Science.gov

Sample records for aligned zno nrs

  1. Schottky-contacted vertically self-aligned ZnO nanorods for hydrogen gas nanosensor applications

    SciTech Connect

    Ranwa, Sapana; Kumar, Mohit; Kumar, Mahesh; Singh, Jitendra; Fanetti, Mattia

    2015-07-21

    Vertically well aligned ZnO nanorods (NRs) were grown on Si(100) substrate using RF magnetron sputtering technique. Scanning electron microscopy images confirms uniform distribution of NRs on 2 in. wafer with average diameter, height and density being ∼75 nm, ∼850 nm, and ∼1.5 × 10{sup 10} cm{sup −2}, respectively. X-ray diffraction reveals that the ZnO NRs are grown along c-axis direction with wurtzite crystal structure. Cathodoluminescence spectroscopy, which shows a single strong peak around 3.24 eV with full width half maxima 130 meV, indicates the high crystalline and optical quality of ZnO and very low defect density. Vertically aligned nanosensors were fabricated by depositing gold circular Schottky contacts on ZnO NRs. Resistance responses of nanosensors were observed in the range from 50 to 150 °C in 1% and 5% hydrogen in argon environment, which is below and above the explosive limit (4%) of hydrogen in air. The nanosensor's sensitivity increases from 11% to 67% with temperature from 50 to 150 °C and also shows fast response time (9–16 s) and moderate recovery time (100–200 s). A sensing mechanism is proposed based on Schottky barrier changes at heterojunctions and change in depletion region of NRs.

  2. Schottky-contacted vertically self-aligned ZnO nanorods for hydrogen gas nanosensor applications

    NASA Astrophysics Data System (ADS)

    Ranwa, Sapana; Kumar, Mohit; Singh, Jitendra; Fanetti, Mattia; Kumar, Mahesh

    2015-07-01

    Vertically well aligned ZnO nanorods (NRs) were grown on Si(100) substrate using RF magnetron sputtering technique. Scanning electron microscopy images confirms uniform distribution of NRs on 2 in. wafer with average diameter, height and density being ˜75 nm, ˜850 nm, and ˜1.5 × 1010 cm-2, respectively. X-ray diffraction reveals that the ZnO NRs are grown along c-axis direction with wurtzite crystal structure. Cathodoluminescence spectroscopy, which shows a single strong peak around 3.24 eV with full width half maxima 130 meV, indicates the high crystalline and optical quality of ZnO and very low defect density. Vertically aligned nanosensors were fabricated by depositing gold circular Schottky contacts on ZnO NRs. Resistance responses of nanosensors were observed in the range from 50 to 150 °C in 1% and 5% hydrogen in argon environment, which is below and above the explosive limit (4%) of hydrogen in air. The nanosensor's sensitivity increases from 11% to 67% with temperature from 50 to 150 °C and also shows fast response time (9-16 s) and moderate recovery time (100-200 s). A sensing mechanism is proposed based on Schottky barrier changes at heterojunctions and change in depletion region of NRs.

  3. Aligned ZnO nanorod arrays growth on GaN QDs for excellent optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sang, Dandan; Li, Hongdong; Wang, Qinglin

    2016-02-01

    Uniformly aligned ZnO nanorod (NR) arrays grown on GaN quantum dots (QDs) as preferred nucleation sites are imperative for designing field emission emitters, ultraviolet photodetectors and light-emitting diodes for a wide range of new optoelectronic applications. In a recent study (2015 Nanotechnology 26 415601), Qi et al reported a novel method of fabricating ZnO NRs arrays with uniform shape, the density of which is easily tunable by adjusting the density of GaN QDs. This approach opens a door to obtaining a combination of 0D and 1D structures for optoelectronic applications.

  4. Effect of gamma irradiation on Schottky-contacted vertically aligned ZnO nanorod-based hydrogen sensor.

    PubMed

    Ranwa, Sapana; Barala, Surendra Singh; Fanetti, Mattia; Kumar, Mahesh

    2016-08-26

    We report the impact of gamma irradiation on the performance of a gold Schottky-contacted ZnO nanorod-based hydrogen sensor. RF-sputtered vertically aligned highly c-axis-oriented ZnO NRs were grown on Si(100) substrate. X-ray diffraction shows no significant change in crystal structure at low gamma doses from 1 to 5 kGy. As gamma irradiation doses increase to 10 kGy, the single crystalline ZnO structure converts to polycrystalline. The photoluminescence spectra also shows suppression of the near-band emission peak and the huge wide-band spectrum indicates the generation of structural defects at high gamma doses. At 1 kGy, the hydrogen sensor response was enhanced from 67% to 77% for 1% hydrogen in pure argon at a 150 °C operating temperature. However, at 10 kGy, the relative response decreases to 33.5%. High gamma irradiation causes displacement damage and defects in ZnO NRs, and as a result, degrades the sensor's performance as a result. Low gamma irradiation doses activate the ZnO NR surface through ionization, which enhances the sensor performance. The relative response of the hydrogen sensor was enhanced by ∼14.9% with respect to pristine ZnO using 1 kGy gamma ray treatment. PMID:27418478

  5. Effect of gamma irradiation on Schottky-contacted vertically aligned ZnO nanorod-based hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Ranwa, Sapana; Singh Barala, Surendra; Fanetti, Mattia; Kumar, Mahesh

    2016-08-01

    We report the impact of gamma irradiation on the performance of a gold Schottky-contacted ZnO nanorod-based hydrogen sensor. RF-sputtered vertically aligned highly c-axis-oriented ZnO NRs were grown on Si(100) substrate. X-ray diffraction shows no significant change in crystal structure at low gamma doses from 1 to 5 kGy. As gamma irradiation doses increase to 10 kGy, the single crystalline ZnO structure converts to polycrystalline. The photoluminescence spectra also shows suppression of the near-band emission peak and the huge wide-band spectrum indicates the generation of structural defects at high gamma doses. At 1 kGy, the hydrogen sensor response was enhanced from 67% to 77% for 1% hydrogen in pure argon at a 150 °C operating temperature. However, at 10 kGy, the relative response decreases to 33.5%. High gamma irradiation causes displacement damage and defects in ZnO NRs, and as a result, degrades the sensor’s performance as a result. Low gamma irradiation doses activate the ZnO NR surface through ionization, which enhances the sensor performance. The relative response of the hydrogen sensor was enhanced by ∼14.9% with respect to pristine ZnO using 1 kGy gamma ray treatment.

  6. Temperature dependent electrical transport studies of self-aligned ZnO nanorods/Si heterostructures deposited by sputtering

    SciTech Connect

    Ranwa, Sapana; Dixit, Vivek; Kumar, Mahesh; Kumar Kulriya, Pawan

    2014-06-21

    Self-aligned ZnO nanorods (NRs) were grown on n-Si(100) substrate by RF sputtering techniques. The NRs are uniformly grown on 2-inch wafer along [0001] direction. Single-crystalline wurtzite structure of ZnO NRs was confirmed by X-ray diffraction. The average diameter, height, and density of NRs are found 48 nm, 750 nm, and 1.26 × 10{sup 10} cm{sup −2}, respectively. The current-voltages (I-V) characteristics of ZnO NRs/Si heterojunction (HJ) were studied in the temperature range of 120–300 K and it shows a rectifying behavior. Barrier height (ϕ{sub B}) and ideality factor (η) were estimated from thermionic emission model and found to be highly temperature dependent in nature. Richardson constant (A{sup *}) was evaluated using Richardson plot of ln(I{sub o}/T{sup 2}) versus q/kT plot by linear fitting in two temperature range 120–180 K and 210–300 K. Large deviation in Richardson constant from its theoretical value of n-Si indicates the presence of barrier inhomogeneities at HJ. Double Gaussian distribution of barrier height with thermionic equation gives mean barrier heights of 0.55 ± 0.01 eV and 0.86 ± 0.02 eV for two different temperature regions 120–180 K and 210–300 K, respectively. Modified Richardson plot provided two values of Richardson constant for two temperature regions. However, for higher temperature range (210–300 K), the calculated value of Richardson constant ∼123 A cm{sup −2} K{sup −2} was close to the ideal Richardson constant for n-Si.

  7. Buffer layer effect on ZnO nanorods growth alignment

    NASA Astrophysics Data System (ADS)

    Zhao, Dongxu; Andreazza, Caroline; Andreazza, Pascal; Ma, Jiangang; Liu, Yichun; Shen, Dezhen

    2005-06-01

    Vertical aligned ZnO nanorods array was fabricated on Si with introducing a ZnO thin film as a buffer layer. Two different nucleation mechanisms were found in growth process. With using Au catalyst, Zn vapor could diffuse into Au nanoclusters with forming a solid solution. Then the ZnO nucleation site is mainly on the catalyst by oxidation of Au/Zn alloy. Without catalyst, nucleation could occur directly on the surface of buffer layer by homoepitaxy. The density and the size of ZnO nanorods could be governed by morphological character of catalyst and buffer layer. The nanorods growth is followed by vapor-solid mechanism.

  8. Facile construction of vertically aligned ZnO nanorod/PEDOT:PSS hybrid heterojunction-based ultraviolet light sensors: efficient performance and mechanism

    NASA Astrophysics Data System (ADS)

    Ranjith, K. S.; Rajendra Kumar, R. T.

    2016-03-01

    We demonstrate a simple, planar manufacturing process-compatible fabrication of highly efficient UV sensors based on a hybrid heterojunction of an array of vertically aligned ZnO nanorods (NRs) and PEDOT:PSS. The ZnO NR array was grown by the solution growth process and the aspect ratio (length 1 to 4 μm, diameter ˜80 nm) of the rods was controlled by varying the growth time. UV sensors based on (i) naked ZnO NRs and (ii) ZnO NR/PEDOT:PSS heterojunctions were fabricated and tested. The UV sensitivity of bare ZnO NRs was found to increase with increasing aspect ratio of the NRs due to the increase in the photogenerated charge carriers as the fraction of material interacting with the light increases. Under 5 V bias, naked ZnO NR arrays showed a photocurrent of 8.84 × 10-5 A, a responsivity of 0.538 A W-1 and a sensitivity of 4.80 under UV (λ = 256 nm, 130 μW) illumination. ZnO NR/PEDOT:PSS hybrid heterojunctions showed diode-like behavior with a leakage current less than 2.54 × 10-8 A at -5 V and forward turn-on voltage of 1.1 V. ZnO NR/polymer-based hybrid heterojunctions show a photocurrent of 6.74 × 10-4 A, responsivity of 5.046 A W-1 and excellent sensitivity of 37.65 under UV (λ = 256 nm, 130 μW) illumination. Compared with bare ZnO NR arrays, the ZnO NR/polymer heterojunction device shows responsivity enhanced by a factor of 10, sensitivity enhanced by a factor of 8 and faster rise and decay time. The enhanced performance may be due to effective charge separation guided by the built-in potential formed at the interface between ZnO NRs and PEDOT:PSS.

  9. Growth of vertically aligned ZnO nanorods using textured ZnO films

    PubMed Central

    2011-01-01

    A hydrothermal method to grow vertical-aligned ZnO nanorod arrays on ZnO films obtained by atomic layer deposition (ALD) is presented. The growth of ZnO nanorods is studied as function of the crystallographic orientation of the ZnO films deposited on silicon (100) substrates. Different thicknesses of ZnO films around 40 to 180 nm were obtained and characterized before carrying out the growth process by hydrothermal methods. A textured ZnO layer with preferential direction in the normal c-axes is formed on substrates by the decomposition of diethylzinc to provide nucleation sites for vertical nanorod growth. Crystallographic orientation of the ZnO nanorods and ZnO-ALD films was determined by X-ray diffraction analysis. Composition, morphologies, length, size, and diameter of the nanorods were studied using a scanning electron microscope and energy dispersed x-ray spectroscopy analyses. In this work, it is demonstrated that crystallinity of the ZnO-ALD films plays an important role in the vertical-aligned ZnO nanorod growth. The nanorod arrays synthesized in solution had a diameter, length, density, and orientation desirable for a potential application as photosensitive materials in the manufacture of semiconductor-polymer solar cells. PACS 61.46.Hk, Nanocrystals; 61.46.Km, Structure of nanowires and nanorods; 81.07.Gf, Nanowires; 81.15.Gh, Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.) PMID:21899743

  10. Solution-processed Cu2ZnSnS4 superstrate solar cell using vertically aligned ZnO nanorods.

    PubMed

    Lee, Dongwook; Yong, Kijung

    2014-02-14

    One-dimensional (1D) zinc oxide (ZnO) nanostructures are considered to be promising materials for use in thin film solar cells because of their high light harvesting and charge collection efficiencies. We firstly report enhanced photovoltaic performances in Cu2ZnSnS4 (CZTS) thin film solar cells prepared using ZnO nanostructures. A CdS-coated, vertically well-aligned ZnO nanorod (NR) array was prepared via a hydrothermal reaction and nanocrystal layer deposition (NCLD) and was used as a transparent window/buffer layer in a CZTS thin film photovoltaic. A light absorber CZTS thin film was prepared on the CdS/ZnO NRs in air by depositing a non-toxic precursor solution that was annealed in two steps at temperatures up to 250 °C. The crystallized CZTS phase completely infiltrated the CdS/ZnO NR array. The nanostructured ZnO array provided improved light harvesting behavior compared to a thin film configuration by measuring UV-vis transmittance spectroscopy. The prepared CZTS/CdS/ZnO NR device exhibited a solar energy conversion efficiency of 1.2%, which is the highest efficiency yet reported for nanostructured superstrate CZTS solar cells. PMID:24434835

  11. Fabrication and Characterization of ZnO Nanorods on Multiple Substrates.

    PubMed

    Rana, Abu ul Hassan Sarwar; Ko, Kyul; Hong, Sejun; Kang, Mingi; Kim, Hyun-Seok

    2015-11-01

    In this study, we present the fabrication and characterization of ZnO nanorods (NRs) grown on p-Si, gold (Au) and nickel (Ni) coated on Si wafer, indium tin oxide (ITO), and quartz substrates. The aqueous chemical growth method is used for the vertical growth of ZnO NRs on multiple substrates. The samples are characterized with scanning electron microscope and energy dispersive X-ray spectroscopy to probe into the growth, alignment, density, diameter, and length of ZnO NRs on multiple substrates. It is found that under same conditions, like growth temperature, growth time, and solution concentration, ZnO NRs on ITO and quartz have same length but comparatively larger diameter than on other samples. The effects of growth time on the diameter and length of ZnO NRs are also explored. All the samples are characterized with probe station to look at the current-voltage (I-V) behavior of ZnO NRs on multiple substrates. It is found that ZnO NRs on p-Si show a simple p-n heterojunction diode like behavior. ZnO NRs grown on Au- and Ni-coated Si wafers show Schottky I-V characteristic behaviors while ZnO NRs on ITO show a simple ohmic I-V response with comparatively higher level of current. Finally, the I-V response of ZnO NRs on p-Si is also studied under ultraviolet illumination. Because of the photo-generated carriers in ZnO, the sample shows higher level of current upon illumination. PMID:26726520

  12. Defect-free ZnO nanorods for low temperature hydrogen sensor applications

    SciTech Connect

    Ranwa, Sapana; Kumar, Mahesh; Kulriya, Pawan K.; Sahu, Vikas Kumar; Kukreja, L. M.

    2014-11-24

    Uniformly distributed and defect-free vertically aligned ZnO nanorods (NRs) with high aspect ratio are deposited on Si by sputtering technique. X-ray diffraction along with transmission electron microscopy studies confirmed the single crystalline wurtzite structure of ZnO. Absence of wide band emission in photoluminescence spectra showed defect-free growth of ZnO NRs which was further conformed by diamagnetic behavior of the NRs. H{sub 2} sensing mechanism based on the change in physical dimension of channel is proposed to explain the fast response (∼21.6 s) and recovery times (∼27 s) of ZnO NRs/Si/ZnO NRs sensors. Proposed H{sub 2} sensor operates at low temperature (∼70 °C) unlike the existing high temperature (>150 °C) sensors.

  13. Direct growth of densely aligned ZnO nanorods on graphene

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiro; Okumura, Ryuji; Ichikawa, Yo

    2016-08-01

    Densely aligned ZnO nanorods were directly grown on graphene sheets. On graphene prepared via a chemical vapor deposition technique, ZnO nanorods were synthesized by a hydrothermal method. The rod density was ∼1.4 × 109/cm2 and the nanorods were observed to be well aligned on graphene by scanning electron microscopy. The formation of such ZnO structures is considered to be induced by carbon vacancies in graphene in accordance with Raman spectroscopic results.

  14. Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells.

    PubMed

    Ambade, Swapnil B; Ambade, Rohan B; Eom, Seung Hun; Baek, Myung-Jin; Bagde, Sushil S; Mane, Rajaram S; Lee, Soo-Hyoung

    2016-03-01

    In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy)acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th:PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs. PMID:26864170

  15. Tunable Surface Wettability of ZnO Nanoparticle Arrays for Controlling the Alignment of Liquid Crystals.

    PubMed

    Chung, Yueh-Feng; Chen, Mu-Zhe; Yang, Sheng-Hsiung; Jeng, Shie-Chang

    2015-05-13

    The control of the liquid crystal (LC) alignment is very important for both academic research and practical applications. LC molecules aligned on the ZnO nanoparticle arrays (ZnO NPAs) are demonstrated and the pretilt angles of LCs can be controlled by using ZnO NPAs with different surface wettability. The wettability of ZnO NPAs fabricated by the solution-based hydrothermal method can be controlled by changing the annealing temperature of the as-prepared ZnO NPAs. The measurements of the energy-dispersive spectra and photoluminescence have shown that the chemical properties of ZnO NPAs have been changed with the annealing temperature. Our results show that the pretilt angle of LCs can be tuned continuously from ∼0 to ∼90° as the contact angle of water on ZnO NPAs changes from 33 to 108°. PMID:25895105

  16. Development of Solution-Processed ZnO Nanorod Arrays Based Photodetectors and the Improvement of UV Photoresponse via AZO Seed Layers.

    PubMed

    Zhang, Yuzhu; Xu, Jianping; Shi, Shaobo; Gao, Yanyan; Wang, Chang; Zhang, Xiaosong; Yin, Shougen; Li, Lan

    2016-08-31

    Designing a rational structure and developing an efficient fabrication technique for bottom-up devices offer a promising opportunity for achieving high-performance devices. In this work, we studied how Al-doped ZnO (AZO) seed layer films influence the morphology and optical and electrical properties for ZnO aligned nanorod arrays (NRs) and then the performance of ZnO NRs based ultraviolet photodetectors (UV PDs) with Au/ZnO NRs Schottky junctions and p-CuSCN/n-ZnO NRs heterojunctions. The PD with AZO thin film with 0.5 at. % Al doping (named as AZO (0.5%)) exhibited more excellent photoresponse properties than that with pristine ZnO and AZO (1%) thin films. This phenomenon can be ascribed to the good light transmission of the AZO layer, increased density of the NRs, and improved crystallinity of ZnO NRs. The PDs based on CuSCN/ZnO NRs heterojunctions showed good rectification characteristics in the dark and self-powered UV photoresponse properties with excellent stability and reproducibility under low-intensity illumination conditions. A large responsivity located at 365 nm of 22.5 mA/W was achieved for the PD with AZO (0.5%) thin film without applied bias. The internal electric field originated from p-CuSCN/n-ZnO NRs heterojunctions can separate photogenerated carriers in ZnO NRs and drift toward the corresponding electrode. PMID:27500944

  17. The role of seeding in the morphology and wettability of ZnO nanorods films on different substrates

    NASA Astrophysics Data System (ADS)

    Rodríguez, Juan; Onna, Diego; Sánchez, Luis; Marchi, M. Claudia; Candal, Roberto; Ponce, Silvia; Bilmes, Sara A.

    2013-08-01

    Spray pyrolysis (SP) and spray-gel (SG) techniques were used to deposit ZnO seeds on Fluor doped tin oxide glasses (FTO), heated at 350 °C or 130 °C, and PET heated at 90 °C. The effect of seeding on the morphology and wettability of ZnO nanorods (NRs) films grown by wet chemical methods was analyzed. The morphology and wettability of ZnO NRs films depend on the seeding process. SP seeds formed from zinc acetate dissolved in water ethanol mixtures yield vertically aligned ZnO NRs, whose diameters and dispersion size are determined by the ethanol/water ratio in the precursor solution. SG seeds formed from a methanol ZnO sol produce a ring patterned distribution on the FTO substrate. The drying of ZnO sol drops impinging on the substrate produces high density of seeds along a ring yielding textured films with NRs vertically oriented on the rings and multi-oriented outside them. This effect was not observed when ZnO NRs grown onto the ZnO/PET substrate, however rod diameter is related with the density of seeds. This way to control the density and diameter of NRs deposited onto a substrate modify the wettability and opens new possibilities for the design of tailored nanomaterials for photochemical applications. Both type of NRs films showed a strong luminescence emission in the UV and in the blue, associated with surface and intrinsic defects.

  18. Growth of vertically aligned one-dimensional ZnO nanowire arrays on sol-gel derived ZnO thin films

    NASA Astrophysics Data System (ADS)

    Kitazawa, Nobuaki; Aono, Masami; Watanabe, Yoshihisa

    2014-11-01

    Vertically aligned one-dimensional ZnO nanowire arrays have been synthesized by a hydrothermal method on sol-gel derived ZnO films. Sol-gel derived ZnO films and corresponding ZnO nanowire arrays have been characterized by X-ray diffraction and field-emission scanning electron microscopy. The effect of sol-gel derived ZnO film surface on the morphology of ZnO nanowire arrays has been investigated. The authors suggest from our investigation that sol-gel derived ZnO films affect the growth of one-dimensional ZnO nanostructures. Not only crystalline ZnO films but also amorphous ones can act as a scaffold for ZnO nucleus. Tilted ZnO micro-rods are grown on ZnO gel films, whereas vertically aligned ZnO nanowire arrays are grown on nanometer-sized ZnO grains. The average diameter of ZnO nanowire arrays are correlated strongly with the grain size of sol-gel derived ZnO films.

  19. Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays.

    PubMed

    Wei, Yaguang; Wu, Wenzhuo; Guo, Rui; Yuan, Dajun; Das, Suman; Wang, Zhong Lin

    2010-09-01

    This article presents an effective approach for patterned growth of vertically aligned ZnO nanowire (NW) arrays with high throughput and low cost at wafer scale without using cleanroom technology. Periodic hole patterns are generated using laser interference lithography on substrates coated with the photoresist SU-8. ZnO NWs are selectively grown through the holes via a low-temperature hydrothermal method without using a catalyst and with a superior control over orientation, location/density, and as-synthesized morphology. The development of textured ZnO seed layers for replacing single crystalline GaN and ZnO substrates extends the large-scale fabrication of vertically aligned ZnO NW arrays on substrates of other materials, such as polymers, Si, and glass. This combined approach demonstrates a novel method of manufacturing large-scale patterned one-dimensional nanostructures on various substrates for applications in energy harvesting, sensing, optoelectronics, and electronic devices. PMID:20681617

  20. Process of in situ forming well-aligned zinc oxide nanorod arrays on wood substrate using a two-step bottom-up method.

    PubMed

    Liu, Yongzhuang; Fu, Yanchun; Yu, Haipeng; Liu, Yixing

    2013-10-01

    A good nanocrystal covering layer on wood can serve as a protective coating and present some new surface properties. In this study, well-aligned ZnO nanorods (NRs) arrays were successfully grown on wood surface through a two-step bottom-up growth process. The process involved pre-sow seeds and subsequently their growing into NRs under hydrothermal environment. The interface incorporation between wood and ZnO colloid particles in the precursor solution during the seeding process was analyzed and demonstrated through a schematic. The growth process of forming well-aligned ZnO NRs was analyzed by field-emission scanning electron microscopy and X-ray diffraction, which showed that the NRs elongated with increased reaction time. The effects of ZnO crystal form and capping agent on the growth process were studied through different viewpoints. PMID:23880522

  1. Iterative Evaluation: NRS. An Example.

    ERIC Educational Resources Information Center

    Leinhardt, Gaea; Engel, Mary

    The use of increasingly more informative evaluations of a single innovation are documented. The innovation, The New Primary Grades Reading System (NRS), was implemented in a variety of settings, and the evaluations track the implementation from the early stages of pilot testing through large-scale adoption of the program. NRS is characterized as…

  2. Fundamental understanding of the growth, doping and characterization of aligned ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Shen, Gang

    Zinc oxide (ZnO) is a II-VI semiconductor whose wide direct bandgap (3.37 eV) and large exciton binding energy (60 meV) make it compelling for optoelectronic devices such as light emitting diodes, lasers, photodetectors, solar cells, and mechanical energy harvesting devices. One dimensional structures of ZnO (nanowires) have become significant due to their unique physical properties arising from quantum confinement, and they are ideal for studying transport mechanisms in one-dimensional systems. In this doctoral research work, ZnO nanowire (NW) arrays were synthesized on sapphire substrates through carbo-thermal reduction of ZnO powders, and the effects of growth parameters on the properties of ZnO NW arrays were studied by scanning and transmission electron microscopy, X-ray diffraction, photoluminescence and Raman spectroscopy. Based on the phonon mode selection rules in wurtzite ZnO, confocal Raman spectroscopy was used to assess the alignment of ZnO NWs in an array, thereby complementing X-ray diffraction. Al doped ZnO NW arrays were achieved by mixing Al powder into the ZnO and graphite source mixture, and the presence of Al was confirmed by Energy-dispersive X-ray spectroscopy. The incorporation of Al had the effects of lowering the electrical resistivity, slightly deteriorating crystal quality and suppressing defect related green emission. Two models of ZnO NW growth were developed by establishing the relationship between NW length and diameter for undoped and Al doped ZnO NWs separately. The growth of undoped ZnO NWs followed the diffusion-induced model which was characterized by thin wires being longer than thick wires, while the growth of Al doped ZnO was controlled by Gibbs-Thomson effect which was characterized by thin wires being shorter than thin wires. Local electrode atom probe analysis of ZnO NWs was carried out to study the crystal stoichiometry and Al incorporation. Undoped ZnO NWs were found to be high purity with no detectable impurities

  3. Role of ZnO thin film in the vertically aligned growth of ZnO nanorods by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Son, Nguyen Thanh; Noh, Jin-Seo; Park, Sungho

    2016-08-01

    The effect of ZnO thin film on the growth of ZnO nanorods was investigated. ZnO thin films were sputter-deposited on Si substrate with varying the thickness. ZnO nanorods were grown on the thin film using a chemical bath deposition (CBD) method at 90 °C. The ZnO thin films showed granular structure and vertical roughness on the surface, which facilitated the vertical growth of ZnO nanorods. The average grain size and the surface roughness of ZnO film increased with an increase in film thickness, and this led to the increase in both the average diameter and the average length of vertically grown ZnO nanorods. In particular, it was found that the average diameter of ZnO nanorods was very close to the average grain size of ZnO thin film, confirming the role of ZnO film as a seed layer for the vertical growth of ZnO nanorods. The CBD growth on ZnO seed layers may provide a facile route to engineering vertically aligned ZnO nanorod arrays.

  4. Vertically Aligned ZnO Nanorods: Effect of Synthesis Parameters.

    PubMed

    Rehman, Zeeshan Ur; Heo, Si-Nae; Cho, Hyeon Ji; Koo, Bon Heun

    2016-06-01

    This report is devoted to the synthesis of high quality nanorods using spin coating technique for seed layer growth. Effect of different parameter i.e., spins coating counts, spin coating speed, and the effect of temperature during the drying process was analyzed. Hot plate and furnace technique was used for heating purpose and the difference in the morphology was carefully observed. It is worthy to mention here that there is a substantial effect of all the above mentioned parameters on the growth and morphology of the ZnO nanostructure. The ZnO nanorods were finally synthesized using wet chemical method. The morphological properties of the obtained nanostructures were analyzed by using FESEM technique. PMID:27427752

  5. Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires

    PubMed Central

    2011-01-01

    We report on the major improvement in UV photosensitivity and faster photoresponse from vertically aligned ZnO nanowires (NWs) by means of rapid thermal annealing (RTA). The ZnO NWs were grown by vapor-liquid-solid method and subsequently RTA treated at 700°C and 800°C for 120 s. The UV photosensitivity (photo-to-dark current ratio) is 4.5 × 103 for the as-grown NWs and after RTA treatment it is enhanced by a factor of five. The photocurrent (PC) spectra of the as-grown and RTA-treated NWs show a strong peak in the UV region and two other relatively weak peaks in the visible region. The photoresponse measurement shows a bi-exponential growth and bi-exponential decay of the PC from as-grown as well as RTA-treated ZnO NWs. The growth and decay time constants are reduced after the RTA treatment indicating a faster photoresponse. The dark current-voltage characteristics clearly show the presence of surface defects-related trap centers on the as-grown ZnO NWs and after RTA treatment it is significantly reduced. The RTA processing diminishes the surface defect-related trap centers and modifies the surface of the ZnO NWs, resulting in enhanced PC and faster photoresponse. These results demonstrated the effectiveness of RTA processing for achieving improved photosensitivity of ZnO NWs. PMID:21859456

  6. Synthesis and photoluminescence properties of aligned Zn{sub 2}GeO{sub 4} coated ZnO nanorods and Ge doped ZnO nanocombs

    SciTech Connect

    Su Yong; Meng Xia Chen Yiqing; Li Sen; Zhou Qingtao; Liang Xuemei; Feng Yi

    2008-07-01

    Aligned Zn{sub 2}GeO{sub 4} coated ZnO nanorods and Ge doped ZnO nanocombs were synthesized on a silicon substrate by a simple thermal evaporation method. The structure and morphology of the as-synthesized nanostructure were characterized using scanning electron microscopy and transmission electron microscopy. The growth of aligned Zn{sub 2}GeO{sub 4} coated ZnO nanorods and Ge doped ZnO nanocombs follows a vapor-solid (VS) process. Photoluminescence properties were also investigated at room temperature. The photoluminescence spectrum reveals the nanostructures have a sharp ultraviolet luminescence peak centered at 382 nm and a broad green luminescence peak centered at about 494 nm.

  7. Large hexagonal arrays of aligned ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Rybczynski, J.; Huang, J. Y.; Wang, D. Z.; Kempa, K.; Ren, Z. F.

    2005-02-01

    Large-scale truly periodic arrays of vertically aligned zinc oxide nanorods were grown on pre-patterned and pre-annealed gold dots on a-plane sapphire substrates via the vapor liquid solid mechanism. Periodic arrays of triangular gold islands were first patterned on the a-plane sapphire substrates by the nanosphere self-assembly technique. Zinc has been found to be an effective interfacial modifier between gold and sapphire to form single catalytic dots from triangular islands. The successful fabrication of zinc oxide nanowires in truly periodic arrays opens up the possibility of achieving enhanced room-temperature ultraviolet lasing and photonic crystal based devices and sensors.

  8. Growth and characterization of vertically aligned ZnO nanorods grown on porous silicon: Effect of precursor concentration

    NASA Astrophysics Data System (ADS)

    Shabannia, R.; Abu Hassan, H.

    2013-10-01

    Vertically aligned ZnO nanorods were successfully synthesized on porous silicon (PS) substrates by chemical bath deposition method at low temperature. The effect of precursor concentration on the growth of ZnO nanorods were systematically characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), low and high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL), and Raman spectroscopy. The XRD results reveal that all the as-grown ZnO nanorod arrays grew preferentially oriented along the c-axis with a hexagonal wurtzite structure. The FESEM images show that the ZnO nanorods grown perpendicular to the PS substrates had diameters and lengths ranging from 13 nm to 69 nm and from 85 nm to 208 nm, respectively. The low-resolution TEM image indicates that the ZnO nanorod arrays had a uniform diameter along their whole length and a smooth surface. PL and Raman analyses reveal that the aligned ZnO nanorods exhibited a sharp ultraviolet peak and high E2 (high) at around 390 nm and 433.8 cm-1, respectively. Furthermore, the ZnO nanorods grew vertically under 0.050 M precursor concentration, resulting in a high structural and optical quality. These ZnO nanorods can be potentially used for fabricating nanoelectronic and nano-optical devices.

  9. Synthesis of Vertically Aligned ZnO Nanorods on Ni-Based Buffer Layers Using a Thermal Evaporation Process

    NASA Astrophysics Data System (ADS)

    Kuo, Dong-Hau; He, Jheng-Yu; Huang, Ying-Sheng

    2012-03-01

    Uniform, vertically aligned ZnO nanorods have been grown mainly on Au-coated and ZnO-coated sapphire substrates, ZnO- and GaN-coated substrates, or self-catalyzing substrates. Conventionally, Ni-coated substrates have resulted in thick rods with diameter more than 250 nm, rods with nonuniform distribution in diameter, or rods with an alignment problem. In the best result in this paper, slender, uniform, vertically aligned, solely UV-emitting ZnO nanorods with diameter of 110 ± 25 nm and length of 30 ± 10 μm have been successfully grown at 700°C for 2 h on sapphire substrates covered with Ni-based buffer layers by using metallic zinc and oxygen as reactants. Scanning electron microscopy and room-temperature photoluminescence have been used to investigate the effects of process conditions on the slenderness and vertical alignment of the ZnO rods. To develop the desired ZnO nanorods, etched sapphire substrates, a second metallic Sn buffer layer on top of a spin-coated nickel oxide layer, polyvinyl alcohol binder at 10% concentration in solution of iron nitrate, and pyrolysis and reduction reactions were involved. Defect photoemission for thick ZnO rods is attributed to insufficient oxygen supply during the growth process with fixed oxygen flow rate.

  10. Energy Level Alignment at Aqueous GaN and ZnO Interfaces

    NASA Astrophysics Data System (ADS)

    Hybertsen, Mark S.; Kharche, Neerav; Muckerman, James T.

    2014-03-01

    Electronic energy level alignment at semiconductor-electrolyte interfaces is fundamental to electrochemical activity. Motivated in particular by the search for new materials that can be more efficient for photocatalysis, we develop a first principles method to calculate this alignment at aqueous interfaces and demonstrate it for the specific case of non-polar GaN and ZnO interfaces with water. In the first step, density functional theory (DFT) based molecular dynamics is used to sample the physical interface structure and to evaluate the electrostatic potential step at the interface. In the second step, the GW approach is used to evaluate the reference electronic energy level separately in the bulk semiconductor (valence band edge energy) and in bulk water (the 1b1 energy level), relative to the internal electrostatic energy reference. Use of the GW approach naturally corrects for errors inherent in the use of Kohn-Sham energy eigenvalues to approximate the electronic excitation energies in each material. With this predicted interface alignment, specific redox levels in water, with potentials known relative to the 1b1 level, can then be compared to the semiconductor band edge positions. Our results will be discussed in the context of experiments in which photoexcited GaN and ZnO drive the hydrogen evolution reaction. Research carried out at Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.

  11. Electrochemical Synthesis of ZnO Nanorods/Nanotubes/Nanopencils on Transparent Aluminium-Doped Zinc Oxide Thin Films for Photocatalytic Applications.

    PubMed

    Le, Thi Ngoc Tu; Pham, Tan Thi; Ngo, Quang Minh; Vu, Thi Hanh Thu

    2015-09-01

    We report an electrochemical synthesis of homogeneous and well-aligned ZnO nanorods (NRs) on transparent conducting aluminium-doped zinc oxide (AZO) thin films as electrodes. The selected ZnO NRs was then chemically corroded in HCl and KCl aqueous solutions to form nanopencils (NPs), and nanotubes (NTs), respectively. A DC magnetron sputtering was employed to fabricate AZO thin films at various thicknesses. The obtained AZO thin films have a c-direction orientation, transmittance above 80% in visible region, and sheet resistance approximately 40 Ω/sq. They are considered to be relevant as electrodes and seeding layers for electrochemical. The ZnO NRs are directly grown on the AZOs without a need of catalysts or additional seeding layers at temperature as low as 85 degrees C. Their shapes are strongly associated with the AZO thickness that provides a valuable way to control the diameter of ZnO NRs grown atop. With the addition of HCI and KCl aqueous solutions, ZnO NRs were modified their shape to NPs and NTs with the reaction time, respectively. All the ZnO NRs, NPs, and NTs are preferred to grow along c-direction that indicates a lattice matching between AZO thin films and ZnO nanostructrures. Photoluminescence spectra and XRD patterns show that they have good crystallinities. A great photocatalytic activity of ZnO nanostructures promises potential application in environmental treatment and protection. The ZnO NTs exhibits a higher photocatalysis than others possibly due to the oxygen vacancies on the surface and the polarizability of Zn2+ and O2-. PMID:26716213

  12. Growth of hybrid carbon nanostructures on iron-decorated ZnO nanorods.

    PubMed

    Mbuyisa, Puleng N; Rigoni, Federica; Sangaletti, Luigi; Ponzoni, Stefano; Pagliara, Stefania; Goldoni, Andrea; Ndwandwe, Muzi; Cepek, Cinzia

    2016-04-01

    A novel carbon-based nanostructured material, which includes carbon nanotubes (CNTs), porous carbon, nanostructured ZnO and Fe nanoparticles, has been synthetized using catalytic chemical vapour deposition (CVD) of acetylene on vertically aligned ZnO nanorods (NRs). The deposition of Fe before the CVD process induces the presence of dense CNTs in addition to the variety of nanostructures already observed on the process done on the bare NRs, which range from amorphous graphitic carbon up to nanostructured dendritic carbon films, where the NRs are partially or completely etched. The combination of scanning electron microscopy and in situ photoemission spectroscopy indicate that Fe enhances the ZnO etching, and that the CNT synthesis is favoured by the reduced Fe mobility due to the strong interaction between Fe and the NRs, and to the presence of many defects, formed during the CVD process. Our results demonstrate that the resulting new hybrid shows a higher sensitivity to ammonia gas at ambient conditions (∼60 ppb) than the carbon nanostructures obtained without the aid of Fe, the bare ZnO NRs, or other one-dimensional carbon nanostructures, making this system of potential interest for environmental ammonia monitoring. Finally, in view of the possible application in nanoscale optoelectronics, the photoexcited carrier behaviour in these hybrid systems has been characterized by time-resolved reflectivity measurements. PMID:26916977

  13. Large-scale growth of density-tunable aligned ZnO nanorods arrays on GaN QDs

    NASA Astrophysics Data System (ADS)

    Qi, Zhiqiang; Li, Senlin; Sun, Shichuang; Zhang, Wei; Ye, Wei; Fang, Yanyan; Tian, Yu; Dai, Jiangnan; Chen, Changqing

    2015-10-01

    An effective approach for growing large-scale, uniformly aligned ZnO nanorods arrays is demonstrated. The synthesis uses a GaN quantum dot (QD) template produced by a self-assembled Stranski-Krastanow mode in metal organic chemical vapor deposition, which serves as a nucleation site for ZnO owing to the QD’s high surface free energy. The resultant ZnO nanorods with uniform shape and length align vertically on the template, while their density is easily tunable by adjusting the density of GaN QDs, which can be adjusted by simply varying growth interruption. By controlling the density of ZnO nanorod arrays, their optical performance can also be improved. This approach opens the possibility of combining one-dimensional (1D) with 0D nanostructures for applications in sensor arrays, piezoelectric antenna arrays, optoelectronic devices, and interconnects.

  14. Vertically Well-Aligned ZnO Nanowire Arrays Directly Synthesized from Zn Vapor Deposition Without Catalyst

    NASA Astrophysics Data System (ADS)

    Van Khai, Tran; Van Thu, Le; Huu, Nguyen The; Lam, Tran Dai

    2016-05-01

    Vertically well-aligned ZnO nanowire (NW) arrays with high density have been successfully synthesized on sapphire substrate by thermal evaporation of the zinc powders without catalysts or additives. The ZnO NWs were characterized by scanning electron microscopy, transmission electronic microscopy (TEM), x-ray diffraction, ultraviolet-visible, photoluminescence, Raman, and x-ray photoelectron spectroscopy. The results showed that the obtained ZnO NWs had diameters in the range of 100-130 nm, lengths over several micrometers and well aligned in the direction perpendicular to the substrate surface. The as-synthesized ZnO NWs, which were single crystalline in a hexagonal structure, showed uniform morphology, faceted planes at the tips of the NWs, and grown along the [001] direction. The as-synthesized NW arrays had a good crystal quality with excellent optical properties, showing a sharp and strong ultraviolet emission at 380 nm and a weak visible emission at around 500 nm.

  15. Growth, modulation and photoresponse characteristics of vertically aligned ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Kar, J. P.; Das, S. N.; Choi, J. H.; Lee, T. I.; Seo, J.; Lee, T.; Myoung, J. M.

    2011-03-01

    Vertically aligned, c-axis oriented zinc oxide (ZnO) nanowires were grown on Si substrate by metal organic chemical vapor deposition (MOCVD) technique, where sputtered aluminum nitride (AlN) film was used as an intermediate layer and thermally evaporated barium fluoride (BaF 2) film as a sacrificial layer. The aspect ratio and density of the nanowires were also varied using only Si microcavity without any interfacial or sacrificial layer. The UV detectors inside the microcavity have shown the higher on-off current ratio and fast photoresponse characteristics. The photoresponse characteristics were significantly varied with the aspect ratio and the density of nanowires.

  16. Microstructural and optical properties of nanocrystalline ZnO deposited onto vertically aligned carbon nanotubes by physical vapor deposition

    SciTech Connect

    Borkar, Tushar; Chang, Won Seok; Hwang, Jun Yeon; Shepherd, Nigel D.; Banerjee, Rajarshi

    2012-10-15

    Nanocrystalline ZnO films with thicknesses of 5 nm, 10 nm, 20 nm, and 50 nm were deposited via magnetron sputtering onto the surface of vertically aligned multi-walled carbon nanotubes (MWCNTs). The ZnO/CNTs heterostructures were characterized by scanning electron microscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. No structural degradation of the CNTs was observed and photoluminescence (PL) measurements of the nanostructured ZnO layers show that the optical properties of these films are typical of ZnO deposited at low temperatures. The results indicate that magnetron sputtering is a viable technique for growing heterostructures and depositing functional layers onto CNTs.

  17. Field emission behavior of vertically aligned ZnO nanowire planar cathodes

    SciTech Connect

    Semet, V.; Binh, Vu Thien; Pauporte, Th.; Joulaud, L.; Vermersch, F. J.

    2011-03-01

    A field emission (FE) study by scanning anode field emission microscopy was performed to evaluate the FE properties of vertically aligned zinc oxide (ZnO) nanowire arrays electrodeposited on a plane conductive surface. The specific FE behaviors of the cathode observed experimentally are (1) a turn-on macroscopic field of about 6 V/{mu}m for a FE current density J{sub FE} 5 x 10{sup -4} A/cm{sup 2}, (2) a stable FE characteristics for 5 x 10{sup -4} < J{sub FE} < 5 x 10{sup -2} A/cm{sup 2}, and (3) a brutal shut down of FE when J{sub FE} crossed a limiting value of {approx}0.05 A/cm{sup 2} due to a rapid evolution of the nanowires toward a bulbous tip geometry or a complete melting. A physical process of FE from ZnO nanostructures is proposed from the experimental data analyses. An effective surface barrier of about 1 eV was determined from the experimental Fowler-Nordheim plot and the presence of a Zn enriched surface was assumed in considering the possibility of important modifications of the crystallography and charge transfers at the surface of ZnO nanowires during the application of the strong electric field required for FE.

  18. Co-functionalized organic/inorganic hybrid ZnO nanorods as electron transporting layers for inverted organic solar cells

    NASA Astrophysics Data System (ADS)

    Ambade, Swapnil B.; Ambade, Rohan B.; Eom, Seung Hun; Baek, Myung-Jin; Bagde, Sushil S.; Mane, Rajaram S.; Lee, Soo-Hyoung

    2016-02-01

    In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy)acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th:PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs.In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM

  19. Nucleation, Growth Mechanism, and Controlled Coating of ZnO ALD onto Vertically Aligned N-Doped CNTs.

    PubMed

    Silva, R M; Ferro, M C; Araujo, J R; Achete, C A; Clavel, G; Silva, R F; Pinna, N

    2016-07-19

    Zinc oxide thin films were deposited on vertically aligned nitrogen-doped carbon nanotubes (N-CNTs) by atomic layer deposition (ALD) from diethylzinc and water. The study demonstrates that doping CNTs with nitrogen is an effective approach for the "activation" of the CNTs surface for the ALD of metal oxides. Conformal ZnO coatings are already obtained after 50 ALD cycles, whereas at lower ALD cycles an island growth mode is observed. Moreover, the process allows for a uniform growth from the top to the bottom of the vertically aligned N-CNT arrays. X-ray photoelectron spectroscopy demonstrates that ZnO nucleation takes place at the N-containing species on the surface of the CNTs by the formation of the Zn-N bonds at the interface between the CNTs and the ZnO film. PMID:27333190

  20. In situ reduced graphene oxide interlayer for improving electrode performance in ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Venkatesan, A.; Ramesha, C. K.; Kannan, E. S.

    2016-06-01

    The effect of reduced graphene oxide (RGO) thin film on the transport characteristics of vertically aligned zinc oxide nanorods (ZnO NRs) grown on ITO substrate was studied. GO was uniformly drop casted on ZnO NRs as a passivation layer and then converted into RGO by heating it at 60 °C prior to metal electrode deposition. This low temperature reduction is facilitated by the thermally excited electrons from ZnI interstitial sites (~30 meV). Successful reduction of GO was ascertained from the increased disorder band (D) intensity in the Raman spectra. Temperature (298 K–10 K) dependent transport measurements of RGO–ZnO NRs indicate that the RGO layer not only acts as a short circuiting inhibitor but also reduces the height of the potential barrier for electron tunneling. This is confirmed from the temperature dependent electrical characteristics which revealed a transition of carrier transport from thermionic emission at high temperature (T  >  100 K) to tunneling at low temperature (T  <  100 K) across the interface. Our technique is the most promising approach for making reliable electrical contacts on vertically aligned ZnO NRs and improving the reproducibility of device characteristics.

  1. Vertically aligned nanostructures based on Na-doped ZnO nanorods for wide band gap semiconductor memory applications.

    PubMed

    Huang, Jian; Qi, Jing; Li, Zonglin; Liu, Jianlin

    2013-10-01

    Vertically aligned undoped ZnO nanotips, nanotubes and nanorods were synthesized on the top facets of Na-doped ZnO nanorods without catalytic assistance under different growth times in a chemical vapor deposition system. The growth mechanism is discussed. The Na-doped nanorods were grown on a ZnO seed layer on Si. The p-type conductivity of the Na-doped nanorods was studied by temperature-dependent photoluminescence and nanorod back-gated field effect transistor measurements. The undoped nanorods, Na-doped nanorods and undoped seed layer form an n-p-n memory structure. The programming and retention characteristics have been demonstrated. PMID:24013400

  2. "Secondary Growth" in Hydrothermal Synthesis of Aligned ZnO Nanostructures and Its Application in Dye-Sensitized Solar Cells.

    PubMed

    Liu, Wenjun; Huang, Qiaoling; Huang, Tengji; Cao, Peijiang; Han, Shun; Jia, Fang; Zhu, Deliang; Ma, Xiaocui; Lul, Youming

    2016-04-01

    One-dimensional (1D) aligned ZnO nanostructures were prepared on ZnO film seeded substrates using a low-temperature hydrothermal method, and zinc nitrate and hexamethylenetetramine (HMT) precursors. It was observed that increasing the concentration ratio of Zn2+/HMT from 1 to 100 led to a "secondary growth," and a change in the morphologies of the ZnO nanostructures from arrays of thick nanorods to arrays of thin nanorod-step-thick nanorods. The morphological evolution of ZnO nanostructures with increased growth time at high Zn2+/HMT concentration ratios showed the same transformation. Dye-sensitized solar cells (DSSCs) were fabricated using ZnO nanostructures as the photoanodes, and the electron transport properties were determined by electrochemical impedance spectroscopy (EIS). Although the DSSCs showed low power conversion efficiencies due to the short lengths, the arrays of the thin nanorods demonstrated excellent electron transport with an electron diffusion coefficient (Dn) of 1.57 x 10(-3) cm2/s, and an effective diffusion length (L) of 140 µm. PMID:27451759

  3. Effect of TiO2 thickness on nanocomposited aligned ZnO nanorod/TiO2 for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Saurdi, I.; Shafura, A. K.; Azhar, N. E. A.; Ishak, A.; Malek, M. F.; Alrokayan, A. H. Salman; Khan, Haseeb A.; Mamat, M. H.; Rusop, M.

    2016-07-01

    The TiO2 films were deposited on glass substrate at different thicknesses with different deposition frequencies (1, 2, 3 and 4 times) using spin coating technique and their structural properties were investigated. Subsequently, the nanocomposited aligned ZnO nanorods and TiO2 were formed by deposited the TiO2 on top of aligned ZnO Nanorod on ITO-coated glass at different thicknesses using the same method of TiO2 deposited on glass substrate. The nanocomposited aligned ZnO nanorod/TiO2 were coated with different thicknesses of 900µm, 1815µm, 2710µm, 3620µm and ZnO without TiO2. The dye-sensitized solar cells were fabricated from the nanocomposited aligned ZnO nanorod/TiO2 with thickness of 900µm, 1815µm, 2710µm and 3620µm and ZnO without TiO2 and their photovoltaic properties of the DSSCs were investigated. From the solar simulator measurement the solar energy conversion efficiency (η) of 2.543% under AM 1.5 was obtained for the ZnO nanorod/TiO2 photoanode-2710µm Dye-Sensitized solar cell.

  4. Alignment nature of ZnO nanowires grown on polished and nanoscale etched lithium niobate surface through self-seeding thermal evaporation method

    SciTech Connect

    Mohanan, Ajay Achath; Parthiban, R.; Ramakrishnan, N.

    2015-08-15

    Highlights: • ZnO nanowires were grown directly on LiNbO{sub 3} surface for the first time by thermal evaporation. • Self-alignment of the nanowires due to step bunching of LiNbO{sub 3} surface is observed. • Increased roughness in surface defects promoted well-aligned growth of nanowires. • Well-aligned growth was then replicated in 50 nm deep trenches on the surface. • Study opens novel pathway for patterned growth of ZnO nanowires on LiNbO{sub 3} surface. - Abstract: High aspect ratio catalyst-free ZnO nanowires were directly synthesized on lithium niobate substrate for the first time through thermal evaporation method without the use of a buffer layer or the conventional pre-deposited ZnO seed layer. As-grown ZnO nanowires exhibited a crisscross aligned growth pattern due to step bunching of the polished lithium niobate surface during the nanowire growth process. On the contrary, scratches on the surface and edges of the substrate produced well-aligned ZnO nanowires in these defect regions due to high surface roughness. Thus, the crisscross aligned nature of high aspect ratio nanowire growth on the lithium niobate surface can be changed to well-aligned growth through controlled etching of the surface, which is further verified through reactive-ion etching of lithium niobate. The investigations and discussion in the present work will provide novel pathway for self-seeded patterned growth of well-aligned ZnO nanowires on lithium niobate based micro devices.

  5. Performance enhancement of multiple-gate ZnO metal-oxide-semiconductor field-effect transistors fabricated using self-aligned and laser interference photolithography techniques

    PubMed Central

    2014-01-01

    The simple self-aligned photolithography technique and laser interference photolithography technique were proposed and utilized to fabricate multiple-gate ZnO metal-oxide-semiconductor field-effect transistors (MOSFETs). Since the multiple-gate structure could improve the electrical field distribution along the ZnO channel, the performance of the ZnO MOSFETs could be enhanced. The performance of the multiple-gate ZnO MOSFETs was better than that of the conventional single-gate ZnO MOSFETs. The higher the drain-source saturation current (12.41 mA/mm), the higher the transconductance (5.35 mS/mm) and the lower the anomalous off-current (5.7 μA/mm) for the multiple-gate ZnO MOSFETs were obtained. PMID:24948884

  6. Influence of Gas Flow Rate for Formation of Aligned Nanorods in ZnO Thin Films for Solar-Driven Hydrogen Production

    SciTech Connect

    Shet, S.; Chen, L.; Tang, H.; Nuggehalli, R.; Wang, H.; Yan, Y.; Turner, J.; Al-Jassim, M.

    2012-04-01

    ZnO thin films have been deposited in mixed Ar/N{sub 2} gas ambient at substrate temperature of 500 C by radiofrequency sputtering of ZnO targets. We find that an optimum N{sub 2}-to-Ar ratio in the deposition ambient promotes the formation of well-aligned nanorods. ZnO thin films grown in ambient with 25% N{sub 2} gas flow rate promoted nanorods aligned along c-axis and exhibit significantly enhanced photoelectrochemical (PEC) response, compared with ZnO thin films grown in an ambient with different N{sub 2}-to-Ar gas flow ratios. Our results suggest that chamber ambient is critical for the formation of aligned nanostructures, which offer potential advantages for improving the efficiency of PEC water splitting for H{sub 2} production.

  7. Magnetic and optical properties of Mn-doped ZnO vertically aligned nanorods synthesized by hydrothermal technique

    NASA Astrophysics Data System (ADS)

    Panda, J.; Sasmal, I.; Nath, T. K.

    2016-03-01

    In this paper we have reported the synthesis of high quality vertically aligned undoped and Mn-doped ZnO single crystalline nanorods arrays on Si (100) substrates using two steps process, namely, initial slow seed layer formation followed by solution growth employing wet chemical hydrothermal method. The shapes of the as grown single crystalline nanorods are hexagonal. The diameter and length of the as grown undoped ZnO nanorods varies in the range of 80-150 nm and 1.0 - 1.4 μm, respectively. Along with the lattice parameters of the hexagonal crystal structure, the diameter and length of Mn doped ZnO nanorods are found to increase slightly as compared to the undoped ZnO nanorods. The X-ray photoelectron spectroscopy confirms the presence of Mn atoms in Mn2+ state in the single crystalline ZnO nanorods. The recorded photoluminescence spectrum contains two emissions peaks having UV exciton emissions along with a green-yellow emission. The green-yellow emissions provide the evidence of singly ionized oxygen vacancies. The magnetic field dependent magnetization measurements [M (H)] and zero field cooled (ZFC) and field cooled (FC) magnetization [M(T)] measurements have been carried out at different isothermal conditions in the temperature range of 5-300 K. The Mn doped ZnO nanorods clearly show room temperature ferromagnetic ordering near room temperature down to 5 K. The observed magnetization may be attributed to the long range ferromagnetic interaction between bound magnetic polarons led by singly charged oxygen vacancies.

  8. Type-II ZnO nanorod-SnO2 nanoparticle heterostructures: characterization of structural, optical and photocatalytic properties.

    PubMed

    Huang, Xing; Shang, Lu; Chen, Shu; Xia, Jing; Qi, Xiaopeng; Wang, Xuecong; Zhang, Tierui; Meng, Xiang-Min

    2013-05-01

    In this work we report, for the first time, on the preparation of ZnO nanorod-SnO2 nanoparticle (ZnO NR-SnO2 NP) heterostructures by a simple two-step thermal evaporation approach. Systematical characterization of the product reveals that the rutile SnO2 NPs, with a diameter of about 20 nm, are uniformly and tightly decorated on the entire ZnO NRs. Photoluminescence (PL) investigation on the ZnO NR-SnO2 NP heterostructures shows that they exhibit a significantly decreased UV emission compared with the bare ZnO NRs, revealing an efficient charge separation arising from the type-II band alignment. Enlightened by this merit, photocatalytic behavior of the synthesized heterostructures is studied, which shows a remarkably enhanced photodegradation performance of rhodamine B (RhB) in contrast to the pure ZnO NRs. We also carry out the stability test of the ZnO NR-SnO2 NP heterostructures and the result indicates an extremely high adhesion nature between the ZnO NR and the coated SnO2 NPs. This advantage endowed with the thermal evaporation approach can lead to an efficient spatial charge separation between the ZnO NR and the SnO2 NPs and thus effectively minimize the charge recombination along three-dimensional heterointerfaces, which makes such ZnO NR-SnO2 NP architectures highly promising for a wide range of photovoltaic and photocatalytic applications. PMID:23519460

  9. Low-Cost, Large-Area, Facile, and Rapid Fabrication of Aligned ZnO Nanowire Device Arrays.

    PubMed

    Cadafalch Gazquez, Gerard; Lei, Sidong; George, Antony; Gullapalli, Hemtej; Boukamp, Bernard A; Ajayan, Pulickel M; Ten Elshof, Johan E

    2016-06-01

    Well aligned nanowires of ZnO have been made with an electrospinning technique using zinc acetate precursor solutions. Employment of two connected parallel collector plates with a separating gap of 4 cm resulted in a very high degree of nanowire alignment. By adjusting the process parameters, the deposition density of the wires could be controlled. Field effect transistors were prepared by depositing wires between two gold electrodes on top of a heavily doped Si substrate covered with a 300 nm oxide layer. These devices showed good FET characteristics and photosensitivity under UV-illumination. The method provides a fast and scalable fabrication route for functional nanowire arrays with a high degree of alignment and control over nanowire spacing. PMID:27173007

  10. Low-temperature growth of well-aligned ZnO nanorods/nanowires on flexible graphite sheet and their photoluminescence properties

    SciTech Connect

    Zhong, Guo; Kalam, Abul; Al-Shihri, Ayed Sad; Su, Qingmei; Li, Jie; Du, Gaohui

    2012-06-15

    Highlights: ► Well-aligned ZnO nanostructures were grown on flexible graphite sheets at 500–650 °C. ► ZnO nanostructures are formed via self-catalytic vapor–solid process assisted by immiscibility of ZnO with graphite. ► The ZnO nanostructures show intensive green emission. ► The photoluminescence property can be easily tuned by changing growth condition or annealing treatment. -- Abstract: We have grown large-scale well-aligned ZnO nanorods/nanowires on commercial flexible graphite sheet (FGS) at low temperature via chemical vapor deposition method. The products were characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The effects of the growth temperature and oxygen flow rate on the morphology of ZnO nanostructures have been investigated. The growth mechanism of ZnO is found to be a self-catalytic vapor–solid process assisted by the immiscibility of ZnO with graphite. The as-grown ZnO/FGS products show strong green emission and their photoluminescence properties can be tuned by changing growth condition or annealing treatment.

  11. UV light sensing properties of Sm doped vertically aligned ZnO nanorod arrays

    SciTech Connect

    Kumar, D. Ranjith; Ranjith, K. S.; Rajendrakumar, R. T.

    2015-06-24

    Samarium doped ZnO nanorods were grown on silicon substrate by using vapor phase transport method (VPT) with the growth temperature of 950°C. The synthesized nanorods were characterized by XRD, field emission scanning electron microscopy, Raman spectra, and photocurrent measurements. The XRD result revealed that Sm was successfully doped into lattice plane of hexagonal ZnO nanorods. The FESEM result confirms the pure ZnO has nanorod like morphology with an average diameter and length of 130nm and 10µm respectively. The above observation is supported by the Micro-Raman spectroscopy result. The photocurrent in the visible region has been significantly enhanced due to deposition of Sm on the surface of the ZnO nanorods. Sm acts as a visible sensitizer because of its lower band gap compared to ZnO.

  12. Island nucleation, optical and ferromagnetic properties of vertically aligned secondary growth ZnO : Cu nanorod arrays

    NASA Astrophysics Data System (ADS)

    Huang, Jun; Zhu, Liping; Hu, Liang; Liu, Shijiang; Zhang, Jie; Zhang, Honghai; Yang, Xiaopeng; Sun, Luwei; Li, Dehui; Ye, Zhizhen

    2012-02-01

    The paper reports an island nucleation and secondary growth of aligned ZnO : Cu nanorod arrays via thermal vapor phase transport. Results analysis indicates that the secondary segment is epitaxially grown on the ZnO : Cu nanorods with the radius strongly dependent on temperature and the concentration of zinc vapor. The modified characteristic radius (Rc) model is used to explain the nucleation and secondary growth process. Temperature-dependent photoluminescence spectra indicate that the band gap emission of the secondary growth nanorods is greatly restrained. A controversial 3.31 eV emission (A line) and two different donor-acceptor pair (DAP) recombinations at 3.24 eV and 2.48 eV are observed at 13 K. The A line shows a different behavior from the two DAP emissions during the heat-up process. Intrinsic room temperature ferromagnetism (RTFM) is observed in the secondary growth ZnO : Cu nanorods and it can be explained by oxygen vacancy and copper defects related to bound magnetic polar (BMP) or double exchange mechanism.The paper reports an island nucleation and secondary growth of aligned ZnO : Cu nanorod arrays via thermal vapor phase transport. Results analysis indicates that the secondary segment is epitaxially grown on the ZnO : Cu nanorods with the radius strongly dependent on temperature and the concentration of zinc vapor. The modified characteristic radius (Rc) model is used to explain the nucleation and secondary growth process. Temperature-dependent photoluminescence spectra indicate that the band gap emission of the secondary growth nanorods is greatly restrained. A controversial 3.31 eV emission (A line) and two different donor-acceptor pair (DAP) recombinations at 3.24 eV and 2.48 eV are observed at 13 K. The A line shows a different behavior from the two DAP emissions during the heat-up process. Intrinsic room temperature ferromagnetism (RTFM) is observed in the secondary growth ZnO : Cu nanorods and it can be explained by oxygen vacancy and copper

  13. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    SciTech Connect

    Nandi, R. Mohan, S. Major, S. S.; Srinivasa, R. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology and vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.

  14. Hydrothermal growth and characterization of vertically well-aligned and dense ZnO nanorods on glass and silicon using a simple optimizer system

    NASA Astrophysics Data System (ADS)

    Mohammad, Sabah M.; Hassan, Z.; Ahmed, Naser M.; Talib, Rawnaq A.; Abd-Alghafour, Nabeel M.; Omar, A. F.

    2016-07-01

    Vertically, well-aligned and high density ZnO nanorods were successfully hydrothermally grown on glass and silicon substrates using a simple and low cost system. The mechanism of synthesis of ZnO nanorods, generated with our system under hydrothermal conditions, is investigated in this report. Field-emission scanning electron microscopy indicated that the fabricated ZnO nanorods on both substrates have hexagonal shape with diameters ranging from 20 nm to 70 nm which grew vertically from the substrate. XRD analysis confirms the formation of wurtzite ZnO phase with a preferred orientation along (002) direction perpendicular on the substrate and enhanced crystallinity. The low value of the tensile strain (0.126 %) revealed that ZnO nanorods preferred to grow along the c-axis for both substrates. Photoluminescence spectra exhibited a strong, sharp UV near band edge emission peak with narrow FWHM values for both samples.

  15. Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage

    PubMed Central

    2014-01-01

    Nanocomposite electrodes having three-dimensional (3-D) nanoscale architecture comprising of vertically aligned ZnO nanorod array core-polypyrrole (PPy) conducting polymer sheath and the vertical PPy nanotube arrays have been investigated for supercapacitor energy storage. The electrodes in the ZnO nanorod core-PPy sheath structure are formed by preferential nucleation and deposition of PPy layer over hydrothermally synthesized vertical ZnO nanorod array by controlled pulsed current electropolymerization of pyrrole monomer under surfactant action. The vertical PPy nanotube arrays of different tube diameter are created by selective etching of the ZnO nanorod core in ammonia solution for different periods. Cyclic voltammetry studies show high areal-specific capacitance approximately 240 mF.cm-2 for open pore and approximately 180 mF.cm-2 for narrow 30-to-36-nm diameter PPy nanotube arrays attributed to intensive faradic processes arising from enhanced access of electrolyte ions through nanotube interior and exterior. Impedance spectroscopy studies show that capacitive response extends over larger frequency domain in electrodes with PPy nanotube structure. Simulation of Nyquist plots by electrical equivalent circuit modeling establishes that 3-D nanostructure is better represented by constant phase element which accounts for the inhomogeneous electrochemical redox processes. Charge-discharge studies at different current densities establish that kinetics of the redox process in PPy nanotube electrode is due to the limitation on electron transport rather than the diffusive process of electrolyte ions. The PPy nanotube electrodes show deep discharge capability with high coulomb efficiency and long-term charge-discharge cyclic studies show nondegrading performance of the specific areal capacitance tested for 5,000 cycles. PMID:25246867

  16. Direct synthesis of vertically aligned ZnO nanowires on FTO substrates using a CVD method and the improvement of photovoltaic performance

    PubMed Central

    2012-01-01

    In this work, we report a direct synthesis of vertically aligned ZnO nanowires on fluorine-doped tin oxide-coated substrates using the chemical vapor deposition (CVD) method. ZnO nanowires with a length of more than 30 μm were synthesized, and dye-sensitized solar cells (DSSCs) based on the as-grown nanowires were fabricated, which showed improvement of the device performance compared to those fabricated using transferred ZnO nanowires. Dependence of the cell performance on nanowire length and annealing temperature was also examined. This synthesis method provided a straightforward, one-step CVD process to grow relatively long ZnO nanowires and avoided subsequent nanowire transfer process, which simplified DSSC fabrication and improved cell performance. PMID:22673046

  17. [Characteristics of gunshot wounds caused by the special forces shooting knife (NRS and NRS-2)].

    PubMed

    Isakov, V D; Dyskin, E A; Panchuk, Iu P; Zlodeev, N A

    2004-01-01

    Gunshot wounds of skin and long cortical bones inflicted by the special intelligence knife (NRS and NRS-2: special silent cartridges SP-3 and SP-4) from different distances were examined. Stereomicroscopy, emission spectral analysis, contact-diffusion method and regression- step-by-step analysis were made use of within the case study. A lack of mechanical, thermal or chemical impact from firing gas and of fire soot as well as presence of particles of rubber, copper and sealing varnish, i.e. the most informative shot products, were found to be the main distinctive features in the said wounds. The data obtained can be used in the differential diagnosis of a type and model of the used gun. PMID:15648916

  18. Structural and optical properties of dense vertically aligned ZnO nanorods grown onto silver and gold thin films by galvanic effect with iron contamination

    SciTech Connect

    Scarpellini, D.; Paoloni, S.; Medaglia, P.G.; Pizzoferrato, R.; Orsini, A.; Falconi, C.

    2015-05-15

    Highlights: • ZnO nanorods were grown on Au and Ag films in aqueous solution by galvanic effect. • The method is prone to metal contamination which can influence the ZnO properties. • Iron doping improves the lattice matching between ZnO and the substrate. • Energy levels of point defects are lowered and the light emission is red-shifted. • Galvanic-induced nucleation starts and proceeds continuously during the growth. - Abstract: Dense arrays of vertically aligned ZnO nanorods have been grown onto either silver or gold seedless substrates trough a simple hydrothermal method by exploiting the galvanic effect between the substrate and metallic parts. The nanorods exhibit larger bases and more defined hexagonal shapes, in comparison with standard non-galvanic wet-chemistry synthesis. X-ray diffraction (XRD) shows that the iron contamination, associated with the galvanic contact, significantly improves the in-plane compatibility of ZnO with the Au and Ag cubic lattice. Photoluminescence (PL) measurements indicate that the contamination does not affect the number density of localized defects, but lowers their energy levels uniformly; differently, the band-edge emission is not altered appreciably. Finally, we have found that the ZnO hetero-nucleation by galvanic effect initiates at different times in different sites of the substrate area. Our results can be useful for the fabrication of high performance piezonanodevices comprising high-density metal-to-ZnO nanoscaled junctions without intermediate polycrystalline layers.

  19. Effect of Nb-doped TiO2 on nanocomposited aligned ZnO nanorod/TiO2:Nb for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Saurdi, I.; Shafura, A. K.; Azhar, N. E. A.; Ishak, A.; Malek, M. F.; Alrokayan, A. H. Salman; Khan, Haseeb A.; Mamat, M. H.; Rusop, M.

    2016-07-01

    The Nb-doped TiO2 films were deposited on glass substrate at different Nb concentrations of 0 at.%, 1 at.%, 3 at.%, 5 at.% and 7 at.%, respectively and their electrical and structural properties were investigated. Subsequently, the Nb-doped TiO2 films were deposited on top of aligned ZnO Nanorod on ITO glass substrates using spin coating technique. The nanocomposited aligned ZnO nanorod/Nb-doped TiO2 (TiO2:Nb) were coated with different Nb concentrations of 0 at.%, 1 at.%, 3 at.%, 5 at.% and 7 at.%, respectively. The Dye-sensitized solar cells were fabricated from the nanocomposited aligned ZnO nanorod/TiO2:Nb photoanodes and their effects on the performance of the DSSCs were investigated. From the solar simulator measurement of DSSC the solar energy conversion efficiency (η) of 5.376% under AM 1.5 was obtained for the ZnO nanorod/TiO2:Nb-5at.%.

  20. Metal-Semiconductor-Metal Near-Ultraviolet (~380 nm) Photodetectors by Selective Area Growth of ZnO Nanorods and SiO2 Passivation.

    PubMed

    Lee, Soo Hyun; Kim, Sang Hun; Yu, Jae Su

    2016-12-01

    Metal-semiconductor-metal near-ultraviolet (NUV) photodetectors (PDs) based on zinc oxide (ZnO) nanorods (NRs), operating at λ ~ 380 nm, were fabricated using conventional photolithography and hydrothermal synthesis processes. The vertically aligned ZnO NRs were selectively grown in the channel area of PDs. The performance of ZnO NR-based NUV PDs was optimized by varying the solution concentration and active channel width (W ch). For the fabricated samples, their electrical and photoresponse properties were investigated under the dark state and the illumination at wavelength of ~380 nm, respectively. For the device (W ch = 30 μm) with ZnO NRs at 25 mM, the highest photocurrent of 0.63 mA was obtained with the on/off ratio of 1720 at the bias of 5 V. The silicon dioxide passivation was also carried out to improve the photoresponse properties of PDs. The passivated devices exhibited faster rise and reset times rather than those of the unpassivated devices. PMID:27422775

  1. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    DOEpatents

    Wang, Zhong Lin; Hu, Youfan; Zhang, Yan; Xu, Chen; Zhu, Guang

    2014-09-09

    A generator includes a substrate, a first electrode layer, a dense plurality of vertically-aligned piezoelectric elongated nanostructures, an insulating layer and a second electrode layer. The substrate has a top surface and the first electrode layer is disposed on the top surface of the substrate. The dense plurality of vertically-aligned piezoelectric elongated nanostructures extends from the first electrode layer. Each of the nanostructures has a top end. The insulating layer is disposed on the top ends of the nanostructures. The second electrode layer is disposed on the non-conductive layer and is spaced apart from the nanostructures.

  2. X-ray photoelectron spectroscopy study of energy-band alignments of ZnO on buffer layer Lu2O3

    NASA Astrophysics Data System (ADS)

    Chen, Shanshan; Pan, Xinhua; Xu, Chenxiao; Huang, Jingyun; Ye, Zhizhen

    2016-02-01

    Lu2O3 was used as the buffer layer of the epitaxy of ZnO film on Si substrate by plasma-assisted molecular beam epitaxy. X-ray photoelectron spectroscopy was used to determine the band alignment at ZnO/Lu2O3 interface. The conduction band offset (CBO) and valence band offset (VBO) of the ZnO/Lu2O3 heterojunction are calculated to be 1.77 eV and 0.66 eV, respectively, with a type-I band alignment. And the ratio of CBO and VBO (ΔEc / ΔEv) is estimated to be about 2.68. The large ΔEv and ΔEc reveal that Lu2O3 is an ideal barrier layer in Si-based ZnO optoelectronic devices.

  3. Fabrication and properties of ZnO nanorods within silicon nanostructures for solar cell application

    NASA Astrophysics Data System (ADS)

    Feng, Zezeng; Jia, Rui; Dou, Bingfei; Li, Haofeng; Jin, Zhi; Liu, Xinyu; Li, Feng; Zhang, Wei; Wu, Chenyang

    2015-02-01

    ZnO nanorods (NRs) were synthesized via a two-step hydrothermal method on silicon (Si) nano-textured solar cells. The optical and photovoltaic properties of silicon nanostructures coated with ZnO NRs were measured and discussed. It was found that silicon nanostructures combined with ZnO NRs can maximize the light absorption and significantly enhance the electrode contact and carrier transport ability. The series resistance was reduced from 0.98 Ω to 0.45 Ω, and short circuit current density was dramatically increased from 22.5 mA/cm2 to 27.9 mA/cm2 due to the incorporation of the ZnO NRs. The experimental results show the potential of ZnO NRs' application to the enhancement of the performance of nano-textured solar cells.

  4. Al-doped ZnO aligned nanorod arrays for opto-electronic and sensor applications

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Mundle, R.; Dondapati, H.; Konda, R. B.; Bahoura, M.; Pradhan, A. K.

    2012-04-01

    We report on the growth of vertically aligned Al:ZnO nanorod arrays synthesized by the hydrothermal technique at considerably low temperature on a sputtered Al:ZnO seed layer. The morphology demonstrates that the nanorod arrays maintain remarkable alignment along the c-axis over a large area. The optoelectronic properties of nanorod arrays on Al:ZnO/p-Si seed layer with SiO2 have been illustrated. The photocurrent is significantly reduced in nanorod arrays on AZO/SiO2/p-Si heterojunction due to multiple scattering phenomena associated with the nanorod arrays. The optical properties of the AZO film with and without the AZO nanorod arrays were investigated. Also the effects of an intermediate layer in the AZO/P-Si heterojunction structure with and without the AZO nanorod array present were explored. All the various intermediate layers displayed photovoltaic effect behavior, especially with the AZO/SiO2/P-Si heterojunction structure, which exhibited ideal diode behavior. The optoelectronic properties of nanorod arrays on AZO/P-Si seed layer with SiO2 have been illustrated. The photocurrent is significantly reduced in nanorod arrays on AZO/SiO2/P-Si heterojunction due to multiple scattering phenomena associated with the nanorod arrays. The results have tremendous impact for sensor fabrication, including glucose sensor.

  5. Improved Light Extraction Efficiency in Blue Light-Emitting Diodes by SiO2-Coated ZnO Nanorod Arrays

    NASA Astrophysics Data System (ADS)

    Cho, Chu-Young; Kim, Na-Yeong; Kang, Jang-Won; Leem, Young-Chul; Hong, Sang-Hyun; Lim, Wantae; Kim, Sung-Tae; Park, Seong-Ju

    2013-04-01

    We report on the improved light extraction efficiency of blue light-emitting diodes (LEDs) by SiO2-coated ZnO nanorods (NRs) grown on indium-tin oxide (ITO). The optical output power of the LEDs with SiO2-coated ZnO NRs, which are grown on the patterned sapphire substrates, increases by 5% at 20 mA, compared with that of LEDs with bare ZnO NRs. This increase is attributed to the improved light extraction efficiency of LEDs because the SiO2 layer with a refractive index lower than that of ZnO NRs further reduces the Fresnel reflection.

  6. Orientation-Controllable ZnO Nanorod Array Using Imprinting Method for Maximum Light Utilization in Dye-Sensitized Solar Cells.

    PubMed

    Jeong, Huisu; Song, Hui; Lee, Ryeri; Pak, Yusin; Kumaresan, Yogeenth; Lee, Heon; Jung, Gun Young

    2015-12-01

    We present a holey titanium dioxide (TiO2) film combined with a periodically aligned ZnO nanorod layer (ZNL) for maximum light utilization in dye-sensitized solar cells (DSCs). Both the holey TiO2 film and the ZNL were simultaneously fabricated by imprint technique with a mold having vertically aligned ZnO nanorod (NR) array, which was transferred to the TiO2 film after imprinting. The orientation of the transferred ZNL such as laid, tilted, and standing ZnO NRs was dependent on the pitch and height of the ZnO NRs of the mold. The photoanode composed of the holey TiO2 film with the ZNL synergistically utilized the sunlight due to enhanced light scattering and absorption. The best power conversion efficiency of 8.5 % was achieved from the DSC with the standing ZNL, which represented a 33 % improvement compared to the reference cell with a planar TiO2. PMID:26068077

  7. Arrays of nanorods composed of ZnO nanodots exhibiting enhanced UV emission and stability

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Sun, Y.; Yu, M.; Liu, X.; Yang, B.; Liu, D.; Liu, S.; Cao, W.; Ashfold, Michael N. R.

    2014-08-01

    A novel one-step coating and assembly approach for fabricating well-defined ZnO nanodot/SiO2 nanorod arrays by hydrolysis-recrystallization growth from 1-D ZnO nanorods is described. The resultant composite nanorod arrays exhibit much enhanced UV emission efficiencies and excellent stability, and thus offer particular promise for application in UV emission devices operating in harsh environments.A novel one-step coating and assembly approach for fabricating well-defined ZnO nanodot/SiO2 nanorod arrays by hydrolysis-recrystallization growth from 1-D ZnO nanorods is described. The resultant composite nanorod arrays exhibit much enhanced UV emission efficiencies and excellent stability, and thus offer particular promise for application in UV emission devices operating in harsh environments. Electronic supplementary information (ESI) available: Suggested reaction scheme for the chemical processes occurring in this work; TEM images of ZnO NRs treated with 50 μL of TEOS; the diameter distribution of the ZnO NDs inside the ZnO/SiO2 NRs; PL spectra of as-grown ZnO NRs and of NRs after O2 and Ar plasma treatment; PL spectra of as-grown ZnO NRs and of NRs after annealing in O2 and in Ar; plot showing the time dependence of the relative UV emission intensity of the as-grown ZnO NRs and the TEOS-treated ZnO NRs immersed in an aqueous buffer solution at pH = 9.18; PL spectra of as-grown ZnO NRs and of the silica powders formed by hydrolysis and condensation reactions of TEOS; PL spectra of SiO2 powder after annealing in O2 at 300, 600 and 900 °C. See DOI: 10.1039/c4nr01558d

  8. Well aligned ZnO nanorods growth on the gold coated glass substrate by aqueous chemical growth method using seed layer of Fe3O4 and Co3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ibupoto, Z. H.; Khun, K.; Lu, Jun; Liu, Xianjie; AlSalhi, M. S.; Atif, M.; Ansari, Anees A.; Willander, M.

    2013-04-01

    In this study, Fe3O4 and Co3O4 nanoparticles were prepared by co-precipitation method and sol-gel method respectively. The synthesised nanoparticles were characterised by X-ray diffraction [XRD] and Raman spectroscopy techniques. The obtained results have shown the nanocrystalline phase of obtained Fe3O4 and Co3O4 nanoparticles. Furthermore, the Fe3O4 and Co3O4 nanoparticles were used as seed layer for the fabrication of well-aligned ZnO nanorods on the gold coated glass substrate by aqueous chemical growth method. Scanning electron microscopy (SEM), high resolution transmission electron microscopy [HRTEM], as well as XRD and energy dispersive X-ray techniques were used for the structural characterisation of synthesised ZnO nanorods. This study has explored highly dense, uniform, well-aligned growth pattern along 0001 direction and good crystal quality of the prepared ZnO nanorods. ZnO nanorods are only composed of Zn and O atoms. Moreover, X-ray photoelectron spectroscopy was used for the chemical analysis of fabricated ZnO nanorods. In addition, the structural characterisation and the chemical composition study and the optical investigation were carried out for the fabricated ZnO nanorods and the photoluminescence [PL] spectrum have shown strong ultraviolet (UV) peak at 381 nm for Fe3O4 nanoparticles seeded ZnO nanorods and the PL spectrum for ZnO nanorods grown with the seed layer of Co3O4 nanoparticles has shown a UV peak at 382 nm. The green emission and orange/red peaks were also observed for ZnO nanorods grown with both the seed layers. This study has indicated the fabrication of well aligned ZnO nanorods using the one inorganic nanomaterial on other inorganic nanomaterial due to their similar chemistry.

  9. Self-assembled, aligned ZnO nanorod buffer layers for high-current-density, inverted organic photovoltaics.

    PubMed

    Rao, Arun D; Karalatti, Suresh; Thomas, Tiju; Ramamurthy, Praveen C

    2014-10-01

    Two different soft-chemical, self-assembly-based solution approaches are employed to grow zinc oxide (ZnO) nanorods with controlled texture. The methods used involve seeding and growth on a substrate. Nanorods with various aspect ratios (1-5) and diameters (15-65 nm) are grown. Obtaining highly oriented rods is determined by the way the substrate is mounted within the chemical bath. Furthermore, a preheat and centrifugation step is essential for the optimization of the growth solution. In the best samples, we obtain ZnO nanorods that are almost entirely oriented in the (002) direction; this is desirable since electron mobility of ZnO is highest along this crystallographic axis. When used as the buffer layer of inverted organic photovoltaics (I-OPVs), these one-dimensional (1D) nanostructures offer: (a) direct paths for charge transport and (b) high interfacial area for electron collection. The morphological, structural, and optical properties of ZnO nanorods are studied using scanning electron microscopy, X-ray diffraction, and ultraviolet-visible light (UV-vis) absorption spectroscopy. Furthermore, the surface chemical features of ZnO films are studied using X-ray photoelectron spectroscopy and contact angle measurements. Using as-grown ZnO, inverted OPVs are fabricated and characterized. For improving device performance, the ZnO nanorods are subjected to UV-ozone irradiation. UV-ozone treated ZnO nanorods show: (i) improvement in optical transmission, (ii) increased wetting of active organic components, and (iii) increased concentration of Zn-O surface bonds. These observations correlate well with improved device performance. The devices fabricated using these optimized buffer layers have an efficiency of ∼3.2% and a fill factor of 0.50; this is comparable to the best I-OPVs reported that use a P3HT-PCBM active layer. PMID:25238197

  10. Hydrothermal synthesis of highly crystalline ZnO nanorod arrays: Dependence of morphology and alignment on growth conditions

    NASA Astrophysics Data System (ADS)

    Azzez, Shrook A.; Hassan, Z.; Hassan, J. J.; Alimanesh, M.; Rasheed, Hiba S.; Sabah, Fayroz A.; Abdulateef, Sinan A.

    2016-07-01

    Highly oriented zinc oxide nanorod were successfully grown on seeded p-type silicone substrate by hydrothermal methode. The morphology and the crystallinty of ZnO c-axis (002) arrays were systematically studied using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) methods. The effect of seed layer pre-annealing on nanorods properties was explained according to the nucleation site of ZnO nanoparticles on silicon substrate. In addition, the variation of the equal molarity of zinc nitrate hexahydrate and hexamine concentrations in the reaction vessel play a crucial role related to the ZnO nanorods.

  11. Seedless Pattern Growth of Quasi-Aligned ZnO Nanorod Arrays on Cover Glass Substrates in Solution

    NASA Astrophysics Data System (ADS)

    Ahsanulhaq, Q.; Kim, Jin Hwan; Kim, Jeong Hyun; Hahn, Y. B.

    2010-03-01

    A hybrid technique for the selective growth of ZnO nanorod arrays on wanted areas of thin cover glass substrates was developed without the use of seed layer of ZnO. This method utilizes electron-beam lithography for pattern transfer on seedless substrate, followed by solution method for the bottom-up growth of ZnO nanorod arrays on the patterned substrates. The arrays of highly crystalline ZnO nanorods having diameter of 60 ± 10 nm and length of 750 ± 50 nm were selectively grown on different shape patterns and exhibited a remarkable uniformity in terms of diameter, length, and density. The room temperature cathodluminescence measurements showed a strong ultraviolet emission at 381 nm and broad visible emission at 585-610 nm were observed in the spectrum.

  12. Functionalized vertically aligned ZnO nanorods for application in electrolyte-insulator-semiconductor based pH sensors and label-free immuno-sensors

    NASA Astrophysics Data System (ADS)

    Kumar, Narendra; Senapati, Sujata; Kumar, Satyendra; Kumar, Jitendra; Panda, Siddhartha

    2016-04-01

    Vertically aligned ZnO nanorods were grown on a SiO2/Si surface by optimization of the temperature and atmosphere for annealing of the seed. The seed layer annealed at 500 °C in vacuum provided well separated and uniform seeds which also provided the best condition to get densely packed, uniformly distributed, and vertically aligned nanorods. These nanorods grown on the substrates were used to fabricate electrolyte-insulator-semiconductor (EIS) devices for pH sensing. Etching of ZnO at acidic pH prevents the direct use of nanorods for pH sensing. Therefore, the nanorods functionalised with 3-aminopropyltriethoxysilane (APTES) were utilized for pH sensing and showed the pH sensitivity of 50.1 mV/pH. APTES is also known to be used as a linker to immobilize biomolecules (such as antibodies). The EIS device with APTES functionalized nanorods was used for the label free detection of prostate-specific antigen (PSA). Finally, voltage shifts of 23 mV and 35 mV were observed with PSA concentrations of 1 ng/ml and 100 ng/ml, respectively.

  13. ZnO nanorods decorated with ZnS nanoparticles

    SciTech Connect

    Joicy, S.; Sivakumar, P.; Thangadurai, P.; Ponpandian, N.

    2015-06-24

    In this study, ZnO nanorods (NRs) and ZnS nanoparticles decorated ZnO-NRs were prepared by a combination of hydrothermal and hydrolysis method. Structural and optical properties of the samples were studied by XRD, FE-SEM, UV-Vis DRS and photoluminescence spectroscopy. Microscopy analysis revealed that the diameter of ZnO-NRs was ∼500 nm and the length was ranging from a few hundred nm to several micrometers and their surface was decorated with ZnS nanoparticles. UV-Vis DRS showed the absorption of ZnS decorated ZnO-NRs was blue shifted with respect to pure ZnO-NRs which enhanced the separation of electron-hole pairs. PL spectrum of ZnS decorated ZnO-NRs showed a decrease in intensity of UV and green emissions with the appearance of blue emission at 436 nm.

  14. Obtaining a Well-Aligned ZnO Nanotube Array Using the Hydrothermal Growth Method / Labi Sakārtotu Zno Nanocauruļu Kopu Iegūšana, Izmantojot Hidrotermālo Metodi

    NASA Astrophysics Data System (ADS)

    Krasovska, M.; Gerbreders, V.; Paskevics, V.; Ogurcovs, A.; Mihailova, I.

    2015-10-01

    Optimal growing parameters have been found using the hydrothermal method to obtain well-aligned vertical ZnO nanorod and nanotube arrays. The influence of different growing factors (such as temperature, growing solution concentration, method of obtaining seed layer and condition) on nanotube morphology and size is described in the paper. Well-structured ZnO nanotubes have been obtained by using a selfselective etching method with lowering temperatures of growth during the hydrothermal process. It is shown that the optical properties of the nanostructure arrays obtained are sensitive to the medium in which they are placed, which is why they can be used as sensors for pure substance detection and in different solutions for impurity determination. Dotajā darbā tika noteikti optimāli parametri labi sakārtotu ZnO nanocaurulīšu kopu iegūšanai, izmantojot hidrotermālo metodi ar temperatūras pazemināšanu, jeb t.s. selektīvu pa\\vskodināšanas metodi (self-selective etching), ir uzsvērtas šās metodes priekšrocības salīdzinājumā ar ķīmiskās kodināšanas metodi, kā arī tika aprakstīta dažādu augšanas faktora (tādu, ka darba šķīduma koncentrācija, augšanas temperatūra un laiks, iedīgļu slāņa iegūšanas veids un iegūšanas parametri) ietekme uz iegūtu nanostraktūra morfoloģiju. Tika konstatēts, ka noteicošu lomu ZnO nanocaurulīšu audzēšanas procesā spēlē iedīgļu slāņa graudu izmēri, kas savā staipā nosaka augošu nanostieņu izmērus un to tendenci pie pa\\vskodināšanas. Rentgenogrannnas parāda, ka iegūtām pie noteiktiem parametriem ZnO nanostruktūrām piemīt augsta kristāliskuma pakāpe un sakārtotība vertikālā virzienā. Optiskie mērījumi parāda, ka ZnO nanocauralītes ir jutīgas gan pret tīrām vielām (ūdens, spirts), gan pret dažādiem šķīdumiem, kas ļauj izmantot tos kā pie­jaukumu sensora. Salīdzinājumā ar ZnO nanostieņiem caurulīšu jūtība pieaug, jo pieaug nanostrakt

  15. Band alignment at the interface between Ni-doped Cr2O3 and Al-doped ZnO: implications for transparent p-n junctions

    NASA Astrophysics Data System (ADS)

    Arca, Elisabetta; McInerney, Michael A.; Shvets, Igor V.

    2016-06-01

    The realization of transparent electronic and optoelectronic devices requires the use of transparent p-n junctions. In this context, understanding the band alignment at the interface between the p- and n-components represents a fundamental step towards the realization of high performance devices. In this work, the band alignment at the interface between Al-doped ZnO (AZO) and Ni-doped Cr2O3 has been analysed. The formation and evolution of the core levels as the interface progressively forms have been followed by means of x-ray Photoelectron Spectroscopy, x-ray diffraction and x-ray reflectivity. A type two (staggered) band alignment was identified, with the valence band offset and conduction band offset found to be 2.6 eV and 2.5 eV, respectively. The electrical behaviour will be discussed in terms of the position of the bands, the presence of band bending and the expected built-in potential and how these can be engineered in order to achieve the maximum performance for this hetero-structure.

  16. Growth of Cu2O on Ga-doped ZnO and their interface energy alignment for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Wong, L. M.; Chiam, S. Y.; Huang, J. Q.; Wang, S. J.; Pan, J. S.; Chim, W. K.

    2010-08-01

    Cu2O thin films are deposited by direct current reactive magnetron sputtering on borofloat glass and indium tin oxide (ITO) coated glass at room temperature. The effect of oxygen partial pressure on the structures and properties of Cu2O thin films are investigated. We show that oxygen partial pressure is a crucial parameter in achieving pure phases of CuO and Cu2O. Based on this finding, we fabricate heterojunctions of p-type Cu2O with n-type gallium doped ZnO (GZO) on ITO coated glass substrates by pulsed laser deposition for GZO thin films. The energy band alignment for thin films of Cu2O/GZO on ITO glass is characterized using high-resolution x-ray photoelectron spectroscopy. The energy band alignment for the Cu2O/GZO heterojunctions is determined to be type II with a valence band offset of 2.82 eV and shows negligible effects of variation with gallium doping. The higher conduction band of the Cu2O relative to that of GZO in the obtained band alignment shows that the heterojunctions are suitable for solar cell application based on energy levels consideration.

  17. Growth of Cu{sub 2}O on Ga-doped ZnO and their interface energy alignment for thin film solar cells

    SciTech Connect

    Wong, L. M.; Chiam, S. Y.; Wang, S. J.; Pan, J. S.; Huang, J. Q.; Chim, W. K.

    2010-08-15

    Cu{sub 2}O thin films are deposited by direct current reactive magnetron sputtering on borofloat glass and indium tin oxide (ITO) coated glass at room temperature. The effect of oxygen partial pressure on the structures and properties of Cu{sub 2}O thin films are investigated. We show that oxygen partial pressure is a crucial parameter in achieving pure phases of CuO and Cu{sub 2}O. Based on this finding, we fabricate heterojunctions of p-type Cu{sub 2}O with n-type gallium doped ZnO (GZO) on ITO coated glass substrates by pulsed laser deposition for GZO thin films. The energy band alignment for thin films of Cu{sub 2}O/GZO on ITO glass is characterized using high-resolution x-ray photoelectron spectroscopy. The energy band alignment for the Cu{sub 2}O/GZO heterojunctions is determined to be type II with a valence band offset of 2.82 eV and shows negligible effects of variation with gallium doping. The higher conduction band of the Cu{sub 2}O relative to that of GZO in the obtained band alignment shows that the heterojunctions are suitable for solar cell application based on energy levels consideration.

  18. Band alignment at the interface between Ni-doped Cr2O3 and Al-doped ZnO: implications for transparent p-n junctions.

    PubMed

    Arca, Elisabetta; McInerney, Michael A; Shvets, Igor V

    2016-06-01

    The realization of transparent electronic and optoelectronic devices requires the use of transparent p-n junctions. In this context, understanding the band alignment at the interface between the p- and n-components represents a fundamental step towards the realization of high performance devices. In this work, the band alignment at the interface between Al-doped ZnO (AZO) and Ni-doped Cr2O3 has been analysed. The formation and evolution of the core levels as the interface progressively forms have been followed by means of x-ray Photoelectron Spectroscopy, x-ray diffraction and x-ray reflectivity. A type two (staggered) band alignment was identified, with the valence band offset and conduction band offset found to be 2.6 eV and 2.5 eV, respectively. The electrical behaviour will be discussed in terms of the position of the bands, the presence of band bending and the expected built-in potential and how these can be engineered in order to achieve the maximum performance for this hetero-structure. PMID:26952763

  19. Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods

    PubMed Central

    2013-01-01

    Well-dispersed fish gelatin-based nanocomposites were prepared by adding ZnO nanorods (NRs) as fillers to aqueous gelatin. The effects of ZnO NR fillers on the mechanical, optical, and electrical properties of fish gelatin bio-nanocomposite films were investigated. Results showed an increase in Young's modulus and tensile strength of 42% and 25% for nanocomposites incorporated with 5% ZnO NRs, respectively, compared with unfilled gelatin-based films. UV transmission decreased to zero with the addition of a small amount of ZnO NRs in the biopolymer matrix. X-ray diffraction showed an increase in the intensity of the crystal facets of (10ī1) and (0002) with the addition of ZnO NRs in the biocomposite matrix. The surface topography of the fish gelatin films indicated an increase in surface roughness with increasing ZnO NR concentrations. The conductivity of the films also significantly increased with the addition of ZnO NRs. These results indicated that bio-nanocomposites based on ZnO NRs had great potentials for applications in packaging technology, food preservation, and UV-shielding systems. PMID:23981366

  20. Low-Temperature Growth of Well-Aligned ZnO Nanorod Arrays by Chemical Bath Deposition for Schottky Diode Application

    NASA Astrophysics Data System (ADS)

    Yuan, Zhaolin

    2015-04-01

    A well-aligned ZnO nanorod array (ZNRA) was successfully grown on an indium tin oxide (ITO) substrate by chemical bath deposition at low temperature. The morphology, crystalline structure, transmittance spectrum and photoluminescence spectrum of as-grown ZNRA were investigated by field emission scanning electron microscopy, x-ray diffraction, ultraviolet-visible spectroscopy and spectrophotometer, respectively. The results of these measurements showed that the ZNRA contained densely packed, aligned nanorods with diameters from 30 nm to 40 nm and a wurtzite structure. The ZNRA exhibited good optical transparency within the visible spectral range, with >80% transmission. Gold (Au) was deposited on top of the ZNRA, and the current-voltage characteristics of the resulting ITO/ZNRA/Au device in the dark were evaluated in detail. The ITO/ZNRA/Au device acted as a Schottky barrier diode with rectifying behaviour, low turn-on voltage (0.6 V), small reverse-bias saturation current (3.73 × 10-6 A), a high ideality factor (3.75), and a reasonable barrier height (0.65 V) between the ZNRA and Au.

  1. a High-Performance Glucose Biosensor Based on Zno Nanorod Arrays Modified with AU Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Gong; Lei, Yang; Yan, Xiaoqin

    2012-08-01

    An amperometric glucose biosensor based on vertically aligned ZnO nanorod (NR) arrays modified with Au nanoparticles (NPs) was constructed in a channel-limited way. Au NPs with diameters in the range of 8-10 nm have been successfully synthesized by photoreduction method and were uniformly loaded onto the surface of ZnO NRs that was hydrothermally deposited on the Fluorine doped SnO2 conductive glass (FTO) via electrostatic self-assembly technique. The morphology and structure of Au/ZnO NR arrays were characterized by field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectrum analyzer (XPS). The electrocatalytic properties of glucose oxidase (GOD)- immobilized Au/ZnO NR arrays were evaluated by amperometry. Compared with the biosensor based on ZnO NR arrays, the resulting Au/ZnO NR arrays modified biosensor exhibited an expanded linear range from 3 μM to 3 mM with the detection limit of 30 nM and a smaller Michaelis-Menten constant of 0.7836 mM. All these results suggest that the Au NPs can greatly improve the biosensing properties of ZnO NR arrays and therefore Au/ZnO NR arrays provide a promising material for the biosensor designs and other biological applications.

  2. Use of distributed Bragg reflectors to enhance Fabry-Pérot lasing in vertically aligned ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Kong, Jieying; Chu, Sheng; Huang, Jian; Olmedo, Mario; Zhou, Weihang; Zhang, Long; Chen, Zhanghai; Liu, Jianlin

    2013-01-01

    An optically pumped ZnO nanowire laser with a 10-period SiO2/SiN x distributed Bragg reflector (DBR) was demonstrated. Stimulated emissions with equally distributed Fabry-Pérot lasing modes were observed at pumping powers larger than 121 kW/cm2. This result, when compared to nanowires of the same length and without a DBR structure, shows that a lower threshold of pumping power, higher quality factor, and larger cavity finesse can be achieved due to the high reflectivity of the DBR in the designed wavelength range. A coexistence of stimulated and spontaneous emissions was also observed above threshold and was attributed to partially confined waveguide modes in nanowires with diameters smaller than 100 nm.

  3. Challenges in the simulation of dye-sensitized ZnO solar cells: quantum confinement, alignment of energy levels and excited state nature at the dye/semiconductor interface.

    PubMed

    Amat, Anna; De Angelis, Filippo

    2012-08-14

    We report a first principles density functional theory/time-dependent density functional theory (DFT/TDDFT) computational investigation on a prototypical perylene dye anchored to realistic ZnO nanostructures, approaching the size of the ZnO nanowires used in dye-sensitized solar cells devices. DFT calculations were performed on (ZnO)(n) clusters of increasing size, with n up to 222, of 1.3 × 1.5 × 3.4 nm dimensions, and for the related dye-sensitized models. We show that quantum confinement in the ZnO nanostructures substantially affects the dye/semiconductor alignment of energy levels, with smaller ZnO models providing unfavourable electron injection. An increasing broadening of the dye LUMO is found moving to larger substrates, substantially contributing to the interfacial electronic coupling. TDDFT excited state calculations for the investigated dye@(ZnO)(222) system are fully consistent with experimental data, quantitatively reproducing the red-shift and broadening of the visible absorption spectrum observed for the ZnO-anchored dye compared to the dye in solution. TDDFT calculations on the fully interacting system also introduce a contribution to the dye/semiconductor admixture, due to configurational excited state mixing. Our results highlight the importance of quantum confinement in dye-sensitized ZnO interfaces, and provide the fundamental insight lying at the heart of the associated DSC devices. PMID:22743544

  4. Compacted nanoscale sensors by merging ZnO nanorods with interdigitated electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Rihtnesberg, David B.; Bergström, Andreas; Almqvist, Susanne; Zhang, Andy Z. Z.; Kaplan, Wlodek; Andersson, Jan Y.; Sugunan, Abhilash; Yang, Xuran; Toprak, Muhammet S.

    2011-06-01

    ZnO nanorods (NRs) sensors utilizing hybrid or monolithic integration of the NRs on nanoscale or microscale interdigitated electrodes (IDEs) were fabricated and characterized. The IDEs with their finger electrode width ranging from 50 nm to 3 μm were formed on SiO2/Si substrates by nanoimprint lithography or conventional photolithography and metallization techniques, whereas the ZnO NRs were grown by chemical synthesis method. The average diameter of the ZnO NRs is about 100 nm, and their length can be varied from 2 to 5 μm by controlling growth time. When sensing targets, such as molecules or nanoparticles, bind onto the ZnO NRs, the conductance between IDEs will change. As probing test, II-VI quantum dots (QDs) were attached on the ZnO NRs, and clear responses were obtained by measuring and comparing current-voltage (I-V) characteristic of the sensor before and after binding the QDs.

  5. 75 FR 5303 - Tests Determined To Be Suitable for Use in the National Reporting System for Adult Education (NRS)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-02

    ... FR 2306) (NRS regulations). The NRS regulations established the process the Secretary uses to determine the suitability of tests for use in the NRS. On April 16, 2008, (73 FR 20616), the Secretary... English-as-a-Second-Language (ESL) levels of the NRS for a period of seven years from the date...

  6. Using carbon quantum dots to improve the resistive switching behavior of ZnO nanorods device

    NASA Astrophysics Data System (ADS)

    Wang, Xueliang; Xu, Jianping; Shi, Shaobo; Zhang, Xiaosong; Zhang, Xuguang; Shi, Xin; Li, Shubin; Li, Linlin; Liu, Xiaojuan; Li, Lan

    2016-01-01

    An electronic bistable device with a composite structure was fabricated using tapered ZnO nanorod arrays (ZnO NRs) coated with carbon quantum-dots (C QDs). With the addition of C QDs, the ON/OFF resistance ratio is 6 ×102, over 100 times higher than that of device with pristine ZnO NRs. The effect of C QDs on the resistive switching behavior was investigated by current-voltage (I-V) and capacitance-voltage (C-V) characterization. The conduction mechanisms of the devices were discussed using space charge limited current (SCLC) model.

  7. Spatially branched hierarchical ZnO nanorod-TiO2 nanotube array heterostructures for versatile photocatalytic and photoelectrocatalytic applications: towards intimate integration of 1D-1D hybrid nanostructures.

    PubMed

    Xiao, Fang-Xing; Hung, Sung-Fu; Tao, Hua Bing; Miao, Jianwei; Yang, Hong Bin; Liu, Bin

    2014-12-21

    Hierarchically ordered ZnO nanorods (NRs) decorated nanoporous-layer-covered TiO2 nanotube array (ZnO NRs/NP-TNTAs) nanocomposites have been prepared by an efficient, two-step anodization route combined with an electrochemical deposition strategy, by which monodispersed one-dimensional (1D) ZnO NRs were uniformly grown on the framework of NP-TNTAs. The crystal phases, morphologies, optical properties, photocatalytic as well as photoelectrocatalytic performances of the well-defined ZnO NRs/NP-TNTAs heterostructures were systematically explored to clarify the structure-property correlation. It was found that the ZnO NRs/NP-TNTAs heterostructure exhibits significantly enhanced photocatalytic and photoelectrocatalytic performances, along with favorable photostability toward degradation of organic pollutants under UV light irradiation, as compared to the single component counterparts. The remarkably enhanced photoactivity of ZnO NRs/NP-TNTAs heterostructure is ascribed to the intimate interfacial integration between ZnO NRs and NP-TNTAs substrate imparted by the unique spatially branched hierarchical structure, thereby contributing to the efficient transfer and separation of photogenerated electron-hole charge carriers. Moreover, the specific active species during the photocatalytic process was unambiguously determined and photocatalytic mechanism was tentatively presented. It is anticipated that our work could provide new insights for the construction of various hierarchical 1D-1D hybrid nanocomposites for extensive photocatalytic applications. PMID:25363649

  8. Hybrid ZnO NR/graphene structures as advanced optoelectronic devices with high transmittance

    PubMed Central

    2013-01-01

    A hybrid structure (HS) made of one-dimensional ZnO nanorods (NRs) and a two-dimensional synthesized graphene sheet was successfully constructed in this study. The uniform ZnO NRs were obtained by hydrothermal method and grown on a graphene surface that had been transferred to a polyethylene terephthalate substrate. The HS exhibited high transmittance (approximately 75%) over the visible wavelength range, even after cyclic bending with a small radius of curvature. Raman spectroscopy and Hall measurement were carried out to verify the chemical composition and electrical properties of the structure. Stable electrical conductance of the ZnO NR/graphene HS was achieved, and increase in carrier mobility decreased the resistance of the ZnO-with-graphene sheet in comparison with bare ZnO NRs. PMID:23937804

  9. Tailoring the surface of ZnO nanorods into corrugated nanorods via a selective chemical etch method

    NASA Astrophysics Data System (ADS)

    Duan, Xiangyang; Chen, Guangde; Li, Chu; Yin, Yuan; Jin, Wentao; Guo, Lu’an; Ye, Honggang; Zhu, Youzhang; Wu, Yelong

    2016-07-01

    Using the chemical vapour deposition method, we successfully converted smooth ZnO nanorods (NRs) into corrugated NRs by simply increasing the reaction time. The surface morphology and crystallographic structure of the corrugated NRs were investigated. The corrugated NRs were decorated by alternant (11\\bar{2}1) and (11\\bar{2}\\bar{1}) planes at the exposed side surfaces while the conventional \\{10\\bar{1}0\\} planes disappeared. No twinning boundaries were found in the periodically corrugated structures, indicating that they were type II corrugated NRs. Further investigation told us that they were selectively etched. We introduced a hydrothermal method to synthesize the smooth ZnO NRs and then etched them in a tube furnace at 950 °C with a flow of carbon monoxide. By separating the growth stage and the selective etching stage, we explicitly demonstrated a successfully selective etching effect on ZnO NRs with a carbon monoxide reducing atmosphere for the first time. An etching mechanism based on the selective reaction between carbon monoxide and the different exposed surfaces was proposed. Our results will improve the understanding of the growth mechanism on coarse or corrugated NRs and provide a new strategy for the application of surface controlled nanostructured materials.

  10. Tailoring the surface of ZnO nanorods into corrugated nanorods via a selective chemical etch method.

    PubMed

    Duan, Xiangyang; Chen, Guangde; Li, Chu; Yin, Yuan; Jin, Wentao; Guo, Lu'an; Ye, Honggang; Zhu, Youzhang; Wu, Yelong

    2016-07-22

    Using the chemical vapour deposition method, we successfully converted smooth ZnO nanorods (NRs) into corrugated NRs by simply increasing the reaction time. The surface morphology and crystallographic structure of the corrugated NRs were investigated. The corrugated NRs were decorated by alternant [Formula: see text] and [Formula: see text] planes at the exposed side surfaces while the conventional [Formula: see text] planes disappeared. No twinning boundaries were found in the periodically corrugated structures, indicating that they were type II corrugated NRs. Further investigation told us that they were selectively etched. We introduced a hydrothermal method to synthesize the smooth ZnO NRs and then etched them in a tube furnace at 950 °C with a flow of carbon monoxide. By separating the growth stage and the selective etching stage, we explicitly demonstrated a successfully selective etching effect on ZnO NRs with a carbon monoxide reducing atmosphere for the first time. An etching mechanism based on the selective reaction between carbon monoxide and the different exposed surfaces was proposed. Our results will improve the understanding of the growth mechanism on coarse or corrugated NRs and provide a new strategy for the application of surface controlled nanostructured materials. PMID:27276661

  11. Annealing effects on the optical and morphological properties of ZnO nanorods on AZO substrate by using aqueous solution method at low temperature

    PubMed Central

    2014-01-01

    Vertically aligned ZnO nanorods (NRs) on aluminum-doped zinc oxide (AZO) substrates were fabricated by a single-step aqueous solution method at low temperature. In order to optimize optical quality, the effects of annealing on optical and structural properties were investigated by scanning electron microscopy, X-ray diffraction, photoluminescence (PL), and Raman spectroscopy. We found that the annealing temperature strongly affects both the near-band-edge (NBE) and visible (defect-related) emissions. The best characteristics have been obtained by employing annealing at 400°C in air for 2 h, bringing about a sharp and intense NBE emission. The defect-related recombinations were also suppressed effectively. However, the enhancement decreases with higher annealing temperature and prolonged annealing. PL study indicates that the NBE emission is dominated by radiative recombination associated with hydrogen donors. Thus, the enhancement of NBE is due to the activation of radiative recombinations associated with hydrogen donors. On the other hand, the reduction of visible emission is mainly attributed to the annihilation of OH groups. Our results provide insight to comprehend annealing effects and an effective way to improve optical properties of low-temperature-grown ZnO NRs for future facile device applications. PMID:25520589

  12. Rapid synthesis of white-light emissive ZnO nanorods using microwave assisted method

    NASA Astrophysics Data System (ADS)

    Karimipour, M.; Mohammad-Sadeghipour, A.; Molaei, M.; Khanzadeh, M.

    2015-12-01

    In this paper, firstly we have synthesized ZnO nanowires using zinc acetate, ethanol and ammonium hydroxide by a thermo-chemical method and then ZnO nanorods (NRs) have been prepared by microwave irradiation (MI) of an initial solution containing ZnO nanowires. X-ray diffraction (XRD) analysis showed the rare zinc-blende phase which grows on the surface of NRs and its crystallite size increases with the increase of microwave power. The average length and width of rods were observed several hundreds of nanometer and 80nm, respectively, from scanning electron microscope (SEM) analysis. Ultraviolet-visible (UV-vis) absorption spectroscopy indicates that a band tail forms due to MI, which has roughly 2eV energy gap. Photoluminescence (PL) spectroscopy indicated a blue emission and a white emission for ZnO nanowires and NRs, respectively. MI quenches the UV emission from ZnO NRs and enhances the surface defects’ emission. The resultant visible PL of the samples increases with the increase of microwave power that shows the growth of zinc-blende phase which has crucial effect on the defect density of NRs.

  13. Photoresponse from single upright-standing ZnO nanorods explored by photoconductive AFM

    PubMed Central

    Beinik, Igor; Kratzer, Markus; Wachauer, Astrid; Wang, Lin; Piryatinski, Yuri P; Brauer, Gerhard; Chen, Xin Yi; Hsu, Yuk Fan; Djurišić, Aleksandra B

    2013-01-01

    Summary Background: ZnO nanostructures are promising candidates for the development of novel electronic devices due to their unique electrical and optical properties. Here, photoconductive atomic force microscopy (PC-AFM) has been applied to investigate transient photoconductivity and photocurrent spectra of upright-standing ZnO nanorods (NRs). With a view to evaluate the electronic properties of the NRs and to get information on recombination kinetics, we have also performed time-resolved photoluminescence measurements macroscopically. Results: Persistent photoconductivity from single ZnO NRs was observed for about 1800 s and was studied with the help of photocurrent spectroscopy, which was recorded locally. The photocurrent spectra recorded from single ZnO NRs revealed that the minimum photon energy sufficient for photocurrent excitation is 3.1 eV. This value is at least 100 meV lower than the band-gap energy determined from the photoluminescence experiments. Conclusion: The obtained results suggest that the photoresponse in ZnO NRs under ambient conditions originates preferentially from photoexcitation of charge carriers localized at defect states and dominates over the oxygen photodesorption mechanism. Our findings are in agreement with previous theoretical predictions based on density functional theory calculations as well as with earlier experiments carried out at variable oxygen pressure. PMID:23616940

  14. Thickness-controlled synthesis of vertically aligned c-axis oriented ZnO nanorod arrays: Effect of growth time via novel dual sonication sol-gel process

    NASA Astrophysics Data System (ADS)

    Firdaus Malek, Mohd; Hafiz Mamat, Mohamad; Soga, Tetsuo; Rahman, Saadah Abdul; Abu Bakar, Suriani; Syakirin Ismail, Ahmad; Mohamed, Ruziana; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop Mahmood, Mohamad

    2016-01-01

    Zinc-oxide (ZnO) nanorod arrays were successfully prepared by using dual sonication sol-gel process. Field emission scanning electron microscopy revealed that the nanorods exhibited a hexagonal structure with a flat-end facet. The nanorods displayed similar surface morphologies and grew uniformly on the seed layer substrate, with the average diameter slightly increasing to the range of 65 to 80 nm after being immersed for varying growth times. Interestingly, thickness measurements indicated that the thicknesses of the samples increased as the growth time was extended. In addition, the X-ray diffraction spectra indicated that the prepared ZnO nanorods with a hexagonal wurtzite structure grew preferentially along the c-axis. Therefore, we can conclude that the diameter, length, and orientation of the ZnO nanorod arrays along the c-axis are controllable by adjusting the growth time, motivating us to further explore the growth mechanisms of ZnO nanorods.

  15. Photoelectrochemical properties of ZnO nanorods decorated with Cu and Cu2O nanoparticles

    NASA Astrophysics Data System (ADS)

    Lakehal, Sihem; Achour, Slaymane; Ferrari, Claudio; Buffagni, Elisa; Rossi, Francesca; Fabbri, Filippo

    2014-08-01

    Cu2O and Cu nanoparticles (NPs) on ZnO nanorods (NRs) were fabricated by two-step process using efficient hydrothermal technique to deposit ZnO nanorods and microwave-irradiation method under ambient conditions to prepare Cu and Cu2O NPs dispersed in Diethyleneglycole. The structure and the morphology of these films were studied by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX). The optical property was investigated by UV-Vis absorption spectroscopy and Cathodoluminescence (CL) techniques. Cu2O NPs/ZnO NRs heterojunction were produced by depositing Cu&Cu2O NPs on as-prepared ZnO NRs using spin-coating method. By changing the drying temperature the Cu metal reduce to Cu2O. In these kinds of heterojunctions, an n-type ZnO layer acts both as a host that chemically binds to the p-type Cu2O which could help in efficient electron-hole separation. The number of Cu2O NPs loaded onto the n-type ZnO layer increases the sensitivity in the visible region. The prepared heterojunctions show improved photocurrent with respect to bare ZnO NRs.

  16. Intracellular ZnO Nanorods Conjugated with Protoporphyrin for Local Mediated Photochemistry and Efficient Treatment of Single Cancer Cell

    NASA Astrophysics Data System (ADS)

    Kishwar, S.; Asif, M. H.; Nur, O.; Willander, M.; Larsson, Per-Olof

    2010-10-01

    ZnO nanorods (NRs) with high surface area to volume ratio and biocompatibility is used as an efficient photosensitizer carrier system and at the same time providing intrinsic white light needed to achieve cancer cell necrosis. In this letter, ZnO nanorods used for the treatment of breast cancer cell (T47D) are presented. To adjust the sample for intracellular experiments, we have grown the ZnO nanorods on the tip of borosilicate glass capillaries (0.5 μm diameter) by aqueous chemical growth technique. The grown ZnO nanorods were conjugated using protoporphyrin dimethyl ester (PPDME), which absorbs the light emitted by the ZnO nanorods. Mechanism of cytotoxicity appears to involve the generation of singlet oxygen inside the cell. The novel findings of cell-localized toxicity indicate a potential application of PPDME-conjugated ZnO NRs in the necrosis of breast cancer cell within few minutes.

  17. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection.

    PubMed

    Panigrahi, Shrabani; Basak, Durga

    2011-05-01

    Core-shell TiO(2)@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC(3)H(7))(4)] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO(2) shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO(2) coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors. PMID:21483939

  18. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection

    NASA Astrophysics Data System (ADS)

    Panigrahi, Shrabani; Basak, Durga

    2011-05-01

    Core-shell TiO2@ZnO nanorods (NRs) have been fabricated by a simple two step method: growth of ZnO NRs' array by an aqueous chemical technique and then coating of the NRs with a solution of titanium isopropoxide [Ti(OC3H7)4] followed by a heating step to form the shell. The core-shell nanocomposites are composed of single-crystalline ZnO NRs, coated with a thin TiO2 shell layer obtained by varying the number of coatings (one, three and five times). The ultraviolet (UV) emission intensity of the nanocomposite is largely quenched due to an efficient electron-hole separation reducing the band-to-band recombinations. The UV photoconductivity of the core-shell structure with three times TiO2 coating has been largely enhanced due to photoelectron transfer between the core and the shell. The UV photosensitivity of the nanocomposite becomes four times larger while the photocurrent decay during steady UV illumination has been decreased almost by 7 times compared to the as-grown ZnO NRs indicating high efficiency of these core-shell structures as UV sensors.

  19. Atmospheric pressure microplasmas in ZnO nanoforests under high voltage stress

    NASA Astrophysics Data System (ADS)

    Noor, Nafisa; Manthina, Venkata; Cil, Kadir; Adnane, Lhacene; Agrios, Alexander G.; Gokirmak, Ali; Silva, Helena

    2015-09-01

    Atmospheric pressure ZnO microplasmas have been generated by high amplitude single pulses and DC voltages applied using micrometer-separated probes on ZnO nanoforests. The high voltage stress triggers plasma breakdown and breakdown in the surrounding air followed by sublimation of ZnO resulting in strong blue and white light emission with sharp spectral lines and non-linear current-voltage characteristics. The nanoforests are made of ZnO nanorods (NRs) grown on fluorine doped tin oxide (FTO) glass, poly-crystalline silicon and bulk p-type silicon substrates. The characteristics of the microplasmas depend strongly on the substrate and voltage parameters. Plasmas can be obtained with pulse durations as short as ˜1 μs for FTO glass substrate and ˜100 ms for the silicon substrates. Besides enabling plasma generation with shorter pulses, NRs on FTO glass substrate also lead to better tunability of the operating gas temperature. Hot and cold ZnO microplasmas have been observed with these NRs on FTO glass substrate. Sputtering of nanomaterials during plasma generation in the regions surrounding the test area has also been noticed and result in interesting ZnO nanostructures (`nano-flowers' and `nano-cauliflowers'). A practical way of generating atmospheric pressure ZnO microplasmas may lead to various lighting, biomedical and material processing applications.

  20. Catalyst-free synthesis of well-aligned ZnO nanowires on In0.2Ga0.8N, GaN, and Al0.25Ga0.75N substrates.

    PubMed

    Yang, W Q; Dai, L; You, L P; Zhang, B R; Shen, B; Qin, G G

    2006-12-01

    Well-aligned ZnO nanowires have been synthesized vertically on In0.2Ga0.8N, GaN, and Al0.25Ga0.75N substrates, using a catalyst-free carbon thermal-reduction vapor phase deposition method for the first time. The as-synthesized nanowires are single crystalline wurtzite structure, and have a growth direction of [0001]. Each nanowire has a smooth surface, and uniform diameter along the growth direction. The average diameter and length of these nanowires are 120-150 nm, and 3-10 )m, respectively. We suggest that the growth mechanism follow a self-catalyzing growth model. Excitonic emission peaked around 385 nm dominates the room-temperature photoluminescence spectra of these nanowires. The room-temperature photoluminescence and Raman scattering spectra show that these nanowires have good optical quality with very less structural defects. PMID:17256330

  1. Interfacial Engineering Importance of Bilayered ZnO Cathode Buffer on the Photovoltaic Performance of Inverted Organic Solar Cells.

    PubMed

    Ambade, Rohan B; Ambade, Swapnil B; Mane, Rajaram S; Lee, Soo-Hyoung

    2015-04-22

    The role of cathode buffer layer (CBL) is crucial in determining the power conversion efficiency (PCE) of inverted organic solar cells (IOSCs). The hallmarks of a promising CBL include high transparency, ideal energy levels, and tendency to offer good interfacial contact with the organic bulk-heterojunction (BHJ) layers. Zinc oxide (ZnO), with its ability to form numerous morphologies in juxtaposition to its excellent electron affinity, solution processability, and good transparency is an ideal CBL material for IOSCs. Technically, when CBL is sandwiched between the BHJ active layer and the indium-tin-oxide (ITO) cathode, it performs two functions, namely, electron collection from the photoactive layer that is effectively carried out by morphologies like nanoparticles or nanoridges obtained by ZnO sol-gel (ZnO SG) method through an accumulation of individual nanoparticles and, second, transport of collected electrons toward the cathode, which is more effectively manifested by one-dimensional (1D) nanostructures like ZnO nanorods (ZnO NRs). This work presents the use of bilayered ZnO CBL in IOSCs of poly(3-hexylthiophene) (P3HT)/[6, 6]-phenyl-C60-butyric acid methyl ester (PCBM) to overcome the limitations offered by a conventionally used single layer CBL. We found that the PCE of IOSCs with an appropriate bilayer CBL comprising of ZnO NRs/ZnO SG is ∼18.21% higher than those containing ZnO SG/ZnO NRs. We believe that, in bilayer ZnO NRs/ZnO SG, ZnO SG collects electrons effectively from photoactive layer while ZnO NRs transport them further to ITO resulting significant increase in the photocurrent to achieve highest PCE of 3.70%. The enhancement in performance was obtained through improved interfacial engineering, enhanced electrical properties, and reduced surface/bulk defects in bilayer ZnO NRs/ZnO SG. This study demonstrates that the novel bilayer ZnO CBL approach of electron collection/transport would overcome crucial interfacial recombination issues and

  2. Hydrothermally Grown In-doped ZnO Nanorods on p-GaN Films for Color-tunable Heterojunction Light-emitting-diodes

    PubMed Central

    Park, Geun Chul; Hwang, Soo Min; Lee, Seung Muk; Choi, Jun Hyuk; Song, Keun Man; Kim, Hyun You; Kim, Hyun-Suk; Eum, Sung-Jin; Jung, Seung-Boo; Lim, Jun Hyung; Joo, Jinho

    2015-01-01

    The incorporation of doping elements in ZnO nanostructures plays an important role in adjusting the optical and electrical properties in optoelectronic devices. In the present study, we fabricated 1-D ZnO nanorods (NRs) doped with different In contents (0% ~ 5%) on p-GaN films using a facile hydrothermal method, and investigated the effect of the In doping on the morphology and electronic structure of the NRs and the electrical and optical performances of the n-ZnO NRs/p-GaN heterojunction light emitting diodes (LEDs). As the In content increased, the size (diameter and length) of the NRs increased, and the electrical performance of the LEDs improved. From the electroluminescence (EL) spectra, it was found that the broad green-yellow-orange emission band significantly increased with increasing In content due to the increased defect states (oxygen vacancies) in the ZnO NRs, and consequently, the superposition of the emission bands centered at 415 nm and 570 nm led to the generation of white-light. These results suggest that In doping is an effective way to tailor the morphology and the optical, electronic, and electrical properties of ZnO NRs, as well as the EL emission property of heterojunction LEDs. PMID:25988846

  3. Preparation and multiple antitumor properties of AuNRs/spinach extract/PEGDA composite hydrogel.

    PubMed

    Wang, Yunlong; Zhang, Buchang; Zhu, Lin; Li, Yanjie; Huang, Fangzhi; Li, Shikuo; Shen, Yuhua; Xie, Anjian

    2014-09-10

    In this study, a novel composite hydrogel that contains spinach extract (SE), gold nanorods (AuNRs), and poly(ethylene glycol) double acrylates (PEGDA) is prepared through a one-step in situ photopolymerization under noninvasive 660 nm laser irradiation for localized antitumor activity. SE plays a role as a photoinitiator for initiating the formation of the PEGDA hydrogel and as an excellent photosensitizer for generating cytotoxic singlet oxygen ((1)O2) with oxygen to kill tumor cells. AuNRs can be used as a photoabsorbing agent to generate heat from optical energy. Moreover, the introduction of AuNRs is conducive to the formation of the hydrogel and accelerates the rate of (1)O2 generation. The composite hydrogel shell, which has good biocompatibility on tumor cells, can prevent the photosensitizer from migrating to normal tissue and maintains a high concentration on lesions, thereby enhancing the curative effect. The combination of NIR light-triggered mild photothermal heating of AuNRs, the photodynamic treatment using SE, and localized gelation by photopolymerization exhibits a synergistic effect for the destruction of cancer cells. PMID:25111567

  4. Guide for Improving NRS Data Quality: Procedures for Data Collection and Training.

    ERIC Educational Resources Information Center

    Condelli, Larry; Castillo, Laura; Seburn, Mary; Deveaux, Jon

    This guide for improving the quality of National Reporting System for Adult Education (NRS) data through improved data collection and training is intended for local providers and state administrators. Chapter 1 explains the guide's purpose, contents, and use and defines the following components of data quality: objectivity; integrity;…

  5. Carrier transport mechanisms of hybrid ZnO nanorod-polymer LEDs

    NASA Astrophysics Data System (ADS)

    Cho, Sungjae; Lee, Kyu Seung; Son, Dong Ick; Oh, Youngjei; Choi, Won Kook; Angadi, Basavaraj

    2014-07-01

    A hybrid polymer-nanorod (NR) light-emitting diode (LED), consisting of a hole-conducting polymer poly (9-vinyl carbazole) (PVK) and ZnO nanorod (NR) composite, with the device structure of glass/indium-tin-oxide (ITO)/PEDOT:PSS/(PVK + ZnO nanorods)/Al is fabricated through a simple spin coating technique. TEM images shows inhomogeneous deposition and the agglomeration of ZnO NRs, which is explained through their low probability of adsorption on PVK due to two-dimensional structural property. In the current-voltage characteristics, negative differential resistance (NDR) phenomenon is observed corresponding to device structure without ZnO NRs. The carrier transport behavior in the LED device is well described by both ohmic and space-chargelimited-current (SCLC) mechanisms. Broad blue electroluminescence (EL) consisting of two sub peaks, are centered at 441 nm and the other at 495 nm, is observed, which indicates that the ZnO nanorod play a role as a recombination center for excitons. The red shift in the position of the EL compared to that photoluminescence is well explained through band offsets at the heterojunction between the PVK and ZnO NRs.

  6. Band alignment and photon extraction studies of Na-doped MgZnO/Ga-doped ZnO heterojunction for light-emitter applications

    NASA Astrophysics Data System (ADS)

    Pandey, Sushil Kumar; Awasthi, Vishnu; Sengar, Brajendra Singh; Garg, Vivek; Sharma, Pankaj; Kumar, Shailendra; Mukherjee, C.; Mukherjee, Shaibal

    2015-10-01

    Ultraviolet photoelectron spectroscopy is carried out to measure the energy discontinuity at the interface of p-type Na-doped MgZnO (NMZO)/n-type Ga-doped ZnO (GZO) heterojunction grown by dual ion beam sputtering. The offset values at valence band and conduction band of NMZO/GZO heterojunction are calculated to be 1.93 and -2.36 eV, respectively. The p-type conduction in NMZO film has been confirmed by Hall measurement and band structure. Moreover, the effect of Ar+ ion sputtering on the valence band onset values of NMZO and GZO thin films has been investigated. This asymmetric waveguide structure formed by the lower refractive index of GZO than that of NMZO indicates that easy extraction of photons generated in GZO through the NMZO layer into free space. The asymmetric waveguide structure has potential applications to produce ZnO-based light emitters with high extraction efficiency.

  7. A simple route to vertical array of quasi-1D ZnO nanofilms on FTO surfaces: 1D-crystal growth of nanoseeds under ammonia-assisted hydrolysis process

    PubMed Central

    2011-01-01

    A simple method for the synthesis of ZnO nanofilms composed of vertical array of quasi-1D ZnO nanostructures (quasi-NRs) on the surface was demonstrated via a 1D crystal growth of the attached nanoseeds under a rapid hydrolysis process of zinc salts in the presence of ammonia at room temperature. In a typical procedure, by simply controlling the concentration of zinc acetate and ammonia in the reaction, a high density of vertically oriented nanorod-like morphology could be successfully obtained in a relatively short growth period (approximately 4 to 5 min) and at a room-temperature process. The average diameter and the length of the nanostructures are approximately 30 and 110 nm, respectively. The as-prepared quasi-NRs products were pure ZnO phase in nature without the presence of any zinc complexes as confirmed by the XRD characterisation. Room-temperature optical absorption spectroscopy exhibits the presence of two separate excitonic characters inferring that the as-prepared ZnO quasi-NRs are high-crystallinity properties in nature. The mechanism of growth for the ZnO quasi-NRs will be proposed. Due to their simplicity, the method should become a potential alternative for a rapid and cost-effective preparation of high-quality ZnO quasi-NRs nanofilms for use in photovoltaic or photocatalytics applications. PACS: 81.07.Bc; 81.16.-c; 81.07.Gf. PMID:22027275

  8. Ag nanoparticles-decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties.

    PubMed

    Chen, Yi; Tse, Wai Hei; Chen, Longyan; Zhang, Jin

    2015-01-01

    Heteronanostructured zinc oxide nanorod (ZnO NR) array are vertically grown on polydimethylsiloxane (PDMS) through a hydrothermal method followed by an in situ deposition of silver nanoparticles (Ag NPs) through a photoreduction process. The Ag-ZnO heterostructured nanorods on PDMS are measured with an average diameter of 160 nm and an average length of 2 μm. ZnO NRs measured by high-resolution transmission electron microscope (HRTEM) shows highly crystalline with a lattice fringe of 0.255 nm, which corresponds to the (0002) planes in ZnO crystal lattice. The average diameter of the Ag NPs in situ deposited on the ZnO NRs is estimated at 22 ± 2 nm. As compared to the bare ZnO NRs, the heterostructured Ag-ZnO nanorod array shows enhanced ultraviolet (UV) absorption at 440 nm, and significant emission in the visible region (λem = 542 nm). In addition, the antimicrobial efficiency of Ag-ZnO heterostructured nanorod array shows obvious improvement as compared to bare ZnO nanorod array. The cytotoxicity of ZnO nanorod array with and without Ag NPs was studied by using 3 T3 mouse fibroblast cell line. No significant toxic effect is imposed on the cells. PMID:25852401

  9. Epithermal Neutron Source for Neutron Resonance Spectroscopy (NRS) using High Intensity, Short Pulse Lasers

    SciTech Connect

    Higginson, D P; McNaney, J M; Swift, D C; Bartal, T; Hey, D S; Pape, S L; Mackinnon, A; Mariscal, D; Nakamura, H; Nakanii, N; Beg, F N

    2010-04-22

    A neutron source for neutron resonance spectroscopy (NRS) has been developed using high intensity, short pulse lasers. This measurement technique will allow for robust measurements of interior ion temperature of laser-shocked materials and provide insight into equation of state (EOS) measurements. The neutron generation technique uses protons accelerated by lasers off of Cu foils to create neutrons in LiF, through (p,n) reactions with {sup 7}Li and {sup 19}F. The distribution of the incident proton beam has been diagnosed using radiochromic film (RCF). This distribution is used as the input for a (p,n) neturon prediction code which is compared to experimentally measured neutron yields. From this calculation, a total fluence of 1.8 x 10{sup 9} neutrons is infered, which is shown to be a reasonable amount for NRS temperature measurement.

  10. Isolation of Glucocardiolipins from Geobacillus stearothermophilus NRS 2004/3a

    PubMed Central

    Schäffer, Christina; Beckedorf, Anke I.; Scheberl, Andrea; Zayni, Sonja; Peter-Katalinić, Jasna; Messner, Paul

    2002-01-01

    Glucose-substituted cardiolipins account for about 4 mol% of total phospholipid extracted from exponentially grown cells of Geobacillus stearothermophilus NRS 2004/3a. Individual glucocardiolipin species exhibited differences in fatty acid substitution, with iso-C15:0 and anteiso-C17:0 prevailing. The compounds were purified to homogeneity by a novel protocol and precharacterized by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PMID:12426359

  11. Improved photocatalytic activity of single crystal ZnO nanorod derived from highly effective P/N heterojunction

    SciTech Connect

    Yan, Xiaoyan; Gong, Changwei; Wang, Jian; Liang, Liping; Zhao, Li; Zhang, Mingang; Chai, Yuesheng

    2013-10-15

    Graphical abstract: Schematic showing on photocatalytic degradation 2,4-DCP of ZnO NRs/BDD heterojunction. - Highlights: • Single-crystal ZnO nanorods based P/N heterojunction has been synthesized. • Vertical growth ZnO NRs on BDD can effectively photocatalytic decompose 2,4-DCP. • The rate constant of photocatalysis can be enhanced due to P/N heterojunction. - Abstract: Highly effective single-crystal ZnO nanorods based P/N heterojunction has been synthesized by a controllable crystal seed-induced hydrothermal vertical growth method, which facilitates the separation of the photogenerated electrons and holes due to its endogenous space charge region and suitable band structure. Therefore, photocatalytic activity for degradation of the toxic pollutants is markedly enhanced.

  12. Band alignment and photon extraction studies of Na-doped MgZnO/Ga-doped ZnO heterojunction for light-emitter applications

    SciTech Connect

    Pandey, Sushil Kumar; Awasthi, Vishnu; Sengar, Brajendra Singh; Garg, Vivek; Sharma, Pankaj; Mukherjee, Shaibal; Kumar, Shailendra; Mukherjee, C.

    2015-10-28

    Ultraviolet photoelectron spectroscopy is carried out to measure the energy discontinuity at the interface of p-type Na-doped MgZnO (NMZO)/n-type Ga-doped ZnO (GZO) heterojunction grown by dual ion beam sputtering. The offset values at valence band and conduction band of NMZO/GZO heterojunction are calculated to be 1.93 and −2.36 eV, respectively. The p-type conduction in NMZO film has been confirmed by Hall measurement and band structure. Moreover, the effect of Ar{sup +} ion sputtering on the valence band onset values of NMZO and GZO thin films has been investigated. This asymmetric waveguide structure formed by the lower refractive index of GZO than that of NMZO indicates that easy extraction of photons generated in GZO through the NMZO layer into free space. The asymmetric waveguide structure has potential applications to produce ZnO-based light emitters with high extraction efficiency.

  13. Shape-dependent plasma-catalytic activity of ZnO nanomaterials coated on porous ceramic membrane for oxidation of butane.

    PubMed

    Sanjeeva Gandhi, M; Mok, Young Sun

    2014-12-01

    In order to explore the effects of the shape of ZnO nanomaterials on the plasma-catalytic decomposition of butane and the distribution of byproducts, three types of ZnO nanomaterials (nanoparticles (NPs), nanorods (NRs) and nanowires (NWs)) were prepared and coated on multi-channel porous alumina ceramic membrane. The structures and morphologies of the nanomaterials were confirmed by X-ray diffraction method and scanning electron microscopy. The observed catalytic activity of ZnO in the oxidative decomposition of butane was strongly shape-dependent. It was found that the ZnO NWs exhibited higher catalytic activity than the other nanomaterials and could completely oxidize butane into carbon oxides (COx). When using the bare or ZnO NPs-coated ceramic membrane, several unwanted partial oxidation and decomposition products like acetaldehyde, acetylene, methane and propane were identified during the decomposition of butane. When the ZnO NWs- or ZnO NRs-coated membrane was used, however, the formation of such unwanted byproducts except methane was completely avoided, and full conversion into COx was achieved. Better carbon balance and COx selectivity were obtained with the ZnO NWs and NRs than with the NPs. PMID:25195119

  14. Amperometric Non-Enzymatic Hydrogen Peroxide Sensor Based on Aligned Zinc Oxide Nanorods

    PubMed Central

    Al-Hardan, Naif H.; Abdul Hamid, Muhammad Azmi; Shamsudin, Roslinda; Othman, Norinsan Kamil; Kar Keng, Lim

    2016-01-01

    Zinc oxide (ZnO) nanorods (NRs) have been synthesized via the hydrothermal process. The NRs were grown over a conductive glass substrate. A non-enzymatic electrochemical sensor for hydrogen peroxide (H2O2), based on the prepared ZnO NRs, was examined through the use of current-voltage measurements. The measured currents, as a function of H2O2 concentrations ranging from 10 μM to 700 μM, revealed two distinct behaviours and good performance, with a lower detection limit (LOD) of 42 μM for the low range of H2O2 concentrations (first region), and a LOD of 143.5 μM for the higher range of H2O2 concentrations (second region). The prepared ZnO NRs show excellent electrocatalytic activity. This enables a measurable and stable output current. The results were correlated with the oxidation process of the H2O2 and revealed a good performance for the ZnO NR non-enzymatic H2O2 sensor. PMID:27367693

  15. Role of sensitivity of zinc oxide nanorods (ZnO-NRs) based photosensitizers in hepatocellular site of biological tissue

    NASA Astrophysics Data System (ADS)

    Atif, M.; Fakhar-E-Alam, M.; Alsalhi, M. S.

    2011-11-01

    Zinc oxide nanorods (ZnO-NRs) with high surface to volume ratio and bio compatibility are used as an efficient photosensitizer carrier system for achievement of Hepatocellular cancer cell (HepG2) necrosis within few minutes. Present study highlights the role of effectiveness of ZnO-NRs in photodynamic therapy (PDT). We have grown the ZnO-NRs on the tip of borosilicate glass capillaries (0.5 μm diameter). The grown ZnO-NRs were conjugated using Photofrin® and ALA for the efficient intracellular drug delivery, which produces reactive oxygen species (ROS) via photochemical reactions leading to cell death within few minutes after exposing UV light (240 nm). Viability of controlled and treated HepG2 cells with optimum dose of light (UV-visible) has been assessed by neutral red assay (NRA). The results were verified by staining of mitochondria using Mitotracker® red as an efficient dye as well as ROS detection. ZnO-NRs based Phogem® (PG) treated normal liver tissues of Sprague-Dawley rats were used as comparative experimental model. Morphological apoptotic changes in liver tissue of Sprague-Dawley rats before and after ZnO-NRs conjugated with photosensitizer (PS)-mediated PDT were investigated by microscopic examination.

  16. Rational design of hierarchical ZnO superstructures for efficient charge transfer: mechanistic and photovoltaic studies of hollow, mesoporous, cage-like nanostructures with compacted 1D building blocks.

    PubMed

    Chetia, Tridip Ranjan; Ansari, Mohammad Shaad; Qureshi, Mohammad

    2016-02-21

    Mesoporous and hollow zinc oxide (ZnO) hierarchical superstructures assembled with compact 1D building blocks that provide an efficient and faster transport pathway for photo-generated charge carriers have been synthesized using a biomass derived polysaccharide "alginic acid". To understand the interactions between the organic bio-template and inorganic growth units of ZnO in aqueous medium, the effects of additives such as the alginate ion (ALGI) and ammonium hydroxide (NH4OH), along with the controlled reaction conditions, are investigated using Field Emission Scanning Electron Microscopy (FESEM) and powder X-ray diffraction. Dynamic and steady-state photoluminescence measurements are carried out to understand the charge transfer processes in the compact 1D superstructures. Experimental analyses reveal that the alginate ions, under hydrothermal reaction conditions, act as a structure directing agent and assemble 1D ZnO nanorods (NRs) hierarchically while NH4OH assists the formation of ZnO growth units. A plausible mechanism for ZnO cage formation is proposed based on the experimental observations. Morphology dependent photovoltaic properties of ZnO heterostructures, i.e., for ZnO cages, ZnO NRs and ZnO PNPs, have been studied along with electrochemical impedance spectroscopy (EIS). Enhancement of ∼ 60% and ∼ 35% in power conversion efficiency (PCE) is observed in ZnO cage based devices as compared to ZnO NR- and ZnO PNP-based devices, respectively. PMID:26818181

  17. Improve the open-circuit voltage of ZnO solar cells with inserting ZnS layers by two ways

    NASA Astrophysics Data System (ADS)

    Sun, Yunfei; Yang, Jinghai; Yang, Lili; Cao, Jian; Gao, Ming; Zhang, Zhiqiang; Wang, Zhe; Song, Hang

    2013-04-01

    ZnS NPs layers were deposited on ZnO NRs by two different ways. One is spin coating; the other is successive ionic layer adsorption and reaction (SILAR) method. The ZnO NRs/ZnS NPs composites were verified by X-ray diffraction, X-ray photoelectron spectroscopy, and UV-visible spectrophotometer; their morphologies and thicknesses were examined by scanning electron microscopic and transmission electron microscopic images. The CdS quantum dot sensitized solar cells (QDSSCs) were constructed using ZnO NRs/ZnS NPs composites as photoanode and their photovoltaic characteristic was studied by J-V curves. The results indicated that the way of SILAR is more beneficial for retarding the back transfer of electrons to CdS and electrolyte than spin coating method. The open-circuit voltage increased to 0.59 V by introducing a ZnS layer through SILAR method. When ZnS NPs layer was deposited for 10 times on ZnO NRs, the conversion efficiency of QDSSC shows ˜3.3 folds increments of as-synthesized ZnO solar cell.

  18. Selective growth of ZnO nanorods on hydrophobic Si nanorod arrays

    NASA Astrophysics Data System (ADS)

    Lu, Ming-Yen; Wang, Ying-Jhe; Hong, Meng-Hsiang; Chiu, Cheng-Yao; You, Shuen-Jium; Lu, Ming-Pei

    2015-02-01

    In this paper we describe the selective growth of ZnO nanorods (NRs) on top of hydrophobic Si NR arrays. The periodic Si NR arrays, prepared through electroless chemical etching and HF treatment, functioned as hydrophobic substrates. Droplets containing ZnO seeds could be positioned on the Si NR arrays, causing the ZnO seeds to deposit selectively upon them, with n-ZnO NR/p-Si NR array heterojunctions ultimately forming after hydrothermal growth of ZnO NRs. Because of compensation for the difference in refractive index between air and the Si substrate, the n-ZnO NR/p-Si NR arrays exhibited excellent absorption ability in the visible range. Devices based on these n-ZnO NR/p-Si NR array heterojunctions displayed not only rectifying behavior but also photovoltaic effects when illuminated with UV light. The low temperature and low cost of this fabrication process suggest that the selective growth of n-ZnO NRs on p-Si NR arrays might allow such structures to have diverse applications in optoelectronics.

  19. Selective growth of ZnO nanorods on hydrophobic Si nanorod arrays.

    PubMed

    Lu, Ming-Yen; Wang, Ying-Jhe; Hong, Meng-Hsiang; Chiu, Cheng-Yao; You, Shuen-Jium; Lu, Ming-Pei

    2015-02-01

    In this paper we describe the selective growth of ZnO nanorods (NRs) on top of hydrophobic Si NR arrays. The periodic Si NR arrays, prepared through electroless chemical etching and HF treatment, functioned as hydrophobic substrates. Droplets containing ZnO seeds could be positioned on the Si NR arrays, causing the ZnO seeds to deposit selectively upon them, with n-ZnO NR/p-Si NR array heterojunctions ultimately forming after hydrothermal growth of ZnO NRs. Because of compensation for the difference in refractive index between air and the Si substrate, the n-ZnO NR/p-Si NR arrays exhibited excellent absorption ability in the visible range. Devices based on these n-ZnO NR/p-Si NR array heterojunctions displayed not only rectifying behavior but also photovoltaic effects when illuminated with UV light. The low temperature and low cost of this fabrication process suggest that the selective growth of n-ZnO NRs on p-Si NR arrays might allow such structures to have diverse applications in optoelectronics. PMID:25590263

  20. Insight into factors affecting the presence, degree, and temporal stability of fluorescence intensification on ZnO nanorod ends

    NASA Astrophysics Data System (ADS)

    Singh, Manpreet; Jiang, Ruibin; Coia, Heidi; Choi, Daniel S.; Alabanza, Anginelle; Chang, Jae Young; Wang, Jianfang; Hahm, Jong-In

    2015-01-01

    We have carried out a combined experimental and simulation study identifying the key physical and optical parameters affecting the presence and degree of fluorescence intensification measured on zinc oxide nanorod (ZnO NR) ends. Previously, we reported on the highly localized, intensified, and prolonged fluorescence signal measured on the NR ends, termed fluorescence intensification on NR ends (FINE). As a step towards understanding the mechanism of FINE, the present study aims to provide insight into the unique optical phenomenon of FINE through experimental and simulation approaches and to elucidate the key factors affecting the occurrence, degree, and temporal stability of FINE. Specifically, we examined the effect of the length, width, and growth orientation of single ZnO NRs on the NR-enhanced biomolecular emission profile after decorating the NR surfaces with different amounts and types of fluorophore-coupled protein molecules. We quantitatively and qualitatively profiled the biomolecular fluorescence signal from individual ZnO NRs as a function of both position along the NR long axis and time. Regardless of the physical dimensions and growth orientations of the NRs, we confirmed the presence of FINE in all ZnO NRs tested by using a range of protein concentrations. We also showed that the manifestation of FINE is not dependent on the spectroscopic signatures of the fluorophores employed. We further observed that the degree of FINE is dependent on the length of the NR with longer NRs showing increased levels of FINE. We also demonstrated that vertically oriented NRs exhibit much stronger fluorescence intensity at the NR ends and a higher level of FINE than the laterally oriented NRs. Additionally, we employed finite-difference time-domain (FDTD) methods to understand the experimental outcomes and to promote our understanding of the mechanism of FINE. Particularly, we utilized the electrodynamic simulations to examine both near-field and far-field emission

  1. Gold nanoparticle immobilization on ZnO nanorods via bi-functional monolayers: A facile method to tune interface properties

    NASA Astrophysics Data System (ADS)

    Jayaraman, Sundaramurthy; Suresh Kumar, P.; Mangalaraj, D.; Dharmarajan, Rajarathnam; Ramakrishna, Seeram; P Srinivasan, M.

    2015-11-01

    We demonstrated the functionalization of one dimensional (1-D) zinc oxide nanorods (ZnO NRs) using bi-functional organic molecules to create hybrid structures with surface functionalities and tuneable organic/inorganic interface. Bi-functional molecules with carboxylic acid, thiol and silane end groups and amine termination had been employed to functionalize the NRs by forming carboxylate, thiolate and hydroxylation bonds, respectively, with ZnO. The surface textures of NRs were preserved even after functionalization. The functionalized NRs were decorated with gold nanoparticles (AuNPs) and the hybrid structures exhibited a quenched blue shift ultraviolet emission which depended on the distance between the ZnO surface and the AuNPs. The NR functionalization with bi-functional molecules and decoration of NPs, and surface morphologies were analyzed using x-ray photoelectron spectroscopy, field emission scanning electron microscopy and transmission electron spectroscopy. These hybrid structures can play a vital role in tuning the interface properties and have potential applications in future photovoltaics, chemical sensors, biomarkers, and wavelength based biosensors.

  2. Improve the open-circuit voltage of ZnO solar cells with inserting ZnS layers by two ways

    SciTech Connect

    Sun, Yunfei; Yang, Jinghai; Yang, Lili; Cao, Jian; Gao, Ming; Zhang, Zhiqiang; Wang, Zhe; Song, Hang

    2013-04-15

    ZnS NPs layers were deposited on ZnO NRs by two different ways. One is spin coating; the other is successive ionic layer adsorption and reaction (SILAR) method. The ZnO NRs/ZnS NPs composites were verified by X-ray diffraction, X-ray photoelectron spectroscopy, and UV–visible spectrophotometer; their morphologies and thicknesses were examined by scanning electron microscopic and transmission electron microscopic images. The CdS quantum dot sensitized solar cells (QDSSCs) were constructed using ZnO NRs/ZnS NPs composites as photoanode and their photovoltaic characteristic was studied by J–V curves. The results indicated that the way of SILAR is more beneficial for retarding the back transfer of electrons to CdS and electrolyte than spin coating method. The open-circuit voltage increased to 0.59 V by introducing a ZnS layer through SILAR method. When ZnS NPs layer was deposited for 10 times on ZnO NRs, the conversion efficiency of QDSSC shows ∼3.3 folds increments of as-synthesized ZnO solar cell. - Graphical abstract: When ZnO nanorods were deposited by ZnS for 10 times, the conversion efficiency of QDSSC shows ∼3.3 folds increments of as-synthesized ZnO solar cell. Highlights: ► ZnS layers were deposited with two different ways. ► The way of SILAR is more beneficial for retarding the back transfer of electrons. ► The open-circuit voltage increased to 0.59 V by introducing a ZnS layer through SILAR method.

  3. Low-Temperature Facile Synthesis of Sb-Doped p-Type ZnO Nanodisks and Its Application in Homojunction Light-Emitting Diode.

    PubMed

    Baek, Sung-Doo; Biswas, Pranab; Kim, Jong-Woo; Kim, Yun Cheol; Lee, Tae Il; Myoung, Jae-Min

    2016-05-25

    This study explores low-temperature solution-process-based seed-layer-free ZnO p-n homojunction light-emitting diode (LED). In order to obtain p-type ZnO nanodisks (NDs), antimony (Sb) was doped into ZnO by using a facile chemical route at 120 °C. The X-ray photoelectron spectra indicated the presence of (SbZn-2VZn) acceptor complex in the Sb-doped ZnO NDs. Using these NDs as freestanding templates, undoped n-type ZnO nanorods (NRs) were epitaxially grown at 95 °C to form ZnO p-n homojunction. The homojunction with a turn-on voltage of 2.5 V was found to be significantly stable up to 100 s under a constant voltage stress of 5 V. A strong orange-red emission was observed by the naked eye under a forward bias of 5 V. The electroluminescence spectra revealed three major peaks at 400, 612, and 742 nm which were attributed to the transitions from Zni to VBM, from Zni to Oi, and from VO to VBM, respectively. The presence of these deep-level defects was confirmed by the photoluminescence of ZnO NRs. This study paves the way for future applications of ZnO homojunction LEDs using low-temperature and low-cost solution processes with the controlled use of native defects. PMID:27160161

  4. Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Alnoor, Hatim; Pozina, Galia; Khranovskyy, Volodymyr; Liu, Xianjie; Iandolo, Donata; Willander, Magnus; Nur, Omer

    2016-04-01

    Low temperature aqueous chemical synthesis (LT-ACS) of zinc oxide (ZnO) nanorods (NRs) has been attracting considerable research interest due to its great potential in the development of light-emitting diodes (LEDs). The influence of the molar ratio of the zinc acetate (ZnAc): KOH as a ZnO seed layer precursor on the density of interface defects and hence the presence of non-radiative recombination centers in LT-ACS of ZnO NRs/GaN LEDs has been systematically investigated. The material quality of the as-prepared seed layer as quantitatively deduced by the X-ray photoelectron spectroscopy is found to be influenced by the molar ratio. It is revealed by spatially resolved cathodoluminescence that the seed layer molar ratio plays a significant role in the formation and the density of defects at the n-ZnO NRs/p-GaN heterostructure interface. Consequently, LED devices processed using ZnO NRs synthesized with molar ratio of 1:5 M exhibit stronger yellow emission (˜575 nm) compared to those based on 1:1 and 1:3 M ratios as measured by the electroluminescence. Furthermore, seed layer molar ratio shows a quantitative dependence of the non-radiative defect densities as deduced from light-output current characteristics analysis. These results have implications on the development of high-efficiency ZnO-based LEDs and may also be helpful in understanding the effects of the ZnO seed layer on defect-related non-radiative recombination.

  5. Hydrothermal growth and conductivity enhancement of (Al, Cu) co-doped ZnO nanorods thin films

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mohua; Mahapatra, Preetilata; Thangavel, R.

    2016-05-01

    The incorporation of Al, Cu co-doping in ZnO host lattice plays an important role in modification of structural, optical and electrical properties in optoelectronic devices. In the present work, we were grown one dimensional ZnO nanorods (NRs) doped with different concentration of Al (0%~5%) and Cu was kept 20 M% on ITO glass substrates using a facile hydrothermal method, and investigated the effect of the codoping on the surface morphology and the electrical and optical performances of the doped ZnO NRs as photo anodes for solar water splitting applications. The crystallite size of NRs shows tuning in the band gap between 3.194 (Zn0.79Al0.01Cu0.2O) to 3.212 eV (Zn0.75Al0.05Cu0.2O) with Aluminium doping concentration and a remarkable improvement in current density (J) from 0.05 mA/cm2 to 4.98 mA/cm2 was achieved by incorporating Al and Cu has a critical effect of ZnO nanorods.

  6. Adopting Novel Strategies in Achieving High-Performance Single-Layer Network Structured ZnO Nanorods Thin Film Transistors.

    PubMed

    Park, Ji-Hyeon; Park, Jee Ho; Biswas, Pranab; Kwon, Do Kyun; Han, Sun Woong; Baik, Hong Koo; Myoung, Jae-Min

    2016-05-11

    High-performance, solution-processed transparent and flexible zinc oxide (ZnO) nanorods (NRs)-based single layer network structured thin film transistors (TFTs) were developed on polyethylene terephthalate (PET) substrate at 100 °C. Keeping the process-temperature under 100 °C, we have improved the device performance by introducing three low temperature-based techniques; regrowing ZnO to fill the void spaces in a single layer network of ZnO NRs, passivating the back channel with polymer, and adopting ZrO2 as the high-k dielectric. Notably, high-k amorphous ZrO2 was synthesized and deposited using a novel method at an unprecedented temperature of 100 °C. Using these methods, the TFTs exhibited a high mobility of 1.77 cm(2)/V·s. An insignificant reduction of 2.18% in mobility value after 3000 cycles of dynamic bending at a radius of curvature of 20 mm indicated the robust mechanical nature of the flexible ZnO NRs SLNS TFTs. PMID:27096706

  7. Liquid crystal alignment on zinc oxide nanowire arrays for LCDs applications.

    PubMed

    Chen, Mu-Zhe; Chen, Wei-Sheng; Jeng, Shie-Chang; Yang, Sheng-Hsiung; Chung, Yueh-Feng

    2013-12-01

    The zinc oxide (ZnO) nanowire arrays on the indium tin oxide (ITO) glass substrates were fabricated by using the two-step hydrothermal method. A high transmittance ~92% of ZnO nanowire arrays on ITO substrate in the visible region was obtained. It was observed that the liquid crystal (LC) directors were aligned vertically to the (ZnO) nanowire arrays. The properties of ZnO nanowire arrays as vertical liquid crystal (LC) alignment layers and their applications for hybrid-aligned nematic LC modes were investigated in this work. PMID:24514480

  8. Ethyl Cellulose and Cetrimonium Bromide Assisted Synthesis of Mesoporous, Hexagon Shaped ZnO Nanodisks with Exposed ±{0001} Polar Facets for Enhanced Photovoltaic Performance in Quantum Dot Sensitized Solar Cells.

    PubMed

    Chetia, Tridip Ranjan; Ansari, Mohammad Shaad; Qureshi, Mohammad

    2015-06-24

    Hexagon shaped mesoporous zinc oxide nanodisks (ZnO NDs) with exposed ±{0001} polar facets have been synthesized by using ethyl cellulose (EC) and cetrimonium bromide (CTAB) as the capping and structure directing agents. We have characterized ZnO NDs using analytical techniques, such as powder X-ray diffraction (PXRD), diffuse reflectance UV-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) surface area analysis and proposed a plausible mechanism for the formation of ZnO NDs. EC molecules form a colloidal solution in a 1-butanol:water (3:1) solvent system having a negative zeta potential (ζ ≈ -32 mV) value which can inhibit CTAB assisted c-axis growth of ZnO crystal and encourage the formation of ZnO NDs. In the control reactions carried out in presence of only CTAB and only EC, formation of hexagonal ZnO nanorods (NRs) and ZnO nanosheets (NSs) composed of numerous ZnO nanoparticles are observed, respectively. Photovoltaic properties of ZnO NDs as compared to ZnO NRs, ZnO NSs, and conventional ZnO nanoparticles (NPs) are investigated by co-sensitizing with CdS/CdSe quantum dots (QDs). An ∼35% increase in power conversion efficiency (PCE, η) is observed in ZnO NDs (η ≈ 4.86%) as compared to ZnO NPs (η ≈ 3.14%) while the values of PCE for ZnO NR and ZnO NS based devices are found to be ∼2.52% and ∼1.64%, respectively. Enhanced photovoltaic performance of the ZnO NDs based solar cell is attributed to an efficient charge separation and collection, boosted by the exposed ±(0001) facets apart from the single crystalline nature, better light-scattering effects, and high BET surface area for sensitizer particle adsorption. Electrochemical impedance spectroscopy (EIS) analysis further reveals that the charge recombination resistance and photoinduced electron lifetime are substantially higher in the ZnO ND based

  9. Output power enhancement from ZnO nanorods piezoelectric nanogenerators by Si microhole arrays

    NASA Astrophysics Data System (ADS)

    Baek, Seong-Ho; Roqibul Hasan, Md; Park, Il-Kyu

    2016-02-01

    We demonstrate the enhancement of output power from a ZnO nanorod (NR)-based piezoelectric nanogenerator by using Si microhole (Si-μH) arrays. The depth-controlled Si-μH arrays were fabricated by using the deep reactive ion etching method. The ZnO NRs were grown along the Si-μH surface, in holes deeper than 20 μm. The polymer layer, polydimethylsiloxane, which acts a stress diffuser and electrical insulator, was successfully penetrated into the deep Si-μH arrays. Optical investigations show that the crystalline quality of the ZnO NRs on the Si-μH arrays was not degraded, even though they were grown on the deeper Si-μH arrays. As the depth of the Si-μH arrays increase from 0 to 20 μm, the output voltage was enhanced by around 8.1 times while the current did not increase. Finally, an output power enhancement of ten times was obtained. This enhancement of the output power was consistent with the increase in the surface area, and was mainly attributed to the accumulation of the potentials generated by the series-connected ZnO NR-based nanogenerators, whose number increases as the depth of the Si-μH increases.

  10. Surface-assisted unidirectional orientation of ZnO nanorods hybridized with nematic liquid crystals.

    PubMed

    Kubo, Shoichi; Taguchi, Rei; Hadano, Shingo; Narita, Mamiko; Watanabe, Osamu; Iyoda, Tomokazu; Nakagawa, Masaru

    2014-01-22

    Inorganic semiconductor nanorods are regarded as the primary components of optical and electrical nanoscale devices. In this paper, we demonstrate the unidirectional alignment of monolayered and dispersed ZnO nanorods on a rubbed polyimide alignment layer, which was achieved by a conventional liquid crystal alignment technique. The outermost surfaces of the ZnO nanorods (average diameter 7 nm; length 50 nm) were modified by polymerization initiator moieties, and nematic liquid crystalline (LC) methacrylate polymers were grown by atom transfer radical polymerization. By regulating the densities of the polymerization initiator moieties, we successfully hybridized LC-polymer-grafted ZnO nanorods and small nematic LC molecules. The LC-polymer-modified ZnO nanorods were hierarchically aligned on the substrate via cooperative molecular interactions among the liquid crystal mesogens, which induced molecular orientation on the rubbed polyimide alignment layer. PMID:24299205

  11. Optimized ferrocene-functionalized ZnO nanorods for signal amplification in electrochemical immunoassay of Escherichia coli.

    PubMed

    Teng, Yingqiao; Zhang, Xinai; Fu, Ying; Liu, Huijie; Wang, Zhongchuan; Jin, Litong; Zhang, Wen

    2011-08-15

    A novel amplified electrochemical immunoassay based on ferrocene (Fc)-functionalized ZnO nanorods (NRs) was developed in the present work. The detection antibody ((d)Ab) and Fc were immobilized onto the surface of ZnO NRs, denoted as {(d)Ab-ZnO-Fc} bioconjugates. The amount of (d)Ab and Fc in the bioconjugates was investigated using the copper reduction/bicinchoninic acid reaction (BCA protein assay) and inductive coupled plasma-atomic emission spectroscopy (ICP-AES), respectively. Greatly amplified signal was achieved in the sandwich-type immunoassay when (d)Ab and Fc linked to ZnO NRs at a proper ratio. Using Escherichia coli (E. coli) as a model antigen, the designed immunoassay showed an excellent analytical performance, and exhibited a wide dynamic response range of E. coli concentration from 10(2) to 10(6)cfu/mL with a detection limit of 50 cfu/mL (S/N=3). By introducing a pre-enrichment step, the detection of 5 cfu/10 mL E. coli in hospital sewage water was realized. This proposed signal amplification strategy was promising and could be easily extended to monitor other biorecognition events. PMID:21733671

  12. Lateral arrays of vertical ZnO nanowalls on a periodically polarity-inverted ZnO template.

    PubMed

    Lee, Sang Hyun; Minegishi, Tsutomu; Ha, Jun-Seok; Park, Jin-sub; Lee, Hyo-Jong; Lee, Hyun Jung; Shiku, Hitoshi; Matsue, Tomokazu; Hong, Soon-Ku; Jeon, Heonsu; Yao, Takafumi

    2009-06-10

    Well aligned ZnO nanowall arrays with submicron pitch were grown on a periodically polarity-inverted ZnO template using a carbothermal reduction process. Under the conditions of a highly dense Au catalyst for increasing nucleation sites, ZnO nanowalls with a thickness of 126 +/- 10 nm, an average height of 3.4 microm, and a length of about 10 mm were formed on the template. The nanowalls were only grown on a Zn-polar surface due to a different growth mode with an O-polar surface. The results of x-ray diffraction and photoluminescence (PL) measurements revealed a single crystalline, vertical alignment on the template, and a large surface to volume ratio of the ZnO nanowalls. PMID:19448285

  13. Hierarchical Assembly of SnO2/ZnO Nanostructures for Enhanced Photocatalytic Performance

    PubMed Central

    Zhu, Liangliang; Hong, Minghui; Wei Ho, Ghim

    2015-01-01

    SnO2/ZnO hierarchical heterostructures have been successfully synthesized by combining electrospinning technique and hydrothermal method. Various morphologies of the secondary ZnO nanostructures including nanorods (NRs) and nanosheets (NSs) can be tailored by adding surfactants. Photocatalytic performance of the heterostructures was investigated and obvious enhancement was demonstrated in degradation of the organic pollutant, compared to the primary SnO2-based nanofibers (NFs) and bare ZnO. Furthermore, it was found that the H2 evolution from water splitting was achieved by photocatalysis of heterostructured nanocomposites after sulfurization treatment. This synthetic methodology described herein promises to be an effective approach for fabricating variety of nanostructures for enhanced catalytic applications. The heterostructured nanomaterials have considerable potential to address the environmental and energy issues via degradation of pollutant and generation of clean H2 fuel. PMID:26109295

  14. Enhanced Photocatalytic Performance of ZnO Nanorods Coupled by Two-Dimensional α-MoO3 Nanoflakes under UV and Visible Light Irradiation.

    PubMed

    Hang, Da-Ren; Sharma, Krishna Hari; Chen, Chun-Hu; Islam, Sk Emdadul

    2016-08-26

    We exploit the utilization of two-dimensional (2D) molybdenum oxide nanoflakes as a co-catalyst for ZnO nanorods (NRs) to enhance their photocatalytic performance. The 2D nanoflakes of orthorhombic α-MoO3 were synthesized through a sonication-aided exfoliation technique. The 2D MoO3 nanoflakes can be further converted to substoichiometric quasi-metallic MoO3-x by using UV irradiation. Subsequently, 1D-2D MoO3 /ZnO NR and MoO3-x /ZnO NR composite photocatalysts have been successfully synthesized. The photocatalytic performances of the novel nanosystems in the decomposition of methylene blue are studied by using UV- and visible-illumination setup. The incorporated 2D nanoflakes show a positive influence on the photocatalytic activity of the ZnO. The obtained rate constant values follow the order of pristine ZnO NRZnO NRZnO NR composites. The enhancement of the photocatalytic efficiency can be ascribed to a fast charge carrier separation and transport within the heterojunctions of the MoO3 /ZnO NRs. In particular, the best photocatalytic performance of the MoO3-x /ZnO NR composite can be additionally attributed to a quasi-metallic conductivity and substoichiometry-induced mid-gap states, which extend the light absorption range. A tentative photocatalytic degradation mechanism was proposed. The strategy presented in this work not only demonstrates that coupling with nanoscale molybdenum oxide nanoflakes is a promising approach to significantly enhance the photocatalytic activity of ZnO but also hints at new type of composite catalyst with extended applications in energy conversion and environmental purification. PMID:27483050

  15. ZnO nanolasers on graphene films

    NASA Astrophysics Data System (ADS)

    Baek, Hyeonjun; Park, Jun Beom; Park, Jong-woo; Hyun, Jerome K.; Yoon, Hosang; Oh, Hongseok; Yoon, Jiyoung

    2016-06-01

    We grew and characterized zinc oxide (ZnO) nanolasers on graphene films. By using graphene as a growth medium, we were able to prepare position-controlled and vertically aligned ZnO nanotube lasers. The ZnO nanolasers grown on graphene films showed good optical characteristics, evidenced by a low lasing threshold. Furthermore, the nanolaser/graphene system was easily lifted off the original substrate and transferred onto foreign substrates. The lasing performance was observed to be significantly enhanced by depositing a layer of silver on the back of the graphene film during this transfer process, which was quantitatively investigated using finite-difference time-domain simulations. Due to the wide selection of substrates enabled by the use of graphene films, our results suggest promising strategies for preparing practical nanolasers with improved performance.

  16. Biomimetic alignment of zinc oxide nanoparticles along a peptide nanofiber.

    PubMed

    Tomizaki, Kin-ya; Kubo, Seiya; Ahn, Soo-Ang; Satake, Masahiko; Imai, Takahito

    2012-09-18

    Zinc oxide (ZnO) has potential applications in solar cells, chemical sensors, and piezoelectronic and optoelectronic devices due to its attractive physical and chemical properties. Recently, a solution-phase method has been used to synthesize ZnO crystals with diverse (from simple to hierarchical) nanostructures that is simple, of low cost, and scalable. This method requires template molecules to control the morphology of the ZnO crystals. In this paper, we describe the design and synthesis of two short peptides (RU-003,Ac-AIEKAXEIA-NH(2); RU-027, EAHVMHKVAPRPGGGAIEKAXEIA-NH(2); X = l-2-naphthylalanine) and the characterization of their self-assembled nanostructures. We also report their potential for ZnO mineralization and the alignment of ZnO nanoparticles along peptide nanostructures at room temperature. Interestingly, nonapeptide RU-003 predominantly formed a straight fibrous structure and induced the nucleation of ZnO at its surface, leading to an alignment of ZnO nanoparticles along a peptide nanofiber. This novel method holds promise for the room-temperature fabrication of ZnO catalysts with increased specific surface area, ZnO-gated transistors, and ZnO-based nanomaterials for optical applications. PMID:22954381

  17. Well-integrated ZnO nanorod arrays on conductive textiles by electrochemical synthesis and their physical properties

    PubMed Central

    2013-01-01

    We reported well-integrated zinc oxide (ZnO) nanorod arrays (NRAs) on conductive textiles (CTs) and their structural and optical properties. The integrated ZnO NRAs were synthesized by cathodic electrochemical deposition on the ZnO seed layer-coated CT substrate in ultrasonic bath. The ZnO NRAs were regularly and densely grown as well as vertically aligned on the overall surface of CT substrate, in comparison with the grown ZnO NRAs without ZnO seed layer or ultrasonication. Additionally, their morphologies and sizes can be efficiently controlled by changing the external cathodic voltage between the ZnO seed-coated CT substrate and the counter electrode. At an external cathodic voltage of −2 V, the photoluminescence property of ZnO NRAs was optimized with good crystallinity and high density. PMID:23316935

  18. Well-integrated ZnO nanorod arrays on conductive textiles by electrochemical synthesis and their physical properties.

    PubMed

    Ko, Yeong Hwan; Kim, Myung Sub; Park, Wook; Yu, Jae Su

    2013-01-01

    We reported well-integrated zinc oxide (ZnO) nanorod arrays (NRAs) on conductive textiles (CTs) and their structural and optical properties. The integrated ZnO NRAs were synthesized by cathodic electrochemical deposition on the ZnO seed layer-coated CT substrate in ultrasonic bath. The ZnO NRAs were regularly and densely grown as well as vertically aligned on the overall surface of CT substrate, in comparison with the grown ZnO NRAs without ZnO seed layer or ultrasonication. Additionally, their morphologies and sizes can be efficiently controlled by changing the external cathodic voltage between the ZnO seed-coated CT substrate and the counter electrode. At an external cathodic voltage of -2 V, the photoluminescence property of ZnO NRAs was optimized with good crystallinity and high density. PMID:23316935

  19. Well-integrated ZnO nanorod arrays on conductive textiles by electrochemical synthesis and their physical properties

    NASA Astrophysics Data System (ADS)

    Ko, Yeong Hwan; Kim, Myung Sub; Park, Wook; Yu, Jae Su

    2013-01-01

    We reported well-integrated zinc oxide (ZnO) nanorod arrays (NRAs) on conductive textiles (CTs) and their structural and optical properties. The integrated ZnO NRAs were synthesized by cathodic electrochemical deposition on the ZnO seed layer-coated CT substrate in ultrasonic bath. The ZnO NRAs were regularly and densely grown as well as vertically aligned on the overall surface of CT substrate, in comparison with the grown ZnO NRAs without ZnO seed layer or ultrasonication. Additionally, their morphologies and sizes can be efficiently controlled by changing the external cathodic voltage between the ZnO seed-coated CT substrate and the counter electrode. At an external cathodic voltage of -2 V, the photoluminescence property of ZnO NRAs was optimized with good crystallinity and high density.

  20. Enhanced piezoelectric output voltage and Ohmic behavior in Cr-doped ZnO nanorods

    SciTech Connect

    Sinha, Nidhi; Ray, Geeta; Godara, Sanjay; Gupta, Manoj K.; Kumar, Binay

    2014-11-15

    Highlights: • Low cost highly crystalline Cr-doped ZnO nanorods were synthesized. • Enhancement in dielectric, piezoelectric and ferroelectric properties were observed. • A high output voltage was obtained in AFM. • Cr-doping resulted in enhanced conductivity and better Ohmic behavior in ZnO/Ag contact. - Abstract: Highly crystalline Cr-doped ZnO nanorods (NRs) were synthesized by solution technique. The size distribution was analyzed by high resolution tunneling electron microscope (HRTEM) and particle size analyzer. In atomic force microscope (AFM) studies, peak to peak 8 mV output voltage was obtained on the application of constant normal force of 25 nN. It showed high dielectric constant (980) with phase transition at 69 °C. Polarization vs. electric field (P–E) loops with remnant polarization (6.18 μC/cm{sup 2}) and coercive field (0.96 kV/cm) were obtained. In I–V studies, Cr-doping was found to reduce the rectifying behavior in the Ag/ZnO Schottky contact which is useful for field effect transistor (FET) and solar cell applications. With these excellent properties, Cr-doped ZnO NRs can be used in nanopiezoelectronics, charge storage and ferroelectric applications.

  1. Controlled growth of ZnO nanorods on textured silicon wafer and the application for highly effective and recyclable SERS substrate by decorating Ag nanoparticles

    SciTech Connect

    Tao, Q.; Li, S.; Zhang, Q.Y. Kang, D.W.; Yang, J.S.; Qiu, W.W.; Liu, K.

    2014-06-01

    Highlights: • The growth behavior of ZnO nanorods (NRs) is studied on the textured Si wafer. • A new surface-enhanced Raman scattering (SERS) substrate has been achieved by assembling Ag nanoparticles onto the ZnO NRs. • The SERS substrate exhibits good performance in terms of high sensitivity, good reproducibility and recyclability. - Abstract: Based on the study of growth behavior of ZnO nanorods on the textured Si wafer, a new three-dimensional surface-enhanced Raman scattering substrate has been achieved by assembling Ag nanoparticles onto the ZnO nanorods to form a radial plasmonic nanostructure. It is found that the new substrate exhibits good performance in terms of high sensitivity and good reproducibility for surface-enhanced Raman scattering. The determined enhancement factor is in the order of 10{sup 7} and the Raman spectra exhibit the remarkable consistency with the deviation below 5.0%. Compared to the substrate fabricated with ZnO nanorod array on the flat Si wafer, the new substrates have the higher utility of excitation light. Meanwhile, the new substrate is demonstrated to be recyclable after the irradiation of ultraviolet light.

  2. Optical, structural and morphological studies of (ZnO) nano-rod thin films for biosensor applications using sol gel technique

    NASA Astrophysics Data System (ADS)

    Wahab, H. A.; Salama, A. A.; El-Saeid, A. A.; Nur, O.; Willander, M.; Battisha, I. K.

    Uniformly distributed ZnO nano-rods (NRs) with diameters in nano-scale have been successfully grown in two stages; the first at annealing temperature (250-300 °C) for seed layer preparation on glass substrate by using sol gel technique and the second at low temperature (90-95 °C) by aqueous chemical growth (ACG) method. The same prepared thin film samples were grown on the surface of silver wire (0.25 mm in diameters) to produce electrochemical nano-sensors. The structure and the morphology of the prepared samples will be evaluated using XRD, Scanning electron microscope SEM. The absorption coefficient (α) and the band gap (Eg) for ZnO NRs thin films were determined. (α) was decreased by increasing the annealing temperature due to the increase of the surface roughness caused by higher temperature, where the creation of surface roughness gives rise to multi-reflections which, capture the reflected radiation and enhance the absorptivity. We are presenting an iron ion (Fe3+) potentiometric sensor based on functionalized ZnO nano-rods with selective iono-phore (18 crown 6). Zinc oxide nanorods (NRs) thin films with a diameter of about 68 up to 94 nm were grown on silver wire and gold coated glass.

  3. Piezoelectric and opto-electrical properties of silver-doped ZnO nanorods synthesized by low temperature aqueous chemical method

    SciTech Connect

    Nour, E. S. Echresh, A.; Willander, M.; Nur, O.; Liu, Xianjie; Broitman, E.

    2015-07-15

    In this paper, we have synthesized Zn{sub 1−x}Ag{sub x}O (x = 0, 0.03, 0.06, and 0.09) nanorods (NRs) via the hydrothermal method at low temperature on silicon substrate. The characterization and comparison between the different Zn{sub 1−x}Ag{sub x}O samples, indicated that an increasing Ag concentration from x = 0 to a maximum of x = 0.09; All samples show a preferred orientation of (002) direction with no observable change of morphology. As the quantity of the Ag dopant was changed, the transmittances, as well as the optical band gap were decreased. X-ray photoelectron spectroscopy data clearly indicate the presence of Ag in ZnO crystal lattice. A nanoindentation-based technique was used to measure the effective piezo-response of different concentrations of Ag for both direct and converse effects. The value of the piezoelectric coefficient (d{sub 33}) as well as the piezo potential generated from the ZnO NRs and Zn{sub 1−x}Ag{sub x}O NRs was found to decrease with the increase of Ag fraction. The finding in this investigation reveals that Ag doped ZnO is not suitable for piezoelectric energy harvesting devices.

  4. Influence of nanomechanical stress induced by ZnO nanoparticles of different shapes on the viability of cells.

    PubMed

    Matuła, Kinga; Richter, Łukasz; Adamkiewicz, Witold; Åkerström, Bo; Paczesny, Jan; Hołyst, Robert

    2016-05-14

    There is growing interest in nanostructures interacting with living organisms. However, there are still no general rules for the design of biocompatible nanodevices. Here, we present a step towards understanding the interactions between nanostructures and living cells. We study the influence of nanomechanical stress induced by zinc oxide (ZnO) nanostructures of different shapes on the viability of both prokaryotic (Gram-negative bacteria: Escherichia coli and Enterobacter aerogenes, and Gram-positive bacteria: Staphylococcus epidermidis and Corynebacterium glutamicum) and eukaryotic cells (yeast Saccharomyces cerevisiae and liver cancer cell line HepG2). Nanoparticles (NPs) and nanorods (NRs) of matching crystallographic structure (P63mc) and active surface area (in the order of 5 × 10(-2)μm(2)) are almost non-toxic for cells under static conditions. However, under conditions that enable collisions between ZnO nanostructures and cells, NRs appear to be more damaging compared to NPs. This is due to the increased probability of mechanical damage caused by nanorods upon puncturing of the cell wall and membranes. Gram-positive bacteria, which have thicker cell walls, are more resistant to nanomechanical stress induced by NRs compared to Gram-negative strains and eukaryotic cells. The presented results may be exploited to improve the properties of nanotechnology based products such as implants, drug delivery systems, antibacterial emulsions and cosmetics. PMID:27074722

  5. Growth Mechanisms of Vertically-aligned Carbon, Boron Nitride, and Zinc Oxide Nanotubes

    SciTech Connect

    Yap, Yoke Khin

    2009-07-07

    Nanotubes are one-dimensional nanomaterials with all atoms located near the surface. This article provides a brief review on the possible growth mechanisms of a series of inorganic nanotubes, in particular, vertically-aligned (VA) carbon nanotubes (CNTs), boron nitride nanotubes (BNNTs), and ZnO nanotubes (ZnO NTs).

  6. Alignment validation

    SciTech Connect

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  7. Effects of crystallographic facet-specific peptide adsorption along single ZnO nanorods on the characteristic fluorescence intensification on nanorod ends (FINE) phenomenon.

    PubMed

    Singh, Manpreet; Zhuo, Xiaolu; Choi, Daniel S; Gonzalez, Lorelis E; Wang, Jianfang; Hahm, Jong-in

    2015-11-28

    The precise effect of crystallographically discriminating biomolecular adsorption on the fluorescence intensification profiles of individual zinc oxide nanorod (ZnO NR) platforms was elucidated in this study by employing peptide binding epitopes biased towards particular ZnO crystal surfaces and isolating the peptides on given crystalline facets of ZnO NRs. Subsequently, the fluorescence emission profiles of the preferentially bound peptide cases on the basal versus prismic planes of ZnO NRs were carefully evaluated both experimentally and via computer simulations. The phenomenon of fluorescence intensification on NR ends (FINE) was persistently observed on the individual ZnO NR platforms, regardless of the location of the bound peptides. In contrast to the consistent occurrence of FINE, the degree and magnitude of FINE were largely influenced by the discriminatory peptide adsorption to different ZnO NR facets. The temporal stability of the fluorescence signal was also greatly affected by the selectively located peptides on the ZnO NR crystal when spatially resolved on different NR facets. Similarities and differences in the spatial and temporal fluorescence signal of the crystalline NR facet-specific versus -nonspecific biomolecular adsorption events were then compared. To further illuminate the basis of our experimental findings, we also performed finite-difference-time-domain (FDTD) calculations and examined the different degrees of FINE by modelling the biased peptide adsorption cases. Our multifaceted efforts, providing combined insight into the spatial and temporal characteristics of the biomolecular fluorescence signal characteristically governed by the biomolecular location on the specific NR facets, will be valuable for novel applications and accurate signal interpretation of ZnO NR-based biosensors in many rapidly growing, highly miniaturized biodetection configurations. PMID:26509316

  8. Controllable Growth of Ultrathin P-doped ZnO Nanosheets

    NASA Astrophysics Data System (ADS)

    Zhu, Yuankun; Yang, Hengyan; Sun, Feng; Wang, Xianying

    2016-04-01

    Ultrathin phosphor (P)-doped ZnO nanosheets with branched nanowires were controllably synthesized, and the effects of oxygen and phosphor doping on the structural and optical properties were systematically studied. The grown ZnO nanosheet exhibits an ultrathin nanoribbon backbone with one-side-aligned nanoteeth. For the growth of ultrathin ZnO nanosheets, both oxygen flow rate and P doping are essential, by which the morphologies and microstructures can be finely tuned. P doping induces strain relaxation to change the growth direction of ZnO nanoribbons, and oxygen flow rate promotes the high supersaturation degree to facilitate the growth of nanoteeth and widens the nanoribbons. The growth of P-doped ZnO in this work provides a new progress towards the rational control of the morphologies for ZnO nanostructures.

  9. Controllable Growth of Ultrathin P-doped ZnO Nanosheets.

    PubMed

    Zhu, Yuankun; Yang, Hengyan; Sun, Feng; Wang, Xianying

    2016-12-01

    Ultrathin phosphor (P)-doped ZnO nanosheets with branched nanowires were controllably synthesized, and the effects of oxygen and phosphor doping on the structural and optical properties were systematically studied. The grown ZnO nanosheet exhibits an ultrathin nanoribbon backbone with one-side-aligned nanoteeth. For the growth of ultrathin ZnO nanosheets, both oxygen flow rate and P doping are essential, by which the morphologies and microstructures can be finely tuned. P doping induces strain relaxation to change the growth direction of ZnO nanoribbons, and oxygen flow rate promotes the high supersaturation degree to facilitate the growth of nanoteeth and widens the nanoribbons. The growth of P-doped ZnO in this work provides a new progress towards the rational control of the morphologies for ZnO nanostructures. PMID:27033851

  10. Temperature dependence of the growth of ZnO nanorod arrays by electrochemical deposition

    NASA Astrophysics Data System (ADS)

    Kim, Hyunghoon; Moon, Jin Young; Lee, Ho Seong

    2011-03-01

    ZnO nanorod arrays were prepared by the electrochemical deposition route on conductive Au/Si substrates. The effect of the bath temperature on the growth of the ZnO nanorod arrays was investigated. With an increase in bath temperature from 30°C to 80°C, the deposited ZnO changed from an amorphous structure to a hexagonal crystal structure. The ZnO nanorod arrays grown above 50°C were dense and vertically well-aligned. Scanning and transmission electron microscopy results showed that the diameter of the hexagon-shaped ZnO nanorod arrays ranged from 100 nm to 180 nm and the length was about 500 nm. On the basis of the characteristics of the ZnO crystal structure and the effect of the bath temperature, the growth mechanism is described.

  11. Orientation-Dependent Structural Properties and Growth Mechanism of ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Yu, H.-J.; Jeong, E.-S.; Park, S.-H.; Seo, S.-Y.; Kim, S.-H.; Han, S.-W.

    2007-01-01

    We present the local structural properties of ZnO nanorods studied by using extended x-ray absorption fine structure (EXAFS). Vertically aligned ZnO nanorods were fabricated on Al2O3 substrates by a catalyst free metal organic chemical vapor deposition (MOCVD). The polarized EXAFS measurements on the ZnO nanorods were performed at Zn K-edge. The polarized EXAFS study revealed that the nanorods had a wurtzite structure, and that there were substantial amount of structural disorders in Zn-O pairs in the beginning of the nanorod growth. The EXAFS measurements revealed that the orientation-dependent disorders of the Zn-O pairs were directly related to the growth mechanism and crystal quality of the ZnO nanorods.

  12. Dye-sensitized solar cells using ZnO nanotips and Ga-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Chen, Hanhong; Du Pasquier, Aurelien; Saraf, Gaurav; Zhong, Jian; Lu, Yicheng

    2008-04-01

    Ga-doped ZnO (GZO) transparent conducting films and well-aligned ZnO nanotips were sequentially grown on a glass substrate using metal-organic chemical vapor deposition (MOCVD). The morphology control of ZnO from dense films to nanotips was realized through temperature-modulated growth. The ZnO nanotips/GZO structure was sensitized with dye N719 to form photoelectrochemical cells. It is found that the power conversion efficiency linearly increases with the length of ZnO nanotips. For the 1.0 cm2 dye-sensitized solar cell built from 4.8 µm ZnO nanotips, a peak incident photo-to-current conversion efficiency of 79% (at ~530 nm) and a power conversion efficiency of 0.77% under the illumination of one sun-simulated sunlight were achieved. UV light harvesting directly by ZnO was observed. The I-V characteristics of the cells were analyzed using a one-diode equivalent circuit model.

  13. Selective growth of catalyst-free ZnO nanowire arrays on Al:ZnO for device application

    SciTech Connect

    Chung, T. F.; Luo, L. B.; He, Z. B.; Leung, Y. H.; Shafiq, I.; Yao, Z. Q.; Lee, S. T.

    2007-12-03

    Vertically aligned ZnO nanowire (NW) arrays have been synthesized selectively on patterned aluminum-doped zinc oxide (AZO) layer deposited on silicon substrates without using any metal catalysts. The growth region was defined by conventional photolithography with an insulating template. Careful control of the types of template materials and growth conditions allows good alignment and growth selectivity for ZnO NW arrays. Sharp ultraviolet band-edge peak observed in the photoluminescence spectra of the patterned ZnO NW arrays reveals good optical qualities. The current-voltage characteristics of ZnO NWs/AZO/p-Si device suggest that patterned and aligned ZnO NW arrays on AZO may be used in optoelectronic devices.

  14. Improvement in the Grain Growth of Plasma-Treated Nano-Sized ZnO Films and Their Characterization.

    PubMed

    Chen, Mi; Chou, Ching-Chuan; Lin, Ching-Cheng; Koo, Horng-Show

    2015-11-01

    The well-aligned ZnO nanorods were rapidly grown on an indium tin oxide (ITO)-coated glass substrate using Al-doped ZnO (AZO) thin film as seed layer by the microwave-assisted hydrothermal chemical route. The optimal growth conditions for the well-aligned ZnO nanorods were obtained by modulating H2 plasma pretreatment time for the seed layer and synthesis time for ZnO nanorods. The H2 plasma effect of the seed layer on the alignment, growth rate and crysallinity of ZnO nanods is also demonstrated. The synthesized ZnO nanorods were annealed in atmosphere of N2, O2 and H2 + N2 mixed gas to improve the related physical characteristics, the ZnO nanorods on grapheme/ITO substrate were also investigated. The results show that the alignment and growth rate of ZnO nanorods depends on the physical characteristics and roughness of the seed layer, which can be improved by H2 plasma pretreatment. The average growth rate of ZnO nanorods synthesized by microwave hydrothermal technique is about 2.2 μm/hr which significantly superior to other conventional techniques. After the appropriate N2 annealing treatment, good quality and well-aligned ZnO nanorods, which are single crystal with stacking defects and pyramid or candle shape, were obtained. A fundamental model of the effect of H2 plasma pretreatment on the surface of seed layer and the growth of ZnO nanorods using a microwave-assisted hydrothermal chemical route is also described. PMID:26726662

  15. Towards high-performance, low-cost quartz sensors with high-density, well-separated, vertically aligned ZnO nanowires by low-temperature, seed-less, single-step, double-sided growth.

    PubMed

    Orsini, Andrea; Medaglia, Pier Gianni; Scarpellini, David; Pizzoferrato, Roberto; Falconi, Christian

    2013-09-01

    Resonant sensors with nanostructured surfaces have long been considered as an emergent platform for high-sensitivity transduction because of the potentially very large sensing areas. Nevertheless, until now only complex, time-consuming, expensive and sub-optimal fabrication procedures have been described; in fact, especially with reference to in-liquid applications, very few devices have been reported. Here, we first demonstrate that, by immersing standard, ultra-low-cost quartz resonators with un-polished silver electrodes in a conventional zinc nitrate/HMTA equimolar nutrient solution, the gentle contamination from the metallic package allows direct growth on the electrodes of arrays of high-density (up to 10 μm⁻²) and well-separated (no fusion at the roots) ZnO nanowires without any seed layer or thermal annealing. The combination of high-density and good separation is ideal for increasing the sensing area; moreover, this uniquely simple, single-step process is suitable for conventional, ultra-low-cost and high-frequency quartzes, and results in devices that are already packaged and ready to use. As an additional advantage, the process parameters can be effectively optimized by measuring the quartz admittance before and after growth. As a preliminary test, we show that the sensitivity to the liquid properties of high-frequency (i.e. high sensitivity) quartzes can be further increased by nearly one order of magnitude and thus show the highest ever reported frequency shifts of an admittance resonance in response to immersion in both ethanol and water. PMID:23924776

  16. Alignment fixture

    DOEpatents

    Bell, Grover C.; Gibson, O. Theodore

    1980-01-01

    A part alignment fixture is provided which may be used for precise variable lateral and tilt alignment relative to the fixture base of various shaped parts. The fixture may be used as a part holder for machining or inspection of parts or alignment of parts during assembly and the like. The fixture includes a precisely machined diameter disc-shaped hub adapted to receive the part to be aligned. The hub is nested in a guide plate which is adapted to carry two oppositely disposed pairs of positioning wedges so that the wedges may be reciprocatively positioned by means of respective micrometer screws. The sloping faces of the wedges contact the hub at respective quadrants of the hub periphery. The lateral position of the hub relative to the guide plate is adjusted by positioning the wedges with the associated micrometer screws. The tilt of the part is adjusted relative to a base plate, to which the guide plate is pivotally connected by means of a holding plate. Two pairs of oppositely disposed wedges are mounted for reciprocative lateral positioning by means of separate micrometer screws between flanges of the guide plate and the base plate. Once the wedges are positioned to achieve the proper tilt of the part or hub on which the part is mounted relative to the base plate, the fixture may be bolted to a machining, inspection, or assembly device.

  17. Selective growth of ZnO nanowires on substrates patterned by photolithography and inkjet printing

    NASA Astrophysics Data System (ADS)

    Laurenti, M.; Verna, A.; Fontana, M.; Quaglio, M.; Porro, S.

    2014-05-01

    Zinc oxide nanowires (ZnO NWs) were grown by a two-step growth method, involving the deposition of a patterned ZnO thin seeding layer and the chemical vapor deposition (CVD) of ZnO NWs. Two ways of patterning the seed layer were performed. The seeding solution containing ZnO precursors was deposited by sol-gel/spin-coating technique and patterned by photolithography. In the other case, the seeding solution was directly printed by inkjet printing only on selected portion of the substrate areas. In both cases, crystallization of the seed layer was achieved by thermal annealing in ambient air. Vertically aligned ZnO NWs were then grown by CVD on patterned, seeded substrates. The structure and morphology of ZnO NWs was analyzed by means of X-ray diffraction and field emission scanning electron microscopy measurements, respectively, while the vibrational properties were evaluated through Raman spectroscopy. Results showed that less-defective, vertically aligned, c-axis oriented ZnO NWs were grown on substrates patterned by photolithography while more defective nanostructures were grown on printed seed layer. A feature size of 30 µm was transferred into the patterned seed layer, and a good selectivity in growing ZnO NWs was obtained.

  18. Various Shapes of ZnO and CdO Nanostructures Grown by Atmospheric-Pressure Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Terasako, Tomoaki; Fujiwara, Tetsuro; Yagi, Masakazu; Shirakata, Sho

    2011-01-01

    Various shapes of ZnO and CdO nanostructures were successfully grown on a- and c-plane sapphire substrates coated with Au nanocolloidal solution by atmospheric-pressure chemical vapor deposition methods under a simultaneous source supply of metal powder (Zn or Cd) and H2O. The ZnO and CdO nanorods (NRs) grown at higher substrate temperatures (TSs) exhibited tapered shapes, resulting from the competition between the axial growth due to the vapor-liquid-solid (VLS) mechanism and the radial growth due to the vapor-solid (VS) mechanism. The alternate source supply of Zn and H2O was found to be effective for suppressing the tapering of ZnO NRs. The appearance of the Y- and T-shaped nanotrees of CdO may be due to the splitting and migration of catalytic particles during the growth process. These results suggest that both the source supply sequence and the substrate temperature are important factors for the shape design of oxide nanostructures.

  19. Light Confinement-Induced Antireflection of ZnO Nanocones

    SciTech Connect

    Lee, Sang Hyun; Jellison Jr, Gerald Earle; Duty, Chad E; Xu, Jun

    2011-01-01

    The antireflective features of aperiodic vertical aligned ZnO nanocones on Si wafer were studied both experimentally and theoretically through comparison with planar ZnO films on Si substrates and bare Si substrates. The measured diffuse reflectance spectra show that the nanocone-based texture reduces the light reflection in a broad spectral range, and is much more effective than the planar textures. The numerical simulations exhibit a good agreement with the experimental data and suggest that the light confinement inside nanocones by controlling the diameters can bring further improvement of light absorption into Si.

  20. ALIGNING JIG

    DOEpatents

    Culver, J.S.; Tunnell, W.C.

    1958-08-01

    A jig or device is described for setting or aligning an opening in one member relative to another member or structure, with a predetermined offset, or it may be used for measuring the amount of offset with which the parts have previously been sct. This jig comprises two blocks rabbeted to each other, with means for securing thc upper block to the lower block. The upper block has fingers for contacting one of the members to be a1igmed, the lower block is designed to ride in grooves within the reference member, and calibration marks are provided to determine the amount of offset. This jig is specially designed to align the collimating slits of a mass spectrometer.

  1. Image alignment

    DOEpatents

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  2. Reliable thermal processing of organic perovskite films deposited on ZnO

    NASA Astrophysics Data System (ADS)

    Zakhidov, Alex; Manspeaker, Chris; Lyashenko, Dmitry; Alex Zakhidov Team

    Zinc oxide (ZnO) is a promising semiconducting material to serve as an electron transport layer (ETL) for solar cell devices based on organo-halide lead perovskites. ZnO ETL for perovskite photovoltaics has a combination of attractive electronic and optical properties: i) the electron affinity of ZnO is well aligned with valence band edge of the CH3NH3PbI3, ii) electron mobility of ZnO is >1 cm2/(Vs), which is a few orders of magnitude higher than that of TiO2 (another popular choice of ETL for perovskite photovoltaic devices), and iii) ZnO has a large of band gap of 3.3 eV, which ensures optical transparency and large barrier for the hole injection. Moreover, ZnO nanostructures can be printed on flexible substrates at room temperatures in cost effective manner. However, it was recently found that organic perovskites deposited on ZnO are unstable and readily decompose at >90°C. In this work, we further investigate the mechanism of decomposition of CH3NH3PbI3 film deposited on ZnO and reveal the role of the solvent in the film during the annealing process. We also develop a restricted volume solvent annealing (RVSA) process for post annealing of the perovskite film on ZnO without decomposition. We demonstrate that RVSA enables reliable perovskite solar cell fabrication.

  3. Dye-Sensitized Solar Cells Combining ZnO Nanotip Arrays and Nonliquid Gel Electrolytes

    NASA Astrophysics Data System (ADS)

    Chen, Hanhong; Duan, Ziqing; Lu, Yicheng; Du Pasquier, Aurelien

    2009-08-01

    We present a dye-sensitized solar cell (DSSC) using a nanostructured ZnO photoelectrode and a gel electrolyte. The photoelectrode consists of well-aligned ZnO nanotips on a Ga-doped ZnO (GZO) transparent conducting film. The GZO film (400 nm, sheet resistance ~25 Ω/sq, transmittance over 85% in the visible wavelength) and ZnO nanotips (3.2 μm length) are sequentially grown on a glass substrate using metalorganic chemical vapor deposition. The ZnO photoelectrode is sensitized with dye N719 and impregnated with N-methyl pyrolidinone (NMP) gelled with poly(vinyl-difluoroethylene-hexafluoropropylene) copolymer (PVDF-HFP). The cell exhibits an open-circuit voltage of 726 mV and a power conversion efficiency of 0.89% under one sun illumination. The aging testing shows that the cell using a gel electrolyte has better stability than its liquid electrolyte counterpart.

  4. Synthesis and characterization of flowerlike ZnO nanostructures via an ethylenediamine-meditated solution route

    SciTech Connect

    Gao Xiangdong . E-mail: xdgao@mail.sic.ac.cn; Li Xiaomin; Yu Weidong

    2005-04-15

    Flowerlike ZnO nanostructures were deposited on Si substrate by choosing hexamethylenetetramine as the nucleation control reagent and ethylenediamine as the chelating and capping reagent. Structural and optical measurements reveal that obtained ZnO exhibits well-defined flowerlike morphology, hexagonal wurtzite structure, uniform distribution on substrate, and strong photoluminescence in ultraviolet band. The well-arrayed pedals of each ZnO flower possess the typical tapering feature, and are built up by many well-aligned ZnO nanorods. Moreover, each single nanorod building up the pedal exhibits the single crystal nature and the growth direction along c-axis. Effects of the precursor composition on the morphology of ZnO were discussed.

  5. Effect of Ga-doping on the properties of ZnO nanowire

    SciTech Connect

    Ishiyama, Takeshi Nakane, Takaya Fujii, Tsutomu

    2015-02-27

    Arrays of single-crystal zinc oxide (ZnO) nanowires have been synthesized on silicon substrates by vapor-liquid-solid growth techniques. The effect of growth conditions including substrate temperature and Ar gas flow rate on growth properties of ZnO nanowire arrays were studied. Structural and optical characterization was performed using scanning electron microscopy (SEM) and photoluminescence (PL) spectroscopy. SEM images of the ZnO nanowire arrays grown at various Ar gas flow rates indicated that the alignment and structural features of ZnO nanowires were affected by the gas flow rate. The PL of the ZnO nanowire arrays exhibited strong ultraviolet (UV) emission at 380 nm and green emission around 510 nm. Moreover, the green emission reduced in Ga-doped sample.

  6. Epitaxial growth of ZnO nanowall networks on GaN/sapphire substrates

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Woo; Park, Hyun-Kyu; Yi, Min-Su; Park, Nae-Man; Park, Jong-Hyurk; Kim, Sang-Hyeob; Maeng, Sung-Lyul; Choi, Chel-Jong; Moon, Seung-Eon

    2007-01-01

    Heteroepitaxy of vertically well-aligned ZnO nanowall networks with a honeycomblike pattern on GaN /c-Al2O3 substrates by the help of a Au catalyst was realized. The ZnO nanowall networks with wall thicknesses of 80-140nm and an average height of about 2μm were grown on a self-formed ZnO thin film during the growth on the GaN /c-Al2O3 substrates. It was found that both single-crystalline ZnO nanowalls and catalytic Au have an epitaxial relation to the GaN thin film in synchrotron x-ray scattering experiments. Hydrogen-sensing properties of the ZnO nanowall networks have also been investigated.

  7. Arrays of ZnO nanorods decorated with Au nanoparticles as surface-enhanced Raman scattering substrates for rapid detection of trace melamine

    NASA Astrophysics Data System (ADS)

    Yi, Zao; Yi, Yong; Luo, Jiangshan; Li, Xibo; Xu, Xibin; Jiang, Xiaodong; Yi, Yougen; Tang, Yongjian

    2014-10-01

    In this paper, as a new, highly sensitive and uniform hybrid surface-enhanced Raman scattering (SERS) substrate, arrays of ZnO nanorods (ZnO-NRs) decorated with Au nanoparticles (Au-NPs) have been prepared. This hybrid substrate manifests high SERS sensitivity to melamine and a detection limit as low as 1.0×10-10 M (1.26 μg L-1). A maximum enhancement factor of 1.0×109 can be obtained with the ZnO NF-Au (sample 2) film. Au-NPs gaps in the array can create lots of SERS “hot spots” that mainly contribute to the high SERS sensitivity. Moreover, the supporting chemical enhancement effect of ZnO-NRs and the better enrichment effect ascribed to the large surface area of the substrate also help to achieve a lower detection limit. The promising advantages of easy sample pretreatment, short detection time and low cost makes the arrays of ZnO-NRs decorated with Au-NPs substrate a potential detection tool in the field of food safety.

  8. Synthesis, optical and electrochemical properties of ZnO nanowires/graphene oxide heterostructures

    PubMed Central

    2013-01-01

    Large-scale vertically aligned ZnO nanowires with high crystal qualities were fabricated on thin graphene oxide films via a low temperature hydrothermal method. Room temperature photoluminescence results show that the ultraviolet emission of nanowires grown on graphene oxide films was greatly enhanced and the defect-related visible emission was suppressed, which can be attributed to the improved crystal quality and possible electron transfer between ZnO and graphene oxide. Electrochemical property measurement results demonstrated that the ZnO nanowires/graphene oxide have large integral area of cyclic voltammetry loop, indicating that such heterostructure is promising for application in supercapacitors. PMID:23522184

  9. Synthesis, optical and electrochemical properties of ZnO nanowires/graphene oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Zeng, Huidan; Cao, Ying; Xie, Shufan; Yang, Junhe; Tang, Zhihong; Wang, Xianying; Sun, Luyi

    2013-03-01

    Large-scale vertically aligned ZnO nanowires with high crystal qualities were fabricated on thin graphene oxide films via a low temperature hydrothermal method. Room temperature photoluminescence results show that the ultraviolet emission of nanowires grown on graphene oxide films was greatly enhanced and the defect-related visible emission was suppressed, which can be attributed to the improved crystal quality and possible electron transfer between ZnO and graphene oxide. Electrochemical property measurement results demonstrated that the ZnO nanowires/graphene oxide have large integral area of cyclic voltammetry loop, indicating that such heterostructure is promising for application in supercapacitors.

  10. Vertically aligned ZnO@CuS@PEDOT core@shell nanorod arrays decorated with MnO₂ nanoparticles for a high-performance and semi-transparent supercapacitor electrode.

    PubMed

    Rodríguez-Moreno, Jorge; Navarrete-Astorga, Elena; Dalchiele, Enrique A; Schrebler, Ricardo; Ramos-Barrado, José R; Martín, Francisco

    2014-05-30

    Hybrid nano-architectures with high electrochemical performance for supercapacitors have been designed by growing hierarchical ZnO NRs@CuS@PEDOT@MnO2 core@shell heterostructured nanorod arrays on ITO/glass substrates. This hybrid nano-structured electrode exhibits excellent electrochemical performance, with a high specific areal capacitance of 19.85 mF cm(-2), good rate capability, cycling stability and diffused coloured transparency. PMID:24756158

  11. IUS prerelease alignment

    NASA Technical Reports Server (NTRS)

    Evans, F. A.

    1978-01-01

    Space shuttle orbiter/IUS alignment transfer was evaluated. Although the orbiter alignment accuracy was originally believed to be the major contributor to the overall alignment transfer error, it was shown that orbiter alignment accuracy is not a factor affecting IUS alignment accuracy, if certain procedures are followed. Results are reported of alignment transfer accuracy analysis.

  12. Supramolecular alignment of gold nanorods via cucurbit[8]uril ternary complex formation

    NASA Astrophysics Data System (ADS)

    Jones, Samuel T.; Zayed, Jameel M.; Scherman, Oren A.

    2013-05-01

    We have shown, for the first time, that a three component system is capable of aligning gold nanorods (AuNRs) through supramolecular host-guest interactions leading to control over AuNR end-to-end assembly. Viologen end-functionalised AuNRs were prepared that were capable of selectively binding to a cucurbit[8]uril (CB[8]) macrocyclic host molecule. These end-functionalised AuNRs could participate in 1 : 1 : 1 ternary complexation with synthesised telechelic linker molecules bearing second guest moieties, in the presence of CB[8]. When the linker length was long and flexible aggregation and precipitation of AuNRs were readily observed, but with no control over the AuNR conformation. On the other hand, when the linker length was shortened thereby imparting a more rigid connection between neighboring gold nanorods, the end-to-end assembly of AuNRs was achieved. We also note that in the presence of a molecule capable of occupying the entirety of the CB[8] cavity, end-to-end assembly is not observed as the system's ability to form a 1 : 1 : 1 ternary complex is halted. Thus, the end-to-end assembly relies upon both having a relatively short and rigid linker as well as the specific, yet tuneable supramolecular 1 : 1 : 1 ternary complexation between the three components.We have shown, for the first time, that a three component system is capable of aligning gold nanorods (AuNRs) through supramolecular host-guest interactions leading to control over AuNR end-to-end assembly. Viologen end-functionalised AuNRs were prepared that were capable of selectively binding to a cucurbit[8]uril (CB[8]) macrocyclic host molecule. These end-functionalised AuNRs could participate in 1 : 1 : 1 ternary complexation with synthesised telechelic linker molecules bearing second guest moieties, in the presence of CB[8]. When the linker length was long and flexible aggregation and precipitation of AuNRs were readily observed, but with no control over the AuNR conformation. On the other hand

  13. Self-Styled ZnO Nanostructures Promotes the Cancer Cell Damage and Supresses the Epithelial Phenotype of Glioblastoma

    NASA Astrophysics Data System (ADS)

    Wahab, Rizwan; Kaushik, Neha; Khan, Farheen; Kaushik, Nagendra Kumar; Choi, Eun Ha; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2016-01-01

    Extensive researches have been done on the applications of zinc oxide nanoparticles (ZnO-NPs) for the biological purposes. However, the role and toxicity mechanisms of ZnO nanostructures (ZnO-NSts) such as nanoplates (NPls), nanorods (NRs), nanosheets (NSs), nanoflowers (NFs) on cancer cells are not largely known. Present study was focused to investigate the possible mechanisms of apoptosis induced by self-designed ZnO-NSts, prepared at fix pH via solution process and exposed against human T98G gliomas including various cancers and non-malignant embryonic kidney HEK293, MRC5 fibroblast cells. NSts were used for the induction of cell death in malignant human T98G gliomas including various cancers and compared with the non-malignant cells. Notably, NRs were found to induce higher cytotoxicity, inhibitory effects on cancer and normal cells in a dose dependent manner. We also showed that NRs induced cancer cell death through oxidative stress and caspase-dependent pathways. Furthermore, quantitative and qualitative analysis of ZnO-NSts have also been confirmed by statistical analytical parameters such as precision, accuracy, linearity, limits of detection and limit of quantitation. These self-styled NSts could provide new perception in the research of targeted cancer nanotechnology and have potentiality to improve new therapeutic outcomes with poor diagnosis.

  14. Self-Styled ZnO Nanostructures Promotes the Cancer Cell Damage and Supresses the Epithelial Phenotype of Glioblastoma

    PubMed Central

    Wahab, Rizwan; Kaushik, Neha; Khan, Farheen; Kaushik, Nagendra Kumar; Choi, Eun Ha; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2016-01-01

    Extensive researches have been done on the applications of zinc oxide nanoparticles (ZnO-NPs) for the biological purposes. However, the role and toxicity mechanisms of ZnO nanostructures (ZnO-NSts) such as nanoplates (NPls), nanorods (NRs), nanosheets (NSs), nanoflowers (NFs) on cancer cells are not largely known. Present study was focused to investigate the possible mechanisms of apoptosis induced by self-designed ZnO-NSts, prepared at fix pH via solution process and exposed against human T98G gliomas including various cancers and non-malignant embryonic kidney HEK293, MRC5 fibroblast cells. NSts were used for the induction of cell death in malignant human T98G gliomas including various cancers and compared with the non-malignant cells. Notably, NRs were found to induce higher cytotoxicity, inhibitory effects on cancer and normal cells in a dose dependent manner. We also showed that NRs induced cancer cell death through oxidative stress and caspase-dependent pathways. Furthermore, quantitative and qualitative analysis of ZnO-NSts have also been confirmed by statistical analytical parameters such as precision, accuracy, linearity, limits of detection and limit of quantitation. These self-styled NSts could provide new perception in the research of targeted cancer nanotechnology and have potentiality to improve new therapeutic outcomes with poor diagnosis. PMID:26818603

  15. Self-Styled ZnO Nanostructures Promotes the Cancer Cell Damage and Supresses the Epithelial Phenotype of Glioblastoma.

    PubMed

    Wahab, Rizwan; Kaushik, Neha; Khan, Farheen; Kaushik, Nagendra Kumar; Choi, Eun Ha; Musarrat, Javed; Al-Khedhairy, Abdulaziz A

    2016-01-01

    Extensive researches have been done on the applications of zinc oxide nanoparticles (ZnO-NPs) for the biological purposes. However, the role and toxicity mechanisms of ZnO nanostructures (ZnO-NSts) such as nanoplates (NPls), nanorods (NRs), nanosheets (NSs), nanoflowers (NFs) on cancer cells are not largely known. Present study was focused to investigate the possible mechanisms of apoptosis induced by self-designed ZnO-NSts, prepared at fix pH via solution process and exposed against human T98G gliomas including various cancers and non-malignant embryonic kidney HEK293, MRC5 fibroblast cells. NSts were used for the induction of cell death in malignant human T98G gliomas including various cancers and compared with the non-malignant cells. Notably, NRs were found to induce higher cytotoxicity, inhibitory effects on cancer and normal cells in a dose dependent manner. We also showed that NRs induced cancer cell death through oxidative stress and caspase-dependent pathways. Furthermore, quantitative and qualitative analysis of ZnO-NSts have also been confirmed by statistical analytical parameters such as precision, accuracy, linearity, limits of detection and limit of quantitation. These self-styled NSts could provide new perception in the research of targeted cancer nanotechnology and have potentiality to improve new therapeutic outcomes with poor diagnosis. PMID:26818603

  16. Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode.

    PubMed

    Baratto, C; Kumar, R; Comini, E; Faglia, G; Sberveglieri, G

    2015-07-27

    In the current paper we apply catalyst assisted vapour phase growth technique to grow ZnO nanowires (ZnO nws) on p-GaN thin film obtaining EL emission in reverse bias regime. ZnO based LED represents a promising alternative to III-nitride LEDs, as in free devices: the potential is in near-UV emission and visible emission. For ZnO, the use of nanowires ensures good crystallinity of the ZnO, and improved light extraction from the interface when the nanowires are vertically aligned. We prepared ZnO nanowires in a tubular furnace on GaN templates and characterized the p-n ZnO nws/GaN heterojunction for LED applications. SEM microscopy was used to study the growth of nanowires and device preparation. Photoluminescence (PL) and Electroluminescence (EL) spectroscopies were used to characterize the heterojunction, showing that good quality of PL emission is observed from nanowires and visible emission from the junction can be obtained from the region near ZnO contact, starting from onset bias of 6V. PMID:26367556

  17. Polystyrene-microsphere-assisted patterning of ZnO nanostructures: growth and characterization.

    PubMed

    Dong, J J; Zhang, X W; Zhang, S G; Tan, H R; Yin, Z G; Gao, Y; Wang, J X

    2013-02-01

    In this work, periodic arrays of various ZnO nanostructures were fabricated on both Si and GaN substrates via a facile hydrothermal process. To realize the site-specific growth, two kinds of masks were introduced. The polystyrene (PS) microsphere self-assembled monolayer (SAM) was employed as the mask to create a patterned seed layer to guide the growth of ZnO nanostructures. However, the resulting ZnO nanostructures are non-equidistant, and the diameter of the ZnO nanostructures is uncontrollable. As an alternative, TiO2 sol was used to replicate the PS microsphere SAM, and the inverted SAM (ISAM) mask was obtained by extracting the PS microspheres with toluene. By using the ISAM mask, the hexagonal periodic array of ZnO nanostructures with high uniformity were readily produced. Furthermore, the effect of the underlying substrates on the morphology of ZnO nanostructures has been investigated. It is found that the highly ordered and vertically aligned ZnO nanorods epitaxially grow on the GaN substrate, while the ZnO nanoflowers on Si substrates are random oriented. PMID:23646580

  18. Optical and electrical properties of p-type Li-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Sáaedi, Abdolhossein; Yousefi, Ramin; Jamali-Sheini, Farid; Cheraghizade, Mohsen; Khorsand Zak, A.; Huang, Nay Ming

    2013-09-01

    Undoped and Li-doped ZnO nanowires were grown on Si(1 1 1) substrates using a thermal evaporation method. Undoped and Li-doped ZnO nanoparticles, which were prepared using a sol-gel method, were used as material sources to grow the undoped and Li-doped ZnO nanowires, respectively. X-ray diffraction patterns clearly indicated hexagonal structures for all of the products. The nanowires were completely straight, with non-aligned arrays, and were tapered. Field emission Auger spectrometer indicated lithium element in the nanowires structures. Photoluminescence (PL) studies showed lower optical properties for the Li-doped ZnO nanowires compared to the undoped ZnO nanowires. Furthermore, the UV peak of the Li-doped ZnO nanowires was red-shifted compared to the undoped ZnO nanowires. Two probe method results proved that the Li-doped ZnO nanowires exhibited p-type properties.

  19. General Route to ZnO Nanorod Arrays on Conducting Substrates via Galvanic-cell-based approach

    NASA Astrophysics Data System (ADS)

    Zheng, Zhaoke; Lim, Zhi Shiuh; Peng, Yuan; You, Lu; Chen, Lang; Wang, Junling

    2013-08-01

    Wurtzite ZnO nanorod exhibits many unique properties, which make it promising for various optoelectronic applications. To grow well-aligned ZnO nanorod arrays on various substrates, a seed layer is usually required to improve the density and vertical alignment. The reported works about seedless hydrothermal synthesis either require special substrates, or require external electrical field to enhance the ZnO nucleation. Here, we report a general method for the one-pot synthesis of homogenous and well-aligned ZnO nanorods on common conducting substrates without a seed layer. This method, based on the galvanic-cell structure, makes use of the contact potential between different materials as the driving force for ZnO growth. It is applicable to different conducting substrates at low temperature. More importantly, the as-grown ZnO nanorods show enhanced photoelectric response. This unique large scale low-temperature processing method could be of great importance for the application of ZnO nanostructures.

  20. DNA Align Editor: DNA Alignment Editor Tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SNPAlignEditor is a DNA sequence alignment editor that runs on Windows platforms. The purpose of the program is to provide an intuitive, user-friendly tool for manual editing of multiple sequence alignments by providing functions for input, editing, and output of nucleotide sequence alignments....

  1. Metallic filament formation by aligned oxygen vacancies in ZnO-based resistive switches

    SciTech Connect

    Gu, Tingkun

    2014-05-28

    The electronic structure of ZnO with defects of oxygen vacancies were investigated by using first-principles methods. Some structure models were constructed in order to investigate the effects of the distribution of oxygen vacancies on the electronic properties of ZnO. By analyzing the calculated results, we found that only the aligned oxygen vacancies can form the conducting channel in ZnO, and the transformation of the oxygen vacancy from charged state to neutral state is consistent with the energetics rule of the forming aligned oxygen vacancies. As for the heterojunction of Pt/ZnO/Pt, the oxygen vacancies near the interface of Pt/ZnO depress the local Schottky barrier effectively, and the aligned oxygen vacancies in ZnO form a conducting filament connecting two Pt electrodes. The metallic filament formation in Pt/ZnO/Pt resistive switching cells should be closely related to the carrier injection from Pt electrode into ZnO and the arrangement of oxygen vacancies in ZnO slab.

  2. Metallic filament formation by aligned oxygen vacancies in ZnO-based resistive switches

    NASA Astrophysics Data System (ADS)

    Gu, Tingkun

    2014-05-01

    The electronic structure of ZnO with defects of oxygen vacancies were investigated by using first-principles methods. Some structure models were constructed in order to investigate the effects of the distribution of oxygen vacancies on the electronic properties of ZnO. By analyzing the calculated results, we found that only the aligned oxygen vacancies can form the conducting channel in ZnO, and the transformation of the oxygen vacancy from charged state to neutral state is consistent with the energetics rule of the forming aligned oxygen vacancies. As for the heterojunction of Pt/ZnO/Pt, the oxygen vacancies near the interface of Pt/ZnO depress the local Schottky barrier effectively, and the aligned oxygen vacancies in ZnO form a conducting filament connecting two Pt electrodes. The metallic filament formation in Pt/ZnO/Pt resistive switching cells should be closely related to the carrier injection from Pt electrode into ZnO and the arrangement of oxygen vacancies in ZnO slab.

  3. Functional characterization of the initiation enzyme of S-layer glycoprotein glycan biosynthesis in Geobacillus stearothermophilus NRS 2004/3a.

    PubMed

    Steiner, Kerstin; Novotny, René; Patel, Kinnari; Vinogradov, Evgenij; Whitfield, Chris; Valvano, Miguel A; Messner, Paul; Schäffer, Christina

    2007-04-01

    The glycan chain of the S-layer glycoprotein of Geobacillus stearothermophilus NRS 2004/3a is composed of repeating units [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-l-Rhap-(1-->], with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain, a core saccharide composed of two or three alpha-l-rhamnose residues, and a beta-d-galactose residue as a linker to the S-layer protein. In this study, we report the biochemical characterization of WsaP of the S-layer glycosylation gene cluster as a UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase that primes the S-layer glycoprotein glycan biosynthesis of Geobacillus stearothermophilus NRS 2004/3a. Our results demonstrate that the enzyme transfers in vitro a galactose-1-phosphate from UDP-galactose to endogenous phosphoryl-polyprenol and that the C-terminal half of WsaP carries the galactosyltransferase function, as already observed for the UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase WbaP from Salmonella enterica. To confirm the function of the enzyme, we show that WsaP is capable of reconstituting polysaccharide biosynthesis in WbaP-deficient strains of Escherichia coli and Salmonella enterica serovar Typhimurium. PMID:17237178

  4. Functional Characterization of the Initiation Enzyme of S-Layer Glycoprotein Glycan Biosynthesis in Geobacillus stearothermophilus NRS 2004/3a▿

    PubMed Central

    Steiner, Kerstin; Novotny, René; Patel, Kinnari; Vinogradov, Evgenij; Whitfield, Chris; Valvano, Miguel A.; Messner, Paul; Schäffer, Christina

    2007-01-01

    The glycan chain of the S-layer glycoprotein of Geobacillus stearothermophilus NRS 2004/3a is composed of repeating units [→2)-α-l-Rhap-(1→3)-β-l-Rhap-(1→2)-α-l-Rhap-(1→], with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain, a core saccharide composed of two or three α-l-rhamnose residues, and a β-d-galactose residue as a linker to the S-layer protein. In this study, we report the biochemical characterization of WsaP of the S-layer glycosylation gene cluster as a UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase that primes the S-layer glycoprotein glycan biosynthesis of Geobacillus stearothermophilus NRS 2004/3a. Our results demonstrate that the enzyme transfers in vitro a galactose-1-phosphate from UDP-galactose to endogenous phosphoryl-polyprenol and that the C-terminal half of WsaP carries the galactosyltransferase function, as already observed for the UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase WbaP from Salmonella enterica. To confirm the function of the enzyme, we show that WsaP is capable of reconstituting polysaccharide biosynthesis in WbaP-deficient strains of Escherichia coli and Salmonella enterica serovar Typhimurium. PMID:17237178

  5. Plasmonic enhancement of the performance of dye-sensitized solar cell by core-shell AuNRs@SiO2 in composite photoanode

    NASA Astrophysics Data System (ADS)

    Bai, Lihua; Li, Meiya; Guo, Kaimo; Luoshan, Mengdai; Mehnane, Hadja Fatima; Pei, Ling; Pan, Muchen; Liao, Lei; Zhao, Xingzhong

    2014-12-01

    A series of dye-sensitized solar cells (DSSCs) with differing amounts of Au nanorods (AuNRs) (coated with a SiO2 layer as a core-shell AuNR@SiO2 (AuNRS)) composited photoanodes are prepared. The influences of different amounts of AuNRSs on the performance of the composite photoanodes and DSSCs are investigated. Studies revealed that, by increasing the amount of AuNRSs, the intensity of the light absorption spectra of the photoanodes is gradually increased while the dye absorbed is reduced. The short-circuit current density (Jsc), open-circuit voltage (Voc) and photoelectric conversion efficiency (η) increased gradually first and then decreased with the increase of AuNRSs, while the charge transfer resistance R2 and the dark current showed an opposite change trend. The optimal properties were obtained in the 2.0 wt% AuNRSs doped DSSC, with a maximum Jsc of 15.88 mA cm-2, a highest Voc of 730 mV and a best η of 7.21%, giving 20.8%, 38 mV and 23.0% higher than those of the conventional pure TiO2-based DSSC, respectively. The significant improvements in the properties of the optimal DSSC are attributed to the increase of the light coupling and thus the light absorption of the dye due to the localized surface plasmon resonance of the AuNRSs. ,

  6. Effects of growth pressure on morphology of ZnO nanostructures by chemical vapor transport

    NASA Astrophysics Data System (ADS)

    Babu, Eadi Sunil; Kim, Sungjin; Song, Jung-Hoon; Hong, Soon-Ku

    2016-08-01

    The effect of growth pressure on the morphology of the ZnO nanostructures in chemical vapor transport by using Zn powder and oxygen as source materials has been investigated. Highly uniform aligned ZnO nanorods or multifaceted tripod structures were grown depending on the growth pressure. The mechanism governing the morphology change was explained by the relative concentration of Zn vapor and supersaturation based on experimental observations. It was concluded that heterogeneous nucleation on the substrate is enhanced at low growth pressure, while homogeneous nucleation from vapor phase is enhanced at high growth pressure. The difference resulted in different morphology of ZnO nanostructures. ZnO nanorods grown at optimized condition were used for the fabrication of gas sensor for the detection of H2 gas.

  7. Electrical conduction and NO2 gas sensing properties of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Şahin, Yasin; Öztürk, Sadullah; Kılınç, Necmettin; Kösemen, Arif; Erkovan, Mustafa; Öztürk, Zafer Ziya

    2014-06-01

    Thermally stimulated current (TSC), photoresponse and gas sensing properties of zinc oxide (ZnO) nanorods were investigated depending on heating rates, illumination and dark aging times with using sandwich type electrode system. Vertically aligned ZnO nanorods were grown on indium tin oxide (ITO) coated glass substrate by hydrothermal process. TSC measurements were performed at different heating rates under constant potential. Photoresponse and gas sensing properties were investigated in dry air ambient at 200 °C. For gas sensing measurements, ZnO nanorods were exposed to NO2 (100 ppb to 1 ppm) in dark and illuminated conditions and the resulting resistance transient was recorded. It was found from dark electrical measurements that the dependence of the dc conductivity on temperature followed Mott's variable range hopping (VRH) model. In addition, response time and recovery times of ZnO nanorods to NO2 gas decreased by exposing to white light.

  8. Synthesis and characterization of Cu-doped ZnO nanorods chemically grown on flexible substrate

    NASA Astrophysics Data System (ADS)

    Shabannia, R.

    2016-08-01

    Vertically aligned undoped and Cu-doped ZnO nanorods array were successfully grown on flexible substrate by chemical bath deposition method at a low 0074emperature. The fabricated materials were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX) and photoluminescence (PL) spectroscopy. XRD analysis showed that Cu doping improves the crystallinity of the fabricated ZnO nanorods. The mean diameter and bending of the ZnO nanorods increase with an increase of Cu doping, but the density of Cu-doped ZnO nanorods almost unchanged. Room temperature PL measurement displayed increased intensity in UV peak and decreased visible peak after Cu doping.

  9. Selective growth of hierarchical ZnO nanorod arrays on the graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Li, Lan; Li, Jinliang; Mo, Zhaojun

    2016-01-01

    We report directly selective-area grown (SAG) high-quality hierarchical ZnO nanorod arrays on the graphene nanosheets without invoking damage or introducing a catalyst. The SAG behavior in the non-catalytic growth mechanism is attributed to dangling bonds on the boundary edges of graphene nanosheets, which serve as the preferential adsorption and nucleation sites of ZnO nanorod. High densities of hierarchical ZnO nanorods show single-crystalline hexagonal wurtzite structure and are vertically well-aligned on the graphene nanosheets, with the diameter and the density strongly dependent on the growth temperature. Furthermore, no carbon impurity can be seen in the tips of the ZnO nanorods and also no carbon-related defect peak in the 10 K PL spectrum of ZnO nanorods. Our approach using a graphene-nanosheet substrate provides an efficient route for the growth of high-quality ZnO with a one-dimensional (1D) hierarchical nanostructure, which is highly desirable for fabricating 1D ZnO hybrid optoelectronic devices, particularly for a fast-response UV photodetector and highly-sensitive gas sensor.

  10. Synthesis and field emission properties of different ZnO nanostructure arrays

    PubMed Central

    2012-01-01

    In this article, zinc oxide (ZnO) nanostructures of different shapes were fabricated on silicon substrate. Well-aligned and long ZnO nanowire (NW) arrays, as well as leaf-like ZnO nanostructures (which consist of modulated and single-phase structures), were fabricated by a chemical vapor deposition (CVD) method without the assistance of a catalyst. On the other hand, needle-like ZnO NW arrays were first fabricated with the CVD process followed by chemical etching of the NW arrays. The use of chemical etching provides a low-cost and convenient method of obtaining the needle-like arrays. In addition, the field emission properties of the different ZnO NW arrays were also investigated where some differences in the turn-on field and the field-enhancement factors were observed for the ZnO nanostructures of different lengths and shapes. It was experimentally observed that the leaf-like ZnO nanostructure is most suitable for field emission due to its lowest turn-on and threshold field as well as its high field-enhancement factor among the different synthesized nanostructures. PMID:22444723

  11. Impurity induced crystallinity and optical emissions in ZnO nanorod arrays

    NASA Astrophysics Data System (ADS)

    Panda, N. R.; Acharya, B. S.

    2015-01-01

    We report the growth of ZnO nanocrystallites doped with impurities such as B, N and S by green chemistry route using ultrasound. The effect of intrinsic defects and impurity doping on the structural and optical properties of ZnO nanostructures has been studied and discussed. Characterization studies carried out using x-ray diffraction (XRD) reveal the change in lattice parameters and crystallinity of ZnO in the presence of dopant. This has been explained on the basis of the dopant substitution at regular anion and interstitial sites. Study on surface morphology by field emission scanning electron microscopy (FESEM) shows a change from particle-like structure to aligned nanorods nucleated at definite sites. Elemental analysis such as x-ray photon electron spectroscopy (XPS) has been carried out to ascertain the dopant configuration in ZnO. This has been corroborated by the results obtained from FTIR and Raman studies. UV-vis light absorption and PL studies show an expansion of the band gap which has been explained on the basis of Moss-Burstein shift in the electronic band gap of ZnO by impurity incorporation. The optical emissions corresponding to excitonic transition and defect centres present in the band gap of ZnO is found to shift towards lower/higher wavelength sides. New PL bands observed have been assigned to the transitions related to the impurity states present in the band gap of ZnO along with intrinsic defects.

  12. Simple and Sensitive Ultraviolet Nanosensors Based on Electrospun ZnO Nanofibers

    SciTech Connect

    Zhu, Zhengtao; Zhang, Lifeng; Howe, Jane Y; Liao, Liliang; Speidel, Jordan T.; Smith, Steve; Fong, Hao

    2009-01-01

    The current of uniaxially aligned electrospun ZnO nanofibers is modulated reversibly under UV irradiation, with the sensitivity of the UV nanosensors depending on the surface coating of the nanofibers, due to the effect on the photo-generated current.

  13. Low-temperature growth of well-aligned zinc oxide nanorod arrays on silicon substrate and their photocatalytic application

    PubMed Central

    Azam, Ameer; Babkair, Saeed Salem

    2014-01-01

    Well-aligned and single-crystalline zinc oxide (ZnO) nanorod arrays were grown on silicon (Si) substrate using a wet chemical route for the photodegradation of organic dyes. Structural analysis using X-ray diffraction, high-resolution transmission electron microscopy, and selected area electron diffraction confirmed the formation of ZnO nanorods grown preferentially oriented in the (001) direction and with a single phase nature with a wurtzite structure. Field emission scanning electron microscopy and transmission electron microscopy micrographs showed that the length and diameter of the well-aligned rods were about ~350–400 nm and ~80–90 nm, respectively. Raman scattering spectra of ZnO nanorod arrays revealed the characteristic E2 (high) mode that is related to the vibration of oxygen atoms in the wurtzite ZnO. The photodegradation of methylene blue (MB) using ZnO nanorod arrays was performed under ultraviolet light irradiation. The results of photodegradation showed that ZnO nanorod arrays were capable of degrading ~80% of MB within 60 minutes of irradiation, whereas ~92% of degradation was achieved in 120 minutes. Complete degradation of MB was observed after 270 minutes of irradiation time. Owing to enhanced photocatalytic degradation efficiency and low-temperature growth method, prepared ZnO nanorod arrays may open up the possibility for the successful utilization of ZnO nanorod arrays as a future photocatalyst for environmental remediation. PMID:24812511

  14. Electrochemical growth of ZnO nanoplates

    NASA Astrophysics Data System (ADS)

    Illy, B.; Shollock, B. A.; MacManus-Driscoll, J. L.; Ryan, M. P.

    2005-02-01

    ZnO films were grown on polycrystalline Zn foil by cathodic electrodeposition in an aqueous zinc chloride/calcium chloride solution at 80 °C. Variation in the electrochemical parameters resulted in a variation in growth morphology from 1D (nanorods), 2D ('nanoplates') to 3D crystal growth. An as-received or mechanically polished substrate proved the most suitable substrate finish and allowed more highly aligned, dense structures to be grown; in contrast, electropolished substrates formed inhomogeneous deposits. Substrate annealing gave rise to large homogenous areas of nanorod deposition. Two-dimensional sheet growth was found to occur in conjunction with nanorods under specific electrochemical conditions. Hexagonal 'plates' approximately 50 nm in thickness and several microns in diameter were formed normal to the substrate.

  15. Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer

    PubMed Central

    2012-01-01

    In this study, we have fabricated and characterized the silicon [Si] wire solar cells with conformal ZnO nanorod antireflection coating [ARC] grown on a Al-doped ZnO [AZO] seed layer. Vertically aligned Si wire arrays were fabricated by electrochemical etching and, the p-n junction was prepared by spin-on dopant diffusion method. Hydrothermal growth of the ZnO nanorods was followed by AZO film deposition on high aspect ratio Si microwire arrays by atomic layer deposition [ALD]. The introduction of an ALD-deposited AZO film on Si wire arrays not only helps to create the ZnO nanorod arrays, but also has a strong impact on the reduction of surface recombination. The reflectance spectra show that ZnO nanorods were used as an efficient ARC to enhance light absorption by multiple scattering. Also, from the current-voltage results, we found that the combination of the AZO film and ZnO nanorods on Si wire solar cells leads to an increased power conversion efficiency by more than 27% compared to the cells without it. PMID:22222067

  16. Band Alignment Engineering at Cu2O/ZnO Heterointerfaces.

    PubMed

    Siol, Sebastian; Hellmann, Jan C; Tilley, S David; Graetzel, Michael; Morasch, Jan; Deuermeier, Jonas; Jaegermann, Wolfram; Klein, Andreas

    2016-08-24

    Energy band alignments at heterointerfaces play a crucial role in defining the functionality of semiconductor devices, yet the search for material combinations with suitable band alignments remains a challenge for numerous applications. In this work, we demonstrate how changes in deposition conditions can dramatically influence the functional properties of an interface, even within the same material system. The energy band alignment at the heterointerface between Cu2O and ZnO was studied using photoelectron spectroscopy with stepwise deposition of ZnO onto Cu2O and vice versa. A large variation of energy band alignment depending on the deposition conditions of the substrate and the film is observed, with valence band offsets in the range ΔEVB = 1.45-2.7 eV. The variation of band alignment is accompanied by the occurrence or absence of band bending in either material. It can therefore be ascribed to a pinning of the Fermi level in ZnO and Cu2O, which can be traced back to oxygen vacancies in ZnO and to metallic precipitates in Cu2O. The intrinsic valence band offset for the interface, which is not modified by Fermi level pinning, is derived as ΔEVB ≈ 1.5 eV, being favorable for solar cell applications. PMID:27452037

  17. Enhanced surface photovoltage response of ZnO nanorod based inorganic/organic hybrid junctions by constructing embedded bulk composite structures

    NASA Astrophysics Data System (ADS)

    Kang, Dawei; Liu, Aimin; Bian, Jiming; Hu, Zengquan; Liu, Yiting; Qiao, Fen

    2013-02-01

    Two kinds of inorganic/organic hybrid junctions based on ZnO nanorods (NRs), i.e. two-layer planar heterojunction and embedded bulk composite structures, were fabricated on ITO glass substrates. Surface photovoltage (SPV) methods based on a Kelvin probe and a lock-in amplifier were respectively utilized to study the photogenerated charges at the surface and the interface in the ZnO-based hybrid junctions. Results indicate that the lock-in SPV response of the bulk composite structure is much higher than its planar counterpart in terms of intensity and spectral range. Therefore, ZnO NR/PF (poly(9,9-di-n-octylfluorenyl-2,7-diyl)) embedded bulk composite structures are more suitable and preferred for photovoltaic application.

  18. Band offsets for mismatched interfaces: The special case of ZnO on CdTe (001)

    SciTech Connect

    Jaffe, John E.; Kaspar, Tiffany C.; Droubay, Timothy C.; Varga, Tamas

    2013-11-15

    High-quality planar interfaces between ZnO and CdTe would be useful in optoelectronic applications. Although CdTe is zinc blende with cubic lattice constant a = 6.482 Å while ZnO is hexagonal wurtzite with a = 3.253 Å and c = 5.213 Å, (001)-oriented cubic zinc blende ZnO films could be stabilized epitaxially on a CdTe (001) surface in an √2 × √2 R45° configuration with a lattice mismatch of <0.5%. Modeling such a configuration allows density-functional total-energy electronic-structure calculations to be performed on several interface arrangements (varying terminations and in-plane fractional translations) to identify the most likely form of the interface, and to predict valence-band offsets between CdTe and ZnO in each case. Growth of ZnO on Te-terminated CdTe(001) is predicted to produce small or even negative (CdTe below ZnO) valence band offsets, resulting in a Type I band alignment. Growth on Cd-terminated CdTe is predicted to produce large positive offsets for a Type II alignment as needed, for example, in solar cells. To corroborate some of these predictions, thin layers of ZnO were deposited on CdTe(001) by pulsed laser deposition, and the band alignments of the resulting heterojunctions were determined from x-ray photoelectron spectroscopy measurements. Although zinc blende ZnO could not be confirmed, the measured valence band offset (2.0–2.2 eV) matched well with the predicted value.

  19. Nearest Alignment Space Termination

    2006-07-13

    Near Alignment Space Termination (NAST) is the Greengenes algorithm that matches up submitted sequences with the Greengenes database to look for similarities and align the submitted sequences based on those similarities.

  20. Effect of Metallic Au Seed Layer Annealing on the Properties of Electrodeposited ZnO Nanorods.

    PubMed

    Park, Youngbin; Nam, Giwoong; Kim, Byunggu; Leem, Jae-Young

    2015-11-01

    This study focuses on the effect of annealing the Au seed layer (ASL) on the structural and optical properties of electrodeposited ZnO nanorods. ZnO nanorods were fabricated in a three-step approach. In the first step, ASLs were deposited using an ion sputter technique. In the second step, layers were annealed in air at various temperatures ranging from 400 degrees C to 600 degrees C. Finally, ZnO nanorods were grown using an electrodeposition method. The field-emission scanning electron microscopy analysis showed that better aligned ZnO nanorods are fabricated on the annealed ASL compared with non-annealed ASL The X-ray diffraction analysis showed a notable improvement in directional growth along the (002) crystallographic plane when ZnO nanorods were grown on the annealed ASL. The photoluminescence analysis showed that the UV emission peak of ZnO nanorods on the annealed ASL at 400 degrees C was blue-shifted and increased. PMID:26726551

  1. Local structural properties of Co-ion-implanted ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Park, C. I.; Jin, Zhenlan; Jeong, E. S.; Hwang, I. H.; Han, S. W.

    2013-12-01

    We examined the local structural properties around Co and Zn ions in Co-ion-implanted ZnO nanorods by using an X-ray absorption fine structure (XAFS) analysis. Vertically-aligned ZnO nanorods were synthesized on Al2O3 substrates by using a catalyst-free metal-organic chemicalvapor deposition. Co ions (Co+ and Co2+) with energies of 50 and 100 keV and fluxes of 1013 and 1015 particles/cm2 were implanted in the ZnO nanorods, and the ion-implanted ZnO nanorods were annealed at 400-650°C. X-ray absorption near edge structure (XANES) analyses demonstrated that the chemical valence state of the Co ions were mostly 2+. An extended XAFS (EXAFS) analysis revealed that the Co ions were mostly substituted at the Zn sites of ZnO nanorods at a Coion flux of 1015 particles/cm2. However, at a flux of 1013 particles/cm2, Co ions formed Co-O and Co-Co clusters. These results were in contrast to the Co distribution in Co-added ZnO predicted by using a Monte Carlo method.

  2. Shiva automatic pinhole alignment

    SciTech Connect

    Suski, G.J.

    1980-09-05

    This paper describes a computer controlled closed loop alignment subsystem for Shiva, which represents the first use of video sensors for large laser alignment at LLNL. The techniques used on this now operational subsystem are serving as the basis for all closed loop alignment on Nova, the 200 terawatt successor to Shiva.

  3. Fast statistical alignment.

    PubMed

    Bradley, Robert K; Roberts, Adam; Smoot, Michael; Juvekar, Sudeep; Do, Jaeyoung; Dewey, Colin; Holmes, Ian; Pachter, Lior

    2009-05-01

    We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment--previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches--yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/. PMID:19478997

  4. Efficient Z-scheme charge separation in novel vertically aligned ZnO/CdSSe nanotrees.

    PubMed

    Li, Zhengxin; Nieto-Pescador, Jesus; Carson, Alexander J; Blake, Jolie C; Gundlach, Lars

    2016-04-01

    A new tree-like ZnO/CdSSe nanocomposite with CdSSe branches grown on ZnO nanowires prepared via a two-step chemical vapor deposition is presented. The nanotrees (NTs) are vertically aligned on a substrate. The CdSSe branches result in strong visible light absorption and form a type-II heterojunction with the ZnO stem that facilitates efficient electron transfer. A combination of photoluminescence spectroscopy and lifetime measurements indicates that the NTs are promising materials for applications that benefit from a Z-scheme charge transfer mechanism. Vertically aligned branched ZnO nanowires can provide direct electron transport pathways to substrates and allow for efficient charge separation. These advantages of nanoscale hierarchical heterostructures make ZnO/CdSSe NTs a promising semiconductor material for solar cells, and other opto-electronic devices. PMID:26894995

  5. Efficient Z-scheme charge separation in novel vertically aligned ZnO/CdSSe nanotrees

    NASA Astrophysics Data System (ADS)

    Li, Zhengxin; Nieto-Pescador, Jesus; Carson, Alexander J.; Blake, Jolie C.; Gundlach, Lars

    2016-04-01

    A new tree-like ZnO/CdSSe nanocomposite with CdSSe branches grown on ZnO nanowires prepared via a two-step chemical vapor deposition is presented. The nanotrees (NTs) are vertically aligned on a substrate. The CdSSe branches result in strong visible light absorption and form a type-II heterojunction with the ZnO stem that facilitates efficient electron transfer. A combination of photoluminescence spectroscopy and lifetime measurements indicates that the NTs are promising materials for applications that benefit from a Z-scheme charge transfer mechanism. Vertically aligned branched ZnO nanowires can provide direct electron transport pathways to substrates and allow for efficient charge separation. These advantages of nanoscale hierarchical heterostructures make ZnO/CdSSe NTs a promising semiconductor material for solar cells, and other opto-electronic devices.

  6. Girder Alignment Plan

    SciTech Connect

    Wolf, Zackary; Ruland, Robert; LeCocq, Catherine; Lundahl, Eric; Levashov, Yurii; Reese, Ed; Rago, Carl; Poling, Ben; Schafer, Donald; Nuhn, Heinz-Dieter; Wienands, Uli; /SLAC

    2010-11-18

    The girders for the LCLS undulator system contain components which must be aligned with high accuracy relative to each other. The alignment is one of the last steps before the girders go into the tunnel, so the alignment must be done efficiently, on a tight schedule. This note documents the alignment plan which includes efficiency and high accuracy. The motivation for girder alignment involves the following considerations. Using beam based alignment, the girder position will be adjusted until the beam goes through the center of the quadrupole and beam finder wire. For the machine to work properly, the undulator axis must be on this line and the center of the undulator beam pipe must be on this line. The physics reasons for the undulator axis and undulator beam pipe axis to be centered on the beam are different, but the alignment tolerance for both are similar. In addition, the beam position monitor must be centered on the beam to preserve its calibration. Thus, the undulator, undulator beam pipe, quadrupole, beam finder wire, and beam position monitor axes must all be aligned to a common line. All relative alignments are equally important, not just, for example, between quadrupole and undulator. We begin by making the common axis the nominal beam axis in the girder coordinate system. All components will be initially aligned to this axis. A more accurate alignment will then position the components relative to each other, without incorporating the girder itself.

  7. Particle-on-Film Gap Plasmons on Antireflective ZnO Nanocone Arrays for Molecular-Level Surface-Enhanced Raman Scattering Sensors.

    PubMed

    Lee, Youngoh; Lee, Jiwon; Lee, Tae Kyung; Park, Jonghwa; Ha, Minjung; Kwak, Sang Kyu; Ko, Hyunhyub

    2015-12-01

    When semiconducting nanostructures are combined with noble metals, the surface plasmons of the noble metals, in addition to the charge transfer interactions between the semiconductors and noble metals, can be utilized to provide strong surface plasmon effects. Here, we suggest a particle-film plasmonic system in conjunction with tapered ZnO nanowire arrays for ultrasensitive SERS chemical sensors. In this design, the gap plasmons between the metal nanoparticles and the metal films provide significantly improved surface-enhanced Raman spectroscopy (SERS) effects compared to those of interparticle surface plasmons. Furthermore, 3D tapered metal nanostructures with particle-film plasmonic systems enable efficient light trapping and waveguiding effects. To study the effects of various morphologies of ZnO nanostructures on the light trapping and thus the SERS enhancements, we compare the performance of three different ZnO morphologies: ZnO nanocones (NCs), nanonails (NNs), and nanorods (NRs). Finally, we demonstrate that our SERS chemical sensors enable a molecular level of detection capability of benzenethiol (100 zeptomole), rhodamine 6G (10 attomole), and adenine (10 attomole) molecules. This work presents a new design platform based on the 3D antireflective metal/semiconductor heterojunction nanostructures, which will play a critical role in the study of plasmonics and SERS chemical sensors. PMID:26575302

  8. Synthesis and characterization of aluminum–boron co-doped ZnO nanostructures

    SciTech Connect

    Kumar, Vinod; Singh, R.G.; Singh, Neetu; Kapoor, Avinashi; Mehra, R.M.; Purohit, L.P.

    2013-02-15

    Graphical abstract: In this paper, we have reported the development of aluminum boron co-doped ZnO (AZB) nanostructures deposited by sol–gel method using spin coating technique. The structure of AZB nanostructure films has been found to exhibit the hexagonal wurtzite structure. The shape of nanostructures has been changed from seed structure to tetra-pods, tetra-pods to nanorods and finally nanorods to nanofiber with variation in Al concentration. The structural, electrical and optical properties of AZB nanostructures are tuned with shape and size of the nanostructures. The effect of Al concentration on the resistivity (ρ), carrier concentration (n) and mobility (μ) of nanostructure films is shown in graph below. A minimum resistivity of 6.8 × 10{sup −4} Ω cm is obtained in AZB films at doping concentration of B 0.6 at.% and Al 0.4 at.% with a sheet resistance of 24 Ω/□ and transmittance of ∼88% for nanorods structure. These nanostructures could be applicable for a various nano-regime devices such as photovolatics, gas sensing and field emission device. Display Omitted Highlights: ► Synthesis of Al and B co-doped ZnO (AZB) nanostructures. ► Minimum resistivity (ρ) of 6.8 × 10{sup −4} Ω cm in AZB films. ► Minimum sheet resistance (R{sub s}) 24 Ω/□ in nanorods (NRs). ► Maximum transmittance ∼88% in NRs. ► Application in nano-electronic devices. -- Abstract: In this paper, we have reported the development of aluminum boron co-doped ZnO (AZB) nanostructures deposited by sol–gel method using spin coating technique. The structure of AZB nanostructure films has been found to exhibit the hexagonal wurtzite structure. The shape of AZB nanostructures has changed from seed structure to tetra-pods, tetra-pods to nanorods and finally to nanofibers with increase in aluminum concentration. The structural, electrical and optical properties of AZB films are tuned with shape and size of the nanostructures. These AZB nanostructures could be

  9. Indirect Determination of Mercury Ion by Inhibition of a Glucose Biosensor Based on ZnO Nanorods

    PubMed Central

    Chey, Chan Oeurn; Ibupoto, Zafar Hussain; Khun, Kimleang; Nur, Omer; Willander, Magnus

    2012-01-01

    A potentiometric glucose biosensor based on immobilization of glucose oxidase (GOD) on ZnO nanorods (ZnO-NRs) has been developed for the indirect determination of environmental mercury ions. The ZnO-NRs were grown on a gold coated glass substrate by using the low temperature aqueous chemical growth (ACG) approach. Glucose oxidase in conjunction with a chitosan membrane and a glutaraldehyde (GA) were immobilized on the surface of the ZnO-NRs using a simple physical adsorption method and then used as a potentiometric working electrode. The potential response of the biosensor between the working electrode and an Ag/AgCl reference electrode was measured in a 1mM phosphate buffer solution (PBS). The detection limit of the mercury ion sensor was found to be 0.5 nM. The experimental results provide two linear ranges of the inhibition from 0.5 × 10−6 mM to 0.5 × 10−4 mM, and from 0.5 × 10−4 mM to 20 mM of mercury ion for fixed 1 mM of glucose concentration in the solution. The linear range of the inhibition from 10−3 mM to 6 mM of mercury ion was also acquired for a fixed 10 mM of glucose concentration. The working electrode can be reactivated by more than 70% after inhibition by simply dipping the used electrode in a 10 mM PBS solution for 7 min. The electrodes retained their original enzyme activity by about 90% for more than three weeks. The response to mercury ions was highly sensitive, selective, stable, reproducible, and interference resistant, and exhibits a fast response time. The developed glucose biosensor has a great potential for detection of mercury with several advantages such as being inexpensive, requiring minimum hardware and being suitable for unskilled users. PMID:23202200

  10. Indirect determination of mercury ion by inhibition of a glucose biosensor based on ZnO nanorods.

    PubMed

    Chey, Chan Oeurn; Ibupoto, Zafar Hussain; Khun, Kimleang; Nur, Omer; Willander, Magnus

    2012-01-01

    A potentiometric glucose biosensor based on immobilization of glucose oxidase (GOD) on ZnO nanorods (ZnO-NRs) has been developed for the indirect determination of environmental mercury ions. The ZnO-NRs were grown on a gold coated glass substrate by using the low temperature aqueous chemical growth (ACG) approach. Glucose oxidase in conjunction with a chitosan membrane and a glutaraldehyde (GA) were immobilized on the surface of the ZnO-NRs using a simple physical adsorption method and then used as a potentiometric working electrode. The potential response of the biosensor between the working electrode and an Ag/AgCl reference electrode was measured in a 1mM phosphate buffer solution (PBS). The detection limit of the mercury ion sensor was found to be 0.5 nM. The experimental results provide two linear ranges of the inhibition from 0.5 × 10(-6) mM to 0.5 × 10(-4) mM, and from 0.5 × 10(-4) mM to 20 mM of mercury ion for fixed 1 mM of glucose concentration in the solution. The linear range of the inhibition from 10(-3) mM to 6 mM of mercury ion was also acquired for a fixed 10 mM of glucose concentration. The working electrode can be reactivated by more than 70% after inhibition by simply dipping the used electrode in a 10 mM PBS solution for 7 min. The electrodes retained their original enzyme activity by about 90% for more than three weeks. The response to mercury ions was highly sensitive, selective, stable, reproducible, and interference resistant, and exhibits a fast response time. The developed glucose biosensor has a great potential for detection of mercury with several advantages such as being inexpensive, requiring minimum hardware and being suitable for unskilled users. PMID:23202200

  11. Gene cloning, functional expression and secretion of the S-layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a in Lactococcus lactis.

    PubMed

    Novotny, René; Scheberl, Andrea; Giry-Laterriere, Marc; Messner, Paul; Schäffer, Christina

    2005-01-01

    The ~93-kDa surface layer protein SgsE of Geobacillus stearothermophilus NRS 2004/3a forms a regular crystalline array providing a nanopatterned matrix for the future display of biologically relevant molecules. Lactococcus lactis NZ9000 was established as a safe expression host for the controlled targeted production of SgsE based on the broad host-range plasmid pNZ124Sph, into which the nisA promoter was introduced. SgsE devoid of its signal peptide-encoding sequence was cloned into the new vector and purified from the cytoplasm at a yield of 220 mg l- of expression culture. Secretion constructs were based on the signal peptide of the Lactobacillus brevis SlpA protein or the L. lactis Usp45 protein, allowing isolation of 95 mg of secreted rSgsE l-1. N-terminal sequencing confirmed correct processing of SgsE in L. lactis NZ9000. The ability of rSgsE to self-assemble in suspension and to recrystallize on solid supports was demonstrated by electron and atomic force microscopy. PMID:15675069

  12. Band offsets for mismatched interfaces. The special case of ZnO on CdTe (001)

    SciTech Connect

    Jaffe, John E.; Kaspar, Tiffany C.; Droubay, Timothy C.; Varga, Tamas

    2013-08-02

    High-quality planar interfaces between ZnO and CdTe would be useful in optoelectronic applications, but appear difficult to achieve given the rather different crystal structures (CdTe is zinc blende with cubic lattice constant a = 6.482 Å, ZnO is hexagonal wurtzite with a = 3.253 Å and c = 5.213 Å.) However, ZnO has been reported to occur in some epitaxially stabilized films in the zinc blende structure with an fcc primitive lattice constant close to the hexagonal a value. Observing that this value equals half of the CdTe cubic lattice constant to within 1%, we propose that (001)-oriented cubic ZnO films could be grown epitaxially on a CdTe (001) surface in an R45° √2 x √2 configuration. Many terminations and alignments (in-plane fractional translations) are possible, and we describe density-functional total-energy electronic-structure calculations on several configurations to identify the most likely form of the interface, and to predict valence-band offsets between CdTe and ZnO in each case. Growth of ZnO on Te-terminated CdTe (001) is predicted to produce small or even negative (CdTe below ZnO) valence band offsets, resulting in a Type I band alignment. Growth on Cd-terminated CdTe is predicted to produce large positive offsets for a type II alignment as needed, for example, in solar cells. We also describe recent experiments that corroborate some of these predictions.

  13. Optoelectronic Properties of Thermally Evaporated ZnO Films with Nanowalls on Glass Substrates

    NASA Astrophysics Data System (ADS)

    Chen, Tse-Pu; Hung, Fei-Yi; Chang, Sheng-Po; Chang, Shoou-Jinn; Hu, Zhan-Shuo; Chen, Kuan-Jen

    2013-04-01

    Zinc oxide (ZnO) films with two-dimensional (2D) vertically aligned nanowalls, denoted by nanowalls-films, are successfully prepared on glass substrates at a low growth temperature of 450 °C without using metal catalysts. The morphology and optical properties of the nanowalls-film are characterized by scanning electron microscopy, X-ray diffraction analysis, transmission electron microscopy, energy dispersive X-ray spectroscopy, and photoluminescence measurement. The ZnO nanowalls-film show a strong UV emission and a preferred c-axis orientation with a hexagonal structure. The UV sensor measurement of the ZnO nanowalls-film shows a high sensitivity to UV light, rapid rise and decay times, and a good UV-to-visible rejection ratio.

  14. Defects in ZnO

    NASA Astrophysics Data System (ADS)

    McCluskey, M. D.; Jokela, S. J.

    2009-10-01

    Zinc oxide (ZnO) is a wide band gap semiconductor with potential applications in optoelectronics, transparent electronics, and spintronics. The high efficiency of UV emission in this material could be harnessed in solid-state white lighting devices. The problem of defects, in particular, acceptor dopants, remains a key challenge. In this review, defects in ZnO are discussed, with an emphasis on the physical properties of point defects in bulk crystals. As grown, ZnO is usually n-type, a property that was historically ascribed to native defects. However, experiments and theory have shown that O vacancies are deep donors, while Zn interstitials are too mobile to be stable at room temperature. Group-III (B, Al, Ga, and In) and H impurities account for most of the n-type conductivity in ZnO samples. Interstitial H donors have been observed with IR spectroscopy, while substitutional H donors have been predicted from first-principles calculations but not observed directly. Despite numerous reports, reliable p-type conductivity has not been achieved. Ferromagnetism is complicated by the presence of secondary phases, grain boundaries, and native defects. The famous green luminescence has several possible origins, including Cu impurities and Zn vacancies. The properties of group-I (Cu, Li, and Na) and group-V (N, P, As, and Sb) acceptors, and their complexes with H, are discussed. In the future, doping of ZnO nanocrystals will rely on an understanding of these fundamental properties.

  15. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  16. Orthodontics and Aligners

    MedlinePlus

    ... Repairing Chipped Teeth Teeth Whitening Tooth-Colored Fillings Orthodontics and Aligners Straighten teeth for a healthier smile. Orthodontics When consumers think about orthodontics, braces are the ...

  17. Alignability of Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Beech, Russell Scott

    With the continuing drive towards higher speed, density, and functionality in electronics, electrical interconnects become inadequate. Due to optics' high speed and bandwidth, freedom from capacitive loading effects, and freedom from crosstalk, optical interconnects can meet more stringent interconnect requirements. But, an optical interconnect requires additional components, such as an optical source and detector, lenses, holographic elements, etc. Fabrication and assembly of an optical interconnect requires precise alignment of these components. The successful development and deployment of optical interconnects depend on how easily the interconnect components can be aligned and/or how tolerant the interconnect is to misalignments. In this thesis, a method of quantitatively specifying the relative difficulty of properly aligning an optical interconnect is described. Ways of using this theory of alignment to obtain design and packaging guidelines for optical interconnects are examined. The measure of the ease with which an optical interconnect can be aligned, called the alignability, uses the efficiency of power transfer as a measure of alignment quality. The alignability is related to interconnect package design through the overall cost measure, which depends upon various physical parameters of the interconnect, such as the cost of the components and the time required for fabrication and alignment. Through a mutual dependence on detector size, the relationship between an interconnect's alignability and its bandwidth, signal-to-noise ratio, and bit-error -rate is examined. The results indicate that a range of device sizes exists for which given performance threshold values are satisfied. Next, the alignability of integrated planar-optic backplanes is analyzed in detail. The resulting data show that the alignability can be optimized by varying the substrate thickness or the angle of reflection. By including the effects of crosstalk, in a multi-channel backplane, the

  18. Tidal alignment of galaxies

    NASA Astrophysics Data System (ADS)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  19. Al-doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Kadam, Pratibha; Agashe, Chitra; Mahamuni, Shailaja

    2008-11-01

    Al3+-doped ZnO nanocrystals were differently obtained by wet chemical and an electrochemical route. An increase in forbidden gap due to change in crystal size and also due to Al3+ doping in ZnO is critically analyzed. The Moss-Burstein type shift in Al3+-doped ZnO nanocrystals provides an evidence of successful Al3+ doping in ZnO nanocrystals. The possibility of varying the carrier concentration in ZnO nanocrystals is the indirect implication of the present investigations.

  20. Comparative study of ultraviolet detectors based on ZnO nanostructures grown on different substrates

    NASA Astrophysics Data System (ADS)

    Abdulgafour, H. I.; Hassan, Z.; Ahmed, N. M.; Yam, F. K.

    2012-10-01

    Pd/ZnO/Pd metal-semiconductor-metal photodetectors have been successfully fabricated using a variety of high-quality ZnO nanostructures. The nanostructures used included well-aligned nanorods, tetrapod-like nanorods, and hair-like nanowires and were synthesized on Si (100), porous silicon (PS/Si), and quartz substrates, respectively, using a catalyst-free vapor-solid mechanism for comparison. The morphological, structural, and optical properties of these nanostructures were investigated. Upon illumination with ultraviolet light (365 nm), the responsivity values of the fabricated photodetectors on PS/Si, Si, and quartz substrates were 0.22, 0.073, and 0.053 A/W, which correspond to quantum efficiencies of 85%, 28%, and 20%, respectively, at an applied bias of 5 V. The present study demonstrated that ZnO nanowires/PS exhibited a relatively fast photoresponse, with a rise time of 0.089 s and fall time of 0.085 s. The ZnO nanorods/Si and ZnO nanotetrapods/quartz exhibited a slow response, with rise times of 0.128 and 0.194 s and fall times of 0.362 and 0.4 s, respectively. The study suggests that the response time of the ZnO nanostructures to ultraviolet exposure is dependent on the type of substrate used. Results show that these nanostructures are suitable for sensing applications.

  1. ZnO Nanoparticles and Nanowire Arrays with Liquid Crystals for Photovoltaic Apprications

    NASA Astrophysics Data System (ADS)

    Salamanca-Riba, Lourdes; Weadock, Nicholas; Martinez-Miranda, Luz

    2011-03-01

    Liquid crystals are small monodisperse molecules with high mobilities and are easy and cheap to process. In addition, some of their phases exhibit molecular orientation that can provide a path for the electrons, or holes, to move from one electrode to the other. We have mixed a smectic A liquid crystal (8CB) with varying concentrations of ZnO nanoparticles of ~ 5 nm in diameter and have observed a photovoltaic effect as a function of the concentration of ZnO. The liquid crystal is believed to enhance the alignment of the nanoparticles and aid in the diffusion of electrons through the particles to the collection electrode. We have also made PV cells of ZnO nanowire arrays grown on Au layers on Si substrates. The nanowire arrays are covered with 8CB liquid crystal for hole conduction. We compare the light absorption of the PV cells as a function of wavelength of the light for the ZnO nanoparticle and the ZnO nanowire cells. We present a detailed study of the structure of the two systems. Supported by the National Science Foundation under the University of Maryland MRSEC DMR 0520471.

  2. SPEAR3 Construction Alignment

    SciTech Connect

    LeCocq, Catherine; Banuelos, Cristobal; Fuss, Brian; Gaudreault, Francis; Gaydosh, Michael; Griffin, Levirt; Imfeld, Hans; McDougal, John; Perry, Michael; Rogers, Michael; /SLAC

    2005-08-17

    An ambitious seven month shutdown of the existing SPEAR2 synchrotron radiation facility was successfully completed in March 2004 when the first synchrotron light was observed in the new SPEAR3 ring, SPEAR3 completely replaced SPEAR2 with new components aligned on a new highly-flat concrete floor. Devices such as magnets and vacuum chambers had to be fiducialized and later aligned on girder rafts that were then placed into the ring over pre-aligned support plates. Key to the success of aligning this new ring was to ensure that the new beam orbit matched the old SPEAR2 orbit so that existing experimental beamlines would not have to be reoriented. In this presentation a pictorial summary of the Alignment Engineering Group's surveying tasks for the construction of the SPEAR3 ring is provided. Details on the networking and analysis of various surveys throughout the project can be found in the accompanying paper.

  3. A Comparison of ZnO and ZnO(-)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James (Technical Monitor)

    1998-01-01

    Ab initio electronic structure calculations are performed to support and to help interpret the experimental work reported in the proceeding manuscript. The CCSD(T) approach, in conjunction with a large basis set, is used to compute spectroscopic constants for the X(exp 1)Epsilon(+) and (3)II states of ZnO and the X(exp 2)Epsilon(+) state of ZnO(-). The spectroscopic constants, including the electron affinity, are in good agreement with experiment. The ZnO EA is significantly larger than that of O, thus relative to the atomic ground state asymptotes, ZnO(-) has a larger D(sub o) than the (1)Epsilon(+) state, despite the fact that the extra electron goes into an antibonding orbital. The changes in spectroscopic constants can be understood in terms of the X(exp 1)Epsilon(+) formally dissociating to Zn (1)S + O (1)D while the (3)II and (2)Epsilon(+) states dissociate to Zn (1)S + O (3)P and Zn (1) and O(-) (2)P, respectively.

  4. Flexible Dye-Sensitized Solar Cell based on Vertical ZnO Nanowire Arrays

    SciTech Connect

    Chu, Sheng; Li, Dongdong; Chang, Pai-Chun; Lu, Jia Grace

    2010-09-26

    Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices.

  5. VLS-like growth and characterizations of dense ZnO nanorods grown by e-beam process

    NASA Astrophysics Data System (ADS)

    Agarwal, D. C.; Chauhan, R. S.; Avasthi, D. K.; Sulania, I.; Kabiraj, D.; Thakur, P.; Chae, K. H.; Chawla, Amit; Chandra, R.; Ogale, S. B.; Pellegrini, G.; Mazzoldi, P.

    2009-02-01

    We present a new approach to produce ZnO nanorods in a reproducible manner at a temperature lower than other physical vapour deposition techniques, such as the vapour-liquid-solid mechanism. Arrays of well-aligned ZnO nanorods of uniform diameter have been synthesized on the Si substrate precoated with Au, using a simple electron beam evaporation method without the flow of any carrier gas. Scanning electron microscopy and atomic force microscopy characterizations show that as-grown nanorods are well aligned and uniform in diameter. X-ray diffraction measurements and clear lattice fringes in high-resolution transmission electron microscopy image show the growth of good quality polycrystalline hexagonal ZnO nanorods and a lang0 0 2rang growth direction. The polarization-dependent studies of near edge x-ray absorption fine structure (NEXAFS) are performed to investigate the electronic structure of the zinc and oxygen ions. The analysis of NEXAFS spectra at different angles of incidence of photon flux indicates the formation of ZnO nanorods having anisotropic behaviour of O and Zn states. The photoluminescence spectrum exhibits strong ultraviolet emission at 385 nm and the UV-visible spectrum also shows a band-gap transition around 390 nm indicating the good quality of nanorods. The catalytic growth mechanism of the ZnO nanorods is discussed on the basis of experimental results in this work.

  6. Acceptors in ZnO

    SciTech Connect

    McCluskey, Matthew D. Corolewski, Caleb D.; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. Grant; Harrison, Kale W.; Ha, Su

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence indicates these point defects have acceptor levels 3.2, 1.4, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO{sub 2} contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals is attributed to an acceptor, which may involve a Zn vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g{sub ⊥} = 2.0015 and g{sub //} = 2.0056, along with an isotropic center at g = 2.0035.

  7. Acceptors in ZnO

    SciTech Connect

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; Tarun, Marianne C.; Teklemichael, Samuel T.; Walter, Eric D.; Norton, M. G.; Harrison, Kale W.; Ha, Su Y.

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peak in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.

  8. Mechanical and piezoelectric properties of zinc oxide nanorods grown on conductive textile fabric as an alternative substrate

    NASA Astrophysics Data System (ADS)

    Khan, Azam; Hussain, Mushtaque; Nur, Omer; Willander, Magnus

    2014-08-01

    The present research is devoted to understanding the mechanism and causes of variation in the piezoelectric potential generated from vertically aligned zinc oxide (ZnO) nanorods (NRs), which were grown on a conductive textile fabric as an alternative substrate by using the aqueous chemical growth method. The piezoelectric voltage was harvested from vertically aligned ZnO NRs having different physical parameters by using atomic force microscopy in contact mode and the variation in the generated piezoelectricity was investigated. The generated output potential indicates that different physical parameters such aspect ratio, crystal size and lattice internal crystal strain have a strong influence on the piezoelectric properties of vertically aligned ZnO NRs, which were grown on a textile fabric. Presented results indicate that textiles can be used as an alternative substrate just like the other conventional substrates, because our results are similar/better than many reported works on conventional substrates.

  9. Enhanced field emission properties from well-aligned zinc oxide nanoneedles grown on the Au/Ti/n-Si substrate

    SciTech Connect

    Park, Chan Jun; Choi, Duck-Kyun; Yoo, Jinkyoung; Yi, Gyu-Chul; Lee, Cheol Jin

    2007-02-19

    The authors investigated the field emission from vertically well-aligned zinc oxide (ZnO) nanoneedles grown on the Au/Ti/n-Si (100) substrate using metal organic chemical vapor deposition. The turn-on field of ZnO nanoneedles was about 0.85 V/{mu}m at the current density of 0.1 {mu}A/cm{sup 2}, and the emission current density of 1 mA/cm{sup 2} was achieved at the applied electric field of 5.0 V/{mu}m. The low turn-on field of the ZnO nanoneedles was attributed to very sharp tip morphology, and the high emission current density was mainly caused by the formation of the stable Ohmic contact between the ZnO nanoneedles and Au film.

  10. Precision alignment device

    DOEpatents

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  11. Precision alignment device

    DOEpatents

    Jones, Nelson E.

    1990-01-01

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.

  12. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  13. Homoepitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C-H; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; McCarty, P.; George, M. A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    ZnO films have high potential for many applications, such as surface acoustic wave filters, UV detectors, and light emitting devices due to its structural, electrical, and optical properties. High quality epitaxial films are required for these applications. The Al2O3 substrate is commonly used for ZnO heteroepitaxial growth. Recently, high quality ZnO single crystals are available for grow homoepitaxial films. Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. As a comparison, films were also deposited on (0001) Al2O3 substrates. It was found that the two polar ZnO surfaces have different photoluminescence (PL) spectrum, surface structure and morphology, which strongly influence the epitaxial film growth. The morphology and structure of homoepitaxial films grown on the ZnO substrates were different from heteroepitaxial films grown on the Al2O3. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of PL, low-angle incident x-ray diffraction, and atomic force microscopy of ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  14. Photoactive area modification in bulk heterojunction organic solar cells using optimization of electrochemically synthesized ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Mehdi, Ahmadi; Sajjad Rashidi, Dafeh

    2015-11-01

    In this work, ZnO nanorod arrays grown by an electrochemical deposition method are investigated. The crucial parameters of length, diameter, and density of the nanorods are optimized over the synthesize process and nanorods growth time. Crystalline structure, morphologies, and optical properties of ZnO nanorod arrays are studied by different techniques such as x-ray diffraction, scanning electron microscope, atomic force microscope, and UV-visible transmission spectra. The ZnO nanorod arrays are employed in an inverted bulk heterojunction organic solar cell of Poly (3-hexylthiophene):[6-6] Phenyl-(6) butyric acid methyl ester to introduce more surface contact between the electron transporter layer and the active layer. Our results show that the deposition time is a very important factor to achieve the aligned and uniform ZnO nanorods with suitable surface density which is required for effective infiltration of active area into the ZnO nanorod spacing and make a maximum interfacial surface contact for electron collection, as overgrowing causes nanorods to be too dense and thick and results in high resistance and lower visible light transmittance. By optimizing the thickness of the active layer on top of ZnO nanorods, an improved efficiency of 3.17% with a high FF beyond 60% was achieved.

  15. New Insights into the Glycosylation of the Surface Layer Protein SgsE from Geobacillus stearothermophilus NRS 2004/3a▿

    PubMed Central

    Steiner, Kerstin; Pohlentz, Gottfried; Dreisewerd, Klaus; Berkenkamp, Stefan; Messner, Paul; Peter-Katalinić, Jasna; Schäffer, Christina

    2006-01-01

    The surface of Geobacillus stearothermophilus NRS 2004/3a cells is covered by an oblique surface layer (S-layer) composed of glycoprotein subunits. To this S-layer glycoprotein, elongated glycan chains are attached that are composed of [→2)-α-l-Rhap-(1→3)-β-l-Rhap-(1→2)-α-L-Rhap-(1→] repeating units, with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain and a core saccharide as linker to the S-layer protein. On sodium dodecyl sulfate-polyacrylamide gels, four bands appear, of which three represent glycosylated S-layer proteins. In the present study, nanoelectrospray ionization time-of-flight mass spectrometry (MS) and infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry were adapted for analysis of this high-molecular-mass and water-insoluble S-layer glycoprotein to refine insights into its glycosylation pattern. This is a prerequisite for artificial fine-tuning of S-layer glycans for nanobiotechnological applications. Optimized MS techniques allowed (i) determination of the average masses of three glycoprotein species to be 101.66 kDa, 108.68 kDa, and 115.73 kDa, (ii) assignment of nanoheterogeneity to the S-layer glycans, with the most prevalent variation between 12 and 18 trisaccharide repeating units, and the possibility of extension of the already-known →3)-α-l-Rhap-(1→3)-α-l-Rhap-(1→ core by one additional rhamnose residue, and (iii) identification of a third glycosylation site on the S-layer protein, at position threonine-590, in addition to the known sites threonine-620 and serine-794. The current interpretation of the S-layer glycoprotein banding pattern is that in the 101.66-kDa glycoprotein species only one glycosylation site is occupied, in the 108.68-kDa glycoprotein species two glycosylation sites are occupied, and in the 115.73-kDa glycoprotein species three glycosylation sites are occupied, while the 94.46-kDa band represents

  16. New insights into the glycosylation of the surface layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a.

    PubMed

    Steiner, Kerstin; Pohlentz, Gottfried; Dreisewerd, Klaus; Berkenkamp, Stefan; Messner, Paul; Peter-Katalinić, Jasna; Schäffer, Christina

    2006-11-01

    The surface of Geobacillus stearothermophilus NRS 2004/3a cells is covered by an oblique surface layer (S-layer) composed of glycoprotein subunits. To this S-layer glycoprotein, elongated glycan chains are attached that are composed of [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-L-Rhap-(1-->] repeating units, with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain and a core saccharide as linker to the S-layer protein. On sodium dodecyl sulfate-polyacrylamide gels, four bands appear, of which three represent glycosylated S-layer proteins. In the present study, nanoelectrospray ionization time-of-flight mass spectrometry (MS) and infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry were adapted for analysis of this high-molecular-mass and water-insoluble S-layer glycoprotein to refine insights into its glycosylation pattern. This is a prerequisite for artificial fine-tuning of S-layer glycans for nanobiotechnological applications. Optimized MS techniques allowed (i) determination of the average masses of three glycoprotein species to be 101.66 kDa, 108.68 kDa, and 115.73 kDa, (ii) assignment of nanoheterogeneity to the S-layer glycans, with the most prevalent variation between 12 and 18 trisaccharide repeating units, and the possibility of extension of the already-known -->3)-alpha-l-Rhap-(1-->3)-alpha-l-Rhap-(1--> core by one additional rhamnose residue, and (iii) identification of a third glycosylation site on the S-layer protein, at position threonine-590, in addition to the known sites threonine-620 and serine-794. The current interpretation of the S-layer glycoprotein banding pattern is that in the 101.66-kDa glycoprotein species only one glycosylation site is occupied, in the 108.68-kDa glycoprotein species two glycosylation sites are occupied, and in the 115.73-kDa glycoprotein species three glycosylation sites are occupied, while the 94.46-kDa band

  17. Preparation of new morphological ZnO and Ce-doped ZnO

    SciTech Connect

    Chelouche, A.; Djouadi, D.; Aksas, A.

    2013-12-16

    ZnO micro-tori and cerium doped hexangulars ZnO have been prepared by the sol-gel method under methanol hypercritical conditions of temperature and pressure. X-ray diffraction (XRD) measurement has revealed the high crystalline quality and the nanometric size of the samples. Scanning electron microscopy (SEM) has shown that the ZnO powder has a torus-like shape while that of ZnO:Ce has a hexangular-like shape, either standing free or inserted into the cores of ZnO tori. Transmission electron microscopy (TEM) has revealed that the ZnO particles have sizes between 25 and 30 nm while Ce-doped ZnO grains have diameters ranging from 75 nm to 100 nm. Photoluminescence spectra at room temperature of the samples have revealed that the introduction of cerium in ZnO reduces the emission intensity lines, particularly the ZnO red and green ones.

  18. Antares alignment gimbal positioner

    SciTech Connect

    Day, R.D.; Viswanathan, V.K.; Saxman, A.C.; Lujan, R.E.; Woodfin, G.L.; Sweatt, W.C.

    1981-01-01

    Antares is a 24-beam 40-TW carbon-dioxide (CO/sub 2/) laser fusion system currently under construction at the Los Alamos National Laboratory. The Antares alignment gimbal positioner (AGP) is an optomechanical instrument that will be used for target alignment and alignment of the 24 laser beams, as well as beam quality assessments. The AGP will be capable of providing pointing, focusing, and wavefront optical path difference, as well as aberration information at both helium-neon (He-Ne) and CO/sub 2/ wavelengths. It is designed to allow the laser beams to be aligned to any position within a 1-cm cube to a tolerance of 10 ..mu..m.

  19. EINSTEIN Cluster Alignments Revisited

    NASA Astrophysics Data System (ADS)

    Chambers, S. W.; Melott, A. L.; Miller, C. J.

    2000-12-01

    We have examined whether the major axes of rich galaxy clusters tend to point (in projection) toward their nearest neighboring cluster. We used the data of Ulmer, McMillan and Kowalski, who used x-ray morphology to define position angles. Our cluster samples, with well measured redshifts and updated positions, were taken from the MX Northern Abell Cluster Survey. The usual Kolmogorov-Smirnov test shows no significant alignment signal for nonrandom angles for all separations less than 100 Mpc/h. Refining the null hypothesis, however, with the Wilcoxon rank-sum test, reveals a high confidence signal for alignment. This confidence is highest when we restrict our sample to small nearest neighbor separations. We conclude that we have identified a more powerful tool for testing cluster-cluster alignments. Moreover, there is a strong signal in the data for alignment, consistent with a picture of hierarchical cluster formation in which matter falls into clusters along large scale filamentary structures.

  20. Self-organized nanocomb of ZnO fabricated by Au-catalyzed vapor-phase transport

    NASA Astrophysics Data System (ADS)

    Xu, C. X.; Sun, X. W.; Dong, Z. L.; Yu, M. B.

    2004-10-01

    Based on a vapor-phase transport process, self-organized nanocomb structures of ZnO were fabricated on Au-coated Si substrate by employing a mixture of ZnO and graphite powders as source materials. The morphology of the product showed a ribbon-like stem and nanorod array aligned evenly along one side of the nanoribbon. It was found that the nanoribbon grew mainly along [ 1 0 1 bar 0 ] direction and the self-assembled branching nanorods grew epitaxially along [0 0 0 1] orientation from the (0 0 0 2) plane of the stem. The growth process was analyzed in detail.

  1. Pairwise Sequence Alignment Library

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprintmore » that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.« less

  2. Pairwise Sequence Alignment Library

    SciTech Connect

    Jeff Daily, PNNL

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.

  3. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications

    PubMed Central

    2016-01-01

    A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 μm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix. PMID:27172933

  4. Template-Assisted Hydrothermal Growth of Aligned Zinc Oxide Nanowires for Piezoelectric Energy Harvesting Applications.

    PubMed

    Ou, Canlin; Sanchez-Jimenez, Pedro E; Datta, Anuja; Boughey, Francesca L; Whiter, Richard A; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-06-01

    A flexible and robust piezoelectric nanogenerator (NG) based on a polymer-ceramic nanocomposite structure has been successfully fabricated via a cost-effective and scalable template-assisted hydrothermal synthesis method. Vertically aligned arrays of dense and uniform zinc oxide (ZnO) nanowires (NWs) with high aspect ratio (diameter ∼250 nm, length ∼12 μm) were grown within nanoporous polycarbonate (PC) templates. The energy conversion efficiency was found to be ∼4.2%, which is comparable to previously reported values for ZnO NWs. The resulting NG is found to have excellent fatigue performance, being relatively immune to detrimental environmental factors and mechanical failure, as the constituent ZnO NWs remain embedded and protected inside the polymer matrix. PMID:27172933

  5. PDV Probe Alignment Technique

    SciTech Connect

    Whitworth, T L; May, C M; Strand, O T

    2007-10-26

    This alignment technique was developed while performing heterodyne velocimetry measurements at LLNL. There are a few minor items needed, such as a white card with aperture in center, visible alignment laser, IR back reflection meter, and a microscope to view the bridge surface. The work was performed on KCP flyers that were 6 and 8 mils wide. The probes used were Oz Optics manufactured with focal distances of 42mm and 26mm. Both probes provide a spot size of approximately 80?m at 1550nm. The 42mm probes were specified to provide an internal back reflection of -35 to -40dB, and the probe back reflections were measured to be -37dB and -33dB. The 26mm probes were specified as -30dB and both measured -30.5dB. The probe is initially aligned normal to the flyer/bridge surface. This provides a very high return signal, up to -2dB, due to the bridge reflectivity. A white card with a hole in the center as an aperture can be used to check the reflected beam position relative to the probe and launch beam, and the alignment laser spot centered on the bridge, see Figure 1 and Figure 2. The IR back reflection meter is used to measure the dB return from the probe and surface, and a white card or similar object is inserted between the probe and surface to block surface reflection. It may take several iterations between the visible alignment laser and the IR back reflection meter to complete this alignment procedure. Once aligned normal to the surface, the probe should be tilted to position the visible alignment beam as shown in Figure 3, and the flyer should be translated in the X and Y axis to reposition the alignment beam onto the flyer as shown in Figure 4. This tilting of the probe minimizes the amount of light from the bridge reflection into the fiber within the probe while maintaining the alignment as near normal to the flyer surface as possible. When the back reflection is measured after the tilt adjustment, the level should be about -3dB to -6dB higher than the probes

  6. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    ERIC Educational Resources Information Center

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  7. Investigations on the growth and characterization of vertically aligned zinc oxide nanowires by radio frequency magnetronsputtering

    SciTech Connect

    Venkatesh, P. Sundara; Jeganathan, K.

    2013-04-15

    Undoped vertically aligned ZnO nanowires have been grown on silicon (111) substrates by the rf magnetron sputtering technique without metal catalyst. The diameter, length and density distributions of the nanowires have been analyzed with respect to the different growth durations. The tapering of the nanowires is observed for the growth duration of 120 min owing to the insufficient adatoms on the growth front. In the X-ray diffraction pattern, the dominant (002) peak with narrow full width at half maximum (FWHM) of ZnO nanowires indicates the c-axis orientation and high crystalline nature with hexagonal wurtzite crystal structure. The narrow FWHM of E{sub 2}{sup low} and E{sub 2}{sup high} phonon modes (1.4 and 9.1 cm{sup −1}) provide an additional evidence for the high crystalline and optical properties of the nanowires. The low temperature photoluminescence spectra are dominated by the green emission at∼2.28 eV induced by the electron transitions between shallow donor and acceptor energy levels. - Graphical abstract: Coalescence free vertically aligned ZnO nanowires have been grown on silicon (111) substrate by the radio frequency magnetron sputtering technique. Highlights: ► ZnO nanowires have been grown by rf magnetron sputtering. ► A morphologically superior and coalescence free ZnO nanowires have been realized. ► ZnO nanowires exhibit hexagonal wurtzite crystal structure. ► A dominant visible emission indicates the presence of point defects in nanowires.

  8. Evaluation of the interface of thin GaN layers on c- and m-plane ZnO substrates by Rutherford backscattering

    SciTech Connect

    Izawa, Y.; Oga, T.; Ida, T.; Kuriyama, K.; Hashimoto, A.; Kotake, H.; Kamijoh, T.

    2011-07-11

    Lattice distortion at the interfaces between thin GaN layers with {approx}400 nm in thickness and ZnO substrates with non-polar m-plane (10-10) and polar c-plane (0001) is studied using Rutherford backscattering/ion channeling techniques. The interface between GaN/m-plane ZnO is aligned clearly to m-axis, indicating no lattice distortion, while between GaN/c-plane ZnO causes the lattice distortion in the GaN layer due to the piezoelectric field. The range of distortion exceeds {approx}90 nm from the interface of GaN/c-plane ZnO. These results are confirmed by x-ray diffraction and reflection high energy electron diffraction studies.

  9. Controllable electrochemical synthesis of ZnO nanorod arrays on flexible ITO/PET substrate and their structural and optical properties

    NASA Astrophysics Data System (ADS)

    Ko, Yeong Hwan; Kim, Myung Sub; Yu, Jae Su

    2012-10-01

    The structural and optical properties of vertically aligned zinc oxide (ZnO) nanorod arrays (NRAs) which were grown on the flexible indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrate (i.e., ITO/PET substrate) with a thin sputtered ZnO seed layer via the electrochemical deposition method were studied. By changing the applied voltage and zinc nitrate concentration, the height/width and density of ZnO NRAs were controlled, with investigation on their crystallinity and optical properties. To understand the effect of ZnO seed layer on the growth property of ZnO nanorods, they were also grown on ITO/PET without any seed layer. Under an applied cathodic voltage of -2 V and zinc nitrate concentration of 10 mM, the ZnO NRAs increased the total transmittance up to 88.7% in the visible wavelength region due to the antireflective property and their X-ray diffraction (0 0 2) peak intensity was largely enhanced. Additionally, the near band edge emission of ZnO was significantly enhanced in photoluminescence spectrum. The light scattering and surface wetting properties were also explored.

  10. FMIT alignment cart

    SciTech Connect

    Potter, R.C.; Dauelsberg, L.B.; Clark, D.C.; Grieggs, R.J.

    1981-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility alignment cart must perform several functions. It must serve as a fixture to receive the drift-tube girder assembly when it is removed from the linac tank. It must transport the girder assembly from the linac vault to the area where alignment or disassembly is to take place. It must serve as a disassembly fixture to hold the girder while individual drift tubes are removed for repair. It must align the drift tube bores in a straight line parallel to the girder, using an optical system. These functions must be performed without violating any clearances found within the building. The bore tubes of the drift tubes will be irradiated, and shielding will be included in the system for easier maintenance.

  11. Barrel alignment fixture

    NASA Astrophysics Data System (ADS)

    Sheeley, J. D.

    1981-04-01

    Fabrication of slapper type detonator cables requires bonding of a thin barrel over a bridge. Location of the barrel hole with respect to the bridge is critical: the barrel hole must be centered over the bridge uniform spacing on each side. An alignment fixture which permits rapid adjustment of the barrel position with respect to the bridge is described. The barrel is manipulated by pincer-type fingers which are mounted on a small x-y table equipped with micrometer adjustments. Barrel positioning, performed under a binocular microscopy, is rapid and accurate. After alignment, the microscope is moved out of position and an infrared (IR) heat source is aimed at the barrel. A 5-second pulse of infrared heat flows the adhesive under the barrel and bonds it to the cable. Sapphire and Fotoform glass barrels were bonded successfully with the alignment fixture.

  12. Improved docking alignment system

    NASA Technical Reports Server (NTRS)

    Monford, Leo G. (Inventor)

    1988-01-01

    Improved techniques are provided for the alignment of two objects. The present invention is particularly suited for 3-D translation and 3-D rotational alignment of objects in outer space. A camera is affixed to one object, such as a remote manipulator arm of the spacecraft, while the planar reflective surface is affixed to the other object, such as a grapple fixture. A monitor displays in real-time images from the camera such that the monitor displays both the reflected image of the camera and visible marking on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.

  13. Optics Alignment Panel

    NASA Technical Reports Server (NTRS)

    Schroeder, Daniel J.

    1992-01-01

    The Optics Alignment Panel (OAP) was commissioned by the HST Science Working Group to determine the optimum alignment of the OTA optics. The goal was to find the position of the secondary mirror (SM) for which there is no coma or astigmatism in the camera images due to misaligned optics, either tilt or decenter. The despace position was reviewed of the SM and the optimum focus was sought. The results of these efforts are as follows: (1) the best estimate of the aligned position of the SM in the notation of HDOS is (DZ,DY,TZ,TY) = (+248 microns, +8 microns, +53 arcsec, -79 arcsec), and (2) the best focus, defined to be that despace which maximizes the fractional energy at 486 nm in a 0.1 arcsec radius of a stellar image, is 12.2 mm beyond paraxial focus. The data leading to these conclusions, and the estimated uncertainties in the final results, are presented.

  14. Liquid Crystal Alignment on Solution Derived Zinc Oxide Films via Ion Beam Irradiation.

    PubMed

    Park, Hong-Gyu; Han, Jae-Jun; Seo, Dae-Shik

    2016-03-01

    A 75-nm-thick ZnO film was deposited by a sol-gel method on indium-tin oxide (ITO)-coated glass. This film served as a liquid crystal (LC) alignment layer. We report the fabrication and characteristics of this film after ion-beam (IB) irradiation. Uniform LC alignment was achieved at an IB incident energy above 2400 eV. The IB-treated ZnO surface was analyzed by X-ray photoelectron spectroscopy (XPS), monitoring the intensity of the Zn 2p and O 1s peaks as a function of IB-irradiation energy density. The electro-optical (EO) characteristics of a twisted nematic-liquid crystal display (TN-LCD) were comparable to rubbed polyimide. PMID:27455726

  15. Structure-thermal property correlation of aligned silicon dioxide nanorod arrays

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Zhu, Yu; Wu, Xuewang; Song, Helun; Zhang, Yaohui; Wang, Xiaojia

    2016-06-01

    Quantitative characterization of thermal properties of nanorod (NR) arrays appears to be challenging due to the complex combination of high volume of air voids, anisotropy, and structural non-uniformity. This work investigates the structure-thermal property correlation of arrays consisting of either vertically aligned or slanted silicon dioxide (SiO2) NRs, fabricated by the dynamic shadowing growth technique. We apply the frequency-dependent time-domain thermoreflectance method to quantify the thermal properties of SiO2 NR arrays that may possess inhomogeneity along the depth direction. The effective thermal conductivities of four SiO2 NR array films and one reference capping layer for the SiO2 NR array are obtained. The impact of the structure on the effective thermal conductivities of the SiO2 NR array is discussed. The lowest effective thermal conductivity among all samples in this work is found to be 0.13 W m-1 K-1 for the slanted NR array. We attribute the reduction in the effective thermal conductivity of the NR array to the discontinuous nature of SiO2 NRs, which reduces the density of the thermal transport channels and thus prevents heat flux from propagating downwards along the through-plane direction. The results from this work facilitate the potential applications of NR-array-based thermal insulators for micro-thermal devices.

  16. MUSE optical alignment procedure

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Loupias, Magali; Kosmalski, Johan; Anwand, Heiko; Bacon, Roland; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dubois, Jean-Pierre; Dupuy, Christophe; Kelz, Andreas; Lizon, Jean-Louis; Nicklas, Harald; Parès, Laurent; Remillieux, Alban; Seifert, Walter; Valentin, Hervé; Xu, Wenli

    2012-09-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation VLT integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently assembling and testing MUSE in the Integration Hall of the Observatoire de Lyon for the Preliminary Acceptance in Europe, scheduled for 2013. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2011, all MUSE subsystems were integrated, aligned and tested independently in each institute. After validations, the systems were shipped to the P.I. institute at Lyon and were assembled in the Integration Hall This paper describes the end-to-end optical alignment procedure of the MUSE instrument. The design strategy, mixing an optical alignment by manufacturing (plug and play approach) and few adjustments on key components, is presented. We depict the alignment method for identifying the optical axis using several references located in pupil and image planes. All tools required to perform the global alignment between each subsystem are described. The success of this alignment approach is demonstrated by the good results for the MUSE image quality. MUSE commissioning at the VLT (Very Large Telescope) is planned for 2013.

  17. Orientation and Alignment Echoes

    NASA Astrophysics Data System (ADS)

    Karras, G.; Hertz, E.; Billard, F.; Lavorel, B.; Hartmann, J.-M.; Faucher, O.; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh.

    2015-04-01

    We present one of the simplest classical systems featuring the echo phenomenon—a collection of randomly oriented free rotors with dispersed rotational velocities. Following excitation by a pair of time-delayed impulsive kicks, the mean orientation or alignment of the ensemble exhibits multiple echoes and fractional echoes. We elucidate the mechanism of the echo formation by the kick-induced filamentation of phase space, and provide the first experimental demonstration of classical alignment echoes in a thermal gas of CO2 molecules excited by a pair of femtosecond laser pulses.

  18. Segment alignment control system

    NASA Technical Reports Server (NTRS)

    Aubrun, JEAN-N.; Lorell, Ken R.

    1988-01-01

    The segmented primary mirror for the LDR will require a special segment alignment control system to precisely control the orientation of each of the segments so that the resulting composite reflector behaves like a monolith. The W.M. Keck Ten Meter Telescope will utilize a primary mirror made up of 36 actively controlled segments. Thus the primary mirror and its segment alignment control system are directly analogous to the LDR. The problems of controlling the segments in the face of disturbances and control/structures interaction, as analyzed for the TMT, are virtually identical to those for the LDR. The two systems are briefly compared.

  19. Atomic scattering spectroscopy for determination of the polarity of semipolar AlN grown on ZnO

    SciTech Connect

    Kobayashi, Atsushi; Ohta, Jitsuo; Ueno, Kohei; Oshima, Masaharu; Fujioka, Hiroshi

    2013-11-04

    Determination of the polarity of insulating semipolar AlN layers was achieved via atomic scattering spectroscopy. The back scattering of neutralized He atoms on AlN surfaces revealed the atomic alignment of the topmost layers of semipolar AlN and the ZnO substrate. Pole figures of the scattering intensity were used to readily determine the polarity of these wurtzite-type semipolar materials. In addition, we found that +R-plane AlN epitaxially grows on −R-plane ZnO, indicating that the polarity flips at the semipolar AlN/ZnO interface. This polarity flipping is possibly explained by the appearance of −c and m-faces on the −R ZnO surfaces, which was also revealed by atomic scattering spectroscopy.

  20. The effect of growth temperature of seed layer on the structural and optical properties of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Gautam, Khyati; Singh, Inderpreet; Bhatnagar, P. K.; Peta, Koteswara Rao

    2016-05-01

    The structural and optical properties of ZnO nanorods are investigated as a function of growth temperature of the seed layer. The seed layer comprising of ZnO nanocrystallites is grown on ITO substrates at five different temperatures (150-550 °C) and the nanorods are grown on the seed layer by the facile hydrothermal method. The seed layer grown at 350 °C is observed to be uniformly textured with c-axis orientation leading to the synthesis of vertically aligned nanorods with smaller diameter. The HR-TEM analysis and the intense peak along (002) direction in the XRD spectra of this sample implied that the nanorods possess c-axis orientation. An enhanced UV emission is also observed in the photoluminescence spectra of this sample. The diversity in the morphology and orientation of the seeds at different temperatures has been explained by the growth kinetics of the ZnO nanocrystallites.

  1. Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices

    PubMed Central

    Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang

    2016-01-01

    Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers. PMID:27181337

  2. Synthesis of Ni(OH)2 nanoflakes on ZnO nanowires by pulse electrodeposition for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Lo, I.-Hsiang; Wang, Jun-Yi; Huang, Kuo-Yen; Huang, Jin-Hua; Kang, Weng P.

    2016-03-01

    A high-performance supercapacitor based on Ni(OH)2 nanoflakes modified ZnO nanowires (NWs) was developed. The well-aligned ZnO NWs were synthesized by chemical bath deposition, followed by pulse electrodeposition of Ni(OH)2 nanoflakes on the surface of ZnO NWs at 1 mA cm-2 current density. The effects of the pulse electrodeposition conditions were systematically investigated. Both the pulse time and relaxation time were found to affect the size and interspacing of the nanoflakes, while the deposition cycle number determines the thickness of the Ni(OH)2 nanoflake shell. The ZnO/Ni(OH)2 nanocomposite electrode fabricated under the optimal pulse electrodeposition conditions has exhibited a large specific capacitance of 1830 F g-1, a high energy density of 51.5 Wh kg-1, and a high power density of 9 kW kg-1, revealing its potential application in electrochemical capacitors.

  3. Plasmon-enhanced Electrically Light-emitting from ZnO Nanorod Arrays/p-GaN Heterostructure Devices.

    PubMed

    Lu, Junfeng; Shi, Zengliang; Wang, Yueyue; Lin, Yi; Zhu, Qiuxiang; Tian, Zhengshan; Dai, Jun; Wang, Shufeng; Xu, Chunxiang

    2016-01-01

    Effective and bright light-emitting-diodes (LEDs) have attracted broad interests in fundamental research and industrial application, especially on short wavelength LEDs. In this paper, a well aligned ZnO nanorod arrays grown on the p-GaN substrate to form a heterostructured light-emitting diode and Al nanoparticles (NPs) were decorated to improve the electroluminescence performance. More than 30-folds enhancement of the electroluminescence intensity was obtained compared with the device without Al NPs decoration. The investigation on the stable and transient photoluminescence spectraof the ZnO nanorod arrays before and after Al NPs decoration demonstrated that the metal surface plasmon resonance coupling with excitons of ZnO leads to the enhancement of the internal quantum efficiency (IQE). Our results provide aneffective approach to design novel optoelectronic devices such as light-emitting diodes and plasmonic nanolasers. PMID:27181337

  4. Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells

    SciTech Connect

    Lee, Yi-Mu; Yang, Hsi-Wen

    2011-03-15

    High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 {sup o}C) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 {sup o}C and solution concentration of 0.03 M possess highest aspect ratio of {approx}21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance. -- Graphical abstract: The ZnO nanorod arrays demonstrate well-alignment, high aspect ratio (L/D{approx}21) and excellent optical transmittance by low-temperature chemical bath deposition (CBD). Display Omitted Research highlights: > Investigate the processing parameters of CBD on the growth of ZnO nanorod arrays. > Optimization of CBD process parameters: 0.03 M solution concentration and reaction temperature of 95 {sup o}C. > The prepared ZnO samples possess well-alignment and high aspect ratio (L/D{approx}21). > An n-ZnO/p-NiO heterojunction: great rectifying behavior and low leakage current. > SS-DSSC has J{sub SC} of 0.31 mA/cm{sup 2} and V{sub OC} of 590 mV, and an improved {eta} of 0.059%.

  5. Local structures of copper-doped ZnO films

    NASA Astrophysics Data System (ADS)

    Ma, Qing; Buchholz, D. Bruce; Chang, Robert P. H.

    2008-12-01

    We report the local structures of a series of copper-doped zinc oxide films using polarization-dependent x-ray-absorption spectroscopy. The films were grown by pulsed-laser ablation under various conditions. The results show that films where copper exists solely as clusters are not ferromagnetic. The results also show that some of the copper-doped zinc oxide films are not ferromagnetic despite the fact that the copper substitution for zinc in the ZnO lattice is in the Cu2+ state, which provides the necessary unpaired spins for ferromagnetism. Therefore, Cu2+/Zn2+ substitution is not the only imperative condition for ferromagnetism to occur. We present characteristics unique to the electronic and atomic structure of ferromagnetic films and argue that the increased covalence of the CuZn-O bond found in these films is a prerequisite for the spin alignments in a substitutionally copper-doped zinc oxide film.

  6. Power generation from base excitation of a Kevlar composite beam with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Hwang, Hyun-Sik; Sodano, Henry A.

    2015-04-01

    One-dimensional nanostructures such as nanowires, nanorods, and nanotubes with piezoelectric properties have gained interest in the fabrication of small scale power harvesting systems. However, the practical applications of the nanoscale materials in structures with true mechanical strengths have not yet been demonstrated. In this paper, piezoelectric ZnO nanowires are integrated into the fiber reinforced polymer composites serving as an active phase to convert the induced strain energy from ambient vibration into electrical energy. Arrays of ZnO nanowires are grown vertically aligned on aramid fibers through a low-cost hydrothermal process. The modified fabrics with ZnO nanowires whiskers are then placed between two carbon fabrics as the top and the bottom electrodes. Finally, vacuum resin transfer molding technique is utilized to fabricate these multiscale composites. The fabricated composites are subjected to a base excitation using a shaker to generate charge due to the direct piezoelectric effect of ZnO nanowires. Measuring the generated potential difference between the two electrodes showed the energy harvesting application of these multiscale composites in addition to their superior mechanical properties. These results propose a new generation of power harvesting systems with enhanced mechanical properties.

  7. High intensity, plasma-induced emission from large area ZnO nanorod array cathodes

    SciTech Connect

    Liao Qingliang; Yang Ya; Qi Junjie; Zhang Yue; Huang Yunhua; Qin Zi; Xia Liansheng

    2008-11-15

    High intensity electron emission cathodes based on a well-aligned ZnO nanorod array were fabricated. An investigation of the properties of the plasma and the electron beams produced by ZnO nanorod array cathodes was presented. Intense current electron beams were obtained from the cathodes. At an electric field of 7-8 V/{mu}m and pulse duration of {approx}100 ns, the highest emission current density reached 76-91 A/cm{sup 2}. The production mechanism of the electron beams was the plasma-induced emission. The morphology and structure of the ZnO nanorod after the application of the accelerating pulses were characterized. The plasma expanded at a velocity of about 10.7 cm/{mu}s during the pulse interval. Whether the emission currents are high or low, the plasma on the cathode surface were always distributed uniformly. The ZnO nanorod array cathodes are expected to be applied to high power vacuum electronic devices as electron beam sources.

  8. Thin film epitaxy and structure property correlations for non-polar ZnO films

    SciTech Connect

    Pant, Punam; Budai, John D; Aggarwal, R; Narayan, Roger; Narayan, Jagdish

    2009-01-01

    Heteroepitaxial growth and strain relaxation were investigated in non-polar a-plane (11-20)ZnO films grown on r-plane (10-12)sapphire substrates in the temperature range 200-700 C by pulsed laser deposition. The lattice misfit in the plane of the film for this orientation varied from -1.26% in [0001] to ?18.52% in the [-1100] direction. The alignment of (11-20)ZnO planes parallel to (10-12)sapphire planes was confirmed by X-ray diffraction {theta}-2{theta} scans over the entire temperature range. X-ray {psi}-scans revealed the epitaxial relationship:[0001]ZnO[-1101]sap; [-1100]ZnO[-1-120]sap. Depending on the growth temperature, variations in the structural, optical and electrical properties were observed in the grown films. Room temperature photoluminescence for films grown at 700 C shows a strong band-edge emission. The ratio of the band-edge emission to green band emission is 135:1, indicating reduced defects and excellent optical quality of the films. The resistivity data for the films grown at 700 C shows semiconducting behavior with room temperature resistivity of 2.2 x 10{sup -3} {Omega}-cm.

  9. ZnO nano-array-based EGFET biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Qi, Junjie; Zhang, Huihui; Ji, Zhaoxia; Xu, Minxuan; Zhang, Yue

    2015-06-01

    Electrochemical biosensors are normally based on enzymatic catalysis of a reaction that produces or consumes electrons and the sensing membranes dominate the performance. In this work, ZnO nano-array-based EGFETs were fabricated for pH and glucose detection. The ZnO nano-arrays prepared via low-temperature hydrothermal method were well-aligned, with an average length of 2 μm and diameter of 100-150 nm, and have a typical hexagonal wurtzite structure. The sensor performed with a sensitivity of 45 mV/pH and response time of about 6-7 s from pH = 4-12. UV irradiation can improve the Vref response as a result of the formation of a depletion region at the surface of ZnO nanomaterials. Due to its high specific surface area, the ZnO nano-array EGFET sensor showed a sensitivity of -0.395 mV/μM to the glucose detection in a concentration range between 20 and 100 μM. These EGFET glucose biosensors demonstrate a low detectable concentration (20 μM) with good linearity, therefore may be used to detect glucose in saliva and tears at much lower concentrations than that in blood.

  10. Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO.

    PubMed

    Pereira, L M C; Wahl, U; Correia, J G; Van Bael, M J; Temst, K; Vantomme, A; Araújo, J P

    2013-10-16

    As the intrinsic origin of the high-temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn(1-x)Fe(x)O phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900 ° C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn-substitutional sites behave as localized paramagnetic moments down to 2 K, irrespective of the Fe concentration and the density of beam-induced defects. With increasing local concentration of Zn-substitutional Fe, strong nearest-cation-neighbor antiferromagnetic interactions favor the antiparallel alignment of the Fe moments. PMID:24025311

  11. Paramagnetism and antiferromagnetic interactions in single-phase Fe-implanted ZnO

    NASA Astrophysics Data System (ADS)

    Pereira, L. M. C.; Wahl, U.; Correia, J. G.; Van Bael, M. J.; Temst, K.; Vantomme, A.; Araújo, J. P.

    2013-10-01

    As the intrinsic origin of the high-temperature ferromagnetism often observed in wide-gap dilute magnetic semiconductors becomes increasingly debated, there is a growing need for comprehensive studies on the single-phase region of the phase diagram of these materials. Here we report on the magnetic and structural properties of Fe-doped ZnO prepared by ion implantation of ZnO single crystals. A detailed structural characterization shows that the Fe impurities substitute for Zn in ZnO in a wurtzite Zn1-xFexO phase which is coherent with the ZnO host. In addition, the density of beam-induced defects is progressively decreased by thermal annealing up to 900 ° C, from highly disordered after implantation to highly crystalline upon subsequent annealing. Based on a detailed analysis of the magnetometry data, we demonstrate that isolated Fe impurities occupying Zn-substitutional sites behave as localized paramagnetic moments down to 2 K, irrespective of the Fe concentration and the density of beam-induced defects. With increasing local concentration of Zn-substitutional Fe, strong nearest-cation-neighbor antiferromagnetic interactions favor the antiparallel alignment of the Fe moments.

  12. Vertical Alignment and Collaboration.

    ERIC Educational Resources Information Center

    Bergman, Donna; Calzada, Lucio; LaPointe, Nancy; Lee, Audra; Sullivan, Lynn

    This study investigated whether vertical (grade level sequence) alignment of the curriculum in conjunction with teacher collaboration would enhance student performance on the Texas Assessment of Academic Skills (TAAS) test in south Texas school districts of various sizes. Surveys were mailed to the office of the superintendent of 47 school…

  13. Curriculum Alignment: Establishing Coherence

    ERIC Educational Resources Information Center

    Gagné, Philippe; Dumont, Laurence; Brunet, Sabine; Boucher, Geneviève

    2013-01-01

    In this paper, we present a step-by-step guide to implement a curricular alignment project, directed at professional development and student support, and developed in a higher education French as a second language department. We outline best practices and preliminary results from our experience and provide ways to adapt our experience to other…

  14. Aligning brains and minds

    PubMed Central

    Tong, Frank

    2012-01-01

    In this issue of Neuron, Haxby and colleagues describe a new method for aligning functional brain activity patterns across participants. Their study demonstrates that objects are similarly represented across different brains, allowing for reliable classification of one person’s brain activity based on another’s. PMID:22017984

  15. Aligned-or Not?

    ERIC Educational Resources Information Center

    Roseman, Jo Ellen; Koppal, Mary

    2015-01-01

    When state leaders and national partners in the development of the Next Generation Science Standards met to consider implementation strategies, states and school districts wanted to know which materials were aligned to the new standards. The answer from the developers was short but not sweet: You won't find much now, and it's going to…

  16. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  17. Development of multifunctional fiber reinforced polymer composites through ZnO nanowire arrays

    NASA Astrophysics Data System (ADS)

    Malakooti, Mohammad H.; Patterson, Brendan A.; Hwang, Hyun-Sik; Sodano, Henry A.

    2016-04-01

    Piezoelectric nanowires, in particular zinc oxide (ZnO) nanowires, have been vastly used in the fabrication of electromechanical devices to convert wasted mechanical energy into useful electrical energy. Over recent years, the growth of vertically aligned ZnO nanowires on various structural fibers has led to the development of fiber-based nanostructured energy harvesting devices. However, the development of more realistic energy harvesters that are capable of continuous power generation requires a sufficient mechanical strength to withstand typical structural loading conditions. Yet, a durable, multifunctional material system has not been developed thoroughly enough to generate electrical power without deteriorating the mechanical performance. Here, a hybrid composite energy harvester is fabricated in a hierarchical design that provides both efficient power generating capabilities while enhancing the structural properties of the fiber reinforced polymer composite. Through a simple and low-cost process, a modified aramid fabric with vertically aligned ZnO nanowires grown on the fiber surface is embedded between woven carbon fabrics, which serve as the structural reinforcement as well as the top and the bottom electrodes of the nanowire arrays. The performance of the developed multifunctional composite is characterized through direct vibration excitation and tensile strength examination.

  18. Gold coated ZnO nanorod biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Anuradha; Jain, Chhavi; Rao, V. Padmanapan; Banerjee, S.

    2012-06-01

    Gold coated ZnO nanorod based biosensor has been fabricated for its glucose detecting abilities and compared with that of ZnO nanorod based biosensor. SEM images of electrochemically grown ZnO nanorods show hexagonally grown ZnO nanorods on an ITO substrate. Electrochemical analysis show that gold coated ZnO based biosensors have higher sensitivity, lower limit of detection and a wider linear range for glucose detection. The results demonstrate that gold coated ZnO nanorod based biosensors are a promising material for biosensor applications over single component ZnO nanorod based biosensor.

  19. Effect of lattice strain on structural and optical properties of ZnO nanorods grown by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Gautam, Khyati; Singh, Inderpreet; Nirwal, Varun Singh; Singh, Joginder; Peta, Koteswara Rao; Bhatnagar, P. K.

    2016-05-01

    In this work, we have synthesized ZnO nanorods over ZnO seeds/ITO/glass substrate by the facile hydrothermal method. ZnO seeds are grown at different temperatures ranging from 150°C to 550°C in steps of 100°C. We have studied the effect of strain on the structural and optical properties of ZnOnanorods. It was observed that the growth temperature of seed layer has an influence over the lattice strain present in the nanorods. The as synthesized nanorods were characterized by scanning electron microscope (SEM), x-ray diffraction (XRD) and photoluminescence (PL). SEM images confirm the formation of dense arrays of vertically aligned nanorods on seeds which are grown at 350°C. In addition to this, XRD patterns reveal that these ZnO nanorods are preferentially oriented along (002) direction. The strain analysis based on the XRD results reveals that the minimum value of strain is obtained at 350°C which is attributed to the improved crystalline quality of the interface of seed layer and nanorods leading to their c-axis alignment and enhancement of ultraviolet emission as observed in the PL spectra.

  20. MUSE alignment onto VLT

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dupuy, Christophe; Jarno, Aurélien; Lizon, Jean-Louis; Migniau, Jean-Emmanuel; Nicklas, Harald; Piqueras, Laure

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transported, fully aligned and without any optomechanical dismounting, onto VLT telescope where the first light was overcame the 7th of February, 2014. This paper describes the alignment procedure of the whole MUSE instrument with respect to the Very Large Telescope (VLT). It describes how 6 tons could be move with accuracy better than 0.025mm and less than 0.25 arcmin in order to reach alignment requirements. The success

  1. Controlled hydrothermal growth of ZnO nanostructures by sequestering the Zn metal ions with the chelating agent EDTA

    NASA Astrophysics Data System (ADS)

    Ram, S. D. Gopal; Ravi, G.; Manikandan, MR.; Mahalingam, T.; Anbu Kulandainathan, M.

    2011-10-01

    In the present work, a controlled growth of ZnO nanostructures by manipulating Zn metal ion concentration by the chelating action of ethylene diaminetetra acetic acid in hydrothermal method is studied. EDTA produces metal-chelate complex by the formation of bidentate ligand with Zn 2+ in the solution and diminishes the reactivity of Zn metal cations. Concentration of EDTA in the mother solution was varied in different ranges like 3, 5 and 10 mM while retaining the zinc metal salt and the NaOH concentration the same. Three different morphologies of wurtzite structured ZnO nanostructures such as nanorods-bunch, separate/discrete uniformly sized hexagonal nanorods and tapered flower petals like shapes are achieved by 3, 5 and 10 mM strengths of EDTA, respectively. The medium concentration 5 mM of EDTA is found to have moderate control over producing ZnO nanostructures of uniform diameter and a high aspect (length to diameter) ratio. An array of vertically aligned free standing ZnO nanorods with uniform spacing is successfully achieved by the addition of 5 mM of EDTA in the mother solution and the same is studied for its fluorescence property at an excitation of 325 nm and it has exhibited a characteristic UV emission of ZnO around 383 nm.

  2. Multiferroicity in ZnO nanodumbbell/BiFeO3 nanoparticle heterostructures

    NASA Astrophysics Data System (ADS)

    Mahesh, Dabbugalla; Mandal, Swapan K.

    2016-04-01

    We report here on the multiferroic properties of ZnO-BiFeO3 (BiFeO3 referred hereinafter as BFO) nanocomposite structures obtained by using a facile solution-based synthesis route. ZnO is found to grow in the form of well-crystallized and self-assembled dumbbell-like structures. BFO nanoparticles (NPs) are deposited onto ZnO nanodumbbells (NDs) to obtain ZnO-BFO heterostructures. The nanocomposites show prominent ferroelectric polarization hysteresis loop along with enhanced magnetization in comparison to pure BFO NPs. The ordered alignment of spins along with the suppression of Fe-O-Fe antiferromagnetic super-exchange interactions at the ZnO/BFO interface plausibly gives rise to observed multiferroic properties.

  3. Electrochemical synthesis of ZnO nanoflowers and nanosheets on porous Si as photoelectric materials

    NASA Astrophysics Data System (ADS)

    Kou, Huanhuan; Zhang, Xin; Du, Yongling; Ye, Weichun; Lin, Shaoxiong; Wang, Chunming

    2011-03-01

    Well-aligned ZnO nanoflowers and nanosheets were synthesized on porous Si (PS) at different applied potentials by electrodeposition approach. The deposits were grown using the optimized program and were characterized by means of cyclic voltammetry (CV), amperometry I-t (I-t), open-circuit potentiometry. X-ray diffraction (XRD) analysis proved a strong preferential orientation (1 0 0) on PS. Scanning electronic microscopy (SEM) observation showed the deposits consist of nanoflowers with uniform grain size of about 100 nm in diameter and nanosheets, which may have potential applications in nanodevices and nanotechnologies. Thus, ZnO grown on PS can be used as photoelectric materials due to its larger photoelectric effect compared to Si wafer according to open-circuit potential (OCP) study. Optical band gap measurements were made on samples using UV-visible spectrophotometer thus giving a band gap of 3.35 eV.

  4. Inflation by alignment

    SciTech Connect

    Burgess, C.P.; Roest, Diederik

    2015-06-08

    Pseudo-Goldstone bosons (pGBs) can provide technically natural inflatons, as has been comparatively well-explored in the simplest axion examples. Although inflationary success requires trans-Planckian decay constants, f≳M{sub p}, several mechanisms have been proposed to obtain this, relying on (mis-)alignments between potential and kinetic energies in multiple-field models. We extend these mechanisms to a broader class of inflationary models, including in particular the exponential potentials that arise for pGB potentials based on noncompact groups (and so which might apply to moduli in an extra-dimensional setting). The resulting potentials provide natural large-field inflationary models and can predict a larger primordial tensor signal than is true for simpler single-field versions of these models. In so doing we provide a unified treatment of several alignment mechanisms, showing how each emerges as a limit of the more general setup.

  5. Alignments of RNA structures.

    PubMed

    Blin, Guillaume; Denise, Alain; Dulucq, Serge; Herrbach, Claire; Touzet, Hélène

    2010-01-01

    We describe a theoretical unifying framework to express the comparison of RNA structures, which we call alignment hierarchy. This framework relies on the definition of common supersequences for arc-annotated sequences and encompasses the main existing models for RNA structure comparison based on trees and arc-annotated sequences with a variety of edit operations. It also gives rise to edit models that have not been studied yet. We provide a thorough analysis of the alignment hierarchy, including a new polynomial-time algorithm and an NP-completeness proof. The polynomial-time algorithm involves biologically relevant edit operations such as pairing or unpairing nucleotides. It has been implemented in a software, called gardenia, which is available at the Web server http://bioinfo.lifl.fr/RNA/gardenia. PMID:20431150

  6. On the alignment space.

    PubMed

    Shen, Shi-Yi; Wang, Kui; Hu, Gang; Chen, Lu-Sheng; Zhang, Hua; Xia, Shu-Tao

    2005-01-01

    Sequences with generalized errors which are called mutations in bioinformatics and generalized error-correcting codes are studied in this paper. In the areas of bioinformatics, computer science and information theory, sequences with generalized errors are discussed respectively for different aims. Firstly, we give the definitions of alignment distance and Levenshtein distance by expansion sequences and discuss their properties and relations. Then the modular structure theory is introduced for strictly describe the expansion sequences. We show that the expansion modular structures of sequences form a Boolean algebra. As applications of the modular structure theory, we give a new and more strict proof of triangle inequality for alignment distance. At last, the definition and construction of generalized error-correcting codes are studied, and some optimal codes with small length are listed. PMID:17282158

  7. Alignment reference device

    DOEpatents

    Patton, Gail Y.; Torgerson, Darrel D.

    1987-01-01

    An alignment reference device provides a collimated laser beam that minimizes angular deviations therein. A laser beam source outputs the beam into a single mode optical fiber. The output end of the optical fiber acts as a source of radiant energy and is positioned at the focal point of a lens system where the focal point is positioned within the lens. The output beam reflects off a mirror back to the lens that produces a collimated beam.

  8. Nuclear reactor alignment plate configuration

    DOEpatents

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  9. Dynamic Alignment at SLS

    SciTech Connect

    Ruland, Robert E.

    2003-04-23

    The relative alignment of components in the storage ring of the Swiss Light Source (SLS) is guaranteed by mechanical means. The magnets are rigidly fixed to 48 girders by means of alignment rails with tolerances of less than {+-}15 {micro}m. The bending magnets, supported by 3 point ball bearings, overlap adjacent girders and thus establish virtual train links between the girders, located near the bending magnet centres. Keeping the distortion of the storage ring geometry within a tolerance of {+-}100 {micro}m in order to guarantee sufficient dynamic apertures, requires continuous monitoring and correction of the girder locations. Two monitoring systems for the horizontal and the vertical direction will be installed to measure displacements of the train link between girders, which are due to ground settings and temperature effects: The hydrostatic levelling system (HLS) gives an absolute vertical reference, while the horizontal positioning system (HPS), which employs low cost linear encoders with sub-micron resolution, measures relative horizontal movements. The girder mover system based on five DC motors per girder allows a dynamic realignment of the storage ring within a working window of more than {+-}1 mm for girder translations and {+-}1 mrad for rotations. We will describe both monitoring systems (HLS and HPS) as well as the applied correction scheme based on the girder movers. We also show simulations indicating that beam based girder alignment takes care of most of the static closed orbit correction.

  10. Docking alignment system

    NASA Technical Reports Server (NTRS)

    Monford, Leo G. (Inventor)

    1990-01-01

    Improved techniques are provided for alignment of two objects. The present invention is particularly suited for three-dimensional translation and three-dimensional rotational alignment of objects in outer space. A camera 18 is fixedly mounted to one object, such as a remote manipulator arm 10 of the spacecraft, while the planar reflective surface 30 is fixed to the other object, such as a grapple fixture 20. A monitor 50 displays in real-time images from the camera, such that the monitor displays both the reflected image of the camera and visible markings on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm 10 manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.

  11. Polar cap arcs: Sun-aligned or cusp-aligned?

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paxton, L. J.; Zhang, Qinghe; Xing, Zanyang

    2016-08-01

    Polar cap arcs are often called sun-aligned arcs. Satellite observations reveal that polar cap arcs join together at the cusp and are actually cusp aligned. Strong ionospheric plasma velocity shears, thus field aligned currents, were associated with polar arcs and they were likely caused by Kelvin-Helmholtz waves around the low-latitude magnetopause under a northward IMF Bz. The magnetic field lines around the magnetopause join together in the cusp region so are the field aligned currents and particle precipitation. This explains why polar arcs are cusp aligned.

  12. Alignment and alignment transition of bent core nematics

    NASA Astrophysics Data System (ADS)

    Elamain, Omaima; Hegde, Gurumurthy; Komitov, Lachezar

    2013-07-01

    We report on the alignment of nematics consisting of bimesogen bent core molecules of chlorine substituent of benzene derivative and their binary mixture with rod like nematics. It was found that the alignment layer made from polyimide material, which is usually used for promoting vertical (homeotropic) alignment of rod like nematics, promotes instead a planar alignment of the bent core nematic and its nematic mixtures. At higher concentration of the rod like nematic component in these mixtures, a temperature driven transition from vertical to planar alignment was found near the transition to isotropic phase.

  13. Alignment as a Teacher Variable

    ERIC Educational Resources Information Center

    Porter, Andrew C.; Smithson, John; Blank, Rolf; Zeidner, Timothy

    2007-01-01

    With the exception of the procedures developed by Porter and colleagues (Porter, 2002), other methods of defining and measuring alignment are essentially limited to alignment between tests and standards. Porter's procedures have been generalized to investigating the alignment between content standards, tests, textbooks, and even classroom…

  14. Band alignment of ultra-thin hetero-structure ZnO/TiO{sub 2} junction

    SciTech Connect

    Shen, Kai; Wu, Kunjie; Wang, Deliang

    2014-03-01

    Graphical abstract: - Highlights: • Band alignment at the ZnO/TiO{sub 2} hetero-structural interface with different ZnO coating thickness was studied. • The valence band offset was decreased with increased ZnO coating layer thickness. • The interface dipole was responsible for the decreased band offset. - Abstract: The band alignment at the ZnO/TiO{sub 2} hetero-structure interface was measured by high resolution X-ray photoelectron spectroscopy. The valence band offset (E{sub ZnO}−E{sub TiO{sub 2}}){sub Valence} was linearly changed from 0.27 to 0.01 eV at the interface with increased ZnO coating thickness from 0.7 to 7 nm. The interface dipole presented at the ZnO/TiO{sub 2} interface was responsible for the decreased band offset. The band alignment of the ZnO/TiO{sub 2} heterojunction is a type II alignment.

  15. Solar Alignments - Identification and Analysis

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    The sun was such an important divinity in antiquity, and even today, that solar alignments should be expected within a large variety of places and cultures. These are probably the most conspicuous kind of astronomical alignments a field researcher can deal with. The need for a correct identification is thus evident. The different kind of solar phenomena susceptible of being determined by astronomical alignments will be scrutinized, following by the way in which such alignments can materialize in space. It will be shown that analyzing solar alignments is not always an easy task.

  16. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes.

    PubMed

    Forticaux, Audrey; Hacialioglu, Salih; DeGrave, John P; Dziedzic, Rafal; Jin, Song

    2013-09-24

    We report a three-dimensional (3D) mesoscale heterostructure composed of one-dimensional (1D) nanowire (NW) arrays epitaxially grown on two-dimensional (2D) nanoplates. Specifically, three facile syntheses are developed to assemble vertical ZnO NWs on CuGaO2 (CGO) nanoplates in mild aqueous solution conditions. The key to the successful 3D mesoscale integration is the preferential nucleation and heteroepitaxial growth of ZnO NWs on the CGO nanoplates. Using transmission electron microscopy, heteroepitaxy was found between the basal planes of CGO nanoplates and ZnO NWs, which are their respective (001) crystallographic planes, by the observation of a hexagonal Moiré fringes pattern resulting from the slight mismatch between the c planes of ZnO and CGO. Careful analysis shows that this pattern can be described by a hexagonal supercell with a lattice parameter of almost exactly 11 and 12 times the a lattice constants for ZnO and CGO, respectively. The electrical properties of the individual CGO-ZnO mesoscale heterostructures were measured using a current-sensing atomic force microscopy setup to confirm the rectifying p-n diode behavior expected from the band alignment of p-type CGO and n-type ZnO wide band gap semiconductors. These 3D mesoscale heterostructures represent a new motif in nanoassembly for the integration of nanomaterials into functional devices with potential applications in electronics, photonics, and energy. PMID:23952783

  17. Microwave-assisted Facile and Ultrafast Growth of ZnO Nanostructures and Proposition of Alternative Microwave-assisted Methods to Address Growth Stoppage

    PubMed Central

    Rana, Abu ul Hassan Sarwar; Kang, Mingi; Kim, Hyun-Seok

    2016-01-01

    The time constraint in the growth of ZnO nanostructures when using a hydrothermal method is of paramount importance in contemporary research, where a long fabrication time rots the very essence of the research on ZnO nanostructures. In this study, we present the facile and ultrafast growth of ZnO nanostructures in a domestic microwave oven within a pressurized environment in just a few minutes. This method is preferred for the conventional solution-based method because of the ultrafast supersaturation of zinc salts and the fabrication of high-quality nanostructures. The study of the effect of seed layer density, growth time, and the solution’s molar concentration on the morphology, alignment, density, and aspect ratio of ZnO nanorods (ZNRs) is explored. It is found in a microwave-assisted direct growth method that ~5 mins is the optimum time beyond which homogeneous nucleation supersedes heterogeneous nucleation, which results in the growth stoppage of ZNRs. To deal with this issue, we propound different methods such as microwave-assisted solution-replacement, preheating, and PEI-based growth methods, where growth stoppage is addressed and ZNRs with a high aspect ratio can be grown. Furthermore, high-quality ZnO nanoflowers and ZnO nanowalls are fabricated via ammonium hydroxide treatment in a very short time. PMID:27103612

  18. Microwave-assisted Facile and Ultrafast Growth of ZnO Nanostructures and Proposition of Alternative Microwave-assisted Methods to Address Growth Stoppage.

    PubMed

    Rana, Abu Ul Hassan Sarwar; Kang, Mingi; Kim, Hyun-Seok

    2016-01-01

    The time constraint in the growth of ZnO nanostructures when using a hydrothermal method is of paramount importance in contemporary research, where a long fabrication time rots the very essence of the research on ZnO nanostructures. In this study, we present the facile and ultrafast growth of ZnO nanostructures in a domestic microwave oven within a pressurized environment in just a few minutes. This method is preferred for the conventional solution-based method because of the ultrafast supersaturation of zinc salts and the fabrication of high-quality nanostructures. The study of the effect of seed layer density, growth time, and the solution's molar concentration on the morphology, alignment, density, and aspect ratio of ZnO nanorods (ZNRs) is explored. It is found in a microwave-assisted direct growth method that ~5 mins is the optimum time beyond which homogeneous nucleation supersedes heterogeneous nucleation, which results in the growth stoppage of ZNRs. To deal with this issue, we propound different methods such as microwave-assisted solution-replacement, preheating, and PEI-based growth methods, where growth stoppage is addressed and ZNRs with a high aspect ratio can be grown. Furthermore, high-quality ZnO nanoflowers and ZnO nanowalls are fabricated via ammonium hydroxide treatment in a very short time. PMID:27103612

  19. Studies on the structural and optical properties of zinc oxide nanobushes and Co-doped ZnO self-aggregated nanorods synthesized by simple thermal decomposition route

    SciTech Connect

    Freedsman, Joseph J.; Kennedy, L. John; Kumar, R. Thinesh; Sekaran, G.; Vijaya, J. Judith

    2010-10-15

    Pure and Co-doped zinc oxide nanomaterials were prepared by a simple low temperature synthesis and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution-transmission electron microscopy (HR-TEM), diffused reflectance spectroscopy (DRS) and electron paramagnetic resonance (EPR) techniques. The results showed the formation of nanobushes that consists of several nanowires for pure ZnO and the nanorods formed by self-aggregation for Co-doped ZnO. The presence of Co{sup 2+} ions replacing some of the Zn{sup 2+} in the ZnO lattice was confirmed by EPR and DRS studies. The mechanism for the formation of self-aggregated and self-aligned ZnO rods after the incorporation of cobalt in the lattice by the building block units is discussed in this study. Morphological studies were carried out using SEM and HR-TEM, which supports the validity of the proposed mechanism for the formation of ZnO nanobushes and Co-doped ZnO nanorods. The synthesized nanomaterials were found to have good optoelectronic properties.

  20. TSGC and JSC Alignment

    NASA Technical Reports Server (NTRS)

    Sanchez, Humberto

    2013-01-01

    NASA and the SGCs are, by design, intended to work closely together and have synergistic Vision, Mission, and Goals. The TSGC affiliates and JSC have been working together, but not always in a concise, coordinated, nor strategic manner. Today we have a couple of simple ideas to present about how TSGC and JSC have started to work together in a more concise, coordinated, and strategic manner, and how JSC and non-TSG Jurisdiction members have started to collaborate: Idea I: TSGC and JSC Technical Alignment Idea II: Concept of Clusters.

  1. Enhanced photoelectric performance in self-powered UV detectors based on ZnO nanowires with plasmonic Au nanoparticles scattered electrolyte

    NASA Astrophysics Data System (ADS)

    Zeng, Yiyu; Ye, Zhizhen; Lu, Bin; Dai, Wei; Pan, Xinhua

    2016-04-01

    Vertically aligned ZnO nanowires (NWs) were grown on a fluorine-doped tin-oxide-coated glass substrate by a hydrothermal method. Au nanoparticles were well dispersed in the mixed solution of ethanol and deionized water. A simple self-powered ultraviolet detector based on solid-liquid heterojunction was fabricated, utilizing ZnO NWs as active photoanode and such prepared mixed solution as electrolyte. The introduction of Au nanoparticles results in considerable improvements in the responsivity and sensitivity of the device compared with the one using deionized water as electrolyte, which is attributed to the enhanced light harvesting by Au nanoparticles.

  2. The nitridation of ZnO nanowires

    PubMed Central

    2012-01-01

    ZnO nanowires (NWs) with diameters of 50 to 250 nm and lengths of several micrometres have been grown by reactive vapour transport via the reaction of Zn with oxygen on 1 nm Au/Si(001) at 550°C under an inert flow of Ar. These exhibited clear peaks in the X-ray diffraction corresponding to the hexagonal wurtzite crystal structure of ZnO and a photoluminescence spectrum with a peak at 3.3 eV corresponding to band edge emission close to 3.2 eV determined from the abrupt onset in the absorption-transmission through ZnO NWs grown on 0.5 nm Au/quartz. We find that the post growth nitridation of ZnO NWs under a steady flow of NH3 at temperatures ≤600°C promotes the formation of a ZnO/Zn3N2 core-shell structure as suggested by the suppression of the peaks related to ZnO and the emergence of new ones corresponding to the cubic crystal structure of Zn3N2 while maintaining their integrity. Higher temperatures lead to the complete elimination of the ZnO NWs. We discuss the effect of nitridation time, flow of NH3, ramp rate and hydrogen on the conversion and propose a mechanism for the nitridation. PMID:22397754

  3. Shape controllable synthesis of ZnO nanorod arrays via vapor phase growth

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochen; Zhang, Hongzhou; Xu, Jun; Zhao, Qing; Wang, Rongming; Yu, Dapeng

    2004-03-01

    ZnO nanorod arrays with peculiar morphologies were synthesized on (111)-oriented Si substrate and glass via a vapor phase growth. The morphology of the individual nanorod can be flat-headed bottle-like, and needle-like, which depends on the deposition positions relative to the source materials in the presence of a controlling element Se. In addition, the arrays of all the three morphologies exhibit good alignment and high coverage. This fabrication technique can be also used to direct the controllable growth of other nanomaterials with similar morphologies.

  4. Conditional alignment random fields for multiple motion sequence alignment.

    PubMed

    Kim, Minyoung

    2013-11-01

    We consider the multiple time-series alignment problem, typically focusing on the task of synchronizing multiple motion videos of the same kind of human activity. Finding an optimal global alignment of multiple sequences is infeasible, while there have been several approximate solutions, including iterative pairwise warping algorithms and variants of hidden Markov models. In this paper, we propose a novel probabilistic model that represents the conditional densities of the latent target sequences which are aligned with the given observed sequences through the hidden alignment variables. By imposing certain constraints on the target sequences at the learning stage, we have a sensible model for multiple alignments that can be learned very efficiently by the EM algorithm. Compared to existing methods, our approach yields more accurate alignment while being more robust to local optima and initial configurations. We demonstrate its efficacy on both synthetic and real-world motion videos including facial emotions and human activities. PMID:24051737

  5. Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting

    NASA Astrophysics Data System (ADS)

    Boughey, Francesca L.; Davies, Timothy; Datta, Anuja; Whiter, Richard A.; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-07-01

    A piezoelectric nanogenerator has been fabricated using a simple, fast and scalable template-assisted electrodeposition process, by which vertically aligned zinc oxide (ZnO) nanowires were directly grown within a nanoporous polycarbonate (PC) template. The nanowires, having average diameter 184 nm and length 12 μm, are polycrystalline and have a preferred orientation of the [100] axis parallel to the long axis. The output power density of a nanogenerator fabricated from the as-grown ZnO nanowires still embedded within the PC template was found to be 151 ± 25 mW m‑3 at an impedance-matched load, when subjected to a low-level periodic (5 Hz) impacting force akin to gentle finger tapping. An energy conversion efficiency of ∼4.2% was evaluated for the electrodeposited ZnO nanowires, and the ZnO–PC composite nanogenerator was found to maintain good energy harvesting performance through 24 h of continuous fatigue testing. This is particularly significant given that ZnO-based nanostructures typically suffer from mechanical and/or environmental degradation that otherwise limits their applicability in vibrational energy harvesting. Our template-assisted synthesis of ZnO nanowires embedded within a protective polymer matrix through a single growth process is thus attractive for the fabrication of low-cost, robust and stable nanogenerators.

  6. Vertically aligned zinc oxide nanowires electrodeposited within porous polycarbonate templates for vibrational energy harvesting.

    PubMed

    Boughey, Francesca L; Davies, Timothy; Datta, Anuja; Whiter, Richard A; Sahonta, Suman-Lata; Kar-Narayan, Sohini

    2016-07-15

    A piezoelectric nanogenerator has been fabricated using a simple, fast and scalable template-assisted electrodeposition process, by which vertically aligned zinc oxide (ZnO) nanowires were directly grown within a nanoporous polycarbonate (PC) template. The nanowires, having average diameter 184 nm and length 12 μm, are polycrystalline and have a preferred orientation of the [100] axis parallel to the long axis. The output power density of a nanogenerator fabricated from the as-grown ZnO nanowires still embedded within the PC template was found to be 151 ± 25 mW m(-3) at an impedance-matched load, when subjected to a low-level periodic (5 Hz) impacting force akin to gentle finger tapping. An energy conversion efficiency of ∼4.2% was evaluated for the electrodeposited ZnO nanowires, and the ZnO-PC composite nanogenerator was found to maintain good energy harvesting performance through 24 h of continuous fatigue testing. This is particularly significant given that ZnO-based nanostructures typically suffer from mechanical and/or environmental degradation that otherwise limits their applicability in vibrational energy harvesting. Our template-assisted synthesis of ZnO nanowires embedded within a protective polymer matrix through a single growth process is thus attractive for the fabrication of low-cost, robust and stable nanogenerators. PMID:27256619

  7. The Impact of Grain Alignment of the Electron Transporting Layer on the Performance of Inverted Bulk Heterojunction Solar Cells.

    PubMed

    Murali, Banavoth; Labban, Abdulrahman El; Eid, Jessica; Alarousu, Erkki; Shi, Dong; Zhang, Qiang; Zhang, Xixiang; Bakr, Osman M; Mohammed, Omar F

    2015-10-21

    This report presents a new strategy for improving solar cell power conversion efficiencies (PCEs) through grain alignment and morphology control of the ZnO electron transport layer (ETL) prepared by radio frequency (RF) magnetron sputtering. The systematic control over the ETL's grain alignment and thickness is shown, by varying the deposition pressure and operating substrate temperature during the deposition. Notably, a high PCE of 6.9%, short circuit current density (J(sc)) of 12.8 mA cm(-2), open circuit voltage (V(oc)) of 910 mV, and fill factor of 59% are demonstrated using the poly(benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione):[6,6]-phenyl-C(71) -butyric acid methyl ester polymer blend with ETLs prepared at room temperature exhibiting oriented and aligned rod-like ZnO grains. Increasing the deposition temperature during the ZnO sputtering induces morphological cleavage of the rod-like ZnO grains and therefore reduced conductivity from 7.2 × 10(-13) to ≈1.7 × 10(-14) S m(-1) and PCE from 6.9% to 4.28%. An investigation of the charge carrier dynamics by femtosecond (fs) transient absorption spectroscopy with broadband capability reveals clear evidence of faster carrier recombination for a ZnO layer deposited at higher temperature, which is consistent with the conductivity and device performance. PMID:26270242

  8. Fabrication of ZnO nanoparticles by laser ablation of sintered ZnO in aqueous solution

    NASA Astrophysics Data System (ADS)

    Kawabata, Keisuke; Nanai, Yasushi; Kimura, Seiji; Okuno, Tsuyoshi

    2012-04-01

    Fabrication of ZnO nanoparticles by laser ablation in liquid medium is reported. The possibility of using a sintered ZnO target for the ablation as well as a Zn plate is demonstrated. The appropriate aqueous solution of sodium dodecyl sulfate is found to be 1 mM for ZnO growing. The shape of ZnO nanoparticles is sphere and its diameter is 30˜60 nm. Fourier transform infrared spectra, Raman scattering spectra, and photoluminescence spectra reveal the optical properties of ZnO nanoparticles. Nanoparticles obtained by using ZnO targets show a smaller defect density compared with those by using Zn targets.

  9. Plasmon enhanced CdS-quantum dot sensitized solar cell using ZnO nanorods array deposited with Ag nanoparticles as photoanode

    NASA Astrophysics Data System (ADS)

    Eskandari, M.; Ahmadi, V.; Yousefi rad, M.; Kohnehpoushi, S.

    2015-04-01

    CdS-quantum dot sensitized solar cell using ZnO nanorods (ZnO NRs) array deposited with Ag nanoparticles (Ag NPs) as photoanode was fabricated. Light absorption effect of Ag NPs on improvement of the cell performance was investigated. Performance improvement of metal nanoparticles (MNPs) was controlled by the structure design and architecture. Different decorations and densities of Ag NPs were utilized on the photoanode. Results showed that using 5% Ag NPs in the photoanode results in the increased efficiency, fill factor, and circuit current density from 0.28% to 0.60%, 0.22 to 0.29, and 2.18 mA/cm2 to 3.25 mA/cm2, respectively. Also, incident photon-to-current efficiencies (IPCE) results showed that cell performance improvement is related to enhanced absorption in the photoanode, which is because of the surface plasmonic resonance and light scattering of Ag NPs in the photoanode. Measurements of electrochemical impedance spectroscopy revealed that hole transfer kinetics increases with introduction of Ag NPs into photoanode. Also, it is shown that chemical capacitance increases with introduction of Ag NPs. Such increase can be attributed to the surface palsmonic resonance of Ag NPs which leads to absorption of more light in the photoanode and generation of more photoelectron in the photoanode.

  10. Single ZnO nanocactus gas sensor formed by etching of ZnO nanorod

    NASA Astrophysics Data System (ADS)

    Ryong Ryu, Sung; Ram, S. D. Gopal; Cho, Hak-Dong; Lee, Dong Jin; Won Kang, Tae; Woo, Yongdeuk

    2015-06-01

    Etching of materials on the nanoscale is a challenging but necessary process in nanomaterials science. Gas sensing using a single ZnO nanocactus (NC), which was prepared by facile isotropic nanoetching of zinc oxide nanorods (NR) grown by chemical vapor deposition (CVD) using an organic photoresist (PR) by a thermochemical reaction, is reported in this work. PR consists of carboxylic acid groups (COOH) and cyclopentanone (C5H8O), which can react with zinc and oxygen atoms, respectively, on the surface of a ZnO NR. The thermochemical reaction is controllable by varying the concentration of PR and reaction time. A gas sensor was fabricated using a single NC. Gas sensing was tested using different gases such as CH4, NH3 and carbon monoxide (CO). It was estimated that the surface area of a ZnO NC in the case of 50% PR was found to increase four-fold. When compared with a single ZnO NR gas sensor, the sensitivity of a ZnO NC was found to increase four-fold. This increase in sensitivity is attributed to the increase in surface area of the ZnO NC. The formed single ZnO NC gas sensor has good stability, response and recovery time.Etching of materials on the nanoscale is a challenging but necessary process in nanomaterials science. Gas sensing using a single ZnO nanocactus (NC), which was prepared by facile isotropic nanoetching of zinc oxide nanorods (NR) grown by chemical vapor deposition (CVD) using an organic photoresist (PR) by a thermochemical reaction, is reported in this work. PR consists of carboxylic acid groups (COOH) and cyclopentanone (C5H8O), which can react with zinc and oxygen atoms, respectively, on the surface of a ZnO NR. The thermochemical reaction is controllable by varying the concentration of PR and reaction time. A gas sensor was fabricated using a single NC. Gas sensing was tested using different gases such as CH4, NH3 and carbon monoxide (CO). It was estimated that the surface area of a ZnO NC in the case of 50% PR was found to increase four

  11. Influence of water content in mixed solvent on surface morphology, wettability, and photoconductivity of ZnO thin films

    PubMed Central

    2014-01-01

    ZnO thin films have been synthesized by means of a simple hydrothermal method with different solvents. The effect of deionized water content in the mixed solvents on the surface morphology, crystal structure, and optical property has been investigated by scanning electron microscopy, X-ray diffraction, and UV-Vis spectrophotometer. A large number of compact and well-aligned hexagonal ZnO nanorods and the maximal texture coefficient have been observed in the thin film, which is grown in the mixed solvent with x = 40%. A lot of sparse, diagonal, and pointed nanorods can be seen in the ZnO thin film, which is grown in the 40-mL DI water solution. The optical band gap decreases firstly and then increases with the increase of x. Reversible wettability of ZnO thin films were studied by home-made water contact angle apparatus. Reversible transition between hydrophobicity and hydrophilicity may be attributed to the change of surface chemical composition, surface roughness and the proportion of nonpolar planes on the surface of ZnO thin films. Photocurrent response of ZnO thin films grown at different solvents were measured in air. The response duration of the thin film, which is grown in the solvent with x = 40%, exhibits a fast growth in the beginning but cannot approach the saturate current value within 100 s. The theoretical mechanism for the slower growth or decay duration of the photocurrent has been discussed in detail. PMID:25249823

  12. Electrosynthesis of ZnO nanorods and nanotowers: Morphology and X-ray Absorption Near Edge Spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Sigircik, Gokmen; Erken, Ozge; Tuken, Tunc; Gumus, Cebrail; Ozkendir, Osman M.; Ufuktepe, Yuksel

    2015-06-01

    Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn2+ and OH-) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (Tc) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated Eg values are in the range 3.28-3.41 eV and 3.22-3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm2 V-1 s-1 and 126.2 to 204.7 cm2 V-1 s-1 for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K-edge spectrum is dominated by the transition of Zn 1s core electrons into the unoccupied Zn 4p states of the conduction band. Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valence band electrons is different. Moreover, the density states of Zn 4p are higher for ZnO nanorods.

  13. Fourier transform interferometer alignment method.

    PubMed

    Goldberg, Kenneth A; Naulleau, Patrick; Bokor, Jeffrey

    2002-08-01

    A rapid and convenient method has been developed to facilitate the alignment of the image-plane components of point-diffraction interferometers, including the phase-shifting point-diffraction interferometer. In real time, the Fourier transform of the detected image is used to calculate a pseudoimage of the electric field in the image plane of the test optic where thecritical alignment o f variousoptical components is performed. Reconstruction of the pseudoimage is similar to off-axis, Fourier transform holography. Intermediate steps in the alignment procedure are described. Fine alignment is aided by the introduction and optimization of a global-contrast parameter that is easily calculated from the Fourier transform. Additional applications include the alignment of image-plane apertures in general optical systems, the rapid identification of patterned image-plane alignment marks, and the probing of important image-plane field properties. PMID:12153074

  14. Onorbit IMU alignment error budget

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.

  15. Nuclear reactor internals alignment configuration

    DOEpatents

    Gilmore, Charles B.; Singleton, Norman R.

    2009-11-10

    An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

  16. Direct determination of the band alignment at the (Zn,Mg)O/CISSe interface

    SciTech Connect

    Erfurth, F.; Reinert, F.; Weinhardt, L.; Grimm, A.; Palm, J.; Niesen, T. P.; Umbach, E.

    2011-04-04

    The electronic and chemical properties of the (Zn{sub 1-x},Mg{sub x})O/CuIn(S,Se){sub 2} interface, prepared by sputtering of thin (Zn,Mg)O layers, were investigated with direct and inverse photoelectron spectroscopy on in situ prepared samples. With the combination of both techniques we have determined the band alignment at this interface as a function of Mg-content in the range 0{<=}x{<=}0.30. We find that the band alignment at the interface can be tailored between a ''cliff'' (downward step) in the conduction band for pure ZnO and a 'spike' (upward step) for high Mg-contents. A direct influence of the band alignment modifications on the solar cell parameters is found.

  17. Ultra-violet Sensing Characteristic and Field Emission Properties of Vertically Aligned Aluminum Doped Zinc Oxide Nanorod Arrays

    SciTech Connect

    Mamat, M. H.; Malek, M. F.; Musa, M. Z.; Khusaimi, Z.; Rusop, M.

    2011-05-25

    Ultra-violet (UV) sensing behavior and field emission characteristic have been investigated on vertically aligned aluminum (Al) doped zinc oxide (ZnO) nanorod arrays prepared using sol-gel immersion method. Uniform and high coverage density of ZnO nanorod arrays have been successfully deposited on seeded-catalyst coated substrates. The synthesized nanorods have diameter sizes between 50 nm to 150 nm. The XRD spectra show Al doped ZnO nanorod array has high crystallinity properties with the dominancy of crystal growth along (002) plane or c-axis. UV photoresponse measurement indicates that Al doped ZnO nanorod array sensitively detects UV light as shown by conductance increment after UV illumination exposure. The nanorod array shows good field emission properties with low turn on field and threshold field at 2.1 V/{mu}m and 5.6 V/{mu}m, respectively. The result suggested that Al doped ZnO nanorod arrays prepared by low-cost sol-gel immersion method show promising result towards fabrication of multi applications especially in UV photoconductive sensor and field emission displays.

  18. Aligned Defrosting Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    17 August 2004 This July 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a group of aligned barchan sand dunes in the martian north polar region. At the time, the dunes were covered with seasonal frost, but the frost had begun to sublime away, leaving dark spots and dark outlines around the dunes. The surrounding plains exhibit small, diffuse spots that are also the result of subliming seasonal frost. This northern spring image, acquired on a descending ground track (as MGS was moving north to south on the 'night' side of Mars) is located near 78.8oN, 34.8oW. The image covers an area about 3 km (1.9 mi) across and sunlight illuminates the scene from the upper left.

  19. Alignment system for encoders

    NASA Technical Reports Server (NTRS)

    Villani, Daniel D. (Inventor)

    1988-01-01

    An improved encoder alignment system is disclosed which provides an indication of the extent of misalignment and a measure of the rate at which the misalignment may be changing. The invention is adapted for use with a conventional encoder which provides a digital coarse word having at least significant bit and a digital fine word having a least significant bit and a most significant bit. The invention generates the exclusive or of the least significant bit of the coarse digital signal and the least significant bit of the fine digital signal to provide a first signal. The invention then generates the exclusive or of the first signal and the complement of the most significant bit of the fine digital signal to provide an output signal which represents the misalignment of the encoder.

  20. Lunar Alignments - Identification and Analysis

    NASA Astrophysics Data System (ADS)

    González-García, A. César

    Lunar alignments are difficult to establish given the apparent lack of written accounts clearly pointing toward lunar alignments for individual temples. While some individual cases are reviewed and highlighted, the weight of the proof must fall on statistical sampling. Some definitions for the lunar alignments are provided in order to clarify the targets, and thus, some new tools are provided to try to test the lunar hypothesis in several cases, especially in megalithic astronomy.

  1. Gold Alignment and Internal Dissipation

    NASA Astrophysics Data System (ADS)

    Lazarian, A.

    1997-07-01

    The measures of mechanical alignment are obtained for both prolate and oblate grains whose temperatures are comparable to the grain kinetic energy divided by k, the Boltzmann constant. For such grains, the alignment of angular momentum, J, with the axis of maximal inertia, a, is only partial, which substantially alters the mechanical alignment as compared with the results obtained by Lazarian and Roberge, Hanany, & Messinger under the assumption of perfect alignment. We also describe Gold alignment when the Barnett dissipation is suppressed and derive an analytical expression that relates the measure of alignment to the parameters of grain nonsphericity and the direction of the gas-grain drift. This solution provides the lower limit for the measure of alignment, while the upper limit is given by the method derived by Lazarian. Using the results of a recent study of incomplete internal relaxation by Lazarian & Roberge, we find measures of alignment for the whole range of ratios of grain rotational energy to kTs, where Ts is the grain temperature. To describe alignment for mildly supersonic drifts, we suggest an analytical approach that provides good correspondence with the results of direct numerical simulations by Roberge, Hanany, & Messinger. We also extend our approach to account for simultaneous action of the Gold and Davis-Greenstein mechanisms.

  2. Photovoltaic performance of Gallium-doped ZnO thin film/Si nanowires heterojunction diodes

    NASA Astrophysics Data System (ADS)

    Akgul, Guvenc; Aksoy Akgul, Funda; Emrah Unalan, Husnu; Turan, Rasit

    2016-04-01

    In this work, photovoltaic performance of Ga-doped ZnO thin film/Si NWs heterojunction diodes was investigated. Highly dense and vertically well-aligned Si NW arrays were successfully synthesised on a p-type (1 0 0)-oriented Si wafer through cost-effective metal-assisted chemical etching technique. Ga-doped ZnO thin films were deposited onto Si NWs via radio frequency magnetron sputtering to construct three-dimensional heterostructures. Photovoltaic characteristics of the fabricated diodes were determined with current density (J)-voltage (V) measurements under simulated solar irradiation of AM 1.5 G. The optimal open-circuit voltage, short-circuit current density, fill factor and power conversion efficiency were found to be 0.37 V, 3.30 mA cm-2, 39.00 and 0.62%, respectively. Moreover, photovoltaic diodes exhibited relatively high external quantum efficiency over the broadband wavelengths between 350 and 1100 nm interval of the spectrum. The observed photovoltaic performance in this study clearly indicates that the investigated device structure composed of Ga-doped ZnO thin film/Si NWs heterojunctions could facilitate an alternative pathway for optoelectronic applications in future, and be a promising alternative candidate for high-performance low-cost new-generation photovoltaic diodes.

  3. Enhanced power efficiency of ZnO based organic/inorganic solar cells by surface modification

    NASA Astrophysics Data System (ADS)

    Tang, Shuangshuang; Tang, Ning; Meng, Xiuqing; Huang, Shihua; Hao, Yafei

    2016-09-01

    We present series of strategies to enhance efficiency of ZnO nanorods based organic/inorganic solar cells with spin-coated P3HT:PCBM blend as active layer. The performance of the as-fabricated devices is improved by controlling the size of ZnO nanorods, annealing temperature and time of active layer, surface modification of ZnO with PSBTBT. Optimized device of ITO/ZnO nanorod/P3HT:PCBM/Ag device with PSBTBT surface modification and air exposure reaches an efficiency of 2.02% with a short-circuit current density, open-circuit voltage and fill factor of 13.23 mA cm-2, 0.547 V and 28%, respectively, under AM 1.5 irradiation of 100 mW m-2, the increase in efficiency is 7-fold of the PSBTBT surface modified ITO/ZnO nanorods/P3HT:PCBM/Ag device compared with the unmodified one, which is own to the increased interface contact, expanded light absorption, tailored band alignment attributed to PSBTBT. We found exposure to air and surface modification is crucial to improve the device performance, and we discussed the mechanisms that affect the performance of the devices in detail.

  4. Growth of epitaxial ZnO films on sapphire substrates by plasma assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hyndman, Adam R.; Allen, Martin W.; Reeves, Roger J.

    2014-03-01

    Epitaxial layers of ZnO have been grown on c-plane, (0001) sapphire substrates by plasma assisted molecular beam epitaxy. The oxygen:zinc flux ratio was found to be crucial in obtaining a film with a smooth surface and good crystallinity. When increasing film thickness from ~80 to 220 nm we observed an increase in the streakiness of RHEED images, and XRD revealed a reduction in crystal strain and increase in crystal alignment. A film with surface roughness of 0.5 nm and a XRD rocking curve FWHM of 0.1 for the main ZnO peak (0002) was achieved by depositing a low temperature ZnO buffer layer at 450 °C and then growing for 120 minutes at 700 °C with a Zn-cell temperature of 320 °C and an oxygen partial pressure of 7e-7 Torr. We found novel structures on two samples grown outside of our ideal oxygen:zinc flux ratio. SEM images of a sample believed to have been grown in a Zn-rich environment showed flower like structures up to 150 um in diameter which appear to have formed during growth. Another sample believed to have been deposited in a Zn-deficient environment had rings approximately 1.5 um in diameter scattered on its surface.

  5. High surface-to-volume ratio ZnO microberets: low temperature synthesis, characterization, and photoluminescence.

    PubMed

    Lu, Hongbing; Liao, Lei; Li, Jinchai; Wang, Duofa; He, Hui; Fu, Qiang; Xu, Lei; Tian, Yu

    2006-11-23

    Novel hollow ZnO microstructures and ZnO microberets (ZMBs) with nanowires grown vertically on both the inner and outer surfaces of beret shells were synthesized on Si(100) substrates by simple thermal evaporation of pure zinc powder without any catalyst or template material at a relative low temperature of 490 degrees C. XRD, SAED, and HRTEM patterns show that the nanowires and shells of ZMBs are single-crystalline wurtzite structures. The growth mechanism of ZMBs is discussed in detail. The formation of these hollow microstructures depends on the optimum starting time of air introduction. It is a good way to grow well-aligned nanowires by using a nanoscale rough ZnO surface to realize a "self-catalyzed" vapor-liquid-solid process. The photoluminescence spectrum reveals a strong green emission related to the high surface-to-volume ratio of ZMBs. These types of special hollow high surface area structural ZMBs may find potential applications in functional architectural composite materials, solar cell photoanodes, and nanooptoelectronic devices. PMID:17107167

  6. Detection of quantum well induced single degenerate-transition-dipoles in ZnO nanorods.

    PubMed

    Ghosh, Siddharth; Ghosh, Moumita; Seibt, Michael; Rao, G Mohan

    2016-02-01

    Quantifying and characterising atomic defects in nanocrystals is difficult and low-throughput using the existing methods such as high resolution transmission electron microscopy (HRTEM). In this article, using a defocused wide-field optical imaging technique, we demonstrate that a single ultrahigh-piezoelectric ZnO nanorod contains a single defect site. We model the observed dipole-emission patterns from optical imaging with a multi-dimensional dipole and find that the experimentally observed dipole pattern and model-calculated patterns are in excellent agreement. This agreement suggests the presence of vertically oriented degenerate-transition-dipoles in vertically aligned ZnO nanorods. The HRTEM of the ZnO nanorod shows the presence of a stacking fault, which generates a localised quantum well induced degenerate-transition-dipole. Finally, we elucidate that defocused wide-field imaging can be widely used to characterise defects in nanomaterials to answer many difficult questions concerning the performance of low-dimensional devices, such as in energy harvesting, advanced metal-oxide-semiconductor storage, and nanoelectromechanical and nanophotonic devices. PMID:26691877

  7. Continuous wet-process growth of ZnO nanoarrays for wire-shaped photoanode of dye-sensitized solar cell.

    PubMed

    Tao, Pan; Guo, Wanwan; Du, Jun; Tao, Changyuan; Qing, Shenglan; Fan, Xing

    2016-09-15

    Well-aligned ZnO nanorod arrays have been grown on metal-plated polymer fiber via a mild wet process in a newly-designed continuous reactor, aiming to provide wire-shaped photoanodes for wearable dye-sensitized solar cells. The growth conditions were systematically optimized with the help of computational flow-field simulation. The flow field in the reactor will not only affect the morphology of the ZnO nanorod⧹nanowire but also affect the pattern distribution of nanoarray on the electrode surface. Unlike the sectional structure from the traditional batch-type reactor, ZnO nanorods with finely-controlled length and uniform morphology could be grown from the continuous reactor. After optimization, the wire-shaped ZnO-type photoanode grown from the continuous reactor exhibited better photovoltaic performance than that from the traditional batch-type reactor. PMID:27289432

  8. Enhanced photoelectrochemical activity of vertically aligned ZnO-coated TiO{sub 2} nanotubes

    SciTech Connect

    Cai, Hua; Yang, Qin; You, Qinghu; Sun, Jian; Xu, Ning; Wu, Jiada; Hu, Zhigao; Duan, Zhihua

    2014-02-03

    Vertically aligned ZnO-TiO{sub 2} hetero-nanostructures constructed of anatase TiO{sub 2} nanotubes (NTs) and wurtzite ZnO coatings are fabricated by atomic layer deposition of ZnO coatings on electrochemical anodization formed TiO{sub 2} NTs, and their photoelectrochemical activities are studied through photoelectrochemical and electrochemical characterization. Compared with bare TiO{sub 2} NTs, the transient photocurrent increases to over 1.5-fold for the annealed ZnO-coated TiO{sub 2} NTs under visible illumination. The ZnO-coated TiO{sub 2} NTs also show a longer electron lifetime, a lower charge-transfer resistance and a more negative flat-band potential than the bare TiO{sub 2} NTs, confirming the improved photoelectrochemical activity due to the enhanced charge separation.

  9. Photoelectron spectroscopic study of band alignment of polymer/ZnO photovoltaic device structure

    SciTech Connect

    Nagata, T.; Chikyow, T.; Oh, S.; Wakayama, Y.; Yamashita, Y.; Yoshikawa, H.; Kobayashi, K.; Ikeno, N.

    2013-01-28

    Using x-ray photoelectron spectroscopy, we investigated the band alignment of a Ag/poly(3-hexylthiophene-2,5-diyl) (P3HT)/ZnO photovoltaic structure. At the P3HT/ZnO interface, a band bending of P3HT and a short surface depletion layer of ZnO were observed. The offset between the highest occupied molecular orbital of P3HT and the conduction band minimum of ZnO at the interface contributed to the open circuit voltage (Voc) was estimated to be approximately 1.5 {+-} 0.1 eV, which was bigger than that of the electrically measured effective Voc of P3HT/ZnO photovoltaic devices, meaning that the P3HT/ZnO photovoltaic structure has the potential to provide improved photovoltaic properties.

  10. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    DOE PAGESBeta

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and themore » dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.« less

  11. First-principles approach to calculating energy level alignment at aqueous semiconductor interfaces

    SciTech Connect

    Kharche, Neerav; Muckerman, James T.; Hybertsen, Mark S.

    2014-10-21

    A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b₁ energy level in water. The application to the specific cases of nonpolar (101¯0 ) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. As a result, these effects contribute up to 0.5 eV.

  12. Synthesis and antibacterial properties of ZnO brush pens

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Zhang, Rong; Li, Yilin; Weng, Yuan; Liang, Weiquan; Zhang, Wenfeng; Zheng, Weitao; Hu, Haimei

    2015-12-01

    In this paper, ZnO with a novel hierarchical nanostructure has been synthesized by a new solution method. The novel hierarchical structure is named a ‘brush pen’. The biocompatibility and antibacterial properties of ZnO brush pens have been evaluated. The results demonstrate that ZnO brush pens show good antibacterial activity against Staphylococcus aureus.

  13. Study of faceted Au nanoparticle capped ZnO nanowires: antireflection, surface enhanced Raman spectroscopy and photoluminescence aspects

    NASA Astrophysics Data System (ADS)

    Ghosh, A.; Juluri, R. R.; Guha, P.; Sathyavathi, R.; Dash, Ajit; Jena, B. K.; Satyam, P. V.

    2015-02-01

    We report a single step growth process of faceted Au nanoparticles (NPs) on highly c-axis oriented ZnO nanowires (NWs) and report that a system with a lower antireflection coefficient also showed higher surface enhanced Raman spectroscopy (SERS) enhanced factors. Well-dispersed Au NPs are grown on silicon substrate using a thin film-in-air-annealing method (using 1 nm and 5 nm thick Au films on silicon and subsequent annealing in air at 800 °C) wherein enhanced oxide growth at the Au-Si interface was used to inhibit inter-diffusion to avoid Au-Si alloy formation (Au/SiOx/Si). These substrates are used to grow aligned ZnO NWs using a high temperature (≈900 °C) chemical vapour deposition method. Depending on the size and areal density of initial catalytic Au NPs, the resultant photoluminescence, reflectance characteristics, and effectiveness as SERS substrates of the faceted Au NP capped ZnO NWs coatings are systematically studied. The highly oriented and faceted Au NPs on ZnO NWs have been used as free standing SERS substrates to detect sub-micro molar crystal violet molecules with an analytical enhancement factor (AEF) of ≥104 and with high repeatability. The substrate with high-density Au-ZnO heterostructures (5 nm Au case) found to have larger AEF, very low reflectance (≈0.75%) and more green emission.

  14. Drive alignment pays maintenance dividends

    SciTech Connect

    Fedder, R.

    2008-12-15

    Proper alignment of the motor and gear drive on conveying and processing equipment will result in longer bearing and coupling life, along with lower maintenance costs. Selecting an alignment free drive package instead of a traditional foot mounted drive and motor is a major advancement toward these goals. 4 photos.

  15. Lexical alignment in triadic communication

    PubMed Central

    Foltz, Anouschka; Gaspers, Judith; Thiele, Kristina; Stenneken, Prisca; Cimiano, Philipp

    2015-01-01

    Lexical alignment refers to the adoption of one’s interlocutor’s lexical items. Accounts of the mechanisms underlying such lexical alignment differ (among other aspects) in the role assigned to addressee-centered behavior. In this study, we used a triadic communicative situation to test which factors may modulate the extent to which participants’ lexical alignment reflects addressee-centered behavior. Pairs of naïve participants played a picture matching game and received information about the order in which pictures were to be matched from a voice over headphones. On critical trials, participants did or did not hear a name for the picture to be matched next over headphones. Importantly, when the voice over headphones provided a name, it did not match the name that the interlocutor had previously used to describe the object. Participants overwhelmingly used the word that the voice over headphones provided. This result points to non-addressee-centered behavior and is discussed in terms of disrupting alignment with the interlocutor as well as in terms of establishing alignment with the voice over headphones. In addition, the type of picture (line drawing vs. tangram shape) independently modulated lexical alignment, such that participants showed more lexical alignment to their interlocutor for (more ambiguous) tangram shapes compared to line drawings. Overall, the results point to a rather large role for non-addressee-centered behavior during lexical alignment. PMID:25762955

  16. Semiautomated improvement of RNA alignments

    PubMed Central

    Andersen, Ebbe S.; Lind-Thomsen, Allan; Knudsen, Bjarne; Kristensen, Susie E.; Havgaard, Jakob H.; Torarinsson, Elfar; Larsen, Niels; Zwieb, Christian; Sestoft, Peter; Kjems, Jørgen; Gorodkin, Jan

    2007-01-01

    We have developed a semiautomated RNA sequence editor (SARSE) that integrates tools for analyzing RNA alignments. The editor highlights different properties of the alignment by color, and its integrated analysis tools prevent the introduction of errors when doing alignment editing. SARSE readily connects to external tools to provide a flexible semiautomatic editing environment. A new method, Pcluster, is introduced for dividing the sequences of an RNA alignment into subgroups with secondary structure differences. Pcluster was used to evaluate 574 seed alignments obtained from the Rfam database and we identified 71 alignments with significant prediction of inconsistent base pairs and 102 alignments with significant prediction of novel base pairs. Four RNA families were used to illustrate how SARSE can be used to manually or automatically correct the inconsistent base pairs detected by Pcluster: the mir-399 RNA, vertebrate telomase RNA (vert-TR), bacterial transfer-messenger RNA (tmRNA), and the signal recognition particle (SRP) RNA. The general use of the method is illustrated by the ability to accommodate pseudoknots and handle even large and divergent RNA families. The open architecture of the SARSE editor makes it a flexible tool to improve all RNA alignments with relatively little human intervention. Online documentation and software are available at http://sarse.ku.dk. PMID:17804647

  17. Well-pump alignment system

    DOEpatents

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  18. On the alignment of quasars

    NASA Astrophysics Data System (ADS)

    Zhu, X.-F.

    1986-06-01

    Taking the two Savage-Bolton 5 deg x 5 deg regions of optical quasar patrol as samples, a systematic analysis of the number of aligned quasars was made and compared with the random data generated by Monte Carlo method. The statistical result is that, at least for these two samples, there is no clear evidence for alignment.

  19. On the alignment of quasars

    NASA Astrophysics Data System (ADS)

    Zhu, Xing-fen

    1986-06-01

    Taking the two Savage-Bolton 5° × 5° regions of optical quasar patrol as samples, I made a systematic analysis of the number of aligned quasars and compared with the random data generated by Monte Carlo method. The statistical result is that, at least for these two samples, there is no clear evidence for alignment.

  20. CATO: The Clone Alignment Tool.

    PubMed

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow. PMID:27459605

  1. CATO: The Clone Alignment Tool

    PubMed Central

    Henstock, Peter V.; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow. PMID:27459605

  2. Space Mirror Alignment System

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.

    2011-01-01

    An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.

  3. Alignment positioning mechanism

    NASA Technical Reports Server (NTRS)

    Fantasia, Peter M. (Inventor)

    1991-01-01

    An alignment positioning mechanism for correcting and compensating for misalignment of structures to be coupled is disclosed. The mechanism comprises a power screw with a base portion and a threaded shank portion. A mounting fixture is provided for rigidly coupling said base portion to the mounting interface of a supporting structure with the axis of the screw perpendicular thereto. A traveling ball nut threaded on the power screw is formed with an external annular arcuate surface configured in the form of a spherical segment and enclosed by a ball nut housing with a conforming arcuate surface for permitting gimballed motion thereon. The ball nut housing is provided with a mounting surface which is positionable in cooperable engagement with the mounting interface of a primary structure to be coupled to the supporting structure. Cooperative means are provided on the ball nut and ball nut housing, respectively, for positioning the ball nut and ball nut housing in relative gimballed position within a predetermined range of relative angular relationship whereby severe structural stresses due to unequal loadings and undesirable bending moments on the mechanism are avoided.

  4. Alignment-Annotator web server: rendering and annotating sequence alignments

    PubMed Central

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-01-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. Availability: http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. PMID:24813445

  5. Testing the tidal alignment model of galaxy intrinsic alignment

    SciTech Connect

    Blazek, Jonathan; Seljak, Uroš; McQuinn, Matthew E-mail: mmcquinn@berkeley.edu

    2011-05-01

    Weak gravitational lensing has become a powerful probe of large-scale structure and cosmological parameters. Precision weak lensing measurements require an understanding of the intrinsic alignment of galaxy ellipticities, which can in turn inform models of galaxy formation. It is hypothesized that elliptical galaxies align with the background tidal field and that this alignment mechanism dominates the correlation between ellipticities on cosmological scales (in the absence of lensing). We use recent large-scale structure measurements from the Sloan Digital Sky Survey to test this picture with several statistics: (1) the correlation between ellipticity and galaxy overdensity, w{sub g+}; (2) the intrinsic alignment auto-correlation functions; (3) the correlation functions of curl-free, E, and divergence-free, B, modes, the latter of which is zero in the linear tidal alignment theory; (4) the alignment correlation function, w{sub g}(r{sub p},θ), a recently developed statistic that generalizes the galaxy correlation function to account for the angle between the galaxy separation vector and the principle axis of ellipticity. We show that recent measurements are largely consistent with the tidal alignment model and discuss dependence on galaxy luminosity. In addition, we show that at linear order the tidal alignment model predicts that the angular dependence of w{sub g}(r{sub p},θ) is simply w{sub g+}(r{sub p})cos (2θ) and that this dependence is consistent with recent measurements. We also study how stochastic nonlinear contributions to galaxy ellipticity impact these statistics. We find that a significant fraction of the observed LRG ellipticity can be explained by alignment with the tidal field on scales ∼> 10 \\hMpc. These considerations are relevant to galaxy formation and evolution.

  6. In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field.

    PubMed

    Zhang, Lichao; Dou, Xiujie; Min, Changjun; Zhang, Yuquan; Du, Luping; Xie, Zhenwei; Shen, Junfeng; Zeng, Yujia; Yuan, Xiaocong

    2016-05-14

    In general, when a semiconductor nanowire is trapped by conventional laser beam tweezers, it tends to be aligned with the trapping beam axis rather than confined in the horizontal plane, and this limits the application of these nanowires in many in-plane nanoscale optoelectronic devices. In this work, we achieve the in-plane trapping and manipulation of a single ZnO nanowire by a hybrid plasmonic tweezer system on a flat metal surface. The gap between the nanowire and the metallic substrate leads to an enhanced gradient force caused by deep subwavelength optical energy confinement. As a result, the nanowire can be securely trapped in-plane at the center of the excited surface plasmon polariton field, and can also be dynamically moved and rotated by varying the position and polarization direction of the incident laser beam, which cannot be performed using conventional optical tweezers. The theoretical results show that the focused plasmonic field induces a strong in-plane trapping force and a high rotational torque on the nanowire, while the focused optical field produces a vertical trapping force to produce the upright alignment of the nanowire; this is in good agreement with the experimental results. Finally, some typical ZnO nanowire structures are built based on this technique, which thus further confirms the potential of this method for precise manipulation of components during the production of nanoelectronic and nanophotonic devices. PMID:27117313

  7. Electrochemical growth of ZnO nano-rods on polycrystalline Zn foil

    NASA Astrophysics Data System (ADS)

    Wong, M. H.; Berenov, A.; Qi, X.; Kappers, M. J.; Barber, Z. H.; Illy, B.; Lockman, Z.; Ryan, M. P.; MacManus-Driscoll, J. L.

    2003-09-01

    ZnO nano-rods were grown on polycrystalline Zn foil by cathodic electrodeposition in an aqueous zinc chloride/calcium chloride solution at 80°C. Variations in the solution concentration and substrate surface preparation were explored to shed light on the nucleation of the nano-rods. It was found that the nano-rod diameter increased with increasing solution concentration. Rolling striations and native ZnO on the surface of the Zn appeared to enhance nucleation and allowed more highly aligned, dense structures to be grown. By using low solution concentrations (5.0 × 10-4 M ZnCl 2) and non-electropolished Zn substrates, well faceted, hexagonal nano-rod structures of dimension ~80 nm diameter and >1 µm length were obtained. X-ray studies showed the samples to be highly aligned but containing a Zn-oxychloride impurity phase. Annealing caused the impurity phase to disappear and resulted in the films having a sharp photoluminescence double peak at 380/396 nm.

  8. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of ˜20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  9. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    SciTech Connect

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of {approx}20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  10. Low-temperature growth and characterization of single crystalline ZnO nanorod arrays using a catalyst-free inductively coupled plasma-metal organic chemical vapor deposition.

    PubMed

    Jeong, Sang-Hun; Lee, Chang-Bae; Moon, Won-Jin; Song, Ho-Jun

    2008-10-01

    Vertically aligned ZnO nanorod arrays have been synthesized on c-plane sapphires at a low temperature of 400 degrees C using catalyst-free inductively coupled plasma (ICP) metal organic chemical vapor deposition (MOCVD) technique by varying the ICP powers. Diameters of the ZnO nanorods changed from 200 nm to 400 nm as the ICP power increased from 200 to 400 Watt. TEM and XRD investigations indicated that the ZnO nanorod arrays grown at ICP powers above 200 Watt had a homogeneous in-plane alignment and single crystalline nature. PL study at room temperature (RT) and 6 K confirmed that the ZnO nanorod arrays in the present study are of high optical quality as well as good crystalline quality, showing only exciton-related emission peaks without any trace of defect-related deep level emissions in visible range. The blueshift of exciton emission peak in RTPL spectra was also found as rod diameter decreased and it is deduced that this shift in emission energy may be due to the surface resonance effect resulted from the increased surface-to-volume ratio, based on the observation and behavior of the surface exciton (SX) emission in the high-resolution 6 K PL spectra. PMID:19198399

  11. Characterization of reaction between ZnO and COS

    SciTech Connect

    Sasaoka, Eiji; Taniguchi, Kazuo; Uddin, M.A.; Hirano, Shigeru; Kasaoka, Shigeaki; Sakata, Yusaku

    1996-07-01

    In order to understand the behavior of COS in a ZnO desulfurization reactor, the reaction between ZnO and COS was studied in the presence of gases which compose a coal-derived gas. The behavior of COS in the reaction zone of a ZnO packed bed can be predicted as follows: H{sub 2}S in coal-derived gas reacts more easily with ZnO than COS; most of COS is converted to H{sub 2}S by catalytic hydrolysis and then reacts with ZnO, although a part of COS may react directly with ZnO; H{sub 2} accelerates the conversion of COS to H{sub 2}S; the water-gas shift reaction accelerates the reaction between ZnO and COS; and CO{sub 2} does not affect the reaction.

  12. Controlled doping of graphene using ZnO substrates

    NASA Astrophysics Data System (ADS)

    Si, Misuk; Choi, Won Jin; Jeong, Yoon Jang; Lee, Young Kuk; Kim, Ju-Jin; Lee, Jeong-O.

    2016-06-01

    We show that graphene device could be controllably doped by the bottom substrate by inserting atomic layer deposition grown ZnO between graphene and SiO2 substrate. To clarify the effect of bottom ZnO, length of the graphene transistor channel was varied from 20 to 200 μm, while that of ZnO was fixed to 10 μm. Graphene devices supported on ZnO film show marked difference from those supported on SiO2 substrates; bottom ZnO layer behave as an electron donor. UV illumination experiment on hybrid graphene-ZnO device reveals that the effect of doping from ZnO becomes negligible when the graphene channel length made about four times larger than that of ZnO stripe.

  13. Electronic structure of ZnO nanorods studied by angle-dependent x-ray absorption spectroscopy and scanning photoelectron microscopy

    NASA Astrophysics Data System (ADS)

    Chiou, J. W.; Jan, J. C.; Tsai, H. M.; Bao, C. W.; Pong, W. F.; Tsai, M.-H.; Hong, I.-H.; Klauser, R.; Lee, J. F.; Wu, J. J.; Liu, S. C.

    2004-05-01

    Angle-dependent x-ray absorption near-edge structure (XANES) and scanning photoelectron microscopy measurements were performed to differentiate local electronic structures at the tips and sidewalls of highly aligned ZnO nanorods. The overall intensity of the O K-edge XANES spectra is greatly enhanced for small photon incident angles. In contrast, the overall intensity of the Zn K-edge XANES is much less sensitive to the photon incident angle. Both valence-band photoemission and O K-edge XANES spectra show substantial enhancement of O 2p derived states near the valence band maximum and conduction band minimum, respectively. The spatially resolved Zn 3d core level spectra from tip and sidewall regions show the lack of chemical shift. All the results consistently suggest that the tip surfaces of the highly aligned ZnO nanorods are terminated by O ions and the nanorods are oriented in the [0001¯] direction.

  14. Advanced Mask Aligner Lithography (AMALITH)

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Vogler, Uwe; Bramati, Arianna

    2015-03-01

    Mask aligner lithography is very attractive for less-critical lithography layers and is widely used for LED, display, CMOS image sensor, micro-fluidics and MEMS manufacturing. Mask aligner lithography is also a preferred choice the semiconductor back-end for 3D-IC, TSV interconnects, advanced packaging (AdP) and wafer-level-packaging (WLP). Mask aligner lithography is a mature technique based on shadow printing and has not much changed since the 1980s. In shadow printing lithography a geometric pattern is transferred by free-space propagation from a photomask to a photosensitive layer on a wafer. The inherent simplicity of the pattern transfer offers ease of operation, low maintenance, moderate capital expenditure, high wafers-per-hour (WPH) throughput, and attractive cost-of-ownership (COO). Advanced mask aligner lithography (AMALITH) comprises different measures to improve shadow printing lithography beyond current limits. The key enabling technology for AMALITH is a novel light integrator systems, referred to as MO Exposure Optics® (MOEO). MOEO allows to fully control and shape the properties of the illumination light in a mask aligner. Full control is the base for accurate simulation and optimization of the shadow printing process (computational lithography). Now photolithography enhancement techniques like customized illumination, optical proximity correction (OPC), phase masks (AAPSM), half-tone lithography and Talbot lithography could be used in mask aligner lithography. We summarize the recent progress in advanced mask aligner lithography (AMALITH) and discuss possible measures to further improve shadow printing lithography.

  15. Aligning for Innovation - Alignment Strategy to Drive Innovation

    NASA Technical Reports Server (NTRS)

    Johnson, Hurel; Teltschik, David; Bussey, Horace, Jr.; Moy, James

    2010-01-01

    With the sudden need for innovation that will help the country achieve its long-term space exploration objectives, the question of whether NASA is aligned effectively to drive the innovation that it so desperately needs to take space exploration to the next level should be entertained. Authors such as Robert Kaplan and David North have noted that companies that use a formal system for implementing strategy consistently outperform their peers. They have outlined a six-stage management systems model for implementing strategy, which includes the aligning of the organization towards its objectives. This involves the alignment of the organization from the top down. This presentation will explore the impacts of existing U.S. industrial policy on technological innovation; assess the current NASA organizational alignment and its impacts on driving technological innovation; and finally suggest an alternative approach that may drive the innovation needed to take the world to the next level of space exploration, with NASA truly leading the way.

  16. Fusion bonding and alignment fixture

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  17. Adaptive control of molecular alignment

    SciTech Connect

    Horn, C.; Wollenhaupt, M.; Krug, M.; Baumert, T.; Nalda, R. de; Banares, L.

    2006-03-15

    We demonstrate control on nonadiabatic molecular alignment by using a spectrally phase-shaped laser pulse. An evolutionary algorithm in a closed feedback loop has been used in order to find pulse shapes that maximize a given effect. In particular, this scheme has been applied to the optimization of total alignment, and to the control of the temporal structure of the alignment transient within a revival. Asymmetric temporal pulse shapes have been found to be very effective for the latter and have been studied separately in a single-parameter control scheme. Our experimental results are supported by numerical simulations.

  18. Application of ZnO nanorods loaded on activated carbon for ultrasonic assisted dyes removal: Experimental design and derivative spectrophotometry method.

    PubMed

    Ansari, Fatemeh; Ghaedi, Mehrorang; Taghdiri, Mehdi; Asfaram, Arash

    2016-11-01

    A method based on application of ZnO nanorods loaded on activated carbon (ZnO-NRs-AC) for adsorption of Bromocresol Green (BCG) and Eosin Y (EY) accelerated by ultrasound was described. The present material was synthesized under ultrasound assisted wet-chemical method and subsequently was characterized by FE-SEM, TEM, BET and XRD analysis. The extent of contribution of conventional variables like pH (2.0-10.0), BCG concentration (4-20mgL(-1)), EY concentration (3-23mgL(-1)), adsorbent dosage (0.01-0.03g), sonication time (1-5min) and centrifuge time (2-6min) as main and interaction part were investigated by central composite design under response surface methodology. Analysis of variance (ANOVA) was adapted to experimental data and guide the best operational conditions mass by set at 6.0, 9mgL(-1), 10mgL(-1), 0.02g, 4 and 4min for pH, BCG concentration, EY concentration, adsorbent dosage, sonication and centrifuge time, respectively. At these specified conditions dye adsorption efficiency was higher than 99.5%. The suitability and well prediction of optimum point was tested by conducting five experiments and respective results revel that RSD% was lower than 3% and high quality of fitting was confirmed by t-test. The experimental data were best fitted in Langmuir isotherm equation and the removal followed pseudo second order kinetics. The experimentally obtained maximum adsorption capacities were estimated as 57.80 and 61.73mgg(-1) of ZnO-NRs-AC for BCG and EY respectively from binary dye solutions. The mechanism of removal was explained by boundary layer diffusion via intraparticle diffusion. PMID:27245971

  19. Field Effect Modulation of Outer-Sphere Electrochemistry at Back-Gated, Ultrathin ZnO Electrodes.

    PubMed

    Kim, Chang-Hyun; Frisbie, C Daniel

    2016-06-15

    Here we report field-effect modulation of solution electrochemistry at 5 nm thick ZnO working electrodes prepared on SiO2/degenerately doped Si gates. We find that ultrathin ZnO behaves like a 2D semiconductor, in which charge carriers electrostatically induced by the back gate lead to band edge shift at the front electrode/electrolyte interface. This, in turn, manipulates the charge transfer kinetics on the electrode at a given electrode potential. Experimental results and the proposed model indicate that band edge alignment can be effectively modulated by 0.1-0.4 eV depending on the density of states in the semiconductor and the capacitance of the gate/dielectric stack. PMID:27249050

  20. Size dependence of the electronic structures and electron-phonon coupling in ZnO quantum dots

    NASA Astrophysics Data System (ADS)

    Ray, S. C.; Low, Y.; Tsai, H. M.; Pao, C. W.; Chiou, J. W.; Yang, S. C.; Chien, F. Z.; Pong, W. F.; Tsai, M.-H.; Lin, K. F.; Cheng, H. M.; Hsieh, W. F.; Lee, J. F.

    2007-12-01

    The electronic structures and optical properties of various sizes of ZnO quantum dots (QDs) were studied using x-ray absorption, photoluminescence, and Raman spectroscopy. The increase in the intensity ratio of the second-order Raman spectra of longitudinal optical mode and its fundamental mode, which is related to the strength of the electron-phonon coupling (EPC), is found to increase with the size of QD. The trend of EPC also correlates with the increase of the intensity ratio of the O 2pπ (Iπ) and 2pσ (Iσ) orbital features in the O K-edge x-ray absorption near-edge structure (XANES) as the size of QD increases. The EPC and XANES results suggest that the crystal orientations of ZnO QDs are approximately aligned with the c axis parallel with the polarization of x-ray photons.

  1. Importance of Plasmonic Heating on Visible Light Driven Photocatalysis of Gold Nanoparticle Decorated Zinc Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Bora, Tanujjal; Zoepfl, David; Dutta, Joydeep

    2016-05-01

    Herein we explore the role of localized plasmonic heat generated by resonantly excited gold (Au) NPs on visible light driven photocatalysis process. Au NPs are deposited on the surface of vertically aligned zinc oxide nanorods (ZnO NRs). The localized heat generated by Au NPs under 532 nm continuous laser excitation (SPR excitation) was experimentally probed using Raman spectroscopy by following the phonon modes of ZnO. Under the resonant excitation the temperature at the surface of the Au-ZnO NRs reaches up to about 300 °C, resulting in almost 6 times higher apparent quantum yield (AQY) for photocatalytic degradation of methylene blue (MB) compared to the bare ZnO NRs. Under solar light irradiation the Au-ZnO NRs demonstrated visible light photocatalytic activity twice that of what was achieved with bare ZnO NRs, while significantly reduced the activation energy required for the photocatalytic reactions allowing the reactions to occur at a faster rate.

  2. Importance of Plasmonic Heating on Visible Light Driven Photocatalysis of Gold Nanoparticle Decorated Zinc Oxide Nanorods.

    PubMed

    Bora, Tanujjal; Zoepfl, David; Dutta, Joydeep

    2016-01-01

    Herein we explore the role of localized plasmonic heat generated by resonantly excited gold (Au) NPs on visible light driven photocatalysis process. Au NPs are deposited on the surface of vertically aligned zinc oxide nanorods (ZnO NRs). The localized heat generated by Au NPs under 532 nm continuous laser excitation (SPR excitation) was experimentally probed using Raman spectroscopy by following the phonon modes of ZnO. Under the resonant excitation the temperature at the surface of the Au-ZnO NRs reaches up to about 300 °C, resulting in almost 6 times higher apparent quantum yield (AQY) for photocatalytic degradation of methylene blue (MB) compared to the bare ZnO NRs. Under solar light irradiation the Au-ZnO NRs demonstrated visible light photocatalytic activity twice that of what was achieved with bare ZnO NRs, while significantly reduced the activation energy required for the photocatalytic reactions allowing the reactions to occur at a faster rate. PMID:27242172

  3. Importance of Plasmonic Heating on Visible Light Driven Photocatalysis of Gold Nanoparticle Decorated Zinc Oxide Nanorods

    PubMed Central

    Bora, Tanujjal; Zoepfl, David; Dutta, Joydeep

    2016-01-01

    Herein we explore the role of localized plasmonic heat generated by resonantly excited gold (Au) NPs on visible light driven photocatalysis process. Au NPs are deposited on the surface of vertically aligned zinc oxide nanorods (ZnO NRs). The localized heat generated by Au NPs under 532 nm continuous laser excitation (SPR excitation) was experimentally probed using Raman spectroscopy by following the phonon modes of ZnO. Under the resonant excitation the temperature at the surface of the Au-ZnO NRs reaches up to about 300 °C, resulting in almost 6 times higher apparent quantum yield (AQY) for photocatalytic degradation of methylene blue (MB) compared to the bare ZnO NRs. Under solar light irradiation the Au-ZnO NRs demonstrated visible light photocatalytic activity twice that of what was achieved with bare ZnO NRs, while significantly reduced the activation energy required for the photocatalytic reactions allowing the reactions to occur at a faster rate. PMID:27242172

  4. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  5. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  6. Theory of grain alignment in molecular clouds

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne G.

    1993-01-01

    Research accomplishments are presented and include the following: (1) mathematical theory of grain alignment; (2) super-paramagnetic alignment of molecular cloud grains; and (3) theory of grain alignment by ambipolar diffusion.

  7. Protein structure alignment beyond spatial proximity

    PubMed Central

    Wang, Sheng; Ma, Jianzhu; Peng, Jian; Xu, Jinbo

    2013-01-01

    Protein structure alignment is a fundamental problem in computational structure biology. Many programs have been developed for automatic protein structure alignment, but most of them align two protein structures purely based upon geometric similarity without considering evolutionary and functional relationship. As such, these programs may generate structure alignments which are not very biologically meaningful from the evolutionary perspective. This paper presents a novel method DeepAlign for automatic pairwise protein structure alignment. DeepAlign aligns two protein structures using not only spatial proximity of equivalent residues (after rigid-body superposition), but also evolutionary relationship and hydrogen-bonding similarity. Experimental results show that DeepAlign can generate structure alignments much more consistent with manually-curated alignments than other automatic tools especially when proteins under consideration are remote homologs. These results imply that in addition to geometric similarity, evolutionary information and hydrogen-bonding similarity are essential to aligning two protein structures. PMID:23486213

  8. Transparent Conducting Oxides for Photovoltaics: Manipulation of Fermi Level, Work Function and Energy Band Alignment

    SciTech Connect

    Klein, A.; Körber, C.; Wachau, A.; Säuberlich, F.; Gassenbauer, Y.; Harvey, S.P.; Proffit, Diana E.; Mason, Thomas O.

    2010-11-02

    Doping limits, band gaps, work functions and energy band alignments of undoped and donor-doped transparent conducting oxides ZnO, In{sub 2}O{sub 3}, and SnO{sub 2} as accessed by X-ray and ultraviolet photoelectron spectroscopy (XPS/UPS) are summarized and compared. The presented collection provides an extensive data set of technologically relevant electronic properties of photovoltaic transparent electrode materials and illustrates how these relate to the underlying defect chemistry, the dependence of surface dipoles on crystallographic orientation and/or surface termination, and Fermi level pinning.

  9. Fixture for aligning motor assembly

    DOEpatents

    Shervington, Roger M.; Vaghani, Vallabh V.; Vanek, Laurence D.; Christensen, Scott A.

    2009-12-08

    An alignment fixture includes a rotor fixture, a stator fixture and a sensor system which measures a rotational displacement therebetween. The fixture precisely measures rotation of a generator stator assembly away from a NULL position referenced by a unique reference spline on the rotor shaft. By providing an adjustable location of the stator assembly within the housing, the magnetic axes within each generator shall be aligned to a predetermined and controlled tolerance between the generator interface mounting pin and the reference spline on the rotor shaft. Once magnetically aligned, each generator is essentially a line replaceable unit which may be readily mounted to any input of a multi-generator gearbox assembly with the assurance that the magnetic alignment will be within a predetermined tolerance.

  10. Well-pump alignment system

    DOEpatents

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  11. Growth and characterization of ZnO1-xSx highly mismatched alloys over the entire composition

    NASA Astrophysics Data System (ADS)

    Jaquez, M.; Yu, K. M.; Ting, M.; Hettick, M.; Sánchez-Royo, J. F.; Wełna, M.; Javey, A.; Dubon, O. D.; Walukiewicz, W.

    2015-12-01

    Alloys from ZnO and ZnS have been synthesized by radio-frequency magnetron sputtering over the entire alloying range. The ZnO1-xSx films are crystalline for all compositions. The optical absorption edge of these alloys decreases rapidly with small amount of added sulfur (x ˜ 0.02) and continues to red shift to a minimum of 2.6 eV at x = 0.45. At higher sulfur concentrations (x > 0.45), the absorption edge shows a continuous blue shift. The strong reduction in the band gap for O-rich alloys is the result of the upward shift of the valence-band edge with x as observed by x-ray photoelectron spectroscopy. As a result, the room temperature bandgap of ZnO1-xSx alloys can be tuned from 3.7 eV to 2.6 eV. The observed large bowing in the composition dependence of the energy bandgap arises from the anticrossing interactions between (1) the valence-band of ZnO and the localized sulfur level at 0.30 eV above the ZnO valence-band maximum for O-rich alloys and (2) the conduction-band of ZnS and the localized oxygen level at 0.20 eV below the ZnS conduction band minimum for the S-rich alloys. The ability to tune the bandgap and knowledge of the location of the valence and conduction-band can be advantageous in applications, such as heterojunction solar cells, where band alignment is crucial.

  12. Large-scale fabrication of vertically aligned ZnO nanowire arrays

    DOEpatents

    Wang, Zhong L; Das, Suman; Xu, Sheng; Yuan, Dajun; Guo, Rui; Wei, Yaguang; Wu, Wenzhuo

    2013-02-05

    In a method for growing a nanowire array, a photoresist layer is placed onto a nanowire growth layer configured for growing nanowires therefrom. The photoresist layer is exposed to a coherent light interference pattern that includes periodically alternately spaced dark bands and light bands along a first orientation. The photoresist layer exposed to the coherent light interference pattern along a second orientation, transverse to the first orientation. The photoresist layer developed so as to remove photoresist from areas corresponding to areas of intersection of the dark bands of the interference pattern along the first orientation and the dark bands of the interference pattern along the second orientation, thereby leaving an ordered array of holes passing through the photoresist layer. The photoresist layer and the nanowire growth layer are placed into a nanowire growth environment, thereby growing nanowires from the nanowire growth layer through the array of holes.

  13. Projection-Based Volume Alignment

    PubMed Central

    Yu, Lingbo; Snapp, Robert R.; Ruiz, Teresa; Radermacher, Michael

    2013-01-01

    When heterogeneous samples of macromolecular assemblies are being examined by 3D electron microscopy (3DEM), often multiple reconstructions are obtained. For example, subtomograms of individual particles can be acquired from tomography, or volumes of multiple 2D classes can be obtained by random conical tilt reconstruction. Of these, similar volumes can be averaged to achieve higher resolution. Volume alignment is an essential step before 3D classification and averaging. Here we present a projection-based volume alignment (PBVA) algorithm. We select a set of projections to represent the reference volume and align them to a second volume. Projection alignment is achieved by maximizing the cross-correlation function with respect to rotation and translation parameters. If data are missing, the cross-correlation functions are normalized accordingly. Accurate alignments are obtained by averaging and quadratic interpolation of the cross-correlation maximum. Comparisons of the computation time between PBVA and traditional 3D cross-correlation methods demonstrate that PBVA outperforms the traditional methods. Performance tests were carried out with different signal-to-noise ratios using modeled noise and with different percentages of missing data using a cryo-EM dataset. All tests show that the algorithm is robust and highly accurate. PBVA was applied to align the reconstructions of a subcomplex of the NADH: ubiquinone oxidoreductase (Complex I) from the yeast Yarrowia lipolytica, followed by classification and averaging. PMID:23410725

  14. Binocular collimation vs conditional alignment

    NASA Astrophysics Data System (ADS)

    Cook, William J.

    2012-10-01

    As binocular enthusiasts share their passion, topics related to collimation abound. Typically, we find how observers, armed only with a jeweler's screwdriver, can "perfectly collimate" his or her binocular, make it "spot on," or other verbiage of similar connotation. Unfortunately, what most are addressing is a form of pseudo-collimation I have referred to since the mid-1970s as "Conditional Alignment." Ignoring the importance of the mechanical axis (hinge) in the alignment process, this "condition," while having the potential to make alignment serviceable, or even outstanding—within a small range of IPD (Interpupillary Distance) settings relative to the user's spatial accommodation (the ability to accept small errors in parallelism of the optical axes)—may take the instrument farther from the 3-axis collimation conscientious manufacturers seek to implement. Becoming more optically savvy—and especially with so many mechanically inferior binoculars entering the marketplace— the consumer contemplating self-repair and alignment has a need to understand the difference between clinical, 3-axis "collimation" (meaning both optical axes are parallel with the axis of the hinge) and "conditional alignment," as differentiated in this paper. Furthermore, I believe there has been a long-standing need for the term "Conditional Alignment," or some equivalent, to be accepted as part of the vernacular of those who use binoculars extensively, whether for professional or recreational activities. Achieving that acceptance is the aim of this paper.

  15. BinAligner: a heuristic method to align biological networks.

    PubMed

    Yang, Jialiang; Li, Jun; Grünewald, Stefan; Wan, Xiu-Feng

    2013-01-01

    The advances in high throughput omics technologies have made it possible to characterize molecular interactions within and across various species. Alignments and comparison of molecular networks across species will help detect orthologs and conserved functional modules and provide insights on the evolutionary relationships of the compared species. However, such analyses are not trivial due to the complexity of network and high computational cost. Here we develop a mixture of global and local algorithm, BinAligner, for network alignments. Based on the hypotheses that the similarity between two vertices across networks would be context dependent and that the information from the edges and the structures of subnetworks can be more informative than vertices alone, two scoring schema, 1-neighborhood subnetwork and graphlet, were introduced to derive the scoring matrices between networks, besides the commonly used scoring scheme from vertices. Then the alignment problem is formulated as an assignment problem, which is solved by the combinatorial optimization algorithm, such as the Hungarian method. The proposed algorithm was applied and validated in aligning the protein-protein interaction network of Kaposi's sarcoma associated herpesvirus (KSHV) and that of varicella zoster virus (VZV). Interestingly, we identified several putative functional orthologous proteins with similar functions but very low sequence similarity between the two viruses. For example, KSHV open reading frame 56 (ORF56) and VZV ORF55 are helicase-primase subunits with sequence identity 14.6%, and KSHV ORF75 and VZV ORF44 are tegument proteins with sequence identity 15.3%. These functional pairs can not be identified if one restricts the alignment into orthologous protein pairs. In addition, BinAligner identified a conserved pathway between two viruses, which consists of 7 orthologous protein pairs and these proteins are connected by conserved links. This pathway might be crucial for virus packing and

  16. Conducting properties of nearly depleted ZnO nanowire UV sensors fabricated by dielectrophoresis

    NASA Astrophysics Data System (ADS)

    García Núñez, C.; García Marín, A.; Nanterne, P.; Piqueras, J.; Kung, P.; Pau, J. L.

    2013-10-01

    ZnO nanowires (NWs) with different radii (rNW) have been aligned between pre-patterned electrodes using dielectrophoresis (DEP) for the fabrication of high gain UV sensors. The DEP conditions (voltage amplitude and frequency) and electrode material, geometry and size were optimized to enhance the efficiency during the DEP process. To understand the alignment mechanism of the ZnO NWs, the dielectrophoretic force (FDEP) was analyzed as a function of the DEP conditions and NW dimensions. These studies showed that the DEP alignment process tends to trap NWs with a smaller radius. The effects of NW size on device performance were analyzed by means of I-V measurements in darkness and under illumination (200 nm < λ < 600 nm). In darkness, the NW resistance increases as rNW decreases due to the reduction of the conduction volume, until saturation is reached for rNW < 65 nm. On the other hand, the NW spectral photoresponse shows high values around 108 A W-1 (measured at 5 V and λ < 370 nm) and follows a linear trend as a function of the NW cross section. In addition, the cut-off wavelength depends on rNW, presenting a clear blue-shift for NWs with a lower radius (rNW < 50 nm). Transient photoresponse studies show that NWs with lower radii have longer rise times and shorter decay times mainly due to surface trapping effects. Regardless of NW size, passivation of the surface using a dielectric capping layer of SiO2 reduces the dynamic range of the photoresponse due to a strong increase of the dark current.

  17. Growth of a Novel Nanostructured ZnO Urchin: Control of Cytotoxicity and Dissolution of the ZnO Urchin

    NASA Astrophysics Data System (ADS)

    Imani, Roghayeh; Drašler, Barbara; Kononenko, Veno; Romih, Tea; Eleršič, Kristina; Jelenc, Janez; Junkar, Ita; Remškar, Maja; Drobne, Damjana; Kralj-Iglič, Veronika; Iglič, Aleš

    2015-11-01

    The applications of zinc oxide (ZnO) nanowires (NWs) in implantable wireless devices, such as diagnostic nanobiosensors and nanobiogenerators, have recently attracted enormous attention due to their unique properties. However, for these implantable nanodevices, the biocompatibility and the ability to control the behaviour of cells in contact with ZnO NWs are demanded for the success of these implantable devices, but to date, only a few contrasting results from their biocompatibility can be found. There is a need for more research about the biocompatibility of ZnO nanostructures and the adhesion and viability of cells on the surface of ZnO nanostructures. Here, we introduce synthesis of a new nature-inspired nanostructured ZnO urchin, with the dimensions of the ZnO urchin's acicula being controllable. To examine the biocompatibility and behaviour of cells in contact with the ZnO urchin, the Madin-Darby canine kidney (MDCK) epithelial cell line was chosen as an in vitro experimental model. The results of the viability assay indicated that, compared to control, the number of viable cells attached to the surface of the ZnO urchin and its surrounding area were reduced. The measurements of the Zn contents of cell media confirmed ZnO dissolution, which suggests that the ZnO dissolution in cell culture medium could lead to cytotoxicity. A purposeful reduction of ZnO cytotoxicity was achieved by surface coating of the ZnO urchin with poly(vinylidene fluorid-co-hexafluoropropylene) (PVDF-HFP), which changed the material matrix to slow the Zn ion release and consequently reduce the cytotoxicity of the ZnO urchin without reducing its functionality.

  18. Growth of a Novel Nanostructured ZnO Urchin: Control of Cytotoxicity and Dissolution of the ZnO Urchin.

    PubMed

    Imani, Roghayeh; Drašler, Barbara; Kononenko, Veno; Romih, Tea; Eleršič, Kristina; Jelenc, Janez; Junkar, Ita; Remškar, Maja; Drobne, Damjana; Kralj-Iglič, Veronika; Iglič, Aleš

    2015-12-01

    The applications of zinc oxide (ZnO) nanowires (NWs) in implantable wireless devices, such as diagnostic nanobiosensors and nanobiogenerators, have recently attracted enormous attention due to their unique properties. However, for these implantable nanodevices, the biocompatibility and the ability to control the behaviour of cells in contact with ZnO NWs are demanded for the success of these implantable devices, but to date, only a few contrasting results from their biocompatibility can be found. There is a need for more research about the biocompatibility of ZnO nanostructures and the adhesion and viability of cells on the surface of ZnO nanostructures. Here, we introduce synthesis of a new nature-inspired nanostructured ZnO urchin, with the dimensions of the ZnO urchin's acicula being controllable. To examine the biocompatibility and behaviour of cells in contact with the ZnO urchin, the Madin-Darby canine kidney (MDCK) epithelial cell line was chosen as an in vitro experimental model. The results of the viability assay indicated that, compared to control, the number of viable cells attached to the surface of the ZnO urchin and its surrounding area were reduced. The measurements of the Zn contents of cell media confirmed ZnO dissolution, which suggests that the ZnO dissolution in cell culture medium could lead to cytotoxicity. A purposeful reduction of ZnO cytotoxicity was achieved by surface coating of the ZnO urchin with poly(vinylidene fluorid-co-hexafluoropropylene) (PVDF-HFP), which changed the material matrix to slow the Zn ion release and consequently reduce the cytotoxicity of the ZnO urchin without reducing its functionality. PMID:26573932

  19. ZnO quantum dots-decorated ZnO nanowires for the enhancement of antibacterial and photocatalytic performances

    NASA Astrophysics Data System (ADS)

    Wu, Jyh Ming; Tsay, Li-Yi

    2015-10-01

    We demonstrate highly antibacterial activities for killing off Staphylococcus aureus and Escherichia coli using ZnO nanowires decorated with ZnO quantum dots (so-called ZnO QDs/NWs) under visible-light irradiation and dark conditions. The average size of the ZnO QDs is in the range of 3-5 nm; these were uniformly dispersed on the ZnO nanowires’ surface to form the ZnO QDs/NWs. A significant blue-shift effect was observed using photoluminescence (PL) spectra. The size of the ZnO QDs is strongly dependent on the material’s synthesis time. The ZnO QDs/NWs exhibited an excellent photocatalytic activity under visible-light irradiation. The ZnO QDs’ active sites (i.e. the O-H bond and Zn2+) accelerate the photogenerated-carrier migration from the QDs to the NWs. As a consequence, the electrons reacted with the dissolved oxygen to form oxygen ions and produced hydroperoxyl radicals to enhance photocatalytic activity. The antibacterial activities (as indicated by R-factor-inhibiting activity) of the ZnO QDs/NWs for killing off Staphylococcus aureus and Escherichia coli is around 4.9 and 5.5 under visible-light irradiation and dark conditions, respectively. The hydroxyl radicals served as an efficient oxidized agent for decomposing the organic dye and microorganism species. The antibacterial activities of the ZnO QDs/NWs in the dark may be attributed to the Zn2+ ions that were released from the ZnO QDs and infused into the microbial solution against the growth of bacteria thus disrupting the microorganism. The highly antibacterial and photocatalytic activity of the ZnO QDs/NWs can be well implanted on a screen window, thus offering a promising solution to inhibit the spread of germs under visible-light and dark conditions.

  20. Electrical and gas sensing properties of self-aligned copper-doped zinc oxide nanoparticles

    SciTech Connect

    Sonawane, Yogesh S.; Kanade, K.G.; Kale, B.B. Aiyer, R.C.

    2008-10-02

    Electrical and gas sensing properties of nanocrystalline ZnO:Cu, having Cu X wt% (X = 0.0, 0.5, 1.0, and 1.5) in ZnO, in the form of pellet were investigated. Copper chloride and zinc acetate were used as precursors along with oxalic acid as a precipitating reagent in methanol. Material characterization was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM) and inductive coupled plasma with optical emission spectrometry (ICP-OES). FE-SEM showed the self-aligned Cu-doped ZnO nano-clusters with particles in the range of 40-45 nm. The doping of 0.5% of copper changes the electrical conductivity by an order of magnitude whereas the temperature coefficient of resistance (TCR) reduces with increase in copper wt% in ZnO. The material has shown an excellent sensitivity for the H{sub 2}, LPG and CO gases with limited temperature selectivity through the optimized operating temperature of 130, 190 and 220 deg. C for H{sub 2}, LPG and CO gases, respectively at 625 ppm gas concentration. The %SF was observed to be 1460 for H{sub 2} at 1% Cu doping whereas the 0.5% Cu doping offered %SF of 950 and 520 for CO and LPG, respectively. The response and recovery time was found to be 6 to 8 s and 16 s, respectively.

  1. Magnetically aligned polymers and nanocomposites for energy harvesting and energy storage applications

    NASA Astrophysics Data System (ADS)

    Majewski, Pawel; Gopinadhan, Manesh; Pelligra, Candice; Zhang, Shanju; Pfefferle, Lisa; Campos, Luis; Osuji, Chinedum

    2012-02-01

    The realization of anisotropic, nanostructured, functional materials by self-assembly is impaired by the persistence of structural defects which render the properties of the system isotropic on macroscopic length scales. We present three distinct systems including ZnO nanowire-semiconducting polymer composites, Li-ion conducting block copolymer membranes, and perylene-based block copolymers where self-assembly under a magnetic field yields alignment and global anisotropy of their physical properties. The resulting aligned nanostructured systems are attractive for ordered heterojunction photovoltaics, high performance solid polymer electrolyte membranes and electro-optical devices, respectively. Our results demonstrate that magnetic fields offer a viable route for directing the self-assembly of certain soft functional materials. The ready scalability of this approach makes it potentially important from a technological standpoint.

  2. Synthesis and characterization of ZnO thin films

    NASA Astrophysics Data System (ADS)

    Anilkumar T., S.; Girija M., L.; Venkatesh, J.

    2016-05-01

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivity of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.

  3. Physical vapor transport crystal growth of ZnO

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Jianping, Ma; Fuli, Liu; Yuan, Zang; Yantao, Liu

    2014-03-01

    Zinc oxide (ZnO) has a wide band gap, high stability and a high thermal operating range that makes it a suitable material as a semiconductor for fabricating light emitting diodes (LEDs) and laser diodes, photodiodes, power diodes and other semiconductor devices. Recently, a new crystal growth for producing ZnO crystal boules was developed, which was physical vapor transport (PVT), at temperatures exceeding 1500 °C under a certain system pressure. ZnO crystal wafers in sizes up to 50 mm in diameter were produced. The conditions of ZnO crystal growth, growth rate and the quality of ZnO crystal were analyzed. Results from crystal growth and material characterization are presented and discussed. Our research results suggest that the novel crystal growth technique is a viable production technique for producing ZnO crystals and substrates for semiconductor device applications.

  4. Homoepitaxial regrowth habits of ZnO nanowire arrays

    PubMed Central

    2011-01-01

    Synthetic regrowth of ZnO nanowires [NWs] under a similar chemical vapor transport and condensation [CVTC] process can produce abundant ZnO nanostructures which are not possible by a single CVTC step. In this work, we report three different regrowth modes of ZnO NWs: axial growth, radial growth, and both directions. The different growth modes seem to be determined by the properties of initial ZnO NW templates. By varying the growth parameters in the first-step CVTC process, ZnO nanostructures (e.g., nanoantenna) with drastically different morphologies can be obtained with distinct photoluminescence properties. The results have implications in guiding the rational synthesis of various ZnO NW heterostructures. PMID:22151820

  5. Aligned ZnO/CdTe core-shell nanocable arrays on indium tin oxide: synthesis and photoelectrochemical properties.

    PubMed

    Wang, Xina; Zhu, Haojun; Xu, Yeming; Wang, Hao; Tao, Yin; Hark, Suikong; Xiao, Xudong; Li, Quan

    2010-06-22

    Vertically aligned ZnO/CdTe core-shell nanocable arrays-on-indium tin oxide (ITO) are fabricated by electrochemical deposition of CdTe on ZnO nanorod arrays in an electrolyte close to neutral pH. By adjusting the total charge quantity applied during deposition, the CdTe shell thickness can be tuned from several tens to hundreds of nanometers. The CdTe shell, which has a zinc-blende structure, is very dense and uniform both radially and along the axial direction of the nanocables, and forms an intact interface with the wurtzite ZnO nanorod core. The absorption of the CdTe shell above its band gap ( approximately 1.5 eV) and the type II band alignment between the CdTe shell and the ZnO core, respectively, demonstrated by absorption and photoluminescence measurements, make a nanocable array-on-ITO architecture a promising photoelectrode with excellent photovoltaic properties for solar energy applications. A photocurrent density of approximately 5.9 mA/cm(2) has been obtained under visible light illumination of 100 mW cm(-2) with zero bias potential (vs saturated calomel electrode). The neutral electrodeposition method can be generally used for plating CdTe on nanostructures made of different materials, which would be of interest in various applications. PMID:20446665

  6. A Nonlinear Observer for Gyro Alignment Estimation

    NASA Technical Reports Server (NTRS)

    Thienel, J.; Sanner, R. M.

    2003-01-01

    A nonlinear observer for gyro alignment estimation is presented. The observer is composed of two error terms, an attitude error and an alignment error. The observer is globally stable with exponential convergence of the attitude errors. The gyro alignment estimate converges to the true alignment when the system is completely observable.

  7. Global Alignment System for Large Genomic Sequencing

    2002-03-01

    AVID is a global alignment system tailored for the alignment of large genomic sequences up to megabases in length. Features include the possibility of one sequence being in draft form, fast alignment, robustness and accuracy. The method is an anchor based alignment using maximal matches derived from suffix trees.

  8. Combining Multiple Pairwise Structure-based Alignments

    SciTech Connect

    2014-11-12

    CombAlign is a new Python code that generates a gapped, one-to-many, multiple structure-based sequence alignment(MSSA) given a set of pairwise structure-based alignments. In order to better define regions of similarity among related protein structures, it is useful to detect the residue-residue correspondences among a set of pairwise structure alignments. Few codes exist for constructing a one-to-many, multiple sequence alignment derived from a set of structure alignments, and we perceived a need for creating a new tool for combing pairwise structure alignments that would allow for insertion of gaps in the reference structure.

  9. Alignment method for parabolic trough solar concentrators

    DOEpatents

    Diver, Richard B.

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  10. Grain Alignment in Starless Cores

    NASA Astrophysics Data System (ADS)

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to {{A}V}˜ 48. We find that {{P}K}/{{τ }K} continues to decline with increasing AV with a power law slope of roughly -0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by {{A}V}≳ 20 the slope for P versus τ becomes ˜-1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than {{A}V}˜ 20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  11. Alignment of the VISA Undulator

    SciTech Connect

    Ruland, Robert

    1999-04-15

    The Visible-Infrared SASE Amplifier (VISA) undulator consists of four 99cm long segments. Each undulator segment is set up on a pulsed-wire bench, to characterize the magnetic properties and to locate the magnetic axis of the FODO array. Subsequently, the location of the magnetic axis, as defined by the wire, is referenced to tooling balls on each magnet segment by means of a straightness interferometer. After installation in the vacuum chamber, the four magnet segments are aligned with respect to themselves and globally to the beam line reference laser. A specially designed alignment fixture is used to mount one straightness interferometer each in the horizontal and vertical plane of the beam. The goal of these procedures is to keep the combined rms trajectory error, due to magnetic and alignment errors, to 50{micro}m.

  12. Substrate Preparations in Epitaxial ZnO Film Growth

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, C.-H.; Lehoczky, S. L.; Harris, M. T.; Callahan, M. J.; George, M. A.

    2000-01-01

    Epitaxial ZnO films were grown on the two polar surfaces (O-face and Zn-face) of (0001) ZnO single crystal substrates using off-axis magnetron sputtering deposition. Annealing-temperature dependence of ZnO substrates was studied. ZnO films grown on sapphire substrates have also been investigated for comparison purposes and the annealing temperature of A1203 substrates is 1000 C. Substrates and films were characterized using photoluminescence (PL) spectrum, x-ray diffraction, atomic force microscope, energy dispersive spectrum, and electric transport measurements. It has been found that the ZnO film properties were different when films were grown on the two polarity surfaces of ZnO substrates and the A1203 substrates. An interesting result shows that high temperature annealing of ZnO single crystals will improve the surface structure on the O-face surface rather than the opposite surface. The measurements of homoepitaxial ZnO films indicate that the O-terminated surface is better for ZnO epitaxial film growth.

  13. Photophysics and photochemistry of quantized ZnO colloids

    SciTech Connect

    Kamat, P.V.; Patrick, B.

    1992-08-06

    The photophysical and photochemical behavior of quantized ZnO colloids in ethanol has been investigated by time-resolved transient absorption and emission measurements. Trapping of electrons at the ZnO surface resulted in broad absorption in the red region. The green emission of ZnO colloids was readily quenched by hole scavengers such as SCN{sup -} and I{sup -}. The photoinduced charge transfer to these hole scavengers was studied by laser flash photolysis. The yield of oxidized product increased considerably when ZnO colloids were coupled with ZnSe. 36 refs., 11 figs., 1 tab.

  14. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  15. XUV ionization of aligned molecules

    SciTech Connect

    Kelkensberg, F.; Siu, W.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  16. Alignment Tool For Inertia Welding

    NASA Technical Reports Server (NTRS)

    Snyder, Gary L.

    1991-01-01

    Compact, easy-to-use tool aligns drive bar of inertia welder over hole in stub. Ensures drive bar concentric to hole within 0.002 in. (0.051 mm.). Holds two batteries and light bulb. Electrical circuit completed, providing current to bulb when pin in contact with post. When pin centered in post hole, it does not touch post, and lamp turns off. Built for use in making repair welds on liquid-oxygen-injector posts in Space Shuttle main engine. Version having suitably modified dimensions used to facilitate alignment in other forests of post.

  17. The alignment-distribution graph

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    Implementing a data-parallel language such as Fortran 90 on a distributed-memory parallel computer requires distributing aggregate data objects (such as arrays) among the memory modules attached to the processors. The mapping of objects to the machine determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. We present a program representation called the alignment distribution graph that makes these communication requirements explicit. We describe the details of the representation, show how to model communication cost in this framework, and outline several algorithms for determining object mappings that approximately minimize residual communication.

  18. The alignment-distribution graph

    NASA Technical Reports Server (NTRS)

    Chatterjee, Siddhartha; Gilbert, John R.; Schreiber, Robert

    1993-01-01

    Implementing a data-parallel language such as Fortran 90 on a distributed-memory parallel computer requires distributing aggregate data objects (such as arrays) among the memory modules attached to the processors. The mapping of objects to the machine determines the amount of residual communication needed to bring operands of parallel operations into alignment with each other. We present a program representation called the alignment-distribution graph that makes these communication requirements explicit. We describe the details of the representation, show how to model communication cost in this framework, and outline several algorithms for determining object mappings that approximately minimize residual communication.

  19. Low-Temperature Preparation of Ag-Doped ZnO Nanowire Arrays, DFT Study, and Application to Light-Emitting Diode.

    PubMed

    Pauporté, Thierry; Lupan, Oleg; Zhang, Jie; Tugsuz, Tugba; Ciofini, Ilaria; Labat, Frédéric; Viana, Bruno

    2015-06-10

    Doping ZnO nanowires (NWs) by group IB elements is an important challenge for integrating nanostructures into functional devices with better and tuned performances. The growth of Ag-doped ZnO NWs by electrodeposition at 90 °C using a chloride bath and molecular oxygen precursor is reported. Ag acts as an electrocatalyst for the deposition and influences the nucleation and growth of the structures. The silver atomic concentration in the wires is controlled by the additive concentration in the deposition bath and a content up to 3.7 atomic % is reported. XRD analysis shows that the integration of silver enlarges the lattice parameters of ZnO. The optical measurements also show that the direct optical bandgap of ZnO is reduced by silver doping. The bandgap shift and lattice expansion are explained by first principle calculations using the density functional theory (DFT) on the silver impurity integration as an interstitial (Ag(i)) and as a substitute of zinc atom (Ag(Zn)) in the crystal lattice. They notably indicate that Ag(Zn) doping forms an impurity band because of Ag 4d and O 2p orbital interactions, shifting the Fermi level toward the valence band. At least, Ag-doped ZnO vertically aligned nanowire arrays have been epitaxially grown on GaN(001) substrate. The heterostructure has been inserted in a light emitting device. UV-blue light emission has been achieved with a low emission threshold of 5 V and a tunable red-shifted emission spectrum related to the bandgap reduction induced by silver doping of the ZnO emitter material. PMID:25990263

  20. Transparent and conducting intrinsic ZnO thin films prepared at high growth-rate with c-axis orientation and pyramidal surface texture

    NASA Astrophysics Data System (ADS)

    Mondal, Praloy; Das, Debajyoti

    2013-12-01

    The growth of ZnO thin films has been optimized by adjusting the intrinsic ion vacancies, by controlling the RF power applied to the plasma in magnetron sputtering. Preferred c-axis oriented intrinsic ZnO films with largest grain size and a hexagonal wurtzite structure, exhibiting high room temperature conductivity, σ ∼ 1.37 S/cm, high transparency, ∼80-90% within 450-800 nm and ∼90-96% within 800-1900 nm, low reflectance (<5% in the visible range) was obtained at a very high deposition rate ∼214 nm/min, at 300 °C, by maintaining higher concentration of Zn interstitials or singly ionized oxygen vacancy, corresponding to an optimized RF power of 200 W. Films have lowest internal stress, smallest dissipation factor defined as ɛ2/ɛ1, and the specific pyramidal surface texture creates enough surface roughness that helps to improve the light scattering from the surface and makes it suitable for efficient use in thin-film silicon solar cells. With increasing RF power beyond 200 W, the Zn-O bond length reduces promptly and the internal stress increases monotonically approaching toward a virtual saturation. The preferred crystallographic alignment shifts from (0 0 2) to (1 0 3), i.e., from c to a-axis orientation, as the surface energy of ZnO crystal changes due to the increase in the Zn-to-ZnO ion ratio in the plasma caused by the plausible de-oxygenation of ZnO at elevated RF powers. Oxygen deficient ZnO films having the flower-like surface texture prepared with a very high deposition rate ∼554 nm/min at 500 W could indeed make the material suitable for gas and chemical sensing applications.

  1. Sodium doping in ZnO crystals

    SciTech Connect

    Parmar, N. S. Lynn, K. G.

    2015-01-12

    ZnO bulk single crystals were doped with sodium by thermal diffusion. Positron annihilations spectroscopy confirms the filling of zinc vacancies, to >6 μm deep in the bulk. Secondary-ion mass spectrometry measurement shows the diffusion of sodium up to 8 μm with concentration (1–3.5) × 10{sup 17 }cm{sup −3}. Broad photoluminescence excitation peak at 3.1 eV, with onset appearance at 3.15 eV in Na:ZnO, is attributed to an electronic transition from a Na{sub Zn} level at ∼(220–270) meV to the conduction band. Resistivity in Na doped ZnO crystals increases up to (4–5) orders of magnitude at room temperature.

  2. The Role of ZnO Particle Size, Shape and Concentration on Liquid Crystal Order and Current-Voltage Properties for Potential Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Martinez-Miranda, Luz J.; Branch, Janelle; Thompson, Robert; Taylor, Jefferson W.; Salamanca-Riba, Lourdes

    2012-02-01

    We investigate the role order plays in the transfer of charges in ZnO nanoparticle - octylcyanobiphenyl (8CB) liquid crystal system for photovoltaic applications as well as the role the nominally 7x5x5nm^3 or 20x5x5nm^3 ZnO nanoparticles play in improving that order. Our results for the 5nm nanoparticles show an improvement in the alignment of the liquid crystal with increasing weight percentage of ZnO nanoparticles^1. Our results for the 7x5x5 nm^3 sample show that the current is larger than the current obtained for the 5 nm samples. We find that order is improved for concentrations close to 35% wt ZnO for both the 7x5x5 nm^3 and 20x5x5 nm^3. We have analyzed the X-ray scans for both the 7x5x5 and the 20x5x5 nm^3 samples. The signal corresponding to the liquid crystal aligned parallel to the substrate is much smaller than the peak corresponding to the liquid crystal aligned approximately at 70 with respect to the substrate for the 7x5x5 nm^3 sample whereas this same peak is comparable or more intense for the 20x5x5 nm^3 sample. 1. L. J. Mart'inez-Miranda, Kaitlin M. Traister, Iriselies Mel'endez-Rodr'iguez, and Lourdes Salamanca-Riba, Appl. Phys. Letts, 97, 223301 (2010).

  3. Preparation, structural and optical characterization of ZnO, ZnO: Al nanopowder

    SciTech Connect

    Mohan, R. Raj; Rajendran, K.; Sambath, K.

    2014-01-28

    In this paper, ZnO and ZnO:Al nanopowders have been synthesized by low cost hydrothermal method. Zinc nitrate, hexamethylenetetramine (HMT) and aluminium nitrate are used as precursors for ZnO and AZO with different molar ratios. The structural and optical characterization of doped and un-doped ZnO powders have been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDAX), photoluminescence (PL) and ultra violet visible (UV-Vis) absorption studies. The SEM results show that the hydrothermal synthesis can be used to obtain nanoparticles with different morphology. It is observed that the grain size of the AZO nanoparticles increased with increasing of Al concentration. The PL measurement of AZO shows that broad range of green emission around 550nm with high intensity. The green emission resulted mainly because of intrinsic defects.

  4. Spin noise spectroscopy of ZnO

    SciTech Connect

    Horn, H.; Berski, F.; Hübner, J.; Oestreich, M.; Balocchi, A.; Marie, X.; Mansur-Al-Suleiman, M.; Bakin, A.; Waag, A.

    2013-12-04

    We investigate the thermal equilibrium dynamics of electron spins bound to donors in nanoporous ZnO by optical spin noise spectroscopy. The spin noise spectra reveal two noise contributions: A weak spin noise signal from undisturbed localized donor electrons with a dephasing time of 24 ns due to hyperfine interaction and a strong spin noise signal with a spin dephasing time of 5 ns which we attribute to localized donor electrons which interact with lattice defects.

  5. Synthesis, characterization and photocatalytic activity of PVP stabilized ZnO and modified ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Bandekar, Gauri; Rajurkar, N. S.; Mulla, I. S.; Mulik, U. P.; Amalnerkar, D. P.; Adhyapak, P. V.

    2013-01-01

    In the present study, ZnO nanostructures have been successfully synthesized by hydrothermal, sonochemical and precipitation methods using polyvinyl pyrrolidone (PVP) as the capping agent. The ZnO nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-Visible spectroscopy and photoluminescence (PL) techniques. The XRD results revealed the hexagonal wurtzite structure of the ZnO nanostructures for all the samples. Furthermore, the morphology of the ZnO particles was obtained from FESEM micrographs. Particles prepared by hydrothermal method were found to be rice grain shaped and that prepared by precipitation and sonochemical methods were spherical shaped. Sunlight driven photocatalytic degradation of methylene blue (MB) was studied for ZnO nanostructures synthesized by various methods. The ZnO nanostructures were further decorated with Ag nanoparticles to enhance its dye degradation efficiency. The Ag decorated ZnO nanoparticles exhibited a higher degradation rate as compared to pure ZnO nanoparticles which was independent of pH. Since this process of dye degradation relies on the degradation of dye due to oxidation by highly reactive hydroxyl radicals, there are many factors which affect the efficiency of this process. Hence a study was conducted on the effect of various parameters on ZnO viz amount of catalyst, reaction pH and concentration of MB dye.

  6. Aligned natural inflation with modulations

    NASA Astrophysics Data System (ADS)

    Choi, Kiwoon; Kim, Hyungjin

    2016-08-01

    The weak gravity conjecture applied for the aligned natural inflation indicates that generically there can be a modulation of the inflaton potential, with a period determined by sub-Planckian axion scale. We study the oscillations in the primordial power spectrum induced by such modulation, and discuss the resulting observational constraints on the model.

  7. Laser-Beam-Alignment Controller

    NASA Technical Reports Server (NTRS)

    Krasowski, M. J.; Dickens, D. E.

    1995-01-01

    In laser-beam-alignment controller, images from video camera compared to reference patterns by fuzzy-logic pattern comparator. Results processed by fuzzy-logic microcontroller, which sends control signals to motor driver adjusting lens and pinhole in spatial filter.

  8. Aligning Assessments for COSMA Accreditation

    ERIC Educational Resources Information Center

    Laird, Curt; Johnson, Dennis A.; Alderman, Heather

    2015-01-01

    Many higher education sport management programs are currently in the process of seeking accreditation from the Commission on Sport Management Accreditation (COSMA). This article provides a best-practice method for aligning student learning outcomes with a sport management program's mission and goals. Formative and summative assessment procedures…

  9. Crystal synthesis and effects of epitaxial perovskite manganite underlayer conditions on characteristics of ZnO nanostructured heterostructures

    NASA Astrophysics Data System (ADS)

    Liang, Yuan-Chang; Hu, Chia-Yen; Zhong, Hua; Wang, Jyh-Liang

    2013-02-01

    This study presents the synthesis of high-density aligned wurtzite ZnO nanostructures using thermal evaporation on perovskite (La,Sr)MnO3(LSMO) epitaxy to form a heterostructure without the assistance of metallic catalysis. LSMO epitaxial films are RF-sputtered with various crystal qualities to examine the correlation between the interface and electrical characteristics of the heterostructures. The ZnO nanostructures-LSMO epitaxial heterostructures show electrical rectifying behavior without inserting an ultrathin insulating layer at the hetero-interface. Misfit strain, intrinsic strain, and crystal defects are major factors in causing a phase separation in the as-prepared manganite LSMO epitaxial films. The coexistence of a charge-ordered insulating domain and a ferromagnetic metallic domain causes inhomogeneous electrical contact at the ZnO-LSMO heterointerfaces, further deteriorating the junction characteristics. A high-temperature annealing procedure and moderate LSMO epitaxy film thickness are required for the construction of an efficient ZnO nanostructures-LSMO epitaxy junction.

  10. Wettability behavior of special microscale ZnO nail-coated mesh films for oil-water separation.

    PubMed

    Du, Xin; Huang, Xing; Li, Xiaoyu; Meng, Xiangmin; Yao, Lin; He, Junhui; Huang, Hongwei; Zhang, Xueji

    2015-11-15

    The surface free energy and geometrical structure are two important factors to govern the surface wettability. However, the design and simple synthesis of materials with specific surface free energy and geometrical structure, and their elaborate regulations are still a key challenge. Herein, through one-step thermal evaporation method, we successfully synthesized aligned arrays of highly crystallized ZnO with modulated nail structures on the stainless steel meshes for the first time. Owing to the decoration of [0001] oriented nail structures, the wire surface of meshes were indeed enclosed by the ZnO (0002) facets, which had the lowest surface energy in wurtzite structure. Under no any further modifications, just by regulating the nail structure and density as well as the mesh pore sizes, we not only obtained ZnO nail-coated mesh with hydrophobic, oleophilic (oil penetration), and underwater oleophilic properties, but also fabricated one with hydrophilic (water penetration), oleophilic (oil penetration), and underwater superoleophobic properties. Furthermore, interestingly, the separation of oil and water mixture was realized by utilizing two ZnO-nail coated meshes with different wettability. The underlying mechanism was investigated and discussed in the work. Therefore, our study provides interesting insight into the design of novel functional films with desired surface wettability for the separation of oil-water mixture. PMID:26207588

  11. Highly Ordered Vertical Arrays of TiO2/ZnO Hybrid Nanowires: Synthesis and Electrochemical Characterization.

    PubMed

    Gujarati, Tanvi P; Ashish, Ajithan G; Rai, Maniratnam; Shaijumon, Manikoth M

    2015-08-01

    We report the fabrication of vertically aligned hierarchical arrays of TiO2/ZnO hybrid nanowires, consisting of ZnO nanowires grown directly from within the pores of TiO2 nanotubes, through a combination of electrochemical anodization and hydrothermal techniques. These novel nano-architectured hybrid nanowires with its unique properties show promise as high performance supercapacitor electrodes. The electrochemical behaviour of these hybrid nanowires has been studied using Cyclic voltammetry, Galvanostatic charge-discharge and Electrochemical impedance spectroscopy (EIS) measurements using 1.5 M tetraethylammoniumtetrafluoroborate in acetonitrile as the electrolyte. Excellent electrochemical performances with a maximum specific capacitance of 2.6 mF cm-2 at a current density of 10 µA cm-2, along with exceptional cyclic stability, have been obtained for TiO2/ZnO-1 h hybrid material. The obtained results demonstrate the possibility of fabricating new geometrical architectures of inorganic hybrid nanowires with well adhered interfaces for the development of hybrid energy devices. PMID:26369158

  12. Support Vector Training of Protein Alignment Models

    PubMed Central

    Joachims, Thorsten; Elber, Ron; Pillardy, Jaroslaw

    2008-01-01

    Abstract Sequence to structure alignment is an important step in homology modeling of protein structures. Incorporation of features such as secondary structure, solvent accessibility, or evolutionary information improve sequence to structure alignment accuracy, but conventional generative estimation techniques for alignment models impose independence assumptions that make these features difficult to include in a principled way. In this paper, we overcome this problem using a Support Vector Machine (SVM) method that provides a well-founded way of estimating complex alignment models with hundred of thousands of parameters. Furthermore, we show that the method can be trained using a variety of loss functions. In a rigorous empirical evaluation, the SVM algorithm outperforms the generative alignment method SSALN, a highly accurate generative alignment model that incorporates structural information. The alignment model learned by the SVM aligns 50% of the residues correctly and aligns over 70% of the residues within a shift of four positions. PMID:18707536

  13. Optical and Magnetic Properties of ZnO Nanoparticles Doped with Co, Ni and Mn and Synthesized at Low Temperature.

    PubMed

    Hancock, Jared M; Rankin, William M; Hammad, Talaat M; Salem, Jamil S; Chesnel, Karine; Harrison, Roger G

    2015-05-01

    Zinc oxide nanomaterials were synthesized with small amounts of magnetic ions to create dilute magnetic semiconductors (DMS), by using a low temperature sol-gel method. Conditions were controlled such that a range of amounts of Co, Ni and Mn were incorporated. The incorporation could be tracked by color changes in the powders to blue for Co, green for Ni and yellow for Mn. XRD measurements showed the ZnO has the wurtzite structure with crystallites 8-12 nm in diameter. Nanoparticles were observed by SEM and TEM and TEM showed that the lattice fringes of different nanoparticles align. Nanoparticle alignment was disrupted when high concentrations of metal dopants were incorporated. Magnetic measurements showed a change in behavior from diamagnetic to paramagnetic with increasing concentration of metal dopants. PMID:26505009

  14. ZnO Nanorods Based Enzymatic Biosensor for Selective Determination of Penicillin

    PubMed Central

    Ibupoto, Zafar Hussain; Ali, Syed Muhammad Usman; Khun, Kimleang; Chey, Chan Oeurn; Nur, Omer; Willander, Magnus

    2011-01-01

    In this study, we have successfully demonstrated the fabrication of a biosensor based on well aligned single-crystal zinc oxide (ZnO) nanorods which were grown on gold coated glass substrate using a low temperature aqueous chemical growth (ACG) method. The ZnO nanorods were immobilized with penicillinase enzyme using the physical adsorption approach in combination with N-5-azido-2-nitrobenzoyloxysuccinimide (ANB-NOS) as cross linking molecules. The potentiometric response of the sensor configuration revealed good linearity over a large logarithmic concentration range from 100 µM to 100 mM. During the investigations, the proposed sensor showed a good stability with high sensitivity of ~121 mV/decade for sensing of penicillin. A quick electrochemical response of less than 5 s with a good selectivity, repeatability, reproducibility and a negligible response to common interferents such as Na1+, K1+, d-glucose, l-glucose, ascorbic acid, uric acid, urea, sucrose, lactose, glycine, penicilloic acid and cephalosporins, was observed. PMID:25585565

  15. Spatially and angularly resolved cathodoluminescence study of single ZnO nanorods.

    PubMed

    Li, Chengyao; Gao, Min; Zhang, Xiaoxian; Peng, Lian-Mao; Chen, Qing

    2010-11-01

    Single ZnO nanorods were studied with cathodoluminescence at high spatial and angular resolution. A newly developed luminescence detector consisting a fiber probe controlled by a nano-manipulator is attached to a scanning electron microscope to carry out the cathodoluminescence measurements. Excitonic emission from the sidewalls and redshifted near band edge emission guided along the nanorod axis are observed as the fiber probe axis is aligned to be perpendicular and parallel to the nanorod axis, respectively, demonstrating the angular resolving power of the experimental setup and waveguiding behavior of the nanorods. High spatial resolution cathodoluminescence measurement shows that the near band edge emission can propagate parallel and perpendicular to the nanorod axis and an increased propagation distance results in more redshift of the guided luminescence. In addition, the high spatial resolution and temperature dependent cathodoluminescence measurements demonstrate the important role of free exciton-longitudinal optical phonon interaction in the waveguiding behavior and the propagation of the near band edge emission in ZnO nanorods. PMID:21137887

  16. Properties of ZnO nanofilms formed at solution interfaces by nanoparticle oriention arrangement.

    PubMed

    Guo, Wenfeng; Duan, Wenjing; Wu, Zhenglong; Zheng, Dong; Yan, Lisha; Wang, Yinshu

    2014-05-01

    ZnO nanoparticles with the diameter of 11-33 nm were grown by decomposing a mixture of Zn(CH3COO)2 x 2H2O with NaCl and Li2CO3. Compact ZnO nanofilms were fabricated with the as-grown nanoparticles at the interfaces of the polar and non-polar solutions. The nanofilm properties were characterized by X-ray diffraction, scanning electron microscope, photoluminescence spectroscope and Raman spectroscope. Effects of the nanoparticle size on the nanofilm properties were studied. The nanoparticles with smaller sizes would align preferentially along [001] orientation during forming a film at an interface of two kinds of solutions. The nanofilm photoluminescence and Raman vibration are very sensitive to the sizes of the nanoparticles that form the nanofilms. 1LO vibration is enhanced in the nanofilms composed of nanoparticles with sizes smaller than 20 nm. The enhancement is attributed to the high density of deep level defects. PMID:24734597

  17. Nanostructured ZnO films in forms of rod, plate and flower: Electrodeposition mechanisms and characterization

    NASA Astrophysics Data System (ADS)

    Kıcır, Nur; Tüken, Tunç; Erken, Ozge; Gumus, Cebrail; Ufuktepe, Yuksel

    2016-07-01

    Uniformity and reproducibility of well-defined ZnO nanostructures are particularly important issues for fabrication and applications of these nanomaterials. In present study, we report selective morphology control during electrodeposition, by adjusting the hydroxyl generation rate and Zn(OH)2 deposition. In presence of remarkably high chloride concentration (0.3 M) and -1.0 V deposition potential, slow precipitation conditions were provided in 5 mM Zn(NO3)2 solution. By doing so, we have obtained highly ordered, vertically aligned and uniformly spaced hexagon shaped nanoplates, on ITO surface. We have also investigated the mechanism for shifting the morphology from rod/plate to flower like structure of ZnO, for better understanding the reproducibility. For this reason, the influence of various supporting electrolytes (sodium/ammonium salts of acetate) has been investigated for interpretation of the influence of OH- concentration nearby the surface. From rod to plate and flower nanostructures, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis were realized for characterization, also the optical properties were studied.

  18. Graphene cathode-based ZnO nanowire hybrid solar cells.

    PubMed

    Park, Hyesung; Chang, Sehoon; Jean, Joel; Cheng, Jayce J; Araujo, Paulo T; Wang, Mingsheng; Bawendi, Moungi G; Dresselhaus, Mildred S; Bulović, Vladimir; Kong, Jing; Gradečak, Silvija

    2013-01-01

    Growth of semiconducting nanostructures on graphene would open up opportunities for the development of flexible optoelectronic devices, but challenges remain in preserving the structural and electrical properties of graphene during this process. We demonstrate growth of highly uniform and well-aligned ZnO nanowire arrays on graphene by modifying the graphene surface with conductive polymer interlayers. On the basis of this structure, we then demonstrate graphene cathode-based hybrid solar cells using two different photoactive materials, PbS quantum dots and the conjugated polymer P3HT, with AM 1.5G power conversion efficiencies of 4.2% and 0.5%, respectively, approaching the performance of ITO-based devices with similar architectures. Our method preserves beneficial properties of graphene and demonstrates that it can serve as a viable replacement for ITO in various photovoltaic device configurations. PMID:23205637

  19. In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field

    NASA Astrophysics Data System (ADS)

    Zhang, Lichao; Dou, Xiujie; Min, Changjun; Zhang, Yuquan; Du, Luping; Xie, Zhenwei; Shen, Junfeng; Zeng, Yujia; Yuan, Xiaocong

    2016-05-01

    In general, when a semiconductor nanowire is trapped by conventional laser beam tweezers, it tends to be aligned with the trapping beam axis rather than confined in the horizontal plane, and this limits the application of these nanowires in many in-plane nanoscale optoelectronic devices. In this work, we achieve the in-plane trapping and manipulation of a single ZnO nanowire by a hybrid plasmonic tweezer system on a flat metal surface. The gap between the nanowire and the metallic substrate leads to an enhanced gradient force caused by deep subwavelength optical energy confinement. As a result, the nanowire can be securely trapped in-plane at the center of the excited surface plasmon polariton field, and can also be dynamically moved and rotated by varying the position and polarization direction of the incident laser beam, which cannot be performed using conventional optical tweezers. The theoretical results show that the focused plasmonic field induces a strong in-plane trapping force and a high rotational torque on the nanowire, while the focused optical field produces a vertical trapping force to produce the upright alignment of the nanowire; this is in good agreement with the experimental results. Finally, some typical ZnO nanowire structures are built based on this technique, which thus further confirms the potential of this method for precise manipulation of components during the production of nanoelectronic and nanophotonic devices.In general, when a semiconductor nanowire is trapped by conventional laser beam tweezers, it tends to be aligned with the trapping beam axis rather than confined in the horizontal plane, and this limits the application of these nanowires in many in-plane nanoscale optoelectronic devices. In this work, we achieve the in-plane trapping and manipulation of a single ZnO nanowire by a hybrid plasmonic tweezer system on a flat metal surface. The gap between the nanowire and the metallic substrate leads to an enhanced gradient force

  20. Spectroscopy and control of near-surface defects in conductive thin film ZnO.

    PubMed

    Kelly, Leah L; Racke, David A; Schulz, Philip; Li, Hong; Winget, Paul; Kim, Hyungchul; Ndione, Paul; Sigdel, Ajaya K; Brédas, Jean-Luc; Berry, Joseph J; Graham, Samuel; Monti, Oliver L A

    2016-03-01

    The electronic structure of inorganic semiconductor interfaces functionalized with extended π-conjugated organic molecules can be strongly influenced by localized gap states or point defects, often present at low concentrations and hard to identify spectroscopically. At the same time, in transparent conductive oxides such as ZnO, the presence of these gap states conveys the desirable high conductivity necessary for function as electron-selective interlayer or electron collection electrode in organic optoelectronic devices. Here, we report on the direct spectroscopic detection of a donor state within the band gap of highly conductive zinc oxide by two-photon photoemission spectroscopy. We show that adsorption of the prototypical organic acceptor C60 quenches this state by ground-state charge transfer, with immediate consequences on the interfacial energy level alignment. Comparison with computational results suggests the identity of the gap state as a near-surface-confined oxygen vacancy. PMID:26871256

  1. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. PMID:26611814

  2. Ultrasonic synthesis of fern-like ZnO nanoleaves and their enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Ma, Qing Lan; Xiong, Rui; Zhai, Bao-gai; Huang, Yuan Ming

    2015-01-01

    Two-dimensional fern-like ZnO nanoleaves were synthesized by ultrasonicating zinc microcrystals in water. The morphology, crystal structure, optical property and photocatalytic activity of the fern-like ZnO nanoleaves were characterized with scanning electron microscopy, X-ray diffraction, transmission electron microscopy, photoluminescence spectroscopy and ultraviolet-visible spectroscopy, respectively. It is found that one fern-like ZnO nanoleaf is composed of one ZnO nanorod as the central trunk and a number of ZnO nanoplates as the side branches in opposite pairs along the central ZnO nanorod. The central ZnO nanorod in the fern-like nanoleaves is about 1 μm long while the side-branching ZnO nanoplates are about 100 nm long and 20 nm wide. Further analysis has revealed that ZnO nanocrystals are the building blocks of the central ZnO nanorod and the side-branching ZnO nanoplates. Under identical conditions, fern-like ZnO nanoleaves exhibit higher photocatalytic activity in photodegrading methyl orange in aqueous solution than spherical ZnO nanocrystals. The first-order photocatalytic rate constant of the fern-like ZnO nanoleaves is about four times as large as that of the ZnO nanoparticles. The branched architecture of the hierarchical nanoleaves is suggested be responsible for the enhanced photocatalytic activity of the fern-like ZnO nanoleaves.

  3. A layer-by-layer ZnO nanoparticle-PbS quantum dot self-assembly platform for ultrafast interfacial electron injection.

    PubMed

    Eita, Mohamed; Usman, Anwar; El-Ballouli, Ala'a O; Alarousu, Erkki; Bakr, Osman M; Mohammed, Omar F

    2015-01-01

    Absorbent layers of semiconductor quantum dots (QDs) are now used as material platforms for low-cost, high-performance solar cells. The semiconductor metal oxide nanoparticles as an acceptor layer have become an integral part of the next generation solar cell. To achieve sufficient electron transfer and subsequently high conversion efficiency in these solar cells, however, energy-level alignment and interfacial contact between the donor and the acceptor units are needed. Here, the layer-by-layer (LbL) technique is used to assemble ZnO nanoparticles (NPs), providing adequate PbS QD uptake to achieve greater interfacial contact compared with traditional sputtering methods. Electron injection at the PbS QD and ZnO NP interface is investigated using broadband transient absorption spectroscopy with 120 femtosecond temporal resolution. The results indicate that electron injection from photoexcited PbS QDs to ZnO NPs occurs on a time scale of a few hundred femtoseconds. This observation is supported by the interfacial electronic-energy alignment between the donor and acceptor moieties. Finally, due to the combination of large interfacial contact and ultrafast electron injection, this proposed platform of assembled thin films holds promise for a variety of solar cell architectures and other settings that principally rely on interfacial contact, such as photocatalysis. PMID:25163799

  4. Tuning of structural, optical, and magnetic properties of ultrathin and thin ZnO nanowire arrays for nano device applications

    NASA Astrophysics Data System (ADS)

    Shrama, Satinder K.; Saurakhiya, Neelam; Barthwal, Sumit; Kumar, Rudra; Sharma, Ashutosh

    2014-03-01

    One-dimensional (1-D) ultrathin (15 nm) and thin (100 nm) aligned 1-D (0001) and ([InlineEquation not available: see fulltext.]) oriented zinc oxide (ZnO) nanowire (NW) arrays were fabricated on copper substrates by one-step electrochemical deposition inside the pores of polycarbonate membranes. The aspect ratio dependence of the compressive stress because of the lattice mismatch between NW array/substrate interface and crystallite size variations is investigated. X-ray diffraction results show that the polycrystalline ZnO NWs have a wurtzite structure with a = 3.24 Å, c = 5.20 Å, and [002] elongation. HRTEM and SAED pattern confirmed the polycrystalline nature of ultrathin ZnO NWs and lattice spacing of 0.58 nm. The crystallite size and compressive stress in as-grown 15- and 100-nm wires are 12.8 nm and 0.2248 GPa and 22.8 nm and 0.1359 GPa, which changed to 16.1 nm and 1.0307 GPa and 47.5 nm and 1.1677 GPa after annealing at 873 K in ultrahigh vacuum (UHV), respectively. Micro-Raman spectroscopy showed that the increase in E2 (high) phonon frequency corresponds to much higher compressive stresses in ultrathin NW arrays. The minimum-maximum magnetization magnitude for the as-grown ultrathin and thin NW arrays are approximately 8.45 × 10-3 to 8.10 × 10-3 emu/g and approximately 2.22 × 10-7 to 2.190 × 10-7 emu/g, respectively. The magnetization in 15-nm NW arrays is about 4 orders of magnitude higher than that in the 100 nm arrays but can be reduced greatly by the UHV annealing. The origin of ultrathin and thin NW array ferromagnetism may be the exchange interactions between localized electron spin moments resulting from oxygen vacancies at the surfaces of ZnO NWs. The n-type conductivity of 15-nm NW array is higher by about a factor of 2 compared to that of the 100-nm ZnO NWs, and both can be greatly enhanced by UHV annealing. The ability to tune the stresses and the structural and relative occupancies of ZnO NWs in a wide range by annealing has important

  5. Fabrication of a ZnO Pyroelectric Sensor

    PubMed Central

    Hsiao, Chun-Ching; Huang, Kuo-Yi; Hu, Yuh-Chung

    2008-01-01

    This paper proposes a two-step radio frequency (RF) sputtering process to form a ZnO film for pyroelectric sensors. It is shown that the two-step sputtering process with a lower power step followed by a higher power step can significantly improve the voltage responsivity of the ZnO pyroelectric sensor. The improvement is attributed mainly to the formation of ZnO film with a strongly preferred orientation towards the c-axis. Furthermore, a nickel film deposited onto the uncovered parts of the ZnO film can effectively improve the voltage responsivity at higher modulating frequencies since the nickel film can enhance the incident energy absorption of the ZnO layer.

  6. A Novel Way for Synthesizing Phosphorus-Doped Zno Nanowires

    PubMed Central

    2011-01-01

    We developed a novel approach to synthesize phosphorus (P)-doped ZnO nanowires by directly decomposing zinc phosphate powder. The samples were demonstrated to be P-doped ZnO nanowires by using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction spectra, X-ray photoelectron spectroscopy, energy dispersive spectrum, Raman spectra and photoluminescence measurements. The chemical state of P was investigated by electron energy loss spectroscopy (EELS) analyses in individual ZnO nanowires. P was found to substitute at oxygen sites (PO), with the presence of anti-site P on Zn sites (PZn). P-doped ZnO nanowires were high resistance and the related P-doping mechanism was discussed by combining EELS results with electrical measurements, structure characterization and photoluminescence measurements. Our method provides an efficient way of synthesizing P-doped ZnO nanowires and the results help to understand the P-doping mechanism.

  7. Review of zincblende ZnO: Stability of metastable ZnO phases

    NASA Astrophysics Data System (ADS)

    Ashrafi, A.; Jagadish, C.

    2007-10-01

    Common II-VI compound semiconducting materials are stable thermodynamically with zincblende phase, while the II-O materials such as zinc oxide (ZnO) and beryllium oxide (BeO) are stable with wurtzite phase, and cadmium oxide (CdO) and magnesium oxide (MgO) are stable in rocksalt phase. This phase disharmony in the same material family laid a challenge for the basic physics and in practical applications in optoelectronic devices, where ternary and quaternary compounds are employed. Thermodynamically the zincblende ZnO is a metastable phase which is free from the giant internal electric fields in the [001] directions and has an easy cleavage facet in the ⟨110⟩ directions for laser cavity fabrication that combined with evidence for the higher optical gain. The zincblende materials also have lower ionicity that leads to the lower carrier scattering and higher doping efficiencies. Even with these outstanding features in the zincblende materials, the growth of zincblende ZnO and its fundamental properties are still limited. In this paper, recent progress in growth and fundamental properties of zincblende ZnO material has been reviewed.

  8. Quantum dot-functionalized porous ZnO nanosheets as a visible light induced photoelectrochemical platform for DNA detection

    NASA Astrophysics Data System (ADS)

    Wang, Wenjing; Hao, Qing; Wang, Wei; Bao, Lei; Lei, Jianping; Wang, Quanbo; Ju, Huangxian

    2014-02-01

    This work reports the synthesis of novel CdTe quantum dot (QD)-functionalized porous ZnO nanosheets via a covalent binding method with (3-aminopropyl)triethoxysilane as a linker. The functional nanosheets showed an excellent visible-light absorbency and much higher photoelectrochemical activity than both CdTe QDs and ZnO nanosheets due to the porous structure and appropriate band alignment between the CdTe QDs and ZnO nanosheets. Using hydrogen peroxide as an electron acceptor the nanosheet-modified electrode showed a sensitive photocurrent response. This speciality led to a novel methodology for the design of hydrogen peroxide-related biosensors by the formation or consumption of hydrogen peroxide. Using biotin-labeled DNA as capture probe, a model biosensor was proposed by immobilizing the probe on a nanosheet-modified electrode to recognize target DNA in the presence of an assistant DNA, which produced a ``Y'' junction structure to trigger a restriction endonuclease-aided target recycling. The target recycling resulted in the release of biotin labeled to the immobilized DNA from the nanosheet-modified electrode, thus decreased the consumption of hydrogen peroxide by horseradish peroxidase-mediated electrochemical reduction after binding the left biotin with horseradish peroxidase-labeled streptavidin, which produced an increasing photoelectrochemical response. The `signal on' strategy for photoelectrochemical detection of DNA showed a low detection limit down to the subfemtomole level and good specificity to single-base mismatched oligonucleotides. The sensitized porous ZnO nanosheets are promising for applications in both photovoltaic devices and photoelectrochemical biosensing.

  9. Quantum dot-functionalized porous ZnO nanosheets as a visible light induced photoelectrochemical platform for DNA detection.

    PubMed

    Wang, Wenjing; Hao, Qing; Wang, Wei; Bao, Lei; Lei, Jianping; Wang, Quanbo; Ju, Huangxian

    2014-03-01

    This work reports the synthesis of novel CdTe quantum dot (QD)-functionalized porous ZnO nanosheets via a covalent binding method with (3-aminopropyl)triethoxysilane as a linker. The functional nanosheets showed an excellent visible-light absorbency and much higher photoelectrochemical activity than both CdTe QDs and ZnO nanosheets due to the porous structure and appropriate band alignment between the CdTe QDs and ZnO nanosheets. Using hydrogen peroxide as an electron acceptor the nanosheet-modified electrode showed a sensitive photocurrent response. This speciality led to a novel methodology for the design of hydrogen peroxide-related biosensors by the formation or consumption of hydrogen peroxide. Using biotin-labeled DNA as capture probe, a model biosensor was proposed by immobilizing the probe on a nanosheet-modified electrode to recognize target DNA in the presence of an assistant DNA, which produced a "Y" junction structure to trigger a restriction endonuclease-aided target recycling. The target recycling resulted in the release of biotin labeled to the immobilized DNA from the nanosheet-modified electrode, thus decreased the consumption of hydrogen peroxide by horseradish peroxidase-mediated electrochemical reduction after binding the left biotin with horseradish peroxidase-labeled streptavidin, which produced an increasing photoelectrochemical response. The 'signal on' strategy for photoelectrochemical detection of DNA showed a low detection limit down to the subfemtomole level and good specificity to single-base mismatched oligonucleotides. The sensitized porous ZnO nanosheets are promising for applications in both photovoltaic devices and photoelectrochemical biosensing. PMID:24457595

  10. Prism Window for Optical Alignment

    NASA Technical Reports Server (NTRS)

    Tang, Hong

    2008-01-01

    A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.

  11. Sequence alignment with tandem duplication

    SciTech Connect

    Benson, G.

    1997-12-01

    Algorithm development for comparing and aligning biological sequences has, until recently, been based on the SI model of mutational events which assumes that modification of sequences proceeds through any of the operations of substitution, insertion or deletion (the latter two collectively termed indels). While this model has worked farily well, it has long been apparent that other mutational events occur. In this paper, we introduce a new model, the DSI model which includes another common mutational event, tandem duplication. Tandem duplication produces tandem repeats which are common in DNA, making up perhaps 10% of the human genome. They are responsible for some human diseases and may serve a multitude of functions in DNA regulation and evolution. Using the DSI model, we develop new exact and heuristic algorithms for comparing and aligning DNA sequences when they contain tandem repeats. 30 refs., 3 figs.

  12. Alignment of the VISA Undulator

    SciTech Connect

    Ruland, Robert E.

    2000-02-09

    As part of the R and D program towards a fourth generation light source, a Self-Amplified Spontaneous Emission (SASE) demonstration is being prepared. The Visible-Infrared SASE Amplifier (VISA) undulator is being installed at Brookhaven National Laboratory. The VISA undulator is an in-vacuum, 4-meter long, 1.8 cm period, pure-permanent magnet device, with a novel, strong focusing, permanent magnet FODO array included within the fixed, 6 mm undulator gap. The undulator is constructed of 99 cm long segments. To attain maximum SASE gain requires establishing overlap of electron and photon beams to within 50 pm rms. This imposes challenging tolerances on mechanical fabrication and magnetic field quality, and necessitates use of laser straightness interferometry for calibration and alignment of the magnetic axes of the undulator segments. This paper describes the magnetic centerline determination, and the fiducialization and alignment processes, which were performed to meet the tolerance goal.

  13. Aligned mesoporous architectures and devices.

    SciTech Connect

    Brinker, C. Jeffrey; Lu, Yunfeng

    2011-03-01

    This is the final report for the Presidential Early Career Award for Science and Engineering - PECASE (LDRD projects 93369 and 118841) awarded to Professor Yunfeng Lu (Tulane University and University of California-Los Angeles). During the last decade, mesoporous materials with tunable periodic pores have been synthesized using surfactant liquid crystalline as templates, opening a new avenue for a wide spectrum of applications. However, the applications are somewhat limited by the unfavorabe pore orientation of these materials. Although substantial effort has been devoted to align the pore channels, fabrication of mesoporous materials with perpendicular pore channels remains challenging. This project focused on fabrication of mesoporous materials with perpendicularly aligned pore channels. We demonstrated structures for use in water purification, separation, sensors, templated synthesis, microelectronics, optics, controlled release, and highly selective catalysts.

  14. Effect of annealing on the structural and optical properties of heavily carbon-doped ZnO

    NASA Astrophysics Data System (ADS)

    Huang, He; Deng, Z. W.; Li, D. C.; Barbir, E.; Y Jiang, W.; Chen, M. X.; Kavanagh, K. L.; Mooney, P. M.; Watkins, S. P.

    2010-04-01

    ZnO films grown by metalorganic vapor phase epitaxy (MOVPE) at low temperatures (~500 °C) exhibit very high levels of carbon incorporation in the range of up to several percent. Such large levels of carbon incorporation significantly affect the structural properties of the thin films resulting in broadening of symmetric (0 0 2) rocking curves as well as broadened (1 0 1) pole figures compared with films grown at high temperature. Annealing of the films under air ambient at temperatures between 800 and 1100 °C results in dramatic sharpening of symmetric (0 0 2) rocking curves, indicating improved crystal alignment along the c-axes. (1 0 1) pole figure scans also show significant sharpening in the azimuthal axis, indicating similar improvements in the in-plane crystal alignment perpendicular to the c-axis. Raman spectra for as-grown ZnO at 500 °C show strong D and G peaks at 1381 and 1578 cm-1 due to sp2 carbon clusters. Annealing at 1000 °C results in the elimination of these bands, indicating that post-growth annealing treatment is a useful method to reduce the concentration of sp2 carbon clusters.

  15. Fiber alignment apparatus and method

    DOEpatents

    Kravitz, Stanley H.; Warren, Mial Evans; Snipes, Jr., Morris Burton; Armendariz, Marcelino Guadalupe; Word, V., James Cole

    1997-01-01

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring.

  16. Fiber alignment apparatus and method

    DOEpatents

    Kravitz, S.H.; Warren, M.E.; Snipes, M.B. Jr.; Armendariz, M.G.; Word, J.C. V

    1997-08-19

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring. 8 figs.

  17. Alignment Tool For Welding Sensor

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Steffins, Alfred P.

    1992-01-01

    Alignment tool enables accurate positioning of optoelectronic sensor measuring weld penetration. Designed for use on tungsten/inert-gas welding apparatus, used to adjust position of sensor so photodiode puts out maximum signal. Tangs of slotted cap bent slightly inward to provide spring force holding cap snugly on sensor mount. Tool installed and removed without aid of other tools. Length of pointer adjusted with set-screws. Used with variety of gas cup and electrode lengths.

  18. NICMOS SM-2 SMOV Alignment Results

    NASA Astrophysics Data System (ADS)

    Lupie, O.; Lallo, M.; Cox, C.; Bergeron, E.

    1997-08-01

    This technical memo documents the alignment calibration, spreadsheet model modifications and the update of aperture tables using results from in-flight NICM alignment tests performed during the Second Servicing Mission Orbital Verification Phase.

  19. SIM Lite: ground alignment of the instrument

    NASA Astrophysics Data System (ADS)

    Dekens, Frank G.; Goullioud, Renaud; Nicaise, Fabien; Kuan, Gary; Morales, Mauricio

    2010-07-01

    We present the start of the ground alignment plan for the SIM Lite Instrument. We outline the integration and alignment of the individual benches on which all the optics are mounted, and then the alignment of the benches to form the Science and Guide interferometers. The Instrument has a guide interferometer with only a 40 arc-seconds field of regard, and 200 arc-seconds of alignment adjustability. This requires each sides of the interferometer to be aligned to a fraction of that, while at the same time be orthogonal to the baseline defined by the External Metrology Truss. The baselines of the Science and Guide interferometers must also be aligned to be parallel. The start of these alignment plans is captured in a SysML Instrument System model, in the form of activity diagrams. These activity diagrams are then related to the hardware design and requirements. We finish with future plans for the alignment and integration activities and requirements.

  20. SIM Lite: Ground Alignment of the Instrument

    NASA Technical Reports Server (NTRS)

    Dekens, Frank G.; Goullioud, Renaud; Nicaise, Fabien; Kuan, Gary; Morales, Mauricio

    2010-01-01

    We present the start of the ground alignment plan for the SIM Lite Instrument. We outline the integration and alignment of the individual benches on which all the optics are mounted, and then the alignment of the benches to form the Science and Guide interferometers. The Instrument has a guide interferometer with only a 40 arc-seconds field of regard, and 200 arc-seconds of alignment adjustability. This requires each sides of the interferometer to be aligned to a fraction of that, while at the same time be orthogonal to the baseline defined by the External Metrology Truss. The baselines of the Science and Guide interferometers must also be aligned to be parallel. The start of these alignment plans is captured in a SysML Instrument System model, in the form of activity diagrams. These activity diagrams are then related to the hardware design and requirements. We finish with future plans for the alignment and integration activities and requirements.

  1. Threaded pilot insures cutting tool alignment

    NASA Technical Reports Server (NTRS)

    Goldman, R.; Schneider, W. E.

    1966-01-01

    Threaded pilot allows machining of a port component, or boss, after the reciprocating hole has been threaded. It is used to align cutting surfaces with the boss threads, thus insuring precision alignment.

  2. Structural analysis of aligned RNAs.

    PubMed

    Voss, Björn

    2006-01-01

    The knowledge about classes of non-coding RNAs (ncRNAs) is growing very fast and it is mainly the structure which is the common characteristic property shared by members of the same class. For correct characterization of such classes it is therefore of great importance to analyse the structural features in great detail. In this manuscript I present RNAlishapes which combines various secondary structure analysis methods, such as suboptimal folding and shape abstraction, with a comparative approach known as RNA alignment folding. RNAlishapes makes use of an extended thermodynamic model and covariance scoring, which allows to reward covariation of paired bases. Applying the algorithm to a set of bacterial trp-operon leaders using shape abstraction it was able to identify the two alternating conformations of this attenuator. Besides providing in-depth analysis methods for aligned RNAs, the tool also shows a fairly well prediction accuracy. Therefore, RNAlishapes provides the community with a powerful tool for structural analysis of classes of RNAs and is also a reasonable method for consensus structure prediction based on sequence alignments. RNAlishapes is available for online use and download at http://rna.cyanolab.de. PMID:17020924

  3. Grain alignment in starless cores

    SciTech Connect

    Jones, T. J.; Bagley, M.; Krejny, M.; Andersson, B.-G.; Bastien, P.

    2015-01-01

    We present near-IR polarimetry data of background stars shining through a selection of starless cores taken in the K band, probing visual extinctions up to A{sub V}∼48. We find that P{sub K}/τ{sub K} continues to decline with increasing A{sub V} with a power law slope of roughly −0.5. Examination of published submillimeter (submm) polarimetry of starless cores suggests that by A{sub V}≳20 the slope for P versus τ becomes ∼−1, indicating no grain alignment at greater optical depths. Combining these two data sets, we find good evidence that, in the absence of a central illuminating source, the dust grains in dense molecular cloud cores with no internal radiation source cease to become aligned with the local magnetic field at optical depths greater than A{sub V}∼20. A simple model relating the alignment efficiency to the optical depth into the cloud reproduces the observations well.

  4. Alignment mechanisms of paramagnetic grains revisited

    NASA Technical Reports Server (NTRS)

    Seki, Munezo

    1989-01-01

    Taking into account the tight coupling of grain axis with angular momentum due to effective dissipation of rotation energy, the alignment of spheroidal grains was investigated by paramagnetic relaxation. Alignment degree will be significantly improved in diffuse clouds. The inclusions of superparamagnetic (SPM) substances may play a key role in grain alignment in dark clouds as well as in diffuse clouds.

  5. Ultrafast electron diffraction from aligned molecules

    SciTech Connect

    Centurion, Martin

    2015-08-17

    The aim of this project was to record time-resolved electron diffraction patterns of aligned molecules and to reconstruct the 3D molecular structure. The molecules are aligned non-adiabatically using a femtosecond laser pulse. A femtosecond electron pulse then records a diffraction pattern while the molecules are aligned. The diffraction patterns are then be processed to obtain the molecular structure.

  6. Vertically aligned nanostructure scanning probe microscope tips

    SciTech Connect

    Guillorn, Michael A.; Ilic, Bojan; Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Simpson, Michael L.

    2006-12-19

    Methods and apparatus are described for cantilever structures that include a vertically aligned nanostructure, especially vertically aligned carbon nanofiber scanning probe microscope tips. An apparatus includes a cantilever structure including a substrate including a cantilever body, that optionally includes a doped layer, and a vertically aligned nanostructure coupled to the cantilever body.

  7. Physician-Hospital Alignment in Orthopedic Surgery.

    PubMed

    Bushnell, Brandon D

    2015-09-01

    The concept of "alignment" between physicians and hospitals is a popular buzzword in the age of health care reform. Despite their often tumultuous histories, physicians and hospitals find themselves under increasing pressures to work together toward common goals. However, effective alignment is more than just simple cooperation between parties. The process of achieving alignment does not have simple, universal steps. Alignment will differ based on individual situational factors and the type of specialty involved. Ultimately, however, there are principles that underlie the concept of alignment and should be a part of any physician-hospital alignment efforts. In orthopedic surgery, alignment involves the clinical, administrative, financial, and even personal aspects of a surgeon's practice. It must be based on the principles of financial interest, clinical authority, administrative participation, transparency, focus on the patient, and mutual necessity. Alignment can take on various forms as well, with popular models consisting of shared governance and comanagement, gainsharing, bundled payments, accountable care organizations, and other methods. As regulatory and financial pressures continue to motivate physicians and hospitals to develop alignment relationships, new and innovative methods of alignment will also appear. Existing models will mature and evolve, with individual variability based on local factors. However, certain trends seem to be appearing as time progresses and alignment relationships deepen, including regional and national collaboration, population management, and changes in the legal system. This article explores the history, principles, and specific methods of physician-hospital alignment and its critical importance for the future of health care delivery. PMID:26375539

  8. Gold as an intruder in ZnO nanowires.

    PubMed

    Méndez-Reyes, José M; Monroy, B Marel; Bizarro, Monserrat; Güell, Frank; Martínez, Ana; Ramos, Estrella

    2015-09-01

    Several techniques for obtaining ZnO nanowires (ZnO NWs) have been reported in the literature. In particular, vapour-liquid-solid (VLS) with Au as a catalyst is widely used. During this process, Au impurities in the ZnO NWs can be incorporated accidentally, and for this reason we named these impurities as intruders. It is thought that these intruders may produce interesting alterations in the electronic characteristics of nanowires. In the experiment, it is not easy to detect either Au atoms in these nanowires, or the modification that intruders produce in different electrical, optical and other properties. For this reason, in this density functional theory investigation, the effect of Au intruders on ZnO NWs is analysed. Au extended (thread) and point defects (atoms replacing Zn or O, or Au interstitials) are used to simulate the presence of gold atoms. Optimised geometries, band-gaps and density of states indicate that the presence of small amounts of Au drastically modifies the electronic states of ZnO NWs. The results reported here clearly indicate that small amounts of Au have a strong impact on the electronic properties of ZnO NWs, introducing states in the band edges that may promote transitions in the visible spectral region. The presence of Au as an intruder in ZnO NWs enhances the potential use of this system for photonic and photovoltaic applications. PMID:26219752

  9. Synthesis and characterization of ZnO tetrapods

    NASA Astrophysics Data System (ADS)

    Zahran, H. Y.; Yahia, I. S.

    2015-06-01

    ZnO was prepared by direct combustion method of pure zinc metal at 1000 °C for 30 min. After combustion, ZnO was formed as a fumed powder. The as-synthesized ZnO was characterized by means of different techniques such as: X-ray diffraction (XRD), scanning electron microscope (SEM), diffused reflectance and the electrical conductivity measurements. XRD showed that ZnO has a nanocrystalline hexagonal phase with lattice constants a = 3.24982 Å and c = 5.20661 Å as compared to JCDPS card. From the analysis of the diffused reflectance spectra, the optical band gap was calculated and equals 3.2 eV which is in the same range for commercial ZnO and the reported ZnO prepared by other techniques. SEM micrographs showed the nanotetrapods structure of ZnO with highly uniform distribution of tetrapods. The DC electrical conductivity measurement was carried out in the temperature range 293-473 K, and it was found to be increased with increasing temperature forming three different conduction mechanisms associated with three activation energies.

  10. Growth of Homoepitaxial ZnO Semiconducting Films

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Harris, M. T.; George, Michael A.; McCarty, P.

    1999-01-01

    As a high temperature semiconductor, ZnO has been used for many applications such as wave-guide, solar cells, and surface acoustic wave devices. Since the ZnO material has an energy gap of 3.3 eV at room temperature and an excitonic binding energy (60 meV) that is possible to make excitonic lasering at room temperature a recent surge of interest is to synthesize ZnO films for electro-optical devices. These applications require films with a smooth surface, good crystal quality, and low defect density. Homoepitaxial films have been studied in terms of morphology, crystal structure, and electrical and optical properties. ZnO single crystals are grown by the hydrothermal method. Substrates are mechanically polished and annealed in air for four hours before deposited films. The annealing temperature-dependence of ZnO substrates is studied. Films are synthesized by the off-axis reactive sputtering deposition. The films have very smooth surface with a roughness ZnO films grown of (0001) ZnO and (0001) sapphire substrates will be also compared and discussed in the presentation.

  11. Superhydrophobic ZnO networks with high water adhesion

    PubMed Central

    2014-01-01

    ZnO structures were deposited using a simple chemical bath deposition technique onto interdigitated electrodes fabricated by a conventional photolithography method on SiO2/Si substrates. The X-ray diffraction studies show that the ZnO samples have a hexagonal wurtzite crystalline structure. The scanning electron microscopy observations prove that the substrates are uniformly covered by ZnO networks formed by monodisperse rods. The ZnO rod average diameter and length were tuned by controlling reactants' concentration and reaction time. Optical spectroscopy measurements demonstrate that all the samples display bandgap values and emission bands typical for ZnO. The electrical measurements reveal percolating networks which are highly sensitive when the samples are exposed to ammonia vapors, a variation in their resistance with the exposure time being evidenced. Other important characteristics are that the ZnO rod networks exhibit superhydrophobicity, with water contact angles exceeding 150° and a high water droplet adhesion. Reproducible, easily scalable, and low-cost chemical bath deposition and photolithography techniques could provide a facile approach to fabricate such ZnO networks and devices based on them for a wide range of applications where multifunctionality, i.e., sensing and superhydrophobicity, properties are required. PACS 81.07.-b; 81.05.Dz; 68.08.Bc PMID:25136286

  12. Polarized Raman scattering of single ZnO nanorod

    SciTech Connect

    Yu, J. L. Lai, Y. F. Wang, Y. Z.; Cheng, S. Y.

    2014-01-21

    Polarized Raman scattering measurement on single wurtzite c-plane (001) ZnO nanorod grown by hydrothermal method has been performed at room temperature. The polarization dependence of the intensity of the Raman scattering for the phonon modes A{sub 1}(TO), E{sub 1}(TO), and E{sub 2}{sup high} in the ZnO nanorod are obtained. The deviations of polarization-dependent Raman spectroscopy from the prediction of Raman selection rules are observed, which can be attributed to the structure defects in the ZnO nanorod as confirmed by the comparison of the transmission electron microscopy, photoluminescence spectra as well as the polarization dependent Raman signal of the annealed and unannealed ZnO nanorod. The Raman tensor elements of A{sub 1}(TO) and E{sub 1}(TO) phonon modes normalized to that of the E{sub 2}{sup high} phonon mode are |a/d|=0.32±0.01, |b/d|=0.49±0.02, and |c/d|=0.23±0.01 for the unannealed ZnO nanorod, and |a/d|=0.33±0.01, |b/d|=0.45±0.01, and |c/d|=0.20±0.01 for the annealed ZnO nanorod, which shows strong anisotropy compared to that of bulk ZnO epilayer.

  13. Accelerator and transport line survey and alignment

    SciTech Connect

    Ruland, R.E.

    1991-10-01

    This paper summarizes the survey and alignment processes of accelerators and transport lines and discusses the propagation of errors associated with these processes. The major geodetic principles governing the survey and alignment measurement space are introduced and their relationship to a lattice coordinate system shown. The paper continues with a broad overview about the activities involved in the step sequence from initial absolute alignment to final smoothing. Emphasis is given to the relative alignment of components, in particular to the importance of incorporating methods to remove residual systematic effects in surveying and alignment operations. Various approaches to smoothing used at major laboratories are discussed. 47 refs., 19 figs., 1 tab.

  14. Statistical significance of normalized global alignment.

    PubMed

    Peris, Guillermo; Marzal, Andrés

    2014-03-01

    The comparison of homologous proteins from different species is a first step toward a function assignment and a reconstruction of the species evolution. Though local alignment is mostly used for this purpose, global alignment is important for constructing multiple alignments or phylogenetic trees. However, statistical significance of global alignments is not completely clear, lacking a specific statistical model to describe alignments or depending on computationally expensive methods like Z-score. Recently we presented a normalized global alignment, defined as the best compromise between global alignment cost and length, and showed that this new technique led to better classification results than Z-score at a much lower computational cost. However, it is necessary to analyze the statistical significance of the normalized global alignment in order to be considered a completely functional algorithm for protein alignment. Experiments with unrelated proteins extracted from the SCOP ASTRAL database showed that normalized global alignment scores can be fitted to a log-normal distribution. This fact, obtained without any theoretical support, can be used to derive statistical significance of normalized global alignments. Results are summarized in a table with fitted parameters for different scoring schemes. PMID:24400820

  15. Antares beam-alignment-system performance

    SciTech Connect

    Appert, Q.D.; Bender, S.C.

    1983-01-01

    The beam alignment system for the 24-beam-sector Antares CO/sub 2/ fusion laser automatically aligns more than 200 optical elements. A visible-wavelength alignment technique is employed which uses a telescope/TV system to view point-light sources appropriately located down the beamline. The centroids of the light spots are determined by a video tracker, which generates error signals used by the computer control system to move appropriate mirrors in a closed-loop system. Final touch-up alignment is accomplished by projecting a CO/sub 2/ alignment laser beam through the system and sensing its position at the target location. The techniques and control algorithms employed have resulted in alignment accuracies exceeding design requirements. By employing video processing to determine the centroids of diffraction images and by averaging over multiple TV frames, we achieve alignment accuracies better than 0.1 times system diffraction limits in the presence of air turbulence.

  16. Target alignment in the National Ignition Facility

    SciTech Connect

    Vann, C.S.; Bliss, E.S.; Murray, J.E.

    1994-06-06

    Accurate placement of hundreds of focused laser beams on target is necessary to achieve success in the National Ignition Facility (NIF). The current system requirement is {le}7 {mu}rad error in output pointing and {le}1 mm error in focusing. To accommodate several system shots per day, a target alignment system must be able to align the target to chamber center, inject an alignment beam to represent each shot beam, and point and focus the alignment beams onto the target in about one hour. At Lawrence Livermore National Laboratory, we have developed a target alignment concept and built a prototype to validate the approach. The concept comprises three systems: the chamber center reference, target alignment sensor, and target alignment beams.

  17. Combining Multiple Pairwise Structure-based Alignments

    2014-11-12

    CombAlign is a new Python code that generates a gapped, one-to-many, multiple structure-based sequence alignment(MSSA) given a set of pairwise structure-based alignments. In order to better define regions of similarity among related protein structures, it is useful to detect the residue-residue correspondences among a set of pairwise structure alignments. Few codes exist for constructing a one-to-many, multiple sequence alignment derived from a set of structure alignments, and we perceived a need for creating a newmore » tool for combing pairwise structure alignments that would allow for insertion of gaps in the reference structure.« less

  18. Multiscale peak alignment for chromatographic datasets.

    PubMed

    Zhang, Zhi-Min; Liang, Yi-Zeng; Lu, Hong-Mei; Tan, Bin-Bin; Xu, Xiao-Na; Ferro, Miguel

    2012-02-01

    Chromatography has been extensively applied in many fields, such as metabolomics and quality control of herbal medicines. Preprocessing, especially peak alignment, is a time-consuming task prior to the extraction of useful information from the datasets by chemometrics and statistics. To accurately and rapidly align shift peaks among one-dimensional chromatograms, multiscale peak alignment (MSPA) is presented in this research. Peaks of each chromatogram were detected based on continuous wavelet transform (CWT) and aligned against a reference chromatogram from large to small scale gradually, and the aligning procedure is accelerated by fast Fourier transform cross correlation. The presented method was compared with two widely used alignment methods on chromatographic dataset, which demonstrates that MSPA can preserve the shapes of peaks and has an excellent speed during alignment. Furthermore, MSPA method is robust and not sensitive to noise and baseline. MSPA was implemented and is available at http://code.google.com/p/mspa. PMID:22222564

  19. Alignment method for solar collector arrays

    DOEpatents

    Driver, Jr., Richard B

    2012-10-23

    The present invention is directed to an improved method for establishing camera fixture location for aligning mirrors on a solar collector array (SCA) comprising multiple mirror modules. The method aligns the mirrors on a module by comparing the location of the receiver image in photographs with the predicted theoretical receiver image location. To accurately align an entire SCA, a common reference is used for all of the individual module images within the SCA. The improved method can use relative pixel location information in digital photographs along with alignment fixture inclinometer data to calculate relative locations of the fixture between modules. The absolute locations are determined by minimizing alignment asymmetry for the SCA. The method inherently aligns all of the mirrors in an SCA to the receiver, even with receiver position and module-to-module alignment errors.

  20. Pupil Alignment Measuring Technique and Alignment Reference for Instruments or Optical Systems

    NASA Technical Reports Server (NTRS)

    Hagopian, John G.

    2010-01-01

    A technique was created to measure the pupil alignment of instruments in situ by measuring calibrated pupil alignment references (PARs) in instruments. The PAR can also be measured using an alignment telescope or an imaging system. PAR allows the verification of the science instrument (SI) pupil alignment at the integrated science instrument module (ISIM) level of assembly at ambient and cryogenic operating temperature. This will allow verification of the ISIM+SI alignment, and provide feedback to realign the SI if necessary.

  1. Ridge effect and alignment phenomenon

    SciTech Connect

    Lokhtin, I. P. Managadze, A. K. Snigirev, A. M.

    2013-05-15

    It is assumed that the ridge effect observed by the CMS Collaboration in proton-proton collisions at the LHC and the phenomenon observed by the Pamir Collaboration in emulsion experiments with cosmic rays and characterized by the alignment of spots on a film is a manifestation of the same as-yet-unknown mechanism of the emergence of a coplanar structure of events. A large coplanar effect at the LHC in the region of forward rapidities is predicted on the basis of this hypothesis and an analysis of experimental data.

  2. Aligned interactions in cosmic rays

    NASA Astrophysics Data System (ADS)

    Kempa, J.

    2015-12-01

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  3. Aligned interactions in cosmic rays

    SciTech Connect

    Kempa, J.

    2015-12-15

    The first clean Centauro was found in cosmic rays years many ago at Mt Chacaltaya experiment. Since that time, many people have tried to find this type of interaction, both in cosmic rays and at accelerators. But no one has found a clean cases of this type of interaction.It happened finally in the last exposure of emulsion at Mt Chacaltaya where the second clean Centauro has been found. The experimental data for both the Centauros and STRANA will be presented and discussed in this paper. We also present our comments to the intriguing question of the existence of a type of nuclear interactions at high energy with alignment.

  4. MEANS FOR DETERMINING CENTRIFUGE ALIGNMENT

    DOEpatents

    Smith, W.Q.

    1958-08-26

    An apparatus is presented for remotely determining the alignment of a centrifuge. The centrifage shaft is provided with a shoulder, upon which two followers ride, one for detecting radial movements, and one upon the shoulder face for determining the axial motion. The followers are attached to separate liquid filled bellows, and a tube connects each bellows to its respective indicating gage at a remote location. Vibrations produced by misalignment of the centrifuge shaft are transmitted to the bellows, and tbence through the tubing to the indicator gage. This apparatus is particularly useful for operation in a hot cell where the materials handled are dangerous to the operating personnel.

  5. Method for protein structure alignment

    DOEpatents

    Blankenbecler, Richard; Ohlsson, Mattias; Peterson, Carsten; Ringner, Markus

    2005-02-22

    This invention provides a method for protein structure alignment. More particularly, the present invention provides a method for identification, classification and prediction of protein structures. The present invention involves two key ingredients. First, an energy or cost function formulation of the problem simultaneously in terms of binary (Potts) assignment variables and real-valued atomic coordinates. Second, a minimization of the energy or cost function by an iterative method, where in each iteration (1) a mean field method is employed for the assignment variables and (2) exact rotation and/or translation of atomic coordinates is performed, weighted with the corresponding assignment variables.

  6. High pressure and high temperature behaviour of ZnO

    SciTech Connect

    Thakar, Nilesh A.; Bhatt, Apoorva D.; Pandya, Tushar C.

    2014-04-24

    The thermodynamic properties with the wurtzite (B4) and rocksalt (B1) phases of ZnO under high pressures and high temperatures have been investigated using Tait's Equation of state (EOS). The effects of pressures and temperatures on thermodynamic properties such as bulk modulus, thermal expansivity and thermal pressure are explored for both two structures. It is found that ZnO material gradually softens with increase of temperature while it hardens with the increment of the pressure. Our predicted results of thermodynamics properties for both the phases of ZnO are in overall agreement with the available data in the literature.

  7. Green emission in carbon doped ZnO films

    SciTech Connect

    Tseng, L. T.; Yi, J. B. Zhang, X. Y.; Xing, G. Z.; Luo, X.; Li, S.; Fan, H. M.; Herng, T. S.; Ding, J.; Ionescu, M.

    2014-06-15

    The emission behavior of C-doped ZnO films, which were prepared by implantation of carbon into ZnO films, is investigated. Orange/red emission is observed for the films with the thickness of 60–100 nm. However, the film with thickness of 200 nm shows strong green emission. Further investigations by annealing bulk ZnO single crystals under different environments, i.e. Ar, Zn or C vapor, indicated that the complex defects based on Zn interstitials are responsible for the strong green emission. The existence of complex defects was confirmed by electron spin resonance (ESR) and low temperature photoluminescence (PL) measurement.

  8. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    NASA Astrophysics Data System (ADS)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  9. PAC studies on impurities in ZnO

    NASA Astrophysics Data System (ADS)

    Deubler, S.; Meier, J.; Schütz, R.; Witthuhn, W.

    1992-01-01

    Acceptor-donor pairs in ZnO are studied by the perturbed angular correlation spectroscopy (PAC) using radioactive 111In/ 111Cd probe atoms. In undoped ZnO the trapping of O-vacancies as well as the trapping of Zn-interstitials at the probe atoms which are located at substitutional Zn sites is observed after different sample treatments. In Cu-, Li-, and Na-doped ZnO the acceptor impurities form complexes with the In donors. The structure of these complexes is given and compared with theoretical calculations.

  10. Green emission in carbon doped ZnO films

    NASA Astrophysics Data System (ADS)

    Tseng, L. T.; Yi, J. B.; Zhang, X. Y.; Xing, G. Z.; Fan, H. M.; Herng, T. S.; Luo, X.; Ionescu, M.; Ding, J.; Li, S.

    2014-06-01

    The emission behavior of C-doped ZnO films, which were prepared by implantation of carbon into ZnO films, is investigated. Orange/red emission is observed for the films with the thickness of 60-100 nm. However, the film with thickness of 200 nm shows strong green emission. Further investigations by annealing bulk ZnO single crystals under different environments, i.e. Ar, Zn or C vapor, indicated that the complex defects based on Zn interstitials are responsible for the strong green emission. The existence of complex defects was confirmed by electron spin resonance (ESR) and low temperature photoluminescence (PL) measurement.

  11. ZnO Nanocoral Structures for Photoelectrochemical Cells

    SciTech Connect

    Ahn, K. S.; Yan, Y.; Shet, S.; Jones, K.; Deutsch, T.; Turner, J.; Al-Jassim, M.

    2008-01-01

    We report on synthesis of a uniform and large area of a new form of ZnO nanocorals. These nanostructures can provide suitable electrical pathways for efficient carrier collection as well as large surface areas for the photoelectrochemical (PEC) cells. PEC devices made from these ZnO nanocoral structures demonstrate significantly enhanced photoresponse as compared to ZnO compact and nanorod films. Our results suggest that the nanocoral structures could be an excellent choice for nanomaterial-based applications such as dye-sensitized solar cells, electrochromic windows, and batteries.

  12. Strategies for active alignment of lenses

    NASA Astrophysics Data System (ADS)

    Langehanenberg, Patrik; Heinisch, Josef; Wilde, Chrisitan; Hahne, Felix; Lüerß, Bernd

    2015-10-01

    Today's optical systems require up-to-date assembly and joining technology. The trend of keeping dimensions as small as possible while maintaining or increasing optical imaging performance leaves little to no room for mechanical lens adjustment equipment that may remain in the final product. In this context active alignment of optical elements opens up possibilities for the fast and cost-economic manufacturing of lenses and lens assemblies with highest optical performance. Active alignment for lens manufacturing is the precise alignment of the optical axis of a lens with respect to an optical or mechanical reference axis (e.g. housing) including subsequent fixation by glue. In this contribution we will describe different approaches for active alignment and outline strengths and limitations of the different methods. Using the SmartAlign principle, highest quality cemented lenses can be manufactured without the need for high precision prealignment, while the reduction to a single alignment step greatly reduces the cycle time. The same strategies can also be applied to bonding processes. Lenses and lens groups can be aligned to both mechanical and optical axes to maximize the optical performance of a given assembly. In hybrid assemblies using both mechanical tolerances and active alignment, SmartAlign can be used to align critical lens elements anywhere inside the system for optimized total performance. Since all geometrical parameters are re-measured before each alignment, this process is especially suited for complex and time-consuming production processes where the stability of the reference axis would otherwise be critical. For highest performance, lenses can be actively aligned using up to five degrees of freedom. In this way, SmartAlign enables the production of ultra-precise mounted lenses with an alignment precision below 1 μm.

  13. Temperature- and frequency-dependent dielectric behaviors of insulator/semiconductor (Al2O3/ZnO) nanolaminates with various ZnO thicknesses

    NASA Astrophysics Data System (ADS)

    Li, Jin; Bi, Xiaofang

    2016-07-01

    Al2O3/ZnO nanolaminates (NLs) with various ZnO sublayer thicknesses were prepared by atomic layer deposition. The Al2O3 sublayers are characterized as amorphous and the ZnO sublayers have an oriented polycrystalline structure. As the ZnO thickness decreases to a certain value, each NL exhibits a critical temperature at which its dielectric constant starts to rise quickly. Moreover, this temperature increases as the ZnO thickness is decreased further. On the other hand, the permittivity demonstrates a large value of several hundred at a frequency  ⩽1000 Hz, followed by a steplike decrease at a higher frequency. The change in the cut-off frequency with ZnO thickness is characterized by a hook function. It is revealed that the Coulomb confinement effect becomes predominant in the dielectric behaviors of the NLs with very thin ZnO. As the ZnO thickness decreases to about the same as or even smaller than the Bohr radius of ZnO, a great change in the carrier concentration and effective mass of ZnO is induced, which is shown to be responsible for the peculiar dielectric behaviors of Al2O3/ZnO with very thin ZnO. These findings provide insight into the prevailing mechanisms to optimize the dielectric properties of semiconductor/insulator laminates with nanoscale sublayer thickness.

  14. Novel ZnO microballs synthesized via pyrolysis of zinc-acetate in oxygen atmosphere

    NASA Astrophysics Data System (ADS)

    Xia, Xianhui; Zhu, Liping; Ye, Zhizhen; Yuan, Guodong; Zhao, Binghui; Qian, Qing

    2005-09-01

    Novel micrometer-sized ZnO balls have been synthesized on (1 1 1)-Si substrates via pyrolysis of zinc acetate in oxygen atmosphere. The ZnO microballs exhibit unique geometrical shapes with partly porous or hollow structures and their walls are composed of large size textured ZnO microcrystals. The growth mechanism of the ZnO microballs is proposed to be a process following the formation of ZnO film layer, ZnO branches and then ZnO microballs. The phase structure and crystalline structure of the as-grown ZnO microballs were investigated by X-ray diffraction (XRD) and high-resolution transmission electron microscope (HRTEM), respectively. The room-temperature photoluminescence (PL) spectrum shows prominent UV emission around 394 nm and weak green emission peaks indicating that there are few defects in the single crystal grains of the ZnO microballs.

  15. Measuring alignment of loading fixture

    DOEpatents

    Scavone, Donald W.

    1989-01-01

    An apparatus and method for measuring the alignment of a clevis and pin type loading fixture for compact tension specimens include a pair of substantially identical flat loading ligaments. Each loading ligament has two apertures for the reception of a respective pin of the loading fixture and a thickness less than one-half of a width of the clevis opening. The pair of loading ligaments are mounted in the clevis openings at respective sides thereof. The loading ligaments are then loaded by the pins of the loading fixture and the strain in each loading ligament is measured. By comparing the relative strain of each loading ligament, the alignment of the loading fixture is determined. Preferably, a suitable strain gage device is located at each longitudinal edge of a respective loading ligament equidistant from the two apertures in order to determine the strain thereat and hence the strain of each ligament. The loading ligaments are made substantially identical by jig grinding the loading ligaments as a matched set. Each loading ligament can also be individually calibrated prior to the measurement.

  16. VISA undulator fiducialization and alignment

    SciTech Connect

    1999-12-13

    As part of the R and D program towards a fourth generation light source, a Self-Amplified Spontaneous Emission (SASE) demonstration is being prepared. The Visible-Infrared SASE Amplifier (VISA) undulator will be installed at Brookhaven National Laboratory by the end of the year. The VISA undulator is an in-vacuum, 4-meter long, 1.8 cm period, pure-permanent magnet device, with a novel, strong focusing, permanent magnet FODO array included within the fixed, 6 mm undulator gap. The undulator is constructed of 99 cm long segments. To attain maximum SASE gain requires establishing overlap of electron and photon beams to within 50 {micro}m rms. This imposes challenging tolerances on mechanical fabrication and magnetic field quality, and necessitates use of laser straightness interferometry for calibration and alignment of the magnetic axes of the undulator segments. This paper describes the magnetic centerline determination, and the fiducialization and alignment processes which were performed to meet the tolerance goal.

  17. Flexible high-output nanogenerator based on lateral ZnO nanowire array.

    PubMed

    Zhu, Guang; Yang, Rusen; Wang, Sihong; Wang, Zhong Lin

    2010-08-11

    We report here a simple and effective approach, named scalable sweeping-printing-method, for fabricating flexible high-output nanogenerator (HONG) that can effectively harvesting mechanical energy for driving a small commercial electronic component. The technique consists of two main steps. In the first step, the vertically aligned ZnO nanowires (NWs) are transferred to a receiving substrate to form horizontally aligned arrays. Then, parallel stripe type of electrodes are deposited to connect all of the NWs together. Using a single layer of HONG structure, an open-circuit voltage of up to 2.03 V and a peak output power density of approximately 11 mW/cm(3) have been achieved. The generated electric energy was effectively stored by utilizing capacitors, and it was successfully used to light up a commercial light-emitting diode (LED), which is a landmark progress toward building self-powered devices by harvesting energy from the environment. This research opens up the path for practical applications of nanowire-based piezoelectric nanogeneragtors for self-powered nanosystems. PMID:20698630

  18. Facile construction of vertically aligned EuS-ZnO hybrid core shell nanorod arrays for visible light driven photocatalytic properties

    SciTech Connect

    Ranjith, K. S.; Kumar, D. Ranjith; Kumar, R. T. Rajendra

    2015-06-24

    We demonstrated the development of coupled semiconductor in the form of hybrid heterostructures for significant advancement in catalytic functional materials. In this article, we report the preparation of vertically aligned core shell ZnO-EuS nanorod photocatalyst arrays by a simple chemical solution process followed by sulfudation process. The XRD pattern confirmed formation of the hexagonal wurtzite structure of ZnO and cubic nature of the EuS. Cross sectional FESEM images show vertical rod array structure, and the size of the nanorods ranges from 80 to 120 nm. UV-Vis DRS spectra showed that the optical absorption of ZnO was significantly enhanced to the visible region by modification with EuS surfaces. TEM study confirmed that the surface of ZnO was drastically improved by the modification with EuS nanoparticle. The catalytic activity of EuS−ZnO core shell nanorod arrays were evaluated by the photodegradation of Methylene Blue (MB) dye under visible irradiation. The results revealed that the photocatalytic activity of EuS−ZnO was much higher than that of ZnO under natural sunlight. EuS−ZnO was found to be stable and reusable without appreciable loss of catalytic activity up to four consecutive cycles.

  19. ARYANA: Aligning Reads by Yet Another Approach

    PubMed Central

    2014-01-01

    Motivation Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $106 prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. Contribution We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. Availability ARYANA with complete source code can be obtained from http://github.com/aryana-aligner PMID:25252881

  20. Hydrodynamic fabrication of structurally gradient ZnO nanorods.

    PubMed

    Kim, Hyung Min; Youn, Jae Ryoun; Song, Young Seok

    2016-02-26

    We studied a new approach where structurally gradient nanostructures were fabricated by means of hydrodynamics. Zinc oxide (ZnO) nanorods were synthesized in a drag-driven rotational flow in a controlled manner. The structural characteristics of nanorods such as orientation and diameter were determined by momentum and mass transfer at the substrate surface. The nucleation of ZnO was induced by shear stress which plays a key role in determining the orientation of ZnO nanorods. The nucleation and growth of such nanostructures were modeled theoretically and analyzed numerically to understand the underlying physics of the fabrication of nanostructures controlled by hydrodynamics. The findings demonstrated that the precise control of momentum and mass transfer enabled the formation of ZnO nanorods with a structural gradient in diameter and orientation. PMID:26807679

  1. Synthesis and Optical Properties of ZnO Nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Duo-Fa; Liao, Lei; Li, Jin-Chai; Fu, Qiang; Peng, Ming-Zeng; Zhou, Jun-Ming

    2005-08-01

    ZnO nanostructures with different morphologies were fabricated by changing the partial oxygen pressure. The structures, morphologies and optical properties of ZnO nanostructures were investigated by x-ray diffraction, field emission scanning electron microscopy and photoluminescence (PL) spectra at room temperature. All the samples show preferred orientation along the c-axis. The oxygen partial pressure and the annealing atmosphere have important effect on the PL property of ZnO nanostructures. The high oxygen partial pressure during growth of samples and high-temperature annealing of the ZnO samples in oxygen can increase oxygen vacancies and can especially increase antisite oxygen (Ozn) defects, which degraded the near band-edge emission. However, the annealing in H2 can significantly modify the NBE emission.

  2. Li doped ZnO thin films for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Serrao, F. J.; Dharmaprakash, S. M.

    2016-05-01

    We have prepared undoped (ZnO) and Li doped ZnO (LZO) thin films using cost effective sol gel spin coating method.The structural properties were analyzed by X-ray diffraction, and it showed that Li ions occupied interstitial positions in the LZO film. The optical properties like band bending effect, absorption length, band edge sharpness, which have direct impact on solar cell performance has been calculated. The room temperature photoluminescence spectra of the films showed dominant blue emission with CIE coordinate numbers (0.1384, 0.0836) for ZnO and (0.1356, 0.0910) for LZO. The dominating wavelength of the blue emission is present at 470.9 nm and 472.3 nm for ZnO and LZO films respectively. The structural and optical parameters determined in the present study could be used in LED applications.

  3. Direct observation of voltage barriers in ZnO varistors

    NASA Technical Reports Server (NTRS)

    Krivanek, O. L.; Williams, P.; Lin, Y.-C.

    1979-01-01

    Voltage barriers in a ZnO varistor have been imaged by voltage-contrast scanning electron microscopy. They are due to grain boundaries and are capable of supporting voltage differences of up to about 4 V.

  4. Photoluminescence of polycrystalline ZnO under different annealing conditions

    NASA Astrophysics Data System (ADS)

    Hur, Tae-Bong; Jeen, Gwang Soo; Hwang, Yoon-Hwae; Kim, Hyung-Kook

    2003-11-01

    We investigated polycrystalline zinc oxide (ZnO) with different annealing conditions in air by x-ray photoelectron spectroscopy and photoluminescence. We found that the concentration of antisite oxide (OZn) increases when ZnO ceramics were in an O-rich condition. As the concentration of antisite oxide (OZn) increased, the photoluminescence intensity of the green band emission increased. The crossover temperature of the free and bound excitons was roughly estimated as 100 K.

  5. Anodized ZnO nanostructures for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Huang, Mao-Chia; Wang, TsingHai; Wu, Bin-Jui; Lin, Jing-Chie; Wu, Ching-Chen

    2016-01-01

    Zinc oxide (ZnO) nanostructures were fabricated on the polished zinc foil by anodic deposition in an alkaline solution containing 1.0 M NaOH and 0.25 M Zn(NO3)2. Potentiostatic anodization was conducted at two potentials (-0.7 V in the passive region and -1.0 V in the active region vs. SCE) which are higher than the open circuit potential (-1.03 V vs. SCE) and as-obtained ZnO nanostrcutures were investigated focusing on their structural, optical, electrical and photoelectrochemical (PEC) characteristics. All samples were confirmed ZnO by X-ray photoelectron spectroscopy and Raman spectra. Observations in the SEM images clearly showed that ZnO nanostructures prepared at -0.7 V vs. SCE were composed of nanowires at while those obtained at -1.0 V vs. SCE possessed nanosheets morphology. Result from transmission electron microscope and X-ray diffraction patterns suggested that the ZnO nanowires belonged to single crystalline with a preferred orientation of (0 0 2) whereas the ZnO nanosheets were polycrystalline. Following PEC experiments indicated that ZnO nanowires had higher photocurrent density of 0.32 mA/cm2 at 0.5 V vs. SCE under 100 mW/cm2 illumination. This value was about 1.9 times higher than that of ZnO nanosheets. Observed higher photocurrent was likely due to the single crystalline, preferred (0 0 2) orientation, higher carrier concentration and lower charge transfer resistance.

  6. Vapor Transport of ZnO in Closed Ampoules

    NASA Technical Reports Server (NTRS)

    Palosz, Witold

    2005-01-01

    Vapor transport of ZnO by PVT and CVT using carbon, carbon monoxide, and hydrogen as the transport agents was studied. Theoretical calculations of the mass flux were based on equilibrium thermodynamics and 1-D diffusional mass transport. Experimental results were found to be consistent with theoretical predictions. NO apparent kinetic limitations to sublimation were observed. Slow reaction of carbon with ZnO source was found.

  7. Magnetic alignment and patterning of cellulose fibers

    NASA Astrophysics Data System (ADS)

    Kimura, Fumiko; Kimura, Tsunehisa

    2008-04-01

    The alignment and patterning of cellulose fibers under magnetic fields are reported. Static and rotating magnetic fields were used to align cellulose fibers with sizes ranging from millimeter to nanometer sizes. Cellulose fibers of the millimeter order, which were prepared for papermaking, and much smaller fibers with micrometer to nanometer sizes prepared by the acid hydrolysis of larger ones underwent magnetic alignment. Under a rotating field, a uniaxial alignment of fibers was achieved. The alignment was successfully fixed by the photopolymerization of a UV-curable resin precursor used as matrix. A monodomain chiral nematic film was prepared from an aqueous suspension of nanofibers. Using a field modulator inserted in a homogeneous magnetic field, simultaneous alignment and patterning were achieved.

  8. Innovative optical alignment technique for CMP wafers

    NASA Astrophysics Data System (ADS)

    Sugaya, Ayako; Kanaya, Yuho; Nakajima, Shinichi; Nagayama, Tadashi; Shiraishi, Naomasa

    2002-07-01

    Detecting position of the wafers such as after CMP process is critical theme of current and forthcoming IC manufacturing. The alignment system must be with high accuracy for any process. To satisfy such requirements, we have studied and analyzed factors that have made alignment difficult. From the result of the studies, we have developed new optical alignment techniques which improve the accuracy of FIA (alignment sensor of Nikon's NSR series) and examined them. The approaches are optimizing the focus position, developing an advanced algorithm for position detection, and selecting a suitable mark design. For experiment, we have developed the special wafers that make it possible to evaluate the influence of CMP processes. The experimental results show that the overlay errors decrease dramatically with the new alignment techniques. FIA with these new techniques will be much accurate and suitable alignment sensor for CMP and other processes of future generation ULSI production.

  9. Laminar silk scaffolds for aligned tissue fabrication

    PubMed Central

    Mandal, Biman B.; Gil, Eun Seok; Panilaitis, Bruce; Kaplan, David L.

    2013-01-01

    3D biomaterial scaffolds with aligned architecture are of vital importance in tissue regeneration to mimic native tissue hierarchy and hence function. We demonstrate a generic method to produce aligned biomaterial scaffolds using the physics of directional ice freezing. Homogeneously aligned 3D silk scaffold with high porosity and alignment was demonstrated. The method can be adapted to a wide range of polymers and is devoid of any chemical reactions, thus avoiding potential complications associated with by-products and purification procedures. Subsequently, the 3D aligned system was tested for mechanical properties and cellular responses with chondrocytes and bone marrow derived human mesenchymal stem cells, assessing survival, proliferation and differentiation. In vivo tests suggested biocompatibility of the matrices for future tissue engineering applications, specifically in areas where high cellular alignment is needed. PMID:23161731

  10. Multiple alignment using hidden Markov models

    SciTech Connect

    Eddy, S.R.

    1995-12-31

    A simulated annealing method is described for training hidden Markov models and producing multiple sequence alignments from initially unaligned protein or DNA sequences. Simulated annealing in turn uses a dynamic programming algorithm for correctly sampling suboptimal multiple alignments according to their probability and a Boltzmann temperature factor. The quality of simulated annealing alignments is evaluated on structural alignments of ten different protein families, and compared to the performance of other HMM training methods and the ClustalW program. Simulated annealing is better able to find near-global optima in the multiple alignment probability landscape than the other tested HMM training methods. Neither ClustalW nor simulated annealing produce consistently better alignments compared to each other. Examination of the specific cases in which ClustalW outperforms simulated annealing, and vice versa, provides insight into the strengths and weaknesses of current hidden Maxkov model approaches.

  11. Automated interferometric alignment system for paraboloidal mirrors

    DOEpatents

    Maxey, L.C.

    1993-09-28

    A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aligning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront. 14 figures.

  12. AIMFAST: Alignment Implementation for Manufacturing

    SciTech Connect

    2012-09-13

    AIMFAST is a software code used to align facets on a dish concentrator to a specific aimpoint strategy to minimize peak fluxes and maximize system optical performance. AIMFAST uses a large monitor or projections screen to display fringe patterns, and a machine vision camera to image the reflection of these patterns in the subject dish mirrors. From these images, a detailed map of surface normals can be generated and compared to design or fitted mirror shapes. This fitted comparison is then used to develop a single vector representing the orientation of the facets relative to the design orientation, and provide near-real-time adjustment information to a communicating computer. The communicating computer can display adjustments or directly interface with adjustment tools. The software for the communicating computer is specific to the implementation and is not a part of AIMFAST.

  13. The Alignment of Galaxy Structures

    NASA Astrophysics Data System (ADS)

    Biernacka, M.; Panko, E.; Bajan, K.; Godłowski, W.; Flin, P.

    2015-11-01

    We analyzed the orientation of the sample of ACO galaxy clusters. We examined the alignment in a subsample of 1056 galaxy structures taken from the Panko-Flin (2006) Catalog with known BM morphological types. We were looking for a correlation between the orientation of the cluster and the positions of neighboring clusters. The Binggeli effect (the excess of small values of the Δθ angles between the direction toward neighboring clusters and the cluster position angle) is observed, having a range up to about 45 h-1 Mpc. The strongest effect was found for elongated BM type I clusters. This is probably connected with the origins of the supergiant galaxy and with cluster formation along a long filament or plane in a supercluster.

  14. AIMFAST: Alignment Implementation for Manufacturing

    2012-09-13

    AIMFAST is a software code used to align facets on a dish concentrator to a specific aimpoint strategy to minimize peak fluxes and maximize system optical performance. AIMFAST uses a large monitor or projections screen to display fringe patterns, and a machine vision camera to image the reflection of these patterns in the subject dish mirrors. From these images, a detailed map of surface normals can be generated and compared to design or fitted mirrormore » shapes. This fitted comparison is then used to develop a single vector representing the orientation of the facets relative to the design orientation, and provide near-real-time adjustment information to a communicating computer. The communicating computer can display adjustments or directly interface with adjustment tools. The software for the communicating computer is specific to the implementation and is not a part of AIMFAST.« less

  15. IAIMFAST: Alignment Implementation for Manufacturing

    2013-08-29

    AIMFAST is a software code used to align facets on a dish concentrator to a specific aimpoint strategy to minimize peak fluxes and maximize system optical performance. AIM FAST uses a large monitor to display fringe patterns, and a machine vision camera to image the reflection of these patterns in the subject dish mirrors. From these images, a detailed map of surface normals can be generated and compared to design or fitted mirror shapes. Thismore » fitted comparison is then used to develop a single vector representing the orientation of the facets relative to the design orientation, and provide near-real-time adjustment information to a communicating computer. The communicating computer can display adjustments or directly interface with adjustment tools.« less

  16. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles.

    PubMed

    Janaki, A Chinnammal; Sailatha, E; Gunasekaran, S

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity. PMID:25748589

  17. Light emission from electrically stressed ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Lucera, Luca; Adnane, Lhacene; Cil, Kadir; Manthina, Venkata; Agrios, Alexander; Silva, Helena; Gokirmak, Ali

    2012-02-01

    Zinc oxide (ZnO) nanorods were grown on various substrates by a chemical growth process based on a ZnO seed solution, and starting from Zinc acetate (ZnAc) material. The nanorods were grown on insulating silicon (low doped) and oxidized silicon substrates, and also over patterned conducting (highly-doped) nanocrystalline silicon microwires. When high voltage is applied directly to the ZnO film using tungsten needles (˜ 50-60 V across ˜ 5-10 μm), high intensity blue and white light emission is observed, both in air and under high vacuum (10-4 - 10-5 Torr). Blue light appears as broad bright flashes covering a large area whereas white light is more localized and appears to come from individual nanostructures. The results suggest a combination of electroluminescence and photoluminescence processes that take place after an electrical breakdown (possibly across individual ZnO nanorods) that is observed as an exponential increase in current. Percolative conduction and light paths are also observed during the measurements. Measurements of the ZnO films of rods on conducting silicon substrate give more repeatable results, likely due to the higher probability of conducting paths between the two probes. The electrical stress results in significant self-heating and modification of the ZnO nanostructures and the contacts.[4pt] [1] Greene L. E. et al. Solution-Grown Zinc oxide nanowires. Innorganic Chemistry. Vol 45. 7535-7543. (2006)

  18. High efficient ZnO nanowalnuts photocatalyst: A case study

    SciTech Connect

    Yan, Feng; Zhang, Siwen; Liu, Yang; Liu, Hongfeng; Qu, Fengyu; Cai, Xue; Wu, Xiang

    2014-11-15

    Highlights: • Walnut-like ZnO nanostructures are synthesized through a facile hydrothermal method. • Morphologies and microstructures of the as-obtained ZnO products were investigated. • The photocatalytic results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. - Abstract: Walnut-like ZnO nanostructures are successfully synthesized through a facile hydrothermal method. The structure and morphology of the as-synthesized products were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The photocatalytic properties of ZnO nanowalnuts are investigated by photodegradating several organic dyes, such as Congo red (CR), methyl orange (MO) and eosin red aqueous solutions under UV irradiation, respectively. The results demonstrate that methyl orange (MO) aqueous solution can be degraded over 97% after 45 min under UV light irradiation. In addition, eosin red and Congo red (CR) aqueous solution degradation experiments are also conducted in the same condition, respectively. It showed that ZnO nanowalnuts represent high photocatalytic activities with a degradation efficiency of 87% for CR with 115 min of irradiation and 97% for eosin red with 55 min of irradiation. The reported ZnO products may be promising candidates as the photocatalysts in waste water treatment.

  19. Luminescence mechanisms of defective ZnO nanoparticles.

    PubMed

    Camarda, Pietro; Messina, Fabrizio; Vaccaro, Lavinia; Agnello, Simonpietro; Buscarino, Gianpiero; Schneider, Reinhard; Popescu, Radian; Gerthsen, Dagmar; Lorenzi, Roberto; Gelardi, Franco Mario; Cannas, Marco

    2016-06-28

    ZnO nanoparticles (NPs) synthesized by pulsed laser ablation (PLAL) of a zinc plate in deionized water were investigated by time-resolved photoluminescence (PL) and complementary techniques (TEM, AFM, μRaman). HRTEM images show that PLAL produces crystalline ZnO NPs in wurtzite structure with a slightly distorted lattice parameter a. Consistently, optical spectra show the typical absorption edge of wurtzite ZnO (Eg = 3.38 eV) and the related excitonic PL peaked at 3.32 eV with a subnanosecond lifetime. ZnO NPs display a further PL peaking at 2.2 eV related to defects, which shows a power law decay kinetics. Thermal annealing in O2 and in a He atmosphere produces a reduction of the A1(LO) Raman mode at 565 cm(-1) associated with oxygen vacancies, accompanied by a decrease of defect-related emission at 2.2 eV. Based on our experimental results the emission at 2.2 eV is proposed to originate from a photo-generated hole in the valence band recombining with an electron deeply trapped in a singly ionized oxygen vacancy. This investigation clarifies important aspects of the photophysics of ZnO NPs and indicates that ZnO emission can be controlled by thermal annealing, which is important in view of optoelectronic applications. PMID:27251452

  20. Growth mechanism of ZnO low-temperature homoepitaxy

    SciTech Connect

    Park, S. H.; Minegishi, T.; Lee, H. J.; Chang, J. H.; Yao, T.; Oh, D. C.; Ko, H. J.

    2011-09-01

    The authors report on the growth mechanism of ZnO homoepitaxy at the low-temperature range of 500 deg. C, which is unavailable to obtain high-quality ZnO films in heteroepitaxy. One typical set of ZnO films were grown on (0001) ZnO substrates by molecular-beam epitaxy: a standard structure without buffer and two buffered structures with high-temperature (HT) homobuffer and low-temperature (LT) homobuffer. As a result, the LT homobuffered structure had the outstanding material properties: the surface roughness is 0.9 nm, the full width at half maximum of x-ray rocking curve is 13 arcsec, and the emission linewidth of donor-bound excitons is 2.4 meV. In terms of the theoretical interpretation of the experimentally obtained electron mobilities, it was found that the LT homobuffered structure suffers less from the dislocation scattering and the ionized-impurity scattering compared to the HT homobuffered structure. It is proposed that, in the ZnO low-temperature homoepitaxy, the LT homobuffer plays a key role in inducing the complete termination of dislocations in the homointerface and suppressing the outdiffusion of contaminants and point defects on the ZnO surface, which results in the formation of smooth wetting layer on the homointerface.