; Scott, James F

    2008-09-17

    We have developed a modified misted deposition process by combining substrate and mist heating for the deposition of ferroelectrics on 3D nanostructures. Arrays of vertical ZnO nanowires, sputter coated with Pd bottom electrodes, are used as the substrate. Scanning electron microscopy investigations show that conformal coating of ferroelectric Pb(Zr,Ti)O(3) (PZT) with good step coverage is obtained at deposition temperatures above 140 °C. The substrate heating also eliminates the common 'bundling' problem of the nanowire arrays. On the basis of data on x-ray diffraction, energy dispersive x-ray spectroscopy, and P-E hysteresis of PZT films on flat substrates, we obtain the optimum substrate temperature window to be 180-220 °C, in terms of best step coverage and an evident ferroelectricity. This is a significant step towards the end-goal of fully integrated ZnO nanowires with ferroelectric capacitors, which may be useful for the light-emitting applications of ZnO.

  12. Hierarchically structured nanowires on and nanosticks in ZnO microtubes

    PubMed Central

    Rivaldo-Gómez, C. M.; Cabrera-Pasca, G. A.; Zúñiga, A.; Carbonari, A. W.; Souza, J. A.

    2015-01-01

    We report both coaxial core-shell structured microwires and ZnO microtubes with growth of nanosticks in the inner and nanowires on the outer surface as a novel hierarchical micro/nanoarchitecture. First, a core-shell structure is obtained—the core is formed by metallic Zn and the semiconducting shell is comprised by a thin oxide layer covered with a high density of nanowires. Such Zn/ZnO core-shell array showed magnetoresistance effect. It is suggested that magnetic moments in the nanostructured shell superimposes to the external magnetic field enhancing the MR effect. Second, microtubes decorated with nanowires on the external surface are obtained. In an intermediate stage, a hierarchical morphology comprised of discrete nanosticks in the inner surface of the microtube has been found. Hyperfine interaction measurements disclosed the presence of confined metallic Zn regions at the interface between linked ZnO grains forming a chain and a ZnO thicker layer. Surprisingly, the metallic clusters form highly textured thin flat regions oriented parallel to the surface of the microtube as revealed by the electrical field gradient direction. The driving force to grow the internal nanosticks has been ascribed to stress-induced migration of Zn ions due to compressive stress caused by the presence of these confined regions. PMID:26456527

  13. Gallium ion implantation greatly reduces thermal conductivity and enhances electronic one of ZnO nanowires

    SciTech Connect

    Xia, Minggang; Cheng, Zhaofang; Han, Jinyun; Zhang, Shengli; Zheng, Minrui; Sow, Chorng-Haur; Thong, John T. L.; Li, Baowen

    2014-05-15

    The electrical and thermal conductivities are measured for individual zinc oxide (ZnO) nanowires with and without gallium ion (Ga{sup +}) implantation at room temperature. Our results show that Ga{sup +} implantation enhances electrical conductivity by one order of magnitude from 1.01 × 10{sup 3} Ω{sup −1}m{sup −1} to 1.46 × 10{sup 4} Ω{sup −1}m{sup −1} and reduces its thermal conductivity by one order of magnitude from 12.7 Wm{sup −1}K{sup −1} to 1.22 Wm{sup −1}K{sup −1} for ZnO nanowires of 100 nm in diameter. The measured thermal conductivities are in good agreement with those in theoretical simulation. The increase of electrical conductivity origins in electron donor doping by Ga{sup +} implantation and the decrease of thermal conductivity is due to the longitudinal and transverse acoustic phonons scattering by Ga{sup +} point scattering. For pristine ZnO nanowires, the thermal conductivity decreases only two times when its diameter reduces from 100 nm to 46 nm. Therefore, Ga{sup +}-implantation may be a more effective method than diameter reduction in improving thermoelectric performance.

  14. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    SciTech Connect

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng; Chen, Jun; Li, Ziping; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-12-14

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at a range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.

  15. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.

    PubMed

    Barako, Michael T; Roy-Panzer, Shilpi; English, Timothy S; Kodama, Takashi; Asheghi, Mehdi; Kenny, Thomas W; Goodson, Kenneth E

    2015-09-02

    The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries.

  16. MOCVD growth of vertically aligned InGaN nanowires

    NASA Astrophysics Data System (ADS)

    Kuo, H. C.; Su Oh, Tae; Ku, P.-C.

    2013-05-01

    In this work, we report the growth of vertically aligned bulk InGaN nanowires (NWs) on r-plane sapphire substrate by metal organic chemical vapor deposition (MOCVD). Through the optimization process of growth conditions, such as growth temperature and pressure, we obtained high density InGaN NWs consisting of one (0001) polar- and two equivalent {1101} semi-polar planes. We have shown the highest InGaN NWs wire density of 8×108 cm-2,with an average diameter of 300 nm and a length of 2 μm. From results of photoluminescence (PL) at 30 K and 300 K, we observed the intense and broad emission peak from InGaN NWs at around 595 nm, and confirmed that the luminescence could be tuned from 580 nm to 660 nm by controlling the indium flow (TMIn) rate. Our results indicate that MOCVD-grown InGaN NWs can be effective absorbers of the blue-green range of solar spectrum and may be one of the good candidates for high efficiency photovoltaic devices targeting at blue-green photons.

  17. Fabrication and optical simulation of vertically aligned silicon nanowires

    NASA Astrophysics Data System (ADS)

    Hossain, M. K.; Salhi, B.; Mukhaimer, A. W.; Al-Sulaiman, F. A.

    2016-10-01

    Silicon nanowires (Si-NWs) have been considered widely as a perfect light absorber with strong evidence of enhanced optical functionalities. Here we report finite-difference time-domain simulations for Si-NWs to elucidate the key factors that determine enhanced light absorption, energy flow behavior, electric field profile, and excitons generation rate distribution. To avoid further complexity, a single Si-NW of cylindrical shape was modeled on c-Si and optimized to elucidate the aforementioned characteristics. Light absorption and energy flow distribution confirmed that Si-NW facilitates to confine photon absorption of several orders of enhancement whereas the energy flow is also distributed along the wire itself. With reference to electric field and excitons generation distribution it was revealed that Si-NW possesses the sites of strongest field distributions compared to those of flat silicon wafer. To realize the potential of Si-NWs-based thin film solar cell, a simple process was adopted to acquire vertically aligned Si-NWs grown on c-Si wafer. Further topographic characterizations were conducted through scanning electron microscope and tunneling electron microscope-coupled energy-dispersive spectroscopy.

  18. Role of ZnO thin film in the vertically aligned growth of ZnO nanorods by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Son, Nguyen Thanh; Noh, Jin-Seo; Park, Sungho

    2016-08-01

    The effect of ZnO thin film on the growth of ZnO nanorods was investigated. ZnO thin films were sputter-deposited on Si substrate with varying the thickness. ZnO nanorods were grown on the thin film using a chemical bath deposition (CBD) method at 90 °C. The ZnO thin films showed granular structure and vertical roughness on the surface, which facilitated the vertical growth of ZnO nanorods. The average grain size and the surface roughness of ZnO film increased with an increase in film thickness, and this led to the increase in both the average diameter and the average length of vertically grown ZnO nanorods. In particular, it was found that the average diameter of ZnO nanorods was very close to the average grain size of ZnO thin film, confirming the role of ZnO film as a seed layer for the vertical growth of ZnO nanorods. The CBD growth on ZnO seed layers may provide a facile route to engineering vertically aligned ZnO nanorod arrays.

  19. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    PubMed

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-03-24

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  20. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    PubMed Central

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  1. Pressure-Induced Structural Transformations of ZnO Nanowires Probed by X-ray Diffraction

    SciTech Connect

    Dong, Zhaohui; Zhuravlev, Kirill K.; Morin, Stephen A.; Li, Linsen; Jin, Song; Song, Yang

    2016-01-11

    ZnO nanowires were investigated at high pressures of up to 27 GPa in situ in a diamond anvil cell using synchrotron X-ray diffraction. Upon compression, a wurtzite-to-rocksalt phase transformation was observed, but both the onset and the completion pressures of this transformation were enhanced compared with all previously studied morphologies of ZnO, including nanocrystals and their bulk counterparts. Upon decompression, the rocksalt phase was found to sustain at near ambient pressure and could be recovered in a significant amount. Moreover, the pressure-volume equations of state for both the wurtzite and the rocksalt phases indicate that their bulk moduli are significantly higher than those of bulk ZnO and nanocrystals. The SEM images of the ZnO nanowires both before and after the compression suggest the pressure-induced morphology modifications, corroborating the understanding of other structure and property evolutions with pressure. Finally, possible pressure-induced phase transition mechanisms were explored by examining the cell parameters and the internal structural parameter with pressures.

  2. Growth of ZnO nanowires on polypropylene membrane surface-Characterization and reactivity

    NASA Astrophysics Data System (ADS)

    Bojarska, Marta; Nowak, Bartosz; Skowroński, Jarosław; Piątkiewicz, Wojciech; Gradoń, Leon

    2017-01-01

    Need for a new membrane is clearly visible in recent studies, mostly due to the fouling phenomenon. Authors, focused on problem of biofouling caused by microorganisms that are present in water environment. An attempt to form a new membrane with zinc oxide (ZnO) nanowires was made; where plasma treatment was used as a first step of modification followed by chemical bath deposition. Such membrane will exhibit additional reactive properties. ZnO, because of its antibacterial and photocatalytic properties, is more and more often used in commercial applications. The authors used SEM imaging, measurement of the contact angle, XRD and the FT-IR analysis for membrane characterization. Amount of ZnO deposited on membrane surface was also investigated by dithizone method. Photocatalytic properties of such membranes were examined through methylene blue and humic acid degradation in laboratory scale modules with LEDs as either: wide range white or UV light source. Antibacterial and antifouling properties of polypropylene membranes modified with ZnO nanowires were examined through a series of tests involving microorganisms: model gram-positive and -negative bacteria. The obtained results showed that it is possible to modify the membrane surface in such a way, that additional reactive properties will be given. Thus, not only did the membrane become a physical barrier, but also turned out to be a reactive one.

  3. Improving Morphological Quality and Uniformity of Hydrothermally Grown ZnO Nanowires by Surface Activation of Catalyst Layer

    NASA Astrophysics Data System (ADS)

    Murillo, Gonzalo; Lozano, Helena; Cases-Utrera, Joana; Lee, Minbaek; Esteve, Jaume

    2017-01-01

    This paper presents a study about the dependence of the hydrothermal growth of ZnO nanowires (NWs) with the passivation level of the active surface of the Au catalyst layer. The hydrothermal method has many potential applications because of its low processing temperature, feasibility, and low cost. However, when a gold thin film is utilized as the seed material, the grown NWs often lack morphological homogeneity; their distribution is not uniform and the reproducibility of the growth is low. We hypothesize that the state or condition of the active surface of the Au catalyst layer has a critical effect on the uniformity of the NWs. Inspired by traditional electrochemistry experiments, in which Au electrodes are typically activated before the measurements, we demonstrate that such activation is a simple way to effectively assist and enhance NW growth. In addition, several cleaning processes are examined to find one that yields NWs with optimal quality, density, and vertical alignment. We find cyclic voltammetry measurements to be a reliable indicator of the seed-layer quality for subsequent NW growth. Therefore, we propose the use of this technique as a standard procedure prior to the hydrothermal synthesis of ZnO NWs to control the growth reproducibility and to allow high-yield wafer-level processing.

  4. Improving Morphological Quality and Uniformity of Hydrothermally Grown ZnO Nanowires by Surface Activation of Catalyst Layer.

    PubMed

    Murillo, Gonzalo; Lozano, Helena; Cases-Utrera, Joana; Lee, Minbaek; Esteve, Jaume

    2017-12-01

    This paper presents a study about the dependence of the hydrothermal growth of ZnO nanowires (NWs) with the passivation level of the active surface of the Au catalyst layer. The hydrothermal method has many potential applications because of its low processing temperature, feasibility, and low cost. However, when a gold thin film is utilized as the seed material, the grown NWs often lack morphological homogeneity; their distribution is not uniform and the reproducibility of the growth is low. We hypothesize that the state or condition of the active surface of the Au catalyst layer has a critical effect on the uniformity of the NWs. Inspired by traditional electrochemistry experiments, in which Au electrodes are typically activated before the measurements, we demonstrate that such activation is a simple way to effectively assist and enhance NW growth. In addition, several cleaning processes are examined to find one that yields NWs with optimal quality, density, and vertical alignment. We find cyclic voltammetry measurements to be a reliable indicator of the seed-layer quality for subsequent NW growth. Therefore, we propose the use of this technique as a standard procedure prior to the hydrothermal synthesis of ZnO NWs to control the growth reproducibility and to allow high-yield wafer-level processing.

  5. Direct alignment and patterning of silver nanowires by electrohydrodynamic jet printing.

    PubMed

    Lee, Hyungdong; Seong, Baekhoon; Kim, Jihoon; Jang, Yonghee; Byun, Doyoung

    2014-10-15

    Highly aligned and patterned silver nanowires (Ag NWs) are investigated by using electrohydrodynamic (EHD) jet printing. Interaction between the flow field and the electric field as well as the mechanical stretching of the fiber jet can successfully align the Ag NWs inside the jet fiber. This technique can be applied in fabricating 1D nanostructures-based printed micro/nanoscale devices.

  6. Strong Enhancement of Near-Band-Edge Photoluminescence of ZnO Nanowires Decorated with Sputtered Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Purahmad, Mohsen; Stroscio, Michael A.; Dutta, Mitra

    2013-12-01

    The effect of the Ar plasma during metal deposition on the photoluminescence (PL) of metal-coated ZnO nanowires (NWs) has been investigated. Strong enhancement of near-band-edge emission (NBE) is observed for ZnO NWs coated with Al and Ni nanoparticles (NPs) by radiofrequency magnetron sputtering, while the samples coated with NPs by e-beam evaporation show quenching of the PL intensity. A model is proposed that satisfies the observed experimental results and assigns the strong enhancement of the NBE PL of ZnO NWs to excitons bound to structural defects in the surface layer of the ZnO NWs.

  7. ZnO nanowire and mesowire for logic inverter fabrication

    NASA Astrophysics Data System (ADS)

    Lee, Young Tack; Im, Seongil; Ha, Ryong; Choi, Heon-Jin

    2010-09-01

    We report on a ZnO-based logic inverter utilizing two field effect transistors (FETs), whose respective channel has different wire-diameters under a top-gate dielectric of poly-4-vinylphenol. One FET with nanowire (160 nm) channel displayed an abrupt drain current (ID) increase and fast ID saturation near its positive threshold voltage (Vth) while the other FET with mesowire (770 nm) showed a thin-film transistor-like behavior and a negative Vth. When the nanowire and mesowire FETs were, respectively, used as a driver and a load, our inverter demonstrated an excellent voltage gain as high as 25 under a supply voltage of 20 V.

  8. Developing Seedless Growth of ZnO Micro/Nanowire Arrays towards ZnO/FeS2/CuI P-I-N Photodiode Application

    PubMed Central

    Yang, Zhi; Wang, Minqiang; Shukla, Sudhanshu; Zhu, Yue; Deng, Jianping; Ge, Hu; Wang, Xingzhi; Xiong, Qihua

    2015-01-01

    A seedless hydrothermal method is developed to grow high density and vertically aligned ZnO micro/nanowire arrays with low defect density on metal films under the saturated nutrition solution. In particular, the mechanism of seedless method is discussed here. A buffer layer can be confirmed by transmission electron microscopy (TEM), which may release the elastic strain between ZnO and substrate to achieve this highly mismatched heteroepitaxial structures. Based on ZnO micro/nanowire arrays with excellent wettability surface, we prepared ZnO-FeS2-CuI p-i-n photodiode by all-solution processed method with the high rectifying ratio of 197 at ±1 V. Under AM 1.5 condition, the Jsc of 0.5 mA/cm2, on-off current ratio of 371 and fast photoresponse at zero bias voltage were obtained. This good performance comes from excellent collection ability of photogenerated electrons and holes due to the increased depletion layer width for p-i-n structure. Finally, the high responsivity around 900 nm shows the potential as near infrared photodetectors applications. PMID:26077658

  9. Developing Seedless Growth of ZnO Micro/Nanowire Arrays towards ZnO/FeS2/CuI P-I-N Photodiode Application

    NASA Astrophysics Data System (ADS)

    Yang, Zhi; Wang, Minqiang; Shukla, Sudhanshu; Zhu, Yue; Deng, Jianping; Ge, Hu; Wang, Xingzhi; Xiong, Qihua

    2015-06-01

    A seedless hydrothermal method is developed to grow high density and vertically aligned ZnO micro/nanowire arrays with low defect density on metal films under the saturated nutrition solution. In particular, the mechanism of seedless method is discussed here. A buffer layer can be confirmed by transmission electron microscopy (TEM), which may release the elastic strain between ZnO and substrate to achieve this highly mismatched heteroepitaxial structures. Based on ZnO micro/nanowire arrays with excellent wettability surface, we prepared ZnO-FeS2-CuI p-i-n photodiode by all-solution processed method with the high rectifying ratio of 197 at ±1 V. Under AM 1.5 condition, the Jsc of 0.5 mA/cm2, on-off current ratio of 371 and fast photoresponse at zero bias voltage were obtained. This good performance comes from excellent collection ability of photogenerated electrons and holes due to the increased depletion layer width for p-i-n structure. Finally, the high responsivity around 900 nm shows the potential as near infrared photodetectors applications.

  10. Electrospun ZnO nanowire plantations in the electron transport layer for high-efficiency inverted organic solar cells.

    PubMed

    Elumalai, Naveen Kumar; Jin, Tan Mein; Chellappan, Vijila; Jose, Rajan; Palaniswamy, Suresh Kumar; Jayaraman, Sundaramurthy; Raut, Hemant Kumar; Ramakrishna, Seeram

    2013-10-09

    Inverted bulk heterojunction organic solar cells having device structure ITO/ZnO/poly(3-hexylthiophene) (P3HT):[6,6]-phenyl C61 butyric acid methyl ester (PCBM) /MoO3/Ag were fabricated with high photoelectric conversion efficiency and stability. Three types of devices were developed with varying electron transporting layer (ETL) ZnO architecture. The ETL in the first type was a sol-gel-derived particulate film of ZnO, which in the second and third type contained additional ZnO nanowires of varying concentrations. The length of the ZnO nanowires, which were developed by the electrospinning technique, extended up to the bulk of the photoactive layer in the device. The devices those employed a higher loading of ZnO nanowires showed 20% higher photoelectric conversion efficiency (PCE), which mainly resulted from an enhancement in its fill factor (FF). Charge transport characteristic of the device were studied by transient photovoltage decay and charge extraction by linearly increasing voltage techniques. Results show that higher PCE and FF in the devices employed ZnO nanowire plantations resulted from improved charge collection efficiency and reduced recombination rate.

  11. Electro-physical characterization of individual and arrays of ZnO nanowires

    SciTech Connect

    Mallampati, Bhargav; Singh, Abhay; Philipose, U.; Shik, Alex; Ruda, Harry E.

    2015-07-21

    Capacitance measurements were made on an array of parallel ZnO nanowires embedded in a polymer matrix and provided with two electrodes perpendicular to the nanowires. The capacitance monotonically increased, and saturated at large negative (depleting) and large positive (accumulating) voltages. A qualitative explanation for this behavior is presented, taking into account specific features of quasi-one-dimensional screening. The increasing or decreasing character of the capacitance-voltage characteristics were determined by the conductivity type of the nanowires, which in our case was n-type. A dispersion of the experimental capacitance was observed over the entire frequency range of 1 kHz to 5 MHz. This phenomenon is explained by the slow discharge of the nanowires through the thin dielectric layer that separates them from the top electrode. Separate measurements on individual identical nanowires in a field effect transistor configuration yielded an electron concentration and mobility of approximately 10{sup 17 }cm{sup −3} and 150 cm{sup 2}/Vs, respectively, at room temperature.

  12. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates

    PubMed Central

    2010-01-01

    Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO) substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20–80 nm in diameter, up to 6 μm in length, density <40 nm apart) at substrate temperatures down to 300°C. Electron microscopy and other characterization techniques show nanowires with distinct morphologies when grown under different conditions. The effect of reaction parameters including reaction time, temperature, and carrier gas flow rate on the size, morphology, crystalline structure, and density of ZnO nanowires has been investigated. The nanowires grown by this method have a diameter, length, and density appropriate for use in fabricating hybrid polymer/metal oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells. PMID:20676196

  13. Electro-physical characterization of individual and arrays of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Mallampati, Bhargav; Singh, Abhay; Shik, Alex; Ruda, Harry E.; Philipose, U.

    2015-07-01

    Capacitance measurements were made on an array of parallel ZnO nanowires embedded in a polymer matrix and provided with two electrodes perpendicular to the nanowires. The capacitance monotonically increased, and saturated at large negative (depleting) and large positive (accumulating) voltages. A qualitative explanation for this behavior is presented, taking into account specific features of quasi-one-dimensional screening. The increasing or decreasing character of the capacitance-voltage characteristics were determined by the conductivity type of the nanowires, which in our case was n-type. A dispersion of the experimental capacitance was observed over the entire frequency range of 1 kHz to 5 MHz. This phenomenon is explained by the slow discharge of the nanowires through the thin dielectric layer that separates them from the top electrode. Separate measurements on individual identical nanowires in a field effect transistor configuration yielded an electron concentration and mobility of approximately 1017 cm-3 and 150 cm2/Vs, respectively, at room temperature.

  14. Improving nanowire sensing capability by electrical field alignment of surface probing molecules.

    PubMed

    Chu, Chia-Jung; Yeh, Chia-Sen; Liao, Chun-Kai; Tsai, Li-Chu; Huang, Chun-Ming; Lin, Hung-Yi; Shyue, Jing-Jong; Chen, Yit-Tsong; Chen, Chii-Dong

    2013-06-12

    We argue that the structure ordering of self-assembled probing molecular monolayers is essential for the reliability and sensitivity of nanowire-based field-effect sensors because it can promote the efficiency for molecular interactions as well as strengthen the molecular dipole field experienced by the nanowires. In the case of monolayers, we showed that structure ordering could be improved by means of electrical field alignment. This technique was then employed to align multilayer complexes for nanowire sensing applications. The sensitivity we achieved for detection of hybridization between 15-base single-strand DNA molecules is 0.1 fM and for alcohol sensors is 0.5 ppm. The reliability was confirmed by repeated tests on chips that contain multiple nanowire sensors.

  15. A fast and effective approach for reversible wetting-dewetting transitions on ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Yadav, Kavita; Mehta, B. R.; Bhattacharya, Saswata; Singh, J. P.

    2016-10-01

    Here, we demonstrate a facile approach for the preparation of ZnO nanowires (NWs) with tunable surface wettability that can be manipulated reversibly in a controlled manner from a superhydrophilic state to a superhydrophobic state. The as-synthesized ZnO NWs obtained by a chemical vapor deposition method are superhydrophilic with a contact angle (CA) value of ~0°. After H2 gas annealing at 300 °C for 90 minutes, ZnO NWs display superhydrophobic behavior with a roll-off angle less than 5°. However, O2 gas annealing converts these superhydrophobic ZnO NWs into a superhydrophilic state. For switching from superhydrophobic to superhydrophilic state and vice versa in cyclic manner, H2 and O2 gas annealing treatment was used, respectively. A model based on density functional theory indicates that the oxygen-related defects are responsible for CA switching. The water resistant properties of the ZnO NWs coating is found to be durable and can be applied to a variety of substrates including glass, metals, semiconductors, paper and even flexible polymers.

  16. A fast and effective approach for reversible wetting-dewetting transitions on ZnO nanowires

    PubMed Central

    Yadav, Kavita; Mehta, B. R.; Bhattacharya, Saswata; Singh, J. P.

    2016-01-01

    Here, we demonstrate a facile approach for the preparation of ZnO nanowires (NWs) with tunable surface wettability that can be manipulated reversibly in a controlled manner from a superhydrophilic state to a superhydrophobic state. The as-synthesized ZnO NWs obtained by a chemical vapor deposition method are superhydrophilic with a contact angle (CA) value of ~0°. After H2 gas annealing at 300 °C for 90 minutes, ZnO NWs display superhydrophobic behavior with a roll-off angle less than 5°. However, O2 gas annealing converts these superhydrophobic ZnO NWs into a superhydrophilic state. For switching from superhydrophobic to superhydrophilic state and vice versa in cyclic manner, H2 and O2 gas annealing treatment was used, respectively. A model based on density functional theory indicates that the oxygen-related defects are responsible for CA switching. The water resistant properties of the ZnO NWs coating is found to be durable and can be applied to a variety of substrates including glass, metals, semiconductors, paper and even flexible polymers. PMID:27713536

  17. Fast and enhanced broadband photoresponse of a ZnO nanowire array/reduced graphene oxide film hybrid photodetector from the visible to the near-infrared range.

    PubMed

    Liu, Hao; Sun, Qi; Xing, Jie; Zheng, Zhiyuan; Zhang, Zhili; Lü, Zhiqing; Zhao, Kun

    2015-04-01

    In the present work, a ZnO nanowire array/reduced graphene oxide film hybrid nanostructure was realized, and the photovoltaic responses from the visible to the near-infrared range were investigated. Compared with the pure ZnO nanowire array and rGO thin film, the hybrid composite exhibited a fast and greatly enhanced broadband photovoltaic response that resulted from the formation of interfacial Schottky junctions between ZnO and rGO.

  18. Controlled growth of well-aligned ZnO nanorod arrays by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Mihailova, I.; Gerbreders, V.; Bulanovs, A.; Tamanis, E.; Sledevskis, E.; Ogurcovs, A.; Sarajevs, P.

    2014-10-01

    The application prospect of zinc oxide (ZnO) nanostructures largely relies on the ability to grow nanoobjects with necessary geometry. In this study well-aligned ZnO nanorod arrays with a high density and uniformity were successfully synthesized on the glass substrates by a hydrothermal method at low-temperature. The aqueous solutions of zinc nitrate hexahydrate and hexamethylenetetramine was used. The effect of seed layer (obtained by electrochemical method and by vacuum deposition method) on the alignment of ZnO nanorods has been investigated. The morphological properties of the ZnO nanorods were also examined in accordance with varying the magnetron sputtering angle for ZnO seeds deposition. It is also shown that the electric field can control the direction of the growth of ZnO nanorods. Morphological, structural and compositional characterizations of obtained films were carried out by scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction analysis methods.

  19. Bulk ZnO nanorod assemblies fabricated by spin coating of organo-precursor gels on CuO nanowires

    NASA Astrophysics Data System (ADS)

    Uma, Kasimayan; Anathakumar, Soliappan; Viswanath Mangalaraja, R.; Soga, Tetsuo; Jimbo, Takashi

    2013-08-01

    Bulk ZnO nanorod assemblies have been successfully fabricated on CuO nanowires through spin coating of organoprecursor gels. A thin film of CuO nanowires was first generated by direct heating of a metallic Cu-foil at 500 °C in an air atmosphere. A stable colloidal organo-precursor sol synthesized by dissolving equimolar zinc acetate dihydrate and monoethanolamine in 2-methoxyethanol was subsequently repeatedly deposited onto the CuO nanowires by spin coating. The formation of ZnO nanorod assemblies was controlled by varying the number of coatings. The average diameter of the ZnO rods was determined to be ˜600 nm.

  20. Optoelectronic Properties of Solution Grown ZnO n-p or p-n Core-Shell Nanowire Arrays.

    PubMed

    Pradel, Ken C; Ding, Yong; Wu, Wenzhuo; Bando, Yoshio; Fukata, Naoki; Wang, Zhong Lin

    2016-02-01

    Sb doped ZnO nanowires grown using the low-temperature hydrothermal method have the longest reported p-type stability of over 18 months. Using this growth system, bulk homojunction films of core-shell ZnO nanowires were synthesized with either n or p-type cores and the oppositely doped shell. Extensive transmission electron microscopy (TEM) characterization showed that the nanowires remain single crystalline, and the previously reported signs of doping remain intact. The electronic properties of these films were measured, and ultraviolet photodetection was observed. This growth technique could serve as the basis for other optoelectronic devices based on ZnO such as light emitting diodes and photovoltaics.

  1. Veritable electronic characteristics in ZnO nanowire circuits uncovered by the four-terminal method at a low temperature

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhang, Qi

    2017-04-01

    Understanding the natural electrical properties in semiconductor channels and the carrier transport across the metal-semiconductor contact is essential to improve the performance of nanowire devices. This work presents the true electronic characteristics of ZnO nanowire devices measured by a four-electrode method at a low-temperature environment. The temperature rise leads to the decrease in near-band-gap emission, which is attributed to two non-radiative recombination processes. For ZnO circuits, thermionic emission carrier transport mechanism plays a dominant role at Ti-Au/ZnO interface and the transport mechanism in ZnO nanowires is governed by two competitive thermal activation conduction processes: optical or acoustic phonons assisting hopping.

  2. Low-Frequency Self-Powered Footstep Sensor Based on ZnO Nanowires on Paper Substrate

    NASA Astrophysics Data System (ADS)

    Nour, E. S.; Bondarevs, A.; Huss, P.; Sandberg, M.; Gong, S.; Willander, M.; Nur, O.

    2016-03-01

    In this work, we design and fabricate a wireless system with the main operating device based on zinc oxide (ZnO) nanowires. The main operating device is based on piezoelectric nanogenerator (NG) achieved using ZnO nanowires grown hydrothermally on paper substrate. The fabricated NG is capable of harvesting ambient mechanical energy from various kinds of human motion, e.g., footsteps. The harvested electric output has been used to serve as a self-powered pressure sensor. Without any storage device, the signal from a single footstep has successfully triggered a wireless sensor node circuit. This study demonstrates the feasibility of using ZnO nanowire piezoelectric NG as a low-frequency self-powered sensor, with potential applications in wireless sensor networks.

  3. Shadow mask assisted direct growth of ZnO nanowires as a sensing medium for surface acoustic wave devices using a thermal evaporation method

    NASA Astrophysics Data System (ADS)

    Achath Mohanan, Ajay; Parthiban, R.; Ramakrishnan, N.

    2016-02-01

    Zinc oxide (ZnO) nanowires were directly synthesized on high temperature stable one-port surface acoustic wave (SAW) resonators made of LiNbO3 substrate and Pt/Ti electrodes using a self-seeding catalyst-free thermal evaporation method. To enhance post-growth device functionality, one half of an SAW resonator was masked along the interdigital transducer aperture length during the nanowire growth process using a stainless steel shadow mask, while the other half was used as the ZnO nanowire growth site. This was achieved by employing a precisely machined stainless steel sleeve to house the chip and mask in the reaction chamber during the nanowire growth process. The ZnO nanowire integrated SAW resonator exhibited ultraviolet radiation sensing abilities which indicated that the ZnO nanowires grown on the SAW device were able to interact with SAW propagation on the substrate even after the device was exposed to extremely harsh conditions during the nanowire growth process. The use of a thermal evaporation method, instead of the conventionally used solution-grown method for direct growth of ZnO nanowires on SAW devices, paves the way for future methods aimed at the fabrication of highly sensitive ZnO nanowire-LiNbO3 based SAW sensors utilizing coupled resonance phenomenon at the nanoscale.

  4. Electrochemical synthesis of vertically aligned zinc nanowires using track-etched polycarbonate membranes as templates.

    PubMed

    Liu, Z; Zein El Abedin, S; Ghazvini, M S; Endres, F

    2013-07-21

    In the present paper, vertically aligned arrays of zinc nanowires were synthesized by electrochemical deposition into ion track-etched polycarbonate membranes in the ionic liquid electrolyte 1-ethyl-3-methylimidazolium trifluoromethylsulfonate ([EMIm]TfO)/Zn(TfO)2. Cyclic voltammetry and chronoamperometry were performed to investigate the electrochemical growth of zinc nanowires inside of the membranes. The transport processes and mechanisms of the nanowire growth in the membranes are also discussed. A supporting zinc or copper layer was deposited on the sputtered side in order to make the back layer thick enough to stabilize the wires. Zinc nanowires with a diameter of 90 nm and a length of up to 18 μm were obtained after removing the template. Furthermore, short nanowires with lengths less than 5 μm and a sandwich-like structure with nanowires in the middle were also synthesized. Vertically aligned zinc nanowire structures on such a substrate might be a potential anode candidate for future generation lithium ion batteries.

  5. Exploring the Potential of Turbulent Flow Control Using Vertically Aligned Nanowire Arrays

    NASA Astrophysics Data System (ADS)

    Bailey, Sean; Calhoun, John; Guskey, Christopher; Seigler, Michael; Koka, Aneesh; Sodano, Henry

    2012-11-01

    We present evidence that turbulent flow can be influenced by oscillating nanowires. A substrate coated with vertically aligned nanowires was installed in the boundary wall of fully-developed turbulent channel flow, and the substrate was excited by a piezoceramic actuator to oscillate the nanowires. Because the nanowires are immersed in the viscous sublayer, it was previously unclear whether the small scale flow oscillations imparted into the bulk flow by the nanowires would influence the turbulent flow or be dissipated by the effects of viscosity. Our experiments demonstrated that the nanowires produced perturbations in the flow and contributed energy throughout the depth of the turbulent layer. A parallel investigation using a dynamically scaled surface of vertically aligned wires in laminar flow found that, even at low Reynolds numbers, significant momentum transport can be produced in the flow by the introduction of a travelling wave motion into the surface. These findings reflect the potential for using oscillating nanowires as a novel method of near-wall turbulent flow control. This work was supported by the Air Force Office of Scientific Research under FA9550-11-1-0140.

  6. A metal-semiconductor-metal detector based on ZnO nanowires grown on a graphene layer

    NASA Astrophysics Data System (ADS)

    Xu, Qiang; Cheng, Qijin; Zhong, Jinxiang; Cai, Weiwei; Zhang, Zifeng; Wu, Zhengyun; Zhang, Fengyan

    2014-02-01

    High quality ZnO nanowires (NWs) were grown on a graphene layer by a hydrothermal method. The ZnO NWs revealed higher uniform surface morphology and better structural properties than ZnO NWs grown on SiO2/Si substrate. A low dark current metal-semiconductor-metal photodetector based on ZnO NWs with Au Schottky contact has also been fabricated. The photodetector displays a low dark current of 1.53 nA at 1 V bias and a large UV-to-visible rejection ratio (up to four orders), which are significantly improved compared to conventional ZnO NW photodetectors. The improvement in UV detection performance is attributed to the existence of a surface plasmon at the interface of the ZnO and the graphene.

  7. A metal-semiconductor-metal detector based on ZnO nanowires grown on a graphene layer.

    PubMed

    Xu, Qiang; Cheng, Qijin; Zhong, Jinxiang; Cai, Weiwei; Zhang, Zifeng; Wu, Zhengyun; Zhang, Fengyan

    2014-02-07

    High quality ZnO nanowires (NWs) were grown on a graphene layer by a hydrothermal method. The ZnO NWs revealed higher uniform surface morphology and better structural properties than ZnO NWs grown on SiO2/Si substrate. A low dark current metal-semiconductor-metal photodetector based on ZnO NWs with Au Schottky contact has also been fabricated. The photodetector displays a low dark current of 1.53 nA at 1 V bias and a large UV-to-visible rejection ratio (up to four orders), which are significantly improved compared to conventional ZnO NW photodetectors. The improvement in UV detection performance is attributed to the existence of a surface plasmon at the interface of the ZnO and the graphene.

  8. Growth of well-aligned ZnO nanorods using auge catalyst by vapor phase transportation.

    PubMed

    Ha, S Y; Jung, M N; Park, S H; Ko, H J; Ko, H; Oh, D C; Yao, T; Chang, J H

    2006-11-01

    Well-aligned ZnO nanorods have been achieved using new alloy (AuGe) catalyst. Zn powder was used as a source material and it was transported in a horizontal tube furnace onto an AuGe deposited Si substrates. The structural and optical properties of ZnO nanorods were characterized by scanning electron microscopy, high resolution X-ray diffraction, and photoluminescence. ZnO nanorods grown at 650 degrees C on 53 nm thick AuGe layer show uniform shape with the length of 8 +/- 0.5 microm and the diameter of 150 +/- 5 nm. Also, the tilting angle of ZnO nanorods (+/- 5.5 degrees) is confirmed by HRXRD. High structural quality of the nanorods is conformed by the photoluminescence measurement. All samples show strong UV emission without considerable deep level emission. However, weak deep level emission appears at high (700 degrees C) temperature due to the increase of oxygen desertion.

  9. Photocarrier Transport and Carrier Recombination Efficiency in Vertically Aligned Si Nanowire Arrays Synthesized Via Metal-Assisted Chemical Etching

    NASA Astrophysics Data System (ADS)

    Muldera, Joselito; Cabello, Neil Irvin; Ragasa, Joseph Christopher; Mabilangan, Arvin; Herminia Balgos, Ma.; Jaculbia, Rafael; Somintac, Armando; Estacio, Elmer; Salvador, Arnel

    2013-08-01

    The carrier dynamics and recombination characteristics of vertically aligned silicon nanowires are investigated using terahertz emission and photoluminescence spectroscopy, respectively. It is observed that the presence of pores on the walls in two-step-synthesized silicon nanowires greatly affects the carrier dynamics, compared with nanowires synthesized using a one-step process. These pores become efficient carrier recombination sites wherein carriers are collected upon photoexcitation. Additionally, pores effectively diminish the surface electric field thereby inhibiting the terahertz emission. Finally, nanowire-length-dependent terahertz emission is observed only for the one-step-synthesized nanowires whereas the two-step-synthesized nanowire samples exhibited length dependence of their photoluminescence intensity.

  10. Characterization and modeling of a ZnO nanowire ultraviolet photodetector with graphene transparent contact

    SciTech Connect

    Zhang, H.; Lavenus, P.; Julien, F. H.; Tchernycheva, M.; Babichev, A. V.; Jacopin, G.; Egorov, A. Yu.

    2013-12-21

    We report the demonstration of a ZnO nanowire ultraviolet photodetector with a top transparent electrode made of a few-layered graphene sheet. The nanowires have been synthesized using a low-cost electrodeposition method. The detector is shown to be visible-blind and to present a responsivity larger than 10{sup 4} A/W in the near ultraviolet range thanks to a high photoconductive gain in ZnO nanowires. The device exhibits a peak responsivity at 370 nm wavelength and shows a sub bandgap response down to 415 nm explained by an Urbach tail with a characteristic energy of 83 meV. The temporal response of the detector and the power dependence are discussed. A model of the photoconductive mechanism is proposed showing that the main process responsible for the photoconductive gain is the modulation of the conducting surface due to the variation of the surface depletion layer and not the reduction of recombination efficiency stemming from the electron-hole spatial separation. The gain is predicted to decrease at high incident power due to the flattening of the lateral band bending in agreement with experimental data.

  11. Morphology-controlled ZnO nanowire arrays for tailored hybrid composites with high damping.

    PubMed

    Malakooti, Mohammad H; Hwang, Hyun-Sik; Sodano, Henry A

    2015-01-14

    Hybrid fiber reinforced composites using a nanoscale reinforcement of the interface have not reached their optimal performance in practical applications due to their complex design and the challenging assembly of their multiscale components. One promising approach to the fabrication of hybrid composites is the growth of zinc oxide (ZnO) nanowire arrays on the surface of carbon fibers to provide improved interfacial strength and out of plane reinforcement. However, this approach has been demonstrated mainly on fibers and thus still requires complex processing conditions. Here we demonstrate a simple approach to the fabrication of such composites through the growth of the nanowires on the fabric. The fabricated composites with nanostructured graded interphase not only exhibit remarkable damping enhancement but also stiffness improvement. It is demonstrated that these two extremely important properties of the composite can be controlled by tuning the morphology of the ZnO nanowires at the interface. Higher damping and flexural rigidity of these composites over traditional ones offer practical high-performance composites.

  12. Piezotronic effect in solution-grown p-type ZnO nanowires and films.

    PubMed

    Pradel, Ken C; Wu, Wenzhuo; Zhou, Yusheng; Wen, Xiaonan; Ding, Yong; Wang, Zhong Lin

    2013-06-12

    Investigating the piezotronic effect in p-type piezoelectric semiconductor is critical for developing a complete piezotronic theory and designing/fabricating novel piezotronic applications with more complex functionality. Using a low temperature solution method, we were able to produce ultralong (up to 60 μm in length) Sb doped p-type ZnO nanowires on both rigid and flexible substrates. For the p-type nanowire field effect transistor, the on/off ratio, threshold voltage, mobility, and carrier concentration of 0.2% Sb-doped sample are found to be 10(5), 2.1 V, 0.82 cm(2)·V(-1)·s(-1), and 2.6 × 10(17) cm(-3), respectively, and the corresponding values for 1% Sb doped samples are 10(4), 2.0 V, 1.24 cm(2)·V(-1)·s(-1), and 3.8 × 10(17) cm(-3). We further investigated the universality of piezotronic effect in the as-synthesized Sb-doped p-type ZnO NWs and reported for the first time strain-gated piezotronic transistors as well as piezopotential-driven mechanical energy harvesting based on solution-grown p-type ZnO NWs. The results presented here broaden the scope of piezotronics and extend the framework for its potential applications in electronics, optoelectronics, smart MEMS/NEMS, and human-machine interfacing.

  13. XPS investigation of titanium contact formation to ZnO nanowires.

    PubMed

    Barnett, Chris J; Castaing, Ambroise; Jones, Daniel R; Lewis, Aled R; Jenkins, Lewys J; Cobley, Richard J; Maffeis, Thierry G G

    2017-02-24

    Ti is often used to form an initial Ohmic interface between ZnO and Au due to its low work function, and the TiO2/ZnO heterojunction is also of great importance for many practical applications of nanoparticles. Here, Ti has been controllably deposited onto hydrothermally grown ZnO nanowires and the formation of metal-semiconductor contact has been investigated using x-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and scanning electron microscopy. XPS results showed that that the Ti initially reacts with surface oxygen species to form TiO2, and further deposition results in the formation of oxides with oxidation state numbers lower than four, and eventually metallic Ti on top of the TiO2. The formation of TiC was also observed. XPS showed that the onset of metallic Ti coincided with a Zn 3p core level shift to lower binding energy, indicating upwards band bending and the formation of a rectifying contact. Annealing caused a near-complete conversion of the metallic Ti to TiO2 and caused the Zn 3p to shift back to its original higher binding energy, resulting in downwards band bending and a more Ohmic contact. PL measurements showed that the optical properties of the nanowires are not affected by the contact formation.

  14. Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Bao, Jiming; Shalish, Ilan; Su, Zhihua; Gurwitz, Ron; Capasso, Federico; Wang, Xiaowei; Ren, Zhifeng

    2011-05-01

    Photoconductivity is studied in individual ZnO nanowires. Under ultraviolet (UV) illumination, the induced photocurrents are observed to persist both in air and in vacuum. Their dependence on UV intensity in air is explained by means of photoinduced surface depletion depth decrease caused by oxygen desorption induced by photogenerated holes. The observed photoresponse is much greater in vacuum and proceeds beyond the air photoresponse at a much slower rate of increase. After reaching a maximum, it typically persists indefinitely, as long as good vacuum is maintained. Once vacuum is broken and air is let in, the photocurrent quickly decays down to the typical air-photoresponse values. The extra photoconductivity in vacuum is explained by desorption of adsorbed surface oxygen which is readily pumped out, followed by a further slower desorption of lattice oxygen, resulting in a Zn-rich surface of increased conductivity. The adsorption-desorption balance is fully recovered after the ZnO surface is exposed to air, which suggests that under UV illumination, the ZnO surface is actively "breathing" oxygen, a process that is further enhanced in nanowires by their high surface to volume ratio.

  15. XPS investigation of titanium contact formation to ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Barnett, Chris J.; Castaing, Ambroise; Jones, Daniel R.; Lewis, Aled R.; Jenkins, Lewys J.; Cobley, Richard J.; Maffeis, Thierry G. G.

    2017-02-01

    Ti is often used to form an initial Ohmic interface between ZnO and Au due to its low work function, and the TiO2/ZnO heterojunction is also of great importance for many practical applications of nanoparticles. Here, Ti has been controllably deposited onto hydrothermally grown ZnO nanowires and the formation of metal-semiconductor contact has been investigated using x-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and scanning electron microscopy. XPS results showed that that the Ti initially reacts with surface oxygen species to form TiO2, and further deposition results in the formation of oxides with oxidation state numbers lower than four, and eventually metallic Ti on top of the TiO2. The formation of TiC was also observed. XPS showed that the onset of metallic Ti coincided with a Zn 3p core level shift to lower binding energy, indicating upwards band bending and the formation of a rectifying contact. Annealing caused a near-complete conversion of the metallic Ti to TiO2 and caused the Zn 3p to shift back to its original higher binding energy, resulting in downwards band bending and a more Ohmic contact. PL measurements showed that the optical properties of the nanowires are not affected by the contact formation.

  16. Hybrid ZnO nanowire/a-Si:H thin-film radial junction solar cells using nanoparticle front contacts

    NASA Astrophysics Data System (ADS)

    Pathirane, M.; Iheanacho, B.; Tamang, A.; Lee, C.-H.; Lujan, R.; Knipp, D.; Wong, W. S.

    2015-10-01

    Hydrothermally synthesized disordered ZnO nanowires were conformally coated with a-Si:H thin-films to fabricate three dimensional hybrid nanowire/thin-film structures. The a-Si:H layer formed a radial junction p-i-n diode solar cell around the ZnO nanowire. The cylindrical hybrid solar cells enhanced light scattering throughout the UV-visible-NIR spectrum (300 nm-800 nm) resulting in a 22% increase in short-circuit current density compared to the reference planar p-i-n device. A fill factor of 69% and a total power conversion efficiency of 6.5% were achieved with the hybrid nanowire solar cells using a spin-on indium tin oxide nanoparticle suspension as the top contact.

  17. Hybrid ZnO nanowire/a-Si:H thin-film radial junction solar cells using nanoparticle front contacts

    SciTech Connect

    Pathirane, M. Iheanacho, B.; Lee, C.-H.; Wong, W. S.; Tamang, A.; Knipp, D.; Lujan, R.

    2015-10-05

    Hydrothermally synthesized disordered ZnO nanowires were conformally coated with a-Si:H thin-films to fabricate three dimensional hybrid nanowire/thin-film structures. The a-Si:H layer formed a radial junction p-i-n diode solar cell around the ZnO nanowire. The cylindrical hybrid solar cells enhanced light scattering throughout the UV-visible-NIR spectrum (300 nm–800 nm) resulting in a 22% increase in short-circuit current density compared to the reference planar p-i-n device. A fill factor of 69% and a total power conversion efficiency of 6.5% were achieved with the hybrid nanowire solar cells using a spin-on indium tin oxide nanoparticle suspension as the top contact.

  18. Effect of Sb-doping on the morphology and dielectric properties of chrysanthemum-like ZnO nanowire clusters

    NASA Astrophysics Data System (ADS)

    Yan, Jun-Feng; You, Tian-Gui; Zhang, Zhi-Yong; Tian, Jiang-Xiao; Yun, Jiang-Ni; Zhao, Wu

    2012-09-01

    Chrysanthemum-like ZnO nanowire clusters with different Sb-doping concentrations were prepared using a hydrothermal process. The microstructures, morphologies, and dielectric properties of the as-prepared products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), field emission environment scanning electron microscope (FEESEM), and microwave vector network analyzer respectively. The results indicate that the as-prepared products are Sb-doped ZnO single crystallines with a hexagonal wurtzite structure, the flower bud saturation degree Fd is obviously different from that of the pure ZnO nanowire clusters, the good dielectric loss property is found in Sb-doped ZnO products with low density, and the dielectric loss tangent tanδe increases with the increase of the Sb-doping concentration in a certain concentration range.

  19. Tunable transport properties of n-type ZnO nanowires by Ti plasma immersion ion implantation

    SciTech Connect

    Liao, L.; Zhang, Z.; Yan, B.; Li, G. P.; Wu, T.; Shen, Z. X.; Yu, T.; Yang, Y.; Cao, H. T.; Chen, L. L.; Tay, B. K.; Sun, X. W.

    2008-10-01

    Single-crystalline, transparent conducting ZnO nanowires were obtained simply by Ti plasma immersion ion implantation (PIII). Electrical transport characterizations demonstrate that the n-type conduction of ZnO nanowire could be tuned by appropriate Ti-PIII. When the energy of PIII is increased, the resistivity of ZnO decreases from 4x10{sup 2} to 3.3x10{sup -3} {omega} cm, indicating a semiconductor-metal transition. The failure-current densities of the metallic ZnO could be up to 2.75x10{sup 7} A/cm{sup 2}. Therefore, this facile method may provide an inexpensive alternative to tin doped indium oxide as transparent conducting oxide materials.

  20. Polar surface effects on the thermal conductivity of ZnO nanowires: a shell-like surface reconstruction-induced preserving mechanism.

    PubMed

    Jiang, Jin-Wu; Park, Harold S; Rabczuk, Timon

    2013-11-21

    We perform molecular dynamics (MD) simulations to investigate the effect of polar surfaces on the thermal transport in zinc oxide (ZnO) nanowires. We find that the thermal conductivity of nanowires with free polar (0001) surfaces is much higher than that of nanowires that have been stabilized with reduced charges on the polar (0001) surfaces, and also hexagonal nanowires without any transverse polar surface, where the reduced charge model has been proposed as a promising stabilization mechanism for the (0001) polar surfaces of ZnO nanowires. From normal mode analysis, we show that the higher thermal conductivity is due to the shell-like reconstruction that occurs for the free polar surfaces. This shell-like reconstruction suppresses twisting motion in the nanowires such that the bending phonon modes are not scattered by the other phonon modes, and this leads to substantially higher thermal conductivity of the ZnO nanowires with free polar surfaces. Furthermore, the auto-correlation function of the normal mode coordinate is utilized to extract the phonon lifetime, which leads to a concise explanation for the higher thermal conductivity of ZnO nanowires with free polar surfaces. Our work demonstrates that ZnO nanowires without polar surfaces, which exhibit low thermal conductivity, are more promising candidates for thermoelectric applications than nanowires with polar surfaces (and also high thermal conductivity).

  1. An advanced fabrication method of highly ordered ZnO nanowire arrays on silicon substrates by atomic layer deposition.

    PubMed

    Subannajui, Kittitat; Güder, Firat; Danhof, Julia; Menzel, Andreas; Yang, Yang; Kirste, Lutz; Wang, Chunyu; Cimalla, Volker; Schwarz, Ulrich; Zacharias, Margit

    2012-06-15

    In this work, the controlled fabrication of highly ordered ZnO nanowire (NW) arrays on silicon substrates is reported. Si NWs fabricated by a combination of phase shift lithography and etching are used as a template and are subsequently substituted by ZnO NWs with a dry-etching technique and atomic layer deposition. This fabrication technique allows the vertical ZnO NWs to be fabricated on 4 in Si wafers. Room temperature photoluminescence and micro-photoluminescence are used to observe the optical properties of the atomic layer deposition (ALD) based ZnO NWs. The sharp UV luminescence observed from the ALD ZnO NWs is unexpected for the polycrystalline nanostructure. Surprisingly, the defect related luminescence is much decreased compared to an ALD ZnO film deposited at the same time ona plane substrate. Electrical characterization was carried out by using nanomanipulators. With the p-type Si substrate and the n-type ZnO NWs the nanodevices represent p–n NW diodes.The nanowire diodes show a very high breakthrough potential which implies that the ALD ZnO NWs can be used for future electronic applications.

  2. Doping of ZnO nanowires using phosphorus diffusion from a spin-on doped glass source

    SciTech Connect

    Bocheux, A.; Robin, I. C.; Bonaimé, J.; Hyot, B.; Feuillet, G.; Kolobov, A. V.; Fons, P.; Mitrofanov, K. V.; Tominaga, J.; Tamenori, Y.

    2014-05-21

    In this article, we report on ZnO nanowires that were phosphorus doped using a spin on dopant glass deposition and diffusion method. Photoluminescence measurements suggest that this process yields p-doped ZnO. The spatial location of P atoms was studied using x-ray near-edge absorption structure spectroscopy and it is concluded that the doping is amphoteric with P atoms located on both Zn and O sites.

  3. Crystallographic alignment of high-density gallium nitride nanowire arrays.

    PubMed

    Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong

    2004-08-01

    Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

  4. Vertically Aligned ZnO Nanorods: Effect of Synthesis Parameters.

    PubMed

    Rehman, Zeeshan Ur; Heo, Si-Nae; Cho, Hyeon Ji; Koo, Bon Heun

    2016-06-01

    This report is devoted to the synthesis of high quality nanorods using spin coating technique for seed layer growth. Effect of different parameter i.e., spins coating counts, spin coating speed, and the effect of temperature during the drying process was analyzed. Hot plate and furnace technique was used for heating purpose and the difference in the morphology was carefully observed. It is worthy to mention here that there is a substantial effect of all the above mentioned parameters on the growth and morphology of the ZnO nanostructure. The ZnO nanorods were finally synthesized using wet chemical method. The morphological properties of the obtained nanostructures were analyzed by using FESEM technique.

  5. Catalyst-Free Synthesis of ZnO Nanowires on Oxidized Silicon Substrate for Gas Sensing Applications.

    PubMed

    Behera, B; Chandra, S

    2015-06-01

    In the present work, we report the synthesis of nanostructured ZnO by oxidation of zinc film without using a seed or catalyst layer. The zinc films were deposited on oxidized Si substrates by RF magnetron sputtering process. These were oxidized in dry and wet air/oxygen ambient. The optimized process yielded long nanowires of ZnO having diameter of around 60-70 nm and spread uniformly over the surface. The effect of oxidation temperature, time, Zn film thickness and the ambient has strong influence on the morphology of resulting nanostruxctured ZnO film. The films were characterized by scanning electron microscopy for morphological studies and X-ray diffraction (XRD) analysis to study the phase of the nanostructured ZnO. Room temperature photoluminescence (PL) measurements of the nanowires show UV and green emission. A sensor was designed and fabricated using nanostructured ZnO film, incorporating inter-digital-electrode (IDE) for the measurement of resistance of the sensing layer. The gas sensing properties were investigated from the measurement of change in resistance when exposed to vapours of different volatile organic compound (VOC) such as acetone, ethanol, methanol and 2-propanol. The results suggest that ZnO nanowires fabricated by this method have potential application in gas sensors.

  6. Co-sensitized quantum dot solar cell based on ZnO nanowire

    NASA Astrophysics Data System (ADS)

    Chen, J.; Wu, J.; Lei, W.; Song, J. L.; Deng, W. Q.; Sun, X. W.

    2010-10-01

    An efficient photoelectrode is fabricated by sequentially assembled CdS and CdSe quantum dots (QDs) onto a ZnO-nanowire film. As revealed by UV-vis absorption spectrum and scanning electron microscopy (SEM), CdS and CdSe QDs can be effectively adsorbed on ZnO-nanowire array. Electrochemical impedance spectroscopy (EIS) measured demonstrates that the electron lifetime for ZnO/CdS/CdSe (13.8 ms) is calculated longer than that of ZnO/CdS device (6.2 ms), which indicates that interface charge recombination rate is reduced by sensitizing CdSe QDs. With broader light absorption range and longer electron lifetime, a power conversion efficiency of 1.42% is achieved for ZnO based CdS/CdSe co-sensitized solar cell under the illumination of one Sun (AM 1.5G, 100 mW cm -2).

  7. Polymer chain alignment and transistor properties of nanochannel-templated poly(3-hexylthiophene) nanowires

    NASA Astrophysics Data System (ADS)

    Oh, Seungjun; Hayakawa, Ryoma; Pan, Chengjun; Sugiyasu, Kazunori; Wakayama, Yutaka

    2016-08-01

    Nanowires of semiconducting poly(3-hexylthiophene) (P3HT) were produced by a nanochannel-template technique. Polymer chain alignment in P3HT nanowires was investigated as a function of nanochannel widths (W) and polymer chain lengths (L). We found that the ratio between chain length and channel width (L/W) was a key parameter as regards promoting polymer chain alignment. Clear dichroism was observed in polarized ultraviolet-visible (UV-Vis) absorption spectra only at a ratio of approximately L/W = 2, indicating that the L/W ratio must be optimized to achieve uniaxial chain alignment in the nanochannel direction. We speculate that an appropriate L/W ratio is effective in confining the geometries and conformations of polymer chains. This discussion was supported by theoretical simulations based on molecular dynamics. That is, the geometry of the polymer chains, including the distance and tilting angles of the chains in relation to the nanochannel surface, was dominant in determining the longitudinal alignment along the nanochannels. Thus prepared highly aligned polymer nanowire is advantageous for electrical carrier transport and has great potential for improving the device performance of field-effect transistors. In fact, a one-order improvement in carrier mobility was observed in a P3HT nanowire transistor.

  8. The bandgap distribution investigated across the strain-induced bending ZnO nanowire

    NASA Astrophysics Data System (ADS)

    Tse, Geoffrey; Yu, Dapeng

    2016-12-01

    In this work, the strain dependence of electronic and optical properties in wurtzite zinc oxide (ZnO) lattice were explored. Ab initio density functional theory (DFT) was used in evaluating the energy bandgap and the dielectric tensor, respectively. The influence on the bandgap due to the shear distortion was so small that the reducing linear trends on uniaxial compressive/tensile strain were reported, in which the evolution of the absorption curve with uniaxial strain agrees well with the experimental results across the bending section. This study provides a set of useful data in analyzing the evolution of the optical adsorption across the bending ZnO nanowire, and gives a systematic explanation to the available experiments from the electronic structure’s perspective.

  9. Enhanced performance of triboelectric nanogenerators integrated with ZnO nanowires.

    PubMed

    Lee, Sanghyo; Ko, Wonbae; Hong, Jinpyo

    2014-12-01

    We report a hybrid nanogenerator matrix integrated with ZnO nanowires (NWs) for the use of combined triboelectric and piezoelectric features, where the ZnO NWs are grown on bottom electrodes via a hydrothermal method. Along with structural properties analyzed by scanning electron microscopy, the hybrid nanogenerator displayed an output power density of 0.21 mW/cm2, which was higher than that of the triboelectric nanogenerator without NWs. Therefore, our approach can allow for the enhancement of electrical output, with a view toward the realization of functional and self-powered devices of high performance in portable electronics, such as power source and electric self-powered sensor systems.

  10. Molecular nitrogen acceptors in ZnO nanowires induced by nitrogen plasma annealing

    NASA Astrophysics Data System (ADS)

    Ton-That, C.; Zhu, L.; Lockrey, M. N.; Phillips, M. R.; Cowie, B. C. C.; Tadich, A.; Thomsen, L.; Khachadorian, S.; Schlichting, S.; Jankowski, N.; Hoffmann, A.

    2015-07-01

    X-ray absorption near-edge spectroscopy, photoluminescence, cathodoluminescence, and Raman spectroscopy have been used to investigate the chemical states of nitrogen dopants in ZnO nanowires. It is found that nitrogen exists in multiple states: NO,NZn, and loosely bound N2 molecule. The results establish a direct link between a donor-acceptor pair emission at 3.232 eV and the concentration of loosely bound N2. This work confirms that N2 at Zn site is a potential candidate for producing a shallow acceptor state in N-doped ZnO as theoretically predicted by Lambrecht and Boonchun [Phys. Rev. B 87, 195207 (2013), 10.1103/PhysRevB.87.195207]. Additionally, shallow acceptor states arising from NO complexes have been ruled out in this paper.

  11. Fabrication of a Miniaturized ZnO Nanowire Accelerometer and Its Performance Tests

    PubMed Central

    Kim, Hyun Chan; Song, Sangho; Kim, Jaehwan

    2016-01-01

    This paper reports a miniaturized piezoelectric accelerometer suitable for a small haptic actuator array. The accelerometer is made with zinc oxide (ZnO) nanowire (NW) grown on a copper wafer by a hydrothermal process. The size of the accelerometer is 1.5 × 1.5 mm2, thus fitting the 1.8 × 1.8 mm2 haptic actuator array cell. The detailed fabrication process of the miniaturized accelerometer is illustrated. Performance evaluation of the fabricated accelerometer is conducted by comparing it with a commercial piezoelectric accelerometer. The output current of the fabricated accelerometer increases linearly with the acceleration. The miniaturized ZnO NW accelerometer is feasible for acceleration measurement of small and lightweight devices. PMID:27649184

  12. The comparison of ZnO nanowire detectors working under two wavelengths of ultraviolet

    NASA Astrophysics Data System (ADS)

    Lin, Weihua; Yan, Xiaoqin; Zhang, Xiaomei; Qin, Zi; Zhang, Zheng; Bai, Zhiming; Lei, Yang; Zhang, Yue

    2011-12-01

    Schottky-barrier ultraviolet (UV) detectors based on ZnO-nanowires (NWs) were fabricated with Pt as electrodes in this investigation. The ZnO NWs synthesized by the hydrothermal method were characterized by field-emission scanning electron microscopy (FE-SEM), Raman and PL spectroscopy. Photoelectric properties under 254 and 365 nm UV light were investigated. It is found that the photo-response properties of the devices under 365 nm UV light are better than those under 254 nm UV light, which is further illustrated by light transmission theory, energy-band diagram and absorption spectra. The results demonstrate that ZnO NWs detectors with selectivity to near-UV (NUV) light are promising candidates in photoelectric devices.

  13. ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection

    SciTech Connect

    Wang Guoping; Chu Sheng; Zhan Ning; Liu Jianlin; Lin Yuqing; Chernyak, Leonid

    2011-01-24

    ZnO p-n homojunctions based on Sb-doped p-type nanowire array and n-type film were grown by combining chemical vapor deposition (for nanowires) with molecular-beam epitaxy (for film). Indium tin oxide and Ti/Au were used as contacts to the ZnO nanowires and film, respectively. Characteristics of field-effect transistors using ZnO nanowires as channels indicate p-type conductivity of the nanowires. Electron beam induced current profiling confirmed the existence of ZnO p-n homojunction. Rectifying I-V characteristic showed a turn-on voltage of around 3 V. Very good response to ultraviolet light illumination was observed from photocurrent measurements.

  14. ZnO homojunction photodiodes based on Sb-doped p-type nanowire array and n-type film for ultraviolet detection

    NASA Astrophysics Data System (ADS)

    Wang, Guoping; Chu, Sheng; Zhan, Ning; Lin, Yuqing; Chernyak, Leonid; Liu, Jianlin

    2011-01-01

    ZnO p-n homojunctions based on Sb-doped p-type nanowire array and n-type film were grown by combining chemical vapor deposition (for nanowires) with molecular-beam epitaxy (for film). Indium tin oxide and Ti/Au were used as contacts to the ZnO nanowires and film, respectively. Characteristics of field-effect transistors using ZnO nanowires as channels indicate p-type conductivity of the nanowires. Electron beam induced current profiling confirmed the existence of ZnO p-n homojunction. Rectifying I-V characteristic showed a turn-on voltage of around 3 V. Very good response to ultraviolet light illumination was observed from photocurrent measurements.

  15. Cobalt-doped ZnO nanowires on quartz: Synthesis by simple chemical method and characterization

    NASA Astrophysics Data System (ADS)

    Vempati, Sesha; Shetty, Amitha; Dawson, P.; Nanda, Karunakar; Krupanidhi, S. B.

    2012-03-01

    The synthesis of cobalt-doped ZnO nanowires is achieved using a simple, metal salt decomposition growth technique. A sequence of drop casting on a quartz substrate held at 100 °C and annealing results in the growth of nanowires of average (modal) length ˜200 nm and diameter of 15±4 nm and consequently an aspect ratio of ˜13. A variation in the synthesis process, where the solution of mixed salts is deposited on the substrate at 25 °C, yields a grainy film structure which constitutes a useful comparator case. X-ray diffraction shows a preferred [0001] growth direction for the nanowires while a small unit cell volume contraction for Co-doped samples and data from Raman spectroscopy indicate incorporation of the Co dopant into the lattice; neither technique shows explicit evidence of cobalt oxides. Also the nanowire samples display excellent optical transmission across the entire visible range, as well as strong photoluminescence (exciton emission) in the near UV, centered at 3.25 eV.

  16. Temperature dependent conduction and UV induced metal-to-insulator transition in ZnO nanowires

    SciTech Connect

    Chang, P.-C.; Lu, Jia Grace

    2008-05-26

    Thin ZnO nanowires with diameters of less than 50 nm are configured as field effect transistors and studied for their transport mechanisms at different temperatures under UV illumination and gate modulation. The conductivity exhibits two regimes: at T>50 K, thermally activated transport dominates with activation energy around 30-60 meV attributed to the shallow donor states and at T<50 K, three dimensional variable range hopping reveals in the conduction. In addition, UV irradiation leads to a metal-to-insulator transition at {approx}210 K. Furthermore, electrostatic gating results in a band bending giving rise to a change in the activation energy.

  17. A ZnO nanowire-based photo-inverter with pulse-induced fast recovery

    NASA Astrophysics Data System (ADS)

    Ali Raza, Syed Raza; Lee, Young Tack; Hosseini Shokouh, Seyed Hossein; Ha, Ryong; Choi, Heon-Jin; Im, Seongil

    2013-10-01

    We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output.We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03801g

  18. ZnO nanowire arrays synthesized on ZnO and GaN films for photovoltaic and light-emitting devices

    NASA Astrophysics Data System (ADS)

    Janfeshan, Bita; Sadeghimakki, Bahareh; Sadeghi Jahed, Navid Mohammad; Sivoththaman, Siva

    2014-01-01

    The wide bandgap, one-dimensional zinc oxide (ZnO) nanowires (NWs) and their heterostructures with other materials provide excellent pathways for efficient photovoltaic (PV) and light-emitting devices. ZnO NWs sensitized with quantum dots (QDs) provide high-surface area and tunable bandgap absorbers with a directional path for carriers in advanced PV devices, while ZnO heterojunctions with other p-type wide bandgap materials lead to light-emitting diodes (LEDs) with better emission and waveguiding properties compared with the homojunction counterparts. Synthesis of the structures with the desired morphology is a key to device applications. In this work, ZnO NW arrays were synthesized using hydrothermal method on ZnO and GaN thin films. Highly crystalline, upright, and ordered arrays of ZnO NWs in the 50 to 250-nm diameter range and 1 μm in length were obtained. The morphology and optical properties of the NWs were studied. Energy dispersive x-ray spectroscopy (EDX) analysis revealed nonstoichiometric oxygen content in the grown ZnO NWs. Photoluminescence (PL) studies depicted the presence of oxygen vacancy and interstitial zinc defects in the grown ZnO NWs, underlining the potential for LEDs. Further, hydrophobically ligated CdSe/ZnS QDs were successfully incorporated to the NW arrays. PL analysis indicated the injection of electrons from photoexcited QDs to the NWs, showing the potential for quantum dot-sensitized solar cells.

  19. Direct fabrication of superhydrophobic ceramic surfaces with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chung, Jihoon; Lee, Sukyung; Yong, Hyungseok; Lee, Sangmin; Park, Yong Tae

    2016-02-01

    Super-hydrophobic surfaces having contact angles > 150° for water are of great interest due to their potential use in a wide variety of applications. Although many reports on the wettability of different surfaces have been published, few or no studies have been done on the formation of a super-hydrophobic surface on a ceramic substrate. In this paper, we demonstrate the creation of a super-hydrophobic surface on a ceramic substrate by using zinc oxide nanowires (ZnO NWs) prepared by using a direct hydrothermal method. A self-assembled monolayer of heptadecafluoro- 1,1,2,2-tetrahydrodecyl trichlorosilane (HDFS) lowered the surface energy between the water droplet and the nano-textured surface. The length of the ZnO NWs was found to play a key role in the formation of a nanostructure that increased the surface roughness of the substrate. Furthermore, the length of the ZnO NWs could be controlled by changing the growth time, and HDFS-coated ZnO NWs were found to be super-hydrophobic after a growth time of 3 h. We have demonstrated the potential application of this nanostructure for ceramic tableware by introducing a ZnO-NW-textured surface on a ceramic cup, which resulted in water and alcohol repellency. This method is a simple and practical way to achieve a super-hydrophobic surface; hence, our method is expected to be widely used in various ceramic applications.

  20. Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation.

    PubMed

    Wang, Gongming; Yang, Xunyu; Qian, Fang; Zhang, Jin Z; Li, Yat

    2010-03-10

    We report the design and characterization of a novel double-sided CdS and CdSe quantum dot cosensitized ZnO nanowire arrayed photoanode for photoelectrochemical (PEC) hydrogen generation. The double-sided design represents a simple analogue of tandem cell structure, in which the dense ZnO nanowire arrays were grown on an indium-tin oxide substrate followed by respective sensitization of CdS and CdSe quantum dots on each side. As-fabricated photoanode exhibited strong absorption in nearly the entire visible spectrum up to 650 nm, with a high incident-photon-to-current-conversion efficiency (IPCE) of approximately 45% at 0 V vs Ag/AgCl. On the basis on a single white light illumination of 100 mW/cm(2), the photoanode yielded a significant photocurrent density of approximately 12 mA/cm(2) at 0.4 V vs Ag/AgCl. The photocurrent and IPCE were enhanced compared to single quantum dot sensitized structures as a result of the band alignment of CdS and CdSe in electrolyte. Moreover, in comparison to single-sided cosensitized layered structures, this double-sided architecture that enables direct interaction between quantum dot and nanowire showed improved charge collection efficiency. Our result represents the first double-sided nanowire photoanode that integrates uniquely two semiconductor quantum dots of distinct band gaps for PEC hydrogen generation and can be possibly applied to other applications such as nanostructured tandem photovoltaic cells.

  1. Origin of the Phase Transition of AlN, GaN, and ZnO Nanowires

    SciTech Connect

    Wu, Y.; Chen, G.; Ye, H.; Zhu, Y.; Wei, S. H.

    2009-06-01

    The stabilities of AlN, GaN, and ZnO nanowires/nanorods with different structures and sizes are investigated using first-principles calculations. We found a structure transformation from the graphitelike phase to wurtzite phase as the diameter and length of the nanowire increases. We show that this is due to the competition between the bond energy, the Coulomb energy, and the energy originating from the dipole field of the wurtzite structure. A mechanism of growing uniform nanowires using a graphitelike structure as a precursor is proposed through analyzing the phase diagram of these materials.

  2. Temperature-dependent photoluminescence and XPS study of ZnO nanowires grown on flexible Zn foil via thermal oxidation

    NASA Astrophysics Data System (ADS)

    Wu, Zhang-Wei; Tyan, Shing-Long; Chen, Hsin-Hsien; Huang, Jung-Chun-Andrew; Huang, Yen-Chin; Lee, Chia-Rong; Mo, Ting-Shan

    2017-07-01

    ZnO nanowires (NWs) were directly grown on ductile zinc foil by thermal oxidation at 500 °C. The highly crystalline ZnO NWs exhibited bidirectional growth preferentially oriented in the [101] orientation. The ZnO NWs were highly resistant to hydroxyl groups and water compared with Zn foil that was oxidized naturally. The narrow excitonic photoluminescence (PL) peak combined with strongly suppressed visible emission demonstrated the high optical quality of the NWs. The binding energies of the donor bands and an acceptor band were obtained through temperature-dependent PL analysis. The NWs would be suitable for flexible planar UV device applications.

  3. Self-aligned multi-channel silicon nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Zhu, Hao; Li, Qiliang; Yuan, Hui; Baumgart, Helmut; Ioannou, Dimitris E.; Richter, Curt A.

    2012-12-01

    Si nanowire field effect transistors (SiNW FETs) with multiple nanowire channels and different gate lengths have been fabricated by using a directed assembly approach combined with a standard photolithographic process. The electrical characteristics of SiNW FETs containing different numbers of nanowire channels were measured and compared. The multi-channel SiNW FETs show excellent performance: small subthreshold slope (≈75 mV/dec), large ON/OFF ratio (≈108), good break-down voltage (>30 V) and good carrier mobility (μp ≈ 100 cm2 V-1s-1). These excellent device properties were achieved by using a clean self-alignment process and an improved device structure with Schottky barriers at the source and drain contacts. Such high-performance multi-nanowire FETs are attractive for logic, memory, and sensor applications.

  4. Directed growth of horizontally aligned gallium nitride nanowires for nanoelectromechanical resonator arrays.

    PubMed

    Henry, Tania; Kim, Kyungkon; Ren, Zaiyuan; Yerino, Christopher; Han, Jung; Tang, Hong X

    2007-11-01

    We report the growth of horizontally aligned arrays and networks of GaN nanowires (NWs) as resonant components in nanoelectromechanical systems (NEMS). A combination of top-down selective area growth (SAG) and bottom-up vapor-liquid-solid (VLS) synthesis enables flexible fabrication of highly ordered nanowire arrays in situ with no postgrowth dispersion. Mechanical resonance of free-standing nanowires are measured, with quality factors (Q) ranging from 400 to 1000. We obtained a Young's modulus (E) of approximately 338 GPa from an array of NWs with varying diameters and lengths. The measurement allows detection of nanowire motion with a rotating frame and reveals dual fundamental resonant modes in two orthogonal planes. A universal ratio between the resonant frequencies of these two fundamental modes, irrespective of their dimensions, is observed and attributed to an isosceles cross section of GaN NWs.

  5. Vertically aligned cadmium chalcogenide nanowire arrays on muscovite mica: a demonstration of epitaxial growth strategy.

    PubMed

    Utama, Muhammad Iqbal Bakti; Peng, Zeping; Chen, Rui; Peng, Bo; Xu, Xinlong; Dong, Yajie; Wong, Lai Mun; Wang, Shijie; Sun, Handong; Xiong, Qihua

    2011-08-10

    We report a strategy for achieving epitaxial, vertically aligned cadmium chalcogenide (CdS, CdSe, and CdTe) nanowire arrays utilizing van der Waals epitaxy with (001) muscovite mica substrate. The nanowires, grown from a vapor transport process, exhibited diameter uniformity throughout their length, sharp interface to the substrate, and positive correlation between diameter and length with preferential growth direction of [0001] for the monocrystalline wurtzite CdS and CdSe nanowires, but of [111] for zinc blende CdTe nanowires, which also featured abundant twinning boundaries. Self-catalytic vapor-liquid-solid mechanism with hydrogen-assisted thermal evaporation is proposed to intepret the observations. Optical absorption from the as-grown CdSe nanowire arrays on mica at 10 K revealed intense first-order exciton absorption and its longitudinal optical phonon replica. A small Stokes shift (∼1.3 meV) was identified, suggesting the high quality of the nanowires. This study demonstrated the generality of van der Waals epitaxy for the growth of nanowire arrays and their potential applications in optical and energy related devices.

  6. Fabrication of vertically aligned Pd nanowire array in AAO template by electrodeposition using neutral electrolyte

    PubMed Central

    2010-01-01

    A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO) template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current–time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) methods and X-Ray diffraction (XRD). It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm−2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially. PMID:20596417

  7. Fabrication of Si3N4 nanowire membranes: free standing disordered nanopapers and aligned nanowire assemblies

    NASA Astrophysics Data System (ADS)

    Liu, Haitao; Fang, Minghao; Huang, Zhaohui; Huang, Juntong; Liu, Yan-gai; Wu, Xiaowen

    2016-08-01

    Herein, ultralong silicon nitride nanowires were synthesized via a chemical vapor deposition method by using the low-cost quartz and silicon powder as raw materials. Simple processes were used for the fabrication of disordered and ordered nanowire membranes of pure silicon nitride nanowires. The nanowires in the disordered nanopapers are intertwined with each other to form a paper-like structure which exhibit excellent flame retardancy and mechanical properties. Fourier-transform infrared spectroscopy and thermal gravity analysis were employed to characterize the refractory performance of the disordered nanopapers. Highly ordered nanowire membranes were also assembled through a three-phase assembly approach which make the Si3N4 nanowires have potential use in textured ceramics and semiconductor field. Moreover, the surface nanowires can also be modified to be hydrophobic; this characteristic make the as-prepared nanowires have the potential to be assembled by the more effective Langmuir-Blodgett method and also make the disordered nanopapers possess a super-hydrophobic surface.

  8. One step solution synthesis towards ultra-thin and uniform single-crystalline ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Ho, G. W.; Wong, A. S. W.

    2007-03-01

    Bundles of high-aspect-ratio single-crystalline ZnO nanowires were fabricated by a single-step mild hydrothermal condition without the use of a seeding layer, thus eliminating an annealing step. The growth yields nanowires of high aspect ratio (>200). No significant lateral growth takes place with prolonged reaction time. The morphology and aspect ratio of the final products depend on the concentration of the precursors; a highly water-soluble tetradentate cyclic tertiary amine and zinc nitrate system. The nanowires grow along the [0001] direction and have an average width of <10 nm and a narrow distribution of ±5 nm. Photoluminescence measurements of the ultra-thin nanowires exhibit a strong band-edge emission at room temperature. The highly crystalline sub tens of nanometer scale diameter nanowires can, in combination, be a good one-dimensional candidate to study optical and electronic properties.

  9. Horizontal transfer of aligned Si nanowire arrays and their photoconductive performance

    PubMed Central

    2014-01-01

    An easy and low-cost method to transfer large-scale horizontally aligned Si nanowires onto a substrate is reported. Si nanowires prepared by metal-assisted chemical etching were assembled and anchored to fabricate multiwire photoconductive devices with standard Si technology. Scanning electron microscopy images showed highly aligned and successfully anchored Si nanowires. Current-voltage tests showed an approximately twofold change in conductivity between the devices in dark and under laser irradiation. Fully reversible light switching ON/OFF response was also achieved with an ION/IOFF ratio of 230. Dynamic response measurement showed a fast switching feature with response and recovery times of 10.96 and 19.26 ms, respectively. PMID:25520603

  10. Fabrication and characterization of ultraviolet photosensors from ZnO nanowires prepared using chemical bath deposition method

    NASA Astrophysics Data System (ADS)

    Al-Asadi, Ahmed S.; Henley, Luke Alexander; Ghosh, Sujoy; Quetz, Abdiel; Dubenko, Igor; Pradhan, Nihar; Balicas, Luis; Perea-Lopez, Nestor; Carozo, Victor; Lin, Zhong; Terrones, Mauricio; Talapatra, Saikat; Ali, Naushad

    2016-02-01

    Highly crystalline zinc oxide (ZnO) nanowires (NWs) were synthesized through chemical bath deposition (CBD) method by using a simple seeding technique. The process includes dispersion of commercially available ZnO nanoparticles through spraying on a desired substrate prior to the CBD growth. A typical growth period of 16 h produced ZnO NW assemblies with an average diameter of ˜45 nm and lengths of 1-1.3 μm, with an optical band gap of ˜3.61 eV. The as-prepared ZnO NWs were photoactive under ultra violet (UV) illumination. Photodetector devices fabricated using these NW assemblies demonstrated a high photoresponse factor of ˜40 and 120 at room temperature under moderate UV illumination power of ˜250 μW/cm2. These findings indicate the possibility of using ZnO NWs, grown using the simple method discussed in this paper, for various opto-electronic applications.

  11. Monomer: A Designer of ZnO Nanostructures (Nanobush & Nanowire) and their Room Temperature Ethanol Vapor Sensing Signatures.

    PubMed

    Shankar, Prabakaran; Rayappan, John Bosco Balaguru

    2017-10-09

    Ethanol serves as a biomarker as well as a chemical reagent for several applications and has been predominantly used as an alternative fuel (E10 and E85). Development of sensors for the detection and monitoring of ethanol vapor at lower operating temperature has gathered momentum in the recent past. In this work, we reported the synthesis of self-assembled ZnO nanowires using electrospun technique without using any external surfactants or capping agents and their room temperature ethanol sensing properties. An inherent template namely monomer of the polymer polyvinyl alcohol (PVA) with two different molecular weights (14,000 and 1,40,000 g mol-1) was used along with the precursor zinc acetate dihydrate. The ZnO-PVA nanofibers has been tranformed to ZnO nanospheres and nanowires after calcination. Ratio of zinc precursor concentration to PVA polymer led to enhanced carrier concentration of the resultant ZnO nanowire in-turn enhanced sensing response towards ethanol vapor. The developed sensing elements have been systematically characterised to correlate their structural, morphological and electrical properties with the respective room temperature ethanol sensing characterisitics. Role of grain features and low activation energy of ZnO nanowires in coordination with the low dipole moment of ethanol resulted in the excellent response of 78 towards 100 ppm at room temperature with an ultra sensitive response and recovery times (9 and 12 s).

  12. ZnO nanowire/reduced graphene oxide nanocomposites for significantly enhanced photocatalytic degradation of Rhodamine 6G

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhang, Jing; Su, Yanjie; Xu, Minghan; Yang, Zhi; Zhang, Yafei

    2014-02-01

    We have demonstrated a facile and low-cost approach to synthesize ZnO nanowire (NW)/reduced graphene oxide (RGO) nanocomposites, in which ZnO NWs and graphene oxide (GO) were produced in large scale separately and then hybridized into ZnO NW/RGO nanocomposites by mechanical mixing and low-temperature thermal reduction. Rhodamine 6G (Rh6G) was used as a model dye to evaluate the photocatalytic properties of ZnO NW/RGO nanocomposites. The obtained nanocomposites show significantly enhanced photocatalytic performance, which took only 10 min to decompose over 98% Rh6G. Finally the mechanism of the great enhancement about photocatalytic activity of ZnO NW/RGO nanocomposites is studied. It is mainly attributed to that RGO nanosheets can transfer the electrons of ZnO NWs excited by ultraviolet (UV) irradiation, increase electron migration efficiency, and then longer the lifetime of the holes in ZnO NWs. The high charge separation efficiency of photo-generated electron-hole pairs directly leads to the lower recombination rate of ZnO NW/RGO nanocomposites, makes more effective electrons and holes to participate the radical reactions with Rh6G, thus significantly improving the photocatalytic properties. The high degradation efficiency makes the ZnO NW/RGO nanocomposites promising candidates in the application of environmental pollutant and wastewater treatment.

  13. Optimal geometrical design of inertial vibration DC piezoelectric nanogenerators based on obliquely aligned InN nanowire arrays.

    PubMed

    Ku, Nai-Jen; Liu, Guocheng; Wang, Chao-Hung; Gupta, Kapil; Liao, Wei-Shun; Ban, Dayan; Liu, Chuan-Pu

    2017-09-28

    Piezoelectric nanogenerators have been investigated to generate electricity from environmental vibrations due to their energy conversion capabilities. In this study, we demonstrate an optimal geometrical design of inertial vibration direct-current piezoelectric nanogenerators based on obliquely aligned InN nanowire (NW) arrays with an optimized oblique angle of ∼58°, and driven by the inertial force of their own weight, using a mechanical shaker without any AC/DC converters. The nanogenerator device manifests potential applications not only as a unique energy harvesting device capable of scavenging energy from weak mechanical vibrations, but also as a sensitive strain sensor. The maximum output power density of the nanogenerator is estimated to be 2.9 nW cm(-2), leading to an improvement of about 3-12 times that of vertically aligned ZnO NW DC nanogenerators. Integration of two nanogenerators also exhibits a linear increase in the output power, offering an enormous potential for the creation of self-powered sustainable nanosystems utilizing incessantly natural ambient energy sources.

  14. A ZnO nanowire-based photo-inverter with pulse-induced fast recovery.

    PubMed

    Raza, Syed Raza Ali; Lee, Young Tack; Hosseini Shokouh, Seyed Hossein; Ha, Ryong; Choi, Heon-Jin; Im, Seongil

    2013-11-21

    We demonstrate a fast response photo-inverter comprised of one transparent gated ZnO nanowire field-effect transistor (FET) and one opaque FET respectively as the driver and load. Under ultraviolet (UV) light the transfer curve of the transparent gate FET shifts to the negative side and so does the voltage transfer curve (VTC) of the inverter. After termination of UV exposure the recovery of photo-induced current takes a long time in general. This persistent photoconductivity (PPC) is due to hole trapping on the surface of ZnO NWs. Here, we used a positive voltage short pulse after UV exposure, for the first time resolving the PPC issue in nanowire-based photo-detectors by accumulating electrons at the ZnO/dielectric interface. We found that a pulse duration as small as 200 ns was sufficient to reach a full recovery to the dark state from the UV induced state, realizing a fast UV detector with a voltage output.

  15. Solution-processed Ag-doped ZnO nanowires grown on flexible polyester for nanogenerator applications

    NASA Astrophysics Data System (ADS)

    Lee, Sanghyo; Lee, Junseok; Ko, Wonbae; Cha, Seungnam; Sohn, Junginn; Kim, Jongmin; Park, Jaegun; Park, Youngjun; Hong, Jinpyo

    2013-09-01

    The integration of ZnO nanowire-based energy harvesting devices into flexible polyesters or clothes would have a significant effect on the energy harvesting building block for harvesting the mechanical energy from human motions. Moreover, the demonstration of high output power via a doping process opens an important method for enhancing the output power. Here, we report solution-based synthesis of Ag-doped ZnO nanowires on flexible polyester substrates without using any high temperature annealing processes. Along with the structural and optical characteristics of the Ag-doped ZnO nanowires, we demonstrate the efficient features of Ag-doped nanogenerators through the measurement of a sound-driven piezoelectric energy device with an output power of 0.5 μW, which is nearly 2.9 times that of a nanogenerator with un-doped ZnO NWs. This finding could provide the possibility of high output nanogenerators for practical applications in future portable/wearable personal displays and motion sensors.The integration of ZnO nanowire-based energy harvesting devices into flexible polyesters or clothes would have a significant effect on the energy harvesting building block for harvesting the mechanical energy from human motions. Moreover, the demonstration of high output power via a doping process opens an important method for enhancing the output power. Here, we report solution-based synthesis of Ag-doped ZnO nanowires on flexible polyester substrates without using any high temperature annealing processes. Along with the structural and optical characteristics of the Ag-doped ZnO nanowires, we demonstrate the efficient features of Ag-doped nanogenerators through the measurement of a sound-driven piezoelectric energy device with an output power of 0.5 μW, which is nearly 2.9 times that of a nanogenerator with un-doped ZnO NWs. This finding could provide the possibility of high output nanogenerators for practical applications in future portable/wearable personal displays and motion

  16. Fast monolayer adsorption and slow energy transfer in CdSe quantum dot sensitized ZnO nanowires.

    PubMed

    Zheng, Kaibo; Žídek, Karel; Abdellah, Mohamed; Torbjörnsson, Magne; Chábera, Pavel; Shao, Shuyan; Zhang, Fengling; Pullerits, Tõnu

    2013-07-25

    A method for CdSe quantum dot (QD) sensitization of ZnO nanowires (NW) with fast adsorption rate is applied. Photoinduced excited state dynamics of the quantum dots in the case of more than monolayer coverage of the nanowires is studied. Transient absorption kinetics reveals an excitation depopulation process of indirectly attached quantum dots with a lifetime of ~4 ns. Photoluminescence and incident photon-to-electron conversion efficiency show that this process consists of both radiative e-h recombination and nonradiative excitation-to-charge conversion. We argue that the latter occurs via interdot energy transfer from the indirectly attached QDs to the dots with direct contact to the nanowires. From the latter, fast electron injection into ZnO occurs. The energy transfer time constant is found to be around 5 ns.

  17. Schottky-contacted vertically self-aligned ZnO nanorods for hydrogen gas nanosensor applications

    SciTech Connect

    Ranwa, Sapana; Kumar, Mohit; Kumar, Mahesh; Singh, Jitendra; Fanetti, Mattia

    2015-07-21

    Vertically well aligned ZnO nanorods (NRs) were grown on Si(100) substrate using RF magnetron sputtering technique. Scanning electron microscopy images confirms uniform distribution of NRs on 2 in. wafer with average diameter, height and density being ∼75 nm, ∼850 nm, and ∼1.5 × 10{sup 10} cm{sup −2}, respectively. X-ray diffraction reveals that the ZnO NRs are grown along c-axis direction with wurtzite crystal structure. Cathodoluminescence spectroscopy, which shows a single strong peak around 3.24 eV with full width half maxima 130 meV, indicates the high crystalline and optical quality of ZnO and very low defect density. Vertically aligned nanosensors were fabricated by depositing gold circular Schottky contacts on ZnO NRs. Resistance responses of nanosensors were observed in the range from 50 to 150 °C in 1% and 5% hydrogen in argon environment, which is below and above the explosive limit (4%) of hydrogen in air. The nanosensor's sensitivity increases from 11% to 67% with temperature from 50 to 150 °C and also shows fast response time (9–16 s) and moderate recovery time (100–200 s). A sensing mechanism is proposed based on Schottky barrier changes at heterojunctions and change in depletion region of NRs.

  18. Earth-Abundant Oxygen Evolution Catalysts Coupled onto ZnO Nanowire Arrays for Efficient Photoelectrochemical Water Cleavage

    PubMed Central

    Jiang, Chaoran; Moniz, Savio J A; Khraisheh, Majeda; Tang, Junwang

    2014-01-01

    ZnO has long been considered as a model UV-driven photoanode for photoelectrochemical water splitting, but its performance has been limited by fast charge-carrier recombination, extremely poor stability in aqueous solution, and slow kinetics of water oxidation. These issues were addressed by applying a strategy of optimization and passivation of hydrothermally grown 1D ZnO nanowire arrays. The length and diameter of bare ZnO nanowires were optimized by varying the growth time and precursor concentration to achieve optimal photoelectrochemical performance. The addition of earth-abundant cobalt phosphate (Co-Pi) and nickel borate (Ni-B) oxygen evolution catalysts onto ZnO nanowires resulted in substantial cathodic shifts in onset potential to as low as about 0.3 V versus the reversible hydrogen electrode (RHE) for Ni-B/ZnO, for which a maximum photocurrent density of 1.1 mA cm−2 at 0.9 V (vs. RHE) with applied bias photon-to-current efficiency of 0.4 % and an unprecedented near-unity incident photon-to-current efficiency at 370 nm. In addition the potential required for saturated photocurrent was dramatically reduced from 1.6 to 0.9 V versus RHE. Furthermore, the stability of these ZnO nanowires was significantly enhanced by using Ni-B compared to Co-Pi due to its superior chemical robustness, and it thus has additional functionality as a stable protecting layer on the ZnO surface. These remarkable enhancements in both photocatalytic activity and stability directly address the current severe limitations in the use of ZnO-based photoelectrodes for water-splitting applications, and can be applied to other photoanodes for efficient solar-driven fuel synthesis. PMID:25156820

  19. Spinning Hierarchical Gold Nanowire Microfibers by Shear Alignment and Intermolecular Self-Assembly.

    PubMed

    Reiser, Beate; Gerstner, Dominik; Gonzalez-Garcia, Lola; Maurer, Johannes H M; Kanelidis, Ioannis; Kraus, Tobias

    2017-05-23

    Hierarchical structures lend strength to natural fibers made of soft nanoscale building blocks. Intermolecular interactions connect the components at different levels of hierarchy, distribute stresses, and guarantee structural integrity under load. Here, we show that synthetic ultrathin gold nanowires with interacting ligand shells can be spun into biomimetic, free-standing microfibers. A solution spinning process first aligns the wires, then lets their ligand shells interact, and finally converts them into a hierarchical superstructure. The resulting fiber contained 80 vol % organic ligand but was strong enough to be removed from the solution, dried, and mechanically tested. Fiber strength depended on the wire monomer alignment. Shear in the extrusion nozzle was systematically changed to obtain process-structure-property relations. The degree of nanowire alignment changed breaking stresses by a factor of 1.25 and the elongation at break by a factor of 2.75. Plasma annealing of the fiber to form a solid metal shell decreased the breaking stress by 65%.

  20. Competing gas phase reactions during vapor transport deposition of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Driscoll, Eric; Range, Kevin; Tzolov, Marian

    2012-02-01

    We present results illuminating some of the major chemical processes in the vapor deposition of ZnO nanowires. The analysis of our deposition experiments indicates that carbon dioxide is a major oxidizing agent rather than carbon monoxide as previously thought. Additionally, we present evidence that carbon monoxide will etch zinc oxide at high temperatures. Zinc oxide nanowires have been prepared by using chemical vapor deposition on silicon (100) substrates with a 10-15nm layer of gold as a catalyst. Zinc oxide and graphite powders were heated to approximately 1000^oC in a tube furnace in a flow of argon. We have delivered oxygen gas specifically in the growth zone to facilitate the formation of high aspect ratio nanowire growth. Thermodynamics calculations were used to justify the growth and etching processes. Imaging of samples was performed with scanning electron microscopy. Chemical composition was determined by energy dispersive x-ray spectroscopy. Photoluminescence spectroscopy was used to characterize the emission properties of the zinc oxide samples.

  1. Contact properties and surface reaction kinetics of single ZnO nanowire devices fabricated by dielectrophoresis

    NASA Astrophysics Data System (ADS)

    Pau, J. L.; García Núñez, C.; García Marín, A.; Guerrero, C.; Rodríguez, P.; Borromeo, S.; Piqueras, J.

    2014-03-01

    This work describes the development of ZnO nanowire (NW) devices for ultraviolet detection and cost-effective gas sensing. A dielectrophoresis (DEP) flow cell fabricated for the integration of NWs on different substrates is presented. The system includes the possibility to set characteristic parameters such as alternating current (AC) frequency, amplitude or flow speed in order to control NW trapping on specific sites defined by micro-gapped electrodes. The electrical characteristics of the rectifying metal/NW contact fabricated by DEP are investigated in darkness and under direct illumination of the metal-NW interface through the ZnO NW. A significant downshift of the turn-on voltage is observed in the current-voltage characteristics during the illumination with photon energies higher than the ZnO bandgap. The reduction is attributed to a barrier height lowering induced by interface charge emission. The effects of AC bias on the thermal drift of the DC average current in NW devices are also discussed. Finally, the reaction kinetics of ethanol and water vapors on the NW surface are compared through the analysis of the DC current under direct exposure to gas flows. Device responses to more complex compound mixtures such as coffee or mint are also monitored over time, showing different performance in both cases.

  2. Effects of silver impurity on the structural, electrical, and optical properties of ZnO nanowires

    PubMed Central

    2011-01-01

    1, 3, and 5 wt.% silver-doped ZnO (SZO) nanowires (NWs) are grown by hot-walled pulsed laser deposition. After silver-doping process, SZO NWs show some change behaviors, including structural, electrical, and optical properties. In case of structural property, the primary growth plane of SZO NWs is switched from (002) to (103) plane, and the electrical properties of SZO NWs are variously measured to be about 4.26 × 106, 1.34 × 106, and 3.04 × 105 Ω for 1, 3, and 5 SZO NWs, respectively. In other words, the electrical properties of SZO NWs depend on different Ag ratios resulting in controlling the carrier concentration. Finally, the optical properties of SZO NWs are investigated to confirm p-type semiconductor by observing the exciton bound to a neutral acceptor (A0X). Also, Ag presence in ZnO NWs is directly detected by both X-ray photoelectron spectroscopy and energy dispersive spectroscopy. These results imply that Ag doping facilitates the possibility of changing the properties in ZnO NWs by the atomic substitution of Ag with Zn in the lattice. PMID:21985620

  3. Access to residual carrier concentration in ZnO nanowires by calibrated scanning spreading resistance microscopy

    SciTech Connect

    Wang, L. Brémond, G.; Chauveau, J. M.; Brenier, R.; Sallet, V.; Jomard, F.; Sartel, C.

    2016-03-28

    Scanning spreading resistance microscopy (SSRM) was performed on non-intentionally doped (nid) ZnO nanowires (NWs) grown by metal-organic chemical vapor deposition in order to measure their residual carrier concentration. For this purpose, an SSRM calibration profile has been developed on homoepitaxial ZnO:Ga multilayer staircase structures grown by molecular beam epitaxy. The Ga density measured by SIMS varies in the 1.7 × 10{sup 17 }cm{sup −3} to 3 × 10{sup 20 }cm{sup −3} range. From measurements on such Ga doped multi-layers, a monotonic decrease in SSRM resistance with increasing Ga density was established, indicating SSRM being a well-adapted technique for two dimensional dopant/carrier profiling on ZnO at nanoscale. Finally, relevant SSRM signal contrasts were detected on nid ZnO NWs, and the residual carrier concentration is estimated in the 1–3 × 10{sup 18 }cm{sup −3} range, in agreement with the result from four-probe measurements.

  4. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes

    PubMed Central

    Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong

    2015-01-01

    In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H2O2) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM−1·cm−2) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors. PMID:26404303

  5. Effects of Nanowire Length and Surface Roughness on the Electrochemical Sensor Properties of Nafion-Free, Vertically Aligned Pt Nanowire Array Electrodes.

    PubMed

    Li, Zhiyang; Leung, Calvin; Gao, Fan; Gu, Zhiyong

    2015-09-04

    In this paper, vertically aligned Pt nanowire arrays (PtNWA) with different lengths and surface roughnesses were fabricated and their electrochemical performance toward hydrogen peroxide (H₂O₂) detection was studied. The nanowire arrays were synthesized by electroplating Pt in nanopores of anodic aluminum oxide (AAO) template. Different parameters, such as current density and deposition time, were precisely controlled to synthesize nanowires with different surface roughnesses and various lengths from 3 μm to 12 μm. The PtNWA electrodes showed better performance than the conventional electrodes modified by Pt nanowires randomly dispersed on the electrode surface. The results indicate that both the length and surface roughness can affect the sensing performance of vertically aligned Pt nanowire array electrodes. Generally, longer nanowires with rougher surfaces showed better electrochemical sensing performance. The 12 μm rough surface PtNWA presented the largest sensitivity (654 μA·mM⁻¹·cm⁻²) among all the nanowires studied, and showed a limit of detection of 2.4 μM. The 12 μm rough surface PtNWA electrode also showed good anti-interference property from chemicals that are typically present in the biological samples such as ascorbic, uric acid, citric acid, and glucose. The sensing performance in real samples (river water) was tested and good recovery was observed. These Nafion-free, vertically aligned Pt nanowires with surface roughness control show great promise as versatile electrochemical sensors and biosensors.

  6. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Lee, Seok Woo; Lin, Dingchang; Shi, Feifei; Wang, Shuang; Sendek, Austin D.; Cui, Yi

    2017-04-01

    In contrast to conventional organic liquid electrolytes that have leakage, flammability and chemical stability issues, solid electrolytes are widely considered as a promising candidate for the development of next-generation safe lithium-ion batteries. In solid polymer electrolytes that contain polymers and lithium salts, inorganic nanoparticles are often used as fillers to improve electrochemical performance, structure stability, and mechanical strength. However, such composite polymer electrolytes generally have low ionic conductivity. Here we report that a composite polymer electrolyte with well-aligned inorganic Li+-conductive nanowires exhibits an ionic conductivity of 6.05 × 10-5 S cm-1 at 30 ∘C, which is one order of magnitude higher than previous polymer electrolytes with randomly aligned nanowires. The large conductivity enhancement is ascribed to a fast ion-conducting pathway without crossing junctions on the surfaces of the aligned nanowires. Moreover, the long-term structural stability of the polymer electrolyte is also improved by the use of nanowires.

  7. TiO₂ nanowire dispersions in viscous polymer matrix: electrophoretic alignment and optical properties.

    PubMed

    Šutka, Andris; Saal, Kristjan; Kisand, Vambola; Lõhmus, Rünno; Joost, Urmas; Timusk, Martin

    2014-10-17

    The changes in optical properties during TiO₂ nanowire orientation in polydimethylsiloxane (PDMS) matrix under the influence of an electric field are strongly influenced by nanowire (NW) diameter. It was demonstrated for the first time that either positive or negative change in transmittance can be induced by NW alignment parallel to the electric field depending on the NW diameter. These effects can be explained by the interplay between scattering and reflectance. Experimental findings reported could be important for smart window applications for the regulation of visible or even infrared transparency, thus reducing the energy consumption by air conditioning systems in buildings and automobiles in the future.

  8. Cl-doped ZnO nanowires with metallic conductivity and their application for high-performance photoelectrochemical electrodes.

    PubMed

    Wang, Fei; Seo, Jung-Hun; Li, Zhaodong; Kvit, Alexander V; Ma, Zhenqiang; Wang, Xudong

    2014-01-22

    Doping semiconductor nanowires (NWs) for altering their electrical and optical properties is a critical strategy for tailoring the performance of nanodevices. ZnO NWs grown by hydrothermal method are pervasively used in optoelectronic, photovoltaic, and piezoelectric energy-harvesting devices. We synthesized in situ Cl-doped ZnO NWs with metallic conductivity that would fit seamlessly with these devices and improve their performance. Possible Cl doping mechanisms were discussed. UV-visible absorption spectroscopy confirmed the visible light transparency of Cl-doped ZnO NWs. Cl-doped ZnO NW/TiO2 core/shell-structured photoelectrochemical (PEC) anode was fabricated to demonstrate the application potential of highly conductive ZnO NWs. Higher photocurrent density and overall PEC efficiency compared with the undoped ZnO NW-based device were achieved. The successful doping and low resistivity of ZnO could unlock the potential of ZnO NWs for applications in low-cost flexible transparent electrodes.

  9. Synthesis and photoluminescence properties of aligned Zn{sub 2}GeO{sub 4} coated ZnO nanorods and Ge doped ZnO nanocombs

    SciTech Connect

    Su Yong; Meng Xia Chen Yiqing; Li Sen; Zhou Qingtao; Liang Xuemei; Feng Yi

    2008-07-01

    Aligned Zn{sub 2}GeO{sub 4} coated ZnO nanorods and Ge doped ZnO nanocombs were synthesized on a silicon substrate by a simple thermal evaporation method. The structure and morphology of the as-synthesized nanostructure were characterized using scanning electron microscopy and transmission electron microscopy. The growth of aligned Zn{sub 2}GeO{sub 4} coated ZnO nanorods and Ge doped ZnO nanocombs follows a vapor-solid (VS) process. Photoluminescence properties were also investigated at room temperature. The photoluminescence spectrum reveals the nanostructures have a sharp ultraviolet luminescence peak centered at 382 nm and a broad green luminescence peak centered at about 494 nm.

  10. Tuning of structural, optical, and magnetic properties of ultrathin and thin ZnO nanowire arrays for nano device applications

    PubMed Central

    2014-01-01

    One-dimensional (1-D) ultrathin (15 nm) and thin (100 nm) aligned 1-D (0001) and (0001¯) oriented zinc oxide (ZnO) nanowire (NW) arrays were fabricated on copper substrates by one-step electrochemical deposition inside the pores of polycarbonate membranes. The aspect ratio dependence of the compressive stress because of the lattice mismatch between NW array/substrate interface and crystallite size variations is investigated. X-ray diffraction results show that the polycrystalline ZnO NWs have a wurtzite structure with a = 3.24 Å, c = 5.20 Å, and [002] elongation. HRTEM and SAED pattern confirmed the polycrystalline nature of ultrathin ZnO NWs and lattice spacing of 0.58 nm. The crystallite size and compressive stress in as-grown 15- and 100-nm wires are 12.8 nm and 0.2248 GPa and 22.8 nm and 0.1359 GPa, which changed to 16.1 nm and 1.0307 GPa and 47.5 nm and 1.1677 GPa after annealing at 873 K in ultrahigh vacuum (UHV), respectively. Micro-Raman spectroscopy showed that the increase in E2 (high) phonon frequency corresponds to much higher compressive stresses in ultrathin NW arrays. The minimum-maximum magnetization magnitude for the as-grown ultrathin and thin NW arrays are approximately 8.45 × 10−3 to 8.10 × 10−3 emu/g and approximately 2.22 × 10−7 to 2.190 × 10−7 emu/g, respectively. The magnetization in 15-nm NW arrays is about 4 orders of magnitude higher than that in the 100 nm arrays but can be reduced greatly by the UHV annealing. The origin of ultrathin and thin NW array ferromagnetism may be the exchange interactions between localized electron spin moments resulting from oxygen vacancies at the surfaces of ZnO NWs. The n-type conductivity of 15-nm NW array is higher by about a factor of 2 compared to that of the 100-nm ZnO NWs, and both can be greatly enhanced by UHV annealing. The ability to tune the stresses and the structural and relative occupancies of ZnO NWs in a wide range by annealing has

  11. Development of Ohmic nanocontacts via surface modification for nanowire-based electronic and optoelectronic devices: ZnO nanowires as an example.

    PubMed

    He, Jr-Hau; Ke, Jr-Jian; Chang, Pei-Hsin; Tsai, Kun-Tong; Yang, P C; Chan, I-Min

    2012-06-07

    We demonstrated a nanocontacting scheme using a focus ion beam (FIB) system without further heat treatment for ZnO nanowires. This scheme includes Ga ion surface modification and direct-write Pt deposition induced by Ga ion, leading to an Ohmic nanocontact with a specific contact resistance as low as 2.5 × 10(-6)Ω cm(2). Temperature-dependent measurements show that the transport of the FIB-Pt contact on the ZnO nanowire with local surface modification is governed by field emission tunneling. Taking advantage of area-selected and room-temperature processes, Ga ion surface modification and direct-write Pt deposition using a FIB system demonstrates a feasible Ohmic scheme.

  12. In-situ Biasing and Off-axis Electron Holography of a ZnO Nanowire.

    PubMed

    den Hertog, Martien; Donatini, Fabrice; McLeod, Robert; Monroy, Eva; Sartel, Corinne; Sallet, Vincent; Pernot, Julien

    2017-10-10

    Quantitative characterization of electrically active dopants and surface charges in nano-objects is challenging, since most characterization techniques using electrons, ions or field ionization effects study the chemical presence of dopants, which are not necessarily electrically active. We perform cathodoluminescence and voltage contrast experiments on a contacted and biased ZnO nanowire with a Schottky contact and measure the depletion length as a function of reverse bias. We compare these results with state-of-the-art off-axis electron holography in combination with electrical in-situ biasing on the same nanowire. The extension of the depletion length under bias observed in scanning electron microscopy based techniques is unusual as it follows a linear rather than square root dependence, and is therefore difficult to model by bulk equations or finite element simulations. In contrast, the analysis of the axial depletion length observed by holography may be compared with three-dimensional simulations, which allows estimating an n-doping level of 1×10<sup>18</sup> cm<sup>-3</sup> and negative sidewall surface charge of 2.5×10<sup>12</sup> cm<sup>-2</sup> of the nanowire, resulting in a radial surface depletion to a depth of 36 nm. We found excellent agreement between the simulated diameter of the undepleted core and the active thickness observed in the experimental data. By combining TEM holography experiments and finite element simulation of the NW electrostatics, the bulk-like character of the nanowire core is revealed. © 2017 IOP Publishing Ltd.

  13. P-Cu2O/n-ZnO nanowires on ITO glass for solar cells.

    PubMed

    Zhang, Jin; Que, Wenxiu; Zhong, Peng; Zhu, Gangqiang

    2010-11-01

    In this paper, the fabrication and characterization of a heterojunction solar cell based on p-Cu2O/n-ZnO nanowires on ITO glass are presented. ZnO aligned nanocrystal seed layer is firstly prepared by RF magnetron sputtering technique, and then vertical ZnO nanowire arrays with an acicular crystal structure are obtained by using a chemical bath deposition processing. The results indicate that the ZnO nanowires with a diameter of about 50 nm and 500 nm in length can be easily obtained. The absorption and transmittance of the ZnO nanowires are studied. It is also noted that the Cu2O can fill well into the space between ZnO nanowires by an electrodeposition process. Furthermore, the effect of the Cu2O orientation on the cell performance is also presented.

  14. Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate.

    PubMed

    Hong, Sukjoon; Yeo, Junyeob; Manorotkul, Wanit; Kang, Hyun Wook; Lee, Jinhwan; Han, Seungyong; Rho, Yoonsoo; Suh, Young Duk; Sung, Hyung Jin; Ko, Seung Hwan

    2013-05-07

    We develop a digital direct writing method for ZnO NW micro-patterned growth on a large scale by selective laser decomposition of zinc acetate. For ZnO NW growth, by replacing the bulk heating with the scanning focused laser as a fully digital local heat source, zinc acetate crystallites can be selectively activated as a ZnO seed pattern to grow ZnO nanowires locally on a larger area. Together with the selective laser sintering process of metal nanoparticles, more than 10,000 UV sensors have been demonstrated on a 4 cm × 4 cm glass substrate to develop all-solution processible, all-laser mask-less digital fabrication of electronic devices including active layer and metal electrodes without any conventional vacuum deposition, photolithographic process, premade mask, high temperature and vacuum environment.

  15. Well-Aligned Arrays of Vertically Oriented ZnO Nanorod Films for Photocatalytic Degradation of Textile Dye

    NASA Astrophysics Data System (ADS)

    Nasr-Esfahani, Mojtaba; Nekoubin, Amin

    2011-05-01

    Well-aligned hexagonal ZnO nanorods arrays were synthesized via mild hydrothermal method under different conditions. A two-step approach was employed for the epitaxial growth of ZnO. First a ZnO seed layer was prepared by spin-coating process and then ZnO nanorods were deposited on it. The influences of growth time on the surface morphology, length, diameters and phase structure of ZnO rods films were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The photocatalytic degradation of X6G an anionic monoazo dye, in aqueous solutions, was investigated and the effects of hydrothermal process time were examined. The results showed that the ZnO nonorods film hydrothermal treated for 4 h have a very high photocatalytic performance.

  16. A rapid synthesis/growth process producing massive ZnO nanowires for humidity and gas sensing

    NASA Astrophysics Data System (ADS)

    Hsu, Nai-Feng; Chung, Tien-Kan

    2014-09-01

    We report a rapid and simple process to massively synthesize/grow ZnO nanowires capable of manufacturing massive humidity/gas sensors. The process utilizing a chemical solution deposition with an annealing process (heating in vacuum without gas) is capable of producing ZnO nanowires within an hour. Through depositing the ZnO nanowires on the top of a Pt-interdigitated-electrode/SiO2/Si-Wafer, a humidity/gas-hybrid sensor is fabricated. The humidity sensitivity (i.e., ratio of the electrical resistance of the sensor at 11-95 % relative humidity level) is approximately 104. The response and recovery time with the humidity changing from 11 to 95 % directly and reversely is 6 and 10 s, respectively. The gas sensitivity (i.e., ratio of electrical resistance of the sensor under the air to vaporized ethanol) is increased from 2 to 56 when the concentration of the ethanol is increased from 40 to 600 ppm. Both the response and recovery times are less than 15 s for the gas sensor. These results show the sensor utilizing the nanowires exhibits excellent humidity and gas sensing.

  17. Investigation of Co-Doped ZnO Nanowires by X-ray Absorption Spectroscopy and Ab Initio Simulation

    NASA Astrophysics Data System (ADS)

    Chu, Manh Hung; Nguyen, Van Duy; Nguyen, Duc Hoa; Nguyen, Van Hieu

    2017-01-01

    The local structure of single room- and high-temperature Co-implanted ZnO nanowires with subsequent thermal annealing has been studied using hard-x-ray techniques in combination with ab initio Zn K-edge x-ray absorption near-edge structure (XANES) simulations. X-ray fluorescence data reveal a homogeneous distribution of Co atoms/ions with concentration of about 0.1 at.% to 0.3 at.% in the nanowires. XANES data indicate substitutional incorporation of Co2+ ions at Zn sites in both types of nanowire. Improved structural order around Co atoms is obtained in nanowires with high-temperature ion implantation followed by thermal annealing. The ab initio Zn K-edge simulations not only confirm recovery of implantation-induced damage in the ZnO host lattice by the thermal annealing process, but also assist in studying the effect of oxygen vacancies in the Zn K-edge XANES spectra. Microphotoluminescence data certify that high-temperature ion implantation with subsequent thermal annealing is an effective approach to achieve the strongest optical activation of Co ions and good energy transfer to Co ions from the ZnO host matrix.

  18. Investigation of Co-Doped ZnO Nanowires by X-ray Absorption Spectroscopy and Ab Initio Simulation

    NASA Astrophysics Data System (ADS)

    Chu, Manh Hung; Nguyen, Van Duy; Nguyen, Duc Hoa; Nguyen, Van Hieu

    2017-06-01

    The local structure of single room- and high-temperature Co-implanted ZnO nanowires with subsequent thermal annealing has been studied using hard-x-ray techniques in combination with ab initio Zn K-edge x-ray absorption near-edge structure (XANES) simulations. X-ray fluorescence data reveal a homogeneous distribution of Co atoms/ions with concentration of about 0.1 at.% to 0.3 at.% in the nanowires. XANES data indicate substitutional incorporation of Co2+ ions at Zn sites in both types of nanowire. Improved structural order around Co atoms is obtained in nanowires with high-temperature ion implantation followed by thermal annealing. The ab initio Zn K-edge simulations not only confirm recovery of implantation-induced damage in the ZnO host lattice by the thermal annealing process, but also assist in studying the effect of oxygen vacancies in the Zn K-edge XANES spectra. Microphotoluminescence data certify that high-temperature ion implantation with subsequent thermal annealing is an effective approach to achieve the strongest optical activation of Co ions and good energy transfer to Co ions from the ZnO host matrix.

  19. Effect of atomic layer deposition temperature on the performance of top-down ZnO nanowire transistors

    PubMed Central

    2014-01-01

    This paper studies the effect of atomic layer deposition (ALD) temperature on the performance of top-down ZnO nanowire transistors. Electrical characteristics are presented for 10-μm ZnO nanowire field-effect transistors (FETs) and for deposition temperatures in the range 120°C to 210°C. Well-behaved transistor output characteristics are obtained for all deposition temperatures. It is shown that the maximum field-effect mobility occurs for an ALD temperature of 190°C. This maximum field-effect mobility corresponds with a maximum Hall effect bulk mobility and with a ZnO film that is stoichiometric. The optimized transistors have a field-effect mobility of 10 cm2/V.s, which is approximately ten times higher than can typically be achieved in thin-film amorphous silicon transistors. Furthermore, simulations indicate that the drain current and field-effect mobility extraction are limited by the contact resistance. When the effects of contact resistance are de-embedded, a field-effect mobility of 129 cm2/V.s is obtained. This excellent result demonstrates the promise of top-down ZnO nanowire technology for a wide variety of applications such as high-performance thin-film electronics, flexible electronics, and biosensing. PMID:25276107

  20. Preparation of highly aligned silicon oxide nanowires with stable intensive photoluminescence

    NASA Astrophysics Data System (ADS)

    Duraia, El-Shazly M.; Mansurov, Z. A.; Tokmolden, S.; Beall, Gary W.

    2010-02-01

    In this work we report the successful formation of highly aligned vertical silicon oxide nanowires. The source of silicon was from the substrate itself without any additional source of silicon. X-ray measurement demonstrated that our nanowires are amorphous. Photoluminescence measurements were conducted through 18 months and indicated that there is a very good intensive emission peaks near the violet regions. The FTIR measurements indicated the existence of peaks at 463, 604, 795 and a wide peak at 1111 cm -1 and this can be attributed to Si-O-Si and Si-O stretching vibrations. We also report the formation of the octopus-like silicon oxide nanowires and the growth mechanism of these structures was discussed.

  1. Dynamical formation of spatially localized arrays of aligned nanowires in plastic films with magnetic anisotropy.

    PubMed

    Fragouli, Despina; Buonsanti, Raffaella; Bertoni, Giovanni; Sangregorio, Claudio; Innocenti, Claudia; Falqui, Andrea; Gatteschi, Dante; Cozzoli, Pantaleo Davide; Athanassiou, Athanassia; Cingolani, Roberto

    2010-04-27

    We present a simple technique for magnetic-field-induced formation, assembling, and positioning of magnetic nanowires in a polymer film. Starting from a polymer/iron oxide nanoparticle casted solution that is allowed to dry along with the application of a weak magnetic field, nanocomposite films incorporating aligned nanocrystal-built nanowire arrays are obtained. The control of the dimensions of the nanowires and of their localization across the polymer matrix is achieved by varying the duration of the applied magnetic field, in combination with the evaporation dynamics. These multifunctional anisotropic free-standing nanocomposite films, which demonstrate high magnetic anisotropy, can be used in a wide field of technological applications, ranging from sensors to microfluidics and magnetic devices.

  2. Field emission from in situ-grown vertically aligned SnO2 nanowire arrays

    PubMed Central

    2012-01-01

    Vertically aligned SnO2 nanowire arrays have been in situ fabricated on a silicon substrate via thermal evaporation method in the presence of a Pt catalyst. The field emission properties of the SnO2 nanowire arrays have been investigated. Low turn-on fields of 1.6 to 2.8 V/μm were obtained at anode-cathode separations of 100 to 200 μm. The current density fluctuation was lower than 5% during a 120-min stability test measured at a fixed applied electric field of 5 V/μm. The favorable field-emission performance indicates that the fabricated SnO2 nanowire arrays are promising candidates as field emitters. PMID:22330800

  3. Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate

    NASA Astrophysics Data System (ADS)

    Hong, Sukjoon; Yeo, Junyeob; Manorotkul, Wanit; Kang, Hyun Wook; Lee, Jinhwan; Han, Seungyong; Rho, Yoonsoo; Suh, Young Duk; Sung, Hyung Jin; Ko, Seung Hwan

    2013-04-01

    We develop a digital direct writing method for ZnO NW micro-patterned growth on a large scale by selective laser decomposition of zinc acetate. For ZnO NW growth, by replacing the bulk heating with the scanning focused laser as a fully digital local heat source, zinc acetate crystallites can be selectively activated as a ZnO seed pattern to grow ZnO nanowires locally on a larger area. Together with the selective laser sintering process of metal nanoparticles, more than 10 000 UV sensors have been demonstrated on a 4 cm × 4 cm glass substrate to develop all-solution processible, all-laser mask-less digital fabrication of electronic devices including active layer and metal electrodes without any conventional vacuum deposition, photolithographic process, premade mask, high temperature and vacuum environment.We develop a digital direct writing method for ZnO NW micro-patterned growth on a large scale by selective laser decomposition of zinc acetate. For ZnO NW growth, by replacing the bulk heating with the scanning focused laser as a fully digital local heat source, zinc acetate crystallites can be selectively activated as a ZnO seed pattern to grow ZnO nanowires locally on a larger area. Together with the selective laser sintering process of metal nanoparticles, more than 10 000 UV sensors have been demonstrated on a 4 cm × 4 cm glass substrate to develop all-solution processible, all-laser mask-less digital fabrication of electronic devices including active layer and metal electrodes without any conventional vacuum deposition, photolithographic process, premade mask, high temperature and vacuum environment. Electronic supplementary information available. See DOI: 10.1039/c3nr34346d

  4. In situ growth of a ZnO nanowire network within a TiO(2) nanoparticle film for enhanced dye-sensitized solar cell performance.

    PubMed

    Bai, Yang; Yu, Hua; Li, Zhen; Amal, Rose; Lu, Gao Qing Max; Wang, Lianzhou

    2012-11-14

    ZnO nanowire networks featuring excellent charge transport and light scattering properties are grown in situ within TiO(2) films. The resultant TiO(2) /ZnO composites, used as photoanodes, remarkably enhance the overall conversion efficiency of dye-sensitized solar cells (DSSCs) by 26.9%, compared to that of benchmark TiO(2) films.

  5. Towards a full integration of vertically aligned silicon nanowires in MEMS using silane as a precursor.

    PubMed

    Gadea, G; Morata, A; Santos, J D; Dávila, D; Calaza, C; Salleras, M; Fonseca, L; Tarancón, A

    2015-05-15

    Silicon nanowires present outstanding properties for electronics, energy, and environmental monitoring applications. However, their integration into microelectromechanical systems (MEMS) is a major issue so far due to low compatibility with mainstream technology, which complicates patterning and controlled morphology. This work addresses the growth of 〈111〉 aligned silicon nanowire arrays fully integrated into standard MEMS processing by means of the chemical vapor deposition-vapor liquid solid method (CVD-VLS) using silane as a precursor. A reinterpretation of the galvanic displacement method is presented for selectively depositing gold nanoparticles of controlled size and shape. Moreover, a comprehensive analysis of the effects of synthesis temperature and pressure on the growth rate and alignment of nanowires is presented for the most common silicon precursor, i.e., silane. Compared with previously reported protocols, the redefined galvanic displacement together with a silane-based CVD-VLS growth methodology provides a more standard and low-temperature (<650 °C) synthesis scheme and a compatible route to reliably grow Si nanowires in MEMS for advanced applications.

  6. Controllable growth and characterization of highly aligned ZnO nanocolumnar thin films

    NASA Astrophysics Data System (ADS)

    Onuk, Zuhal; Rujisamphan, Nopporn; Murray, Roy; Bah, Mohamed; Tomakin, Murat; Shah, S. Ismat

    2017-02-01

    We investigated the effects of growth conditions during magnetron sputtering on the structural, morphological, and optical properties of nanostructured ZnO thin films. Undoped ZnO thin films are deposited onto p-type Si (100) and corning 7059 glass substrates by RF magnetron sputtering using a ZnO target in combination with various Ar-O2 sputtering gas mixtures at room temperature. The effect of the partial pressure of oxygen on the morphology of ZnO thin film structure and band alignment were investigated. Thickness, and therefore the growth rate of the samples measured from the cross-sectional SEM micrographs, is found to be strongly correlated with the oxygen partial pressure in the sputtering chamber. The optical transmittance spectrometry results show that the absorption edge shifts towards the longer wavelength at higher oxygen partial pressure. X-ray photoelectron spectroscopy (XPS) used for determining the surface chemical structure and valence band offsets show that conduction band can be controlled by changing the sputtering atmosphere.

  7. Probing the strain effect on near band edge emission of a curved ZnO nanowire via spatially resolved cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Xue, Haizhou; Pan, Nan; Li, Ming; Wu, Yukun; Wang, Xiaoping; Hou, J. G.

    2010-05-01

    Curved ZnO nanowires were deliberately prepared on a Si substrate and the strain effect on their near band edge (NBE) emission was investigated by spatially resolved cathodoluminescence (CL). By moving the electron beam step-by-step across individual curved nanowires and acquiring the CL spectra simultaneously, we found that the NBE emissions from the inner region of the curved nanowires with compressive strain show blueshift, while those from the outer region with tensile strain show redshift. Both the strains have been estimated from the local curvature by a geometrical model and have been further examined by high-resolution transmission electron microscopy. A nearly linear relation between the strain and the peak energy shift in NBE emission was obtained. The result indicates that the optical band gap of ZnO nanowire is quite sensitive to and can be readily modulated by the induced strain via simply curving the nanowire, which has potential applications for designing new optical-electromechanical (OEM) and flexible optoelectronic nanodevices.

  8. Hierarchical ZnO Nanowire Growth with Tunable Orientations on Versatile Substrates Using Atomic Layer Deposition Seeding

    SciTech Connect

    Bielinski, Ashley R.; Kazyak, Eric; Schleputz, Christian M.; Jung, Hee Joon; Wood, Kevin N.; Dasgupta, Neil P.

    2015-07-14

    The ability to synthesize semiconductor nanowires with deterministic and tunable control of orientation and morphology on a wide range of substrates, while high precision and repeatability are maintained, is a challenge currently faced for the development of many nanoscale material systems. Here we show that atomic layer deposition (ALD) presents a reliable method of surface and interfacial modification to guide nanowire orientation on a variety of substrate materials and geometries, including high-aspect-ratio, three-dimensional templates. We demonstrate control of the orientation and geometric properties of hydrothermally grown single crystalline ZnO nanowires via the deposition of a ZnO seed layer by ALD. The crystallographic texture and roughness of the seed layer result in tunable preferred nanowire orientations and densities for identical hydrothermal growth conditions. The structural and chemical relationship between the ALD layers and nanowires was investigated with synchrotron X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy to elucidate the underlying mechanisms of orientation and morphology control. The resulting control parameters were utilized to produce hierarchical nanostructures with tunable properties on a wide range of substrates, including vertical micropillars, paper fibers, porous polymer membranes, and biological substrates. This illustrates the power of ALD for interfacial engineering of heterogeneous material systems at the nanoscale, to provide a highly controlled and scalable seeding method for bottom-up synthesis of integrated nanosystems.

  9. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Demes, Thomas; Ternon, Céline; Morisot, Fanny; Riassetto, David; Legallais, Maxime; Roussel, Hervé; Langlet, Michel

    2017-07-01

    Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20-25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20-25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  10. Optical and Electrical Characteristics of Hybrid ZnO Nanowire/a-Si:H Solar Cells on Flexible Substrates under Mechanical Bending.

    PubMed

    Pathirane, Minoli K; Wong, William S

    2016-05-01

    Disordered 3-D hybrid ZnO nanowire/a-Si:H thin-film radial-junction solar cells are directly fabricated onto flexible substrates. A 41% reduction in optical reflectivity resulted in a 15% increase in the current density when the substrate is mechanically bent concave-up toward the incoming light. The light scattering of the nanowire devices was enhanced by decreasing the spacing between the nanowire solar cell by bending the substrate.

  11. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires

    SciTech Connect

    Sapkota, Keshab R.; Chen, Weimin; Maloney, F. Scott; Poudyal, Uma; Wang, Wenyong

    2016-10-14

    We report magnetoresistance (MR) manipulation and sign reversal induced by carrier concentration modulation in Mn-doped ZnO nanowires. At low temperatures positive magnetoresistance was initially observed. When the carrier concentration was increased through the application of a gate voltage, the magnetoresistance also increased and reached a maximum value. However, further increasing the carrier concentration caused the MR to decrease, and eventually an MR sign reversal from positive to negative was observed. An MR change from a maximum positive value of 25% to a minimum negative value of 7% was observed at 5 K and 50 KOe. The observed MR behavior was modeled by considering combined effects of quantum correction to carrier conductivity and bound magnetic polarons. Finally, this work could provide important insights into the mechanisms that govern magnetotransport in dilute magnetic oxides, and it also demonstrated an effective approach to manipulating magnetoresistance in these materials that have important spintronic applications.

  12. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires

    SciTech Connect

    Sapkota, Keshab R.; Chen, Weimin; Maloney, F. Scott; Poudyal, Uma; Wang, Wenyong

    2016-10-14

    We report magnetoresistance (MR) manipulation and sign reversal induced by carrier concentration modulation in Mn-doped ZnO nanowires. At low temperatures positive magnetoresistance was initially observed. When the carrier concentration was increased through the application of a gate voltage, the magnetoresistance also increased and reached a maximum value. However, further increasing the carrier concentration caused the MR to decrease, and eventually an MR sign reversal from positive to negative was observed. An MR change from a maximum positive value of 25% to a minimum negative value of 7% was observed at 5 K and 50 KOe. The observed MR behavior was modeled by considering combined effects of quantum correction to carrier conductivity and bound magnetic polarons. This work could provide important insights into the mechanisms that govern magnetotransport in dilute magnetic oxides, and it also demonstrated an effective approach to manipulating magnetoresistance in these materials that have important spintronic applications.

  13. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires

    PubMed Central

    Sapkota, Keshab R.; Chen, Weimin; Maloney, F. Scott; Poudyal, Uma; Wang, Wenyong

    2016-01-01

    We report magnetoresistance (MR) manipulation and sign reversal induced by carrier concentration modulation in Mn-doped ZnO nanowires. At low temperatures positive magnetoresistance was initially observed. When the carrier concentration was increased through the application of a gate voltage, the magnetoresistance also increased and reached a maximum value. However, further increasing the carrier concentration caused the MR to decrease, and eventually an MR sign reversal from positive to negative was observed. An MR change from a maximum positive value of 25% to a minimum negative value of 7% was observed at 5 K and 50 KOe. The observed MR behavior was modeled by considering combined effects of quantum correction to carrier conductivity and bound magnetic polarons. This work could provide important insights into the mechanisms that govern magnetotransport in dilute magnetic oxides, and it also demonstrated an effective approach to manipulating magnetoresistance in these materials that have important spintronic applications. PMID:27739442

  14. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires.

    PubMed

    Sapkota, Keshab R; Chen, Weimin; Maloney, F Scott; Poudyal, Uma; Wang, Wenyong

    2016-10-14

    We report magnetoresistance (MR) manipulation and sign reversal induced by carrier concentration modulation in Mn-doped ZnO nanowires. At low temperatures positive magnetoresistance was initially observed. When the carrier concentration was increased through the application of a gate voltage, the magnetoresistance also increased and reached a maximum value. However, further increasing the carrier concentration caused the MR to decrease, and eventually an MR sign reversal from positive to negative was observed. An MR change from a maximum positive value of 25% to a minimum negative value of 7% was observed at 5 K and 50 KOe. The observed MR behavior was modeled by considering combined effects of quantum correction to carrier conductivity and bound magnetic polarons. This work could provide important insights into the mechanisms that govern magnetotransport in dilute magnetic oxides, and it also demonstrated an effective approach to manipulating magnetoresistance in these materials that have important spintronic applications.

  15. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Sapkota, Keshab R.; Chen, Weimin; Maloney, F. Scott; Poudyal, Uma; Wang, Wenyong

    2016-10-01

    We report magnetoresistance (MR) manipulation and sign reversal induced by carrier concentration modulation in Mn-doped ZnO nanowires. At low temperatures positive magnetoresistance was initially observed. When the carrier concentration was increased through the application of a gate voltage, the magnetoresistance also increased and reached a maximum value. However, further increasing the carrier concentration caused the MR to decrease, and eventually an MR sign reversal from positive to negative was observed. An MR change from a maximum positive value of 25% to a minimum negative value of 7% was observed at 5 K and 50 KOe. The observed MR behavior was modeled by considering combined effects of quantum correction to carrier conductivity and bound magnetic polarons. This work could provide important insights into the mechanisms that govern magnetotransport in dilute magnetic oxides, and it also demonstrated an effective approach to manipulating magnetoresistance in these materials that have important spintronic applications.

  16. Improved solar cell based on ZnO nanowires and CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Nadarajah, Athavan; Word, Robert C.; Konenkamp, Rolf

    2010-03-01

    We report a solar cell nanostructure that incorporates CdSe quantum dots embedded in a ZnO nanowire film and a hole-conducting polymer layer. This arrangement allows for enhanced light absorption and efficient collection of the carriers. Microscopic studies show the conversion of CdSe quantum dots into an inter-connected and continuous polycrystalline thin film upon annealing in cadmium chloride ambient. This structural change of the quantum dot layer destroys the quantum confinement and improves the charge transport in the layer significantly. It also provides for improved charge transfer to the adjacent contacting layers. The optimized solar cell exhibits an external quantum efficiency of 65 percent and an energy conversion efficiency above 2 percent.

  17. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires

    DOE PAGES

    Sapkota, Keshab R.; Chen, Weimin; Maloney, F. Scott; ...

    2016-10-14

    We report magnetoresistance (MR) manipulation and sign reversal induced by carrier concentration modulation in Mn-doped ZnO nanowires. At low temperatures positive magnetoresistance was initially observed. When the carrier concentration was increased through the application of a gate voltage, the magnetoresistance also increased and reached a maximum value. However, further increasing the carrier concentration caused the MR to decrease, and eventually an MR sign reversal from positive to negative was observed. An MR change from a maximum positive value of 25% to a minimum negative value of 7% was observed at 5 K and 50 KOe. The observed MR behavior wasmore » modeled by considering combined effects of quantum correction to carrier conductivity and bound magnetic polarons. Finally, this work could provide important insights into the mechanisms that govern magnetotransport in dilute magnetic oxides, and it also demonstrated an effective approach to manipulating magnetoresistance in these materials that have important spintronic applications.« less

  18. Direct observation of Li diffusion in Li-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Li, Guohua; Yu, Lei; Hudak, Bethany M.; Chang, Yao-Jen; Baek, Hyeonjun; Sundararajan, Abhishek; Strachan, Douglas R.; Yi, Gyu-Chul; Guiton, Beth S.

    2016-05-01

    The direct observation of Li diffusion in Li-doped zinc oxide nanowires (NWs) was realized by using in situ heating in the scanning transmission electron microscope (STEM). A continuous increase of low atomic mass regions within a single NW was observed between 200 °C and 600 °C when heated in vacuum, which was explained by the conversion of interstitial to substitutional Li in the ZnO NW host lattice. A kick-out mechanism is introduced to explain the migration and conversion of the interstitial Li (Lii) to Zn-site substitutional Li (LiZn), and this mechanism is verified with low-temperature (11 K) photoluminescence measurements on as-grown and annealed Li-doped zinc oxide NWs, as well as the observation of an increase of NW surface roughing with applied bias.

  19. Plasma enhanced multistate storage capability of single ZnO nanowire based memory

    SciTech Connect

    Lai, Yunfeng Xin, Pucong; Cheng, Shuying; Yu, Jinling; Zheng, Qiao

    2015-01-19

    Multiple-state storage (MSS) is common for resistive random access memory, but the effects of plasma treatment on the MSS and the switching properties have been scarcely investigated. We have demonstrated a stable four-state storage capability of single zinc oxide nanowire (ZnO NW) treated by argon plasma. The electrical switching is attributed to the electron trapping and detrapping from the oxygen vacancies (V{sub o}s). The MSS relates to the electrical-thermal induced distribution of the V{sub o}s which determines electron transport behavior to show different resistance states. Additionally, programming (set and reset) voltages decrease with plasma treatment due to the thickness modulation of the interface barrier.

  20. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces.

    PubMed

    Tong, Lianming; Miljković, Vladimir D; Käll, Mikael

    2010-01-01

    We demonstrate optical alignment and rotation of individual plasmonic nanostructures with lengths from tens of nanometers to several micrometers using a single beam of linearly polarized near-infrared laser light. Silver nanorods and dimers of gold nanoparticles align parallel to the laser polarization because of the high long-axis dipole polarizability. Silver nanowires, in contrast, spontaneously turn perpendicular to the incident polarization and predominantly attach at the wire ends, in agreement with electrodynamics simulations. Wires, rods, and dimers all rotate if the incident polarization is turned. In the case of nanowires, we demonstrate spinning at an angular frequency of approximately 1 Hz due to transfer of spin angular momentum from circularly polarized light.

  1. Growth of Well-Aligned ZnO Nanorod Arrays and Their Application for Photovoltaic Devices

    NASA Astrophysics Data System (ADS)

    Yuan, Zhaolin; Yao, Juncai

    2017-07-01

    We have fabricated well-aligned ZnO nanorod arrays (ZNRAs) on indium tin oxide-coated glass substrates by a facile chemical bath deposition method. We used field-emission scanning electron microscope, x-ray diffraction and UV-Vis absorption spectroscopy to study the morphology, crystalline structure and optical absorption of the fabricated ZNRAs, respectively. The results showed that ZnO nanorods stood almost perpendicularly on the substrate, were about 30-50 nm in diameter and 800-900 nm in length, and were wurtzite-structured (hexagonal) ZnO. In addition, well-aligned ZNRAs exhibited a weak absorption in the visible region and had an optical band gap value of 3.28 eV. Furthermore, a hybrid ZNRAs/polymer photovoltaic device was made, under 1 sun AM 1.5 illumination (light intensity, ˜100 mW/cm2), and the device showed an open circuit voltage (V oc) of 0.32 V, a short circuit current density (J sc) of 7.67 mA/cm2, and a fill factor (FF) of 0.37, yielding an overall power conversion efficiency of 0.91%. Also, the exciton dissociation and transportation processes of charge carriers in the device under illumination were explained according to its current density-voltage (J-V) curve and the energy level diagram.

  2. Transmission electron microscopy of solution-processed, intrinsic and Al-doped ZnO nanowires for transparent electrode fabrication.

    PubMed

    Kusinski, G J; Jokisaari, J R; Noriega, R; Goris, L; Donovan, M; Salleo, A

    2010-03-01

    A solution-based chemistry was used to synthesize intrinsic and Al-doped (1% and 5% nominal atomic concentration of Al) ZnO nanostructures. The nanowires were grown at 300 degrees C in trioctylamine by dissolving Zn acetate and Al acetate. Different doping conditions gave rise to different nanoscale morphologies. The effect of a surfactant (oleic acid) was also investigated. An electron microscopy study correlating morphology, aspect ratio and doping of the individual ZnO wires to the electrical properties of the spin coated films is presented. HRTEM revealed single crystalline [0001] wires.

  3. Direct Writing of Patterned, Lead-Free Nanowire Aligned Flexible Piezoelectric Device.

    PubMed

    Gao, Meng; Li, Lihong; Li, Wenbo; Zhou, Haihua; Song, Yanlin

    2016-08-01

    A high-performance flexible piezoelectric nanogenerator (PNG) is fabricated by a direct writing method, which acquires both patterned piezoelectric structure and aligned piezoelectric nanowires simultaneously. The voltage output of the as-prepared PNG is nearly 400% compared with that of the traditional spin-coated device due to the effective utilization of stress. This facile printing approach provides an efficient strategy for significant improvement of the piezoresponse.

  4. Matrix replacement route to vertically aligned nickel nanowire array/polydimethylsiloxane nanocomposite film

    NASA Astrophysics Data System (ADS)

    Meng, Xin; Zhou, Liang-Tian; Zhu, Ji-Xiang; Song, Jie; Wang, Xuan-Rui; Qiao, Zheng-Ping

    2008-12-01

    Vertically aligned magnetic anisotropic nickel (Ni) nanowire (NW) array/polydimethylsiloxane (PDMS) film was prepared from (Ni NW array)/anodic aluminum oxide by a simple matrix replacement route. The main challenge is to preserve the parallelly aligned Ni NW during replacement. The diameter and thickness of the as-prepared Ni NW and the Ni NW array/PDMS film are 8 mm and 60 μm, respectively. The magnetic property measurement shows that the film has remarkably enhanced coercivity and remanence ratio compared to that of bulk nickel and exhibits perpendicular magnetic anisotropy.

  5. Quantitative and simultaneous analysis of the polarity of polycrystalline ZnO seed layers and related nanowires grown by wet chemical deposition.

    PubMed

    Guillemin, Sophie; Parize, Romain; Carabetta, Joseph; Cantelli, Valentina; Albertini, David; Gautier, Brice; Brémond, Georges; Fong, Dillon D; Renevier, Hubert; Consonni, Vincent

    2017-03-03

    The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscale-engineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol-gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 10(7) nano-objects both on the macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscale-engineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.

  6. Quantitative and simultaneous analysis of the polarity of polycrystalline ZnO seed layers and related nanowires grown by wet chemical deposition

    NASA Astrophysics Data System (ADS)

    Guillemin, Sophie; Parize, Romain; Carabetta, Joseph; Cantelli, Valentina; Albertini, David; Gautier, Brice; Brémond, Georges; Fong, Dillon D.; Renevier, Hubert; Consonni, Vincent

    2017-03-01

    The polarity in ZnO nanowires is an important issue since it strongly affects surface configuration and reactivity, nucleation and growth, electro-optical properties, and nanoscale-engineering device performances. However, measuring statistically the polarity of ZnO nanowire arrays grown by chemical bath deposition and elucidating its correlation with the polarity of the underneath polycrystalline ZnO seed layer grown by the sol–gel process represents a major difficulty. To address that issue, we combine resonant x-ray diffraction (XRD) at Zn K-edge using synchrotron radiation with piezoelectric force microscopy and polarity-sensitive chemical etching to statistically investigate the polarity of more than 107 nano-objects both on the macroscopic and local microscopic scales, respectively. By using high temperature annealing under an argon atmosphere, it is shown that the compact, highly c-axis oriented ZnO seed layer is more than 92% Zn-polar and that only a few small O-polar ZnO grains with an amount less than 8% are formed. Correlatively, the resulting ZnO nanowires are also found to be Zn-polar, indicating that their polarity is transferred from the c-axis oriented ZnO grains acting as nucleation sites in the seed layer. These findings pave the way for the development of new strategies to form unipolar ZnO nanowire arrays as a requirement for a number of nanoscale-engineering devices like piezoelectric nanogenerators. They also highlight the great advantage of resonant XRD as a macroscopic, non-destructive method to simultaneously and statistically measure the polarity of ZnO nanowire arrays and of the underneath ZnO seed layer.

  7. ZnO nanowire arrays coating on TiO2 nanoparticles as a composite photoanode for a high efficiency DSSC.

    PubMed

    Wang, Meili; Wang, Yan; Li, Jingbo

    2011-10-28

    A novel composite photoanode with ZnO nanowire arrays coating on the top of TiO(2) nanoparticles is fabricated, and an efficiency of 4.52% is achieved for the composite cell, far higher than both 0.90% of the ZnO nanowire cell and 3.56% of the TiO(2) nanoparticle cell. The improved efficiency is resulted from the high surface area of nanoparticles, as well as fast electron transport and light scattering effect of nanowires.

  8. Raman silent modes in vertically aligned undoped ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Sundara Venkatesh, P.; Ramakrishnan, V.; Jeganathan, K.

    2016-01-01

    We report the observation of Raman silent modes of B1low (276 cm-1) and B1high (582 cm-1) in vertically aligned ZnO nanorods due to the breakdown of translational symmetry. The structural studies reveal the high crystalline nature of the ZnO nanorods on the lattice mismatched silicon substrates. The dominant donor bound exciton emission and the phonon replicas signify the good quality of the nanorods which substantiate that the anomalous Raman modes could not be attributed to the intrinsic point defects. Further, our results show that the observed silent modes of wurtzite-ZnO become Raman active due to the breakdown of the wave-vector selection rule by loss of translational symmetry induced by nanorods geometry.

  9. Polarization-dependent DANES study on vertically-aligned ZnO nanorods

    SciTech Connect

    Sun, Chengjun; Park, Chang-In; Jin, Zhenlan; Hwang, In-Hui; Heald, Steve M.; Han, Sang-Wook

    2016-01-01

    The local structural and local density of states of vertically-aligned ZnO nanorods were examined by using a polarization-dependent diffraction anomalous near edge structure (DANES) measurements from c-oriented ZnO nanorods at the Zn K edge with the incident x-ray electric field parallel and perpendicular to the x-ray momentum transfer direction. Orientation-dependent local structures determined by DANES were comparable with polarization-dependent EXAFS results. Unlike other techniques, polarization-dependent DANES can uniquely describe the orientation-dependent local structural properties and the local density of states of a selected element in selected-phased crystals of compounds or mixed-phased structures.

  10. Electric-field control of ferromagnetism in Mn-doped ZnO nanowires.

    PubMed

    Chang, Li-Te; Wang, Chiu-Yen; Tang, Jianshi; Nie, Tianxiao; Jiang, Wanjun; Chu, Chia-Pu; Arafin, Shamsul; He, Liang; Afsal, Manekkathodi; Chen, Lih-Juann; Wang, Kang L

    2014-01-01

    In this Letter, the electric-field control of ferromagnetism was demonstrated in a back-gated Mn-doped ZnO (Mn-ZnO) nanowire (NW) field-effect transistor (FET). The ZnO NWs were synthesized by a thermal evaporation method, and the Mn doping of 1 atom % was subsequently carried out in a MBE system using a gas-phase surface diffusion process. Detailed structural analysis confirmed the single crystallinity of Mn-ZnO NWs and excluded the presence of any precipitates or secondary phases. For the transistor, the field-effect mobility and n-type carrier concentration were estimated to be 0.65 cm(2)/V·s and 6.82 × 10(18) cm(-3), respectively. The magnetic hysteresis curves measured under different temperatures (T = 10-350 K) clearly demonstrate the presence of ferromagnetism above room temperature. It suggests that the effect of quantum confinements in NWs improves Tc, and meanwhile minimizes crystalline defects. The magnetoresistace (MR) of a single Mn-ZnO NW was observed up to 50 K. Most importantly, the gate modulation of the MR ratio was up to 2.5 % at 1.9 K, which implies the electric-field control of ferromagnetism in a single Mn-ZnO NW.

  11. Effects of Ni-coating on ZnO nanowires: A Raman scattering study

    NASA Astrophysics Data System (ADS)

    Filippov, S.; Wang, X. J.; Devika, M.; Koteeswara Reddy, N.; Tu, C. W.; Chen, W. M.; Buyanova, I. A.

    2013-06-01

    Structural properties of ZnO/Ni core/shell nanowires (NWs) are studied in detail by means of Raman spectroscopy. It is shown that formation of the Ni shell leads to passivation of surface states responsible for the observed enhanced intensity of the A1(LO) Raman mode of the bare ZnO NWs. It also causes appearance of 490 cm-1 and 710 cm-1 modes that are attributed to local vibrational modes of a defect/impurity (or defects/impurities). This defect is concluded to be preferably formed in annealed ZnO/Ni NWs and is unlikely to contain a Ni atom, as the same Raman modes were also reported for the Ni-free ZnO nanostructures. From our resonant Raman studies, we also show that the ZnO/Ni core/shell NWs exhibit an enhanced Raman signal with a multiline structure involving A1(LO). This observation is attributed to combined effects of an enhanced Fröhlich interaction at the ZnO/Ni heterointerface and coupling of the scattered light with local surface plasmons excited in the Ni shell. The plasmonic effect is also suggested to allow detection of carbon-related species absorbed at the surface of a single ZnO/Ni NW, promising for applications of such structures as efficient nano-sized gas sensors.

  12. Electronic structures and optical properties of GaN and ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Akiyama, T.; Freeman, A. J.; Nakamura, K.; Ito, T.

    2007-03-01

    GaN and ZnO are promising semiconductor materials that exhibit many outstanding physical and chemical properties. Recently, their one-dimensional nanowires (NWs) are also attracting much interest due to their significant potential for optoelectronic nano-devices; they always take the wurtizte structure while other compound semiconductor NWs also exhibit other polytypes. However, little is known about their electronic and optical properties. Here we investigate the electronic structures and optical properties of GaN and ZnO [0001] NWs by using the highly precise full-potential linearized augmented plane wave (FLAPW) method. Our calculations demonstrate that the band gap energy of both the unpassivated and passivated NWs becomes large compared with the bulk energy gap due to quantum confinement effects; surface states crucially affect the electronic structure of unpassivated NWs. Further, we find peculiar features of their dielectric functions that exhibit strong anisotropy in the calculated optical properties. Work supported by the U.S. NSF (through its MRSEC Program at NU). Zhong et al., Nano Lett. 3, 343 (2003); Ng et al., APL 82, 2023 (2003); Akiyama et al., JJAP 45, L275 (2006); PRB 73, 235308 (2006). Wimmer, Krakauer, Weinert, Freeman, PRB 24, 864 (1981).

  13. Passivation of surface states in the ZnO nanowire with thermally evaporated copper phthalocyanine for hybrid photodetectors

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Ding, Huaiyi; Wu, Yukun; Sui, Mengqiao; Lu, Wei; Wang, Bing; Su, Wenming; Cui, Zheng; Chen, Liwei

    2013-05-01

    The adsorption of O2/H2O molecules on the ZnO nanowire (NW) surface results in the long lifetime of photo-generated carriers and thus benefits ZnO NW-based ultraviolet photodetectors by suppressing the dark current and improving the photocurrent gain, but the slow adsorption process also leads to slow detector response time. Here we show that a thermally evaporated copper phthalocyanine film is effective in passivating surface trap states of ZnO NWs. As a result, the organic/inorganic hybrid photodetector devices exhibit simultaneously improved photosensitivity and response time. This work suggests that it could be an effective way in interfacial passivation using organic/inorganic hybrid structures.The adsorption of O2/H2O molecules on the ZnO nanowire (NW) surface results in the long lifetime of photo-generated carriers and thus benefits ZnO NW-based ultraviolet photodetectors by suppressing the dark current and improving the photocurrent gain, but the slow adsorption process also leads to slow detector response time. Here we show that a thermally evaporated copper phthalocyanine film is effective in passivating surface trap states of ZnO NWs. As a result, the organic/inorganic hybrid photodetector devices exhibit simultaneously improved photosensitivity and response time. This work suggests that it could be an effective way in interfacial passivation using organic/inorganic hybrid structures. Electronic supplementary information (ESI) available: Experimental section includes materials growth, device fabrication, device characterization and the measurement process. Supplementary results and discussion includes electrical properties of the ZnO NW/CuPc device, fitting functions and parameters of photoresponse. See DOI: 10.1039/c3nr01088k

  14. Adsorbed Molecules and Surface Treatment Effect on Optical Properties of ZnO Nanowires Grown by MOCVD

    NASA Astrophysics Data System (ADS)

    Jabri, S.; Souissi, H.; Sallet, V.; Lusson, A.; Meftah, A.; Galtier, P.; Oueslati, M.

    2017-07-01

    We have investigated the optical properties of ZnO nanowires grown by metalorganic chemical vapor deposition (MOCVD) with nitrous oxide (N2O) as oxygen precursor. Photoluminescence (PL) and Raman measurements showed the influence of adsorbed molecules on the optical properties. Low-temperature (4 K) PL studies on the surface exciton (SX) at 3.3660 eV elucidated the nature and origin of this emission. In particular, surface treatment by annealing at high temperature under inert gas reduced the emission intensity of SX. Raman vibrational spectra proved that presence of a considerable amount of adsorbed molecules on the surface of ZnO nanowires plays a key role in the occurrence of surface excitons.

  15. Investigation of novel heterojunction: P-type SnS coated n-type ZnO nanowire

    NASA Astrophysics Data System (ADS)

    Bu, Ian Y. Y.

    2015-12-01

    SnS coated ZnO nanowires heterojunctional solar cells were fabricated using a combination of hydrothermal synthesis and chemical bath deposition (CBD) method. The synthesized materials and devices were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), photoluminescence emission spectroscopy, Uv-Vis spectroscopy and electrical measurements. SEM imaging of the sample revealed that the CBD SnS coating bunches the underlying ZnO nanowires due to the large capillary force it experiences during the drying process. Both of the EDS and XRD measurements confirm the presence of SnS and SnO2. Optoelectronic measurement confirms that the fabricated device exhibit high absorbance (∼80%) and exhibit photovoltaic behaviour.

  16. Gate modulation of below-band-gap photoconductivity in ZnO nanowire field-effect-transistors

    NASA Astrophysics Data System (ADS)

    Cammi, Davide; Röder, Robert; Ronning, Carsten

    2014-10-01

    We investigated the modulation of the photoconductivity under below-band gap excitation in single ZnO nanowire field effect transistors. Light excitation at 550 nm does not induce any change in the drain-source current when the gate voltage is kept at Vgs = 0 V, but results in a current increase when it is set to Vgs = -50 V. At this negative value of the gate voltage we further investigated the photo-reaction in the below-band-gap range 400-800 nm, observing a qualitative similar profile for all the photo-current curves. These results were attributed to a local effect, suggesting that the change in conductivity is due to the release of electrons from interface states located between the ZnO nanowire active channel and the gate dielectric SiO2.

  17. Factors that determine and limit the resistivity of high-quality individual ZnO nanowires.

    PubMed

    Lord, Alex M; Maffeis, Thierry G; Walton, Alex S; Kepaptsoglou, Despoina M; Ramasse, Quentin M; Ward, Michael B; Köble, Jürgen; Wilks, Steve P

    2013-11-01

    Knowing and controlling the resistivity of an individual nanowire (NW) is crucial for the production of new sensors and devices. For ZnO NWs this is poorly understood; a 10(8) variation in resistivity has previously been reported, making the production of reproducible devices almost impossible. Here, we provide accurate resistivity measurements of individual NWs, using a four-probe scanning tunnelling microscope (STM), revealing a dependence on the NW dimensions. To correctly interpret this behaviour, an atomic level transmission electron microscopy technique was employed to study the structural properties of the NWs in relation to three growth techniques: hydrothermal, catalytic and non-catalytic vapour phase. All NWs were found to be defect free and structurally equivalent; those grown with a metallic catalyst were free from Au contamination. The resistivity measurements showed a distinct increase with decreasing NW diameter, independent of growth technique. The increasing resistivity at small NW diameters was attributed to the dominance of surface states removing electrons from the bulk. However, a fundamental variance in resistivity (10(2)) was observed and attributed to changes in occupied surface state density, an effect which is not seen with other NW materials such as Si. This is examined by a model to predict the effect of surface state occupancy on the measured resistivity and is confirmed with measurements after passivating the ZnO surface. Our results provide an understanding of the primary influence of the reactive nature of the surface and its dramatic effect on the electrical properties of ZnO NWs.

  18. Contact printing of horizontally-aligned p-type Zn₃P₂ nanowire arrays for rigid and flexible photodetectors.

    PubMed

    Yu, Gang; Liang, Bo; Huang, Hongtao; Chen, Gui; Liu, Zhe; Chen, Di; Shen, Guozhen

    2013-03-08

    Zn(3)P(2) is an important p-type semiconductor with the ability to detect almost all visible and ultraviolet light. By using the simple and efficient contact printing process, we reported the assembly of horizontally-aligned p-type Zn(3)P(2) nanowire arrays to be used as building blocks for high performance photodetectors. Horizontally-aligned Zn(3)P(2) nanowire arrays were first printed on silicon substrate to make thin-film transistors, exhibiting typical p-type transistor behavior with a high on/off ratio of 10(3). Besides, the Zn(3)P(2) nanowire array based devices showed a substantial response to illuminated lights with a wide range of wavelengths and densities. Flexible photodetectors were also fabricated by contact printing of horizontally-aligned Zn(3)P(2) nanowire arrays on flexible PET substrate, showing a comparable performance to the device on rigid silicon substrate.

  19. Energy Level Alignment at Aqueous GaN and ZnO Interfaces

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark S.; Kharche, Neerav; Muckerman, James T.

    2014-03-01

    Electronic energy level alignment at semiconductor-electrolyte interfaces is fundamental to electrochemical activity. Motivated in particular by the search for new materials that can be more efficient for photocatalysis, we develop a first principles method to calculate this alignment at aqueous interfaces and demonstrate it for the specific case of non-polar GaN and ZnO interfaces with water. In the first step, density functional theory (DFT) based molecular dynamics is used to sample the physical interface structure and to evaluate the electrostatic potential step at the interface. In the second step, the GW approach is used to evaluate the reference electronic energy level separately in the bulk semiconductor (valence band edge energy) and in bulk water (the 1b1 energy level), relative to the internal electrostatic energy reference. Use of the GW approach naturally corrects for errors inherent in the use of Kohn-Sham energy eigenvalues to approximate the electronic excitation energies in each material. With this predicted interface alignment, specific redox levels in water, with potentials known relative to the 1b1 level, can then be compared to the semiconductor band edge positions. Our results will be discussed in the context of experiments in which photoexcited GaN and ZnO drive the hydrogen evolution reaction. Research carried out at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.

  20. Impact of forward bias injection on minority carrier transport in p-type ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Flitsiyan, E.; Chernyak, L.; Casian, V.; Schneck, R.; Dashevsky, Z.; Chu, S.; Liu, J. L.

    2011-09-01

    Minority carrier diffusion length in p-type Sb-doped ZnO nanowires was measured as a function of temperature and forward bias injection duration. The minority carrier diffusion length displays a thermally activated length increase with the energy of 144 ± 5 meV. The forward bias injection exhibits an increase in diffusion length with the activation energy of 217 ± 20 meV, indicating the possible involvement of a SbZn-2VZn acceptor complex.

  1. Photovoltaic performance of Gallium-doped ZnO thin film/Si nanowires heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Akgul, Guvenc; Aksoy Akgul, Funda; Emrah Unalan, Husnu; Turan, Rasit

    2016-04-01

    In this work, photovoltaic performance of Ga-doped ZnO thin film/Si NWs heterojunction diodes was investigated. Highly dense and vertically well-aligned Si NW arrays were successfully synthesised on a p-type (1 0 0)-oriented Si wafer through cost-effective metal-assisted chemical etching technique. Ga-doped ZnO thin films were deposited onto Si NWs via radio frequency magnetron sputtering to construct three-dimensional heterostructures. Photovoltaic characteristics of the fabricated diodes were determined with current density (J)-voltage (V) measurements under simulated solar irradiation of AM 1.5 G. The optimal open-circuit voltage, short-circuit current density, fill factor and power conversion efficiency were found to be 0.37 V, 3.30 mA cm-2, 39.00 and 0.62%, respectively. Moreover, photovoltaic diodes exhibited relatively high external quantum efficiency over the broadband wavelengths between 350 and 1100 nm interval of the spectrum. The observed photovoltaic performance in this study clearly indicates that the investigated device structure composed of Ga-doped ZnO thin film/Si NWs heterojunctions could facilitate an alternative pathway for optoelectronic applications in future, and be a promising alternative candidate for high-performance low-cost new-generation photovoltaic diodes.

  2. High carrier concentration ZnO nanowire arrays for binder-free conductive support of supercapacitors electrodes by Al doping.

    PubMed

    Zheng, Xin; Sun, Yihui; Yan, Xiaoqin; Sun, Xu; Zhang, Guangjie; Zhang, Qian; Jiang, Yaru; Gao, Wenchao; Zhang, Yue

    2016-12-15

    Doping semiconductor nanowires (NWs) for altering their electrical and optical properties is a critical strategy for tailoring the performance of nanodevices. Here, we prepared in situ Al-doped ZnO nanowire arrays by using continuous flow injection (CFI) hydrothermal method to promote the conductivity. This reasonable method offers highly stable precursor concentration for doping that effectively avoid the appearance of the low conductivity ZnO nanosheets. Benefit from this, three orders of magnitude rise of the carrier concentration from 10(16)cm(-3) to 10(19)cm(-3) can be achieved compared with the common hydrothermal (CH) mothed in Mott-Schottky measurement. Possible effect of Al-doping was discussed by first-principle theory. On this basis, Al-doped ZnO nanowire arrays was developed as a binder-free conductive support for supercapacitor electrodes and high capacitance was triggered. It is owing to the dramatically decreased transfer resistance induced by the growing free-moving electrons and holes. Our results have a profound significance not merely in the controlled synthesis of other doping nanomaterials by co-precipitation method but also in the application of binder-free energy materials or other materials.

  3. Bioinspired preparation of ultrathin SiO(2) shell on ZnO nanowire array for ultraviolet-durable superhydrophobicity.

    PubMed

    Wang, Lingling; Zhang, Xintong; Fu, Yang; Li, Bing; Liu, Yichun

    2009-12-01

    ZnO nanowire (NW) array was conformally coated with an ultrathin SiO(2) shell by a bioinspired layer-by-layer deposition in order to obtain ultraviolet (UV)-durable superhydrophobic property. Uniform SiO(2) shell was prepared on ZnO NW by alternative reactive deposition of polyethylenimine and silicic acid. Despite the highly curved morphology of ZnO NW array, the thickness of SiO(2) shell increased linearly with the number of deposition cycles, with a thickness increment being of approximately 4.17 nm per deposition cycle. The SiO(2) shell only had a slight influence on the superhydrophobic property of ZnO NW array after modification with a monolayer of octadecyltrimethoxysilane (OTS). However, it greatly improved the UV durability of the superhydrophobic property of ZnO NW array due to the confinement effect of insulating SiO(2) layer on the photogenerated electron-hole pairs in ZnO NW.

  4. Epitaxial growth of ZnO Nanodisks with large exposed polar facets on nanowire arrays for promoting photoelectrochemical water splitting.

    PubMed

    Chen, Haining; Wei, Zhanhua; Yan, Keyou; Bai, Yang; Zhu, Zonglong; Zhang, Teng; Yang, Shihe

    2014-11-01

    Single-crystalline and branched 1D arrays, ZnO nanowires/nanodisks (NWs/NDs) arrays, are fabricated to significantly enhance the performance of photoelectrochemical (PEC) water splitting. The epitaxial growth of the ZnO NDs with large exposed polar facets on ZnO NWs exhibits a laminated structure, which dramatically increases the light scattering capacity of the NWs arrays, especially in the wavelength region around 400 nm. The ND branching of the 1D arrays in the epitaxial fashion not only increase surface area and light utilization, but also support fast charge transport, leading to the considerable increase of photocurrent. Moreover, the tiny size NDs can facilitate charge separation and reduce charge recombination, while the large exposed polar facets of NDs reduce the external potential bias needed for water splitting. These advantages land the ZnO NWs/NDs arrays a four times higher power conversion efficiency than the ZnO NWs arrays. By sensitizing the ZnO NWs/NDs with CdS and CdSe quantum dots, the PEC performance can be further improved. This work advocates a trunk/leaf in forest concept for the single-crystalline NWs/NDs in array with enlarged exposure of polar facets, which opens the way for optimizing light harvesting and charge separation and transport, and thus the PEC water splitting. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Gate-Tunable Spin Exchange Interactions and Inversion of Magnetoresistance in Single Ferromagnetic ZnO Nanowires.

    PubMed

    Modepalli, Vijayakumar; Jin, Mi-Jin; Park, Jungmin; Jo, Junhyeon; Kim, Ji-Hyun; Baik, Jeong Min; Seo, Changwon; Kim, Jeongyong; Yoo, Jung-Woo

    2016-04-26

    Electrical control of ferromagnetism in semiconductor nanostructures offers the promise of nonvolatile functionality in future semiconductor spintronics. Here, we demonstrate a dramatic gate-induced change of ferromagnetism in ZnO nanowire (NW) field-effect transistors (FETs). Ferromagnetism in our ZnO NWs arose from oxygen vacancies, which constitute deep levels hosting unpaired electron spins. The magnetic transition temperature of the studied ZnO NWs was estimated to be well above room temperature. The in situ UV confocal photoluminescence (PL) study confirmed oxygen vacancy mediated ferromagnetism in the studied ZnO NW FET devices. Both the estimated carrier concentration and temperature-dependent conductivity reveal the studied ZnO NWs are at the crossover of the metal-insulator transition. In particular, gate-induced modulation of the carrier concentration in the ZnO NW FET significantly alters carrier-mediated exchange interactions, which causes even inversion of magnetoresistance (MR) from negative to positive values. Upon sweeping the gate bias from -40 to +50 V, the MRs estimated at 2 K and 2 T were changed from -11.3% to +4.1%. Detailed analysis on the gate-dependent MR behavior clearly showed enhanced spin splitting energy with increasing carrier concentration. Gate-voltage-dependent PL spectra of an individual NW device confirmed the localization of oxygen vacancy-induced spins, indicating that gate-tunable indirect exchange coupling between localized magnetic moments played an important role in the remarkable change of the MR.

  6. Microstructural and optical properties of nanocrystalline ZnO deposited onto vertically aligned carbon nanotubes by physical vapor deposition

    SciTech Connect

    Borkar, Tushar; Chang, Won Seok; Hwang, Jun Yeon; Shepherd, Nigel D.; Banerjee, Rajarshi

    2012-10-15

    Nanocrystalline ZnO films with thicknesses of 5 nm, 10 nm, 20 nm, and 50 nm were deposited via magnetron sputtering onto the surface of vertically aligned multi-walled carbon nanotubes (MWCNTs). The ZnO/CNTs heterostructures were characterized by scanning electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. No structural degradation of the CNTs was observed and photoluminescence (PL) measurements of the nanostructured ZnO layers show that the optical properties of these films are typical of ZnO deposited at low temperatures. The results indicate that magnetron sputtering is a viable technique for growing heterostructures and depositing functional layers onto CNTs.

  7. Fe solubility, growth mechanism, and luminescence of Fe doped ZnO nanowires and nanorods grown by evaporation-deposition

    NASA Astrophysics Data System (ADS)

    Alemán, Belén; Ortega, Yanicet; García, José Ángel; Fernández, Paloma; Piqueras, Javier

    2011-07-01

    Fe doped ZnO nanowires, nanorods, and urchin-like nanostructures have been grown using an evaporation-deposition method with compacted mixtures of ZnS and Fe2O3 powders, with different Fe contents as precursors. Treatments at 950 °C under argon flow lead to the growth of iron doped nanowires, nanorods, and other nanostructures on the surface of the compacted sample. The incorporation of iron into the nanostructures has been investigated via energy dispersive spectroscopy as well as by cathodoluminescence in a scanning electron microscope and photoluminescence in an optical microscope. The iron content in the structures is limited to the range of 0.5-0.7 at.% and does not depend on the content in the precursor. Bright and dark field imaging and twist contour analysis via transmission electron microscopy support the possibility of a dislocation driven growth of the nanowires.

  8. Enhanced non-volatile resistive switching in suspended single-crystalline ZnO nanowire with controllable multiple states

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Pang, Wei; Zhang, Qing; Chen, Yan; Chen, Xuejiao; Feng, Zhihong; Yang, Jianhua; Zhang, Daihua

    2016-08-01

    Resistive switching nanostructures are a promising candidate for next-generation non-volatile memories. In this report, we investigate the switching behaviors of single-crystalline ZnO nanowires suspended in air. They exhibit significantly higher current density, lower switching voltage, and more pronounced multiple conductance states compared to nanowires in direct contact with substrate. We attribute the effect to enhanced Joule heating efficiency, reduced surface scattering, and more significantly, the positive feedback established between the current density and local temperature in the suspended nanowires. The proposed mechanism has been quantitatively examined by finite element simulations. We have also demonstrated an innovative approach to initiating the current-temperature mutual enhancement through illumination by ultraviolet light, which further confirmed our hypothesis and enabled even greater enhancement. Our work provides further insight into the resistive switching mechanism of single-crystalline one-dimensional nanostructures, and suggests an effective means of performance enhancement and device optimization.

  9. Enhanced non-volatile resistive switching in suspended single-crystalline ZnO nanowire with controllable multiple states.

    PubMed

    Zhang, Rui; Pang, Wei; Zhang, Qing; Chen, Yan; Chen, Xuejiao; Feng, Zhihong; Yang, Jianhua; Zhang, Daihua

    2016-06-27

    Resistive switching nanostructures are a promising candidate for next-generation non-volatile memories. In this report, we investigate the switching behaviors of single-crystalline ZnO nanowires suspended in air. They exhibit significantly higher current density, lower switching voltage, and more pronounced multiple conductance states compared to nanowires in direct contact with substrate. We attribute the effect to enhanced Joule heating efficiency, reduced surface scattering, and more significantly, the positive feedback established between the current density and local temperature in the suspended nanowires. The proposed mechanism has been quantitatively examined by finite element simulations. We have also demonstrated an innovative approach to initiating the current-temperature mutual enhancement through illumination by ultraviolet light, which further confirmed our hypothesis and enabled even greater enhancement. Our work provides further insight into the resistive switching mechanism of single-crystalline one-dimensional nanostructures, and suggests an effective means of performance enhancement and device optimization.

  10. In situ TEM and energy dispersion spectrometer analysis of chemical composition change in ZnO nanowire resistive memories.

    PubMed

    Huang, Yu-Ting; Yu, Shih-Ying; Hsin, Cheng-Lun; Huang, Chun-Wei; Kang, Chen-Fang; Chu, Fu-Hsuan; Chen, Jui-Yuan; Hu, Jung-Chih; Chen, Lien-Tai; He, Jr-Hau; Wu, Wen-Wei

    2013-04-16

    Resistive random-access memory (ReRAM) has been of wide interest for its potential to replace flash memory in the next-generation nonvolatile memory roadmap. In this study, we have fabricated the Au/ZnO-nanowire/Au nanomemory device by electron beam lithography and, subsequently, utilized in situ transmission electron microscopy (TEM) to observe the atomic structure evolution from the initial state to the low-resistance state (LRS) in the ZnO nanowire. The element mapping of LRS showing that the nanowire was zinc dominant indicating that the oxygen vacancies were introduced after resistance switching. The results provided direct evidence, suggesting that the resistance change resulted from oxygen migration.

  11. Passivation of surface states in the ZnO nanowire with thermally evaporated copper phthalocyanine for hybrid photodetectors.

    PubMed

    Chen, Qi; Ding, Huaiyi; Wu, Yukun; Sui, Mengqiao; Lu, Wei; Wang, Bing; Su, Wenming; Cui, Zheng; Chen, Liwei

    2013-05-21

    The adsorption of O2/H2O molecules on the ZnO nanowire (NW) surface results in the long lifetime of photo-generated carriers and thus benefits ZnO NW-based ultraviolet photodetectors by suppressing the dark current and improving the photocurrent gain, but the slow adsorption process also leads to slow detector response time. Here we show that a thermally evaporated copper phthalocyanine film is effective in passivating surface trap states of ZnO NWs. As a result, the organic/inorganic hybrid photodetector devices exhibit simultaneously improved photosensitivity and response time. This work suggests that it could be an effective way in interfacial passivation using organic/inorganic hybrid structures.

  12. Patterned growth of ZnO nanowires on flexible substrates for enhanced performance of flexible piezoelectric nanogenerators

    NASA Astrophysics Data System (ADS)

    Yang, Dechao; Qiu, Yu; Jiang, Qingyu; Guo, Zhaoshuai; Song, Wenbin; Xu, Jin; Zong, Yang; Feng, Qiuxia; Sun, Xiaoling

    2017-02-01

    Flexible piezoelectric nanogenerators (NGs) based on patterned growth of ZnO nanowires (PNWs) by the hydrothermal method are proposed for high-efficiency energy harvesting applications. The use of the PNWs in ZnO-based FPNGs results in a significant improvement in terms of the magnitude of the output currents of up to 6 times when compared with pristine ZnO NW-based FPNGs without patterned growth mode. The maximum output current was measured to be about 150 nA, which was enough to drive some micro/nanoelectronic devices. The improved output performance is mainly attributed to the patterned growth mode in FPNGs, which may significantly reduce the piezoelectric potential screening effect caused by free electrons in ZnO. This strategy may provide a highly promising platform as energy harvesting devices for viable industrial applications in portable/wearable nanodevices.

  13. Synthesis and stress relaxation of ZnO/Al-doped ZnO core-shell nanowires.

    PubMed

    Wang, Hong-Bo; Ma, Fei; Li, Qian-Qian; Dong, Ce-Zhou; Ma, Da-Yan; Wang, Hong-Tao; Xu, Ke-Wei

    2013-04-07

    Doping nanostructures is an effective method to tune their electrical and photoelectric properties. Taking ZnO nanowires (NWs) as a model system, we demonstrate that atomic layer deposition (ALD) can be adopted for the realization of a doping process by the homo-epitaxial growth of a doped shell on the NW core. The Al-doped ZnO NWs have a layered superlattice structure with dopants mainly occupying the interstitial positions. After annealing, Al(3+) ions diffuse into the ZnO matrix and occupy substitutional locations, which is desirable for dopant activation. The stress accumulated during epitaxial growth is relaxed by the nucleation of dislocations, dislocation dipoles and anti-phase boundaries. We note that the proposed method can be easily adopted for doping different types of nanostructures, and fabricating superlattices and multiple quantum wells on NWs in a controllable way.

  14. Versatile Particle-Based Route to Engineer Vertically Aligned Silicon Nanowire Arrays and Nanoscale Pores.

    PubMed

    Elnathan, Roey; Isa, Lucio; Brodoceanu, Daniel; Nelson, Adrienne; Harding, Frances J; Delalat, Bahman; Kraus, Tobias; Voelcker, Nicolas H

    2015-10-28

    Control over particle self-assembly is a prerequisite for the colloidal templating of lithographical etching masks to define nanostructures. This work integrates and combines for the first time bottom-up and top-down approaches, namely, particle self-assembly at liquid-liquid interfaces and metal-assisted chemical etching, to generate vertically aligned silicon nanowire (VA-SiNW) arrays and, alternatively, arrays of nanoscale pores in a silicon wafer. Of particular importance, and in contrast to current techniques, including conventional colloidal lithography, this approach provides excellent control over the nanowire or pore etching site locations and decouples nanowire or pore diameter and spacing. The spacing between pores or nanowires is tuned by adjusting the specific area of the particles at the liquid-liquid interface before deposition. Hence, the process enables fast and low-cost fabrication of ordered nanostructures in silicon and can be easily scaled up. We demonstrate that the fabricated VA-SiNW arrays can be used as in vitro transfection platforms for transfecting human primary cells.

  15. Electrical characteristics and rectification performance of wet chemically synthesized vertically aligned n-ZnO nanowire/p-Si heterojunction

    NASA Astrophysics Data System (ADS)

    Gayen, R. N.; Bhattacharyya, S. R.

    2016-03-01

    Vertically well-aligned n-ZnO nanowire (NW) thin films were deposited onto p-Si substrates by a two-step wet chemical technique to form a p-n heterojunction diode. The morphological and structural characteristics of the ZnO NW performed by scanning electron microscopy (SEM) and x-ray diffraction (XRD) revealed well-aligned h-ZnO NW with a wurtzite structure. A direct optical band gap of 3.30 eV was calculated from the transmittance trace obtained using a UV-VIS-NIR spectrophotometer. The electrical characteristics of the heterojunction diode were studied by capacitance-voltage (C-V) measurement at room temperature, and current-voltage-temperature (I-V-T) measurements performed in the 300-400 K range. The C-V measurements yield a carrier concentration of 1.3  ×  1016 c.c.-1 for the ZnO NW thin film. The ideality factor (n) was found to decrease, while the barrier height (φ b0) increased with the increase in temperature, when calculated using a thermionic emission model from the non-linear I-V-T plots. The series resistance (R s) calculated by the Cheung-Cheung method decreased with the increase in temperature. The mean barrier height (0.718 eV) and modified Richardson constant (28.4 A cm-2 K-2) calculated using a Gaussian distribution of barrier heights (considering barrier height inhomogeneity) were closer to the theoretical value than those calculated from the linear approximation of the ln(I s/T 2) versus 1000/T plot. The variation of the density of interface states with interface state energy was also studied. The n-ZnO NW/p-Si heterojunction diode performed very good half wave rectification in the frequency range 50 Hz-10 kHz, when a sinusoidal ac voltage of amplitude 4.5 V was applied across it.

  16. Fabrication of high performance field-effect transistors and practical Schottky contacts using hydrothermal ZnO nanowires.

    PubMed

    Opoku, Charles; Dahiya, Abhishek Singh; Oshman, Christopher; Daumont, Christophe; Cayrel, Frederic; Poulin-Vittrant, Guylaine; Alquier, Daniel; Camara, Nicolas

    2015-09-04

    The production of large quantities of single crystalline semiconducting ZnO nanowires (NWs) at low cost can offer practical solutions to realizing several novel electronic/optoelectronic and sensor applications on an industrial scale. The present work demonstrates high-density single crystalline NWs synthesized by a multiple cycle hydrothermal process at ∼100 °C. The high carrier concentration in such ZnO NWs is greatly suppressed by a simple low cost thermal annealing step in ambient air at ∼450 °C. Single ZnO NW FETs incorporating these modified NWs are characterized, revealing strong metal work function-dependent charge transport, unobtainable with as-grown hydrothermal ZnO NWs. Single ZnO NW FETs with Al as source and drain (s/d) contacts show excellent performance metrics, including low off-state currents (fA range), high on/off ratio (10(5)-10(7)), steep subthreshold slope (<600 mV/dec) and excellent field-effect carrier mobility (5-11 cm(2)/V-s). Modified ZnO NWs with platinum s/d contacts demonstrate excellent Schottky transport characteristics, markedly different from a reference ZnO NW device with Al contacts. This included abrupt reverse bias current-voltage saturation characteristics and positive temperature coefficient (∼0.18 eV to 0.13 eV). This work is envisaged to benefit many areas of hydrothermal ZnO NW research, such as NW FETs, piezoelectric energy recovery, piezotronics and Schottky diodes.

  17. Patterned growth of carbon nanotubes over vertically aligned silicon nanowire bundles for achieving uniform field emission.

    PubMed

    Hung, Yung-Jr; Huang, Yung-Jui; Chang, Hsuan-Chen; Lee, Kuei-Yi; Lee, San-Liang

    2014-01-01

    A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-terminal single-nanowire device. Bundle arrangement of CNT-SiNW heterojunctions is optimized to relax the electrostatic screening effect and to maximize the field enhancement factor. As a result, superior field emission performance and relatively stable emission current over 12 h is obtained. A bright and uniform fluorescent radiation is observed from CNT-SiNW-based field emitters regardless of its bundle periodicity, verifying the existence of high-density and efficient field emitters on the proposed CNT-SiNW bundle arrays.

  18. Effect of surface energy and seed layer annealing temperature on ZnO seed layer formation and ZnO nanowire growth

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sub; Mahmud, Imtiaz; Shin, Han Jae; Park, Min-Kyu; Ranjkesh, Amid; Lee, Do Kyung; Kim, Hak-Rin

    2016-01-01

    We discuss the effects of surface energy and seed layer annealing temperature (Tannealing) on seed layer growth and hydrothermally-grown zinc oxide (ZnO) nanowires (NWs). In this work, by varying the ultraviolet ozone (UVO) treatment times on a silicon surface, the surface energy conditions for the seed layer formation changed and the seed layer was annealed under different Tannealing conditions. Under a lower surface energy condition of the substrate, with increasing Tannealing, the coverage density and the average thickness of the seed layer increased, but island-like growth was observed. This case was inevitably accompanied by an increase in surface roughness, which resulted in agglomerated low density growth of ZnO NWs. After sufficient UVO treatment, hydroxyl groups on the silicon surface activated the ZnO seed layer formation in the chemical reaction and increased the bonding energy between the active nucleation sites of the seed layer and the substrate surface. This ensured higher coverage density of the seed layer with lower surface roughness under the same Tannealing condition, thereby providing the ZnO NW growth with an enhanced density and aspect ratio as well as good crystallinity.

  19. Optimizing the Field Emission Properties of ZnO Nanowire Arrays by Precisely Tuning the Population Density and Application in Large-Area Gated Field Emitter Arrays.

    PubMed

    Li, Yufeng; Zhang, Zhipeng; Zhang, Guofu; Zhao, Long; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2017-02-01

    Zinc oxide (ZnO) nanowires are prepared for application in large area gated field emitter arrays (FEAs). By oxidizing Al-coated Zn films, the population density of the ZnO nanowires was tuned precisely by varying the thickness of the Al film. The nanowire density decreased linearly as the thickness of the Al film increased. Optimal field emission properties with a turn-on field of 6.21 V μm(-1) and current fluctuations less than 1% are obtained. This can be explained by the minimized screening effect and good electrical conductivity of the back-contact layer. The mechanism responsible for the linear variation in the nanowire density is investigated in detail. Addressable FEAs using the optimal ZnO nanowire cathodes were fabricated and applied in a display device. Good gate-controlled characteristics and the display of video images are realized. The results indicate that ZnO nanowires could be applied in large area FEAs.

  20. Epitaxially aligned cuprous oxide nanowires for all-oxide, single-wire solar cells.

    PubMed

    Brittman, Sarah; Yoo, Youngdong; Dasgupta, Neil P; Kim, Si-in; Kim, Bongsoo; Yang, Peidong

    2014-08-13

    As a p-type semiconducting oxide that can absorb visible light, cuprous oxide (Cu2O) is an attractive material for solar energy conversion. This work introduces a high-temperature, vapor-phase synthesis that produces faceted Cu2O nanowires that grow epitaxially along the surface of a lattice-matched, single-crystal MgO substrate. Individual wires were then fabricated into single-wire, all-oxide diodes and solar cells using low-temperature atomic layer deposition (ALD) of TiO2 and ZnO films to form the heterojunction. The performance of devices made from pristine Cu2O wires and chlorine-exposed Cu2O wires was investigated under one-sun and laser illumination. These faceted wires allow the fabrication of well-controlled heterojunctions that can be used to investigate the interfacial properties of all-oxide solar cells.

  1. Novel synthetic methodology for controlling the orientation of zinc oxide nanowires grown on silicon oxide substrates

    NASA Astrophysics Data System (ADS)

    Cho, Jinhyun; Salleh, Najah; Blanco, Carlos; Yang, Sungwoo; Lee, Chul-Jin; Kim, Young-Woo; Kim, Jungsang; Liu, Jie

    2014-03-01

    This study presents a simple method to reproducibly obtain well-aligned vertical ZnO nanowire arrays on silicon oxide (SiOx) substrates using seed crystals made from a mixture of ammonium hydroxide (NH4OH) and zinc acetate (Zn(O2CCH3)2) solution. In comparison, high levels of OH- concentration obtained using NaOH or KOH solutions lead to incorporation of Na or K atoms into the seed crystals, destroying the c-axis alignment of the seeds and resulting in the growth of misaligned nanowires. The use of NH4OH eliminates the metallic impurities and ensures aligned nanowire growth in a wide range of OH- concentrations in the seed solution. The difference of crystalline orientations between NH4OH- and NaOH-based seeds is directly observed by lattice-resolved images and electron diffraction patterns using a transmission electron microscope (TEM). This study obviously suggests that metallic impurities incorporated into the ZnO nanocrystal seeds are one of the factors that generates the misaligned ZnO nanowires. This method also enables the use of silicon oxide substrates for the growth of vertically aligned nanowires, making ZnO nanostructures compatible with widely used silicon fabrication technology.This study presents a simple method to reproducibly obtain well-aligned vertical ZnO nanowire arrays on silicon oxide (SiOx) substrates using seed crystals made from a mixture of ammonium hydroxide (NH4OH) and zinc acetate (Zn(O2CCH3)2) solution. In comparison, high levels of OH- concentration obtained using NaOH or KOH solutions lead to incorporation of Na or K atoms into the seed crystals, destroying the c-axis alignment of the seeds and resulting in the growth of misaligned nanowires. The use of NH4OH eliminates the metallic impurities and ensures aligned nanowire growth in a wide range of OH- concentrations in the seed solution. The difference of crystalline orientations between NH4OH- and NaOH-based seeds is directly observed by lattice-resolved images and electron

  2. In situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates.

    PubMed

    Zhang, Weixin; Yang, Shihe

    2009-10-20

    The full potential of nanotechnology can be unleashed only when one is able not only to synthesize a rich variety of nanoscale building blocks but also assemble them into various patterns at the supramolecular and supracluster levels. In particular, the application of nanoparticle and nanowire materials often requires their assembly in the form of thin films, preferably on conductive surfaces for electrical addressing, control, and detection. Although a dazzling array of nanostructures has been fabricated by bottom-up approaches, one of the contemporary challenges is to assemble these nanostructures so that they introduce and realize functionalities. An alluring avenue is to simultaneously accomplish both the nanostructure synthesis and assembly on a useful substrate in a parallel fashion, affording the advantages of simplicity, low cost, and high throughput. In this Account, we review our recent work on growing inorganic nanowires (for example, metal sulfides, metal oxides, and so forth) directly from and on metal substrates in arrays without using templates and catalysts. This method of engineering nanowire arrays on metal substrates integrates the nanowire synthesis and assembly into a parallel process, both in time and in space, by exploiting in situ chemistry on the metal substrates. Both gas-phase and solution-phase approaches have been developed to synthesize the aligned nanowires; here, full advantage is taken of interfacial kinetics of restricted diffusion and surface-specific reactions, often accompanied by new interfacial growth mechanisms. The setting of nanowire arrays on metal substrates has allowed exploration of their application potentials in areas such as field electron emission and chemical sensing. The approaches described here are general, and we predict that they will be extended to more inorganic materials, such as metal halides. Moreover, as more control is achieved with synthetic methods, inorganic nanowire arrays should provide unusual

  3. Deep-level emission in ZnO nanowires and bulk crystals: Excitation-intensity dependence versus crystalline quality

    SciTech Connect

    Hou, Dongchao; Voss, Tobias; Ronning, Carsten; Menzel, Andreas; Zacharias, Margit

    2014-06-21

    The excitation-intensity dependence of the excitonic near-band-edge emission (NBE) and deep-level related emission (DLE) bands in ZnO nanowires and bulk crystals is studied, which show distinctly different power laws. The behavior can be well explained with a rate-equation model taking into account deep donor and acceptor levels with certain capture cross sections for electrons from the conduction band and different radiative lifetimes. In addition, a further crucial ingredient of this model is the background n-type doping concentration inherent in almost all ZnO single crystals. The interplay of the deep defects and the background free-electron concentration in the conduction band at room temperature reproduces the experimental results well over a wide range of excitation intensities (almost five orders of magnitude). The results demonstrate that for many ZnO bulk samples and nanostructures, the relative intensity R = I{sub NBE}/I{sub DLE} can be adjusted over a wide range by varying the excitation intensity, thus, showing that R should not be taken as an indicator for the crystalline quality of ZnO samples unless absolute photoluminescence intensities under calibrated excitation conditions are compared. On the other hand, the results establish an all-optical technique to determine the relative doping levels in different ZnO samples by measuring the excitation-intensity dependence of the UV and visible luminescence bands.

  4. Phonon processes in vertically aligned silicon nanowire arrays produced by low-cost all-solution galvanic displacement method

    NASA Astrophysics Data System (ADS)

    Banerjee, Debika; Trudeau, Charles; Gerlein, Luis Felipe; Cloutier, Sylvain G.

    2016-03-01

    The nanoscale engineering of silicon can significantly change its bulk optoelectronic properties to make it more favorable for device integration. Phonon process engineering is one way to enhance inter-band transitions in silicon's indirect band structure alignment. This paper demonstrates phonon localization at the tip of silicon nanowires fabricated by galvanic displacement using wet electroless chemical etching of a bulk silicon wafer. High-resolution Raman micro-spectroscopy reveals that such arrayed structures of silicon nanowires display phonon localization behaviors, which could help their integration into the future generations of nano-engineered silicon nanowire-based devices such as photodetectors and solar cells.

  5. Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires

    SciTech Connect

    Uran, Can; Erdem, Talha; Guzelturk, Burak; Perkgöz, Nihan Kosku; Jun, Shinae; Jang, Eunjoo; Demir, Hilmi Volkan

    2014-10-06

    In this work, we demonstrate a proof-of-concept system for generating highly polarized light from colloidal quantum dots (QDs) coupled with magnetically aligned segmented Au/Ni/Au nanowires (NWs). Optical characterizations reveal that the optimized QD-NW coupled structures emit highly polarized light with an s-to p-polarization (s/p) contrast as high as 15:1 corresponding to a degree of polarization of 0.88. These experimental results are supported by the finite-difference time-domain simulations, which demonstrate the interplay between the inter-NW distance and the degree of polarization.

  6. Vapor detection performance of vertically aligned, ordered arrays of silicon nanowires with a porous electrode.

    PubMed

    Field, Christopher R; In, Hyun Jin; Begue, Nathan J; Pehrsson, Pehr E

    2011-06-15

    Vertically aligned, ordered arrays of silicon nanowires capped with a porous top electrode are used to detect gas phase ammonia and nitrogen dioxide in humidified air. The sensors had very fast response times and large signal-to-noise ratios. Calibration curves were created using both an initial slope method and a fixed-time point method. The initial-slope method had a power law dependence that correlates well with concentration, demonstrating a viable alternative for eventual quantitative vapor detection and enabling shorter sampling and regeneration times.

  7. High speed graphene transistors with a self-aligned nanowire gate

    PubMed Central

    Liao, Lei; Lin, Yung-Chen; Bao, Mingqiang; Cheng, Rui; Bai, Jingwei; Liu, Yuan; Qu, Yongquan; Wang, Kang L.; Huang, Yu; Duan, Xiangfeng

    2010-01-01

    Graphene has attracted considerable interest as a potential new electronic material1–11. With the highest carrier mobility exceeding 200,000 cm2/V·s, graphene is of particular interest for ultra-high speed radio frequency (RF) electronics12–18. However, the conventional dielectric integration and device fabrication processes cannot be readily applied to fabricate high speed graphene transistors because they can often introduce significant defects into the monolayer of carbon lattices and severely degrade the device performance19–21. Here we report a new approach to fabricate high-speed graphene transistors with a self-aligned nanowire gate to enable unprecedented performance. The graphene transistors are fabricated using a Co2Si/Al2O3 core/shell nanowire as the gate, with the source and drain electrodes defined through a self-alignment process and the channel length defined by the nanowire diameter. The physical assembly of nanowire gate preserves the high carrier mobility in graphene, and the self-aligned process ensures that the edges of the source, drain, and gate electrodes are automatically and precisely positioned so that no overlapping or significant gaps exist between these electrodes and thus minimizes access resistance. It therefore enables transistor performance not previously possible. Graphene transistors with channel length down to 140 nm have been fabricated with the highest scaled on-current (3.32 mA μm−1) and transconductance (1.27 mS μm−1) reported to date. Significantly, on-chip microwave measurements demonstrate that the self-aligned devices exhibit a record high intrinsic cutoff frequency (fT) in the range of 100–300 GHz, with the extrinsic fT in the range of a few gigahertz largely limited by parasitic pad capacitance. The reported intrinsic cutoff frequency of the graphene transistors is comparable to that of the very best high electron mobility transistors with similar gate lengths10. It therefore marks an important milestone

  8. Alignment of nanoparticles, nanorods, and nanowires during chemical vapor deposition of silicon

    NASA Astrophysics Data System (ADS)

    Swain, Bhabani Sankar; Park, Jin-Woo; Yang, Seung-Min; Mahmood, Khalid; Swain, Bibhu Prasad; Lee, Jae-Gab; Hwang, Nong-Moon

    2015-09-01

    We fabricated silicon nanostructures (Si-NSs) on SiO x /Si substrate in chemical vapor deposition. During the synthesis of Si-NSs, Si sunflower-shaped structures of one to hundred microns were observed, therein the nanoparticles (NPs), nanowires, and nanorods were aligned in an ordered manner. We suggest that the NSs reported here are evolved by the electrostatic force exerted by charged NPs in gas phase. This NS would help in understanding the role of spontaneous charging of NPs in the gas phase and the role of charged NPs in the gas phase for NSs growth.

  9. Metal Catalyst for Low-Temperature Growth of Controlled Zinc Oxide Nanowires on Arbitrary Substrates

    PubMed Central

    Kim, Baek Hyun; Kwon, Jae W.

    2014-01-01

    Zinc oxide nanowires generated by hydrothermal method present superior physical and chemical characteristics. Quality control of the growth has been very challenging and controlled growth is only achievable under very limited conditions using homogeneous seed layers with high temperature processes. Here we show the controlled ZnO nanowire growth on various organic and inorganic materials without the requirement of a homogeneous seed layer and a high temperature process. We also report the discovery of an important role of the electronegativity in the nanowire growth on arbitrary substrates. Using heterogeneous metal oxide interlayers with low-temperature hydrothermal methods, we demonstrate well-controlled ZnO nanowire arrays and single nanowires on flat or curved surfaces. A metal catalyst and heterogeneous metal oxide interlayers are found to determine lattice-match with ZnO and to largely influence the controlled alignment. These findings will contribute to the development of novel nanodevices using controlled nanowires. PMID:24625584

  10. Single-crystalline zinc oxide nanowires as photoanode material for dye-sensitized solar cells.

    PubMed

    Ho, Shu-Te; Hsiao, Ching-Lun; Lin, Hsin-Yu; Chen, Hsiang-An; Wang, Chiu-Yen; Lin, Heh-Nan

    2010-10-01

    This study reports the use of single-crystalline and well-aligned ZnO nanowires as photoanode material for dye-sensitized solar cells. The ZnO nanowires are grown on fluorine-doped tin oxide coated glass substrates without catalysts by thermal evaporation. In spite of low roughness factors of around 25 for the nanowire photoanodes, the fabricated solar cells yield power conversion efficiencies of around 1.3% under AM 1.5G (100 mW cm-2) illumination. Moreover, fill factors of around 0.5 have been achieved and are relatively high when compared with reported values from ZnO nanowire photoanodes. The results reveal the advantage of using single-crystalline nanowires as photoanode material and provide clues for the advancement of nanowire based dye-sensitized solar cells.

  11. Metal catalyst for low-temperature growth of controlled zinc oxide nanowires on arbitrary substrates.

    PubMed

    Kim, Baek Hyun; Kwon, Jae W

    2014-03-14

    Zinc oxide nanowires generated by hydrothermal method present superior physical and chemical characteristics. Quality control of the growth has been very challenging and controlled growth is only achievable under very limited conditions using homogeneous seed layers with high temperature processes. Here we show the controlled ZnO nanowire growth on various organic and inorganic materials without the requirement of a homogeneous seed layer and a high temperature process. We also report the discovery of an important role of the electronegativity in the nanowire growth on arbitrary substrates. Using heterogeneous metal oxide interlayers with low-temperature hydrothermal methods, we demonstrate well-controlled ZnO nanowire arrays and single nanowires on flat or curved surfaces. A metal catalyst and heterogeneous metal oxide interlayers are found to determine lattice-match with ZnO and to largely influence the controlled alignment. These findings will contribute to the development of novel nanodevices using controlled nanowires.

  12. Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion

    NASA Astrophysics Data System (ADS)

    Kang, Junjie; Quang Dang, Vinh; Li, Hongjian; Moon, Sungjin; Li, Panpan; Kim, Yangdoo; Kim, Chaehyun; Choi, Jinyoung; Choi, Hakjong; Liu, Zhiqiang; Lee, Heon

    2017-01-01

    In this research, an InGaN-based photoanode with a broadband light-absorption range from ultraviolet to green, patterned by imprint lithography and branched by ZnO nanowires, has been applied to water splitting. Over the solar spectrum range, the absorbance increases due to the scattering effect of the micro-structure compared to that of flat surface InGaN, which reaches a maximum of over 90% at 380 nm as ZnO nanowires are further employed in this novel photoanode. Consequently, the induced photocurrent density of the InGaN photoanode with a domelike structure and ZnO nanowires on the surface shows a remarkable enhancement of seven times that of the one with a flat surface. Further investigation indicates the wet-etching process for defect removal has an essential impact on photocurrent efficiency. This design demonstrates an innovative approach for water splitting.

  13. Chemically synthesized nanowire TiO2/ZnO core-shell p-n junction array for high sensitivity ultraviolet photodetector

    NASA Astrophysics Data System (ADS)

    Dao, T. D.; Dang, C. T. T.; Han, G.; Hoang, C. V.; Yi, W.; Narayanamurti, V.; Nagao, T.

    2013-11-01

    A sol-gel-based ultrathin TiO2 lamination coating was adapted to a hydrothermally grown ZnO nanowire array to realize an all-oxide ultra-sensitive p-n photodiode. The core-shell heterojunction—the key component of the device—is composed of a 5-10 nm thick p-type Cr-doped TiO2 nanoshell and n-type single-crystalline ZnO nanowires (50 nm radius). Owing to the enhanced light scattering and carrier separation in the core-shell architecture, this device exhibits the highest performance among the ZnO nanowire-based photodetectors. At a moderate reverse bias of -5 V and under ultraviolet light illumination at 104 μW, it shows a switch current ratio of 140 and a responsivity as large as 250 A/W, while it shows nearly no response to the infrared and visible light.

  14. Intense intrashell luminescence of Eu-doped single ZnO nanowires at room temperature by implantation created Eu-Oi complexes.

    PubMed

    Geburt, Sebastian; Lorke, Michael; da Rosa, Andreia L; Frauenheim, Thomas; Röder, Robert; Voss, Tobias; Kaiser, Uwe; Heimbrodt, Wolfram; Ronning, Carsten

    2014-08-13

    Successful doping and excellent optical activation of Eu(3+) ions in ZnO nanowires were achieved by ion implantation. We identified and assigned the origin of the intra-4f luminescence of Eu(3+) ions in ZnO by first-principles calculations to Eu-Oi complexes, which are formed during the nonequilibrium ion implantation process and subsequent annealing at 700 °C in air. Our targeted defect engineering resulted in intense intrashell luminescence of single ZnO:Eu nanowires dominating the photoluminescence spectrum even at room temperature. The high intensity enabled us to study the luminescence of single ZnO nanowires in detail, their behavior as a function of excitation power, waveguiding properties, and the decay time of the transition.

  15. Fabrication and Optimization of Vertically Aligned ZnO Nanorod Array-Based UV Photodetectors via Selective Hydrothermal Synthesis.

    PubMed

    Ko, Yeong Hwan; Nagaraju, Goli; Yu, Jae Su

    2015-12-01

    Vertically aligned ZnO nanorod array (NRA)-based ultraviolet (UV) photodetectors (PDs) were successfully fabricated and optimized via a facile hydrothermal process. Using a shadow mask technique, the thin ZnO seed layer was deposited between the patterned Au/Ti electrodes to bridge the electrodes. Thus, both the Au electrodes could be connected by the ZnO seed layer. As the sample was immersed into growth solution and heated at 90 °C, the ZnO NRAs were crystallized and vertically grown on the ZnO seed layer, thus creating a metal-semiconductor-metal PD structure. To investigate the size effect of ZnO NRAs on photocurrent, the PDs were readily prepared with different concentrations of growth solution. For the ZnO NRAs grown at 25 mM of concentration, the PD with 10 μm of channel width (i.e., gap distance between two electrodes) exhibited a high photocurrent of 1.91 × 10(-4) A at an applied bias of 10 V under 365 nm of UV light illumination. The PD was optimized by adjusting the channel width. For 15 μm of channel width, a relatively high photocurrent on-off ratio of 37.4 and good current transient characteristics were observed at the same applied bias. These results are expected to be useful for cost-effective and practical UV PD applications.

  16. Fabrication and Optimization of Vertically Aligned ZnO Nanorod Array-Based UV Photodetectors via Selective Hydrothermal Synthesis

    NASA Astrophysics Data System (ADS)

    Ko, Yeong Hwan; Nagaraju, Goli; Yu, Jae Su

    2015-08-01

    Vertically aligned ZnO nanorod array (NRA)-based ultraviolet (UV) photodetectors (PDs) were successfully fabricated and optimized via a facile hydrothermal process. Using a shadow mask technique, the thin ZnO seed layer was deposited between the patterned Au/Ti electrodes to bridge the electrodes. Thus, both the Au electrodes could be connected by the ZnO seed layer. As the sample was immersed into growth solution and heated at 90 °C, the ZnO NRAs were crystallized and vertically grown on the ZnO seed layer, thus creating a metal-semiconductor-metal PD structure. To investigate the size effect of ZnO NRAs on photocurrent, the PDs were readily prepared with different concentrations of growth solution. For the ZnO NRAs grown at 25 mM of concentration, the PD with 10 μm of channel width (i.e., gap distance between two electrodes) exhibited a high photocurrent of 1.91 × 10-4 A at an applied bias of 10 V under 365 nm of UV light illumination. The PD was optimized by adjusting the channel width. For 15 μm of channel width, a relatively high photocurrent on-off ratio of 37.4 and good current transient characteristics were observed at the same applied bias. These results are expected to be useful for cost-effective and practical UV PD applications.

  17. Self-aligned nanocrystalline ZnO hexagons by facile solid-state and co-precipitation route

    NASA Astrophysics Data System (ADS)

    Thorat, J. H.; Kanade, K. G.; Nikam, L. K.; Chaudhari, P. D.; Panmand, R. P.; Kale, B. B.

    2012-02-01

    In this study, we report the synthesis of well-aligned nanocrystalline hexagonal zinc oxide (ZnO) nanoparticles by facile solid-state and co-precipitation method. The co-precipitation reactions were performed using aqueous and ethylene glycol (EG) medium using zinc acetate and adipic acid to obtain zinc adipate and further decomposition at 450 °C to confer nanocrystalline ZnO hexagons. XRD shows the hexagonal wurtzite structure of the ZnO. Thermal study reveals complete formation of ZnO at 430 °C in case of solid-state method, whereas in case of co-precipitation method complete formation was observed at 400 °C. Field emission scanning electron microscope shows spherical morphology for ZnO synthesized by solid-state method. The aqueous-mediated ZnO by co-precipitation method shows rod-like morphology. These rods are formed via self assembling of spherical nanoparticles, however, uniformly dispersed spherical crystallites were seen in EG-mediated ZnO. Transmission electron microscope (TEM) investigations clearly show well aligned and highly crystalline transparent and thin hexagonal ZnO. The particle size was measured using TEM and was observed to be 50-60 nm in case of solid-state method and aqueous-mediated co-precipitation method, while 25-50 nm in case of EG-mediated co-precipitation method. UV absorption spectra showed sharp absorption peaks with a blue shift for EG-mediated ZnO, which demonstrate the mono-dispersed lower particle size. The band gap of the ZnO was observed to be 3.4 eV which is higher than the bulk, implies nanocrystalline nature of the ZnO. The photoluminescence studies clearly indicate the strong violet and weak blue emission in ZnO nanoparticles which is quite unique. The process investigated may be useful to synthesize other oxide semiconductors and transition metal oxides.

  18. Nucleation, Growth Mechanism, and Controlled Coating of ZnO ALD onto Vertically Aligned N-Doped CNTs.

    PubMed

    Silva, R M; Ferro, M C; Araujo, J R; Achete, C A; Clavel, G; Silva, R F; Pinna, N

    2016-07-19

    Zinc oxide thin films were deposited on vertically aligned nitrogen-doped carbon nanotubes (N-CNTs) by atomic layer deposition (ALD) from diethylzinc and water. The study demonstrates that doping CNTs with nitrogen is an effective approach for the "activation" of the CNTs surface for the ALD of metal oxides. Conformal ZnO coatings are already obtained after 50 ALD cycles, whereas at lower ALD cycles an island growth mode is observed. Moreover, the process allows for a uniform growth from the top to the bottom of the vertically aligned N-CNT arrays. X-ray photoelectron spectroscopy demonstrates that ZnO nucleation takes place at the N-containing species on the surface of the CNTs by the formation of the Zn-N bonds at the interface between the CNTs and the ZnO film.

  19. Electrodeposited ZnO nanowire-based light-emitting diodes with tunable emission from near-UV to blue

    NASA Astrophysics Data System (ADS)

    Pauporté, Thierry; Lupan, Oleg; Viana, Bruno

    2013-03-01

    The bandgap control of doped-ZnO nanowires is important for tunable light emitting diodes (LEDs). Ultraviolet (UV), blue and violet LED structures based on Ag-doped ZnO /p-GaN and Cd-alloyed ZnO (Zn1-xCdxO) nanorods/p-GaN heterojunction have been fabricated by epitaxial electrodeposition at low temperatures and thermal annealing. UV electroluminescence (EL) peak around 397 nm observed from pure nanowires-ZnO/p-GaN at room temperature was shifted to 406 nm or 423 nm by using heterojunction between Ag-doped ZnO (ZnO:Ag) and Zn1-xCdxO-nanorods grown on p-GaN substrate, respectively. The electroluminescence emission threshold voltage was low at about 5.0 V and EL intensity increased with rise in the applied voltage bias. Presented experimental results demonstrate the tunable emission from silver and cadmium-doping in ZnO-based nanoLEDs.

  20. Electrodeposited ZnO nanowires as photoelectrodes in solid-state organic dye-sensitized solar cells.

    PubMed

    Muguerra, Hervé; Berthoux, Gaëlle; Yahya, Wan Zaireen Nisa; Kervella, Yann; Ivanova, Valentina; Bouclé, Johann; Demadrille, Renaud

    2014-04-28

    A new approach for developing solid-state dye-sensitised solar cells (DSSCs) on glass/ITO and plastic substrates (PEN/ITO) is presented in this manuscript. A two step electrodeposition technique has been employed to realize the ZnO photoelectrodes. First a ZnO thin film is deposited on the ITO substrate and subsequently on this buffer layer 650 nm long ZnO nanowires are grown. The different nanostructured electrodes are crystallized and show a transparency close to 80% in the visible spectral range. The electrodes are then sensitized with a new purely organic dye, whose synthesis is presented here, which reveals a wide absorption spectrum and a high molar extinction coefficient. Finally, the sensitized electrodes were employed for the fabrication of liquid and solid-state DSSCs, using, respectively, a liquid iodine/iodide electrolyte and the spiro-OMeTAD hole transporter. These devices represent the first solid-state DSSCs fabricated using electrodeposited zinc oxide nanowires. Their power conversion efficiency is still limited, respectively, 0.18% and 0.03% under standard AM 1.5G sunlight (100 mW cm(-2)), nevertheless, these results prove the interest in this low-temperature deposition method for the realization of nanostructured electrodes on rigid and flexible substrates, and open up new perspectives for the development of solid state DSSCs on plastic substrates.

  1. A broadband photodetector based on Rhodamine B-sensitized ZnO nanowires film.

    PubMed

    Bai, Zheng Qi; Liu, Ze Wen

    2017-09-12

    A broadband photodetector has been developed on the basis of ZnO nanowires (NWs)/Rhodamine B (RhB) hybrid system. The device is fabricated by spraying NWs on to gold interdigital electrodes followed by modifying the NWs via an RhB solution-casting process. Measurements show that the as-fabricated device demonstrates photoresponsivity ranging from 300 nm to 700 nm with a bandwidth as large as 400 nm. The role of the dye sensitizer adsorbed on the surface of NWs is modeled to alter the transportation path of photo-generated carriers. The calculations based on the measurements reveal that the device exhibits a prominent responsivity in the interested band with maximum responsivity of 5.5 A/W for ultraviolet (UV) light and 3 A/W for visible (VIS) light under 8 V bias, respectively. The sensitization not only widens the response spectrum with external quantum efficiency leaping up to 771% at VIS but also improves UV responsivity with maximum 51% enhancement. From the time-dependent photo-current measurement, it is found that the response time (rise and decay times in total) of the device largely reduced from 17.5 s to 3.3 s after sensitization. A comparison of the obtained photodetector with other ZnO-based photodetectors is summarized from the view point of responsivity and bandwidth.

  2. Characteristics of CVD graphene nanoribbon formed by a ZnO nanowire hardmask

    NASA Astrophysics Data System (ADS)

    Kang, Chang Goo; Kang, Jang Won; Lee, Sang Kyung; Lee, Seung Yong; Hum Cho, Chun; Hwang, Hyeon Jun; Lee, Young Gon; Heo, Jinseong; Chung, Hyun-Jong; Yang, Heejun; Seo, Sunae; Park, Seong-Ju; Ko, Ki Young; Ahn, Jinho; Lee, Byoung Hun

    2011-07-01

    A graphene nanoribbon (GNR) is an important basic structure to open a bandgap in graphene. The GNR processes reported in the literature are complex, time-consuming, and expensive; moreover, the device yield is relatively low. In this paper, a simple new process to fabricate a long and straight graphene nanoribbon with a high yield has been proposed. This process utilizes CVD graphene substrate and a ZnO nanowire as the hardmask for patterning. 8 µm long and 50-100 nm wide GNRs were successfully demonstrated in high density without any trimming, and ~ 10% device yield was realized with a top-down patterning process. After passivating the surfaces of the GNRs using a low temperature atomic layer deposition (ALD) of Al2O3, high performance GNR MOSFETs with symmetric drain-current-gate-voltage (Id-Vg) curves were demonstrated and a field effect mobility up to ~ 1200 cm2 V - 1 s - 1 was achieved at Vd = 10 mV.

  3. Characteristics of CVD graphene nanoribbon formed by a ZnO nanowire hardmask.

    PubMed

    Kang, Chang Goo; Kang, Jang Won; Lee, Sang Kyung; Lee, Seung Yong; Cho, Chun Hum; Hwang, Hyeon Jun; Lee, Young Gon; Heo, Jinseong; Chung, Hyun-Jong; Yang, Heejun; Seo, Sunae; Park, Seong-Ju; Ko, Ki Young; Ahn, Jinho; Lee, Byoung Hun

    2011-07-22

    A graphene nanoribbon (GNR) is an important basic structure to open a bandgap in graphene. The GNR processes reported in the literature are complex, time-consuming, and expensive; moreover, the device yield is relatively low. In this paper, a simple new process to fabricate a long and straight graphene nanoribbon with a high yield has been proposed. This process utilizes CVD graphene substrate and a ZnO nanowire as the hardmask for patterning. 8 µm long and 50-100 nm wide GNRs were successfully demonstrated in high density without any trimming, and ∼ 10% device yield was realized with a top-down patterning process. After passivating the surfaces of the GNRs using a low temperature atomic layer deposition (ALD) of Al(2)O(3), high performance GNR MOSFETs with symmetric drain-current-gate-voltage (I(d)-V(g)) curves were demonstrated and a field effect mobility up to ∼ 1200 cm(2) V(-1) s(-1) was achieved at V(d) = 10 mV.

  4. Growth Conditions Control the Elastic and Electrical Properties of ZnO Nanowires.

    PubMed

    Wang, Xiaoguang; Chen, Kai; Zhang, Yongqiang; Wan, Jingchun; Warren, Oden L; Oh, Jason; Li, Ju; Ma, Evan; Shan, Zhiwei

    2015-12-09

    Great efforts have been made to synthesize ZnO nanowires (NWs) as building blocks for a broad range of applications because of their unique mechanical and mechanoelectrical properties. However, little attention has been paid to the correlation between the NWs synthesis condition and these properties. Here we demonstrate that by slightly adjusting the NW growth conditions, the cross-sectional shape of the NWs can be tuned from hexagonal to circular. Room temperature photoluminescence spectra suggested that NWs with cylindrical geometry have a higher density of point defects. In situ transmission electron microscopy (TEM) uniaxial tensile-electrical coupling tests revealed that for similar diameter, the Young's modulus and electrical resistivity of hexagonal NWs is always larger than that of cylindrical NWs, whereas the piezoresistive coefficient of cylindrical NWs is generally higher. With decreasing diameter, the Young's modulus and the resistivity of NWs increase, whereas their piezoresistive coefficient decreases, regardless of the sample geometry. Our findings shed new light on understanding and advancing the performance of ZnO-NW-based devices through optimizing the synthesis conditions of the NWs.

  5. Effects of hydroxylation and silanization on the surface properties of ZnO nanowires.

    PubMed

    García Núñez, C; Sachsenhauser, M; Blashcke, B; García Marín, A; Garrido, Jose A; Pau, Jose L

    2015-03-11

    Silanization is commonly used to form bonds between inorganic materials and biomolecules as a step in the surface preparation of solid-state biosensors. This work investigates the effects of silanization with amino-propyldiethoxymethylsilane on hydroxylated sidewalls of zinc oxide (ZnO) nanowires (NWs). The surface properties and electrical characteristics of NWs are analyzed by different techniques after their hydroxylation and later silanization. Contact angle measurements reveal a stronger hydrophobic behavior after silanization, and X-ray photoelectron spectroscopy (XPS) results show a reduction of the surface dipole induced by the replacement of the hydroxyl group with the amine terminal group. The lower work function obtained after silanization in contact potential measurements corroborates the attenuation of the surface dipole observed in XPS. Furthermore, the surface band bending of NWs is determined from surface photovoltage measurements upon irradiation with UV light, yielding a 0.5 eV energy in hydroxylated NWs, and 0.18 eV, after silanization. From those results, a reduction in the surface state density of 3.1 × 10(11) cm(-2) is estimated after silanization. The current-voltage (I-V) characteristics measured in a silanized single NW device show a reduction of the resistance, due to the enhancement of the conductive volume inside the NW, which also improves the linearity of the I-V characteristic.

  6. Tuning quantum corrections and magnetoresistance in ZnO nanowires by ion implantation.

    PubMed

    Zeng, Y J; Pereira, L M C; Menghini, M; Temst, K; Vantomme, A; Locquet, J-P; Van Haesendonck, C

    2012-02-08

    Using ion implantation, the electrical as well as the magnetotransport properties of individual ZnO nanowires (NWs) can be tuned. The virgin NWs are configured as field-effect transistors which are in the enhancement mode. Al-implanted NWs reveal a three-dimensional metallic-like behavior, for which the magnetoresistance is well described by a semiempirical model that takes into account the presence of doping induced local magnetic moments and of two conduction bands. On the other hand, one-dimensional electron transport is observed in Co-implanted NWs. At low magnetic fields, the anisotropic magnetoresistance can be described in the framework of weak electron localization in the presence of strong spin-orbit scattering. From the weak localization, a large phase coherence length is inferred that reaches up to 800 nm at 2.5 K. The temperature-dependent dephasing is shown to result from a one-dimensional Nyquist noise-related mechanism. At the lowest temperatures, the phase coherence length becomes limited by magnetic scattering.

  7. Optical memory effect in ZnO nanowire based organic bulk heterojunction devices

    NASA Astrophysics Data System (ADS)

    Santhanakrishna, Anand Kumar; Takshi, Arash

    2015-09-01

    Due to the required established field to separate photogenerated electrons and holes, the current- voltage (I-V) characteristic in almost all photovoltaic devices in dark is an exponential curve. Upon illumination, the shape of the curve remains almost the same, but the current shifts due to the photocurrent. Also, because of the lack of any storage mechanism, the I-V curve returns to the dark characteristic immediately after light cessation. Here, we are reporting a case study performed on a photo-electric memory effect in an organic bulk hetrojuction device made of ZnO nanowires as the electron transport layer under ambient conditions and within a sealed transfer box filled with nitrogen. The I-V characteristic in dark and light showed a unique change from a rectifying response in dark to a resistive behavior in light. Additionally, after light cessation, a memory effect was observed with a slow transition from the resistive to rectifying response same as the original dark characteristic. The memory effect and its I-V characteristics were tested for the two cases. For practical applications as a photo memory device, further experiments are required to gain a better understanding of the mechanism behind the observed memory effect for the two different cases.

  8. Modeling and characterization of extremely thin absorber (eta) solar cells based on ZnO nanowires.

    PubMed

    Mora-Seró, Iván; Giménez, Sixto; Fabregat-Santiago, Francisco; Azaceta, Eneko; Tena-Zaera, Ramón; Bisquert, Juan

    2011-04-21

    Extremely thin absorber (eta)-solar cells based on ZnO nanowires sensitized with a thin layer of CdSe have been prepared, using CuSCN as hole transporting material. Samples with significantly different photovoltaic performance have been analyzed and a general model of their behavior was obtained. We have used impedance spectroscopy to model the device discriminating the series resistance, the role of the hole conducting material CuSCN, and the interface process. Correlating the impedance analysis with the microstructural properties of the solar cell interfaces, a good description of the solar cell performance is obtained. The use of thick CdSe layers leads to high recombination resistances, increasing the open circuit voltage of the devices. However, there is an increase of the internal recombination in thick light absorbing layers that also inhibit a good penetration of CuSCN, reducing the photocurrent. The model will play an important role on the optimization of these devices. This analysis could have important implications for the modeling and optimization of all-solid devices using a sensitizing configuration.

  9. Complex tribomechanical characterization of ZnO nanowires: nanomanipulations supported by FEM simulations

    NASA Astrophysics Data System (ADS)

    Vlassov, Sergei; Polyakov, Boris; Oras, Sven; Vahtrus, Mikk; Antsov, Mikk; Šutka, Andris; Smits, Krisjanis; Dorogin, Leonid M.; Lõhmus, Rünno

    2016-08-01

    In the present work, we demonstrate a novel approach to nanotribological measurements based on the bending manipulation of hexagonal ZnO nanowires (NWs) in an adjustable half-suspended configuration inside a scanning electron microscope. A pick-and-place manipulation technique was used to control the length of the adhered part of each suspended NW. Static and kinetic friction were found by a ‘self-sensing’ approach based on the strain profile of the elastically bent NW during manipulation and its Young’s modulus, which was separately measured in a three-point bending test with an atomic force microscope. The calculation of static friction from the most bent state was completely reconsidered and a novel more realistic crack-based model was proposed. It was demonstrated that, in contrast to assumptions made in previously published models, interfacial stresses in statically bent NW are highly localized and interfacial strength is comparable to the bending strength of NW measured in respective bending tests.

  10. Carbon related donor bound exciton transitions in ZnO nanowires

    SciTech Connect

    Mohammadbeigi, F.; Kumar, E. Senthil; Alagha, S.; Anderson, I.; Watkins, S. P.

    2014-08-07

    Several shallow donor bound exciton photoluminescence (PL) transitions are reported in ZnO nanowires doped with carbon. The emission energies are in the range of 3360.8–3361.9 meV, close to previously reported emission lines due to excitons bound to donor point defects, such as Ga, Al, In, and H. The addition of small amounts of hydrogen during growth results in a strong enhancement of the PL of these carbon related emission lines, yet PL and annealing measurements indicate no appreciable bulk hydrogen. The observation of two electron satellites for these emission lines enables the determination of the donor binding energies. The dependence of exciton localization energy on donor binding energy departs somewhat from the usual linear relationship observed for group III donors, indicating a qualitatively different central cell potential, as one would expect for a complex. Emission lines due to excitons bound to ionized donors associated with these defects are also observed. The dependence of the PL emission intensities on temperature and growth conditions demonstrates that the lines are due to distinct complexes and not merely excited states of each other.

  11. Vertically aligned GaAs nanowires on graphite and few-layer graphene: generic model and epitaxial growth.

    PubMed

    Munshi, A Mazid; Dheeraj, Dasa L; Fauske, Vidar T; Kim, Dong-Chul; van Helvoort, Antonius T J; Fimland, Bjørn-Ove; Weman, Helge

    2012-09-12

    By utilizing the reduced contact area of nanowires, we show that epitaxial growth of a broad range of semiconductors on graphene can in principle be achieved. A generic atomic model is presented which describes the epitaxial growth configurations applicable to all conventional semiconductor materials. The model is experimentally verified by demonstrating the growth of vertically aligned GaAs nanowires on graphite and few-layer graphene by the self-catalyzed vapor-liquid-solid technique using molecular beam epitaxy. A two-temperature growth strategy was used to increase the nanowire density. Due to the self-catalyzed growth technique used, the nanowires were found to have a regular hexagonal cross-sectional shape, and are uniform in length and diameter. Electron microscopy studies reveal an epitaxial relationship of the grown nanowires with the underlying graphitic substrates. Two relative orientations of the nanowire side-facets were observed, which is well explained by the proposed atomic model. A prototype of a single GaAs nanowire photodetector demonstrates a high-quality material. With GaAs being a model system, as well as a very useful material for various optoelectronic applications, we anticipate this particular GaAs nanowire/graphene hybrid to be promising for flexible and low-cost solar cells.

  12. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures

    PubMed Central

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N.; Rocca, Jorge J.

    2017-01-01

    Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 108 J cm−3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 1019 W cm−2, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 1022 W cm−2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 1010 J cm−3, equivalent to a pressure of 0.35 Tbar. PMID:28097218

  13. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures.

    PubMed

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N; Rocca, Jorge J

    2017-01-01

    Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10(8) J cm(-3) and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 10(19) W cm(-2), we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10(22) W cm(-2) will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10(10) J cm(-3), equivalent to a pressure of 0.35 Tbar.

  14. Energy Density in Aligned Nanowire Arrays Irradiated with Relativistic Intensities: Path to Terabar Pressure Plasmas

    NASA Astrophysics Data System (ADS)

    Rocca, J.; Bargsten, C.; Hollinger, R.; Shylaptsev, V.; Wang, S.; Rockwood, A.; Wang, Y.; Keiss, D.; Capeluto, M.; Kaymak, V.; Pukhov, A.; Tommasini, R.; London, R.; Park, J.

    2016-10-01

    Ultra-high-energy-density (UHED) plasmas, characterized by energy densities >1 x 108 J cm-3 and pressures greater than a gigabar are encountered in the center of stars and in inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto aligned nanowire array targets. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations validated by these measurements predict that irradiation of nanostructures at increased intensity will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy, and by the Defense Threat Reduction Agency.

  15. Energy Penetration into Arrays of Aligned Nanowires Irradiated with Relativistic Intensities: Scaling to Terabar Pressures

    SciTech Connect

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, M; Shlyaptsev, Vyacheslav N.; Rocca, Jorge J.

    2016-11-11

    Ultra-high-energy-density (UHED) matter, characterized by energy densities > 1 x 108 J cm-3 and pressures greater than a gigabar, is encountered in the center of stars and in inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of > 1 x 1022 W cm-2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar.

  16. Metal-organic framework templated synthesis of ultrathin, well-aligned metallic nanowires.

    PubMed

    Volosskiy, Boris; Niwa, Kenta; Chen, Yu; Zhao, Zipeng; Weiss, Nathan O; Zhong, Xing; Ding, Mengning; Lee, Chain; Huang, Yu; Duan, Xiangfeng

    2015-03-24

    With well-defined porous structures and dimensions, metal-organic frameworks (MOFs) can function as versatile templates for the growth of metallic nanostructures with precisely controlled shapes and sizes. Using MOFs as templates, metallic nanostructures can be grown without the need of bulky surfactants and thus preserve their intrinsic surface. Additionally, the high surface area of MOFs can also ensure that the surface of the template metallic nanostructures is readily accessible, which is critical for the proper function of catalysts or sensors. The hybrid metal@MOF structures have been demonstrated to exhibit useful properties not found in either component separately. Here we report the growth of ultrafine metallic nanowires inside one-dimensional MOF pores with well-controlled shape and size. Our study shows that solvent selection plays an important role in controlling precursor loading and the reduction rate inside the MOF pores for the formation of the nanowires. The growth of the well-aligned, ultrathin nanowires was monitored and characterized by transmission electron microscopy, X-ray diffraction, UV-vis spectroscopy, fluorescence studies, and Brunauer-Emmet-Teller surface area analysis.

  17. Room temperature-synthesized vertically aligned InSb nanowires: electrical transport and field emission characteristics

    PubMed Central

    2013-01-01

    Vertically aligned single-crystal InSb nanowires were synthesized via the electrochemical method at room temperature. The characteristics of Fourier transform infrared spectrum revealed that in the syntheses of InSb nanowires, energy bandgap shifts towards the short wavelength with the occurrence of an electron accumulation layer. The current–voltage curve, based on the metal–semiconductor–metal model, showed a high electron carrier concentration of 2.0 × 1017 cm−3 and a high electron mobility of 446.42 cm2 V−1 s−1. Additionally, the high carrier concentration of the InSb semiconductor with the surface accumulation layer induced a downward band bending effect that reduces the electron tunneling barrier. Consequently, the InSb nanowires exhibit significant field emission properties with an extremely low turn-on field of 1.84 V μm−1 and an estimative threshold field of 3.36 V μm−1. PMID:23399075

  18. An Enhanced UV-Vis-NIR an d Flexible Photodetector Based on Electrospun ZnO Nanowire Array/PbS Quantum Dots Film Heterostructure.

    PubMed

    Zheng, Zhi; Gan, Lin; Zhang, Jianbing; Zhuge, Fuwei; Zhai, Tianyou

    2017-03-01

    ZnO nanostructure-based photodetectors have a wide applications in many aspects, however, the response range of which are mainly restricted in the UV region dictated by its bandgap. Herein, UV-vis-NIR sensitive ZnO photodetectors consisting of ZnO nanowires (NW) array/PbS quantum dots (QDs) heterostructures are fabricated through modified electrospining method and an exchanging process. Besides wider response region compared to pure ZnO NWs based photodetectors, the heterostructures based photodetectors have faster response and recovery speed in UV range. Moreover, such photodetectors demonstrate good flexibility as well, which maintain almost constant performances under extreme (up to 180°) and repeat (up to 200 cycles) bending conditions in UV-vis-NIR range. Finally, this strategy is further verified on other kinds of 1D nanowires and 0D QDs, and similar enhancement on the performance of corresponding photodetecetors can be acquired, evidencing the universality of this strategy.

  19. An Enhanced UV–Vis–NIR an d Flexible Photodetector Based on Electrospun ZnO Nanowire Array/PbS Quantum Dots Film Heterostructure

    PubMed Central

    Zheng, Zhi; Gan, Lin; Zhang, Jianbing; Zhuge, Fuwei

    2016-01-01

    ZnO nanostructure‐based photodetectors have a wide applications in many aspects, however, the response range of which are mainly restricted in the UV region dictated by its bandgap. Herein, UV–vis–NIR sensitive ZnO photodetectors consisting of ZnO nanowires (NW) array/PbS quantum dots (QDs) heterostructures are fabricated through modified electrospining method and an exchanging process. Besides wider response region compared to pure ZnO NWs based photodetectors, the heterostructures based photodetectors have faster response and recovery speed in UV range. Moreover, such photodetectors demonstrate good flexibility as well, which maintain almost constant performances under extreme (up to 180°) and repeat (up to 200 cycles) bending conditions in UV–vis–NIR range. Finally, this strategy is further verified on other kinds of 1D nanowires and 0D QDs, and similar enhancement on the performance of corresponding photodetecetors can be acquired, evidencing the universality of this strategy. PMID:28331785

  20. Enhanced power conversion efficiency of CdS quantum dot sensitized solar cells with ZnO nanowire arrays as the photoanodes

    NASA Astrophysics Data System (ADS)

    Qi, Junjie; Liu, Wang; Biswas, Chandan; Zhang, Guangjie; Sun, Lifang; Wang, Zengze; Hu, Xiaofeng; Zhang, Yue

    2015-08-01

    We report the fabrication of CdS quantum dot sensitized solar cells with ZnO nanowire arrays as the photoanodes. The influences of precursor solution temperature and sensitizing cycles on the performance of CdS quantum dots sensitized ZnO nanowires solar cells were studied. Successive ionic layer adsorption and reaction (SILAR) method was applied to deposit CdS quantum dots on the surface of ZnO nanowire arrays for assembling ZnO/CdS electrodes. The results of scanning electron microscopic (SEM), X-ray diffraction (XRD) patterns and UV-vis absorption spectroscopy indicated that the ZnO nanowires electrodes were well-covered with CdS quantum dots. The temperature of the ethanol sensitizing solutions significantly influenced the performance of ZnO/CdS electrodes by affecting the rate of deposition reaction and the penetration ability of ethanol solution. The CdS quantum dots sensitized ZnO-based solar cells exhibited a short-circuit current density (Jsc) of 3.1 mA/cm2, an open-circuit voltage (Voc) of 0.55 V and a photovoltaic conversion efficiency of 0.72%, which is much higher than that reported in literatures, under the illumination of one sun (AM 1.5, 100 mW/cm2) when the temperature of the ethanol solutions was 60 °C and ZnO arrays were sensitized for seven times.

  1. Alignment of human cardiomyocytes on laser patterned biphasic core/shell nanowire assemblies

    NASA Astrophysics Data System (ADS)

    Kiefer, Karin; Lee, Juseok; Haidar, Ayman; Martinez Miró, Marina; Akkan, Cagri Kaan; Veith, Michael; Cenk Aktas, Oral; Abdul-Khaliq, Hashim

    2014-12-01

    The management of end stage heart failure patients is only possible by heart transplantation or by the implantation of artificial hearts as a bridge for later transplantation. However, these therapeutic strategies are limited by a lack of donor hearts and by the associated complications, such as coagulation and infection, due to the used artificial mechanical circulatory assist devices. Therefore, new strategies for myocardial regenerative approaches are under extensive research to produce contractile myocardial tissue in the future to replace non-contractile myocardial ischemic and scarred tissue. Different approaches, such as cell transplantation, have been studied intensively. Although successful approaches have been observed, there are still limitations to the application. It is envisaged that myocardial tissue engineering can be used to help replace infarcted non-contractile tissue. The developed tissue should later mimic the aligned fibrillar structure of the extracellular matrix and provide important guidance cues for the survival, function and the needed orientation of cardiomyocytes. Nanostructured surfaces have been tested to provide a guided direction that cells can follow. In the present study, the cellular adhesion/alignment of human cardiomyocytes and the biocompatibility have been investigated after cultivation on different laser-patterned nanowires compared with unmodified nanowires. As a result, the nanostructured surfaces possessed good biocompatibility before and after laser modification. The laser-induced scalability of the pattern enabled the growth and orientation of the adhered myocardial tissue. Such approaches may be used to modify the surface of potential scaffolds to develop myocardial contractile tissue in the future.

  2. High-efficiency second harmonic generation from a single hybrid ZnO nanowire/Au plasmonic nano-oligomer.

    PubMed

    Grinblat, Gustavo; Rahmani, Mohsen; Cortés, Emiliano; Caldarola, Martín; Comedi, David; Maier, Stefan A; Bragas, Andrea V

    2014-11-12

    We introduce a plasmonic-semiconductor hybrid nanosystem, consisting of a ZnO nanowire coupled to a gold pentamer oligomer by crossing the hot-spot. It is demonstrated that the hybrid system exhibits a second harmonic (SH) conversion efficiency of ∼3 × 10(-5)%, which is among the highest values for a nanoscale object at optical frequencies reported so far. The SH intensity was found to be ∼1700 times larger than that from the same nanowire excited outside the hot-spot. Placing high nonlinear susceptibility materials precisely in plasmonic confined-field regions to enhance SH generation opens new perspectives for highly efficient light frequency up-conversion on the nanoscale.

  3. Non-classical logic inverter coupling a ZnO nanowire-based Schottky barrier transistor and adjacent Schottky diode.

    PubMed

    Hosseini Shokouh, Seyed Hossein; Raza, Syed Raza Ali; Lee, Hee Sung; Im, Seongil

    2014-08-21

    On a single ZnO nanowire (NW), we fabricated an inverter-type device comprising a Schottky diode (SD) and field-effect transistor (FET), aiming at 1-dimensional (1D) electronic circuits with low power consumption. The SD and adjacent FET worked respectively as the load and driver, so that voltage signals could be easily extracted as the output. In addition, NW FET with a transparent conducting oxide as top gate turned out to be very photosensitive, although ZnO NW SD was blind to visible light. Based on this, we could achieve an array of photo-inverter cells on one NW. Our non-classical inverter is regarded as quite practical for both logic and photo-sensing due to its performance as well as simple device configuration.

  4. Facile synthesis of highly uniform Mn/Co-codoped ZnO nanowires: optical, electrical, and magnetic properties.

    PubMed

    Li, Huifeng; Huang, Yunhua; Zhang, Qi; Qiao, Yi; Gu, Yousong; Liu, Jing; Zhang, Yue

    2011-02-01

    In this article, Co/Mn-codoped ZnO nanowires (NWs) were successfully synthesized on a silicon substrate by the thermal evaporation method with Au catalyst. The X-ray diffraction pattern indicated that the Co/Mn-codoped ZnO NWs are a hexagonal wurtzite structure without a second phase, and energy dispersive X-ray spectroscopy revealed that the Co and Mn ions were introduced into the ZnO NWs with the content of ∼0.8 at% and ∼1.2 at%, respectively. Photoluminescence spectra and Raman spectra showed that the Co/Mn were doped into the NWs and resulted in the shift of the near-band-edge emission. Moreover, the novel Raman peak at 519.3 cm(-1) has suggested that the two kinds of cations via doping could affect the local polarizability. Compared with the undoped ZnO NW, the electrical measurement showed that the Co/Mn-codoping enhanced the conductivity by an order of magnitude due to the presence of Co, Mn cations. The electron mobility and carrier concentration of a fabricated field effect transistor (FET) device is 679 cm2 V(-1) s(-1) and 2×10(18) cm(-3), respectively. Furthermore, the M-H curve demonstrated that the Co/Mn-codoped ZnO NWs have obvious ferromagnetic characteristics at room temperature. Our study enhances the understanding of the novel performances of transition-metal codoped ZnO NWs and also provides a potential way to fabricate optoelectronic devices.

  5. Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices.

    PubMed

    Kang, Saewon; Kim, Taehyo; Cho, Seungse; Lee, Youngoh; Choe, Ayoung; Walker, Bright; Ko, Seo-Jin; Kim, Jin Young; Ko, Hyunhyub

    2015-12-09

    Percolation networks of silver nanowires (AgNWs) are commonly used as transparent conductive electrodes (TCEs) for a variety of optoelectronic applications, but there have been no attempts to precisely control the percolation networks of AgNWs that critically affect the performances of TCEs. Here, we introduce a capillary printing technique to precisely control the NW alignment and the percolation behavior of AgNW networks. Notably, partially aligned AgNW networks exhibit a greatly lower percolation threshold, which leads to the substantial improvement of optical transmittance (96.7%) at a similar sheet resistance (19.5 Ω sq(-1)) as compared to random AgNW networks (92.9%, 20 Ω sq(-1)). Polymer light-emitting diodes (PLEDs) using aligned AgNW electrodes show a 30% enhanced maximum luminance (33068 cd m(-2)) compared to that with random AgNWs and a high luminance efficiency (14.25 cd A(-1)), which is the highest value reported so far using indium-free transparent electrodes for fluorescent PLEDs. In addition, polymer solar cells (PSCs) using aligned AgNW electrodes exhibit a power conversion efficiency (PCE) of 8.57%, the highest value ever reported to date for PSCs using AgNW electrodes.

  6. Photoelectric probing of the interfacial trap density-of-states in ZnO nanowire field-effect transistors.

    PubMed

    Raza, Syed Raza Ali; Lee, Young Tack; Chang, Youn-Gyoung; Jeon, Pyo Jin; Kim, Jae Hoon; Ha, Ryong; Choi, Heon-Jin; Im, Seongil

    2013-02-28

    We have fabricated transparent top-gate ZnO nanowire (NW) field effect transistors (FETs) on glass and measured their trap density-of-states (DOS) at the dielectric/ZnO NW interface with monochromatic photon beams during their operation. Our photon-probe method showed clear signatures of charge trap DOS at the interface, located near 2.3, 2.7, and 2.9 eV below the conduction band edge. The DOS information was utilized for the photo-detecting application of our transparent NW-FETs, which demonstrated fast and sensitive photo-detection of visible lights.

  7. Modification of the optical and structural properties of ZnO nanowires by low-energy Ar+ ion sputtering

    NASA Astrophysics Data System (ADS)

    Allah, Rabie Fath; Ben, Teresa; González, David; Hortelano, Vanesa; Martínez, Oscar; Plaza, Jose Luis

    2013-04-01

    The effects of low-energy (≤2 kV) Ar+ irradiation on the optical and structural properties of zinc oxide (ZnO) nanowires (NWs) grown by a simple and cost-effective low-temperature technique were investigated. Both photoluminescence spectra from ZnO NW-coated films and cathodoluminescence analysis of individual ZnO NWs demonstrated obvious evidences of ultraviolet/visible luminescent enhancement with respect to irradiation fluence. Annihilation of the thinner ZnO NWs after the ion bombardment was appreciated by means of high-resolution scanning electron microscopy and transmission electron microscopy (TEM), which results in an increasing NW mean diameter for increasing irradiation fluences. Corresponding structural analysis by TEM pointed out not only significant changes in the morphology but also in the microstructure of these NWs, revealing certain radiation-sensitive behavior. The possible mechanisms accounting for the decrease of the deep-level emissions in the NWs with the increasing irradiation fluences are discussed according to their structural modifications.

  8. Modification of the optical and structural properties of ZnO nanowires by low-energy Ar+ ion sputtering.

    PubMed

    Allah, Rabie Fath; Ben, Teresa; González, David; Hortelano, Vanesa; Martínez, Oscar; Plaza, Jose Luis

    2013-04-09

    The effects of low-energy (≤2 kV) Ar+ irradiation on the optical and structural properties of zinc oxide (ZnO) nanowires (NWs) grown by a simple and cost-effective low-temperature technique were investigated. Both photoluminescence spectra from ZnO NW-coated films and cathodoluminescence analysis of individual ZnO NWs demonstrated obvious evidences of ultraviolet/visible luminescent enhancement with respect to irradiation fluence. Annihilation of the thinner ZnO NWs after the ion bombardment was appreciated by means of high-resolution scanning electron microscopy and transmission electron microscopy (TEM), which results in an increasing NW mean diameter for increasing irradiation fluences. Corresponding structural analysis by TEM pointed out not only significant changes in the morphology but also in the microstructure of these NWs, revealing certain radiation-sensitive behavior. The possible mechanisms accounting for the decrease of the deep-level emissions in the NWs with the increasing irradiation fluences are discussed according to their structural modifications.

  9. An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Seo, Jung-Hun; Bayerl, Dylan; Shi, Jian; Mi, Hongyi; Ma, Zhenqiang; Zhao, Deyin; Shuai, Yichen; Zhou, Weidong; Wang, Xudong

    2011-06-01

    An aqueous solution-based doping strategy was developed for controlled doping impurity atoms into a ZnO nanowire (NW) lattice. Through this approach, antimony-doped ZnO NWs were successfully synthesized in an aqueous solution containing zinc nitrate and hexamethylenetetramine with antimony acetate as the dopant source. By introducing glycolate ions into the solution, a soluble antimony precursor (antimony glycolate) was formed and a good NW morphology with a controlled antimony doping concentration was successfully achieved. A doping concentration study suggested an antimony glycolate absorption doping mechanism. By fabricating and characterizing NW-based field effect transistors (FETs), stable p-type conductivity was observed. A field effect mobility of 1.2 cm2 V - 1 s - 1 and a carrier concentration of 6 × 1017 cm - 3 were achieved. Electrostatic force microscopy (EFM) characterization on doped and undoped ZnO NWs further illustrated the shift of the metal-semiconductor barrier due to Sb doping. This work provided an effective large-scale synthesis strategy for doping ZnO NWs in aqueous solution.

  10. An aqueous solution-based doping strategy for large-scale synthesis of Sb-doped ZnO nanowires.

    PubMed

    Wang, Fei; Seo, Jung-Hun; Bayerl, Dylan; Shi, Jian; Mi, Hongyi; Ma, Zhenqiang; Zhao, Deyin; Shuai, Yichen; Zhou, Weidong; Wang, Xudong

    2011-06-03

    An aqueous solution-based doping strategy was developed for controlled doping impurity atoms into a ZnO nanowire (NW) lattice. Through this approach, antimony-doped ZnO NWs were successfully synthesized in an aqueous solution containing zinc nitrate and hexamethylenetetramine with antimony acetate as the dopant source. By introducing glycolate ions into the solution, a soluble antimony precursor (antimony glycolate) was formed and a good NW morphology with a controlled antimony doping concentration was successfully achieved. A doping concentration study suggested an antimony glycolate absorption doping mechanism. By fabricating and characterizing NW-based field effect transistors (FETs), stable p-type conductivity was observed. A field effect mobility of 1.2 cm(2) V(-1) s(-1) and a carrier concentration of 6 × 10(17) cm(-3) were achieved. Electrostatic force microscopy (EFM) characterization on doped and undoped ZnO NWs further illustrated the shift of the metal-semiconductor barrier due to Sb doping. This work provided an effective large-scale synthesis strategy for doping ZnO NWs in aqueous solution.

  11. Structural and optical properties of ZnMgO nanostructures formed by Mg in-diffused ZnO nanowires

    SciTech Connect

    Pan, C.-J.; Hsu, H.-C.; Cheng, H.-M.; Wu, C.-Y.; Hsieh, W.-F.

    2007-04-15

    ZnMgO nanostructures with wurtzite phase were prepared by thermal diffusion of Mg into the ZnO nanowires. As ZnO light-emitting devices have been operated by using ZnMgO layers as energy barrier layers to confine the carriers, it is essential to realize the characterization of ZnMgO particularly. In this work, the Mg content in Zn{sub 1} {sub -x} Mg {sub x} O alloy determined by X-ray diffraction (XRD) and photoluminescence (PL) shows a good coincidence. The variation of lattice constant and the blueshift of near-band-edge emission indicate that Zn{sup 2+} ions are successfully substituted by Mg{sup 2+} ions in the ZnO lattice. In Raman-scattering studies, the change of E {sub 2}(high) phonon line shape in ZnO:Mg nanostructures reveals the microscopic substitutional disorder. In addition to the host phonons of ZnO, two additional bands around 383 and 510 cm{sup -1} are presumably attributed to the Mg-related vibrational modes. - Graphical abstract: We reported the synthesis of the ZnMgO nanostructures prepared by a simple vapor transport method. Magnesium-related anomalous modes are observed by Raman spectra for the first time in ZnMgO system.

  12. Modification of the optical and structural properties of ZnO nanowires by low-energy Ar+ ion sputtering

    PubMed Central

    2013-01-01

    The effects of low-energy (≤2 kV) Ar+ irradiation on the optical and structural properties of zinc oxide (ZnO) nanowires (NWs) grown by a simple and cost-effective low-temperature technique were investigated. Both photoluminescence spectra from ZnO NW-coated films and cathodoluminescence analysis of individual ZnO NWs demonstrated obvious evidences of ultraviolet/visible luminescent enhancement with respect to irradiation fluence. Annihilation of the thinner ZnO NWs after the ion bombardment was appreciated by means of high-resolution scanning electron microscopy and transmission electron microscopy (TEM), which results in an increasing NW mean diameter for increasing irradiation fluences. Corresponding structural analysis by TEM pointed out not only significant changes in the morphology but also in the microstructure of these NWs, revealing certain radiation-sensitive behavior. The possible mechanisms accounting for the decrease of the deep-level emissions in the NWs with the increasing irradiation fluences are discussed according to their structural modifications. PMID:23570658

  13. Sandwiched assembly of ZnO nanowires between graphene layers for a self-powered and fast responsive ultraviolet photodetector

    NASA Astrophysics Data System (ADS)

    Deka Boruah, Buddha; Mukherjee, Anwesha; Misra, Abha

    2016-03-01

    A heterostructure of graphene and zinc oxide (ZnO) nanowires (NWs) is fabricated by sandwiching an array of ZnO NWs between two graphene layers for an ultraviolet (UV) photodetector. This unique structure allows NWs to be in direct contact with the graphene layers, minimizing the effect of the substrate or metal electrodes. In this device, graphene layers act as highly conducting electrodes with a high mobility of the generated charge carriers. An excellent sensitivity is demonstrated towards UV illumination, with a reversible photoresponse even for a short period of UV illumination. Response and recovery times of a few milliseconds demonstrated a much faster photoresponse than most of the conventional ZnO nanostructure-based photodetectors. It is shown that the generation of a built-in electric field between the interface of graphene and ZnO NWs effectively contributes to the separation of photogenerated electron-hole pairs for photocurrent generation without applying any external bias. Upon application of external bias voltage, the electric field further increases the drift velocity of photogenerated electrons by reducing the charge recombination rates, and results in an enhancement of the photocurrent. Therefore, the graphene-based heterostructure (G/ZnO NW/G) opens avenues to constructing a novel heterostructure with a combination of two functionally dissimilar materials.

  14. Effect of gamma irradiation on Schottky-contacted vertically aligned ZnO nanorod-based hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Ranwa, Sapana; Singh Barala, Surendra; Fanetti, Mattia; Kumar, Mahesh

    2016-08-01

    We report the impact of gamma irradiation on the performance of a gold Schottky-contacted ZnO nanorod-based hydrogen sensor. RF-sputtered vertically aligned highly c-axis-oriented ZnO NRs were grown on Si(100) substrate. X-ray diffraction shows no significant change in crystal structure at low gamma doses from 1 to 5 kGy. As gamma irradiation doses increase to 10 kGy, the single crystalline ZnO structure converts to polycrystalline. The photoluminescence spectra also shows suppression of the near-band emission peak and the huge wide-band spectrum indicates the generation of structural defects at high gamma doses. At 1 kGy, the hydrogen sensor response was enhanced from 67% to 77% for 1% hydrogen in pure argon at a 150 °C operating temperature. However, at 10 kGy, the relative response decreases to 33.5%. High gamma irradiation causes displacement damage and defects in ZnO NRs, and as a result, degrades the sensor’s performance as a result. Low gamma irradiation doses activate the ZnO NR surface through ionization, which enhances the sensor performance. The relative response of the hydrogen sensor was enhanced by ∼14.9% with respect to pristine ZnO using 1 kGy gamma ray treatment.

  15. Field emission of vertically aligned V 2O 5 nanowires on an ITO surface prepared with gaseous transport

    NASA Astrophysics Data System (ADS)

    Wu, Ming-Cheng; Lee, Chi-Shen

    2009-08-01

    Growing V 2O 5 nanowires (NWs) on a conducting glass substrate combines gaseous transport and pyrolytic deposition of vanadium polyoxometalate anions, and yields vertically aligned vanadium-oxide nanowires. Scanning electron and transmission electron microscopy, selected-area electron diffraction, Raman spectra and powder X-ray analyses indicate that V 2O 5 nanowires as synthesized were single-crystalline and grew anisotropically among direction [010]. NH 2OH·HCl served not only as a reducing agent to produce vanadium polyoxometalate clusters but also as a source of NH 3 gas to facilitate the vapor pyrolysis and deposition. The optical properties of V 2O 5 nanowires exhibit a character dependent on structure. Field emission (FE) measurements show a small turn-on field voltage ~8.3 V/μm, maximum current density 1.8 mA/cm 2, and a linear Fowler-Nordheim behavior.

  16. Quantum-interference transport through surface layers of indium-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chiu, Shao-Pin; Lu, Jia Grace; Lin, Juhn-Jong

    2013-06-01

    We have fabricated indium-doped ZnO (IZO) nanowires (NWs) and carried out four-probe electrical-transport measurements on two individual NWs with geometric diameters of ≈70 and ≈90 nm in a wide temperature T interval of 1-70 K. The NWs reveal overall charge conduction behavior characteristic of disordered metals. In addition to the T dependence of resistance R, we have measured the magnetoresistance (MR) in magnetic fields applied either perpendicular or parallel to the NW axis. Our R(T) and MR data in different T intervals are consistent with the theoretical predictions of the one- (1D), two- (2D) or three-dimensional (3D) weak-localization (WL) and the electron-electron interaction (EEI) effects. In particular, a few dimensionality crossovers in the two effects are observed. These crossover phenomena are consistent with the model of a ‘core-shell-like structure’ in individual IZO NWs, where an outer shell of thickness t (≃15-17 nm) is responsible for the quantum-interference transport. In the WL effect, as the electron dephasing length Lφ gradually decreases with increasing T from the lowest measurement temperatures, a 1D-to-2D dimensionality crossover takes place around a characteristic temperature where Lφ approximately equals d, an effective NW diameter which is slightly smaller than the geometric diameter. As T further increases, a 2D-to-3D dimensionality crossover occurs around another characteristic temperature where Lφ approximately equals t (ZnO NWs. This work also strongly

  17. Controllable growth of dendritic ZnO nanowire arrays on a stainless steel mesh towards the fabrication of large area, flexible dye-sensitized solar cells.

    PubMed

    Dai, Hui; Zhou, Yong; Liu, Qi; Li, Zhengdao; Bao, Chunxiong; Yu, Tao; Zhou, Zhigang

    2012-09-07

    Well-defined ZnO nanowire (NW) arrays with controlled dendritic structures were successfully built on a stainless steel mesh and utilized as photoanodes for the fabrication of large-area, flexible dye-sensitized solar cells (DSSCs). The dendritic nanostructure proves favorable for the improvement of the overall light conversion efficiency of the DSSC. An optimized etching time for the affixion of ZnO seeds on the ZnO backbone of the dendritic "tree" and the controlled growth conditions of the branch NW are critical to achieve high conversion efficiency solar cells.

  18. Controllable growth of dendritic ZnO nanowire arrays on a stainless steel mesh towards the fabrication of large area, flexible dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Dai, Hui; Zhou, Yong; Liu, Qi; Li, Zhengdao; Bao, Chunxiong; Yu, Tao; Zhou, Zhigang

    2012-08-01

    Well-defined ZnO nanowire (NW) arrays with controlled dendritic structures were successfully built on a stainless steel mesh and utilized as photoanodes for the fabrication of large-area, flexible dye-sensitized solar cells (DSSCs). The dendritic nanostructure proves favorable for the improvement of the overall light conversion efficiency of the DSSC. An optimized etching time for the affixion of ZnO seeds on the ZnO backbone of the dendritic ``tree'' and the controlled growth conditions of the branch NW are critical to achieve high conversion efficiency solar cells.

  19. Chlorine Gas Sensing Performance of On-Chip Grown ZnO, WO3, and SnO2 Nanowire Sensors.

    PubMed

    Tran, Van Dang; Nguyen, Duc Hoa; Nguyen, Van Duy; Nguyen, Van Hieu

    2016-02-01

    Monitoring toxic chlorine (Cl2) at the parts-per-billion (ppb) level is crucial for safe usage of this gas. Herein, ZnO, WO3, and SnO2 nanowire sensors were fabricated using an on-chip growth technique with chemical vapor deposition. The Cl2 gas-sensing characteristics of the fabricated sensors were systematically investigated. Results demonstrated that SnO2 nanowires exhibited higher sensitivity to Cl2 gas than ZnO and WO3 nanowires. The response (RCl2/Rair) of the SnO2 nanowire sensor to 50 ppb Cl2 at 50 °C was about 57. Hence, SnO2 nanowires can be an excellent sensing material for detecting Cl2 gas at the ppb level under low temperatures. Abnormal sensing characteristics were observed in the WO3 and SnO2 nanowire sensors at certain temperatures; in particular, the response level of these sensors to 5 ppm of Cl2 was lower than that to 2.5 ppm of Cl2. The sensing mechanism of the SnO2 nanowire sensor was also elucidated by determining Cl2 responses under N2 and dry air as carrier gases. We proved that the Cl2 molecule was first directly adsorbed on the metal oxide surface and was then substituted for pre-adsorbed oxygen, followed by lattice oxygen.

  20. Correlation between SSM substrate effect and physical properties of ZnO nanowires electrodeposited with or without seed layer for enhanced photoelectrochemical applications

    NASA Astrophysics Data System (ADS)

    Lamouchi, A.; Slimi, B.; Ben Assaker, I.; Gannouni, M.; Chtourou, R.

    2016-06-01

    ZnO nanowires (NWs) were grown vertically by electrodeposition technique on a stainless-steel mesh (SSM) substrate in the presence and absence of seed layer. A new contribution to the knowledge of both substrate nature and seed layer dependence on structural, morphological, optical properties is reported. X-ray diffraction revealed that all the samples are mainly crystallized in the wurtzite ZnO phase. In the presence of seed layer onto the SSM substrate, the crystalline nature of ZnO NWs is improved by the enhancement of intensity in (002) peak, which indicates a preferential orientation along this peak. The scanning electron microscopy (SEM) images show that, in the presence of seed layer, nanowires appear uniform and stand perpendicular to the substrate with hexagonal shape, implying the occurrence of the wurtzite ZnO crystal structure. According to optical measurements, the decrease of the band-gap energy is due mainly to the seed layer effect and the SSM substrate contribution. To investigate the effect of seed layer and SSM substrate, a photoeletrochemical (PEC) analysis of ZnO NWs is performed. The photocurrent density produced by the ZnO NWs/ZnO/SSM electrode reached 0.2mA·cm^-2, about two times higher than that measured on the ZnO NWs/SSM electrode. These results indicate that both seed layer and substrate have great potential in photoelectrochemical devices.