Science.gov

Sample records for alignment analysis revealed

  1. Orbit IMU alignment: Error analysis

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    A comprehensive accuracy analysis of orbit inertial measurement unit (IMU) alignments using the shuttle star trackers was completed and the results are presented. Monte Carlo techniques were used in a computer simulation of the IMU alignment hardware and software systems to: (1) determine the expected Space Transportation System 1 Flight (STS-1) manual mode IMU alignment accuracy; (2) investigate the accuracy of alignments in later shuttle flights when the automatic mode of star acquisition may be used; and (3) verify that an analytical model previously used for estimating the alignment error is a valid model. The analysis results do not differ significantly from expectations. The standard deviation in the IMU alignment error for STS-1 alignments was determined to the 68 arc seconds per axis. This corresponds to a 99.7% probability that the magnitude of the total alignment error is less than 258 arc seconds.

  2. Stellar Alignments - Identification and Analysis

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive L. N.

    Fortuitous stellar alignments can be fitted to structural orientations with relative ease by the unwary. Nonetheless, cautious approaches taking into account a broader range of cultural evidence, as well as paying due attention to potential methodological pitfalls, have been successful in identifying credible stellar alignments—and constructing plausible assessments of their cultural significance—in a variety of circumstances. These range from single instances of alignments upon particular asterisms where the corroborating historical or ethnographic evidence is strong to repeated instances of oriented structures with only limited independent cultural information but where systematic, data-driven approaches can be productive. In the majority of cases, the identification and interpretation of putative stellar alignments relates to groups of similar monuments or complex single sites and involves a balance between systematic studies of the alignments themselves, backed up by statistical analysis where appropriate, and the consideration of a range of contextual evidence, either derived from the archaeological record alone or from other relevant sources.

  3. Lunar Alignments - Identification and Analysis

    NASA Astrophysics Data System (ADS)

    González-García, A. César

    Lunar alignments are difficult to establish given the apparent lack of written accounts clearly pointing toward lunar alignments for individual temples. While some individual cases are reviewed and highlighted, the weight of the proof must fall on statistical sampling. Some definitions for the lunar alignments are provided in order to clarify the targets, and thus, some new tools are provided to try to test the lunar hypothesis in several cases, especially in megalithic astronomy.

  4. Quantitative analysis of tissue deformation dynamics reveals three characteristic growth modes and globally aligned anisotropic tissue deformation during chick limb development.

    PubMed

    Morishita, Yoshihiro; Kuroiwa, Atsushi; Suzuki, Takayuki

    2015-05-01

    Tissue-level characterization of deformation dynamics is crucial for understanding organ morphogenetic mechanisms, especially the interhierarchical links among molecular activities, cellular behaviors and tissue/organ morphogenetic processes. Limb development is a well-studied topic in vertebrate organogenesis. Nevertheless, there is still little understanding of tissue-level deformation relative to molecular and cellular dynamics. This is mainly because live recording of detailed cell behaviors in whole tissues is technically difficult. To overcome this limitation, by applying a recently developed Bayesian approach, we here constructed tissue deformation maps for chick limb development with high precision, based on snapshot lineage tracing using dye injection. The precision of the constructed maps was validated with a clear statistical criterion. From the geometrical analysis of the map, we identified three characteristic tissue growth modes in the limb and showed that they are consistent with local growth factor activity and cell cycle length. In particular, we report that SHH signaling activity changes dynamically with developmental stage and strongly correlates with the dynamic shift in the tissue growth mode. We also found anisotropic tissue deformation along the proximal-distal axis. Morphogenetic simulation and experimental studies suggested that this directional tissue elongation, and not local growth, has the greatest impact on limb shaping. This result was supported by the novel finding that anisotropic tissue elongation along the proximal-distal axis occurs independently of cell proliferation. Our study marks a pivotal point for multi-scale system understanding in vertebrate development.

  5. BARCHAN: Blob Alignment for Robust CHromatographic ANalysis.

    PubMed

    Couprie, Camille; Duval, Laurent; Moreaud, Maxime; Hénon, Sophie; Tebib, Mélinda; Souchon, Vincent

    2017-02-10

    Two-dimensional gas chromatography (GC×GC) plays a central role into the elucidation of complex samples. The automation of the identification of peak areas is of prime interest to obtain a fast and repeatable analysis of chromatograms. To determine the concentration of compounds or pseudo-compounds, templates of blobs are defined and superimposed on a reference chromatogram. The templates then need to be modified when different chromatograms are recorded. In this study, we present a chromatogram and template alignment method based on peak registration called BARCHAN. Peaks are identified using a robust mathematical morphology tool. The alignment is performed by a probabilistic estimation of a rigid transformation along the first dimension, and a non-rigid transformation in the second dimension, taking into account noise, outliers and missing peaks in a fully automated way. Resulting aligned chromatograms and masks are presented on two datasets. The proposed algorithm proves to be fast and reliable. It significantly reduces the time to results for GC×GC analysis.

  6. Shod wear and foot alignment in clinical gait analysis.

    PubMed

    Louey, Melissa Gar Yee; Sangeux, Morgan

    2016-09-01

    Sagittal plane alignment of the foot presents challenges when the subject wears shoes during gait analysis. Typically, visual alignment is performed by positioning two markers, the heel and toe markers, aligned with the foot within the shoe. Alternatively, software alignment is possible when the sole of the shoe lies parallel to the ground, and the change in the shoe's sole thickness is measured and entered as a parameter. The aim of this technical note was to evaluate the accuracy of visual and software foot alignment during shod gait analysis. We calculated the static standing ankle angles of 8 participants (mean age: 8.7 years, SD: 2.9 years) wearing bilateral solid ankle foot orthoses (BSAFOs) with and without shoes using the visual and software alignment methods. All participants were able to stand with flat feet in both static trials and the ankle angles obtained in BSAFOs without shoes was considered the reference. We showed that the current implementation of software alignment introduces a bias towards more ankle dorsiflexion, mean=3°, SD=3.4°, p=0.006, and proposed an adjusted software alignment method. We found no statistical differences using visual alignment and adjusted software alignment between the shoe and shoeless conditions, p=0.19 for both. Visual alignment or adjusted software alignment are advised to represent foot alignment accurately.

  7. [Tabular excel editor for analysis of aligned nucleotide sequences].

    PubMed

    Demkin, V V

    2010-01-01

    Excel platform was used for transition of results of multiple aligned nucleotide sequences obtained using the BLAST network service to the form appropriate for visual analysis and editing. Two macros operators for MS Excel 2007 were constructed. The array of aligned sequences transformed into Excel table and processed using macros operators is more appropriate for analysis than initial html data.

  8. Local alignment vectors reveal cancer cell-induced ECM fiber remodeling dynamics.

    PubMed

    Lee, Byoungkoo; Konen, Jessica; Wilkinson, Scott; Marcus, Adam I; Jiang, Yi

    2017-01-03

    Invasive cancer cells interact with the surrounding extracellular matrix (ECM), remodeling ECM fiber network structure by condensing, degrading, and aligning these fibers. We developed a novel local alignment vector analysis method to quantitatively measure collagen fiber alignment as a vector field using Circular Statistics. This method was applied to human non-small cell lung carcinoma (NSCLC) cell lines, embedded as spheroids in a collagen gel. Collagen remodeling was monitored using second harmonic generation imaging under normal conditions and when the LKB1-MARK1 pathway was disrupted through RNAi-based approaches. The results showed that inhibiting LKB1 or MARK1 in NSCLC increases the collagen fiber alignment and captures outward alignment vectors from the tumor spheroid, corresponding to high invasiveness of LKB1 mutant cancer cells. With time-lapse imaging of ECM micro-fiber morphology, the local alignment vector can measure the dynamic signature of invasive cancer cell activity and cell-migration-induced ECM and collagen remodeling and realigning dynamics.

  9. Local alignment vectors reveal cancer cell-induced ECM fiber remodeling dynamics

    PubMed Central

    Lee, Byoungkoo; Konen, Jessica; Wilkinson, Scott; Marcus, Adam I.; Jiang, Yi

    2017-01-01

    Invasive cancer cells interact with the surrounding extracellular matrix (ECM), remodeling ECM fiber network structure by condensing, degrading, and aligning these fibers. We developed a novel local alignment vector analysis method to quantitatively measure collagen fiber alignment as a vector field using Circular Statistics. This method was applied to human non-small cell lung carcinoma (NSCLC) cell lines, embedded as spheroids in a collagen gel. Collagen remodeling was monitored using second harmonic generation imaging under normal conditions and when the LKB1-MARK1 pathway was disrupted through RNAi-based approaches. The results showed that inhibiting LKB1 or MARK1 in NSCLC increases the collagen fiber alignment and captures outward alignment vectors from the tumor spheroid, corresponding to high invasiveness of LKB1 mutant cancer cells. With time-lapse imaging of ECM micro-fiber morphology, the local alignment vector can measure the dynamic signature of invasive cancer cell activity and cell-migration-induced ECM and collagen remodeling and realigning dynamics. PMID:28045069

  10. EST Reading Curriculum & Instruction: An Alignment Analysis

    ERIC Educational Resources Information Center

    Mohammed, Lubna Ali; Sidek, H. M.

    2015-01-01

    In order for a curriculum to achieve its goals, it is imperative that the curriculum is coherent at all levels. In order to determine the coherency of a curriculum, the alignment of its theoretical underpinning and the label of a curriculum is one of the aspects that can be examined. The purpose of the current study was to examine if the…

  11. Revealing the stereospecific chemistry of the reaction of Cl with aligned CHD₃(ν₁ = 1).

    PubMed

    Wang, Fengyan; Liu, Kopin; Rakitzis, T Peter

    2012-07-01

    The concept of geometrical constraints and steric hindrance in reactions is implanted deeply in a chemist's 'chemical intuition'. However, until now a true three-dimensional view of these steric effects has not been realized experimentally for any chemical reaction in full. Here we report the complete three-dimensional characterization of the sterics of a benchmark polyatomic reaction by measuring the dependence of the product state-resolved angular distributions on the spatial alignment of the reactive bond in a crossed molecular beam experiment. The results prove the existence of two distinct microscopic reaction mechanisms. Detailed analysis reveals that the origin of the stereodynamics in the HCl(ν = 0) + CD(3)(0(0)) product channel can be captured by a textbook line-of-centres collision model. In contrast, a time-delay pathway, which includes a sharp switch from in-plane to out-of-plane scattering in the forwards direction, appears to be operative in forming the excited HCl(ν = 1) + CD(3)(0(0)) product pair.

  12. Comparative Topological Analysis of Neuronal Arbors via Sequence Representation and Alignment

    NASA Astrophysics Data System (ADS)

    Gillette, Todd Aaron

    Neuronal morphology is a key mediator of neuronal function, defining the profile of connectivity and shaping signal integration and propagation. Reconstructing neurite processes is technically challenging and thus data has historically been relatively sparse. Data collection and curation along with more efficient and reliable data production methods provide opportunities for the application of informatics to find new relationships and more effectively explore the field. This dissertation presents a method for aiding the development of data production as well as a novel representation and set of analyses for extracting morphological patterns. The DIADEM Challenge was organized for the purposes of determining the state of the art in automated neuronal reconstruction and what existing challenges remained. As one of the co-organizers of the Challenge, I developed the DIADEM metric, a tool designed to measure the effectiveness of automated reconstruction algorithms by comparing resulting reconstructions to expert-produced gold standards and identifying errors of various types. It has been used in the DIADEM Challenge and in the testing of several algorithms since. Further, this dissertation describes a topological sequence representation of neuronal trees amenable to various forms of sequence analysis, notably motif analysis, global pairwise alignment, clustering, and multiple sequence alignment. Motif analysis of neuronal arbors shows a large difference in bifurcation type proportions between axons and dendrites, but that relatively simple growth mechanisms account for most higher order motifs. Pairwise global alignment of topological sequences, modified from traditional sequence alignment to preserve tree relationships, enabled cluster analysis which displayed strong correspondence with known cell classes by cell type, species, and brain region. Multiple alignment of sequences in selected clusters enabled the extraction of conserved features, revealing mouse

  13. MultiAlign: a multiple LC-MS analysis tool for targeted omics analysis

    SciTech Connect

    Lamarche, Brian L.; Crowell, Kevin L.; Jaitly, Navdeep; Petyuk, Vladislav A.; Shah, Anuj R.; Polpitiya, Ashoka D.; Sandoval, John D.; Kiebel, Gary R.; Monroe, Matthew E.; Callister, Stephen J.; Metz, Thomas O.; Anderson, Gordon A.; Smith, Richard D.

    2013-02-12

    MultiAlign is a free software tool that aligns multiple liquid chromatography-mass spectrometry datasets to one another by clustering mass and LC elution features across datasets. Applicable to both label-free proteomics and metabolomics comparative analyses, the software can be operated in several modes. Clustered features can be matched to a reference database to identify analytes, used to generate abundance profiles, linked to tandem mass spectra based on parent precursor masses, and culled for targeted liquid chromatography-tandem mass spectrometric analysis. MultiAlign is also capable of tandem mass spectral clustering to describe proteome structure and find similarity in subsequent sample runs.

  14. Comparative Analysis of the Measurement of Total Instructional Alignment

    ERIC Educational Resources Information Center

    Kick, Laura C.

    2013-01-01

    In 2007, Lisa Carter created the Total Instructional Alignment system--a process that aligns standards, curriculum, assessment, and instruction. Employed in several hundred school systems, the TIA process is a successful professional development program. The researcher developed an instrument to measure the success of the TIA process with the…

  15. Manufacturing and alignment tolerance analysis through Montecarlo approach for PLATO

    NASA Astrophysics Data System (ADS)

    Magrin, Demetrio; Ragazzoni, Roberto; Bergomi, Maria; Biondi, Federico; Chinellato, Simonetta; Dima, Marco; Farinato, Jacopo; Greggio, Davide; Gullieuszik, Marco; Marafatto, Luca; Viotto, Valentina; Munari, Matteo; Pagano, Isabella; Sicilia, Daniela; Basso, Stefano; Borsa, Francesco; Ghigo, Mauro; Spiga, Daniele; Bandy, Timothy; Brändli, Mathias; Benz, Willy; Bruno, Giordano; De Roche, Thierry; Piazza, Daniele; Rieder, Martin; Brandeker, Alexis; Klebor, Maximilian; Mogulsky, Valery; Schweitzer, Mario; Wieser, Matthias; Erikson, Anders; Rauer, Heike

    2016-07-01

    The project PLAnetary Transits and Oscillations of stars (PLATO) is one of the selected medium class (M class) missions in the framework of the ESA Cosmic Vision 2015-2025 program. The main scientific goal of PLATO is the discovery and study of extrasolar planetary systems by means of planetary transits detection. According to the current baseline, the scientific payload consists of 34 all refractive telescopes having small aperture (120mm) and wide field of view (diameter greater than 37 degrees) observing over 0.5-1 micron wavelength band. The telescopes are mounted on a common optical bench and are divided in four families of eight telescopes with an overlapping line-of-sight in order to maximize the science return. Remaining two telescopes will be dedicated to support on-board star-tracking system and will be specialized on two different photometric bands for science purposes. The performance requirement, adopted as merit function during the analysis, is specified as 90% enclosed energy contained in a square having size 2 pixels over the whole field of view with a depth of focus of +/-20 micron. Given the complexity of the system, we have followed a Montecarlo analysis approach for manufacturing and alignment tolerances. We will describe here the tolerance method and the preliminary results, speculating on the assumed risks and expected performances.

  16. Enhancing multilingual latent semantic analysis with term alignment information.

    SciTech Connect

    Chew, Peter A.; Bader, Brett William

    2008-08-01

    Latent Semantic Analysis (LSA) is based on the Singular Value Decomposition (SVD) of a term-by-document matrix for identifying relationships among terms and documents from co-occurrence patterns. Among the multiple ways of computing the SVD of a rectangular matrix X, one approach is to compute the eigenvalue decomposition (EVD) of a square 2 x 2 composite matrix consisting of four blocks with X and XT in the off-diagonal blocks and zero matrices in the diagonal blocks. We point out that significant value can be added to LSA by filling in some of the values in the diagonal blocks (corresponding to explicit term-to-term or document-to-document associations) and computing a term-by-concept matrix from the EVD. For the case of multilingual LSA, we incorporate information on cross-language term alignments of the same sort used in Statistical Machine Translation (SMT). Since all elements of the proposed EVD-based approach can rely entirely on lexical statistics, hardly any price is paid for the improved empirical results. In particular, the approach, like LSA or SMT, can still be generalized to virtually any language(s); computation of the EVD takes similar resources to that of the SVD since all the blocks are sparse; and the results of EVD are just as economical as those of SVD.

  17. Alignment and operability analysis of a vertical sodium pump

    SciTech Connect

    Gupta, V.K.; Fair, C.E.

    1981-01-01

    With the objective of identifying important alignment features of pumps such as FFTF, HALLAM, EBR II, PNC, PHENIX, and CRBR, alignment of the vertical sodium pump for the Clinch River Breeder Reactor Plant (CRBRP) is investigated. The CRBRP pump includes a flexibly coupled pump shaft and motor shaft, two oil-film tilting-pad hydrodynamic radial bearings in the motor plus a vertical thrust bearing, and two sodium hydrostatic bearings straddling the double-suction centrifugal impeller in the pump.

  18. MultiAlign: a multiple LC-MS analysis tool for targeted omics analysis

    PubMed Central

    2013-01-01

    Background MultiAlign is a free software tool that aligns multiple liquid chromatography-mass spectrometry datasets to one another by clustering mass and chromatographic elution features across datasets. Applicable to both label-free proteomics and metabolomics comparative analyses, the software can be operated in several modes. For example, clustered features can be matched to a reference database to identify analytes, used to generate abundance profiles, linked to tandem mass spectra based on parent precursor masses, and culled for targeted liquid chromatography-tandem mass spectrometric analysis. MultiAlign is also capable of tandem mass spectral clustering to describe proteome structure and find similarity in subsequent sample runs. Results MultiAlign was applied to two large proteomics datasets obtained from liquid chromatography-mass spectrometry analyses of environmental samples. Peptides in the datasets for a microbial community that had a known metagenome were identified by matching mass and elution time features to those in an established reference peptide database. Results compared favorably with those obtained using existing tools such as VIPER, but with the added benefit of being able to trace clusters of peptides across conditions to existing tandem mass spectra. MultiAlign was further applied to detect clusters across experimental samples derived from a reactor biomass community for which no metagenome was available. Several clusters were culled for further analysis to explore changes in the community structure. Lastly, MultiAlign was applied to liquid chromatography-mass spectrometry-based datasets obtained from a previously published study of wild type and mitochondrial fatty acid oxidation enzyme knockdown mutants of human hepatocarcinoma to demonstrate its utility for analyzing metabolomics datasets. Conclusion MultiAlign is an efficient software package for finding similar analytes across multiple liquid chromatography-mass spectrometry feature

  19. Alignment-independent technique for 3D QSAR analysis.

    PubMed

    Wilkes, Jon G; Stoyanova-Slavova, Iva B; Buzatu, Dan A

    2016-04-01

    Molecular biochemistry is controlled by 3D phenomena but structure-activity models based on 3D descriptors are infrequently used for large data sets because of the computational overhead for determining molecular conformations. A diverse dataset of 146 androgen receptor binders was used to investigate how different methods for defining molecular conformations affect the performance of 3D-quantitative spectral data activity relationship models. Molecular conformations tested: (1) global minimum of molecules' potential energy surface; (2) alignment-to-templates using equal electronic and steric force field contributions; (3) alignment using contributions "Best-for-Each" template; (4) non-energy optimized, non-aligned (2D > 3D). Aggregate predictions from models were compared. Highest average coefficients of determination ranged from R Test (2) = 0.56 to 0.61. The best model using 2D > 3D (imported directly from ChemSpider) produced R Test (2) = 0.61. It was superior to energy-minimized and conformation-aligned models and was achieved in only 3-7 % of the time required using the other conformation strategies. Predictions averaged from models built on different conformations achieved a consensus R Test (2) = 0.65. The best 2D > 3D model was analyzed for underlying structure-activity relationships. For the compound strongest binding to the androgen receptor, 10 substructural features contributing to binding were flagged. Utility of 2D > 3D was compared for two other activity endpoints, each modeling a medium sized data set. Results suggested that large scale, accurate predictions using 2D > 3D SDAR descriptors may be produced for interactions involving endocrine system nuclear receptors and other data sets in which strongest activities are produced by fairly inflexible substrates.

  20. Alignment-independent technique for 3D QSAR analysis

    NASA Astrophysics Data System (ADS)

    Wilkes, Jon G.; Stoyanova-Slavova, Iva B.; Buzatu, Dan A.

    2016-04-01

    Molecular biochemistry is controlled by 3D phenomena but structure-activity models based on 3D descriptors are infrequently used for large data sets because of the computational overhead for determining molecular conformations. A diverse dataset of 146 androgen receptor binders was used to investigate how different methods for defining molecular conformations affect the performance of 3D-quantitative spectral data activity relationship models. Molecular conformations tested: (1) global minimum of molecules' potential energy surface; (2) alignment-to-templates using equal electronic and steric force field contributions; (3) alignment using contributions "Best-for-Each" template; (4) non-energy optimized, non-aligned (2D > 3D). Aggregate predictions from models were compared. Highest average coefficients of determination ranged from R Test 2 = 0.56 to 0.61. The best model using 2D > 3D (imported directly from ChemSpider) produced R Test 2 = 0.61. It was superior to energy-minimized and conformation-aligned models and was achieved in only 3-7 % of the time required using the other conformation strategies. Predictions averaged from models built on different conformations achieved a consensus R Test 2 = 0.65. The best 2D > 3D model was analyzed for underlying structure-activity relationships. For the compound strongest binding to the androgen receptor, 10 substructural features contributing to binding were flagged. Utility of 2D > 3D was compared for two other activity endpoints, each modeling a medium sized data set. Results suggested that large scale, accurate predictions using 2D > 3D SDAR descriptors may be produced for interactions involving endocrine system nuclear receptors and other data sets in which strongest activities are produced by fairly inflexible substrates.

  1. Spinal alignment evolution with age: A prospective gait analysis study

    PubMed Central

    Pesenti, Sébastien; Blondel, Benjamin; Peltier, Emilie; Viehweger, Elke; Pomero, Vincent; Authier, Guillaume; Fuentes, Stéphane; Jouve, Jean-Luc

    2017-01-01

    AIM To describe, using gait analysis, the development of spinal motion in the growing child. METHODS Thirty-six healthy children aged from 3 to 16 years old were included in this study for a gait analysis (9 m-walk). Various kinematic parameters were recorded and analyzed such as thoracic angle (TA), lumbar angle (LA) and sagittal vertical axis (SVA). The kinetic parameters were the net reaction moments (N.m/kg) at the thoracolumbar and lumbosacral junctions. RESULTS TA and LA curves were not statistically correlated to the age (respectively, P = 0.32 and P = 0.41). SVA increased significantly with age (P < 0.001). Moments in sagittal plane at the lumbosacral junction were statistically correlated to the age (P = 0.003), underlining the fact that sagittal mechanical constraints at the lumbosacral junction increase with age. Moments in transversal plane at the thoracolumbar and lumbosacral junctions were statistically correlated to the age (P = 0.0002 and P = 0.0006), revealing that transversal mechanical constraints decrease with age. CONCLUSION The kinetic analysis showed that during growth, a decrease of torsional constraint occurs while an increase of sagittal constraint is observed. These changes in spine biomechanics are related to the crucial role of the trunk for bipedalism acquisition, allowing stabilization despite lower limbs immaturity. With the acquisition of mature gait, the spine will mainly undergo constraints in the sagittal plane. PMID:28361018

  2. PROCESSING AND ANALYSIS OF THE MEASURED ALIGNMENT ERRORS FOR RHIC.

    SciTech Connect

    PILAT,F.; HEMMER,M.; PTITSIN,V.; TEPIKIAN,S.; TRBOJEVIC,D.

    1999-03-29

    All elements of the Relativistic Heavy Ion Collider (RHIC) have been installed in ideal survey locations, which are defined as the optimum locations of the fiducials with respect to the positions generated by the design. The alignment process included the presurvey of all elements which could affect the beams. During this procedure a special attention was paid to the precise determination of the quadrupole centers as well as the roll angles of the quadrupoles and dipoles. After installation the machine has been surveyed and the resulting as-built measured position of the fiducials have been stored and structured in the survey database. We describe how the alignment errors, inferred by comparison of ideal and as-built data, have been processed and analyzed by including them in the RHIC modeling software. The RHIC model, which also includes individual measured errors for all magnets in the machine and is automatically generated from databases, allows the study of the impact of the measured alignment errors on the machine.

  3. Surface analysis and mechanical behaviour mapping of vertically aligned CNT forest array through nanoindentation

    NASA Astrophysics Data System (ADS)

    Koumoulos, Elias P.; Charitidis, C. A.

    2017-02-01

    Carbon nanotube (CNT) based architectures have increased the scientific interest owning to their exceptional performance rendering them promising candidates for advanced industrial applications in the nanotechnology field. Despite individual CNTs being considered as one of the most known strong materials, much less is known about other CNT forms, such as CNT arrays, in terms of their mechanical performance (integrity). In this work, thermal chemical vapor deposition (CVD) method is employed to produce vertically aligned multiwall (VA-MW) CNT carpets. Their structural properties were studied by means of scanning electron microscopy (SEM), X-Ray diffraction (XRD) and Raman spectroscopy, while their hydrophobic behavior was investigated via contact angle measurements. The resistance to indentation deformation of VA-MWCNT carpets was investigated through nanoindentation technique. The synthesized VA-MWCNTs carpets consisted of well-aligned MWCNTs. Static contact angle measurements were performed with water and glycerol, revealing a rather super-hydrophobic behavior. The structural analysis, hydrophobic behavior and indentation response of VA-MWCNTs carpets synthesized via CVD method are clearly demonstrated. Additionally, cycle indentation load-depth curve was applied and hysteresis loops were observed in the indenter loading-unloading cycle due to the local stress distribution. Hardness (as resistance to applied load) and modulus mapping, at 200 nm of displacement for a grid of 70 μm2 is presented. Through trajection, the resistance is clearly divided in 2 regions, namely the MWCNT probing and the in-between area MWCNT - MWCNT interface.

  4. Shape-based discriminative analysis of combined bilateral hippocampi using multiple object alignment

    NASA Astrophysics Data System (ADS)

    Shen, Li; Makedon, Fillia; Saykin, Andrew

    2004-05-01

    Shape analysis of hippocampi in schizophrenia has been preformed previously using the spherical harmonic SPHARM description. In these studies, the left and right hippocampi are aligned independently and the spatial relation between them is not explored. This paper presents a new SPHARM-based technique which examines not only the individual shape information of the two hippocampi but also the spatial relation between them. The left and right hippocampi are treated as a single shape configuration. A ploy-shape alignment algorithm is developed for aligning configurations of multiple SPHARM surfaces as follows: (1) the total volume is normalized; (2) the parameter space is aligned for creating the surface correspondence; (3) landmarks are created by a uniform sampling of multiple surfaces for each configuration; (4) a quaternion-based algorithm is employed to align each landmark representation to the mean configuration through the least square rotation and translation iteratively until the mean converges. After applying the poly-shape alignment algorithm, a point distribution model is applied to aligned landmarks for feature extraction. Classification is performed using Fisher's linear discriminant with an effective feature selection scheme. Applying the above procedure to our hippocampal data (14 controls versus 25 schizophrenics, all right-handed males), we achieve the best cross-validation accuracy of 92%, supporting the idea that the whole shape configuration of the two hippocampi provides valuable information in detecting schizophrenia. The results of an ROC analysis and a visualization of discriminative patterns are also included.

  5. Analysis on the alignment errors of segmented Fresnel lens

    NASA Astrophysics Data System (ADS)

    Zhou, Xudong; Wu, Shibin; Yang, Wei; Wang, Lihua

    2014-09-01

    Stitching Fresnel lens are designed for the application in the micro-focus X-ray, but splicing errors between sub-apertures will affect optical performance of the entire mirror. The offset error tolerance of different degrees of freedom between the sub-apertures are analyzed theoretically according to the wave-front aberration theory and with the Rayleigh criterion as evaluation criteria, and then validate the correctness of the theory using simulation software of ZEMAX. The results show that Z-axis piston error tolerance and translation error tolerance of XY axis increases with the increasing F-number of stitching Fresnel lens, and tilt error tolerance of XY axis decreases with increasing diameter. The results provide a theoretical basis and guidance for the design, detection and alignment of stitching Fresnel lens.

  6. Dynamic Alignment Analysis in the Osteoarthritic Knee Using Computer Navigation.

    PubMed

    Larrainzar-Garijo, Ricardo; Murillo-Vizuete, David; Garcia-Bogalo, Raul; Escobar-Anton, David; Horna-Castiñeiras, Lissette; Peralta-Molero, Juan Vicente

    2017-02-13

    The lower limb alignment is influenced by the geometry of the joint surfaces and surrounding soft tissue tension. The mechanical behavior changes in a normal, osteoarthritic, and postoperative knee. The purpose of this study is to determine the dynamic coronal femoral tibial mechanical angle (FTMA) in osteoarthritic knees using computer navigation. The authors hypothesize that there are different varus-valgus patterns between flexion and extension in the osteoarthritic knee. We conducted a transversal observational study and included patients with osteoarthritis who underwent primary navigation TKA (Orthopilot version 4.2; B. Braun Aesculap, Tuttlingen, Germany). In total, 98 consecutive patients with 100 osteoarthritic knee joints, on which total knee arthroplasty was performed in our institution from 2009 to 2010, were enrolled in this prospective study. The FTMA was measured with the patient supine with maximum knee extension possible (considering the value as 0), 30, 60, and 90 degrees. All FMTA data obtained were segmented by hierarchic cluster measuring method. Through the clustering system, five segments were generated for varus patients and three for valgus patients: expected varus, expected valgus, severe varus, severe valgus, structured varus, structured valgus, concave varus, mixed varus-valgus, and mixed valgus-varus. The findings of the present study have demonstrated that there is a well-defined dynamic alignment in osteoarthritic knees, resulting in a wide kinematic variation in the coronal FTMA between flexion and full extension. Further studies will be necessary to determine whether this dynamic approach to FTMA has clinical utility in the surgeon's decision-making process.

  7. Genome Alignment Spanning Major Poaceae Lineages Reveals Heterogeneous Evolutionary Rates and Alters Inferred Dates for Key Evolutionary Events.

    PubMed

    Wang, Xiyin; Wang, Jingpeng; Jin, Dianchuan; Guo, Hui; Lee, Tae-Ho; Liu, Tao; Paterson, Andrew H

    2015-06-01

    Multiple comparisons among genomes can clarify their evolution, speciation, and functional innovations. To date, the genome sequences of eight grasses representing the most economically important Poaceae (grass) clades have been published, and their genomic-level comparison is an essential foundation for evolutionary, functional, and translational research. Using a formal and conservative approach, we aligned these genomes. Direct comparison of paralogous gene pairs all duplicated simultaneously reveal striking variation in evolutionary rates among whole genomes, with nucleotide substitution slowest in rice and up to 48% faster in other grasses, adding a new dimension to the value of rice as a grass model. We reconstructed ancestral genome contents for major evolutionary nodes, potentially contributing to understanding the divergence and speciation of grasses. Recent fossil evidence suggests revisions of the estimated dates of key evolutionary events, implying that the pan-grass polyploidization occurred ∼96 million years ago and could not be related to the Cretaceous-Tertiary mass extinction as previously inferred. Adjusted dating to reflect both updated fossil evidence and lineage-specific evolutionary rates suggested that maize subgenome divergence and maize-sorghum divergence were virtually simultaneous, a coincidence that would be explained if polyploidization directly contributed to speciation. This work lays a solid foundation for Poaceae translational genomics.

  8. Revealing Student Teacher's Thinking through Dilemma Analysis

    ERIC Educational Resources Information Center

    Talanquer, Vicente; Tomanek, Debra; Novodvorsky, Ingrid

    2007-01-01

    We explore the potential of dilemma analysis as an assessment tool to reveal student teachers' thinking and concerns about their practice. For this purpose we analyze the dilemma analyses completed by 22 student teachers enrolled in our science teacher preparation program over a period of four semesters. Student teachers' dilemmas fall into two…

  9. Alignment of an acoustic manipulation device with cepstral analysis of electronic impedance data.

    PubMed

    Hughes, D A; Qiu, Y; Démoré, C; Weijer, C J; Cochran, S

    2015-02-01

    Acoustic particle manipulation is an emerging technology that uses ultrasonic standing waves to position objects with pressure gradients and acoustic radiation forces. To produce strong standing waves, the transducer and the reflector must be aligned properly such that they are parallel to each other. This can be a difficult process due to the need to visualise the ultrasound waves and as higher frequencies are introduced, this alignment requires higher accuracy. In this paper, we present a method for aligning acoustic resonators with cepstral analysis. This is a simple signal processing technique that requires only the electrical impedance measurement data of the resonator, which is usually recorded during the fabrication process of the device. We first introduce the mathematical basis of cepstral analysis and then demonstrate and validate it using a computer simulation of an acoustic resonator. Finally, the technique is demonstrated experimentally to create many parallel linear traps for 10 μm fluorescent beads inside an acoustic resonator.

  10. Methodological Choices in the Content Analysis of Textbooks for Measuring Alignment with Standards

    ERIC Educational Resources Information Center

    Polikoff, Morgan S.; Zhou, Nan; Campbell, Shauna E.

    2015-01-01

    With the recent adoption of the Common Core standards in many states, there is a need for quality information about textbook alignment to standards. While there are many existing content analysis procedures, these generally have little, if any, validity or reliability evidence. One exception is the Surveys of Enacted Curriculum (SEC), which has…

  11. Coordination Analysis Using Global Structural Constraints and Alignment-based Local Features

    NASA Astrophysics Data System (ADS)

    Hara, Kazuo; Shimbo, Masashi; Matsumoto, Yuji

    We propose a hybrid approach to coordinate structure analysis that combines a simple grammar to ensure consistent global structure of coordinations in a sentence, and features based on sequence alignment to capture local symmetry of conjuncts. The weight of the alignment-based features, which in turn determines the score of coordinate structures, is optimized by perceptron training on a given corpus. A bottom-up chart parsing algorithm efficiently finds the best scoring structure, taking both nested or non-overlapping flat coordinations into account. We demonstrate that our approach outperforms existing parsers in coordination scope detection on the Genia corpus.

  12. Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis

    PubMed Central

    Newman, Peter; Galenano-Niño, Jorge Luis; Graney, Pamela; Razal, Joselito M.; Minett, Andrew I.; Ribas, João; Ovalle-Robles, Raquel; Biro, Maté; Zreiqat, Hala

    2016-01-01

    The topography of a biomaterial regulates cellular interactions and determine stem cell fate. A complete understanding of how topographical properties affect cell behavior will allow the rational design of material surfaces that elicit specified biological functions once placed in the body. To this end, we fabricate substrates with aligned or randomly organized fibrous nanostructured topographies. Culturing adipose-derived stem cells (ASCs), we explore the dynamic relationship between the alignment of topography, cell shape and cell differentiation to osteogenic and myogenic lineages. We show aligned topographies differentiate cells towards a satellite cell muscle progenitor state - a distinct cell myogenic lineage responsible for postnatal growth and repair of muscle. We analyze cell shape between the different topographies, using fluorescent time-lapse imaging over 21 days. In contrast to previous work, this allows the direct measurement of cell shape at a given time rather than defining the morphology of the underlying topography and neglecting cell shape. We report quantitative metrics of the time-based morphological behaviors of cell shape in response to differing topographies. This analysis offers insights into the relationship between topography, cell shape and cell differentiation. Cells differentiating towards a myogenic fate on aligned topographies adopt a characteristic elongated shape as well as the alignment of cells. PMID:27910868

  13. Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis

    NASA Astrophysics Data System (ADS)

    Newman, Peter; Galenano-Niño, Jorge Luis; Graney, Pamela; Razal, Joselito M.; Minett, Andrew I.; Ribas, João; Ovalle-Robles, Raquel; Biro, Maté; Zreiqat, Hala

    2016-12-01

    The topography of a biomaterial regulates cellular interactions and determine stem cell fate. A complete understanding of how topographical properties affect cell behavior will allow the rational design of material surfaces that elicit specified biological functions once placed in the body. To this end, we fabricate substrates with aligned or randomly organized fibrous nanostructured topographies. Culturing adipose-derived stem cells (ASCs), we explore the dynamic relationship between the alignment of topography, cell shape and cell differentiation to osteogenic and myogenic lineages. We show aligned topographies differentiate cells towards a satellite cell muscle progenitor state - a distinct cell myogenic lineage responsible for postnatal growth and repair of muscle. We analyze cell shape between the different topographies, using fluorescent time-lapse imaging over 21 days. In contrast to previous work, this allows the direct measurement of cell shape at a given time rather than defining the morphology of the underlying topography and neglecting cell shape. We report quantitative metrics of the time-based morphological behaviors of cell shape in response to differing topographies. This analysis offers insights into the relationship between topography, cell shape and cell differentiation. Cells differentiating towards a myogenic fate on aligned topographies adopt a characteristic elongated shape as well as the alignment of cells.

  14. Revealing Student Teachers' Thinking through Dilemma Analysis

    NASA Astrophysics Data System (ADS)

    Talanquer, Vicente; Tomanek, Debra; Novodvorsky, Ingrid

    2007-06-01

    We explore the potential of dilemma analysis as an assessment tool to reveal student teachers’ thinking and concerns about their practice. For this purpose we analyze the dilemma analyses completed by 22 student teachers enrolled in our science teacher preparation program over a period of four semesters. Student teachers’ dilemmas fall into two main groups: dilemmas about student performance and dilemmas associated with instructional decisions. These dilemmas reveal a variety of concerns that student teachers have about their work. In particular, concerns about lack of student motivation and its consequences on performance and instruction play a central role in student teachers’ thinking. The recognition of common patterns of thought in our student teacher thinking has made us reflect on and re-evaluate important components of the curriculum in our science teacher preparation program.

  15. Inducing Multilingual Text Analysis Tools via Robust Projection across Aligned Corpora

    DTIC Science & Technology

    2001-01-01

    Inducing Multilingual Text Analysis Tools via Robust Projection across Aligned Corpora David Yarowsky Dept. of Computer Science Johns Hopkins...system and set of algorithms for automati- cally inducing stand-alone monolingual part-of-speech taggers, base noun-phrase bracketers, named-entity... multilingual , text analysis, part-of-speech tagging, noun phrase brac- keting, named entity, morphology, lemmatization, parallel corpora 1. TASK OVERVIEW

  16. The P600-as-P3 hypothesis revisited: single-trial analyses reveal that the late EEG positivity following linguistically deviant material is reaction time aligned.

    PubMed

    Sassenhagen, Jona; Schlesewsky, Matthias; Bornkessel-Schlesewsky, Ina

    2014-10-01

    The P600, a late positive ERP component following linguistically deviant stimuli, is commonly seen as indexing structural, high-level processes, e.g. of linguistic (re)analysis. It has also been identified with the P3 (P600-as-P3 hypothesis), which is thought to reflect a systemic neuromodulator release facilitating behavioural shifts and is usually response time aligned. We investigated single-trial alignment of the P600 to response, a critical prediction of the P600-as-P3 hypothesis. Participants heard sentences containing morphosyntactic and semantic violations and responded via a button press. The elicited P600 was perfectly response aligned, while an N400 following semantic deviations was stimulus aligned. This is, to our knowledge, the first single-trial analysis of language processing data using within-sentence behavioural responses as temporal covariates. Results support the P600-as-P3 perspective and thus constitute a step towards a neurophysiological grounding of language-related ERPs.

  17. Sequence-function analysis of the K+-selective family of ion channels using a comprehensive alignment and the KcsA channel structure.

    PubMed

    Shealy, Robin T; Murphy, Anuradha D; Ramarathnam, Rampriya; Jakobsson, Eric; Subramaniam, Shankar

    2003-05-01

    Sequence-function analysis of K(+)-selective channels was carried out in the context of the 3.2 A crystal structure of a K(+) channel (KcsA) from Streptomyces lividans (Doyle et al., 1998). The first step was the construction of an alignment of a comprehensive set of K(+)-selective channel sequences forming the putative permeation path. This pathway consists of two transmembrane segments plus an extracellular linker. Included in the alignment are channels from the eight major classes of K(+)-selective channels from a wide variety of species, displaying varied rectification, gating, and activation properties. Segments of the alignment were assigned to structural motifs based on the KcsA structure. The alignment's accuracy was verified by two observations on these motifs: 1), the most variability is shown in the turret region, which functionally is strongly implicated in susceptibility to toxin binding; and 2), the selectivity filter and pore helix are the most highly conserved regions. This alignment combined with the KcsA structure was used to assess whether clusters of contiguous residues linked by hydrophobic or electrostatic interactions in KcsA are conserved in the K(+)-selective channel family. Analysis of sequence conservation patterns in the alignment suggests that a cluster of conserved residues is critical for determining the degree of K(+) selectivity. The alignment also supports the near-universality of the "glycine hinge" mechanism at the center of the inner helix for opening K channels. This mechanism has been suggested by the recent crystallization of a K channel in the open state. Further, the alignment reveals a second highly conserved glycine near the extracellular end of the inner helix, which may be important in minimizing deformation of the extracellular vestibule as the channel opens. These and other sequence-function relationships found in this analysis suggest that much of the permeation path architecture in KcsA is present in most K

  18. Kernel-aligned multi-view canonical correlation analysis for image recognition

    NASA Astrophysics Data System (ADS)

    Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao

    2016-09-01

    Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.

  19. Chromosome painting reveals asynaptic full alignment of homologs and HIM-8-dependent remodeling of X chromosome territories during Caenorhabditis elegans meiosis.

    PubMed

    Nabeshima, Kentaro; Mlynarczyk-Evans, Susanna; Villeneuve, Anne M

    2011-08-01

    During early meiotic prophase, a nucleus-wide reorganization leads to sorting of chromosomes into homologous pairs and to establishing associations between homologous chromosomes along their entire lengths. Here, we investigate global features of chromosome organization during this process, using a chromosome painting method in whole-mount Caenorhabditis elegans gonads that enables visualization of whole chromosomes along their entire lengths in the context of preserved 3D nuclear architecture. First, we show that neither spatial proximity of premeiotic chromosome territories nor chromosome-specific timing is a major factor driving homolog pairing. Second, we show that synaptonemal complex-independent associations can support full lengthwise juxtaposition of homologous chromosomes. Third, we reveal a prominent elongation of chromosome territories during meiotic prophase that initiates prior to homolog association and alignment. Mutant analysis indicates that chromosome movement mediated by association of chromosome pairing centers (PCs) with mobile patches of the nuclear envelope (NE)-spanning SUN-1/ZYG-12 protein complexes is not the primary driver of territory elongation. Moreover, we identify new roles for the X chromosome PC (X-PC) and X-PC binding protein HIM-8 in promoting elongation of X chromosome territories, separable from their role(s) in mediating local stabilization of pairing and association of X chromosomes with mobile SUN-1/ZYG-12 patches. Further, we present evidence that HIM-8 functions both at and outside of PCs to mediate chromosome territory elongation. These and other data support a model in which synapsis-independent elongation of chromosome territories, driven by PC binding proteins, enables lengthwise juxtaposition of chromosomes, thereby facilitating assessment of their suitability as potential pairing partners.

  20. Using participative inquiry in usability analysis to align a development team's mental model with its users' needs

    NASA Technical Reports Server (NTRS)

    Kneifel, A. A.; Guerrero, C.

    2003-01-01

    In this web site usability case study, two methods of participative inquiry are used to align a development team's objectives with their users' needs and to promote the team awareness of the benefit of qualitative usability analysis.

  1. Systematically organized nanopillar arrays reveal differences in adhesion and alignment properties of BMSC and Saos-2 cells.

    PubMed

    Özçelik, Hayriye; Padeste, Celestino; Hasirci, Vasif

    2014-07-01

    Polymeric test surfaces of P(L-D,L)LA and of a P(L-D,L)LA:PLGA blend decorated with 25 nanopillar covered fields, were used to investigate differences in growth of bone marrow stem cells (BMSC) and osteosarcoma cells (Saos-2). The fields were populated with pillars (ca. 900 nm tall, 200 nm×200 nm area) separated systematically from each other with 1-10 μm gaps. Saos-2 cells populated fields decorated with pillars 1 μm apart but they avoided pillar-free surfaces. In contrast, BMSCs avoided fields with interpillar distances <2 μm. Both BMSCs and Saos-2 cells aligned in the direction of the shorter distance when at least one of the interpillar distances was greater than 1.5 μm. Coating the P(L-D,L)LA surfaces with cell adhesive protein fibronectin enabled the BMSC to populate fields with high pillar density which they had avoided when uncoated. Decreasing the stiffness of the film surface by using a blend of (P(L-D,L)LA and PLGA) made them more acceptable for attachment by the BMSC cells.

  2. The importance of tibial alignment: finite element analysis of tibial malalignment.

    PubMed

    Perillo-Marcone, A; Barrett, D S; Taylor, M

    2000-12-01

    The influence of the tibial plateau orientation on cancellous bone stress was examined by finite element analysis for a cemented device. The objectives of the study were i) to examine the effect of the plateau-ankle angle on the cancellous bone stress, ii) to analyze the significance of the anteroposterior angles of the tibial component on these stresses, and iii) to compare the finite element predictions with clinical data. In general, positioning the tibial plateau in valgus resulted in lower cancellous bone stresses. These results support previous clinical studies, which suggest that overall alignment in valgus results in lower migration rates and lower incidence of loosening.

  3. ALVIS: interactive non-aggregative visualization and explorative analysis of multiple sequence alignments.

    PubMed

    Schwarz, Roland F; Tamuri, Asif U; Kultys, Marek; King, James; Godwin, James; Florescu, Ana M; Schultz, Jörg; Goldman, Nick

    2016-05-05

    Sequence Logos and its variants are the most commonly used method for visualization of multiple sequence alignments (MSAs) and sequence motifs. They provide consensus-based summaries of the sequences in the alignment. Consequently, individual sequences cannot be identified in the visualization and covariant sites are not easily discernible. We recently proposed Sequence Bundles, a motif visualization technique that maintains a one-to-one relationship between sequences and their graphical representation and visualizes covariant sites. We here present Alvis, an open-source platform for the joint explorative analysis of MSAs and phylogenetic trees, employing Sequence Bundles as its main visualization method. Alvis combines the power of the visualization method with an interactive toolkit allowing detection of covariant sites, annotation of trees with synapomorphies and homoplasies, and motif detection. It also offers numerical analysis functionality, such as dimension reduction and classification. Alvis is user-friendly, highly customizable and can export results in publication-quality figures. It is available as a full-featured standalone version (http://www.bitbucket.org/rfs/alvis) and its Sequence Bundles visualization module is further available as a web application (http://science-practice.com/projects/sequence-bundles).

  4. A High-resolution Model of Field-aligned Currents Through Empirical Orthogonal Functions Analysis (MFACE)

    NASA Technical Reports Server (NTRS)

    He, Maosheng; Vogt, Joachim; Luehr, Hermann; Sorbalo, Eugen; Blagau, Adrian; Le, Guan; Lu, Gang

    2012-01-01

    Ten years of CHAMP magnetic field measurements are integrated into MFACE, a model of field-aligned currents (FACs) using empirical orthogonal functions (EOFs). EOF1 gives the basic Region-1/Region-2 pattern varying mainly with the interplanetary magnetic field Bz component. EOF2 captures separately the cusp current signature and By-related variability. Compared to existing models, MFACE yields significantly better spatial resolution, reproduces typically observed FAC thickness and intensity, improves on the magnetic local time (MLT) distribution, and gives the seasonal dependence of FAC latitudes and the NBZ current signature. MFACE further reveals systematic dependences on By, including 1) Region-1/Region-2 topology modifications around noon; 2) imbalance between upward and downward maximum current density; 3) MLT location of the Harang discontinuity. Furthermore, our procedure allows quantifying response times of FACs to solar wind driving at the bow shock nose: we obtain 20 minutes and 35-40 minutes lags for the FAC density and latitude, respectively.

  5. Image alignment

    DOEpatents

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  6. An IMU-to-Body Alignment Method Applied to Human Gait Analysis.

    PubMed

    Vargas-Valencia, Laura Susana; Elias, Arlindo; Rocon, Eduardo; Bastos-Filho, Teodiano; Frizera, Anselmo

    2016-12-10

    This paper presents a novel calibration procedure as a simple, yet powerful, method to place and align inertial sensors with body segments. The calibration can be easily replicated without the need of any additional tools. The proposed method is validated in three different applications: a computer mathematical simulation; a simplified joint composed of two semi-spheres interconnected by a universal goniometer; and a real gait test with five able-bodied subjects. Simulation results demonstrate that, after the calibration method is applied, the joint angles are correctly measured independently of previous sensor placement on the joint, thus validating the proposed procedure. In the cases of a simplified joint and a real gait test with human volunteers, the method also performs correctly, although secondary plane errors appear when compared with the simulation results. We believe that such errors are caused by limitations of the current inertial measurement unit (IMU) technology and fusion algorithms. In conclusion, the presented calibration procedure is an interesting option to solve the alignment problem when using IMUs for gait analysis.

  7. Statistical shape modeling of human cochlea: alignment and principal component analysis

    NASA Astrophysics Data System (ADS)

    Poznyakovskiy, Anton A.; Zahnert, Thomas; Fischer, Björn; Lasurashvili, Nikoloz; Kalaidzidis, Yannis; Mürbe, Dirk

    2013-02-01

    The modeling of the cochlear labyrinth in living subjects is hampered by insufficient resolution of available clinical imaging methods. These methods usually provide resolutions higher than 125 μm. This is too crude to record the position of basilar membrane and, as a result, keep apart even the scala tympani from other scalae. This problem could be avoided by the means of atlas-based segmentation. The specimens can endure higher radiation loads and, conversely, provide better-resolved images. The resulting surface can be used as the seed for atlas-based segmentation. To serve this purpose, we have developed a statistical shape model (SSM) of human scala tympani based on segmentations obtained from 10 μCT image stacks. After segmentation, we aligned the resulting surfaces using Procrustes alignment. This algorithm was slightly modified to accommodate single models with nodes which do not necessarily correspond to salient features and vary in number between models. We have established correspondence by mutual proximity between nodes. Rather than using the standard Euclidean norm, we have applied an alternative logarithmic norm to improve outlier treatment. The minimization was done using BFGS method. We have also split the surface nodes along an octree to reduce computation cost. Subsequently, we have performed the principal component analysis of the training set with Jacobi eigenvalue algorithm. We expect the resulting method to help acquiring not only better understanding in interindividual variations of cochlear anatomy, but also a step towards individual models for pre-operative diagnostics prior to cochlear implant insertions.

  8. An IMU-to-Body Alignment Method Applied to Human Gait Analysis

    PubMed Central

    Vargas-Valencia, Laura Susana; Elias, Arlindo; Rocon, Eduardo; Bastos-Filho, Teodiano; Frizera, Anselmo

    2016-01-01

    This paper presents a novel calibration procedure as a simple, yet powerful, method to place and align inertial sensors with body segments. The calibration can be easily replicated without the need of any additional tools. The proposed method is validated in three different applications: a computer mathematical simulation; a simplified joint composed of two semi-spheres interconnected by a universal goniometer; and a real gait test with five able-bodied subjects. Simulation results demonstrate that, after the calibration method is applied, the joint angles are correctly measured independently of previous sensor placement on the joint, thus validating the proposed procedure. In the cases of a simplified joint and a real gait test with human volunteers, the method also performs correctly, although secondary plane errors appear when compared with the simulation results. We believe that such errors are caused by limitations of the current inertial measurement unit (IMU) technology and fusion algorithms. In conclusion, the presented calibration procedure is an interesting option to solve the alignment problem when using IMUs for gait analysis. PMID:27973406

  9. ANALYSIS OF SPIN-ORBIT ALIGNMENT IN THE WASP-32, WASP-38, AND HAT-P-27/WASP-40 SYSTEMS

    SciTech Connect

    Brown, D. J. A.; Collier Cameron, A.; Enoch, B.; Miller, G. R. M.; Diaz, R. F.; Doyle, A. P.; Smalley, B.; Anderson, D. R.; Hellier, C.; Maxted, P. F. L.; Gillon, M.; Lendl, M.; Triaud, A. H. M. J.; Queloz, D.; Pollacco, D.; Boisse, I.; Hebrard, G.

    2012-12-01

    We present measurements of the spin-orbit alignment angle, {lambda}, for the hot Jupiter systems WASP-32, WASP-38, and HAT-P-27/WASP-40, based on data obtained using the HARPS spectrograph. We analyze the Rossiter-McLaughlin effect for all three systems and also carry out Doppler tomography for WASP-32 and WASP-38. We find that WASP-32 (T {sub eff} = 6140{sup +90} {sub -100} K) is aligned, with an alignment angle of {lambda} = 10.{sup 0}5{sup +6.4} {sub -6.5} obtained through tomography, and that WASP-38 (T {sub eff} = 6180{sup +40} {sub -60} K) is also aligned, with tomographic analysis yielding {lambda} = 7.{sup 0}5{sup +4.7} {sub -6.1}. The latter result provides an order-of-magnitude improvement in the uncertainty in {lambda} compared to the previous analysis of Simpson et al. We are only able to loosely constrain the angle for HAT-P-27/WASP-40 (T{sub eff} = 5190{sup +160} {sub -170} K) to {lambda} = 24.{sup 0}2{sup +76.0}{sub -44.5}, owing to the poor signal-to-noise ratio of our data. We consider this result a non-detection under a slightly updated version of the alignment test of Brown et al. We place our results in the context of the full sample of spin-orbit alignment measurements, finding that they provide further support for previously established trends.

  10. Quantitative interactome analysis reveals a chemoresistant edgotype

    PubMed Central

    Chavez, Juan D.; Schweppe, Devin K.; Eng, Jimmy K.; Zheng, Chunxiang; Taipale, Alex; Zhang, Yiyi; Takara, Kohji; Bruce, James E.

    2015-01-01

    Chemoresistance is a common mode of therapy failure for many cancers. Tumours develop resistance to chemotherapeutics through a variety of mechanisms, with proteins serving pivotal roles. Changes in protein conformations and interactions affect the cellular response to environmental conditions contributing to the development of new phenotypes. The ability to understand how protein interaction networks adapt to yield new function or alter phenotype is limited by the inability to determine structural and protein interaction changes on a proteomic scale. Here, chemical crosslinking and mass spectrometry were employed to quantify changes in protein structures and interactions in multidrug-resistant human carcinoma cells. Quantitative analysis of the largest crosslinking-derived, protein interaction network comprising 1,391 crosslinked peptides allows for ‘edgotype' analysis in a cell model of chemoresistance. We detect consistent changes to protein interactions and structures, including those involving cytokeratins, topoisomerase-2-alpha, and post-translationally modified histones, which correlate with a chemoresistant phenotype. PMID:26235782

  11. AlexSys: a knowledge-based expert system for multiple sequence alignment construction and analysis.

    PubMed

    Aniba, Mohamed Radhouene; Poch, Olivier; Marchler-Bauer, Aron; Thompson, Julie Dawn

    2010-10-01

    Multiple sequence alignment (MSA) is a cornerstone of modern molecular biology and represents a unique means of investigating the patterns of conservation and diversity in complex biological systems. Many different algorithms have been developed to construct MSAs, but previous studies have shown that no single aligner consistently outperforms the rest. This has led to the development of a number of 'meta-methods' that systematically run several aligners and merge the output into one single solution. Although these methods generally produce more accurate alignments, they are inefficient because all the aligners need to be run first and the choice of the best solution is made a posteriori. Here, we describe the development of a new expert system, AlexSys, for the multiple alignment of protein sequences. AlexSys incorporates an intelligent inference engine to automatically select an appropriate aligner a priori, depending only on the nature of the input sequences. The inference engine was trained on a large set of reference multiple alignments, using a novel machine learning approach. Applying AlexSys to a test set of 178 alignments, we show that the expert system represents a good compromise between alignment quality and running time, making it suitable for high throughput projects. AlexSys is freely available from http://alnitak.u-strasbg.fr/∼aniba/alexsys.

  12. Spin-Orbit Alignment of Exoplanet Systems: Ensemble Analysis Using Asteroseismology

    NASA Astrophysics Data System (ADS)

    Campante, T. L.; Lund, M. N.; Kuszlewicz, J. S.; Davies, G. R.; Chaplin, W. J.; Albrecht, S.; Winn, J. N.; Bedding, T. R.; Benomar, O.; Bossini, D.; Handberg, R.; Santos, A. R. G.; Van Eylen, V.; Basu, S.; Christensen-Dalsgaard, J.; Elsworth, Y. P.; Hekker, S.; Hirano, T.; Huber, D.; Karoff, C.; Kjeldsen, H.; Lundkvist, M. S.; North, T. S. H.; Silva Aguirre, V.; Stello, D.; White, T. R.

    2016-03-01

    The angle ψ between a planet’s orbital axis and the spin axis of its parent star is an important diagnostic of planet formation, migration, and tidal evolution. We seek empirical constraints on ψ by measuring the stellar inclination is via asteroseismology for an ensemble of 25 solar-type hosts observed with NASA’s Kepler satellite. Our results for is are consistent with alignment at the 2σ level for all stars in the sample, meaning that the system surrounding the red-giant star Kepler-56 remains as the only unambiguous misaligned multiple-planet system detected to date. The availability of a measurement of the projected spin-orbit angle λ for two of the systems allows us to estimate ψ. We find that the orbit of the hot Jupiter HAT-P-7b is likely to be retrograde (\\psi =116\\buildrel{\\circ}\\over{.} {4}-14.7+30.2), whereas that of Kepler-25c seems to be well aligned with the stellar spin axis (\\psi =12\\buildrel{\\circ}\\over{.} {6}-11.0+6.7). While the latter result is in apparent contradiction with a statement made previously in the literature that the multi-transiting system Kepler-25 is misaligned, we show that the results are consistent, given the large associated uncertainties. Finally, we perform a hierarchical Bayesian analysis based on the asteroseismic sample in order to recover the underlying distribution of ψ. The ensemble analysis suggests that the directions of the stellar spin and planetary orbital axes are correlated, as conveyed by a tendency of the host stars to display large values of inclination.

  13. ATP Bioluminometers Analysis on the Surfaces of Removable Orthodontic Aligners after the Use of Different Cleaning Methods

    PubMed Central

    Levrini, Luca; Mangano, Alessandro; Margherini, Silvia; Tenconi, Camilla; Vigetti, Davide; Muollo, Raffaele; Marco Abbate, Gian

    2016-01-01

    Purpose. The aim was to quantify the bacteria concentration on the surface of orthodontic clear aligners using three different cleaning methods. Furthermore the objective was to validate the efficacy of the bioluminometer in assessing the bacteria concentration. Materials and Methods. Twenty subjects (six males and fourteen females) undergoing orthodontic therapy with clear aligners (Invisalign® Align Technology, Santa Clara, California) were enrolled in this study. The observation time was of six weeks. The patients were instructed to use different cleaning methods (water, brushing with toothpaste, and brushing with toothpaste and use of sodium carbonate and sulphate tablet). At the end of each phase a microbiological analysis was performed using the bioluminometer. Results. The highest bacteria concentration was found on aligners cleaned using only water (583 relative light units); a value of 189 relative light units was found on aligners cleaned with brushing and toothpaste. The lowest bacteria concentration was recorded on aligners cleaned with brushing and toothpaste and the use of sodium carbonate and sulfate tablet. Conclusions. The mechanical removal of the bacterial biofilm proved to be effective with brushing and toothpaste. The best results in terms of bacteria concentration were achieved adding the use of sodium carbonate and sulfate tablet. PMID:27242901

  14. Photoluminescence analysis of self induced planer alignment in azo dye dispersed nematic liquid crystal complex

    SciTech Connect

    Kumar, Rishi Sood, Srishti Raina, K. K.

    2014-04-24

    We have developed azo dye doped nematic liquid crystal complex for advanced photonic liquid crystal display technology aspects. Disperse orange azo dye self introduced planer alignment in the nematic liquid crystal without any surface anchoring treatment. Planer alignment was characterized by optical polarizing microscopy. The electro-optical switching response of dye disperse planer aligned nematic cell was investigated as a function of applied voltage with the help of photoluminescence spectrophotometer for the tuning of photoluminescence contrast.

  15. SCDU Testbed Automated In-Situ Alignment, Data Acquisition and Analysis

    NASA Technical Reports Server (NTRS)

    Werne, Thomas A.; Wehmeier, Udo J.; Wu, Janet P.; An, Xin; Goullioud, Renaud; Nemati, Bijan; Shao, Michael; Shen, Tsae-Pyng J.; Wang, Xu; Weilert, Mark A.; Zhai, Chengxing

    2010-01-01

    In the course of fulfilling its mandate, the Spectral Calibration Development Unit (SCDU) testbed for SIM-Lite produces copious amounts of raw data. To effectively spend time attempting to understand the science driving the data, the team devised computerized automations to limit the time spent bringing the testbed to a healthy state and commanding it, and instead focus on analyzing the processed results. We developed a multi-layered scripting language that emphasized the scientific experiments we conducted, which drastically shortened our experiment scripts, improved their readability, and all-but-eliminated testbed operator errors. In addition to scientific experiment functions, we also developed a set of automated alignments that bring the testbed up to a well-aligned state with little more than the push of a button. These scripts were written in the scripting language, and in Matlab via an interface library, allowing all members of the team to augment the existing scripting language with complex analysis scripts. To keep track of these results, we created an easily-parseable state log in which we logged both the state of the testbed and relevant metadata. Finally, we designed a distributed processing system that allowed us to farm lengthy analyses to a collection of client computers which reported their results in a central log. Since these logs were parseable, we wrote query scripts that gave us an effortless way to compare results collected under different conditions. This paper serves as a case-study, detailing the motivating requirements for the decisions we made and explaining the implementation process.

  16. SCDU testbed automated in-situ alignment, data acquisition and analysis

    NASA Astrophysics Data System (ADS)

    Werne, Thomas A.; Wehmeier, Udo J.; Wu, Janet P.; An, Xin; Goullioud, Renaud; Nemati, Bijan; Shao, Michael; Shen, Tsae-Pyng J.; Wang, Xu; Weilert, Mark A.; Zhai, Chengxing

    2010-07-01

    In the course of fulfilling its mandate, the Spectral Calibration Development Unit (SCDU) testbed for SIM-Lite produces copious amounts of raw data. To effectively spend time attempting to understand the science driving the data, the team devised computerized automations to limit the time spent bringing the testbed to a healthy state and commanding it, and instead focus on analyzing the processed results. We developed a multi-layered scripting language that emphasized the scientific experiments we conducted, which drastically shortened our experiment scripts, improved their readability, and all-but-eliminated testbed operator errors. In addition to scientific experiment functions, we also developed a set of automated alignments that bring the testbed up to a well-aligned state with little more than the push of a button. These scripts were written in the scripting language, and in Matlab via an interface library, allowing all members of the team to augment the existing scripting language with complex analysis scripts. To keep track of these results, we created an easilyparseable state log in which we logged both the state of the testbed and relevant metadata. Finally, we designed a distributed processing system that allowed us to farm lengthy analyses to a collection of client computers which reported their results in a central log. Since these logs were parseable, we wrote query scripts that gave us an effortless way to compare results collected under different conditions. This paper serves as a case-study, detailing the motivating requirements for the decisions we made and explaining the implementation process.

  17. An Analysis of Strategies for Teaching Standards-Based Lesson Plan Alignment to Preservice Teachers

    ERIC Educational Resources Information Center

    Drost, Bryan R.; Levine, Anita C.

    2015-01-01

    Research consistently shows that well-aligned lesson plans lead to better student learning outcomes. The development of these plans challenges both preservice teachers and the teacher educators who instruct them. This exploratory study examined strategies for teaching lesson plan alignment utilized by 87 teacher educators in the United States.…

  18. Tibial component alignment after total knee arthroplasty with intramedullary instrumentation: a prospective analysis.

    PubMed

    Talmo, Carl T; Cooper, Andrew J; Wuerz, Tom; Lang, Jason E; Bono, James V

    2010-12-01

    The best operative technique for achieving appropriate postoperative alignment following total knee arthroplasty (TKA) remains controversial, with proponents of extramedullary, intramedullary and computer-assisted techniques. One hundred ninety-two consecutive patients undergoing TKA were prospectively evaluated with full-length lower extremity radiographs. Patients underwent cemented TKA using femoral and tibial intramedullary instrumentation. Digital radiographs were analyzed using PACS (AGFA Healthcare, Ridgefield Park, NJ) software. Tibial component alignment was measured in the coronal and sagittal planes. Tibial component slope averaged 3.89° + 1.96 for the cruciate-retaining components and averaged 1.7° + 1.92 for PS components. The average coronal tibial component alignment was 90.00°, and 99% were within 3° of neutral mechanical alignment with only 2 (1%) outliers. Intramedullary instrumentation resulted in excellent postoperative tibial component and lower extremity alignment.

  19. Alternating current impedance spectroscopic analysis of biofunctionalized vertically-aligned silica nanospring surface for biosensor applications

    NASA Astrophysics Data System (ADS)

    Timalsina, Yukta P.

    In this dissertation, a process of vertically-aligned (silica) nanosprings (VANS) based biosensor development is presented. Alternating current (AC) impedance spectroscopy has been used to analyze sensor response as a function of saline phosphate (SP) buffer and biological solutions. The sensor is a parallel plate capacitor consisting of two glass substrates coated with indium tin oxide (ITO), where the VANS [or randomly-aligned nanosprings (RANS)] grown on one substrate serve as the dielectric spacer layer. The response of a VANS device as a function of ionic concentration in SP buffer was examined and an equivalent circuit model was developed. The results demonstrated that VANS sensors exhibited greater sensitivity to the changes in SP concentration relative to the ITO sensors, which serve as controls. The biofunctionalized VANS surface via physisorption and the cross-linker method demonstrates the repeatability, specificity, and selectivity of the binding. The physisorption of biotinylated immunoglobulin G (B-IgG) onto the VANS surface simplifies the whole sensing procedure for the detection of glucose oxidase, since the avidin-conjugated glucose oxidase (Av-GOx) can directly be immobilized on the B-IgG. The cross linker method involves the covalent attachment of antibodies onto the functionalized VANS surface via imine bond. The experiments revealed that the VANS sensor response is solely the result of the interaction of target molecule i.e. mouse IgG with the probe layer, i.e. goat antimouse IgG (GalphaM IgG). It was determined that VANS-based sensors exhibit a greater magnitude of change between successive bio-layers relative to the controls above 100 Hz, which indicates that the addition of biomolecules inhibits the diffusion of ions and changes the effective dielectric response of the VANS via biomolecular polarization. The study of ionic transport in nanosprings suggested that conductance follows a scaling law. It was demonstrated that a VANS-based device

  20. Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species.

    PubMed

    Guilliams, Martin; Dutertre, Charles-Antoine; Scott, Charlotte L; McGovern, Naomi; Sichien, Dorine; Chakarov, Svetoslav; Van Gassen, Sofie; Chen, Jinmiao; Poidinger, Michael; De Prijck, Sofie; Tavernier, Simon J; Low, Ivy; Irac, Sergio Erdal; Mattar, Citra Nurfarah; Sumatoh, Hermi Rizal; Low, Gillian Hui Ling; Chung, Tam John Kit; Chan, Dedrick Kok Hong; Tan, Ker Kan; Hon, Tony Lim Kiat; Fossum, Even; Bogen, Bjarne; Choolani, Mahesh; Chan, Jerry Kok Yen; Larbi, Anis; Luche, Hervé; Henri, Sandrine; Saeys, Yvan; Newell, Evan William; Lambrecht, Bart N; Malissen, Bernard; Ginhoux, Florent

    2016-09-20

    Dendritic cells (DCs) are professional antigen-presenting cells that hold great therapeutic potential. Multiple DC subsets have been described, and it remains challenging to align them across tissues and species to analyze their function in the absence of macrophage contamination. Here, we provide and validate a universal toolbox for the automated identification of DCs through unsupervised analysis of conventional flow cytometry and mass cytometry data obtained from multiple mouse, macaque, and human tissues. The use of a minimal set of lineage-imprinted markers was sufficient to subdivide DCs into conventional type 1 (cDC1s), conventional type 2 (cDC2s), and plasmacytoid DCs (pDCs) across tissues and species. This way, a large number of additional markers can still be used to further characterize the heterogeneity of DCs across tissues and during inflammation. This framework represents the way forward to a universal, high-throughput, and standardized analysis of DC populations from mutant mice and human patients.

  1. Alignment Content Analysis of TIMSS and PISA Mathematics and Science Assessments Using the Surveys of Enacted Curriculum Methodology

    ERIC Educational Resources Information Center

    Council of Chief State School Officers, 2009

    2009-01-01

    In Fall 2008, the Council of Chief State School Officers (CCSSO) conducted an alignment content analysis of the 2007 TIMSS Mathematics and Science education assessments for students at grades 4 and 8 and the 2006 PISA Mathematics and Science Literacy assessments for students at age 15 (i.e., TIMSS--Trends in Mathematics and Science Study,…

  2. Consensus-Based Course Design and Implementation of Constructive Alignment Theory in a Power System Analysis Course

    ERIC Educational Resources Information Center

    Vanfretti, Luigi; Farrokhabadi, Mostafa

    2015-01-01

    This article presents the implementation of the constructive alignment theory (CAT) in a power system analysis course through a consensus-based course design process. The consensus-based design process involves both the instructor and graduate-level students and it aims to develop the CAT framework in a holistic manner with the goal of including…

  3. FRalanyzer: a tool for functional analysis of fold-recognition sequence–structure alignments

    PubMed Central

    Saini, Harpreet Kaur; Fischer, Daniel

    2007-01-01

    We describe FRalanyzer (Fold Recognition alignment analyzer), a new web tool to visually inspect sequence–structure alignments in order to predict functionally important residues in a query sequence of unknown function. This tool is aimed at helping to infer functional relationships between a query sequence and a template structure, and is particularly useful in analyzing fold recognition (FR) results. Because similar folds do not necessarily share the same function, it is not always straightforward to infer a function from an FR result alone. Manual inspection of the FR sequence-structure alignment is often required in order to search for conservation of functionally important residues. FRalanyzer automates parts of this time-consuming process. FRalanyzer takes as input a sequence–structure alignment, automatically searches annotated databases, displays functionally significant residues and highlights the functionally important positions that are identical in the alignment. FRalanyzer can also be used with sequence-structure alignments obtained by other methods, and with structure–structure alignments obtained from structural comparison of newly determined 3D-structures of unknown function. Fralanyzer is available at http://fralanyzer.cse.buffalo.edu/. PMID:17537819

  4. Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical correlation analysis

    NASA Astrophysics Data System (ADS)

    Volpi, Michele; Camps-Valls, Gustau; Tuia, Devis

    2015-09-01

    In this paper we present an approach to perform relative spectral alignment between optical cross-sensor acquisitions. The proposed method aims at projecting the images from two different and possibly disjoint input spaces into a common latent space, in which standard change detection algorithms can be applied. The system relies on the regularized kernel canonical correlation analysis transformation (kCCA), which can accommodate nonlinear dependencies between pixels by means of kernel functions. To learn the projections, the method employs a subset of samples belonging to the unchanged areas or to uninteresting radiometric differences. Since the availability of ground truth information to perform model selection is limited, we propose a completely automatic strategy to select the hyperparameters of the system as well as the dimensionality of the transformed (latent) space. The proposed scheme is fully automatic and allows the use of any change detection algorithm in the transformed latent space. A synthetic problem built from real images and a case study involving a real cross-sensor change detection problem illustrate the capabilities of the proposed method. Results show that the proposed system outperforms the linear baseline and provides accuracies close the ones obtained with a fully supervised strategy. We provide a MATLAB implementation of the proposed method as well as the real cross-sensor data we prepared and employed at

  5. Construction, alignment and analysis of twelve framework physical maps that represent the ten genome types of the genus Oryza

    PubMed Central

    Kim, HyeRan; Hurwitz, Bonnie; Yu, Yeisoo; Collura, Kristi; Gill, Navdeep; SanMiguel, Phillip; Mullikin, James C; Maher, Christopher; Nelson, William; Wissotski, Marina; Braidotti, Michele; Kudrna, David; Goicoechea, José Luis; Stein, Lincoln; Ware, Doreen; Jackson, Scott A; Soderlund, Carol; Wing, Rod A

    2008-01-01

    We describe the establishment and analysis of a genus-wide comparative framework composed of 12 bacterial artificial chromosome fingerprint and end-sequenced physical maps representing the 10 genome types of Oryza aligned to the O. sativa ssp. japonica reference genome sequence. Over 932 Mb of end sequence was analyzed for repeats, simple sequence repeats, miRNA and single nucleotide variations, providing the most extensive analysis of Oryza sequence to date. PMID:18304353

  6. Construction, alignment and analysis of twelve framework physical maps that represent the ten genome types of the genus Oryza.

    PubMed

    Kim, HyeRan; Hurwitz, Bonnie; Yu, Yeisoo; Collura, Kristi; Gill, Navdeep; SanMiguel, Phillip; Mullikin, James C; Maher, Christopher; Nelson, William; Wissotski, Marina; Braidotti, Michele; Kudrna, David; Goicoechea, José Luis; Stein, Lincoln; Ware, Doreen; Jackson, Scott A; Soderlund, Carol; Wing, Rod A

    2008-01-01

    We describe the establishment and analysis of a genus-wide comparative framework composed of 12 bacterial artificial chromosome fingerprint and end-sequenced physical maps representing the 10 genome types of Oryza aligned to the O. sativa ssp. japonica reference genome sequence. Over 932 Mb of end sequence was analyzed for repeats, simple sequence repeats, miRNA and single nucleotide variations, providing the most extensive analysis of Oryza sequence to date.

  7. Joint Measurements of Terahertz Wave Generation and High-Harmonic Generation from Aligned Nitrogen Molecules Reveal Angle-Resolved Molecular Structures

    NASA Astrophysics Data System (ADS)

    Huang, Yindong; Meng, Chao; Wang, Xiaowei; Lü, Zhihui; Zhang, Dongwen; Chen, Wenbo; Zhao, Jing; Yuan, Jianmin; Zhao, Zengxiu

    2015-09-01

    We report the synchronized measurements of terahertz wave generation and high-harmonic generation from aligned nitrogen molecules in dual-color laser fields. Both yields are found to be alignment dependent, showing the importance of molecular structures in the generation processes. By calibrating the angular ionization rates with the terahertz yields, we present a new way of retrieving the angular differential photoionization cross section (PICS) from the harmonic signals which avoids specific model calculations or separate measurements of the alignment-dependent ionization rates. The measured PICS is found to be consistent with theoretical predications, although some discrepancies exist. This all-optical method provides a new alternative for investigating molecular structures.

  8. Genome analysis of the platypus reveals unique signatures of evolution.

    PubMed

    Warren, Wesley C; Hillier, LaDeana W; Marshall Graves, Jennifer A; Birney, Ewan; Ponting, Chris P; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P; Miethke, Pat; Waters, Paul D; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S; López-Otín, Carlos; Ordóñez, Gonzalo R; Eichler, Evan E; Chen, Lin; Cheng, Ze; Deakin, Janine E; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T; Wakefield, Matthew J; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A; Smit, Arian F A; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A; Walker, Jerilyn A; Konkel, Miriam K; Harris, Robert S; Whittington, Camilla M; Wong, Emily S W; Gemmell, Neil J; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M; Sharp, Julie A; Nicholas, Kevin R; Ray, David A; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H; Taylor, James; Jones, Russell C; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N; Pohl, Craig S; Smith, Scott M; Hou, Shunfeng; Nefedov, Mikhail; de Jong, Pieter J; Renfree, Marilyn B; Mardis, Elaine R; Wilson, Richard K

    2008-05-08

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.

  9. Genome analysis of the platypus reveals unique signatures of evolution

    PubMed Central

    Warren, Wesley C.; Hillier, LaDeana W.; Marshall Graves, Jennifer A.; Birney, Ewan; Ponting, Chris P.; Grützner, Frank; Belov, Katherine; Miller, Webb; Clarke, Laura; Chinwalla, Asif T.; Yang, Shiaw-Pyng; Heger, Andreas; Locke, Devin P.; Miethke, Pat; Waters, Paul D.; Veyrunes, Frédéric; Fulton, Lucinda; Fulton, Bob; Graves, Tina; Wallis, John; Puente, Xose S.; López-Otín, Carlos; Ordóñez, Gonzalo R.; Eichler, Evan E.; Chen, Lin; Cheng, Ze; Deakin, Janine E.; Alsop, Amber; Thompson, Katherine; Kirby, Patrick; Papenfuss, Anthony T.; Wakefield, Matthew J.; Olender, Tsviya; Lancet, Doron; Huttley, Gavin A.; Smit, Arian F. A.; Pask, Andrew; Temple-Smith, Peter; Batzer, Mark A.; Walker, Jerilyn A.; Konkel, Miriam K.; Harris, Robert S.; Whittington, Camilla M.; Wong, Emily S. W.; Gemmell, Neil J.; Buschiazzo, Emmanuel; Vargas Jentzsch, Iris M.; Merkel, Angelika; Schmitz, Juergen; Zemann, Anja; Churakov, Gennady; Kriegs, Jan Ole; Brosius, Juergen; Murchison, Elizabeth P.; Sachidanandam, Ravi; Smith, Carly; Hannon, Gregory J.; Tsend-Ayush, Enkhjargal; McMillan, Daniel; Attenborough, Rosalind; Rens, Willem; Ferguson-Smith, Malcolm; Lefèvre, Christophe M.; Sharp, Julie A.; Nicholas, Kevin R.; Ray, David A.; Kube, Michael; Reinhardt, Richard; Pringle, Thomas H.; Taylor, James; Jones, Russell C.; Nixon, Brett; Dacheux, Jean-Louis; Niwa, Hitoshi; Sekita, Yoko; Huang, Xiaoqiu; Stark, Alexander; Kheradpour, Pouya; Kellis, Manolis; Flicek, Paul; Chen, Yuan; Webber, Caleb; Hardison, Ross; Nelson, Joanne; Hallsworth-Pepin, Kym; Delehaunty, Kim; Markovic, Chris; Minx, Pat; Feng, Yucheng; Kremitzki, Colin; Mitreva, Makedonka; Glasscock, Jarret; Wylie, Todd; Wohldmann, Patricia; Thiru, Prathapan; Nhan, Michael N.; Pohl, Craig S.; Smith, Scott M.; Hou, Shunfeng; Renfree, Marilyn B.; Mardis, Elaine R.; Wilson, Richard K.

    2009-01-01

    We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation. PMID:18464734

  10. Alternating current impedance spectroscopic analysis of biofunctionalized vertically-aligned silica nanospring surface for biosensor applications

    NASA Astrophysics Data System (ADS)

    Timalsina, Yukta P.; Branen, Joshua; Aston, D. Eric; Noren, Kenneth; Corti, Giancarlo; Schumacher, Randi; McIlroy, David N.

    2011-07-01

    In this study, alternating current impedance spectroscopic analysis of the biofunctionalization process of a vertically-aligned (silica) nanosprings (VANS) surface is presented. The VANS surface is functionalized with a biotinylated immunoglobulin G (B-IgG) layer formed by physisorption of B-IgG from the solution phase. Bovine serum albumin passivation of the B-IgG layer reduces additional surface adsorption by blocking the potential sites of weak bond formation via electrostatic and hydrophobic interactions. As avidin acts as a receptor of biotinylated compounds, avidin conjugated glucose oxidase (Av-GOx) binds to the B-IgG layer via biotin. This avidin-biotin bond is a stable bond with high association affinity (Ka = 1015 M-1) that withstands wide variations in chemistry and pH. An IgG layer without biotin shows no binding to the Av-GOx, indicating that bonding is through the avidin-biotin interaction. Finally, fluoroscein iso-thiocyanate (FITC) labeled biotinylated bovine serum albumin (B-BSA) added to the Av-GOx surface is used to fluorescently label Av-GOx for fluorescent measurements that allow for the correlation of surface binding with impedance measurements. Modeling of impedance spectra measured after the addition of each biological solution indicates that the bimolecular layers behave as insulating layers. The impedance spectra for the VANS-based sensor are compared to simple parallel capacitor sensors, sans VANS, and serve as controls. VANS-based sensors exhibit a greater magnitude of change between successive bio-layers relative to the controls below 10 kHz. Changes in the magnitudes of the components of the VANS equivalent circuit indicate that the addition of biological layers changes the effective dielectric response of the VANS via the impediment of ionic motion and biomolecule polarization.

  11. Measurement error analysis of the 3D four-wheel aligner

    NASA Astrophysics Data System (ADS)

    Zhao, Qiancheng; Yang, Tianlong; Huang, Dongzhao; Ding, Xun

    2013-10-01

    Positioning parameters of four-wheel have significant effects on maneuverabilities, securities and energy saving abilities of automobiles. Aiming at this issue, the error factors of 3D four-wheel aligner, which exist in extracting image feature points, calibrating internal and exeternal parameters of cameras, calculating positional parameters and measuring target pose, are analyzed respectively based on the elaborations of structure and measurement principle of 3D four-wheel aligner, as well as toe-in and camber of four-wheel, kingpin inclination and caster, and other major positional parameters. After that, some technical solutions are proposed for reducing the above error factors, and on this basis, a new type of aligner is developed and marketed, it's highly estimated among customers because the technical indicators meet requirements well.

  12. Peak alignment and robust principal component analysis of gas chromatograms of fatty acid methyl esters and volatiles.

    PubMed

    Møller, Stina Frosch; Jørgensen, Bo M

    2007-04-01

    Gas chromatograms of fatty acid methyl esters and of volatile lipid oxidation products from fish lipid extracts are analyzed by multivariate data analysis [principal component analysis (PCA)]. Peak alignment is necessary in order to include all sampled points of the chromatograms in the data set. The ability of robust algorithms to deal with outlier problems, including both sample-wise and element-wise outliers, and the advantages and drawbacks of two robust PCA methods, robust PCA (ROBPCA) and robust singular value decomposition when analysing these GC data were investigated. The results show that the usage of ROPCA is advantageous, compared with traditional PCA, when analysing the entire profile of chromatographic data in cases of sub-optimally aligned data. It also demonstrates how choosing the most robust PCA (sample or element-wise) depends on the type of outliers present in the data set.

  13. Genome-Wide Analysis of Promoters: Clustering by Alignment and Analysis of Regular Patterns

    PubMed Central

    Pettinato, Lucia; Calistri, Elisa; Di Patti, Francesca; Livi, Roberto; Luccioli, Stefano

    2014-01-01

    In this paper we perform a genome-wide analysis of H. sapiens promoters. To this aim, we developed and combined two mathematical methods that allow us to (i) classify promoters into groups characterized by specific global structural features, and (ii) recover, in full generality, any regular sequence in the different classes of promoters. One of the main findings of this analysis is that H. sapiens promoters can be classified into three main groups. Two of them are distinguished by the prevalence of weak or strong nucleotides and are characterized by short compositionally biased sequences, while the most frequent regular sequences in the third group are strongly correlated with transposons. Taking advantage of the generality of these mathematical procedures, we have compared the promoter database of H. sapiens with those of other species. We have found that the above-mentioned features characterize also the evolutionary content appearing in mammalian promoters, at variance with ancestral species in the phylogenetic tree, that exhibit a definitely lower level of differentiation among promoters. PMID:24465517

  14. Subfield profitability analysis reveals an economic case for cropland diversification

    NASA Astrophysics Data System (ADS)

    Brandes, E.; McNunn, G. S.; Schulte, L. A.; Bonner, I. J.; Muth, D. J.; Babcock, B. A.; Sharma, B.; Heaton, E. A.

    2016-01-01

    Public agencies and private enterprises increasingly desire to achieve ecosystem service outcomes in agricultural systems, but are limited by perceived conflicts between economic and ecosystem service goals and a lack of tools enabling effective operational management. Here we use Iowa—an agriculturally homogeneous state representative of the Maize Belt—to demonstrate an economic rationale for cropland diversification at the subfield scale. We used a novel computational framework that integrates disparate but publicly available data to map ˜3.3 million unique potential management polygons (9.3 Mha) and reveal subfield opportunities to increase overall field profitability. We analyzed subfield profitability for maize/soybean fields during 2010-2013—four of the most profitable years in recent history—and projected results for 2015. While cropland operating at a loss of US 250 ha-1 or more was negligible between 2010 and 2013 at 18 000-190 000 ha (<2% of row-crop land), the extent of highly unprofitable land increased to 2.5 Mha, or 27% of row-crop land, in the 2015 projection. Aggregation of these areas to the township level revealed ‘hotspots’ for potential management change in Western, Central, and Northeast Iowa. In these least profitable areas, incorporating conservation management that breaks even (e.g., planting low-input perennials), into low-yielding portions of fields could increase overall cropland profitability by 80%. This approach is applicable to the broader region and differs substantially from the status quo of ‘top-down’ land management for conservation by harnessing private interest to align profitability with the production of ecosystem services.

  15. Microwave systems analysis, solar power satellite. [alignment of the antenna array

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Various alternative active approaches to achieving aand maintaining flatness for the microwave power transmission system (MPTS) were studied. A baseline active alignment scheme was developed which includes subarray attachment mechanisms, height and tilting adjustments, service corridors, a rotating laser beam reference system, monopulse pointing techniques, and the design of a beam-centering photoconductive sensor.

  16. An Analysis of Gateway Technical College Instructors' Opinions on Secondary and Postsecondary Program Alignment

    ERIC Educational Resources Information Center

    Albrecht, Bryan D.

    2011-01-01

    The purpose of this study was to determine what opinions Gateway Technical College instructors had toward secondary and postsecondary program alignment. Student transition is critical to supporting the mission and vision of Gateway Technical College. The impetus for this study was twofold. First, the quality improvement process established at…

  17. Alignment validation

    SciTech Connect

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  18. The Oryza map alignment project: Construction, alignment and analysis of 12 BAC fingerprint/end sequence framework physical maps that represent the 10 genome types of genus Oryza

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Oryza Map Alignment Project (OMAP) provides the first comprehensive experimental system for understanding the evolution, physiology and biochemistry of a full genus in plants or animals. We have constructed twelve deep-coverage BAC libraries that are representative of both diploid and tetraploid...

  19. A machine-learning approach reveals that alignment properties alone can accurately predict inference of lateral gene transfer from discordant phylogenies.

    PubMed

    Roettger, Mayo; Martin, William; Dagan, Tal

    2009-09-01

    Among the methods currently used in phylogenomic practice to detect the presence of lateral gene transfer (LGT), one of the most frequently employed is the comparison of gene tree topologies for different genes. In cases where the phylogenies for different genes are incompatible, or discordant, for well-supported branches there are three simple interpretations for the result: 1) gene duplications (paralogy) followed by many independent gene losses have occurred, 2) LGT has occurred, or 3) the phylogeny is well supported but for reasons unknown is nonetheless incorrect. Here, we focus on the third possibility by examining the properties of 22,437 published multiple sequence alignments, the Bayesian maximum likelihood trees for which either do or do not suggest the occurrence of LGT by the criterion of discordant branches. The alignments that produce discordant phylogenies differ significantly in several salient alignment properties from those that do not. Using a support vector machine, we were able to predict the inference of discordant tree topologies with up to 80% accuracy from alignment properties alone.

  20. Sequence analysis reveals genomic factors affecting EST-SSR primer performance and polymorphism.

    PubMed

    Chen, Chunxian; Bock, Clive H; Beckman, Tom G

    2014-12-01

    This study was to explore genomic factors affecting the performance and polymorphism of 340 randomly selected EST-SSR (expressed sequence tag-simple sequence repeat) primers through BLAST of primer sequences to a reference genome. Genotyping showed 111 failed and 229 succeeded. The failed types included "no peaks" (NP, 69 primers), "weak peaks" (WP, 30), and "multiple peaks" (MP, 12). The successful types were divided into HM (homozygous between two selected parents, 78 primers) and HT (heterozygous at least in one parent, 151 primers). The BLAST revealed primer alignment status, genomic amplicon size (GAS), and genomic and expressed amplicon size difference (ASD). The alignment status was categorized as: "no hits found" (NHF); "multiple partial alignments" (MPA); "single partial alignment" (SPA); "multiple full alignments" (MFA); and "single full alignment" (SFA). NHF and partial alignment (PA) mainly resulted from discrepant nucleotides in contig-derived primers. The ASD separated 247 non-NHF primers into: "deletion", "same size", "insertion", "intron (GAS ≤500)", "intron (GAS >500)", and "error" categories. Most SFA primers were successful. About 88 % "error", 53 % NHF primers, and 47 % "intron (GAS >500)" failed. The "deletion" and "insertion" primers had the higher HT rates, and the "same size" had the highest HM rate. Optimized primer selection criteria are discussed.

  1. Field application of moment-based wavefront sensing to in-situ alignment and image quality assessment of astronomical spectrographs: results and analysis of aligning VIRUS unit spectrographs

    NASA Astrophysics Data System (ADS)

    Lee, Hanshin; Hill, Gary J.; Tuttle, Sarah E.; Noyola, Eva; Peterson, Trent; Vattiat, Brian L.

    2014-07-01

    Teague introduced a phase retrieval method that uses the image shape moments. More recently, an independent study arrived at a similar technique, which was then applied to in-situ full-field image-quality evaluation of spectroscopic systems. This moment-based wavefront sensing (MWFS) method relies on the geometric relation between the image shape moments and the geometric wavefront modal coefficients. The MWFS method allows a non-iterative determination of the modal coefficients from focus-modulated images at arbitrary spatial resolutions. The determination of image moments is a direct extension of routine centroid and image size calculation, making its implementation easy. Previous studies showed that the MWFS works well in capturing large low-order modes, and is quite suitable for in-situ alignment diagnostics. At the Astronomical Instrumentation conference in 2012, we presented initial results of the application of the moment-based wavefront sensing to a fiber-fed astronomical spectrograph, called VIRUS (a set of replicated 150 identical integral-field unit spectrographs contained in 75 unit pairs). This initial result shows that the MWFS can provide accurate full-field image-quality assessment for efficiently aligning these 150 spectrographs. Since then, we have assembled more than 24 unit pairs using this technique. In this paper, we detail the technical update/progress made so far for the moment-based wavefront sensing method and the statistical estimates of the before/after alignment aberrations, image-quality, and various efficiency indicators of the unit spectrograph alignment process.

  2. AdoMet radical proteins—from structure to evolution—alignment of divergent protein sequences reveals strong secondary structure element conservation

    PubMed Central

    Nicolet, Yvain; Drennan, Catherine L.

    2004-01-01

    Eighteen subclasses of S-adenosyl-l-methionine (AdoMet) radical proteins have been aligned in the first bioinformatics study of the AdoMet radical superfamily to utilize crystallographic information. The recently resolved X-ray structure of biotin synthase (BioB) was used to guide the multiple sequence alignment, and the recently resolved X-ray structure of coproporphyrinogen III oxidase (HemN) was used as the control. Despite the low 9% sequence identity between BioB and HemN, the multiple sequence alignment correctly predicted all but one of the core helices in HemN, and correctly predicted the residues in the enzyme active site. This alignment further suggests that the AdoMet radical proteins may have evolved from half-barrel structures (αβ)4 to three-quarter-barrel structures (αβ)6 to full-barrel structures (αβ)8. It predicts that anaerobic ribonucleotide reductase (RNR) activase, an ancient enzyme that, it has been suggested, serves as a link between the RNA and DNA worlds, will have a half-barrel structure, whereas the three-quarter barrel, exemplified by HemN, will be the most common architecture for AdoMet radical enzymes, and fewer members of the superfamily will join BioB in using a complete (αβ)8 TIM-barrel fold to perform radical chemistry. These differences in barrel architecture also explain how AdoMet radical enzymes can act on substrates that range in size from 10 atoms to 608 residue proteins. PMID:15289575

  3. Invoking Thomas Kuhn: What Citation Analysis Reveals about Science Education

    NASA Astrophysics Data System (ADS)

    Loving, Cathleen C.; Cobern, William W.

    This paper analyzes how Thomas Kuhn's writings are used by others, especially science education researchers. Previous research in citation analysis is used to frame questions related to who cites Kuhn, in what manner and why. Research questions first focus on the variety of disciplines invoking Kuhn and to what extent Structure of Scientific Revolutions (SSR) is cited. The Web of Science database provides material from 1982 for this analysis. The science education literature is analyzed using back issues from 1985 of the Journal of Research in Science Teaching and Science Education. An article analysis reveals trends in terms of what Kuhnian ideas are most frequently invoked. Results indicate a wide array of disciplines from beekeeping to law cite Kuhn - especially generic citations to SSR. The science education journal analysis reveals pervasive use of the term paradigm, although use is quite varied. The two areas of research in science education most impacted by Kuhn appear to be conceptual change theory and constructivist epistemologies. Additional uses of Kuhn are discussed. The degree to which Kuhn is invoked in ways supporting the theoretical framework of citation analysis, whether his work is misappropriated, and the impact of Kuhn are discussed.

  4. Multi-resolution Shape Analysis via Non-Euclidean Wavelets: Applications to Mesh Segmentation and Surface Alignment Problems.

    PubMed

    Kim, Won Hwa; Chung, Moo K; Singh, Vikas

    2013-01-01

    The analysis of 3-D shape meshes is a fundamental problem in computer vision, graphics, and medical imaging. Frequently, the needs of the application require that our analysis take a multi-resolution view of the shape's local and global topology, and that the solution is consistent across multiple scales. Unfortunately, the preferred mathematical construct which offers this behavior in classical image/signal processing, Wavelets, is no longer applicable in this general setting (data with non-uniform topology). In particular, the traditional definition does not allow writing out an expansion for graphs that do not correspond to the uniformly sampled lattice (e.g., images). In this paper, we adapt recent results in harmonic analysis, to derive Non-Euclidean Wavelets based algorithms for a range of shape analysis problems in vision and medical imaging. We show how descriptors derived from the dual domain representation offer native multi-resolution behavior for characterizing local/global topology around vertices. With only minor modifications, the framework yields a method for extracting interest/key points from shapes, a surprisingly simple algorithm for 3-D shape segmentation (competitive with state of the art), and a method for surface alignment (without landmarks). We give an extensive set of comparison results on a large shape segmentation benchmark and derive a uniqueness theorem for the surface alignment problem.

  5. A method to avoid errors associated with the analysis of hypermutated viral sequences by alignment-based methods.

    PubMed

    Alinejad-Rokny, Hamid; Ebrahimi, Diako

    2015-12-01

    The human genome encodes for a family of editing enzymes known as APOBEC3 (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like3). They induce context dependent G-to-A changes, referred to as "hypermutation", in the genome of viruses such as HIV, SIV, HBV and endogenous retroviruses. Hypermutation is characterized by aligning affected sequences to a reference sequence. We show that indels (insertions/deletions) in the sequences lead to an incorrect assignment of APOBEC3 targeted and non-target sites. This can result in an incorrect identification of hypermutated sequences and erroneous biological inferences made based on hypermutation analysis.

  6. Aligned short-fibre reinforced thermosets - Experiments and analysis lend little support for established theory

    NASA Astrophysics Data System (ADS)

    Piggott, M. R.; Ko, M.; Chuang, H. Y.

    Experiments with epoxy resins reinforced with aligned short carbon fibers give results which disagree sharply with traditional fiber reinforcement theory based on interface yielding and slip and the concept of the critical fiber aspect ratio. Earlier results and evidence from interface studies are therefore reviewed, and it is shown that, as the carbon/polymer interface is brittle, the progressive interface failure process previously envisaged almost certainly does not take place. Furthermore, a careful reading of the sources of data relating to the yielding and slip theory indicates that the evidence in support of it is very weak. Thus, the idea of the critical fiber aspect ratio, borrowed from the metallurgists, may not be appropriate for short-fiber reinforced plastics. Instead, a process involving brittle fiber debonds should be considered. These debonds could trigger matrix cracking and hence explain the anomalously low composite breaking strains observed when the breaking strain of the fiber is greater than that of the polymer, and other properties of aligned short-fiber composites.

  7. Line width roughness accuracy analysis during pattern transfer in self-aligned quadruple patterning process

    NASA Astrophysics Data System (ADS)

    Lorusso, Gian Francesco; Inoue, Osamu; Ohashi, Takeyoshi; Altamirano Sanchez, Efrain; Constantoudis, Vassilios; Koshihara, Shunsuke

    2016-03-01

    Line edge roughness (LER) and line width roughness (LWR) are analyzed during pattern transfer in a self-aligned quadruple patterning (SAQP) process. This patterning process leads to a final pitch of 22.5nm, relevant for N7/N5 technologies. Measurements performed by CD SEM (Critical Dimension Scanning Electron Microscope) using different settings in terms of averaging, field of view, and pixel size are compared with reference metrology performed by planar TEM and three-Dimensional Atomic Force Microscope (3D AFM) for each patterning process step in order to investigate the optimal condition for an in-line LWR characterization. Pattern wiggling is als0 quantitatively analyzed during LER/LWR transfer in the SAQP process.

  8. Aligned hemozoin crystals in curved clusters in malarial red blood cells revealed by nanoprobe X-ray Fe fluorescence and diffraction.

    PubMed

    Kapishnikov, Sergey; Berthing, Trine; Hviid, Lars; Dierolf, Martin; Menzel, Andreas; Pfeiffer, Franz; Als-Nielsen, Jens; Leiserowitz, Leslie

    2012-07-10

    The human malaria parasite Plasmodium falciparum detoxifies the heme byproduct of hemoglobin digestion in infected red blood cells by sequestration into submicron-sized hemozoin crystals. The crystal is composed of heme units interlinked to form cyclic dimers via reciprocal Fe─O (propionate) bonds. Templated hemozoin nucleation was envisaged to explain a classic observation by electron microscopy of a cluster of aligned hemozoin crystals within the parasite digestive vacuole. This dovetails with evidence that acylglycerol lipids are involved in hemozoin nucleation in vivo, and nucleation of β-hematin, the synthetic analogue of hemozoin, was consistently induced at an acylglycerol-water interface via their {100} crystal faces. In order to ascertain the nature of hemozoin nucleation in vivo, we probed the mutual orientations of hemozoin crystals in situ within RBCs using synchrotron-based X-ray nanoprobe Fe fluorescence and diffraction. The X-ray patterns indicated the presence of hemozoin clusters, each comprising several crystals aligned along their needle c axes and exposing {100} side faces to an approximately cylindrical surface, suggestive of nucleation via a common lipid layer. This experimental finding, and the associated nucleation model, are difficult to reconcile with recent reports of hemozoin formation within lipid droplets in the digestive vacuole. The diffraction results are verified by a study of the nucleation process using emerging tools of three-dimensional cellular microscopy, described in the companion paper.

  9. ALIGNING JIG

    DOEpatents

    Culver, J.S.; Tunnell, W.C.

    1958-08-01

    A jig or device is described for setting or aligning an opening in one member relative to another member or structure, with a predetermined offset, or it may be used for measuring the amount of offset with which the parts have previously been sct. This jig comprises two blocks rabbeted to each other, with means for securing thc upper block to the lower block. The upper block has fingers for contacting one of the members to be a1igmed, the lower block is designed to ride in grooves within the reference member, and calibration marks are provided to determine the amount of offset. This jig is specially designed to align the collimating slits of a mass spectrometer.

  10. Attitude sensor alignment calibration for the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Pitone, Daniel S.; Shuster, Malcolm D.

    1990-01-01

    An earlier heuristic study of the fine attitude sensors for the Solar Maximum Mission (SMM) revealed a temperature dependence of the alignment about the yaw axis of the pair of fixed-head star trackers relative to the fine pointing Sun sensor. Here, new sensor alignment algorithms which better quantify the dependence of the alignments on the temperature are developed and applied to the SMM data. Comparison with the results from the previous study reveals the limitations of the heuristic approach. In addition, some of the basic assumptions made in the prelaunch analysis of the alignments of the SMM are examined. The results of this work have important consequences for future missions with stringent attitude requirements and where misalignment variations due to variations in the temperature will be significant.

  11. Attitude sensor alignment calibration for the solar maximum mission

    NASA Astrophysics Data System (ADS)

    Pitone, Daniel S.; Shuster, Malcolm D.

    1990-12-01

    An earlier heuristic study of the fine attitude sensors for the Solar Maximum Mission (SMM) revealed a temperature dependence of the alignment about the yaw axis of the pair of fixed-head star trackers relative to the fine pointing Sun sensor. Here, new sensor alignment algorithms which better quantify the dependence of the alignments on the temperature are developed and applied to the SMM data. Comparison with the results from the previous study reveals the limitations of the heuristic approach. In addition, some of the basic assumptions made in the prelaunch analysis of the alignments of the SMM are examined. The results of this work have important consequences for future missions with stringent attitude requirements and where misalignment variations due to variations in the temperature will be significant.

  12. Mathematical Analysis of Biomolecular Network Reveals Connections Between Diseases

    NASA Astrophysics Data System (ADS)

    Wang, Guanyu

    2012-02-01

    Connections between cancer and metabolic diseases may consist in the complex network of interactions among a common set of biomolecules. By applying singularity and bifurcation analysis, the phenotypes constrained by the AKT signaling pathway are identified and mapped onto the parameter space, which include cancer and certain metabolic diseases. By considering physiologic properties (sensitivity, robustness and adaptivity) the AKT pathway must possess in order to efficiently sense growth factors and nutrients, the region of normal responses is located. The analysis illuminates the parameter space and reveals system-level mechanisms in regulating biological functions (cell growth, survival, proliferation and metabolism) and how their deregulation may lead to the development of diseases. The analytical expressions summarize the synergistic interactions among many molecules, which provides valuable insights into therapeutic interventions.

  13. Aligning ontologies and integrating textual evidence for pathway analysis of microarray data

    SciTech Connect

    Gopalan, Banu; Posse, Christian; Sanfilippo, Antonio P.; Stenzel-Poore, Mary; Stevens, S.L.; Castano, Jose; Beagley, Nathaniel; Riensche, Roderick M.; Baddeley, Bob; Simon, R.P.; Pustejovsky, James

    2006-10-08

    Expression arrays are introducing a paradigmatic change in biology by shifting experimental approaches from single gene studies to genome-level analysis, monitoring the ex-pression levels of several thousands of genes in parallel. The massive amounts of data obtained from the microarray data needs to be integrated and interpreted to infer biological meaning within the context of information-rich pathways. In this paper, we present a methodology that integrates textual information with annotations from cross-referenced ontolo-gies to map genes to pathways in a semi-automated way. We illustrate this approach and compare it favorably to other tools by analyzing the gene expression changes underlying the biological phenomena related to stroke. Stroke is the third leading cause of death and a major disabler in the United States. Through years of study, researchers have amassed a significant knowledge base about stroke, and this knowledge, coupled with new technologies, is providing a wealth of new scientific opportunities. The potential for neu-roprotective stroke therapy is enormous. However, the roles of neurogenesis, angiogenesis, and other proliferative re-sponses in the recovery process following ischemia and the molecular mechanisms that lead to these processes still need to be uncovered. Improved annotation of genomic and pro-teomic data, including annotation of pathways in which genes and proteins are involved, is required to facilitate their interpretation and clinical application. While our approach is not aimed at replacing existing curated pathway databases, it reveals multiple hidden relationships that are not evident with the way these databases analyze functional groupings of genes from the Gene Ontology.

  14. Aligning Experimental and Theoretical Anisotropic B-Factors: Water Models, Normal-Mode Analysis Methods, and Metrics

    PubMed Central

    2014-01-01

    The strength of X-ray crystallography in providing the information for protein dynamics has been under appreciated. The anisotropic B-factors (ADPs) from high-resolution structures are invaluable in studying the relationship among structure, dynamics, and function. Here, starting from an in-depth evaluation of the metrics used for comparing the overlap between two ellipsoids, we applied normal-mode analysis (NMA) to predict the theoretical ADPs and then align them with experimental results. Adding an extra layer of explicitly treated water on protein surface significantly improved the energy minimization results and better reproduced the anisotropy of experimental ADPs. In comparing experimental and theoretical ADPs, we focused on the overlap in shape, the alignment of dominant directions, and the similarity in magnitude. The choices of water molecules, NMA methods, and the metrics for evaluating the overlap of ADPs determined final results. This study provides useful information for exploring the physical basis and the application potential of experimental ADPs. PMID:24673391

  15. Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM.

    PubMed

    Martínez, José Luis; Moreno, Ignacio; del Mar Sánchez-López, María; Vargas, Asticio; García-Martínez, Pascuala

    2014-10-20

    Multiple internal reflection effects on the optical modulation of a commercial reflective parallel-aligned liquid-crystal on silicon (PAL-LCoS) spatial light modulator (SLM) are analyzed. The display is illuminated with different wavelengths and different angles of incidence. Non-negligible Fabry-Perot (FP) effect is observed due to the sandwiched LC layer structure. A simplified physical model that quantitatively accounts for the observed phenomena is proposed. It is shown how the expected pure phase modulation response is substantially modified in the following aspects: 1) a coupled amplitude modulation, 2) a non-linear behavior of the phase modulation, 3) some amount of unmodulated light, and 4) a reduction of the effective phase modulation as the angle of incidence increases. Finally, it is shown that multiple reflections can be useful since the effect of a displayed diffraction grating is doubled on a beam that is reflected twice through the LC layer, thus rendering gratings with doubled phase modulation depth.

  16. Note: Alignment/focus dependent core-line sensitivity for quantitative chemical analysis in hard x-ray photoelectron spectroscopy using a hemispherical electron analyzer

    SciTech Connect

    Weiland, Conan; Browning, Raymond; Karlin, Barry A.; Fischer, Daniel A.; Woicik, Joseph C.

    2013-03-15

    X-ray photoelectron spectroscopy is an established technique for quantitative chemical analysis requiring accurate peak intensity analysis. We present evidence of focus/alignment dependence of relative peak intensities for peaks over a broad kinetic energy range with a hemispherical electron analyzer operated in a position imaging mode. A decrease of over 50% in the Ag 2p{sub 3/2} to Ag 3d ratio is observed in a Ag specimen. No focus/alignment dependence is observed when using an angular imaging mode, necessitating the use of angular mode for quantitative chemical analysis.

  17. Note: Alignment/focus dependent core-line sensitivity for quantitative chemical analysis in hard x-ray photoelectron spectroscopy using a hemispherical electron analyzer.

    PubMed

    Weiland, Conan; Browning, Raymond; Karlin, Barry A; Fischer, Daniel A; Woicik, Joseph C

    2013-03-01

    X-ray photoelectron spectroscopy is an established technique for quantitative chemical analysis requiring accurate peak intensity analysis. We present evidence of focus∕alignment dependence of relative peak intensities for peaks over a broad kinetic energy range with a hemispherical electron analyzer operated in a position imaging mode. A decrease of over 50% in the Ag 2p₃/₂ to Ag 3d ratio is observed in a Ag specimen. No focus∕alignment dependence is observed when using an angular imaging mode, necessitating the use of angular mode for quantitative chemical analysis.

  18. Genomic analysis of primordial dwarfism reveals novel disease genes.

    PubMed

    Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S

    2014-02-01

    Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis.

  19. Improving pairwise sequence alignment accuracy using near-optimal protein sequence alignments

    PubMed Central

    2010-01-01

    Background While the pairwise alignments produced by sequence similarity searches are a powerful tool for identifying homologous proteins - proteins that share a common ancestor and a similar structure; pairwise sequence alignments often fail to represent accurately the structural alignments inferred from three-dimensional coordinates. Since sequence alignment algorithms produce optimal alignments, the best structural alignments must reflect suboptimal sequence alignment scores. Thus, we have examined a range of suboptimal sequence alignments and a range of scoring parameters to understand better which sequence alignments are likely to be more structurally accurate. Results We compared near-optimal protein sequence alignments produced by the Zuker algorithm and a set of probabilistic alignments produced by the probA program with structural alignments produced by four different structure alignment algorithms. There is significant overlap between the solution spaces of structural alignments and both the near-optimal sequence alignments produced by commonly used scoring parameters for sequences that share significant sequence similarity (E-values < 10-5) and the ensemble of probA alignments. We constructed a logistic regression model incorporating three input variables derived from sets of near-optimal alignments: robustness, edge frequency, and maximum bits-per-position. A ROC analysis shows that this model more accurately classifies amino acid pairs (edges in the alignment path graph) according to the likelihood of appearance in structural alignments than the robustness score alone. We investigated various trimming protocols for removing incorrect edges from the optimal sequence alignment; the most effective protocol is to remove matches from the semi-global optimal alignment that are outside the boundaries of the local alignment, although trimming according to the model-generated probabilities achieves a similar level of improvement. The model can also be used to

  20. PILOT optical alignment

    NASA Astrophysics Data System (ADS)

    Longval, Y.; Mot, B.; Ade, P.; André, Y.; Aumont, J.; Baustista, L.; Bernard, J.-Ph.; Bray, N.; de Bernardis, P.; Boulade, O.; Bousquet, F.; Bouzit, M.; Buttice, V.; Caillat, A.; Charra, M.; Chaigneau, M.; Crane, B.; Crussaire, J.-P.; Douchin, F.; Doumayrou, E.; Dubois, J.-P.; Engel, C.; Etcheto, P.; Gélot, P.; Griffin, M.; Foenard, G.; Grabarnik, S.; Hargrave, P..; Hughes, A.; Laureijs, R.; Lepennec, Y.; Leriche, B.; Maestre, S.; Maffei, B.; Martignac, J.; Marty, C.; Marty, W.; Masi, S.; Mirc, F.; Misawa, R.; Montel, J.; Montier, L.; Narbonne, J.; Nicot, J.-M.; Pajot, F.; Parot, G.; Pérot, E.; Pimentao, J.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Salatino, M.; Savini, G.; Simonella, O.; Saccoccio, M.; Tapie, P.; Tauber, J.; Torre, J.-P.; Tucker, C.

    2016-07-01

    PILOT is a balloon-borne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy at wavelengths 240 μm with an angular resolution about two arcminutes. Pilot optics is composed an off-axis Gregorian type telescope and a refractive re-imager system. All optical elements, except the primary mirror, are in a cryostat cooled to 3K. We combined the optical, 3D dimensional measurement methods and thermo-elastic modeling to perform the optical alignment. The talk describes the system analysis, the alignment procedure, and finally the performances obtained during the first flight in September 2015.

  1. Onorbit IMU alignment error budget

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.

  2. Nova laser alignment control system

    SciTech Connect

    Van Arsdall, P.J.; Holloway, F.W.; McGuigan, D.L.; Shelton, R.T.

    1984-03-29

    Alignment of the Nova laser requires control of hundreds of optical components in the ten beam paths. Extensive application of computer technology makes daily alignment practical. The control system is designed in a manner which provides both centralized and local manual operator controls integrated with automatic closed loop alignment. Menudriven operator consoles using high resolution color graphics displays overlaid with transport touch panels allow laser personnel to interact efficiently with the computer system. Automatic alignment is accomplished by using image analysis techniques to determine beam references points from video images acquired along the laser chain. A major goal of the design is to contribute substantially to rapid experimental turnaround and consistent alignment results. This paper describes the computer-based control structure and the software methods developed for aligning this large laser system.

  3. Automatic frequency alignment and quantitation of single resonances in multiple magnetic resonance spectra via complex principal component analysis

    NASA Astrophysics Data System (ADS)

    Van Huffel, Sabine; Wang, Yu; Vanhamme, Leentje; Van Hecke, Paul

    2002-09-01

    Several algorithms for automatic frequency alignment and quantitation of single resonances in multiple magnetic resonance (MR) spectra are investigated. First, a careful comparison between the complex principal component analysis (PCA) and the Hankel total least squares-based methods for quantifying the resonances in the spectral sets of magnetic resonance spectroscopy imaging (MRSI) spectra is presented. Afterward, we discuss a method based on complex PCA plus linear regression and a method based on cross correlation of the magnitude spectra for correcting frequency shifts of resonances in sets of MR spectra. Their advantages and limitations are demonstrated on simulated MR data sets as well as on an in vivo MRSI data set of the human brain.

  4. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction.

    PubMed

    Ikegami, Keisuke; Yoshimura, Takashi

    2016-02-01

    Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms.

  5. Comparative genomic analysis of Lactobacillus plantarum ZJ316 reveals its genetic adaptation and potential probiotic profiles* #

    PubMed Central

    Li, Ping; Li, Xuan; Gu, Qing; Lou, Xiu-yu; Zhang, Xiao-mei; Song, Da-feng; Zhang, Chen

    2016-01-01

    Objective: In previous studies, Lactobacillus plantarum ZJ316 showed probiotic properties, such as antimicrobial activity against various pathogens and the capacity to significantly improve pig growth and pork quality. The purpose of this study was to reveal the genes potentially related to its genetic adaptation and probiotic profiles based on comparative genomic analysis. Methods: The genome sequence of L. plantarum ZJ316 was compared with those of eight L. plantarum strains deposited in GenBank. BLASTN, Mauve, and MUMmer programs were used for genome alignment and comparison. CRISPRFinder was applied for searching the clustered regularly interspaced short palindromic repeats (CRISPRs). Results: We identified genes that encode proteins related to genetic adaptation and probiotic profiles, including carbohydrate transport and metabolism, proteolytic enzyme systems and amino acid biosynthesis, CRISPR adaptive immunity, stress responses, bile salt resistance, ability to adhere to the host intestinal wall, exopolysaccharide (EPS) biosynthesis, and bacteriocin biosynthesis. Conclusions: Comparative characterization of the L. plantarum ZJ316 genome provided the genetic basis for further elucidating the functional mechanisms of its probiotic properties. ZJ316 could be considered a potential probiotic candidate. PMID:27487802

  6. Large-Scale Phosphoproteomics Analysis of Whole Saliva Reveals a Distinct Phosphorylation Pattern

    PubMed Central

    Stone, Matthew D.; Chen, Xiaobing; McGowan, Thomas; Bandhakavi, Sricharan; Cheng, Bin; Rhodus, Nelson L.; Griffin, Timothy J.

    2011-01-01

    In-depth knowledge of bodily fluid phosphoproteomes, such as whole saliva, is limited. To better understand the whole saliva phosphoproteome, we generated a large-scale catalog of phosphorylated proteins. To circumvent the wide dynamic range of phosphoprotein abundance in whole saliva, we combined dynamic range compression using hexapeptide beads, strong cation exchange HPLC peptide fractionation, and immobilized metal affinity chromatography prior to mass spectrometry. In total, 217 unique phosphopeptides sites were identified representing 85 distinct phosphoproteins at 2.3% global FDR. From these peptides, 129 distinct phosphorylation sites were identified of which 57 were previously known, but only 11 of which had been previously identified in whole saliva. Cellular localization analysis revealed salivary phosphoproteins had a distribution similar to all known salivary proteins, but with less relative representation in “extracellular” and “plasma membrane” categories compared to salivary glycoproteins. Sequence alignment showed that phosphorylation occurred at acidic-directed kinase, proline-directed, and basophilic motifs. This differs from plasma phosphoproteins, which predominantly occur at Golgi casein kinase recognized sequences. Collectively, these results suggest diverse functions for salivary phosphoproteins and multiple kinases involved in their processing and secretion. In all, this study should lay groundwork for future elucidation of the functions of salivary protein phosphorylation. PMID:21299198

  7. On the Efficiency of Grain Alignment in Dark Clouds

    NASA Astrophysics Data System (ADS)

    Lazarian, A.; Goodman, Alyssa A.; Myers, Philip C.

    1997-11-01

    A quantitative analysis of grain alignment in the filamentary dark cloud L1755 in Ophiuchus is presented. We show that the observed decrease of the polarization-to-extinction ratio for the inner parts of this quiescent dark cloud can be explained as a result of the decrease of the efficiency of grain alignment. We make quantitative estimates of grain alignment efficiency for six mechanisms involving grains with either thermal or suprathermal rotation, interacting with either magnetic field or gaseous flow. We also make semiquantitative estimates of grain alignment by radiative torques. We show that in conditions typical of dark cloud interiors, all known major mechanisms of grain alignment fail. All the studied mechanisms predict polarization at least an order of magnitude below the currently detectable levels of ~1%. On the contrary, in the dark cloud environments where Av < 1, the grain alignment can be much more efficient. There the alignment of suprathermally rotating grains with superparamagnetic inclusions, and possibly also radiative torques, account for observed polarization. These results apply to L1755, which we model in detail, and probably also to B216 and other similar dark clouds. Our study suggests an explanation for the difference in results obtained through polarimetry of background starlight and polarized thermal emission from the dust itself. We conjecture that the emission polarimetry selectively reveals aligned grains in the environment far from thermodynamic equilibrium, as opposed to starlight polarization studies that probe the alignment of grains all the way along the line of sight, including the interiors of dark quiescent clouds, where no alignment is possible. We dedicate this paper to the memory of Edward M. Purcell and Lyman Spitzer, Jr., two pioneers in the quantitative study of the interstellar medium.

  8. A Novel Method for Alignment-free DNA Sequence Similarity Analysis Based on the Characterization of Complex Networks

    PubMed Central

    Zhou, Jie; Zhong, Pianyu; Zhang, Tinghui

    2016-01-01

    Determination of sequence similarity is one of the major steps in computational phylogenetic studies. One of the major tasks of computational biologists is to develop novel mathematical descriptors for similarity analysis. DNA clustering is an important technology that automatically identifies inherent relationships among large-scale DNA sequences. The comparison between the DNA sequences of different species helps determine phylogenetic relationships among species. Alignment-free approaches have continuously gained interest in various sequence analysis applications such as phylogenetic inference and metagenomic classification/clustering, particularly for large-scale sequence datasets. Here, we construct a novel and simple mathematical descriptor based on the characterization of cis sequence complex DNA networks. This new approach is based on a code of three cis nucleotides in a gene that could code for an amino acid. In particular, for each DNA sequence, we will set up a cis sequence complex network that will be used to develop a characterization vector for the analysis of mitochondrial DNA sequence phylogenetic relationships among nine species. The resulting phylogenetic relationships among the nine species were determined to be in agreement with the actual situation. PMID:27746676

  9. A Novel Method for Alignment-free DNA Sequence Similarity Analysis Based on the Characterization of Complex Networks.

    PubMed

    Zhou, Jie; Zhong, Pianyu; Zhang, Tinghui

    2016-01-01

    Determination of sequence similarity is one of the major steps in computational phylogenetic studies. One of the major tasks of computational biologists is to develop novel mathematical descriptors for similarity analysis. DNA clustering is an important technology that automatically identifies inherent relationships among large-scale DNA sequences. The comparison between the DNA sequences of different species helps determine phylogenetic relationships among species. Alignment-free approaches have continuously gained interest in various sequence analysis applications such as phylogenetic inference and metagenomic classification/clustering, particularly for large-scale sequence datasets. Here, we construct a novel and simple mathematical descriptor based on the characterization of cis sequence complex DNA networks. This new approach is based on a code of three cis nucleotides in a gene that could code for an amino acid. In particular, for each DNA sequence, we will set up a cis sequence complex network that will be used to develop a characterization vector for the analysis of mitochondrial DNA sequence phylogenetic relationships among nine species. The resulting phylogenetic relationships among the nine species were determined to be in agreement with the actual situation.

  10. Phosphoproteomic Analysis Reveals Regulatory Mechanisms at the Kidney Filtration Barrier

    PubMed Central

    Rinschen, Markus M.; Wu, Xiongwu; König, Tim; Pisitkun, Trairak; Hagmann, Henning; Pahmeyer, Caroline; Lamkemeyer, Tobias; Kohli, Priyanka; Schnell, Nicole; Schermer, Bernhard; Dryer, Stuart; Brooks, Bernard R.; Beltrao, Pedro; Krueger, Marcus

    2014-01-01

    Diseases of the kidney filtration barrier are a leading cause of ESRD. Most disorders affect the podocytes, polarized cells with a limited capacity for self-renewal that require tightly controlled signaling to maintain their integrity, viability, and function. Here, we provide an atlas of in vivo phosphorylated, glomerulus-expressed proteins, including podocyte-specific gene products, identified in an unbiased tandem mass spectrometry–based approach. We discovered 2449 phosphorylated proteins corresponding to 4079 identified high-confidence phosphorylated residues and performed a systematic bioinformatics analysis of this dataset. We discovered 146 phosphorylation sites on proteins abundantly expressed in podocytes. The prohibitin homology domain of the slit diaphragm protein podocin contained one such site, threonine 234 (T234), located within a phosphorylation motif that is mutated in human genetic forms of proteinuria. The T234 site resides at the interface of podocin dimers. Free energy calculation through molecular dynamic simulations revealed a role for T234 in regulating podocin dimerization. We show that phosphorylation critically regulates formation of high molecular weight complexes and that this may represent a general principle for the assembly of proteins containing prohibitin homology domains. PMID:24511133

  11. A Discourse Analytic Approach to Video Analysis of Teaching: Aligning Desired Identities with Practice

    ERIC Educational Resources Information Center

    Schieble, Melissa; Vetter, Amy; Meacham, Mark

    2015-01-01

    The authors present findings from a qualitative study of an experience that supports teacher candidates to use discourse analysis and positioning theory to analyze videos of their practice during student teaching. The research relies on the theoretical concept that learning to teach is an identity process. In particular, teachers construct and…

  12. Analysis of Opportunity to Learn for Students with Disabilities: Effects of Standards-Aligned Instruction

    ERIC Educational Resources Information Center

    Blank, Rolf K.; Smithson, John L.

    2014-01-01

    The paper presents a model for addressing the critical question of opportunity to learn for students with disabilities. The model was tested through a two-year study with schools and teachers in three states. Opportunity to learn analysis is critical in this educational era of push toward access and inclusion. The study results indicate that…

  13. Thermal and Alignment Analysis of the Instrument-Level ATLAS Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Bradshaw, Heather

    2012-01-01

    This paper describes the thermal analysis and test design performed in preparation for the ATLAS thermal vacuum test. NASA's Advanced Topographic Laser Altimeter System (ATLAS) will be flown as the sole instrument aboard the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2). It will be used to take measurements of topography and ice thickness for Arctic and Antarctic regions, providing crucial data used to predict future changes in worldwide sea levels. Due to the precise measurements ATLAS is taking, the laser altimeter has very tight pointing requirements. Therefore, the instrument is very sensitive to temperature-induced thermal distortions. For this reason, it is necessary to perform a Structural, Thermal, Optical Performance (STOP) analysis not only for flight, but also to ensure performance requirements can be operationally met during instrument-level thermal vacuum testing. This paper describes the thermal model created for the chamber setup, which was used to generate inputs for the environmental STOP analysis. This paper also presents the results of the STOP analysis, which indicate that the test predictions adequately replicate the thermal distortions predicted for flight. This is a new application of an existing process, as STOP analyses are generally performed to predict flight behavior only. Another novel aspect of this test is that it presents the opportunity to verify pointing results of a STOP model, which is not generally done. It is possible in this case, however, because the actual pointing will be measured using flight hardware during thermal vacuum testing and can be compared to STOP predictions.

  14. Chemometric Analysis of Gas Chromatography – Mass Spectrometry Data using Fast Retention Time Alignment via a Total Ion Current Shift Function

    SciTech Connect

    Nadeau, Jeremy S.; Wright, Bob W.; Synovec, Robert E.

    2010-04-15

    A critical comparison of methods for correcting severely retention time shifted gas chromatography-mass spectrometry (GC-MS) data is presented. The method reported herein is an adaptation to the Piecewise Alignment Algorithm to quickly align severely shifted one-dimensional (1D) total ion current (TIC) data, then applying these shifts to broadly align all mass channels throughout the separation, referred to as a TIC shift function (SF). The maximum shift varied from (-) 5 s in the beginning of the chromatographic separation to (+) 20 s toward the end of the separation, equivalent to a maximum shift of over 5 peak widths. Implementing the TIC shift function (TIC SF) prior to Fisher Ratio (F-Ratio) feature selection and then principal component analysis (PCA) was found to be a viable approach to classify complex chromatograms, that in this study were obtained from GC-MS separations of three gasoline samples serving as complex test mixtures, referred to as types C, M and S. The reported alignment algorithm via the TIC SF approach corrects for large dynamic shifting in the data as well as subtle peak-to-peak shifts. The benefits of the overall TIC SF alignment and feature selection approach were quantified using the degree-of-class separation (DCS) metric of the PCA scores plots using the type C and M samples, since they were the most similar, and thus the most challenging samples to properly classify. The DCS values showed an increase from an initial value of essentially zero for the unaligned GC-TIC data to a value of 7.9 following alignment; however, the DCS was unchanged by feature selection using F-Ratios for the GC-TIC data. The full mass spectral data provided an increase to a final DCS of 13.7 after alignment and two-dimensional (2D) F-Ratio feature selection.

  15. Analysis and Visualization of ChIP-Seq and RNA-Seq Sequence Alignments Using ngs.plot.

    PubMed

    Loh, Yong-Hwee Eddie; Shen, Li

    2016-01-01

    The continual maturation and increasing applications of next-generation sequencing technology in scientific research have yielded ever-increasing amounts of data that need to be effectively and efficiently analyzed and innovatively mined for new biological insights. We have developed ngs.plot-a quick and easy-to-use bioinformatics tool that performs visualizations of the spatial relationships between sequencing alignment enrichment and specific genomic features or regions. More importantly, ngs.plot is customizable beyond the use of standard genomic feature databases to allow the analysis and visualization of user-specified regions of interest generated by the user's own hypotheses. In this protocol, we demonstrate and explain the use of ngs.plot using command line executions, as well as a web-based workflow on the Galaxy framework. We replicate the underlying commands used in the analysis of a true biological dataset that we had reported and published earlier and demonstrate how ngs.plot can easily generate publication-ready figures. With ngs.plot, users would be able to efficiently and innovatively mine their own datasets without having to be involved in the technical aspects of sequence coverage calculations and genomic databases.

  16. Direct characterization of the energy level alignments and molecular components in an organic hetero-junction by integrated photoemission spectroscopy and reflection electron energy loss spectroscopy analysis

    NASA Astrophysics Data System (ADS)

    Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon

    2016-08-01

    A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.

  17. Mitochondrial Genome Analysis Reveals Historical Lineages in Yellowstone Bison.

    PubMed

    Forgacs, David; Wallen, Rick L; Dobson, Lauren K; Derr, James N

    2016-01-01

    Yellowstone National Park is home to one of the only plains bison populations that have continuously existed on their present landscape since prehistoric times without evidence of domestic cattle introgression. Previous studies characterized the relatively high levels of nuclear genetic diversity in these bison, but little is known about their mitochondrial haplotype diversity. This study assessed mitochondrial genomes from 25 randomly selected Yellowstone bison and found 10 different mitochondrial haplotypes with a haplotype diversity of 0.78 (± 0.06). Spatial analysis of these mitochondrial DNA (mtDNA) haplotypes did not detect geographic population subdivision (FST = -0.06, p = 0.76). However, we identified two independent and historically important lineages in Yellowstone bison by combining data from 65 bison (defined by 120 polymorphic sites) from across North America representing a total of 30 different mitochondrial DNA haplotypes. Mitochondrial DNA haplotypes from one of the Yellowstone lineages represent descendants of the 22 indigenous bison remaining in central Yellowstone in 1902. The other mitochondrial DNA lineage represents descendants of the 18 females introduced from northern Montana in 1902 to supplement the indigenous bison population and develop a new breeding herd in the northern region of the park. Comparing modern and historical mitochondrial DNA diversity in Yellowstone bison helps uncover a historical context of park restoration efforts during the early 1900s, provides evidence against a hypothesized mitochondrial disease in bison, and reveals the signature of recent hybridization between American plains bison (Bison bison bison) and Canadian wood bison (B. b. athabascae). Our study demonstrates how mitochondrial DNA can be applied to delineate the history of wildlife species and inform future conservation actions.

  18. Mitochondrial Genome Analysis Reveals Historical Lineages in Yellowstone Bison

    PubMed Central

    Derr, James N.

    2016-01-01

    Yellowstone National Park is home to one of the only plains bison populations that have continuously existed on their present landscape since prehistoric times without evidence of domestic cattle introgression. Previous studies characterized the relatively high levels of nuclear genetic diversity in these bison, but little is known about their mitochondrial haplotype diversity. This study assessed mitochondrial genomes from 25 randomly selected Yellowstone bison and found 10 different mitochondrial haplotypes with a haplotype diversity of 0.78 (± 0.06). Spatial analysis of these mitochondrial DNA (mtDNA) haplotypes did not detect geographic population subdivision (FST = -0.06, p = 0.76). However, we identified two independent and historically important lineages in Yellowstone bison by combining data from 65 bison (defined by 120 polymorphic sites) from across North America representing a total of 30 different mitochondrial DNA haplotypes. Mitochondrial DNA haplotypes from one of the Yellowstone lineages represent descendants of the 22 indigenous bison remaining in central Yellowstone in 1902. The other mitochondrial DNA lineage represents descendants of the 18 females introduced from northern Montana in 1902 to supplement the indigenous bison population and develop a new breeding herd in the northern region of the park. Comparing modern and historical mitochondrial DNA diversity in Yellowstone bison helps uncover a historical context of park restoration efforts during the early 1900s, provides evidence against a hypothesized mitochondrial disease in bison, and reveals the signature of recent hybridization between American plains bison (Bison bison bison) and Canadian wood bison (B. b. athabascae). Our study demonstrates how mitochondrial DNA can be applied to delineate the history of wildlife species and inform future conservation actions. PMID:27880780

  19. Quantitative flux analysis reveals folate-dependent NADPH production

    NASA Astrophysics Data System (ADS)

    Fan, Jing; Ye, Jiangbin; Kamphorst, Jurre J.; Shlomi, Tomer; Thompson, Craig B.; Rabinowitz, Joshua D.

    2014-06-01

    ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP+ to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP+ and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.

  20. Optical Alignment and Diffraction Analysis for AIRES: An Airborne Infrared Echelle Spectrometer

    NASA Technical Reports Server (NTRS)

    Haas, Michael R.; Fonda, Mark (Technical Monitor)

    2002-01-01

    The optical design is presented for a long-slit grating spectrometer known as AIRES (Airborne InfraRed Echelle Spectrometer). The instrument employs two gratings in series: a small order sorter and a large steeply blazed echelle. The optical path includes four pupil and four field stops, including two narrow slits. A detailed diffraction analysis is performed using GLAD by Applied Optics Research to evaluate critical trade-offs between optical throughput, spectral resolution, and system weight and volume. The effects of slit width, slit length, oversizing the second slit relative to the first, on- vs off-axis throughput, and clipping at the pupil stops and other optical elements are discussed.

  1. Robust Algorithm for Alignment of Liquid Chromatography-Mass Spectrometry Analyses in an Accurate Mass and Time Tag Data Analysis Pipeline

    SciTech Connect

    Jaitly, Navdeep; Monroe, Matthew E.; Petyuk, Vladislav A.; Clauss, Therese RW; Adkins, Joshua N.; Smith, Richard D.

    2006-11-01

    Liquid chromatography coupled to mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS) has become a standard technique for analyzing complex peptide mixtures to determine composition and relative quantity. Several high-throughput proteomics techniques attempt to combine complementary results from multiple LC-MS and LC-MS/MS analyses to provide more comprehensive and accurate results. To effectively collate results from these techniques, variations in mass and elution time measurements between related analyses are corrected by using algorithms designed to align the various types of results: LC-MS/MS vs. LC-MS/MS, LC-MS vs. LC-MS/MS, and LC-MS vs. LC-MS. Described herein are new algorithms referred to collectively as Liquid Chromatography based Mass Spectrometric Warping and Alignment of Retention times of Peptides (LCMSWARP) which use a dynamic elution time warping approach similar to traditional algorithms that correct variation in elution time using piecewise linear functions. LCMSWARP is compared to a linear alignment algorithm that assumes a linear transformation of elution time between analyses. LCMSWARP also corrects for drift in mass measurement accuracies that are often seen in an LC-MS analysis due to factors such as analyzer drift. We also describe the alignment of LC-MS results and provide examples of alignment of analyses from different chromatographic systems to demonstrate more complex transformation functions.

  2. Magnetic alignment and the Poisson alignment reference system

    NASA Astrophysics Data System (ADS)

    Griffith, L. V.; Schenz, R. F.; Sommargren, G. E.

    1990-08-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This article begins with a review of the motivation for developing an alignment system that will assure better than 100-μm accuracy in the alignment of the magnetic axis throughout an FEL. The 100-μm accuracy is an error circle about an ideal axis for 300 m or more. The article describes techniques for identifying the magnetic axes of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development of a straight-line reference based on the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. The Poisson alignment reference system should be accurate to 25 μm over 300 m, which is believed to be a factor-of-4 improvement over earlier techniques. An error budget shows that only 25% of the total budgeted tolerance is used for the alignment reference system, so the remaining tolerances should fall within the allowable range for FEL alignment.

  3. Colour stabilities of three types of orthodontic clear aligners exposed to staining agents.

    PubMed

    Liu, Chen-Lu; Sun, Wen-Tian; Liao, Wen; Lu, Wen-Xin; Li, Qi-Wen; Jeong, Yunho; Liu, Jun; Zhao, Zhi-He

    2016-12-16

    The aim of this study was to evaluate and compare the colour stabilities of three types of orthodontic clear aligners exposed to staining agents in vitro. Sixty clear orthodontic aligners produced by three manufacturers (Invisalign, Angelalign, and Smartee) were immersed in three staining solutions (coffee, black tea, and red wine) and one control solution (distilled water). After 12-h and 7-day immersions, the aligners were washed in an ultrasonic cleaner and measured with a colourimeter. The colour changes (ΔE*) were calculated on the basis of the Commission Internationale de I'Eclairage L*a*b* colour system (CIE L*a*b*), and the results were then converted into National Bureau of Standards (NBS) units. Fourier transformation infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were conducted to observe the molecular and morphologic alterations to the aligner surfaces, respectively. The three types of aligners exhibited slight colour changes after 12 h of staining, with the exception of the Invisalign aligners stained with coffee. The Invisalign aligners exhibited significantly higher ΔE* values (ranging from 0.30 to 27.81) than those of the Angelalign and Smartee aligners (ΔE* values ranging from 0.33 to 1.89 and 0.32 to 1.61, respectively, P<0.05). FT-IR analysis confirmed that the polymer-based structure of aligners did not exhibit significant chemical differences before and after the immersions. The SEM results revealed different surface alterations to the three types of aligner materials after the 7-day staining. The three types of aesthetic orthodontic appliances exhibited colour stability after the 12-h immersion, with the exception of the Invisalign aligners stained by coffee. The Invisalign aligners were more prone than the Angelalign and Smartee aligners to pigmentation. Aligner materials may be improved by considering aesthetic colour stability properties.

  4. Colour stabilities of three types of orthodontic clear aligners exposed to staining agents

    PubMed Central

    Liu, Chen-Lu; Sun, Wen-Tian; Liao, Wen; Lu, Wen-Xin; Li, Qi-Wen; Jeong, Yunho; Liu, Jun; Zhao, Zhi-He

    2016-01-01

    The aim of this study was to evaluate and compare the colour stabilities of three types of orthodontic clear aligners exposed to staining agents in vitro. Sixty clear orthodontic aligners produced by three manufacturers (Invisalign, Angelalign, and Smartee) were immersed in three staining solutions (coffee, black tea, and red wine) and one control solution (distilled water). After 12-h and 7-day immersions, the aligners were washed in an ultrasonic cleaner and measured with a colourimeter. The colour changes (ΔE*) were calculated on the basis of the Commission Internationale de I'Eclairage L*a*b* colour system (CIE L*a*b*), and the results were then converted into National Bureau of Standards (NBS) units. Fourier transformation infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were conducted to observe the molecular and morphologic alterations to the aligner surfaces, respectively. The three types of aligners exhibited slight colour changes after 12 h of staining, with the exception of the Invisalign aligners stained with coffee. The Invisalign aligners exhibited significantly higher ΔE* values (ranging from 0.30 to 27.81) than those of the Angelalign and Smartee aligners (ΔE* values ranging from 0.33 to 1.89 and 0.32 to 1.61, respectively, P<0.05). FT-IR analysis confirmed that the polymer-based structure of aligners did not exhibit significant chemical differences before and after the immersions. The SEM results revealed different surface alterations to the three types of aligner materials after the 7-day staining. The three types of aesthetic orthodontic appliances exhibited colour stability after the 12-h immersion, with the exception of the Invisalign aligners stained by coffee. The Invisalign aligners were more prone than the Angelalign and Smartee aligners to pigmentation. Aligner materials may be improved by considering aesthetic colour stability properties. PMID:27660048

  5. X ray microscope assembly and alignment support and advanced x ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.

    1991-01-01

    Considerable efforts have been devoted recently to the design, analysis, fabrication, and testing of spherical Schwarzschild microscopes for soft x ray application in microscopy and projection lithography. The spherical Schwarzschild microscope consists of two concentric spherical mirrors configured such that the third order spherical aberration and coma are zero. Since multilayers are used on the mirror substrates for x ray applications, it is desirable to have only two reflecting surfaces in a microscope. In order to reduce microscope aberrations and increase the field of view, generalized mirror surface profiles have been considered in this investigation. Based on incoherent and sine wave modulation transfer function (MTF) calculations, the object plane resolution of a microscope has been analyzed as a function of the object height and numerical aperture (NA) of the primary for several spherical Schwarzschild, conic, and aspherical head reflecting two mirror microscope configurations.

  6. C2-fractures: part II. A morphometrical analysis of computerized atlantoaxial motion, anatomical alignment and related clinical outcomes.

    PubMed

    Koller, Heiko; Acosta, Frank; Forstner, Rosemarie; Zenner, Juliane; Resch, Herbert; Tauber, Mark; Lederer, Stefan; Auffarth, Alexander; Hitzl, Wolfgang

    2009-08-01

    Knowledge on the outcome of C2-fractures is founded on heterogenous samples with cross-sectional outcome assessment focusing on union rates, complications and technical concerns related to surgical treatment. Reproducible clinical and functional outcome assessments are scant. Validated generic and disease specific outcome measures were rarely applied. Therefore, the aim of the current study is to investigate the radiographic, functional and clinical outcome of a patient sample with C2-fractures. Out of a consecutive series of 121 patients with C2 fractures, 44 met strict inclusion criteria and 35 patients with C2-fractures treated either nonsurgically or surgically with motion-preserving techniques were surveyed. Outcome analysis included validated measures (SF-36, NPDI, CSOQ), and a functional CT-scanning protocol for the evaluation of C1-2 rotation and alignment. Mean follow-up was 64 months and mean age of patients was 52 years. Classification of C2-fractures at injury was performed using a detailed morphological description: 24 patients had odontoid fractures type II or III, 18 patients had fracture patterns involving the vertebral body and 11 included a dislocated or a burst lateral mass fracture. Thirty-one percent of patients were treated with a halo, 34% with a Philadelphia collar and 34% had anterior odontoid screw fixation. At follow-up mean atlantoaxial rotation in left and right head position was 20.2 degrees and 20.6 degrees, respectively. According to the classification system of posttreatment C2-alignment established by our group in part I of the C2-fracture study project, mean malunion score was 2.8 points. In 49% of patients the fractures healed in anatomical shape or with mild malalignment. In 51% fractures healed with moderate or severe malalignment. Self-rated outcome was excellent or good in 65% of patients and moderate or poor in 35%. The raw data of varying nuances allow for comparison in future benchmark studies and metaanalysis. Detailed

  7. Nearly complete rRNA genes from 371 Animalia: updated structure-based alignment and detailed phylogenetic analysis.

    PubMed

    Mallatt, Jon; Craig, Catherine Waggoner; Yoder, Matthew J

    2012-09-01

    This study presents a manually constructed alignment of nearly complete rRNA genes from most animal clades (371 taxa from ~33 of the ~36 metazoan phyla), expanded from the 197 sequences in a previous study. This thorough, taxon-rich alignment, available at http://www.wsu.edu/~jmallatt/research/rRNAalignment.html and in the Dryad Repository (doi: http://dx.doi.org/10.5061/dryad.1v62kr3q), is based rigidly on the secondary structure of the SSU and LSU rRNA molecules, and is annotated in detail, including labeling of the erroneous sequences (contaminants). The alignment can be used for future studies of the molecular evolution of rRNA. Here, we use it to explore if the larger number of sequences produces an improved phylogenetic tree of animal relationships. Disappointingly, the resolution did not improve, neither when the standard maximum-likelihood method was used, nor with more sophisticated methods that partitioned the rRNA into paired and unpaired sites (stem, loop, bulge, junction), or accounted for the evolution of the paired sites. For example, no doublet model of paired-site substitutions (16-state, 16A and 16B, 7A-F, or 6A-C models) corrected the placement of any rogue taxa or increased resolution. The following findings are from the simplest, standard, ML analysis. The 371-taxon tree only imperfectly supported the bilaterian clades of Lophotrochozoa and Ecdysozoa, and this problem remained after 17 taxa with unstably positioned sequences were omitted from the analysis. The problem seems to stem from base-compositional heterogeneity across taxa and from an overrepresentation of highly divergent sequences among the newly added taxa (e.g., sequences from Cephalopoda, Rotifera, Acoela, and Myxozoa). The rogue taxa continue to concentrate in two locations in the rRNA tree: near the base of Arthropoda and of Bilateria. The approximately uncertain (AU) test refuted the monophyly of Mollusca and of Chordata, probably due to long-branch attraction of the highly

  8. CATO: The Clone Alignment Tool.

    PubMed

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow.

  9. Minerals and aligned collagen fibrils in tilapia fish scales: structural analysis using dark-field and energy-filtered transmission electron microscopy and electron tomography.

    PubMed

    Okuda, Mitsuhiro; Ogawa, Nobuhiro; Takeguchi, Masaki; Hashimoto, Ayako; Tagaya, Motohiro; Chen, Song; Hanagata, Nobutaka; Ikoma, Toshiyuki

    2011-10-01

    The mineralized structure of aligned collagen fibrils in a tilapia fish scale was investigated using transmission electron microscopy (TEM) techniques after a thin sample was prepared using aqueous techniques. Electron diffraction and electron energy loss spectroscopy data indicated that a mineralized internal layer consisting of aligned collagen fibrils contains hydroxyapatite crystals. Bright-field imaging, dark-field imaging, and energy-filtered TEM showed that the hydroxyapatite was mainly distributed in the hole zones of the aligned collagen fibrils structure, while needle-like materials composed of calcium compounds including hydroxyapatite existed in the mineralized internal layer. Dark-field imaging and three-dimensional observation using electron tomography revealed that hydroxyapatite and needle-like materials were mainly found in the matrix between the collagen fibrils. It was observed that hydroxyapatite and needle-like materials were preferentially distributed on the surface of the hole zones in the aligned collagen fibrils structure and in the matrix between the collagen fibrils in the mineralized internal layer of the scale.

  10. On the Error State Selection for Stationary SINS Alignment and Calibration Kalman Filters—Part II: Observability/Estimability Analysis

    PubMed Central

    Silva, Felipe O.; Hemerly, Elder M.; Leite Filho, Waldemar C.

    2017-01-01

    This paper presents the second part of a study aiming at the error state selection in Kalman filters applied to the stationary self-alignment and calibration (SSAC) problem of strapdown inertial navigation systems (SINS). The observability properties of the system are systematically investigated, and the number of unobservable modes is established. Through the analytical manipulation of the full SINS error model, the unobservable modes of the system are determined, and the SSAC error states (except the velocity errors) are proven to be individually unobservable. The estimability of the system is determined through the examination of the major diagonal terms of the covariance matrix and their eigenvalues/eigenvectors. Filter order reduction based on observability analysis is shown to be inadequate, and several misconceptions regarding SSAC observability and estimability deficiencies are removed. As the main contributions of this paper, we demonstrate that, except for the position errors, all error states can be minimally estimated in the SSAC problem and, hence, should not be removed from the filter. Corroborating the conclusions of the first part of this study, a 12-state Kalman filter is found to be the optimal error state selection for SSAC purposes. Results from simulated and experimental tests support the outlined conclusions. PMID:28241494

  11. Spectral analysis of the line-width and line-edge roughness transfer during self-aligned double patterning approach

    NASA Astrophysics Data System (ADS)

    Dupuy, E.; Pargon, E.; Fouchier, M.; Grampeix, H.; Pradelles, J.; Darnon, M.; Pimenta-Barros, P.; Barnola, S.; Joubert, O.

    2015-03-01

    We report a 20 nm half-pitch self-aligned double patterning (SADPP) process based on a resist-core approach. Line/space 20/20 nm features in silicon are successfully obtained with CDvariation, LWR and LER of 0.7 nm, 2.4 nm and 2.3 nm respectively. The LWR and LER are characterized at each technological step of the process using a power spectral density fitting method, which allows a spectral analysis of the roughness and the determination of unbiased roughness values. Although the SADP concept generates two asymmetric populations of lines, the final LLWR and LER are similar. We show that this SADP process allows to decrease significantly the LWR and the LER of about 62% and 48% compared to the initial photoresist patterns. This study also demonstrates that SADP is a very powerful concept to decrease CD uniformity and LWR especially in its low-frequency components to reach sub-20 nm node requirements. However, LER low-frequency components are still high and remain a key issue tot address for an optimized integration.

  12. Very fast capillary electrophoresis with electrochemical detection for high-throughput analysis using short, vertically aligned capillaries.

    PubMed

    Mark, Jonas Josef Peter; Piccinelli, Paolo; Matysik, Frank-Michael

    2014-09-01

    A method for conducting fast and efficient capillary electrophoresis (CE) based on short separation capillaries in vertical alignment was developed. The strategy enables for high-throughput analysis from small sample vials (low microliter to nanoliter range). The system consists of a lab-made miniaturized autosampling unit and an amperometric end-column detection (AD) cell. The device enables a throughput of up to 200 separations per hour. CE-AD separations of a dye model system in capillaries of only 4 to 7.5 cm length with inner diameters (ID) of 10 or 15 μm were carried out under conditions of very high electric field strengths (up to 3.0 kV/cm) with high separation efficiency (half peak widths below 0.2 s) in less than 3.5 s migration time. A non-aqueous background electrolyte, consisting of 10 mM ammonium acetate and 1 M acetic acid in acetonitrile, was used. The practical suitability of the system was evaluated by applying it to the determination of dyes in overhead projector pens.

  13. Knowledge-based expert systems and a proof-of-concept case study for multiple sequence alignment construction and analysis.

    PubMed

    Aniba, Mohamed Radhouene; Siguenza, Sophie; Friedrich, Anne; Plewniak, Frédéric; Poch, Olivier; Marchler-Bauer, Aron; Thompson, Julie Dawn

    2009-01-01

    The traditional approach to bioinformatics analyses relies on independent task-specific services and applications, using different input and output formats, often idiosyncratic, and frequently not designed to inter-operate. In general, such analyses were performed by experts who manually verified the results obtained at each step in the process. Today, the amount of bioinformatics information continuously being produced means that handling the various applications used to study this information presents a major data management and analysis challenge to researchers. It is now impossible to manually analyse all this information and new approaches are needed that are capable of processing the large-scale heterogeneous data in order to extract the pertinent information. We review the recent use of integrated expert systems aimed at providing more efficient knowledge extraction for bioinformatics research. A general methodology for building knowledge-based expert systems is described, focusing on the unstructured information management architecture, UIMA, which provides facilities for both data and process management. A case study involving a multiple alignment expert system prototype called AlexSys is also presented.

  14. On the Error State Selection for Stationary SINS Alignment and Calibration Kalman Filters-Part II: Observability/Estimability Analysis.

    PubMed

    Silva, Felipe O; Hemerly, Elder M; Leite Filho, Waldemar C

    2017-02-23

    This paper presents the second part of a study aiming at the error state selection in Kalman filters applied to the stationary self-alignment and calibration (SSAC) problem of strapdown inertial navigation systems (SINS). The observability properties of the system are systematically investigated, and the number of unobservable modes is established. Through the analytical manipulation of the full SINS error model, the unobservable modes of the system are determined, and the SSAC error states (except the velocity errors) are proven to be individually unobservable. The estimability of the system is determined through the examination of the major diagonal terms of the covariance matrix and their eigenvalues/eigenvectors. Filter order reduction based on observability analysis is shown to be inadequate, and several misconceptions regarding SSAC observability and estimability deficiencies are removed. As the main contributions of this paper, we demonstrate that, except for the position errors, all error states can be minimally estimated in the SSAC problem and, hence, should not be removed from the filter. Corroborating the conclusions of the first part of this study, a 12-state Kalman filter is found to be the optimal error state selection for SSAC purposes. Results from simulated and experimental tests support the outlined conclusions.

  15. Orientational alignment in solids from bidimensional isotropic-anisotropic nuclear magnetic resonance spectroscopy: applications to the analysis of aramide fibers.

    PubMed

    Sachleben, J R; Frydman, L

    1997-02-01

    The use of two-dimensional isotropic-anisotropic correlation spectroscopy for the analysis of orientational alignment in solids is presented. The theoretical background and advantages of this natural-abundance 13C NMR method of measurement are discussed, and demonstrated with a series of powder and single-crystal variable-angle correlation spectroscopy (VACSY) experiments on model systems. The technique is subsequently employed to analyze the orientational distributions of three polymer fibers: Kevlar 29, Kevlar 49 and Kevlar 149. Using complementary two-dimensional NMR data recorded on synthetic samples of poly(p-phenyleneterephthalamide), the precursor of Kevlar, it was found that these commercial fibers possess molecules distributed over a very narrow orientational range with respect to the macroscopic director. The widths measured for these director distribution arrangements were (12 +/- 1.5) degrees for Kevlar 29, (15 +/- 1.5) degrees for Kevlar 49, and (8 +/- 1.5) degrees for Kevlar 149. These figures compare well with previous results obtained for non-commercial fiber samples derived from the same polymer.

  16. Phylogeny of prokaryotes and chloroplasts revealed by a simple composition approach on all protein sequences from complete genomes without sequence alignment.

    PubMed

    Yu, Z G; Zhou, L Q; Anh, V V; Chu, K H; Long, S C; Deng, J Q

    2005-04-01

    The complete genomes of living organisms have provided much information on their phylogenetic relationships. Similarly, the complete genomes of chloroplasts have helped to resolve the evolution of this organelle in photosynthetic eukaryotes. In this paper we propose an alternative method of phylogenetic analysis using compositional statistics for all protein sequences from complete genomes. This new method is conceptually simpler than and computationally as fast as the one proposed by Qi et al. (2004b) and Chu et al. (2004). The same data sets used in Qi et al. (2004b) and Chu et al. (2004) are analyzed using the new method. Our distance-based phylogenic tree of the 109 prokaryotes and eukaryotes agrees with the biologists "tree of life" based on 16S rRNA comparison in a predominant majority of basic branching and most lower taxa. Our phylogenetic analysis also shows that the chloroplast genomes are separated to two major clades corresponding to chlorophytes s.l. and rhodophytes s.l. The interrelationships among the chloroplasts are largely in agreement with the current understanding on chloroplast evolution.

  17. BAYESIAN PROTEIN STRUCTURE ALIGNMENT1

    PubMed Central

    RODRIGUEZ, ABEL; SCHMIDLER, SCOTT C.

    2015-01-01

    The analysis of the three-dimensional structure of proteins is an important topic in molecular biochemistry. Structure plays a critical role in defining the function of proteins and is more strongly conserved than amino acid sequence over evolutionary timescales. A key challenge is the identification and evaluation of structural similarity between proteins; such analysis can aid in understanding the role of newly discovered proteins and help elucidate evolutionary relationships between organisms. Computational biologists have developed many clever algorithmic techniques for comparing protein structures, however, all are based on heuristic optimization criteria, making statistical interpretation somewhat difficult. Here we present a fully probabilistic framework for pairwise structural alignment of proteins. Our approach has several advantages, including the ability to capture alignment uncertainty and to estimate key “gap” parameters which critically affect the quality of the alignment. We show that several existing alignment methods arise as maximum a posteriori estimates under specific choices of prior distributions and error models. Our probabilistic framework is also easily extended to incorporate additional information, which we demonstrate by including primary sequence information to generate simultaneous sequence–structure alignments that can resolve ambiguities obtained using structure alone. This combined model also provides a natural approach for the difficult task of estimating evolutionary distance based on structural alignments. The model is illustrated by comparison with well-established methods on several challenging protein alignment examples. PMID:26925188

  18. An evolutionary analysis of flightin reveals a conserved motif unique and widespread in Pancrustacea.

    PubMed

    Soto-Adames, Felipe N; Alvarez-Ortiz, Pedro; Vigoreaux, Jim O

    2014-01-01

    Flightin is a thick filament protein that in Drosophila melanogaster is uniquely expressed in the asynchronous, indirect flight muscles (IFM). Flightin is required for the structure and function of the IFM and is indispensable for flight in Drosophila. Given the importance of flight acquisition in the evolutionary history of insects, here we study the phylogeny and distribution of flightin. Flightin was identified in 69 species of hexapods in classes Collembola (springtails), Protura, Diplura, and insect orders Thysanura (silverfish), Dictyoptera (roaches), Orthoptera (grasshoppers), Pthiraptera (lice), Hemiptera (true bugs), Coleoptera (beetles), Neuroptera (green lacewing), Hymenoptera (bees, ants, and wasps), Lepidoptera (moths), and Diptera (flies and mosquitoes). Flightin was also found in 14 species of crustaceans in orders Anostraca (water flea), Cladocera (brine shrimp), Isopoda (pill bugs), Amphipoda (scuds, sideswimmers), and Decapoda (lobsters, crabs, and shrimps). Flightin was not identified in representatives of chelicerates, myriapods, or any species outside Pancrustacea (Tetraconata, sensu Dohle). Alignment of amino acid sequences revealed a conserved region of 52 amino acids, referred herein as WYR, that is bound by strictly conserved tryptophan (W) and arginine (R) and an intervening sequence with a high content of tyrosines (Y). This motif has no homologs in GenBank or PROSITE and is unique to flightin and paraflightin, a putative flightin paralog identified in decapods. A third motif of unclear affinities to pancrustacean WYR was observed in chelicerates. Phylogenetic analysis of amino acid sequences of the conserved motif suggests that paraflightin originated before the divergence of amphipods, isopods, and decapods. We conclude that flightin originated de novo in the ancestor of Pancrustacea > 500 MYA, well before the divergence of insects (~400 MYA) and the origin of flight (~325 MYA), and that its IFM-specific function in Drosophila is a more

  19. Transcriptome Analysis of the Entomopathogenic Oomycete Lagenidium giganteum Reveals Putative Virulence Factors

    PubMed Central

    Quiroz Velasquez, Paula F.; Abiff, Sumayyah K.; Fins, Katrina C.; Conway, Quincy B.; Salazar, Norma C.; Delgado, Ana Paula; Dawes, Jhanelle K.; Douma, Lauren G.

    2014-01-01

    A combination of 454 pyrosequencing and Sanger sequencing was used to sample and characterize the transcriptome of the entomopathogenic oomycete Lagenidium giganteum. More than 50,000 high-throughput reads were annotated through homology searches. Several selected reads served as seeds for the amplification and sequencing of full-length transcripts. Phylogenetic analyses inferred from full-length cellulose synthase alignments revealed that L giganteum is nested within the peronosporalean galaxy and as such appears to have evolved from a phytopathogenic ancestor. In agreement with the phylogeny reconstructions, full-length L. giganteum oomycete effector orthologs, corresponding to the cellulose-binding elicitor lectin (CBEL), crinkler (CRN), and elicitin proteins, were characterized by domain organizations similar to those of pathogenicity factors of plant-pathogenic oomycetes. Importantly, the L. giganteum effectors provide a basis for detailing the roles of canonical CRN, CBEL, and elicitin proteins in the infectious process of an oomycete known principally as an animal pathogen. Finally, phylogenetic analyses and genome mining identified members of glycoside hydrolase family 5 subfamily 27 (GH5_27) as putative virulence factors active on the host insect cuticle, based in part on the fact that GH5_27 genes are shared by entomopathogenic oomycetes and fungi but are underrepresented in nonentomopathogenic genomes. The genomic resources gathered from the L. giganteum transcriptome analysis strongly suggest that filamentous entomopathogens (oomycetes and fungi) exhibit convergent evolution: they have evolved independently from plant-associated microbes, have retained genes indicative of plant associations, and may share similar cores of virulence factors, such as GH5_27 enzymes, that are absent from the genomes of their plant-pathogenic relatives. PMID:25107973

  20. Magnetic axis alignment and the Poisson alignment reference system

    NASA Astrophysics Data System (ADS)

    Griffith, Lee V.; Schenz, Richard F.; Sommargren, Gary E.

    1989-01-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This paper begins with a review of the motivation for developing an alignment system that will assure better than 100 micrometer accuracy in the alignment of the magnetic axis throughout an FEL. The paper describes techniques for identifying the magnetic axis of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development and use of the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. An error budget shows that the Poisson alignment reference system will make it possible to meet the alignment tolerances for an FEL.

  1. Consensus-based course design and implementation of constructive alignment theory in a power system analysis course

    NASA Astrophysics Data System (ADS)

    Vanfretti, Luigi; Farrokhabadi, Mostafa

    2015-03-01

    This article presents the implementation of the constructive alignment theory (CAT) in a power system analysis course through a consensus-based course design process. The consensus-based design process involves both the instructor and graduate-level students and it aims to develop the CAT framework in a holistic manner with the goal of including different perceptions. The considerations required to implement this approach are described in detail. To examine the effect of this approach, three different course evaluations were conducted by querying the students during different stages of the course. These evaluations show that most of the students find a benefit for their learning in the implementation of CAT within the new course design. These observations are supported by a comparison of the students' performance in the new course and the previous one. Finally, the revised two-factor study process questionnaire (R-SPQ-2F) is utilised to identify the students' learning approach towards the course. The aim is to correlate the students' approach with their final grade to assess if students adopting a deep learning approach are rewarded with higher marks and vice versa, that is, to check if the CAT implementation was successful. Meanwhile, some of the R-SPQ-2F limitations, which affect the quality of the results, are identified and discussed. Additionally, to facilitate the practical usage of R-SPQ-2F, an algorithm was developed by the authors to rank the students' approach towards the course. The results of the new ranking algorithm demonstrate positive correlation with the students' final grade, which is an indication of the effective CAT implementation.

  2. Numerical Analysis of Tip Cavitation on Marine Propeller with Wake Alignment Using a Simple Surface Panel Method “SQCM”

    NASA Astrophysics Data System (ADS)

    Kanemaru, T.; Ando, J.

    2015-12-01

    This paper presents the calculation method of tip cavitation with wake alignment. Tip cavitation consists of tip vortex cavitation and tip super cavitation which means the undeveloped and local super cavitation around blade tip. The feature of this study is that the method applies the wake alignment model in order to express the realistic phenomena of tip cavitation and predict the pressure fluctuation more accurately. In the present method, the wake sheet is deformed according to the induced velocity vector on the vortex lines. The singularity of the potential vortex can be removed by using the Rankine Vortex model. This paper shows the calculated results regarding cavitation pattern, pressure fluctuation etc. comparing with published experimental data and calculated results without wake alignment.

  3. Transcriptome analysis revealed chimeric RNAs, single nucleotide polymorphisms and allele-specific expression in porcine prenatal skeletal muscle

    PubMed Central

    Yang, Yalan; Tang, Zhonglin; Fan, Xinhao; Xu, Kui; Mu, Yulian; Zhou, Rong; Li, Kui

    2016-01-01

    Prenatal skeletal muscle development genetically determines postnatal muscle characteristics such as growth and meat quality in pigs. However, the molecular mechanisms underlying prenatal skeletal muscle development remain unclear. Here, we performed the first genome-wide analysis of chimeric RNAs, single nuclear polymorphisms (SNPs) and allele-specific expression (ASE) in prenatal skeletal muscle in pigs. We identified 14,810 protein coding genes and 163 high-confidence chimeric RNAs expressed in prenatal skeletal muscle. More than 94.5% of the chimeric RNAs obeyed the canonical GT/AG splice rule and were trans-splicing events. Ten and two RNAs were aligned to human and mouse chimeric transcripts, respectively. We detected 106,457 high-quality SNPs (6,955 novel), which were mostly (89.09%) located within QTLs for production traits. The high proportion of non-exonic SNPs revealed the incomplete annotation status of the current swine reference genome. ASE analysis revealed that 11,300 heterozygous SNPs showed allelic imbalance, whereas 131 ASE variants were located in the chimeric RNAs. Moreover, 4 ASE variants were associated with various economically relevant traits of pigs. Taken together, our data provide a source for studies of chimeric RNAs and biomarkers for pig breeding, while illuminating the complex transcriptional events underlying prenatal skeletal muscle development in mammals. PMID:27352850

  4. Trophic hierarchies revealed via amino acid isotopic analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite the potential of isotopic methods to illuminate trophic function, accurate estimates of lifetime feeding tendencies have remained elusive. A relatively new approach—referred to as compound-specific isotopic analysis (CSIA)—has emerged, centering on the measurement of 15N:14N ratios in amino ...

  5. Analysis of copy number variations reveals differences among cattle breeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in the modern domesticated cattle using array comparative genomic hybridization (array CGH) and quanti...

  6. The effects of alignment error and alignment filtering on the sitewise detection of positive selection.

    PubMed

    Jordan, Gregory; Goldman, Nick

    2012-04-01

    When detecting positive selection in proteins, the prevalence of errors resulting from misalignment and the ability of alignment filters to mitigate such errors are not well understood, but filters are commonly applied to try to avoid false positive results. Focusing on the sitewise detection of positive selection across a wide range of divergence levels and indel rates, we performed simulation experiments to quantify the false positives and false negatives introduced by alignment error and the ability of alignment filters to improve performance. We found that some aligners led to many false positives, whereas others resulted in very few. False negatives were a problem for all aligners, increasing with sequence divergence. Of the aligners tested, PRANK's codon-based alignments consistently performed the best and ClustalW performed the worst. Of the filters tested, GUIDANCE performed the best and Gblocks performed the worst. Although some filters showed good ability to reduce the error rates from ClustalW and MAFFT alignments, none were found to substantially improve the performance of PRANK alignments under most conditions. Our results revealed distinct trends in error rates and power levels for aligners and filters within a biologically plausible parameter space. With the best aligner, a low false positive rate was maintained even with extremely divergent indel-prone sequences. Controls using the true alignment and an optimal filtering method suggested that performance improvements could be gained by improving aligners or filters to reduce the prevalence of false negatives, especially at higher divergence levels and indel rates.

  7. Lessons Learned in Systemic District Reform: A Cross-District Analysis from the Comprehensive Aligned Instructional System (CAIS) Benchmarking Study

    ERIC Educational Resources Information Center

    Waters, Louise Bay; Vargo, Merrill

    2008-01-01

    Urban district reform has been hampered by the challenge of understanding and supporting the tremendous complexity of district change. Improving this understanding through actionable, practice-based research is the purpose of this study. The authors began the study with the hypothesis that achieving districts both align their instructional systems…

  8. Interindividual variability in auditory scene analysis revealed by confidence judgements.

    PubMed

    Pelofi, C; de Gardelle, V; Egré, P; Pressnitzer, D

    2017-02-19

    Because musicians are trained to discern sounds within complex acoustic scenes, such as an orchestra playing, it has been hypothesized that musicianship improves general auditory scene analysis abilities. Here, we compared musicians and non-musicians in a behavioural paradigm using ambiguous stimuli, combining performance, reaction times and confidence measures. We used 'Shepard tones', for which listeners may report either an upward or a downward pitch shift for the same ambiguous tone pair. Musicians and non-musicians performed similarly on the pitch-shift direction task. In particular, both groups were at chance for the ambiguous case. However, groups differed in their reaction times and judgements of confidence. Musicians responded to the ambiguous case with long reaction times and low confidence, whereas non-musicians responded with fast reaction times and maximal confidence. In a subsequent experiment, non-musicians displayed reduced confidence for the ambiguous case when pure-tone components of the Shepard complex were made easier to discern. The results suggest an effect of musical training on scene analysis: we speculate that musicians were more likely to discern components within complex auditory scenes, perhaps because of enhanced attentional resolution, and thus discovered the ambiguity. For untrained listeners, stimulus ambiguity was not available to perceptual awareness.This article is part of the themed issue 'Auditory and visual scene analysis'.

  9. Intrinsic alignments of galaxies in the MassiveBlack-II simulation: Analysis of two-point statistics

    DOE PAGES

    Tenneti, Ananth; Singh, Sukhdeep; Mandelbaum, Rachel; ...

    2015-03-11

    The intrinsic alignment of galaxies with the large-scale density field in an important astrophysical contaminant in upcoming weak lensing surveys. We present detailed measurements of the galaxy intrinsic alignments and associated ellipticity-direction (ED) and projected shape (wg₊) correlation functions for galaxies in the cosmological hydrodynamic MassiveBlack-II (MB-II) simulation. We carefully assess the effects on galaxy shapes, misalignment of the stellar component with the dark matter shape and two-point statistics of iterative weighted (by mass and luminosity) definitions of the (reduced and unreduced) inertia tensor. We find that iterative procedures must be adopted for a reliable measurement of the reduced tensormore » but that luminosity versus mass weighting has only negligible effects. Both ED and wg₊ correlations increase in amplitude with subhalo mass (in the range of 10¹⁰ – 6.0 X 10¹⁴h⁻¹ M⊙), with a weak redshift dependence (from z = 1 to z = 0.06) at fixed mass. At z ~ 0.3, we predict a wg₊ that is in reasonable agreement with SDSS LRG measurements and that decreases in amplitude by a factor of ~ 5–18 for galaxies in the LSST survey. We also compared the intrinsic alignment of centrals and satellites, with clear detection of satellite radial alignments within the host halos. Finally, we show that wg₊ (using subhalos as tracers of density and wδ (using dark matter density) predictions from the simulations agree with that of non-linear alignment models (NLA) at scales where the 2-halo term dominates in the correlations (and tabulate associated NLA fitting parameters). The 1-halo term induces a scale dependent bias at small scales which is not modeled in the NLA model.« less

  10. Intrinsic alignments of galaxies in the MassiveBlack-II simulation: Analysis of two-point statistics

    SciTech Connect

    Tenneti, Ananth; Singh, Sukhdeep; Mandelbaum, Rachel; Matteo, Tiziana Di; Feng, Yu; Khandai, Nishikanta

    2015-03-11

    The intrinsic alignment of galaxies with the large-scale density field in an important astrophysical contaminant in upcoming weak lensing surveys. We present detailed measurements of the galaxy intrinsic alignments and associated ellipticity-direction (ED) and projected shape (wg₊) correlation functions for galaxies in the cosmological hydrodynamic MassiveBlack-II (MB-II) simulation. We carefully assess the effects on galaxy shapes, misalignment of the stellar component with the dark matter shape and two-point statistics of iterative weighted (by mass and luminosity) definitions of the (reduced and unreduced) inertia tensor. We find that iterative procedures must be adopted for a reliable measurement of the reduced tensor but that luminosity versus mass weighting has only negligible effects. Both ED and wg₊ correlations increase in amplitude with subhalo mass (in the range of 10¹⁰ – 6.0 X 10¹⁴h⁻¹ M), with a weak redshift dependence (from z = 1 to z = 0.06) at fixed mass. At z ~ 0.3, we predict a wg₊ that is in reasonable agreement with SDSS LRG measurements and that decreases in amplitude by a factor of ~ 5–18 for galaxies in the LSST survey. We also compared the intrinsic alignment of centrals and satellites, with clear detection of satellite radial alignments within the host halos. Finally, we show that wg₊ (using subhalos as tracers of density and wδ (using dark matter density) predictions from the simulations agree with that of non-linear alignment models (NLA) at scales where the 2-halo term dominates in the correlations (and tabulate associated NLA fitting parameters). The 1-halo term induces a scale dependent bias at small scales which is not modeled in the NLA model.

  11. Exceptional structured noncoding RNAs revealed by bacterial metagenome analysis.

    PubMed

    Weinberg, Zasha; Perreault, Jonathan; Meyer, Michelle M; Breaker, Ronald R

    2009-12-03

    Estimates of the total number of bacterial species indicate that existing DNA sequence databases carry only a tiny fraction of the total amount of DNA sequence space represented by this division of life. Indeed, environmental DNA samples have been shown to encode many previously unknown classes of proteins and RNAs. Bioinformatics searches of genomic DNA from bacteria commonly identify new noncoding RNAs (ncRNAs) such as riboswitches. In rare instances, RNAs that exhibit more extensive sequence and structural conservation across a wide range of bacteria are encountered. Given that large structured RNAs are known to carry out complex biochemical functions such as protein synthesis and RNA processing reactions, identifying more RNAs of great size and intricate structure is likely to reveal additional biochemical functions that can be achieved by RNA. We applied an updated computational pipeline to discover ncRNAs that rival the known large ribozymes in size and structural complexity or that are among the most abundant RNAs in bacteria that encode them. These RNAs would have been difficult or impossible to detect without examining environmental DNA sequences, indicating that numerous RNAs with extraordinary size, structural complexity, or other exceptional characteristics remain to be discovered in unexplored sequence space.

  12. Proteomic Analysis of Hylocereus polyrhizus Reveals Metabolic Pathway Changes

    PubMed Central

    Hua, Qingzhu; Zhou, Qianjun; Gan, Susheng; Wu, Jingyu; Chen, Canbin; Li, Jiaqiang; Ye, Yaoxiong; Zhao, Jietang; Hu, Guibing; Qin, Yonghua

    2016-01-01

    Red dragon fruit or red pitaya (Hylocereus polyrhizus) is the only edible fruit that contains betalains. The color of betalains ranges from red and violet to yellow in plants. Betalains may also serve as an important component of health-promoting and disease-preventing functional food. Currently, the biosynthetic and regulatory pathways for betalain production remain to be fully deciphered. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analyses were used to reveal the molecular mechanism of betalain biosynthesis in H. polyrhizus fruits at white and red pulp stages, respectively. A total of 1946 proteins were identified as the differentially expressed between the two samples, and 936 of them were significantly highly expressed at the red pulp stage of H. polyrhizus. RNA-seq and iTRAQ analyses showed that some transcripts and proteins were positively correlated; they belonged to “phenylpropanoid biosynthesis”, “tyrosine metabolism”, “flavonoid biosynthesis”, “ascorbate and aldarate metabolism”, “betalains biosynthesis” and “anthocyanin biosynthesis”. In betalains biosynthesis pathway, several proteins/enzymes such as polyphenol oxidase, CYP76AD3 and 4,5-dihydroxy-phenylalanine (DOPA) dioxygenase extradiol-like protein were identified. The present study provides a new insight into the molecular mechanism of the betalain biosynthesis at the posttranscriptional level. PMID:27690004

  13. Proteomics Analysis Reveals Previously Uncharacterized Virulence Factors in Vibrio proteolyticus

    PubMed Central

    Ray, Ann; Kinch, Lisa N.; de Souza Santos, Marcela; Grishin, Nick V.

    2016-01-01

    ABSTRACT Members of the genus Vibrio include many pathogens of humans and marine animals that share genetic information via horizontal gene transfer. Hence, the Vibrio pan-genome carries the potential to establish new pathogenic strains by sharing virulence determinants, many of which have yet to be characterized. Here, we investigated the virulence properties of Vibrio proteolyticus, a Gram-negative marine bacterium previously identified as part of the Vibrio consortium isolated from diseased corals. We found that V. proteolyticus causes actin cytoskeleton rearrangements followed by cell lysis in HeLa cells in a contact-independent manner. In search of the responsible virulence factor involved, we determined the V. proteolyticus secretome. This proteomics approach revealed various putative virulence factors, including active type VI secretion systems and effectors with virulence toxin domains; however, these type VI secretion systems were not responsible for the observed cytotoxic effects. Further examination of the V. proteolyticus secretome led us to hypothesize and subsequently demonstrate that a secreted hemolysin, belonging to a previously uncharacterized clan of the leukocidin superfamily, was the toxin responsible for the V. proteolyticus-mediated cytotoxicity in both HeLa cells and macrophages. Clearly, there remains an armory of yet-to-be-discovered virulence factors in the Vibrio pan-genome that will undoubtedly provide a wealth of knowledge on how a pathogen can manipulate host cells. PMID:27460800

  14. Quantitative proteomic analysis reveals posttranslational responses to aneuploidy in yeast

    PubMed Central

    Dephoure, Noah; Hwang, Sunyoung; O'Sullivan, Ciara; Dodgson, Stacie E; Gygi, Steven P; Amon, Angelika; Torres, Eduardo M

    2014-01-01

    Aneuploidy causes severe developmental defects and is a near universal feature of tumor cells. Despite its profound effects, the cellular processes affected by aneuploidy are not well characterized. Here, we examined the consequences of aneuploidy on the proteome of aneuploid budding yeast strains. We show that although protein levels largely scale with gene copy number, subunits of multi-protein complexes are notable exceptions. Posttranslational mechanisms attenuate their expression when their encoding genes are in excess. Our proteomic analyses further revealed a novel aneuploidy-associated protein expression signature characteristic of altered metabolism and redox homeostasis. Indeed aneuploid cells harbor increased levels of reactive oxygen species (ROS). Interestingly, increased protein turnover attenuates ROS levels and this novel aneuploidy-associated signature and improves the fitness of most aneuploid strains. Our results show that aneuploidy causes alterations in metabolism and redox homeostasis. Cells respond to these alterations through both transcriptional and posttranscriptional mechanisms. DOI: http://dx.doi.org/10.7554/eLife.03023.001 PMID:25073701

  15. Integrative network analysis reveals molecular mechanisms of blood pressure regulation

    PubMed Central

    Huan, Tianxiao; Meng, Qingying; Saleh, Mohamed A; Norlander, Allison E; Joehanes, Roby; Zhu, Jun; Chen, Brian H; Zhang, Bin; Johnson, Andrew D; Ying, Saixia; Courchesne, Paul; Raghavachari, Nalini; Wang, Richard; Liu, Poching; O'Donnell, Christopher J; Vasan, Ramachandran; Munson, Peter J; Madhur, Meena S; Harrison, David G; Yang, Xia; Levy, Daniel

    2015-01-01

    Genome-wide association studies (GWAS) have identified numerous loci associated with blood pressure (BP). The molecular mechanisms underlying BP regulation, however, remain unclear. We investigated BP-associated molecular mechanisms by integrating BP GWAS with whole blood mRNA expression profiles in 3,679 individuals, using network approaches. BP transcriptomic signatures at the single-gene and the coexpression network module levels were identified. Four coexpression modules were identified as potentially causal based on genetic inference because expression-related SNPs for their corresponding genes demonstrated enrichment for BP GWAS signals. Genes from the four modules were further projected onto predefined molecular interaction networks, revealing key drivers. Gene subnetworks entailing molecular interactions between key drivers and BP-related genes were uncovered. As proof-of-concept, we validated SH2B3, one of the top key drivers, using Sh2b3−/− mice. We found that a significant number of genes predicted to be regulated by SH2B3 in gene networks are perturbed in Sh2b3−/− mice, which demonstrate an exaggerated pressor response to angiotensin II infusion. Our findings may help to identify novel targets for the prevention or treatment of hypertension. PMID:25882670

  16. Genomic analysis reveals selection in Chinese native black pig

    PubMed Central

    Fu, Yuhua; Li, Cencen; Tang, Qianzi; Tian, Shilin; Jin, Long; Chen, Jianhai; Li, Mingzhou; Li, Changchun

    2016-01-01

    Identification of genomic signatures that help reveal mechanisms underlying desirable traits in domesticated pigs is of significant biological, agricultural and medical importance. To identify the genomic footprints left by selection during domestication of the Enshi black pig, a typical native and meat-lard breed in China, we generated about 72-fold coverage of the pig genome using pools of genomic DNA representing three different populations of Enshi black pigs from three different locations. Combining this data with the available whole genomes of 13 Chinese wild boars, we identified 417 protein-coding genes embedded in the selected regions of Enshi black pigs. These genes are mainly involved in developmental and metabolic processes, response to stimulus, and other biological processes. Signatures of selection were detected in genes involved in body size and immunity (RPS10 and VASN), lipid metabolism (GSK3), male fertility (INSL6) and developmental processes (TBX19). These findings provide a window into the potential genetic mechanism underlying development of desirable phenotypes in Enshi black pigs during domestication and subsequent artificial selection. Thus, our results illustrate how domestication has shaped patterns of genetic variation in Enshi black pigs and provide valuable genetic resources that enable effective use of pigs in agricultural production. PMID:27808243

  17. Multiple etiologies for Alzheimer disease are revealed by segregation analysis

    SciTech Connect

    Rao, V.S.; Connor-Lacke, L.; Cupplies, L.A.; Growdon, J.H.; Farrer, L.A.; Duijn, C.M. van

    1994-11-01

    We have evaluated several transmission models for Alzheimer disease (AD), using the logistic regressive approach in 401 nuclear families of consecutively ascertained and rigorously diagnosed probands. Models postulating no major gene effect, random environmental transmission, recessive inheritance, and sporadic occurrence were rejected under varied assumptions regarding the associations among sex, age, and major gene susceptibility. Transmission of the disorder was not fully explained by a single Mendelian model for all families. Stratification of families as early- and late-onset by using the median of family mean onset ages showed that, regardless of the model studied, two groups of families fit better than a single group. AD in early-onset families is transmitted as an autosomal dominant trait with full penetrance in both sexes and has a gene frequency of 1.5%. Dominant inheritance also gave the best fit of the data in late-onset families, but this hypothesis was rejected, suggesting the presence of heterogeneity within this subset. Our study also revealed that genetically nonsusceptible males and females develop AD, indicating the presence of phenocopies within early-onset and late-onset groups. Moreover, our results suggest that the higher risk to females is not solely due to their increased longevity. 50 refs., 5 tabs.

  18. Comparative Genomic Analysis Reveals Ecological Differentiation in the Genus Carnobacterium

    PubMed Central

    Iskandar, Christelle F.; Borges, Frédéric; Taminiau, Bernard; Daube, Georges; Zagorec, Monique; Remenant, Benoît; Leisner, Jørgen J.; Hansen, Martin A.; Sørensen, Søren J.; Mangavel, Cécile; Cailliez-Grimal, Catherine; Revol-Junelles, Anne-Marie

    2017-01-01

    Lactic acid bacteria (LAB) differ in their ability to colonize food and animal-associated habitats: while some species are specialized and colonize a limited number of habitats, other are generalist and are able to colonize multiple animal-linked habitats. In the current study, Carnobacterium was used as a model genus to elucidate the genetic basis of these colonization differences. Analyses of 16S rRNA gene meta-barcoding data showed that C. maltaromaticum followed by C. divergens are the most prevalent species in foods derived from animals (meat, fish, dairy products), and in the gut. According to phylogenetic analyses, these two animal-adapted species belong to one of two deeply branched lineages. The second lineage contains species isolated from habitats where contact with animal is rare. Genome analyses revealed that members of the animal-adapted lineage harbor a larger secretome than members of the other lineage. The predicted cell-surface proteome is highly diversified in C. maltaromaticum and C. divergens with genes involved in adaptation to the animal milieu such as those encoding biopolymer hydrolytic enzymes, a heme uptake system, and biopolymer-binding adhesins. These species also exhibit genes for gut adaptation and respiration. In contrast, Carnobacterium species belonging to the second lineage encode a poorly diversified cell-surface proteome, lack genes for gut adaptation and are unable to respire. These results shed light on the important genomics traits required for adaptation to animal-linked habitats in generalist Carnobacterium. PMID:28337181

  19. Proteomic Analysis of Hylocereus polyrhizus Reveals Metabolic Pathway Changes.

    PubMed

    Hua, Qingzhu; Zhou, Qianjun; Gan, Susheng; Wu, Jingyu; Chen, Canbin; Li, Jiaqiang; Ye, Yaoxiong; Zhao, Jietang; Hu, Guibing; Qin, Yonghua

    2016-09-28

    Red dragon fruit or red pitaya (Hylocereus polyrhizus) is the only edible fruit that contains betalains. The color of betalains ranges from red and violet to yellow in plants. Betalains may also serve as an important component of health-promoting and disease-preventing functional food. Currently, the biosynthetic and regulatory pathways for betalain production remain to be fully deciphered. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analyses were used to reveal the molecular mechanism of betalain biosynthesis in H. polyrhizus fruits at white and red pulp stages, respectively. A total of 1946 proteins were identified as the differentially expressed between the two samples, and 936 of them were significantly highly expressed at the red pulp stage of H. polyrhizus. RNA-seq and iTRAQ analyses showed that some transcripts and proteins were positively correlated; they belonged to "phenylpropanoid biosynthesis", "tyrosine metabolism", "flavonoid biosynthesis", "ascorbate and aldarate metabolism", "betalains biosynthesis" and "anthocyanin biosynthesis". In betalains biosynthesis pathway, several proteins/enzymes such as polyphenol oxidase, CYP76AD3 and 4,5-dihydroxy-phenylalanine (DOPA) dioxygenase extradiol-like protein were identified. The present study provides a new insight into the molecular mechanism of the betalain biosynthesis at the posttranscriptional level.

  20. XUV ionization of aligned molecules

    SciTech Connect

    Kelkensberg, F.; Siu, W.; Gademann, G.; Rouzee, A.; Vrakking, M. J. J.; Johnsson, P.; Lucchini, M.; Lucchese, R. R.

    2011-11-15

    New extreme-ultraviolet (XUV) light sources such as high-order-harmonic generation (HHG) and free-electron lasers (FELs), combined with laser-induced alignment techniques, enable novel methods for making molecular movies based on measuring molecular frame photoelectron angular distributions. Experiments are presented where CO{sub 2} molecules were impulsively aligned using a near-infrared laser and ionized using femtosecond XUV pulses obtained by HHG. Measured electron angular distributions reveal contributions from four orbitals and the onset of the influence of the molecular structure.

  1. Global Analysis of ATM Polymorphism Reveals Significant Functional Constraint

    PubMed Central

    Thorstenson, Yvonne R.; Shen, Peidong; Tusher, Virginia G.; Wayne, Tierney L.; Davis, Ronald W.; Chu, Gilbert; Oefner, Peter J.

    2001-01-01

    ATM, the gene that is mutated in ataxia-telangiectasia, is associated with cerebellar degeneration, abnormal proliferation of small blood vessels, and cancer. These clinically important manifestations have stimulated interest in defining the sequence variation in the ATM gene. Therefore, we undertook a comprehensive survey of sequence variation in ATM in diverse human populations. The protein-encoding exons of the gene (9,168 bp) and the adjacent intron and untranslated sequences (14,661 bp) were analyzed in 93 individuals from seven major human populations. In addition, the coding sequence was analyzed in one chimpanzee, one gorilla, one orangutan, and one Old World monkey. In human ATM, 88 variant sites were discovered by denaturing high-performance liquid chromatography, which is 96%–100% sensitive for detection of DNA sequence variation. ATM was compared to 14 other autosomal genes for nucleotide diversity. The noncoding regions of ATM had diversity values comparable to other genes, but the coding regions had very low diversity, especially in the last 29% of the protein sequence. A test of the neutral evolution hypothesis, through use of the Hudson/Kreitman/Aguadé statistic, revealed that this region of the human ATM gene was significantly constrained relative to that of the orangutan, the Old World monkey, and the mouse, but not relative to that of the chimpanzee or the gorilla. ATM displayed extensive linkage disequilibrium, consistent with suppression of meiotic recombination at this locus. Seven haplotypes were defined. Two haplotypes accounted for 82% of all chromosomes analyzed in all major populations; two others carrying the same D126E missense polymorphism accounted for 33% of chromosomes in Africa but were never observed outside of Africa. The high frequency of this polymorphism may be due either to a population expansion within Africa or to selective pressure. PMID:11443540

  2. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes

    PubMed Central

    Liem, Michael; Fonseka, Pamali; Atukorala, Ishara; Ozcitti, Cemil; Mechler, Adam; Adda, Christopher G.; Ang, Ching-Seng; Mathivanan, Suresh

    2015-01-01

    Extracellular vesicles (EVs) include the exosomes (30-100 nm) that are produced through the endocytic pathway via the multivesicular bodies and the ectosomes (100-1000 nm) that are released through the budding of the plasma membrane. Despite the differences in the mode of biogenesis and size, reliable markers that can distinguish between exosomes and ectosomes are non-existent. Moreover, the precise functional differences between exosomes and ectosomes remains poorly characterised. Here, using label-free quantitative proteomics, we highlight proteins that could be exploited as markers to discriminate between exosomes and ectosomes. For the first time, a global proteogenomics analysis unveiled the secretion of mutant proteins that are implicated in cancer progression through tumor-derived EVs. Follow up integrated bioinformatics analysis highlighted the enrichment of oncogenic cargo in exosomes and ectosomes. Interestingly, exosomes induced significant cell proliferation and migration in recipient cells compared to ectosomes confirming the oncogenic nature of exosomes. These findings ascertain that cancer cells facilitate oncogenesis by the secretion of mutant and oncoproteins into the tumor microenvironment via exosomes and ectosomes. The integrative proteogenomics approach utilized in this study has the potential to identify disease biomarker candidates which can be later assayed in liquid biopsies obtained from cancer patients. PMID:25944692

  3. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes.

    PubMed

    Keerthikumar, Shivakumar; Gangoda, Lahiru; Liem, Michael; Fonseka, Pamali; Atukorala, Ishara; Ozcitti, Cemil; Mechler, Adam; Adda, Christopher G; Ang, Ching-Seng; Mathivanan, Suresh

    2015-06-20

    Extracellular vesicles (EVs) include the exosomes (30-100 nm) that are produced through the endocytic pathway via the multivesicular bodies and the ectosomes (100-1000 nm) that are released through the budding of the plasma membrane. Despite the differences in the mode of biogenesis and size, reliable markers that can distinguish between exosomes and ectosomes are non-existent. Moreover, the precise functional differences between exosomes and ectosomes remains poorly characterised. Here, using label-free quantitative proteomics, we highlight proteins that could be exploited as markers to discriminate between exosomes and ectosomes. For the first time, a global proteogenomics analysis unveiled the secretion of mutant proteins that are implicated in cancer progression through tumor-derived EVs. Follow up integrated bioinformatics analysis highlighted the enrichment of oncogenic cargo in exosomes and ectosomes. Interestingly, exosomes induced significant cell proliferation and migration in recipient cells compared to ectosomes confirming the oncogenic nature of exosomes. These findings ascertain that cancer cells facilitate oncogenesis by the secretion of mutant and oncoproteins into the tumor microenvironment via exosomes and ectosomes. The integrative proteogenomics approach utilized in this study has the potential to identify disease biomarker candidates which can be later assayed in liquid biopsies obtained from cancer patients.

  4. Network analysis reveals potential markers for pediatric adrenocortical carcinoma

    PubMed Central

    Kulshrestha, Anurag; Suman, Shikha; Ranjan, Rakesh

    2016-01-01

    Pediatric adrenocortical carcinoma (ACC) is a rare malignancy with a poor outcome. Molecular mechanisms of pediatric ACC oncogenesis and advancement are not well understood. Accurate and timely diagnosis of the disease requires identification of new markers for pediatric ACC. Differentially expressed genes (DEGs) were identified from the gene expression profile of pediatric ACC and obtained from Gene Expression Omnibus. Gene Ontology functional and pathway enrichment analysis was implemented to recognize the functions of DEGs. A protein–protein interaction (PPI) and gene–gene functional interaction (GGI) network of DEGs was constructed. Hub gene detection and enrichment analysis of functional modules were performed. Furthermore, a gene regulatory network incorporating DEGs–microRNAs–transcription factors was constructed and analyzed. A total of 431 DEGs including 228 upregulated and 203 downregulated DEGs were screened. These genes were largely involved in cell cycle, steroid biosynthesis, and p53 signaling pathways. Upregulated genes, CDK1, CCNB1, CDC20, and BUB1B, were identified as the common hubs of PPI and GGI networks. All the four common hub genes were also part of modules of the PPI network. Moreover, all the four genes were also present in the largest module of GGI network. A gene regulatory network consisting of 82 microRNAs and 100 transcription factors was also constructed. CDK1, CCNB1, CDC20, and BUB1B may serve as potential biomarker of pediatric ACC and as potential targets for therapeutic approach, although experimental studies are required to authenticate our findings. PMID:27555782

  5. Gas Hydrate-Sediment Morphologies Revealed by Pressure Core Analysis

    NASA Astrophysics Data System (ADS)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M.

    2006-12-01

    Analysis of HYACINTH pressure cores collected on IODP Expedition 311 and NGHP Expedition 1 showed gas hydrate layers, lenses, and veins contained in fine-grained sediments as well as gas hydrate contained in coarse-grained layers. Pressure cores were recovered from sediments on the Cascadia Margin off the North American West Coast and in the Krishna-Godavari Basin in the Western Bay of Bengal in water depths of 800- 1400 meters. Recovered cores were transferred to laboratory chambers without loss of pressure and nondestructive measurements were made at in situ pressures and controlled temperatures. Gamma density, P-wave velocity, and X-ray images showed evidence of grain-displacing and pore-filling gas hydrate in the cores. Data highlights include X-ray images of fine-grained sediment cores showing wispy subvertical veins of gas hydrate and P-wave velocity excursions corresponding to grain-displacing layers and pore-filling layers of gas hydrate. Most cores were subjected to controlled depressurization experiments, where expelled gas was collected, analyzed for composition, and used to calculate gas hydrate saturation within the core. Selected cores were stored under pressure for postcruise analysis and subsampling.

  6. Genomic analysis of regulatory network dynamics reveals large topological changes

    NASA Astrophysics Data System (ADS)

    Luscombe, Nicholas M.; Madan Babu, M.; Yu, Haiyuan; Snyder, Michael; Teichmann, Sarah A.; Gerstein, Mark

    2004-09-01

    Network analysis has been applied widely, providing a unifying language to describe disparate systems ranging from social interactions to power grids. It has recently been used in molecular biology, but so far the resulting networks have only been analysed statically. Here we present the dynamics of a biological network on a genomic scale, by integrating transcriptional regulatory information and gene-expression data for multiple conditions in Saccharomyces cerevisiae. We develop an approach for the statistical analysis of network dynamics, called SANDY, combining well-known global topological measures, local motifs and newly derived statistics. We uncover large changes in underlying network architecture that are unexpected given current viewpoints and random simulations. In response to diverse stimuli, transcription factors alter their interactions to varying degrees, thereby rewiring the network. A few transcription factors serve as permanent hubs, but most act transiently only during certain conditions. By studying sub-network structures, we show that environmental responses facilitate fast signal propagation (for example, with short regulatory cascades), whereas the cell cycle and sporulation direct temporal progression through multiple stages (for example, with highly inter-connected transcription factors). Indeed, to drive the latter processes forward, phase-specific transcription factors inter-regulate serially, and ubiquitously active transcription factors layer above them in a two-tiered hierarchy. We anticipate that many of the concepts presented here-particularly the large-scale topological changes and hub transience-will apply to other biological networks, including complex sub-systems in higher eukaryotes.

  7. Genomic analysis of regulatory network dynamics reveals large topological changes.

    PubMed

    Luscombe, Nicholas M; Babu, M Madan; Yu, Haiyuan; Snyder, Michael; Teichmann, Sarah A; Gerstein, Mark

    2004-09-16

    Network analysis has been applied widely, providing a unifying language to describe disparate systems ranging from social interactions to power grids. It has recently been used in molecular biology, but so far the resulting networks have only been analysed statically. Here we present the dynamics of a biological network on a genomic scale, by integrating transcriptional regulatory information and gene-expression data for multiple conditions in Saccharomyces cerevisiae. We develop an approach for the statistical analysis of network dynamics, called SANDY, combining well-known global topological measures, local motifs and newly derived statistics. We uncover large changes in underlying network architecture that are unexpected given current viewpoints and random simulations. In response to diverse stimuli, transcription factors alter their interactions to varying degrees, thereby rewiring the network. A few transcription factors serve as permanent hubs, but most act transiently only during certain conditions. By studying sub-network structures, we show that environmental responses facilitate fast signal propagation (for example, with short regulatory cascades), whereas the cell cycle and sporulation direct temporal progression through multiple stages (for example, with highly inter-connected transcription factors). Indeed, to drive the latter processes forward, phase-specific transcription factors inter-regulate serially, and ubiquitously active transcription factors layer above them in a two-tiered hierarchy. We anticipate that many of the concepts presented here--particularly the large-scale topological changes and hub transience--will apply to other biological networks, including complex sub-systems in higher eukaryotes.

  8. Image analysis of weaverbird nests reveals signature weave textures.

    PubMed

    Bailey, Ida E; Backes, André; Walsh, Patrick T; Morgan, Kate V; Meddle, Simone L; Healy, Susan D

    2015-06-01

    In nature, many animals build structures that can be readily measured at the scale of their gross morphology (e.g. length, volume and weight). Capturing individuality as can be done with the structures designed and built by human architects or artists, however, is more challenging. Here, we tested whether computer-aided image texture classification approaches can be used to describe textural variation in the nests of weaverbirds (Ploceus species) in order to attribute nests to the individual weaverbird that built them. We found that a computer-aided texture analysis approach does allow the assignment of a signature to weaverbirds' nests. We suggest that this approach will be a useful tool with which to examine individual variation across a range of animal constructions, not just for nests.

  9. Image analysis of weaverbird nests reveals signature weave textures

    PubMed Central

    Bailey, Ida E.; Backes, André; Walsh, Patrick T.; Morgan, Kate V.; Meddle, Simone L.; Healy, Susan D.

    2015-01-01

    In nature, many animals build structures that can be readily measured at the scale of their gross morphology (e.g. length, volume and weight). Capturing individuality as can be done with the structures designed and built by human architects or artists, however, is more challenging. Here, we tested whether computer-aided image texture classification approaches can be used to describe textural variation in the nests of weaverbirds (Ploceus species) in order to attribute nests to the individual weaverbird that built them. We found that a computer-aided texture analysis approach does allow the assignment of a signature to weaverbirds' nests. We suggest that this approach will be a useful tool with which to examine individual variation across a range of animal constructions, not just for nests. PMID:26543586

  10. Time-Frequency Analysis Reveals Pairwise Interactions in Insect Swarms

    NASA Astrophysics Data System (ADS)

    Puckett, James G.; Ni, Rui; Ouellette, Nicholas T.

    2015-06-01

    The macroscopic emergent behavior of social animal groups is a classic example of dynamical self-organization, and is thought to arise from the local interactions between individuals. Determining these interactions from empirical data sets of real animal groups, however, is challenging. Using multicamera imaging and tracking, we studied the motion of individual flying midges in laboratory mating swarms. By performing a time-frequency analysis of the midge trajectories, we show that the midge behavior can be segmented into two distinct modes: one that is independent and composed of low-frequency maneuvers, and one that consists of higher-frequency nearly harmonic oscillations conducted in synchrony with another midge. We characterize these pairwise interactions, and make a hypothesis as to their biological function.

  11. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis

    PubMed Central

    Irie, Naoki; Kuratani, Shigeru

    2011-01-01

    One of the central issues in evolutionary developmental biology is how we can formulate the relationships between evolutionary and developmental processes. Two major models have been proposed: the 'funnel-like' model, in which the earliest embryo shows the most conserved morphological pattern, followed by diversifying later stages, and the 'hourglass' model, in which constraints are imposed to conserve organogenesis stages, which is called the phylotypic period. Here we perform a quantitative comparative transcriptome analysis of several model vertebrate embryos and show that the pharyngula stage is most conserved, whereas earlier and later stages are rather divergent. These results allow us to predict approximate developmental timetables between different species, and indicate that pharyngula embryos have the most conserved gene expression profiles, which may be the source of the basic body plan of vertebrates. PMID:21427719

  12. Kidney tumor biomarkers revealed by simultaneous multiple matrix metabolomics analysis.

    PubMed

    Ganti, Sheila; Taylor, Sandra L; Abu Aboud, Omran; Yang, Joy; Evans, Christopher; Osier, Michael V; Alexander, Danny C; Kim, Kyoungmi; Weiss, Robert H

    2012-07-15

    Metabolomics is increasingly being used in cancer biology for biomarker discovery and identification of potential novel therapeutic targets. However, a systematic metabolomics study of multiple biofluids to determine their interrelationships and to describe their use as tumor proxies is lacking. Using a mouse xenograft model of kidney cancer, characterized by subcapsular implantation of Caki-1 clear cell human kidney cancer cells, we examined tissue, serum, and urine all obtained simultaneously at baseline (urine) and at, or close to, animal sacrifice (urine, tissue, and plasma). Uniform metabolomics analysis of all three "matrices" was accomplished using gas chromatography- and liquid chromatography-mass spectrometry. Of all the metabolites identified (267 in tissue, 246 in serum, and 267 in urine), 89 were detected in all 3 matrices, and the majority was altered in the same direction. Heat maps of individual metabolites showed that alterations in serum were more closely related to tissue than was urine. Two metabolites, cinnamoylglycine and nicotinamide, were concordantly and significantly (when corrected for multiple testing) altered in tissue and serum, and cysteine-glutathione disulfide showed the highest change (232.4-fold in tissue) of any metabolite. On the basis of these and other considerations, three pathways were chosen for biologic validation of the metabolomic data, resulting in potential therapeutic target identification. These data show that serum metabolomics analysis is a more accurate proxy for tissue changes than urine and that tryptophan degradation (yielding anti-inflammatory metabolites) is highly represented in renal cell carcinoma, and support the concept that PPAR-α antagonism may be a potential therapeutic approach for this disease.

  13. Differential network analysis reveals dysfunctional regulatory networks in gastric carcinogenesis

    PubMed Central

    Cao, Mu-Shui; Liu, Bing-Ya; Dai, Wen-Tao; Zhou, Wei-Xin; Li, Yi-Xue; Li, Yuan-Yuan

    2015-01-01

    Gastric Carcinoma is one of the most common cancers in the world. A large number of differentially expressed genes have been identified as being associated with gastric cancer progression, however, little is known about the underlying regulatory mechanisms. To address this problem, we developed a differential networking approach that is characterized by including a nascent methodology, differential coexpression analysis (DCEA), and two novel quantitative methods for differential regulation analysis. We first applied DCEA to a gene expression dataset of gastric normal mucosa, adenoma and carcinoma samples to identify gene interconnection changes during cancer progression, based on which we inferred normal, adenoma, and carcinoma-specific gene regulation networks by using linear regression model. It was observed that cancer genes and drug targets were enriched in each network. To investigate the dynamic changes of gene regulation during carcinogenesis, we then designed two quantitative methods to prioritize differentially regulated genes (DRGs) and gene pairs or links (DRLs) between adjacent stages. It was found that known cancer genes and drug targets are significantly higher ranked. The top 4% normal vs. adenoma DRGs (36 genes) and top 6% adenoma vs. carcinoma DRGs (56 genes) proved to be worthy of further investigation to explore their association with gastric cancer. Out of the 16 DRGs involved in two top-10 DRG lists of normal vs. adenoma and adenoma vs. carcinoma comparisons, 15 have been reported to be gastric cancer or cancer related. Based on our inferred differential networking information and known signaling pathways, we generated testable hypotheses on the roles of GATA6, ESRRG and their signaling pathways in gastric carcinogenesis. Compared with established approaches which build genome-scale GRNs, or sub-networks around differentially expressed genes, the present one proved to be better at enriching cancer genes and drug targets, and prioritizing

  14. Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) Studies on α1A-Adrenergic Receptor Antagonists Based on Pharmacophore Molecular Alignment

    PubMed Central

    Zhao, Xin; Chen, Minsheng; Huang, Biyun; Ji, Hong; Yuan, Mu

    2011-01-01

    The α1A-adrenergic receptor (α1A-AR) antagonist is useful in treating benign prostatic hyperplasia, lower urinary tract symptoms, and cardiac arrhythmia. Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed on a set of α1A-AR antagonists of N-aryl and N-nitrogen class. Statistically significant models constructed from comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were established based on a training set of 32 ligands using pharmacophore-based molecular alignment. The leave-oneout cross-validation correlation coefficients were q2 CoMFA = 0.840 and q2 CoMSIA = 0.840. The high correlation between the cross-validated/predicted and experimental activities of a test set of 12 ligands revealed that the CoMFA and CoMSIA models were robust (r2 pred/CoMFA = 0.694; r2 pred/CoMSIA = 0.671). The generated models suggested that electrostatic, hydrophobic, and hydrogen bonding interactions play important roles between ligands and receptors in the active site. Our study serves as a guide for further experimental investigations on the synthesis of new compounds. Structural modifications based on the present 3D-QSAR results may lead to the discovery of other α1A-AR antagonists. PMID:22072933

  15. Phylogenetic analysis reveals a scattered distribution of autumn colours

    PubMed Central

    Archetti, Marco

    2009-01-01

    Background and Aims Leaf colour in autumn is rarely considered informative for taxonomy, but there is now growing interest in the evolution of autumn colours and different hypotheses are debated. Research efforts are hindered by the lack of basic information: the phylogenetic distribution of autumn colours. It is not known when and how autumn colours evolved. Methods Data are reported on the autumn colours of 2368 tree species belonging to 400 genera of the temperate regions of the world, and an analysis is made of their phylogenetic relationships in order to reconstruct the evolutionary origin of red and yellow in autumn leaves. Key Results Red autumn colours are present in at least 290 species (70 genera), and evolved independently at least 25 times. Yellow is present independently from red in at least 378 species (97 genera) and evolved at least 28 times. Conclusions The phylogenetic reconstruction suggests that autumn colours have been acquired and lost many times during evolution. This scattered distribution could be explained by hypotheses involving some kind of coevolutionary interaction or by hypotheses that rely on the need for photoprotection. PMID:19126636

  16. A graphical analysis revealed frailty deficits aggregate and are multidimensional

    PubMed Central

    Sourial, Nadia; Wolfson, Christina; Bergman, Howard; Zhu, Bin; Karunananthan, Sathya; Quail, Jacqueline; Fletcher, John; Weiss, Deborah; Bandeen-Roche, Karen; Béland, François

    2013-01-01

    Objective To examine the relationships among seven frailty domains: nutrition, physical activity, mobility, strength, energy, cognition, and mood, using data from three studies. Study Design and Setting Data from three studies were separately analyzed using Multiple Correspondence Analysis (MCA). The graphical output of MCA was used to assess 1) if the presence of deficits in the frailty domains separate from the absence of deficits on the graph, 2) the dimensionality of the domains, 3) the clustering of domains within each dimension and 4) their relationship with age, sex and disability. Results were compared across the studies. Results In two studies, presence of deficits for all domains separated from absence of deficits. In the third study, there was separation in all domains except cognition. Three main dimensions were retained in each study however assigned dimensionality of domains differed. The clustering of mobility with energy and/or strength was consistent across studies. Deficits were associated with older age, female sex and disability. Conclusion Our results suggest that frailty is a multidimensional concept for which the relationships among domains differ according to the population characteristics. These domains, with the possible exception of cognition, appear to aggregate together and share a common underlying construct. PMID:19880286

  17. Network analysis reveals distinct clinical syndromes underlying acute mountain sickness.

    PubMed

    Hall, David P; MacCormick, Ian J C; Phythian-Adams, Alex T; Rzechorzek, Nina M; Hope-Jones, David; Cosens, Sorrel; Jackson, Stewart; Bates, Matthew G D; Collier, David J; Hume, David A; Freeman, Thomas; Thompson, A A Roger; Baillie, John Kenneth

    2014-01-01

    Acute mountain sickness (AMS) is a common problem among visitors at high altitude, and may progress to life-threatening pulmonary and cerebral oedema in a minority of cases. International consensus defines AMS as a constellation of subjective, non-specific symptoms. Specifically, headache, sleep disturbance, fatigue and dizziness are given equal diagnostic weighting. Different pathophysiological mechanisms are now thought to underlie headache and sleep disturbance during acute exposure to high altitude. Hence, these symptoms may not belong together as a single syndrome. Using a novel visual analogue scale (VAS), we sought to undertake a systematic exploration of the symptomatology of AMS using an unbiased, data-driven approach originally designed for analysis of gene expression. Symptom scores were collected from 292 subjects during 1110 subject-days at altitudes between 3650 m and 5200 m on Apex expeditions to Bolivia and Kilimanjaro. Three distinct patterns of symptoms were consistently identified. Although fatigue is a ubiquitous finding, sleep disturbance and headache are each commonly reported without the other. The commonest pattern of symptoms was sleep disturbance and fatigue, with little or no headache. In subjects reporting severe headache, 40% did not report sleep disturbance. Sleep disturbance correlates poorly with other symptoms of AMS (Mean Spearman correlation 0.25). These results challenge the accepted paradigm that AMS is a single disease process and describe at least two distinct syndromes following acute ascent to high altitude. This approach to analysing symptom patterns has potential utility in other clinical syndromes.

  18. Network Analysis Reveals Distinct Clinical Syndromes Underlying Acute Mountain Sickness

    PubMed Central

    Hall, David P.; MacCormick, Ian J. C.; Phythian-Adams, Alex T.; Rzechorzek, Nina M.; Hope-Jones, David; Cosens, Sorrel; Jackson, Stewart; Bates, Matthew G. D.; Collier, David J.; Hume, David A.; Freeman, Thomas; Thompson, A. A. Roger; Baillie, John Kenneth

    2014-01-01

    Acute mountain sickness (AMS) is a common problem among visitors at high altitude, and may progress to life-threatening pulmonary and cerebral oedema in a minority of cases. International consensus defines AMS as a constellation of subjective, non-specific symptoms. Specifically, headache, sleep disturbance, fatigue and dizziness are given equal diagnostic weighting. Different pathophysiological mechanisms are now thought to underlie headache and sleep disturbance during acute exposure to high altitude. Hence, these symptoms may not belong together as a single syndrome. Using a novel visual analogue scale (VAS), we sought to undertake a systematic exploration of the symptomatology of AMS using an unbiased, data-driven approach originally designed for analysis of gene expression. Symptom scores were collected from 292 subjects during 1110 subject-days at altitudes between 3650 m and 5200 m on Apex expeditions to Bolivia and Kilimanjaro. Three distinct patterns of symptoms were consistently identified. Although fatigue is a ubiquitous finding, sleep disturbance and headache are each commonly reported without the other. The commonest pattern of symptoms was sleep disturbance and fatigue, with little or no headache. In subjects reporting severe headache, 40% did not report sleep disturbance. Sleep disturbance correlates poorly with other symptoms of AMS (Mean Spearman correlation 0.25). These results challenge the accepted paradigm that AMS is a single disease process and describe at least two distinct syndromes following acute ascent to high altitude. This approach to analysing symptom patterns has potential utility in other clinical syndromes. PMID:24465370

  19. Differential Network Analysis Reveals Genetic Effects on Catalepsy Modules

    PubMed Central

    Iancu, Ovidiu D.; Oberbeck, Denesa; Darakjian, Priscila; Kawane, Sunita; Erk, Jason; McWeeney, Shannon; Hitzemann, Robert

    2013-01-01

    We performed short-term bi-directional selective breeding for haloperidol-induced catalepsy, starting from three mouse populations of increasingly complex genetic structure: an F2 intercross, a heterogeneous stock (HS) formed by crossing four inbred strains (HS4) and a heterogeneous stock (HS-CC) formed from the inbred strain founders of the Collaborative Cross (CC). All three selections were successful, with large differences in haloperidol response emerging within three generations. Using a custom differential network analysis procedure, we found that gene coexpression patterns changed significantly; importantly, a number of these changes were concordant across genetic backgrounds. In contrast, absolute gene-expression changes were modest and not concordant across genetic backgrounds, in spite of the large and similar phenotypic differences. By inferring strain contributions from the parental lines, we are able to identify significant differences in allelic content between the selected lines concurrent with large changes in transcript connectivity. Importantly, this observation implies that genetic polymorphisms can affect transcript and module connectivity without large changes in absolute expression levels. We conclude that, in this case, selective breeding acts at the subnetwork level, with the same modules but not the same transcripts affected across the three selections. PMID:23555609

  20. Bioimage analysis of Shigella infection reveals targeting of colonic crypts.

    PubMed

    Arena, Ellen T; Campbell-Valois, Francois-Xavier; Tinevez, Jean-Yves; Nigro, Giulia; Sachse, Martin; Moya-Nilges, Maryse; Nothelfer, Katharina; Marteyn, Benoit; Shorte, Spencer L; Sansonetti, Philippe J

    2015-06-23

    Few studies within the pathogenic field have used advanced imaging and analytical tools to quantitatively measure pathogenicity in vivo. In this work, we present a novel approach for the investigation of host-pathogen processes based on medium-throughput 3D fluorescence imaging. The guinea pig model for Shigella flexneri invasion of the colonic mucosa was used to monitor the infectious process over time with GFP-expressing S. flexneri. A precise quantitative imaging protocol was devised to follow individual S. flexneri in a large tissue volume. An extensive dataset of confocal images was obtained and processed to extract specific quantitative information regarding the progression of S. flexneri infection in an unbiased and exhaustive manner. Specific parameters included the analysis of S. flexneri positions relative to the epithelial surface, S. flexneri density within the tissue, and volume of tissue destruction. In particular, at early time points, there was a clear association of S. flexneri with crypts, key morphological features of the colonic mucosa. Numerical simulations based on random bacterial entry confirmed the bias of experimentally measured S. flexneri for early crypt targeting. The application of a correlative light and electron microscopy technique adapted for thick tissue samples further confirmed the location of S. flexneri within colonocytes at the mouth of crypts. This quantitative imaging approach is a novel means to examine host-pathogen systems in a tailored and robust manner, inclusive of the infectious agent.

  1. Consanguinity and late fertility: spatial analysis reveals positive association patterns.

    PubMed

    Lisa, Antonella; Astolfi, Paola; Zei, Gianna; Tentoni, Stefania

    2015-01-01

    The role of consanguinity on human complex traits is an important and controversial issue. In this work we focused on the Sardinian population and examined the effect of consanguineous unions on late female fertility. During the last century the island has been characterized by a high incidence of marriages between relatives, favoured by socio economic conditions and geographical isolation, and by high fertility despite a widespread tendency to delay reproduction. Through spatial analysis techniques, we explored the geographical heterogeneity of consanguinity and late fertility, and identified in Central-Eastern Sardinia a common area with an excess of both traits, where the traits are positively associated. We found that their association did not significantly affect women's fertility in the area, despite the expected negative role of both traits. Intriguingly, this critical zone corresponds well to areas reported by previous studies as being peculiar for a high frequency of centenarians and for lower risk in pregnancy outcome. The proposed approach can be generally exploited to identify target populations on which socioeconomic, biodemographic and genetic data can be collected at the individual level, and deeper analyses carried out to disentangle the determinants of complex biological traits and to investigate their association.

  2. Layered Social Network Analysis Reveals Complex Relationships in Kindergarteners

    PubMed Central

    Golemiec, Mireille; Schneider, Jonathan; Boyce, W. Thomas; Bush, Nicole R.; Adler, Nancy; Levine, Joel D.

    2016-01-01

    The interplay between individuals forms building blocks for social structure. Here, we examine the structure of behavioral interactions among kindergarten classroom with a hierarchy-neutral approach to examine all possible underlying patterns in the formation of layered networks of “reciprocal” interactions. To understand how these layers are coordinated, we used a layered motif approach. Our dual layered motif analysis can therefore be thought of as the dynamics of smaller groups that tile to create the group structure, or alternatively they provide information on what the average child would do in a given local social environment. When we examine the regulated motifs in layered networks, we find that transitivity is at least partially involved in the formation of these layered network structures. We also found complex combinations of the expected reciprocal interactions. The mechanisms used to understand social networks of kindergarten children here are also applicable on a more general scale to any group of individuals where interactions and identities can be readily observed and scored. PMID:26973572

  3. The analysis of the accuracy of the wheel alignment inspection method on the side-slip plate stand

    NASA Astrophysics Data System (ADS)

    Gajek, A.; Strzępek, P.

    2016-09-01

    The article presents the theoretical basis and the results of the examination of the wheel alignment inspection method on the slide slip plate stand. It is obligatory test during periodic technical inspection of the vehicle. The measurement is executed in the dynamic conditions. The dependence between the lateral displacement of the plate and toe-in of the tested wheels has been shown. If the diameter of the wheel rim is known then the value of the toe-in can be calculated. The comparison of the toe-in measurements on the plate stand and on the four heads device for the wheel alignment inspection has been carried out. The accuracy of the measurements and the influence of the conditions of the tests on the plate stand (the way of passing through the plate) were estimated. The conclusions about the accuracy of this method are presented.

  4. Functional Tissue Analysis Reveals Successful Cryopreservation of Human Osteoarthritic Synovium

    PubMed Central

    de Vries, Marieke; Bennink, Miranda B.; van Lent, Peter L. E. M.; van der Kraan, Peter M.; Koenders, Marije I.; Thurlings, Rogier M.; van de Loo, Fons A. J.

    2016-01-01

    Osteoarthritis (OA) is a degenerative joint disease affecting cartilage and is the most common form of arthritis worldwide. One third of OA patients have severe synovitis and less than 10% have no evidence of synovitis. Moreover, synovitis is predictive for more severe disease progression. This offers a target for therapy but more research on the pathophysiological processes in the synovial tissue of these patients is needed. Functional studies performed with synovial tissue will be more approachable when this material, that becomes available by joint replacement surgery, can be stored for later use. We set out to determine the consequences of slow-freezing of human OA synovial tissue. Therefore, we validated a method that can be applied in every routine laboratory and performed a comparative study of five cryoprotective agent (CPA) solutions. To determine possible deleterious cryopreservation-thaw effects on viability, the synovial tissue architecture, metabolic activity, RNA quality, expression of cryopreservation associated stress genes, and expression of OA characteristic disease genes was studied. Furthermore, the biological activity of the cryopreserved tissue was determined by measuring cytokine secretion induced by the TLR ligands lipopolysaccharides and Pam3Cys. Compared to non frozen synovium, no difference in cell and tissue morphology could be identified in the conditions using the CS10, standard and CryoSFM CPA solution for cryopreservation. However, we observed significantly lower preservation of tissue morphology with the Biofreeze and CS2 media. The other viability assays showed trends in the same direction but were not sensitive enough to detect significant differences between conditions. In all assays tested a clearly lower viability was detected in the condition in which synovium was frozen without CPA solution. This detailed analysis showed that OA synovial tissue explants can be cryopreserved while maintaining the morphology, viability and

  5. Neuronal Networks during Burst Suppression as Revealed by Source Analysis

    PubMed Central

    Reinicke, Christine; Moeller, Friederike; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Pressler, Ronit; Deuschl, Günther; Stephani, Ulrich; Siniatchkin, Michael

    2015-01-01

    Introduction Burst-suppression (BS) is an electroencephalography (EEG) pattern consisting of alternant periods of slow waves of high amplitude (burst) and periods of so called flat EEG (suppression). It is generally associated with coma of various etiologies (hypoxia, drug-related intoxication, hypothermia, and childhood encephalopathies, but also anesthesia). Animal studies suggest that both the cortex and the thalamus are involved in the generation of BS. However, very little is known about mechanisms of BS in humans. The aim of this study was to identify the neuronal network underlying both burst and suppression phases using source reconstruction and analysis of functional and effective connectivity in EEG. Material/Methods Dynamic imaging of coherent sources (DICS) was applied to EEG segments of 13 neonates and infants with burst and suppression EEG pattern. The brain area with the strongest power in the analyzed frequency (1–4 Hz) range was defined as the reference region. DICS was used to compute the coherence between this reference region and the entire brain. The renormalized partial directed coherence (RPDC) was used to describe the informational flow between the identified sources. Results/Conclusion Delta activity during the burst phases was associated with coherent sources in the thalamus and brainstem as well as bilateral sources in cortical regions mainly frontal and parietal, whereas suppression phases were associated with coherent sources only in cortical regions. Results of the RPDC analyses showed an upwards informational flow from the brainstem towards the thalamus and from the thalamus to cortical regions, which was absent during the suppression phases. These findings may support the theory that a “cortical deafferentiation” between the cortex and sub-cortical structures exists especially in suppression phases compared to burst phases in burst suppression EEGs. Such a deafferentiation may play a role in the poor neurological outcome of

  6. Network analysis reveals multiscale controls on streamwater chemistry

    USGS Publications Warehouse

    McGuire, Kevin J.; Torgersen, Christian E.; Likens, Gene E.; Buso, Donald C.; Lowe, Winsor H.; Bailey, Scott W.

    2014-01-01

    By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in an entire fifth-order stream network. These samples were analyzed for an exhaustive suite of chemical constituents. The fine grain and broad extent of this study design allowed us to quantify spatial patterns over a range of scales by using empirical semivariograms that explicitly incorporated network topology. Here, we show that spatial structure, as determined by the characteristic shape of the semivariograms, differed both among chemical constituents and by spatial relationship (flow-connected, flow-unconnected, or Euclidean). Spatial structure was apparent at either a single scale or at multiple nested scales, suggesting separate processes operating simultaneously within the stream network and surrounding terrestrial landscape. Expected patterns of spatial dependence for flow-connected relationships (e.g., increasing homogeneity with downstream distance) occurred for some chemical constituents (e.g., dissolved organic carbon, sulfate, and aluminum) but not for others (e.g., nitrate, sodium). By comparing semivariograms for the different chemical constituents and spatial relationships, we were able to separate effects on streamwater chemistry of (i) fine-scale versus broad-scale processes and (ii) in-stream processes versus landscape controls. These findings provide insight on the hierarchical scaling of local, longitudinal, and landscape processes that drive biogeochemical patterns in stream networks.

  7. Conformational diversity analysis reveals three functional mechanisms in proteins

    PubMed Central

    Fornasari, María Silvina

    2017-01-01

    Protein motions are a key feature to understand biological function. Recently, a large-scale analysis of protein conformational diversity showed a positively skewed distribution with a peak at 0.5 Å C-alpha root-mean-square-deviation (RMSD). To understand this distribution in terms of structure-function relationships, we studied a well curated and large dataset of ~5,000 proteins with experimentally determined conformational diversity. We searched for global behaviour patterns studying how structure-based features change among the available conformer population for each protein. This procedure allowed us to describe the RMSD distribution in terms of three main protein classes sharing given properties. The largest of these protein subsets (~60%), which we call “rigid” (average RMSD = 0.83 Å), has no disordered regions, shows low conformational diversity, the largest tunnels and smaller and buried cavities. The two additional subsets contain disordered regions, but with differential sequence composition and behaviour. Partially disordered proteins have on average 67% of their conformers with disordered regions, average RMSD = 1.1 Å, the highest number of hinges and the longest disordered regions. In contrast, malleable proteins have on average only 25% of disordered conformers and average RMSD = 1.3 Å, flexible cavities affected in size by the presence of disordered regions and show the highest diversity of cognate ligands. Proteins in each set are mostly non-homologous to each other, share no given fold class, nor functional similarity but do share features derived from their conformer population. These shared features could represent conformational mechanisms related with biological functions. PMID:28192432

  8. A magnetically actuated cellular strain assessment tool for quantitative analysis of strain induced cellular reorientation and actin alignment

    NASA Astrophysics Data System (ADS)

    Khademolhosseini, F.; Liu, C.-C.; Lim, C. J.; Chiao, M.

    2016-08-01

    Commercially available cell strain tools, such as pneumatically actuated elastomer substrates, require special culture plates, pumps, and incubator setups. In this work, we present a magnetically actuated cellular strain assessment tool (MACSAT) that can be implemented using off-the-shelf components and conventional incubators. We determine the strain field on the MACSAT elastomer substrate using numerical models and experimental measurements and show that a specific region of the elastomer substrate undergoes a quasi-uniaxial 2D stretch, and that cells confined to this region of the MACSAT elastomer substrate undergo tensile, compressive, or zero axial strain depending on their angle of orientation. Using the MACSAT to apply cyclic strain on endothelial cells, we demonstrate that actin filaments within the cells reorient away from the stretching direction, towards the directions of minimum axial strain. We show that the final actin orientation angles in strained cells are spread over a region of compressive axial strain, confirming previous findings on the existence of a varied pre-tension in the actin filaments of the cytoskeleton. We also demonstrate that strained cells exhibit distinctly different values of actin alignment coherency compared to unstrained cells and therefore propose that this parameter, i.e., the coherency of actin alignment, can be used as a new readout to determine the occurrence/extent of actin alignment in cell strain experiments. The tools and methods demonstrated in this study are simple and accessible and can be easily replicated by other researchers to study the strain response of other adherent cells.

  9. Metatranscriptomic Analysis of Groundwater Reveals an Active Anammox Bacterial Population

    NASA Astrophysics Data System (ADS)

    Jewell, T. N. M.; Karaoz, U.; Thomas, B. C.; Banfield, J. F.; Brodie, E.; Williams, K. H.; Beller, H. R.

    2014-12-01

    Groundwater is a major natural resource, yet little is known about the contribution of microbial anaerobic ammonium oxidation (anammox) activity to subsurface nitrogen cycling. During anammox, energy is generated as ammonium is oxidized under anaerobic conditions to dinitrogen gas, using nitrite as the final electron acceptor. This process is a global sink for fixed nitrogen. Only a narrow range of monophyletic bacteria within the Planctomycetes carries out anammox, and the full extent of their metabolism, and subsequent impact on nitrogen cycling and microbial community structure, is still unknown. Here, we employ a metatranscriptomic analysis on enriched mRNA to identify the abundance and activity of a population of anammox bacteria within an aquifer at Rifle, CO. Planktonic biomass was collected over a two-month period after injection of up to 1.5 mM nitrate. Illumina-generated sequences were mapped to a phylogenetically binned Rifle metagenome database. We identified transcripts for genes with high protein sequence identities (81-98%) to those of anammox strain KSU-1 and to two of the five anammox bacteria genera, Brocadia and Kuenenia, suggesting an active, if not diverse, anammox population. Many of the most abundant anammox transcripts mapped to a single scaffold, indicative of a single dominant anammox species. Transcripts of the genes necessary for the anammox pathway were present, including an ammonium transporter (amtB), nitrite/formate transporter, nitrite reductase (nirK), and hydrazine oxidoreductase (hzoB). The form of nitrite reductase encoded by anammox is species-dependent, and we only identified nirK, with no evidence of anammox nirS. In addition to the anammox pathway we saw evidence of the anammox bacterial dissimilatory nitrate reduction to ammonium pathway (narH, putative nrfA, and nrfB), which provides an alternate means of generating substrates for anammox from nitrate, rather than relying on an external pool. Transcripts for hydroxylamine

  10. Mutant Analysis Reveals Allosteric Regulation of ClpB Disaggregase

    PubMed Central

    Franke, Kamila B.; Bukau, Bernd; Mogk, Axel

    2017-01-01

    The members of the hexameric AAA+ disaggregase of E. coli and S. cerevisiae, ClpB, and Hsp104, cooperate with the Hsp70 chaperone system in the solubilization of aggregated proteins. Aggregate solubilization relies on a substrate threading activity of ClpB/Hsp104 fueled by ATP hydrolysis in both ATPase rings (AAA-1, AAA-2). ClpB/Hsp104 ATPase activity is controlled by the M-domains, which associate to the AAA-1 ring to downregulate ATP hydrolysis. Keeping M-domains displaced from the AAA-1 ring by association with Hsp70 increases ATPase activity due to enhanced communication between protomers. This communication involves conserved arginine fingers. The control of ClpB/Hsp104 activity is crucial, as hyperactive mutants with permanently dissociated M-domains exhibit cellular toxicity. Here, we analyzed AAA-1 inter-ring communication in relation to the M-domain mediated ATPase regulation, by subjecting a conserved residue of the AAA-1 domain subunit interface of ClpB (A328) to mutational analysis. While all A328X mutants have reduced disaggregation activities, their ATPase activities strongly differed. ClpB-A328I/L mutants have reduced ATPase activity and when combined with the hyperactive ClpB-K476C M-domain mutation, suppress cellular toxicity. This underlines that ClpB ATPase activation by M-domain dissociation relies on increased subunit communication. The ClpB-A328V mutant in contrast has very high ATPase activity and exhibits cellular toxicity on its own, qualifying it as novel hyperactive ClpB mutant. ClpB-A328V hyperactivity is however, different from that of M-domain mutants as M-domains stay associated with the AAA-1 ring. The high ATPase activity of ClpB-A328V primarily relies on the AAA-2 ring and correlates with distinct conformational changes in the AAA-2 catalytic site. These findings characterize the subunit interface residue A328 as crucial regulatory element to control ATP hydrolysis in both AAA rings. PMID:28275610

  11. Mutant Analysis Reveals Allosteric Regulation of ClpB Disaggregase.

    PubMed

    Franke, Kamila B; Bukau, Bernd; Mogk, Axel

    2017-01-01

    The members of the hexameric AAA+ disaggregase of E. coli and S. cerevisiae, ClpB, and Hsp104, cooperate with the Hsp70 chaperone system in the solubilization of aggregated proteins. Aggregate solubilization relies on a substrate threading activity of ClpB/Hsp104 fueled by ATP hydrolysis in both ATPase rings (AAA-1, AAA-2). ClpB/Hsp104 ATPase activity is controlled by the M-domains, which associate to the AAA-1 ring to downregulate ATP hydrolysis. Keeping M-domains displaced from the AAA-1 ring by association with Hsp70 increases ATPase activity due to enhanced communication between protomers. This communication involves conserved arginine fingers. The control of ClpB/Hsp104 activity is crucial, as hyperactive mutants with permanently dissociated M-domains exhibit cellular toxicity. Here, we analyzed AAA-1 inter-ring communication in relation to the M-domain mediated ATPase regulation, by subjecting a conserved residue of the AAA-1 domain subunit interface of ClpB (A328) to mutational analysis. While all A328X mutants have reduced disaggregation activities, their ATPase activities strongly differed. ClpB-A328I/L mutants have reduced ATPase activity and when combined with the hyperactive ClpB-K476C M-domain mutation, suppress cellular toxicity. This underlines that ClpB ATPase activation by M-domain dissociation relies on increased subunit communication. The ClpB-A328V mutant in contrast has very high ATPase activity and exhibits cellular toxicity on its own, qualifying it as novel hyperactive ClpB mutant. ClpB-A328V hyperactivity is however, different from that of M-domain mutants as M-domains stay associated with the AAA-1 ring. The high ATPase activity of ClpB-A328V primarily relies on the AAA-2 ring and correlates with distinct conformational changes in the AAA-2 catalytic site. These findings characterize the subunit interface residue A328 as crucial regulatory element to control ATP hydrolysis in both AAA rings.

  12. Genome wide analysis of Silurana (Xenopus) tropicalis development reveals dynamic expression using network enrichment analysis.

    PubMed

    Langlois, Valérie S; Martyniuk, Christopher J

    2013-01-01

    Development involves precise timing of gene expression and coordinated pathways for organogenesis and morphogenesis. Functional and sub-network enrichment analysis provides an integrated approach for identifying networks underlying development. The objectives of this study were to characterize early gene regulatory networks over Silurana tropicalis development from NF stage 2 to 46 using a custom Agilent 4×44K microarray. There were >8000 unique gene probes that were differentially expressed between Nieuwkoop-Faber (NF) stage 2 and stage 16, and >2000 gene probes differentially expressed between NF 34 and 46. Gene ontology revealed that genes involved in nucleosome assembly, cell division, pattern specification, neurotransmission, and general metabolism were increasingly regulated throughout development, consistent with active development. Sub-network enrichment analysis revealed that processes such as membrane hyperpolarisation, retinoic acid, cholesterol, and dopamine metabolic gene networks were activated/inhibited over time. This study identifies RNA transcripts that are potentially maternally inherited in an anuran species, provides evidence that the expression of genes involved in retinoic acid receptor signaling may increase prior to those involved in thyroid receptor signaling, and characterizes novel gene expression networks preceding organogenesis which increases understanding of the spatiotemporal embryonic development in frogs.

  13. ASH structure alignment package: Sensitivity and selectivity in domain classification

    PubMed Central

    Standley, Daron M; Toh, Hiroyuki; Nakamura, Haruki

    2007-01-01

    Background Structure alignment methods offer the possibility of measuring distant evolutionary relationships between proteins that are not visible by sequence-based analysis. However, the question of how structural differences and similarities ought to be quantified in this regard remains open. In this study we construct a training set of sequence-unique CATH and SCOP domains, from which we develop a scoring function that can reliably identify domains with the same CATH topology and SCOP fold classification. The score is implemented in the ASH structure alignment package, for which the source code and a web service are freely available from the PDBj website . Results The new ASH score shows increased selectivity and sensitivity compared with values reported for several popular programs using the same test set of 4,298,905 structure pairs, yielding an area of .96 under the receiver operating characteristic (ROC) curve. In addition, weak sequence homologies between similar domains are revealed that could not be detected by BLAST sequence alignment. Also, a subset of domain pairs is identified that exhibit high similarity, even though their CATH and SCOP classification differs. Finally, we show that the ranking of alignment programs based solely on geometric measures depends on the choice of the quality measure. Conclusion ASH shows high selectivity and sensitivity with regard to domain classification, an important step in defining distantly related protein sequence families. Moreover, the CPU cost per alignment is competitive with the fastest programs, making ASH a practical option for large-scale structure classification studies. PMID:17407606

  14. Multivariate analysis of factors associated with kyphotic deformity after laminoplasty in cervical spondylotic myelopathy patients without preoperative kyphotic alignment

    PubMed Central

    Cao, JunMing; Zhang, JingTao; Yang, DaLong; Yang, Liu; Shen, Yong

    2017-01-01

    The risk factors of post-laminoplasty kyphosis in patients with cervical spondylotic myelopathy (CSM) without preoperative kyphotic alignment are not well known. This study aimed to compare clinical and radiological data between patients with or without post-laminoplasty kyphosis and to investigate the factors associated with post-laminoplasty kyphosis in CSM patients without preoperative kyphotic alignment. Patients (n = 194) who received unilateral expansive open-door cervical laminoplasty with miniplate fixation and completed a 1-year follow-up were enrolled. Patients were grouped according to whether they suffered from postoperative kyphosis (P) or not (NP). Postoperative kyphosis was observed in 21 (10.8%) patients. The recovery rates of the Japanese Orthopaedic Association scores at the 1-year follow-up in the P group were inferior to those in the NP group (31.9% vs. 65.2%, P < 0.001). Logistic regression with post-laminoplasty kyphosis as the dependent variable showed independent risks associated with an increased C2–7 sagittal vertical axis (SVA, odds ratio [OR] = 1.085, 95% confidence interval [CI] = 1.025–1.203, P = 0.015), destroyed facet joints (OR = 1.132, 95% CI = 1.068–1.208, P < 0.001), and cephalad vertebral level undergoing laminoplasty (CVLL, OR = 2.860, 95% CI = 1.164–6.847, P = 0.021). These findings suggest that CVLL, C2–7 SVA, and destroyed facet joints are associated with kyphosis after laminoplasty in CSM patients without preoperative kyphotic alignment. PMID:28240309

  15. MP-Align: alignment of metabolic pathways

    PubMed Central

    2014-01-01

    Background Comparing the metabolic pathways of different species is useful for understanding metabolic functions and can help in studying diseases and engineering drugs. Several comparison techniques for metabolic pathways have been introduced in the literature as a first attempt in this direction. The approaches are based on some simplified representation of metabolic pathways and on a related definition of a similarity score (or distance measure) between two pathways. More recent comparative research focuses on alignment techniques that can identify similar parts between pathways. Results We propose a methodology for the pairwise comparison and alignment of metabolic pathways that aims at providing the largest conserved substructure of the pathways under consideration. The proposed methodology has been implemented in a tool called MP-Align, which has been used to perform several validation tests. The results showed that our similarity score makes it possible to discriminate between different domains and to reconstruct a meaningful phylogeny from metabolic data. The results further demonstrate that our alignment algorithm correctly identifies subpathways sharing a common biological function. Conclusion The results of the validation tests performed with MP-Align are encouraging. A comparison with another proposal in the literature showed that our alignment algorithm is particularly well-suited to finding the largest conserved subpathway of the pathways under examination. PMID:24886436

  16. Girder Alignment Plan

    SciTech Connect

    Wolf, Zackary; Ruland, Robert; LeCocq, Catherine; Lundahl, Eric; Levashov, Yurii; Reese, Ed; Rago, Carl; Poling, Ben; Schafer, Donald; Nuhn, Heinz-Dieter; Wienands, Uli; /SLAC

    2010-11-18

    The girders for the LCLS undulator system contain components which must be aligned with high accuracy relative to each other. The alignment is one of the last steps before the girders go into the tunnel, so the alignment must be done efficiently, on a tight schedule. This note documents the alignment plan which includes efficiency and high accuracy. The motivation for girder alignment involves the following considerations. Using beam based alignment, the girder position will be adjusted until the beam goes through the center of the quadrupole and beam finder wire. For the machine to work properly, the undulator axis must be on this line and the center of the undulator beam pipe must be on this line. The physics reasons for the undulator axis and undulator beam pipe axis to be centered on the beam are different, but the alignment tolerance for both are similar. In addition, the beam position monitor must be centered on the beam to preserve its calibration. Thus, the undulator, undulator beam pipe, quadrupole, beam finder wire, and beam position monitor axes must all be aligned to a common line. All relative alignments are equally important, not just, for example, between quadrupole and undulator. We begin by making the common axis the nominal beam axis in the girder coordinate system. All components will be initially aligned to this axis. A more accurate alignment will then position the components relative to each other, without incorporating the girder itself.

  17. Evaluating alignment quality between iconic language and reference terminologies using similarity metrics

    PubMed Central

    2014-01-01

    Background Visualization of Concepts in Medicine (VCM) is a compositional iconic language that aims to ease information retrieval in Electronic Health Records (EHR), clinical guidelines or other medical documents. Using VCM language in medical applications requires alignment with medical reference terminologies. Alignment from Medical Subject Headings (MeSH) thesaurus and International Classification of Diseases – tenth revision (ICD10) to VCM are presented here. This study aim was to evaluate alignment quality between VCM and other terminologies using different measures of inter-alignment agreement before integration in EHR. Methods For medical literature retrieval purposes and EHR browsing, the MeSH thesaurus and the ICD10, both organized hierarchically, were aligned to VCM language. Some MeSH to VCM alignments were performed automatically but others were performed manually and validated. ICD10 to VCM alignment was entirely manually performed. Inter-alignment agreement was assessed on ICD10 codes and MeSH descriptors, sharing the same Concept Unique Identifiers in the Unified Medical Language System (UMLS). Three metrics were used to compare two VCM icons: binary comparison, crude Dice Similarity Coefficient (DSCcrude), and semantic Dice Similarity Coefficient (DSCsemantic), based on Lin similarity. An analysis of discrepancies was performed. Results MeSH to VCM alignment resulted in 10,783 relations: 1,830 of which were manually performed and 8,953 were automatically inherited. ICD10 to VCM alignment led to 19,852 relations. UMLS gathered 1,887 alignments between ICD10 and MeSH. Only 1,606 of them were used for this study. Inter-alignment agreement using only validated MeSH to VCM alignment was 74.2% [70.5-78.0]CI95%, DSCcrude was 0.93 [0.91-0.94]CI95%, and DSCsemantic was 0.96 [0.95-0.96]CI95%. Discrepancy analysis revealed that even if two thirds of errors came from the reviewers, UMLS was nevertheless responsible for one third. Conclusions This study has

  18. Liquid-theory analogy of direct-coupling analysis of multiple-sequence alignment and its implications for protein structure prediction

    PubMed Central

    Kinjo, Akira R.

    2015-01-01

    The direct-coupling analysis is a powerful method for protein contact prediction, and enables us to extract “direct” correlations between distant sites that are latent in “indirect” correlations observed in a protein multiple-sequence alignment. I show that the direct correlation can be obtained by using a formulation analogous to the Ornstein-Zernike integral equation in liquid theory. This formulation intuitively illustrates how the indirect or apparent correlation arises from an infinite series of direct correlations, and provides interesting insights into protein structure prediction. PMID:27493860

  19. Multivariate curve resolution based chromatographic peak alignment combined with parallel factor analysis to exploit second-order advantage in complex chromatographic measurements.

    PubMed

    Parastar, Hadi; Akvan, Nadia

    2014-03-13

    In the present contribution, a new combination of multivariate curve resolution-correlation optimized warping (MCR-COW) with trilinear parallel factor analysis (PARAFAC) is developed to exploit second-order advantage in complex chromatographic measurements. In MCR-COW, the complexity of the chromatographic data is reduced by arranging the data in a column-wise augmented matrix, analyzing using MCR bilinear model and aligning the resolved elution profiles using COW in a component-wise manner. The aligned chromatographic data is then decomposed using trilinear model of PARAFAC in order to exploit pure chromatographic and spectroscopic information. The performance of this strategy is evaluated using simulated and real high-performance liquid chromatography-diode array detection (HPLC-DAD) datasets. The obtained results showed that the MCR-COW can efficiently correct elution time shifts of target compounds that are completely overlapped by coeluted interferences in complex chromatographic data. In addition, the PARAFAC analysis of aligned chromatographic data has the advantage of unique decomposition of overlapped chromatographic peaks to identify and quantify the target compounds in the presence of interferences. Finally, to confirm the reliability of the proposed strategy, the performance of the MCR-COW-PARAFAC is compared with the frequently used methods of PARAFAC, COW-PARAFAC, multivariate curve resolution-alternating least squares (MCR-ALS), and MCR-COW-MCR. In general, in most of the cases the MCR-COW-PARAFAC showed an improvement in terms of lack of fit (LOF), relative error (RE) and spectral correlation coefficients in comparison to the PARAFAC, COW-PARAFAC, MCR-ALS and MCR-COW-MCR results.

  20. Optical alignment of a pupil imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Horchem, Stephen D.; Kohrman, Richard J.

    1989-01-01

    The GOES Sounder is a 19-channel discrete filter spectrometer with an additional channel for star sensing. This paper presents the GOES Sounder's instrument optics and compensations, alignment rationale, and alignment mechanism and sensitivities. The results of a line of sight tolerance analysis of the instrument are described, and the prealignment and instrument coregistration are addressed.

  1. Comparative analysis of ITS1 nucleotide sequence reveals distinct genetic difference between Brugia malayi from Northeast Borneo and Thailand.

    PubMed

    Fong, Mun-Yik; Noordin, Rahmah; Lau, Yee-Ling; Cheong, Fei-Wen; Yunus, Muhammad Hafiznur; Idris, Zulkarnain Md

    2013-01-01

    Brugia malayi is one of the parasitic worms which causes lymphatic filariasis in humans. Its geographical distribution includes a large part of Asia. Despite its wide distribution, very little is known about the genetic variation and molecular epidemiology of this species. In this study, the internal transcribed spacer 1 (ITS1) nucleotide sequences of B. malayi from microfilaria-positive human blood samples in Northeast Borneo Island were determined, and compared with published ITS1 sequences of B. malayi isolated from cats and humans in Thailand. Multiple alignment analysis revealed that B. malayi ITS1 sequences from Northeast Borneo were more similar to each other than to those from Thailand. Phylogenetic trees inferred using Neighbour-Joining and Maximum Parsimony methods showed similar topology, with 2 distinct B. malayi clusters. The first cluster consisted of Northeast Borneo B. malayi isolates, whereas the second consisted of the Thailand isolates. The findings of this study suggest that B. malayi in Borneo Island has diverged significantly from those of mainland Asia, and this has implications for the diagnosis of B. malayi infection across the region using ITS1-based molecular techniques.

  2. Relationship of lower extremity alignment during the wall squat and single-leg jump: assessment of single-leg landing using three-dimensional motion analysis

    PubMed Central

    Watanabe, Manabu; Matsumoto, Takaaki; Ono, Susumu; Koseki, Hirohisa; Watarai, Koji

    2016-01-01

    [Purpose] The purpose of this study was to evaluate the relationship between malalignment and lower-extremity injury and to determine the optimal dynamic alignment of the lower extremity with wall squats. [Subjects and Methods] Healthy individuals from one therapy school were enrolled and assigned to a wall squat normal or abnormal group based on their forms during wall squats. The abnormal group was found to be more prone to lower-extremity injury on three-dimensional motion analysis. Eight students from each group were randomly chosen for the study. The effects of single-leg landing movements were assessed using three-dimensional motion analysis. [Results] In the sagittal plane, significant flexion of the hip and knee joints occurred 0.02 and 0.04 seconds after initial foot contact with the ground in the normal and abnormal groups, respectively. In the frontal plane, significant adduction of the hip joint occurred at 0.07 seconds in the abnormal group. [Conclusion] The abnormal group tended to display later flexion of the hip and knee joints and narrower hip, knee, and ankle range of motion than the normal group, suggesting that dynamic alignment of the lower extremity in the abnormal group likely made them susceptible to injury. PMID:27390393

  3. Fusion angle affects intervertebral adjacent spinal segment joint forces-Model-based analysis of patient specific alignment.

    PubMed

    Senteler, Marco; Weisse, Bernhard; Rothenfluh, Dominique A; Farshad, Mazda T; Snedeker, Jess G

    2017-01-01

    This study addresses the hypothesis that adjacent segment intervertebral joint loads are sensitive to the degree of lordosis that is surgically imposed during vertebral fusion. Adjacent segment degeneration is often observed after lumbar fusion, but a causative mechanism is not yet clearly evident. Altered kinematics of the adjacent segments and potentially nonphysiological mechanical joint loads have been implicated in this process. However, little is known of how altered alignment and kinematics influence loading of the adjacent intervertebral joints under consideration of active muscle forces. This study investigated these effects by simulating L4/5 fusions using kinematics-driven musculoskeletal models of one generic and eight sagittal alignment-specific models. Models featured different spinopelvic configurations but were normalized by body height, masses, and muscle properties. Fusion of the L4/5 segment was implemented in an in situ (22°), hyperlordotic (32°), and hypolordotic (8°) fashion and kinematic input parameters were changed accordingly based on findings of an in vitro investigation. Bending motion from upright standing to 45° forward flexion and back was simulated for all models in intact and fused conditions. Joint loads at adjacent levels and moment arms of spinal muscles experienced changes after all types of fusion. Hypolordotic configuration led to an increase of adjacent segment (L3/4) shear forces of 29% on average, whereas hyperlordotic fusion reduced shear by 39%. Overall, L4/5 in situ fusion resulted in intervertebral joint forces closest to intact loading conditions. An artificial decrease in lumbar lordosis (minus 14° on average) caused by an L4/5 fusion lead to adverse loading conditions, particularly at the cranial adjacent levels, and altered muscle moment arms, in particular for muscles in the vicinity of the fusion. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:131-139, 2017.

  4. Finite Element Analysis of Mobile-bearing Unicompartmental Knee Arthroplasty: The Influence of Tibial Component Coronal Alignment

    PubMed Central

    Zhu, Guang-Duo; Guo, Wan-Shou; Zhang, Qi-Dong; Liu, Zhao-Hui; Cheng, Li-Ming

    2015-01-01

    Background: Controversies about the rational positioning of the tibial component in unicompartmental knee arthroplasty (UKA) still exist. Previous finite element (FE) studies were rare, and the results varied. This FE study aimed to analyze the influence of the tibial component coronal alignment on knee biomechanics in mobile-bearing UKA and find a ration range of inclination angles. Methods: A three-dimensional FE model of the intact knee was constructed from image data of one normal subject. A 1000 N compressive load was applied to the intact knee model for validating. Then a set of eleven UKA FE models was developed with the coronal inclination angles of the tibial tray ranging from 10° valgus to 10° varus. Tibial bone stresses and strains, contact pressures and load distribution in all UKA models were calculated and analyzed under the unified loading and boundary conditions. Results: Load distribution, contact pressures, and contact areas in intact knee model were validated. In UKA models, von Mises stress and compressive strain at proximal medial cortical bone increased significantly as the tibial tray was in valgus inclination >4°, which may increase the risk of residual pain. Compressive strains at tibial keel slot were above the high threshold with varus inclination >4°, which may result in greater risk of component migration. Tibial bone resection corner acted as a strain-raiser regardless of the inclination angles. Compressive strains at the resected surface slightly changed with the varying inclinations and were not supposed to induce bone resorption and component loosening. Contact pressures and load percentage in lateral compartment increased with the more varus inclination, which may lead to osteoarthritis progression. Conclusions: Static knee biomechanics after UKA can be greatly affected by tibial component coronal alignment. A range from 4° valgus to 4° varus inclination of tibial component can be recommended in mobile-bearing UKA. PMID

  5. Microphase Separation and Shear Alignment of Gradient Copolymers: Melt Rheology and Small-Angle X-Ray Scattering Analysis

    SciTech Connect

    Mok, Michelle M.; Pujari, Saswati; Burghardt, Wesley R.; Dettmer, Christine M.; Nguyen, SonBinh T.; Ellison, Christopher J.; Torkelson, John M.

    2008-10-24

    The degree of microphase or nanophase segregation in gradient copolymers with compositions varying across the whole copolymer backbone is studied via low-amplitude oscillatory shear (LAOS) measurements and small-angle X-ray scattering (SAXS). Studies are done as a function of comonomer segregation strength, molecular weight (MW), gradient architecture and temperature. Controlled radical polymerization is used to synthesize strongly segregating styrene/4-acetoxystyrene (S/AS) and the more weakly segregating S/n-butyl acrylate (S/nBA) gradient copolymers. Results are compared to those from S/AS and S/nBA random and block copolymers. The higher MW S/AS gradient copolymer exhibits LAOS behavior similar to the highly microphase segregated S/AS block copolymer, while the lower MW S/AS gradient copolymer exhibits complex, nonterminal behavior indicative of a lower degree of microphase segregation. The S/nBA gradient copolymers demonstrate more liquidlike behavior, with the lower MW sample exhibiting near-Newtonian behavior, indicative of a weakly segregating structure, while the higher MW, steeper gradient sample shows behavior ranging from solidlike to more liquidlike with increasing temperature. With the exception of the lower MW S/nBA case, the gradient copolymers exhibit temperature-dependent LAOS behavior over a wide temperature range, reflecting their temperature-dependent nanodomain composition amplitudes. The S/AS samples have SAXS results consistent with the degree of microphase segregation observed via rheology. Shear alignment studies are done on the higher MW S/AS gradient copolymer, which is the most highly microphase segregated gradient copolymer. Rheology and SAXS provide evidence of shear alignment, despite the gradual variation in composition profile across the nanodomains of such gradient copolymers. A short review of the nomenclature and behavior of linear copolymer architectures is also provided.

  6. Tidal alignment of galaxies

    SciTech Connect

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  7. Tidal alignment of galaxies

    SciTech Connect

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš E-mail: zvlah@stanford.edu

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used 'nonlinear alignment model,' finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the 'GI' term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  8. Analysis of field-aligned structure of compressional Pc 5 waves and associated energetic ion modulations observed by Polar at L~9.5

    NASA Astrophysics Data System (ADS)

    Capman, E.; Engebretson, M. J.; Pilipenko, V.; Russell, C. T.; Peterson, W. K.

    2012-12-01

    Nearly all previous studies of storm-time compressional Pc 5 waves have used data from low-inclination satellites, so the field-aligned structure of these waves could be determined only statistically or by inference. However, the high inclination of the Polar satellite's orbit allowed it to approximately follow a flux tube across the equator. In this study we present examples of compressional Pc 5 events identified during Polar's 2001-02 and 2002-03 duskside passages. The focus of this presentation is on exploring the field-aligned structure of the observed waves near the geomagnetic equator. At least two frequencies were identified in each event. In many cases these are a 1st (fundamental) harmonic with a node in the field-aligned (Bz) component near the geomagnetic equator, and a 2nd harmonic with an anti-node near the equator. To verify this assumption we applied the analytical signal method, verified by manual hodogram analysis, to monitor the amplitude and phase variations of the radial (Bx) and compressional (Bz) components at certain frequencies. The following transitions occurred near the time when Polar crossed the geomagnetic equator: The phase difference was 0° in the southern hemisphere and then 180° out of phase in the northern hemisphere. The waves were often linearly polarized, and the inclination angle of the polarization ellipse in the Bx-Bz plane was negative in the southern hemisphere and positive in the northern hemisphere. The ellipticity still had a slight positive bias in the southern hemisphere and a slight negative bias in the northern hemisphere. These observational results are compared with the results of modeling of coupled MHD Alfven and slow magnetosonic modes.

  9. Genomic analysis reveals hidden biodiversity within colugos, the sister group to primates

    PubMed Central

    Mason, Victor C.; Li, Gang; Minx, Patrick; Schmitz, Jürgen; Churakov, Gennady; Doronina, Liliya; Melin, Amanda D.; Dominy, Nathaniel J.; Lim, Norman T-L.; Springer, Mark S.; Wilson, Richard K.; Warren, Wesley C.; Helgen, Kristofer M.; Murphy, William J.

    2016-01-01

    Colugos are among the most poorly studied mammals despite their centrality to resolving supraordinal primate relationships. Two described species of these gliding mammals are the sole living members of the order Dermoptera, distributed throughout Southeast Asia. We generated a draft genome sequence for a Sunda colugo and a Philippine colugo reference alignment, and used these to identify colugo-specific genetic changes that were enriched in sensory and musculoskeletal-related genes that likely underlie their nocturnal and gliding adaptations. Phylogenomic analysis and catalogs of rare genomic changes overwhelmingly support the contested hypothesis that colugos are the sister group to primates (Primatomorpha), to the exclusion of treeshrews. We captured ~140 kb of orthologous sequence data from colugo museum specimens sampled across their range and identified large genetic differences between many geographically isolated populations that may result in a >300% increase in the number of recognized colugo species. Our results identify conservation units to mitigate future losses of this enigmatic mammalian order. PMID:27532052

  10. Some aspects of SR beamline alignment

    NASA Astrophysics Data System (ADS)

    Gaponov, Yu. A.; Cerenius, Y.; Nygaard, J.; Ursby, T.; Larsson, K.

    2011-09-01

    Based on the Synchrotron Radiation (SR) beamline optical element-by-element alignment with analysis of the alignment results an optimized beamline alignment algorithm has been designed and developed. The alignment procedures have been designed and developed for the MAX-lab I911-4 fixed energy beamline. It has been shown that the intermediate information received during the monochromator alignment stage can be used for the correction of both monochromator and mirror without the next stages of alignment of mirror, slits, sample holder, etc. Such an optimization of the beamline alignment procedures decreases the time necessary for the alignment and becomes useful and helpful in the case of any instability of the beamline optical elements, storage ring electron orbit or the wiggler insertion device, which could result in the instability of angular and positional parameters of the SR beam. A general purpose software package for manual, semi-automatic and automatic SR beamline alignment has been designed and developed using the developed algorithm. The TANGO control system is used as the middle-ware between the stand-alone beamline control applications BLTools, BPMonitor and the beamline equipment.

  11. Thalamic theta phase alignment predicts human memory formation and anterior thalamic cross-frequency coupling.

    PubMed

    Sweeney-Reed, Catherine M; Zaehle, Tino; Voges, Jürgen; Schmitt, Friedhelm C; Buentjen, Lars; Kopitzki, Klaus; Hinrichs, Hermann; Heinze, Hans-Jochen; Rugg, Michael D; Knight, Robert T; Richardson-Klavehn, Alan

    2015-05-20

    Previously we reported electrophysiological evidence for a role for the anterior thalamic nucleus (ATN) in human memory formation (Sweeney-Reed et al., 2014). Theta-gamma cross-frequency coupling (CFC) predicted successful memory formation, with the involvement of gamma oscillations suggesting memory-relevant local processing in the ATN. The importance of the theta frequency range in memory processing is well-established, and phase alignment of oscillations is considered to be necessary for synaptic plasticity. We hypothesized that theta phase alignment in the ATN would be necessary for memory encoding. Further analysis of the electrophysiological data reveal that phase alignment in the theta rhythm was greater during successful compared with unsuccessful encoding, and that this alignment was correlated with the CFC. These findings support an active processing role for the ATN during memory formation.

  12. Shuttle onboard IMU alignment methods

    NASA Technical Reports Server (NTRS)

    Henderson, D. M.

    1976-01-01

    The current approach to the shuttle IMU alignment is based solely on the Apollo Deterministic Method. This method is simple, fast, reliable and provides an accurate estimate for the present cluster to mean of 1,950 transformation matrix. If four or more star sightings are available, the application of least squares analysis can be utilized. The least squares method offers the next level of sophistication to the IMU alignment solution. The least squares method studied shows that a more accurate estimate for the misalignment angles is computed, and the IMU drift rates are a free by-product of the analysis. Core storage requirements are considerably more; estimated 20 to 30 times the core required for the Apollo Deterministic Method. The least squares method offers an intermediate solution utilizing as much data that is available without a complete statistical analysis as in Kalman filtering.

  13. Acoustic Emission Analysis of Damage during Compressive Deformation of Amorphous Zr-Based Foams with Aligned, Elongated Pores

    NASA Astrophysics Data System (ADS)

    Cox, Marie E.; Dunand, David C.

    2013-07-01

    Acoustic emission methods are used to investigate the evolution of internal microfractural damage during uniaxial compression of amorphous Zr-based foams with aligned, elongated pores. The foams are fabricated by means of densifying a blend of crystalline W powders and amorphous Zr-based powders with two oxygen contents (0.078 and 0.144 wt pct) by warm equal channel angular extrusion, followed by dissolution of the elongated W phase from the fully densified amorphous matrix. For the high-oxygen foams, prior powder boundaries in the amorphous struts promote damage that accumulates during compression, resulting in energy-absorbing properties comparable with the low-oxygen foams without stress-concentrating powder boundaries. The influence of pore orientation on the evolution of microfracture damage and the ability of the foams to accumulate damage without catastrophic failure is also investigated: pores oriented from 24 to 68 deg to the loading direction promote wall bending, resulting in foams with more diffuse damage and better energy-absorbing properties.

  14. Monolayer alignment on azobenzene surfaces during UV light irradiation: Analysis of optical polarized absorption measurement results and theoretical treatment

    SciTech Connect

    Zakharov, A.V.; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2006-01-14

    The influence of the charge separation during the trans-cis conformational change on the surface of azobenzene 6Az10PVA monolayer on the polar liquid-crystal monolayer film, such as 4-n-pentyl-4{sup '}-cyanobiphenyl(5CB), is investigated. The effective anchoring energy (in the Rapini-Papolar form) is phenomenologically described in the framework of the molecular model, which takes into account the interaction between the surface polarization and surface electric field, for number of conformational states of the boundary surface. It is shown, using the experimental data for the voltage across the 6Az10PVA+5CB film, provided by the surface-potential technique, that the charge separation during the conformational changing, caused by the UV irradiation, may lead to changing of the surface alignment of liquid-crystalline molecules. The influence of the photoisomerization process on the orientational order parameter S{sub 2}(t) using the optical polarized absorption measurement is also investigated.

  15. Proteome-wide Structural Analysis of PTM Hotspots Reveals Regulatory Elements Predicted to Impact Biological Function and Disease*

    PubMed Central

    Dewhurst, Henry; Sundararaman, Niveda

    2016-01-01

    Post-translational modifications (PTMs) regulate protein behavior through modulation of protein-protein interactions, enzymatic activity, and protein stability essential in the translation of genotype to phenotype in eukaryotes. Currently, less than 4% of all eukaryotic PTMs are reported to have biological function - a statistic that continues to decrease with an increasing rate of PTM detection. Previously, we developed SAPH-ire (Structural Analysis of PTM Hotspots) - a method for the prioritization of PTM function potential that has been used effectively to reveal novel PTM regulatory elements in discrete protein families (Dewhurst et al., 2015). Here, we apply SAPH-ire to the set of eukaryotic protein families containing experimental PTM and 3D structure data - capturing 1,325 protein families with 50,839 unique PTM sites organized into 31,747 modified alignment positions (MAPs), of which 2010 (∼6%) possess known biological function. Here, we show that using an artificial neural network model (SAPH-ire NN) trained to identify MAP hotspots with biological function results in prediction outcomes that far surpass the use of single hotspot features, including nearest neighbor PTM clustering methods. We find the greatest enhancement in prediction for positions with PTM counts of five or less, which represent 98% of all MAPs in the eukaryotic proteome and 90% of all MAPs found to have biological function. Analysis of the top 1092 MAP hotspots revealed 267 of truly unknown function (containing 5443 distinct PTMs). Of these, 165 hotspots could be mapped to human KEGG pathways for normal and/or disease physiology. Many high-ranking hotspots were also found to be disease-associated pathogenic sites of amino acid substitution despite the lack of observable PTM in the human protein family member. Taken together, these experiments demonstrate that the functional relevance of a PTM can be predicted very effectively by neural network models, revealing a large but testable

  16. A genomic schism in birds revealed by phylogenetic analysis of DNA strings.

    PubMed

    Edwards, Scott V; Fertil, Bernard; Giron, Alain; Deschavanne, Patrick J

    2002-08-01

    The molecular systematics of vertebrates has been based entirely on alignments of primary structures of macromolecules; however, higher order features of DNA sequences not used in traditional studies also contain valuable phylogenetic information. Recent molecular data sets conflict over the phylogenetic placement of flightless birds (ratites - paleognaths), but placement of this clade critically influences interpretation of character change in birds. To help resolve this issue, we applied a new bioinformatics approach to the largest molecular data set currently available. We distilled nearly one megabase (1 million base pairs) of heterogeneous avian genomic DNA from 20 birds and an alligator into genomic signatures, defined as the complete set of frequencies of short sequence motifs (strings), thereby providing a way to directly compare higher order features of nonhomologous DNA sequences. Phylogenetic analysis and principal component analysis of the signatures strongly support the traditional hypothesis of basal ratites and monophyly of the nonratite birds (neognaths) and imply that ratite genomes are linguistically primitive within birds, despite their base compositional similarity to neognath genomes. Our analyses show further that the phylogenetic signal of genomic signatures are strongest among deep splits within vertebrates. Despite clear problems with phylogenetic analysis of genomic signatures, our study raises intriguing issues about the biological and genomic differences that fundamentally differentiate paleognaths and neognaths.

  17. Precision alignment device

    DOEpatents

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  18. Precision alignment device

    DOEpatents

    Jones, Nelson E.

    1990-01-01

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.

  19. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  20. Phylogenetic Inference From Conserved sites Alignments

    SciTech Connect

    grundy, W.N.; Naylor, G.J.P.

    1999-08-15

    Molecular sequences provide a rich source of data for inferring the phylogenetic relationships among species. However, recent work indicates that even an accurate multiple alignment of a large sequence set may yield an incorrect phylogeny and that the quality of the phylogenetic tree improves when the input consists only of the highly conserved, motif regions of the alignment. This work introduces two methods of producing multiple alignments that include only the conserved regions of the initial alignment. The first method retains conserved motifs, whereas the second retains individual conserved sites in the initial alignment. Using parsimony analysis on a mitochondrial data set containing 19 species among which the phylogenetic relationships are widely accepted, both conserved alignment methods produce better phylogenetic trees than the complete alignment. Unlike any of the 19 inference methods used before to analyze this data, both methods produce trees that are completely consistent with the known phylogeny. The motif-based method employs far fewer alignment sites for comparable error rates. For a larger data set containing mitochondrial sequences from 39 species, the site-based method produces a phylogenetic tree that is largely consistent with known phylogenetic relationships and suggests several novel placements.

  1. Global multiple protein-protein interaction network alignment by combining pairwise network alignments

    PubMed Central

    2015-01-01

    Background A wealth of protein interaction data has become available in recent years, creating an urgent need for powerful analysis techniques. In this context, the problem of finding biologically meaningful correspondences between different protein-protein interaction networks (PPIN) is of particular interest. The PPIN of a species can be compared with that of other species through the process of PPIN alignment. Such an alignment can provide insight into basic problems like species evolution and network component function determination, as well as translational problems such as target identification and elucidation of mechanisms of disease spread. Furthermore, multiple PPINs can be aligned simultaneously, expanding the analytical implications of the result. While there are several pairwise network alignment algorithms, few methods are capable of multiple network alignment. Results We propose SMAL, a MNA algorithm based on the philosophy of scaffold-based alignment. SMAL is capable of converting results from any global pairwise alignment algorithms into a MNA in linear time. Using this method, we have built multiple network alignments based on combining pairwise alignments from a number of publicly available (pairwise) network aligners. We tested SMAL using PPINs of eight species derived from the IntAct repository and employed a number of measures to evaluate performance. Additionally, as part of our experimental investigations, we compared the effectiveness of SMAL while aligning up to eight input PPINs, and examined the effect of scaffold network choice on the alignments. Conclusions A key advantage of SMAL lies in its ability to create MNAs through the use of pairwise network aligners for which native MNA implementations do not exist. Experiments indicate that the performance of SMAL was comparable to that of the native MNA implementation of established methods such as IsoRankN and SMETANA. However, in terms of computational time, SMAL was significantly faster

  2. Using team cognitive work analysis to reveal healthcare team interactions in a birthing unit

    PubMed Central

    Ashoori, Maryam; Burns, Catherine M.; d'Entremont, Barbara; Momtahan, Kathryn

    2014-01-01

    Cognitive work analysis (CWA) as an analytical approach for examining complex sociotechnical systems has shown success in modelling the work of single operators. The CWA approach incorporates social and team interactions, but a more explicit analysis of team aspects can reveal more information for systems design. In this paper, Team CWA is explored to understand teamwork within a birthing unit at a hospital. Team CWA models are derived from theories and models of teamworkand leverage the existing CWA approaches to analyse team interactions. Team CWA is explained and contrasted with prior approaches to CWA. Team CWA does not replace CWA, but supplements traditional CWA to more easily reveal team information. As a result, Team CWA may be a useful approach to enhance CWA in complex environments where effective teamwork is required. Practitioner Summary: This paper looks at ways of analysing cognitive work in healthcare teams. Team Cognitive Work Analysis, when used to supplement traditional Cognitive Work Analysis, revealed more team information than traditional Cognitive Work Analysis. Team Cognitive Work Analysis should be considered when studying teams PMID:24837514

  3. Alignment of CEBAF cryomodules

    SciTech Connect

    Schneider, W.J.; Bisognano, J.J.; Fischer, J.

    1993-06-01

    CEBAF, the Continuous Electron Beam Accelerator Facility, when completed, will house a 4 GeV recirculating accelerator. Each of the accelerator`s two linacs contains 160 superconducting radio frequency (SRF) 1497 MHz niobium cavities in 20 cryomodules. Alignments of the cavities within the cryomodule with respect to beam axis is critical to achieving the optimum accelerator performance. This paper discusses the rationale for the current specification on cavity mechanical alignment: 2 mrad (rms) applied to the 0.5 m active length cavities. We describe the tooling that was developed to achieve the tolerance at the time of cavity pair assembly, to preserve and integrate alignment during cryomodule assembly, and to translate alignment to appropriate installation in the beam line.

  4. Pairwise Sequence Alignment Library

    SciTech Connect

    Jeff Daily, PNNL

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.

  5. Receptor-based 3D QSAR analysis of estrogen receptor ligands - merging the accuracy of receptor-based alignments with the computational efficiency of ligand-based methods

    NASA Astrophysics Data System (ADS)

    Sippl, Wolfgang

    2000-08-01

    One of the major challenges in computational approaches to drug design is the accurate prediction of binding affinity of biomolecules. In the present study several prediction methods for a published set of estrogen receptor ligands are investigated and compared. The binding modes of 30 ligands were determined using the docking program AutoDock and were compared with available X-ray structures of estrogen receptor-ligand complexes. On the basis of the docking results an interaction energy-based model, which uses the information of the whole ligand-receptor complex, was generated. Several parameters were modified in order to analyze their influence onto the correlation between binding affinities and calculated ligand-receptor interaction energies. The highest correlation coefficient ( r 2 = 0.617, q 2 LOO = 0.570) was obtained considering protein flexibility during the interaction energy evaluation. The second prediction method uses a combination of receptor-based and 3D quantitative structure-activity relationships (3D QSAR) methods. The ligand alignment obtained from the docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection, a significant and robust model was obtained ( r 2 = 0.991, q 2 LOO = 0.921). The predictive ability of the established model was further evaluated by using a test set of six additional compounds. The comparison with the generated interaction energy-based model and with a traditional CoMFA model obtained using a ligand-based alignment ( r 2 = 0.951, q 2 LOO = 0.796) indicates that the combination of receptor-based and 3D QSAR methods is able to improve the quality of the underlying model.

  6. Energy band alignment at the nanoscale

    NASA Astrophysics Data System (ADS)

    Deuermeier, Jonas; Fortunato, Elvira; Martins, Rodrigo; Klein, Andreas

    2017-01-01

    The energy band alignments at interfaces often determine the electrical functionality of a device. Along with the size reduction into the nanoscale, functional coatings become thinner than a nanometer. With the traditional analysis of the energy band alignment by in situ photoelectron spectroscopy, a critical film thickness is needed to determine the valence band offset. By making use of the Auger parameter, it becomes possible to determine the energy band alignment to coatings, which are only a few Ångström thin. This is demonstrated with experimental data of Cu2O on different kinds of substrate materials.

  7. Magnetic alignment in grazing and resting cattle and deer

    PubMed Central

    Begall, Sabine; Červený, Jaroslav; Neef, Julia; Vojtěch, Oldřich; Burda, Hynek

    2008-01-01

    We demonstrate by means of simple, noninvasive methods (analysis of satellite images, field observations, and measuring “deer beds” in snow) that domestic cattle (n = 8,510 in 308 pastures) across the globe, and grazing and resting red and roe deer (n = 2,974 at 241 localities), align their body axes in roughly a north–south direction. Direct observations of roe deer revealed that animals orient their heads northward when grazing or resting. Amazingly, this ubiquitous phenomenon does not seem to have been noticed by herdsmen, ranchers, or hunters. Because wind and light conditions could be excluded as a common denominator determining the body axis orientation, magnetic alignment is the most parsimonious explanation. To test the hypothesis that cattle orient their body axes along the field lines of the Earth's magnetic field, we analyzed the body orientation of cattle from localities with high magnetic declination. Here, magnetic north was a better predictor than geographic north. This study reveals the magnetic alignment in large mammals based on statistically sufficient sample sizes. Our findings open horizons for the study of magnetoreception in general and are of potential significance for applied ethology (husbandry, animal welfare). They challenge neuroscientists and biophysics to explain the proximate mechanisms. PMID:18725629

  8. Magnetic alignment in grazing and resting cattle and deer.

    PubMed

    Begall, Sabine; Cerveny, Jaroslav; Neef, Julia; Vojtech, Oldrich; Burda, Hynek

    2008-09-09

    We demonstrate by means of simple, noninvasive methods (analysis of satellite images, field observations, and measuring "deer beds" in snow) that domestic cattle (n = 8,510 in 308 pastures) across the globe, and grazing and resting red and roe deer (n = 2,974 at 241 localities), align their body axes in roughly a north-south direction. Direct observations of roe deer revealed that animals orient their heads northward when grazing or resting. Amazingly, this ubiquitous phenomenon does not seem to have been noticed by herdsmen, ranchers, or hunters. Because wind and light conditions could be excluded as a common denominator determining the body axis orientation, magnetic alignment is the most parsimonious explanation. To test the hypothesis that cattle orient their body axes along the field lines of the Earth's magnetic field, we analyzed the body orientation of cattle from localities with high magnetic declination. Here, magnetic north was a better predictor than geographic north. This study reveals the magnetic alignment in large mammals based on statistically sufficient sample sizes. Our findings open horizons for the study of magnetoreception in general and are of potential significance for applied ethology (husbandry, animal welfare). They challenge neuroscientists and biophysics to explain the proximate mechanisms.

  9. Proteomic and genomic analysis reveals novel Campylobacter jejuni outer membrane proteins and potential heterogeneity.

    PubMed

    Watson, Eleanor; Sherry, Aileen; Inglis, Neil F; Lainson, Alex; Jyothi, Dushyanth; Yaga, Raja; Manson, Erin; Imrie, Lisa; Everest, Paul; Smith, David G E

    2014-09-01

    Gram-negative bacterial outer membrane proteins play important roles in the interaction of bacteria with their environment including nutrient acquisition, adhesion and invasion, and antibiotic resistance. In this study we identified 47 proteins within the Sarkosyl-insoluble fraction of Campylobacter jejuni 81-176, using LC-ESI-MS/MS. Comparative analysis of outer membrane protein sequences was visualised to reveal protein distribution within a panel of Campylobacter spp., identifying several C. jejuni-specific proteins. Smith-Waterman analyses of C. jejuni homologues revealed high sequence conservation amongst a number of hypothetical proteins, sequence heterogeneity of other proteins and several proteins which are absent in a proportion of strains.

  10. Human Reliability Analysis for In-Tank Precipitation Alignment and Startup of Emergency Purge Ventilation Equipment. Revision 3

    SciTech Connect

    Shapiro, B.J.; Britt, T.E.

    1994-10-01

    This report documents the methodology used for calculating the human error probability for establishing air based ventilation using emergency purge ventilation equipment on In-Tank Precipitation (ITP) processing tanks 48 and 49 after failure of the nitrogen purge system following a seismic event. The analyses were performed according to THERP (Technique for Human Error Rate Prediction) as described in NUREG/CR-1278-F, ``Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications.`` The calculated human error probabilities are provided as input to the Fault Tree Analysis for the ITP Nitrogen Purge System.

  11. Human reliability analysis for In-Tank Precipitation alignment and startup of emergency purge ventilation equipment. Revision 2

    SciTech Connect

    Olsen, L.M.; Shapiro, B.J.; Britt, T.E.

    1994-01-01

    This report documents the methodology used for calculating the human error probability for establishing air based ventilation using emergency purge ventilation equipment on In-Tank Precipitation (ITP) processing tanks 48 and 49 after a failure of the nitrogen purge system following a seismic event. The analyses were performed according to THERP (Technique for Human Error Rate Prediction) as described in NUREG/CR-1278-F, ``Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Application.`` The calculated human error probabilities are provided as input to the Fault Tree Analysis for the ITP Nitrogen Purge System.

  12. Collective alignment of polar filaments by molecular motors.

    PubMed

    Ziebert, F; Vershinin, M; Gross, S P; Aranson, I S

    2009-04-01

    We study the alignment of polar biofilaments, such as microtubules and actin, subject to the action of multiple molecular motors attached simultaneously to more than one filament. Focusing on a paradigm model of only two filaments interacting with multiple motors, we were able to investigate in detail the alignment dynamics. While almost no alignment occurs in the case of a single motor, the filaments become rapidly aligned due to the collective action of the motors. Our analysis shows that the alignment time is governed by the number of bound motors and the magnitude of the motors' stepping fluctuations. We predict that the time scale of alignment is in the order of seconds, much faster than that reported for passive crosslink-induced bundling. In vitro experiments on the alignment of microtubules by multiple-motor covered beads are in qualitative agreement. We also discuss another mode of fast alignment of filaments, namely the cooperation between motors and passive crosslinks.

  13. Phylogenetic analysis of the Australian rosella parrots (Platycercus) reveals discordance among molecules and plumage.

    PubMed

    Shipham, Ashlee; Schmidt, Daniel J; Joseph, Leo; Hughes, Jane M

    2015-10-01

    Relationships and species limits among the colourful Australian parrots known as rosellas (Platycercus) are contentious because of poorly understood patterns of parapatry, sympatry and hybridization as well as complex patterns of geographical replacement of phenotypic forms. Two subgenera are, however, conventionally recognised: Platycercus comprises the blue-cheeked crimson rosella complex (Crimson Rosella P. elegans and Green Rosella P. caledonicus), and Violania contains the remaining four currently recognised species (Pale-headed Rosella P. adscitus, Eastern Rosella P. eximius, Northern Rosella P. venustus, and Western Rosella P. icterotis). We used phylogenetic analysis of ten loci (one mitochondrial, eight autosomal and one z-linked) and several individuals per nominal species primarily to examine relationships within the subgenera, especially the relationships and species limits within Violania. Of these, P. adscitus and P. eximius have long been considered sister species or conspecific due to a morphology-based hybrid zone and an early phylogenetic analysis of mitochondrial DNA restriction fragment length polymorphisms. The multilocus phylogenetic analysis presented here supports an alternative hypothesis aligning P. adscitus and P. venustus as sister species. Using divergence rates published in other avian studies, we estimated the divergence between P. venustus and P. adscitus at 0.0148-0.6124MYA and that between the P. adscitus/P. venustus ancestor and P. eximius earlier at 0.1617-1.0816MYA, both within the Pleistocene. Discordant topologies among gene and species trees are discussed and proposed to be the result of historical gene flow and/or incomplete lineage sorting (ILS). In particular, we suggest that discordance between mitochondrial and nuclear data may be the result of asymmetrical mitochondrial introgression from P. adscitus into P. eximius. The biogeographical implications of our findings are discussed relative to similarly distributed groups

  14. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    ERIC Educational Resources Information Center

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  15. Family Wide Molecular Adaptations to Underground Life in African Mole-Rats Revealed by Phylogenomic Analysis.

    PubMed

    Davies, Kalina T J; Bennett, Nigel C; Tsagkogeorga, Georgia; Rossiter, Stephen J; Faulkes, Christopher G

    2015-12-01

    During their evolutionary radiation, mammals have colonized diverse habitats. Arguably the subterranean niche is the most inhospitable of these, characterized by reduced oxygen, elevated carbon dioxide, absence of light, scarcity of food, and a substrate that is energetically costly to burrow through. Of all lineages to have transitioned to a subterranean niche, African mole-rats are one of the most successful. Much of their ecological success can be attributed to a diet of plant storage organs, which has allowed them to colonize climatically varied habitats across sub-Saharan Africa, and has probably contributed to the evolution of their diverse social systems. Yet despite their many remarkable phenotypic specializations, little is known about molecular adaptations underlying these traits. To address this, we sequenced the transcriptomes of seven mole-rat taxa, including three solitary species, and combined new sequences with existing genomic data sets. Alignments of more than 13,000 protein-coding genes encompassed, for the first time, all six genera and the full spectrum of ecological and social variation in the clade. We detected positive selection within the mole-rat clade and along ancestral branches in approximately 700 genes including loci associated with tumorigenesis, aging, morphological development, and sociality. By combining these results with gene ontology annotation and protein-protein networks, we identified several clusters of functionally related genes. This family wide analysis of molecular evolution in mole-rats has identified a suite of positively selected genes, deepening our understanding of the extreme phenotypic traits exhibited by this group.

  16. Cluster Analysis of p53 Binding Site Sequences Reveals Subsets with Different Functions

    PubMed Central

    Lim, Ji-Hyun; Latysheva, Natasha S.; Iggo, Richard D.; Barker, Daniel

    2016-01-01

    p53 is an important regulator of cell cycle arrest, senescence, apoptosis and metabolism, and is frequently mutated in tumors. It functions as a tetramer, where each component dimer binds to a decameric DNA region known as a response element. We identify p53 binding site subtypes and examine the functional and evolutionary properties of these subtypes. We start with over 1700 known binding sites and, with no prior labeling, identify two sets of response elements by unsupervised clustering. When combined, they give rise to three types of p53 binding sites. We find that probabilistic and alignment-based assessments of cross-species conservation show no strong evidence of differential conservation between types of binding sites. In contrast, functional analysis of the genes most proximal to the binding sites provides strong bioinformatic evidence of functional differentiation between the three types of binding sites. Our results are consistent with recent structural data identifying two conformations of the L1 loop in the DNA binding domain, suggesting that they reflect biologically meaningful groups imposed by the p53 protein structure. PMID:27812278

  17. Meta-Analysis of Gene Expression Profiles in Acute Promyelocytic Leukemia Reveals Involved Pathways

    PubMed Central

    Jalili, Mahdi; Salehzadeh-Yazdi, Ali; Mohammadi, Saeed; Yaghmaie, Marjan; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran

    2017-01-01

    Background: Acute promyelocytic leukemia (APL) is a unique subtype of acute leukemia. APL is a curable disease; however, drug resistance, early mortality, disease relapse and treatment-related complications remain challenges in APL patient management. One issue underlying these challenges is that the molecular mechanisms of the disease are not sufficiently understood. Materials and Methods: In this study, we performed a meta-analysis of gene expression profiles derived from microarray experiments and explored the background of disease by functional and pathway analysis. Results: Our analysis revealed a gene signature with 406 genes that are up or down-regulated in APL. The pathway analysis determined that MAPK pathway and its involved elements such as JUN gene and AP-1 play important roles in APL pathogenesis along with insulin-like growth factor–binding protein-7. Conclusion: The results of this meta-analysis could be useful for developing more effective therapy strategies and new targets for diagnosis and drugs. PMID:28286608

  18. Genetic and Ultrastructural Analysis Reveals the Key Players and Initial Steps of Bacterial Magnetosome Membrane Biogenesis

    PubMed Central

    Kolinko, Isabel; Uebe, René; Schüler, Dirk

    2016-01-01

    Magnetosomes of magnetotactic bacteria contain well-ordered nanocrystals for magnetic navigation and have recently emerged as the most sophisticated model system to study the formation of membrane bounded organelles in prokaryotes. Magnetosome biosynthesis is thought to begin with the formation of a dedicated compartment, the magnetosome membrane (MM), in which the biosynthesis of a magnetic mineral is strictly controlled. While the biomineralization of magnetosomes and their subsequent assembly into linear chains recently have become increasingly well studied, the molecular mechanisms and early stages involved in MM formation remained poorly understood. In the Alphaproteobacterium Magnetospirillum gryphiswaldense, approximately 30 genes were found to control magnetosome biosynthesis. By cryo-electron tomography of several key mutant strains we identified the gene complement controlling MM formation in this model organism. Whereas the putative magnetosomal iron transporter MamB was most crucial for the process and caused the most severe MM phenotype upon elimination, MamM, MamQ and MamL were also required for the formation of wild-type-like MMs. A subset of seven genes (mamLQBIEMO) combined within a synthetic operon was sufficient to restore the formation of intracellular membranes in the absence of other genes from the key mamAB operon. Tracking of de novo magnetosome membrane formation by genetic induction revealed that magnetosomes originate from unspecific cytoplasmic membrane locations before alignment into coherent chains. Our results indicate that no single factor alone is essential for MM formation, which instead is orchestrated by the cumulative action of several magnetosome proteins. PMID:27286560

  19. Sparse alignment for robust tensor learning.

    PubMed

    Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming

    2014-10-01

    Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.

  20. Effect of rotational-state-dependent molecular alignment on the optical dipole force

    NASA Astrophysics Data System (ADS)

    Kim, Lee Yeong; Lee, Ju Hyeon; Kim, Hye Ah; Kwak, Sang Kyu; Friedrich, Bretislav; Zhao, Bum Suk

    2016-07-01

    The properties of molecule-optical elements such as lenses or prisms based on the interaction of molecules with optical fields depend in a crucial way on the molecular quantum state and its alignment created by the optical field. Herein, we consider the effects of state-dependent alignment in estimating the optical dipole force acting on the molecules and, to this end, introduce an effective polarizability which takes proper account of molecular alignment and is directly related to the alignment-dependent optical dipole force. We illustrate the significance of including molecular alignment in the optical dipole force by a trajectory study that compares previously used approximations with the present approach. The trajectory simulations were carried out for an ensemble of linear molecules subject to either propagating or standing-wave optical fields for a range of temperatures and laser intensities. The results demonstrate that the alignment-dependent effective polarizability can serve to provide correct estimates of the optical dipole force, on which a state-selection method applicable to nonpolar molecules could be based. We note that an analogous analysis of the forces acting on polar molecules subject to an inhomogeneous static electric field reveals a similarly strong dependence on molecular orientation.

  1. Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells.

    PubMed

    Roellig, Daniela; Tan-Cabugao, Johanna; Esaian, Sevan; Bronner, Marianne E

    2017-03-29

    The 'neural plate border' of vertebrate embryos contains precursors of neural crest and placode cells, both defining vertebrate characteristics. How these lineages segregate from neural and epidermal fates has been a matter of debate. We address this by performing a fine-scale quantitative temporal analysis of transcription factor expression in the neural plate border of chick embryos. The results reveal significant overlap of transcription factors characteristic of multiple lineages in individual border cells from gastrula through neurula stages. Cell fate analysis using a Sox2 (neural) enhancer reveals that cells that are initially Sox2+ cells can contribute not only to neural tube but also to neural crest and epidermis. Moreover, modulating levels of Sox2 or Pax7 alters the apportionment of neural tube versus neural crest fates. Our results resolve a long-standing question and suggest that many individual border cells maintain ability to contribute to multiple ectodermal lineages until or beyond neural tube closure.

  2. A systematic review and meta-analysis of experimental clinical evidence on initial aligning archwires and archwire sequences.

    PubMed

    Papageorgiou, S N; Konstantinidis, I; Papadopoulou, K; Jäger, A; Bourauel, C

    2014-11-01

    The aim of the study was to assess treatment effects and potential side effects of different archwires used on patients receiving orthodontic therapy. Electronic and manual unrestricted searches were conducted in 19 databases including MEDLINE, Cochrane Library, and Google Scholar until April 2012 to identify randomized controlled trials (RCTs) and quasi-RCTs. After duplicate study selection, data extraction, risk of bias assessment with the Cochrane risk of bias tool, and narrative analysis, mean differences (MDs) with confidence intervals (CIs) of similar studies were pooled using a random-effects model and evaluated with GRADE. A total of 16 RCTs were included assessing different archwire characteristics on 1108 patients. Regarding initial archwires, meta-analysis of two trials found slightly greater irregularity correction with an austenitic-active nickel-titanium (NiTi) compared with an martensitic-stabilized NiTi archwire (corresponding to MD: 1.11 mm, 95% CI: -0.38 to 2.61). Regarding archwire sequences, meta-analysis of two trials found it took patient treated with a sequence of martensitic-active copper-nickel-titanium (CuNiTi) slightly longer to reach the working archwire (MD: 0.54 months, 95% CI: -0.87 to 1.95) compared with a martensitic-stabilized NiTi sequence. However, patients treated with a sequence of martensitic-active CuNiTi archwires reported general greater pain intensity on the Likert scale 4 h and 1 day after placement of each archwire, compared with a martensitic-stabilized NiTi sequence. Although confidence in effect estimates ranged from moderate to high, meta-analyses could be performed only for limited comparisons, while inconsistency might pose a threat to some of them. At this point, there is insufficient data to make recommendations about the majority of initial archwires or for a specific archwire sequence.

  3. Alignment method for spectrograms of DNA sequences.

    PubMed

    Bucur, Anca; van Leeuwen, Jasper; Dimitrova, Nevenka; Mittal, Chetan

    2010-01-01

    DNA spectrograms express the periodicities of each of the four nucleotides A, T, C, and G in one or several genomic sequences to be analyzed. DNA spectral analysis can be applied to systematically investigate DNA patterns, which may correspond to relevant biological features. As opposed to looking at nucleotide sequences, spectrogram analysis may detect structural characteristics in very long sequences that are not identifiable by sequence alignment. Alignment of DNA spectrograms can be used to facilitate analysis of very long sequences or entire genomes at different resolutions. Standard clustering algorithms have been used in spectral analysis to find strong patterns in spectra. However, as they use a global distance metric, these algorithms can only detect strong patterns coexisting in several frequencies. In this paper, we propose a new method and several algorithms for aligning spectra suitable for efficient spectral analysis and allowing for the easy detection of strong patterns in both single frequencies and multiple frequencies.

  4. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    PubMed Central

    2013-01-01

    Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 103 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed. Importantly, cellulases of some GH families are present in fungi that are not known to have cellulose-degrading ability. In addition, our results also showed that in general, plant pathogenic fungi have the highest number of CAZymes. Biotrophic fungi tend to have fewer CAZymes than necrotrophic and hemibiotrophic fungi. Pathogens of dicots often contain more pectinases than fungi infecting monocots. Interestingly, besides yeasts, many saprophytic fungi that are highly active in degrading plant biomass contain fewer CAZymes than plant pathogenic fungi. Furthermore, analysis of the gene expression profile of the wheat scab fungus Fusarium graminearum revealed that most of the CAZyme genes related to cell wall degradation were up-regulated during plant infection. Phylogenetic analysis also

  5. Magnetically Aligned Supramolecular Hydrogels

    PubMed Central

    Wallace, Matthew; Cardoso, Andre Zamith; Frith, William J; Iggo, Jonathan A; Adams, Dave J

    2014-01-01

    The magnetic-field-induced alignment of the fibrillar structures present in an aqueous solution of a dipeptide gelator, and the subsequent retention of this alignment upon transformation to a hydrogel upon the addition of CaCl2 or upon a reduction in solution pH is reported. Utilising the switchable nature of the magnetic field coupled with the slow diffusion of CaCl2, it is possible to precisely control the extent of anisotropy across a hydrogel, something that is generally very difficult to do using alternative methods. The approach is readily extended to other compounds that form viscous solutions at high pH. It is expected that this work will greatly expand the utility of such low-molecular-weight gelators (LMWG) in areas where alignment is key. PMID:25345918

  6. Improved docking alignment system

    NASA Technical Reports Server (NTRS)

    Monford, Leo G. (Inventor)

    1988-01-01

    Improved techniques are provided for the alignment of two objects. The present invention is particularly suited for 3-D translation and 3-D rotational alignment of objects in outer space. A camera is affixed to one object, such as a remote manipulator arm of the spacecraft, while the planar reflective surface is affixed to the other object, such as a grapple fixture. A monitor displays in real-time images from the camera such that the monitor displays both the reflected image of the camera and visible marking on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.

  7. Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis.

    PubMed

    Wen, Dingqiao; Yu, Yun; Hahn, Matthew W; Nakhleh, Luay

    2016-06-01

    The role of hybridization and subsequent introgression has been demonstrated in an increasing number of species. Recently, Fontaine et al. (Science, 347, 2015, 1258524) conducted a phylogenomic analysis of six members of the Anopheles gambiae species complex. Their analysis revealed a reticulate evolutionary history and pointed to extensive introgression on all four autosomal arms. The study further highlighted the complex evolutionary signals that the co-occurrence of incomplete lineage sorting (ILS) and introgression can give rise to in phylogenomic analyses. While tree-based methodologies were used in the study, phylogenetic networks provide a more natural model to capture reticulate evolutionary histories. In this work, we reanalyse the Anopheles data using a recently devised framework that combines the multispecies coalescent with phylogenetic networks. This framework allows us to capture ILS and introgression simultaneously, and forms the basis for statistical methods for inferring reticulate evolutionary histories. The new analysis reveals a phylogenetic network with multiple hybridization events, some of which differ from those reported in the original study. To elucidate the extent and patterns of introgression across the genome, we devise a new method that quantifies the use of reticulation branches in the phylogenetic network by each genomic region. Applying the method to the mosquito data set reveals the evolutionary history of all the chromosomes. This study highlights the utility of 'network thinking' and the new insights it can uncover, in particular in phylogenomic analyses of large data sets with extensive gene tree incongruence.

  8. Proteomics Analysis of Ovarian Cancer Cell Lines and Tissues Reveals Drug Resistance-associated Proteins

    PubMed Central

    CRUZ*, ISA N.; COLEY*, HELEN M.; KRAMER, HOLGER B.; MADHURI, THUMULURU KAVITAH; SAFUWAN, NUR A.M.; ANGELINO, ANA RITA; YANG, MIN

    2016-01-01

    Background: Carboplatin and paclitaxel form the cornerstone of chemotherapy for epithelial ovarian cancer, however, drug resistance to these agents continues to present challenges. Despite extensive research, the mechanisms underlying this resistance remain unclear. Materials and Methods: A 2D-gel proteomics method was used to analyze protein expression levels of three human ovarian cancer cell lines and five biopsy samples. Representative proteins identified were validated via western immunoblotting. Ingenuity pathway analysis revealed metabolomic pathway changes. Results: A total of 189 proteins were identified with restricted criteria. Combined treatment targeting the proteasome-ubiquitin pathway resulted in re-sensitisation of drug-resistant cells. In addition, examination of five surgical biopsies of ovarian tissues revealed α-enolase (ENOA), elongation factor Tu, mitochondrial (EFTU), glyceraldehyde-3-phosphate dehydrogenase (G3P), stress-70 protein, mitochondrial (GRP75), apolipoprotein A-1 (APOA1), peroxiredoxin (PRDX2) and annexin A (ANXA) as candidate biomarkers of drug-resistant disease. Conclusion: Proteomics combined with pathway analysis provided information for an effective combined treatment approach overcoming drug resistance. Analysis of cell lines and tissues revealed potential prognostic biomarkers for ovarian cancer. *These Authors contributed equally to this study. PMID:28031236

  9. MUSE optical alignment procedure

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Loupias, Magali; Kosmalski, Johan; Anwand, Heiko; Bacon, Roland; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dubois, Jean-Pierre; Dupuy, Christophe; Kelz, Andreas; Lizon, Jean-Louis; Nicklas, Harald; Parès, Laurent; Remillieux, Alban; Seifert, Walter; Valentin, Hervé; Xu, Wenli

    2012-09-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation VLT integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently assembling and testing MUSE in the Integration Hall of the Observatoire de Lyon for the Preliminary Acceptance in Europe, scheduled for 2013. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2011, all MUSE subsystems were integrated, aligned and tested independently in each institute. After validations, the systems were shipped to the P.I. institute at Lyon and were assembled in the Integration Hall This paper describes the end-to-end optical alignment procedure of the MUSE instrument. The design strategy, mixing an optical alignment by manufacturing (plug and play approach) and few adjustments on key components, is presented. We depict the alignment method for identifying the optical axis using several references located in pupil and image planes. All tools required to perform the global alignment between each subsystem are described. The success of this alignment approach is demonstrated by the good results for the MUSE image quality. MUSE commissioning at the VLT (Very Large Telescope) is planned for 2013.

  10. Spatial and Kinematic Alignments between Central and Satellite Halos

    NASA Astrophysics Data System (ADS)

    Faltenbacher, A.; Jing, Y. P.; Li, Cheng; Mao, Shude; Mo, H. J.; Pasquali, Anna; van den Bosch, Frank C.

    2008-03-01

    Based on a cosmological N-body simulation, we analyze spatial and kinematic alignments of satellite halos within 6 times the virial radius of group-sized host halos (rvir). We measure three different types of spatial alignment: halo alignment between the orientation of the group central substructure (GCS) and the distribution of its satellites, radial alignment between the orientation of a satellite and the direction toward its GCS, and direct alignment between the orientation of the GCS and that of its satellites. Analogously, we use the directions of satellite velocities and probe three further types of alignment: the radial velocity alignment between the satellite velocity and the connecting line between the satellite and GCS, the halo velocity alignment between the orientation of the GCS and satellite velocities, and the autovelocity alignment between the satellite orientations and their velocities. We find that satellites are preferentially located along the major axis of the GCS within at least 6rvir (the range probed here). Furthermore, satellites preferentially point toward the GCS. The most pronounced signal is detected on small scales, but a detectable signal extends out to ~6rvir. The direct alignment signal is weaker; however, a systematic trend is visible at distances lesssim2rvir. All velocity alignments are highly significant on small scales. The halo velocity alignment is constant within 2rvir and declines rapidly beyond. The halo and the autovelocity alignments are maximal at small scales and disappear beyond 1rvir and 1.5rvir, respectively. Our results suggest that the halo alignment reflects the filamentary large-scale structure that extends far beyond the virial radii of the groups. In contrast, the main contribution to the radial alignment arises from the adjustment of the satellite orientations in the group tidal field. The projected data reveal good agreement with recent results derived from large galaxy surveys.

  11. New molecular phenotypes in the dst mutants of Arabidopsis revealed by DNA microarray analysis.

    PubMed

    Pérez-Amador, M A; Lidder, P; Johnson, M A; Landgraf, J; Wisman, E; Green, P J

    2001-12-01

    In this study, DNA microarray analysis was used to expand our understanding of the dst1 mutant of Arabidopsis. The dst (downstream) mutants were isolated originally as specifically increasing the steady state level and the half-life of DST-containing transcripts. As such, txhey offer a unique opportunity to study rapid sequence-specific mRNA decay pathways in eukaryotes. These mutants show a threefold to fourfold increase in mRNA abundance for two transgenes and an endogenous gene, all containing DST elements, when examined by RNA gel blot analysis; however, they show no visible aberrant phenotype. Here, we use DNA microarrays to identify genes with altered expression levels in dst1 compared with the parental plants. In addition to verifying the increase in the transgene mRNA levels, which were used to isolate these mutants, we were able to identify new genes with altered mRNA abundance in dst1. RNA gel blot analysis confirmed the microarray data for all genes tested and also was used to catalog the first molecular differences in gene expression between the dst1 and dst2 mutants. These differences revealed previously unknown molecular phenotypes for the dst mutants that will be helpful in future analyses. Cluster analysis of genes altered in dst1 revealed new coexpression patterns that prompt new hypotheses regarding the nature of the dst1 mutation and a possible role of the DST-mediated mRNA decay pathway in plants.

  12. Proteomic analysis reveals diverse proline hydroxylation-mediated oxygen-sensing cellular pathways in cancer cells

    PubMed Central

    Liu, Bing; Gao, Yankun; Ruan, Hai-Bin; Chen, Yue

    2016-01-01

    Proline hydroxylation is a critical cellular mechanism regulating oxygen-response pathways in tumor initiation and progression. Yet, its substrate diversity and functions remain largely unknown. Here, we report a system-wide analysis to characterize proline hydroxylation substrates in cancer cells using an immunoaffinity-purification assisted proteomics strategy. We identified 562 sites from 272 proteins in HeLa cells. Bioinformatic analysis revealed that proline hydroxylation substrates are significantly enriched with mRNA processing and stress-response cellular pathways with canonical and diverse flanking sequence motifs. Structural analysis indicates a significant enrichment of proline hydroxylation participating in the secondary structure of substrate proteins. Our study identified and validated Brd4, a key transcription factor, as a novel proline hydroxylation substrate. Functional analysis showed that the inhibition of proline hydroxylation pathway significantly reduced the proline hydroxylation abundance on Brd4 and affected Brd4-mediated transcriptional activity as well as cell proliferation in AML leukemia cells. Taken together, our study identified a broad regulatory role of proline hydroxylation in cellular oxygen-sensing pathways and revealed potentially new targets that dynamically respond to hypoxia microenvironment in tumor cells. PMID:27764789

  13. Family Wide Molecular Adaptations to Underground Life in African Mole-Rats Revealed by Phylogenomic Analysis

    PubMed Central

    Davies, Kalina T.J.; Bennett, Nigel C.; Tsagkogeorga, Georgia; Rossiter, Stephen J.; Faulkes, Christopher G.

    2015-01-01

    During their evolutionary radiation, mammals have colonized diverse habitats. Arguably the subterranean niche is the most inhospitable of these, characterized by reduced oxygen, elevated carbon dioxide, absence of light, scarcity of food, and a substrate that is energetically costly to burrow through. Of all lineages to have transitioned to a subterranean niche, African mole-rats are one of the most successful. Much of their ecological success can be attributed to a diet of plant storage organs, which has allowed them to colonize climatically varied habitats across sub-Saharan Africa, and has probably contributed to the evolution of their diverse social systems. Yet despite their many remarkable phenotypic specializations, little is known about molecular adaptations underlying these traits. To address this, we sequenced the transcriptomes of seven mole-rat taxa, including three solitary species, and combined new sequences with existing genomic data sets. Alignments of more than 13,000 protein-coding genes encompassed, for the first time, all six genera and the full spectrum of ecological and social variation in the clade. We detected positive selection within the mole-rat clade and along ancestral branches in approximately 700 genes including loci associated with tumorigenesis, aging, morphological development, and sociality. By combining these results with gene ontology annotation and protein–protein networks, we identified several clusters of functionally related genes. This family wide analysis of molecular evolution in mole-rats has identified a suite of positively selected genes, deepening our understanding of the extreme phenotypic traits exhibited by this group. PMID:26318402

  14. Aligned-or Not?

    ERIC Educational Resources Information Center

    Roseman, Jo Ellen; Koppal, Mary

    2015-01-01

    When state leaders and national partners in the development of the Next Generation Science Standards met to consider implementation strategies, states and school districts wanted to know which materials were aligned to the new standards. The answer from the developers was short but not sweet: You won't find much now, and it's going to…

  15. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  16. Curriculum Alignment: Establishing Coherence

    ERIC Educational Resources Information Center

    Gagné, Philippe; Dumont, Laurence; Brunet, Sabine; Boucher, Geneviève

    2013-01-01

    In this paper, we present a step-by-step guide to implement a curricular alignment project, directed at professional development and student support, and developed in a higher education French as a second language department. We outline best practices and preliminary results from our experience and provide ways to adapt our experience to other…

  17. Asymmetric Genome Organization in an RNA Virus Revealed via Graph-Theoretical Analysis of Tomographic Data

    PubMed Central

    Geraets, James A.; Dykeman, Eric C.; Stockley, Peter G.; Ranson, Neil A.; Twarock, Reidun

    2015-01-01

    Cryo-electron microscopy permits 3-D structures of viral pathogens to be determined in remarkable detail. In particular, the protein containers encapsulating viral genomes have been determined to high resolution using symmetry averaging techniques that exploit the icosahedral architecture seen in many viruses. By contrast, structure determination of asymmetric components remains a challenge, and novel analysis methods are required to reveal such features and characterize their functional roles during infection. Motivated by the important, cooperative roles of viral genomes in the assembly of single-stranded RNA viruses, we have developed a new analysis method that reveals the asymmetric structural organization of viral genomes in proximity to the capsid in such viruses. The method uses geometric constraints on genome organization, formulated based on knowledge of icosahedrally-averaged reconstructions and the roles of the RNA-capsid protein contacts, to analyse cryo-electron tomographic data. We apply this method to the low-resolution tomographic data of a model virus and infer the unique asymmetric organization of its genome in contact with the protein shell of the capsid. This opens unprecedented opportunities to analyse viral genomes, revealing conserved structural features and mechanisms that can be targeted in antiviral drug design. PMID:25793998

  18. Local coexistence of VO2 phases revealed by deep data analysis

    SciTech Connect

    Strelcov, Evgheni; Ievlev, Anton; Tselev, Alexander; Kolmakov, Andrei; Kalinin, Sergei V.

    2016-07-07

    We report a synergistic approach of micro-Raman spectroscopic mapping and deep data analysis to study the distribution of crystallographic phases and ferroelastic domains in a defected Al-doped VO2 microcrystal. Bayesian linear unmixing revealed an uneven distribution of the T phase, which is stabilized by the surface defects and uneven local doping that went undetectable by other classical analysis techniques such as PCA and SIMPLISMA. This work demonstrates the impact of information recovery via statistical analysis and full mapping in spectroscopic studies of vanadium dioxide systems, which is commonly substituted by averaging or single point-probing approaches, both of which suffer from information misinterpretation due to low resolving power.

  19. Local coexistence of VO2 phases revealed by deep data analysis

    PubMed Central

    Strelcov, Evgheni; Ievlev, Anton; Belianinov, Alex; Tselev, Alexander; Kolmakov, Andrei; Kalinin, Sergei V.

    2016-01-01

    We report a synergistic approach of micro-Raman spectroscopic mapping and deep data analysis to study the distribution of crystallographic phases and ferroelastic domains in a defected Al-doped VO2 microcrystal. Bayesian linear unmixing revealed an uneven distribution of the T phase, which is stabilized by the surface defects and uneven local doping that went undetectable by other classical analysis techniques such as PCA and SIMPLISMA. This work demonstrates the impact of information recovery via statistical analysis and full mapping in spectroscopic studies of vanadium dioxide systems, which is commonly substituted by averaging or single point-probing approaches, both of which suffer from information misinterpretation due to low resolving power. PMID:27384473

  20. Local coexistence of VO2 phases revealed by deep data analysis

    DOE PAGES

    Strelcov, Evgheni; Ievlev, Anton; Tselev, Alexander; ...

    2016-07-07

    We report a synergistic approach of micro-Raman spectroscopic mapping and deep data analysis to study the distribution of crystallographic phases and ferroelastic domains in a defected Al-doped VO2 microcrystal. Bayesian linear unmixing revealed an uneven distribution of the T phase, which is stabilized by the surface defects and uneven local doping that went undetectable by other classical analysis techniques such as PCA and SIMPLISMA. This work demonstrates the impact of information recovery via statistical analysis and full mapping in spectroscopic studies of vanadium dioxide systems, which is commonly substituted by averaging or single point-probing approaches, both of which suffer frommore » information misinterpretation due to low resolving power.« less

  1. Cell Alignment Driven by Mechanically Induced Collagen Fiber Alignment in Collagen/Alginate Coatings

    PubMed Central

    Chaubaroux, Christophe; Perrin-Schmitt, Fabienne; Senger, Bernard; Vidal, Loïc; Voegel, Jean-Claude; Schaaf, Pierre; Haikel, Youssef; Boulmedais, Fouzia; Lavalle, Philippe

    2015-01-01

    For many years it has been a major challenge to regenerate damaged tissues using synthetic or natural materials. To favor the healing processes after tendon, cornea, muscle, or brain injuries, aligned collagen-based architectures are of utmost interest. In this study, we define a novel aligned coating based on a collagen/alginate (COL/ALG) multilayer film. The coating exhibiting a nanofibrillar structure is cross-linked with genipin for stability in physiological conditions. By stretching COL/ALG-coated polydimethylsiloxane substrates, we developed a versatile method to align the collagen fibrils of the polymeric coating. Assays on cell morphology and alignment were performed to investigate the properties of these films. Microscopic assessments revealed that cells align with the stretched collagen fibrils of the coating. The degree of alignment is tuned by the stretching rate (i.e., the strain) of the COL/ALG-coated elastic substrate. Such coatings are of great interest for strategies that require aligned nanofibrillar biological material as a substrate for tissue engineering. PMID:25658028

  2. Multilocus Sequence Analysis of Nectar Pseudomonads Reveals High Genetic Diversity and Contrasting Recombination Patterns

    PubMed Central

    Álvarez-Pérez, Sergio; de Vega, Clara; Herrera, Carlos M.

    2013-01-01

    The genetic and evolutionary relationships among floral nectar-dwelling Pseudomonas ‘sensu stricto’ isolates associated to South African and Mediterranean plants were investigated by multilocus sequence analysis (MLSA) of four core housekeeping genes (rrs, gyrB, rpoB and rpoD). A total of 35 different sequence types were found for the 38 nectar bacterial isolates characterised. Phylogenetic analyses resulted in the identification of three main clades [nectar groups (NGs) 1, 2 and 3] of nectar pseudomonads, which were closely related to five intrageneric groups: Pseudomonas oryzihabitans (NG 1); P. fluorescens, P. lutea and P. syringae (NG 2); and P. rhizosphaerae (NG 3). Linkage disequilibrium analysis pointed to a mostly clonal population structure, even when the analysis was restricted to isolates from the same floristic region or belonging to the same NG. Nevertheless, signatures of recombination were observed for NG 3, which exclusively included isolates retrieved from the floral nectar of insect-pollinated Mediterranean plants. In contrast, the other two NGs comprised both South African and Mediterranean isolates. Analyses relating diversification to floristic region and pollinator type revealed that there has been more unique evolution of the nectar pseudomonads within the Mediterranean region than would be expected by chance. This is the first work analysing the sequence of multiple loci to reveal geno- and ecotypes of nectar bacteria. PMID:24116076

  3. Analysis of hydrocarbon-contaminated groundwater metagenomes as revealed by high-throughput sequencing.

    PubMed

    Abbai, Nathlee S; Pillay, Balakrishna

    2013-07-01

    The tendency for chlorinated aliphatics and aromatic hydrocarbons to accumulate in environments such as groundwater and sediments poses a serious environmental threat. In this study, the metabolic capacity of hydrocarbon (aromatics and chlorinated aliphatics)-contaminated groundwater in the KwaZulu-Natal province of South Africa has been elucidated for the first time by analysis of pyrosequencing data. The taxonomic data revealed that the metagenomes were dominated by the phylum Proteobacteria (mainly Betaproteobacteria). In addition, Flavobacteriales, Sphingobacteria, Burkholderiales, and Rhodocyclales were the predominant orders present in the individual metagenomes. These orders included microorganisms (Flavobacteria, Dechloromonas aromatica RCB, and Azoarcus) involved in the degradation of aromatic compounds and various other hydrocarbons that were present in the groundwater. Although the metabolic reconstruction of the metagenome represented composite cell networks, the information obtained was sufficient to address questions regarding the metabolic potential of the microbial communities and to correlate the data to the contamination profile of the groundwater. Genes involved in the degradation of benzene and benzoate, heavy metal-resistance mechanisms appeared to provide a survival strategy used by the microbial communities. Analysis of the pyrosequencing-derived data revealed that the metagenomes represent complex microbial communities that have adapted to the geochemical conditions of the groundwater as evidenced by the presence of key enzymes/genes conferring resistance to specific contaminants. Thus, pyrosequencing analysis of the metagenomes provided insights into the microbial activities in hydrocarbon-contaminated habitats.

  4. Permanent bending and alignment of ZnO nanowires.

    PubMed

    Borschel, Christian; Spindler, Susann; Lerose, Damiana; Bochmann, Arne; Christiansen, Silke H; Nietzsche, Sandor; Oertel, Michael; Ronning, Carsten

    2011-05-06

    Ion beams can be used to permanently bend and re-align nanowires after growth. We have irradiated ZnO nanowires with energetic ions, achieving bending and alignment in different directions. Not only the bending of single nanowires is studied in detail, but also the simultaneous alignment of large ensembles of ZnO nanowires. Computer simulations reveal how the bending is initiated by ion beam induced damage. Detailed structural characterization identifies dislocations to relax stresses and make the bending and alignment permanent, even surviving annealing procedures.

  5. Erasing Errors due to Alignment Ambiguity When Estimating Positive Selection

    PubMed Central

    Redelings, Benjamin

    2014-01-01

    Current estimates of diversifying positive selection rely on first having an accurate multiple sequence alignment. Simulation studies have shown that under biologically plausible conditions, relying on a single estimate of the alignment from commonly used alignment software can lead to unacceptably high false-positive rates in detecting diversifying positive selection. We present a novel statistical method that eliminates excess false positives resulting from alignment error by jointly estimating the degree of positive selection and the alignment under an evolutionary model. Our model treats both substitutions and insertions/deletions as sequence changes on a tree and allows site heterogeneity in the substitution process. We conduct inference starting from unaligned sequence data by integrating over all alignments. This approach naturally accounts for ambiguous alignments without requiring ambiguously aligned sites to be identified and removed prior to analysis. We take a Bayesian approach and conduct inference using Markov chain Monte Carlo to integrate over all alignments on a fixed evolutionary tree topology. We introduce a Bayesian version of the branch-site test and assess the evidence for positive selection using Bayes factors. We compare two models of differing dimensionality using a simple alternative to reversible-jump methods. We also describe a more accurate method of estimating the Bayes factor using Rao-Blackwellization. We then show using simulated data that jointly estimating the alignment and the presence of positive selection solves the problem with excessive false positives from erroneous alignments and has nearly the same power to detect positive selection as when the true alignment is known. We also show that samples taken from the posterior alignment distribution using the software BAli-Phy have substantially lower alignment error compared with MUSCLE, MAFFT, PRANK, and FSA alignments. PMID:24866534

  6. Ultralight anisotropic foams from layered aligned carbon nanotube sheets.

    PubMed

    Faraji, Shaghayegh; Stano, Kelly L; Yildiz, Ozkan; Li, Ang; Zhu, Yuntian; Bradford, Philip D

    2015-10-28

    In this work, we present large scale, ultralight aligned carbon nanotube (CNT) structures which have densities an order of magnitude lower than CNT arrays, have tunable properties and exhibit resiliency after compression. By stacking aligned sheets of carbon nanotubes and then infiltrating with a pyrolytic carbon (PyC), resilient foam-like materials were produced that exhibited complete recovery from 90% compressive strain. With density as low as 3.8 mg cm(-3), the foam structure is over 500 times less dense than bulk graphite. Microscopy revealed that PyC coated the junctions among CNTs, and also increased CNT surface roughness. These changes in the morphology explain the transition from inelastic behavior to foam-like recovery of the layered CNT sheet structure. Mechanical and thermal properties of the foams were tuned for different applications through variation of PyC deposition duration while dynamic mechanical analysis showed no change in mechanical properties over a large temperature range. Observation of a large and linear electrical resistance change during compression of the aligned CNT/carbon (ACNT/C) foams makes strain/pressure sensors a relevant application. The foams have high oil absorption capacities, up to 275 times their own weight, which suggests they may be useful in water treatment and oil spill cleanup. Finally, the ACNT/C foam's high porosity, surface area and stability allow for demonstration of the foams as catalyst support structures.

  7. The relationship between periodic dinucleotides and the nucleosomal DNA deformation revealed by normal mode analysis

    NASA Astrophysics Data System (ADS)

    Wang, Debby D.; Yan, Hong

    2011-12-01

    Nucleosomes, which contain DNA and proteins, are the basic unit of eukaryotic chromatins. Polymers such as DNA and proteins are dynamic, and their conformational changes can lead to functional changes. Periodic dinucleotide patterns exist in nucleosomal DNA chains and play an important role in the nucleosome structure. In this paper, we use normal mode analysis to detect significant structural deformations of nucleosomal DNA and investigate the relationship between periodic dinucleotides and DNA motions. We have found that periodic dinucleotides are usually located at the peaks or valleys of DNA and protein motions, revealing that they dominate the nucleosome dynamics. Also, a specific dinucleotide pattern CA/TG appears most frequently.

  8. Correction: Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi

    PubMed Central

    2014-01-01

    Abstract The version of this article published in BMC Genomics 2013, 14: 274, contains 9 unpublished genomes (Botryobasidium botryosum, Gymnopus luxurians, Hypholoma sublateritium, Jaapia argillacea, Hebeloma cylindrosporum, Conidiobolus coronatus, Laccaria amethystina, Paxillus involutus, and P. rubicundulus) downloaded from JGI website. In this correction, we removed these genomes after discussion with editors and data producers whom we should have contacted before downloading these genomes. Removing these data did not alter the principle results and conclusions of our original work. The relevant Figures 1, 2, 3, 4 and 6; and Table 1 have been revised. Additional files 1, 3, 4, and 5 were also revised. We would like to apologize for any confusion or inconvenience this may have caused. Background Fungi produce a variety of carbohydrate activity enzymes (CAZymes) for the degradation of plant polysaccharide materials to facilitate infection and/or gain nutrition. Identifying and comparing CAZymes from fungi with different nutritional modes or infection mechanisms may provide information for better understanding of their life styles and infection models. To date, over hundreds of fungal genomes are publicly available. However, a systematic comparative analysis of fungal CAZymes across the entire fungal kingdom has not been reported. Results In this study, we systemically identified glycoside hydrolases (GHs), polysaccharide lyases (PLs), carbohydrate esterases (CEs), and glycosyltransferases (GTs) as well as carbohydrate-binding modules (CBMs) in the predicted proteomes of 94 representative fungi from Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota. Comparative analysis of these CAZymes that play major roles in plant polysaccharide degradation revealed that fungi exhibit tremendous diversity in the number and variety of CAZymes. Among them, some families of GHs and CEs are the most prevalent CAZymes that are distributed in all of the fungi analyzed

  9. MUSE alignment onto VLT

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dupuy, Christophe; Jarno, Aurélien; Lizon, Jean-Louis; Migniau, Jean-Emmanuel; Nicklas, Harald; Piqueras, Laure

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transported, fully aligned and without any optomechanical dismounting, onto VLT telescope where the first light was overcame the 7th of February, 2014. This paper describes the alignment procedure of the whole MUSE instrument with respect to the Very Large Telescope (VLT). It describes how 6 tons could be move with accuracy better than 0.025mm and less than 0.25 arcmin in order to reach alignment requirements. The success

  10. Aligning Biomolecular Networks Using Modular Graph Kernels

    NASA Astrophysics Data System (ADS)

    Towfic, Fadi; Greenlee, M. Heather West; Honavar, Vasant

    Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.

  11. Scanning electron microscopy analysis of the growth of dental plaque on the surfaces of removable orthodontic aligners after the use of different cleaning methods

    PubMed Central

    Levrini, Luca; Novara, Francesca; Margherini, Silvia; Tenconi, Camilla; Raspanti, Mario

    2015-01-01

    Background Advances in orthodontics are leading to the use of minimally invasive technologies, such as transparent removable aligners, and are able to meet high demands in terms of performance and esthetics. However, the most correct method of cleaning these appliances, in order to minimize the effects of microbial colonization, remains to be determined. Purpose The aim of the present study was to identify the most effective method of cleaning removable orthodontic aligners, analyzing the growth of dental plaque as observed under scanning electron microscopy. Methods Twelve subjects were selected for the study. All were free from caries and periodontal disease and were candidates for orthodontic therapy with invisible orthodontic aligners. The trial had a duration of 6 weeks, divided into three 2-week stages, during which three sets of aligners were used. In each stage, the subjects were asked to use a different method of cleaning their aligners: 1) running water (control condition); 2) effervescent tablets containing sodium carbonate and sulfate crystals followed by brushing with a toothbrush; and 3) brushing alone (with a toothbrush and toothpaste). At the end of each 2-week stage, the surfaces of the aligners were analyzed under scanning electron microscopy. Results The best results were obtained with brushing combined with the use of sodium carbonate and sulfate crystals; brushing alone gave slightly inferior results. Conclusion On the basis of previous literature results relating to devices in resin, studies evaluating the reliability of domestic ultrasonic baths for domestic use should be encouraged. At present, pending the availability of experimental evidence, it can be suggested that dental hygienists should strongly advise patients wearing orthodontic aligners to clean them using a combination of brushing and commercially available tablets for cleaning oral appliances. PMID:26719726

  12. Chromosome-specific segmentation revealed by structural analysis of individually isolated chromosomes.

    PubMed

    Kitada, Kunio; Taima, Akira; Ogasawara, Kiyomoto; Metsugi, Shouichi; Aikawa, Satoko

    2011-04-01

    Analysis of structural rearrangements at the individual chromosomal level is still technologically challenging. Here we optimized a chromosome isolation method using fluorescent marker-assisted laser-capture and laser-beam microdissection and applied it to structural analysis of two aberrant chromosomes found in a lung cancer cell line. A high-density array-comparative genomic hybridization (array-CGH) analysis of DNA samples prepared from each of the chromosomes revealed that these two chromosomes contained 296 and 263 segments, respectively, ranging from 1.5 kb to 784.3 kb in size, derived from different portions of chromosome 8. Among these segments, 242 were common in both aberrant chromosomes, but 75 were found to be chromosome-specific. Sequences of 263 junction sites connecting the ends of segments were determined using a PCR/Sanger-sequencing procedure. Overlapping microhomologies were found at 169 junction sites. Junction partners came from various portions of chromosome 8 and no biased pattern in the positional distribution of junction partners was detected. These structural characteristics suggested the occurrence of random fragmentation of the entire chromosome 8 followed by random rejoining of these fragments. Based on that, we proposed a model to explain how these aberrant chromosomes are formed. Through these structural analyses, it was demonstrated that the optimized chromosome isolation method described here can provide high-quality chromosomal DNA for high resolution array-CGH analysis and probably for massively parallel sequencing analysis.

  13. Phylogenomic Analysis of Oenococcus oeni Reveals Specific Domestication of Strains to Cider and Wines

    PubMed Central

    Campbell-Sills, Hugo; El Khoury, Mariette; Favier, Marion; Romano, Andrea; Biasioli, Franco; Spano, Giuseppe; Sherman, David J.; Bouchez, Olivier; Coton, Emmanuel; Coton, Monika; Okada, Sanae; Tanaka, Naoto; Dols-Lafargue, Marguerite; Lucas, Patrick M.

    2015-01-01

    Oenococcus oeni is a lactic acid bacteria species encountered particularly in wine, where it achieves the malolactic fermentation. Molecular typing methods have previously revealed that the species is made of several genetic groups of strains, some being specific to certain types of wines, ciders or regions. Here, we describe 36 recently released O. oeni genomes and the phylogenomic analysis of these 36 plus 14 previously reported genomes. We also report three genome sequences of the sister species Oenococcus kitaharae that were used for phylogenomic reconstructions. Phylogenomic and population structure analyses performed revealed that the 50 O. oeni genomes delineate two major groups of 12 and 37 strains, respectively, named A and B, plus a putative group C, consisting of a single strain. A study on the orthologs and single nucleotide polymorphism contents of the genetic groups revealed that the domestication of some strains to products such as cider, wine, or champagne, is reflected at the genetic level. While group A strains proved to be predominant in wine and to form subgroups adapted to specific types of wine such as champagne, group B strains were found in wine and cider. The strain from putative group C was isolated from cider and genetically closer to group B strains. The results suggest that ancestral O. oeni strains were adapted to low-ethanol containing environments such as overripe fruits, and that they were domesticated to cider and wine, with group A strains being naturally selected in a process of further domestication to specific wines such as champagne. PMID:25977455

  14. Proteomic analysis of MG132-treated germinating pollen reveals expression signatures associated with proteasome inhibition.

    PubMed

    Vannini, Candida; Bracale, Marcella; Crinelli, Rita; Marconi, Valerio; Campomenosi, Paola; Marsoni, Milena; Scoccianti, Valeria

    2014-01-01

    Chemical inhibition of the proteasome has been previously found to effectively impair pollen germination and tube growth in vitro. However, the mediators of these effects at the molecular level are unknown. By performing 2DE proteomic analysis, 24 differentially expressed protein spots, representing 14 unique candidate proteins, were identified in the pollen of kiwifruit (Actinidia deliciosa) germinated in the presence of the MG132 proteasome inhibitor. qPCR analysis revealed that 11 of these proteins are not up-regulated at the mRNA level, but are most likely stabilized by proteasome inhibition. These differentially expressed proteins are predicted to function in various pathways including energy and lipid metabolism, cell wall synthesis, protein synthesis/degradation and stress responses. In line with this evidence, the MG132-induced changes in the proteome were accompanied by an increase in ATP and ROS content and by an alteration in fatty acid composition.

  15. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis

    NASA Astrophysics Data System (ADS)

    Kaminski, Naftali; Allard, John D.; Pittet, Jean F.; Zuo, Fengrong; Griffiths, Mark J. D.; Morris, David; Huang, Xiaozhu; Sheppard, Dean; Heller, Renu A.

    2000-02-01

    The molecular mechanisms of pulmonary fibrosis are poorly understood. We have used oligonucleotide arrays to analyze the gene expression programs that underlie pulmonary fibrosis in response to bleomycin, a drug that causes lung inflammation and fibrosis, in two strains of susceptible mice (129 and C57BL/6). We then compared the gene expression patterns in these mice with 129 mice carrying a null mutation in the epithelial-restricted integrin 6 subunit (6/-), which develop inflammation but are protected from pulmonary fibrosis. Cluster analysis identified two distinct groups of genes involved in the inflammatory and fibrotic responses. Analysis of gene expression at multiple time points after bleomycin administration revealed sequential induction of subsets of genes that characterize each response. The availability of this comprehensive data set should accelerate the development of more effective strategies for intervention at the various stages in the development of fibrotic diseases of the lungs and other organs.

  16. Analysis of miRNA market trends reveals hotspots of research activity.

    PubMed

    Oosta, Gary; Razvi, Enal

    2012-04-01

    We have conducted an analysis of the miRNA research marketplace by evaluating the publication trends in the field. In this article, we present the results of our analysis which reveals that hotspots exist in terms of research activities in the miRNA space--these hotspots illustrate the areas in the miRNA research space where specific miRNAs have been extensively studied, and other areas that represent new territory. We frame these data into the context of areas of opportunity for miRNA content harvest versus segments of opportunity for the development of research tools. Also presented in this article are the primary market data from online surveys we have performed with researchers involved in miRNA research around the world. Taken together, these data frame the current state of the miRNA marketplace and provide niches of opportunity for new entrants into this space.

  17. Inflation by alignment

    SciTech Connect

    Burgess, C.P.; Roest, Diederik

    2015-06-08

    Pseudo-Goldstone bosons (pGBs) can provide technically natural inflatons, as has been comparatively well-explored in the simplest axion examples. Although inflationary success requires trans-Planckian decay constants, f≳M{sub p}, several mechanisms have been proposed to obtain this, relying on (mis-)alignments between potential and kinetic energies in multiple-field models. We extend these mechanisms to a broader class of inflationary models, including in particular the exponential potentials that arise for pGB potentials based on noncompact groups (and so which might apply to moduli in an extra-dimensional setting). The resulting potentials provide natural large-field inflationary models and can predict a larger primordial tensor signal than is true for simpler single-field versions of these models. In so doing we provide a unified treatment of several alignment mechanisms, showing how each emerges as a limit of the more general setup.

  18. Automatic Word Alignment

    DTIC Science & Technology

    2014-02-18

    strategy was evalu­ ated in the context of English -to-Pashto (E2P) and Pashto-to- English (P2E), a low-resource language pair. For E2P, the training and...improves the quality of automatic word alignment, for example for resource poor language pairs, thus improving Statistical Machine Translation (SMT...example for resource poor language pairs, thus improving Statistical Machine Translation (SMT) performance. 15. SUBJECT TERMS 16. SECURITY

  19. Co-occurrence correlations of heavy metals in sediments revealed using network analysis.

    PubMed

    Liu, Lili; Wang, Zhiping; Ju, Feng; Zhang, Tong

    2015-01-01

    In this study, the correlation-based study was used to identify the co-occurrence correlations among metals in marine sediment of Hong Kong, based on the long-term (from 1991 to 2011) temporal and spatial monitoring data. 14 stations out of the total 45 marine sediment monitoring stations were selected from three representative areas, including Deep Bay, Victoria Harbour and Mirs Bay. Firstly, Spearman's rank correlation-based network analysis was conducted as the first step to identify the co-occurrence correlations of metals from raw metadata, and then for further analysis using the normalized metadata. The correlations patterns obtained by network were consistent with those obtained by the other statistic normalization methods, including annual ratios, R-squared coefficient and Pearson correlation coefficient. Both Deep Bay and Victoria Harbour have been polluted by heavy metals, especially for Pb and Cu, which showed strong co-occurrence with other heavy metals (e.g. Cr, Ni, Zn and etc.) and little correlations with the reference parameters (Fe or Al). For Mirs Bay, which has better marine sediment quality compared with Deep Bay and Victoria Harbour, the co-occurrence patterns revealed by network analysis indicated that the metals in sediment dominantly followed the natural geography process. Besides the wide applications in biology, sociology and informatics, it is the first time to apply network analysis in the researches of environment pollutions. This study demonstrated its powerful application for revealing the co-occurrence correlations among heavy metals in marine sediments, which could be further applied for other pollutants in various environment systems.

  20. Beginning Learners' Development of Interactional Competence: Alignment Activity

    ERIC Educational Resources Information Center

    Tecedor, Marta

    2016-01-01

    This study examined the development of interactional competence (Hall, 1993; He & Young, 1998) by beginning learners of Spanish as indexed by their use of alignment moves. Discourse analysis techniques and quantitative data analysis were used to explore how 52 learners expressed alignment and changes in participation patterns in two sets of…

  1. Nuclear reactor alignment plate configuration

    SciTech Connect

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  2. Multiple protein structure alignment.

    PubMed Central

    Taylor, W. R.; Flores, T. P.; Orengo, C. A.

    1994-01-01

    A method was developed to compare protein structures and to combine them into a multiple structure consensus. Previous methods of multiple structure comparison have only concatenated pairwise alignments or produced a consensus structure by averaging coordinate sets. The current method is a fusion of the fast structure comparison program SSAP and the multiple sequence alignment program MULTAL. As in MULTAL, structures are progressively combined, producing intermediate consensus structures that are compared directly to each other and all remaining single structures. This leads to a hierarchic "condensation," continually evaluated in the light of the emerging conserved core regions. Following the SSAP approach, all interatomic vectors were retained with well-conserved regions distinguished by coherent vector bundles (the structural equivalent of a conserved sequence position). Each bundle of vectors is summarized by a resultant, whereas vector coherence is captured in an error term, which is the only distinction between conserved and variable positions. Resultant vectors are used directly in the comparison, which is weighted by their error values, giving greater importance to the matching of conserved positions. The resultant vectors and their errors can also be used directly in molecular modeling. Applications of the method were assessed by the quality of the resulting sequence alignments, phylogenetic tree construction, and databank scanning with the consensus. Visual assessment of the structural superpositions and consensus structure for various well-characterized families confirmed that the consensus had identified a reasonable core. PMID:7849601

  3. Dynamic Alignment at SLS

    SciTech Connect

    Ruland, Robert E.

    2003-04-23

    The relative alignment of components in the storage ring of the Swiss Light Source (SLS) is guaranteed by mechanical means. The magnets are rigidly fixed to 48 girders by means of alignment rails with tolerances of less than {+-}15 {micro}m. The bending magnets, supported by 3 point ball bearings, overlap adjacent girders and thus establish virtual train links between the girders, located near the bending magnet centres. Keeping the distortion of the storage ring geometry within a tolerance of {+-}100 {micro}m in order to guarantee sufficient dynamic apertures, requires continuous monitoring and correction of the girder locations. Two monitoring systems for the horizontal and the vertical direction will be installed to measure displacements of the train link between girders, which are due to ground settings and temperature effects: The hydrostatic levelling system (HLS) gives an absolute vertical reference, while the horizontal positioning system (HPS), which employs low cost linear encoders with sub-micron resolution, measures relative horizontal movements. The girder mover system based on five DC motors per girder allows a dynamic realignment of the storage ring within a working window of more than {+-}1 mm for girder translations and {+-}1 mrad for rotations. We will describe both monitoring systems (HLS and HPS) as well as the applied correction scheme based on the girder movers. We also show simulations indicating that beam based girder alignment takes care of most of the static closed orbit correction.

  4. Dynamic transcriptional signature and cell fate analysis reveals plasticity of individual neural plate border cells

    PubMed Central

    Roellig, Daniela; Tan-Cabugao, Johanna; Esaian, Sevan; Bronner, Marianne E

    2017-01-01

    The ‘neural plate border’ of vertebrate embryos contains precursors of neural crest and placode cells, both defining vertebrate characteristics. How these lineages segregate from neural and epidermal fates has been a matter of debate. We address this by performing a fine-scale quantitative temporal analysis of transcription factor expression in the neural plate border of chick embryos. The results reveal significant overlap of transcription factors characteristic of multiple lineages in individual border cells from gastrula through neurula stages. Cell fate analysis using a Sox2 (neural) enhancer reveals that cells that are initially Sox2+ cells can contribute not only to neural tube but also to neural crest and epidermis. Moreover, modulating levels of Sox2 or Pax7 alters the apportionment of neural tube versus neural crest fates. Our results resolve a long-standing question and suggest that many individual border cells maintain ability to contribute to multiple ectodermal lineages until or beyond neural tube closure. DOI: http://dx.doi.org/10.7554/eLife.21620.001 PMID:28355135

  5. Molecular analysis of Drosophila eyes absent mutants reveals features of the conserved Eya domain.

    PubMed Central

    Bui, Q T; Zimmerman, J E; Liu, H; Bonini, N M

    2000-01-01

    The eyes absent (eya) gene is critical to eye formation in Drosophila; upon loss of eya function, eye progenitor cells die by programmed cell death. Moreover, ectopic eya expression directs eye formation, and eya functionally synergizes in vivo and physically interacts in vitro with two other genes of eye development, sine oculis and dachshund. The Eya protein sequence, while highly conserved to vertebrates, is novel. To define amino acids critical to the function of the Eya protein, we have sequenced eya alleles. These mutations have revealed that loss of the entire Eya Domain is null for eya activity, but that alleles with truncations within the Eya Domain display partial function. We then extended the molecular genetic analysis to interactions within the Eya Domain. This analysis has revealed regions of special importance to interaction with Sine Oculis or Dachshund. Select eya missense mutations within the Eya Domain diminished the interactions with Sine Oculis or Dachshund. Taken together, these data suggest that the conserved Eya Domain is critical for eya activity and may have functional subregions within it. PMID:10835393

  6. Phenotypic Analysis Reveals that the 2010 Haiti Cholera Epidemic Is Linked to a Hypervirulent Strain

    PubMed Central

    Jones, Christopher J.; Wong, Jennifer; Queen, Jessica; Agarwal, Shivani; Yildiz, Fitnat H.

    2016-01-01

    Vibrio cholerae O1 El Tor strains have been responsible for pandemic cholera since 1961. These strains have evolved over time, spreading globally in three separate waves. Wave 3 is caused by altered El Tor (AET) variant strains, which include the strain with the signature ctxB7 allele that was introduced in 2010 into Haiti, where it caused a devastating epidemic. In this study, we used phenotypic analysis to compare an early isolate from the Haiti epidemic to wave 1 El Tor isolates commonly used for research. It is demonstrated that the Haiti isolate has increased production of cholera toxin (CT) and hemolysin, increased motility, and a reduced ability to form biofilms. This strain also outcompetes common wave 1 El Tor isolates for colonization of infant mice, indicating that it has increased virulence. Monitoring of CT production and motility in additional wave 3 isolates revealed that this phenotypic variation likely evolved over time rather than in a single genetic event. Analysis of available whole-genome sequences and phylogenetic analyses suggested that increased virulence arose from positive selection for mutations found in known and putative regulatory genes, including hns and vieA, diguanylate cyclase genes, and genes belonging to the lysR and gntR regulatory families. Overall, the studies presented here revealed that V. cholerae virulence potential can evolve and that the currently prevalent wave 3 AET strains are both phenotypically distinct from and more virulent than many El Tor isolates. PMID:27297393

  7. Phenotypic Analysis Reveals that the 2010 Haiti Cholera Epidemic Is Linked to a Hypervirulent Strain.

    PubMed

    Satchell, Karla J F; Jones, Christopher J; Wong, Jennifer; Queen, Jessica; Agarwal, Shivani; Yildiz, Fitnat H

    2016-09-01

    Vibrio cholerae O1 El Tor strains have been responsible for pandemic cholera since 1961. These strains have evolved over time, spreading globally in three separate waves. Wave 3 is caused by altered El Tor (AET) variant strains, which include the strain with the signature ctxB7 allele that was introduced in 2010 into Haiti, where it caused a devastating epidemic. In this study, we used phenotypic analysis to compare an early isolate from the Haiti epidemic to wave 1 El Tor isolates commonly used for research. It is demonstrated that the Haiti isolate has increased production of cholera toxin (CT) and hemolysin, increased motility, and a reduced ability to form biofilms. This strain also outcompetes common wave 1 El Tor isolates for colonization of infant mice, indicating that it has increased virulence. Monitoring of CT production and motility in additional wave 3 isolates revealed that this phenotypic variation likely evolved over time rather than in a single genetic event. Analysis of available whole-genome sequences and phylogenetic analyses suggested that increased virulence arose from positive selection for mutations found in known and putative regulatory genes, including hns and vieA, diguanylate cyclase genes, and genes belonging to the lysR and gntR regulatory families. Overall, the studies presented here revealed that V. cholerae virulence potential can evolve and that the currently prevalent wave 3 AET strains are both phenotypically distinct from and more virulent than many El Tor isolates.

  8. Metabolic network analysis revealed distinct routes of deletion effects between essential and non-essential genes.

    PubMed

    Ma, Jing; Zhang, Xun; Ung, Choong Yong; Chen, Yu Zong; Li, Baowen

    2012-04-01

    Interest in essential genes has arisen recently given their importance in antimicrobial drug development. Although knockouts of essential genes are commonly known to cause lethal phenotypes, there is insufficient understanding on the intermediate changes followed by genetic perturbation and to what extent essential genes correlate to other genes. Here, we characterized the gene knockout effects by using a list of affected genes, termed as 'damage lists'. These damage lists were identified through a refined cascading failure approach that was based on a previous topological flux balance analysis. Using an Escherichia coli metabolic network, we incorporated essentiality information into damage lists and revealed that the knockout of an essential gene mainly affects a large range of other essential genes whereas knockout of a non-essential gene only interrupts other non-essential genes. Also, genes sharing common damage lists tend to have the same essentiality. We extracted 72 core functional modules from the common damage lists of essential genes and demonstrated their ability to halt essential metabolites production. Overall, our network analysis revealed that essential and non-essential genes propagated their deletion effects via distinct routes, conferring mechanistic explanation to the observed lethality phenotypes of essential genes.

  9. Molecular analysis of aggressive renal cell carcinoma with unclassified histology reveals distinct subsets

    PubMed Central

    Chen, Ying-Bei; Xu, Jianing; Skanderup, Anders Jacobsen; Dong, Yiyu; Brannon, A. Rose; Wang, Lu; Won, Helen H.; Wang, Patricia I.; Nanjangud, Gouri J.; Jungbluth, Achim A.; Li, Wei; Ojeda, Virginia; Hakimi, A. Ari; Voss, Martin H.; Schultz, Nikolaus; Motzer, Robert J.; Russo, Paul; Cheng, Emily H.; Giancotti, Filippo G.; Lee, William; Berger, Michael F.; Tickoo, Satish K.; Reuter, Victor E.; Hsieh, James J.

    2016-01-01

    Renal cell carcinomas with unclassified histology (uRCC) constitute a significant portion of aggressive non-clear cell renal cell carcinomas that have no standard therapy. The oncogenic drivers in these tumours are unknown. Here we perform a molecular analysis of 62 high-grade primary uRCC, incorporating targeted cancer gene sequencing, RNA sequencing, single-nucleotide polymorphism array, fluorescence in situ hybridization, immunohistochemistry and cell-based assays. We identify recurrent somatic mutations in 29 genes, including NF2 (18%), SETD2 (18%), BAP1 (13%), KMT2C (10%) and MTOR (8%). Integrated analysis reveals a subset of 26% uRCC characterized by NF2 loss, dysregulated Hippo–YAP pathway and worse survival, whereas 21% uRCC with mutations of MTOR, TSC1, TSC2 or PTEN and hyperactive mTORC1 signalling are associated with better clinical outcome. FH deficiency (6%), chromatin/DNA damage regulator mutations (21%) and ALK translocation (2%) distinguish additional cases. Altogether, this study reveals distinct molecular subsets for 76% of our uRCC cohort, which could have diagnostic and therapeutic implications. PMID:27713405

  10. Transcriptome Analysis of Hamelia patens (Rubiaceae) Anthers Reveals Candidate Genes for Tapetum and Pollen Wall Development

    PubMed Central

    Yue, Lin; Twell, David; Kuang, Yanfeng; Liao, Jingping; Zhou, Xianqiang

    2017-01-01

    Studies of the anther transcriptome on non-model plants without a known genome are surprisingly scarce. RNA-Seq and digital gene expression (DGE) profiling provides a comprehensive approach to identify candidate genes contributing to developmental processes in non-model species. Here we built a transcriptome library of developing anthers of Hamelia patens and analyzed DGE profiles from each stage to identify genes that regulate tapetum and pollen development. In total 7,720 putative differentially expressed genes across four anther stages were identified. The number of putative stage-specific genes was: 776 at microspore mother cell stage, 807 at tetrad stage, 322 at uninucleate microspore stage, and the highest number (1,864) at bicellular pollen stage. GO enrichment analysis revealed 243 differentially expressed and 108 stage-specific genes that are potentially related to tapetum development, sporopollenin synthesis, and pollen wall. The number of expressed genes, their function and expression profiles were all significantly correlated with anther developmental processes. Overall comparisons of anther and pollen transcriptomes with those of rice and Arabidopsis together with the expression profiles of homologs of known anther-expressed genes, revealed conserved patterns and also divergence. The divergence may reflect taxon-specific differences in gene expression, the use RNA-seq as a more sensitive methodology, variation in tissue composition and sampling strategies. Given the lack of genomic sequence, this study succeeded in assigning putative identity to a significant proportion of anther-expressed genes and genes relevant to tapetum and pollen development in H. patens. The anther transcriptome revealed a molecular distinction between developmental stages, serving as a resource to unravel the functions of genes involved in anther development in H. patens and informing the analysis of other members of the Rubiaceae. PMID:28119704

  11. Frameshift alignment: statistics and post-genomic applications

    PubMed Central

    Frith, Martin C.; Spouge, John L.

    2014-01-01

    Motivation: The alignment of DNA sequences to proteins, allowing for frameshifts, is a classic method in sequence analysis. It can help identify pseudogenes (which accumulate mutations), analyze raw DNA and RNA sequence data (which may have frameshift sequencing errors), investigate ribosomal frameshifts, etc. Often, however, only ad hoc approximations or simulations are available to provide the statistical significance of a frameshift alignment score. Results: We describe a method to estimate statistical significance of frameshift alignments, similar to classic BLAST statistics. (BLAST presently does not permit its alignments to include frameshifts.) We also illustrate the continuing usefulness of frameshift alignment with two ‘post-genomic’ applications: (i) when finding pseudogenes within the human genome, frameshift alignments show that most anciently conserved non-coding human elements are recent pseudogenes with conserved ancestral genes; and (ii) when analyzing metagenomic DNA reads from polluted soil, frameshift alignments show that most alignable metagenomic reads contain frameshifts, suggesting that metagenomic analysis needs to use frameshift alignment to derive accurate results. Availability and implementation: The statistical calculation is available in FALP (http://www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html_ncbi/html/index/software.html), and giga-scale frameshift alignment is available in LAST (http://last.cbrc.jp/falp). Contact: spouge@ncbi.nlm.nih.gov or martin@cbrc.jp Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25172925

  12. Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis.

    PubMed

    Burney, Richard O; Talbi, Said; Hamilton, Amy E; Vo, Kim Chi; Nyegaard, Mette; Nezhat, Camran R; Lessey, Bruce A; Giudice, Linda C

    2007-08-01

    The identification of molecular differences in the endometrium of women with endometriosis is an important step toward understanding the pathogenesis of this condition and toward developing novel strategies for the treatment of associated infertility and pain. In this study, we conducted global gene expression analysis of endometrium from women with and without moderate/severe stage endometriosis and compared the gene expression signatures across various phases of the menstrual cycle. The transcriptome analysis revealed molecular dysregulation of the proliferative-to-secretory transition in endometrium of women with endometriosis. Paralleled gene expression analysis of endometrial specimens obtained during the early secretory phase demonstrated a signature of enhanced cellular survival and persistent expression of genes involved in DNA synthesis and cellular mitosis in the setting of endometriosis. Comparative gene expression analysis of progesterone-regulated genes in secretory phase endometrium confirmed the observation of attenuated progesterone response. Additionally, interesting candidate susceptibility genes were identified that may be associated with this disorder, including FOXO1A, MIG6, and CYP26A1. Collectively these findings provide a framework for further investigations on causality and mechanisms underlying attenuated progesterone response in endometrium of women with endometriosis.

  13. RNA-Seq Analysis Reveals MAPKKK Family Members Related to Drought Tolerance in Maize

    PubMed Central

    Ren, Wen; Yang, Fengling; He, Hang; Zhao, Jiuran

    2015-01-01

    The mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signal transduction pathway that is involved in plant development and stress responses. As the first component of this phosphorelay cascade, mitogen-activated protein kinase kinase kinases (MAPKKKs) act as adaptors linking upstream signaling steps to the core MAPK cascade to promote the appropriate cellular responses; however, the functions of MAPKKKs in maize are unclear. Here, we identified 71 MAPKKK genes, of which 14 were novel, based on a computational analysis of the maize (Zea mays L.) genome. Using an RNA-seq analysis in the leaf, stem and root of maize under well-watered and drought-stress conditions, we identified 5,866 differentially expressed genes (DEGs), including 8 MAPKKK genes responsive to drought stress. Many of the DEGs were enriched in processes such as drought stress, abiotic stimulus, oxidation-reduction, and metabolic processes. The other way round, DEGs involved in processes such as oxidation, photosynthesis, and starch, proline, ethylene, and salicylic acid metabolism were clearly co-expressed with the MAPKKK genes. Furthermore, a quantitative real-time PCR (qRT-PCR) analysis was performed to assess the relative expression levels of MAPKKKs. Correlation analysis revealed that there was a significant correlation between expression levels of two MAPKKKs and relative biomass responsive to drought in 8 inbred lines. Our results indicate that MAPKKKs may have important regulatory functions in drought tolerance in maize. PMID:26599013

  14. Multilocus sequence analysis reveals high genetic diversity in clinical isolates of Burkholderia cepacia complex from India.

    PubMed

    Gautam, Vikas; Patil, Prashant P; Kumar, Sunil; Midha, Samriti; Kaur, Mandeep; Kaur, Satinder; Singh, Meenu; Mali, Swapna; Shastri, Jayanthi; Arora, Anita; Ray, Pallab; Patil, Prabhu B

    2016-10-21

    Burkholderia cepacia complex (Bcc) is a complex group of bacteria causing opportunistic infections in immunocompromised and cystic fibrosis (CF) patients. Herein, we report multilocus sequence typing and analysis of the 57 clinical isolates of Bcc collected over the period of seven years (2005-2012) from several hospitals across India. A total of 21 sequence types (ST) including two STs from cystic fibrosis patient's isolates and twelve novel STs were identified in the population reflecting the extent of genetic diversity. Multilocus sequence analysis revealed two lineages in population, a major lineage belonging to B. cenocepacia and a minor lineage belonging to B. cepacia. Split-decomposition analysis suggests absence of interspecies recombination and intraspecies recombination contributed in generating genotypic diversity amongst isolates. Further linkage disequilibrium analysis indicates that recombination takes place at a low frequency, which is not sufficient to break down the clonal relationship. This knowledge of the genetic structure of Bcc population from a rapidly developing country will be invaluable in the epidemiology, surveillance and understanding global diversity of this group of a pathogen.

  15. Multilocus sequence analysis reveals high genetic diversity in clinical isolates of Burkholderia cepacia complex from India

    PubMed Central

    Gautam, Vikas; Patil, Prashant P.; Kumar, Sunil; Midha, Samriti; Kaur, Mandeep; Kaur, Satinder; Singh, Meenu; Mali, Swapna; Shastri, Jayanthi; Arora, Anita; Ray, Pallab; Patil, Prabhu B.

    2016-01-01

    Burkholderia cepacia complex (Bcc) is a complex group of bacteria causing opportunistic infections in immunocompromised and cystic fibrosis (CF) patients. Herein, we report multilocus sequence typing and analysis of the 57 clinical isolates of Bcc collected over the period of seven years (2005–2012) from several hospitals across India. A total of 21 sequence types (ST) including two STs from cystic fibrosis patient’s isolates and twelve novel STs were identified in the population reflecting the extent of genetic diversity. Multilocus sequence analysis revealed two lineages in population, a major lineage belonging to B. cenocepacia and a minor lineage belonging to B. cepacia. Split-decomposition analysis suggests absence of interspecies recombination and intraspecies recombination contributed in generating genotypic diversity amongst isolates. Further linkage disequilibrium analysis indicates that recombination takes place at a low frequency, which is not sufficient to break down the clonal relationship. This knowledge of the genetic structure of Bcc population from a rapidly developing country will be invaluable in the epidemiology, surveillance and understanding global diversity of this group of a pathogen. PMID:27767197

  16. Cerebral Degeneration in Amyotrophic Lateral Sclerosis Revealed by 3-Dimensional Texture Analysis

    PubMed Central

    Maani, Rouzbeh; Yang, Yee-Hong; Emery, Derek; Kalra, Sanjay

    2016-01-01

    Introduction: Routine MR images do not consistently reveal pathological changes in the brain in ALS. Texture analysis, a method to quantitate voxel intensities and their patterns and interrelationships, can detect changes in images not apparent to the naked eye. Our objective was to evaluate cerebral degeneration in ALS using 3-dimensional texture analysis of MR images of the brain. Methods: In a case-control design, voxel-based texture analysis was performed on T1-weighted MR images of 20 healthy subjects and 19 patients with ALS. Four texture features, namely, autocorrelation, sum of squares variance, sum average, and sum variance were computed. Texture features were compared between the groups by statistical parametric mapping and correlated with clinical measures of disability and upper motor neuron dysfunction. Results: Texture features were different in ALS in motor regions including the precentral gyrus and corticospinal tracts. To a lesser extent, changes were also found in the thalamus, cingulate gyrus, and temporal lobe. Texture features in the precentral gyrus correlated with disease duration, and in the corticospinal tract they correlated with finger tapping speed. Conclusions: Changes in MR image textures are present in motor and non-motor regions in ALS and correlate with clinical features. Whole brain texture analysis has potential in providing biomarkers of cerebral degeneration in ALS. PMID:27064416

  17. Pretreatment and integrated analysis of spectral data reveal seaweed similarities based on chemical diversity.

    PubMed

    Wei, Feifei; Ito, Kengo; Sakata, Kenji; Date, Yasuhiro; Kikuchi, Jun

    2015-03-03

    Extracting useful information from high dimensionality and large data sets is a major challenge for data-driven approaches. The present study was aimed at developing novel integrated analytical strategies for comprehensively characterizing seaweed similarities based on chemical diversity. The chemical compositions of 107 seaweed and 2 seagrass samples were analyzed using multiple techniques, including Fourier transform infrared (FT-IR) and solid- and solution-state nuclear magnetic resonance (NMR) spectroscopy, thermogravimetry-differential thermal analysis (TG-DTA), inductively coupled plasma-optical emission spectrometry (ICP-OES), CHNS/O total elemental analysis, and isotope ratio mass spectrometry (IR-MS). The spectral data were preprocessed using non-negative matrix factorization (NMF) and NMF combined with multivariate curve resolution-alternating least-squares (MCR-ALS) methods in order to separate individual component information from the overlapping and/or broad spectral peaks. Integrated analysis of the preprocessed chemical data demonstrated distinct discrimination of differential seaweed species. Further network analysis revealed a close correlation between the heavy metal elements and characteristic components of brown algae, such as cellulose, alginic acid, and sulfated mucopolysaccharides, providing a componential basis for its metal-sorbing potential. These results suggest that this integrated analytical strategy is useful for extracting and identifying the chemical characteristics of diverse seaweeds based on large chemical data sets, particularly complicated overlapping spectral data.

  18. Method for alignment of microwires

    DOEpatents

    Beardslee, Joseph A.; Lewis, Nathan S.; Sadtler, Bryce

    2017-01-24

    A method of aligning microwires includes modifying the microwires so they are more responsive to a magnetic field. The method also includes using a magnetic field so as to magnetically align the microwires. The method can further include capturing the microwires in a solid support structure that retains the longitudinal alignment of the microwires when the magnetic field is not applied to the microwires.

  19. Alignment as a Teacher Variable

    ERIC Educational Resources Information Center

    Porter, Andrew C.; Smithson, John; Blank, Rolf; Zeidner, Timothy

    2007-01-01

    With the exception of the procedures developed by Porter and colleagues (Porter, 2002), other methods of defining and measuring alignment are essentially limited to alignment between tests and standards. Porter's procedures have been generalized to investigating the alignment between content standards, tests, textbooks, and even classroom…

  20. Prosody and alignment: a sequential perspective

    NASA Astrophysics Data System (ADS)

    Szczepek Reed, Beatrice

    2010-12-01

    In their analysis of a corpus of classroom interactions in an inner city high school, Roth and Tobin describe how teachers and students accomplish interactional alignment by prosodically matching each other's turns. Prosodic matching, and specific prosodic patterns are interpreted as signs of, and contributions to successful interactional outcomes and positive emotions. Lack of prosodic matching, and other specific prosodic patterns are interpreted as features of unsuccessful interactions, and negative emotions. This forum focuses on the article's analysis of the relation between interpersonal alignment, emotion and prosody. It argues that prosodic matching, and other prosodic linking practices, play a primarily sequential role, i.e. one that displays the way in which participants place and design their turns in relation to other participants' turns. Prosodic matching, rather than being a conversational action in itself, is argued to be an interactional practice (Schegloff 1997), which is not always employed for the accomplishment of `positive', or aligning actions.

  1. Genomic Convergence Analysis of Schizophrenia: mRNA Sequencing Reveals Altered Synaptic Vesicular Transport in Post-Mortem Cerebellum

    PubMed Central

    Mudge, Joann; Miller, Neil A.; Khrebtukova, Irina; Lindquist, Ingrid E.; May, Gregory D.; Huntley, Jim J.; Luo, Shujun; Zhang, Lu; van Velkinburgh, Jennifer C.; Farmer, Andrew D.; Lewis, Sharon; Beavis, William D.; Schilkey, Faye D.; Virk, Selene M.; Black, C. Forrest; Myers, M. Kathy; Mader, Lar C.; Langley, Ray J.; Utsey, John P.; Kim, Ryan W.; Roberts, Rosalinda C.; Khalsa, Sat Kirpal; Garcia, Meredith; Ambriz-Griffith, Victoria; Harlan, Richard; Czika, Wendy; Martin, Stanton; Wolfinger, Russell D.; Perrone-Bizzozero, Nora I.; Schroth, Gary P.; Kingsmore, Stephen F.

    2008-01-01

    Schizophrenia (SCZ) is a common, disabling mental illness with high heritability but complex, poorly understood genetic etiology. As the first phase of a genomic convergence analysis of SCZ, we generated 16.7 billion nucleotides of short read, shotgun sequences of cDNA from post-mortem cerebellar cortices of 14 patients and six, matched controls. A rigorous analysis pipeline was developed for analysis of digital gene expression studies. Sequences aligned to approximately 33,200 transcripts in each sample, with average coverage of 450 reads per gene. Following adjustments for confounding clinical, sample and experimental sources of variation, 215 genes differed significantly in expression between cases and controls. Golgi apparatus, vesicular transport, membrane association, Zinc binding and regulation of transcription were over-represented among differentially expressed genes. Twenty three genes with altered expression and involvement in presynaptic vesicular transport, Golgi function and GABAergic neurotransmission define a unifying molecular hypothesis for dysfunction in cerebellar cortex in SCZ. PMID:18985160

  2. Whole population cell analysis of a landmark-rich mammalian epithelium reveals multiple elongation mechanisms

    PubMed Central

    Economou, Andrew D.; Brock, Lara J.; Cobourne, Martyn T.; Green, Jeremy B. A.

    2013-01-01

    Tissue elongation is a fundamental component of developing and regenerating systems. Although localised proliferation is an important mechanism for tissue elongation, potentially important contributions of other elongation mechanisms, specifically cell shape change, orientated cell division and cell rearrangement, are rarely considered or quantified, particularly in mammalian systems. Their quantification, together with proliferation, provides a rigorous framework for the analysis of elongation. The mammalian palatal epithelium is a landmark-rich tissue, marked by regularly spaced ridges (rugae), making it an excellent model in which to analyse the contributions of cellular processes to directional tissue growth. We captured confocal stacks of entire fixed mouse palate epithelia throughout the mid-gestation growth period, labelled with membrane, nuclear and cell proliferation markers and segmented all cells (up to ∼20,000 per palate), allowing the quantification of cell shape and proliferation. Using the rugae as landmarks, these measures revealed that the so-called growth zone is a region of proliferation that is intermittently elevated at ruga initiation. The distribution of oriented cell division suggests that it is not a driver of tissue elongation, whereas cell shape analysis revealed that both elongation of cells leaving the growth zone and apico-basal cell rearrangements do contribute significantly to directional growth. Quantitative comparison of elongation processes indicated that proliferation contributes most to elongation at the growth zone, but cell shape change and rearrangement contribute as much as 40% of total elongation. We have demonstrated the utility of an approach to analysing the cellular mechanisms underlying tissue elongation in mammalian tissues. It should be broadly applied to higher-resolution analysis of links between genotypes and malformation phenotypes. PMID:24173805

  3. Single-cell analysis reveals lineage segregation in early post-implantation mouse embryos.

    PubMed

    Wen, Jing; Zeng, Yanwu; Fang, Zhuoqing; Gu, Junjie; Ge, Laixiang; Tang, Fan; Qu, Zepeng; Hu, Jing; Cui, Yaru; Zhang, Kunshan; Wang, Junbang; Li, Siguang; Sun, Yi; Jin, Ying

    2017-03-15

    The mammalian post-implantation embryo has been extensively investigated at the tissue level. However, to unravel the molecular basis for the cell-fate plasticity and determination, it is essential to study the characteristics of individual cells. Especially, the individual definitive endoderm (DE) cells have not been characterized in vivo. Here, we report gene expression patterns in single cells freshly isolated from mouse embryos on days 5.5 and 6.5. Initial transcriptome data from 124 single cells yielded signature genes for the epiblast, visceral endoderm, and extra-embryonic ectoderm and revealed a unique distribution pattern of fibroblast growth factor (Fgf) ligands and receptors. Further analysis indicated that early-stage epiblast cells do not segregate into lineages of the major germ layers. Instead, some cells began to diverge from epiblast cells, displaying molecular features of the pre-mesendoderm by expressing higher levels of mesendoderm markers and lower levels of Sox3 transcripts. Analysis of single-cell high-throughput quantitative RT-PCR data from 441 cells identified a late stage of the day 6.5 embryo in which mesoderm and DE cells emerge, with many of them coexpressing Oct4 and Gata6. Analysis of single-cell RNA-seq data from 112 cells of the late-stage day 6.5 embryos revealed differentially expressed signaling genes and networks of transcription factors that might underlie the segregation of the mesoderm and DE lineages. Moreover, we discovered a subpopulation of mesoderm cells that possess molecular features of the extraembryonic mesoderm. This study provides fundamental insight into the molecular basis for lineage segregation in post-implantation mouse embryos.

  4. Alignments of radio galaxies in deep radio imaging of ELAIS N1

    NASA Astrophysics Data System (ADS)

    Taylor, A. R.; Jagannathan, P.

    2016-06-01

    We present a study of the distribution of radio jet position angles of radio galaxies over an area of 1 square degree in the ELAIS N1 field. ELAIS N1 was observed with the Giant Metrewave Radio Telescope at 612 MHz to an rms noise level of 10 μJy and angular resolution of 6 arcsec × 5 arcsec. The image contains 65 resolved radio galaxy jets. The spatial distribution reveals a prominent alignment of jet position angles along a `filament' of about 1°. We examine the possibility that the apparent alignment arises from an underlying random distribution and find that the probability of chance alignment is less than 0.1 per cent. An angular covariance analysis of the data indicates the presence of spatially coherence in position angles on scales >0 .^{circ}5. This angular scales translates to a comoving scale of >20 Mpc at a redshift of 1. The implied alignment of the spin axes of massive black holes that give rise to the radio jets suggest the presence of large-scale spatial coherence in angular momentum. Our results reinforce prior evidence for large-scale spatial alignments of quasar optical polarization position angles.

  5. Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia.

    PubMed

    Damaraju, E; Allen, E A; Belger, A; Ford, J M; McEwen, S; Mathalon, D H; Mueller, B A; Pearlson, G D; Potkin, S G; Preda, A; Turner, J A; Vaidya, J G; van Erp, T G; Calhoun, V D

    2014-01-01

    Schizophrenia is a psychotic disorder characterized by functional dysconnectivity or abnormal integration between distant brain regions. Recent functional imaging studies have implicated large-scale thalamo-cortical connectivity as being disrupted in patients. However, observed connectivity differences in schizophrenia have been inconsistent between studies, with reports of hyperconnectivity and hypoconnectivity between the same brain regions. Using resting state eyes-closed functional imaging and independent component analysis on a multi-site data that included 151 schizophrenia patients and 163 age- and gender matched healthy controls, we decomposed the functional brain data into 100 components and identified 47 as functionally relevant intrinsic connectivity networks. We subsequently evaluated group differences in functional network connectivity, both in a static sense, computed as the pairwise Pearson correlations between the full network time courses (5.4 minutes in length), and a dynamic sense, computed using sliding windows (44 s in length) and k-means clustering to characterize five discrete functional connectivity states. Static connectivity analysis revealed that compared to healthy controls, patients show significantly stronger connectivity, i.e., hyperconnectivity, between the thalamus and sensory networks (auditory, motor and visual), as well as reduced connectivity (hypoconnectivity) between sensory networks from all modalities. Dynamic analysis suggests that (1), on average, schizophrenia patients spend much less time than healthy controls in states typified by strong, large-scale connectivity, and (2), that abnormal connectivity patterns are more pronounced during these connectivity states. In particular, states exhibiting cortical-subcortical antagonism (anti-correlations) and strong positive connectivity between sensory networks are those that show the group differences of thalamic hyperconnectivity and sensory hypoconnectivity. Group

  6. Precision alignment and mounting apparatus

    NASA Technical Reports Server (NTRS)

    Preston, Dennis R. (Inventor)

    1993-01-01

    An alignment and mounting apparatus for mounting two modules (10,12) includes a first portion having a cylindrical alignment pin (16) projecting normal to a module surface, a second portion having a three-stage alignment guide (18) including a shoehorn flange (34), a Y-slot (42) and a V-block (22) which sequentially guide the alignment pin (16) with successively finer precision and a third portion in the form of a spring-loaded captive fastener (20) for connecting the two modules after alignment is achieved.

  7. Integrative Analysis of Transcriptomic and Epigenomic Data to Reveal Regulation Patterns for BMD Variation.

    PubMed

    Zhang, Ji-Gang; Tan, Li-Jun; Xu, Chao; He, Hao; Tian, Qing; Zhou, Yu; Qiu, Chuan; Chen, Xiang-Ding; Deng, Hong-Wen

    2015-01-01

    Integration of multiple profiling data and construction of functional gene networks may provide additional insights into the molecular mechanisms of complex diseases. Osteoporosis is a worldwide public health problem, but the complex gene-gene interactions, post-transcriptional modifications and regulation of functional networks are still unclear. To gain a comprehensive understanding of osteoporosis etiology, transcriptome gene expression microarray, epigenomic miRNA microarray and methylome sequencing were performed simultaneously in 5 high hip BMD (Bone Mineral Density) subjects and 5 low hip BMD subjects. SPIA (Signaling Pathway Impact Analysis) and PCST (Prize Collecting Steiner Tree) algorithm were used to perform pathway-enrichment analysis and construct the interaction networks. Through integrating the transcriptomic and epigenomic data, firstly we identified 3 genes (FAM50A, ZNF473 and TMEM55B) and one miRNA (hsa-mir-4291) which showed the consistent association evidence from both gene expression and methylation data; secondly in network analysis we identified an interaction network module with 12 genes and 11 miRNAs including AKT1, STAT3, STAT5A, FLT3, hsa-mir-141 and hsa-mir-34a which have been associated with BMD in previous studies. This module revealed the crosstalk among miRNAs, mRNAs and DNA methylation and showed four potential regulatory patterns of gene expression to influence the BMD status. In conclusion, the integration of multiple layers of omics can yield in-depth results than analysis of individual omics data respectively. Integrative analysis from transcriptomics and epigenomic data improves our ability to identify causal genetic factors, and more importantly uncover functional regulation pattern of multi-omics for osteoporosis etiology.

  8. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters.

    PubMed

    de Menezes, Alexandre B; Prendergast-Miller, Miranda T; Richardson, Alan E; Toscas, Peter; Farrell, Mark; Macdonald, Lynne M; Baker, Geoff; Wark, Tim; Thrall, Peter H

    2015-08-01

    Network and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use. Bacterial and fungal ribotypes did not group separately, rather all modules comprised of both bacterial and fungal ribotypes. Woodland modules had a similar fungal : bacterial ribotype ratio, while in the pasture, one module was fungal dominated. There was no correspondence between pasture and woodland modules in their ribotype composition. The modules had different relationships to soil variables, and these contrasts were not detected without the use of network analysis. This study demonstrated that fungi and bacteria, components of the soil microbial communities usually treated as separate functional groups as in a CCA approach, were co-correlated and formed distinct associations in these adjacent habitats. Understanding these distinct modular associations may shed more light on their niche space in the soil environment, and allow a more realistic description of soil microbial ecology and function.

  9. Topological robustness analysis of protein interaction networks reveals key targets for overcoming chemotherapy resistance in glioma.

    PubMed

    Azevedo, Hátylas; Moreira-Filho, Carlos Alberto

    2015-11-19

    Biological networks display high robustness against random failures but are vulnerable to targeted attacks on central nodes. Thus, network topology analysis represents a powerful tool for investigating network susceptibility against targeted node removal. Here, we built protein interaction networks associated with chemoresistance to temozolomide, an alkylating agent used in glioma therapy, and analyzed their modular structure and robustness against intentional attack. These networks showed functional modules related to DNA repair, immunity, apoptosis, cell stress, proliferation and migration. Subsequently, network vulnerability was assessed by means of centrality-based attacks based on the removal of node fractions in descending orders of degree, betweenness, or the product of degree and betweenness. This analysis revealed that removing nodes with high degree and high betweenness was more effective in altering networks' robustness parameters, suggesting that their corresponding proteins may be particularly relevant to target temozolomide resistance. In silico data was used for validation and confirmed that central nodes are more relevant for altering proliferation rates in temozolomide-resistant glioma cell lines and for predicting survival in glioma patients. Altogether, these results demonstrate how the analysis of network vulnerability to topological attack facilitates target prioritization for overcoming cancer chemoresistance.

  10. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus

    PubMed Central

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S.

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites. PMID:27588023

  11. Comprehensive profiling of lysine acetylproteome analysis reveals diverse functions of lysine acetylation in common wheat

    PubMed Central

    Zhang, Yumei; Song, Limin; Liang, Wenxing; Mu, Ping; Wang, Shu; Lin, Qi

    2016-01-01

    Lysine acetylation of proteins, a dynamic and reversible post-translational modification, plays a critical regulatory role in both eukaryotes and prokaryotes. Several researches have been carried out on acetylproteome in plants. However, until now, there have been no data on common wheat, the major cereal crop in the world. In this study, we performed a global acetylproteome analysis of common wheat variety (Triticum aestivum L.), Chinese Spring. In total, 416 lysine modification sites were identified on 277 proteins, which are involved in a wide variety of biological processes. Consistent with previous studies, a large proportion of the acetylated proteins are involved in metabolic process. Interestingly, according to the functional enrichment analysis, 26 acetylated proteins are involved in photosynthesis and Calvin cycle, suggesting an important role of lysine acetylation in these processes. Moreover, protein interaction network analysis reveals that diverse interactions are modulated by protein acetylation. These data represent the first report of acetylome in common wheat and serve as an important resource for exploring the physiological role of lysine acetylation in this organism and likely in all plants. PMID:26875666

  12. Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis

    NASA Astrophysics Data System (ADS)

    Li, Yue; Zhang, Zhaolei

    2014-11-01

    Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered ~20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably, miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication, which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally, survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in each interaction conferred significant prognostic power in one or more cancer types. Together, our comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to bear the clinical relevance of the proposed recurrent miRNA-gene associations.

  13. Molecular genetic analysis of Drosophila eyes absent mutants reveals an eye enhancer element.

    PubMed Central

    Zimmerman, J E; Bui, Q T; Liu, H; Bonini, N M

    2000-01-01

    The eyes absent (eya) gene is critical for normal eye development in Drosophila and is highly conserved to vertebrates. To define regions of the gene critical for eye function, we have defined the mutations in the four viable eya alleles. Two of these mutations are eye specific and undergo transvection with other mutations in the gene. These were found to be deletion mutations that remove regulatory sequence critical for eye cell expression of the gene. Two other viable alleles cause a reduced eye phenotype and affect the function of the gene in additional tissues, such as the ocelli. These mutations were found to be insertion mutations of different transposable elements within the 5' UTR of the transcript. Detailed analysis of one of these revealed that the transposable element has become subject to regulation by eye enhancer sequences of the eya gene, disrupting normal expression of EYA in the eye. More extended analysis of the deletion region in the eye-specific alleles indicated that the deleted region defines an enhancer that activates gene expression in eye progenitor cells. This enhancer is responsive to ectopic expression of the eyeless gene. This analysis has defined a critical regulatory region required for proper eye expression of the eya gene. PMID:10628984

  14. Genomic and physiological analysis reveals versatile metabolic capacity of deep-sea Photobacterium phosphoreum ANT-2200.

    PubMed

    Zhang, Sheng-Da; Santini, Claire-Lise; Zhang, Wei-Jia; Barbe, Valérie; Mangenot, Sophie; Guyomar, Charlotte; Garel, Marc; Chen, Hai-Tao; Li, Xue-Gong; Yin, Qun-Jian; Zhao, Yuan; Armengaud, Jean; Gaillard, Jean-Charles; Martini, Séverine; Pradel, Nathalie; Vidaud, Claude; Alberto, François; Médigue, Claudine; Tamburini, Christian; Wu, Long-Fei

    2016-05-01

    Bacteria of the genus Photobacterium thrive worldwide in oceans and show substantial eco-physiological diversity including free-living, symbiotic and piezophilic life styles. Genomic characteristics underlying this variability across species are poorly understood. Here we carried out genomic and physiological analysis of Photobacterium phosphoreum strain ANT-2200, the first deep-sea luminous bacterium of which the genome has been sequenced. Using optical mapping we updated the genomic data and reassembled it into two chromosomes and a large plasmid. Genomic analysis revealed a versatile energy metabolic potential and physiological analysis confirmed its growth capacity by deriving energy from fermentation of glucose or maltose, by respiration with formate as electron donor and trimethlyamine N-oxide (TMAO), nitrate or fumarate as electron acceptors, or by chemo-organo-heterotrophic growth in rich media. Despite that it was isolated at a site with saturated dissolved oxygen, the ANT-2200 strain possesses four gene clusters coding for typical anaerobic enzymes, the TMAO reductases. Elevated hydrostatic pressure enhances the TMAO reductase activity, mainly due to the increase of isoenzyme TorA1. The high copy number of the TMAO reductase isoenzymes and pressure-enhanced activity might imply a strategy developed by bacteria to adapt to deep-sea habitats where the instant TMAO availability may increase with depth.

  15. Topological robustness analysis of protein interaction networks reveals key targets for overcoming chemotherapy resistance in glioma

    NASA Astrophysics Data System (ADS)

    Azevedo, Hátylas; Moreira-Filho, Carlos Alberto

    2015-11-01

    Biological networks display high robustness against random failures but are vulnerable to targeted attacks on central nodes. Thus, network topology analysis represents a powerful tool for investigating network susceptibility against targeted node removal. Here, we built protein interaction networks associated with chemoresistance to temozolomide, an alkylating agent used in glioma therapy, and analyzed their modular structure and robustness against intentional attack. These networks showed functional modules related to DNA repair, immunity, apoptosis, cell stress, proliferation and migration. Subsequently, network vulnerability was assessed by means of centrality-based attacks based on the removal of node fractions in descending orders of degree, betweenness, or the product of degree and betweenness. This analysis revealed that removing nodes with high degree and high betweenness was more effective in altering networks’ robustness parameters, suggesting that their corresponding proteins may be particularly relevant to target temozolomide resistance. In silico data was used for validation and confirmed that central nodes are more relevant for altering proliferation rates in temozolomide-resistant glioma cell lines and for predicting survival in glioma patients. Altogether, these results demonstrate how the analysis of network vulnerability to topological attack facilitates target prioritization for overcoming cancer chemoresistance.

  16. Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis.

    PubMed

    Li, Yue; Zhang, Zhaolei

    2014-11-18

    Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered ~20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably, miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication, which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally, survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in each interaction conferred significant prognostic power in one or more cancer types. Together, our comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to bear the clinical relevance of the proposed recurrent miRNA-gene associations.

  17. Multiscale image analysis reveals structural heterogeneity of the cell microenvironment in homotypic spheroids.

    PubMed

    Schmitz, Alexander; Fischer, Sabine C; Mattheyer, Christian; Pampaloni, Francesco; Stelzer, Ernst H K

    2017-03-03

    Three-dimensional multicellular aggregates such as spheroids provide reliable in vitro substitutes for tissues. Quantitative characterization of spheroids at the cellular level is fundamental. We present the first pipeline that provides three-dimensional, high-quality images of intact spheroids at cellular resolution and a comprehensive image analysis that completes traditional image segmentation by algorithms from other fields. The pipeline combines light sheet-based fluorescence microscopy of optically cleared spheroids with automated nuclei segmentation (F score: 0.88) and concepts from graph analysis and computational topology. Incorporating cell graphs and alpha shapes provided more than 30 features of individual nuclei, the cellular neighborhood and the spheroid morphology. The application of our pipeline to a set of breast carcinoma spheroids revealed two concentric layers of different cell density for more than 30,000 cells. The thickness of the outer cell layer depends on a spheroid's size and varies between 50% and 75% of its radius. In differently-sized spheroids, we detected patches of different cell densities ranging from 5 × 10(5) to 1 × 10(6 )cells/mm(3). Since cell density affects cell behavior in tissues, structural heterogeneities need to be incorporated into existing models. Our image analysis pipeline provides a multiscale approach to obtain the relevant data for a system-level understanding of tissue architecture.

  18. Multiscale image analysis reveals structural heterogeneity of the cell microenvironment in homotypic spheroids

    PubMed Central

    Schmitz, Alexander; Fischer, Sabine C.; Mattheyer, Christian; Pampaloni, Francesco; Stelzer, Ernst H. K.

    2017-01-01

    Three-dimensional multicellular aggregates such as spheroids provide reliable in vitro substitutes for tissues. Quantitative characterization of spheroids at the cellular level is fundamental. We present the first pipeline that provides three-dimensional, high-quality images of intact spheroids at cellular resolution and a comprehensive image analysis that completes traditional image segmentation by algorithms from other fields. The pipeline combines light sheet-based fluorescence microscopy of optically cleared spheroids with automated nuclei segmentation (F score: 0.88) and concepts from graph analysis and computational topology. Incorporating cell graphs and alpha shapes provided more than 30 features of individual nuclei, the cellular neighborhood and the spheroid morphology. The application of our pipeline to a set of breast carcinoma spheroids revealed two concentric layers of different cell density for more than 30,000 cells. The thickness of the outer cell layer depends on a spheroid’s size and varies between 50% and 75% of its radius. In differently-sized spheroids, we detected patches of different cell densities ranging from 5 × 105 to 1 × 106 cells/mm3. Since cell density affects cell behavior in tissues, structural heterogeneities need to be incorporated into existing models. Our image analysis pipeline provides a multiscale approach to obtain the relevant data for a system-level understanding of tissue architecture. PMID:28255161

  19. Microarray analysis reveals altered circulating microRNA expression in mice infected with Coxsackievirus B3

    PubMed Central

    Sun, Chaoyu; Tong, Lei; Zhao, Wenran; Wang, Yan; Meng, Yuan; Lin, Lexun; Liu, Bingchen; Zhai, Yujia; Zhong, Zhaohua; Li, Xueqi

    2016-01-01

    Coxsackievirus B3 (CVB3) is a common causative agent in the development of inflammatory cardiomyopathy. However, whether the expression of peripheral blood microRNAs (miRNAs) is altered in this process is unknown. The present study investigated changes to miRNA expression in the peripheral blood of CVB3-infected mice. Utilizing miRNA microarray technology, differential miRNA expression was examined between normal and CVB3-infected mice. The present results suggest that specific miRNAs were differentially expressed in the peripheral blood of mice infected with CVB3, varying with infection duration. Using miRNA microarray analysis, a total of 96 and 89 differentially expressed miRNAs were identified in the peripheral blood of mice infected with CVB3 for 3 and 6 days, respectively. Quantitative polymerase chain reaction was used to validate differentially expressed miRNAs, revealing a consistency of these results with the miRNA microarray analysis results. The biological functions of the differentially expressed miRNAs were then predicted by bioinformatics analysis. The potential biological roles of differentially expressed miRNAs included hypertrophic cardiomyopathy, dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. These results may provide important insights into the mechanisms responsible for the progression of CVB3 infection. PMID:27698715

  20. Integrative Analysis of Cellular Morphometric Context Reveals Clinically Relevant Signatures in Lower Grade Glioma⋆

    PubMed Central

    Han, Ju; Wang, Yunfu; Cai, Weidong; Borowsky, Alexander; Parvin, Bahram; Chang, Hang

    2016-01-01

    Integrative analysis based on quantitative representation of whole slide images (WSIs) in a large histology cohort may provide predictive models of clinical outcome. On one hand, the efficiency and effectiveness of such representation is hindered as a result of large technical variations (e.g., fixation, staining) and biological heterogeneities (e.g., cell type, cell state) that are always present in a large cohort. On the other hand, perceptual interpretation/validation of important multivariate phenotypic signatures are often difficult due to the loss of visual information during feature transformation in hyperspace. To address these issues, we propose a novel approach for integrative analysis based on cellular morphometric context, which is a robust representation of WSI, with the emphasis on tumor architecture and tumor heterogeneity, built upon cellular level morphometric features within the spatial pyramid matching (SPM) framework. The proposed approach is applied to The Cancer Genome Atlas (TCGA) lower grade glioma (LGG) cohort, where experimental results (i) reveal several clinically relevant cellular morphometric types, which enables both perceptual interpretation/validation and further investigation through gene set enrichment analysis; and (ii) indicate the significantly increased survival rates in one of the cellular morphometric context subtypes derived from the cellular morphometric context. PMID:28018994

  1. Integrated systems analysis reveals a molecular network underlying autism spectrum disorders.

    PubMed

    Li, Jingjing; Shi, Minyi; Ma, Zhihai; Zhao, Shuchun; Euskirchen, Ghia; Ziskin, Jennifer; Urban, Alexander; Hallmayer, Joachim; Snyder, Michael

    2014-12-30

    Autism is a complex disease whose etiology remains elusive. We integrated previously and newly generated data and developed a systems framework involving the interactome, gene expression and genome sequencing to identify a protein interaction module with members strongly enriched for autism candidate genes. Sequencing of 25 patients confirmed the involvement of this module in autism, which was subsequently validated using an independent cohort of over 500 patients. Expression of this module was dichotomized with a ubiquitously expressed subcomponent and another subcomponent preferentially expressed in the corpus callosum, which was significantly affected by our identified mutations in the network center. RNA-sequencing of the corpus callosum from patients with autism exhibited extensive gene mis-expression in this module, and our immunochemical analysis showed that the human corpus callosum is predominantly populated by oligodendrocyte cells. Analysis of functional genomic data further revealed a significant involvement of this module in the development of oligodendrocyte cells in mouse brain. Our analysis delineates a natural network involved in autism, helps uncover novel candidate genes for this disease and improves our understanding of its molecular pathology.

  2. Comparative Analysis of 35 Basidiomycete Genomes Reveals Diversity and Uniqueness of the Phylum

    SciTech Connect

    Riley, Robert; Salamov, Asaf; Otillar, Robert; Fagnan, Kirsten; Boussau, Bastien; Brown, Daren; Henrissat, Bernard; Levasseur, Anthony; Held, Benjamin; Nagy, Laszlo; Floudas, Dimitris; Morin, Emmanuelle; Manning, Gerard; Baker, Scott; Martin, Francis; Blanchette, Robert; Hibbett, David; Grigoriev, Igor V.

    2013-03-11

    Fungi of the phylum Basidiomycota (basidiomycetes), make up some 37percent of the described fungi, and are important in forestry, agriculture, medicine, and bioenergy. This diverse phylum includes symbionts, pathogens, and saprobes including wood decaying fungi. To better understand the diversity of this phylum we compared the genomes of 35 basidiomycete fungi including 6 newly sequenced genomes. The genomes of basidiomycetes span extremes of genome size, gene number, and repeat content. A phylogenetic tree of Basidiomycota was generated using the Phyldog software, which uses all available protein sequence data to simultaneously infer gene and species trees. Analysis of core genes reveals that some 48percent of basidiomycete proteins are unique to the phylum with nearly half of those (22percent) comprising proteins found in only one organism. Phylogenetic patterns of plant biomass-degrading genes suggest a continuum rather than a sharp dichotomy between the white rot and brown rot modes of wood decay among the members of Agaricomycotina subphylum. There is a correlation of the profile of certain gene families to nutritional mode in Agaricomycotina. Based on phylogenetically-informed PCA analysis of such profiles, we predict that that Botryobasidium botryosum and Jaapia argillacea have properties similar to white rot species, although neither has liginolytic class II fungal peroxidases. Furthermore, we find that both fungi exhibit wood decay with white rot-like characteristics in growth assays. Analysis of the rate of discovery of proteins with no or few homologs suggests the high value of continued sequencing of basidiomycete fungi.

  3. Engineering cell alignment in vitro.

    PubMed

    Li, Yuhui; Huang, Guoyou; Zhang, Xiaohui; Wang, Lin; Du, Yanan; Lu, Tian Jian; Xu, Feng

    2014-01-01

    Cell alignment plays a critical role in various cell behaviors including cytoskeleton reorganization, membrane protein relocation, nucleus gene expression, and ECM remodeling. Cell alignment is also known to exert significant effects on tissue regeneration (e.g., neuron) and modulate mechanical properties of tissues including skeleton, cardiac muscle and tendon. Therefore, it is essential to engineer cell alignment in vitro for biomechanics, cell biology, tissue engineering and regenerative medicine applications. With advances in nano- and micro-scale technologies, a variety of approaches have been developed to engineer cell alignment in vitro, including mechanical loading, topographical patterning, and surface chemical treatment. In this review, we first present alignments of various cell types and their functionality in different tissues in vivo including muscle and nerve tissues. Then, we provide an overview of recent approaches for engineering cell alignment in vitro. Finally, concluding remarks and perspectives are addressed for future improvement of engineering cell alignment.

  4. A novel meta-analysis approach of cancer transcriptomes reveals prevailing transcriptional networks in cancer cells.

    PubMed

    Niida, Atsushi; Imoto, Seiya; Nagasaki, Masao; Yamaguchi, Rui; Miyano, Satoru

    2010-01-01

    Although microarray technology has revealed transcriptomic diversities underlining various cancer phenotypes, transcriptional programs controlling them have not been well elucidated. To decode transcriptional programs governing cancer transcriptomes, we have recently developed a computational method termed EEM, which searches for expression modules from prescribed gene sets defined by prior biological knowledge like TF binding motifs. In this paper, we extend our EEM approach to predict cancer transcriptional networks. Starting from functional TF binding motifs and expression modules identified by EEM, we predict cancer transcriptional networks containing regulatory TFs, associated GO terms, and interactions between TF binding motifs. To systematically analyze transcriptional programs in broad types of cancer, we applied our EEM-based network prediction method to 122 microarray datasets collected from public databases. The data sets contain about 15000 experiments for tumor samples of various tissue origins including breast, colon, lung etc. This EEM based meta-analysis successfully revealed a prevailing cancer transcriptional network which functions in a large fraction of cancer transcriptomes; they include cell-cycle and immune related sub-networks. This study demonstrates broad applicability of EEM, and opens a way to comprehensive understanding of transcriptional networks in cancer cells.

  5. Paternal uniparental disomy for chromosome 1 revealed by molecular analysis of a patient with pycnodysostosis.

    PubMed Central

    Gelb, B D; Willner, J P; Dunn, T M; Kardon, N B; Verloes, A; Poncin, J; Desnick, R J

    1998-01-01

    Molecular analysis of a patient affected by the autosomal recessive skeletal dysplasia, pycnodysostosis (cathepsin K deficiency; MIM 265800), revealed homozygosity for a novel missense mutation (A277V). Since the A277V mutation was carried by the patient's father but not by his mother, who had two normal cathepsin K alleles, paternal uniparental disomy was suspected. Karyotyping of the patient and of both parents was normal, and high-resolution cytogenetic analyses of chromosome 1, to which cathepsin K is mapped, revealed no abnormalities. Evaluation of polymorphic DNA markers spanning chromosome 1 demonstrated that the patient had inherited two paternal chromosome 1 homologues, whereas alleles for markers from other chromosomes were inherited in a Mendelian fashion. The patient was homoallelic for informative markers mapping near the chromosome 1 centromere, but he was heteroallelic for markers near both telomeres, establishing that the paternal uniparental disomy with partial isodisomy was caused by a meiosis II nondisjunction event. Phenotypically, the patient had normal birth height and weight, had normal psychomotor development at age 7 years, and had only the usual features of pycnodysostosis. This patient represents the first case of paternal uniparental disomy of chromosome 1 and provides conclusive evidence that paternally derived genes on human chromosome 1 are not imprinted. PMID:9529353

  6. Adaptations to a subterranean environment and longevity revealed by the analysis of mole rat genomes

    PubMed Central

    Fang, Xiaodong; Seim, Inge; Huang, Zhiyong; Gerashchenko, Maxim V.; Xiong, Zhiqiang; Turanov, Anton A.; Zhu, Yabing; Lobanov, Alexei V.; Fan, Dingding; Yim, Sun Hee; Yao, Xiaoming; Ma, Siming; Yang, Lan; Lee, Sang-Goo; Kim, Eun Bae; Bronson, Roderick T.; Šumbera, Radim; Buffenstein, Rochelle; Zhou, Xin; Krogh, Anders; Park, Thomas J.; Zhang, Guojie; Wang, Jun; Gladyshev, Vadim N.

    2014-01-01

    SUMMARY Subterranean mammals spend their lives in dark, unventilated environments rich in carbon dioxide and ammonia, and low in oxygen. Many of these animals are also long-lived and exhibit reduced aging-associated diseases, such as neurodegenerative disorders and cancer. We sequenced the genome of the Damaraland mole rat (DMR, Fukomys damarensis) and improved the genome assembly of the naked mole rat (NMR, Heterocephalus glaber). Comparative genome analysis, along with transcriptomes of related subterranean rodents, reveal candidate molecular adaptations for subterranean life and longevity, including a divergent insulin peptide, expression of oxygen-carrying globins in the brain, prevention of high CO2-induced pain perception, and enhanced ammonia detoxification. Juxtaposition of the genomes of DMR and other more conventional animals with the genome of NMR revealed several truly exceptional NMR features: unusual thermogenesis, aberrant melatonin system, pain insensitivity, and novel processing of 28S rRNA. Together, the new genomes and transcriptomes extend our understanding of subterranean adaptations, stress resistance and longevity. PMID:25176646

  7. Genetic relationships of the Japanese persimmon Diospyros kaki (Ebenaceae) and related species revealed by SSR analysis.

    PubMed

    Guo, D L; Luo, Z R

    2011-06-07

    Simple sequence repeat (SSR) molecular markers based on 18 primers were employed to study the genetic relationship of Japanese persimmon (Diospyros kaki) specimens. Two hundred and sixty-two bands were detected in 30 Japanese persimmon samples, including 14 Japanese and 10 Chinese genotypes of Japanese persimmon (Diospyros kaki) and six related species, D. lotus, D. glaucifolia, D. oleifera, D. rhombifolia, D. virginiana, and Jinzaoshi (unclassified - previously indicated to be D. kaki). All SSR primers developed from D. kaki were successfully employed to reveal the polymorphism in other species of Diospyros. Most of the primers were highly polymorphic, with a degree of polymorphism equal to or higher than 0.66. The results from the neighbor-joining dendrogram and the principal coordinate analysis diagram were the same; i.e., the Chinese and Japanese genotypes and related species were separated and the relationships revealed were consistent with the known pedigrees. We also concluded that 'Xiangxitianshi' from Xiangxi municipality, Hunan Province, China, is actually a sport or somaclonal variant of 'Maekawa-Jirou', and that 'Jinzaoshi' should be classified as a distinct species of Diospyros. We found that SSR markers are a valuable tool for the estimation of genetic diversity and divergence in Diospyros.

  8. Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations.

    PubMed

    Förster, Frank; Beisser, Daniela; Grohme, Markus A; Liang, Chunguang; Mali, Brahim; Siegl, Alexander Matthias; Engelmann, Julia C; Shkumatov, Alexander V; Schokraie, Elham; Müller, Tobias; Schnölzer, Martina; Schill, Ralph O; Frohme, Marcus; Dandekar, Thomas

    2012-01-01

    Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade Milnesium tardigradum were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from Hypsibius dujardini, revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for M. tardigradum are different from typical motifs known from higher animals. M. tardigradum and H. dujardini protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of M. tardigradum. These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and M. tardigradum in particular so highly stress resistant.

  9. Analysis of self-overlap reveals trade-offs in plankton swimming trajectories.

    PubMed

    Bianco, Giuseppe; Mariani, Patrizio; Visser, Andre W; Mazzocchi, Maria Grazia; Pigolotti, Simone

    2014-07-06

    Movement is a fundamental behaviour of organisms that not only brings about beneficial encounters with resources and mates, but also at the same time exposes the organism to dangerous encounters with predators. The movement patterns adopted by organisms should reflect a balance between these contrasting processes. This trade-off can be hypothesized as being evident in the behaviour of plankton, which inhabit a dilute three-dimensional environment with few refuges or orienting landmarks. We present an analysis of the swimming path geometries based on a volumetric Monte Carlo sampling approach, which is particularly adept at revealing such trade-offs by measuring the self-overlap of the trajectories. Application of this method to experimentally measured trajectories reveals that swimming patterns in copepods are shaped to efficiently explore volumes at small scales, while achieving a large overlap at larger scales. Regularities in the observed trajectories make the transition between these two regimes always sharper than in randomized trajectories or as predicted by random walk theory. Thus, real trajectories present a stronger separation between exploration for food and exposure to predators. The specific scale and features of this transition depend on species, gender and local environmental conditions, pointing at adaptation to state and stage-dependent evolutionary trade-offs.

  10. A domain-centric analysis of oomycete plant pathogen genomes reveals unique protein organization.

    PubMed

    Seidl, Michael F; Van den Ackerveken, Guido; Govers, Francine; Snel, Berend

    2011-02-01

    Oomycetes comprise a diverse group of organisms that morphologically resemble fungi but belong to the stramenopile lineage within the supergroup of chromalveolates. Recent studies have shown that plant pathogenic oomycetes have expanded gene families that are possibly linked to their pathogenic lifestyle. We analyzed the protein domain organization of 67 eukaryotic species including four oomycete and five fungal plant pathogens. We detected 246 expanded domains in fungal and oomycete plant pathogens. The analysis of genes differentially expressed during infection revealed a significant enrichment of genes encoding expanded domains as well as signal peptides linking a substantial part of these genes to pathogenicity. Overrepresentation and clustering of domain abundance profiles revealed domains that might have important roles in host-pathogen interactions but, as yet, have not been linked to pathogenicity. The number of distinct domain combinations (bigrams) in oomycetes was significantly higher than in fungi. We identified 773 oomycete-specific bigrams, with the majority composed of domains common to eukaryotes. The analyses enabled us to link domain content to biological processes such as host-pathogen interaction, nutrient uptake, or suppression and elicitation of plant immune responses. Taken together, this study represents a comprehensive overview of the domain repertoire of fungal and oomycete plant pathogens and points to novel features like domain expansion and species-specific bigram types that could, at least partially, explain why oomycetes are such remarkable plant pathogens.

  11. Analysis of self-overlap reveals trade-offs in plankton swimming trajectories

    PubMed Central

    Bianco, Giuseppe; Mariani, Patrizio; Visser, Andre W.; Mazzocchi, Maria Grazia; Pigolotti, Simone

    2014-01-01

    Movement is a fundamental behaviour of organisms that not only brings about beneficial encounters with resources and mates, but also at the same time exposes the organism to dangerous encounters with predators. The movement patterns adopted by organisms should reflect a balance between these contrasting processes. This trade-off can be hypothesized as being evident in the behaviour of plankton, which inhabit a dilute three-dimensional environment with few refuges or orienting landmarks. We present an analysis of the swimming path geometries based on a volumetric Monte Carlo sampling approach, which is particularly adept at revealing such trade-offs by measuring the self-overlap of the trajectories. Application of this method to experimentally measured trajectories reveals that swimming patterns in copepods are shaped to efficiently explore volumes at small scales, while achieving a large overlap at larger scales. Regularities in the observed trajectories make the transition between these two regimes always sharper than in randomized trajectories or as predicted by random walk theory. Thus, real trajectories present a stronger separation between exploration for food and exposure to predators. The specific scale and features of this transition depend on species, gender and local environmental conditions, pointing at adaptation to state and stage-dependent evolutionary trade-offs. PMID:24789560

  12. Transcriptome Analysis in Tardigrade Species Reveals Specific Molecular Pathways for Stress Adaptations

    PubMed Central

    Förster, Frank; Beisser, Daniela; Grohme, Markus A.; Liang, Chunguang; Mali, Brahim; Siegl, Alexander Matthias; Engelmann, Julia C.; Shkumatov, Alexander V.; Schokraie, Elham; Müller, Tobias; Schnölzer, Martina; Schill, Ralph O.; Frohme, Marcus; Dandekar, Thomas

    2012-01-01

    Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade Milnesium tardigradum were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from Hypsibius dujardini, revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for M. tardigradum are different from typical motifs known from higher animals. M. tardigradum and H. dujardini protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of M. tardigradum. These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and M. tardigradum in particular so highly stress resistant. PMID:22563243

  13. Quantitative Analysis of the Human Airway Microbial Ecology Reveals a Pervasive Signature for Cystic Fibrosis

    PubMed Central

    Blainey, Paul C.; Milla, Carlos E.; Cornfield, David N.; Quake, Stephen R.

    2014-01-01

    Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding the CF transmembrane conductance regulator. Disruption of electrolyte homeostasis at mucosal surfaces leads to severe lung, pancreatic, intestinal, hepatic, and reproductive abnormalities. Loss of lung function as a result of chronic lung disease is the primary cause of death from CF. Using high-throughput sequencing to survey microbes in the sputum of 16 CF patients and 9 control individuals, we identified diverse microbial communities in the healthy samples, contravening conventional wisdom that healthy airways are not significantly colonized. Comparing these communities with those from the CF patients revealed significant differences in microbial ecology, including differential representation of uncultivated phylotypes. Despite patient-specific differences, our analysis revealed a focal microbial profile characteristic of CF. The profile differentiated case and control groups even when classically recognized CF pathogens were excluded. As a control, lung explant tissues were also processed from a group of patients with pulmonary disease. The findings in lung tissue corroborated the presence of taxa identified in the sputum samples. Comparing the sequencing results with clinical data indicated that diminished microbial diversity is associated with severity of pulmonary inflammation within our adult CF cohort. PMID:23019655

  14. Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark.

    PubMed

    Carlisle, Aaron B; Goldman, Kenneth J; Litvin, Steven Y; Madigan, Daniel J; Bigman, Jennifer S; Swithenbank, Alan M; Kline, Thomas C; Block, Barbara A

    2015-01-22

    Ontogenetic changes in habitat are driven by shifting life-history requirements and play an important role in population dynamics. However, large portions of the life history of many pelagic species are still poorly understood or unknown. We used a novel combination of stable isotope analysis of vertebral annuli, Bayesian mixing models, isoscapes and electronic tag data to reconstruct ontogenetic patterns of habitat and resource use in a pelagic apex predator, the salmon shark (Lamna ditropis). Results identified the North Pacific Transition Zone as the major nursery area for salmon sharks and revealed an ontogenetic shift around the age of maturity from oceanic to increased use of neritic habitats. The nursery habitat may reflect trade-offs between prey availability, predation pressure and thermal constraints on juvenile endothermic sharks. The ontogenetic shift in habitat coincided with a reduction of isotopic niche, possibly reflecting specialization upon particular prey or habitats. Using tagging data to inform Bayesian isotopic mixing models revealed that adult sharks primarily use neritic habitats of Alaska yet receive a trophic subsidy from oceanic habitats. Integrating the multiple methods used here provides a powerful approach to retrospectively study the ecology and life history of migratory species throughout their ontogeny.

  15. Genetic analysis reveals candidate species in the Scinax catharinae clade (Amphibia: Anura) from Central Brazil

    PubMed Central

    Nogueira, Lídia; Solé, Mirco; Siqueira, Sérgio; Affonso, Paulo Roberto Antunes de Mello; Strüssmann, Christine; Sampaio, Iracilda

    2016-01-01

    Abstract Scinax (Anura: Hylidae) is a species-rich genus of amphibians (113 spp.), divided into five species groups by morphological features. Cladistic analyses however revealed only two monophyletic clades in these groups: Scinax catharinae and Scinax ruber. Most species from the S. catharinae clade are found in Atlantic rainforest, except for Scinax canastrensis,S. centralis, S. luizotavioi, S. machadoi,S. pombali and S. skaios. In the present work, specimens of Scinax collected in Chapada dos Guimarães, central Brazil, were morphologically compatible with species from theS. catharinae group. On the other hand, genetic analysis based on mitochondrial (16S and 12S) and nuclear (rhodopsin) sequences revealed a nucleotide divergence of 6 to 20% between Scinax sp. and other congeners from the Brazilian savannah (Cerrado). Accordingly, Bayesian inference placed Scinax sp. in the S. catharinae clade with high support values. Hence, these findings strongly indicate the presence of a new species in the S. catharinae clade from the southwestern portion of the Brazilian savannah. To be properly validated as a novel species, detailed comparative morphological and bioacustic studies with other taxa from Brazil such asS. canastrensis, S. centralis, S. luizotavioi, S. machadoi, S. pombali and S. skaios are required. PMID:27007898

  16. Genetic analysis reveals candidate species in the Scinax catharinae clade (Amphibia: Anura) from Central Brazil.

    PubMed

    Nogueira, Lídia; Solé, Mirco; Siqueira, Sérgio; Affonso, Paulo Roberto Antunes de Mello; Strüssmann, Christine; Sampaio, Iracilda

    2016-03-01

    Scinax (Anura: Hylidae) is a species-rich genus of amphibians (113 spp.), divided into five species groups by morphological features. Cladistic analyses however revealed only two monophyletic clades in these groups: Scinax catharinae and Scinax ruber. Most species from the S. catharinae clade are found in Atlantic rainforest, except for Scinax canastrensis,S. centralis, S. luizotavioi, S. machadoi,S. pombali and S. skaios. In the present work, specimens of Scinax collected in Chapada dos Guimarães, central Brazil, were morphologically compatible with species from theS. catharinae group. On the other hand, genetic analysis based on mitochondrial (16S and 12S) and nuclear (rhodopsin) sequences revealed a nucleotide divergence of 6 to 20% between Scinax sp. and other congeners from the Brazilian savannah (Cerrado). Accordingly, Bayesian inference placed Scinax sp. in the S. catharinae clade with high support values. Hence, these findings strongly indicate the presence of a new species in the S. catharinae clade from the southwestern portion of the Brazilian savannah. To be properly validated as a novel species, detailed comparative morphological and bioacustic studies with other taxa from Brazil such asS. canastrensis, S. centralis, S. luizotavioi, S. machadoi, S. pombali and S. skaios are required.

  17. Stable isotope analysis of vertebrae reveals ontogenetic changes in habitat in an endothermic pelagic shark

    PubMed Central

    Carlisle, Aaron B.; Goldman, Kenneth J.; Litvin, Steven Y.; Madigan, Daniel J.; Bigman, Jennifer S.; Swithenbank, Alan M.; Kline, Thomas C.; Block, Barbara A.

    2015-01-01

    Ontogenetic changes in habitat are driven by shifting life-history requirements and play an important role in population dynamics. However, large portions of the life history of many pelagic species are still poorly understood or unknown. We used a novel combination of stable isotope analysis of vertebral annuli, Bayesian mixing models, isoscapes and electronic tag data to reconstruct ontogenetic patterns of habitat and resource use in a pelagic apex predator, the salmon shark (Lamna ditropis). Results identified the North Pacific Transition Zone as the major nursery area for salmon sharks and revealed an ontogenetic shift around the age of maturity from oceanic to increased use of neritic habitats. The nursery habitat may reflect trade-offs between prey availability, predation pressure and thermal constraints on juvenile endothermic sharks. The ontogenetic shift in habitat coincided with a reduction of isotopic niche, possibly reflecting specialization upon particular prey or habitats. Using tagging data to inform Bayesian isotopic mixing models revealed that adult sharks primarily use neritic habitats of Alaska yet receive a trophic subsidy from oceanic habitats. Integrating the multiple methods used here provides a powerful approach to retrospectively study the ecology and life history of migratory species throughout their ontogeny. PMID:25621332

  18. Microarray analysis reveals novel features of the muscle aging process in men and women.

    PubMed

    Liu, Dongmei; Sartor, Maureen A; Nader, Gustavo A; Pistilli, Emidio E; Tanton, Leah; Lilly, Charles; Gutmann, Laurie; IglayReger, Heidi B; Visich, Paul S; Hoffman, Eric P; Gordon, Paul M

    2013-09-01

    To develop a global view of muscle transcriptional differences between older men and women and sex-specific aging, we obtained muscle biopsies from the biceps brachii of young and older men and women and profiled the whole-genome gene expression using microarray. A logistic regression-based method in combination with an intensity-based Bayesian moderated t test was used to identify significant sex- and aging-related gene functional groups. Our analysis revealed extensive sex differences in the muscle transcriptome of older individuals and different patterns of transcriptional changes with aging in men and women. In older women, we observed a coordinated transcriptional upregulation of immune activation, extracellular matrix remodeling, and lipids storage; and a downregulation of mitochondrial biogenesis and function and muscle regeneration. The effect of aging results in sexual dimorphic alterations in the skeletal muscle transcriptome, which may modify the risk for developing musculoskeletal and metabolic diseases in men and women.

  19. Microarray Analysis Reveals Novel Features of the Muscle Aging Process in Men and Women

    PubMed Central

    2013-01-01

    To develop a global view of muscle transcriptional differences between older men and women and sex-specific aging, we obtained muscle biopsies from the biceps brachii of young and older men and women and profiled the whole-genome gene expression using microarray. A logistic regression-based method in combination with an intensity-based Bayesian moderated t test was used to identify significant sex- and aging-related gene functional groups. Our analysis revealed extensive sex differences in the muscle transcriptome of older individuals and different patterns of transcriptional changes with aging in men and women. In older women, we observed a coordinated transcriptional upregulation of immune activation, extracellular matrix remodeling, and lipids storage; and a downregulation of mitochondrial biogenesis and function and muscle regeneration. The effect of aging results in sexual dimorphic alterations in the skeletal muscle transcriptome, which may modify the risk for developing musculoskeletal and metabolic diseases in men and women. PMID:23418191

  20. Dichotomy of cellular inhibition by small-molecule inhibitors revealed by single-cell analysis

    PubMed Central

    Vogel, Robert M.; Erez, Amir; Altan-Bonnet, Grégoire

    2016-01-01

    Despite progress in drug development, a quantitative and physiological understanding of how small-molecule inhibitors act on cells is lacking. Here, we measure the signalling and proliferative response of individual primary T-lymphocytes to a combination of antigen, cytokine and drug. We uncover two distinct modes of signalling inhibition: digital inhibition (the activated fraction of cells diminishes upon drug treatment, but active cells appear unperturbed), versus analogue inhibition (the activated fraction is unperturbed whereas activation response is diminished). We introduce a computational model of the signalling cascade that accounts for such inhibition dichotomy, and test the model predictions for the phenotypic variability of cellular responses. Finally, we demonstrate that the digital/analogue dichotomy of cellular response as revealed on short (signal transduction) timescales, translates into similar dichotomy on longer (proliferation) timescales. Our single-cell analysis of drug action illustrates the strength of quantitative approaches to translate in vitro pharmacology into functionally relevant cellular settings. PMID:27687249

  1. Metagenomic analysis reveals significant changes of microbial compositions and protective functions during drinking water treatment.

    PubMed

    Chao, Yuanqing; Ma, Liping; Yang, Ying; Ju, Feng; Zhang, Xu-Xiang; Wu, Wei-Min; Zhang, Tong

    2013-12-19

    The metagenomic approach was applied to characterize variations of microbial structure and functions in raw (RW) and treated water (TW) in a drinking water treatment plant (DWTP) at Pearl River Delta, China. Microbial structure was significantly influenced by the treatment processes, shifting from Gammaproteobacteria and Betaproteobacteria in RW to Alphaproteobacteria in TW. Further functional analysis indicated the basic metabolic functions of microorganisms in TW did not vary considerably. However, protective functions, i.e. glutathione synthesis genes in 'oxidative stress' and 'detoxification' subsystems, significantly increased, revealing the surviving bacteria may have higher chlorine resistance. Similar results were also found in glutathione metabolism pathway, which identified the major reaction for glutathione synthesis and supported more genes for glutathione metabolism existed in TW. This metagenomic study largely enhanced our knowledge about the influences of treatment processes, especially chlorination, on bacterial community structure and protective functions (e.g. glutathione metabolism) in ecosystems of DWTPs.

  2. Network-based diffusion analysis reveals cultural transmission of lobtail feeding in humpback whales.

    PubMed

    Allen, Jenny; Weinrich, Mason; Hoppitt, Will; Rendell, Luke

    2013-04-26

    We used network-based diffusion analysis to reveal the cultural spread of a naturally occurring foraging innovation, lobtail feeding, through a population of humpback whales (Megaptera novaeangliae) over a period of 27 years. Support for models with a social transmission component was 6 to 23 orders of magnitude greater than for models without. The spatial and temporal distribution of sand lance, a prey species, was also important in predicting the rate of acquisition. Our results, coupled with existing knowledge about song traditions, show that this species can maintain multiple independently evolving traditions in its populations. These insights strengthen the case that cetaceans represent a peak in the evolution of nonhuman culture, independent of the primate lineage.

  3. Metagenomic analysis of the pinewood nematode microbiome reveals a symbiotic relationship critical for xenobiotics degradation

    PubMed Central

    Cheng, Xin-Yue; Tian, Xue-Liang; Wang, Yun-Sheng; Lin, Ren-Miao; Mao, Zhen-Chuan; Chen, Nansheng; Xie, Bing-Yan

    2013-01-01

    Our recent research revealed that pinewood nematode (PWN) possesses few genes encoding enzymes for degrading α-pinene, which is the main compound in pine resin. In this study, we examined the role of PWN microbiome in xenobiotics detoxification by metagenomic and bacteria culture analyses. Functional annotation of metagenomes illustrated that benzoate degradation and its related metabolisms may provide the main metabolic pathways for xenobiotics detoxification in the microbiome, which is obviously different from that in PWN that uses cytochrome P450 metabolism as the main pathway for detoxification. The metabolic pathway of degrading α-pinene is complete in microbiome, but incomplete in PWN genome. Experimental analysis demonstrated that most of tested cultivable bacteria can not only survive the stress of 0.4% α-pinene, but also utilize α-pinene as carbon source for their growth. Our results indicate that PWN and its microbiome have established a potentially mutualistic symbiotic relationship with complementary pathways in detoxification metabolism. PMID:23694939

  4. Dichotomy of cellular inhibition by small-molecule inhibitors revealed by single-cell analysis

    NASA Astrophysics Data System (ADS)

    Vogel, Robert M.; Erez, Amir; Altan-Bonnet, Grégoire

    2016-09-01

    Despite progress in drug development, a quantitative and physiological understanding of how small-molecule inhibitors act on cells is lacking. Here, we measure the signalling and proliferative response of individual primary T-lymphocytes to a combination of antigen, cytokine and drug. We uncover two distinct modes of signalling inhibition: digital inhibition (the activated fraction of cells diminishes upon drug treatment, but active cells appear unperturbed), versus analogue inhibition (the activated fraction is unperturbed whereas activation response is diminished). We introduce a computational model of the signalling cascade that accounts for such inhibition dichotomy, and test the model predictions for the phenotypic variability of cellular responses. Finally, we demonstrate that the digital/analogue dichotomy of cellular response as revealed on short (signal transduction) timescales, translates into similar dichotomy on longer (proliferation) timescales. Our single-cell analysis of drug action illustrates the strength of quantitative approaches to translate in vitro pharmacology into functionally relevant cellular settings.

  5. Bifidobacterium asteroides PRL2011 Genome Analysis Reveals Clues for Colonization of the Insect Gut

    PubMed Central

    Bottacini, Francesca; Milani, Christian; Turroni, Francesca; Sánchez, Borja; Foroni, Elena; Duranti, Sabrina; Serafini, Fausta; Viappiani, Alice; Strati, Francesco; Ferrarini, Alberto; Delledonne, Massimo; Henrissat, Bernard; Coutinho, Pedro; Fitzgerald, Gerald F.; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2012-01-01

    Bifidobacteria are known as anaerobic/microaerophilic and fermentative microorganisms, which commonly inhabit the gastrointestinal tract of various animals and insects. Analysis of the 2,167,301 bp genome of Bifidobacterium asteroides PRL2011, a strain isolated from the hindgut of Apis mellifera var. ligustica, commonly known as the honey bee, revealed its predicted capability for respiratory metabolism. Conservation of the latter gene clusters in various B. asteroides strains enforces the notion that respiration is a common metabolic feature of this ancient bifidobacterial species, which has been lost in currently known mammal-derived Bifidobacterium species. In fact, phylogenomic based analyses suggested an ancient origin of B. asteroides and indicates it as an ancestor of the genus Bifidobacterium. Furthermore, the B. asteroides PRL2011 genome encodes various enzymes for coping with toxic products that arise as a result of oxygen-mediated respiration. PMID:23028506

  6. Global analysis of asymmetric RNA enrichment in oocytes reveals low conservation between closely related Xenopus species

    PubMed Central

    Claußen, Maike; Lingner, Thomas; Pommerenke, Claudia; Opitz, Lennart; Salinas, Gabriela; Pieler, Tomas

    2015-01-01

    RNAs that localize to the vegetal cortex during Xenopus laevis oogenesis have been reported to function in germ layer patterning, axis determination, and development of the primordial germ cells. Here we report on the genome-wide, comparative analysis of differentially localizing RNAs in Xenopus laevis and Xenopus tropicalis oocytes, revealing a surprisingly weak degree of conservation in respect to the identity of animally as well as vegetally enriched transcripts in these closely related species. Heterologous RNA injections and protein binding studies indicate that the different RNA localization patterns in these two species are due to gain/loss of cis-acting localization signals rather than to differences in the RNA-localizing machinery. PMID:26337391

  7. Ancient mitochondrial DNA analysis reveals complexity of indigenous North American turkey domestication

    PubMed Central

    Speller, Camilla F.; Kemp, Brian M.; Wyatt, Scott D.; Monroe, Cara; Lipe, William D.; Arndt, Ursula M.; Yang, Dongya Y.

    2010-01-01

    Although the cultural and nutritive importance of the turkey (Meleagris gallopavo) to precontact Native Americans and contemporary people worldwide is clear, little is known about the domestication of this bird compared to other domesticates. Mitochondrial DNA analysis of 149 turkey bones and 29 coprolites from 38 archaeological sites (200 BC–AD 1800) reveals a unique domesticated breed in the precontact Southwestern United States. Phylogeographic analyses indicate that this domestic breed originated from outside the region, but rules out the South Mexican domestic turkey (Meleagris gallopavo gallopavo) as a progenitor. A strong genetic bottleneck within the Southwest turkeys also reflects intensive human selection and breeding. This study points to at least two occurrences of turkey domestication in precontact North America and illuminates the intensity and sophistication of New World animal breeding practices. PMID:20133614

  8. Genome Wide Analysis of Chromatin Regulation by Cocaine Reveals a Novel Role for Sirtuins

    PubMed Central

    Renthal, William; Kumar, Arvind; Xiao, Guanghua; Wilkinson, Matthew; Covington, Herbert E.; Maze, Ian; Sikder, Devanjan; Robison, Alfred J.; LaPlant, Quincey; Dietz, David M.; Russo, Scott J.; Vialou, Vincent; Chakravarty, Sumana; Kodadek, Thomas J.; Stack, Ashley; Kabbaj, Mohammed; Nestler, Eric J.

    2009-01-01

    Summary Changes in gene expression contribute to the long-lasting regulation of the brain’s reward circuitry seen in drug addiction, however, the specific genes regulated and the transcriptional mechanisms underlying such regulation remain poorly understood. Here, we used chromatin immunoprecipitation coupled with promoter microarray analysis to characterize genome-wide chromatin changes in the mouse nucleus accumbens, a crucial brain reward region, after repeated cocaine administration. Our findings reveal several interesting principles of gene regulation by cocaine and of the role of ΔFosB and CREB, two prominent cocaine-induced transcription factors, in this brain region. The findings also provide novel and comprehensive insight into the molecular pathways regulated by cocaine – including a new role for sirtuins (Sirt1 and Sirt2) –which are induced in the nucleus accumbens by cocaine and, in turn, dramatically enhance the behavioral effects of the drug. PMID:19447090

  9. TSGC and JSC Alignment

    NASA Technical Reports Server (NTRS)

    Sanchez, Humberto

    2013-01-01

    NASA and the SGCs are, by design, intended to work closely together and have synergistic Vision, Mission, and Goals. The TSGC affiliates and JSC have been working together, but not always in a concise, coordinated, nor strategic manner. Today we have a couple of simple ideas to present about how TSGC and JSC have started to work together in a more concise, coordinated, and strategic manner, and how JSC and non-TSG Jurisdiction members have started to collaborate: Idea I: TSGC and JSC Technical Alignment Idea II: Concept of Clusters.

  10. Spot Scanning Proton Beam Therapy for Prostate Cancer: Treatment Planning Technique and Analysis of Consequences of Rotational and Translational Alignment Errors

    SciTech Connect

    Meyer, Jeff; Bluett, Jaques; Amos, Richard

    2010-10-01

    Purpose: Conventional proton therapy with passively scattered beams is used to treat a number of tumor sites, including prostate cancer. Spot scanning proton therapy is a treatment delivery means that improves conformal coverage of the clinical target volume (CTV). Placement of individual spots within a target is dependent on traversed tissue density. Errors in patient alignment perturb dose distributions. Moreover, there is a need for a rational planning approach that can mitigate the dosimetric effect of random alignment errors. We propose a treatment planning approach and then analyze the consequences of various simulated alignment errors on prostate treatments. Methods and Materials: Ten control patients with localized prostate cancer underwent treatment planning for spot scanning proton therapy. After delineation of the clinical target volume, a scanning target volume (STV) was created to guide dose coverage. Errors in patient alignment in two axes (rotational and yaw) as well as translational errors in the anteroposterior direction were then simulated, and dose to the CTV and normal tissues were reanalyzed. Results: Coverage of the CTV remained high even in the setting of extreme rotational and yaw misalignments. Changes in the rectum and bladder V45 and V70 were similarly minimal, except in the case of translational errors, where, as a result of opposed lateral beam arrangements, much larger dosimetric perturbations were observed. Conclusions: The concept of the STV as applied to spot scanning radiation therapy and as presented in this report leads to robust coverage of the CTV even in the setting of extreme patient misalignments.

  11. Multifield optimization intensity-modulated proton therapy (MFO-IMPT) for prostate cancer: Robustness analysis through simulation of rotational and translational alignment errors.

    PubMed

    Pugh, Thomas J; Amos, Richard A; John Baptiste, Sandra; Choi, Seungtaek; Nhu Nguyen, Quyhn; Ronald Zhu, X; Palmer, Matthew B; Lee, Andrew K

    2013-01-01

    To evaluate the dosimetric consequences of rotational and translational alignment errors in patients receiving intensity-modulated proton therapy with multifield optimization (MFO-IMPT) for prostate cancer. Ten control patients with localized prostate cancer underwent treatment planning for MFO-IMPT. Rotational and translation errors were simulated along each of 3 axes: anterior-posterior (A-P), superior-inferior (S-I), and left-right. Clinical target-volume (CTV) coverage remained high with all alignment errors simulated. Rotational errors did not result in significant rectum or bladder dose perturbations. Translational errors resulted in larger dose perturbations to the bladder and rectum. Perturbations in rectum and bladder doses were minimal for rotational errors and larger for translational errors. Rectum V45 and V70 increased most with A-P misalignment, whereas bladder V45 and V70 changed most with S-I misalignment. The bladder and rectum V45 and V70 remained acceptable even with extreme alignment errors. Even with S-I and A-P translational errors of up to 5mm, the dosimetric profile of MFO-IMPT remained favorable. MFO-IMPT for localized prostate cancer results in robust coverage of the CTV without clinically meaningful dose perturbations to normal tissue despite extreme rotational and translational alignment errors.

  12. Multifield optimization intensity-modulated proton therapy (MFO-IMPT) for prostate cancer: Robustness analysis through simulation of rotational and translational alignment errors

    SciTech Connect

    Pugh, Thomas J.; Amos, Richard A.; John Baptiste, Sandra; Choi, Seungtaek; Nhu Nguyen, Quyhn; Ronald Zhu, X.; Palmer, Matthew B.; Lee, Andrew K.

    2013-10-01

    To evaluate the dosimetric consequences of rotational and translational alignment errors in patients receiving intensity-modulated proton therapy with multifield optimization (MFO-IMPT) for prostate cancer. Ten control patients with localized prostate cancer underwent treatment planning for MFO-IMPT. Rotational and translation errors were simulated along each of 3 axes: anterior-posterior (A-P), superior-inferior (S-I), and left-right. Clinical target-volume (CTV) coverage remained high with all alignment errors simulated. Rotational errors did not result in significant rectum or bladder dose perturbations. Translational errors resulted in larger dose perturbations to the bladder and rectum. Perturbations in rectum and bladder doses were minimal for rotational errors and larger for translational errors. Rectum V45 and V70 increased most with A-P misalignment, whereas bladder V45 and V70 changed most with S-I misalignment. The bladder and rectum V45 and V70 remained acceptable even with extreme alignment errors. Even with S-I and A-P translational errors of up to 5 mm, the dosimetric profile of MFO-IMPT remained favorable. MFO-IMPT for localized prostate cancer results in robust coverage of the CTV without clinically meaningful dose perturbations to normal tissue despite extreme rotational and translational alignment errors.

  13. Dynamic mechanical analysis and high strain-rate energy absorption characteristics of vertically aligned carbon nanotube reinforced woven fiber-glass composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dynamic mechanical behavior and energy absorption characteristics of nano-enhanced functionally graded composites, consisting of 3 layers of vertically aligned carbon nanotube (VACNT) forests grown on woven fiber-glass (FG) layer and embedded within 10 layers of woven FG, with polyester (PE) and...

  14. Cluster analysis reveals a binary effect of storage on boar sperm motility function.

    PubMed

    Henning, Heiko; Petrunkina, Anna M; Harrison, Robin A P; Waberski, Dagmar

    2014-06-01

    Storage of liquid-preserved boar spermatozoa is associated with a loss of fertilising ability of the preserved spermatozoa, which standard semen parameters barely reflect. Monitoring responses to molecular effectors of sperm function (e.g. bicarbonate) has proven to be a more sensitive approach to investigating storage effects. Bicarbonate not only initiates capacitation in spermatozoa, but also induces motility activation. This occurs at ejaculation, but also happens throughout passage through the oviduct. In the present study we tested whether the specific response of boar sperm subpopulations to bicarbonate, as assessed by motility activation, is altered with the duration of storage in vitro. Three ejaculates from each of seven boars were diluted in Beltsville thawing solution and stored at 17°C. Only minor changes in the parameters of diluted semen were revealed over a period of 72h storage. For assessment of bicarbonate responses, subsamples of diluted spermatozoa were centrifuged through a discontinuous Percoll gradient after 12, 24 and 72h storage. Subsequently, spermatozoa were incubated in two Ca2+-free variants of Tyrode's medium either without (TyrControl) or with (TyrBic) 15mM bicarbonate, and computer-aided sperm analysis motility measurements were made. Cluster analysis of imaging data from motile spermatozoa revealed the presence of five major sperm subpopulations with distinct motility characteristics, differing between TyrBic and TyrControl at any given time (P<0.001). Although there was an increasing loss of motility function in both media, bicarbonate induced an increase in a 'fast linear' cohort of spermatozoa in TyrBic regardless of storage (66.4% at 12h and 63.9% at 72h). These results imply a binary pattern in response of sperm motility function descriptors to storage: although the quantitative descriptor (percentage of motile spermatozoa) declines in washed semen samples, the qualitative descriptor (percentage of spermatozoa stimulated into

  15. Comparative Genomic Analysis of the Endosymbionts of Herbivorous Insects Reveals Eco-Environmental Adaptations: Biotechnology Applications

    PubMed Central

    Shi, Weibing; Xie, Shangxian; Chen, Xueyan; Sun, Su; Zhou, Xin; Liu, Lantao; Gao, Peng; Kyrpides, Nikos C.; No, En-Gyu; Yuan, Joshua S.

    2013-01-01

    Metagenome analysis of the gut symbionts of three different insects was conducted as a means of comparing taxonomic and metabolic diversity of gut microbiomes to diet and life history of the insect hosts. A second goal was the discovery of novel biocatalysts for biorefinery applications. Grasshopper and cutworm gut symbionts were sequenced and compared with the previously identified metagenome of termite gut microbiota. These insect hosts represent three different insect orders and specialize on different food types. The comparative analysis revealed dramatic differences among the three insect species in the abundance and taxonomic composition of the symbiont populations present in the gut. The composition and abundance of symbionts was correlated with their previously identified capacity to degrade and utilize the different types of food consumed by their hosts. The metabolic reconstruction revealed that the gut metabolome of cutworms and grasshoppers was more enriched for genes involved in carbohydrate metabolism and transport than wood-feeding termite, whereas the termite gut metabolome was enriched for glycosyl hydrolase (GH) enzymes relevant to lignocellulosic biomass degradation. Moreover, termite gut metabolome was more enriched with nitrogen fixation genes than those of grasshopper and cutworm gut, presumably due to the termite's adaptation to the high fiber and less nutritious food types. In order to evaluate and exploit the insect symbionts for biotechnology applications, we cloned and further characterized four biomass-degrading enzymes including one endoglucanase and one xylanase from both the grasshopper and cutworm gut symbionts. The results indicated that the grasshopper symbiont enzymes were generally more efficient in biomass degradation than the homologous enzymes from cutworm symbionts. Together, these results demonstrated a correlation between the composition and putative metabolic functionality of the gut microbiome and host diet, and suggested

  16. Differentially expressed genes and interacting pathways in bladder cancer revealed by bioinformatic analysis.

    PubMed

    Shen, Yinzhou; Wang, Xuelei; Jin, Yongchao; Lu, Jiasun; Qiu, Guangming; Wen, Xiaofei

    2014-10-01

    The goal of this study was to identify cancer-associated differentially expressed genes (DEGs), analyze their biological functions and investigate the mechanism(s) of cancer occurrence and development, which may provide a theoretical foundation for bladder cancer (BCa) therapy. We downloaded the mRNA expression profiling dataset GSE13507 from the Gene Expression Omnibus database; the dataset includes 165 BCa and 68 control samples. T‑tests were used to identify DEGs. To further study the biological functions of the identified DEGs, we performed a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Next, we built a network of potentially interacting pathways to study the synergistic relationships among DEGs. A total of 12,105 genes were identified as DEGs, of which 5,239 were upregulated and 6,866 were downregulated in BCa. The DEGs encoding activator protein 1 (AP-1), nuclear factor of activated T-cells (NFAT) proteins, nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and interleukin (IL)-10 were revealed to participate in the significantly enriched immune pathways that were downregulated in BCa. KEGG enrichment analysis revealed 7 significantly upregulated and 47 significantly downregulated pathways enriched among the DEGs. We found a crosstalk interaction among a total of 44 pathways in the network of BCa-affected pathways. In conclusion, our results show that BCa involves dysfunctions in multiple systems. Our study is expected to pave ways for immune and inflammatory research and provide molecular insights for cancer therapy.

  17. Wavelet Analysis of DNA Bending Profiles reveals Structural Constraints on the Evolution of Genomic Sequences.

    PubMed

    Audit, Benjamin; Vaillant, Cédric; Arnéodo, Alain; d'Aubenton-Carafa, Yves; Thermes, Claude

    2004-03-01

    Analyses of genomic DNA sequences have shown in previous works that base pairs are correlated at large distances with scale-invariant statistical properties. We show in the present study that these correlations between nucleotides (letters) result in fact from long-range correlations (LRC) between sequence-dependent DNA structural elements (words) involved in the packaging of DNA in chromatin. Using the wavelet transform technique, we perform a comparative analysis of the DNA text and of the corresponding bending profiles generated with curvature tables based on nucleosome positioning data. This exploration through the optics of the so-called `wavelet transform microscope' reveals a characteristic scale of 100-200 bp that separates two regimes of different LRC. We focus here on the existence of LRC in the small-scale regime (≲ 200 bp). Analysis of genomes in the three kingdoms reveals that this regime is specifically associated to the presence of nucleosomes. Indeed, small scale LRC are observed in eukaryotic genomes and to a less extent in archaeal genomes, in contrast with their absence in eubacterial genomes. Similarly, this regime is observed in eukaryotic but not in bacterial viral DNA genomes. There is one exception for genomes of Poxviruses, the only animal DNA viruses that do not replicate in the cell nucleus and do not present small scale LRC. Furthermore, no small scale LRC are detected in the genomes of all examined RNA viruses, with one exception in the case of retroviruses. Altogether, these results strongly suggest that small-scale LRC are a signature of the nucleosomal structure. Finally, we discuss possible interpretations of these small-scale LRC in terms of the mechanisms that govern the positioning, the stability and the dynamics of the nucleosomes along the DNA chain. This paper is maily devoted to a pedagogical presentation of the theoretical concepts and physical methods which are well suited to perform a statistical analysis of genomic

  18. BigFoot: Bayesian alignment and phylogenetic footprinting with MCMC

    PubMed Central

    Satija, Rahul; Novák, Ádám; Miklós, István; Lyngsø, Rune; Hein, Jotun

    2009-01-01

    Background We have previously combined statistical alignment and phylogenetic footprinting to detect conserved functional elements without assuming a fixed alignment. Considering a probability-weighted distribution of alignments removes sensitivity to alignment errors, properly accommodates regions of alignment uncertainty, and increases the accuracy of functional element prediction. Our method utilized standard dynamic programming hidden markov model algorithms to analyze up to four sequences. Results We present a novel approach, implemented in the software package BigFoot, for performing phylogenetic footprinting on greater numbers of sequences. We have developed a Markov chain Monte Carlo (MCMC) approach which samples both sequence alignments and locations of slowly evolving regions. We implement our method as an extension of the existing StatAlign software package and test it on well-annotated regions controlling the expression of the even-skipped gene in Drosophila and the α-globin gene in vertebrates. The results exhibit how adding additional sequences to the analysis has the potential to improve the accuracy of functional predictions, and demonstrate how BigFoot outperforms existing alignment-based phylogenetic footprinting techniques. Conclusion BigFoot extends a combined alignment and phylogenetic footprinting approach to analyze larger amounts of sequence data using MCMC. Our approach is robust to alignment error and uncertainty and can be applied to a variety of biological datasets. The source code and documentation are publicly available for download from PMID:19715598

  19. Prosody and Alignment: A Sequential Perspective

    ERIC Educational Resources Information Center

    Reed, Beatrice Szczepek

    2010-01-01

    In their analysis of a corpus of classroom interactions in an inner city high school, Roth and Tobin describe how teachers and students accomplish interactional alignment by prosodically matching each other's turns. Prosodic matching, and specific prosodic patterns are interpreted as signs of, and contributions to successful interactional outcomes…

  20. The diversity of algal phospholipase D homologs revealed by biocomputational analysis.

    PubMed

    Beligni, María Verónica; Bagnato, Carolina; Prados, María Belén; Bondino, Hernán; Laxalt, Ana María; Munnik, Teun; Ten Have, Arjen

    2015-10-01

    Phospholipase D (PLD) participates in the formation of phosphatidic acid, a precursor in glycerolipid biosynthesis and a second messenger. PLDs are part of a superfamily of proteins that hydrolyze phosphodiesters and share a catalytic motif, HxKxxxxD, and hence a mechanism of action. Although HKD-PLDs have been thoroughly characterized in plants, animals and bacteria, very little is known about these enzymes in algae. To fill this gap in knowledge, we performed a biocomputational analysis by means of HMMER iterative profiling, using most eukaryotic algae genomes available. Phylogenetic analysis revealed that algae exhibit very few eukaryotic-type PLDs but possess, instead, many bacteria-like PLDs. Among algae eukaryotic-type PLDs, we identified C2-PLDs and PXPH-like PLDs. In addition, the dinoflagellate Alexandrium tamarense features several proteins phylogenetically related to oomycete PLDs. Our phylogenetic analysis also showed that algae bacteria-like PLDs (proteins with putative PLD activity) fall into five clades, three of which are novel lineages in eukaryotes, composed almost entirely of algae. Specifically, Clade II is almost exclusive to diatoms, whereas Clade I and IV are mainly represented by proteins from prasinophytes. The other two clades are composed of mitochondrial PLDs (Clade V or Mito-PLDs), previously found in mammals, and a subfamily of potentially secreted proteins (Clade III or SP-PLDs), which includes a homolog formerly characterized in rice. In addition, our phylogenetic analysis shows that algae have non-PLD members within the bacteria-like HKD superfamily with putative cardiolipin synthase and phosphatidylserine/phosphatidylglycerophosphate synthase activities. Altogether, our results show that eukaryotic algae possess a moderate number of PLDs that belong to very diverse phylogenetic groups.

  1. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability.

    PubMed

    Barbosa, Catarina; García-Martínez, José; Pérez-Ortín, José E; Mendes-Ferreira, Ana

    2015-01-01

    Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12 h, 24 h and 96 h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12 h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this nutrient in the

  2. Comparative Transcriptomic Analysis Reveals Similarities and Dissimilarities in Saccharomyces cerevisiae Wine Strains Response to Nitrogen Availability

    PubMed Central

    Barbosa, Catarina; García-Martínez, José; Pérez-Ortín, José E.; Mendes-Ferreira, Ana

    2015-01-01

    Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12h, 24h and 96h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this nutrient in the grape

  3. Using automatic alignment to analyze endangered language data: testing the viability of untrained alignment.

    PubMed

    DiCanio, Christian; Nam, Hosung; Whalen, Douglas H; Bunnell, H Timothy; Amith, Jonathan D; García, Rey Castillo

    2013-09-01

    While efforts to document endangered languages have steadily increased, the phonetic analysis of endangered language data remains a challenge. The transcription of large documentation corpora is, by itself, a tremendous feat. Yet, the process of segmentation remains a bottleneck for research with data of this kind. This paper examines whether a speech processing tool, forced alignment, can facilitate the segmentation task for small data sets, even when the target language differs from the training language. The authors also examined whether a phone set with contextualization outperforms a more general one. The accuracy of two forced aligners trained on English (hmalign and p2fa) was assessed using corpus data from Yoloxóchitl Mixtec. Overall, agreement performance was relatively good, with accuracy at 70.9% within 30 ms for hmalign and 65.7% within 30 ms for p2fa. Segmental and tonal categories influenced accuracy as well. For instance, additional stop allophones in hmalign's phone set aided alignment accuracy. Agreement differences between aligners also corresponded closely with the types of data on which the aligners were trained. Overall, using existing alignment systems was found to have potential for making phonetic analysis of small corpora more efficient, with more allophonic phone sets providing better agreement than general ones.

  4. Leveraging FPGAs for Accelerating Short Read Alignment.

    PubMed

    Arram, James; Kaplan, Thomas; Luk, Wayne; Jiang, Peiyong

    2016-02-29

    One of the key challenges facing genomics today is how to efficiently analyse the massive amounts of data produced by next-generation sequencing platforms. With general-purpose computing systems struggling to address this challenge, specialised processors such as the Field-Programmable Gate Array (FPGA) are receiving growing interest. The means by which to leverage this technology for accelerating genomic data analysis is however largely unexplored. In this paper we present a runtime reconfigurable architecture for accelerating short read alignment using FPGAs. This architecture exploits the reconfigurability of FPGAs to allow the development of fast yet flexible alignment designs. We apply this architecture to develop an alignment design which supports exact and approximate alignment with up to 2 mismatches. Our design is based on the FM-index, with optimisations to improve the alignment performance. In particular, the n-step FM-index, index oversampling, a seedand- compare stage, and bi-directional backtracking are included. Our design is implemented and evaluated on a 1U Maxeler MPC-X2000 dataflow node with 8 Altera Stratix-V FPGAs. Measurements show that our design is 28 times faster than Bowtie2 running with 16 threads on dual Intel Xeon E5-2640 CPUs, and 9 times faster than Soap3-dp running on an NVIDIA Tesla C2070 GPU.

  5. High-harmonic spectroscopy of aligned molecules

    NASA Astrophysics Data System (ADS)

    Yun, Hyeok; Yun, Sang Jae; Lee, Gae Hwang; Nam, Chang Hee

    2017-01-01

    High harmonics emitted from aligned molecules driven by intense femtosecond laser pulses provide the opportunity to explore the structural information of molecules. The field-free molecular alignment technique is an expedient tool for investigating the structural characteristics of linear molecules. The underlying physics of field-free alignment, showing the characteristic revival structure specific to molecular species, is clearly explained from the quantum-phase analysis of molecular rotational states. The anisotropic nature of molecules is shown from the harmonic polarization measurement performed with spatial interferometry. The multi-orbital characteristics of molecules are investigated using high-harmonic spectroscopy, applied to molecules of N2 and CO2. In the latter case the two-dimensional high-harmonic spectroscopy, implemented using a two-color laser field, is applied to distinguish harmonics from different orbitals. Molecular high-harmonic spectroscopy will open a new route to investigate ultrafast dynamics of molecules.

  6. Analysis of wheat SAGE tags reveals evidence for widespread antisense transcription

    PubMed Central

    Poole, Rebecca L; Barker, Gary LA; Werner, Kay; Biggi, Gaia F; Coghill, Jane; Gibbings, J George; Berry, Simon; Dunwell, Jim M; Edwards, Keith J

    2008-01-01

    gene expression. Conclusion Our results indicate that the detailed analysis of transcriptome data, such as SAGE tags, is essential to understand fully the factors that regulate gene expression and that such analysis of the wheat grain transcriptome reveals that antisense transcripts maybe widespread and hence probably play a significant role in the regulation of gene expression during grain development. PMID:18847483

  7. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays.

    PubMed

    Galati, Domenico F; Abuin, David S; Tauber, Gabriel A; Pham, Andrew T; Pearson, Chad G

    2015-12-23

    Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs.

  8. Singularity analysis of the AKT signaling pathway reveals connections between cancer and metabolic diseases

    NASA Astrophysics Data System (ADS)

    Wang, Guanyu

    2010-12-01

    Connections between cancer and metabolic diseases may consist in the complex network of interactions among a common set of biomolecules. By applying singularity and bifurcation analysis, the phenotypes constrained by the AKT signaling pathway are identified and mapped onto the parameter space, which include cancer and certain metabolic diseases. By considering physiologic properties (sensitivity, robustness and adaptivity) the AKT pathway must possess in order to efficiently sense growth factors and nutrients, the region of normal responses is located. To optimize these properties, the intracellular concentration of the AKT protein must be sufficiently high to saturate its enzymes; the strength of the positive feedback must be stronger than that of the negative feedback. The analysis illuminates the parameter space and reveals system-level mechanisms in regulating biological functions (cell growth, survival, proliferation and metabolism) and how their deregulation may lead to the development of diseases. The analytical expressions summarize the synergistic interactions among many molecules, which provides valuable insights into therapeutic interventions. In particular, a strategy for overcoming the limitations of mTOR inhibition is proposed for cancer therapy.

  9. Comprehensive Proteomics Analysis of Laticifer Latex Reveals New Insights into Ethylene Stimulation of Natural Rubber Production

    PubMed Central

    Wang, Xuchu; Wang, Dan; Sun, Yong; Yang, Qian; Chang, Lili; Wang, Limin; Meng, Xueru; Huang, Qixing; Jin, Xiang; Tong, Zheng

    2015-01-01

    Ethylene is a stimulant to increase natural rubber latex. After ethylene application, both fresh yield and dry matter of latex are substantially improved. Moreover, we found that ethylene improves the generation of small rubber particles. However, most genes involved in rubber biosynthesis are inhibited by exogenous ethylene. Therefore, we conducted a proteomics analysis of ethylene-stimulated rubber latex, and identified 287 abundant proteins as well as 143 ethylene responsive latex proteins (ERLPs) with mass spectrometry from the 2-DE and DIGE gels, respectively. In addition, more than 1,600 proteins, including 404 ERLPs, were identified by iTRAQ. Functional classification of ERLPs revealed that enzymes involved in post-translational modification, carbohydrate metabolism, hydrolase activity, and kinase activity were overrepresented. Some enzymes for rubber particle aggregation were inhibited to prolong latex flow, and thus finally improved latex production. Phosphoproteomics analysis identified 59 differential phosphoproteins; notably, specific isoforms of rubber elongation factor and small rubber particle protein that were phosphorylated mainly at serine residues. This post-translational modification and isoform-specific phosphorylation might be important for ethylene-stimulated latex production. These results not only deepen our understanding of the rubber latex proteome but also provide new insights into the use of ethylene to stimulate rubber latex production. PMID:26348427

  10. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    NASA Astrophysics Data System (ADS)

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-05-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.

  11. Comparative Transcriptome Analysis Reveals Different Silk Yields of Two Silkworm Strains

    PubMed Central

    Li, Juan; Qin, Sheng; Yu, Huanjun; Zhang, Jing; Liu, Na; Yu, Ye; Hou, Chengxiang; Li, Muwang

    2016-01-01

    Cocoon and silk yields are the most important characteristics of sericulture. However, few studies have examined the genes that modulate these features. Further studies of these genes will be useful for improving the products of sericulture. JingSong (JS) and Lan10 (L10) are two strains having significantly different cocoon and silk yields. In the current study, RNA-Seq and quantitative polymerase chain reaction (qPCR) were performed on both strains in order to determine divergence of the silk gland, which controls silk biosynthesis in silkworms. Compared with L10, JS had 1375 differentially expressed genes (DEGs; 738 up-regulated genes and 673 down-regulated genes). Nine enriched gene ontology (GO) terms were identified by GO enrichment analysis based on these DEGs. KEGG enrichment analysis results showed that the DEGs were enriched in three pathways, which were mainly associated with the processing and biosynthesis of proteins. The representative genes in the enrichment pathways and ten significant DEGs were further verified by qPCR, the results of which were consistent with the RNA-Seq data. Our study has revealed differences in silk glands between the two silkworm strains and provides a perspective for understanding the molecular mechanisms determining silk yield. PMID:27159277

  12. Metabolomic analysis reveals altered metabolic pathways in a rat model of gastric carcinogenesis

    PubMed Central

    Gu, Jinping; Hu, Xiaomin; Shao, Wei; Ji, Tianhai; Yang, Wensheng; Zhuo, Huiqin; Jin, Zeyu; Huang, Huiying; Chen, Jiacheng; Huang, Caihua; Lin, Donghai

    2016-01-01

    Gastric cancer (GC) is one of the most malignant tumors with a poor prognosis. Alterations in metabolic pathways are inextricably linked to GC progression. However, the underlying molecular mechanisms remain elusive. We performed NMR-based metabolomic analysis of sera derived from a rat model of gastric carcinogenesis, revealed significantly altered metabolic pathways correlated with the progression of gastric carcinogenesis. Rats were histologically classified into four pathological groups (gastritis, GS; low-grade gastric dysplasia, LGD; high-grade gastric dysplasia, HGD; GC) and the normal control group (CON). The metabolic profiles of the five groups were clearly distinguished from each other. Furthermore, significant inter-metabolite correlations were extracted and used to reconstruct perturbed metabolic networks associated with the four pathological stages compared with the normal stage. Then, significantly altered metabolic pathways were identified by pathway analysis. Our results showed that oxidative stress-related metabolic pathways, choline phosphorylation and fatty acid degradation were continually disturbed during gastric carcinogenesis. Moreover, amino acid metabolism was perturbed dramatically in gastric dysplasia and GC. The GC stage showed more changed metabolite levels and more altered metabolic pathways. Two activated pathways (glycolysis; glycine, serine and threonine metabolism) substantially contributed to the metabolic alterations in GC. These results lay the basis for addressing the molecular mechanisms underlying gastric carcinogenesis and extend our understanding of GC progression. PMID:27527852

  13. Genomic and transcriptomic analysis of NDM-1 Klebsiella pneumoniae in spaceflight reveal mechanisms underlying environmental adaptability.

    PubMed

    Li, Jia; Liu, Fei; Wang, Qi; Ge, Pupu; Woo, Patrick C Y; Yan, Jinghua; Zhao, Yanlin; Gao, George F; Liu, Cui Hua; Liu, Changting

    2014-08-28

    The emergence and rapid spread of New Delhi Metallo-beta-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae strains has caused a great concern worldwide. To better understand the mechanisms underlying environmental adaptation of those highly drug-resistant K. pneumoniae strains, we took advantage of the China's Shenzhou 10 spacecraft mission to conduct comparative genomic and transcriptomic analysis of a NDM-1 K. pneumoniae strain (ATCC BAA-2146) being cultivated under different conditions. The samples were recovered from semisolid medium placed on the ground (D strain), in simulated space condition (M strain), or in Shenzhou 10 spacecraft (T strain) for analysis. Our data revealed multiple variations underlying pathogen adaptation into different environments in terms of changes in morphology, H2O2 tolerance and biofilm formation ability, genomic stability and regulation of metabolic pathways. Additionally, we found a few non-coding RNAs to be differentially regulated. The results are helpful for better understanding the adaptive mechanisms of drug-resistant bacterial pathogens.

  14. Proteomic Analysis of a Novel Bacillus Jumbo Phage Revealing Glycoside Hydrolase As Structural Component

    PubMed Central

    Yuan, Yihui; Gao, Meiying

    2016-01-01

    Tailed phages with genomes of larger than 200 kbp are classified as Jumbo phages and exhibited extremely high uncharted diversity. The genomic annotation of Jumbo phage is often disappointing because most of the predicted proteins, including structural proteins, failed to make good hits to the sequences in the databases. In this study, 23 proteins of a novel Bacillus Jumbo phage, vB_BpuM_BpSp, were identified as phage structural proteins by the structural proteome analysis, including 14 proteins of unknown function, 5 proteins with predicted function as structural proteins, a glycoside hydrolase, a Holliday junction resolvase, a RNA-polymerase β-subunit, and a host-coding portal protein, which might be hijacked from the host strain during phage virion assembly. The glycoside hydrolase (Gp255) was identified as phage virion component and was found to interact with the phage baseplate protein. Gp255 shows specific lytic activity against the phage host strain GR8 and has high temperature tolerance. In situ peptidoglycan-hydrolyzing activities analysis revealed that the expressed Gp255 and phage structural proteome exhibited glycoside hydrolysis activity against the tested GR8 cell extracts. This study identified the first functional individual structural glycoside hydrolase in phage virion. The presence of activated glycoside hydrolase in phage virions might facilitate the injection of the phage genome during infection by forming pores on the bacterial cell wall. PMID:27242758

  15. Functional analysis reveals that RBM10 mutations contribute to lung adenocarcinoma pathogenesis by deregulating splicing

    PubMed Central

    Zhao, Jiawei; Sun, Yue; Huang, Yin; Song, Fan; Huang, Zengshu; Bao, Yufang; Zuo, Ji; Saffen, David; Shao, Zhen; Liu, Wen; Wang, Yongbo

    2017-01-01

    RBM10 is an RNA splicing regulator that is frequently mutated in lung adenocarcinoma (LUAD) and has recently been proposed to be a cancer gene. How RBM10 mutations observed in LUAD affect its normal functions, however, remains largely unknown. Here integrative analysis of RBM10 mutation and RNA expression data revealed that LUAD-associated RBM10 mutations exhibit a mutational spectrum similar to that of tumor suppressor genes. In addition, this analysis showed that RBM10 mutations identified in LUAD patients lacking canonical oncogenes are associated with significantly reduced RBM10 expression. To systematically investigate RBM10 mutations, we developed an experimental pipeline for elucidating their functional effects. Among six representative LUAD-associated RBM10 mutations, one nonsense and one frameshift mutation caused loss-of-function as expected, whereas four missense mutations differentially affected RBM10-mediated splicing. Importantly, changes in proliferation rates of LUAD-derived cells caused by these RBM10 missense mutants correlated with alterations in RNA splicing of RBM10 target genes. Together, our data implies that RBM10 mutations contribute to LUAD pathogenesis, at least in large part, by deregulating splicing. The methods described in this study should be useful for analyzing mutations in additional cancer-associated RNA splicing regulators. PMID:28091594

  16. Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres

    PubMed Central

    Wu, Dan; Kendrick, Keith M.; Levitin, Daniel J.; Li, Chaoyi; Yao, Dezhong

    2015-01-01

    Harmony is a fundamental attribute of music. Close connections exist between music and mathematics since both pursue harmony and unity. In music, the consonance of notes played simultaneously partly determines our perception of harmony; associates with aesthetic responses; and influences the emotion expression. The consonance could be considered as a window to understand and analyze harmony. Here for the first time we used a 1/f fluctuation analysis to investigate whether the consonance fluctuation structure in music with a wide range of composers and genres followed the scale free pattern that has been found for pitch, melody, rhythm, human body movements, brain activity, natural images and geographical features. We then used a network graph approach to investigate which composers were the most influential both within and across genres. Our results showed that patterns of consonance in music did follow scale-free characteristics, suggesting that this feature is a universally evolved one in both music and the living world. Furthermore, our network analysis revealed that Bach’s harmony patterns were having the most influence on those used by other composers, followed closely by Mozart. PMID:26545104

  17. Comparative analysis and functional mapping of SACS mutations reveal novel insights into sacsin repeated architecture.

    PubMed

    Romano, Alessandro; Tessa, Alessandra; Barca, Amilcare; Fattori, Fabiana; de Leva, Maria Fulvia; Terracciano, Alessandra; Storelli, Carlo; Santorelli, Filippo Maria; Verri, Tiziano

    2013-03-01

    Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurological disease with mutations in SACS, encoding sacsin, a multidomain protein of 4,579 amino acids. The large size of SACS and its translated protein has hindered biochemical analysis of ARSACS, and how mutant sacsins lead to disease remains largely unknown. Three repeated sequences, called sacsin repeating region (SRR) supradomains, have been recognized, which contribute to sacsin chaperone-like activity. We found that the three SRRs are much larger (≥1,100 residues) than previously described, and organized in discrete subrepeats. We named the large repeated regions Sacsin Internal RePeaTs (SIRPT1, SIRPT2, and SIRPT3) and the subrepeats sr1, sr2, sr3, and srX. Comparative analysis of vertebrate sacsins in combination with fine positional mapping of a set of human mutations revealed that sr1, sr2, sr3, and srX are functional. Notably, the position of the pathogenic mutations in sr1, sr2, sr3, and srX appeared to be related to the severity of the clinical phenotype, as assessed by defining a severity scoring system. Our results suggest that the relative position of mutations in subrepeats will variably influence sacsin dysfunction. The characterization of the specific role of each repeated region will help in developing a comprehensive and integrated pathophysiological model of function for sacsin.

  18. Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes.

    PubMed

    Subirats, Jéssica; Sànchez-Melsió, Alexandre; Borrego, Carles M; Balcázar, José Luis; Simonet, Pascal

    2016-08-01

    A metagenomics approach was applied to explore the presence of antibiotic resistance genes (ARGs) in bacteriophages from hospital wastewater. Metagenomic analysis showed that most phage sequences affiliated to the order Caudovirales, comprising the tailed phage families Podoviridae, Siphoviridae and Myoviridae. Moreover, the relative abundance of ARGs in the phage DNA fraction (0.26%) was higher than in the bacterial DNA fraction (0.18%). These differences were particularly evident for genes encoding ATP-binding cassette (ABC) and resistance-nodulation-cell division (RND) proteins, phosphotransferases, β-lactamases and plasmid-mediated quinolone resistance. Analysis of assembled contigs also revealed that blaOXA-10, blaOXA-58 and blaOXA-24 genes belonging to class D β-lactamases as well as a novel blaTEM (98.9% sequence similarity to the blaTEM-1 gene) belonging to class A β-lactamases were detected in a higher proportion in phage DNA. Although preliminary, these findings corroborate the role of bacteriophages as reservoirs of resistance genes and thus highlight the necessity to include them in future studies on the emergence and spread of antibiotic resistance in the environment.

  19. Comparative Transcriptome Analysis Reveals Early Pregnancy-Specific Genes Expressed in Peripheral Blood of Pregnant Sows

    PubMed Central

    Zhu, Shien; Shi, Wenqing; Hu, Maishun; Fu, Xiangwei; Wang, Chuduan; Wang, Yachun; Zhang, Qin; Yu, Ying

    2014-01-01

    Early and accurate diagnosis of pregnancy is important for effective management of an economical pig farm. Besides the currently available methods used in early diagnosis of sows, circulating nucleic acids in peripheral blood may contain some early pregnancy-specific molecular markers. For the first time, microarray analysis of peripheral blood from pregnant sows versus non-pregnant sows identified 127 up-regulated and 56 down-regulated genes at day 14 post-insemination. Gene Ontology annotation grouped the total differently expressed genes into 3 significantly enriched terms, cell surface receptor linked signal transduction, G-protein coupled receptor protein signaling pathway and regulation of vesicle-mediated transport. Signaling pathway analysis revealed the only one significantly changed pathway was arachidonic acid metabolism. Of the differently expressed genes, nine (including LPAR3, RXFP4, GALP, CBR1, CBR2, GPX6, USP18, LHB and NR5A1) were found to exert function related to early pregnancy processes. This study provides a clue that differentially abundant RNAs in maternal peripheral blood can help to identify the molecular markers of early pregnancy in pigs. PMID:25479131

  20. Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum).

    PubMed

    Zou, Changsong; Wang, Qiaolian; Lu, Cairui; Yang, Wencui; Zhang, Youping; Cheng, Hailiang; Feng, Xiaoxu; Prosper, Mtawa Andrew; Song, Guoli

    2016-02-01

    Long noncoding RNAs (lncRNAs) play important roles in various biological regulatory processes in yeast, mammals, and plants. However, no systematic identification of lncRNAs has been reported in Gossypium arboreum. In this study, the strand-specific RNA sequencing (ssRNA-seq) of samples from cotton fibers and leaves was performed, and lncRNAs involved in fiber initiation and elongation processes were systematically identified and analyzed. We identified 5,996 lncRNAs, of which 3,510 and 2,486 can be classified as long intergenic noncoding RNAs (lincRNAs) and natural antisense transcripts (lncNAT), respectively. LincRNAs and lncNATs are similar in many aspects, but have some differences in exon number, exon length, and transcript length. Expression analysis revealed that 51.9% of lincRNAs and 54.5% of lncNATs transcripts were preferentially expressed at one stage of fiber development, and were significantly highly expressed than protein-coding transcripts (21.7%). During the fiber and rapid elongation stages, rapid and dynamic changes in lncRNAs may contribute to fiber development in cotton. This work describes a set of lncRNAs that are involved in fiber development. The characterization and expression analysis of lncRNAs will facilitate future studies on their roles in fiber development in cotton.

  1. Multifractal analysis of Barkhausen noise reveals the dynamic nature of criticality at hysteresis loop

    NASA Astrophysics Data System (ADS)

    Tadić, Bosiljka

    2016-06-01

    The field-driven magnetisation reversal processes in disordered systems exhibit a collective behaviour that is manifested in the scale-invariance of avalanches, closely related to underlying dynamical mechanisms. Using the multifractal time series analysis, we study the structure of fluctuations at different scales in the accompanying Barkhausen noise. The stochastic signal represents the magnetisation discontinuities along the hysteresis loop of a three-dimensional random field Ising model simulated for varied disorder strength and driving rates. The analysis of the spectrum of the generalised Hurst exponents reveals that the dominant segments of the signal with large fluctuations represent two distinct classes of stochastic processes in weak and strong pinning regimes. Furthermore, in the weak pinning regime, the part of the signal originating from the beginning of the hysteresis loop has a different multifractal spectrum than the signal near the coercive field. The enhanced fluctuations (primarily in the central part of the hysteresis loop) for increased driving rate and larger system size, lead to a further broadening of the spectrum. The analysed Barkhausen signals are also shown to exhibit temporal correlations and power-law distributions of the magnetisation discontinuity and avalanche sizes, in agreement with previous studies. The multifractal properties of Barkhausen noise describe the dynamical state of domains and precisely discriminate the weak pinning, permitting the motion of individual walls, from the mechanisms occurring in strongly disordered systems.

  2. Exome-wide association analysis reveals novel coding sequence variants associated with lipid traits in Chinese

    PubMed Central

    Tang, Clara S.; Zhang, He; Cheung, Chloe Y. Y.; Xu, Ming; Ho, Jenny C. Y.; Zhou, Wei; Cherny, Stacey S.; Zhang, Yan; Holmen, Oddgeir; Au, Ka-Wing; Yu, Haiyi; Xu, Lin; Jia, Jia; Porsch, Robert M.; Sun, Lijie; Xu, Weixian; Zheng, Huiping; Wong, Lai-Yung; Mu, Yiming; Dou, Jingtao; Fong, Carol H. Y.; Wang, Shuyu; Hong, Xueyu; Dong, Liguang; Liao, Yanhua; Wang, Jiansong; Lam, Levina S. M.; Su, Xi; Yan, Hua; Yang, Min-Lee; Chen, Jin; Siu, Chung-Wah; Xie, Gaoqiang; Woo, Yu-Cho; Wu, Yangfeng; Tan, Kathryn C. B.; Hveem, Kristian; Cheung, Bernard M. Y.; Zöllner, Sebastian; Xu, Aimin; Eugene Chen, Y; Jiang, Chao Qiang; Zhang, Youyi; Lam, Tai-Hing; Ganesh, Santhi K.; Huo, Yong; Sham, Pak C.; Lam, Karen S. L.; Willer, Cristen J.; Tse, Hung-Fat; Gao, Wei

    2015-01-01

    Blood lipids are important risk factors for coronary artery disease (CAD). Here we perform an exome-wide association study by genotyping 12,685 Chinese, using a custom Illumina HumanExome BeadChip, to identify additional loci influencing lipid levels. Single-variant association analysis on 65,671 single nucleotide polymorphisms reveals 19 loci associated with lipids at exome-wide significance (P<2.69 × 10−7), including three Asian-specific coding variants in known genes (CETP p.Asp459Gly, PCSK9 p.Arg93Cys and LDLR p.Arg257Trp). Furthermore, missense variants at two novel loci—PNPLA3 p.Ile148Met and PKD1L3 p.Thr429Ser—also influence levels of triglycerides and low-density lipoprotein cholesterol, respectively. Another novel gene, TEAD2, is found to be associated with high-density lipoprotein cholesterol through gene-based association analysis. Most of these newly identified coding variants show suggestive association (P<0.05) with CAD. These findings demonstrate that exome-wide genotyping on samples of non-European ancestry can identify additional population-specific possible causal variants, shedding light on novel lipid biology and CAD. PMID:26690388

  3. Time-series analysis reveals genetic responses to intensive management of razorback sucker (Xyrauchen texanus)

    PubMed Central

    Dowling, Thomas E; Turner, Thomas F; Carson, Evan W; Saltzgiver, Melody J; Adams, Deborah; Kesner, Brian; Marsh, Paul C

    2014-01-01

    Time-series analysis is used widely in ecology to study complex phenomena and may have considerable potential to clarify relationships of genetic and demographic processes in natural and exploited populations. We explored the utility of this approach to evaluate population responses to management in razorback sucker, a long-lived and fecund, but declining freshwater fish species. A core population in Lake Mohave (Arizona-Nevada, USA) has experienced no natural recruitment for decades and is maintained by harvesting naturally produced larvae from the lake, rearing them in protective custody, and repatriating them at sizes less vulnerable to predation. Analyses of mtDNA and 15 microsatellites characterized for sequential larval cohorts collected over a 15-year time series revealed no changes in geographic structuring but indicated significant increase in mtDNA diversity for the entire population over time. Likewise, ratios of annual effective breeders to annual census size (Nb/Na) increased significantly despite sevenfold reduction of Na. These results indicated that conservation actions diminished near-term extinction risk due to genetic factors and should now focus on increasing numbers of fish in Lake Mohave to ameliorate longer-term risks. More generally, time-series analysis permitted robust testing of trends in genetic diversity, despite low precision of some metrics. PMID:24665337

  4. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays

    PubMed Central

    Galati, Domenico F.; Abuin, David S.; Tauber, Gabriel A.; Pham, Andrew T.; Pearson, Chad G.

    2016-01-01

    ABSTRACT Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs. PMID:26700722

  5. Network analysis reveals common host protein/s modulating pathogenesis of neurotropic viruses

    PubMed Central

    Ghosh, Sourish; Mukherjee, Sriparna; Sengupta, Nabonita; Roy, Arunava; Dey, Dhritiman; Chakraborty, Surajit; Chattopadhyay, Dhrubajyoti; Banerjee, Arpan; Basu, Anirban

    2016-01-01

    Network analysis through graph theory provides a quantitative approach to characterize specific proteins and their constituent assemblies that underlie host-pathogen interactions. In the present study, graph theory was used to analyze the interactome designed out of 50 differentially expressing proteins from proteomic analysis of Chandipura Virus (CHPV, Family: Rhabdoviridae) infected mouse brain tissue to identify the primary candidates for intervention. Using the measure of degree centrality, that quantifies the connectedness of a single protein within a milieu of several other interacting proteins, DJ-1 was selected for further molecular validation. To elucidate the generality of DJ-1’s role in propagating infection its role was also monitored in another RNA virus, Japanese Encephalitis Virus (JEV, Family: Flaviviridae) infection. Concurrently, DJ-1 got over-expressed in response to reactive oxygen species (ROS) generation following viral infection which in the early phase of infection migrated to mitochondria to remove dysfunctional mitochondria through the process of mitophagy. DJ-1 was also observed to modulate the viral replication and interferon responses along with low-density lipoprotein (LDL) receptor expression in neurons. Collectively these evidences reveal a comprehensive role for DJ-1 in neurotropic virus infection in the brain. PMID:27581498

  6. Systematic proteomic analysis of human hepotacellular carcinoma cells reveals molecular pathways and networks involved in metastasis.

    PubMed

    Yu, Yanyan; Shen, Huali; Yu, Hongxiu; Zhong, Fan; Zhang, Yang; Zhang, Chen; Zhao, Jian; Li, Hong; Chen, Jie; Liu, Yinkun; Yang, Pengyuan

    2011-06-01

    Systematic proteomic studying of the mechanism of hepatocellular carcinoma (HCC) metastasis remains challenging. We performed comparative proteomic and pathway analysis of four human metastatic HCC cell lines to identify metastasis-associated proteins. These HCC cell lines had a similar genetic background but with an increasing potential of metastasis. Using a combination of two dimensional electrophoresis (2-DE) and MALDI-TOF mass spectrometry, a total of 125 proteins and their post-translational modification forms or isoforms were found to be differentially expressed in the cell lines. Among them, 29 were gradually up-regulated whereas 17 were down-regulated with increasing metastatic potential. Instead of a traditional single-gene readout, global bioinformatics analysis was carried out, which revealed that the glycolysis pathway was the most significantly enriched pathway. The heat shock proteins (HSPs) centered and NF-kappaB centered networks were also enriched in the result, which may imply the key function of inflaming on metastasis. Meanwhile, knockdown of HDGF, an up-regulated protein and a target of NF-kappaB, induced cell apoptosis in the metastatic HCC cells. This work provides a demonstration that a combination of bioinformatics and comparative proteomics can help in finding out potential biomarkers associated with HCC metastasis on the level of pathways.

  7. The heterogeneity of meningioma revealed by multiparameter analysis: infiltrative and non-infiltrative clinical phenotypes.

    PubMed

    Gay, Emmanuel; Lages, Elodie; Ramus, Claire; Guttin, Audrey; El Atifi, Michèle; Dupré, Isabelle; Bouamrani, Ali; Salon, Caroline; Ratel, David; Wion, Didier; Berger, François; Issartel, Jean-Paul

    2011-05-01

    Tumor invasion or infiltration of adjacent tissues is the source of clinical challenges in diagnosis as well as prevention and treatment. Among brain tumors, infiltration of the adjacent tissues with diverse pleiotropic mechanisms is frequently encountered in benign meningiomas. We assessed whether a multiparametric analysis of meningiomas based on data from both clinical observations and molecular analyses could provide a consistent and accurate appraisal of invasive and infiltrative phenotypes and help determine the diagnosis of these tumors. Tissue analyses of 37 meningiomas combined enzyme-linked immunosorbent assay (ELISA) and surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) assays of two different protein biomarkers (thrombospondin 1 and a phosphorylated form of vimentin) as well as gene expression analyses with oligonucleotide micro-arrays. Up to four different clinical and molecular parameters were then examined for tumor classification. From this study, we were able to cluster 36 out of the 37 tumors into two different subsets corresponding to infiltrative/invasive and non-infiltrative tumors. In addition, meningiomas that invade brain and those that infiltrate the neighboring skull bone exhibited no distinguishable molecular features. Our multi-parameter analysis that combines clinical data, transcriptomic and molecular assays clearly reveals the heterogeneity of meningiomas and distinguishes the intrinsically infiltrative/invasive tumors from the non-infiltrative meningiomas.

  8. Genetic analysis reveals the wild ancestors of the llama and the alpaca.

    PubMed Central

    Kadwell, M.; Fernandez, M.; Stanley, H. F.; Baldi, R.; Wheeler, J. C.; Rosadio, R.; Bruford, M. W.

    2001-01-01

    The origins of South America's domestic alpaca and llama remain controversial due to hybridization, near extirpation during the Spanish conquest and difficulties in archaeological interpretation. Traditionally, the ancestry of both forms is attributed to the guanaco, while the vicuña is assumed never to have been domesticated. Recent research has, however, linked the alpaca to the vicuña, dating domestication to 6000-7000 years before present in the Peruvian Andes. Here, we examine in detail the genetic relationships between the South American camelids in order to determine the origins of the domestic forms, using mitochondrial (mt) and microsatellite DNA. MtDNA analysis places 80% of llama and alpaca sequences in the guanaco lineage, with those possessing vicuña mtDNA being nearly all alpaca or alpaca-vicuña hybrids. We also examined four microsatellites in wild known-provenance vicuña and guanaco, including two loci with non-overlapping allele size ranges in the wild species. In contrast to the mtDNA, these markers show high genetic similarity between alpaca and vicuña, and between llama and guanaco, although bidirectional hybridization is also revealed. Finally, combined marker analysis on a subset of samples confirms the microsatellite interpretation and suggests that the alpaca is descended from the vicuña, and should be reclassified as Vicugna pacos. This result has major implications for the future management of wild and domestic camelids in South America. PMID:11749713

  9. Spatial and temporal variation of total electron content as revealed by principal component analysis

    NASA Astrophysics Data System (ADS)

    Talaat, Elsayed R.; Zhu, Xun

    2016-11-01

    Eleven years of global total electron content (TEC) data derived from the assimilated thermosphere-ionosphere electrodynamics general circulation model are analyzed using empirical orthogonal function (EOF) decomposition and the corresponding principal component analysis (PCA) technique. For the daily averaged TEC field, the first EOF explains more than 89 % and the first four EOFs explain more than 98 % of the total variance of the TEC field, indicating an effective data compression and clear separation of different physical processes. The effectiveness of the PCA technique for TEC is nearly insensitive to the horizontal resolution and the length of the data records. When the PCA is applied to global TEC including local-time variations, the rich spatial and temporal variations of field can be represented by the first three EOFs that explain 88 % of the total variance. The spectral analysis of the time series of the EOF coefficients reveals how different mechanisms such as solar flux variation, change in the orbital declination, nonlinear mode coupling and geomagnetic activity are separated and expressed in different EOFs. This work demonstrates the usefulness of using the PCA technique to assimilate and monitor the global TEC field.

  10. Analysis of spatial-temporal gene expression patterns reveals dynamics and regionalization in developing mouse brain.

    PubMed

    Chou, Shen-Ju; Wang, Chindi; Sintupisut, Nardnisa; Niou, Zhen-Xian; Lin, Chih-Hsu; Li, Ker-Chau; Yeang, Chen-Hsiang

    2016-01-20

    Allen Brain Atlas (ABA) provides a valuable resource of spatial/temporal gene expressions in mammalian brains. Despite rich information extracted from this database, current analyses suffer from several limitations. First, most studies are either gene-centric or region-centric, thus are inadequate to capture the superposition of multiple spatial-temporal patterns. Second, standard tools of expression analysis such as matrix factorization can capture those patterns but do not explicitly incorporate spatial dependency. To overcome those limitations, we proposed a computational method to detect recurrent patterns in the spatial-temporal gene expression data of developing mouse brains. We demonstrated that regional distinction in brain development could be revealed by localized gene expression patterns. The patterns expressed in the forebrain, medullary and pontomedullary, and basal ganglia are enriched with genes involved in forebrain development, locomotory behavior, and dopamine metabolism respectively. In addition, the timing of global gene expression patterns reflects the general trends of molecular events in mouse brain development. Furthermore, we validated functional implications of the inferred patterns by showing genes sharing similar spatial-temporal expression patterns with Lhx2 exhibited differential expression in the embryonic forebrains of Lhx2 mutant mice. These analysis outcomes confirm the utility of recurrent expression patterns in studying brain development.

  11. Pre-2014 mudslides at Oso revealed by InSAR and multi-source DEM analysis

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Lu, Z.; QU, F.

    2014-12-01

    The landslide is a process that results in the downward and outward movement of slope-reshaping materials including rocks and soils and annually causes the loss of approximately $3.5 billion and tens of casualties in the United States. The 2014 Oso mudslide was an extreme event costing nearly 40 deaths and damaging civilian properties. Landslides are often unpredictable, but in many cases, catastrophic events are repetitive. Historic record in the Oso mudslide site indicates that there have been serial events in decades, though the extent of sliding events varied from time to time. In our study, the combination of multi-source DEMs, InSAR, and time-series InSAR analysis has enabled to characterize the Oso mudslide. InSAR results from ALOS PALSAR show that there was no significant deformation between mid-2006 and 2011. The combination of time-series InSAR analysis and old-dated DEM indicated revealed topographic changes associated the 2006 sliding event, which is confirmed by the difference of multiple LiDAR DEMs. Precipitation and discharge measurements before the 2006 and 2014 landslide events did not exhibit extremely anomalous records, suggesting the precipitation is not the controlling factor in determining the sliding events at Oso. The lack of surface deformation during 2006-2011 and weak correlation between the precipitation and the sliding event, suggest other factors (such as porosity) might play a critical role on the run-away events at this Oso and other similar landslides.

  12. Comparative transcriptome and proteome analysis to reveal the biosynthesis of gold nanoparticles in Arabidopsis.

    PubMed

    Tiwari, Manish; Krishnamurthy, Sneha; Shukla, Devesh; Kiiskila, Jeffrey; Jain, Ajay; Datta, Rupali; Sharma, Nilesh; Sahi, Shivendra V

    2016-02-23

    A large number of plants have been tested and exploited in search of a green chemistry approach for the fabrication of gold or other precious metal nanomaterials. Despite the potential of plant based methods, very little is known about the underlying biochemical reactions and genes involved in the biotransformation mechanism of AuCl4 into gold nanoparticles (AuNPs). In this research, we thus focused on studying the effect of Au on growth and nanoparticles formation by analyses of transcriptome, proteome and ionome shift in Arabidopsis. Au exposure favored the growth of Arabidopsis seedling and induced formation of nanoparticles in root and shoot, as indicated by optical and hyperspectral imaging. Root transcriptome analysis demonstrated the differential expression of the members of WRKY, MYB and BHLH gene families, which are involved in the Fe and other essential metals homeostasis. The proteome analysis revealed that Glutathione S-transferases were induced in the shoot and suggested its potential role in the biosynthesis AuNPs. This study also demonstrated the role of plant hormone auxin in determining the Au induced root system architecture. This is the first study using an integrated approach to understand the in planta biotransformation of KAuCl4 into AuNPs.

  13. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    PubMed Central

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-01-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions. PMID:27193869

  14. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions.

    PubMed

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B H

    2016-05-19

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.

  15. Comparative analysis of animal growth: a primate continuum revealed by a new dimensionless growth rate coefficient.

    PubMed

    Vinicius, Lucio; Mumby, Hannah S

    2013-05-01

    The comparative analysis of animal growth still awaits full integration into life-history studies, partially due to the difficulty of defining a comparable measure of growth rate across species. Using growth data from 50 primate species, we introduce a modified "general growth model" and a dimensionless growth rate coefficient β that controls for size scaling and phylogenetic effects in the distribution of growth rates. Our results contradict the prevailing idea that slow growth characterizes primates as a group: the observed range of β values shows that not all primates grow slowly, with galago species exhibiting growth rates similar or above the mammalian average, while other strepsirrhines and most New World monkeys show limited reduction in growth rates. Low growth rate characterizes apes and some papionines. Phylogenetic regressions reveal associations between β and life-history variables, providing tests for theories of primate growth evolution. We also show that primate slow growth is an exclusively postnatal phenomenon. Our study exemplifies how the dimensionless approach promotes the integration of growth rate data into comparative life-history analysis, and demonstrates its potential applicability to other cases of adaptive diversification of animal growth patterns.

  16. Independent component analysis of DTI data reveals white matter covariances in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Ouyang, Xin; Sun, Xiaoyu; Guo, Ting; Sun, Qiaoyue; Chen, Kewei; Yao, Li; Wu, Xia; Guo, Xiaojuan

    2014-03-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease with the clinical symptom of the continuous deterioration of cognitive and memory functions. Multiple diffusion tensor imaging (DTI) indices such as fractional anisotropy (FA) and mean diffusivity (MD) can successfully explain the white matter damages in AD patients. However, most studies focused on the univariate measures (voxel-based analysis) to examine the differences between AD patients and normal controls (NCs). In this investigation, we applied a multivariate independent component analysis (ICA) to investigate the white matter covariances based on FA measurement from DTI data in 35 AD patients and 45 NCs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We found that six independent components (ICs) showed significant FA reductions in white matter covariances in AD compared with NC, including the genu and splenium of corpus callosum (IC-1 and IC-2), middle temporal gyral of temporal lobe (IC-3), sub-gyral of frontal lobe (IC-4 and IC-5) and sub-gyral of parietal lobe (IC-6). Our findings revealed covariant white matter loss in AD patients and suggest that the unsupervised data-driven ICA method is effective to explore the changes of FA in AD. This study assists us in understanding the mechanism of white matter covariant reductions in the development of AD.

  17. Comparative Functional Genomic Analysis of Two Vibrio Phages Reveals Complex Metabolic Interactions with the Host Cell

    PubMed Central

    Skliros, Dimitrios; Kalatzis, Panos G.; Katharios, Pantelis; Flemetakis, Emmanouil

    2016-01-01

    Sequencing and annotation was performed for two large double stranded DNA bacteriophages, φGrn1 and φSt2 of the Myoviridae family, considered to be of great interest for phage therapy against Vibrios in aquaculture live feeds. In addition, phage–host metabolic interactions and exploitation was studied by transcript profiling of selected viral and host genes. Comparative genomic analysis with other large Vibrio phages was also performed to establish the presence and location of homing endonucleases highlighting distinct features for both phages. Phylogenetic analysis revealed that they belong to the “schizoT4like” clade. Although many reports of newly sequenced viruses have provided a large set of information, basic research related to the shift of the bacterial metabolism during infection remains stagnant. The function of many viral protein products in the process of infection is still unknown. Genome annotation identified the presence of several viral open reading frames (ORFs) participating in metabolism, including a Sir2/cobB (sirtuin) protein and a number of genes involved in auxiliary NAD+ and nucleotide biosynthesis, necessary for phage DNA replication. Key genes were subsequently selected for detail study of their expression levels during infection. This work suggests a complex metabolic interaction and exploitation of the host metabolic pathways and biochemical processes, including a possible post-translational protein modification, by the virus during infection. PMID:27895630

  18. Genomic and transcriptomic analysis of NDM-1 Klebsiella pneumoniae in spaceflight reveal mechanisms underlying environmental adaptability

    PubMed Central

    Li, Jia; Liu, Fei; Wang, Qi; Ge, Pupu; Woo, Patrick C. Y.; Yan, Jinghua; Zhao, Yanlin; Gao, George F.; Liu, Cui Hua; Liu, Changting

    2014-01-01

    The emergence and rapid spread of New Delhi Metallo-beta-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae strains has caused a great concern worldwide. To better understand the mechanisms underlying environmental adaptation of those highly drug-resistant K. pneumoniae strains, we took advantage of the China's Shenzhou 10 spacecraft mission to conduct comparative genomic and transcriptomic analysis of a NDM-1 K. pneumoniae strain (ATCC BAA-2146) being cultivated under different conditions. The samples were recovered from semisolid medium placed on the ground (D strain), in simulated space condition (M strain), or in Shenzhou 10 spacecraft (T strain) for analysis. Our data revealed multiple variations underlying pathogen adaptation into different environments in terms of changes in morphology, H2O2 tolerance and biofilm formation ability, genomic stability and regulation of metabolic pathways. Additionally, we found a few non-coding RNAs to be differentially regulated. The results are helpful for better understanding the adaptive mechanisms of drug-resistant bacterial pathogens. PMID:25163721

  19. Comparative transcriptome and proteome analysis to reveal the biosynthesis of gold nanoparticles in Arabidopsis

    PubMed Central

    Tiwari, Manish; Krishnamurthy, Sneha; Shukla, Devesh; Kiiskila, Jeffrey; Jain, Ajay; Datta, Rupali; Sharma, Nilesh; Sahi, Shivendra V.

    2016-01-01

    A large number of plants have been tested and exploited in search of a green chemistry approach for the fabrication of gold or other precious metal nanomaterials. Despite the potential of plant based methods, very little is known about the underlying biochemical reactions and genes involved in the biotransformation mechanism of AuCl4 into gold nanoparticles (AuNPs). In this research, we thus focused on studying the effect of Au on growth and nanoparticles formation by analyses of transcriptome, proteome and ionome shift in Arabidopsis. Au exposure favored the growth of Arabidopsis seedling and induced formation of nanoparticles in root and shoot, as indicated by optical and hyperspectral imaging. Root transcriptome analysis demonstrated the differential expression of the members of WRKY, MYB and BHLH gene families, which are involved in the Fe and other essential metals homeostasis. The proteome analysis revealed that Glutathione S-transferases were induced in the shoot and suggested its potential role in the biosynthesis AuNPs. This study also demonstrated the role of plant hormone auxin in determining the Au induced root system architecture. This is the first study using an integrated approach to understand the in planta biotransformation of KAuCl4 into AuNPs. PMID:26902325

  20. [Bacteria community in different aged Coptis chinensis planting soil revealed by PCR-DGGE analysis].

    PubMed

    Tan, Yuan; Chen, Qiang; Liu, Han-jun; Song, San-duo; Yu, Xiu-mei; Dong, Zhen-huan; Tang, Xue; Zhong, Yu-zhou

    2015-08-01

    In order to reveal the cause of disease occurred in the process of Coptis chinensis growth, this paper studied the bacterial species diversity index of different aged rhizospheric and non-rhizospheric soil planting normal or sick C. chinensis by using PCR-DGGE technique. The representative DGGE bands were chosen to be cloned, and sequenced, the phylogeny were constructed. The results showed that the bacterial communities were very different between the normal and diseased soil samples of C. chinensis, and the diversity index (H) of diseased soil samples were higher than that of normal soil samples. Sequencing analysis of representative cloned DGGE bands showed that the unculturable bacteria were the dominant groups, and bacteria belonged to genus Bacillus, Acidovorax, Acinetobacter, uncultured Kluyvera, and uncultured Comamonas were also existing, but the reported plant pathogenic bacteria were not found in the C. chinensis planting soil. The density and brightness of clone band d in diseased soil samples was higher than that in normal soil sample, and sequencing analysis showed that it belonged to genus Acidovorax. Obviously, during the process of C. chinensis growth, the rhizospheric bacteria population changed, and the quantity of bacteria belong Acidovorax increased, which probably resulted in the disease occurred during C. chinensis growth.

  1. Glycoproteomic Analysis of Seven Major Allergenic Proteins Reveals Novel Post-translational Modifications*

    PubMed Central

    Halim, Adnan; Carlsson, Michael C.; Madsen, Caroline Benedicte; Brand, Stephanie; Møller, Svenning Rune; Olsen, Carl Erik; Vakhrushev, Sergey Y.; Brimnes, Jens; Wurtzen, Peter Adler; Ipsen, Henrik; Petersen, Bent L.; Wandall, Hans H.

    2015-01-01

    Allergenic proteins such as grass pollen and house dust mite (HDM) proteins are known to trigger hypersensitivity reactions of the immune system, leading to what is commonly known as allergy. Key allergenic proteins including sequence variants have been identified but characterization of their post-translational modifications (PTMs) is still limited. Here, we present a detailed PTM1 characterization of a series of the main and clinically relevant allergens used in allergy tests and vaccines. We employ Orbitrap-based mass spectrometry with complementary fragmentation techniques (HCD/ETD) for site-specific PTM characterization by bottom-up analysis. In addition, top-down mass spectrometry is utilized for targeted analysis of individual proteins, revealing hitherto unknown PTMs of HDM allergens. We demonstrate the presence of lysine-linked polyhexose glycans and asparagine-linked N-acetylhexosamine glycans on HDM allergens. Moreover, we identified more complex glycan structures than previously reported on the major grass pollen group 1 and 5 allergens, implicating important roles for carbohydrates in allergen recognition and response by the immune system. The new findings are important for understanding basic disease-causing mechanisms at the cellular level, which ultimately may pave the way for instigating novel approaches for targeted desensitization strategies and improved allergy vaccines. PMID:25389185

  2. Phylogenetic analysis of vertebrate CXC chemokines reveals novel lineage specific groups in teleost fish.

    PubMed

    Chen, Jun; Xu, Qiaoqing; Wang, Tiehui; Collet, Bertrand; Corripio-Miyar, Yolanda; Bird, Steve; Xie, Ping; Nie, Pin; Secombes, Christopher J; Zou, Jun

    2013-10-01

    In this study, we have identified 421 molecules across the vertebrate spectrum and propose a unified nomenclature for CXC chemokines in fish, amphibians and reptiles based on phylogenetic analysis. Expanding on earlier studies in teleost fish, lineage specific CXC chemokines that have no apparent homologues in mammals were confirmed. Furthermore, in addition to the two subgroups of the CXCL8 homologues known in teleost fish, a third group was identified (termed CXCL8_L3), as was a further subgroup of the fish CXC genes related to CXCL11. Expression of the CXC chemokines found in rainbow trout, Oncorhynchus mykiss, was studied in response to stimulation with inflammatory and antiviral cytokines, and bacterial. Tissue distribution analysis revealed distinct expression profiles for these trout CXC chemokines. Lastly three of the trout chemokines, including two novel fish specific CXC chemokines containing three pairs of cysteines, were produced as recombinant proteins and their effect on trout leucocyte migration studied. These molecules increased the relative expression of CD4 and MCSFR in migrated cells in an in vitro chemotaxis assay.

  3. Bach Is the Father of Harmony: Revealed by a 1/f Fluctuation Analysis across Musical Genres.

    PubMed

    Wu, Dan; Kendrick, Keith M; Levitin, Daniel J; Li, Chaoyi; Yao, Dezhong

    2015-01-01

    Harmony is a fundamental attribute of music. Close connections exist between music and mathematics since both pursue harmony and unity. In music, the consonance of notes played simultaneously partly determines our perception of harmony; associates with aesthetic responses; and influences the emotion expression. The consonance could be considered as a window to understand and analyze harmony. Here for the first time we used a 1/f fluctuation analysis to investigate whether the consonance fluctuation structure in music with a wide range of composers and genres followed the scale free pattern that has been found for pitch, melody, rhythm, human body movements, brain activity, natural images and geographical features. We then used a network graph approach to investigate which composers were the most influential both within and across genres. Our results showed that patterns of consonance in music did follow scale-free characteristics, suggesting that this feature is a universally evolved one in both music and the living world. Furthermore, our network analysis revealed that Bach's harmony patterns were having the most influence on those used by other composers, followed closely by Mozart.

  4. mtDNA analysis reveals a major late Paleolithic population expansion from southwestern to northeastern Europe.

    PubMed Central

    Torroni, A; Bandelt, H J; D'Urbano, L; Lahermo, P; Moral, P; Sellitto, D; Rengo, C; Forster, P; Savontaus, M L; Bonné-Tamir, B; Scozzari, R

    1998-01-01

    mtDNA sequence variation was studied in 419 individuals from nine Eurasian populations, by high-resolution RFLP analysis, and it was followed by sequencing of the control region of a subset of these mtDNAs and a detailed survey of previously published data from numerous other European populations. This analysis revealed that a major Paleolithic population expansion from the "Atlantic zone" (southwestern Europe) occurred 10,000-15,000 years ago, after the Last Glacial Maximum. As an mtDNA marker for this expansion we identified haplogroup V, an autochthonous European haplogroup, which most likely originated in the northern Iberian peninsula or southwestern France at about the time of the Younger Dryas. Its sister haplogroup, H, which is distributed throughout the entire range of Caucasoid populations and which originated in the Near East approximately 25,000-30,000 years ago, also took part in this expansion, thus rendering it by far the most frequent (40%-60%) haplogroup in western Europe. Subsequent migrations after the Younger Dryas eventually carried those "Atlantic" mtDNAs into central and northern Europe. This scenario, already implied by archaeological records, is given overwhelming support from both the distribution of the autochthonous European Y chromosome type 15, as detected by the probes 49a/f, and the synthetic maps of nuclear data. PMID:9545392

  5. Structure analysis reveals the flexibility of the ADAMTS-5 active site

    SciTech Connect

    Shieh, Huey-Sheng; Tomasselli, Alfredo G.; Mathis, Karl J.; Schnute, Mark E.; Woodard, Scott S.; Caspers, Nicole; Williams, Jennifer M.; Kiefer, James R.; Munie, Grace; Wittwer, Arthur; Malfait, Anne-Marie; Tortorella, Micky D.

    2012-03-02

    A ((1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl) succinamide derivative (here referred to as Compound 12) shows significant activity toward many matrix metalloproteinases (MMPs), including MMP-2, MMP-8, MMP-9, and MMP-13. Modeling studies had predicted that this compound would not bind to ADAMTS-5 (a disintegrin and metalloproteinase with thrombospondin motifs-5) due to its shallow S1' pocket. However, inhibition analysis revealed it to be a nanomolar inhibitor of both ADAMTS-4 and -5. The observed inconsistency was explained by analysis of crystallographic structures, which showed that Compound 12 in complex with the catalytic domain of ADAMTS-5 (cataTS5) exhibits an unusual conformation in the S1' pocket of the protein. This first demonstration that cataTS5 can undergo an induced conformational change in its active site pocket by a molecule like Compound 12 should enable the design of new aggrecanase inhibitors with better potency and selectivity profiles.

  6. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species.

    PubMed

    Ronkin, Dana; Seroussi, Eyal; Nitzan, Tali; Doron-Faigenboim, Adi; Cnaani, Avner

    2015-03-01

    Tilapias are a group of freshwater species, which vary in their ability to adapt to high salinity water. Osmotic regulation in fish is conducted mainly in the gills, kidney, and gastrointestinal tract (GIT). The mechanisms involved in ion and water transport through the GIT is not well-characterized, with only a few described complexes. Comparing the transcriptome of the anterior and posterior intestinal sections of a freshwater and saltwater adapted fish by deep-sequencing, we examined the salinity adaptation of two tilapia species: the high salinity-tolerant Oreochromis mossambicus (Mozambique tilapia), and the less salinity-tolerant Oreochromis niloticus (Nile tilapia). This comparative analysis revealed high similarity in gene expression response to salinity change between species in the posterior intestine and large differences in the anterior intestine. Furthermore, in the anterior intestine 68 genes were saltwater up-regulated in one species and down-regulated in the other species (47 genes up-regulated in O. niloticus and down-regulated in O. mossambicus, with 21 genes showing the reverse pattern). Gene ontology (GO) analysis showed a high proportion of transporter and ion channel function among these genes. The results of this study point to a group of genes that differed in their salinity-dependent regulation pattern in the anterior intestine as potentially having a role in the differential salinity tolerance of these two closely related species.

  7. Comparative Functional Genomic Analysis of Two Vibrio Phages Reveals Complex Metabolic Interactions with the Host Cell.

    PubMed

    Skliros, Dimitrios; Kalatzis, Panos G; Katharios, Pantelis; Flemetakis, Emmanouil

    2016-01-01

    Sequencing and annotation was performed for two large double stranded DNA bacteriophages, φGrn1 and φSt2 of the Myoviridae family, considered to be of great interest for phage therapy against Vibrios in aquaculture live feeds. In addition, phage-host metabolic interactions and exploitation was studied by transcript profiling of selected viral and host genes. Comparative genomic analysis with other large Vibrio phages was also performed to establish the presence and location of homing endonucleases highlighting distinct features for both phages. Phylogenetic analysis revealed that they belong to the "schizoT4like" clade. Although many reports of newly sequenced viruses have provided a large set of information, basic research related to the shift of the bacterial metabolism during infection remains stagnant. The function of many viral protein products in the process of infection is still unknown. Genome annotation identified the presence of several viral open reading frames (ORFs) participating in metabolism, including a Sir2/cobB (sirtuin) protein and a number of genes involved in auxiliary NAD(+) and nucleotide biosynthesis, necessary for phage DNA replication. Key genes were subsequently selected for detail study of their expression levels during infection. This work suggests a complex metabolic interaction and exploitation of the host metabolic pathways and biochemical processes, including a possible post-translational protein modification, by the virus during infection.

  8. Comprehensive Proteomics Analysis of Laticifer Latex Reveals New Insights into Ethylene Stimulation of Natural Rubber Production.

    PubMed

    Wang, Xuchu; Wang, Dan; Sun, Yong; Yang, Qian; Chang, Lili; Wang, Limin; Meng, Xueru; Huang, Qixing; Jin, Xiang; Tong, Zheng

    2015-09-08

    Ethylene is a stimulant to increase natural rubber latex. After ethylene application, both fresh yield and dry matter of latex are substantially improved. Moreover, we found that ethylene improves the generation of small rubber particles. However, most genes involved in rubber biosynthesis are inhibited by exogenous ethylene. Therefore, we conducted a proteomics analysis of ethylene-stimulated rubber latex, and identified 287 abundant proteins as well as 143 ethylene responsive latex proteins (ERLPs) with mass spectrometry from the 2-DE and DIGE gels, respectively. In addition, more than 1,600 proteins, including 404 ERLPs, were identified by iTRAQ. Functional classification of ERLPs revealed that enzymes involved in post-translational modification, carbohydrate metabolism, hydrolase activity, and kinase activity were overrepresented. Some enzymes for rubber particle aggregation were inhibited to prolong latex flow, and thus finally improved latex production. Phosphoproteomics analysis identified 59 differential phosphoproteins; notably, specific isoforms of rubber elongation factor and small rubber particle protein that were phosphorylated mainly at serine residues. This post-translational modification and isoform-specific phosphorylation might be important for ethylene-stimulated latex production. These results not only deepen our understanding of the rubber latex proteome but also provide new insights into the use of ethylene to stimulate rubber latex production.

  9. Analysis of two 47,XXX males reveals X-Y interchange and maternal or paternal nondisjunction.

    PubMed

    Scherer, G; Schempp, W; Fraccaro, M; Bausch, E; Bigozzi, V; Maraschio, P; Montali, E; Simoni, G; Wolf, U

    1989-02-01

    Two cases of 47,XXX males were studied, one of which has been published previously (Bigozzi et al. 1980). Analysis of X-linked restriction fragment length polymorphisms revealed that in this case, one X chromosome was of paternal and two were of maternal origin, whereas in the other case, two X chromosomes were of paternal and one of maternal origin. Southern blot analysis with Y-specific DNA probes demonstrated the presence of Y short arm sequences in both XXX males. In one case, the results obtained pointed to a paracentric inversion on Yp of the patient's father. In situ hybridization indicated that the Y-specific DNA sequences were localized on Xp22.3 in one of the three X chromosomes in both cases. The presence of Y DNA had no effect on random X inactivation. It is concluded that both XXX males originate from aberrant X-Y interchange during paternal meiosis, with coincident nondisjunction of the X chromosome during maternal meiosis in case 1, and during paternal meiosis II in case 2.

  10. Transcriptome analysis reveals specific modulation of abscisic acid signaling by ROP10 small GTPase in Arabidopsis.

    PubMed

    Xin, Zeyu; Zhao, Yihong; Zheng, Zhi-Liang

    2005-11-01

    Abscisic acid (ABA) is a hormone that modulates a variety of agronomically important growth and developmental processes and various stresses responses, but its signal transduction pathways remain poorly understood. ROP10, a member of ROP small GTPases in Arabidopsis (Arabidopsis thaliana), is a plasma membrane-associated protein specifically involved in negative regulation of ABA responses. To dissect the ROP10-mediated ABA signaling, we carried out transcriptome analysis using the Arabidopsis full-genome chip. Our analysis revealed a total of 262 and 125 genes that were, respectively, up- and down-regulated (> or =2-fold cutoff) by 1 mum ABA in wild type (Wassilewskija [Ws]); 42 up-regulated and 38 down-regulated genes have not been identified in other studies. Consistent with the nonpleiotropic phenotypes of rop10-1, only three genes were altered in rop10-1 in the absence of ABA treatment. In response to 1 microm ABA, 341 and 127 genes were, respectively, activated and repressed in rop10-1. Interestingly, a particular subset of 21 genes that were not altered by 1 microm ABA in Ws but only activated in rop10-1 was identified. Reverse transcription-polymerase chain reaction analysis revealed the existence of three distinct categories of ABA dose-response patterns. One novel category is characterized by their ABA unresponsiveness in Ws and activation in rop10-1 at 1 microm but not 10 and 100 microm of ABA. This indicates that ROP10 gates the expression of genes that are specific to low concentrations of ABA. Furthermore, almost all of these 21 genes are known to be highly induced by various biotic and abiotic stresses. Consequently, we found that rop10-1 enhanced the sensitivity of seed germination inhibition to mannitol and sodium chloride. Our results suggest that ROP10 negatively regulates ABA responses by specifically and differentially modulating the ABA sensitivity of a subset of genes including protein kinases and zinc-finger family proteins.

  11. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.

    PubMed

    Ferreira, Savio Siqueira; Hotta, Carlos Takeshi; Poelking, Viviane Guzzo de Carli; Leite, Debora Chaves Coelho; Buckeridge, Marcos Silveira; Loureiro, Marcelo Ehlers; Barbosa, Marcio Henrique Pereira; Carneiro, Monalisa Sampaio; Souza, Glaucia Mendes

    2016-05-01

    Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production.

  12. ALE meta‐analysis reveals dissociable networks for affective and discriminative aspects of touch

    PubMed Central

    2016-01-01

    Abstract Emotionally‐laden tactile stimulation—such as a caress on the skin or the feel of velvet—may represent a functionally distinct domain of touch, underpinned by specific cortical pathways. In order to determine whether, and to what extent, cortical functional neuroanatomy supports a distinction between affective and discriminative touch, an activation likelihood estimate (ALE) meta‐analysis was performed. This meta‐analysis statistically mapped reported functional magnetic resonance imaging (fMRI) activations from 17 published affective touch studies in which tactile stimulation was associated with positive subjective evaluation (n = 291, 34 experimental contrasts). A separate ALE meta‐analysis mapped regions most likely to be activated by tactile stimulation during detection and discrimination tasks (n = 1,075, 91 experimental contrasts). These meta‐analyses revealed dissociable regions for affective and discriminative touch, with posterior insula (PI) more likely to be activated for affective touch, and primary somatosensory cortices (SI) more likely to be activated for discriminative touch. Secondary somatosensory cortex had a high likelihood of engagement by both affective and discriminative touch. Further, meta‐analytic connectivity (MCAM) analyses investigated network‐level co‐activation likelihoods independent of task or stimulus, across a range of domains and paradigms. Affective‐related PI and discriminative‐related SI regions co‐activated with different networks, implicated in dissociable functions, but sharing somatosensory co‐activations. Taken together, these meta‐analytic findings suggest that affective and discriminative touch are dissociable both on the regional and network levels. However, their degree of shared activation likelihood in somatosensory cortices indicates that this dissociation reflects functional biases within tactile processing networks, rather than functionally and anatomically distinct

  13. Time series analysis of satellite data reveals continuous deforestation of New England since the 1980s

    NASA Astrophysics Data System (ADS)

    Olofsson, Pontus; Holden, Christopher E.; Bullock, Eric L.; Woodcock, Curtis E.

    2016-06-01

    Land cover and land change were monitored continuously between 1985 and 2011 at 30 m resolution across New England in the Northeastern United States in support of modeling the terrestrial carbon budget. It was found that the forest area has been decreasing throughout the study period in each state of the region since the 1980s. A total of 386 657 ± 98 137 ha (95% confidence interval) of forest has been converted to other land covers since 1985. Mainly driven by low density residential development, the deforestation accelerated in the mid-1990s until 2007 when it plateaued as a result of declining new residential construction and in turn, the financial crisis of 2007-08. The area of forest harvest, estimated at 226 519 ± 66 682 ha, was mapped separately and excluded from the deforestation estimate, while the area of forest expansion on non-forested lands was found to not be significantly different from zero. New England is often held as a principal example of a forest transition with historical widespread deforestation followed by recovery of forestlands as farming activities diminished, but the results of this study support the notion of a reversal of the forest transition as the region again is experiencing widespread deforestation. All available Landsat imagery acquired after 1985 for the study area were collected and used in the analysis. Areas of land cover and land change were estimated from a random sample of reference observations stratified by a twelve-class land change map encompassing the entire study area and period. The statistical analysis revealed that the net change in forest area and the associated modeled impact on the terrestrial carbon balance would have been considerably different if the results of the map were used without inferring the area of forest change by analysis of a reference sample.

  14. Global RNA Half-Life Analysis in Escherichia coli Reveals Positional Patterns of Transcript Degradation

    PubMed Central

    Selinger, Douglas W.; Saxena, Rini Mukherjee; Cheung, Kevin J.; Church, George M.; Rosenow, Carsten

    2003-01-01

    Subgenic-resolution oligonucleotide microarrays were used to study global RNA degradation in wild-type Escherichia coli MG1655. RNA chemical half-lives were measured for 1036 open reading frames (ORFs) and for 329 known and predicted operons. The half-life of total mRNA was 6.8 min under the conditions tested. We also observed significant relationships between gene functional assignments and transcript stability. Unexpectedly, transcription of a single operon (tdcABCDEFG) was relatively rifampicin-insensitive and showed significant increases 2.5 min after rifampicin addition. This supports a novel mechanism of transcription for the tdc operon, whose promoter lacks any recognizable ς binding sites. Probe by probe analysis of all known and predicted operons showed that the 5′ ends of operons degrade, on average, more quickly than the rest of the transcript, with stability increasing in a 3′ direction, supporting and further generalizing the current model of a net 5′ to 3′ directionality of degradation. Hierarchical clustering analysis of operon degradation patterns revealed that this pattern predominates but is not exclusive. We found a weak but highly significant correlation between the degradation of adjacent operon regions, suggesting that stability is determined by a combination of local and operon-wide stability determinants. The 16 ORF dcw gene cluster, which has a complex promoter structure and a partially characterized degradation pattern, was studied at high resolution, allowing a detailed and integrated description of its abundance and degradation. We discuss the application of subgenic resolution DNA microarray analysis to study global mechanisms of RNA transcription and processing. PMID:12566399

  15. ALE meta-analysis reveals dissociable networks for affective and discriminative aspects of touch.

    PubMed

    Morrison, India

    2016-04-01

    Emotionally-laden tactile stimulation-such as a caress on the skin or the feel of velvet-may represent a functionally distinct domain of touch, underpinned by specific cortical pathways. In order to determine whether, and to what extent, cortical functional neuroanatomy supports a distinction between affective and discriminative touch, an activation likelihood estimate (ALE) meta-analysis was performed. This meta-analysis statistically mapped reported functional magnetic resonance imaging (fMRI) activations from 17 published affective touch studies in which tactile stimulation was associated with positive subjective evaluation (n = 291, 34 experimental contrasts). A separate ALE meta-analysis mapped regions most likely to be activated by tactile stimulation during detection and discrimination tasks (n = 1,075, 91 experimental contrasts). These meta-analyses revealed dissociable regions for affective and discriminative touch, with posterior insula (PI) more likely to be activated for affective touch, and primary somatosensory cortices (SI) more likely to be activated for discriminative touch. Secondary somatosensory cortex had a high likelihood of engagement by both affective and discriminative touch. Further, meta-analytic connectivity (MCAM) analyses investigated network-level co-activation likelihoods independent of task or stimulus, across a range of domains and paradigms. Affective-related PI and discriminative-related SI regions co-activated with different networks, implicated in dissociable functions, but sharing somatosensory co-activations. Taken together, these meta-analytic findings suggest that affective and discriminative touch are dissociable both on the regional and network levels. However, their degree of shared activation likelihood in somatosensory cortices indicates that this dissociation reflects functional biases within tactile processing networks, rather than functionally and anatomically distinct pathways.

  16. Bulk Segregant Analysis Reveals the Genetic Basis of a Natural Trait Variation in Fission Yeast

    PubMed Central

    Hu, Wen; Suo, Fang; Du, Li-Lin

    2015-01-01

    Although the fission yeast Schizosaccharomyces pombe is a well-established model organism, studies of natural trait variations in this species remain limited. To assess the feasibility of segregant-pool-based mapping of phenotype-causing genes in natural strains of fission yeast, we investigated the cause of a maltose utilization defect (Mal-) of the S. pombe strain CBS5557 (originally known as Schizosaccharomyces malidevorans). Analyzing the genome sequence of CBS5557 revealed 955 nonconservative missense substitutions, and 61 potential loss-of-function variants including 47 frameshift indels, 13 early stop codons, and 1 splice site mutation. As a side benefit, our analysis confirmed 146 sequence errors in the reference genome and improved annotations of 27 genes. We applied bulk segregant analysis to map the causal locus of the Mal- phenotype. Through sequencing the segregant pools derived from a cross between CBS5557 and the laboratory strain, we located the locus to within a 2.23-Mb chromosome I inversion found in most S. pombe isolates including CBS5557. To map genes within the inversion region that occupies 18% of the genome, we created a laboratory strain containing the same inversion. Analyzing segregants from a cross between CBS5557 and the inversion-containing laboratory strain narrowed down the locus to a 200-kb interval and led us to identify agl1, which suffers a 5-bp deletion in CBS5557, as the causal gene. Interestingly, loss of agl1 through a 34-kb deletion underlies the Mal- phenotype of another S. pombe strain CGMCC2.1628. This work adapts and validates the bulk segregant analysis method for uncovering trait-gene relationship in natural fission yeast strains. PMID:26615217

  17. Analysis of the interplay between methylation and expression reveals its potential role in cancer aetiology.

    PubMed

    Ozer, Bugra; Sezerman, Ugur

    2017-01-01

    With ongoing developments in technology, changes in DNA methylation levels have become prevalent to study cancer biology. Previous studies report that DNA methylation affects gene expression in a direct manner, most probably by blocking gene regulatory regions. In this study, we have studied the interplay between methylation and expression to improve our knowledge of cancer aetiology. For this purpose, we have investigated which genomic regions are of higher importance; hence, first exon, 5'UTR and 200 bp near the transcription start sites are proposed as being more crucial compared to other genomic regions. Furthermore, we have searched for a valid methylation level change threshold, and as a result, 25 % methylation change in previously determined genomic regions showed the highest inverse correlation with expression data. As a final step, we have examined the commonly affected genes and pathways by integrating methylation and expression information. Remarkably, the GPR115 gene and ErbB signalling pathway were found to be significantly altered for all cancer types in our analysis. Overall, combining methylation and expression information and identifying commonly affected genes and pathways in a variety of cancer types revealed new insights of cancer disease mechanisms. Moreover, compared to previous methylation-based studies, we have identified more important genomic regions and have defined a methylation change threshold level in order to obtain more reliable results. In addition to the novel analysis framework that involves the analysis of four different cancer types, our study exposes essential information regarding the contribution of methylation changes and its impact on cancer disease biology, which may facilitate the identification of new drug targets.

  18. Desiccation tolerance mechanism in resurrection fern-ally Selaginella tamariscina revealed by physiological and proteomic analysis.

    PubMed

    Wang, Xiaonan; Chen, Sixue; Zhang, Heng; Shi, Lei; Cao, Fenglin; Guo, Lihai; Xie, Yongming; Wang, Tai; Yan, Xiufeng; Dai, Shaojun

    2010-12-03

    Drought is one of the most severe limitations to plant growth and productivity. Resurrection plants have evolved a unique capability to tolerate desiccation in vegetative tissues. Fern-ally Selaginella tamariscina (Beauv.) is one of the most primitive vascular resurrection plants, which can survive a desiccated state and recover when water becomes available. To better understand the mechanism of desiccation tolerance, we have applied physiological and proteomic analysis. Samples of S. tamariscina were water-deprived for up to seven days followed by 12 h of rewatering. Our results showed that endogenous abscisic acid (ABA) increased to regulate dehydration-responsive genes/proteins and physiological processes. In the course of dehydration, the contents of osmolytes represented by soluble sugars and proline were increased to maintain cell structure integrity. The activities of four antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione reductase (GR)) also increased. In contrast, both the rate of photosynthesis and the chlorophyll content decreased, and plasma membrane integrity was lost. We identified 138 desiccation-responsive two-dimensional electrophoresis (2-DE) spots, representing 103 unique proteins. Hierarchical clustering analysis revealed that 83% of the proteins were down-regulated upon dehydration. They were mainly involved in photosynthesis, carbohydrate and energy metabolism, stress and defense, protein metabolism, signaling, membrane/transport, cell structure, and cell division. The dynamic expression changes of the desiccation-responsive proteins provide strong evidence that cell structure modification, photosynthesis reduction, antioxidant system activation, and protein post-transcriptional/translational modifications are essential to the poikilochlorophyllous fern-ally S. tamariscina in response to dehydration. In addition, our comparative analysis of dehydration-responsive proteins in vegetative tissues

  19. Interactional Competence and the Development of Alignment Activity

    ERIC Educational Resources Information Center

    Dings, Abby

    2014-01-01

    Based on qualitative analysis of conversational interactions collected over the course of a Spanish language learner's academic year abroad, this article explores the development of interactional resources related to alignment activity in the learner's conversational participation. Alignment activity refers to the means interlocutors use…

  20. Alignment control study for the solar optical telescope

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Analysis of the alignment and focus errors than can be tolerated, methods of sensing such errors, and mechanisms to make the necessary corrections were addressed. Alternate approaches and their relative merits were considered. The results of this study indicate that adequate alignment control can be achieved.

  1. Deep Sequencing Analysis Reveals the Mycoviral Diversity of the Virome of an Avirulent Isolate of Rhizoctonia solani AG-2-2 IV

    PubMed Central

    Bartholomäus, Anika; Wibberg, Daniel; Winkler, Anika; Pühler, Alfred; Schlüter, Andreas; Varrelmann, Mark

    2016-01-01

    Rhizoctonia solani represents an important plant pathogenic Basidiomycota species complex and the host of many different mycoviruses, as indicated by frequent detection of dsRNA elements in natural populations of the fungus. To date, eight different mycoviruses have been characterized in Rhizoctonia and some of them have been reported to modulate its virulence. DsRNA extracts of the avirulent R. solani isolate DC17 (AG2-2-IV) displayed a diverse pattern, indicating multiple infections with mycoviruses. Deep sequencing analysis of the dsRNA extract, converted to cDNA, revealed that this isolate harbors at least 17 different mycovirus species. Based on the alignment of the conserved RNA-dependent RNA-polymerase (RdRp) domain, this viral community included putative members of the families Narnaviridae, Endornaviridae, Partitiviridae and Megabirnaviridae as well as of the order Tymovirales. Furthermore, viruses, which could not be assigned to any existing family or order, but showed similarities to so far unassigned species like Sclerotinia sclerotiorum RNA virus L, Rhizoctonia solani dsRNA virus 1, Aspergillus foetidus slow virus 2 or Rhizoctonia fumigata virus 1, were identified. This is the first report of a fungal isolate infected by 17 different viral species and a valuable study case to explore the diversity of mycoviruses infecting R. solani. PMID:27814394

  2. Nonlinear cardio-respiratory interactions revealed by time-phase bispectral analysis

    NASA Astrophysics Data System (ADS)

    Jamsek, Janez; Stefanovska, Aneta; McClintock, Peter V. E.

    2004-09-01

    Bispectral analysis based on high order statistics, introduced recently as a technique for revealing time-phase relationships among interacting noisy oscillators, has been used to study the nature of the coupling between cardiac and respiratory activity. Univariate blood flow signals recorded simultaneously by laser-Doppler flowmetry on both legs and arms were analysed. Coupling between cardiac and respiratory activity was also checked by use of bivariate data and computation of the cross-bispectrum between the ECG and respiratory signals. Measurements were made on six healthy males aged 25-27 years. Recordings were taken during spontaneous breathing (20 min), and during paced respiration at frequencies both lower and higher than that of spontaneous respiration (either two or three recordings with a constant frequency in the interval between 0.09 and 0.35 Hz). At each paced frequency recordings were taken for 12 min. It was confirmed that the dynamics of blood flow can usefully be considered in terms of coupled oscillators, and demonstrated that interactions between the cardiac and respiratory processes are weak and time-varying, and that they can be nonlinear. Nonlinear coupling was revealed to exist during both spontaneous and paced respiration. When present, it was detected in all four blood flow signals and in the cross-bispectrum between the ECG and respiratory signal. The episodes with nonlinear coupling were detected in 11 out of 22 recordings and lasted between 19 s in the case of high frequency (0.34 Hz) and 106 s in the case of low frequency paced respiration (0.11 Hz).

  3. Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions.

    PubMed

    Bellas, Christopher M; Anesio, Alexandre M; Barker, Gary

    2015-01-01

    Microbial communities in glacial ecosystems are diverse, active, and subjected to strong viral pressures and infection rates. In this study we analyse putative virus genomes assembled from three dsDNA viromes from cryoconite hole ecosystems of Svalbard and the Greenland Ice Sheet to assess the potential hosts and functional role viruses play in these habitats. We assembled 208 million reads from the virus-size fraction and developed a procedure to select genuine virus scaffolds from cellular contamination. Our curated virus library contained 546 scaffolds up to 230 Kb in length, 54 of which were circular virus consensus genomes. Analysis of virus marker genes revealed a wide range of viruses had been assembled, including bacteriophages, cyanophages, nucleocytoplasmic large DNA viruses and a virophage, with putative hosts identified as Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes, eukaryotic algae and amoebae. Whole genome comparisons revealed the majority of circular genome scaffolds (CGS) formed 12 novel groups, two of which contained multiple phage members with plasmid-like properties, including a group of phage-plasmids possessing plasmid-like partition genes and toxin-antitoxin addiction modules to ensure their replication and a satellite phage-plasmid group. Surprisingly we also assembled a phage that not only encoded plasmid partition genes, but a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas adaptive bacterial immune system. One of the spacers was an exact match for another phage in our virome, indicating that in a novel use of the system, the lysogen was potentially capable of conferring immunity on its bacterial host against other phage. Together these results suggest that highly novel and diverse groups of viruses are present in glacial environments, some of which utilize very unusual life strategies and genes to control their replication and maintain a long-term relationship with their hosts.

  4. Dysconnection Topography in Schizophrenia Revealed with State-Space Analysis of EEG

    PubMed Central

    Jalili, Mahdi; Lavoie, Suzie; Deppen, Patricia; Meuli, Reto; Do, Kim Q.; Cuénod, Michel; Hasler, Martin

    2007-01-01

    Background The dysconnection hypothesis has been proposed to account for pathophysiological mechanisms underlying schizophrenia. Widespread structural changes suggesting abnormal connectivity in schizophrenia have been imaged. A functional counterpart of the structural maps would be the EEG synchronization maps. However, due to the limits of currently used bivariate methods, functional correlates of dysconnection are limited to the isolated measurements of synchronization between preselected pairs of EEG signals. Methods/Results To reveal a whole-head synchronization topography in schizophrenia, we applied a new method of multivariate synchronization analysis called S-estimator to the resting dense-array (128 channels) EEG obtained from 14 patients and 14 controls. This method determines synchronization from the embedding dimension in a state-space domain based on the theoretical consequence of the cooperative behavior of simultaneous time series—the shrinking of the state-space embedding dimension. The S-estimator imaging revealed a specific synchronization landscape in schizophrenia patients. Its main features included bilaterally increased synchronization over temporal brain regions and decreased synchronization over the postcentral/parietal region neighboring the midline. The synchronization topography was stable over the course of several months and correlated with the severity of schizophrenia symptoms. In particular, direct correlations linked positive, negative, and general psychopathological symptoms to the hyper-synchronized temporal clusters over both hemispheres. Along with these correlations, general psychopathological symptoms inversely correlated within the hypo-synchronized postcentral midline region. While being similar to the structural maps of cortical changes in schizophrenia, the S-maps go beyond the topography limits, demonstrating a novel aspect of the abnormalities of functional cooperation: namely, regionally reduced or enhanced

  5. Analysis of virus genomes from glacial environments reveals novel virus groups with unusual host interactions

    PubMed Central

    Bellas, Christopher M.; Anesio, Alexandre M.; Barker, Gary

    2015-01-01

    Microbial communities in glacial ecosystems are diverse, active, and subjected to strong viral pressures and infection rates. In this study we analyse putative virus genomes assembled from three dsDNA viromes from cryoconite hole ecosystems of Svalbard and the Greenland Ice Sheet to assess the potential hosts and functional role viruses play in these habitats. We assembled 208 million reads from the virus-size fraction and developed a procedure to select genuine virus scaffolds from cellular contamination. Our curated virus library contained 546 scaffolds up to 230 Kb in length, 54 of which were circular virus consensus genomes. Analysis of virus marker genes revealed a wide range of viruses had been assembled, including bacteriophages, cyanophages, nucleocytoplasmic large DNA viruses and a virophage, with putative hosts identified as Cyanobacteria, Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes, eukaryotic algae and amoebae. Whole genome comparisons revealed the majority of circular genome scaffolds (CGS) formed 12 novel groups, two of which contained multiple phage members with plasmid-like properties, including a group of phage-plasmids possessing plasmid-like partition genes and toxin-antitoxin addiction modules to ensure their replication and a satellite phage-plasmid group. Surprisingly we also assembled a phage that not only encoded plasmid partition genes, but a clustered regularly interspaced short palindromic repeat (CRISPR)/Cas adaptive bacterial immune system. One of the spacers was an exact match for another phage in our virome, indicating that in a novel use of the system, the lysogen was potentially capable of conferring immunity on its bacterial host against other phage. Together these results suggest that highly novel and diverse groups of viruses are present in glacial environments, some of which utilize very unusual life strategies and genes to control their replication and maintain a long-term relationship with their hosts

  6. Structural and functional analysis of amphioxus HIFα reveals ancient features of the HIFα family.

    PubMed

    Gao, Shan; Lu, Ling; Bai, Yan; Zhang, Peng; Song, Weibo; Duan, Cunming

    2014-04-01

    Hypoxia-inducible factors (HIFs) are master regulators of the transcriptional response to hypoxia. To gain insight into the structural and functional evolution of the HIF family, we characterized the HIFα gene from amphioxus, an invertebrate chordate, and identified several alternatively spliced HIFα isoforms. Whereas HIFα Ia, the full-length isoform, contained a complete oxygen-dependent degradation (ODD) domain, the isoforms Ib, Ic, and Id had 1 or 2 deletions in the ODD domain. When tagged with GFP and tested in mammalian cells, the amphioxus HIFα Ia protein level increased in response to hypoxia or CoCl2 treatment, whereas HIFα Ib, Ic, and Id showed reduced or no hypoxia regulation. Deletion of the ODD sequence in HIFα Ia up-regulated the HIFα Ia levels under normoxia. Gene expression analysis revealed HIFα Ic to be the predominant isoform in embryos and larvae, whereas isoform Ia was the most abundant form in the adult stage. The expression levels of Ib and Id were very low. Hypoxia treatment of adults had no effect on the mRNA levels of these HIFα isoforms. Functional analyses in mammalian cells showed all 4 HIFα isoforms capable of entering the nucleus and activating hypoxia response element-dependent reporter gene expression. The functional nuclear location signal (NLS) mapped to 3 clusters of basic residues. (775)KKARL functioned as the primary NLS, but (737)KRK and (754)KK also contributed to the nuclear localization. All amphioxus HIFα isoforms had 2 functional transactivation domains (TADs). Its C-terminal transactivation (C-TAD) shared high sequence identity with the human HIF-1α and HIF-2α C-TAD. This domain contained a conserved asparagine, and its mutation resulted in an increase in transcriptional activity. These findings reveal many ancient features of the HIFα family and provide novel insights into the evolution of the HIFα family.

  7. Analysis of SSH library of rice variety Aganni reveals candidate gall midge resistance genes.

    PubMed

    Divya, Dhanasekar; Singh, Y Tunginba; Nair, Suresh; Bentur, J S

    2016-03-01

    The Asian rice gall midge, Orseolia oryzae, is a serious insect pest causing extensive yield loss. Interaction between the gall midge and rice genotypes is known to be on a gene-for-gene basis. Here, we report molecular basis of HR- (hypersensitive reaction-negative) type of resistance in Aganni (an indica rice variety possessing gall midge resistance gene Gm8) through the construction and analysis of a suppressive subtraction hybridization (SSH) cDNA library. In all, 2,800 positive clones were sequenced and analyzed. The high-quality ESTs were assembled into 448 non-redundant gene sequences. Homology search with the NCBI databases, using BlastX and BlastN, revealed that 73% of the clones showed homology to genes with known function and majority of ESTs belonged to the gene ontology category 'biological process'. Validation of 27 putative candidate gall midge resistance genes through real-time PCR, following gall midge infestation, in contrasting parents and their derived pre-NILs (near isogenic lines) revealed induction of specific genes related to defense and metabolism. Interestingly, four genes, belonging to families of leucine-rich repeat (LRR), heat shock protein (HSP), pathogenesis related protein (PR), and NAC domain-containing protein, implicated in conferring HR+ type of resistance, were found to be up-regulated in Aganni. Two of the reactive oxygen intermediates (ROI)-scavenging-enzyme-coding genes Cytosolic Ascorbate Peroxidase1, 2 (OsAPx1 and OsAPx2) were found up-regulated in Aganni in incompatible interaction possibly suppressing HR. We suggest that Aganni has a deviant form of inducible, salicylic acid (SA)-mediated resistance but without HR.

  8. Acetylproteomic analysis reveals functional implications of lysine acetylation in human spermatozoa (sperm).

    PubMed

    Yu, Heguo; Diao, Hua; Wang, Chunmei; Lin, Yan; Yu, Fudong; Lu, Hui; Xu, Wei; Li, Zheng; Shi, Huijuan; Zhao, Shimin; Zhou, Yuchuan; Zhang, Yonglian

    2015-04-01

    Male infertility is a medical condition that has been on the rise globally. Lysine acetylation of human sperm, an essential posttranslational modification involved in the etiology of sperm abnormality, is not fully understood. Therefore, we first generated a qualified pan-anti-acetyllysine monoclonal antibody to characterize the global lysine acetylation of uncapacitated normal human sperm with a proteomics approach. With high enrichment ratios that were up to 31%, 973 lysine-acetylated sites that matched to 456 human sperm proteins, including 671 novel lysine acetylation sites and 205 novel lysine-acetylated proteins, were identified. These proteins exhibited conserved motifs XXXKYXXX, XXXKFXXX, and XXXKHXXX, were annotated to function in multiple metabolic processes, and were localized predominantly in the mitochondrion and cytoplasmic fractions. Between the uncapacitated and capacitated sperm, different acetylation profiles in regard to functional proteins involved in sperm capacitation, sperm-egg recognition, sperm-egg plasma fusion, and fertilization were observed, indicating that acetylation of functional proteins may be required during sperm capacitation. Bioinformatics analysis revealed association of acetylated proteins with diseases and drugs. Novel acetylation of voltage-dependent anion channel proteins was also found. With clinical sperm samples, we observed differed lysine acetyltransferases and lysine deacetylases expression between normal sperm and abnormal sperm of asthenospermia or necrospermia. Furthermore, with sperm samples impaired by epigallocatechin gallate to mimic asthenospermia, we observed that inhibition of sperm motility was partly through the blockade of voltage-dependent anion channel 2 Lys-74 acetylation combined with reduced ATP levels and mitochondrial membrane potential. Taken together, we obtained a qualified pan-anti-acetyllysine monoclonal antibody, analyzed the acetylproteome of uncapacitated human sperm, and revealed

  9. Genome sequencing and analysis reveals possible determinants of Staphylococcus aureus nasal carriage

    PubMed Central

    Sivaraman, Karthikeyan; Venkataraman, Nitya; Tsai, Jennifer; Dewell, Scott; Cole, Alexander M

    2008-01-01

    Background Nasal carriage of Staphylococcus aureus is a major risk factor in clinical and community settings due to the range of etiologies caused by the organism. We have identified unique immunological and ultrastructural properties associated with nasal carriage isolates denoting a role for bacterial factors in nasal carriage. However, despite extensive molecular level characterizations by several groups suggesting factors necessary for colonization on nasal epithelium, genetic determinants of nasal carriage are unknown. Herein, we have set a genomic foundation for unraveling the bacterial determinants of nasal carriage in S. aureus. Results MLST analysis revealed no lineage specific differences between carrier and non-carrier strains suggesting a role for mobile genetic elements. We completely sequenced a model carrier isolate (D30) and a model non-carrier strain (930918-3) to identify differential gene content. Comparison revealed the presence of 84 genes unique to the carrier strain and strongly suggests a role for Type VII secretion systems in nasal carriage. These genes, along with a putative pathogenicity island (SaPIBov) present uniquely in the carrier strains are likely important in affecting carriage. Further, PCR-based genotyping of other clinical isolates for a specific subset of these 84 genes raise the possibility of nasal carriage being caused by multiple gene sets. Conclusion Our data suggest that carriage is likely a heterogeneic phenotypic trait and implies a role for nucleotide level polymorphism in carriage. Complete genome level analyses of multiple carriage strains of S. aureus will be important in clarifying molecular determinants of S. aureus nasal carriage. PMID:18808706

  10. Analysis of Nearly One Thousand Mammalian Mirtrons Reveals Novel Features of Dicer Substrates

    PubMed Central

    Shenker, Sol; Mohammed, Jaaved; Lai, Eric C.

    2015-01-01

    Mirtrons are microRNA (miRNA) substrates that utilize the splicing machinery to bypass the necessity of Drosha cleavage for their biogenesis. Expanding our recent efforts for mammalian mirtron annotation, we use meta-analysis of aggregate datasets to identify ~500 novel mouse and human introns that confidently generate diced small RNA duplexes. These comprise nearly 1000 total loci distributed in four splicing-mediated biogenesis subclasses, with 5'-tailed mirtrons as, by far, the dominant subtype. Thus, mirtrons surprisingly comprise a substantial fraction of endogenous Dicer substrates in mammalian genomes. Although mirtron-derived small RNAs exhibit overall expression correlation with their host mRNAs, we observe a subset with substantial differences that suggest regulated processing or accumulation. We identify characteristic sequence, length, and structural features of mirtron loci that distinguish them from bulk introns, and find that mirtrons preferentially emerge from genes with larger numbers of introns. While mirtrons generate miRNA-class regulatory RNAs, we also find that mirtrons exhibit many features that distinguish them from canonical miRNAs. We observe that conventional mirtron hairpins are substantially longer than Drosha-generated pre-miRNAs, indicating that the characteristic length of canonical pre-miRNAs is not a general feature of Dicer substrate hairpins. In addition, mammalian mirtrons exhibit unique patterns of ordered 5' and 3' heterogeneity, which reveal hidden complexity in miRNA processing pathways. These include broad 3'-uridylation of mirtron hairpins, atypically heterogeneous 5' termini that may result from exonucleolytic processing, and occasionally robust decapitation of the 5' guanine (G) of mirtron-5p species defined by splicing. Altogether, this study reveals that this extensive class of non-canonical miRNA bears a multitude of characteristic properties, many of which raise general mechanistic questions regarding the processing

  11. Systematic prioritization and integrative analysis of copy number variations in schizophrenia reveal key schizophrenia susceptibility genes.

    PubMed

    Luo, Xiongjian; Huang, Liang; Han, Leng; Luo, Zhenwu; Hu, Fang; Tieu, Roger; Gan, Lin

    2014-11-01

    Schizophrenia is a common mental disorder with high heritability and strong genetic heterogeneity. Common disease-common variants hypothesis predicts that schizophrenia is attributable in part to common genetic variants. However, recent studies have clearly demonstrated that copy number variations (CNVs) also play pivotal roles in schizophrenia susceptibility and explain a proportion of missing heritability. Though numerous CNVs have been identified, many of the regions affected by CNVs show poor overlapping among different studies, and it is not known whether the genes disrupted by CNVs contribute to the risk of schizophrenia. By using cumulative scoring, we systematically prioritized the genes affected by CNVs in schizophrenia. We identified 8 top genes that are frequently disrupted by CNVs, including NRXN1, CHRNA7, BCL9, CYFIP1, GJA8, NDE1, SNAP29, and GJA5. Integration of genes affected by CNVs with known schizophrenia susceptibility genes (from previous genetic linkage and association studies) reveals that many genes disrupted by CNVs are also associated with schizophrenia. Further protein-protein interaction (PPI) analysis indicates that protein products of genes affected by CNVs frequently interact with known schizophrenia-associated proteins. Finally, systematic integration of CNVs prioritization data with genetic association and PPI data identifies key schizophrenia candidate genes. Our results provide a global overview of genes impacted by CNVs in schizophrenia and reveal a densely interconnected molecular network of de novo CNVs in schizophrenia. Though the prioritized top genes represent promising schizophrenia risk genes, further work with different prioritization methods and independent samples is needed to confirm these findings. Nevertheless, the identified key candidate genes may have important roles in the pathogenesis of schizophrenia, and further functional characterization of these genes may provide pivotal targets for future therapeutics and

  12. Large-Scale Meta-Analysis of Human Medial Frontal Cortex Reveals Tripartite Functional Organization

    PubMed Central

    Chang, Luke J.; Banich, Marie T.; Wager, Tor D.; Yarkoni, Tal

    2016-01-01

    The functional organization of human medial frontal cortex (MFC) is a subject of intense study. Using fMRI, the MFC has been associated with diverse psychological processes, including motor function, cognitive control, affect, and social cognition. However, there have been few large-scale efforts to comprehensively map specific psychological functions to subregions of medial frontal anatomy. Here we applied a meta-analytic data-driven approach to nearly 10,000 fMRI studies to identify putatively separable regions of MFC and determine which psychological states preferentially recruit their activation. We identified regions at several spatial scales on the basis of meta-analytic coactivation, revealing three broad functional zones along a rostrocaudal axis composed of 2–4 smaller subregions each. Multivariate classification analyses aimed at identifying the psychological functions most strongly predictive of activity in each region revealed a tripartite division within MFC, with each zone displaying a relatively distinct functional signature. The posterior zone was associated preferentially with motor function, the middle zone with cognitive control, pain, and affect, and the anterior with reward, social processing, and episodic memory. Within each zone, the more fine-grained subregions showed distinct, but subtler, variations in psychological function. These results provide hypotheses about the functional organization of medial prefrontal cortex that can be tested explicitly in future studies. SIGNIFICANCE STATEMENT Activation of medial frontal cortex in fMRI studies is associated with a wide range of psychological states ranging from cognitive control to pain. However, this high rate of activation makes it challenging to determine how these various processes are topologically organized across medial frontal anatomy. We conducted a meta-analysis across nearly 10,000 studies to comprehensively map psychological states to discrete subregions in medial frontal cortex

  13. Nuclear reactor internals alignment configuration

    DOEpatents

    Gilmore, Charles B.; Singleton, Norman R.

    2009-11-10

    An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

  14. Photoionization of aligned molecular excited states

    NASA Astrophysics Data System (ADS)

    Appling, J. R.; White, M. G.; Kessler, W. J.; Fernandez, R.; Poliakoff, E. D.

    1988-02-01

    Photoelectron angular distributions of several excited states of NO have been measured in an effort to better elucidate the role of alignment in resonant multiphoton excitation processes of molecules. In contrast to previous molecular REMPI measurements on NO, (2+1) angular distributions taken for low rotational levels of the E 2Σ+ (4sσ) Rydberg state of NO exhibit complex angular behavior which is characteristic of strong spatial alignment of the optically prepared levels. Photoelectron angular distributions were also found to be strongly branch and J dependent with the lowest rotational levels of the R21+S11 branch exhibiting the full anisotropy expected for an overall three-photon process. Fluorescence anisotropies extracted from complementary two-photon fluorescence angular distribution measurements reveal small, but nonzero alignment in all rotational levels with J>1/2, in contrast to the photoelectron results. Additional photoelectron angular distributions taken for (1+1) REMPI via the A 2Σ+ (3sσ), v=0 state exhibit near ``cos2θ'' distributions characteristic of photoionization of unaligned target states. The observed photoelectron data are qualitatively interpreted on the basis of the angular momentum constraints of the excitation-induced alignment and photoionization dynamics which determine the observable moments in the angular distribution.

  15. Aligned Defrosting Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    17 August 2004 This July 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a group of aligned barchan sand dunes in the martian north polar region. At the time, the dunes were covered with seasonal frost, but the frost had begun to sublime away, leaving dark spots and dark outlines around the dunes. The surrounding plains exhibit small, diffuse spots that are also the result of subliming seasonal frost. This northern spring image, acquired on a descending ground track (as MGS was moving north to south on the 'night' side of Mars) is located near 78.8oN, 34.8oW. The image covers an area about 3 km (1.9 mi) across and sunlight illuminates the scene from the upper left.

  16. The alignment strategy of HADES

    NASA Astrophysics Data System (ADS)

    Pechenova, O.; Pechenov, V.; Galatyuk, T.; Hennino, T.; Holzmann, R.; Kornakov, G.; Markert, J.; Müntz, C.; Salabura, P.; Schmah, A.; Schwab, E.; Stroth, J.

    2015-06-01

    The global as well as intrinsic alignment of any spectrometer impacts directly on its performance and the quality of the achievable physics results. An overview of the current alignment procedure of the DiElectron Spectrometer HADES is presented with an emphasis on its main features and its accuracy. The sequence of all steps and procedures is given, including details on photogrammetric and track-based alignment.

  17. Alignment of Helical Membrane Protein Sequences Using AlignMe

    PubMed Central

    Khafizov, Kamil; Forrest, Lucy R.

    2013-01-01

    Few sequence alignment methods have been designed specifically for integral membrane proteins, even though these important proteins have distinct evolutionary and structural properties that might affect their alignments. Existing approaches typically consider membrane-related information either by using membrane-specific substitution matrices or by assigning distinct penalties for gap creation in transmembrane and non-transmembrane regions. Here, we ask whether favoring matching of predicted transmembrane segments within a standard dynamic programming algorithm can improve the accuracy of pairwise membrane protein sequence alignments. We tested various strategies using a specifically designed program called AlignMe. An updated set of homologous membrane protein structures, called HOMEP2, was used as a reference for optimizing the gap penalties. The best of the membrane-protein optimized approaches were then tested on an independent reference set of membrane protein sequence alignments from the BAliBASE collection. When secondary structure (S) matching was combined with evolutionary information (using a position-specific substitution matrix (P)), in an approach we called AlignMePS, the resultant pairwise alignments were typically among the most accurate over a broad range of sequence similarities when compared to available methods. Matching transmembrane predictions (T), in addition to evolutionary information, and secondary-structure predictions, in an approach called AlignMePST, generally reduces the accuracy of the alignments of closely-related proteins in the BAliBASE set relative to AlignMePS, but may be useful in cases of extremely distantly related proteins for which sequence information is less informative. The open source AlignMe code is available at https://sourceforge.net/projects/alignme/, and at http://www.forrestlab.org, along with an online server and the HOMEP2 data set. PMID:23469223

  18. Multichannel Detrended Fluctuation Analysis Reveals Synchronized Patterns of Spontaneous Spinal Activity in Anesthetized Cats

    PubMed Central

    Rodríguez, Erika E.; Hernández-Lemus, Enrique; Itzá-Ortiz, Benjamín A.; Jiménez, Ismael; Rudomín, Pablo

    2011-01-01

    The analysis of the interaction and synchronization of relatively large ensembles of neurons is fundamental for the understanding of complex functions of the nervous system. It is known that the temporal synchronization of neural ensembles is involved in the generation of specific motor, sensory or cognitive processes. Also, the intersegmental coherence of spinal spontaneous activity may indicate the existence of synaptic neural pathways between different pairs of lumbar segments. In this study we present a multichannel version of the detrended fluctuation analysis method (mDFA) to analyze the correlation dynamics of spontaneous spinal activity (SSA) from time series analysis. This method together with the classical detrended fluctuation analysis (DFA) were used to find out whether the SSA recorded in one or several segments in the spinal cord of the anesthetized cat occurs either in a random or in an organized manner. Our results are consistent with a non-random organization of the sets of neurons involved in the generation of spontaneous cord dorsum potentials (CDPs) recorded either from one lumbar segment (DFA- mean = 1.040.09) or simultaneously from several lumbar segments (mDFA- mean = 1.010.06), where  = 0.5 indicates randomness while 0.5 indicates long-term correlations. To test the sensitivity of the mDFA method we also examined the effects of small spinal lesions aimed to partially interrupt connectivity between neighboring lumbosacral segments. We found that the synchronization and correlation between the CDPs recorded from the L5 and L6 segments in both sides of the spinal cord were reduced when a lesion comprising the left dorsal quadrant was performed between the segments L5 and L6 (mDFA- = 0.992 as compared to initial conditions mDFA- = 1.186). The synchronization and correlation were reduced even further after a similar additional right spinal lesion (mDFA- = 0.924). In contrast to the classical methods, such as correlation

  19. Multichannel detrended fluctuation analysis reveals synchronized patterns of spontaneous spinal activity in anesthetized cats.

    PubMed

    Rodríguez, Erika E; Hernández-Lemus, Enrique; Itzá-Ortiz, Benjamín A; Jiménez, Ismael; Rudomín, Pablo

    2011-01-01

    The analysis of the interaction and synchronization of relatively large ensembles of neurons is fundamental for the understanding of complex functions of the nervous system. It is known that the temporal synchronization of neural ensembles is involved in the generation of specific motor, sensory or cognitive processes. Also, the intersegmental coherence of spinal spontaneous activity may indicate the existence of synaptic neural pathways between different pairs of lumbar segments. In this study we present a multichannel version of the detrended fluctuation analysis method (mDFA) to analyze the correlation dynamics of spontaneous spinal activity (SSA) from time series analysis. This method together with the classical detrended fluctuation analysis (DFA) were used to find out whether the SSA recorded in one or several segments in the spinal cord of the anesthetized cat occurs either in a random or in an organized manner. Our results are consistent with a non-random organization of the sets of neurons involved in the generation of spontaneous cord dorsum potentials (CDPs) recorded either from one lumbar segment (DFA-α mean = 1.04[Formula: see text]0.09) or simultaneously from several lumbar segments (mDFA-α mean = 1.01[Formula: see text]0.06), where α = 0.5 indicates randomness while α = 0.5 indicates long-term correlations. To test the sensitivity of the mDFA method we also examined the effects of small spinal lesions aimed to partially interrupt connectivity between neighboring lumbosacral segments. We found that the synchronization and correlation between the CDPs recorded from the L5 and L6 segments in both sides of the spinal cord were reduced when a lesion comprising the left dorsal quadrant was performed between the segments L5 and L6 (mDFA-[Formula: see text] = 0.992 as compared to initial conditions mDFA-α = 1.186). The synchronization and correlation were reduced even further after a similar additional right spinal lesion (mDFA-α = 0.924). In contrast

  20. Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots.

    PubMed

    Aubry-Hivet, D; Nziengui, H; Rapp, K; Oliveira, O; Paponov, I A; Li, Y; Hauslage, J; Vagt, N; Braun, M; Ditengou, F A; Dovzhenko, A; Palme, K

    2014-01-01

    Plant roots are among most intensively studied biological systems in gravity research. Altered gravity induces asymmetric cell growth leading to root bending. Differential distribution of the phytohormone auxin underlies root responses to gravity, being coordinated by auxin efflux transporters from the PIN family. The objective of this study was to compare early transcriptomic changes in roots of Arabidopsis thaliana wild type, and pin2 and pin3 mutants under parabolic flight conditions and to correlate these changes to auxin distribution. Parabolic flights allow comparison of transient 1-g, hypergravity and microgravity effects in living organisms in parallel. We found common and mutation-related genes differentially expressed in response to transient microgravity phases. Gene ontology analysis of common genes revealed lipid metabolism, response to stress factors and light categories as primarily involved in response to transient microgravity phases, suggesting that fundamental reorganisation of metabolic pathways functions upstream of a further signal mediating hormonal network. Gene expression changes in roots lacking the columella-located PIN3 were stronger than in those deprived of the epidermis and cortex cell-specific PIN2. Moreover, repetitive exposure to microgravity/hypergravity and gravity/hypergravity flight phases induced an up-regulation of auxin responsive genes in wild type and pin2 roots, but not in pin3 roots, suggesting a critical function of PIN3 in mediating auxin fluxes in response to transient microgravity phases. Our study provides important insights towards understanding signal transduction processes in transient microgravity conditions by combining for the first time the parabolic flight platform with the transcriptome analysis of different genetic mutants in the model plant, Arabidopsis.

  1. Comparative genomic analysis of clinical and environmental Vibrio vulnificus isolates revealed biotype 3 evolutionary relationships

    PubMed Central

    Koton, Yael; Gordon, Michal; Chalifa-Caspi, Vered; Bisharat, Naiel

    2015-01-01

    In 1996 a common-source outbreak of severe soft tissue and bloodstream infections erupted among Israeli fish farmers and fish consumers due to changes in fish marketing policies. The causative pathogen was a new strain of Vibrio vulnificus, named biotype 3, which displayed a unique biochemical and genotypic profile. Initial observations suggested that the pathogen erupted as a result of genetic recombination between two distinct populations. We applied a whole genome shotgun sequencing approach using several V. vulnificus strains from Israel in order to study the pan genome of V. vulnificus and determine the phylogenetic relationship of biotype 3 with existing populations. The core genome of V. vulnificus based on 16 draft and complete genomes consisted of 3068 genes, representing between 59 and 78% of the whole genome of 16 strains. The accessory genome varied in size from 781 to 2044 kbp. Phylogenetic analysis based on whole, core, and accessory genomes displayed similar clustering patterns with two main clusters, clinical (C) and environmental (E), all biotype 3 strains formed a distinct group within the E cluster. Annotation of accessory genomic regions found in biotype 3 strains and absent from the core genome yielded 1732 genes, of which the vast majority encoded hypothetical proteins, phage-related proteins, and mobile element proteins. A total of 1916 proteins (including 713 hypothetical proteins) were present in all human pathogenic strains (both biotype 3 and non-biotype 3) and absent from the environmental strains. Clustering analysis of the non-hypothetical proteins revealed 148 protein clusters shared by all human pathogenic strains; these included transcriptional regulators, arylsulfatases, methyl-accepting chemotaxis proteins, acetyltransferases, GGDEF family proteins, transposases, type IV secretory system (T4SS) proteins, and integrases. Our study showed that V. vulnificus biotype 3 evolved from environmental populations and formed a genetically

  2. Functional analysis of environmental DNA-derived type II polyketide synthases reveals structurally diverse secondary metabolites

    PubMed Central

    Feng, Zhiyang; Kallifidas, Dimitris; Brady, Sean F.

    2011-01-01

    A single gram of soil is predicted to contain thousands of unique bacterial species. The majority of these species remain recalcitrant to standard culture methods, prohibiting their use as sources of unique bioactive small molecules. The cloning and analysis of DNA extracted directly from environmental samples (environmental DNA, eDNA) provides a means of exploring the biosynthetic capacity of natural bacterial populations. Environmental DNA libraries contain large reservoirs of bacterial genetic diversity from which new secondary metabolite gene clusters can be systematically recovered and studied. The identification and heterologous expression of type II polyketide synthase-containing eDNA clones is reported here. Functional analysis of three soil DNA-derived polyketide synthase systems in Streptomyces albus revealed diverse metabolites belonging to well-known, rare, and previously uncharacterized structural families. The first of these systems is predicted to encode the production of the known antibiotic landomycin E. The second was found to encode the production of a metabolite with a previously uncharacterized pentacyclic ring system. The third was found to encode the production of unique KB-3346-5 derivatives, which show activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis. These results, together with those of other small-molecule-directed metagenomic studies, suggest that culture-independent approaches are capable of accessing biosynthetic diversity that has not yet been extensively explored using culture-based methods. The large-scale functional screening of eDNA clones should be a productive strategy for generating structurally previously uncharacterized chemical entities for use in future drug development efforts. PMID:21768346

  3. Comorbid Analysis of Genes Associated with Autism Spectrum Disorders Reveals Differential Evolutionary Constraints

    PubMed Central

    David, Maude M.; Enard, David; Ozturk, Alp; Daniels, Jena; Jung, Jae-Yoon; Diaz-Beltran, Leticia; Wall, Dennis. P.

    2016-01-01

    The burden of comorbidity in Autism Spectrum Disorder (ASD) is substantial. The symptoms of autism overlap with many other human conditions, reflecting common molecular pathologies suggesting that cross-disorder analysis will help prioritize autism gene candidates. Genes in the intersection between autism and related conditions may represent nonspecific indicators of dysregulation while genes unique to autism may play a more causal role. Thorough literature review allowed us to extract 125 ICD-9 codes comorbid to ASD that we mapped to 30 specific human disorders. In the present work, we performed an automated extraction of genes associated with ASD and its comorbid disorders, and found 1031 genes involved in ASD, among which 262 are involved in ASD only, with the remaining 779 involved in ASD and at least one comorbid disorder. A pathway analysis revealed 13 pathways not involved in any other comorbid disorders and therefore unique to ASD, all associated with basal cellular functions. These pathways differ from the pathways associated with both ASD and its comorbid conditions, with the latter being more specific to neural function. To determine whether the sequence of these genes have been subjected to differential evolutionary constraints, we studied long term constraints by looking into Genomic Evolutionary Rate Profiling, and showed that genes involved in several comorbid disorders seem to have undergone more purifying selection than the genes involved in ASD only. This result was corroborated by a higher dN/dS ratio for genes unique to ASD as compare to those that are shared between ASD and its comorbid disorders. Short-term evolutionary constraints showed the same trend as the pN/pS ratio indicates that genes unique to ASD were under significantly less evolutionary constraint than the genes associated with all other disorders. PMID:27414027

  4. Interspecies insertion polymorphism analysis reveals recent activity of transposable elements in extant coelacanths.

    PubMed

    Naville, Magali; Chalopin, Domitille; Volff, Jean-Nicolas

    2014-01-01

    Coelacanths are lobe-finned fish represented by two extant species, Latimeria chalumnae in South Africa and Comoros and L. menadoensis in Indonesia. Due to their intermediate phylogenetic position between ray-finned fish and tetrapods in the vertebrate lineage, they are of great interest from an evolutionary point of view. In addition, extant specimens look similar to 300 million-year-old fossils; because of their apparent slowly evolving morphology, coelacanths have been often described as « living fossils ». As an underlying cause of such a morphological stasis, several authors have proposed a slow evolution of the coelacanth genome. Accordingly, sequencing of the L. chalumnae genome has revealed a globally low substitution rate for protein-coding regions compared to other vertebrates. However, genome and gene evolution can also be influenced by transposable elements, which form a major and dynamic part of vertebrate genomes through their ability to move, duplicate and recombine. In this work, we have searched for evidence of transposition activity in coelacanth genomes through the comparative analysis of orthologous genomic regions from both Latimeria species. Comparison of 5.7 Mb (0.2%) of the L. chalumnae genome with orthologous Bacterial Artificial Chromosome clones from L. menadoensis allowed the identification of 27 species-specific transposable element insertions, with a strong relative contribution of CR1 non-LTR retrotransposons. Species-specific homologous recombination between the long terminal repeats of a new coelacanth endogenous retrovirus was also detected. Our analysis suggests that transposon activity is responsible for at least 0.6% of genome divergence between both Latimeria species. Taken together, this study demonstrates that coelacanth genomes are not evolutionary inert: they contain recently active transposable elements, which have significantly contributed to post-speciation genome divergence in Latimeria.

  5. Single cell analysis reveals gametic and tissue-specific instability of the SCA1 CAG repeat

    SciTech Connect

    Chong, S.S.; McCall, A.E.; Cota, J.

    1994-09-01

    Spinocerebellar ataxia type 1 is an autosomal dominant neurodegenerative disease caused by expansion of a CAG trinucleotide repeat within the SCA1 gene on chromosome 6p22-23. We performed a comparative analysis of the SCA1 CAG repeat from blood and sperm of an affected male. Genomic amplification revealed a broader smear of the SCA1 allele product from sperm compared to that from peripheral blood leukocytes (PBL). To resolve this observed difference, we analyzed single sperm directly and demonstrate that the SCA1 allele in PBL is also heterogeneous, although the range of variability in allele sizes is much less than that observed in sperm. Limited genome analysis was also performed on PBL DNA from an unaffected individual with an upper normal allele of 36 repeats in parallel with an affected individual with an expanded allele of 40 repeats. The 36 repeat normal allele, which contains a CAT interruption, was completely stable compared to the uninterrupted repeat of the SCA1 allele, demonstrating a direct correlation between absence of a CAT interruption and somatic instability of the repeat. We also analyzed the size of the CAG repeat in tissues derived from various brain regions from a patient with juvenile-onset disease to determine if the size of the expansion correlated with the site of neuropathology. The results clearly show tissue-specific differences in mosaicism of repeat length. More importantly, the pattern of tissue-specific differences in repeat-length mosaicism in SCA1 within the brain parallels those seen in Huntington disease. In both disorders the expanded alleles are smaller in cerebellar tissue. These results suggest that the observed tissue-specific differences in instability of the SCA1 CAG repeat, either within the brain or between blood and sperm, are a function of the intracellular milieu or the intrinsic replicative potential of the various celltypes.

  6. Duplication and differentiation of common carp (Cyprinus carpio) myoglobin genes revealed by BAC analysis.

    PubMed

    Zhao, Zi-Xia; Xu, Peng; Cao, Ding-Chen; Kuang, You-Yi; Deng, Hai-Xia; Zhang, Yan; Xu, Li-Ming; Li, Jiong-Tang; Xu, Jian; Sun, Xiao-Wen

    2014-09-15

    Two distinct myoglobin (mb) transcripts have been reported in common carp, Cyprinus carpio, which is a hypoxia-tolerant fish living in habitats with greatly fluctuant dissolved oxygen levels. Recombinant protein analysis has shown functional specialization of the two mb transcripts. In this work, analysis for mb-containing bacterial artificial chromosome (BAC) clones indicated different genome loci for common carp myoglobin-1 (mb-1) and myoglobin-2 (mb-2) genes. Fluorescence in situ hybridization (FISH) revealed that mb-1 and mb-2 are located on separate chromosomes. In both of the mb-1 and mb-2 containing BAC clones, gene synteny was well conserved with the homologous region on zebrafish chromosome 1, supporting that the common carp specific mb-2 gene originated from the recent whole genome duplication event in cyprinid lineage. Transcription factor binding sites search indicated that both common carp mb genes lacked specificity Protein 1 (Sp1) and myocyte enhancer factor-2 (MEF2) binding sites, which mediated muscle-specific and calcium-dependent expression in the well-studied mb promoters. Potential hypoxia response elements (HREs) were predicted in the regulatory region of common carp mb genes. These characteristics of common carp mb gene regulatory region well interpreted the hypoxia-inducible, non-muscle expression pattern of mb-1. In the case of mb-2, a 10 bp insertion to the binding site of upstream stimulatory factor (USF), which was a co-factor of hypoxia inducible factor (HIF), might cause the non-response to hypoxia treatment of mb-2. The case of common carp mb gene duplication and subsequent differentiation in expression pattern and protein function provided an example for adaptive evolution toward aquatic hypoxia tolerance.

  7. Revealing Shared and Distinct Gene Network Organization in Arabidopsis Immune Responses by Integrative Analysis1

    PubMed Central

    Dong, Xiaobao; Jiang, Zhenhong; Peng, You-Liang; Zhang, Ziding

    2015-01-01

    Pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) are two main plant immune responses to counter pathogen invasion. Genome-wide gene network organizing principles leading to quantitative differences between PTI and ETI have remained elusive. We combined an advanced machine learning method and modular network analysis to systematically characterize the organizing principles of Arabidopsis (Arabidopsis thaliana) PTI and ETI at three network resolutions. At the single network node/edge level, we ranked genes and gene interactions based on their ability to distinguish immune response from normal growth and successfully identified many immune-related genes associated with PTI and ETI. Topological analysis revealed that the top-ranked gene interactions tend to link network modules. At the subnetwork level, we identified a subnetwork shared by PTI and ETI encompassing 1,159 genes and 1,289 interactions. This subnetwork is enriched in interactions linking network modules and is also a hotspot of attack by pathogen effectors. The subnetwork likely represents a core component in the coordination of multiple biological processes to favor defense over development. Finally, we constructed modular network models for PTI and ETI to explain the quantitative differences in the global network architecture. Our results indicate that the defense modules in ETI are organized into relatively independent structures, explaining the robustness of ETI to genetic mutations and effector attacks. Taken together, the multiscale comparisons of PTI and ETI provide a systems biology perspective on plant immunity and emphasize coordination among network modules to establish a robust immune response. PMID:25614062

  8. A secretomics analysis reveals major differences in the macrophage responses towards different types of carbon nanotubes.

    PubMed

    Palomäki, Jaana; Sund, Jukka; Vippola, Minnamari; Kinaret, Pia; Greco, Dario; Savolainen, Kai; Puustinen, Anne; Alenius, Harri

    2015-01-01

    Certain types of carbon nanotubes (CNT) can evoke inflammation, fibrosis and mesothelioma in vivo, raising concerns about their potential health effects. It has been recently postulated that NLRP3 inflammasome activation is important in the CNT-induced toxicity. However, more comprehensive studies of the protein secretion induced by CNT can provide new information about their possible pathogenic mechanisms. Here, we studied protein secretion from human macrophages with a proteomic approach in an unbiased way. Human monocyte-derived macrophages (MDM) were exposed to tangled or rigid, long multi-walled CNT (MWCNT) or crocidolite asbestos for 6 h. The growth media was concentrated and secreted proteins were analyzed using 2D-DIGE and DeCyder software. Subsequently, significantly up- or down-regulated protein spots were in-gel digested and identified with an LC-MS/MS approach. Bioinformatics analysis was performed to reveal the different patterns of protein secretion induced by these materials. The results show that both long rigid MWCNT and asbestos elicited ample and highly similar protein secretion. In contrast, exposure to long tangled MWCNT induced weaker protein secretion with a more distinct profile. Secretion of lysosomal proteins followed the exposure to all materials, suggesting lysosomal damage. However, only long rigid MWCNT was associated with apoptosis. This analysis suggests that the CNT toxicity in human MDM is mediated via vigorous secretion of inflammation-related proteins and apoptosis. This study provides new insights into the mechanisms of toxicity of high aspect ratio nanomaterials and indicates that not all types of CNT are as hazardous as asbestos fibers.

  9. Intraspecific Variation and Phylogenetic Relationships Are Revealed by ITS1 Secondary Structure Analysis and Single-Nucleotide Polymorphism in Ganoderma lucidum

    PubMed Central

    Pei, Haisheng; Chen, Zhou; Tan, Xiaoyan; Hu, Jing; Yang, Bin; Sun, Junshe

    2017-01-01

    Ganoderma lucidum is a typical polypore fungus used for traditional Chinese medical purposes. The taxonomic delimitation of Ganoderma lucidum is still debated. In this study, we sequenced seven internal transcribed spacer (ITS) sequences of Ganoderma lucidum strains and annotated the ITS1 and ITS2 regions. Phylogenetic analysis of ITS1 differentiated the strains into three geographic groups. Groups 1–3 were originated from Europe, tropical Asia, and eastern Asia, respectively. While ITS2 could only differentiate the strains into two groups in which Group 2 originated from tropical Asia gathered with Groups 1 and 3 originated from Europe and eastern Asia. By determining the secondary structures of the ITS1 sequences, these three groups exhibited similar structures with a conserved central core and differed helices. While compared to Group 2, Groups 1 and 3 of ITS2 sequences shared similar structures with the difference in helix 4. Large-scale evaluation of ITS1 and ITS2 both exhibited that the majority of subgroups in the same group shared the similar structures. Further Weblogo analysis of ITS1 sequences revealed two main variable regions located in helix 2 in which C/T or A/G substitutions frequently occurred and ITS1 exhibited more nucleotide variances compared to ITS2. ITS1 multi-alignment of seven spawn strains and culture tests indicated that a single-nucleotide polymorphism (SNP) site at position 180 correlated with strain antagonism. The HZ, TK and 203 fusion strains of Ganoderma lucidum had a T at position 180, whereas other strains exhibiting antagonism, including DB, RB, JQ, and YS, had a C. Taken together, compared to ITS2 region, ITS1 region could differentiated Ganoderma lucidum into three geographic originations based on phylogenetic analysis and secondary structure prediction. Besides, a SNP in ITS 1 could delineate Ganoderma lucidum strains at the intraspecific level. These findings will be implemented to improve species quality control in the

  10. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development.

    PubMed

    Ding, Mingquan; Jiang, Yurong; Cao, Yuefen; Lin, Lifeng; He, Shae; Zhou, Wei; Rong, Junkang

    2014-02-10

    Ligon lintless-1 (Li1) is a monogenic dominant mutant of Gossypium hirsutum (upland cotton) with a phenotype of impaired vegetative growth and short lint fibers. Despite years of research involving genetic mapping and gene expression profile analysis of Li1 mutant ovule tissues, the gene remains uncloned and the underlying pathway of cotton fiber elongation is still unclear. In this study, we report the whole genome-level deep-sequencing analysis of leaf tissues of the Li1 mutant. Differentially expressed genes in leaf tissues of mutant versus wild-type (WT) plants are identified, and the underlying pathways and potential genes that control leaf and fiber development are inferred. The results show that transcription factors AS2, YABBY5, and KANDI-like are significantly differentially expressed in mutant tissues compared with WT ones. Interestingly, several fiber development-related genes are found in the downregulated gene list of the mutant leaf transcriptome. These genes include heat shock protein family, cytoskeleton arrangement, cell wall synthesis, energy, H2O2 metabolism-related genes, and WRKY transcription factors. This finding suggests that the genes are involved in leaf morphology determination and fiber elongation. The expression data are also compared with the previously published microarray data of Li1 ovule tissues. Comparative analysis of the ovule transcriptomes of Li1 and WT reveals that a number of pathways important for fiber elongation are enriched in the downregulated gene list at different fiber development stages (0, 6, 9, 12, 15, 18dpa). Differentially expressed genes identified in both leaf and fiber samples are aligned with cotton whole genome sequences and combined with the genetic fine mapping results to identify a list of candidate genes for Li1.

  11. Intraspecific Variation and Phylogenetic Relationships Are Revealed by ITS1 Secondary Structure Analysis and Single-Nucleotide Polymorphism in Ganoderma lucidum.

    PubMed

    Zhang, Xiuqing; Xu, Zhangyang; Pei, Haisheng; Chen, Zhou; Tan, Xiaoyan; Hu, Jing; Yang, Bin; Sun, Junshe

    2017-01-01

    Ganoderma lucidum is a typical polypore fungus used for traditional Chinese medical purposes. The taxonomic delimitation of Ganoderma lucidum is still debated. In this study, we sequenced seven internal transcribed spacer (ITS) sequences of Ganoderma lucidum strains and annotated the ITS1 and ITS2 regions. Phylogenetic analysis of ITS1 differentiated the strains into three geographic groups. Groups 1-3 were originated from Europe, tropical Asia, and eastern Asia, respectively. While ITS2 could only differentiate the strains into two groups in which Group 2 originated from tropical Asia gathered with Groups 1 and 3 originated from Europe and eastern Asia. By determining the secondary structures of the ITS1 sequences, these three groups exhibited similar structures with a conserved central core and differed helices. While compared to Group 2, Groups 1 and 3 of ITS2 sequences shared similar structures with the difference in helix 4. Large-scale evaluation of ITS1 and ITS2 both exhibited that the majority of subgroups in the same group shared the similar structures. Further Weblogo analysis of ITS1 sequences revealed two main variable regions located in helix 2 in which C/T or A/G substitutions frequently occurred and ITS1 exhibited more nucleotide variances compared to ITS2. ITS1 multi-alignment of seven spawn strains and culture tests indicated that a single-nucleotide polymorphism (SNP) site at position 180 correlated with strain antagonism. The HZ, TK and 203 fusion strains of Ganoderma lucidum had a T at position 180, whereas other strains exhibiting antagonism, including DB, RB, JQ, and YS, had a C. Taken together, compared to ITS2 region, ITS1 region could differentiated Ganoderma lucidum into three geographic originations based on phylogenetic analysis and secondary structure prediction. Besides, a SNP in ITS 1 could delineate Ganoderma lucidum strains at the intraspecific level. These findings will be implemented to improve species quality control in the

  12. GS-align for glycan structure alignment and similarity measurement

    PubMed Central

    Lee, Hui Sun; Jo, Sunhwan; Mukherjee, Srayanta; Park, Sang-Jun; Skolnick, Jeffrey; Lee, Jooyoung; Im, Wonpil

    2015-01-01

    Motivation: Glycans play critical roles in many biological processes, and their structural diversity is key for specific protein-glycan recognition. Comparative structural studies of biological molecules provide useful insight into their biological relationships. However, most computational tools are designed for protein structure, and despite their importance, there is no currently available tool for comparing glycan structures in a sequence order- and size-independent manner. Results: A novel method, GS-align, is developed for glycan structure alignment and similarity measurement. GS-align generates possible alignments between two glycan structures through iterative maximum clique search and fragment superposition. The optimal alignment is then determined by the maximum structural similarity score, GS-score, which is size-independent. Benchmark tests against the Protein Data Bank (PDB) N-linked glycan library and PDB homologous/non-homologous N-glycoprotein sets indicate that GS-align is a robust computational tool to align glycan structures and quantify their structural similarity. GS-align is also applied to template-based glycan structure prediction and monosaccharide substitution matrix generation to illustrate its utility. Availability and implementation: http://www.glycanstructure.org/gsalign. Contact: wonpil@ku.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25857669

  13. Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes.

    PubMed

    Stöckel, Jana; Welsh, Eric A; Liberton, Michelle; Kunnvakkam, Rangesh; Aurora, Rajeev; Pakrasi, Himadri B

    2008-04-22

    Cyanobacteria are photosynthetic organisms and are the only prokaryotes known to have a circadian lifestyle. Unicellular diazotrophic cyanobacteria such as Cyanothece sp. ATCC 51142 produce oxygen and can also fix atmospheric nitrogen, a process exquisitely sensitive to oxygen. To accommodate such antagonistic processes, the intracellular environment of Cyanothece oscillates between aerobic and anaerobic conditions during a day-night cycle. This is accomplished by temporal separation of the two processes: photosynthesis during the day and nitrogen fixation at night. Although previous studies have examined periodic changes in transcript levels for a limited number of genes in Cyanothece and other unicellular diazotrophic cyanobacteria, a comprehensive study of transcriptional activity in a nitrogen-fixing cyanobacterium is necessary to understand the impact of the temporal separation of photosynthesis and nitrogen fixation on global gene regulation and cellular metabolism. We have examined the expression patterns of nearly 5,000 genes in Cyanothece 51142 during two consecutive diurnal periods. Our analysis showed that approximately 30% of these genes exhibited robust oscillating expression profiles. Interestingly, this set included genes for almost all central metabolic processes in Cyanothece 51142. A transcriptional network of all genes with significantly oscillating transcript levels revealed that the majority of genes encoding enzymes in numerous individual biochemical pathways, such as glycolysis, oxidative pentose phosphate pathway, and glycogen metabolism, were coregulated and maximally expressed at distinct phases during the diurnal cycle. These studies provide a comprehensive picture of how a physiologically relevant diurnal light-dark cycle influences the metabolism in a photosynthetic bacterium.

  14. Temporal analysis of mtDNA variation reveals decreased genetic diversity in least terns

    USGS Publications Warehouse

    Draheim, Hope M.; Baird, Patricia; Haig, Susan M.

    2012-01-01

    The Least Tern (Sternula antillarum) has undergone large population declines over the last century as a result of direct and indirect anthropogenic factors. The genetic implications of these declines are unknown. We used historical museum specimens (pre-1960) and contemporary (2001–2005) samples to examine range-wide phylogeographic patterns and investigate potential loss in the species' genetic variation. We obtained sequences (522 bp) of the mitochondrial gene for NADH dehydrogenase subunit 6 (ND6) from 268 individuals from across the species' range. Phylogeographic analysis revealed no association with geography or traditional subspecies designations. However, we detected potential reductions in genetic diversity in contemporary samples from California and the Atlantic coast Least Tern from that in historical samples, suggesting that current genetic diversity in Least Tern populations is lower than in their pre-1960 counterparts. Our results offer unique insights into changes in the Least Tern's genetic diversity over the past century and highlight the importance and utility of museum specimens in studies of conservation genetics.

  15. Global Phospholipidomics Analysis Reveals Selective Pulmonary Peroxidation Profiles Upon Inhalation of Single Walled Carbon Nanotubes

    PubMed Central

    Tyurina, Yulia Y.; Kisin, Elena R.; Murray, Ashley; Tyurin, Vladimir A.; Kapralova, Valentina I.; Sparvero, Louis J.; Amoscato, Andrew A.; Samhan-Arias, Alejandro K.; Swedin, Linda; Lahesmaa, Riitta; Fadeel, Bengt; Shvedova, Anna A.; Kagan, Valerian E.

    2011-01-01

    It is commonly believed that nanomaterials cause non-specific oxidative damage. Our mass spectrometry-based oxidative lipidomics analysis of all major phospholipid classes revealed highly selective patterns of pulmonary peroxidation after inhalation exposure of mice to single-walled carbon nanotubes. No oxidized molecular species were found in two most abundant phospholipid classes – phosphatidylcholine and phosphatidylethanolamine. Peroxidation products were identified in three relatively minor classes of anionic phospholipids, cardiolipin, phosphatidylserine and phosphatidylinositol whereby oxygenation of polyunsaturated fatty acid residues also showed unusual substrate specificity. This non-random peroxidation coincided with the accumulation of apoptotic cells in the lung. A similar selective phospholipid peroxidation profile was detected upon incubation of a mixture of total lung lipids with H2O2/cytochrome c known to catalyze cardiolipin and phosphatidylserine peroxidation in apoptotic cells. The characterized specific phospholipid peroxidation signaling pathways indicate new approaches to the development of mitochondria targeted regulators of cardiolipin peroxidation to protect against deleterious effects of pro-apoptotic effects of single-walled carbon nanotubes in the lung. PMID:21800898

  16. Comparative Genomic Analysis Reveals Organization, Function and Evolution of ars Genes in Pantoea spp.

    PubMed Central

    Wang, Liying; Wang, Jin; Jing, Chuanyong

    2017-01-01

    Numerous genes are involved in various strategies to resist toxic arsenic (As). However, the As resistance strategy in genus Pantoea is poorly understood. In this study, a comparative genome analysis of 23 Pantoea genomes was conducted. Two vertical genetic arsC-like genes without any contribution to As resistance were found to exist in the 23 Pantoea strains. Besides the two arsC-like genes, As resistance gene clusters arsRBC or arsRBCH were found in 15 Pantoea genomes. These ars clusters were found to be acquired by horizontal gene transfer (HGT) from sources related to Franconibacter helveticus, Serratia marcescens, and Citrobacter freundii. During the history of evolution, the ars clusters were acquired more than once in some species, and were lost in some strains, producing strains without As resistance capability. This study revealed the organization, distribution and the complex evolutionary history of As resistance genes in Pantoea spp.. The insights gained in this study improved our understanding on the As resistance strategy of Pantoea spp. and its roles in the biogeochemical cycling of As. PMID:28377759

  17. What does population structure analysis reveal about the Pterostylis longifolia complex (Orchidaceae)?

    PubMed Central

    Janes, Jasmine K; Steane, Dorothy A; Vaillancourt, René E

    2012-01-01

    Morphologically similar groups of species are common and pose significant challenges for taxonomists. Differences in approaches to classifying unique species can result in some species being overlooked, whereas others are wrongly conserved. The genetic diversity and population structure of the Pterostylis longifolia complex (Orchidaceae) in Tasmania was investigated to determine if four species, and potential hybrids, could be distinguished through genomic AFLP and chloroplast restriction-fragment-length polymorphism (RFLP) markers. Analysis of molecular variance (AMOVA) results indicated that little genetic variation was present among taxa, whereas PCoA analyses revealed genetic variation at a regional scale irrespective of taxa. Population genetic structure analyses identified three clusters that correspond to regional genetic and single taxon-specific phenotypic variation. The results from this study suggest that “longifolia” species have persisted throughout the last glacial maximum in Tasmania and that the complex may be best treated as a single taxon with several morphotypes. These results could have serious evolutionary and conservation implications as taxonomic changes could result in the instatement of a single, widespread taxon in which rarer morphotypes are not protected. PMID:23170201

  18. Solutions to Peto's paradox revealed by mathematical modelling and cross-species cancer gene analysis

    PubMed Central

    Caulin, Aleah F.; Graham, Trevor A.; Wang, Li-San; Maley, Carlo C.

    2015-01-01

    Whales have 1000-fold more cells than humans and mice have 1000-fold fewer; however, cancer risk across species does not increase with the number of somatic cells and the lifespan of the organism. This observation is known as Peto's paradox. How much would evolution have to change the parameters of somatic evolution in order to equalize the cancer risk between species that differ by orders of magnitude in size? Analysis of previously published models of colorectal cancer suggests that a two- to three-fold decrease in the mutation rate or stem cell division rate is enough to reduce a whale's cancer risk to that of a human. Similarly, the addition of one to two required tumour-suppressor gene mutations would also be sufficient. We surveyed mammalian genomes and did not find a positive correlation of tumour-suppressor genes with increasing body mass and longevity. However, we found evidence of the amplification of TP53 in elephants, MAL in horses and FBXO31 in microbats, which might explain Peto's paradox in those species. Exploring parameters that evolution may have fine-tuned in large, long-lived organisms will help guide future experiments to reveal the underlying biology responsible for Peto's paradox and guide cancer prevention in humans. PMID:26056366

  19. Solutions to Peto's paradox revealed by mathematical modelling and cross-species cancer gene analysis

    SciTech Connect

    Caulin, Aleah F.; Graham, Trevor A.; Wang, Li-San; Maley, Carlo C.

    2015-06-08

    Whales have 1000-fold more cells than humans and mice have 1000-fold fewer; however, cancer risk across species does not increase with the number of somatic cells and the lifespan of the organism. This observation is known as Peto's paradox. How much would evolution have to change the parameters of somatic evolution in order to equalize the cancer risk between species that differ by orders of magnitude in size? Analysis of previously published models of colorectal cancer suggests that a two- to three-fold decrease in the mutation rate or stem cell division rate is enough to reduce a whale's cancer risk to that of a human. Similarly, the addition of one to two required tumour-suppressor gene mutations would also be sufficient. Also, we surveyed mammalian genomes and did not find a positive correlation of tumour-suppressor genes with increasing body mass and longevity. However, we found evidence of the amplification of TP53 in elephants, MAL in horses and FBXO31 in microbats, which might explain Peto's paradox in those species. Lastly, exploring parameters that evolution may have fine-tuned in large, long-lived organisms will help guide future experiments to reveal the underlying biology responsible for Peto's paradox and guide cancer prevention in humans.

  20. A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways

    PubMed Central

    Yang, Yunlai; Arouri, Khaled

    2016-01-01

    A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations. PMID:26965479

  1. Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding

    PubMed Central

    van Steensel, Bas; Delrow, Jeffrey; Bussemaker, Harmen J.

    2003-01-01

    The association of sequence-specific DNA-binding factors with their cognate target sequences in vivo depends on the local molecular context, yet this context is poorly understood. To address this issue, we have performed genomewide mapping of in vivo target genes of Drosophila GAGA factor (GAF). The resulting list of ≈250 target genes indicates that GAF regulates many cellular pathways. We applied unbiased motif-based regression analysis to identify the sequence context that determines GAF binding. Our results confirm that GAF selectively associates with (GA)n repeat elements in vivo. GAF binding occurs in upstream regulatory regions, but less in downstream regions. Surprisingly, GAF binds abundantly to introns but is virtually absent from exons, even though the density of (GA)n is roughly the same. Intron binding occurs equally frequently in last introns compared with first introns, suggesting that GAF may not only regulate transcription initiation, but possibly also elongation. We provide evidence for cooperative binding of GAF to closely spaced (GA)n elements and explain the lack of GAF binding to exons by the absence of such closely spaced GA repeats. Our approach for revealing determinants of context-dependent DNA binding will be applicable to many other transcription factors. PMID:12601174

  2. Transcriptomic Analysis Reveals Significant B Lymphocyte Suppression in Corticosteroid-Treated Hosts with Pneumocystis Pneumonia.

    PubMed

    Hu, Yang; Wang, Dong; Zhai, Kan; Tong, Zhaohui

    2017-03-01

    Pneumocystis pneumonia (PCP) is an opportunistic, infectious disease that is prevalent in immunosuppressed hosts. Corticosteroid treatment is the most significant risk factor for patients with PCP who are human immunodeficiency virus negative, although little is known about how corticosteroids alter the host defense against Pneumocystis infection. In the present study, we used transcriptome analysis to examine the immune response in the lungs of corticosteroid-treated PCP mice. The results showed down-regulation in the genes related to both native immunity, such as antigen processing and presentation, inflammatory response, and phagocytosis, as well as B and T lymphocyte immunity. The repression of gene expression, corresponding to B cell immunity, including B cell signaling, homeostasis, and Ig production, was prominent. The finding was confirmed by quanti