Science.gov

Sample records for alignment magnetic field

  1. Measurements of magnetic field alignment

    SciTech Connect

    Kuchnir, M.; Schmidt, E.E.

    1987-11-06

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs.

  2. Generation of macroscopic magnetic-field-aligned electric fields by the convection surge ion acceleration mechanism

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.

    1989-01-01

    The 'convection surge' model for ion acceleration, designed by Mauk (1986) to explain the observed ion distributions and the field-aligned character of middle magnetospheric ion distributions during the expansion phase of a substorm, was extended to include the self-consistent generation of magnetic-field-aligned electric fields. Results from the modified model show that the convection surge mechanism leads to the generation of dynamical macroscopic magnetic field-aligned electric fields that begin their strongest developments very near the magnetic equator and then propagate to higher latitudes. Potential drops as high as 1 to 10 kV might be expected, depending on the mass species of the ions and on the electron temperatures. It is speculated that the convection surge mechanism could be a key player in the transient field-aligned electromagnetic processes observed to operate within the middle magnetosphere.

  3. Alignment of Iron Nanoparticles in a Magnetic Field Due to Shape Anisotropy

    SciTech Connect

    Radhakrishnan, Balasubramaniam; Nicholson, Don M; Eisenbach, Markus; Ludtka, Gerard Michael; Rios, Orlando; Parish, Chad M

    2015-07-09

    During high magnetic field processing there is evidence for alignment of non-spherical metallic particles above the Curie temperature in alloys with negligible magneto-crystalline anisotropy. The main driving force for alignment is the magnetic shape anisotropy. Current understanding of the phenomenon is not adequate to quantify the effect of particle size, aspect ratio, temperature and the magnetic field on particle alignment. We demonstrate a Monte Carlo approach coupled with size scaling to show the conditions under which alignment is possible.

  4. Modeling magnetic perturbation fields associated with ionospheric and geomagnetic-field-aligned currents

    NASA Astrophysics Data System (ADS)

    Richmond, A. D.; Maute, A.

    2003-04-01

    The National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General-Circulation Model calculates ionospheric and geomagnetic-field-aligned electric currents produced by ionospheric wind dynamo action, taking into account magnetospheric sources at high latitudes. The associated magnetic perturbations at the ground and at low-Earth-orbit (LEO) satellite altitudes are calculated by representing the height-integrated horizontal ionospheric current as a current sheet at 110 km, connected to geomagnetic-field-aligned currents flowing into and out of the top. The horizontal sheet current can be divided into two components: a divergence-free equivalent current which, together with the associated induced Earth currents, is responsible for all of the magnetic perturbations below the current sheet, and a divergent (but not irrotational) current that closes the field-aligned currents above. We call the combination of the field-aligned currents and their closing ionospheric currents the ``nonequivalent'' currents. By definition, these produce no magnetic effect at the ground, but they do produce important magnetic effects at LEO altitudes, generally dominating the component of LEO magnetic perturbations perpendicular to the main geomagnetic field. At high magnetic latitudes the nonequivalent LEO magnetic perturbations are largely toroidal, and are associated with the strong field-aligned currents that couple the ionosphere with the outer magnetosphere. At middle and low magnetic latitudes the nonequivalent LEO magnetic perturbations are largely associated with field-aligned currents that flow between the northern and southern hemispheres, and that can produce east-west perturbations of tens of nanoteslas.

  5. Magnetic field alignment of randomly oriented, high aspect ratio silicon microwires into vertically oriented arrays.

    PubMed

    Beardslee, Joseph A; Sadtler, Bryce; Lewis, Nathan S

    2012-11-27

    External magnetic fields have been used to vertically align ensembles of silicon microwires coated with ferromagnetic nickel films. X-ray diffraction and image analysis techniques were used to quantify the degree of vertical orientation of the microwires. The degree of vertical alignment and the minimum field strength required for alignment were evaluated as a function of the wire length, coating thickness, magnetic history, and substrate surface properties. Nearly 100% of 100 μm long, 2 μm diameter, Si microwires that had been coated with 300 nm of Ni could be vertically aligned by a 300 G magnetic field. For wires ranging from 40 to 60 μm in length, as the length of the wire increased, a higher degree of alignment was observed at lower field strengths, consistent with an increase in the available magnetic torque. Microwires that had been exposed to a magnetic sweep up to 300 G remained magnetized and, therefore, aligned more readily during subsequent magnetic field alignment sweeps. Alignment of the Ni-coated Si microwires occurred at lower field strengths on hydrophilic Si substrates than on hydrophobic Si substrates. The magnetic field alignment approach provides a pathway for the directed assembly of solution-grown semiconductor wires into vertical arrays, with potential applications in solar cells as well as in other electronic devices that utilize nano- and microscale components as active elements.

  6. Structural and magnetic properties of L10 -FePt nanoparticles aligned by external magnetic field

    NASA Astrophysics Data System (ADS)

    Tamada, Yoshinori; Yamamoto, Shinpei; Nasu, Saburo; Ono, Teruo

    2008-12-01

    We investigated structural and magnetic properties of the easy-axis aligned L10 -FePt nanoparticles by the combined use of x-ray diffraction (XRD), magnetization, and F57e Mössbauer measurements. The L10 -FePt nanoparticles were fixed in a polystyrene matrix by performing free radical polymerization of styrene under an aligning external magnetic field. Mössbauer spectrum of the L10 -FePt nanoparticles/polystyrene composite showed tremendous decrease in the second and fifth absorption lines under the condition that the incident γ ray was parallel to the aligning field. This result indicates that the easy axes of the L10 -FePt nanoparticles in the composite have a strong preferred orientation with a finite distribution. We estimated the distribution of easy-axis orientation by using the Mössbauer hyperfine parameters, which is in good agreement with that determined by the XRD rocking curve.

  7. Cooperative ordering and kinetics of cellulose nanocrystal alignment in a magnetic field

    DOE PAGES

    De France, Kevin J.; Yager, Kevin G.; Hoare, Todd; ...

    2016-07-13

    Cellulose nanocrystals (CNCs) are emerging nanomaterials that form chiral nematic liquid crystals above a critical concentration (C*) and additionally orient within electromagnetic fields. The control over CNC alignment is significant for materials processing and end use; to date, magnetic alignment has been demonstrated using only strong fields over extended or arbitrary time scales. This work investigates the effects of comparatively weak magnetic fields (0–1.2 T) and CNC concentration (1.65–8.25 wt %) on the kinetics and degree of CNC ordering using small-angle X-ray scattering. Interparticle spacing, correlation length, and orientation order parameters (η and S) increased with time and field strengthmore » following a sigmoidal profile. In a 1.2 T magnetic field for CNC suspensions above C*, partial alignment occurred in under 2 min followed by slower cooperative ordering to achieve nearly perfect alignment in under 200 min (S = –0.499 where S = –0.5 indicates perfect antialignment). At 0.56 T, nearly perfect alignment was also achieved, yet the ordering was 36% slower. Outside of a magnetic field, the order parameter plateaued at 52% alignment (S = –0.26) after 5 h, showcasing the drastic effects of relatively weak magnetic fields on CNC alignment. For suspensions below C*, no magnetic alignment was detected.« less

  8. Cooperative ordering and kinetics of cellulose nanocrystal alignment in a magnetic field

    SciTech Connect

    De France, Kevin J.; Yager, Kevin G.; Hoare, Todd; Cranston, Emily D.

    2016-07-13

    Cellulose nanocrystals (CNCs) are emerging nanomaterials that form chiral nematic liquid crystals above a critical concentration (C*) and additionally orient within electromagnetic fields. The control over CNC alignment is significant for materials processing and end use; to date, magnetic alignment has been demonstrated using only strong fields over extended or arbitrary time scales. This work investigates the effects of comparatively weak magnetic fields (0–1.2 T) and CNC concentration (1.65–8.25 wt %) on the kinetics and degree of CNC ordering using small-angle X-ray scattering. Interparticle spacing, correlation length, and orientation order parameters (η and S) increased with time and field strength following a sigmoidal profile. In a 1.2 T magnetic field for CNC suspensions above C*, partial alignment occurred in under 2 min followed by slower cooperative ordering to achieve nearly perfect alignment in under 200 min (S = –0.499 where S = –0.5 indicates perfect antialignment). At 0.56 T, nearly perfect alignment was also achieved, yet the ordering was 36% slower. Outside of a magnetic field, the order parameter plateaued at 52% alignment (S = –0.26) after 5 h, showcasing the drastic effects of relatively weak magnetic fields on CNC alignment. For suspensions below C*, no magnetic alignment was detected.

  9. Aligned nanostructured polymers by magnetic-field-directed self-assembly of a polymerizable lyotropic mesophase.

    PubMed

    Tousley, Marissa E; Feng, Xunda; Elimelech, Menachem; Osuji, Chinedum O

    2014-11-26

    Magnetic-field-directed assembly of lyotropic surfactant mesophases provides a scalable approach for the fabrication of aligned nanoporous polymers by templated polymerization. We develop and characterize a lyotropic liquid crystalline system containing hexagonally packed cylindrical micelles of a polymerizable surfactant in a polymerizable solvent. The system exhibits negative magnetic anisotropy, resulting in the degenerate alignment of cylindrical micelles perpendicular to the magnetic field. Sample rotation during field alignment is used to effectively break this degeneracy and enable the production of uniformly well-aligned mesophases. High-fidelity retentions of the hexagonal structure and alignment were successfully achieved in polymer films produced upon UV exposure of the reactive system. The success of this effort provides a route for the fabrication of aligned nanoporous membranes suitable for highly selective separations, sensing, and templated nanomaterial synthesis.

  10. Magnetic field-aligned electric field acceleration and the characteristics of the optical aurora

    NASA Technical Reports Server (NTRS)

    Christensen, A. B.; Lyons, L. R.; Hecht, J. H.; Sivjee, G. G.; Meier, R. R.

    1987-01-01

    The long-recognized association of brighter aurora with more deeply penetrating, and hence more energetic, electrons is examined. Using the Knight (1973) relation between the magnetic-field-aligned current density and potential drop (derived from the theory of single-particle motion in the presence of a magnetic-field-aligned electric field), an approximate expression relating the energy flux of the precipitating electrons over discrete aurora and the mean particle energy is derived. This expression is used in conjunction with an auroral optical excitation and emission model to specify the dependence of the red/blue ratio of auroral optical emissions on the brightness of the aurora. It is shown that the quantitative predictions of the discrete auroral theory are in accord with observations of the aurora.

  11. Alignment of SWNTs by protein-ligand interaction of functionalized magnetic particles under low magnetic fields.

    PubMed

    Park, Tae Jung; Park, Jong Pil; Lee, Seok Jae; Jung, Dae-Hwan; Ko, Young Koan; Jung, Hee-Tae; Lee, Sang Yup

    2011-05-01

    Carbon nanotubes (CNTs) have attracted considerable attention for applications using their superior mechanical, thermal and electrical properties. A simple method to controllably align single-walled CNTs (SWNTs) by using magnetic particles embedded with superparamagnetic iron oxide as an accelerator under the magnetic field was developed. The functionalization of SWNTs using biotin, interacted with streptavidin-coupled magnetic particles (micro-to-nano in diameter), and layer-by-layer assembly were performed for the alignment of a particular direction onto the clean silicon and the gold substrate at very low magnetic forces (0.02-0.89 T) at room temperature. The successful alignment of the SWNTs with multi-layer film was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). By changing the orientation and location of the substrates, crossed-networks of SWNTs-magnetic particle complex could easily be fabricated. We suggest that this approach, which consists of a combination of biological interaction among streptavidin-biotin and magnetite particles, should be useful for lateral orientation of individual SWNTs with controllable direction.

  12. Magnetic and electric field alignments of cellulose chains for electro-active paper actuator

    NASA Astrophysics Data System (ADS)

    Yun, Sungryul; Chen, Yi; Lee, Sang Woo; Kim, Jaehwan; Kim, Heung Soo

    2008-03-01

    To improve the piezoelectricity of cellulose electro-active paper (EAPap), electrical field and magnetic field alignments were investigated. EAPap is made with cellulose by dissolving cotton pulp and regenerating cellulose with aligned cellulose fibers. EAPap made with cellulose has piezoelectric property due to its structural crystallinity. Noncentro-symmetric crystal structure of EAPap, which is mostly cellulose II, can exhibit piezoelectricity. However, EAPap has ordered crystal parts as well as disordered parts of cellulose. Thus, well alignment of cellulose chains in EAPap is important to improve its piezoelectricity. In this paper, uniaxial alignments of cellulose chains were investigated by applying electric field and magnetic field. As exposing different fields to EAPap samples, the changed characteristics were analyzed by X-Ray diffractometer (XRD) and Scanning electron microscopy (SEM). Finally, the piezoelectricity of EAPap samples was evaluated by comparing their piezoelectric charge constant [d 31]. As increasing applied electric field up to 40V/mm, d 31 value was gradually improved due to increased cellulose crystallinity as well as alignment of cellulose chains. Also the alignment of cellulose chains was improved with increasing the exposing time to magnetic field (5.3T) and well alignment was achieved by exposing EAPap sample on the magnetic field for 180min.

  13. Diffusive alignment of the magnetic field in active regions of plasmas

    PubMed

    Nunez

    2000-11-01

    Regions of high magnetic field within plasmas tend to keep this field aligned in a dominant direction. This occurs both in observed phenomena and in simulations of kinematic and nonlinear dynamos. Although most of this effect is due to the particular dynamics of each case, magnetic diffusion also plays an important role. It is shown here that the unitary magnetic field vector satisfies a certain estimate that bounds its possible variations. The dependence of the bound on the plasma parameters is analyzed.

  14. On the alignment of diamagnetic molecules in interstellar magnetic fields

    NASA Astrophysics Data System (ADS)

    Papoular, R.

    2017-01-01

    This paper reports the results of new chemical modeling measurements of the Faraday rotation braking mechanism operating on a diamagnetic molecule in a magnetic field (see Papoular 2016). The time length of the experiment is extended, more relevant variables are measured (rotation, vibration, drift energies; molecule orientation), and more accurately, as a function of time. The polarization of light by the moving molecule is computed. The observed behavior of the molecule may be understood, and the rotation damping time more accurately deduced by fitting a mathematical model built upon the classical equations of motion in a field. This model, meant to include the essential physics involved in the experiment, with the minimum number of parameters, also allows the chemical modeling experimental results to be extrapolated to other molecular structures, shapes and sizes, and other magnetic fields. For a given particle, the rotation damping time scales like 1/H and is independent on rotation frequency. As an example, we follow the motion of a rod of homogeneous material, 10-5 cm in length, moving in a field 5 10-6 G in intensity. Its angular rotation is found to decrease to 0, while its axis settles perpendicularly to the field within a few years. Molecular vibrations appear as an illustration of the fluctuation-dissipation theorem: they absorb friction heat and, at the same time, are the very cause of this friction.

  15. Dependence of the magnetic properties on the alignment magnetic field for NdFeB bonded magnets made from anisotropic HDDR powders

    NASA Astrophysics Data System (ADS)

    Gao, R. W.; Zhang, J. C.; Zhang, D. H.; Dai, Y. Y.; Meng, X. H.; Wang, Z. M.; Zhang, Y. J.; Liu, H. Q.

    1999-01-01

    The dependence of the hard magnetic properties on the alignment magnetic field for Nd(Fe,Co)B bonded magnets made from anisotropic HDDR powders is studied. The experimental results demonstrate that addition of a little Ga can induce a strong magnetic anisotropy in the HDDR magnetic powders. The application of an alignment magnetic field while the powders are bonded can increase the remanence, the coercivity and the maximum energy product in different degrees and the hard magnetic properties of the magnet are obviously improved with increasing alignment field.

  16. The inhomogeneous ion temperature anisotropy instabilities of magnetic-field-aligned plasma sheared flow

    NASA Astrophysics Data System (ADS)

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June

    2016-11-01

    The stability of the magnetic field aligned sheared flow with anisotropic ion temperatures, which have the anisotropic spatial inhomogeneities across the magnetic field and are comparable with or are above the electron temperature, is investigated numerically and analytically. The ion temperatures gradients across the magnetic field affect the instability development only when the inhomogeneous is the ion temperature along the magnetic field irrespective the inhomogeneity of the ion temperature across the magnetic field. In this case, the instability is developed due to the combined effect of the ion Landau damping, velocity shear, ion temperature anisotropy, and anisotropy of the ion temperature gradients. In the case when the ion temperature along the magnetic field is homogeneous, but the ion temperature across the magnetic field is inhomogeneous, the short wavelength instability develops with the wave length less than the thermal ion Larmor radius. This instability excites due to the coupled effect of the ion Landau damping, velocity shear and ion temperature anisotropy.

  17. Magnetic field aligned assembly of nonmagnetic composite dumbbells in nanoparticle-based aqueous ferrofluid.

    PubMed

    Takahashi, Hayato; Nagao, Daisuke; Watanabe, Kanako; Ishii, Haruyuki; Konno, Mikio

    2015-05-26

    Monodisperse, nonmagnetic, asymmetrical composite dumbbells in a suspension of magnetic nanoparticles (ferrofluid) were aligned by application of an external magnetic field to the ferrofluid. The asymmetrical composite dumbbells were prepared by two-step soap-free emulsion polymerization consisting of the first polymerization to coat spherical silica cores with cross-linked poly(methyl methacrylate) (PMMA) shell and the second polymerization to protrude a polystyrene (PSt) lobe from the core-shell particles. A chain structure of nonmagnetic dumbbells oriented to the applied magnetic field was observed at nanoparticle content of 2.0 vol % and field strengths higher than 1.0 mT. A similar chain structure of the dumbbells was observed under application of alternating electric field at strengths higher than 50 V/mm. Parallel and orthogonally combined applications of the electric and magnetic fields were also conducted to examine independence of the electric and magnetic applications as operational factors in the dumbbell assembling. Dumbbell chains stiffer than those in a single application of external field were formed in the parallel combined application of electric and magnetic fields. The orthogonal combination of the different applied fields could form a magnetically aligned chain structure of the nonmagnetic dumbbells oriented to the electric field. The present work experimentally indicated that the employment of inverse magnetorheological effect for nonmagnetic, anisotropic particles can be a useful method for the simultaneous controls over the orientation and the positon of anisotropic particles in their assembling.

  18. Magnetically Aligned Supramolecular Hydrogels

    PubMed Central

    Wallace, Matthew; Cardoso, Andre Zamith; Frith, William J; Iggo, Jonathan A; Adams, Dave J

    2014-01-01

    The magnetic-field-induced alignment of the fibrillar structures present in an aqueous solution of a dipeptide gelator, and the subsequent retention of this alignment upon transformation to a hydrogel upon the addition of CaCl2 or upon a reduction in solution pH is reported. Utilising the switchable nature of the magnetic field coupled with the slow diffusion of CaCl2, it is possible to precisely control the extent of anisotropy across a hydrogel, something that is generally very difficult to do using alternative methods. The approach is readily extended to other compounds that form viscous solutions at high pH. It is expected that this work will greatly expand the utility of such low-molecular-weight gelators (LMWG) in areas where alignment is key. PMID:25345918

  19. Dust Grain Alignment and Magnetic Field Strength in the Wall of the Local Bubble

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Medan, Ilija

    2017-01-01

    We use archival data on polarization (Berdyugin 2014) and extinction in the wall of the Local Bubble to study the grain alignment efficiency and the magnetic field strength. We find that the grain alignment efficiency variations can be directly tied to the location of the known OB-associations within 200pc from the Sun, strongly supporting modern, radiation-driven dust grain alignment. Based on the Davis-Chandrasekhar-Fermi method, we find a bimodal magnetic field-strength distribution, where the locations of the strongest fields correlate with the directions towards the near-by OB associations. We hypothesize that this strengthening is due to compression of the bubble wall by the opposing outflows in the Local Bubble and from the surrounding OB associations.

  20. Positioning and aligning CNTs by external magnetic field to assist localised epoxy cure

    NASA Astrophysics Data System (ADS)

    Ariu, G.; Hamerton, I.; Ivanov, D.

    2016-01-01

    This work focuses on the generation of conductive networks through the localised alignment of nano fillers, such as multi-walled carbon nanotubes (MWCNTs). The feasibility of alignment and positioning of functionalised MWCNTs by external DC magnetic fields was investigated. The aim of this manipulation is to enhance resin curing through AC induction heating due to hysteresis losses from the nanotubes. Experimental analyses focused on in-depth assessment of the nanotube functionalisation, processing and characterisation of magnetic, rheological and cure kinetics properties of the MWCNT solution. The study has shown that an external magnetic field has great potential for positioning and alignment of CNTs. The study demonstrated potential for creating well-ordered architectures with an unprecedented level of control of network geometry. Magnetic characterisation indicated cobalt-plated nanotubes to be the most suitable candidate for magnetic alignment due to their high magnetic sensitivity. Epoxy/metal-plated CNT nanocomposite systems were validated by thermal analysis as induction heating mediums. The curing process could therefore be optimised by the use of dielectric resins. This study offers a first step towards the proof of concept of this technique as a novel repair technology.

  1. Alignment and measurement of the magnetic field for the BESIII muon counter

    NASA Astrophysics Data System (ADS)

    Gao, Qing; Zhang, Jing-Zhi; Li, Chun-Hua; Yin, Jun-Hao

    2016-11-01

    Based on cosmic ray events without a magnetic field taken with the BESIII detector during the summer shutdown of BEPCII in 2012 and di-muon events from a data sample taken at center-of-mass energy of 3.686 GeV in 2009, we compare the coordinates of hits registered in the BESIII muon counter with the expected interaction point extrapolated from reconstructed tracks from the inner tracking system in the absence of a magnetic field. By minimizing the difference, we align the muon counter with the inner tracking system. Moreover, the strength of the magnetic field in the muon counter is measured for the first time with di-muon events from data taken at a center-of-mass energy of 3.686 GeV. After the alignment and the magnetic field strength measurement, the offsets in the reconstructed hit positions for muon tracks are reduced, which improves the muon identification. The alignment and magnetic field strength measurement have been adopted in the latest version of the BESIII offline software system. This addition to the software reduces the systematic uncertainty for the physics analysis in cases where the muon counter information is used. Supported by National Key Basic Research Program of China (2015CB856701), National Natural Science Foundation of China (NSFC) (11475187, 11575198, 11521505), 100 Talents Program of CAS (U-25)

  2. Correlation between magnetic and electric field perturbations in the field-aligned current regions deduced from DE 2 observations

    NASA Technical Reports Server (NTRS)

    Ishii, M.; Sugiura, M.; Iyemori, T.; Slavin, J. A.

    1992-01-01

    The satellite-observed high correlations between magnetic and electric field perturbations in the high-latitude field-aligned current regions are investigated by examining the dependence of the relationship between Delta-B and E on spatial scale, using the electric and magnetic field data obtained by DE 2 in the polar regions. The results are compared with the Pedersen conductivity inferred from the international reference ionosphere model and the Alfven wave velocity calculated from the in situ ion density and magnetic field measurements.

  3. Can primordial magnetic fields seeded by electroweak strings cause an alignment of quasar axes on cosmological scales?

    PubMed

    Poltis, Robert; Stojkovic, Dejan

    2010-10-15

    The decay of nontopological electroweak strings may leave an observable imprint in the Universe today in the form of primordial magnetic fields. Protogalaxies preferentially tend to form with their axis of rotation parallel to an external magnetic field, and, moreover, an external magnetic field produces torque which tends to align the galaxy axis with the magnetic field. We demonstrate that the shape of a magnetic field left over from two looped electroweak strings can explain the observed nontrivial alignment of quasar polarization vectors and make predictions for future observations.

  4. Multi-point Magnetic Field Observations of Field-Aligned Currents from Swarm Constellation Mission

    NASA Astrophysics Data System (ADS)

    Le, Guan; Chi, Peter; Lühr, Hermann; Gjerloev, Jesper; Stolle, Claudia; Park, Jaeheung; Rauberg, Jan

    2015-04-01

    In this paper, we report the results of case studies of multi-point magnetic field measurements of field-aligned currents (FACs) from Swarm constellation mission to understand their temporal characteristics and hemispheric asymmetry. For science operations (since April, 2014), the three spacecraft were placed in slightly different polar orbits: Swarm B spacecraft in a higher altitude orbit (507km x 512km) and Swarm A and C side-by-side in lower altitude orbits (459km x 462km). In the beginning of the science operational phase, the longitudinal separations of the orbital planes were small, and Swarm A/C pair and Swarm B were nearly out of phase in the orbit. This unique orbit configuration provides opportunities to study some new features of FACs. Specifically, the Swarm satellites make multiple crossings of a FAC region within a few hours. Such data enable us to study temporal variations in several time scales, from 1 minute up to about 3 hours. Furthermore, the three satellites make nearly simultaneous observations of FACs in northern and southern hemispheres, which provide us an opportunity to study the hemispheric asymmetry.

  5. Particle trajectories in Weibel magnetic filaments with a flow-aligned magnetic field

    NASA Astrophysics Data System (ADS)

    Bret, Antoine

    2016-08-01

    > . In the absence of an external guiding magnetic field, these filaments can block the incoming flow, initiating the shock formation, if their size is larger than the Larmor radius of the incoming particles in the peak field. Here we show that this result still holds in the presence of an external magnetic field, provided it is not too high. Yet, for 0\\gtrsim Bf/2, the filaments become unable to stop any particle, regardless of its initial velocity.

  6. On the relationship between morning sector irregular magnetic pulsations and field aligned currents

    NASA Technical Reports Server (NTRS)

    Engebretson, M. J.; Cahill, L. J., Jr.; Potemra, T. A.; Zanetti, L. J.; Arnoldy, R. L.; Mende, S. B.; Rosenberg, T. J.

    1984-01-01

    For three magnetically disturbed days in early 1980, data from south polar masses of the Magsat satellite are compared with data from search coil magnetometer, riometer, and photometer instrumentation at Siple, Antarctica. It is found that during each Magsat polar pass in the morning sector, the level of Pi 1 activity correlates well with the intensities of three-dimensional current systems. Fine structure is often observed in the field-aligned currents during periods of intense Pi activity. Among the Birkeland currents are 2-s to 10-s (16-80 km) structured perturbations; these are evident in the transverse components of the field and are thought to indicate filamentary currents. Pi 1 amplitudes are found to be considerably larger when region 2 Birkeland currents are overhead than when they are not. In one case, detailed features are identified in the high-resolution Magsat magnetic field data that may be current fluctuations related to asymmetric Pi 1.

  7. Electron Weibel instability in relativistic counterstreaming plasmas with flow-aligned external magnetic fields.

    PubMed

    Grassi, A; Grech, M; Amiranoff, F; Pegoraro, F; Macchi, A; Riconda, C

    2017-02-01

    The Weibel instability driven by two symmetric counterstreaming relativistic electron plasmas, also referred to as current-filamentation instability, is studied in a constant and uniform external magnetic field aligned with the plasma flows. Both the linear and nonlinear stages of the instability are investigated using analytical modeling and particle-in-cell simulations. While previous studies have already described the stabilizing effect of the magnetic field, we show here that the saturation stage is only weakly affected. The different mechanisms responsible for the saturation are discussed in detail in the relativistic cold fluid framework considering a single unstable mode. The application of an external field leads to a slight increase of the saturation level for large wavelengths, while it does not affect the small wavelengths. Multimode and temperature effects are then investigated. While at high temperature the saturation level is independent of the external magnetic field, at low but finite temperature the competition between different modes in the presence of an external magnetic field leads to a saturation level lower with respect to the unmagnetized case.

  8. Electron Weibel instability in relativistic counterstreaming plasmas with flow-aligned external magnetic fields

    NASA Astrophysics Data System (ADS)

    Grassi, A.; Grech, M.; Amiranoff, F.; Pegoraro, F.; Macchi, A.; Riconda, C.

    2017-02-01

    The Weibel instability driven by two symmetric counterstreaming relativistic electron plasmas, also referred to as current-filamentation instability, is studied in a constant and uniform external magnetic field aligned with the plasma flows. Both the linear and nonlinear stages of the instability are investigated using analytical modeling and particle-in-cell simulations. While previous studies have already described the stabilizing effect of the magnetic field, we show here that the saturation stage is only weakly affected. The different mechanisms responsible for the saturation are discussed in detail in the relativistic cold fluid framework considering a single unstable mode. The application of an external field leads to a slight increase of the saturation level for large wavelengths, while it does not affect the small wavelengths. Multimode and temperature effects are then investigated. While at high temperature the saturation level is independent of the external magnetic field, at low but finite temperature the competition between different modes in the presence of an external magnetic field leads to a saturation level lower with respect to the unmagnetized case.

  9. Director alignment by crossed electric and magnetic fields: a deuterium NMR study.

    PubMed

    Hamasuna, D; Luckhurst, G R; Sugimura, A; Timimi, B A; Zimmermann, H

    2011-07-01

    The static director distribution in thin nematic liquid crystal cells, subject to both electric and magnetic fields, has been investigated using a combination of deuterium nuclear magnetic resonance (NMR) spectroscopy and continuum theory in terms of the director distribution function, which gives the probability density for finding the director at a given orientation. A series of deuterium NMR spectra for the nematic liquid crystal, 4-pentyl-d(2)-4'-cyanobiphenyl deuteriated in the α position of the pentyl chain were acquired as a function of the applied electric field. This powerful experimental technique allowed us to observe uniform and nonuniform director alignment depending on the angle between the two fields and their relative strength. On the basis of the detailed experimental results, we have explored the factors that influence the nature of both the uniform and the nonuniform director distributions. We have discussed the questions that are raised by our attempt to understand the static director distribution as a function of the angle between the two fields. We have discovered that the alignment of the director at the surface of the Teflon spacers is essential in addition to the random variation in the cell thickness in order to account for the static director distribution determined from the NMR spectra.

  10. Dynamics of the field-aligned current distribution during a magnetic storm: AMPERE

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Tepke, B. P.

    2015-12-01

    Field-aligned current density in the ionosphere can be used to identify the location and intensity of solar wind-magnetosphere-ionosphere coupling, and help identify the large-scale processes that contribute to this coupling. The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) mission effectively provides high-resolution spatial and temporal measurements of the radial current during magnetic storms. These in situ measurements are complementary to magnetic remote sensing from the ground using magnetometer arrays. Here we examine two storms, on May 29, 2010 and August 5, 2011, using AMPERE and solar wind data. We identify the regions whose radial current density has the greatest correlation with solar wind coupling functions and individual magnetic and plasma variables. We develop a statistical model of the radial current density from the magnetospheric and solar wind data which is then used to represent regions of outflowing and inflowing current in the two hemispheres. While the model is limited in representing high spatial resolution, time series of regional and global field-aligned current are reproduced with relatively large correlation coefficients (0.70-0.90) in each event.

  11. Magneto-plasmonic study of aligned Ni, Co and Ni/Co multilayer in polydimethylsiloxane as magnetic field sensor

    NASA Astrophysics Data System (ADS)

    Hamidi, Seyedeh Mehri; Mosaeii, Babak; Afsharnia, Mina; Aftabi, Ali; Najafi, Mojgan

    2016-11-01

    We report the magneto-optical properties of aligned cobalt, Nickel and nickel/ Cobalt multilayer nanowires embedded in polydimethylsiloxane matrix. The NWs prepared by electrodeposition method in anodic alumina template and then dispersed in ethanol and placed in a heater to evaporate the ethanol and finally dispersed in polydimethylsiloxane matrix to reach to the composite. The used external magnetic field arranges the nanowires and our aligned nanowires were investigated by magneto-optical surface plasmon resonance techniques in two easy and hard axis configurations. Our results show the sufficient sensitivity in magneto-optical surface plasmon resonance of Nickel and cobalt arrays nanowires and because the different modulation mechanism in Ni and Co nanodisks, in Ni/Co multilayer we see the magnetization modulation of the excitation angle in accordance with magnetic field modulation of the SPP wave vector in each nanodisk. Finally, we show that the Ni/Co multilayer aligned nanowires can be used as efficient magnetic field sensor.

  12. Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment.

    PubMed

    Coletti, Dario; Teodori, Laura; Albertini, Maria C; Rocchi, Marco; Pristerà, Alessandro; Fini, Massimo; Molinaro, Mario; Adamo, Sergio

    2007-10-01

    Static magnetic field (SMF) interacts with mammal skeletal muscle; however, SMF effects on skeletal muscle cells are poorly investigated. The myogenic cell line L6, an in vitro model of muscle development, was used to investigate the effect of a 80 +/- mT SMF generated by a custom-made magnet. SMF promoted myogenic cell differentiation and hypertrophy, i.e., increased accumulation of actin and myosin and formation of large multinucleated myotubes. The elevated number of nuclei per myotube was derived from increased cell fusion efficiency, with no changes in cell proliferation upon SMF exposure. No alterations in myogenin expression, a modulator of myogenesis, occurred upon SMF exposure. SMF induced cells to align in parallel bundles, an orientation conserved throughout differentiation. SMF stimulated formation of actin stress-fiber like structures. SMF rescued muscle differentiation in the presence of TNF, a muscle differentiation inhibitor. We believe this is the first report showing that SMF promotes myogenic differentiation and cell alignment, in the absence of any invasive manipulation. SMF-enhanced parallel orientation of myotubes is relevant to tissue engineering of a highly organized tissue such as skeletal muscle. SMF rescue of muscle differentiation in the presence of TNF may have important therapeutic implications.

  13. Comparison of auroral ionospheric and field-aligned currents derived from Swarm and ground magnetic field measurements

    NASA Astrophysics Data System (ADS)

    Juusola, L.; Kauristie, K.; Vanhamäki, H.; Aikio, A.; Kamp, M.

    2016-09-01

    Derivation of the auroral ionospheric currents from magnetic field measurements can produce drastically different results depending on the data and method used. We have cross tested several methods for obtaining instantaneous field-aligned and horizontal currents from Swarm satellite and International Monitor for Auroral Geomagnetic Effects (IMAGE) ground magnetic field measurements. We found that Swarm can yield latitude profiles of the east-west component of the divergence-free current density at most at ˜200 km resolution, typically resolving the electrojets. The north-south divergence-free component, on the other hand, is not always well reproduced due to the small longitudinal distance between the side-by-side flying satellite pair. Swarm can yield the field-aligned and curl-free current density at a wider range of latitude resolutions (˜7.5-200 km) than the divergence-free current density. While 7.5 km is suitable for comparison with auroras, 200 km typically resolves the Regions 1 and 2 field-aligned currents. IMAGE can yield maps of the divergence-free current density at ˜50 km resolution. Induced telluric currents should be accounted for in the derivation. Not accounting for them in the Swarm analysis, however, does not appear to introduce significant errors. Ionospheric conductances can be estimated by combining the total horizontal current density, consisting of the curl-free and divergence-free components, with the electric field measurements. Our results indicate that Swarm can only yield these at ˜200 km scale size when there is no significant dependence on longitude. However, combining the divergence-free current from IMAGE with the curl-free current and electric field from Swarm could yield conductance maps at ˜50 km resolution.

  14. Filamentary field-aligned currents at the polar cap region during northward interplanetary magnetic field derived with the Swarm constellation

    NASA Astrophysics Data System (ADS)

    Lühr, Hermann; Huang, Tao; Wing, Simon; Kervalishvili, Guram; Rauberg, Jan; Korth, Haje

    2016-10-01

    ESA's Swarm constellation mission makes it possible for the first time to determine field-aligned currents (FACs) in the ionosphere uniquely. In particular at high latitudes, the dual-satellite approach can reliably detect some FAC structures which are missed by the traditional single-satellite technique. These FAC events occur preferentially poleward of the auroral oval and during times of northward interplanetary magnetic field (IMF) orientation. Most events appear on the nightside. They are not related to the typical FAC structures poleward of the cusp, commonly termed NBZ. Simultaneously observed precipitating particle spectrograms and auroral images from Defense Meteorological Satellite Program (DMSP) satellites are consistent with the detected FACs and indicate that they occur on closed field lines mostly adjacent to the auroral oval. We suggest that the FACs are associated with Sun-aligned filamentary auroral arcs. Here we introduce in an initial study features of the high-latitude FAC structures which have been observed during the early phase of the Swarm mission. A more systematic survey over longer times is required to fully characterize the so far undetected field aligned currents.

  15. Dust Particle Alignment in the Solar Magnetic Field: a Possible Cause of the Cometary Circular Polarization

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.; Koenders, C.; Rosenbush, V.; Kiselev, N.; Ivanova, A.; Afanasiev, V.

    2015-12-01

    Circular polarization (CP) produced by scattering of sunlight on cometary dust has been observed in 11 comets, and showed the values from 0.01% to 0.8%. CP of both signs was observed, although negative (left-handed) CP dominates. Recent observations of several comets using SCORPIO-2 focal reducer at the 6-m BTA telescope of the Special Astrophysical Observatory (Russia) allowed producing maps of CP in the comet continuum filter at 684 nm and red wide-band filter. A gradual increase of the CP with the nucleocentric distance was usually observed. The most plausible reason why the light scattered by cometary dust becomes circularly polarized is alignment of the dust particles in the solar magnetic field. However, in-situ data for comet Halley, indicated that the solar magnetic field could not penetrate deep into the coma, limited by the diamagnetic cavity, and, thus, could not be responsible for the CP observed closer than ~4000 km from the nucleus. Advanced theoretical studies of interaction of the solar magnetic field with cometary ions led to reconsidering the diamagnetic cavity boundary - it is defined by the cometary ionopause, at which a balance is achieved between the magnetic pressure in the magnetic pile up region and the neutral friction force. The nucleocentric distance where this balance is achieved depends on the comet characteristics, increasing with the increase of the gas production rate, and local solar wind conditions, approximatively given by the comet location, specifically, its heliocentric distance. The size of diamagnetic cavity was calculated for the conditions of our CP observations. We found that it could be as small as dozens (comets 73P, 8P, 290P) or hundreds (comets Q4 NEAT, K1 PanSTARRS, Tago-Sato-Kosaka) kilometers. Thus, non-zero CP close to the nucleus can be easily explained by the interaction of the dust particles with the solar magnetic field. This mechanism also explains the observed increase in CP with the distance from the

  16. Numerical simulations of Hall-effect plasma accelerators on a magnetic-field-aligned mesh.

    PubMed

    Mikellides, Ioannis G; Katz, Ira

    2012-10-01

    The ionized gas in Hall-effect plasma accelerators spans a wide range of spatial and temporal scales, and exhibits diverse physics some of which remain elusive even after decades of research. Inside the acceleration channel a quasiradial applied magnetic field impedes the current of electrons perpendicular to it in favor of a significant component in the E×B direction. Ions are unmagnetized and, arguably, of wide collisional mean free paths. Collisions between the atomic species are rare. This paper reports on a computational approach that solves numerically the 2D axisymmetric vector form of Ohm's law with no assumptions regarding the resistance to classical electron transport in the parallel relative to the perpendicular direction. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations on a computational mesh that is aligned with the applied magnetic field. This approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction and encompasses the cathode boundary where the lines of force can become nonisothermal. It also allows for the self-consistent solution of the plasma conservation laws near the anode boundary, and for simulations in accelerators with complex magnetic field topologies. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for the ion drag in the momentum equation due to ion-neutral (charge-exchange) and ion-ion collisions. The density of the atomic species is determined using an algorithm that eliminates the statistical noise associated with discrete-particle methods. Numerical simulations are presented that illustrate the impact of the above-mentioned features on our understanding of the plasma in these accelerators.

  17. Interplanetary magnetic field control of mantle precipitation and associated field-aligned currents

    NASA Technical Reports Server (NTRS)

    Xu, Dingan; Kivelson, Margaret G.; Walker, Ray J.; Newell, Patrick T.; Meng, C.-I.

    1995-01-01

    Dayside reconnection, which is particularly effective for a southward interplanetary magnetic field (IMF), allows magnetosheath particles to enter the magnetosphere where they form the plasma mantle. The motions of the reconnected flux tube produce convective flows in the ionosphere. It is known that the convection patterns in the polar cap are skewed to the dawnside for a positive IMF B(sub y) (or duskside for a negative IMF B(sub y)) in the northern polar cap. Correspondingly, one would expect to find asymmetric distributions of mantle particle precipitation, but previous results have been unclear. In this paper the correlation between B(sub y) and the distribution of mantle particle precipitation is studied for steady IMF conditions with southward IMF. Ion and electron data from the Defense Meteorological Satellite Program (DMSP) F6 and F7 satellites are used to identify the mantle region and IMP 8 is used as a solar wind monitor to characterize the IMF. We study the local time extension of mantle precipitation in the prenoon and postnoon regions. We find that, in accordance with theoretical expectations for a positive (negative) IMF B(sub y), mantle particle precipitation mainly appears in the prenoon region of the northern (southern) hemisphere. The mantle particle precipitation can extend to as early as 0600 magnetic local time (MLT) in the prenoon region but extends over a smaller local time region in the postnoon sector (we did not find mantle plasma beyond 1600 MLT in our data set although coverage is scant in this area). Magnetometer data from F7 are used to determine whether part of the region 1 current flows on open field lines. We find that at times part of the region 1 sense current extends into the region of mantle particle precipitation, and is therefore on open field lines. In other cases, region 1 currents are absent on open field lines. Most of the observed features can be readily interpreted in terms of the open magnetosphere model.

  18. Angle-dependent radiative grain alignment. Confirmation of a magnetic field - radiation anisotropy angle dependence on the efficiency of interstellar grain alignment

    NASA Astrophysics Data System (ADS)

    Andersson, B.-G.; Pintado, O.; Potter, S. B.; Straižys, V.; Charcos-Llorens, M.

    2011-10-01

    Context. Interstellar grain alignment studies are currently experiencing a renaissance due to the development of a new quantitative theory based on radiative alignment torques (RAT). One of the distinguishing predictions of this theory is a dependence of the grain alignment efficiency on the relative angle (Ψ) between the magnetic field and the anisotropy direction of the radiation field. In an earlier study we found observational evidence for such an effect from observations of the polarization around the star HD 97300 in the Chamaeleon I cloud. However, due to the large uncertainties in the measured visual extinctions, the result was uncertain. Aims: By acquiring explicit spectral classification of the polarization targets, we have sought to perform a more precise reanalysis of the existing polarimetry data. Methods: We have obtained new spectral types for the stars in our for our polarization sample, which we combine with photometric data from the literature to derive accurate visual extinctions for our sample of background field stars. This allows a high accuracy test of the grain alignment efficiency as a function of Ψ. Results: We confirm and improve the measured accuracy of the variability of the grain alignment efficiency with Ψ, seen in the earlier study. We note that the grain temperature (heating) also shows a dependence on Ψ which we interpret as a natural effect of the projection of the grain surface to the illuminating radiation source. This dependence also allows us to derive an estimate of the fraction of aligned grains in the cloud.

  19. Is the flow-aligned component of IMF really able to impact the magnetic field structure of Venusian magnetotail?

    NASA Astrophysics Data System (ADS)

    Rong, Z. J.; Stenberg, G.; Wei, Y.; Chai, L. H.; Futaana, Y.; Barabash, S.; Wan, W. X.; Shen, C.

    2016-11-01

    An earlier statistical survey suggested that the flow-aligned component of upstream interplanetary magnetic field (IMF) may play an important role in controlling the lobe asymmetries of the Venusian magnetotail. The tail current sheet would be displaced and the magnetic field configuration would show asymmetries with respect to the current sheet. The asymmetries are expected to be more evident when the flow-aligned component becomes dominant. Here with carefully selected cases as well as a statistical study based on Venus Express observations in the near-Venus tail, we show that the lobe asymmetries of the magnetic field as well as the displacement of the current sheet are common characteristics of the Venusian magnetotail. However, the asymmetries and the displacement of the current sheet do not show a significant dependence on the flow-aligned component of the IMF. Our results suggest that the flow-aligned component of IMF cannot penetrate into the near magnetotail to impact the magnetic field structure.

  20. Field-aligned current signatures during the March 13-14, 1989, great magnetic storm

    SciTech Connect

    Fujii, R. ); Fukunishi, H. ); Kokubun, S. ); Sugiura, M. ); Tohyama, F. ); Hayakawa, H.; Tsuruda, K. ); Okada, T. )

    1992-07-01

    Characteristics of field-aligned currents (FACs) in the evening and morning regions during the March 13-14, 1989, great magnetic storm have been determined using magnetic and electric field data obtained from the EXOS D spacecraft. This storm began with an SSC at 0128 UT on March 13, and the second SSC occurred at 0747 UT on the same day. The storm continued until March 14. The equatorward boundary of the FAC region began to move equatorward right after the first SSC in both the evening and morning sectors, but the poleward boundary did not immediately respond to the SSC. The equatorward boundary of the FAC system reached as low as below 48{degree} invariant latitude, which corresponds to L = 2.2, and the latitudinal width of the FAC region increased greatly, particularly in the morning sector ({approximately}33{degree} in invariant latitude). In the evening sector the conventional current system characterized by a pair of upward region 1 and downward region 2 FACs changed into complicated patterns consisting of many pairs of upward and downward FACs with the development of the storm, particularly around 22 UT on March 13 when an intense eastward electrojet was observed as low as 50{degree} invariant latitude on the ground. In the morning sector an additional large-scale upward FAC was observed poleward of the conventional downward region 1 and upward region 2 FAC system throughout the storm. In addition, a pair of FACs with a narrow latitudinal width ({approximately}1.5{degree}) was observed at the poleward boundary of the extra upward FAC.

  1. Phase alignment and crystal orientation of Al 3Ni in Al-Ni alloy by imposition of a uniform high magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Chunjiang; Wang, Qiang; Wang, Zhongying; Li, Hutian; Nakajima, Keiji; He, Jicheng

    2008-03-01

    Solidification experiments of aluminum-nickel binary alloys under uniform high magnetic fields have been conducted. The effects of high magnetic fields on the crystal orientation of Al 3Ni were investigated by XRD and the alignment of primary phases Al 3Ni were also analyzed. Experimental results showed that the easy magnetization axis of Al 3Ni crystal oriented parallel to the imposed magnetic fields and the primary phase Al 3Ni aligned perpendicular to the magnetic fields. Magnetic orientation of crystal was determined by magnetic anisotropy energy. Whereas the phase alignment should be contributed to the combined effects of magnetic orientation, crystal growth and the effects of magnetic fields on mass transport during solidification.

  2. By-controlled convection and field-aligned currents near midnight auroral oval for northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Taguchi, S.; Sugiura, M.; Iyemori, T.; Winningham, J. D.; Slavin, J. A.

    1994-01-01

    Using the Dynamics Explorer (DE) 2 magnetic and electric field and plasma data, B(sub y)- controlled convection and field-aligned currents in the midnight sector for northward interplanetary magnetic field (IMF) are examined. The results of an analysis of the electric field data show that when IMF is stable and when its magnitude is large, a coherent B(sub y)-controlled convection exists near the midnight auroral oval in the ionosphere having adequate conductivities. When B(sub y) is negative, the convection consists of a westward (eastward) plasma flow at the lower latitudes and an eastward (westward) plasma flow at the higher latitudes in the midnight sector in the northern (southern) ionosphere. When B(sub y) is positive, the flow directions are reversed. The distribution of the field-aligned currents associated with the B(sub y)-controlled convection, in most cases, shows a three-sheet structure. In accordance with the convection the directions of the three sheets are dependent on the sign of B(sub y). The location of disappearance of the precipitating intense electrons having energies of a few keV is close to the convection reversal surface. However, the more detailed relationship between the electron precipitation boundary and the convection reversal surface depends on the case. In some cases the precipitating electrons extend beyond the convection reversal surface, and in others the poleward boundary terminates at a latitude lower than the reversal surface. Previous studies suggest that the poleward boundary of the electrons having energies of a few keV is not necessarily coincident with an open/closed bounary. Thus the open/closed boundary may be at a latitude higher than the poleward boundary of the electron precipitation, or it may be at a latitude lower than the poleward boundary of the electron precipitation. We discuss relationships between the open/closed boundary and the convection reversal surface. When as a possible choice we adopt a view that the

  3. Field-aligned current associated with a distorted two-cell convection pattern during northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Zhu, L.; Schunk, R. W.; Sojka, J. J.

    1991-01-01

    The influence of the ionospheric conductance on the field-aligned current associated with a distorted two-cell convection pattern during northward IMF was investigated using the Heppner-Maynard (1987) convection model and the Utah State University conductivity model described by Rasmussen and Schunk (1987). Results show that the variation of the ionospheric conductivity distribution can significantly affect the features of the field-aligned current for northward IMF, where matching or mismatching between the conductance gradient and the convection electric field plays a key role. It was found that the increase of the field-aligned current in the polar cap observed during summer is mainly due to the increasing contribution from the Pedersen current, and that the increase of the field-aligned current in both the oval region and the evening-midnight sector during the active aurora period is mainly due to the increasing contribution from the Hall current.

  4. Euler potentials for two layers with non-constant current densities in the ambient magnetic field aligned to the layers

    NASA Astrophysics Data System (ADS)

    Vandas, Marek; Romashets, Eugene P.

    2016-12-01

    The Euler potentials for two current layers aligned to an ambient homogeneous magnetic field are found. Previous treatment of such a system assumed constant current density in the layers. However, the magnetic field becomes infinite at the edges. The new approach eliminates this inconsistency by introducing an inhomogeneous current density. Euler potentials are constructed semi-analytically for such a system. Charged-particle motion and trapping in it are examined by this representation. Using Euler potentials, the influence of current sheets of zero and non-zero thicknesses on energetic-particle fluxes is investigated, and characteristic flux variations near the sheets are presented. The results can be applied to Birkeland currents.

  5. Avoiding Tokamak Disruptions by Applying Static Magnetic Fields That Align Locked Modes with Stabilizing Wave-Driven Currents.

    PubMed

    Volpe, F A; Hyatt, A; La Haye, R J; Lanctot, M J; Lohr, J; Prater, R; Strait, E J; Welander, A

    2015-10-23

    Nonrotating ("locked") magnetic islands often lead to complete losses of confinement in tokamak plasmas, called major disruptions. Here locked islands were suppressed for the first time, by a combination of applied three-dimensional magnetic fields and injected millimeter waves. The applied fields were used to control the phase of locking and so align the island O point with the region where the injected waves generated noninductive currents. This resulted in stabilization of the locked island, disruption avoidance, recovery of high confinement, and high pressure, in accordance with the expected dependencies upon wave power and relative phase between the O point and driven current.

  6. Studies of Westward Electrojets and Field-Aligned Currents in the Magnetotail during Substorms: Implications for Magnetic Field Models

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Our studies elucidated the relationship between the auroral arcs and magnetotail phenomena. One paper examined particle energization in the source region of the field-aligned currents that intensify at substorm onset when the arc brightens to form the westward electrojet. A second paper examined the relationship between the precipitating particles in the arcs, the location of the westward electrojet, and magnetospheric source regions. Two earlier papers also investigated the roles that field aligned currents and particle acceleration have during substorms.

  7. Field-Aligned Current Reconfiguration and Magnetospheric Response to an Impulse in the Interplanetary Magnetic Field BY Component

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Eriksson, S.; Korth, H.; Hairston, M. R.; Baker, J. B.; Heinselman, C. J.

    2013-12-01

    When the interplanetary magnetic field (IMF) is dawnward or duskward, magnetic merging between the IMF and the geomagnetic field occurs near the cusp on the dayside flanks of the magnetosphere. During these intervals, flow channels in the ionosphere with velocities in excess of 2 km/s have been observed, which can deposit large amounts of energy into the high-latitude thermosphere. In this study, we analyze an interval on 5 April 2010 where there was a strong dawnward impulse in the IMF, followed by a gradual decay in IMF magnitude at constant clock angle. Data from the Sondrestrom incoherent scatter radar and the DMSP spacecraft were used to investigate ionospheric convection during this interval, and data from the Active Magnetospheric and Planetary Electrodynamics Response Experiment (AMPERE) were used to investigate the associated Field-Aligned Current (FAC) system. Additionally, data from AMPERE were used to investigate the time response of the dawn-side FAC pair. We find there is a delay of approximately 1.25 hours between the arrival of the dawnward IMF impulse at the magnetopause and strength of the dawnward FAC pair, which is comparable to substorm growth and expansion time scales under southward IMF. Additionally, we find at the time of the peak FAC, there is evidence of a reconfiguring four-sheet FAC system in the morning local time sector of the ionosphere. Additionally, we find an inverse correlation between the dawn FAC strength and both the solar wind Alfvénic Mach number and the SYM-H index. No statistically significant correlation between the FAC strength and the solar wind dynamic pressure was found.

  8. Influences of the interplanetary magnetic field clock angle and cone angle on the field-aligned currents in the magnetotail

    NASA Astrophysics Data System (ADS)

    Cheng, Z. W.; Shi, J. K.; Dunlop, M.; Liu, Z. X.

    2013-10-01

    The influences of the interplanetary magnetic field (IMF) cone angle θ and clock angle ϕ on the field-aligned currents (FACs) at the plasma sheet boundary layers (PSBLs) have been investigated using Cluster Data. The FAC occurrence increases monotonically with IMF cone angle and has two peaks at -90° and +110° clock angle, respectively. The peak at +110° is distinctly larger than that at -90°. Overall, there are more FACs between 0° < ϕ < 180°, indicating that FACs occurrence is closely associated with duskward IMF. More FACs occur when 90° < |ϕ| < 180°, implying that FAC is closely associated with southward IMF. The large FAC densities occur when 60° < |ϕ| < 120°. The density also has two peaks and the peak at +90° clock angle (duskward IMF) is larger than that at -90° (dawnward IMF). These results indicate that the IMF influence on the FACs is from all IMF components and not only from a single component.

  9. Observation of transient alignment-inversion walls in nematics of phenyl benzoates in the presence of a magnetic field.

    PubMed

    Hinov, Hristo P; Vistin', Leonard K; Marinov, Yordan G

    2014-04-17

    Formation of new transient walls by a constant magnetic field at the Fréedericsz critical value has been observed. They are oriented along the initial alignment of the nematic phase of phenyl benzoates and appeared only in relatively thick samples with a thickness between 50 and 100 μm of the cells. The excellent planarity of the liquid crystal orientation is considered to be the most important condition for their presence These magnetic walls are transient as they disappear either after a few seconds for 100 μm thick nematic cells or after parts of a second for thinner (50 μm) nematic cells. Nonregular stable magnetic walls, incorporating disclinations with core, appear immediately after the relaxation of the transient walls, when the planarity of the nematic orientation is not perfect. In thinner nematic cells of 20 μm or less, a Fréedericksz transition has only been observed. The formation of transient magnetic walls can be described by a model taking into account alignment-inversion, twisted along Y regions. The transient walls accompanied by a system of Becke lines relax by going through three-dimensional twist-splay-bend deformations.

  10. Aligned magnetic field and cross-diffusion effects of a nanofluid over an exponentially stretching surface in porous medium

    NASA Astrophysics Data System (ADS)

    Sulochana, C.; Sandeep, N.; Sugunamma, V.; Rushi Kumar, B.

    2016-06-01

    In this paper, we investigated the effects of aligned magnetic field, thermal radiation, heat generation/absorption, cross-diffusion, viscous dissipation, heat source and chemical reaction on the flow of a nanofluid past an exponentially stretching sheet in porous medium. The governing partial differential equations are transformed to set of ordinary differential equations using self-similarity transformation, which are then solved numerically using bvp4c Matlab package. Finally the effects of various non-dimensional parameters on velocity, temperature, concentration, skin friction, local Nusselt and Sherwood numbers are thoroughly investigated and presented through graphs and tables. We observed that an increase in the aligned angle strengthens the applied magnetic field and decreases the velocity profiles of the flow. Soret and Dufour numbers are helpful to enhance the heat transfer rate. An increase in the heat source parameter, radiation parameter and Eckert number increases the mass transfer rate. Mixed convection parameter has tendency to enhance the friction factor along with the heat and mass transfer rate.

  11. Does the Earth's Magnetic Field Serve as a Reference for Alignment of the Honeybee Waggle Dance?

    PubMed Central

    Lambinet, Veronika; Hayden, Michael E.; Bieri, Marco; Gries, Gerhard

    2014-01-01

    The honeybee (Apis mellifera) waggle dance, which is performed inside the hive by forager bees, informs hive mates about a potent food source, and recruits them to its location. It consists of a repeated figure-8 pattern: two oppositely directed turns interspersed by a short straight segment, the “waggle run”. The waggle run consists of a single stride emphasized by lateral waggling motions of the abdomen. Directional information pointing to a food source relative to the sun's azimuth is encoded in the angle between the waggle run line and a reference line, which is generally thought to be established by gravity. Yet, there is tantalizing evidence that the local (ambient) geomagnetic field (LGMF) could play a role. We tested the effect of the LGMF on the recruitment success of forager bees by placing observation hives inside large Helmholtz coils, and then either reducing the LGMF to 2% or shifting its apparent declination. Neither of these treatments reduced the number of nest mates that waggle dancing forager bees recruited to a feeding station located 200 m north of the hive. These results indicate that the LGMF does not act as the reference for the alignment of waggle-dancing bees. PMID:25541731

  12. Differential Heating of Magnetically Aligned Dust Grains

    NASA Astrophysics Data System (ADS)

    Vaillancourt, John E.; Andersson, B.

    2013-01-01

    We use far-infrared photometric maps from IRAS and Herschel to search for the differential heating of asymmetric dust grains aligned with respect to an interstellar magnetic field and heated by a localized radiation source. The grains are known to be asymmetric and have a net alignment of their axes from observations of background starlight polarization. Modern theories on grain alignment suggest that photons from stars embedded in the foreground cloud are a key ingredient of the physical mechanism responsible for alignment (i.e., radiative torques). This theory predicts a relation between the grain alignment efficiency and the angle between the magnetic field and the direction to the aligning radiation source. This effect has been tentatively observed in a source with a very simple geometry (Andersson et al. 2011): the aligning photons are primarily from a single localized source (i.e., a single star) and the local magnetic field direction is known to be fairly uniform. Such a region also has consequences for the distribution of grain heating. For example, asymmetric grains whose largest cross-sections are normal to the incident stellar radiation will reach warmer equilibrium temperatures compared to grains whose largest cross-section is parallel to that direction. This should be observed as an azimuthal dependence of the dust color temperature. We present evidence of such a dependence using IRAS data at 60 and 100 micron. We expect this effect to be stronger using longer wavelength (i.e., 160 micron) data better coupled to the "big-grain" dust population, grains which are also more efficiently aligned with the local magnetic field. Here we also present the results of our on-going work to search for this signal using Herschel maps towards three candidate stars.

  13. Magnetic-Field-Aligned Characteristics of Plasma Bubbles in the Nighttime Equatorial Ionosphere.

    DTIC Science & Technology

    1979-07-01

    The best evidence published to date is that of Dyson and Benson [19781. Using topside ionograms taken from Alouette II and ISIS I satellites, they...inferred the existence of depleted magnetic flux tubes in the equatorial ionosphere by interpreting anomalous ionogram traces in terms of high-frequency

  14. The fabrication of single-walled carbon nanotube/polyelectrolyte multilayer composites by layer-by-layer assembly and magnetic field assisted alignment

    NASA Astrophysics Data System (ADS)

    Tian, Ying; Park, Jin Gyu; Cheng, Qunfeng; Liang, Zhiyong; Zhang, Chuck; Wang, Ben

    2009-08-01

    Single-walled carbon nanotube (SWNT)/polymer composites are widely studied because of their potential for high mechanical performance and multifunctional applications. In order to realize highly ordered multilayer nanostructures, we combined the layer-by-layer (LBL) assembly method with magnetic force-induced alignment to fabricate SWNT/poly(ethylamine) (PEI) multilayer composites. The SWNTs were functionalized with the anionic surfactant sodium dodecylbenzenesulfonate (NaDDBS) to realize negative charge at pH>7, while the PEI is positively charged at pH<7. The LBL method is based on the electrostatic absorption between the charged SWNTs and PEI resin to form multilayer composites on a solid substrate polydimethylsiloxane. Since the fabricated thickness of each SWNT-NaDDBS/PEI bilayer is uniform (~150 nm), the multilayer film thickness can be strictly controlled via the number of deposition cycles. A high magnetic field (8.5 Tesla) was used to align the SWNTs during the LBL process. The resultant LBL composite samples demonstrated high SWNT loading of approximately 50 wt% and uniform distribution of SWNTs in the multilayer structures, which was verified using a quartz crystal microbalance. Good alignment was also realized and observed through using high magnetic fields to align the nanotubes during the LBL deposition process. The results indicate that the LBL/magnetic alignment approach has potential for fabricating nanotube composites with highly ordered nanostructures for multifunctional materials and device applications.

  15. Ion-temperature-gradient sensitivity of the hydrodynamic instability caused by shear in the magnetic-field-aligned plasma flow

    SciTech Connect

    Mikhailenko, V. V.; Mikhailenko, V. S.; Lee, Hae June; Koepke, M. E.

    2014-07-15

    The cross-magnetic-field (i.e., perpendicular) profile of ion temperature and the perpendicular profile of the magnetic-field-aligned (parallel) plasma flow are sometimes inhomogeneous for space and laboratory plasma. Instability caused either by a gradient in the ion-temperature profile or by shear in the parallel flow has been discussed extensively in the literature. In this paper, (1) hydrodynamic plasma stability is investigated, (2) real and imaginary frequency are quantified over a range of the shear parameter, the normalized wavenumber, and the ratio of density-gradient and ion-temperature-gradient scale lengths, and (3) the role of inverse Landau damping is illustrated for the case of combined ion-temperature gradient and parallel-flow shear. We find that increasing the ion-temperature gradient reduces the instability threshold for the hydrodynamic parallel-flow shear instability, also known as the parallel Kelvin-Helmholtz instability or the D'Angelo instability. We also find that a kinetic instability arises from the coupled, reinforcing action of both free-energy sources. For the case of comparable electron and ion temperature, we illustrate analytically the transition of the D'Angelo instability to the kinetic instability as (a) the shear parameter, (b) the normalized wavenumber, and (c) the ratio of density-gradient and ion-temperature-gradient scale lengths are varied and we attribute the changes in stability to changes in the amount of inverse ion Landau damping. We show that near a normalized wavenumber k{sub ⊥}ρ{sub i} of order unity (i) the real and imaginary values of frequency become comparable and (ii) the imaginary frequency, i.e., the growth rate, peaks.

  16. Renormalized theory of ion temperature gradient instability of the magnetic-field-aligned plasma shear flow with hot ions

    SciTech Connect

    Mikhailenko, V. V. Mikhailenko, V. S.; Lee, Hae June

    2015-10-15

    The developed kinetic theory for the stability of a magnetic-field-aligned (parallel) shear flow with inhomogeneous ion temperature [Mikhailenko et al., Phys. Plasmas 21, 072117 (2014)] predicted that a kinetic instability arises from the coupled reinforcing action of the flow velocity shear and ion temperature gradient in the cases where comparable ion and electron temperatures exist. In the present paper, the nonlinear theory was developed for the instability caused by the combined effects of ion-temperature-gradient and shear-flow (ITG–SF). The level of the electrostatic turbulence is determined for the saturation state of the instability on the basis of the nonlinear dispersion equation, which accounts for a nonlinear scattering of ions by the developed turbulence in a sheared flow. The renormalized quasilinear equation for the ion distribution function, which accounts for the turbulent scattering of ions by ITG–SF driven turbulence, was derived and employed for the estimation of the turbulent ion viscosity, the anomalous ion thermal conductivity, and anomalous ion heating rate at the saturation state of the instability.

  17. Magnetic alignment of plant cell microfibrils and their anisotropic elasticity

    NASA Astrophysics Data System (ADS)

    Fujimura, Yuu; Sakaida, Hidetaka; Iino, Masaaki

    2010-06-01

    The magnetic alignment of microfibrils on a single regenerated plant cell surface subjected to magnetic fields and its anisotropic cell surface area expansivity modulus (area modulus) were studied. The magnetic alignment around the equator of the cell (the polar axis parallel to the magnetic field) was confirmed by a 2-dim Fourier analysis of images from a scanning electron microscope, and these were expressed by a theoretical magnetic order parameter for anisotropic relative magnetic permeability of 3×10-27, while the microfibrils near the pole did not show any such magnetic alignment. The magnetic field anisotropically stiffened the cell surface. The stiffness around the equator was greater than that around the pole. The magnetic field dependences of the area modulus agreed with the mechanical model.

  18. Designing an optimum pulsed magnetic field by a resistance/self-inductance/capacitance discharge system and alignment of carbon nanotubes embedded in polypyrrole matrix.

    PubMed

    Kazemikia, Kaveh; Bonabi, Fahimeh; Asadpoorchallo, Ali; Shokrzadeh, Majid

    2015-02-01

    In this work, an optimized pulsed magnetic field production apparatus is designed based on a RLC (Resistance/Self-inductance/Capacitance) discharge circuit. An algorithm for designing an optimum magnetic coil is presented. The coil is designed to work at room temperature. With a minor physical reinforcement, the magnetic flux density can be set up to 12 Tesla with 2 ms duration time. In our design process, the magnitude and the length of the magnetic pulse are the desired parameters. The magnetic field magnitude in the RLC circuit is maximized on the basis of the optimal design of the coil. The variables which are used in the optimization process are wire diameter and the number of coil layers. The coil design ensures the critically damped response of the RLC circuit. The electrical, mechanical, and thermal constraints are applied to the design process. A locus of probable magnetic flux density values versus wire diameter and coil layer is provided to locate the optimum coil parameters. Another locus of magnetic flux density values versus capacitance and initial voltage of the RLC circuit is extracted to locate the optimum circuit parameters. Finally, the application of high magnetic fields on carbon nanotube-PolyPyrrole (CNT-PPy) nano-composite is presented. Scanning probe microscopy technique is used to observe the orientation of CNTs after exposure to a magnetic field. The result shows alignment of CNTs in a 10.3 Tesla, 1.5 ms magnetic pulse.

  19. Studies of Westward Electrojets and Field-Aligned Currents in the Magnetotail During Substorms: Implications for Magnetic Field Models

    NASA Technical Reports Server (NTRS)

    Spence, Harlan E.

    1996-01-01

    This section outlines those tasks undertaken in the final year that contribute integrally to the overarching project goals. Fast, during the final year, it is important to note that the project benefited greatly with the addition of a Boston University graduate student, Ms. Karen Hirsch. Jointly, we made substantial progress on the development of and improvements to magnetotail magnetic field and plasma models. The ultimate aim of this specific task was to assess critically the utility of such models for mapping low-altitude phenomena into the magnetotail (and vice-versa). The bulk of this effort centered around the finite-width- magnetotail convection model developed by and described by Spence and Kivelson (J. Geophys. Res., 98, 15,487, 1993). This analytic, theoretical model specifies the bulk plasma characteristics of the magnetotail plasma sheet (number density, temperature, pressure) across the full width of the tail from the inner edge of the plasma sheet to lunar distances. Model outputs are specified by boundary conditions of the source particle populations as well as the magnetic and electric field configuration. During the reporting period, we modified this code such that it can be interfaced with the auroral particle precipitation model developed by Dr. Terry Onsager. Together, our models provide a simple analytic specification of the equatorial distribution of fields and plasma along with their low-altitude consequences. Specifically, we have built a simple, yet powerful tool which allows us to indirectly 'map' auroral precipitation signatures (VDIS, inverted-V's, etc.) measured by polar orbiting spacecraft in the ionosphere, to the magnetospheric equatorial plane. The combined models allow us to associate latitudinal gradients measured in the ion energy fluxes at low-altitudes with the large-scale pressure gradients in the equatorial plane. Given this global, quasi-static association, we can then make fairly strong statements regarding the location of

  20. Micromagnet structures for magnetic positioning and alignment

    NASA Astrophysics Data System (ADS)

    Zanini, L. F.; Osman, O.; Frenea-Robin, M.; Haddour, N.; Dempsey, N. M.; Reyne, G.; Dumas-Bouchiat, F.

    2012-04-01

    High performance hard magnetic films (NdFeB, SmCo) have been patterned at the micron scale using thermo-magnetic patterning. Both out-of-plane and in-plane magnetized structures have been prepared. These micromagnet arrays have been used for the precise positioning and alignment of superparamagnetic nano- and microparticles. The specific spatial arrangement achieved is shown to depend on both the particle size and the size and orientation of the micromagnets. These micromagnet arrays were used to trap cells magnetically functionalized by endocytosis of 100 nm superparamagnetic particles. These simple, compact, and autonomous structures, which need neither an external magnetic field source nor a power supply, have much potential for use in a wide range of biological applications.

  1. Magnetic alignment and the Poisson alignment reference system

    NASA Astrophysics Data System (ADS)

    Griffith, L. V.; Schenz, R. F.; Sommargren, G. E.

    1990-08-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This article begins with a review of the motivation for developing an alignment system that will assure better than 100-μm accuracy in the alignment of the magnetic axis throughout an FEL. The 100-μm accuracy is an error circle about an ideal axis for 300 m or more. The article describes techniques for identifying the magnetic axes of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development of a straight-line reference based on the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. The Poisson alignment reference system should be accurate to 25 μm over 300 m, which is believed to be a factor-of-4 improvement over earlier techniques. An error budget shows that only 25% of the total budgeted tolerance is used for the alignment reference system, so the remaining tolerances should fall within the allowable range for FEL alignment.

  2. A self-consistent two-dimensional resistive fluid theory of field-aligned potential structures including charge separation and magnetic and velocity shear

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim; Schindler, Karl

    1990-01-01

    A self-consistent two-fluid theory that includes the magnetic field and shear patterns is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term, and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality, are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients (i.e., thermal effects in the direction of the magnetic field) and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory, simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares.

  3. Magnetic axis alignment and the Poisson alignment reference system

    NASA Astrophysics Data System (ADS)

    Griffith, Lee V.; Schenz, Richard F.; Sommargren, Gary E.

    1989-01-01

    Three distinct metrological operations are necessary to align a free-electron laser (FEL): the magnetic axis must be located, a straight line reference (SLR) must be generated, and the magnetic axis must be related to the SLR. This paper begins with a review of the motivation for developing an alignment system that will assure better than 100 micrometer accuracy in the alignment of the magnetic axis throughout an FEL. The paper describes techniques for identifying the magnetic axis of solenoids, quadrupoles, and wiggler poles. Propagation of a laser beam is described to the extent of revealing sources of nonlinearity in the beam. Development and use of the Poisson line, a diffraction effect, is described in detail. Spheres in a large-diameter laser beam create Poisson lines and thus provide a necessary mechanism for gauging between the magnetic axis and the SLR. Procedures for installing FEL components and calibrating alignment fiducials to the magnetic axes of the components are also described. An error budget shows that the Poisson alignment reference system will make it possible to meet the alignment tolerances for an FEL.

  4. Simultaneous particle and field observations of field-aligned currents

    NASA Technical Reports Server (NTRS)

    Berko, F. W.; Hoffman, R. A.; Burton, R. K.; Holzer, R. E.

    1973-01-01

    Simultaneous measurements of low energy precipitating electrons and magnetic fluctuations from the low altitude polar orbiting satellite OGO-4 have been compared. Analysis of the two sets of experimental data for isolated events led to the classification of high latitude field-aligned currents as purely temporal or purely spatial variations. Magnetic field disturbances calculated using these simple current models and the measured particle fluxes were in good agreement with measured field values. While fluxes of greater than 1 keV electrons are detected primarily on the nightside, magnetometer disturbances indicative of field-aligned currents were seen at all local times, both in the visual auroral regions and dayside polar cusp. Thus electrons with energies less than approximately 1 keV are the prime charge carriers in high latitude dayside field-aligned currents. The satellite measurements are in good agreement with previously measured field-aligned current values and with values predicted from several models involving magnetospheric field-aligned currents.

  5. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    NASA Astrophysics Data System (ADS)

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R. W.; McCall, Scott K.; Kramer, M. J.; Paranthaman, M. Parans

    2017-01-01

    Considerations for achieving high degree of alignment in polymer bonded permanent magnets are presented via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. The thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.

  6. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    DOE PAGES

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; ...

    2016-08-30

    We presented some considerations for achieving high degree of alignment in polymer bonded permanent magnets via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. Moreover, the thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees withmore » an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Finally, manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.« less

  7. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    SciTech Connect

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R. W.; McCall, Scott K.; Kramer, M. J.; Paranthaman, M. Parans

    2016-08-30

    We presented some considerations for achieving high degree of alignment in polymer bonded permanent magnets via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. Moreover, the thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Finally, manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.

  8. A Unified Model of Grain Alignment: Radiative Alignment of Interstellar Grains with Magnetic Inclusions

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem; Lazarian, A.

    2016-11-01

    The radiative torque (RAT) alignment of interstellar grains with ordinary paramagnetic susceptibilities has been supported by earlier studies. The alignment of such grains depends on the so-called RAT parameter q max, which is determined by the grain shape. In this paper, we elaborate on our model of RAT alignment for grains with enhanced magnetic susceptibility due to iron inclusions, such that RAT alignment is magnetically enhanced, which we term the MRAT mechanism. Such grains can be aligned with high angular momentum at the so-called high-J attractor points, achieving a high degree of alignment. Using our analytical model of RATs, we derive the critical value of the magnetic relaxation parameter δ m to produce high-J attractor points as functions of q max and the anisotropic radiation angle relative to the magnetic field ψ. We find that if about 10% of the total iron abundance present in silicate grains is forming iron clusters, this is sufficient to produce high-J attractor points for all reasonable values of q max. To calculate the degree of grain alignment, we carry out numerical simulations of MRAT alignment by including stochastic excitations from gas collisions and magnetic fluctuations. We show that large grains can achieve perfect alignment when the high-J attractor point is present, regardless of the values of q max. Our obtained results pave the way for the physical modeling of polarized thermal dust emission as well as magnetic dipole emission. We also find that millimeter-sized grains in accretion disks may be aligned with the magnetic field if they are incorporated with iron nanoparticles.

  9. Spontaneous magnetic alignment behaviour in free-living lizards

    NASA Astrophysics Data System (ADS)

    Diego-Rasilla, Francisco J.; Pérez-Mellado, Valentín; Pérez-Cembranos, Ana

    2017-04-01

    Several species of vertebrates exhibit spontaneous longitudinal body axis alignment relative to the Earth's magnetic field (i.e., magnetic alignment) while they are performing different behavioural tasks. Since magnetoreception is still not fully understood, studying magnetic alignment provides evidence for magnetoreception and broadens current knowledge of magnetic sense in animals. Furthermore, magnetic alignment widens the roles of magnetic sensitivity in animals and may contribute to shed new light on magnetoreception. In this context, spontaneous alignment in two species of lacertid lizards ( Podarcis muralis and Podarcis lilfordi) during basking periods was monitored. Alignments in 255 P. muralis and 456 P. lilfordi were measured over a 5-year period. The possible influence of the sun's position (i.e., altitude and azimuth) and geomagnetic field values corresponding to the moment in which a particular lizard was observed on lizards' body axis orientation was evaluated. Both species exhibited a highly significant bimodal orientation along the north-northeast and south-southwest magnetic axis. The evidence from this study suggests that free-living lacertid lizards exhibit magnetic alignment behaviour, since their body alignments cannot be explained by an effect of the sun's position. On the contrary, lizard orientations were significantly correlated with geomagnetic field values at the time of each observation. We suggest that this behaviour might provide lizards with a constant directional reference while they are sun basking. This directional reference might improve their mental map of space to accomplish efficient escape behaviour. This study is the first to provide spontaneous magnetic alignment behaviour in free-living reptiles.

  10. Field aligned current observations in the polar cusp ionosphere

    NASA Technical Reports Server (NTRS)

    Ledley, B. G.; Farthing, W. H.

    1973-01-01

    Vector magnetic field measurements made during a sounding rocket flight in the polar cusp ionosphere show field fluctuations in the lower F-region which are interpreted as being caused by the payload's passage through a structured field aligned current system. The field aligned currents have a characteristic horizontal scale size of one kilometer. Analysis of one large field fluctuation gives a current density of 0.0001 amp/m sq.

  11. Competition of magnetic and hydrodynamic forces on ellipsoidal particles under shear: Influence of the Earth's magnetic field on particle alignment in viscous media

    NASA Astrophysics Data System (ADS)

    Jezek, Josef; Gilder, Stuart A.

    2006-12-01

    We present a model that describes the rotation of ellipsoidal magnetic particles in a viscous fluid under the influence of hydrodynamic and magnetic forces, with an aim to better understand how sediments acquire their remanent magnetizations. Analyses of the governing equations elucidate how magnetic particles will rotate for different values of leading parameters including particle shape, remanent and induced magnetic intensity, magnetic field intensity and direction, strain rate, shear direction, and viscosity. Numerical solution of the governing equations makes it possible to visualize the rotation path and the magnetic direction of a particle through time. Thus the model can discern the timescales and trajectories of magnetic particles rotating due to torque of the magnetic field couple while simultaneously entrained in a velocity gradient. For example, in a layer of viscosity 104 Pa s, prolate magnetite starting at any initial orientation and subjected to simple shear with a strain rate of 3.17 × 10-8 s-1 needs 4 months to rotate within 3° of the Earth's field direction. Under the same conditions, hydrodynamic forces will govern the orientation of oblate hematite whose moment will be perpetually randomly oriented with respect to the magnetic field direction. When applied to laboratory experiments, the viscous model successfully matches the observed data, particularly after accounting for mechanical interaction and flocculation effects. Magnetic anisotropies calculated from multiparticle systems of hematite yield typical sedimentary fabrics with relatively low percentages of anisotropy (<5%) and maximum principal axes that lie in the sedimentation plane.

  12. Creeping flow of a conducting fluid past axisymmetric bodies in the presence of an aligned magnetic field

    NASA Technical Reports Server (NTRS)

    Kyrlidis, A.; Brown, R. A.; Walker, J. S.

    1990-01-01

    The use of strong magnetic fields for the control of particle settling in metallic systems is investigated by altering the fluid mechanics in the melt. The fluid mechanism of particle settling is analyzed for the motion around single, axisymmetric particles in the limit of creeping flow for a fluid with a large electrical conductivity. The drag is found to increase proportionately to the intensity of the magnetic field or the Hartmann number Ha. The flowfield forms boundary layers, which thin out with increasing Ha, along the surfaces parallel to the flow. For axisymmetric bodies, the boundary layer separates as the poles of the surface are approached and encloses regions of almost stagnant fluid. These regions spread upstream and downstream along the body with increasing Ha, thereby trapping the particle in a column of stagnant fluid.

  13. 'Fixed-axis' magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field?

    PubMed

    Phillips, John B; Borland, S Chris; Freake, Michael J; Brassart, Jacques; Kirschvink, Joseph L

    2002-12-01

    suggestion that homing newts use the light-dependent magnetic compass to align a magnetite-based 'map detector' when obtaining the precise measurements necessary to derive map information from the magnetic field. However, aligning the putative map detector does not explain the fixed-axis response of newts tested under long-wavelength light. Preliminary evidence suggests that, in the absence of reliable directional information from the magnetic compass (caused by the 90 degrees rotation of the response of the magnetic compass under long-wavelength light), newts may resort to a systematic sampling strategy to identify alignment(s) of the map detector that yields reliable magnetic field measurements.

  14. Transparent and through thickness conductive polystyrene films using external magnetic fields for ``Z'' alignment of nickel nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Yuwei; Guo, Yuanhao; Batra, Saurabh; Wang, Enmin; Wang, Yanping; Liu, Xueqing; Wang, Yimin; Cakmak, Miko

    2015-08-01

    A combination of transparency, electrical conductivity and flexibility is desired in the emerging flexible electronics industry for current and future applications. In this paper, we report the development of through thickness electrical conductivity in polystyrene films filled with nickel nanopowder by external magnetic field application. This process leads to the formation of nanocolumns of nickel spanning across the thickness direction while generating nanoparticle depleted regions in between. This leads to directionally dependent enhancement in optical light transmission particularly in the normal direction of the films. With the use of as little as 2 wt% (0.22 vol%) nickel we were able to achieve high through thickness conductivity under the influence of a magnetic field. While these films exhibit high through thickness conductivity they remain non-conductive in their planes as a result of the unique nanomorphology created which eliminates potential side branch formations. These films are anticipated to be used as electrodes for touch screens, electric dissipative materials for electronic packaging and other sensors.A combination of transparency, electrical conductivity and flexibility is desired in the emerging flexible electronics industry for current and future applications. In this paper, we report the development of through thickness electrical conductivity in polystyrene films filled with nickel nanopowder by external magnetic field application. This process leads to the formation of nanocolumns of nickel spanning across the thickness direction while generating nanoparticle depleted regions in between. This leads to directionally dependent enhancement in optical light transmission particularly in the normal direction of the films. With the use of as little as 2 wt% (0.22 vol%) nickel we were able to achieve high through thickness conductivity under the influence of a magnetic field. While these films exhibit high through thickness conductivity they

  15. Transparent and through thickness conductive polystyrene films using external magnetic fields for "Z" alignment of nickel nanoparticles.

    PubMed

    Chen, Yuwei; Guo, Yuanhao; Batra, Saurabh; Wang, Enmin; Wang, Yanping; Liu, Xueqing; Wang, Yimin; Cakmak, Miko

    2015-09-21

    A combination of transparency, electrical conductivity and flexibility is desired in the emerging flexible electronics industry for current and future applications. In this paper, we report the development of through thickness electrical conductivity in polystyrene films filled with nickel nanopowder by external magnetic field application. This process leads to the formation of nanocolumns of nickel spanning across the thickness direction while generating nanoparticle depleted regions in between. This leads to directionally dependent enhancement in optical light transmission particularly in the normal direction of the films. With the use of as little as 2 wt% (0.22 vol%) nickel we were able to achieve high through thickness conductivity under the influence of a magnetic field. While these films exhibit high through thickness conductivity they remain non-conductive in their planes as a result of the unique nanomorphology created which eliminates potential side branch formations. These films are anticipated to be used as electrodes for touch screens, electric dissipative materials for electronic packaging and other sensors.

  16. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    SciTech Connect

    Arbelaez, D.; Madur, A.; Lipton, T.M.; Waldron, W.L.; Kwan, J.W.

    2011-04-01

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 {micro}m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  17. Biphenyl Bicelle Disks Align Perpendicular to Magnetic Fields on Large Temperature Scales: A Study Combining Synthesis, Solid-State NMR, TEM, and SAXS

    PubMed Central

    Loudet, Cécile; Manet, Sabine; Gineste, Stéphane; Oda, Reïko; Achard, Marie-France; Dufourc, Erick J.

    2007-01-01

    A phosphatidylcholine lipid (PC) containing a biphenyl group in one of its acyl chains (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC, TBBPC) was successfully synthesized with high yield. Water mixtures of TBBPC with a short-chain C6 lipid, dicaproyl-PC (DCPC), lead to bicelle systems formation. Freeze-fracture electron microscopy evidenced the presence of flat bilayered disks of 800 Å diameter for adequate composition, hydration, and temperature conditions. Because of the presence of the biphenyl group, which confers to the molecule a positive magnetic anisotropy Δχ, the disks align with their normal, n, parallel to the magnetic field B0, as directly detected by 31P, 14N, 2H solid-state NMR and also using small-angle x-ray scattering after annealing in the field. Temperature-composition and temperature-hydration diagrams were established. Domains where disks of TBBPC/DCPC align with their normal parallel to the field were compared to chain-saturated lipid bicelles made of DMPC(dimyristoylPC)/DCPC, which orient with their normal perpendicular to B0. TBBPC/DCPC bicelles exist on a narrow range of long- versus short-chain lipid ratios (3%) but over a large temperature span around room temperature (10–75°C), whereas DMPC/DCPC bicelles exhibit the reverse situation, i.e., large compositional range (22%) and narrow temperature span (25–45°C). The two types of bicelles present orienting properties up to 95% dilution but with the peculiarity that water trapped in biphenyl bicelles exhibits ordering properties twice as large as those observed in the saturated-chains analog, which offers very interesting properties for structural studies on hydrophilic or hydrophobic embedded biomolecules. PMID:17307824

  18. Magnetic alignment of mesophase pitch-based carbon fibers

    NASA Astrophysics Data System (ADS)

    Matthews, M. J.; Dresselhaus, M. S.; Dresselhaus, G.; Endo, M.; Nishimura, Y.; Hiraoka, T.; Tamaki, N.

    1996-07-01

    Mesophase pitch-based carbon fibers (MPCFs) have recently been developed for use as high performance anode materials in Li ion secondary batteries, having a microscopic as well as macroscopic structure especially suitable for Li storage. Because of the highly anisotropic diamagnetic moment observed between 50 and 310 K in pristine milled MPCF segments, they can easily be oriented parallel to an applied magnetic field, as observed by scanning electron microscopy. A simple model is proposed to explain both the observed alignment of undoped fibers and the suppression of alignment in B-doped MPCFs for relatively small applied magnetic fields, because of their smaller diamagnetic moment.

  19. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    DOE PAGES

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; ...

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ ≈ 2×10–8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstrate that intrinsic anisotropymore » is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.« less

  20. Magnetic alignment of block copolymer microdomains by intrinsic chain anisotropy

    SciTech Connect

    Rokhlenko, Yekaterina; Yager, Kevin G.; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Pawel W.

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ ≈ 2×10–8. From field-dependent scattering data, we estimate that grains of ≈ 1.2 μm are present during alignment. Furthermore, these results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  1. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O.; Zhang, Kai; O'Hern, Corey S.; Larson, Steven R.; Gopalan, Padma; Majewski, Paweł W.; Yager, Kevin G.

    2015-12-01

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δ χ , that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δ χ ≈2 ×1 0-8. From field-dependent scattering data, we estimate that grains of ≈1.2 μ m are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  2. Modeling of Field-Aligned Guided Echoes in the Plasmasphere

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Green, James L.

    2004-01-01

    The conditions under which high frequency (f>>f(sub uh)) long-range extraordinary-mode discrete field-aligned echoes observed by the Radio Plasma Imager (RPI) on board the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite in the plasmasphere are investigated by ray tracing modeling. Field-aligned discrete echoes are most commonly observed by RPI in the plasmasphere although they are also observed over the polar cap region. The plasmasphere field-aligned echoes appearing as multiple echo traces at different virtual ranges are attributed to signals reflected successively between conjugate hemispheres that propagate along or nearly along closed geomagnetic field lines. The ray tracing simulations show that field-aligned ducts with as little as 1% density perturbations (depletions) and less than 10 wavelengths wide can guide nearly field-aligned propagating high frequency X mode waves. Effective guidance of wave at a given frequency and wave normal angle (Psi) depends on the cross-field density scale of the duct, such that ducts with stronger density depletions need to be wider in order to maintain the same gradient of refractive index across the magnetic field. While signal guidance by field aligned density gradient without ducting is possible only over the polar region, conjugate field-aligned echoes that have traversed through the equatorial region are most likely guided by ducting.

  3. Anisotropic structural and magnetic properties of the field-aligned superconducting system SmFeAsO1-xFx (x = 0, 0.1, 0.2, 0.25 and 0.3)

    NASA Astrophysics Data System (ADS)

    You, Y. B.; Hsiao, T. K.; Chang, B. C.; Tai, M. F.; Hsu, Y. Y.; Ku, H. C.; Wei, Z.; Ruan, K. Q.; Li, X. G.

    2011-01-01

    Anisotropic structural and magnetic properties of the field-aligned superconducting system SmFeAsO1-xFx (x = 0, 0.1, 0.2, 0.25 and 0.3) are reported. Due to the Fe spin-orbital related anisotropic exchange coupling, all the tetragonal microcrystalline powders in epoxy were aligned at room temperature using the field-rotation method where the tetragonal ab-plane is parallel to the magnetic alignment field Ba of 0.9 T and the c-axis parallels to the rotating axis. Anisotropic magnetic properties are studied through low temperature magnetic measurements along the c-axis and paralleled to the ab-plane of aligned samples in both zero-field-cooled (ZFC) and field-cooled (FC) modes. The under-doped compound (x = 0.1) is not superconducting with an antiferromagnetic Néel temperature TN ~ 40 K, while the two optimum-doped compounds (x = 0.2 and 0.25) show high superconducting transition temperatures Tc of 49K and 50K, respectively. The variation of anisotropic structural and magnetic properties for this system are discussed and compared with the previously reported 52 K anisotropic superconductor Sm0.95La0.05FeAsO0.85F0.15.

  4. Effect of alignment of easy axes on dynamic magnetization of immobilized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Matsugi, Yuki; Tsujimura, Naotaka; Sasayama, Teruyoshi; Enpuku, Keiji; Viereck, Thilo; Schilling, Meinhard; Ludwig, Frank

    2017-04-01

    In some biomedical applications of magnetic nanoparticles (MNPs), the particles are physically immobilized. In this study, we explore the effect of the alignment of the magnetic easy axes on the dynamic magnetization of immobilized MNPs under an AC excitation field. We prepared three immobilized MNP samples: (1) a sample in which easy axes are randomly oriented, (2) a parallel-aligned sample in which easy axes are parallel to the AC field, and (3) an orthogonally aligned sample in which easy axes are perpendicular to the AC field. First, we show that the parallel-aligned sample has the largest hysteresis in the magnetization curve and the largest harmonic magnetization spectra, followed by the randomly oriented and orthogonally aligned samples. For example, 1.6-fold increase was observed in the area of the hysteresis loop of the parallel-aligned sample compared to that of the randomly oriented sample. To quantitatively discuss the experimental results, we perform a numerical simulation based on a Fokker-Planck equation, in which probability distributions for the directions of the easy axes are taken into account in simulating the prepared MNP samples. We obtained quantitative agreement between experiment and simulation. These results indicate that the dynamic magnetization of immobilized MNPs is significantly affected by the alignment of the easy axes.

  5. Numerical Simulations of a 20-kW Class Hall Thruster Using the Magnetic-Field-Aligned-Mesh Code Hall2De

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Kamhawi, Hani; Vannoord, Jonathan L.

    2011-01-01

    This paper reports on numerical simulations of the NASA-300M, a 20-kW class Hall thruster developed at the NASA Glenn Research Center (GRC). The numerical simulations have been performed with a 2-D axisymmetric, magnetic field-aligned-mesh (MFAM) plasma solver developed at the Jet Propulsion Laboratory (JPL). The main objective of the collaborative effort is to combine physics-based simulation, plasma diagnostics and recent findings on erosion physics to design and demonstrate a high-power, high-performance Hall thruster that exceeds the life of state-of-the-art Hall thrusters by more than one order of magnitude. The thruster simulations have been carried out at a discharge voltage of 500 V and discharge current of 40 A. The results indicate that although the impact energy of ions may attain values that are comparable to the discharge voltage along the downstream portions of the channel, a withdrawn ionization region and significant ion focusing combine to sustain erosion rates below 1 mm/kh. A more extensive evaluation of the baseline NASA-300M configuration and re-design of this thruster with magnetically shielded walls constitute the main focus of our work in the coming months.

  6. Effect of frictional heating on radiative ferrofluid flow over a slendering stretching sheet with aligned magnetic field

    NASA Astrophysics Data System (ADS)

    Ramana Reddy, J. V.; Sugunamma, V.; Sandeep, N.

    2017-01-01

    The pivotal objective of this paper is to look into the flow of ferrofluids past a variable thickness surface with velocity slip. Magnetite (Fe3O4 nanoparticles are embedded to the regular fluid. The occurrence of frictional heating in the flow is also taken into account. So the flow equations will be coupled and nonlinear. These are remodelled into dimensionless form with the support of suitable transmutations. The solution of the transformed equations is determined with the support of an effective Runge-Kutta (RK)-based shooting technique. Ultimately, the effects of a few flow modulating quantities on fluid motion and heat transport were explored through plots which are procured using the MATLAB tool box. Owing to the engineering applications, we also calculated the friction factor and the heat transfer coefficient for the influencing parameters. The results are presented comparatively for both regular fluid (water) and water-based ferrofluid. This study enables us to deduce that inflation in the aligned angle or surface thickness reduces the fluid velocity. The radiation and dissipation parameters are capable of providing heat energy to the flow.

  7. Optimization of cross-polarization at low radiofrequency fields for sensitivity enhancement in solid-state NMR of membrane proteins reconstituted in magnetically aligned bicelles

    NASA Astrophysics Data System (ADS)

    Koroloff, Sophie N.; Nevzorov, Alexander A.

    2015-07-01

    Solid-state NMR (ssNMR) of oriented membrane proteins (MPs) is capable of providing structural and dynamic information at nearly physiological conditions. However, NMR experiments performed on oriented membrane proteins generally suffer from low sensitivity. Moreover, utilization of high-power radiofrequency (RF) irradiations for magnetization transfer may give rise to sample heating, thereby decreasing the efficiency of conventional cross-polarization schemes. Here we have optimized the recently developed repetitive cross-polarization (REP-CP) sequence (Tang et al., 2011) to further increase the magnetization transfer efficiency for membrane proteins reconstituted in magnetically aligned bicelles and compared its performance to single-contact Hartmann-Hahn cross-polarization (CP), CP-MOIST and the adiabatic transfer. It has been found that employing the REP-CP sequence at RF amplitudes of 19 kHz instead of the commonly used higher RF fields (>45 kHz) enhances the efficiency of REP-CP. An additional 30% signal can be obtained as compared to the previously published REP-CP, and 20% when compared to the re-optimized REP-CP at 50 kHz RF fields. Moreover, the 15N signal gain of low-power REP-CP was found to be 40% over the adiabatic CP and up to 80% over CP-MOIST. Thus, the low-power REP-CP sequence surpasses all of the previous CP schemes in addition of having the tremendous advantage of reducing the RF powers by a factor of seven, thereby preserving the liquid-like bicelle sample. By contrast, in purely static (NAL crystal) and semi-rigid systems (Pf1 phage), the adiabatic CP was found to be more effective. Periodic oscillations of the intensity profile (distinct from the transient oscillations) as a function of the CP contact time and B1 RF field strengths were observed during the REP-CP optimization with the oscillations becoming more pronounced with lower RF fields. Many-spin simulations were performed to explain the oscillations and their periodicity.

  8. The magnetic properties of aligned M hexa-ferrite fibres

    NASA Astrophysics Data System (ADS)

    Pullar, R. C.; Bhattacharya, A. K.

    2006-05-01

    Aligned and random fibres of strontium hexaferrite (SrM, SrFe 12O 19) and barium hexaferrite (BaM, BaFe 12O 19) were manufactured by blow spinning from an aqueous inorganic sol-gel precursor, which was then fired to give the hexagonal ferrite fibre. Their magnetic properties were studied by VSM, investigating the evolution of these properties with firing and measurement temperature, and in particular the effects of fibre alignment. It has been predicted that aligned ferrite fibres will demonstrate an enhanced magnetisation along the axis of alignment with respect to perpendicular to the axis, and this has been demonstrated here for the first time. The optimum firing temperature was 1000 °C, at which point they still had submicron grains. In BaM random fibres Ms=63.8 emu g -1 and Hc=428.1 kA m -1, and in SrM random fibres Ms=63.3 emu g -1 and Hc=452.8 kA m -1, high values for polycrystalline materials. Fibres aligned parallel to the applied field had saturation magnetisation ( Ms) values equal to those of the random fibres, whilst fibres aligned perpendicular to the field had Ms values 62% and 75% lower, for BaM and SrM, respectively. There was no change in coercivity ( Hc) between random or aligned fibres of any orientation, and fibres aligned 45° and parallel to H appeared identical. Therefore, properties along the axis of alignment were superior when compared to measurements perpendicular to the axis of alignment, giving a directionality to the magnetisation in an otherwise randomly oriented ferrite material.

  9. Magnetic alignment in grazing and resting cattle and deer

    PubMed Central

    Begall, Sabine; Červený, Jaroslav; Neef, Julia; Vojtěch, Oldřich; Burda, Hynek

    2008-01-01

    We demonstrate by means of simple, noninvasive methods (analysis of satellite images, field observations, and measuring “deer beds” in snow) that domestic cattle (n = 8,510 in 308 pastures) across the globe, and grazing and resting red and roe deer (n = 2,974 at 241 localities), align their body axes in roughly a north–south direction. Direct observations of roe deer revealed that animals orient their heads northward when grazing or resting. Amazingly, this ubiquitous phenomenon does not seem to have been noticed by herdsmen, ranchers, or hunters. Because wind and light conditions could be excluded as a common denominator determining the body axis orientation, magnetic alignment is the most parsimonious explanation. To test the hypothesis that cattle orient their body axes along the field lines of the Earth's magnetic field, we analyzed the body orientation of cattle from localities with high magnetic declination. Here, magnetic north was a better predictor than geographic north. This study reveals the magnetic alignment in large mammals based on statistically sufficient sample sizes. Our findings open horizons for the study of magnetoreception in general and are of potential significance for applied ethology (husbandry, animal welfare). They challenge neuroscientists and biophysics to explain the proximate mechanisms. PMID:18725629

  10. Magnetic alignment in grazing and resting cattle and deer.

    PubMed

    Begall, Sabine; Cerveny, Jaroslav; Neef, Julia; Vojtech, Oldrich; Burda, Hynek

    2008-09-09

    We demonstrate by means of simple, noninvasive methods (analysis of satellite images, field observations, and measuring "deer beds" in snow) that domestic cattle (n = 8,510 in 308 pastures) across the globe, and grazing and resting red and roe deer (n = 2,974 at 241 localities), align their body axes in roughly a north-south direction. Direct observations of roe deer revealed that animals orient their heads northward when grazing or resting. Amazingly, this ubiquitous phenomenon does not seem to have been noticed by herdsmen, ranchers, or hunters. Because wind and light conditions could be excluded as a common denominator determining the body axis orientation, magnetic alignment is the most parsimonious explanation. To test the hypothesis that cattle orient their body axes along the field lines of the Earth's magnetic field, we analyzed the body orientation of cattle from localities with high magnetic declination. Here, magnetic north was a better predictor than geographic north. This study reveals the magnetic alignment in large mammals based on statistically sufficient sample sizes. Our findings open horizons for the study of magnetoreception in general and are of potential significance for applied ethology (husbandry, animal welfare). They challenge neuroscientists and biophysics to explain the proximate mechanisms.

  11. Molecular focusing and alignment with plasmon fields.

    PubMed

    Artamonov, Maxim; Seideman, Tamar

    2010-12-08

    We show the possibility of simultaneously aligning molecules and focusing their center-of-mass motion near a metal nanoparticle in the field intensity gradient created by the surface plasmon enhancement of incident light. The rotational motion is described quantum mechanically while the translation is treated classically. The effects of the nanoparticle shape on the alignment and focusing are explored. Our results carry interesting implications to the field of molecular nanoplasmonics and suggest several potential applications in nanochemistry.

  12. A MODEL FOR THE WAVEFORM BEHAVIOR OF ACCRETING MILLISECOND X-RAY PULSARS: NEARLY ALIGNED MAGNETIC FIELDS AND MOVING EMISSION REGIONS

    SciTech Connect

    Lamb, Frederick K.; Boutloukos, Stratos; Van Wassenhove, Sandor; Chamberlain, Robert T.; Lo, Ka Ho; Clare, Alexander; Yu Wenfei; Miller, M. Coleman

    2009-11-20

    We investigate further a model of the accreting millisecond X-ray pulsars we proposed earlier. In this model, the X-ray-emitting regions of these pulsars are near their spin axes but move. This is to be expected if the magnetic poles of these stars are close to their spin axes, so that accreting gas is channeled there. As the accretion rate and the structure of the inner disk vary, gas is channeled along different field lines to different locations on the stellar surface, causing the X-ray-emitting areas to move. We show that this 'nearly aligned moving spot model' can explain many properties of the accreting millisecond X-ray pulsars, including their generally low oscillation amplitudes and nearly sinusoidal waveforms; the variability of their pulse amplitudes, shapes, and phases; the correlations in this variability; and the similarity of the accretion- and nuclear-powered pulse shapes and phases in some. It may also explain why accretion-powered millisecond pulsars are difficult to detect, why some are intermittent, and why all detected so far are transients. This model can be tested by comparing with observations the waveform changes it predicts, including the changes with accretion rate.

  13. Generation of field-aligned current in the auroral zone

    NASA Technical Reports Server (NTRS)

    Okuda, Hideo

    1991-01-01

    Generation of a magnetic field-aligned current in the auroral zone connecting the magnetospheric and ionospheric plasmas has been studied by means of a three dimensional particle simulation model. The model is of a magnetostatic variety appropriate for a low beta plasma in which the high frequency transverse displacement current has been eliminated. The simulation model is highly elongated along the magnetic field lines in order to model a highly elongated flux tube in the auroral zone. An enhanced field-aligned current was generated by injection of a magnetospheric plasma across the auroral zone magnetic field at the center of the model. Such a plasma injection may correspond to a plasmoid injection at the geomagnetic tail associated with magnetic reconnection during a substorm or a transverse plasma flow along the low latitude magnetopause boundary layer. The results of the simulations show that the field-aligned current can be enhanced over the thermal current by a factor of 5 - 10 via such injection. Associated with the enhanced current are the electrostatic ion cyclotron waves and shear Alfven waves excited in the auroral zone.

  14. Remanent magnetism of sediment governs magnetofossil alignment

    NASA Astrophysics Data System (ADS)

    Wendel, JoAnna

    2014-04-01

    Most bacteria navigate by reacting to different chemical signals in their surroundings, but some bacteria have another navigational tool in their arsenal—the Earth's magnetic field. Nestled inside these magnetotactic bacteria (MTB) are organelles called magnetosomes, filled with tiny magnetic crystals and arranged in chains, which form nano-sized compass needles. When MTB die and degrade, these tiny crystals can remain in sediment and eventually become magnetic fossils called magnetofossils.

  15. Laboratory simulation of field-aligned currents

    NASA Technical Reports Server (NTRS)

    Wessel, Frank J.; Rostoker, Norman

    1993-01-01

    A summary of progress during the period Apr. 1992 to Mar. 1993 is provided. Objectives of the research are (1) to simulate, via laboratory experiments, the three terms of the field-aligned current equation; (2) to simulate auroral-arc formation processes by configuring the boundary conditions of the experimental chamber and plasma parameters to produce highly localized return currents at the end of a field-aligned current system; and (3) to extrapolate these results, using theoretical and computational techniques, to the problem of magnetospheric-ionospheric coupling and to compare them with published literature signatures of auroral-arc phenomena.

  16. Enhanced method of magnetic powder alignment for production of PLP Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Popov, A. G.; Golovnia, O. A.; Protasov, A. V.

    2017-04-01

    It is demonstrated how the high degree of powder alignment in PLP magnets can be achieved by loading the powder into a container placed in a magnetic field of moderate strength. The strip-cast alloy with a composition of 30.00 Nd, 1.95 Dy, 66.42 Fe, 0.99 B, 0.54 Co, 0.1 Ga (wt%) was subjected to hydrogen decrepitation and then milled in a vibratory mill in toluene to an average particle size of 2.9 μm determined by the FSSS method. The powder was compacted in the magnetic field of 0.2 - 1.2 T to the filling density 2.6 - 3.2×103 kg/m3. It is shown that loading the powder into a container placed in a magnetic field enhances the degree of powder alignment in sintered Nd-Fe-B magnets produced from non-pressed powder. At the filling density less than 3.2×103 kg/m3, the density of magnets is high but insufficient, because of the formation of magnetostatic chains of particles, which impedes the powder compaction. The simulation by the discrete-element method qualitatively proves that the magnetostatic interaction of the chains of particles that are formed in the course of loading in the magnetic field stimulates a decrease in the density of the sintered magnets and its non-uniform distribution over the sample. As a result of the optimization of the parameters of the alignment and compaction of the powder loaded in a magnetic field, PLP magnets with Br ≥1.34 T, Нc ≥950 kA/m, (BH)max ≥340 kJ/m3, and the degree of alignment exceeding 96% were produced.

  17. Terrestrial ionospheric signatures of field-aligned currents

    NASA Technical Reports Server (NTRS)

    Friis-Christensen, E.

    1990-01-01

    The occurrence of traveling field-aligned current filaments and twin-vortex patterns is suggested to be related to sudden changes in solar wind dynamic pressure and/or the IMF. Greenland magnetometer observations of the cleft region magnetic perturbations associated with small-scale twin-vortex patterns show that these events occur on both sides of the magnetic local noon, contradicting Glassmeier at al.'s (1989) statistical analysis of 82 twin-vortex subauroral-latitude events obtained by the Scandinavian Magnetometer Array; the stations are closer to the ionospheric projection of the cleft earlier in magnetic local time, relative to the across-the-cleft-located Greenland stations.

  18. Field-aligned currents and large scale magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1980-01-01

    D'Angelo's model of polar cap electric fields (1977) was used to visualize how high-latitude field-aligned currents are driven by the solar wind generator. The region 1 and region 2 currents of Iijima and Potemra (1976) and the cusp field-aligned currents of Wilhjelm et al. (1978) and McDiarmid et al. (1978) are apparently driven by different generators, although in both cases the solar wind is their ultimate source.

  19. Magnetically aligned H I fibers and the rolling hough transform

    SciTech Connect

    Clark, S. E.; Putman, M. E.; Peek, J. E. G.

    2014-07-01

    We present observations of a new group of structures in the diffuse Galactic interstellar medium (ISM): slender, linear H I features we dub 'fibers' that extend for many degrees at high Galactic latitude. To characterize and measure the extent and strength of these fibers, we present the Rolling Hough Transform, a new machine vision method for parameterizing the coherent linearity of structures in the image plane. With this powerful new tool we show that the fibers are oriented along the interstellar magnetic field as probed by starlight polarization. We find that these low column density (N{sub H} {sub I}≃5×10{sup 18} cm{sup –2}) fiber features are most likely a component of the local cavity wall, about 100 pc away. The H I data we use to demonstrate this alignment at high latitude are from the Galactic Arecibo L-Band Feed Array H I (GALFA-H I) Survey and the Parkes Galactic All Sky Survey. We find better alignment in the higher resolution GALFA-H I data, where the fibers are more visually evident. This trend continues in our investigation of magnetically aligned linear features in the Riegel-Crutcher H I cold cloud, detected in the Southern Galactic Plane Survey. We propose an application of the RHT for estimating the field strength in such a cloud, based on the Chandrasekhar-Fermi method. We conclude that data-driven, quantitative studies of ISM morphology can be very powerful predictors of underlying physical quantities.

  20. He I VECTOR MAGNETOMETRY OF FIELD-ALIGNED SUPERPENUMBRAL FIBRILS

    SciTech Connect

    Schad, T. A.; Penn, M. J.; Lin, H.

    2013-05-10

    Atomic-level polarization and Zeeman effect diagnostics in the neutral helium triplet at 10830 A in principle allow full vector magnetometry of fine-scaled chromospheric fibrils. We present high-resolution spectropolarimetric observations of superpenumbral fibrils in the He I triplet with sufficient polarimetric sensitivity to infer their full magnetic field geometry. He I observations from the Facility Infrared Spectropolarimeter are paired with high-resolution observations of the H{alpha} 6563 A and Ca II 8542 A spectral lines from the Interferometric Bidimensional Spectrometer from the Dunn Solar Telescope in New Mexico. Linear and circular polarization signatures in the He I triplet are measured and described, as well as analyzed with the advanced inversion capability of the ''Hanle and Zeeman Light'' modeling code. Our analysis provides direct evidence for the often assumed field alignment of fibril structures. The projected angle of the fibrils and the inferred magnetic field geometry align within an error of {+-}10 Degree-Sign . We describe changes in the inclination angle of these features that reflect their connectivity with the photospheric magnetic field. Evidence for an accelerated flow ({approx}40 m s{sup -2}) along an individual fibril anchored at its endpoints in the strong sunspot and weaker plage in part supports the magnetic siphon flow mechanism's role in the inverse Evershed effect. However, the connectivity of the outer endpoint of many of the fibrils cannot be established.

  1. Uniformly spaced field-aligned ionization ducts

    NASA Technical Reports Server (NTRS)

    Gross, S. H.; Muldrew, D. B.

    1984-01-01

    A number of interesting cases of combination mode ducted echoes for mid- and low-latitude regions are presented that show nearly uniformly spaced multiple combination mode traces on the ionograms in the frequency range above 1 MHz. These traces suggest that a parallel system of field-aligned ducts is present. Ray tracing studies are made to determine the structure that would explain the observations using the electron density profile derivable from the vertical trace and assuming field-aligned ducts. Spacing perpendicular to the ducts is found to be as much as 70 km. Some of these parallel duct structures are found to extend to the conjugate hemisphere, possibly to the F peak.

  2. Biaxial magnetic alignment in twinned REBa2Cu3Oy superconductors

    NASA Astrophysics Data System (ADS)

    Horii, S.; Nishioka, T.; Arimoto, I.; Fujioka, S.; Doi, T.

    2016-12-01

    Biaxial magnetic alignment of REBa2Cu3O y (RE123, RE = Y, Nd, Sm, Dy, and Er) superconductor powders containing twin microstructures was demonstrated. Appropriate choice of RE effectively improved the degrees of in-plane and c-axis orientation in RE123 powder samples aligned under modulated rotating magnetic fields at room temperature. From the relationship between the magnetic field strength and the degrees of orientation, it is concluded that heavy RE ions induced the improvement of the in-plane magnetic anisotropies in RE123 grains with twin microstructures.

  3. Cosmological magnetic fields

    NASA Astrophysics Data System (ADS)

    Kunze, Kerstin E.

    2013-12-01

    Magnetic fields are observed on nearly all scales in the Universe, from stars and galaxies up to galaxy clusters and even beyond. The origin of cosmic magnetic fields is still an open question, however a large class of models puts its origin in the very early Universe. A magnetic dynamo amplifying an initial seed magnetic field could explain the present day strength of the galactic magnetic field. However, it is still an open problem how and when this initial magnetic field was created. Observations of the cosmic microwave background (CMB) provide a window to the early Universe and might therefore be able to tell us whether cosmic magnetic fields are of a primordial cosmological origin and at the same time constrain its parameters. We will give an overview of the observational evidence of large-scale magnetic fields, describe generation mechanisms of primordial magnetic fields and possible imprints in the CMB.

  4. Net field-aligned currents observed by Triad

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Potemra, T. A.

    1975-01-01

    From the Triad magnetometer observation of a step-like level shift in the east-west component of the magnetic field at 800 km altitude, the existence of a net current flowing into or away from the ionosphere in a current layer was inferred. The current direction is toward the ionosphere on the morning side and away from it on the afternoon side. The field aligned currents observed by Triad are considered as being an important element in the electro-dynamical coupling between the distant magnetosphere and the ionosphere. The current density integrated over the thickness of the layer increases with increasing magnetic activity, but the relation between the current density and Kp in individual cases is not a simple linear relation. An extrapolation of the statistical relation to Kp = 0 indicates existence of a sheet current of order 0.1 amp/m even at extremely quiet times. During periods of higher magnetic activity an integrated current of approximately 1 amp/m and average current density of order 0.000001 amp/sq m are observed. The location and the latitudinal width of the field aligned current layer carrying the net current very roughly agree with those of the region of high electron intensities in the trapping boundary.

  5. Relationships between field-aligned currents, electric fields, and particle precipitation as observed by Dynamics Explorer-2

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Iyemori, T.; Hoffman, R. A.; Maynard, N. C.; Burch, J. L.; Winningham, J. D.

    1984-01-01

    The relationships between field-aligned currents, electric fields, and particle fluxes are determined using observations from the polar orbiting low-altitude satellite Dynamics Explorer-2. It is shown that the north-south electric field and the east-west magnetic field components are usually highly correlated in the field-aligned current regions. This proportionality observationally proves that the field-aligned current equals the divergence of the height-integrated ionospheric Pedersen current in the meridional plane to a high degree of approximation. As a general rule, in the evening sector the upward field-aligned currents flow in the boundary plasma sheet region and the downward currents flow in the central plasma sheet region. The current densities determined independently from the plasma and magnetic field measurements are compared. Although the current densities deduced from the two methods are in general agreement, the degree and extent of the agreement vary in individual cases.

  6. Relationships between field-aligned currents, electric fields and particle precipitation as observed by dynamics Explorer-2

    NASA Technical Reports Server (NTRS)

    Sugiura, M.; Iyemori, T.; Hoffman, R. A.; Maynard, N. C.; Burch, J. L.; Winningham, J. D.

    1983-01-01

    The relationships between field-aligned currents, electric fields, and particle fluxes are determined using observations from the polar orbiting low-altitude satellite Dynamics Explorer-2. It is shown that the north-south electric field and the east-west magnetic field components are usually highly correlated in the field-aligned current regions. This proportionality observationally proves that the field-aligned current equals the divergence of the height-integrated ionospheric Pedersen current in the meridional plane to a high degree of approximation. As a general rule, in the evening sector the upward field-aligned currents flow in the boundary plasma sheet region and the downward currents flow in the central plasma sheet region. The current densities determined independently from the plasma and magnetic field measurements are compared. Although the current densities deduced from the two methods are in general agreement, the degree and extent of the agreement vary in individual cases.

  7. Relationships between Geomagnetic Induced Currents and Field Aligned Currents

    NASA Astrophysics Data System (ADS)

    Waters, C. L.; Barnett, R.; Anderson, B. J.; Gjerloev, J. W.; Korth, H.; Barnes, R. J.

    2015-12-01

    Geomagnetic Induced Currents (GICs) appear in the ground due to time varying magnetic fields that occur during periods of enhanced geomagnetic activity. The resultant time varying electric fields at Earth's surface drive very low frequency, currents through electricity supply transformers which reduces transforming capacity. In extreme cases, electricity supply grids can collapse as multiple transformers are affected. GICs have larger magnitudes at auroral latitudes and should be related to the field aligned current (FAC) and auroral ionosphere currents systems. At ground locations under the regions between upward and downward FACs, the GIC related fields show a direct relationship with the time derivative of the FACs. This allows a conversion factor between FAC and GIC magnitudes. Examples of the relationship between FAC and GIC related fields are presented using data derived from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) and SuperMAG.

  8. Magnetoconvection in sheared magnetic fields

    SciTech Connect

    Bian, N. H.; Garcia, O. E.

    2008-10-15

    The development of magnetoconvection in a sheared magnetic field is investigated. The equilibrium magnetic field B{sub 0} is horizontal and its orientation varies linearly along the vertical axis. Preliminary consideration of the transition from the inertial to the viscous regime of the gravitational resistive interchange instability, reveals that the latter is characterized by the existence of viscoresistive boundary layers of vertical width which scales as Q{sup -1/6}, where Q is the Chandrasekhar number. The situation is analogous to the one encountered in magnetically confined laboratory plasmas, where convective flows are constrained by the magnetic shear to develop in boundary layers located around resonant magnetic surfaces in order to fulfill the 'interchange condition'k{center_dot}B{sub 0}=0, where k is the wave vector of the magnetic perturbation. It follows that when the effect of thermal diffusion is taken into account in the process, convection can only occur above a certain critical value of the Rayleigh number which scales as Q{sup 2/3} for large Q. At the onset, the convection pattern is a superposition of identically thin convective rolls everywhere aligned with the local magnetic field lines and which therefore adopt the magnetic field geometry, a situation also reminiscent of the penumbra of sunspots. Using this degeneracy, equations describing the weakly nonlinear state are obtained and discussed. A reduced magnetohydrodynamic description of magnetoconvection is introduced. Since it is valid for arbitrary magnetic field configurations, it allows a simple extension to the case where there exists an inclination between the direction of gravity and the plane spanned by the equilibrium magnetic field. These reduced magnetohydrodynamic equations are proposed as a powerful tool for further investigations of magnetoconvection in more complex field line geometries.

  9. Field-aligned currents and ionospheric electric fields

    NASA Technical Reports Server (NTRS)

    Yasuhara, F.; Akasofu, S.-I.

    1977-01-01

    It is shown that the observed distribution of the ionospheric electric field can be deduced from an equation combining Ohm's law with the current continuity equation by using the 'observed' distribution of field-aligned currents as the boundary condition for two models of the ionosphere. The first model has one conductive annular ring representing the quiet-time auroral precipitation belt; the second has two conductive annular rings that simulate the discrete and diffuse auroral regions. An analysis is performed to determine how well the electric-field distribution can be reproduced. The results indicate that the first model reproduces the Sq(p)-type distribution, the second model reproduces reasonably well a substorm-type potential and ionospheric current patterns together with the Harang discontinuity, and that the distribution of field-aligned currents is the same for both models.

  10. Dynamics of field-aligned currents reconstructed by the ground-based and satellite data

    NASA Astrophysics Data System (ADS)

    Nikolaeva, V. D.; Kotikov, A. L.; Sergienko, T. I.

    2014-09-01

    Parameters of field-aligned currents reconstructed by ground-based measurements of magnetic field in the Scandinavian countries (IMAGE) and ionospheric conductivity for specific events of the 6 and 8 December 2004 are represented here. Ionospheric conductivity was calculated from precipitating electron flux measured at DMSP-13 satellite and electron density EISCAT incoherent scattering radar direct measurements. There is a high correlation between field-aligned currents, calculated from DMSP-13 satellite data and field-aligned currents calculated from radar measurements for the December 6, 2004 in the presence of developed ionospheric current system. The comparison of field-aligned currents, reconstructed by the proposed method, with the currents calculated by the variation of magnetic field on the DMSP satellites, confirms correctness of the offered algorithm.

  11. Final Technical Report: Global Field Aligned Mesh and Gyrokinetic Field Solver in a Tokamak Edge Geometry

    SciTech Connect

    Cummings, Julian C.

    2013-05-15

    This project was a collaboration between researchers at the California Institute of Technology and the University of California, Irvine to investigate the utility of a global field-aligned mesh and gyrokinetic field solver for simulations of the tokamak plasma edge region. Mesh generation software from UC Irvine was tested with specific tokamak edge magnetic geometry scenarios and the quality of the meshes and the solutions to the gyrokinetic Poisson equation were evaluated.

  12. Photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Howard, R.

    1972-01-01

    Knowledge on the nature of magnetic fields on the solar surface is reviewed. At least a large part of the magnetic flux in the solar surface is confined to small bundles of lines of force within which the field strength is of the order of 500 gauss. Magnetic fields are closely associated with all types of solar activity. Magnetic flux appears at the surface at the clearly defined birth or regeneration of activity of an active region. As the region ages, the magnetic flux migrates to form large-scale patterns and the polar fields. Some manifestations of the large-scale distribution are discussed.

  13. Influence of the electron source distribution on field-aligned currents

    NASA Astrophysics Data System (ADS)

    Bruening, K.; Goertz, C. K.

    1985-01-01

    The field-aligned current density above a discrete auroral arc has been deduced from the downward electron flux and magnetic field measurements onboard the rocket Porcupine flight 4. Both measurements show that the field-aligned current density is, in spite of decreasing peak energies towards the edge of the arc, about 4 times higher there than in the center of the arc. This can be explained by using the single particle description for an anisotropic electron source distribution.

  14. Field line twist and field-aligned currents in an axially symmetric equilibrium magnetosphere. [of Uranus

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes

    1986-01-01

    Field-aligned Birkeland currents and the angle of the magnetic line twist were calculated for an axially symmetric pole-on magnetosphere (assumed to be in MHD equilibrium). The angle of the field line twist was shown to have a strong radial dependence on the axisymmetric magnetotail as well as on the ionospheric conductivity and the amount of thermal plasma contained in closed magnetotail flux tubes. The field line twist results from the planetary rotation, which leads to the development of a toroidal magnetic B-sub-phi component and to differentially rotating magnetic field lines. It was shown that the time development of the toroidal magnetic B-sub-phi component and the rotation frequency are related through an induction equation.

  15. Fabrication of Tri-axially Oriented RE-Ba-Cu-O Ceramics by Magnetic Alignment

    NASA Astrophysics Data System (ADS)

    Yamaki, M.; Furuta, M.; Doi, T.; Shimoyama, J.; Horii, S.

    Magnetic alignment is a new crystal alignment process which enables tri-axial orientation without epitaxial growth at room temperature. In order to investigate the effectiveness of this magnetic tri-axial alignment process, we attempted to fabricate tri-axially oriented ErBa2Cu4O8 (Er124) ceramics by a slip-casting technique under two different modulated rotation magnetic fields (MRFs); uni-directional rotation type and oscillation type. For improvement of the degrees of tri-axial orientation in the Er124 green compacts slip-casted under MRFs, appropriate choice of sample-rotation method, magnetic field condition, control of mean diameter of source powders, and viscosity of slurry was found to be important in the case of MRFs induced by the sample-rotation. At the current stage, the degree of inplane orientation with ∼10̊ in Er124 was achieved.

  16. Pulsed taut-wire measurement of the magnetic alignment of the ITS induction cells

    SciTech Connect

    Melton, J.G.; Burns, M.J.; Honaberger, D.J.

    1993-06-01

    The mechanical and magnetic alignment of the first eight induction-cell, solenoid magnets of the Integrated Test Stand (ITS) for the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility were measured by observing the deflection of a fine, taut wire carrying a pulsed current. To achieve the required alignment (less than 0.25 mm offset and less than 5 mrad tilt), the magnet design uses quadrufilar windings and iron field-smoothing rings. After detailed measurements of each solenoid magnet, the cells are assembled and then mechanically aligned using a laser and an alignment target moved along the cell centerline. After the cells are in final position, the pulsed wire method is used to verify the magnetic alignment. The measurements show an average offset of the magnetic axes from the mechanical axis of 0. 15 mm, with a maximum offset of 0.3 mm. The average tilt of the magnetic axis was 0.7 mrad with a maximum tilt of 1.4 mrad. Tilts are corrected to less than 0.3 mrad, using dipole trim magnets assembled into each cell. Correction is limited noise.

  17. Organic magnetic field sensor

    DOEpatents

    McCamey, Dane; Boehme, Christoph

    2017-01-24

    An organic, spin-dependent magnetic field sensor (10) includes an active stack (12) having an organic material with a spin-dependence. The sensor (10) also includes a back electrical contact (14) electrically coupled to a back of the active stack (12) and a front electrical contact (16) electrically coupled to a front of the active stack (12). A magnetic field generator (18) is oriented so as to provide an oscillating magnetic field which penetrates the active stack (12).

  18. How are static magnetic fields detected biologically?

    NASA Astrophysics Data System (ADS)

    Finegold, Leonard

    2009-03-01

    There is overwhelming evidence that life, from bacteria to birds to bats, detects magnetic fields, using the fields for orientation or navigation. Indeed there are recent reports (based on Google Earth imagery) that cattle and deer align themselves with the earth's magnetic field. [1]. The development of frog and insect eggs are changed by high magnetic fields, probably through known physical mechanisms. However, the mechanisms for eukaryotic navigation and alignment are not clear. Persuasive published models will be discussed. Evidence, that static magnetic fields might produce therapeutic effects, will be updated [2]. [4pt] [1] S. Begall, et al., Proc Natl Acad Sci USA, 105:13451 (2008). [0pt] [2] L. Finegold and B.L. Flamm, BMJ, 332:4 (2006).

  19. Space Technology 5 observations of auroral field-aligned currents

    NASA Astrophysics Data System (ADS)

    Slavin, James

    During its three month long technology validation mission, Space Technology 5 (ST-5) returned high quality multi-point measurements of the near-Earth magnetic field. Its three micro-satellites were launched into a 300 x 4500 km, dawn - dusk, sun synchronous orbit (inclination = 105.6o) orbit with a period of 138 min by a Pegasus launch vehicle on March 22, 2006. The spacecraft were maintained in a "pearls on a sting" constellation with controlled spacings ranging from just over 5000 km down to under 50 km. The individual micro-satellites were 48 cm tall octagons with diameters of 50 cm. They were spin-stabilized at approximately 20 rpm at deployment and slowly spun-down to about 15 rpm by the end of the mission. Each spacecraft carried a miniature tri-axial fluxgate magnetometer (MAG) provided by the University of California at Los Angeles mounted at the end of a ultra-low mass 72 cm boom. These data allow, for the first time, the separation of temporal and spatial variations in field-aligned current (FAC) perturbations measured in low-Earth orbit on time scales of 10 sec to 10 min. The constellation measurements are used to directly determine field-aligned current sheet motion, thickness, and current density. Two multi-point methods for the inference of FAC current density that have not previously been possible in low-Earth orbit are demonstrated: 1) the "standard method," based upon s/c velocity, but corrected for FAC current sheet motion, and 2) the "gradiometer method" which uses simultaneous magnetic field measurements at two points with known separation. Future studies will apply these methods to the entire ST-5 data set and expand to include horizontal ionospheric currents, ULF waves and geomagnetic field gradient analyses.

  20. Space Technology 5 Observations of Auroral Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Slavin, James

    2008-01-01

    During its three month long technology validation mission, Space Technology 5 (ST-5) returned high quality multi-point measurements of the near-Earth magnetic field. Its three micro-satellites were launched into a 300 x 4500 km, dawn - dusk, sun synchronous orbit (inclination = 105.60) orbit with a period of 138 min by a Pegasus launch vehicle on March 22, 2006. The spacecraft were maintained in a "pearls on a sting" constellation with controlled spacings ranging from just over 5000 km down to under 50 km. The individual micro-satellites were 48 cm tall octagons with diameters of 50 cm. They were spin-stabilized at approximately 20 rpm at deployment and slowly spun-down to about 15 rpm by the end of the mission. Each spacecraft carried a miniature tri-axial fluxgate magnetometer (MAG) provided by the University of California at Los Angeles mounted at the end of a ultra-low mass 72 cm boom. These data allow, for the first time, the separation of temporal and spatial variations in field-aligned current (FAC) perturbations measured in low-Earth orbit on time scales of 10 sec to 10 min. The constellation measurements are used to directly determine field-aligned current sheet motion, thickness. and current density. Two multi-point methods for the inference of FAC current density that have not previously been possible in low-Earth orbit are demonstrated: 1) the -standard method." based upon s/c velocity, but corrected for FAC current sheet motion. and 2) the "gradiometer method" which uses simultaneous magnetic field measurements at two points with known separation. Future studies will apply these methods to the entire ST-5 data sct and expand to include horizontal ionospheric currents. ULF waves and geomagnetic field gradient analyses.

  1. Investigation of the Possibility of Using Nuclear Magnetic Spin Alignment

    NASA Technical Reports Server (NTRS)

    Dent, William V., Jr.

    1998-01-01

    The goal of the program to investigate a "Gasdynamic fusion propulsion system for space exploration" is to develop a fusion propulsion system for a manned mission to the planet mars. A study using Deuterium and Tritium atoms are currently in progress. When these atoms under-go fusion, the resulting neutrons and alpha particles are emitted in random directions (isotropically). The probable direction of emission is equal for all directions, thus resulting in wasted energy, massive shielding and cooling requirements, and serious problems with the physics of achieving fusion. If the nuclear magnetic spin moments of the deuterium and tritium nuclei could be precisely aligned at the moment of fusion, the stream of emitted neutrons could be directed out the rear of the spacecraft for thrust and the alpha particles directed forward into an electromagnet ot produce electricity to continue operating the fusion engine. The following supporting topics are discussed: nuclear magnetic moments and spin precession in magnetic field, nuclear spin quantum mechanics, kinematics of nuclear reactions, and angular distribution of particles.

  2. Assessment of a field-aligned ICRF antenna

    NASA Astrophysics Data System (ADS)

    Wukitch, S. J.; Brunner, D.; Ennever, P.; Garrett, M. L.; Hubbard, A.; Labombard, B.; Lau, C.; Lin, Y.; Lipschultz, B.; Miller, D.; Ochoukov, R.; Porkolab, M.; Reinke, M. L.; Terry, J. L.

    2014-02-01

    Impurity contamination and localized heat loads associated with ion cyclotron range of frequency (ICRF) antenna operation are among the most challenging issues for ICRF utilization.. Another challenge is maintaining maximum coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. Here, we report on an experimental assessment of a field aligned (FA) antenna with respect to impurity contamination, impurity sources, RF enhanced heat flux and load tolerance. In addition, we compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to and the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E∥ (electric field along a magnetic field line) via symmetry. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20-30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. Further we observe that the fraction of RF energy deposited upon the antenna is less than 0.4 % of the total injected RF energy in dipole phasing. The total deposited energy increases significantly when the FA antenna is operated in monopole phasing. The FA antenna also exhibits an unexpected load tolerance for ELMs and confinement transitions compared to the TA antennas. However, inconsistent with expectations, we observe RF induced plasma potentials to be nearly identical for FA and TA antennas when operated in dipole phasing. In monopole phasing, the FA antenna has the highest plasma

  3. Assessment of a field-aligned ICRF antenna

    SciTech Connect

    Wukitch, S. J.; Brunner, D.; Ennever, P.; Garrett, M. L.; Hubbard, A.; Labombard, B.; Lau, C.; Lin, Y.; Lipschultz, B.; Miller, D.; Ochoukov, R.; Porkolab, M.; Reinke, M. L.; Terry, J. L.

    2014-02-12

    Impurity contamination and localized heat loads associated with ion cyclotron range of frequency (ICRF) antenna operation are among the most challenging issues for ICRF utilization.. Another challenge is maintaining maximum coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. Here, we report on an experimental assessment of a field aligned (FA) antenna with respect to impurity contamination, impurity sources, RF enhanced heat flux and load tolerance. In addition, we compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to and the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E∥ (electric field along a magnetic field line) via symmetry. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. Further we observe that the fraction of RF energy deposited upon the antenna is less than 0.4 % of the total injected RF energy in dipole phasing. The total deposited energy increases significantly when the FA antenna is operated in monopole phasing. The FA antenna also exhibits an unexpected load tolerance for ELMs and confinement transitions compared to the TA antennas. However, inconsistent with expectations, we observe RF induced plasma potentials to be nearly identical for FA and TA antennas when operated in dipole phasing. In monopole phasing, the FA antenna has the highest plasma

  4. NdFeB Magnets Aligned in a 9-T Superconducting Solenoid (asterisk)

    NASA Astrophysics Data System (ADS)

    Mulcahy, T. M.; Hull, J. R.

    2002-08-01

    Commercial-grade magnet powder (Magnequench UG) was uniaxial die-pressed into cylindrical compacts, while being aligned in the 1-T to 8-T DC field of a superconducting solenoid at Argonne National Laboratory. Then, the compacts were added to normal Magnequench UG production batches for sintering and annealing. The variations in magnet properties for different strengths of alignment fields are reported for 15.88-mm (5/8-in.) diameter compacts made with length-to-diameter (L/D) ratios in the range 3 0.25 and L 1. The best magnets were produced when the powder-filled die was inserted into the active field of the solenoid and then pressed. Improvements in the residual flux density of 8% and in the energy product of 16% were achieved by increasing the alignment field beyond the typical 2-T capabilities of electromagnets. The most improvement was achieved for the compacts with the smallest L/D ratio. The ability to make very strong magnets with small L/D, where self-demagnetization effects during alignment are greatest, would benefit most the production of near-final-shape magnets. Compaction of the magnet powder using a horizontal die and a continuously active superconducting solenoid was not a problem. Although the press was operated in the batch mode for this proof-of-concept study, its design is intended to enable automated production.

  5. Magnetic field generator

    DOEpatents

    Krienin, Frank

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  6. Exploring the Potential of Starch/Polycaprolactone Aligned Magnetic Responsive Scaffolds for Tendon Regeneration.

    PubMed

    Gonçalves, Ana I; Rodrigues, Márcia T; Carvalho, Pedro P; Bañobre-López, Manuel; Paz, Elvira; Freitas, Paulo; Gomes, Manuela E

    2016-01-21

    The application of magnetic nanoparticles (MNPs) in tissue engineering (TE) approaches opens several new research possibilities in this field, enabling a new generation of multifunctional constructs for tissue regeneration. This study describes the development of sophisticated magnetic polymer scaffolds with aligned structural features aimed at applications in tendon tissue engineering (TTE). Tissue engineering magnetic scaffolds are prepared by incorporating iron oxide MNPs into a 3D structure of aligned SPCL (starch and polycaprolactone) fibers fabricated by rapid prototyping (RP) technology. The 3D architecture, composition, and magnetic properties are characterized. Furthermore, the effect of an externally applied magnetic field is investigated on the tenogenic differentiation of adipose stem cells (ASCs) cultured onto the developed magnetic scaffolds, demonstrating that ASCs undergo tenogenic differentiation synthesizing a Tenascin C and Collagen type I rich matrix under magneto-stimulation conditions. Finally, the developed magnetic scaffolds were implanted in an ectopic rat model, evidencing good biocompatibility and integration within the surrounding tissues. Together, these results suggest that the effect of the magnetic aligned scaffolds structure combined with magnetic stimulation has a significant potential to impact the field of tendon tissue engineering toward the development of more efficient regeneration therapies.

  7. Swarm Observations of Field-Aligned Currents: Case Studies

    NASA Astrophysics Data System (ADS)

    Le, G.; Chi, P. J.; Gjerloev, J. W.; Stolle, C.; Luhr, H.; Park, J.; Rauberg, J.

    2014-12-01

    In this paper, we report the results of a few case studies of multi-point magnetic field measurements of field-aligned currents (FACs) from Swarm constellation mission to understand their temporal and spatial characteristics. During the commissioning phase, the three Swarm spacecraft were in an identical polar orbit with a string-of-pearl configuration with small separations. During the science operational phase (since April, 2014), the three spacecraft were placed in slightly different polar orbits: one spacecraft in a higher altitude orbit (507km x 512km) and two side-by-side in lower altitude orbits (459km x 462km). We analyze a few FAC events in both orbital phases and during periods of active geomagnetic conditions. The multi-point observations enable us to examine the FACs' temporal evolution and separate their temporal and spatial variations.

  8. Magnetic Alignment Theory and the Interpretation of Polarization

    NASA Technical Reports Server (NTRS)

    Cugnon, P.

    1984-01-01

    The theory of magnetic spinning alignment is outlined. It is shown that a classical enhanced thermal Davis and Greenstein mechanism may be considered as a limiting case of Purcell's suprathermal spinning alignment theory when the number of active sites on a given grain becomes very important and/or for very short lived suprathermal sites. The results are applied to the interstellar medium and some problems in which it may be important are discussed.

  9. Field-aligned ICRF antenna design for EAST

    NASA Astrophysics Data System (ADS)

    Wukitch, S. J.; Lin, Y.; Qin, C.; Zhang, X.; Beck, W.; Koert, P.; Zhou, L.

    2015-12-01

    For ion cyclotron range of frequency (ICRF), a number of physics and technological challenges remain for steady state, toroidal devices. Among the most critical is maintaining good coupling and maximizing the coupled power through plasma variations including edge localized modes (ELMs) and confinement transitions. As pulse length increases, enhanced localized heat loads associated with antenna operation can challenge antenna integrity. In addition, ICRF impurity sources and contamination need to be minimized to enable effective plasma heating. Here, we report on a four strap field aligned (FA) antenna design for the EAST tokamak. A FA antenna is an antenna where the current straps and antenna side enclosure are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In C-Mod, a FA antenna has been shown to be inherently load tolerant which allows for robust power delivery to the plasma. Furthermore, the RF enhanced heat flux and antenna impurity source were nearly eliminated. For both L and H-mode discharges, the core impurity contamination is 20-30% lower but not eliminated. The emerging physics understanding is that the local RF impurity sources and RF enhanced heat flux is reduced due to the geometric alignment of the FA antenna while impurity contamination is a result of far field sheaths. An important aspect of antenna design is to identify a core absorption scenario that is characterized by strong single pass absorption for a broad range of target discharges. To maximize power coupling, the antenna spectrum needs to balance the k|| needed for strong single pass absorption and high coupling efficiency through evanescent layer. The latest design for a FA four strap adapted to EAST device is balance between geometrical constraints and physics requirements.

  10. Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization

    DOEpatents

    Doughty, Frank C.; Spencer, John E.

    2000-12-19

    In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.

  11. Method for alignment of microwires

    DOEpatents

    Beardslee, Joseph A.; Lewis, Nathan S.; Sadtler, Bryce

    2017-01-24

    A method of aligning microwires includes modifying the microwires so they are more responsive to a magnetic field. The method also includes using a magnetic field so as to magnetically align the microwires. The method can further include capturing the microwires in a solid support structure that retains the longitudinal alignment of the microwires when the magnetic field is not applied to the microwires.

  12. Sources of field-aligned currents in the auroral plasma

    SciTech Connect

    Marshall, J.A.; Burch, J.L. ); Kan, J.R. ); Reiff, P.H. ); Slavin, J.A. )

    1991-01-01

    Data from the Dynamics Explorer 1 High Altitude Plasma Instrument (HAPI) and magnetometer are used to investigate the sources of field-aligned currents in the nightside auroral zone. It is found that the formula developed by S. Knight predicts the field-aligned current density fairly accurately in regions where a significant potential drop can be inferred from the HAPI data; there are, however, regions in which the proportionality between potential drop and field-aligned current does not hold. In particular, the authors note occurrences of strong upward field-aligned current associated not with inverted-V events but instead with suprathermal bursts. In addition, upward field-aligned currents are often observed to peak near the edges of inverted-V events, rather than in the center as would be predicted by Knight.

  13. Sources of field-aligned currents in the auroral plasma

    NASA Astrophysics Data System (ADS)

    Marshall, J. A.; Burch, J. L.; Kan, J. R.; Reiff, P. H.; Slavin, J. A.

    1991-01-01

    Data from the Dynamics Explorer 1 High Altitude Plasma Instrument (HAPI) and magnetometer are used to investigate the sources of field-aligned currents in the nightside auroral zone. It is found that the formula developed by S. Knight predicts the field-aligned current density fairly accurately in regions where a significant potential drop can be inferred from the HAPI data; there are, however, regions in which the proportionality between potential drop and field-aligned current does not hold. In particular, occurrences of strong upward field-aligned current associated not with inverted-V events but instead with suprathermal bursts are noted. In addition, upward field-aligned currents are often observed to peak near the edges of inverted-V events, rather than in the center as would be predicted by Knight.

  14. FAST/Polar Conjunction Study of Field-Aligned Auroral Acceleration and Corresponding Magnetotail Drivers

    NASA Technical Reports Server (NTRS)

    Schriver, D.; Ashour-Abdalla, M.; Strangeway, R. J.; Richard, R. L.; Klezting, C.; Dotan, Y.; Wygant, J.

    2003-01-01

    The discrete aurora results when energized electrons bombard the Earth's atmosphere at high latitudes. This paper examines the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region. A data and theoretical study has been carried out to examine the acceleration mechanisms that operate in the auroral zone and to identi@ the magnetospheric drivers of these acceleration mechanisms. The observations used in the study were collected by the Fast Auroral Snapshot (FAST) and Polar satellites when the two satellites were in approximate magnetic conjunction in the auroral region. During these events FAST was in the middle of the auroral zone and Polar was above the auroral zone in the near-Earth plasma sheet. Polar data were used to determine the conditions in the magnetotail at the time field-aligned acceleration was measured by FAST in the auroral zone. For each of the magnetotail drivers identified in the data study, the physics of field-aligned acceleration in the auroral region was examined using existing theoretical efforts and/or a long-system particle in cell simulation to model the magnetically connected region between the two satellites. Results from the study indicate that there are three main drivers of auroral acceleration: (1) field-aligned currents that lead to quasistatic parallel potential drops (parallel electric fields), (2) earthward flow of high-energy plasma beams from the magnetotail into the auroral zone that lead to quasistatic parallel potential drops, and (3) large-amplitude Alfven waves that propagate into the auroral region from the magnetotail. The events examined thus far confm the previously established invariant latitudinal dependence of the drivers and show a strong dependence on magnetic activity. Alfven waves tend to occur primarily at the poleward edge of the auroral region during more magnetically active times and are correlated with intense electron precipitation. At lower latitudes away

  15. Magnetic Trapping of Bacteria at Low Magnetic Fields

    PubMed Central

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-01-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells. PMID:27254771

  16. Magnetic Trapping of Bacteria at Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Wang, Z. M.; Wu, R. G.; Wang, Z. P.; Ramanujan, R. V.

    2016-06-01

    A suspension of non-magnetic entities in a ferrofluid is referred to as an inverse ferrofluid. Current research to trap non-magnetic entities in an inverse ferrofluid focuses on using large permanent magnets to generate high magnetic field gradients, which seriously limits Lab-on-a-Chip applications. On the other hand, in this work, trapping of non-magnetic entities, e.g., bacteria in a uniform external magnetic field was studied with a novel chip design. An inverse ferrofluid flows in a channel and a non-magnetic island is placed in the middle of this channel. The magnetic field was distorted by this island due to the magnetic susceptibility difference between this island and the surrounding ferrofluid, resulting in magnetic forces applied on the non-magnetic entities. Both the ferromagnetic particles and the non-magnetic entities, e.g., bacteria were attracted towards the island, and subsequently accumulate in different regions. The alignment of the ferrimagnetic particles and optical transparency of the ferrofluid was greatly enhanced by the bacteria at low applied magnetic fields. This work is applicable to lab-on-a-chip based detection and trapping of non-magnetic entities bacteria and cells.

  17. Mode conversion of Langmuir to electromagnetic waves at magnetic field-aligned density inhomogeneities: Simulations, theory, and applications to the solar wind and the corona

    SciTech Connect

    Kim, Eun-Hwa; Cairns, Iver H.; Robinson, Peter A.

    2008-10-15

    Linear mode conversion of Langmuir waves to radiation near the plasma frequency at density gradients is potentially relevant to multiple solar radio emissions, ionospheric radar experiments, laboratory plasma devices, and pulsars. Here we study mode conversion in warm magnetized plasmas using a numerical electron fluid simulation code with the density gradient parallel to the ambient magnetic field B{sub 0} for a range of incident Langmuir wavevectors. Our results include: (1) both o- and x-mode waves are produced for {omega}=({omega}L/c){sup 1/3}({omega}{sub c}/{omega})(less-or-similar sign)1, contrary to previous ideas. Only the o mode is produced for {omega}(greater-or-similar sign)1.5. Here {omega}{sub c} is the (angular) electron cyclotron frequency, {omega} is the angular wave frequency, L is the length scale of the (linear) density gradient, and c is the speed of light. A WKB-style analysis accounts semiquantitatively for the production and relative conversion efficiencies of the o and x modes in the simulations. (2) In the unmagnetized limit, equal amounts of o- and x-mode radiation are produced. (3) The mode conversion window narrows as {omega} increases. (4) As {omega} increases the total electromagnetic field changes from linear to circular polarization, with the o- and x-mode signals remaining circularly polarized. (5) The conversion efficiency to the x mode decreases monotonically as {omega} increases while the o-mode conversion efficiency oscillates due to an interference phenomenon between incoming and reflected Langmuir/z modes. (6) The maximum total conversion efficiencies for wave power from the Langmuir/z mode to radiation are of order 50%-70%. They depend strongly on the wave frequency when close to the background plasma frequency but weakly on the electron temperature T{sub 0} and {beta}=T{sub 0}/mc{sup 2}. The corresponding energy conversion efficiencies are favored since they allow separation into o and x modes, use directly measured

  18. Formation of magnetically anisotropic composite films at low magnetic fields

    NASA Astrophysics Data System (ADS)

    Ghazi Zahedi, Maryam; Ennen, Inga; Marchi, Sophie; Barthel, Markus J.; Hütten, Andreas; Athanassiou, Athanassia; Fragouli, Despina

    2017-04-01

    We present a straightforward two-step technique for the fabrication of poly (methyl methacrylate) composites with embedded aligned magnetic chains. First, ferromagnetic microwires are realized in a poly (methyl methacrylate) solution by assembling iron nanoparticles in a methyl methacrylate solution under heat in an external magnetic field of 160 mT. The simultaneous thermal polymerization of the monomer throughout the wires is responsible for their permanent linkage and stability. Next, the polymer solution containing the randomly dispersed microwires is casted on a solid substrate in the presence of a low magnetic field (20–40 mT) which induces the final alignment of the microwires into long magnetic chains upon evaporation of the solvent. We prove that the presence of the nanoparticles assembled in the form of microwires is a key factor for the formation of the anisotropic films under low magnetic fields. In fact, such low fields are not capable of driving and assembling dispersed magnetic nanoparticles in the same type of polymer solutions. Hence, this innovative approach can be utilized for the synthesis of magnetically anisotropic nanocomposite films at low magnetic fields.

  19. Magnetosheath magnetic field variability

    NASA Technical Reports Server (NTRS)

    Sibeck, D. G.

    1994-01-01

    A case study using simulations IRM and CCE observations demonstrates that transient magnetospheric events correspond to pressure pulses in the magnetosheath, inward bow shock motion, and magnetopause compression. Statistical surveys indicate that the magnetosheath magnetic field orientation rarely remains constant during periods of magnetopause and bow shock motion (both characterized by periods of 1 to 10 min). There is no tendency for bow shock motion to occur for southward interplanetary magnetic field (IMF) orientations.

  20. Magnetic field dosimeter development

    SciTech Connect

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1980-09-01

    In recent years there has been increased concern over potential health hazards related to exposure of personnel to magnetic fields. If exposure standards are to be established, then a means for measuring magnetic field dose must be available. To meet this need, the Department of Energy has funded development of prototype dosimeters at the Battelle Pacific Northwest Laboratory. This manual reviews the principle of operation of the dosimeter and also contains step-by-step instructions for its operation.

  1. The electric field alignment of ice particles in thunderstorms

    NASA Technical Reports Server (NTRS)

    Weinheimer, Andrew J.; Few, Arthur A.

    1987-01-01

    Electrical and aerodynamic torques on atmospheric ice particles are calculaed in order to assess the degree of alignment of these particles with the electric fields in thunderstorms. In such clouds fields of many tens of kilovolts per meter are commonly measured, and values of 100 to 200 kV/m are not rare. For E = 100 kV/m the calculations indicate that electric field alignment occurs for crystals with major dimensions up to maximum values in the range from 200 microns to 1 mm, depending upon crystal type. Columns are aligned more easily than platelike crystals, except for dendrites which, by virtue of their smaller assumed density, have smaller fall velocities thereby experiencing weaker aerodynamic torques. Thus a substantial degree of alignment is expected for E = 100 kV/m. For E = 10 kV/m only much smaller crystals will be aligned, probably only ones with major dimensions of less than 50 microns or so.

  2. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  3. Imaging the antiparallel magnetic alignment of adjacent Fe and MnAs thin films

    NASA Astrophysics Data System (ADS)

    Breitwieser, R.; Marangolo, M.; Lüning, J.; Jaouen, N.; Joly, L.; Eddrief, M.; Etgens, V. H.; Sacchi, M.

    2008-09-01

    The magnetic coupling between iron and α-MnAs in the epitaxial system Fe/MnAs/GaAs(001) has been studied at the submicron scale, using element-selective x-ray photoemission electron microscopy. At room temperature, MnAs layers display ridges and grooves, alternating α (magnetic) and β (nonmagnetic) phases. The self-organized microstructure of MnAs and the stray fields that it generates govern the local alignment between the Fe and α-MnAs magnetization directions, which is mostly antiparallel with a marked dependence upon the magnetic domain size.

  4. X-ray study of aligned magnetic stripe domains in perpendicular multilayers

    SciTech Connect

    Hellwig, O.; Denbeaux, G.P.; Kortright, J.B.; Fullerton, Eric E.

    2003-03-03

    We have investigated the stripe domain structure and the magnetic reversal of perpendicular Co/Pt based multilayers at room temperature using magnetometry, magnetic imaging and magnetic x-ray scattering. In-plane field cycling aligns the stripe domains along the field direction. In magnetic x-ray scattering the parallel stripe domains act as a magnetic grating resulting in observed Bragg reflections up to 5th order. We model the scattering profile to extract and quantify the domain as well as domain wall widths. Applying fields up to {approx}1.2 kOe perpendicular to the film reversibly changes the relative width of up versus down domains while maintaining the overall stripe periodicity. Fields above 1.2 kOe introduce irreversible changes into the domain structure by contracting and finally annihilating individual stripe domains. We compare the current results with modeling and previous measurements of films with perpendicular anisotropy.

  5. Molecules in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Berdyugina, Svetlana

    2015-08-01

    Molecules probe cool matter in the Universe and various astrophysical objects. Their ability to sense magnetic fields provides new insights into magnetic properties of these objects. During the past fifteen years we have carried out a theoretical study of molecular magnetic effects such as the Zeeman, Paschen-Back and Hanle effects and their applications for inferring magnetic structures and spatial inhomogeneities on the Sun, cool stars, brown dwarfs, and exoplanets from molecular spectro-polarimetry (e.g., Berdyugina 2011). Here, we present an overview of this study and compare our theoretical predictions with recent laboratory measurements of magnetic properties of some molecules. We present also a new web-based tool to compute molecular magnetic effects and polarized spectra which is supported by the ERC Advanced Grant HotMol.

  6. Magnetic Fields in Massive Filaments

    NASA Astrophysics Data System (ADS)

    Pillai, Thushara

    Magnetic fields pervade galaxies, shaping them from the largest scales to the smallest star forming scales. A firm understanding of their role is crucial to our understanding of the physics of ISM. A dominant phase of the ISM that has received considerable attention is that of filaments which are ubiquitous and dominate the mass reservoir in molecular clouds. Enormous progress has been made recently towards understanding filament properties. The next major step should be to understand the role of magnetic fields in filaments. We propose to take advantage of HAWC+ dust emission polarimeter now available on SOFIA to launch a pilot polarization study towards three major classes of filaments: (i) Pristine (ii) Hub-Filament systems and (iii) Perturbed. HAWC+ will trace the connection between the star forming cores and the filaments enveloping them. By covering a vast range in parameter space from quiescent to active filaments, we will be constraining the initial conditions prior to star formation, during star formation and after star formation (feedback from newly formed stars on their parent clouds.) The interpretation of observations will be supported by extensive custom-made numerical simulations of magnetized clouds and subsequent dust radiative transfer with various grain alignment mechanisms, as provided by collaborators. Combined, these observations will provide the first panoramic view of the magnetized nature of massive filaments in the ISM.

  7. Magnetic Fields in Massive Filaments

    NASA Astrophysics Data System (ADS)

    Pillai, G. S. Thushara

    2015-10-01

    Magnetic fields pervade galaxies, shaping them from the largest scales to the smallest star forming scales. A firm understanding of their role is crucial to our understanding of the physics of ISM. A dominant phase of the ISM that has received considerable attention is that of filaments which are ubiquitous and dominate the mass reservoir in molecular clouds. Enormous progress has been made recently towards understanding filament properties. The next major step should be to understand the role of magnetic fields in filaments. We propose to take advantage of HAWC+ dust emission polarimeter now available on SOFIA to launch a pilot polarization study towards three major classes of filaments: (i) Pristine (ii) Hub-Filament systems and (iii) Perturbed. HAWC+ will trace the connection between the star forming cores and the filaments enveloping them. By covering a vast range in parameter space from quiescent to active filaments, we will be constraining the initial conditions prior to star formation, during star formation and after star formation (feedback from newly formed stars on their parent clouds.) The interpretation of observations will be supported by extensive custom--made numerical simulations of magnetized clouds and subsequent dust radiative transfer with various grain alignment mechanisms, as provided by collaborators. Combined, these observations will provide the first panoramic view of the magnetized nature of massive filaments in the ISM.

  8. Localized field-aligned currents and 4-min TEC and ground magnetic oscillations during the 2015 eruption of Chile's Calbuco volcano

    NASA Astrophysics Data System (ADS)

    Aoyama, Tadashi; Iyemori, Toshihiko; Nakanishi, Kunihito; Nishioka, Michi; Rosales, Domingo; Veliz, Oscar; Safor, Erick Vidal

    2016-08-01

    The Calbuco volcano in southern Chile erupted on April 22, 2015. About 2 h after the first eruption, a Swarm satellite passed above the volcano and observed enhancement of small-amplitude (~0.5 nT) magnetic fluctuations with wave-packet structure which extends 15° in latitude. Similar wave packet is seen at the geomagnetic conjugate point of the volcano. Just after the eruption, geomagnetic fluctuations with the spectral peaks around the vertical acoustic resonance periods, 215 and 260 s, were also observed at Huancayo Geomagnetic Observatory located on the magnetic equator. Besides these observations, around 4-min, i.e., 175, 205 and 260 s, oscillations of total electron content (TEC) were observed at global positioning system stations near the volcano. The horizontal propagation velocity and the spatial scale of the TEC oscillation are estimated to be 720 m/s and 1600 km, respectively. These observations strongly suggest that the atmospheric waves induced by explosive volcanic eruption generate TEC variation and electric currents. The Swarm observation may be explained as a manifestation of their magnetic effects observed in the topside ionosphere.

  9. Magnetic Field Solver

    NASA Technical Reports Server (NTRS)

    Ilin, Andrew V.

    2006-01-01

    The Magnetic Field Solver computer program calculates the magnetic field generated by a group of collinear, cylindrical axisymmetric electromagnet coils. Given the current flowing in, and the number of turns, axial position, and axial and radial dimensions of each coil, the program calculates matrix coefficients for a finite-difference system of equations that approximates a two-dimensional partial differential equation for the magnetic potential contributed by the coil. The program iteratively solves these finite-difference equations by use of the modified incomplete Cholesky preconditioned-conjugate-gradient method. The total magnetic potential as a function of axial (z) and radial (r) position is then calculated as a sum of the magnetic potentials of the individual coils, using a high-accuracy interpolation scheme. Then the r and z components of the magnetic field as functions of r and z are calculated from the total magnetic potential by use of a high-accuracy finite-difference scheme. Notably, for the finite-difference calculations, the program generates nonuniform two-dimensional computational meshes from nonuniform one-dimensional meshes. Each mesh is generated in such a way as to minimize the numerical error for a benchmark one-dimensional magnetostatic problem.

  10. The evolution of arguments regarding the existence of field-aligned currents

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1984-01-01

    The present understanding of Birkeland (magnetically-field-aligned) currents was not obtained by a direct, logical course. The story is rather more complex. Starting at the end of the 19th century, the Norwegian scientist Kristian Birkeland laid out a compelling case, supported by both theory and experiment, for the existence of field-aligned currents that cause both the aurora and polar geomagnetic disturbances. Sydney Chapman, the British geophysicist, became the acknowledged leader and opinion maker in the field in the decades following Birkeland's death. Chapman proposed, in contradistinction to Birkeland's ideas, equivalent currents that were restricted to flow in the ionosphere with no vertical or field-aligned components. Birkeland's ideas may have faded completely if it had not been for Hannes Alfven, who became involved well after Chapman's ideas gained predominance. Alfven kept insisting that Birkeland's current system made more sense because field-aligned currents were required to drive most of the ionospheric currents. The author became personally involved when Zmuda et al. (1966) submitted to the Journal of Geophysical Research a paper reporting satellite data showing magnetic disturbances above the ionosphere that were consistent with field-aligned Birkeland currents, but which they did not interpret as being due to such currents.

  11. Magnetic fields at uranus.

    PubMed

    Ness, N F; Acuña, M H; Behannon, K W; Burlaga, L F; Connerney, J E; Lepping, R P; Neubauer, F M

    1986-07-04

    The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles.

  12. Simulations of the equatorial thermosphere anomaly: Field-aligned ion drag effect

    NASA Astrophysics Data System (ADS)

    Lei, Jiuhou; Thayer, Jeffrey P.; Wang, Wenbin; Richmond, Arthur D.; Roble, Raymond; Luan, Xiaoli; Dou, Xiankang; Xue, Xianghui; Li, Tao

    2012-01-01

    In this paper the impact of the field-aligned ion drag on equatorial thermosphere temperature and density is quantitatively investigated on the basis of the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR TIEGCM) simulations under high solar activity (F107 = 180). The increase of upward vertical winds over the magnetic equator associated with the additional divergence of meridional winds, caused by the inclusion of field-aligned ion drag, leads to a reduction in thermosphere temperature and density at the magnetic equator through enhanced adiabatic cooling. We found that the field-aligned ion drag has an obvious impact on the thermosphere only over the magnetic equatorial region in the daytime and evening sectors, whereas it has less effect on the equatorial thermosphere anomaly (ETA) crests. The daytime neutral temperature over the magnetic equator is reduced by about 30 K, for altitudes above 250 km without significant altitudinal variations, when field-aligned ion drag is included in the simulation. The thermosphere density in the magnetic equatorial region starts to change slightly at 300 km and depletes by about 5% at 400 km, while experiencing a greater decrease with altitude. Furthermore, the trough produced in the neutral temperature and density corresponds well with the magnetic dip equator. The ETA features during 12:00-18:00 LT become obvious as a result of the inclusion of the field-aligned ion drag. Specifically, our results show that at 400 km the crest-trough differences in neutral temperature are about 30-60 K, and the crest-trough ratios in thermosphere density are 1.03-1.06, comparable with observations.

  13. Cholesterol-diethylenetriaminepentaacetate complexed with thulium ions integrated into bicelles to increase their magnetic alignability.

    PubMed

    Liebi, Marianne; Kuster, Simon; Kohlbrecher, Joachim; Ishikawa, Takashi; Fischer, Peter; Walde, Peter; Windhab, Erich J

    2013-11-27

    Lanthanides have been used for several decades to increase the magnetic alignability of bicelles. DMPE-DTPA (1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylenetriaminepentaacetate) is commonly applied to anchor the lanthanides into the bicelles. However, because DMPE-DTPA has the tendency to accumulate at the highly curved edge region of the bicelles and if located there does not contribute to the magnetic orientation energy, we have tested cholesterol-DTPA complexed with thulium ions (Tm(3+)) as an alternative chelator to increase the magnetic alignability. Differential scanning calorimetric (DSC) measurements indicate the successful integration of cholesterol-DTPA into a DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) bilayer. Cryo transmission electron microscopy and small-angle neutron scattering (SANS) measurements show that the disklike structure, that is, bicelles, is maintained if cholesterol-DTPA·Tm(3+) is integrated into a mixture of DMPC, cholesterol, and DMPE-DTPA·Tm(3+). The size of the bicelles is increased compared to the size of the bicelles obtained from mixtures without cholesterol-DTPA·Tm(3+). Magnetic-field-induced birefringence and SANS measurements in a magnetic field show that with addition of cholesterol-DTPA·Tm(3+) the magnetic alignability of these bicelles is significantly increased compared to bicelles composed of DMPC, cholesterol, and DMPE-DTPA·Tm(3+) only.

  14. Mercury's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Johnson, C. L.

    2014-12-01

    Mercury is the only inner solar system body other than Earth to possess an active core dynamo-driven magnetic field and the only planet with a small, highly dynamic magnetosphere. Measurements made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft have provided a wealth of data on Mercury's magnetic field environment. Mercury's weak magnetic field was discovered 40 years ago by the Mariner 10 spacecraft, but its large-scale geometry, strength and origin could not be definitively established. MESSENGER data have shown that the field is dynamo-generated and can be described as an offset axisymmetric dipole field (hereafter OAD): the magnetic equator lies ~0.2 RM (RM = 2440 km) north of the geographic equator and the dipole moment is 2.8 x1019 Am2 (~0.03% that of Earth's). The weak internal field and the high, but variable, solar wind ram pressure drive vigorous magnetospheric dynamics and result in an average distance from the planet center to the sub-solar magnetopause of only 1.42 RM. Magnetospheric models developed with MESSENGER data have allowed re-analysis of the Mariner 10 observations, establishing that there has been no measureable secular variation in the internal field over 40 years. Together with spatial power spectra for the OAD, this provides critical constraints for viable dynamo models. Time-varying magnetopause fields induce secondary core fields, the magnitudes of which confirm the core radius estimated from MESSENGER gravity and Earth-based radar data. After accounting for large-scale magnetospheric fields, residual signatures are dominated by additional external fields that are organized in the local time frame and that vary with magnetospheric activity. Birkeland currents have been identified, which likely close in the planetary interior at depths below the base of the crust. Near-periapsis magnetic field measurements at altitudes greater than 200 km have tantalizing hints of crustal fields, but crustal

  15. Alfven Wave - DC Dualism in Description of Stationary Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2009-01-01

    In many cases, the field-aligned currents (FACs) in the Earth's magnetosphere and heliosphere may be described in terms of both DC currents and the currents of a propagating Alfven wave. The simplest example is when a propagating Alfven wave transports a potential hop along the magnetic fieid: between the source of the wave and its front, the problem is well stationary and includes the stationary field-aligned currents, transporting the electric charges along the magnetic field, which may be described as a DC problem, and only at the front of the wave there are the polarization (inertial) currents, closing across the magnetic field. In some cases, the Alfven wave approach brings better understanding to many problems. We will consider here the results of the applications of this approach to two long-staying problems: the effect of saturation of the transpolar voltage in the Earth's magnetosphere, and the experimentally-observed existence of the strong field-aligned currents in the subtle Mercury's magnetosphere which is not able tc close the measured field-aligned currents.

  16. Magnetic alignment in carps: evidence from the Czech christmas fish market.

    PubMed

    Hart, Vlastimil; Kušta, Tomáš; Němec, Pavel; Bláhová, Veronika; Ježek, Miloš; Nováková, Petra; Begall, Sabine; Cervený, Jaroslav; Hanzal, Vladimír; Malkemper, Erich Pascal; Stípek, Kamil; Vole, Christiane; Burda, Hynek

    2012-01-01

    While magnetoreception in birds has been studied intensively, the literature on magnetoreception in bony fish, and particularly in non-migratory fish, is quite scarce. We examined alignment of common carps (Cyprinus carpio) at traditional Christmas sale in the Czech Republic. The sample comprised measurements of the directional bearings in 14,537 individual fish, distributed among 80 large circular plastic tubs, at 25 localities in the Czech Republic, during 817 sampling sessions, on seven subsequent days in December 2011. We found that carps displayed a statistically highly significant spontaneous preference to align their bodies along the North-South axis. In the absence of any other common orientation cues which could explain this directional preference, we attribute the alignment of the fish to the geomagnetic field lines. It is apparent that the display of magnetic alignment is a simple experimental paradigm of great heuristic potential.

  17. Magnetic Alignment in Carps: Evidence from the Czech Christmas Fish Market

    PubMed Central

    Hart, Vlastimil; Kušta, Tomáš; Němec, Pavel; Bláhová, Veronika; Ježek, Miloš; Nováková, Petra; Begall, Sabine; Červený, Jaroslav; Hanzal, Vladimír; Malkemper, Erich Pascal; Štípek, Kamil; Vole, Christiane; Burda, Hynek

    2012-01-01

    While magnetoreception in birds has been studied intensively, the literature on magnetoreception in bony fish, and particularly in non-migratory fish, is quite scarce. We examined alignment of common carps (Cyprinus carpio) at traditional Christmas sale in the Czech Republic. The sample comprised measurements of the directional bearings in 14,537 individual fish, distributed among 80 large circular plastic tubs, at 25 localities in the Czech Republic, during 817 sampling sessions, on seven subsequent days in December 2011. We found that carps displayed a statistically highly significant spontaneous preference to align their bodies along the North-South axis. In the absence of any other common orientation cues which could explain this directional preference, we attribute the alignment of the fish to the geomagnetic field lines. It is apparent that the display of magnetic alignment is a simple experimental paradigm of great heuristic potential. PMID:23227241

  18. Field-free alignment in repetitively kicked nitrogen gas

    SciTech Connect

    Cryan, James P.; Bucksbaum, Philip H.; Coffee, Ryan N.

    2009-12-15

    We demonstrate a high level of laser-induced transient alignment in room temperature and density N{sub 2} with a technique that avoids laser field ionization. Our measured alignment shows an improvement over previous one-pulse or two-pulse experimental alignment results and approaches the theoretical maximum value. We employ eight equally spaced ultrafast laser pulses with a separation that takes advantage of the periodic revivals for the ensemble of quantum rotors. Each successive pulse increases the transient alignment [(t)] and also moves the rotational population away from thermal equilibrium. These measurements are combined with simulations to determine the value of , the J-state distributions, and the functional dependencies of the alignment features.

  19. Mid-latitude field-aligned ionospheric irregularities and its impact on GPS

    NASA Astrophysics Data System (ADS)

    Yasyukevich, Yury; Afraimovich, Edward; Ishin, Artem; Tinin, Mikhail

    2010-05-01

    Strong scintillations of amplitude and phase of transionospheric radio signals occur due to signal scattering on intensive small scale irregularities. Scintillation can have an adverse effect on GPS signals and cause a GPS receiver to lose lock on the signal in some extreme cases. Although the plasma bubble is a common phenomenon and it has been studied for years, precise observed data of ionospheric scintillations and loss of lock to GPS receivers due to plasma bubble at mid-latitude are still limited. In most papers there are no data regarding the space geometry of field-aligned irregularities. For the first time, we propose a GPS method to detect mid-latitude field-aligned irregularities (FAIs) by line-of-sight angular scanning regarding the local magnetic field vector. We show that total GPS L2 phase slips over Japan during the recovery phase of the 12 February, 2000 geomagnetic storm (Ma and Maruyama, 2006, doi:10.1029/2006GL027512) were caused by GPS signal scattering on FAIs for the line-of-sight of both aligned to magnetic field line (the field of aligned scattering, FALS), and across it or at large angles to magnetic field line (the field of across scattering, FACS). Our FALS results confirm well with data of investigation of magnetic field orientation control of GPS occultation observations of equatorial scintillation during detailed LEO CHAMP, SAC-C and PICOSat measurements, realized by Anderson and Strauss (2005, doi:10.1029/2005GL023781). The role of large-angle scattering almost along the normal to the magnetic field line in GPS scintillation is determined by attenuation of the irregularity anisotropy factor as compared with the other factors. The work was supported by the Fundamental Research Program of RAS Physical Science Department (Project IV.12 "Modern problems of radiophysics").

  20. Field-aligned currents observed in the vicinity of a moving auroral arc

    NASA Astrophysics Data System (ADS)

    Goertz, C. K.; Bruening, K.

    1984-09-01

    The sounding rocket Porcupine F4 was launched into an auroral arc and the field aligned currents were independently deduced from magnetic field measurements; the horizontal current deduced from the electric field measurements and height integrated conductivity calculations; and measurements of electron fluxes. Above the arc the different methods agree. The magnetosphere acts as generator and the ionosphere as load. North of the arc, the first two methods disagree, possibly due to an Alfven wave carrying the observed magnetic field perturbation. The energy flow is out of the ionosphere. Here the ionosphere acts as generator and the magnetosphere as load.

  1. Field-aligned currents observed in the vicinity of a moving auroral arc

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Bruening, K.

    1984-01-01

    The sounding rocket Porcupine F4 was launched into an auroral arc and the field aligned currents were independently deduced from magnetic field measurements; the horizontal current deduced from the electric field measurements and height integrated conductivity calculations; and measurements of electron fluxes. Above the arc the different methods agree. The magnetosphere acts as generator and the ionosphere as load. North of the arc, the first two methods disagree, possibly due to an Alfven wave carrying the observed magnetic field perturbation. The energy flow is out of the ionosphere. Here the ionosphere acts as generator and the magnetosphere as load.

  2. Magnetic fields from inflation?

    SciTech Connect

    Demozzi, Vittoria; Mukhanov, Viatcheslav; Rubinstein, Hector E-mail: viatcheslav.mukhanov@physik.uni-muenchen.de

    2009-08-01

    We consider the possibility of generation of the primordial magnetic field on inflation and show that the effect of the back reaction of this field can be very important. Assuming that the back reaction does not spoil inflation we find a rather strong restriction on the amplitude of the primordial field which could be generated on inflation. Namely, this amplitude recalculated to the present epoch cannot exceed 10{sup −32}G in Mpc scales. This field seems to be too small to be amplified to the observable values by a possible dynamo mechanism.

  3. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  4. The interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Davis, L., Jr.

    1972-01-01

    Large-scale properties of the interplanetary magnetic field as determined by the solar wind velocity structure are examined. The various ways in which magnetic fields affect phenomena in the solar wind are summarized. The dominant role of high and low velocity solar wind streams that persist, with fluctuations and evolution, for weeks or months is emphasized. It is suggested that for most purposes the sector structure is better identified with the stream structure than with the magnetic polarity and that the polarity does not necessarily change from one velocity sector to the next. Several mechanisms that might produce the stream structure are considered. The interaction of the high and low velocity streams is analyzed in a model that is steady state when viewed in a frame that corotates with the sun.

  5. Unusual 5 m E region field-aligned irregularities observed from Northern Germany during the magnetic storm of 17 March 2015

    NASA Astrophysics Data System (ADS)

    Chau, Jorge L.; St.-Maurice, Jean-Pierre

    2016-10-01

    Coherent E region echoes were observed during the 17 March 2015 storm at midlatitudes by multistatic wide field of view radars operating in northern Germany. Two of the stations operated in a monostatic configuration, while one link was set in bistatic mode. Interferometry made it feasible to locate the targets. While the radars were built to measure mesospheric winds from specular meteor echoes, the storm was so intense that it allowed them to observe auroral E region echoes for more than 4 h. All stations detected numerous examples of narrow spectra with slow (≈180 m/s) and fast (up to 1600 m/s) Doppler velocities. The target speeds were much faster than the Doppler velocities for the slow narrow echoes (more than 800 m/s versus 180 m/s) but comparable to the observed Doppler shift for the 1500 m/s narrow fast types. The narrow types came from localized horizontal structures 50 to 80 km wide in range. The fast narrow types came from the upper part of the altitudes associated with Farley-Buneman waves. The slow narrow structures were typically from altitudes lower than 100 km. Unexpectedly, the great majority of the echoes associated with more ordinary ion acoustic turbulence had a positive Doppler shift and came from the east. A companion paper uses these new observations to reevaluate the origin of the narrow echoes and of the asymmetry in the counts. Irrespective of the generation mechanisms, our observations indicate that a combination of unusually large electric field and strong precipitation is needed to produce the unusual echoes.

  6. Block Copolymer Nanocomposites in Electric Fields: Kinetics of Alignment

    SciTech Connect

    Liedel, Clemens; Pester, Christian; Ruppel, Markus A; Lewin, Christian; Pavan, Mariela J.; Urban, Volker S; Shenhar, Roy; Bosecke, Peter; Boker, Alexander

    2013-01-01

    We investigate the kinetics of block copolymer/nanoparticle composite alignment in an electric field using in situ transmission small-angle X-ray scattering. As a model system, we employ a lamellae forming polystyrene-block-poly(2-vinyl pyridine) block copolymer with different contents of gold nanoparticles in thick films under solvent vapor annealing. While the alignment improves with increasing nanoparticle fraction, the kinetics slows down. This is explained by changes in the degree of phase separation and viscosity. Our findings provide extended insights into the basics of nanocomposite alignment.

  7. Observations of field-aligned currents, waves, and electric fields at substorm onset

    NASA Technical Reports Server (NTRS)

    Smits, D. P.; Hughes, W. J.; Cattell, C. A.; Russell, C. T.

    1986-01-01

    Substorm onsets, identified Pi 2 pulsations observed on the Air Force Geophysics Laboratory Magnetometer Network, are studied using magnetometer and electric field data from ISEE 1 as well as magnetometer data from the geosynchronous satellites GOES 2 and 3. The mid-latitude magnetometer data provides the means of both timing and locating the substorm onset so that the spacecraft locations with respect to the substorm current systems are known. During two intervals, each containing several onsets or intensifications, ISEE 1 observed field-aligned current signatures beginning simultaneously with the mid-latitude Pi 2 pulsation. Close to the earth broadband bursts of wave noise were observed in the electric field data whenever field-aligned currents were detected. One onset occurred when ISEE 1 and GOES 2 were on the same field line but in opposite hemispheres. During this onset ISEE 1 and GOES 2 saw magnetic signatures which appear to be due to conjugate field-aligned currents flowing out of the western end of the westward auroral electrojets. The ISEE 1 signature is of a line current moving westward past the spacecraft. During the other interval, ISEE 1 was in the near-tail region near the midnight meridian. Plasma data confirms that the plasma sheet thinned and subsequently expanded at onset. Electric field data shows that the plasma moved in the opposite direction to the plasma sheet boundary as the boundary expanded which implies that there must have been an abundant source of hot plasma present. The plasma motion was towards the center of the plasma sheet and earthwards and consisted of a series of pulses rather than a steady flow.

  8. Observations of Field-Aligned Current Spatial and Temporal Variations by Space Technology 5

    NASA Astrophysics Data System (ADS)

    Le, G.; Slavin, J. A.; Strangeway, R. J.; Wang, Y.

    2013-12-01

    In this paper, we report the results of magnetic field measurements of field-aligned currents (FACs) using multi-point magnetic field data from Space Technology 5 (ST-5) mission. ST-5 is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun synchronous polar orbit. The spacecraft were maintained in a 'pearls on a sting' constellation with controlled spacings ranging from just over 5000 km down to under 50 km. During the three-month mission duration, the constellation mission returned high quality multi-point measurements of the magnetic field through Earth's dynamic ionospheric current systems over a range of inter-satellite spacing. In this study, we use the ST-5 magnetic field measurements to separate spatial and temporal variations of FACs and to quantify the imbalance between the region 1 (R1) and the region 2 (R2) currents.

  9. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism.

    PubMed

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W T

    2016-12-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications.

  10. First evidence of anisotropy of GPS phase slips caused by the mid-latitude field-aligned ionospheric irregularities

    NASA Astrophysics Data System (ADS)

    Afraimovich, E. L.; Ishin, A. B.; Tinin, M. V.; Yasyukevich, Yu. V.; Jin, S. G.

    2011-05-01

    The mid-latitude field-aligned irregularity (FAI) along the magnetic field line is a common phenomenon in the ionosphere. However, few data reveal the field-aligned ionospheric irregularities. They are insufficient to identify FAIs effects so far, particularly effect on global positioning system (GPS) signals. In this paper, the mid-latitude FAIs by line-of-sight angular scanning relative to the local magnetic field vector are investigated using the denser GPS network observations in Japan. It has been the first found that total GPS L2 phase slips over Japan, during the recovery phase of the 12 Feb 2000 geomagnetic storm were caused by GPS signal scattering on FAIs both for the lines-of-sight aligned to the magnetic field line (the field of aligned scattering, FALS) and across the magnetic field line (the field of across scattering, FACS). The FALS results are also in a good agreement with the data of the magnetic field orientation control of GPS occultation observations of equatorial scintillation during thorough low earth orbit (LEO) satellites measurements, e.g. Challenging Minisatellite Payload (CHAMP) and Satellite de Aplicaciones Cientificas-C (SAC-C). The role of large-angle scattering almost along the normal to the magnetic field line in GPS scintillation is determined by attenuation of the irregularity anisotropy factor as compared with the other factors.

  11. Spontaneous Magnetic Alignment by Yearling Snapping Turtles: Rapid Association of Radio Frequency Dependent Pattern of Magnetic Input with Novel Surroundings

    PubMed Central

    Landler, Lukas; Painter, Michael S.; Youmans, Paul W.; Hopkins, William A.; Phillips, John B.

    2015-01-01

    We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF (‘RF off → RF off’), but were disoriented when subsequently exposed to RF (‘RF off → RF on’). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF (‘RF on → RF off’), but aligned towards magnetic south when tested with RF (‘RF on → RF on’). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space. PMID:25978736

  12. Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings.

    PubMed

    Landler, Lukas; Painter, Michael S; Youmans, Paul W; Hopkins, William A; Phillips, John B

    2015-01-01

    We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF ('RF off → RF off'), but were disoriented when subsequently exposed to RF ('RF off → RF on'). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF ('RF on → RF off'), but aligned towards magnetic south when tested with RF ('RF on → RF on'). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space.

  13. An MHD simulation of By-dependent magnetospheric convection and field-aligned currents during northward IMF

    NASA Technical Reports Server (NTRS)

    Ogino, T.; Walker, R. J.; Ashour-Abdalla, M.; Dawson, J. M.

    1985-01-01

    A three-dimensional MHD simulation code is used to model the magnetospheric configuration when the IMF has both a northward B(z) component and a B(y) component in the east-west direction. Projections of the plasma pressure, the field-aligned velocity, the field-aligned vorticity, and the field-aligned current along the magnetic field lines into the northern ionosphere are shown and discussed. Cross-sectional patterns of these parameters are shown. The results demonstrate that the B(y) component of the IMF strongly influences the plasma sheet configuration and the magnetospheric convection pattern.

  14. Magnetic fields and cancer

    SciTech Connect

    Jones, T.L.

    1993-10-01

    This letter is a response to an article by Savitz and Kaune, EHP 101:76-80. W-L wire code was applied to data from a 1988 Denver study, and an association was reported between high W-L wire code and childhood cancer. This author discusses several studies and provides explanations which weakens the argument that classification error resulted in an appreciable reduction in the association between W-L high wire code and childhood cancer. In conclusion, the fact that new wire code is only weakly correlated with magnetic field measurements (in the same manner as the original W-L wire code) suggests that the newly reported stronger association with childhood cancer is likely due to factors other than magnetic fields. Differential residential mobility and differential residential age are two possible explanations and are suggestive that the reported association may be false.

  15. Magnetic field reconnection

    NASA Astrophysics Data System (ADS)

    Axford, W. I.

    The fundamental principles of particle acceleration by magnetic reconnection in cosmic plasmas are reviewed. The history of reconnection models is traced, and consideration is given to the Kelvin-Helmholtz theorem, the frozen-field theorem, the application of the Kelvin-Helmholtz theorem to a collisionless plasma, solutions to specific reconnection problems, and configurational instability. Diagrams and graphs are provided, and the objections raised by critics of the reconnection theory and/or its astrophysical applications are discussed.

  16. Photonic Magnetic Field Sensor

    DTIC Science & Technology

    2007-11-02

    reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical ( GMO ) or Faraday...Squids are those based upon the giant magneto-optical ( GMO ) effect in ferrimagnetic materials or YIG garnets and the giant magneto-resistance (GMR...effect in manganese based compounds. The development of the GMO material was mostly motivated by the need for compact, in-line fiber optical

  17. Alignment induced aberration fields of next generation telescopes

    NASA Astrophysics Data System (ADS)

    Schmid, Tobias; Thompson, Kevin; Rolland, Jannick

    2008-08-01

    There is a long list of new ground-based optical telescopes being considered around the world. While many are conventional Cassegrain and Ritchey-Chretien designs, some are from a family of three mirror anastigmatic (TMA) telescopes that are configured with an offset field (but still obscured) that trace back to designs developed in the 1970s for military applications. The nodal theory of aberrations, developed in the late 1970s, provides valuable insights into the response of TMA telescopes to alignment errors. Here it is shown for the first time that the alignment limiting aberration in any TMA telescope is a 3rd order astigmatism term with a new field dependence, termed field-asymmetric, field-linear 3rd order astigmatism. It is also shown that a TMA telescope under assembly that is only measured to have excellent/perfect performance onaxis is not aligned in any significant way. This is because the new astigmatic term is always zero on-axis, even though it is large over the field of view. Knowledge of this intrinsic misalignment aberration field for any TMA telescope aids greatly in ensuring it can be aligned successfully. The James Webb Space Telescope (JWST), is used an example of a relevant TMA system.

  18. Synthetic Observations of Magnetic Fields in Protostellar Cores

    NASA Astrophysics Data System (ADS)

    Lee, Joyce W. Y.; Hull, Charles L. H.; Offner, Stella S. R.

    2017-01-01

    The role of magnetic fields in the early stages of star formation is not well constrained. In order to discriminate between different star formation models, we analyze 3D magnetohydrodynamic simulations of low-mass cores and explore the correlation between magnetic field orientation and outflow orientation over time. We produce synthetic observations of dust polarization at resolutions comparable to millimeter-wave dust polarization maps observed by the Combined Array for Research in Millimeter-wave Astronomy and compare these with 2D visualizations of projected magnetic field and column density. Cumulative distribution functions of the projected angle between the magnetic field and outflow show different degrees of alignment in simulations with differing mass-to-flux ratios. The distribution function for the less magnetized core agrees with observations finding random alignment between outflow and field orientations, while the more magnetized core exhibits stronger alignment. We find that fractional polarization increases when the system is viewed such that the magnetic field is close to the plane of the sky, and the values of fractional polarization are consistent with observational measurements. The simulation outflow, which reflects the underlying angular momentum of the accreted gas, changes direction significantly over over the first ∼0.1 Myr of evolution. This movement could lead to the observed random alignment between outflows and the magnetic fields in protostellar cores.

  19. Dark Field Technology - A Practical Approach To Local Alignment

    NASA Astrophysics Data System (ADS)

    Beaulieu, David R.; Hellebrekers, Paul P.

    1987-01-01

    A fully automated direct reticle reference alignment system for use in step and repeat camera systems is described. The technique, first outlined by Janus S. Wilczynski, ("Optical Step and Repeat Camera with Dark Field Alignment", J. Vac. Technol., 16(6), Nov./Dec. 1979), has been implemented on GCA Corporation's DSW Wafer Stepper. Results from various process levels covering the typical CMOS process have shown that better than ±0.2μm alignment accuracy can be obtained with minimal process sensitivity. The technique employs fixed illumination and microscope optics to achieve excellent registration stability and maintenance-free operation. Latent image techniques can be exploited for intra-field, grid and focus characterization.

  20. Magnetic Field Topology in Jets

    NASA Technical Reports Server (NTRS)

    Gardiner, T. A.; Frank, A.

    2000-01-01

    We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.

  1. Low field magnetic resonance imaging

    SciTech Connect

    Pines, Alexander; Sakellariou, Dimitrios; Meriles, Carlos A.; Trabesinger, Andreas H.

    2010-07-13

    A method and system of magnetic resonance imaging does not need a large homogenous field to truncate a gradient field. Spatial information is encoded into the spin magnetization by allowing the magnetization to evolve in a non-truncated gradient field and inducing a set of 180 degree rotations prior to signal acquisition.

  2. Magnetic field switchable dry adhesives.

    PubMed

    Krahn, Jeffrey; Bovero, Enrico; Menon, Carlo

    2015-02-04

    A magnetic field controllable dry adhesive device is manufactured. The normal adhesion force can be increased or decreased depending on the presence of an applied magnetic field. If the magnetic field is present during the entire normal adhesion test cycle which includes both applying a preloading force and measuring the pulloff pressure, a decrease in adhesion is observed when compared to when there is no applied magnetic field. Similarly, if the magnetic field is present only during the preload portion of the normal adhesion test cycle, a decrease in adhesion is observed because of an increased stiffness of the magnetically controlled dry adhesive device. When the applied magnetic field is present during only the pulloff portion of the normal adhesion test cycle, either an increase or a decrease in normal adhesion is observed depending on the direction of the applied magnetic field.

  3. Superhorizon magnetic fields

    NASA Astrophysics Data System (ADS)

    Campanelli, Leonardo

    2016-03-01

    We analyze the evolution of superhorizon-scale magnetic fields from the end of inflation till today. Whatever is the mechanism responsible for their generation during inflation, we find that a given magnetic mode with wave number k evolves, after inflation, according to the values of k ηe , nk , and Ωk , where ηe is the conformal time at the end of inflation, nk is the number density spectrum of inflation-produced photons, and Ωk is the phase difference between the two Bogoliubov coefficients which characterize the state of that mode at the end of inflation. For any realistic inflationary magnetogenesis scenario, we find that nk-1≪|k ηe|≪1 , and three evolutionary scenarios are possible: (i) |Ωk∓π |=O (1 ) , in which case the evolution of the magnetic spectrum Bk(η ) is adiabatic, a2Bk(η )=const , with a being the expansion parameter; (ii) |Ωk∓π |≪|k ηe| , in which case the evolution is superadiabatic, a2Bk(η )∝η ; (iii) |k ηe|≪|Ωk∓π |≪1 or |k ηe|˜|Ωk∓π |≪1 , in which case an early phase of adiabatic evolution is followed, after a time η⋆˜|Ωk∓π |/k , by a superadiabatic evolution. Once a given mode reenters the horizon, it remains frozen into the plasma and then evolves adiabatically till today. As a corollary of our results, we find that inflation-generated magnetic fields evolve adiabatically on all scales and for all times in conformal-invariant free Maxwell theory, while they evolve superadiabatically after inflation on superhorizon scales in the nonconformal-invariant Ratra model, where the inflaton is kinematically coupled to the electromagnetic field. The latter result supports and, somehow, clarifies our recent claim that the Ratra model can account for the presence of cosmic magnetic fields without suffering from both backreaction and strong-coupling problems.

  4. Electric and magnetic fields

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Etters, R. D.

    1982-01-01

    A number of energy momentum anomalies are described that result from the use of Abraham-Lorentz electromagnetic theory. These anomalies have in common the motion of charged bodies or current carrying conductors relative to the observer. The anomalies can be avoided by using the nonflow approach, based on internal energy of the electromagnetic field. The anomalies can also be avoided by using the flow approach, if all contributions to flow work are included. The general objective of this research is a fundamental physical understanding of electric and magnetic fields which, in turn, might promote the development of new concepts in electric space propulsion. The approach taken is to investigate quantum representations of these fields.

  5. Space Technology 5 Multipoint Observations of Temporal and Spatial Variability of Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Le, G.; Wang, Y.; Slavin, J. A.; Strangeway, R. L.

    2009-01-01

    Space Technology 5 (ST5) is a constellation mission consisting of three microsatellites. It provides the first multipoint magnetic field measurements in low Earth orbit, which enables us to separate spatial and temporal variations. In this paper, we present a study of the temporal variability of field-aligned currents using the ST5 data. We examine the field-aligned current observations during and after a geomagnetic storm and compare the magnetic field profiles at the three spacecraft. The multipoint data demonstrate that mesoscale current structures, commonly embedded within large-scale current sheets, are very dynamic with highly variable current density and/or polarity in approx.10 min time scales. On the other hand, the data also show that the time scales for the currents to be relatively stable are approx.1 min for mesoscale currents and approx.10 min for large-scale currents. These temporal features are very likely associated with dynamic variations of their charge carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of mesoscale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  6. Artificial field-aligned irregularities in the nightside auroral ionosphere

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N.; Borisova, T.; Kornienko, V.; Leyser, T.; Rietveld, M.; Thide', B.

    The properties and behaviors of the artificial field-aligned small-scale irregularities (striations) in the nightside high latitudinal F-region in course of the Tromso ionospheric modification experiments are examined. Bistatic scatter measurements of HF diagnostic signals were carried out on the London-Tromso-St.Petersburg and Pori-Tromso-St.Petersburg paths using a Doppler spectral method. Striations act as an artificially produced target for the diagnostic HF radio waves and they are responsible for back-scattered signals. The main attention was paid to the aspect angle dependence of striations. It was found that the spectral features of the scattered signals are strongly dependent on the elevation angles of the HF heater antenna beam. The spectral power, broadening of the Doppler spectra, and median values of Doppler shift were maximal during the field-aligned direction of the HF heater antenna beam, whereas they were minimal during the vertical pointing of the HF beam. Simultaneous measurements from the EISCAT UHF incoherent scatter radar showed also the strongest heating effects in the field-aligned position. Electron temperature increases of up to 3000K (300%) induced by powerful HF pumping waves have been measured. Associated with them are the field-aligned ion outflows. Further observations of striations have been made using a narrower HF heater beam (sometimes termed "superheater"). The comparison between two HF heating experiments in a superheater mode, performed under the same geophysical conditions, also shows the strongest striations in the field-aligned position of the HF heater beam. The possible mechanisms for the directional dependence of striations are discussed.

  7. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Billaud, Juliette; Bouville, Florian; Magrini, Tommaso; Villevieille, Claire; Studart, André R.

    2016-08-01

    As lithium-ion batteries become ubiquitous, the energy storage market is striving for better performance, longer lifetime and better safety of the devices. This race for performance is often focused on the search for new materials, whereas less effort has been dedicated to the electrode engineering. Enhancing the power density by increasing the amount of active material remains impractical since it impinges the transport of ions across the electrode during the charging and discharging processes. Here, we show that the electrochemical performance of a battery containing a thick (about 200 μm), highly loaded (about 10 mg cm-2) graphite electrode can be remarkably enhanced by fabricating anodes with an out-of-plane aligned architecture using a low external magnetic field. The lower tortuosity resulting from such a simple and scalable magnetic alignment approach leads to a specific charge up to three times higher than that of non-architectured electrodes at a rate of 1C.

  8. Reconnection of Magnetic Fields

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Spacecraft observations of steady and nonsteady reconnection at the magnetopause are reviewed. Computer simulations of three-dimensional reconnection in the geomagnetic tail are discussed. Theoretical aspects of the energization of particles in current sheets and of the microprocesses in the diffusion region are presented. Terrella experiments in which magnetospheric reconnection is simulated at both the magnetopause and in the tail are described. The possible role of reconnection in the evolution of solar magnetic fields and solar flares is discussed. A two-dimensional magnetohydrodynamic computer simulation of turbulent reconnection is examined. Results concerning reconnection in Tokamak devices are also presented.

  9. Dissipation in magnetic reconnection with a guide magnetic field

    SciTech Connect

    Hesse, Michael

    2006-12-15

    A combination of numerical simulation results and analytical theory is applied to the problem of magnetic reconnection in a guide magnetic field. An investigation of electron distribution functions within the electron diffusion region leads to a picture of mixing of particles with different acceleration histories on electron Larmor scales. Based on an apparent average loss of accelerated particles by field-aligned and ExB transport, it is proposed that the role of the reconnection electric field is to replenish this loss by acceleration of particles that enter the electron diffusion region. Analytic theory is employed to verify this model, and an equation is derived, which balances the average electric field force density by a diffusion term applied to the electron momentum density. The diffusion coefficient contains explicitly the electron Larmor spatial scale and a poloidal transport time scale.

  10. Alignment of Velocity and Magnetic Fluctuations in Simulations of Anisotropic MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Bhattacharjee, A.

    2007-11-01

    There has been recent theoretical interest in the effect of the alignment of velocity and magnetic fluctuations in three-dimensional (3D) MHD turbulence with a large-scale magnetic field [Boldyrev 2005, 2006]. This theory predicts that the angle θ between the velocity and magnetic fluctuation vectors has a scaling of θ&1/4circ;, where λ is the spatial scale of the fluctuations. There have also been simulations on 3D forced MHD turbulence that supports this prediction [Mason et al. 2006, 2007]. The scaling has also been tested against observations of solar wind turbulence [Podesta et al. 2007]. We report here simulation results based on decaying 2D turbulence. The scaling of θ&1/4circ; and Iroshnikov-Kraichnan scaling has also been observed within a range of time interval and spatial scales, despite the fact that Boldyrev's theory was developed for fully 3D turbulence in the presence of a strong external field. As the external field is reduced in magnitude and becomes comparable to the magnitude of magnetic fluctuations or lower, the scale-dependent alignment is weakened. Implications for observations of solar wind turbulence will be discussed.

  11. Joule heating and field-aligned currents: Preliminary results from DE-2

    NASA Technical Reports Server (NTRS)

    Sugiura, M.

    1986-01-01

    There are three main processes by which energy is transferred from the magnetosphere to the thermosphere: (1) charge exchange of the ring current particles; (2) precipitation of charged particles; and (3) joule dissipation by the magnetosphere-ionosphere current systems. The importance of this last process has been recognized and the rate of joule heating has been estimated by many workers. Observations of the electric (E) and magnetic (B) fields from Dynamics Explorer Satellite 2 are providing a new set of data on field-aligned currents. One of the remarkable features found in these observations is the high correlation between an orthogonal pair of the E and B field components. In recent years, observational data have accrued concerning the relationship between the interplanetary magnetic field and the size of the polar cap and also about the evolution of a substorm or a magnetic storm. It is suggested that these findings be incorporated in future model calculations.

  12. A numerical model of ionospheric convection derived from field-aligned currents and the corresponding conductivity

    NASA Astrophysics Data System (ADS)

    Blomberg, L. G.; Marklund, G. T.

    1988-03-01

    A numerical model for the calculation of ionospheric convection patterns from given distributions of field-aligned current and ionospheric conductivity is described. The model includes a coupling between the conductivity and the field-aligned current, so that the conductivity peaks in regions of upward current, as usually observed by measurements. The model is very flexible in that the input distributions, the field-aligned current, and the conductivity are parameterized in a convenient way. From the primary model output, namely the ionospheric electrostatic potential (or convection) in the corotating frame, a number of other quantities can be computed. These include: the potential in a Sun-fixed frame (the transformation takes into account the nonalignment of the Earth's magnetic and geographic axes); the potential in the magnetospheric equatorial plane (projected using either a dipole magnetic field model or the Tsyganenko-Usmanov model, and the assumption of vanishing parallel electric field); the distribution of ionospheric (horizontal) current; and Joule heating in the ionosphere. The model was used with input data inferred from satellite measurements to calculate the high-latitude potential distribution prevailing during a particular event. The model potential variation along the satellite orbit is found to be in excellent agreement with the measured electric field.

  13. Photonic Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Wyntjes, Geert

    2002-02-01

    Small, in-line polarization rotators or isolators to reduce feedback in fiber optic links can be the basis for excellent magnetic field sensors. Based on the giant magneto-optical (GMO) or Faraday effect in iron garnets, they with a magnetic field of a few hundred Gauss, (20 mT) for an interaction length for an optical beam of a few millimeters achieve a polarization rotation or phase shift of 45 deg (1/8 cycle). When powered by a small laser diode, with the induced linear phase shift recovered at the shot noise limit, we have demonstrated sensitivities at the 3.3 nT/Hz1/2 level for frequencies from less than 1 Hz to frequencies into the high kHz range. Through further improvements; an increase in interaction length, better materials and by far the greatest factor, the addition of a flux concentrator, sensitivities at the pT/Hz1/2 level appear to be within reach. We will detail such a design and discuss the issues that may limit achieving these goals.

  14. The Heliospheric Magnetic Field

    NASA Astrophysics Data System (ADS)

    Owens, Mathew J.; Forsyth, Robert J.

    2013-12-01

    The heliospheric magnetic field (HMF) is the extension of the coronal magnetic field carried out into the solar system by the solar wind. It is the means by which the Sun interacts with planetary magnetospheres and channels charged particles propagating through the heliosphere. As the HMF remains rooted at the solar photosphere as the Sun rotates, the large-scale HMF traces out an Archimedean spiral. This pattern is distorted by the interaction of fast and slow solar wind streams, as well as the interplanetary manifestations of transient solar eruptions called coronal mass ejections. On the smaller scale, the HMF exhibits an array of waves, discontinuities, and turbulence, which give hints to the solar wind formation process. This review aims to summarise observations and theory of the small- and large-scale structure of the HMF. Solar-cycle and cycle-to-cycle evolution of the HMF is discussed in terms of recent spacecraft observations and pre-spaceage proxies for the HMF in geomagnetic and galactic cosmic ray records.

  15. Controlled electrode magnetization alignment in planar elliptical ferromagnetic break junction devices

    NASA Astrophysics Data System (ADS)

    Scott, Gavin D.; Hu, Ting-Chen

    2016-10-01

    Controlling the magnetization reversal process of magnetic elements is important for a wide range of applications that make use of magnetoresistive effects but is difficult to achieve for devices that require adjacent thin film structures capable of contacting an individual molecule or quantum dot. We report on the fabrication and measurement of ferromagnetic break junction devices with planar, elliptical leads, to address the particular challenge of controlling the relative magnetization alignment between neighboring electrodes. Low temperature transport measurements, supported by finite-element micromagnetic simulations, are used to characterize the magnetoresistance response across a range of conductance levels. We demonstrate that an in-plane external field applied parallel to the hard axis of the ellipses may be used to controllably switch the magnetization of the source and drain electrodes between monodomain-like parallel and antiparallel configurations for devices in the tunneling regime.

  16. Magnetic Fields: Visible and Permanent.

    ERIC Educational Resources Information Center

    Winkeljohn, Dorothy R.; Earl, Robert D.

    1983-01-01

    Children will be able to see the concept of a magnetic field translated into a visible reality using the simple method outlined. Standard shelf paper, magnets, iron filings, and paint in a spray can are used to prepare a permanent and well-detailed picture of the magnetic field. (Author/JN)

  17. Inertial range spectrum of field-aligned whistler turbulence

    NASA Astrophysics Data System (ADS)

    Dwivedi, Navin Kumar; Singh, Shobhana

    2017-03-01

    An analytical model to study the whistler turbulence spectrum and inertial range spectral scalings related with the electric and magnetic field spectra in a weakly non-collisional magnetized plasma is developed. In the present model, the dispersion relation of whistler wave propagating along the background magnetic field is exploited to derive the inertial range scaling laws corresponding to the electric field and magnetic field fluctuations. The model is based on the concept of Iroshnikov–Kraichnan inertial range magnetohydrodynamic turbulence. The present phenomenological turbulence scaling model suggests the energy spectra associated with the whistler wave electric field fluctuations and magnetic field fluctuations pursue ‑1 and ‑3 power-laws, respectively. Moreover, the results obtained by the present analytical model reasonably able to explain and compare the observational energy spectra in the wave number domain. The observational and analytical results support the whistler dominated turbulence with the similar spectral index ‑1 of the electric field spectra, whereas, the magnetic field spectral indices in the wave number domain are found -13/3 and ‑3 for the observational and analytical approach, respectively.

  18. Magnetic fields and massive star formation

    SciTech Connect

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan; Qiu, Keping; Girart, Josep M.; Juárez, Carmen; Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping; Li, Zhi-Yun; Frau, Pau; Li, Hua-Bai; Padovani, Marco; Bontemps, Sylvain

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  19. Direction dependent diffusion of aligned magnetic rods by means of x-ray photon correlation spectroscopy.

    PubMed

    Wagner, Joachim; Märkert, Christian; Fischer, Birgit; Müller, Leonard

    2013-01-25

    Rodlike hematite particles in suspension align perpendicular to an external magnetic field due to a negative anisotropy of their magnetic susceptibility Δχ. The diffusion tensor consists of two principal constants D(∥) and D(⊥) for the diffusion parallel and perpendicular to the long particle axis. X-ray photon correlation spectroscopy is capable of probing the diffusive motion in optically opaque suspensions of rodlike hematite particles parallel to the direction of the scattering vector Q. Choosing Q parallel or perpendicular to the direction of an external magnetic field H the direction dependent intermediate scattering function is measured by means of x-ray photon correlation spectroscopy. From the intermediate scattering function in both directions the principal diffusion constants D(∥) and D(⊥) are determined. The ratio D(∥)/D(⊥) increases with increasing aspect ratio of the particles and can be described via a rescaled theoretical approach for prolate ellipsoids of revolution.

  20. Field-aligned currents, convection electric fields, and ULF-ELF waves in the cusp

    NASA Technical Reports Server (NTRS)

    Saflekos, N. A.; Potemra, T. A.; Kintner, P. M., Jr.; Green, J. L.

    1979-01-01

    Nearly simultaneous observations from the Triad and Hawkeye satellites over the Southern Hemisphere, at low altitudes near the noon meridian and close to the usual polar cusp latitudes, show that in and near the polar cusp there exist several relationships between field-aligned currents (FACs), convection electric fields, ULF-ELF magnetic noise, broadband electrostatic noise and interplanetary magnetic fields. The most important findings are (1) the FACs directed into the ionosphere in the noon-to-dusk local time sector and directed away from the ionosphere in the noon-to-dawn local time sector and identified as region-1 permanent FACs (Iijima and Potemra, 1976a) and are located equatorward of the regions of antisunward (westward) convection; (2) the observations are consistent with a two-cell convection pattern symmetric in one case (throat positioned at noon) and asymmetric in another (throat located in a sector on the forenoon side in juxtaposition to the region of strong convection on the afternoon side); and (3) fine-structure FACs are responsible for the generation of ULF-ELF noise in the polar cusp.

  1. Phase-dependent field-free molecular alignment and orientation

    NASA Astrophysics Data System (ADS)

    Qin, Chaochao; Liu, Yuzhu; Zhang, Xianzhou; Gerber, Thomas

    2014-11-01

    We investigated the temporal behavior of alignment and orientation of LiH following a femtosecond laser pulse excitation comprising two fields at center frequencies ω and 2 ω (e.g., E (t )=E [cos(ω t )+cos(2 ω t +Φ ) ] ) shifted by a phase Φ . The effects of repopulations and rephasing of rotational states on the resulting alignment and orientation were evaluated. The population distribution of rotational states is only changed during the exciting pulse. Afterwards the established rotational state distribution is maintained in the absence of collisions. The phases of rotational states play the most crucial role in determining the time evolution of molecular alignment and orientation. Equal alignment and rotational populations are obtained when the phases are chosen Φ =0 and Φ =π . However, orientation is different due to the fact that in the case Φ =π the mutual phases of even rotation states are not changed but the phases of odd rotational states are shifted by π , comparing with that of Φ =0 . The effect of temperature on molecular orientation was also addressed. It was shown that an efficient field-free molecular orientation can be observed even at room temperature.

  2. SOFIA/HAWC+: Mapping the Galactic Center Magnetic Field

    NASA Technical Reports Server (NTRS)

    Werner, Michael W.; Dowell, C. Darren; Chuss, D. T.; Morris, M. R.; Novak, G.

    2013-01-01

    Polarimetry of the far infrared emission from magnetically-aligned interstellar grains is one of the best ways of studying the magnetic field at the Galactic Center. We describe the HAWC+ instrument, under development for flight on SOFIA starting in 2015, which will provide a major advance in capability for these critically important measurements.

  3. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  4. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  5. Martian external magnetic field proxies

    NASA Astrophysics Data System (ADS)

    Langlais, Benoit; Civet, Francois

    2015-04-01

    Mars possesses no dynamic magnetic field of internal origin as it is the case for the Earth or for Mercury. Instead Mars is characterized by an intense and localized magnetic field of crustal origin. This field is the result of past magnetization and demagnetization processes, and reflects its evolution. The Interplanetary Magnetic Field (IMF) interacts with Mars' ionized environment to create an external magnetic field. This external field is weak compared to lithospheric one but very dynamic, and may hamper the detailed analysis of the internal magnetic field at some places or times. Because there are currently no magnetic field measurements made at Mars' surface, it is not possible to directly monitor the external field temporal variability as it is done in Earth's ground magnetic observatories. In this study we examine to indirect ways of quantifying this external field. First we use the Advanced Composition Explorer (ACE) mission which measures the solar wind about one hour upstream of the bow-shock resulting from the interaction between the solar wind and the Earth's internal magnetic field. These measurements are extrapolated to Mars' position taking into account the orbital configurations of the Mars-Earth system and the velocity of particles carrying the IMF. Second we directly use Mars Global Surveyor magnetic field measurements to quantify the level of variability of the external field. We subtract from the measurements the internal field which is otherwise modeled, and bin the residuals first on a spatial and then on a temporal mesh. This allows to compute daily or semi daily index. We present a comparison of these two proxies and demonstrate their complementarity. We also illustrate our analysis by comparing our Martian external field proxies to terrestrial index at epochs of known strong activity. These proxies will especially be useful for upcoming magnetic field measurements made around or at the surface of Mars.

  6. Evolution of twisted magnetic fields

    SciTech Connect

    Zweibel, E.G.; Boozer, A.H.

    1985-02-01

    The magnetic field of the solar corona evolves quasistatically in response to slowly changing photospheric boundary conditions. The magnetic topology is preserved by the low resistivity of the solar atmosphere. We show that a magnetic flux coordinate system simplifies the problem of calculating field evolution with invariant topology. As an example, we calculate the equilibrium of a thin magnetic flux tube with small twist per unit length.

  7. Thermal electron acceleration by electric field spikes in the outer radiation belt: generation of field-aligned pitch angle distributions

    NASA Astrophysics Data System (ADS)

    Vasko, I.; Agapitov, O. V.; Mozer, F.; Artemyev, A.

    2015-12-01

    Van Allen Probes observations in the outer radiation belt have demonstrated an abundance non-linear electrostatic stucture called Time Domain Structures (TDS). One of the type of TDS is electrostatic electron-acoustic double layers (DL). Observed DLs are frequently accompanied by field-aligned (bi-directional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV (rarely up to tens of keV). We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e. due to reflections from DL potential humps. Due to this interaction some fraction of electrons is scattered into the loss cone. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for <1 keV electrons, while the trapping mechanism extends field-aligned PADs to higher energy electrons.

  8. Thermal electron acceleration by electric field spikes in the outer radiation belt: Generation of field-aligned pitch angle distributions

    NASA Astrophysics Data System (ADS)

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.

    2015-10-01

    Van Allen Probes observations in the outer radiation belt have demonstrated an abundance of electrostatic electron-acoustic double layers (DL). DLs are frequently accompanied by field-aligned (bidirectional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV. We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e., due to reflections from DL potential humps. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism, electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for <1 keV electrons, while the trapping mechanism extends field-aligned PADs to higher-energy electrons. It is shown that the Fermi mechanism can result in scattering into the loss cone of up to several tenths of percent of electrons with flux peaking at energies up to several hundred eVs.

  9. A new angle for probing field-aligned irregularities with the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Loi, Shyeh Tjing; Murphy, Tara; Cairns, Iver H.; Trott, Cathryn M.; Hurley-Walker, Natasha; Feng, Lu; Hancock, Paul J.; Kaplan, David L.

    2016-06-01

    Electron density irregularities in the ionosphere are known to be magnetically anisotropic, preferentially elongated along the lines of force. While many studies of their morphology have been undertaken by topside sounding and whistler measurements, it is only recently that detailed regional-scale reconstructions have become possible, enabled by the advent of widefield radio telescopes. Here we present a new approach for visualizing and studying field-aligned irregularities (FAIs), which involves transforming interferometric measurements of total electron content gradients onto a magnetic shell tangent plane. This removes the perspective distortion associated with the oblique viewing angle of the irregularities from the ground, facilitating the decomposition of dynamics along and across magnetic field lines. We apply this transformation to the data set of Loi et al. (2015a), obtained on 15 October 2013 by the Murchison Widefield Array (MWA) radio telescope and displaying prominent FAIs. We study these FAIs in the new reference frame, quantifying field-aligned and field-transverse behavior, examining time and altitude dependencies, and extending the analysis to FAIs on subarray scales. We show that the inclination of the plane can be derived solely from the data and verify that the best fit value is consistent with the known magnetic inclination. The ability of the model to concentrate the fluctuations along a single spatial direction may find practical application to future calibration strategies for widefield interferometry, by providing a compact representation of FAI-induced distortions.

  10. A High-resolution Model of Field-aligned Currents Through Empirical Orthogonal Functions Analysis (MFACE)

    NASA Technical Reports Server (NTRS)

    He, Maosheng; Vogt, Joachim; Luehr, Hermann; Sorbalo, Eugen; Blagau, Adrian; Le, Guan; Lu, Gang

    2012-01-01

    Ten years of CHAMP magnetic field measurements are integrated into MFACE, a model of field-aligned currents (FACs) using empirical orthogonal functions (EOFs). EOF1 gives the basic Region-1/Region-2 pattern varying mainly with the interplanetary magnetic field Bz component. EOF2 captures separately the cusp current signature and By-related variability. Compared to existing models, MFACE yields significantly better spatial resolution, reproduces typically observed FAC thickness and intensity, improves on the magnetic local time (MLT) distribution, and gives the seasonal dependence of FAC latitudes and the NBZ current signature. MFACE further reveals systematic dependences on By, including 1) Region-1/Region-2 topology modifications around noon; 2) imbalance between upward and downward maximum current density; 3) MLT location of the Harang discontinuity. Furthermore, our procedure allows quantifying response times of FACs to solar wind driving at the bow shock nose: we obtain 20 minutes and 35-40 minutes lags for the FAC density and latitude, respectively.

  11. Mixed Brownian alignment and Néel rotations in superparamagnetic iron oxide nanoparticle suspensions driven by an ac field

    PubMed Central

    Shah, Saqlain A.; Reeves, Daniel B.; Ferguson, R. Matthew; Weaver, John B.

    2015-01-01

    Superparamagnetic iron oxide nanoparticles with highly nonlinear magnetic behavior are attractive for biomedical applications like magnetic particle imaging and magnetic fluid hyperthermia. Such particles display interesting magnetic properties in alternating magnetic fields and here we document experiments that show differences between the magnetization dynamics of certain particles in frozen and melted states. This effect goes beyond the small temperature difference (ΔT ~ 20 °C) and we show the dynamics to be a mixture of Brownian alignment of the particles and Néel rotation of their moments occurring in liquid particle suspensions. These phenomena can be modeled in a stochastic differential equation approach by postulating log-normal distributions and partial Brownian alignment of an effective anisotropy axis. We emphasize that precise particle-specific characterization through experiments and nonlinear simulations is necessary to predict dynamics in solution and optimize their behavior for emerging biomedical applications including magnetic particle imaging. PMID:26504371

  12. Exposure guidelines for magnetic fields

    SciTech Connect

    Miller, G.

    1987-12-01

    The powerful magnetic fields produced by a controlled fusion experiment at Lawrence Livermore National Laboratory (LLNL) necessitated the development of personnel-exposure guidelines for steady magnetic fields. A literature search and conversations with active researchers showed that it is currently possible to develop preliminary exposure guidelines for steady magnetic fields. An overview of the results of past research into the bioeffects of magnetic fields was compiled, along with a discussion of hazards that may be encountered by people with sickle-cell anemia or medical electronic and prosthetic implants. The LLNL steady magnetic-field exposure guidelines along with a review of developments concerning the safety of time-varying fields were also presented in this compilation. Guidelines developed elsewhere for time varying fields were also given. Further research is needed to develop exposure standards for both steady or time-varying fields.

  13. Magnetic-field-dosimetry system

    DOEpatents

    Lemon, D.K.; Skorpik, J.R.; Eick, J.L.

    1981-01-21

    A device is provided for measuring the magnetic field dose and peak field exposure. The device includes three Hall-effect sensors all perpendicular to each other, sensing the three dimensional magnetic field and associated electronics for data storage, calculating, retrieving and display.

  14. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  15. Three-dimensional structure of ionospheric currents produced by field-aligned currents

    NASA Astrophysics Data System (ADS)

    Takeda, M.

    1982-08-01

    Ionospheric currents caused by field-aligned currents are calculated three-dimensionally under quiet conditions at the equinox, using a magnetic field line coordinate system and with the assumption of infinite parallel conductivity. Input field-aligned currents are assumed to be distributed only in the daytime and the whole system is assumed to be symmetric about the equator. Calculated currents are comparable with those of the ionospheric dynamo in higher latitudes, but much weaker in lower latitudes including the equatorial electrojet region. Hence, if the model is valid these currents may have a considerable effect on the day-to-day variation of Sq currents in higher latitudes, but little effect on those in lower latitudes such as the counter-electrojet.

  16. Vestibular stimulation by magnetic fields

    PubMed Central

    Ward, Bryan K.; Roberts, Dale C.; Della Santina, Charles C.; Carey, John P.; Zee, David S.

    2015-01-01

    Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging (MRI) studies, these reports have become more common. It was recently learned that humans, mice and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system. PMID:25735662

  17. Magnetic fields around evolved stars

    NASA Astrophysics Data System (ADS)

    Leal-Ferreira, M.; Vlemmings, W.; Kemball, A.; Amiri, N.; Maercker, M.; Ramstedt, S.; Olofsson, G.

    2014-04-01

    A number of mechanisms, such as magnetic fields, (binary) companions and circumstellar disks have been suggested to be the cause of non-spherical PNe and in particular collimated outflows. This work investigates one of these mechanisms: the magnetic fields. While MHD simulations show that the fields can indeed be important, few observations of magnetic fields have been done so far. We used the VLBA to observe five evolved stars, with the goal of detecting the magnetic field by means of water maser polarization. The sample consists in four AGB stars (IK Tau, RT Vir, IRC+60370 and AP Lyn) and one pPN (OH231.8+4.2). In four of the five sources, several strong maser features were detected allowing us to measure the linear and/or circular polarization. Based on the circular polarization detections, we infer the strength of the component of the field along the line of sight to be between ~30 mG and ~330 mG in the water maser regions of these four sources. When extrapolated to the surface of the stars, the magnetic field strength would be between a few hundred mG and a few Gauss when assuming a toroidal field geometry and higher when assuming more complex magnetic fields. We conclude that the magnetic energy we derived in the water maser regions is higher than the thermal and kinetic energy, leading to the conclusion that, indeed, magnetic fields probably play an important role in shaping Planetary Nebulae.

  18. A novel flexible field-aligned coordinate system for tokamak edge plasma simulation

    NASA Astrophysics Data System (ADS)

    Leddy, J.; Dudson, B.; Romanelli, M.; Shanahan, B.; Walkden, N.

    2017-03-01

    Tokamak plasmas are confined by a magnetic field that limits the particle and heat transport perpendicular to the field. Parallel to the field the ionised particles can move freely, so to obtain confinement the field lines are ;closed; (i.e. form closed surfaces of constant poloidal flux) in the core of a tokamak. Towards, the edge, however, the field lines intersect physical surfaces, leading to interaction between neutral and ionised particles, and the potential melting of the material surface. Simulation of this interaction is important for predicting the performance and lifetime of future tokamak devices such as ITER. Field-aligned coordinates are commonly used in the simulation of tokamak plasmas due to the geometry and magnetic topology of the system. However, these coordinates are limited in the geometry they allow in the poloidal plane due to orthogonality requirements. A novel 3D coordinate system is proposed herein that relaxes this constraint so that any arbitrary, smoothly varying geometry can be matched in the poloidal plane while maintaining a field-aligned coordinate. This system is implemented in BOUT++ and tested for accuracy using the method of manufactured solutions. A MAST edge cross-section is simulated using a fluid plasma model and the results show expected behaviour for density, temperature, and velocity. Finally, simulations of an isolated divertor leg are conducted with and without neutrals to demonstrate the ion-neutral interaction near the divertor plate and the corresponding beneficial decrease in plasma temperature.

  19. Polar Rain Gradients and Field-Aligned Polar Cap Potentials

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Wing, S.; Newell, P. T.; Ruohoniemi, J. M.; Gosling, J. T.; Skoug, R. M.

    2008-01-01

    ACE SWEPAM measurements of solar wind field-aligned electrons have been compared with simultaneous measurements of polar rain electrons precipitating over the polar cap and detected by DMSP spacecraft. Such comparisons allow investigation of cross-polarcap gradients in the intensity of otherwise-steady polar rain. The generally good agreement of the distribution functions, f, from the two data sources confirms that direct entry of solar electrons along open field lines is indeed the cause of polar rain. The agreement between the data sets is typically best on the side of the polar cap with most intense polar rain but the DMSP f's in less intense regions can be brought into agreement with ACE measurements by shifting all energies by a fixed amounts that range from tens to several hundred eV. In most cases these shifts are positive which implies that field-aligned potentials of these amounts exist on polar cap field lines which tend to retard the entry of electrons and produce the observed gradients. These retarding potentials undoubtedly appear in order to prevent the entry of low-energy electrons and maintain charge quasi-neutrality that would otherwise be violated since most tailward flowing magnetosheath ions are unable to follow polar rain electrons down to the polar cap. In more limited regions near the boundary of the polar cap there is sometimes evidence for field-aligned potentials of the opposite sign that accelerate polar rain electrons. A solar electron burst is also studied and it is concluded that electrons from such bursts can enter the magnetotail and precipitate in the same manner as polar rain.

  20. Space Technology 5 Multi-Point Observations of Temporal Variability of Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.

    2008-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of approximately 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approximately 1 min for meso-scale currents and approximately 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  1. Space Technology 5 (ST-5) Observations of Field-Aligned Currents: Temporal Variability

    NASA Technical Reports Server (NTRS)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from STS. The data demonstrate that masoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about I min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  2. High magnetic field test of bismuth Hall sensors for ITER steady state magnetic diagnostic

    NASA Astrophysics Data System (ADS)

    Duran, I.; Entler, S.; Kohout, M.; Kočan, M.; Vayakis, G.

    2016-11-01

    Performance of bismuth Hall sensors developed for the ITER steady state magnetic diagnostic was investigated for high magnetic fields in the range ±7 T. Response of the sensors to the magnetic field was found to be nonlinear particularly within the range ±1 T. Significant contribution of the planar Hall effect to the sensors output voltage causing undesirable cross field sensitivity was identified. It was demonstrated that this effect can be minimized by the optimization of the sensor geometry and alignment with the magnetic field and by the application of "current-spinning technique."

  3. High magnetic field test of bismuth Hall sensors for ITER steady state magnetic diagnostic.

    PubMed

    Ďuran, I; Entler, S; Kohout, M; Kočan, M; Vayakis, G

    2016-11-01

    Performance of bismuth Hall sensors developed for the ITER steady state magnetic diagnostic was investigated for high magnetic fields in the range ±7 T. Response of the sensors to the magnetic field was found to be nonlinear particularly within the range ±1 T. Significant contribution of the planar Hall effect to the sensors output voltage causing undesirable cross field sensitivity was identified. It was demonstrated that this effect can be minimized by the optimization of the sensor geometry and alignment with the magnetic field and by the application of "current-spinning technique."

  4. Magnetic Fields in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Clark, Susan

    2017-01-01

    The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).

  5. FAST/Polar Conjunction Study of Field-Aligned Auroral Acceleration and Corresponding Magnetotail Drivers

    NASA Technical Reports Server (NTRS)

    Schriver, D.; Ashour-Abdalla, M.; Strangeway, R. J.; Richard, R. L.; Klezting, C.; Dotan, Y.; Wygant, J.

    2002-01-01

    The discrete aurora results when energized electrons bombard the Earth's atmosphere at high latitudes. This paper examines the physical processes that can cause field-aligned acceleration of plasma particles in the auroral region. A data and theoretical study has been carried out to examine the acceleration mechanisms that operate in the auroral zone and to identity the magnetospheric drivers of these acceleration mechanisms. The observations used in the study were collected by the Fast Auroral SnapshoT (FAST) and Polar satellites when the two satellites were in approximate magnetic conjunction in the auroral region. During these events FAST was in the middle of the auroral zone and Polar was above the auroral zone in the near-Earth plasma sheet. Polar data was used to determine the conditions in the magnetotail at the time field-aligned acceleration was measured by FAST in the auroral zone. For each of the magnetotail drivers identified in the data study, the physics of field-aligned acceleration in the auroral region was examined using existing theoretical efforts and a long-system particle-in-cell simulation to model the magnetically connected region between the two satellites.

  6. 3D model of small-scale density cavities in the auroral magnetosphere with field-aligned current

    NASA Astrophysics Data System (ADS)

    Bespalov, P. A.; Misonova, V. G.; Savina, O. N.

    2016-09-01

    We propose a 3D model of small-scale density cavities stimulated by an auroral field-aligned current and an oscillating field-aligned current of kinetic Alfvén waves. It is shown that when the field-aligned current increases so that the electron drift velocity exceeds a value of the order of the electron thermal velocity, the plasma becomes unstable to the formation of cavities with low density and strong electric field. The condition of instability is associated with the value of the background magnetic field. In the case of a relatively weak magnetic field (where the electron gyro-radius is greater than the ion acoustic wavelength), the current instability can lead to the formation of one-dimensional cavities along the magnetic field. In the case of a stronger magnetic field (where the ion acoustic wavelength is greater than the electron gyro-radius, but still is less than the ion gyro-radius), the instability can lead to the formation of 3D density cavities. In this case, the spatial scales of the cavity, both along and across the background magnetic field, can be comparable, and at the earlier stage of the cavity formation they are of the order of the ion acoustic wavelength. Rarefactions of the cavity density are accompanied by an increase in the electric field and are limited by the pressure of bipolar electric fields that occur within them. The estimates of typical density cavity characteristics and the results of numerical solutions agree with known experimental data: small-scale structures with a sufficiently strong electric field are observed in the auroral regions with strong field-aligned current.

  7. The Capacitive Magnetic Field Sensor

    NASA Astrophysics Data System (ADS)

    Zyatkov, D. O.; Yurchenko, A. V.; Balashov, V. B.; Yurchenko, V. I.

    2016-01-01

    The results of a study of sensitive element magnetic field sensor are represented in this paper. The sensor is based on the change of the capacitance with an active dielectric (ferrofluid) due to the magnitude of magnetic field. To prepare the ferrofluid magnetic particles are used, which have a followingdispersion equal to 50 < Ø < 56, 45 < Ø < 50, 40 < Ø < 45 and Ø < 40micron of nanocrystalline alloy of brand 5BDSR. The dependence of the sensitivity of the capacitive element from the ferrofluid with different dispersion of magnetic particles is considered. The threshold of sensitivity and sensitivity of a measuring cell with ferrofluid by a magnetic field was determined. The experimental graphs of capacitance change of the magnitude of magnetic field are presented.

  8. Ultralow field magnetization reversal of two-body magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Fei; Lu, Jincheng; Lu, Xiaofeng; Tang, Rujun; Sun, Z. Z.

    2016-08-01

    Field induced magnetization reversal was investigated in a system of two magnetic nanoparticles with uniaxial anisotropies and magnetostatic interaction. By using the micromagnetic simulation, ultralow switching field strength was found when the separation distance between the two particles reaches a critical small value (on nanometer scale) in the perpendicular configuration where the anisotropic axes of the two particles are perpendicular to the separation line. The switching field increases sharply when the separation is away from the critical distance. The ultralow field switching phenomenon was missed in the parallel configuration where both the anisotropic axes are aligned along the separation line of the two particles. The micromagnetic results are consistent with the previous theoretical prediction [J. Appl. Phys. 109, 104303 (2011)] where dipolar interaction between two single-domain magnetic particles was considered. Our present simulations offered further proofs and possibilities for the low-power applications of information storage as the two-body magnetic nanoparticles might be implemented as a composite information bit.

  9. HSX: Engineering Design and Fabrication of the main Magnet Coils, Vacuum Vessel and Support/Alignment Structure

    NASA Astrophysics Data System (ADS)

    Anderson, F. Simon B.; Anderson, D. T.; Almagri, A. F.; Matthews, P. G.; Probert, P. H.; Shohet, J. L.; Talmadge, J. N.

    1996-11-01

    The HSX device, with a magnetic field consisting of a SINGLE dominant HELICAL component, has a set of 48 twisted main magnetic field coils. Engineering analysis (ANSYS) has resulted in a set of construction and alignment constraints and goals for field accuracy and coil structural strength. Close proximity of the main coil set to the magnetic separatrix imposes space restrictions on the vacuum vessel. Fabrication of the vessel using explosive techniques, and the structural analysis for the stresses in the vacuum chamber will be discussed. Crucial to the integrity of the quasihelical magnetic field is the accurate positioning of the magnet coils and maintenance of the position during operation. The design and construct- ion of the completed support structure for HSX coils will also be presented. *** Work supported by U.S Dept. of Energy Grant DE-FG02-93ER54222

  10. Field-aligned currents and magnetospheric convection - A comparison between MHD simulations and observations

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.; Ogino, Tatsuki

    1988-01-01

    A time-dependent three-dimensional MHD model was used to investigate the magnetospheric configuration as a function of the interplanetary magnetic field direction when it was in the y-z plane in geocentric solar magnetospheric coordinates. The model results show large global convection cells, tail lobe cells, high-latitude polarcap cells, and low latitude cells. The field-aligned currents generated in the model magnetosphere and the model convection system are compared with observations from low-altitude polar orbiting satellites.

  11. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  12. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  13. Cosmic Magnetic Fields - An Overview

    NASA Astrophysics Data System (ADS)

    Wielebinski, Richard; Beck, Rainer

    Magnetic fields have been known in antiquity. Aristotle attributes the first of what could be called a scientific discussion on magnetism to Thales, who lived from about 625 BC. In China “magnetic carts” were in use to help the Emperor in his journeys of inspection. Plinius comments that in the Asia Minor province of Magnesia shepherds' staffs get at times “glued” to a stone, a alodestone. In Europe the magnetic compass came through the Arab sailors who met the Portuguese explorers. The first scientific treatise on magnetism, “De Magnete”, was published by William Gilbert who in 1600 described his experiments and suggested that the Earth was a huge magnet. Johannes Kepler was a correspondent of Gilbert and at times suggested that planetary motion was due to magnetic forces. Alas, this concept was demolished by Isaac Newton,who seeing the falling apple decided that gravity was enough. This concept of dealing with gravitational forces only remains en vogue even today. The explanations why magnetic effects must be neglected go from “magnetic energy is only 1% of gravitation” to “magnetic fields only complicate the beautiful computer solutions”. What is disregarded is the fact that magnetic effects are very directional(not omni-directional as gravity) and also the fact that magnetic fields are seen every where in our cosmic universe.

  14. Anisotropic magnetic particles in a magnetic field

    PubMed Central

    Martchenko, Ilya; Mihut, Adriana M.; Bialik, Erik; Hirt, Ann M.; Rufier, Chantal; Menzel, Andreas; Dietsch, Hervé; Linse, Per

    2016-01-01

    We characterize the structural properties of magnetic ellipsoidal hematite colloids with an aspect ratio ρ ≈ 2.3 using a combination of small-angle X-ray scattering and computer simulations. The evolution of the phase diagram with packing fraction φ and the strength of an applied magnetic field B is described, and the coupling between orientational order of magnetic ellipsoids and the bulk magnetic behavior of their suspension addressed. We establish quantitative structural criteria for the different phase and arrest transitions and map distinct isotropic, polarized non-nematic, and nematic phases over an extended range in the φ–B coordinates. We show that upon a rotational arrest of the ellipsoids around φ = 0.59, the bulk magnetic behavior of their suspension switches from superparamagnetic to ordered weakly ferromagnetic. If densely packed and arrested, these magnetic particles thus provide persisting remanent magnetization of the suspension. By exploring structural and magnetic properties together, we extend the often used colloid-atom analogy to the case of magnetic spins. PMID:27722439

  15. Nematic order of model goethite nanorods in a magnetic field

    NASA Astrophysics Data System (ADS)

    Wensink, H. H.; Vroege, G. J.

    2005-09-01

    We explore the nematic order of model goethite nanorods in an external magnetic field within Onsager-Parsons density functional theory. The goethite rods are represented by monodisperse, charged spherocylinders with a permanent magnetic moment along the rod main axis, forcing the particles to align parallel to the magnetic field at low field strength. The intrinsic diamagnetic susceptibility anisometry of the rods is negative, which leads to a preferred perpendicular orientation at higher field strength. It is shown that these competing effects may give rise to intricate phase behavior, including a pronounced stability of biaxial nematic order and the presence of reentrant phase transitions and demixing phenomena.

  16. Magnetic field synthesis for microwave magnetics

    NASA Astrophysics Data System (ADS)

    Morgenthaler, F. R.

    1982-04-01

    The Microwave and Quantum Magnetics Group of the M.I.T. Department of Electrical Engineering and Computer Science undertook a two-year research program directed at developing synthesis procedures that allow magnetostatic and/or magnetoelastic modes to be specially tailored for microwave signal processing applications that include magnetically tunable filters and limiters as well as delay lines that are either linearly dispersive or nondispersive over prescribed bandwidths. Special emphasis was given to devices employing thin films of yttrium iron garnet (YIG) that are blessed with spatially nonuniform dc magnetic fields.

  17. Aligned Single Wall Carbon Nanotube Polymer Composites Using an Electric Field

    NASA Technical Reports Server (NTRS)

    Park, Cheol; Wiklinson, John; Banda, Sumanth; Ounaies, Zoubeida; Wise, Kristopher E.; Sauti, Godfrey; Lillehei, Peter T.; Harrison, Joycelyn S.

    2005-01-01

    While high shear alignment has been shown to improve the mechanical properties of single wall carbon nanotubes (SWNT)-polymer composites, it is difficult to control and often results in degradation of the electrical and dielectric properties of the composite. Here, we report a novel method to actively align SWNTs in a polymer matrix, which allows for control over the degree of alignment of SWNTs without the side effects of shear alignment. In this process, SWNTs are aligned via field-induced dipolar interactions among the nanotubes under an AC electric field in a liquid matrix followed by immobilization by photopolymerization while maintaining the electric field. Alignment of SWNTs was controlled as a function of magnitude, frequency, and application time of the applied electric field. The degree of SWNT alignment was assessed using optical microscopy and polarized Raman spectroscopy and the morphology of the aligned nanocomposites was investigated by high resolution scanning electron microscopy. The structure of the field induced aligned SWNTs is intrinsically different from that of shear aligned SWNTs. In the present work, SWNTs are not only aligned along the field, but also migrate laterally to form thick, aligned SWNT percolative columns between the electrodes. The actively aligned SWNTs amplify the electrical and dielectric properties in addition to improving the mechanical properties of the composite. All of these properties of the aligned nanocomposites exhibited anisotropic characteristics, which were controllable by tuning the applied field conditions.

  18. Complexities of determining the Field-Aligned current density from LEO satellites.

    NASA Astrophysics Data System (ADS)

    Gjerloev, J. W.; Friel, M. M.; Ohtani, S.; Muhleisen, M.; Gjerloev, A. W.; Martin, P.; Barnes, R. J.

    2015-12-01

    We show results from a study of the field-aligned currents (FAC) as derived from SWARM magnetic field perturbations. We calculate the FAC density using four different techniques and explain why they provide different results. Theoretical work, simulations and data are used to show that widely used techniques can provide current density estimates with errors of 1000%. These errors can be explained by spatial gradients in the currents and temporal variability of the currents as well as a breakdown of other fundamental assumptions. We apply the techniques to auroral crossings with THEMIS ASI coverage and use the SWARM magnetic field observations to calculate the current density. Finally, we show how to estimate the errors in the current density calculations.

  19. Tracing magnetic fields and identifying star formation with velocity gradients

    NASA Astrophysics Data System (ADS)

    Lazarian, Alex; Gonzalez Casanova, Diego; Yuen, Ka Ho

    2017-01-01

    We are presenting a new technique of tracing magnetic fields utilizing Doppler broadened spectral lines. We demonstrate that for subAlfvenic turbulence, i.e. for regions with turbulence velocities less than Alfven speed, the velocity gradients (VGs) are well aligned with magnetic fields both in 3D data cubes and in synthetic observations. For the latter case the VGs are calculated using velocity centroids and their alignment with the projected magnetic field is studied. We demonstraed this by comparing the HI data with the PLANCK polarization maps. We conclude that velocity gradients present a new promissing way of studying magnetic fields in diffuse media. We also explored the properties of VGs in dense gas and found that starting with a particular density threshold value the VGs tend to be perpendicular to magnetic fields. We also compare the alignment of VGs and the density gradients (DGs) and find that these measures are well aligned in the absense of self-gravity, although in diffuse regions the VGs trace magnetic field better than the DGs. The advantage of VGs for tracing magnetic fields gets more obvious as the Mach number increases. Self-gravity acts differently on the VGs and the DGs. For self-gravitating regions the VGs and the DGs tend to get orthogonal to each other, revealing the the regions of ongoing star formation. This misalignment of the VGs and DGs is also evident in synthetic observations. We conclude that the VGs present(a) a new promising way of tracing magnetic field in diffuse media, (b) in combination with polarimety they reveal shocked gas,(c) in combination with the DGs they reveal star forming regions.

  20. Thermodynamics of the HMF model with a magnetic field

    NASA Astrophysics Data System (ADS)

    Chavanis, P. H.

    2011-04-01

    We study the thermodynamics of the Hamiltonian mean field (HMF) model with an external potential playing the role of a "magnetic field". If we consider only fully stable states, the caloric curve does not present any phase transition. However, if we take into account metastable states (for a restricted class of perturbations), we find a very rich phenomenology. In particular, the caloric curve displays a region of negative specific heat in the microcanonical ensemble in which the temperature decreases as the energy increases. This leads to ensembles inequivalence and to zeroth order phase transitions similar to the "gravothermal catastrophe" and to the "isothermal collapse" of self-gravitating systems. In the present case, they correspond to the reorganization of the system from an "anti-aligned" phase (magnetization pointing in the direction opposite to the magnetic field) to an "aligned" phase (magnetization pointing in the same direction as the magnetic field). We also find that the magnetic susceptibility can be negative in the microcanonical ensemble so that the magnetization decreases as the magnetic field increases. The magnetic curves can take various shapes depending on the values of energy or temperature. We describe first order phase transitions and hysteretic cycles involving positive or negative susceptibilities. We also show that this model exhibits gaps in the magnetization at fixed energy, resulting in ergodicity breaking.

  1. Microscopic observation of magnetic bacteria in the magnetic field of a rotating permanent magnet.

    PubMed

    Smid, Pieter; Shcherbakov, Valeriy; Petersen, Nikolai

    2015-09-01

    Magnetotactic bacteria are ubiquitous and can be found in both freshwater and marine environments. Due to intracellular chains of magnetic single domain particles, they behave like swimming compass needles. In external magnetic fields like the Earth's magnetic field, a torque is acting on the chain. This will cause the bacterium to be rotated and aligned with the external field. The swimming direction of magnetotactic bacteria can be controlled with external magnetic fields, which makes it convenient to study them under a light microscope. Usually, a special set of coils arranged around a light microscope is used to control the swimming magnetotactic bacteria. Here, we present a simple mechanical system with a permanent magnet, which produces a rotating magnetic field of nearly constant amplitude in the focal plane of a light microscope. The device is placed beside the light microscope and easily adaptable to almost any microscope and thus convenient for field experiments. To describe the trajectories qualitatively, a theoretical model of the trajectories is presented. This device can be used to control the swimming direction of magnetotactic bacteria and also for studying their magnetic and hydrodynamic properties.

  2. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    DOEpatents

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  3. Toroidal and poloidal magnetic fields at Venus. Venus Express observations

    NASA Astrophysics Data System (ADS)

    Dubinin, E.; Fraenz, M.; Woch, J.; Zhang, T. L.; Wei, Y.; Fedorov, A.; Barabash, S.; Lundin, R.

    2013-10-01

    Magnetic field and plasma measurements carried out onboard Venus Express during solar minimum conditions suggest the existence of two kinds of magnetic field configuration in the Venusian ionosphere. We interpret these as the manifestation of two different types of generation mechanisms for the induced magnetosphere. A different magnetic field topology (toroidal and poloidal) arises if the induced currents are driven either by the solar wind motional electric field or by the Faraday electric field—a conducting ionosphere sees the magnetic field carried by solar wind as a time-varying field. At the dayside, both driving agents produce a similar draping pattern of the magnetic field. However, different magnetic field signatures inherent to both induction mechanisms appear at lower altitudes in the terminator region. The conditions at low solar EUV flux when the ionosphere of Venus becomes magnetized seem to be favorable to distinguish between two different types of the induced fields. We present cases of both types of the magnetic field topology. The cases when the effects of the Faraday induction become well noticeable are especially interesting since they provide us with an example of solar wind interaction with a tiny induced dipole field immersed into the ionosphere. Another interesting case when poloidal magnetic fields are evidently displayed is observed when the IMF vector is almost aligned with the solar wind velocity. In general case, both mechanisms of induction probably complement each other.

  4. Preflare magnetic and velocity fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Gaizauskas, V.; Chapman, G. A.; Deloach, A. C.; Gary, G. A.; Jones, H. P.; Karpen, J. T.; Martres, M.-J.; Porter, J. G.; Schmeider, B.

    1986-01-01

    A characterization is given of the preflare magnetic field, using theoretical models of force free fields together with observed field structure to determine the general morphology. Direct observational evidence for sheared magnetic fields is presented. The role of this magnetic shear in the flare process is considered within the context of a MHD model that describes the buildup of magnetic energy, and the concept of a critical value of shear is explored. The related subject of electric currents in the preflare state is discussed next, with emphasis on new insights provided by direct calculations of the vertical electric current density from vector magnetograph data and on the role of these currents in producing preflare brightenings. Results from investigations concerning velocity fields in flaring active regions, describing observations and analyses of preflare ejecta, sheared velocities, and vortical motions near flaring sites are given. This is followed by a critical review of prevalent concepts concerning the association of flux emergence with flares

  5. Magnetic Field of Strange Dwarfs

    NASA Astrophysics Data System (ADS)

    Baghdasaryan, D. S.

    2016-03-01

    The generation of a magnetic field in a strange quark star owing to differential rotation of the superfluid and superconducting quark core relative to the normal electron-nuclear crust of the star is examined. The maximum possible magnetic field on the surface is estimated for various models of strange dwarfs. Depending on the configuration parameters, i.e., the mass M and radius R of the star, a range of 103-105 G is found. These values of the magnetic field may be an additional condition for identification of strange dwarfs among the extensive class of observed white dwarfs.

  6. AC photovoltaic module magnetic fields

    SciTech Connect

    Jennings, C.; Chang, G.J.; Reyes, A.B.; Whitaker, C.M.

    1997-12-31

    Implementation of alternating current (AC) photovoltaic (PV) modules, particularly for distributed applications such as PV rooftops and facades, may be slowed by public concern about electric and magnetic fields (EMF). This paper documents magnetic field measurements on an AC PV module, complementing EMF research on direct-current PV modules conducted by PG and E in 1993. Although not comprehensive, the PV EMF data indicate that 60 Hz magnetic fields (the EMF type of greatest public concern) from PV modules are comparable to, or significantly less than, those from household appliances. Given the present EMF research knowledge, AC PV module EMF may not merit considerable concern.

  7. Preface: Cosmic magnetic fields

    NASA Astrophysics Data System (ADS)

    Kosovichev, Alexander

    2015-02-01

    Recent advances in observations and modeling have opened new perspectives for the understanding of fundamental dynamical processes of cosmic magnetism, and associated magnetic activity on the Sun, stars and galaxies. The goal of the Special Issue is to discuss the progress in solar physics and astrophysics, similarities and differences in phenomenology and physics of magnetic phenomena on the Sun and other stars. Space observatories, ground-based telescopes, and new observational methods have provided tremendous amount of data that need to be analyzed and understood. The solar observations discovered multi-scale organization of solar activity, dramatically changing current paradigms of solar variability. On the other side, stellar observations discovered new regimes of dynamics and magnetism that are different from the corresponding solar phenomena, but described by the same physics. Stars represent an astrophysical laboratory for studying the dynamical, magnetic and radiation processes across a broad range of stellar masses and ages. These studies allow us to look at the origin and evolution of our Sun, whereas detailed investigations of the solar magnetism give us a fundamental basis for interpretation and understanding of unresolved stellar data.

  8. On the Field-Aligned Beam Thermal Energy

    NASA Astrophysics Data System (ADS)

    Meziane, K.; Hamza, A. M.; Wilber, M.; Mazelle, C.; Lee, M. A.

    2013-11-01

    The parallel and perpendicular reduced distribution functions of field-aligned beams (FABs) observed upstream of the Earth's bow shock using the Cluster spacecrafts are examined. A previous study revealed that FABs, observed in oblique shock geometries, exhibit reduced distribution functions with high-energy tails. A selection of FABs with weak-energy tails are considered, and the associated reduced distributions are fit with Maxwellians. First, we have found that the FABs full width at half maximum (FWHM), σ∥ and σ⊥ derived from the fit, are linearly correlated with the solar wind speed (or equivalently to solar wind temperature). Moreover, the parallel beam σ∥ has a very weak dependence upon the beam parallel speed which reflects the shock geometry; we have found that σ∥˜0.23Vsw. In contrast, we have found that the perpendicular beam σ⊥, in the range of beam speeds investigated, depends on the shock geometry. These new results indicate that the parallel σ∥ is essentially controlled by the solar wind while the shock geometry plays, along with the solar wind, a role in the perpendicular σ⊥. These results also put some strong constraints on theoretical models as far as field-aligned beam production mechanisms are concerned. One potential explanation for the significant perpendicular broadening of the FAB distribution reported in this study could be the presence of kinetic Alfvèn (or/and whistler) turbulence at the shock.

  9. Magnetic fields during galaxy mergers

    NASA Astrophysics Data System (ADS)

    Rodenbeck, Kai; Schleicher, Dominik R. G.

    2016-09-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies and may have a strong effect on their magnetic fields. We present the first grid-based 3D magnetohydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employed a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally leads to the production of two peaks in the evolution of the average magnetic field strength within 5 kpc, within 25 kpc, and on scales in between 5 and 25 kpc. The latter is consistent with the peak in the magnetic field strength previously reported in a merger sequence of observed galaxies. We show that the peak on the galactic scale and in the outer regions is most likely due to geometrical effects, as the core of one galaxy enters the outskirts of the other one. In addition, the magnetic field within the central ~5 kpc is physically enhanced, which reflects the enhancement in density that is due to efficient angular momentum transport. We conclude that high-resolution observations of the central regions will be particularly relevant for probing the evolution of magnetic field structures during merger events.

  10. Statistical relationship between large-scale upward field-aligned currents and electron precipitation

    NASA Astrophysics Data System (ADS)

    Korth, Haje; Zhang, Yongliang; Anderson, Brian J.; Sotirelis, Thomas; Waters, Colin L.

    2014-08-01

    Simultaneous observations of Birkeland currents by the constellation of Iridium satellites and N2 Lyman-Birge-Hopfield (LBH) auroral emissions measured by the Global Ultraviolet Imager (GUVI) onboard the Thermosphere, Ionosphere, and Mesosphere Energetics and Dynamics (TIMED) satellite are used to establish relationships between large-scale upward field-aligned currents and electron precipitation during stable current configurations. The electron precipitation was inferred from GUVI data using a statistical relationship between LBH intensity and electron energy flux. LBH emissions with >5% contribution from protons, identified by Lyman-alpha intensity, were excluded from the analysis. The Birkeland currents were derived with a spatial resolution of 3° in latitude and 2 h in local time. For southward interplanetary magnetic field (IMF), the electron precipitation occurred primarily within and near large-scale upward currents. The correspondence was less evident for northward IMF, presumably because the spatial variability is large compared to the areas of interest so that the number of events identified is smaller and the derived statistical distributions are less reliable. At dusk, the correlation between upward current and precipitation was especially high, where a larger fraction of the electron precipitation is accelerated downward by a field-aligned potential difference. Unaccelerated electron precipitation dominated in the morning sector, presumably induced by scattering of eastward-drifting energetic electrons into the loss cone through interaction with whistler-mode waves (diffuse precipitation) rather than by field-aligned acceleration. In the upward Region 1 on the dayside, where the electron precipitation is almost exclusively due to field-aligned acceleration, a quadratic relationship between current density and electron energy flux was observed, implying a linear current-voltage relationship in this region. Current density and electron energy flux in

  11. Warm Magnetic Field Measurements of LARP HQ Magnet

    SciTech Connect

    Caspi, S; Cheng, D; Deitderich, D; Felice, H; Ferracin, P; Hafalia, R; Joseph, J; Lizarazo, J; Martchevskii, M; Nash, C; Sabbi, G L; Vu, C; Schmalzle, J; Ambrosio, G; Bossert, R; Chlachidze, G; DiMarco, J; Kashikhin, V

    2011-03-28

    The US-LHC Accelerator Research Program is developing and testing a high-gradient quadrupole (HQ) magnet, aiming at demonstrating the feasibility of Nb{sub 3}Sn technologies for the LHC luminosity upgrade. The 1 m long HQ magnet has a 120 mm bore with a conductor-limited gradient of 219 T/m at 1.9 K and a peak field of 15 T. HQ includes accelerator features such as alignment and field quality. Here we present the magnetic measurement results obtained at LBNL with a constant current of 30 A. A 100 mm long circuit-board rotating coil developed by FNAL was used and the induced voltage and flux increment were acquired. The measured b{sub 6} ranges from 0.3 to 0.5 units in the magnet straight section at a reference radius of 21.55 mm. The data reduced from the numerical integration of the raw voltage agree with those from the fast digital integrators.

  12. Magnetic fields from phase transitions

    NASA Astrophysics Data System (ADS)

    Hindmarsh, Mark; Everett, Allen

    1998-11-01

    The generation of primordial magnetic fields from cosmological phase transitions is discussed, paying particular attention to the electroweak transition and to the various definitions of the ``average'' field that have been put forward. It is emphasized that only the volume average has dynamical significance as a seed for galactic dynamos. On rather general grounds of causality and energy conservation, it is shown that, in the absence of MHD effects that transfer power in the magnetic field from small to large scales, processes occurring at the electroweak transition cannot generate fields stronger than 10-20 G on a scale of 0.5 Mpc. However, it is implausible that this upper bound could ever be reached, as it would require all the energy in the Universe to be turned into a magnetic field coherent at the horizon scale. Non-linear MHD effects seem therefore to be necessary if the electroweak transition is to create a primordial seed field.

  13. Measuring Earth's Magnetic Field Simply.

    ERIC Educational Resources Information Center

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  14. MRFalign: protein homology detection through alignment of Markov random fields.

    PubMed

    Ma, Jianzhu; Wang, Sheng; Wang, Zhiyong; Xu, Jinbo

    2014-03-01

    Sequence-based protein homology detection has been extensively studied and so far the most sensitive method is based upon comparison of protein sequence profiles, which are derived from multiple sequence alignment (MSA) of sequence homologs in a protein family. A sequence profile is usually represented as a position-specific scoring matrix (PSSM) or an HMM (Hidden Markov Model) and accordingly PSSM-PSSM or HMM-HMM comparison is used for homolog detection. This paper presents a new homology detection method MRFalign, consisting of three key components: 1) a Markov Random Fields (MRF) representation of a protein family; 2) a scoring function measuring similarity of two MRFs; and 3) an efficient ADMM (Alternating Direction Method of Multipliers) algorithm aligning two MRFs. Compared to HMM that can only model very short-range residue correlation, MRFs can model long-range residue interaction pattern and thus, encode information for the global 3D structure of a protein family. Consequently, MRF-MRF comparison for remote homology detection shall be much more sensitive than HMM-HMM or PSSM-PSSM comparison. Experiments confirm that MRFalign outperforms several popular HMM or PSSM-based methods in terms of both alignment accuracy and remote homology detection and that MRFalign works particularly well for mainly beta proteins. For example, tested on the benchmark SCOP40 (8353 proteins) for homology detection, PSSM-PSSM and HMM-HMM succeed on 48% and 52% of proteins, respectively, at superfamily level, and on 15% and 27% of proteins, respectively, at fold level. In contrast, MRFalign succeeds on 57.3% and 42.5% of proteins at superfamily and fold level, respectively. This study implies that long-range residue interaction patterns are very helpful for sequence-based homology detection. The software is available for download at http://raptorx.uchicago.edu/download/. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2-5.

  15. The Juno Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-02-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of

  16. Electro-magnetic properties of composites with aligned Fe-Co hollow fibers

    NASA Astrophysics Data System (ADS)

    Cho, Seungchan; Choi, Jae Ryung; Jung, Byung Mun; Choi, U. Hyeok; Lee, Sang-Kwan; Kim, Ki Hyeon; Lee, Sang-Bok

    2016-05-01

    A novel Fe-Co binary hollow fiber was synthesized by electroless plating using hydrolyzed polyester fiber and its anisotropy characteristic was investigated for electromagnetic wave absorbing materials. The hollow fibers in parallel with magnetic field show higher saturated magnetization of 202 emu/g at the applied magnetic field of 10 kOe and lower coercivity (27.658 Oe), compared with the random and vertical oriented hollow fibers. From complex permittivity measurement, the Fe-Co hollow fiber composites clearly display a single dielectric resonance, located at ˜14 GHz. The Fe-Co hollow fibers not only provide excellent EM properties in GHz frequency ranges, resulting mainly from the strong resonance, but also adjust the soft magnetic properties through fiber alignments. The cavitary structure of the Fe-Co hollow fibers, not only giving rise to a dielectric loss resonance and also adjusting its peak frequency, may be a pathway to useful EM wave absorptive devices in GHz frequency ranges.

  17. Magnetic-Field Hazards Bibliography.

    DTIC Science & Technology

    1985-09-01

    Puchalska, I. B., Influence of magnetic fields on frog sciatic nerve , Biochem. Biophys. Res. Comm. 91:118 (1979). 35. Fardon, 3. C., "Effect of magnetic...fields, Bioelectromagnetic 2:357 (1981). 41. Gaffey, C. T. and Tenforde, T. S., Bioelectric properties of frog sciatic nerves during exposure to...available from: U.S. Dept. of Energy, Bonneville Power Administration, Portland, Oregon 97208 (1982). 29. Levy , R. H., and Jones, G. S., "Plasma

  18. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  19. Quantum oscillations without magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Pikulin, D. I.; Franz, M.

    2017-01-01

    When the magnetic field B is applied to a metal, nearly all observable quantities exhibit oscillations periodic in 1 /B . Such quantum oscillations reflect the fundamental reorganization of electron states into Landau levels as a canonical response of the metal to the applied magnetic field. We predict here that, remarkably, in the recently discovered Dirac and Weyl semimetals, quantum oscillations can occur in the complete absence of magnetic field. These zero-field quantum oscillations are driven by elastic strain which, in the space of the low-energy Dirac fermions, acts as a chiral gauge potential. We propose an experimental setup in which the strain in a thin film (or nanowire) can generate a pseudomagnetic field b as large as 15 T and demonstrate the resulting de Haas-van Alphen and Shubnikov-de Haas oscillations periodic in 1 /b .

  20. Mechanical alignment of particles for use in fabricating superconducting and permanent magnetic materials

    DOEpatents

    Nellis, William J.; Maple, M. Brian

    1992-01-01

    A method for mechanically aligning oriented superconducting or permanently magnetic materials for further processing into constructs. This pretreatment optimizes the final crystallographic orientation and, thus, properties in these constructs. Such materials as superconducting fibers, needles and platelets are utilized.

  1. Microbially assisted recording of the Earth's magnetic field in sediment

    PubMed Central

    Zhao, Xiangyu; Egli, Ramon; Gilder, Stuart A.; Müller, Sebastian

    2016-01-01

    Sediments continuously record variations of the Earth's magnetic field and thus provide an important archive for studying the geodynamo. The recording process occurs as magnetic grains partially align with the geomagnetic field during and after sediment deposition, generating a depositional remanent magnetization (DRM) or post-DRM (PDRM). (P)DRM acquisition mechanisms have been investigated for over 50 years, yet many aspects remain unclear. A key issue concerns the controversial role of bioturbation, that is, the mechanical disturbance of sediment by benthic organisms, during PDRM acquisition. A recent theory on bioturbation-driven PDRM appears to solve many inconsistencies between laboratory experiments and palaeomagnetic records, yet it lacks experimental proof. Here we fill this gap by documenting the important role of bioturbation-induced rotational diffusion for (P)DRM acquisition, including the control exerted on the recorded inclination and intensity, as determined by the equilibrium between aligning and perturbing torques acting on magnetic particles. PMID:26864428

  2. Microbially assisted recording of the Earth's magnetic field in sediment.

    PubMed

    Zhao, Xiangyu; Egli, Ramon; Gilder, Stuart A; Müller, Sebastian

    2016-02-11

    Sediments continuously record variations of the Earth's magnetic field and thus provide an important archive for studying the geodynamo. The recording process occurs as magnetic grains partially align with the geomagnetic field during and after sediment deposition, generating a depositional remanent magnetization (DRM) or post-DRM (PDRM). (P)DRM acquisition mechanisms have been investigated for over 50 years, yet many aspects remain unclear. A key issue concerns the controversial role of bioturbation, that is, the mechanical disturbance of sediment by benthic organisms, during PDRM acquisition. A recent theory on bioturbation-driven PDRM appears to solve many inconsistencies between laboratory experiments and palaeomagnetic records, yet it lacks experimental proof. Here we fill this gap by documenting the important role of bioturbation-induced rotational diffusion for (P)DRM acquisition, including the control exerted on the recorded inclination and intensity, as determined by the equilibrium between aligning and perturbing torques acting on magnetic particles.

  3. Specification and R and D Program on Magnet Alignment Tolerances for NSLS-II

    SciTech Connect

    Kramer,S.L.; Jain, A. K.

    2009-05-04

    The NSLS-II light source is a proposed 3 GeV storage ring, with the potential for ultra-low emittance. Despite the reduced emittance goal for the bare lattice, the closed orbit amplification factors are on average >55 in both planes, for random quadrupole alignment errors. The high chromaticity will also require strong sextupoles and the low 3 GeV energy will require large dynamic and momentum aperture to insure adequate lifetime. This will require tight alignment tolerances ({approx} 30{micro}m) on the multipole magnets during installation. By specifying tight alignment tolerances of the magnets on the support girders, the random alignment tolerances of the girders in the tunnel can be significantly relaxed. Using beam based alignment to find the golden orbit through the quadrupole centers, the closed orbit offsets in the multipole magnets will then be reduced to essentially the alignment errors of the magnets, restoring much of the dynamic aperture and lifetime of the bare lattice. Our R&D program to achieve these tight alignment tolerances of the magnets on the girders using a vibrating wire technique, will be discussed and initial results presented.

  4. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2015-12-01

    Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.—Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with

  5. Field-aligned fluxes in the geomagnetic equator

    NASA Technical Reports Server (NTRS)

    Semar, C. L.; Konradi, A.

    1976-01-01

    During 12 electron injection events observed by Explorer 45 during the December, 1971, and February, 1972, in magnetic storms it was found that the lowest observable pitch angle particles (down to 7 degrees in one case) arrived first. Pitch angle dispersion and shell-splitting effects are shown to be inadequate explanations for most of these pitch angle distributions. It is suggested that parallel electric fields may be supplying 1- to 5-keV electrons to the magnetosphere from the ionosphere. Various models of parallel electric fields are discussed.

  6. Strong Magnetic Field Characterisation

    DTIC Science & Technology

    2012-04-01

    coils were driven by a pulsed-power system to generate the fields. All the sources were characterised through a series of measurements and modelling... generated for the coils. Options for further investigation were provided. UNCLASSIFIED UNCLASSIFIED This...investigation. The desired field strength was based on assessments [1] from preliminary magnetohydrodynamic ( MHD ) modelling and while not achievable by

  7. Magnetic field geometry of the large globule CB 34

    NASA Astrophysics Data System (ADS)

    Das, A.; Das, H. S.; Medhi, Biman J.; Wolf, S.

    2016-12-01

    We report the results of optical polarimetric observations of a Bok globule CB34 to study magnetic field structure on large scales (105-106 AU), which is combined with archival sub-mm observations to characterize the magnetic field structure of CB34 on small scales (104-105 AU). The optical polarization measurements indicate that the magnetic field in the globule is constrained to a maximum radius of 105 AU around the core, out to densities not smaller than 104 cm^{-3}. Our study is mainly concentrated on two submillimeter cores C1 and C2 of CB34. The direction of magnetic field of core C2 is found to be nearly perpendicular to the CO outflow direction of the globule. The magnetic field of core C1 is almost aligned with the minor axis of the core which is typical for magnetically dominated star formation models. The mean value of offset between the minor axis of core C2 and the outflow direction is found to be 14° which suggests that the direct ion of the outflow is almost aligned with the minor axis of core C2. The magnetic field strength in the plane-of-sky for cores C1 and C2 is estimated to be ≈ 34 μG and ≈ 70 μG.

  8. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS.

    SciTech Connect

    JAIN, A.; ESCALLIER, J.; GANETIS, G.; LOUIE, W.; MARONE, A.; THOMAS. R.; WANDERER, P.

    2004-10-03

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation.

  9. Plasma Sheet Response to the Ionosphere's Demand for Field-Aligned Current

    NASA Astrophysics Data System (ADS)

    Coroniti, F. V.; Pritchett, P. L.

    2007-12-01

    Magnetospheric convection electric fields and plasma stresses are transmitted to the ionosphere by Alfvén wave electric fields and field-aligned currents (FACs). The closure of the FACs by ionospheric Hall and Pedersen currents drives the ionospheric convection system. However, the ionospheric system does not necessarily mesh smoothly with the magnetospheric drivers, and the magnetosphere must respond by altering its convection and plasma stress configuration, thereby creating self-consistent closure paths for the complete coupled system of currents and electric potentials. Three-dimensional particle-in-cell plasma kinetic simulations are used to determine the plasma sheet response to various current systems imposed as boundary conditions at the near-Earth boundary. These systems consist of separate downward and upward tubes of FAC and a substorm current wedge configuration. The results demonstrate that the creation of closure paths for ionospheric FACs can result in large configuration changes within the near-Earth plasma sheet. The plasma sheet is forced to establish polarization electric fields that locally increase the cross-tail current by producing a duskward Hall electron current; this results in the formation of thin (in z), spatially localized (in y) electron-dominated Hall current sheets. The observed complex magnetic field configuration with opposite polarity Bz fields in close proximity separated by electron scale thin current sheets is reminiscent of the turbulent magnetic fields that are observed within the near-Earth current disruption region at substorm breakup [ Lui et al., 1988, 1992].

  10. Study on the scale distribution of the field-aligned irregularities in E-region

    NASA Astrophysics Data System (ADS)

    Gong, Wanlin; Qi, Hao

    2016-12-01

    The field-aligned backscattering region in the ionospheric E-region is considered to contain many small irregularities, which are arrayed along the magnetic lines. The scale and number of these irregularities in the backscattering region are different. The irregularities of a certain scale can reflect the radio wave of the corresponding wavelength on the basis of the Bragg scattering theory. The more the irregularities of a scale, the stronger is the backscattered power. Thus, the scale distribution can be estimated by the function relationship between the scale and the echo amplitude, while the incidence direction of the wave path is perpendicular to the geomagnetic field. Moreover, the echoes with oblique incidence direction can also be used to estimate the scale distribution, considering the factor of the angle between the wave path and the perpendicular field direction.

  11. Radar observations of field-aligned plasma propagations associated with nasa's PMG experiment. Master's thesis

    SciTech Connect

    Olson, D.M.

    1994-09-01

    NASA's Plasma Motor Generator (PMG) tethered satellite mission was launched in June 1993 to verify the ability of hollow cathode plasma sources to couple electric currents from an electrodynamic tether into the ambient ionospheric plasma. This large-scale coupling process resulted in turbulent plasma signatures associated with the orbiting plasma generator, which propagated over great distances along the earth's geomagnetic field lines. VHF radars in Hilo, Hawaii and Jicamarca, Peru recorded observations of these field-aligned disturbances as part of the experiment. Based on analysis of these radar observations and tracking data of PMG's orbit, the effective propagation velocity of these traveling plasma waveforms was calculated to be of the order of 1000 meters per second. Detection of these disturbances, associated with PMG's passage overhead, supports the existence of a phantom current loop allowing current flow along the magnetic field lines of the earth and into the lower ionosphere from either end of an electrodynamic tether.

  12. Radar observations of field-aligned plasma propagations associated with NASA's PMG experiment

    NASA Astrophysics Data System (ADS)

    Olson, Darren M.

    1994-09-01

    NASA's Plasma Motor Generator (PMG) tethered satellite mission was launched in June 1993 to verify the ability of hollow cathode plasma sources to couple electric currents from an electrodynamic tether into the ambient ionospheric plasma. This large-scale coupling process resulted in turbulent plasma signatures associated with the orbiting plasma generator, which propagated over great distances along the earth's geomagnetic field lines. VHF radars in Hilo, Hawaii and Jicamarca, Peru recorded observations of these field-aligned disturbances as part of the experiment. Based on analysis of these radar observations and tracking data of PMG's orbit, the effective propagation velocity of these traveling plasma waveforms was calculated to be of the order of 1000 meters per second. Detection of these disturbances, associated with PMG's passage overhead, supports the existence of a phantom current loop allowing current flow along the magnetic field lines of the earth and into the lower ionosphere from either end of an electrodynamic tether.

  13. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma.

    PubMed

    Cheng, Yu; Muroski, Megan E; Petit, Dorothée C M C; Mansell, Rhodri; Vemulkar, Tarun; Morshed, Ramin A; Han, Yu; Balyasnikova, Irina V; Horbinski, Craig M; Huang, Xinlei; Zhang, Lingjiao; Cowburn, Russell P; Lesniak, Maciej S

    2016-02-10

    Magnetic particles that can be precisely controlled under a magnetic field and transduce energy from the applied field open the way for innovative cancer treatment. Although these particles represent an area of active development for drug delivery and magnetic hyperthermia, the in vivo anti-tumor effect under a low-frequency magnetic field using magnetic particles has not yet been demonstrated. To-date, induced cancer cell death via the oscillation of nanoparticles under a low-frequency magnetic field has only been observed in vitro. In this report, we demonstrate the successful use of spin-vortex, disk-shaped permalloy magnetic particles in a low-frequency, rotating magnetic field for the in vitro and in vivo destruction of glioma cells. The internalized nanomagnets align themselves to the plane of the rotating magnetic field, creating a strong mechanical force which damages the cancer cell structure inducing programmed cell death. In vivo, the magnetic field treatment successfully reduces brain tumor size and increases the survival rate of mice bearing intracranial glioma xenografts, without adverse side effects. This study demonstrates a novel approach of controlling magnetic particles for treating malignant glioma that should be applicable to treat a wide range of cancers.

  14. Magnetic field of the Earth

    NASA Astrophysics Data System (ADS)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  15. Large aperture laser beam alignment system based on far field sampling technique

    NASA Astrophysics Data System (ADS)

    Zhang, J. C.; Liu, D. Z.; Ouyang, X. P.; Kang, J.; Xie, X. L.; Zhou, J.; Gong, L.; Zhu, B. Q.

    2016-11-01

    Laser beam alignment is very important for high-power laser facility. Long laser path and large-aperture lens for alignment are generally used, while the proposed alignment system with a wedge by far-field sampling technique reduces both space and cost requirements. General alignment system for large-aperture laser beam is long in distance and large in volum because of taking near-field sampling technique. With the development of laser fusion facilities, the space for alignment system is limited. A new alignment system for large-aperture laser beam is designed to save space and reduce operating costs. The new alignment for large-aperture laser beam with a wedge is based on far-field sampling technique. The wedge is placed behind the spatial filter to reflect some laser beam as signal light for alignment. Therefore, laser beam diameter in alignment system is small, which can save space for the laser facility. Comparing to general alignment system for large-aperture laser beam, large-aperture lenses for near-field and far-field sampling, long distance laser path are unnecessary for proposed alignment system, which saves cost and space greatly. This alignment system for large-aperture laser beam has been demonstrated well on the Muliti-PW Facility which uses the 7th beam of the SG-Ⅱ Facility as pump source. The experimental results indicate that the average near-field alignment error is less than 1% of reference, and the average far-filed alignment error is less than 5% of spatial filter pinhole diameter, which meet the alignment system requirements for laser beam of Multi-PW Facility.

  16. Satellite to study earth's magnetic field

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The Magnetic Field Satellite (Magsat) designed to measure the near earth magnetic field and crustal anomalies is briefly described. A scalar magnetometer to measure the magnitude of the earth's crustal magnetic field and a vector magnetometer to measure magnetic field direction as well as magnitude are included. The mission and its objectives are summarized along with the data collection and processing system.

  17. Generation and Suppression of E Region Artificial Field Aligned Irregularities

    NASA Astrophysics Data System (ADS)

    Miceli, R. J.; Hysell, D. L.; Munk, J.; Han, S.

    2012-12-01

    Artificial field-aligned plasma density irregularities (FAIs) were generated in the E region of the ionosphere above the High Frequency Active Auroral Research Program (HAARP) facility during campaigns in May and August of 2012 and were quantified using a 30 MHz coherent scatter radar in Homer, Alaska. The purpose of the experiment was to analyze the X-mode suppression of FAIs generated from O-mode heating and to measure the threshold required to excite thermal parametric instabilities. The irregularities were excited by gradually increasing the power of a zenith pointing O-mode emission transmitted at a frequency of 2.75 MHz. To suppress the irregularities, a second X-mode emission at a higher frequency was added on alternating power cycles. The Homer radar measured the signal-to-noise ratio, Doppler shift, and spectral width of echoes reflected from the irregularities. We will calculate the threshold electric field required to excite the irregularities and compare with similar experiments in order to better understand the thermal parametric instability.

  18. Galactic and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Klein, U.; Fletcher, A.

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.

  19. Field-aligned Transport and Acceleration of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Borovikov, D.; Sokolov, I.; Tenishev, V.; Gombosi, T. I.

    2015-12-01

    Solar Energetic Particle (SEP) phenomena represent one of the major components of space weather. Often, but not exclusively associated with Coronal Mass Ejections (CMEs), they pose a significant scientific as well as practical interest. As these particles originate at such explosive events, they have energies up to several GeV. SEP may cause disruptions in operations of space instruments and spacecrafts and are dangerous to astronauts. For this reason, studies of SEP events and predictions of their impact are of great importance. The motion and acceleration of SEP, though kinetic in nature, is governed by Interplanetary Magnetic Field (IMF) and its disturbances. Therefore, a consistent and accurate simulation and predictive tool must include a realistic MHD model of IMF. At the same time, transport of SEP is essentially one-dimensional as at high energies particles are tied to magnetic field lines. This allows building a model that can effectively map active regions on the solar surface onto various regions of the Solar System thus predicting the affected regions of the at any distance from the Sun. We present the first attempt to construct a model that employs coupling of MHD and kinetic models. The former describes the evolution of IMF disturbed by CME, while the latter simulates particles moving along the field lines extracted from MHD model. The first results are provided.

  20. The effect of Birkeland currents on magnetic field topology

    NASA Technical Reports Server (NTRS)

    Peroomian, Vahe; Lyons, Larry R.; Schulz, Michael

    1996-01-01

    A technique was developed for the inclusion of large scale magnetospheric current systems in magnetic field models. The region 1 and 2 Birkeland current systems are included in the source surface model of the terrestrial magnetosphere. The region 1 and 2 Birkeland currents are placed in the model using a series of field aligned, infinitely thin wire segments. The normal component of the magnetic field from these currents is calculated on the surface of the magnetopause and shielded using image current carrying wires placed outside of the magnetosphere. It is found that the inclusion of the Birkeland currents in the model results in a northward magnetic field in the near-midnight tail, leading to the closure of previously open flux in the tail, and a southward magnetic field in the flanks. A sunward shift in the separatrix is observed.

  1. THE OUTER MAGNETIC FIELD OF L183

    SciTech Connect

    Clemens, Dan P.

    2012-03-20

    The L183 (= L134N) dark molecular cloud has been probed using deep near-infrared imaging polarimetry of stars to beyond 14 mag in H band (1.6 {mu}m), using the Mimir instrument on the 1.83 m Perkins Telescope. Nearly 400 arcmin{sup 2} were surveyed, including the dense core in L183, as seen in WISE Band 3 (12 {mu}m) extinction, and the near surroundings, revealing 35 stars with either detected polarizations or significant upper limits. Stars with detected polarizations are reddened if closer than 8 arcmin (0.25 pc at the 110 pc cloud distance) and unreddened beyond. The polarimetric sample probes as close to the core as 3 arcmin (0.1 pc), where A{sub V} {approx} 14 mag. Compared to the relatively unextincted surrounding stars, the reddened stars show no increase in polarization with extinction, suggesting that all of the polarization is induced in the outer layers of the cloud. This 0.25 pc radius envelope magnetic field does show a strong interaction with the L183 dark cloud. The envelope field is also virtually perpendicular, on the plane of the sky, to the field seen at 850 {mu}m, though more closely aligned with the rotation axis of the dense gas core. The physical size scale at which the envelope and the core magnetic fields either decouple from each other or strongly modify their directions must be inside the 0.1 pc region probed here.

  2. Expectations for the Martian core magnetic field

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1993-01-01

    In the traditional view of planetary magnetism, a planet either has a core dynamo (Earth, Jupiter, Saturn, Uranus, Neptune, maybe Mercury) or does not (Mars, Venus, Moon...) I argue that this view is simplistic in two respects. First, mantle convection in terrestrial planets is invariably ata high enough Rayleigh number that it is time variable; this leads to the intermittent arrival of mantle 'cold fingers' at the core-mantle boundary promoting at least local core convection and dynamo action even when the planetary core is stably stratified on average. Thus, I predict an intermittent dynamo regime in addition to the simple dynamo-on (Earth) and dynamo-off regimes. Second, the mantle convection-driven horizontal temperature gradients just below the core-mantle boundary can lead to unstable flows that will convert thermoelectric or electrochemical toroidal fields into externally detectable poloidal fields, even when a dynamo is not possible. It is likely that Mars possesses an interesting core magnetic field of the latter kind, complex but with a dipole that might be approximately aligned with the rotation axis and a surface field of a few to tens of gammas.

  3. Dynamics of magnetic particles suspended in Newtonian fluids under magnetic field

    NASA Astrophysics Data System (ADS)

    Tan, Mingyang; Walker, Travis

    2016-11-01

    Anisotropic structures are commonly found in natural materials. Researchers are committed to developing meta-materials that mimic natural materials by introducing anisotropic filler particles. These materials can exhibit enhanced magnetic, mechanical, optical, and diffusive properties. In this study, a magnetic field is used to align magnetic oblate spheroids. We present an analytic solution based on a single-particle Stokes-flow model that describes the planar alignment of the particle in a rotating magnetic field. The analytic solution covers the full range of the magnetic field frequency agreeing well with our experimental results. Asymptotic solutions are also developed at both the high-frequency and the low-frequency limits of the field. The induced dipole of each particle can create its own magnetic field that can interact with neighboring particles, causing particles to aggregate. Different structures of particles are formed depending on the characteristics of the field, i.e., one-dimensional columns of particles in a constant field and two-dimensional sheets of particles in a rotating field. To simulate the realistic dynamics of the phenomena, we include hydrodynamic interactions between the particles via Stokesian dynamics.

  4. Interplanetary magnetic field effects on high latitude ionospheric convection

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.

    1985-01-01

    Relations between the electric field and the electric current in the ionosphere can be established on the basis of a system of mathematical and physical equations provided by the equations of current continuity and Ohm's law. For this reason, much of the synthesis of electric field and plasma velocity data in the F-region is made with the aid of similar data sets derived from field-aligned current and horizontal current measurements. During the past decade, the development of a self-consistent picture of the distribution and behavior of these measurements has proceeded almost in parallel. The present paper is concerned with the picture as it applies to the electric field and plasma drift velocity and its dependence on the interplanetary magnetic field. Attention is given to the southward interplanetary magnetic field and the northward interplanetary magnetic field.

  5. Field-aligned currents onboard the Intercosmos Bulgaria-1300 satellite in comparison with modeled FAC

    NASA Astrophysics Data System (ADS)

    Danov, Dimitar

    2008-02-01

    The statistical field-aligned current (FAC) distribution has been demonstrated by [Iijima, T., Potemra, T.A., 1976. The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. Journal of Geophysical Research 81(13), 2165-2174] and many other authors. The large-scale (LS) FACs have been described by different empirical/statistical models [Feldstein, Ya. I., Levitin, A.E., 1986. Solar wind control of electric fields and currents in the ionosphere. Journal of Geomagnetism and Geoelectricity 38, 1143; Papitashvili, V.O., Rich, F.J., Heinemann, M.A., Hairston, M.R., 1999. Parameterization of the Defense Meteorological Satellite Program ionospheric electrostatic potentials by the interplanetary magnetic field strength and direction. Journal of Geophysical Research 104, 177-184; Papitashvili, V.O., Christiansen, F., Neubert, T., 2002. A new model of field-aligned currents derived from high-precision satellite magnetic field data. Geophysical Research Letters, 29(14), 1683, doi:10.1029/2001GL014207; Tsyganenko, N.A., 2001. A model of the near magnetosphere with a dawn-dusk asymetry (I. Mathematical structure). Journal of Geophysical Research 107(A8), doi:10.1029/2001JA000219; Weimer, D.R., 1996a. A new model for prediction of ionospheric electric potentials as a function of the IMF. In: Snowmass'96 Online Poster Session; Weimer, D.R., 1996b. Substorm influence on the ionospheric convection patterns. In: Snowmass'96 Online Poster Session; Weimer, D.R., 2001. Maps of ionospheric field-aligned currents as a function of the interplanetary magnetic field derived from Dynamic Explorer 2 data. Journal of Geophysical Research 106, 12,889-12,902; Weimer, D.R., 2005. Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research 110, A05306, doi:10.1029/2004JA010884]. In the present work, we compare two cases of LS FAC obtained from magnetic field measurements onboard the

  6. Photospheric and coronal magnetic fields

    SciTech Connect

    Sheeley, N.R., Jr. )

    1991-01-01

    Research on small-scale and large-scale photospheric and coronal magnetic fields during 1987-1990 is reviewed, focusing on observational studies. Particular attention is given to the new techniques, which include the correlation tracking of granules, the use of highly Zeeman-sensitive infrared spectral lines and multiple lines to deduce small-scale field strength, the application of long integration times coupled with good seeing conditions to study weak fields, and the use of high-resolution CCD detectors together with computer image-processing techniques to obtain images with unsurpassed spatial resolution. Synoptic observations of large-scale fields during the sunspot cycle are also discussed. 101 refs.

  7. The Effect of Extremely Low Frequency Alternating Magnetic Field on the Behavior of Animals in the Presence of the Geomagnetic Field

    PubMed Central

    Belova, Natalia A.; Acosta-Avalos, Daniel

    2015-01-01

    It is known that the geomagnetic field can influence animal migration and homing. The magnetic field detection by animals is known as magnetoreception and it is possible due to two different transduction mechanisms: the first one through magnetic nanoparticles able to respond to the geomagnetic field and the second one through chemical reactions influenced by magnetic fields. Another behavior is the magnetic alignment where animals align their bodies to the geomagnetic field. It has been observed that magnetic alignment of cattle can be disrupted near electric power lines around the world. Experimentally, it is known that alternating magnetic fields can influence living beings, but the exact mechanism is unknown. The parametric resonance model proposes a mechanism to explain that effect on living beings and establishes that, in the presence of a constant magnetic field, molecules associated with biochemical reactions inside cells can absorb resonantly alternating magnetic fields with specific frequencies. In the present paper, a review is made about animal magnetoreception and the effects of alternating magnetic fields in living beings. It is suggested how alternating magnetic fields can interfere in the magnetic alignment of animals and a general conclusion is obtained: alternating magnetic field pollution can affect the magnetic sensibility of animals. PMID:26823664

  8. Observations of Interstellar Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Crutcher, R.; Heiles, C.; Troland, T.

    This article describes how interstellar magnetic fields are detected, measured, and mapped, the results of such observations, and the role played by interstellar magnetic fields in the physics of the interstellar medium. A goal of the observations is the measurement of the morphology and strengths of the uniform (Bu) and random (Br) components of magnetic fields. Observational techniques probe either the component of B parallel to the line of sight (B_parallel) or in the plane of the sky (B_⊥). Tracers of B_parallel are Faraday rotation of the position angle of linearly polarized radiation and Zeeman splitting of spectral lines. Tracers of B_⊥ are the strength of synchrotron radiation and linear polarization of syn chrotron radiation and of emission or absorption from dust and spectral lines. Starlight polarization shows that on large spatial scales the Galactic magnetic field is not heavily tangled (B_u/B_r ≈ 0.7 - 1.0), that the field is generally parallel to the Galactic plane near the plane, that the local field points approximately along the local spiral arm (pitch angle 9.4(°) , center of curvature 7.8 kpc distant towards ℓ ≈ -15.4(°) ), and that off the Galactic plane there is considerable small-scale structure to the field. Galactic synchrotron emission shows magnetic spiral arms with a total strength B_t ≈ 6 #55G and B_u ≈ 4 #55G. Pulsar data show evidence for reversals of the field direction with Galactic radius and yield B_r ≈ 5 #55G and B_u ≈ 1.5 #55G; the morphology of the large-scale mean field is consistent with dynamo generation. H I Zeeman detections for diffuse clouds yield B_parallel char 126 5 - 20 #55G with many limits B_parallel #55G. A recent survey of Galactic H I in absorption against extragalactic sources confirms the result that the fields in diffuse clouds are often quite weak. The critical parameter for evaluating the importance of magnetic fields in star formation is the ratio of the mass to the magnetic flux, M

  9. Magnetic fields around black holes

    NASA Astrophysics Data System (ADS)

    Garofalo, David A. G.

    Active Galactic Nuclei are the most powerful long-lived objects in the universe. They are thought to harbor supermassive black holes that range from 1 million solar masses to 1000 times that value and possibly greater. Theory and observation are converging on a model for these objects that involves the conversion of gravitational potential energy of accreting gas to radiation as well as Poynting flux produced by the interaction of the rotating spacetime and the electromagnetic fields originating in the ionized accretion flow. The presence of black holes in astrophysics is taking center stage, with the output from AGN in various forms such as winds and jets influencing the formation and evolution of the host galaxy. This dissertation addresses some of the basic unanswered questions that plague our current understanding of how rotating black holes interact with their surrounding magnetized accretion disks to produce the enormous observed energy. Two magnetic configurations are examined. The first involves magnetic fields connecting the black hole with the inner accretion disk and the other involves large scale magnetic fields threading the disk and the hole. We study the effects of the former type by establishing the consequences that magnetic torques between the black hole and the inner accretion disk have on the energy dissipation profile. We attempt a plausible explanation to the observed "Deep Minimum" state in the Seyfert galaxy MCG-6- 30-15. For the latter type of magnetic geometry, we study the effects of the strength of the magnetic field threading the black hole within the context of the cherished Blandford & Znajek mechanism for black hole spin energy extraction. We begin by addressing the problem in the non-relativistic regime where we find that the black hole-threading magnetic field is stronger for greater disk thickness, larger magnetic Prandtl number, and for a larger accretion disk. We then study the problem in full relativity where we show that our

  10. Majorana neutrinos and magnetic fields

    NASA Astrophysics Data System (ADS)

    Schechter, J.; Valle, J. W. F.

    1981-10-01

    It is stressed that if neutrinos are massive they are probably of "Majorana" type. This implies that their magnetic-moment form factor vanishes identically so that the previously discussed phenomenon of spin rotation in a magnetic field would not appear to take place. We point out that Majorana neutrinos can, however, have transition moments. This enables an inhomogeneous magnetic field to rotate both spin and "flavor" of a neutrino. In this case the spin rotation changes particle to antiparticle. The spin-flavor-rotation effect is worked out in detail. We also discuss the parametrization and calculation of the electromagnetic form factors of Majorana neutrinos. Our discussion takes into account the somewhat unusual quantum theory of massive Majorana particles.

  11. Anomalous foreshock field-aligned beams observed by Cluster

    NASA Astrophysics Data System (ADS)

    Meziane, K.; Hamza, A. M.; Wilber, M.; Mazelle, C.; Lee, M. A.

    2011-10-01

    We report occasional observations of two simultaneously distinct ion foreshock components recorded by the Cluster spacecraft upstream of the Earth's bow shock. In most occurrences, the lower-energy population originates as a field-aligned beam (FAB) associated with quasi-perpendicular regions, which loses energy as the IMF rotates into oblique geometries. A second beam, with energies in excess of ~10 keV, appears sometimes in association with the onset of ultra-low frequency (ULF) waves, and sometimes ahead of the appearance of the latter. Measurements from the mass spectrometer indicate that both beams consist of protons. While the lower-speed beam is well-accounted for by a known reflection mechanism, the non-radial IMF orientations as well as other arguments seem to rule out magnetosheath or magnetospheric sources for the higher energy component. The wave characteristics are typical of the oblique foreshock and we have found that they are in cyclotron-resonance with the low speed beam (FAB). These observations constitute a theoretical challenge since conventional mechanisms described in the literature cannot account for the production of beams at two different energies.

  12. Comparison of field-aligned currents at ionospheric and magnetospheric altitudes

    NASA Technical Reports Server (NTRS)

    Spence, H. E.; Kivelson, M. G.; Walker, R. J.

    1988-01-01

    Using the empirical terrestrial magnetospheric magnetic field models of Tsyganenko and Usmanov (1982) and Tsyganenko (1987) the average field-aligned currents (FACs) in the magnetosphere were determined as a function of the Kp index. Three major model FAC systems were identified, namely, the dayside region 1, the nightside region 1, and the nightside polar cap. The models provide information about the sources of the current systems. Mapped ionospheric model FACs are compared with low-altitude measurements obtained by the spacecraft. It is found that low-altitude data can reveal either classic region 1/2 or more highly structured FAC patterns. Therefore, statistical results either obtained from observations or inferred from models are expected to be averages over temporally and spatially shifting patterns.

  13. Space Technology 5 Multi-Point Field-Aligned Current Measurements (Invited)

    NASA Astrophysics Data System (ADS)

    Slavin, J. A.; Le, G.; Gjerloev, J. W.

    2013-12-01

    NASA's Space Technology 5 (ST 5) microsatellite constellation technology mission was launched by a Pegasus launch vehicle on March 22, 2006. The three small (48 cm tall, 50 cm diameter, 25 kg mass, spin stabilized at 20 rpm) satellites were placid in a 300 x 4500 km, dawn to dusk, sun synchronous orbit (inclination = 105.6 deg) orbit with a period of 138 min. They were maintained in this 'pearls on a sting' formation with inter-satellite spacings ranging from over 5000 km to under 50 km. Each satellite carried a miniature tri-axial fluxgate magnetometer (MAG) provided by the University of California at Los Angeles. Field aligned currents (FACs) form in response to the stress exerted on the magnetosphere by the solar wind and act as the primary mechanism for dissipating solar wind energy into the ionosphere and upper atmosphere during the solar wind magnetosphere ionosphere coupling process. ST 5 returned the first direct, simultaneous, multipoint measurements of FAC motion, thickness, and temporal variability. Current density was measured using both 1) the 'standard method' based upon s/c velocity, but corrected for FAC current sheet motion, with the assumption of a time-stationary current density profile, and 2) for the first time at low altitudes, the 'gradiometer method' which uses simultaneous magnetic field measurements at two points with known separation. Here we review the ST 5 scientific results concerning FACs and discuss their implications for future investigations of field aligned currents systems using distributed systems of spaceborne magnetometers.

  14. Validation of a new plasmapause model derived from CHAMP field-aligned current signatures

    NASA Astrophysics Data System (ADS)

    Heilig, Balázs; Darrouzet, Fabien; Vellante, Massimo; Lichtenberger, János; Lühr, Hermann

    2014-05-01

    Recently a new model for the plasmapause location in the equatorial plane was introduced based on magnetic field observations made by the CHAMP satellite in the topside ionosphere (Heilig and Lühr, 2013). Related signals are medium-scale field-aligned currents (MSFAC) (some 10km scale size). An empirical model for the MSFAC boundary was developed as a function of Kp and MLT. The MSFAC model then was compared to in situ plasmapause observations of IMAGE RPI. By considering this systematic displacement resulting from this comparison and by taking into account the diurnal variation and Kp-dependence of the residuals an empirical model of the plasmapause location that is based on MSFAC measurements from CHAMP was constructed. As a first step toward validation of the new plasmapause model we used in-situ (Van Allen Probes/EMFISIS, Cluster/WHISPER) and ground based (EMMA) plasma density observations. Preliminary results show a good agreement in general between the model and observations. Some observed differences stem from the different definitions of the plasmapause. A more detailed validation of the method can take place as soon as SWARM and VAP data become available. Heilig, B., and H. Lühr (2013) New plasmapause model derived from CHAMP field-aligned current signatures, Ann. Geophys., 31, 529-539, doi:10.5194/angeo-31-529-2013

  15. Evaluating the diffusive equilibrium models: Comparison with the IMAGE RPI field-aligned electron density measurements

    NASA Astrophysics Data System (ADS)

    Ozhogin, P.; Song, P.; Tu, J.; Reinisch, B. W.

    2014-06-01

    The diffusive equilibrium models that are widely used by the space physics community to describe the plasma densities in the plasmasphere are evaluated with field-aligned electron density measurements from the radio plasma imager (RPI) instrument onboard the IMAGE satellite. The original mathematical form of the diffusive equilibrium model was based on the hydrostatic equilibrium along the magnetic field line with the centrifugal force and the field-aligned electrostatic force as well as a large number of simplifying approximations. Six free parameters in the mathematical form have been conventionally determined from observations. We evaluate four sets of the parameters that have been reported in the literature. The evaluation is made according to the equatorial radial distance dependence, latitudinal dependence at a given radial distance, and the combined radial and latitudinal dependences. We find that the mathematical form given in the diffusive equilibrium model is intrinsically incompatible with the measurements unless another large number of free parameters are artificially introduced, which essentially changes the nature of a theoretical model to an empirical model.

  16. Magnetically aligned phospholipid bilayers with positive ordering: a new model membrane system.

    PubMed Central

    Prosser, R S; Hwang, J S; Vold, R R

    1998-01-01

    A stable smectic phospholipid bilayer phase aligned with the director parallel to the magnetic field can be generated by the addition of certain trivalent paramagnetic lanthanide ions to a bicellar solution of dimyristoylphosphatidylcholine (DMPC) and dihexanoylphosphatidylcholine (DHPC) in water. Suitable lanthanide ions are those with positive anisotropy of their magnetic susceptibility, namely Eu3+, Er3+, Tm3+, and Yb3+. For samples doped with Tm3+, this phase extends over a wide range of Tm3+ concentrations (6-40 mM) and temperatures (35-90 degrees C) and appears to undergo a transition from a fluid nematic discotic to a fluid, but highly ordered, smectic phase at a temperature that depends on the thulium concentration. As a membrane mimetic, these new, positively ordered phospholipid phases have high potential for structural studies using a variety of techniques such as magnetic resonance (EMR and NMR), small-angle x-ray and neutron diffraction, as well as optical and infrared spectroscopy. PMID:9591667

  17. Collision-induced stimulated photon echo in magnetic field

    NASA Astrophysics Data System (ADS)

    Reshetov, V. A.

    2015-12-01

    The action of the longitudinal magnetic field on the collision-induced stimulated photon echo formed on the transition with the angular momentum change {{J}a}=0\\to {{J}b}=1 is studied theoretically. It is shown that this action depends essentially on the sign of the difference in the orientation Γb(1) and alignment Γb(2) relaxation rates of the excited level b. If Γb(2)>Γb(1) , then the echo intensity in a weak magnetic field increases with the increase in the magnetic field strength, while in the alternative case Γb(2)<Γb(1) it decreases up to zero value. The formulae enabling the determination of the magnitude of the difference Γb(1)-Γb(2) from the experimental study of the oscillations of the echo intensity with the increase in the magnetic field strength are obtained.

  18. The Global Magnetic Field of Mercury from MESSENGER Orbital Observations

    NASA Astrophysics Data System (ADS)

    Anderson, Brian J.; Johnson, Catherine L.; Korth, Haje; Purucker, Michael E.; Winslow, Reka M.; Slavin, James A.; Solomon, Sean C.; McNutt, Ralph L.; Raines, Jim M.; Zurbuchen, Thomas H.

    2011-09-01

    Magnetometer data acquired by the MESSENGER spacecraft in orbit about Mercury permit the separation of internal and external magnetic field contributions. The global planetary field is represented as a southward-directed, spin-aligned, offset dipole centered on the spin axis. Positions where the cylindrical radial magnetic field component vanishes were used to map the magnetic equator and reveal an offset of 484 ± 11 kilometers northward of the geographic equator. The magnetic axis is tilted by less than 3° from the rotation axis. A magnetopause and tail-current model was defined by using 332 magnetopause crossing locations. Residuals of the net external and offset-dipole fields from observations north of 30°N yield a best-fit planetary moment of 195 ± 10 nanotesla-RM3, where RM is Mercury’s mean radius.

  19. Magnetic Field Statistics in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Guio, P.; Achilleos, N.; Santolik, O.; Masters, A.; Arridge, C.

    2012-04-01

    We present a statistical study of the fluctuations of the magnetic field for different regions of Saturn's magnetosphere as measured by the magnetometer instrument (MAG) on board the Cassini spacecraft. The magnetometer data, for a set of illustrative orbits during the prime mission, are used to construct probability distribution functions (PDFs) of magnetic fluctuations, in both the field-aligned and perpendicular directions. This technique is often used to look for intermittent plasma turbulence and non-self-similar properties in the fluctuations. Here we investigate the possibility to successfully characterise a region and/or regime of the magnetosphere in the signature of these PDFs. We construct PDFs from first principles, and we also consolidate our analysis by using an on-line data analysis tool ``Demonstrator for Multi-dimensional Spectral Analysis of Electromagnetic Fields'' developed under the Europlanet Joint Research Activity 3. We determine polarisation and propagation properties of the observed fluctuations as a function of frequency. We also comment on the applicability of these methods to identifying different characteristic frequencies and directions of boundary waves, such as Kelvin-Helmholtz disturbances.

  20. Magnetic Field Statistics in Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Guio, P.; Achilleos, N. A.; Santolik, O.; Masters, A.; Arridge, C. S.

    2011-12-01

    We present a statistical study of the fluctuations of the magnetic field for different regions of Saturn's magnetosphere as measured by the magnetometer instrument (MAG) on board the Cassini spacecraft. The magnetometer data, for a set of illustrative orbits during the prime mission, are used to construct probability distribution functions (PDFs) of magnetic fluctuations, in both the field-aligned and perpendicular directions. This technique is often used to look for intermittent plasma turbulence and non-self-similar properties in the fluctuations. Here we investigate the possibility to successfully characterise a region and/or regime of the magnetosphere in the signature of these PDFs. We construct PDFs from first principles, and we also consolidate our analysis by using an on line data analysis tool "Demonstrator for Multi-dimensional Spectral Analysis of Electromagnetic Fields" developed under the Europlanet Joint Research Activity 3. We determine polarisation and propagation properties of the observed fluctuations as a function of frequency. We also comment on the applicability of these methods to identifying different characteristic frequencies and directions of boundary waves, such as Kelvin-Helmholtz disturbances.

  1. The Magnetic Field of Solar Chromospheric Spicules

    NASA Astrophysics Data System (ADS)

    Trujillo Bueno, J.; Ramelli, R.; Merenda, L.; Bianda, M.

    2007-05-01

    A suitable diagnostic tool for investigating the magnetism of the solar chromosphere is the observation and theoretical modeling of the Hanle and Zeeman effects in solar spicules. In our presentation we highlighted the great scientific interest of this new diagnostic window by showing how the magnetic field vector can be inferred from spectropolarimetric observations of solar chromospheric spicules in several spectral lines, such as those of the 10830 Å and 5876 Å multiplets of neutral helium. Our off-limb spectropolarimetric observations of the He I 10830 Å multiplet were obtained with the Tenerife Infrared Polarimeter (TIP) attached to the Vacuum Tower Telescope at the Observatorio del Teide (Tenerife), while those of the 5876 Å multiplet resulted from observations with the Zurich Imaging Polarimeter (ZIMPOL) at the Gregory Coudé Telescope of the Istituto Ricerche Solari Locarno. The application of a Stokes profiles inversion technique led to the following conclusion. In quiet Sun spicules the magnetic field vector at a height of about 2000 km above the solar visible ``surface" has a typical strength of the order to 10 G and is inclined by approximately 35° with respect to the solar local vertical direction. In spicules observed close to active regions the strength of the magnetic field was of the order of 50 G. The two figures below show the off-limb Stokes profiles of the He I 5876 Å multiplet observed in a quiet region (upper figure) and close to an active region (lower figure). Note that in both cases Stokes U is non-zero, which is the observational signature of the Hanle effect of an inclined magnetic field. The change of sign in Stokes U along the spatial direction of the spectrograph's slit can be explained by variations in the azimuth of the magnetic field vector. Interestingly, while the Stokes V profiles corresponding to the observed quiet region are caused by the alignment-to-orientation transfer mechanism (see, e.g., page 607 of Landi Degl

  2. A New Feature of Field-Aligned Auroral Ion Beams Observed by Cluster

    NASA Astrophysics Data System (ADS)

    Parks, George; lee, Ensang; Suiyan, Fu; Fillingim, Matt; Cui, Yanbon; Hong, Jinhy; Dandouras, Iaonnis; reme, henri; Canu, Patrick; Lin, Naiguo

    2015-04-01

    Cluster measures 3D distributions in one spin of the spacecraft (4s). Field-aligned ion beams (H+, He+ and O+) are often observed accelerated out of the ionosphere. The escaping beams can be narrow in velocity space or more extended with a continuous range of velocities. Narrow velocity beams indicate the particles have been accelerated by a potential structure localized in space and beams with a wider velocity range indicate the potential structure is extended and distributed along the magnetic field. The Cluster ion composition experiment has now revealed a new feature showing some H+, He+ and O+ field-aligned beams are broken into many discrete beams each with its own velocity covering a wide velocity range. To interpret the discrete beams, the potential model requires existence of many narrow isolated potential structures along a magnetic field but there are currently no U-shaped theories or models that can explain how the discrete potential structures are formed or maintained. Our interpretation is that Cluster SC have actually crossed an auroral arc structure at a height of 3.5 RE and the discrete beams represent particles accelerated on different equi-potential contours of an aurora. While similar beams are observed in three of the four SC, the detailed features are not identical, indicating the beams have limited spatial scales and/or the dynamics include temporal variations. The distance between two discrete beams is estimated to be as small as ~145-290 meters at the SC position. This dimension mapped to the ionosphere is ~72-145 meters, which is a typical thickness of an auroral arc (Maggs and Davis, PSS 16, 205, 1968). The velocity of the beam increases as the SC moves toward the equator indicating that the auroral potential is higher at lower latitudes. This talk will discuss the new discrete beams and their interesting properties.

  3. Separation of magnetic field lines

    SciTech Connect

    Boozer, Allen H.

    2012-11-15

    The field lines of magnetic fields that depend on three spatial coordinates are shown to have a fundamentally different behavior from those that depend on two coordinates. Unlike two-coordinate cases, a flux tube in a magnetic field that depends on all three spatial coordinates that has a circular cross section at one location along the tube characteristically has a highly distorted cross section at other locations. In an ideal evolution of a magnetic field, the current densities typically increase. Crudely stated, if the current densities increase by a factor {sigma}, the ratio of the long to the short distance across a cross section of a flux tube characteristically increases by e{sup 2{sigma}}, and the ratio of the longer distance to the initial radius increases as e{sup {sigma}}. Electron inertia prevents a plasma from isolating two magnetic field structures on a distance scale shorter than c/{omega}{sub pe}, which is about 10 cm in the solar corona, and reconnection must be triggered if {sigma} becomes sufficiently large. The radius of the sun, R{sub Circled-Dot-Operator }=7 Multiplication-Sign 10{sup 10}cm is about e{sup 23} times larger, so when {sigma} Greater-Than-Or-Equivalent-To 23, two lines separated by c/{omega}{sub pe} at one location can be separated by the full scale of any magnetic structures in the corona at another. The conditions for achieving a large exponentiation, {sigma}, are derived, and the importance of exponentiation is discussed.

  4. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  5. STUDYING THE INTERSTELLAR MAGNETIC FIELD FROM ANISOTROPIES IN VELOCITY CHANNELS

    SciTech Connect

    Esquivel, A.; Lazarian, A.; Pogosyan, D. E-mail: lazarian@astro.wisc.edu

    2015-11-20

    Turbulence in the interstellar medium is anisotropic due to the ubiquitous magnetic fields. This anisotropy depends on the strength of the magnetic field and leaves an imprint on observations of spectral line maps. We use a grid of ideal magnetohydrodynamic simulations of driven turbulence and produce synthetic position–position–velocity maps to study the turbulence anisotropy in velocity channels of various resolutions. We found that the average structure function of velocity channels is aligned with the projection of the magnetic field on the plane of the sky. We also found that the degree of such anisotropy increases with the magnitude of the magnetic field. For thick velocity channels (low velocity resolution), the anisotropy is dominated by density, and the degree of anisotropy in these maps allows one to distinguish sub-Alfvénic and super-Alfvénic turbulence regimes, but it also depends strongly on the sonic Mach number. For thin channels (high velocity resolution), we find that the anisotropy depends less on the sonic Mach number. An important limitation of this technique is that it only gives a lower limit on the magnetic field strength because the anisotropy is related only to the magnetic field component on the plane of the sky. It can, and should, be used in combination with other techniques to estimate the magnetic field, such as the Fermi-Chandrasekhar method, anisotropies in centroids, Faraday rotation measurements, or direct line-of-sight determinations of the field from Zeeman effect observations.

  6. Magnetic fields in the sun

    NASA Technical Reports Server (NTRS)

    Mullan, D. J.

    1974-01-01

    The observed properties of solar magnetic fields are reviewed, with particular reference to the complexities imposed on the field by motions of the highly conducting gas. Turbulent interactions between gas and field lead to heating or cooling of the gas according to whether the field energy density is less or greater than the maximum kinetic energy density in the convection zone. The field strength above which cooling sets in is 700 gauss. A weak solar dipole field may be primeval, but dynamo action is also important in generating new flux. The dynamo is probably not confined to the convection zone, but extends throughout most of the volume of the sun. Planetary tides appear to play a role in driving the dynamo.

  7. The behavior of a magnetic filament in flow under the influence of an external magnetic field

    NASA Astrophysics Data System (ADS)

    Lüsebrink, Daniel; Cerdà, Joan J.; Sánchez, Pedro A.; Kantorovich, Sofia S.; Sintes, Tomás

    2016-12-01

    We present an extensive numerical study of the behaviour of a filament made of ferromagnetic colloidal particles subjected to the simultaneous action of a fluid flow and a stationary external magnetic field perpendicular to the flow lines. We found that in the presence of a shear flow, the tumbling motion observed at zero field is strongly inhibited when the external magnetic field is applied. The field is able to stabilise the filament with a well defined degree of alignment that depends on the balance between hydrodynamic and magnetic torques. In addition, for a Poiseuille flow, it has been found that the initial position has a long lasting influence on the behaviour of the magnetic filament when the external field is applied.

  8. The magnetic field of Jupiter

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Ness, N. F.

    1976-01-01

    The paper is concerned mainly with the intrinsic planetary field which dominates the inner magnetosphere up to a distance of 10 to 12 Jovian radii where other phenomena, such as ring currents and diamagnetic effects of trapped charged particles, become significant. The main magnetic field of Jupiter as determined by in-situ observations by Pioner 10 and 11 is found to be relatively more complex than a simple offset tilted dipole. Deviations from a simple dipole geometry lead to distortions of the charged particle L shells and warping of the magnetic equator. Enhanced absorption effects associated with Io and Amalthea are predicted. The results are consistent with the conclusions derived from extensive radio observations at decimetric and decametric wavelengths for the planetary field.

  9. Electric-Field-Induced Alignment of Block Copolymer/Nanoparticle Blends

    SciTech Connect

    Liedel, Clemens; Schindler, Kerstin; Pavan, Mariela J.; Lewin, Christian; Pester, Christian W; Ruppel, Markus A; Urban, Volker S; Shenhar, Roy; Boker, Alexander

    2013-01-01

    External electric fi elds readily align birefringent block-copolymer mesophases. In this study the effect of gold nanoparticles on the electric-fi eld-induced alignment of a lamellae-forming polystyrene- block -poly(2-vinylpyridine) copolymer is assessed. Nanoparticles are homogeneously dispersed in the styrenic phase and promote the quantitative alignment of lamellar domains by substantially lowering the critical field strength above which alignment proceeds. The results suggest that the electric-fi eldassisted alignment of nanostructured block copolymer/nanoparticle composites may offer a simple way to greatly mitigate structural and orientational defects of such fi lms under benign experimental conditions.

  10. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1990-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of the broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  11. Oxide superconductors under magnetic field

    NASA Technical Reports Server (NTRS)

    Kitazawa, K.

    1991-01-01

    One of the current most serious problems for the oxide superconductors from the standpoint of practical application is the various novel features derived mainly from their extremely short coherence. In particular, the coherence length so far observed in the cuprate superconductors is in the range of 0.1 nm perpendicular to the CuO2 plane. This seems to be creating most of the difficulties in the device fabrication and in the performance under the magnetic field. Some of the superconducting properties under the magnetic field will be discussed in terms of the short coherence length. A model will be presented based on the gradual strengthening of the pinning force with decrease in temperature and the weak coupling at the grain boundaries. Secondly, the broadening of the superconducting transition under the magnetic field is discussed. This is observed significantly only when the field is applied perpendicular to the basal plane and the relative orientation of the current to the field is insignificant in determining the extent of broadening. Besides, the change in the strength of the pinning force does not affect the width of the broadening. From these observations discussions will be made on a model based on the giant fluctuation. Based on this model, it is predicted that the coherence length along the c-axis will be the single most important material parameter to determine the performance of the superconductor under a strong magnetic field. It seems that BYCO is superior in this regard to Bi- or Tl-systems as far as the performance at 77 K is considered, although another material with the coherence length slightly longer along the c-axis is still highly desired.

  12. Asymmetric field-aligned currents in the conjugate hemispheres

    NASA Astrophysics Data System (ADS)

    Reistad, J. P.; Ostgaard, N.; Oksavik, K.; Laundal, K. M.

    2012-12-01

    Earlier studies using simultaneous imaging from space of the Aurora Borealis (Northern Hemisphere) and Aurora Australis (Southern Hemisphere) have revealed that the aurora can experience a high degree of asymmetry between the two hemispheres. Using 19 hours of simultaneous global imaging from both hemispheres (IMAGE satellite in north and Polar satellite in south) in conjunction with the entire IMAGE WIC database, we investigate the importance of various mechanisms thought to generate the asymmetries seen in global imaging. In terms of asymmetric or interhemispheric field-aligned currents, three candidate mechanisms have been suggested: 1) Hemispheric differences in solar wind dynamo efficiency mainly controlled by IMF Bx leading to asymmetric region 1 currents; 2) conductivity differences in conjugate areas; and 3) penetration of IMF By into the closed magnetosphere possibly generating a pair of oppositely directed interhemispheric currents. From the 19 hour conjugate dataset we find that the solar wind dynamo is likely to be the most important controlling mechanism for asymmetric bright aurora in the polar part of the nightside oval. Here we present statistical analyses of candidates 1) and 3). Using the entire IMAGE WIC database, a statistical analysis of the auroral brightness distribution along and across the Northern Hemisphere oval is carried out. For each candidate, two extreme cases (+/- IMF Bx for 1) and +/- IMF By for 3)) are compared during times non-favorable for the other two mechanisms. Our results indicate that solar wind dynamo induced currents play an important role for the nightside auroral brightness in an average sense. Also, signatures of interhemispheric currents due to IMF By penetration are seen in our statistics, although this effect is somehow weaker.

  13. The susceptibility of pure tubulin to high magnetic fields: a magnetic birefringence and x-ray fiber diffraction study.

    PubMed Central

    Bras, W; Diakun, G P; Díaz, J F; Maret, G; Kramer, H; Bordas, J; Medrano, F J

    1998-01-01

    The orientational behavior of microtubules assembled in strong magnetic fields has been studied. It is shown that when microtubules are assembled in a magnetic field, they align with their long axis parallel to the magnetic field. The effect of several parameters known to affect the microtubule assembly are investigated with respect to their effect on the final degree of alignment. Aligned samples of hydrated microtubules suitable for low-resolution x-ray fiber diffraction experiments have been produced, and the results obtained from the fiber diffraction experiments have been compared with the magnetic birefringence experiments. Comparisons with earlier fiber diffraction work and small-angle x-ray solution scattering experiments have been made. PMID:9512047

  14. Field-Aligned Electron Events Observed in the Radiation Belts by the HOPE Instruments aboard the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Lejosne, S.; Agapitov, O. V.; Mozer, F.

    2015-12-01

    Field-aligned electron events (FAEs) are defined as events having the ratio of field-aligned to perpendicular flux greater than three. Time Domain Structures (TDS) are known to produce FAEs. Whistler and ECH waves are other possible candidates. Our objective is to derive the general features of the FAEs, to identify their driving mechanisms and to evaluate the importance of the different mechanisms. More than two years of measurements by the Helium Oxygen Proton Electron mass spectrometer and the Electric Field and Waves experiment are analyzed to identify low-energy (100eV-50keV) FAEs and to quantify the concurrent electric and magnetic wave components. We also peek at the observable waveforms with bursts of high-time resolution measurements. From statistical analysis and case studies, we suggest in particular that TDS cause field-alignment of ~300eV electrons in the pre-midnight sector while chorus waves cause field-alignment of electrons of ~10keV in the morning sector of the outer belt.

  15. The HMI Magnetic Field Pipeline

    NASA Astrophysics Data System (ADS)

    Hoeksema, Jon Todd; Liu, Y.; Schou, J.; Scherrer, P.; HMI Science Team

    2009-05-01

    The Helioseismic and Magnetic Imager (HMI) will provide frequent full-disk magnetic field data after launch of the Solar Dynamics Observatory (SDO), currently scheduled for fall 2009. 16 megapixel line-of-sight magnetograms (Blos) will be recorded every 45 seconds. A full set of polarized filtergrams needed to determine the vector magnetic field requires 90 seconds. Quick-look data will be available within a few minutes of observation. Quick-look space weather and browse products must have identified users, and the list currently includes full disk magnetograms, feature identification and movies, 12-minute disambiguated vector fields in active region patches, time evolution of AR indices, synoptic synchronic frames, potential and MHD model results, and 1 AU predictions. A more complete set of definitive science data products will be offered about a day later and come in three types. "Pipeline” products, such as full disk vector magnetograms, will be computed for all data on an appropriate cadence. A larger menu of "On Demand” products, such as Non-Linear Force Free Field snapshots of an evolving active region, will be produced whenever a user wants them. Less commonly needed "On Request” products that require significant project resources, such as a high resolution MHD simulation of the global corona, will be created subject to availability of resources. Further information can be found at the SDO Joint Science Operations Center web page, jsoc.stanford.edu

  16. Search for signatures of magnetically-induced alignment in the arrival directions measured by the Pierre Auger Observatory

    SciTech Connect

    Abreu, P.; Aglietta, M.; Ahn, E.J.; Albuquerque, I.F.M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; /Naples U. /INFN, Naples /Nijmegen U., IMAPP

    2011-11-01

    We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or ''multiplets'') which exhibit a correlation between arrival direction and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cosmic rays. We describe the largest multiplets found and compute the probability that they appeared by chance from an isotropic distribution. We find no statistically significant evidence for the presence of multiplets arising from magnetic deflections in the present data.

  17. Search for signatures of magnetically-induced alignment in the arrival directions measured by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; PeĶala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zimbres Silva, M.; Ziolkowski, M.

    2012-01-01

    We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or 'multiplets') which exhibit a correlation between arrival direction and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cosmic rays. We describe the largest multiplets found and compute the probability that they appeared by chance from an isotropic distribution. We find no statistically significant evidence for the presence of multiplets arising from magnetic deflections in the present data.

  18. Magnetic anisotropy induced by crystallographic orientation and morphological alignment in directionally-solidified eutectic Mn-Sb alloy

    NASA Astrophysics Data System (ADS)

    Lou, Chang-Sheng; Liu, Tie; Dong, Meng; Wu, Chun; Shao, Jian-Guo; Wang, Qiang

    2017-02-01

    The influences of the crystallographic orientation and morphological alignment upon the magnetic anisotropic behavior of polycrystalline materials were investigated. Microstructures obtained in eutectic Mn-Sb alloys via directional solidification simultaneously displayed crystallographic orientation and morphological alignment. Both the crystallographic orientation and the morphological alignment were able to induce magnetic anisotropy in the alloys, wherein the influence of the crystallographic orientation and the morphological alignment upon the magnetic anisotropic behavior of the alloys strongly depended upon their directions and exhibited either mutual promotion or competition. These findings may provide useful guidance for the fabrication design of functional magnetic materials.

  19. Does Magnetic-field-Rotation Misalignment Solve the Magnetic Braking Catastrophe in Protostellar Disk Formation?

    NASA Astrophysics Data System (ADS)

    Li, Zhi-Yun; Krasnopolsky, Ruben; Shang, Hsien

    2013-09-01

    Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. In the simplest case of a laminar (non-turbulent) core with the magnetic field aligned with the rotation axis, both analytic considerations and numerical simulations have shown that the formation of a large, 102 AU scale, rotationally supported protostellar disk is suppressed by magnetic braking in the ideal MHD limit for a realistic level of core magnetization. This theoretical difficulty in forming protostellar disks is termed the "magnetic braking catastrophe." A possible resolution to this problem, proposed by Hennebelle & Ciardi and Joos et al., is that misalignment between the magnetic field and rotation axis may weaken the magnetic braking enough to enable disk formation. We evaluate this possibility quantitatively through numerical simulations. We confirm the basic result of Joos et al. that the misalignment is indeed conducive to disk formation. In relatively weakly magnetized cores with dimensionless mass-to-flux ratio >~ 4, it enabled the formation of rotationally supported disks that would otherwise be suppressed if the magnetic field and rotation axis are aligned. For more strongly magnetized cores, disk formation remains suppressed, however, even for the maximum tilt angle of 90°. If dense cores are as strongly magnetized as indicated by OH Zeeman observations (with a mean dimensionless mass-to-flux ratio ~2), it would be difficult for the misalignment alone to enable disk formation in the majority of them. We conclude that, while beneficial to disk formation, especially for the relatively weak field case, misalignment does not completely solve the problem of catastrophic magnetic braking in general.

  20. DOES MAGNETIC-FIELD-ROTATION MISALIGNMENT SOLVE THE MAGNETIC BRAKING CATASTROPHE IN PROTOSTELLAR DISK FORMATION?

    SciTech Connect

    Li Zhiyun; Krasnopolsky, Ruben; Shang, Hsien

    2013-09-01

    Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. In the simplest case of a laminar (non-turbulent) core with the magnetic field aligned with the rotation axis, both analytic considerations and numerical simulations have shown that the formation of a large, 10{sup 2} AU scale, rotationally supported protostellar disk is suppressed by magnetic braking in the ideal MHD limit for a realistic level of core magnetization. This theoretical difficulty in forming protostellar disks is termed the ''magnetic braking catastrophe''. A possible resolution to this problem, proposed by Hennebelle and Ciardi and Joos et al., is that misalignment between the magnetic field and rotation axis may weaken the magnetic braking enough to enable disk formation. We evaluate this possibility quantitatively through numerical simulations. We confirm the basic result of Joos et al. that the misalignment is indeed conducive to disk formation. In relatively weakly magnetized cores with dimensionless mass-to-flux ratio {approx}> 4, it enabled the formation of rotationally supported disks that would otherwise be suppressed if the magnetic field and rotation axis are aligned. For more strongly magnetized cores, disk formation remains suppressed, however, even for the maximum tilt angle of 90 Degree-Sign . If dense cores are as strongly magnetized as indicated by OH Zeeman observations (with a mean dimensionless mass-to-flux ratio {approx}2), it would be difficult for the misalignment alone to enable disk formation in the majority of them. We conclude that, while beneficial to disk formation, especially for the relatively weak field case, misalignment does not completely solve the problem of catastrophic magnetic braking in general.

  1. Magnetic fields from domestic appliances in the UK

    NASA Astrophysics Data System (ADS)

    Preece, A. W.; Kaune, W.; Grainger, P.; Preece, S.; Golding, J.

    1997-01-01

    In a survey of 50 UK homes the 50 Hz fundamental and harmonic magnetic fields generated by 806 domestic appliances found in the homes, and used regularly by mothers, were measured. Measurements were made in the direction of most likely access, and from the surface of the appliances. Mothers completed a questionnaire on the use of appliances and were monitored for 24 h so that acquired exposure could be compared with the measured ambient fields in the home. Appliances were measured at standard distances and an algorithm was used to calculate fields at 100 and 50 cm to remove room background contributions. A few appliances generated fields in excess of ALIGN="TOP"/> at 1 m: microwave cookers ALIGN="TOP"/>; washing machines ALIGN="TOP"/>; dishwashers ALIGN="TOP"/>; some electric showers ALIGN="TOP"/> and can openers ALIGN="TOP"/>. Of continuously operating devices, only central heating pumps (ALIGN="TOP"/>), central heating boilers (ALIGN="TOP"/>) and fish-tank air pumps (ALIGN="TOP"/>) produced significant fields at 0.5 m. There were no obvious ways to group different types of appliances as high- or low-strength sources. Mothers spent on average about 4.5 h per day in the kitchen, where the strongest sources of magnetic field were located.

  2. Magnetic Fields in the Massive Dense Cores of the DR21 Filament: Weakly Magnetized Cores in a Strongly Magnetized Filament

    NASA Astrophysics Data System (ADS)

    Ching, Tao-Chung; Lai, Shih-Ping; Zhang, Qizhou; Girart, Josep M.; Qiu, Keping; Liu, Hauyu B.

    2017-04-01

    We present Submillimeter Array 880 μm dust polarization observations of six massive dense cores in the DR21 filament. The dust polarization shows complex magnetic field structures in the massive dense cores with sizes of 0.1 pc, in contrast to the ordered magnetic fields of the parsec-scale filament. The major axes of the massive dense cores appear to be aligned either parallel or perpendicular to the magnetic fields of the filament, indicating that the parsec-scale magnetic fields play an important role in the formation of the massive dense cores. However, the correlation between the major axes of the cores and the magnetic fields of the cores is less significant, suggesting that during the core formation, the magnetic fields below 0.1 pc scales become less important than the magnetic fields above 0.1 pc scales in supporting a core against gravity. Our analysis of the angular dispersion functions of the observed polarization segments yields a plane-of-sky magnetic field strength of 0.4–1.7 mG for the massive dense cores. We estimate the kinematic, magnetic, and gravitational virial parameters of the filament and the cores. The virial parameters show that the gravitational energy in the filament dominates magnetic and kinematic energies, while the kinematic energy dominates in the cores. Our work suggests that although magnetic fields may play an important role in a collapsing filament, the kinematics arising from gravitational collapse must become more important than magnetic fields during the evolution from filaments to massive dense cores.

  3. Explaining Mercury's peculiar magnetic field

    NASA Astrophysics Data System (ADS)

    Wicht, Johannes; Cao, Hao; Heyner, Daniel; Dietrich, Wieland; Christensen, Ulrich R.

    2014-05-01

    MESSENGER magnetometer data revealed that Mercury's magnetic field is not only particularly weak but also has a peculiar geometry. The MESSENGER team finds that the location of the magnetic equator always lies significantly north of the geographic equator, is largely independent of the distance to the planet, and also varies only weakly with longitude. The field is best described by an axial dipole that is offset to the north by about 20% of the planetary radius. In terms of classical Gauss coefficients, this translates into a low axial dipole component of g10= -190 nT but a relatively large axial quadrupole contribution that amounts to roughly 40% of this value. The axial octupole is also sizable while higher harmonic contributions are much weaker. Very remarkable is also the fact that the equatorial dipole contribution is very small, consistent with a dipole tilt below 0.8 degree, and this is also true for the other non-axisymmetic field contributions. We analyze several numerical dynamos concerning their capability of explaining Mercury's magnetic field. Classical schemes geared to model the geomagnetic field typically show a much weaker quadrupole component and thus a smaller offset. The onset only becomes larger when the dynamo operates in the multipolar regime at higher Rayleigh numbers. However, since the more complex dynamics generally promotes all higher multipole contributions the location of the magnetic equator varies strongly with longitude and distance to the planet. The situation improves when introducing a stably stratified outer layer in the dynamo region, representing either a rigid FeS layer or a sub-adiabatic core-mantle boundary heat flux. This layer filters out the higher harmonic contributions and the field not only becomes sufficiently weak but also assumes a Mercury like offset geometry during a few percent of the simulation time. To increase the likelihood for the offset configuration, the north-south symmetry must be permanently broken

  4. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  5. Field-aligned currents distribution as derived from the Swarm satellite constellation

    NASA Astrophysics Data System (ADS)

    Luhr, H.; Kervalishvili, G.; Rauberg, J.; Michaelis, I.

    2015-12-01

    The seminal studies of Iijima and Potemra have outlined the major distribution features of field-aligned currents (FACs) in a local time versus magnetic latitude frame. The related plot showing the Region 1 and 2 FAC belts has been the reference in many studies as the baseline configuration during the past decades. What did we learn more since then? ESA's constellation mission Swarm provides the opportunity to derive more reliable FAC estimates from multi-satellite magnetic field measurements. We make use of the Swarm A/C satellite pair, which flies side-by-side at a separation of 1.4° in longitude. By considering along-track differences over 5 s the four readings at the corners of an almost symmetrical quad are used for calculating the mean vertical current density flowing through the encircled area. FACs are estimated by mapping the vertical current component onto the field direction. Within the auroral oval current estimates from single and dual-satellite solutions agree generally well. Significant differences are frequently observed in the polar cap. Here underlying assumptions for single-satellite solutions are obviously not well satisfied. Another characteristic derived from the multi-satellite observations: FACs can be divided into two classes. For scale sizes up to some ten kilometers rapid temporal variations are observed. These FACs are related to kinetic Alfvén waves. The other class with scale lengths of more than 150 km can be regarded as stationary current systems lasting for more than a minute.

  6. The optical wing aligning device of the Langley Field tunnel

    NASA Technical Reports Server (NTRS)

    Norton, F H; Bacon, D L

    1921-01-01

    Described here is a convenient and accurate method of aligning the wing chord with the airflow. The device was developed to permit rapid and accurate alignment of airfoils and models with the airstream passing through the tunnel. It consists of three main parts: a projector, a reflector, and a target. The arrangement, which is shown in a figure, has proven satisfactory in operation. It is far better than the old method of sighting across a long batten, as the operator of a balance may see the target and correctly judge the accuracy of his alignment. Whereas the old method required two operators and several minutes time to align to within 1/10 degree, this method enables one operator to align a wing to within 1/100 of a degree in a few seconds. This method also has the advantage of being able to measure the angle of the wing while the tunnel is running. Thus, the true angle of incidence is shown.

  7. Construction of theoretical F-spread ionogams from scattering in the HF band from field-aligned irregularities

    SciTech Connect

    Powers, W.J.

    1985-01-01

    The scattering and propagation of electromagnetic fields in the ionosphere for the HF band is considered. Particular attention is given to scattering at the geomagnetic equator from irregularities of ionization density that are aligned along the earth's magnetic field and that have lengths that are much greater than a Fresnel scale. Perpendicular to the earth's magnetic field the irregularities are assumed to be isotropic with scale lengths (wavelengths /(2..pi..)) extending from an inner scale equal to the ionic gyroradius to an outer scale on the order of the scale height of the ionosphere. Primary emphasis is placed on the weak scattering of pulses from field-aligned irregularities embedded in the night time F-layer, with application to explaining F-spread ionograms. The average ionization density of the night time F-layer is assumed to be well modeled by a parabolic layer. Assuming that the effects of the earth's magnetic field and collisions can be neglected, an approximate dyadic Green's function is derived and utilized in the determination of the incident and singly scattered fields.

  8. Chaotic inflation with kinetic alignment of axion fields

    NASA Astrophysics Data System (ADS)

    Bachlechner, Thomas C.; Dias, Mafalda; Frazer, Jonathan; McAllister, Liam

    2015-01-01

    N-flation is a radiatively stable scenario for chaotic inflation in which the displacements of N ≫1 axions with decay constants f1≤…≤fNalignment, allowing for effective displacements as large as √{N }fN≥fPy, even if f1,…,fN -1 are arbitrarily small. At the level of kinematics, the necessary alignment occurs with very high probability, because of eigenvector delocalization. We present conditions under which inflation can take place along an aligned direction. Our construction sharply reduces the challenge of realizing N-flation in string theory.

  9. Sting-free measurements on a magnetically supported right circular cylinder aligned with the free stream

    NASA Astrophysics Data System (ADS)

    Higuchi, Hiroshi; Sawada, Hideo; Kato, Hiroyuki

    The flow over cylinders of varying fineness ratio (length to diameter) aligned with the free stream was examined using a magnetic suspension and balance system in order to avoid model support interference. The drag coefficient variation of a right circular cylinder was obtained for a wide range of fineness ratios. Particle image velocimetry (PIV) was used to examine the flow field, particularly the behaviour of the leading-edge separation shear layer and its effect on the wake. Reynolds numbers based on the cylinder diameter ranged from 5105, while the major portion of the experiment was conducted at ReD=1.0×105. For moderately large fineness ratio, the shear layer reattaches with subsequent growth of the boundary layer, whereas over shorter cylinders, the shear layer remains detached. Differences in the wake recirculation region and the immediate wake patterns are clarified in terms of both the mean velocity and turbulent flow fields, including longitudinal vortical structures in the cross-flow plane of the wake. The minimum drag corresponded to the fineness ratio for which the separated shear layer reattached at the trailing edge of the cylinder. The base pressure was obtained with a telemetry technique. Pressure fields and aerodynamic force fluctuations are also discussed.

  10. Comparing Magnetic Fields on Earth and Mars

    NASA Video Gallery

    This animation compares the magnetic fields on Earth and Mars. The Earth has a large-scale planetary magnetic field that can protect it from space weather and other hazards. Mars, on the other hand...

  11. Field quality aspects of CBA superconducting magnets

    SciTech Connect

    Kahn, S.; Engelmann, R.; Fernow, R.; Greene, A.F.; Herrera, J.; Kirk, H.; Skaritka, J.; Wanderer, P.; Willen, E.

    1983-01-01

    A series of superconducting dipole magnets for the BNL Colliding Beam Accelerator which were manufactured to have the proper field quality characteristics has been tested. This report presents the analysis of the field harmonics of these magnets.

  12. Measurements of Solar Vector Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  13. Magnetic prism alignment system for measuring large-angle strabismus.

    PubMed

    Bishop, John Edward

    2014-02-01

    Prismatic measurement of large-angle strabismus requires the simultaneous use of two or more prisms for neutralization. To facilitate the clinical measurement of large-angle strabismus a new prism system was designed utilizing a flat plate and a ferrous metal surface coupled with prisms containing rare earth magnets implanted in their base and bottom surfaces.

  14. Collimation of laser-produced plasmas using axial magnetic field

    SciTech Connect

    Roy, Amitava; Harilal, Sivanandan S.; Hassan, Syed M.; Endo, Akira; Mocek, Tomas; Hassanein, A.

    2015-06-01

    We investigated the expansion dynamics of laser-produced plasmas expanding into an axial magnetic field. Plasmas were generated by focusing 1.064 µm Nd:YAG laser pulses onto a planar tin target in vacuum and allowed to expand into a 0.5 T magnetic-filed where field lines were aligned along the plume expansion direction. Gated images employing intensified CCD showed focusing of the plasma plume, which were also compared with results obtained using particle-in-cell modelling methods. The estimated density and temperature of the plasma plumes employing emission spectroscopy revealed significant changes in the presence and absence of the 0.5T magnetic field. In the presence of the field, the electron temperature is increased with distance from the target, while the density showed opposite effects.

  15. Minireview: Biological effects of magnetic fields

    SciTech Connect

    Villa, M.; Mustarelli, P. ); Caprotti, M. )

    1991-01-01

    The literature about the biological effects of magnetic fields is reviewed. The authors begin by discussing the weak and/or time variable fields, responsible for subtle changes in the circadian rhythms of superior animals, which are believed to be induced by same sort of resonant mechanism. The safety issues related with the strong magnetic fields and gradients generated by clinical NMR magnets are then considered. The last portion summarizes the debate about the biological effects of strong and uniform magnetic fields.

  16. Shocklets, SLAMS, and Field-Aligned Ion Beams in the Terrestrial Foreshock

    NASA Technical Reports Server (NTRS)

    Wilson, L. B.; Koval, A.; Sibeck, D. G.; Szabo, A.; Cattell, C. A.; Kasper, J. C.; Maruca, B. A.; Pulupa, M.; Salem, C. S.; Wilber, M.

    2012-01-01

    We present Wind spacecraft observations of ion distributions showing field- aligned beams (FABs) and large-amplitude magnetic fluctuations composed of a series of shocklets and short large-amplitude magnetic structures (SLAMS). The FABs are found to have T(sub k) approx 80-850 eV, V(sub b)/V(sub sw) approx 1.3-2.4, T(sub perpendicular,b)/T(sub paralell,b) approx 1-8, and n(sub b)/n(sub o) approx 0.2-11%. Saturation amplitudes for ion/ion resonant and non-resonant instabilities are too small to explain the observed SLAMS amplitudes. We show two examples where groups of SLAMS can act like a local quasi-perpendicular shock reflecting ions to produce the FABs, a scenario distinct from the more-common production at the quasi-perpendicular bow shock. The SLAMS exhibit a foot-like magnetic enhancement with a leading magnetosonic whistler train, consistent with previous observations. Strong ion and electron heating are observed within the series of shocklets and SLAMS with temperatures increasing by factors approx > 5 and approx >3, respectively. Both the core and halo electron components show strong perpendicular heating inside the feature.

  17. Shocklets, SLAMS, and field-aligned ion beams in the terrestrial foreshock

    NASA Astrophysics Data System (ADS)

    Wilson, L. B., III; Koval, A.; Sibeck, D. G.; Szabo, A.; Cattell, C. A.; Kasper, J. C.; Maruca, B. A.; Pulupa, M.; Salem, C. S.; Wilber, M.

    2012-12-01

    We present Wind spacecraft observations of ion distributions showing field-aligned beams (FABs) and large-amplitude magnetic fluctuations composed of a series of shocklets and short large-amplitude magnetic structures (SLAMS). We show that the SLAMS are acting like a local quasi-perpendicular shock reflecting ions to produce the FABs. Previous FAB observations reported the source as the quasi-perpendicular bow shock. The SLAMS exhibit a foot-like magnetic enhancement with a leading magnetosonic whistler train, consistent with previous observations. The FABs are found to have T_b ~ 80-850 eV, V_b/V_sw ~ 1-2, T_perp/T_para ~ 1-10, and n_b/n_i ~ 0.2-14%. Strong ion and electron heating are observed within the series of shocklets and SLAMS increasing by factors ≥ 5 and ≥ 3, respectively. Both the core and halo electron components show strong perpendicular heating inside the feature.

  18. Alignments of Dark Matter Halos with Large-scale Tidal Fields: Mass and Redshift Dependence

    NASA Astrophysics Data System (ADS)

    Chen, Sijie; Wang, Huiyuan; Mo, H. J.; Shi, Jingjing

    2016-07-01

    Large-scale tidal fields estimated directly from the distribution of dark matter halos are used to investigate how halo shapes and spin vectors are aligned with the cosmic web. The major, intermediate, and minor axes of halos are aligned with the corresponding tidal axes, and halo spin axes tend to be parallel with the intermediate axes and perpendicular to the major axes of the tidal field. The strengths of these alignments generally increase with halo mass and redshift, but the dependence is only on the peak height, ν \\equiv {δ }{{c}}/σ ({M}{{h}},z). The scaling relations of the alignment strengths with the value of ν indicate that the alignment strengths remain roughly constant when the structures within which the halos reside are still in a quasi-linear regime, but decreases as nonlinear evolution becomes more important. We also calculate the alignments in projection so that our results can be compared directly with observations. Finally, we investigate the alignments of tidal tensors on large scales, and use the results to understand alignments of halo pairs separated at various distances. Our results suggest that the coherent structure of the tidal field is the underlying reason for the alignments of halos and galaxies seen in numerical simulations and in observations.

  19. Quantitative patterns of large-scale field-aligned currents in the auroral ionosphere

    SciTech Connect

    Foster, J.C.; Fuller-Rowell, T.; Evans, D.S.

    1989-03-01

    Quantitative patterns of the distribution of field-aligned current (FAC) density have been derived from gradients of the average patterns of the Hall and Pedersen currents at high latitudes under the assumption that the total current is divergence-free. The horizontal currents were calculated from empirical convection electric field models, derived from Millstone Hill radar observations, and the ionospheric Hall and Pedersen conductances, based on satellite observations of the precipitating particle energy flux and spectrum and including an average (equinox) solar contribution. These independent empirical models, and the resultant patterns of the field-aligned currents, are keyed to an auroral precipitation index which quantifies the intensity and spatial extent of high-latitude particle precipitation and which is determined from a single satellite crossing of the auroral precipitation pattern. The patterns detail the spatial distribution of the currents as a function of increasing disturbance level. The magnitudes of the total single-hemisphere currents into or out of the ionosphere are closely balanced at each activity level and increase exponentially between 0.1 and 6 MA with increasing values of the precipitation index. The interplanetary magnetic field (IMF) sector dependence of the FAC patterns is investigated for disturbed conditions. A large portion of the FAC pattern is closed by local Pedersen currents (current into the ionosphere is balanced by an equal current out of the ionosphere at that local time). This locally balanced portion of the FAC system is enhanced in the prenoon (postnoon) sector for IMF B/sub v/>+1 nT (B/sub y/<-1 nT). In addition, there are net currents into the ionosphere postnoon and out of the ionosphere in the premidnight sector.

  20. Bats respond to very weak magnetic fields.

    PubMed

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  1. Hybrid Shielding for Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Mullins, David; Royal, Kevin

    2017-01-01

    Precision symmetry measurements such as the search for the electric dipole moment of the neutron require magnetic shielding rooms to reduce the ambient field to the pT scale. The massive mu-metal sheets and large separation between layers make these shield rooms bulky and expensive. Active field cancellation systems used to reduce the surrounding field are limited in uniformity of cancellation. A novel approach to reducing the space between shield layers and increasing the effectiveness of active cancellation is to combine the two systems into a hybrid system, with active and passive layers interspersed. We demonstrate this idea in a prototype with an active layer sandwiched between two passive layers of shielding.

  2. Some properties of field-aligned electron events in high-altitude polar regions

    NASA Astrophysics Data System (ADS)

    Zhang, ZiYing; Shi, JianKui; Zhou, MingQuan; Cheng, ZhengWei; Zhou, Hua

    2016-02-01

    Using data from the Cluster spacecraft from January 2003 to December 2004, we perform a statistical study on some properties of the field-aligned electron (FAE) events and interplanetary magnetic field (IMF) By dependence of FAE events with different durations in high-altitude polar regions. A total of 1335 FAE events were observed by the C3 spacecraft. More down-flowing events were observed in the Southern Hemisphere, and more up-flowing events were observed in the Northern Hemisphere. It proves that down-flowing events mainly originate from magnetosphere or solar wind and up-flowing events are mainly derived from ionosphere. Short-lifetime events showed a morning concentration in the magnetic local time distribution, and long-lifetime events were concentrated both before and after noon. For the IMF By dependence of the FAE events, short-lifetime events were much affected by IMF By and resulted in a morning concentration, while the long-lifetime events were almost unaffected by IMF By. With further analysis, we determined that the short-lifetime and long-lifetime events had different sources.

  3. Interplanetary magnetic field data book

    NASA Technical Reports Server (NTRS)

    King, J. H.

    1975-01-01

    An interplanetary magnetic field (IMF) data set is presented that is uniform with respect to inclusion of cislunar IMF data only, and which has as complete time coverage as presently possible over a full solar cycle. Macroscale phenomena in the interplanetary medium (sector structure, heliolatitude variations, solar cycle variations, etc.) and other phenomena (e.g., ground level cosmic-ray events) for which knowledge of the IMF with hourly resolution is necessary, are discussed. Listings and plots of cislunar hourly averaged IMP parameters over the period November 27, 1963, to May 17, 1974, are presented along with discussion of the mutual consistency of the IMF data used herein. The magnetic tape from which the plots and listings were generated, which is available from the National Space Science Data Center (NSSDC), is also discussed.

  4. Pulsed field magnetization strategies and the field poles composition in a bulk-type superconducting motor

    NASA Astrophysics Data System (ADS)

    Huang, Zhen; Ruiz, H. S.; Coombs, T. A.

    2017-03-01

    High temperature superconducting (HTS) bulks offer the potential of trapping and maintaining much higher magnetic loading level compared with the conventional permanent magnets used in rotary machines, although the effective magnetization of multiple HTS bulks with different relative orientations over the surface of cylindrical rotors creates new challenges. In this paper, we present the design and numerical validation of the Pulse Field Magnetization (PFM) strategy considered for the magnetization of the four-pole synchronous fully superconducting motor developed at the University of Cambridge. In a first instance, singular columns of up to five HTS bulks aligned over the height of the rotor were subjected to up to three magnetic pulses of 1.5 T peak, and the experimental results have been simulated by considering the electrical and thermal properties of the system in a 2D approach. The entire active surface of the rotor is covered by HTS bulks of approximately the same dimensions, resulting in an uneven distribution of pole areas with at least one of the poles formed by up to 3 columns of magnetized bulks, with relatively the same peaks of trapped magnetic field. Thus, in order to effectively use the entire area of the superconducting rotor, multiple pulsed fields per column have been applied under the same experimental conditions, what results in about three times larger magnetic pole areas but with an average drop on the peaks of trapped magnetic field of about 50%.

  5. Shot noise in magnetic field modulated graphene superlattice

    NASA Astrophysics Data System (ADS)

    Sattari, Farhad

    2015-08-01

    We investigate the shot noise properties in a monolayer graphene superlattice modulated by N parallel ferromagnets deposited on a dielectric layer. It is found that for the antiparallel magnetization configuration or when magnetic field is zero the new Dirac-like point appears in graphene superlattice. The transport is almost forbidden at this new Dirac-like point, and the Fano factor reaches its maximum value 1/3. In the parallel magnetization configuration as the number of magnetic barriers increases, the shot noise increases. In this case, the transmission can be blocked by the magnetic-electric barrier and the Fano factor approaches 1, which is dramatically distinguishable from that in antiparallel alignment. The results may be helpful to control the electron transport in graphene-based electronic devices.

  6. Magnetic field fiber sensor based on the magneto-birefringence effect of magnetic fluid

    NASA Astrophysics Data System (ADS)

    Lei, Xueqin; Chen, Jiajia; Shi, Fuquan; Chen, Daru; Ren, Zhijun; Peng, Baojin

    2016-09-01

    In this study, the magneto-birefringence effect of magnetic fluid (MF) is adopted to form an innovative fiber optic magnetic field sensor. The sensitive section is fabricated via a D-shaped microstructure inscribed in a high-birefringence fiber Sagnac loop with a femtosecond laser. The D-shaped microstructure facilitates good combination of the optical-fiber Sagnac interferometer with the magneto-birefringence effect of MF without suffering from absorption loss and manual alignment. Experimental results show the good performance of the magnetic field fiver sensor, particularly its high stable extinction ratio. Preliminary results are provided, and the magnetic field sensitivity of 0.0823 nm/mT can be further improved by increasing the depth and length of the D-shaped microstructure.

  7. Tuning magnetic disorder in diluted magnetic semiconductors using high fields to 89 Tesla

    SciTech Connect

    Crooker, Scott A; Samarth, Nitin

    2008-01-01

    We describe recent and ongoing studies at the National High Magnetic Field Laboratory at Los Alamos using the new '100 Tesla Multi-Shot Magnet', which is presently delivering fields up to {approx}89 T during its commissioning. We discuss the first experiments performed in this magnet system, wherein the linewidth of low-temperature photoluminescence spectra was used to directly reveal the degree of magnetic alloy disorder 'seen' by excitons in single Zn{sub 0.80}Cd{sub 0.22}Mn{sub 0.08}Se quantum wells. The magnetic potential landscape in II-VI diluted magnetic semiconductors (DMS) is typically smoothed when the embedded Mn{sup 2+} spins align in an applied field. However, an important (but heretofore untested) prediction of current models of compositional disorder is that magnetic alloy fluctuations in many DMS compounds should increase again in very large magnetic fields approaching 100 T. We observed precisely this increase above {approx}70 T, in agreement with a simple model of magnetic alloy disorder.

  8. Space Technology 5 (ST-5) Multipoint Observations of Temporal and Spatial Variability of Field-Aligned Currents

    NASA Technical Reports Server (NTRS)

    Le, Guan

    2010-01-01

    Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that mesoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about 1 min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  9. Space Technology 5 Multi-point Observations of Field-aligned Currents: Temporal Variability of Meso-Scale Structures

    NASA Technical Reports Server (NTRS)

    Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.

    2007-01-01

    Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of - 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approx. 1 min for meso-scale currents and approx. 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.

  10. Static magnetic fields: animal studies.

    PubMed

    Saunders, Richard

    2005-01-01

    Various experimental studies carried out over the last 30-40 years have examined the effects of the chronic or acute exposure of laboratory animals to static magnetic fields. Many of the earlier studies have been adequately reviewed elsewhere; few adverse effects were identified. This review focuses on studies carried out more recently, mostly those using vertebrates, particularly mammals. Four main areas of investigation have been covered, viz., nervous system and behavioural studies, cardiovascular system responses, reproduction and development, and genotoxicity and cancer. Work on the role of the natural geomagnetic field in animal orientation and migration has been omitted. Generally, the acute responses found during exposure to static fields above about 4 T are consistent with those found in volunteer studies, namely the induction of flow potentials around the heart and the development of aversive/avoidance behaviour resulting from body movement in such fields. No consistently demonstrable effects of exposure to fields of approximately 1T and above have been seen on other behavioural or cardiovascular endpoints. In addition, no adverse effects of such fields on reproduction and development or on the growth and development of tumours have been firmly established. Overall, however, far too few animal studies have been carried out to reach any firm conclusions.

  11. Saturn's Magnetic Field and Magnetosphere.

    PubMed

    Smith, E J; Davis, L; Jones, D E; Coleman, P J; Colburn, D S; Dyal, P; Sonett, C P

    1980-01-25

    The Pioneer Saturn vector helium magnetometer has detected a bow shock and magnetopause at Saturn and has provided an accurate characterization of the planetary field. The equatorial surface field is 0.20 gauss, a factor of 3 to 5 times smaller than anticipated on the basis of attempted scalings from Earth and Jupiter. The tilt angle between the magnetic dipole axis and Saturn's rotation axis is < 1 degrees , a surprisingly small value. Spherical harmonic analysis of the measurements shows that the ratio of quadrupole to dipole moments is < 10 percent, indicating that the field is more uniform than those of the Earth or Jupiter and consistent with Saturn having a relatively small core. The field in the outer magnetosphere shows systematic departures from the dipole field, principally a compression of the field near noon and an equatorial orientation associated with a current sheet near dawn. A hydromagnetic wake resulting from the interaction of Titan with the rotating magnetosphere appears to have been observed.

  12. Magnetic field penetration of erosion switch plasmas

    NASA Astrophysics Data System (ADS)

    Mason, Rodney J.; Jones, Michael E.; Grossmann, John M.; Ottinger, Paul F.

    1988-10-01

    Computer simulations demonstrate that the entrainment (or advection) of magnetic field with the flow of cathode-emitted electrons can constitute a dominant mechanism for the magnetic field penetration of erosion switch plasmas. Cross-field drift in the accelerating electric field near the cathode starts the penetration process. Plasma erosion propagates the point for emission and magnetic field injection along the cathode toward the load-for the possibility of rapid switch opening.

  13. Harmonic undulator radiations with constant magnetic field

    NASA Astrophysics Data System (ADS)

    Jeevakhan, Hussain; Mishra, G.

    2015-01-01

    Harmonic undulators has been analysed in the presence of constant magnetic field along the direction of main undulator field. The spectrum modifications in harmonic undulator radiations and intensity degradation as a function of constant magnetic field magnitude at fundamental and third harmonics have been evaluated with a numerical integration method and generalised Bessel function. The role of harmonic field to overcome the intensity reduction due to constant magnetic field and energy spread in electron beam has also been demonstrated.

  14. Origins of enhanced field-aligned current at the edge of an auroral arc

    NASA Astrophysics Data System (ADS)

    Greenspan, M. E.

    1989-09-01

    Consideration is given to observations showing that the upward field-aligned currents associated with auroral arcs are larger at their edges than within the arcs, focusing on the observations made with the Porcupine F4 rocket (Bruning and Geortz, 1985). It is found that an increase in the altitude of the top of the parallel electric field region does not sufficiently explain the increase in the upward field-aligned current at the edge of the arc crossed by the Porcupine F4. Other explanations are discussed, including the adiabatic acceleration of magnetospheric electrons through a field-aligned electrostatic potential. It is suggested that an increase in the density and/or a decrease in the perpendicular temperature of the magnetospheric electron population at the edge of the arc may explain the observed increase in upward field-aligned current.

  15. Graphene in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Orlita, Milan; Escoffier, Walter; Plochocka, Paulina; Raquet, Bertrand; Zeitler, Uli

    2013-01-01

    Carbon-based nano-materials, such as graphene and carbon nanotubes, represent a fascinating research area aiming at exploring their remarkable physical and electronic properties. These materials not only constitute a playground for physicists, they are also very promising for practical applications and are envisioned as elementary bricks of the future of the nano-electronics. As for graphene, its potential already lies in the domain of opto-electronics where its unique electronic and optical properties can be fully exploited. Indeed, recent technological advances have demonstrated its effectiveness in the fabrication of solar cells and ultra-fast lasers, as well as touch-screens and sensitive photo-detectors. Although the photo-voltaic technology is now dominated by silicon-based devices, the use of graphene could very well provide higher efficiency. However, before the applied research to take place, one must first demonstrates the operativeness of carbon-based nano-materials, and this is where the fundamental research comes into play. In this context, the use of magnetic field has been proven extremely useful for addressing their fundamental properties as it provides an external and adjustable parameter which drastically modifies their electronic band structure. In order to induce some significant changes, very high magnetic fields are required and can be provided using both DC and pulsed technology, depending of the experimental constraints. In this article, we review some of the challenging experiments on single nano-objects performed in high magnetic and low temperature. We shall mainly focus on the high-field magneto-optical and magneto-transport experiments which provided comprehensive understanding of the peculiar Landau level quantization of the Dirac-type charge carriers in graphene and thin graphite.

  16. Synthesis of crystallographically oriented olivine aggregates using colloidal processing in a strong magnetic field

    NASA Astrophysics Data System (ADS)

    Koizumi, Sanae; Suzuki, Tohru S.; Sakka, Yoshio; Yabe, Kosuke; Hiraga, Takehiko

    2016-11-01

    This study develops a fabrication technique to obtain Fe-free and Fe-bearing (Fe:Mg = 1:9) olivine aggregates not only with high density and fine grain size but with crystallographic preferred orientation (CPO). A magnetic field (≤12 T) is applied to synthetic, fine-grained ( 120 nm), olivine particles dispersed in solvent. The alignment of certain crystallographic axes of the particles with respect to a magnetic direction is anticipated due to magnetic anisotropy of olivine. The dispersed particles are gradually consolidated on a porous alumina mold covered with a solid-liquid separation filter during drainage of the solvent. The resultant aligned consolidated aggregate is then isostatically pressed and vacuum sintered. We find that (1) preparation of fully reacted olivine particles, with less propensity to coalesce; (2) preparation of a suspension with highly dispersed particles; and (3) application of a certain strength of the magnetic field are essential to obtain well-sintered and well-aligned aggregates. High density (i.e., <1 vol% porosity) and fine grain size ( 1 μm) Fe-free and Fe-bearing olivine aggregates were successfully synthesized with uniaxially aligned a- and c-axes, respectively. Attempts to uniaxially align the magnetization hard axis and to triaxially align Fe-bearing olivine by rotating the suspension in the magnetic field succeeded in obtaining weakly developed CPO aggregates.

  17. Magnetic field in the NGC7023 photodissociation region

    NASA Astrophysics Data System (ADS)

    Alves, Marta

    2015-10-01

    The far-UV radiation of massive stars illuminates molecular clouds creating photodissociation regions (PDRs), the transition layers between atomic and molecular media. Recent results based on Herschel observations reveal the presence of small regions at high gas pressure in the PDRs, whose origin is still not well understood, while polarization measurements towards a few PDRs indicate that magnetic fields can play a significant role in their structure. The limited number of existing polarization observations suggest that, when subject to a high gas and radiation pressure from the stars, the magnetic field tends to align and to be compressed in the PDR. As a consequence, bright PDRs should be magnetically dominated. However, this possibility has been the subject of very few studies due to the sparsity of relevant data. We propose to map the magnetic field in a nearby bright PDR, NGC 7023, using the unique capabilities of HAWC+ onboard SOFIA. For one, we wish to test the hypothesis that the magnetic field should be parallel to this PDR, which is illuminated by a radiation field of 2600 (in Habing units). Secondly, since NGC 7023 is a well studied region, its physical conditions (density, temperature) are known and can thus be related to the magnetic field across the PDR. We can investigate the relation between the field structure and the geometry of the PDR, and aided by Herschel observations we can also explore a possible connection between the magnetic field and the existence of high density regions in the PDR. SOFIA HAWC+ is the only instrument capable of imaging the polarized emission of extended objects, with structure at arcsecond scales. Moreover, it allows us trace the magnetic field within the PDR, owing to its 63micron band that traces the warm (40K) dust present at the illuminated surface. Our observations will be complementary to those led by the instrument team, who will observe NGC 7023 using the three highest wavelength filters.

  18. Field-aligned currents and large-scale magnetospheric electric fields

    NASA Technical Reports Server (NTRS)

    Dangelo, N.

    1979-01-01

    The existence of field-aligned currents (FAC) at northern and southern high latitudes was confirmed by a number of observations, most clearly by experiments on the TRIAD and ISIS 2 satellites. The high-latitude FAC system is used to relate what is presently known about the large-scale pattern of high-latitude ionospheric electric fields and their relation to solar wind parameters. Recently a simplified model was presented for polar cap electric fields. The model is of considerable help in visualizing the large-scale features of FAC systems. A summary of the FAC observations is given. The simplified model is used to visualize how the FAC systems are driven by their generators.

  19. Near-Field Magnetic Dipole Moment Analysis

    NASA Technical Reports Server (NTRS)

    Harris, Patrick K.

    2003-01-01

    This paper describes the data analysis technique used for magnetic testing at the NASA Goddard Space Flight Center (GSFC). Excellent results have been obtained using this technique to convert a spacecraft s measured magnetic field data into its respective magnetic dipole moment model. The model is most accurate with the earth s geomagnetic field cancelled in a spherical region bounded by the measurement magnetometers with a minimum radius large enough to enclose the magnetic source. Considerably enhanced spacecraft magnetic testing is offered by using this technique in conjunction with a computer-controlled magnetic field measurement system. Such a system, with real-time magnetic field display capabilities, has been incorporated into other existing magnetic measurement facilities and is also used at remote locations where transport to a magnetics test facility is impractical.

  20. Magnetic field effects on microwave absorbing materials

    NASA Technical Reports Server (NTRS)

    Goldberg, Ira; Hollingsworth, Charles S.; Mckinney, Ted M.

    1991-01-01

    The objective of this program was to gather information to formulate a microwave absorber that can work in the presence of strong constant direct current (DC) magnetic fields. The program was conducted in four steps. The first step was to investigate the electrical and magnetic properties of magnetic and ferrite microwave absorbers in the presence of strong magnetic fields. This included both experimental measurements and a literature survey of properties that may be applicable to finding an appropriate absorbing material. The second step was to identify those material properties that will produce desirable absorptive properties in the presence of intense magnetic fields and determine the range of magnetic field in which the absorbers remain effective. The third step was to establish ferrite absorber designs that will produce low reflection and adequate absorption in the presence of intense inhomogeneous static magnetic fields. The fourth and final step was to prepare and test samples of such magnetic microwave absorbers if such designs seem practical.

  1. Magnetic field observations in Comet Halley's coma

    NASA Astrophysics Data System (ADS)

    Riedler, W.; Schwingenschuh, K.; Yeroshenko, Ye. G.; Styashkin, V. A.; Russell, C. T.

    1986-05-01

    During the encounter with Comet Halley, the magnetometer (MISCHA) aboard the Vega 1 spacecraft observed an increased level of magnetic field turbulence, resulting from an upstream bow wave. Both Vega spacecraft measured a peak field strength of 70-80 nT and observed draping of magnetic field lines around the cometary obstacle. An unexpected rotation of the magnetic field vector was observed, which may reflect either penetration of magnetic field lines into a diffuse layer related to the contact surface separating the solar-wind and cometary plasma, or the persistence of pre-existing interplanetary field structures.

  2. The optical manifestation of dispersive field-aligned bursts in auroral breakup arcs

    NASA Astrophysics Data System (ADS)

    Dahlgren, H.; Semeter, J. L.; Marshall, R. A.; Zettergren, M.

    2013-07-01

    High-resolution optical observations of a substorm expansion show dynamic auroral rays with surges of luminosity traveling up the magnetic field lines. Observed in ground-based imagers, this phenomenon has been termed auroral flames, whereas the rocket signatures of the corresponding energy dispersions are more commonly known as field-aligned bursts. In this paper, observations of auroral flames obtained at 50 frames/s with a scientific-grade Complementary Metal Oxide Semiconductor (CMOS) sensor (30° × 30° field of view, 30 m resolution at 120 km) are used to provide insight into the nature of the precipitating electrons similar to high-resolution particle detectors. Thanks to the large field of view and high spatial resolution of this system, it is possible to obtain a first-order estimate of the temporal evolution in altitude of the volume emission rate from a single sensor. The measured volume emission rates are compared with the sum of modeled eigenprofiles obtained for a finite set of electron beams with varying energy provided by the TRANSCAR auroral flux tube model. The energy dispersion signatures within each auroral ray can be analyzed in detail during a fraction of a second. The evolution of energy and flux of the precipitation shows precipitation spanning over a large range of energies, with the characteristic energy dropping from 2.1 keV to 0.87 keV over 0.2 s. Oscillations at 2.4 Hz in the magnetic zenith correspond to the period of the auroral flames, and the acceleration is believed to be due to Alfvenic wave interaction with electrons above the ionosphere.

  3. Chiral plasmons without magnetic field

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.

    2016-04-01

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands.

  4. Chiral plasmons without magnetic field

    PubMed Central

    Song, Justin C. W.; Rudner, Mark S.

    2016-01-01

    Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons—chiral Berry plasmons (CBPs)—for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron–electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands. PMID:27071090

  5. The flexible magnetic field thruster

    NASA Technical Reports Server (NTRS)

    Brophy, J. R.; Wilbur, P. J.

    1982-01-01

    The thruster is designed so that ion currents to various internal surfaces can be measured directly; these measurements facilitate calculations of the distribution of ion currents inside the discharge chamber. Experiments are described suggesting that the distribution of ion currents inside the discharge chamber is strongly dependent on the shape and strength of the magnetic field but independent of the discharge current, discharge voltage, and neutral flow rate. Measurements of the energy cost per plasma ion suggest that this cost decreases with increasing magnetic field strength as a consequence of increased anode shielding from the primary electrons. Energy costs per argon plasma ion as low as 50 eV are measured. The energy cost per beam ion is found to be a function of the energy cost per plasma ion, extracted ion fraction, and discharge voltage. Part of the energy cost per beam ion has to do with creating many ions in the plasma and then extracting only a fraction of them into the beam. The balance of the energy goes into accelerating the remaining plasma ions into the walls of the discharge chamber.

  6. Fabrication of aligned nanofibers by electric-field-controlled electrospinning: insulating-block method.

    PubMed

    Hwang, Wontae; Pang, Changhyun; Chae, Heeyeop

    2016-10-28

    Aligned nanofiber arrays and mats were fabricated with an electrospinning process by manipulating the electric field. The electric field was modified by insulating blocks (IBs) that were installed between the nozzle and the substrate as guiding elements to control the trajectory of the electrospinning jet flow. Simulation results showed that the electric field was deformed near the IBs, resulting in confinement of the electrospinning jet between the blocks. The balance of the electric field in the vertical direction and the repulsive force by space charges in the confined electrified jet stream was attributed to the aligned motion of the jet. Aligned arrays of 200 nm thick polyethylene oxide nanofibers were obtained, exhibiting wave-shaped and cross patterns as well as rectilinear patterns. In addition, 40 μm thick quasi-aligned carbon-nanofiber mats with anisotropic electrical property were also attained by this method.

  7. Wide-Viewing-Angle Hybrid Aligned Nematic Liquid Crystal Cell Controlled by Complex Electric Field

    NASA Astrophysics Data System (ADS)

    Hong, Seung Ho; Kim, Hyang Yul; Kim, Jae-Hyung; Nam, Sang-Hee; Lee, Myong-Hoon; Lee, Seung Hee

    2002-07-01

    We have developed a hybrid aligned nematic liquid crystal (LC) cell driven by a complex electric field. In the device, the pixel electrode exists on the bottom substrate and the counter electrodes exist on the top and bottom substrates such that with a bias voltage both vertical and horizontal fields are generated. The LC molecules are hybrid aligned with homogeneous alignment on the bottom substrate where the alignment direction is coincident with one of the transmission axes of the crossed polarizers. Therefore, the cell appears to be black in the absence of an electric field. When a voltage is applied to obtain a white state, both vertical and horizontal fields enable the LC molecules to rotate with lowered tilt angles than those in the dark state. The device shows a much wider viewing angle than that of the twisted nematic mode, high light efficiency and low driving voltage in electro-optic characteristics.

  8. Fabrication of aligned nanofibers by electric-field-controlled electrospinning: insulating-block method

    NASA Astrophysics Data System (ADS)

    Hwang, Wontae; Pang, Changhyun; Chae, Heeyeop

    2016-10-01

    Aligned nanofiber arrays and mats were fabricated with an electrospinning process by manipulating the electric field. The electric field was modified by insulating blocks (IBs) that were installed between the nozzle and the substrate as guiding elements to control the trajectory of the electrospinning jet flow. Simulation results showed that the electric field was deformed near the IBs, resulting in confinement of the electrospinning jet between the blocks. The balance of the electric field in the vertical direction and the repulsive force by space charges in the confined electrified jet stream was attributed to the aligned motion of the jet. Aligned arrays of 200 nm thick polyethylene oxide nanofibers were obtained, exhibiting wave-shaped and cross patterns as well as rectilinear patterns. In addition, 40 μm thick quasi-aligned carbon-nanofiber mats with anisotropic electrical property were also attained by this method.

  9. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1994-01-01

    The research efforts funded by the Uranus Data Analysis Program (UDAP) grant to the Bartol Research Institute (BRI) involved the study of magnetic field waves associated with the Uranian bow shock. Upstream wave studies are motivated as a study of the physics of collisionless shocks. Collisionless shocks in plasmas are capable of 'reflecting' a fraction of the incoming thermal particle distribution and directing the resulting energetic particle motion back into the upstream region. Once within the upstream region, the backward streaming energetic particles convey information of the approaching shock to the supersonic flow. This particle population is responsible for the generation of upstream magnetic and electrostatic fluctuations known as 'upstream waves', for slowing the incoming wind prior to the formation of the shock ramp, and for heating of the upstream plasma. The waves produced at Uranus not only differed in several regards from the observations at other planetary bow shocks, but also gave new information regarding the nature of the reflected particle populations which were largely unmeasurable by the particle instruments. Four distinct magnetic field wave types were observed upstream of the Uranian bow shock: low-frequency Alfven or fast magnetosonic waves excited by energetic protons originating at or behind the bow shock; whistler wave bursts driven by gyrating ion distributions within the shock ramp; and two whistler wave types simultaneously observed upstream of the flanks of the shock and argued to arise from resonance with energetic electrons. In addition, observations of energetic particle distributions by the LECP experiment, thermal particle populations observed by the PLS experiment, and electron plasma oscillations recorded by the PWS experiment proved instrumental to this study and are included to some degree in the papers and presentations supported by this grant.

  10. Penetration of Magnetosheath Plasma into Dayside Magnetosphere. 2. ; Magnetic Field in Plasma Filaments

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Pollock, Craig; Goldstein, Melvyn L.; Lyatskaya, Sonya Inna; Avanov, Levon Albert

    2016-01-01

    In this paper, we examined plasma structures (filaments), observed in the dayside magnetosphere but containing magnetosheath plasma. These filaments show the stable antisunward motion (while the ambient magnetospheric plasma moved in the opposite direction) and the existence of a strip of magnetospheric plasma, separating these filaments from the magnetosheath. These results, however, contradict both theoretical studies and simulations by Schindler (1979), Ma et al. (1991), Dai and Woodward (1994, 1998), and other researchers, who reported that the motion of such filaments through the magnetosphere is possible only when their magnetic field is directed very close to the ambient magnetic field, which is not the situation that is observed. In this study, we show that this seeming contradiction may be related to different events as the theoretical studies and simulations are related to the case when the filament magnetic field is about aligned with filament orientation, whereas the observations show that the magnetic field in these filaments may be rotating. In this case, the rotating magnetic field, changing incessantly its direction, drastically affects the penetration of plasma filaments into the magnetosphere. In this case, the filaments with rotating magnetic field, even if in each moment it is significantly inclined to the ambient magnetic field, may propagate through the magnetosphere, if their average (for the rotation period) magnetic field is aligned with the ambient magnetic field. This shows that neglecting the rotation of magnetic field in these filaments may lead to wrong results.

  11. Exploring Magnetic Fields with a Compass

    ERIC Educational Resources Information Center

    Lunk, Brandon; Beichner, Robert

    2011-01-01

    A compass is an excellent classroom tool for the exploration of magnetic fields. Any student can tell you that a compass is used to determine which direction is north, but when paired with some basic trigonometry, the compass can be used to actually measure the strength of the magnetic field due to a nearby magnet or current-carrying wire. In this…

  12. Deformation of Water by a Magnetic Field

    ERIC Educational Resources Information Center

    Chen, Zijun; Dahlberg, E. Dan

    2011-01-01

    After the discovery that superconducting magnets could levitate diamagnetic objects, researchers became interested in measuring the repulsion of diamagnetic fluids in strong magnetic fields, which was given the name "The Moses Effect." Both for the levitation experiments and the quantitative studies on liquids, the large magnetic fields necessary…

  13. Baryon onset in a magnetic field

    SciTech Connect

    Haber, Alexander; Preis, Florian; Schmitt, Andreas

    2016-01-22

    The critical baryon chemical potential for the onset of nuclear matter is a function of the vacuum mass and the binding energy. Both quantities are affected by an external magnetic field. We show within two relativistic mean-field models – including magnetic catalysis, but omitting the anomalous magnetic moment – that a magnetic field increases both the vacuum mass and the binding energy. For sufficiently large magnetic fields, the effect on the vacuum mass dominates and as a result the critical baryon chemical potential is increased.

  14. Probing the magnetic fields in L1415 and L1389

    NASA Astrophysics Data System (ADS)

    Soam, A.; Lee, Chang Won; Maheswar, G.; Kim, Gwanjeong; Neha, S.; Kim, Mi-Ryang

    2017-01-01

    We present the R-band polarimetric results towards two nebulae L1415 and L1389 containing low-luminosity stars. Aim of this study is to understand the role played by magnetic fields in formation of low-luminosity objects. Linear polarization arises due to dichroism of the background starlight projected on the cloud providing the plane-of-the sky magnetic field orientation. The offsets between mean magnetic field directions obtained towards L1415 and L1389 and the projected outflow axes are found to be 35° and 12°, respectively. The offset between cloud minor axes and mean envelope magnetic field direction in L1415 and L1389 are 50° and 87°, respectively. To estimate the magnetic field strength by using the updated Chandrasekhar-Fermi (CF) relation, we obtained the 12CO(J = 1-0) line velocity dispersion value towards L1415 cloud using the Taeduk Radio Astronomical Observatory single dish observations. The values of Bpos in L1415 and L1389 are found to be 28 and 149 μG using CF technique and 23 and 140 μG using structure function analysis, respectively. The values of Bpos in these clouds are found to be consistent using both the techniques. By combining the present results with those obtained from our previous study of magnetic fields in cores with Very Low Luminosity Objects (VeLLOs), we attempt to improve the sample of cores with low-luminosity protostars and bridge the gap between the understanding of importance of magnetic fields in cores with VeLLOs and low-luminosity protostars. The results of this work and that of our previous work show that the outflow directions are aligned with envelope magnetic fields of the clouds.

  15. Strong IMF By-Related Plasma Convection in the Ionosphere and Cusp Field-Aligned Currents Under Northward IMF Conditions

    NASA Technical Reports Server (NTRS)

    Le, G.; Lu, G.; Strangeway, R. J.; Pfaff, R. F., Jr.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    We present in this paper an investigation of IMF-By related plasma convection and cusp field-aligned currents using FAST data and AMIE model during a prolonged interval with large positive IMF By and northward Bz conditions (By/Bz much greater than 1). Using the FAST single trajectory observations to validate the global convection patterns at key times and key locations, we have demonstrated that the AMIE procedure provides a reasonably good description of plasma circulations in the ionosphere during this interval. Our results show that the plasma convection in the ionosphere is consistent with the anti-parallel merging model. When the IMF has a strongly positive By component under northward conditions, we find that the global plasma convection forms two cells oriented nearly along the Sun-earth line in the ionosphere. In the northern hemisphere, the dayside cell has clockwise convection mainly circulating within the polar cap on open field lines. A second cell with counterclockwise convection is located in the nightside circulating across the polar cap boundary, The observed two-cell convection pattern appears to be driven by the reconnection along the anti-parallel merging lines poleward of the cusp extending toward the dusk side when IMF By/Bz much greater than 1. The magnetic tension force on the newly reconnected field lines drives the plasma to move from dusk to dawn in the polar cusp region near the polar cap boundary. The field-aligned currents in the cusp region flow downward into the ionosphere. The return field-aligned currents extend into the polar cap in the center of the dayside convection cell. The field-aligned currents are closed through the Peterson currents in the ionosphere, which flow poleward from the polar cap boundary along the electric field direction.

  16. Analysis of magnetic field levels at KSC

    NASA Technical Reports Server (NTRS)

    Christodoulou, Christos G.

    1994-01-01

    The scope of this work is to evaluate the magnetic field levels of distribution systems and other equipment at Kennedy Space Center (KSC). Magnetic fields levels in several operational areas and various facilities are investigated. Three dimensional mappings and contour are provided along with the measured data. Furthermore, the portion of magnetic fields generated by the 60 Hz fundamental frequency and the portion generated by harmonics are examined. Finally, possible mitigation techniques for attenuating fields from electric panels are discussed.

  17. Magnetic field gradiometer. Final technical report

    SciTech Connect

    Fraser-Smith, A.C.

    1983-02-01

    This report has two principal goals. First, to present a general review of magnetic field gradiometers and, second, to provide new data concerning these gradiometers, including new information about their response to magnetic dipole fields. A system of nomenclature is introduced that is consistent with the mathematical concept of gradient and which provides a basis for discussions of the different functions of magnetic field gradiometers and differential magnetometers. The distinction between component gradiometers and total field gradiometers is also stressed.

  18. Transient magnetic field and temperature modeling in large magnet applications

    SciTech Connect

    Gurol, H.; Hardy, G.E.; Peck, S.D.; Leung, E. . Space Systems Div.)

    1989-07-01

    This paper discusses a coupled magnetic/thermal model developed to study heat and magnetic field diffusion in conducting materials subject to time-varying external fields. There are numerous applications, both military and commercial. These include: energy storage devices, pulsed power transformers, and electromagnetic launchers. The time scales of interest may range from a magnetic field pulse of a microsecond in an electromagnetic launcher, to hundreds of seconds in an energy storage magnet. The problem can be dominated by either the magnetic field or heat diffusion, depending on the temperature and the material properties of the conductor. In general, heat diffuses much more rapidly in high electrical conductivity materials of cryogenic temperatures. The magnetic field takes longer to diffuse, since screening currents can be rapidly set up which shield the interior of the material from further magnetic field penetration. Conversely, in high resistivity materials, the magnetic field diffuses much more rapidly. A coupled two-dimensional thermal/magnetic model has been developed. The results of this model, showing the time and spatial variation of the magnetic field and temperature, are discussed for the projectile of an electromagnetic launcher.

  19. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  20. Application peculiarities of magnetic materials for protection from magnetic fields

    NASA Astrophysics Data System (ADS)

    Wai, P.; Dmitrenko, V.; Grabchikov, S.; Vlasik, K.; Novikov, A.; Petrenko, D.; Trukhanov, V.; Ulin, S.; Uteshev, Z.; Chernysheva, V.; Shustov, A.

    2016-02-01

    In different materials for magnetic shields, the maximum permeability is achieved for different values of the magnetic field. This determines the choice of material. So for protection from magnetic fields strength of 10 - 150 A/m it is advisable to apply the amorphous ribbon 84KXCP. For stronger fields (more than 400 A/m) it is recommended to use MFS based on Ni20Fe80. Use of these materials allows creating an effective shield working in a wide range of magnetic field strengths.

  1. Unique topological characterization of braided magnetic fields

    SciTech Connect

    Yeates, A. R.; Hornig, G.

    2013-01-15

    We introduce a topological flux function to quantify the topology of magnetic braids: non-zero, line-tied magnetic fields whose field lines all connect between two boundaries. This scalar function is an ideal invariant defined on a cross-section of the magnetic field, and measures the average poloidal magnetic flux around any given field line, or the average pairwise crossing number between a given field line and all others. Moreover, its integral over the cross-section yields the relative magnetic helicity. Using the fact that the flux function is also an action in the Hamiltonian formulation of the field line equations, we prove that it uniquely characterizes the field line mapping and hence the magnetic topology.

  2. Magnetic Field Synthesis for Microwave Magnetics.

    DTIC Science & Technology

    1982-04-01

    Ferromianetic Spheroids," J. Appl. Pl)v, . Vol. 29, (1958), p. 318. 12. II. Suhl, "The Nonlinear Behavior of Ferrites at Hiqh Microwave Sinnal Leveis," Proc...uniformly magnetized ferrite with the effects of exchange included. Using this method , a number of solutions (both exact and approximate) to the linearized...1969). 28. D. D. Stancil, "Magnetostatic Wave Precursors in Ferrite Thin Films Part I: Theory," Memorandum to Microwave and Quantum Magnetics Group

  3. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, Martin S.

    1994-01-01

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies.

  4. Bipolar pulse field for magnetic refrigeration

    DOEpatents

    Lubell, M.S.

    1994-10-25

    A magnetic refrigeration apparatus includes first and second steady state magnets, each having a field of substantially equal strength and opposite polarity, first and second bodies made of magnetocaloric material disposed respectively in the influence of the fields of the first and second steady state magnets, and a pulsed magnet, concentric with the first and second steady state magnets, and having a field which cycles between the fields of the first and second steady state magnets, thereby cyclically magnetizing and demagnetizing and thus heating and cooling the first and second bodies. Heat exchange apparatus of suitable design can be used to expose a working fluid to the first and second bodies of magnetocaloric material. A controller is provided to synchronize the flow of working fluid with the changing states of magnetization of the first and second bodies. 2 figs.

  5. Strong intrinsic mixing in vortex magnetic fields.

    PubMed

    Martin, James E; Shea-Rohwer, Lauren; Solis, Kyle J

    2009-07-01

    We report a method of magnetic mixing wherein a "vortex" magnetic field applied to a suspension of magnetic particles creates strong homogeneous mixing throughout the fluid volume. Experiments designed to elucidate the microscopic mechanism of mixing show that the torque is quadratic in the field, decreases with field frequency, and is optimized at a vortex field angle of approximately 55 degrees . Theory and simulations indicate that the field-induced formation of volatile particle chains is responsible for these phenomena. This technique has applications in microfluidic devices and is ideally suited to applications such as accelerating the binding of target biomolecules to biofunctionalized magnetic microbeads.

  6. A synoptic study of the nature and effects of field aligned low energy electron precipitation in the auroral regions. Ph.D. Thesis - Catholic Univ. of America

    NASA Technical Reports Server (NTRS)

    Berko, F. W.

    1972-01-01

    A synoptic study is presented of field-aligned precipitation events observed during a 16-month period, representing a full 4 pi precession of the satellite orbital plane in magnetic local time. The morphology of this type of precipitation, its nature, and relationships between this phenomenon and other geophysical events are discussed in the context of the 16-month data base.

  7. The effect of the solar magnetic field on dust-particle orbits in the F corona

    NASA Astrophysics Data System (ADS)

    Rusk, Edwin T.

    1988-10-01

    In order to determine whether the solar magnetic field can align circumsolar dust into rings such as those described by Mizutani et al. (1984), the solar magnetic field is divided into its various multipole components and theoretical expressions are derived to determine the effect of each of these components on the orbital elements of circumsolar dust. Simulations are then carried out to determine the effect of a dynamic solar magnetic field on such particles using actual values of the solar magnetic field supplied by Hoeksema (1984). These results are compared to observations of the F corona.

  8. Relating field-aligned beams to inverted-V structures and visible auroras

    NASA Astrophysics Data System (ADS)

    Lee, E.; Parks, G. K.; Fu, S. Y.; Fillingim, M.; Cui, Y. B.; Hong, J.; Dandouras, I.; Rème, H.

    2015-10-01

    The ion composition experiment on Cluster measures 3-D distributions in one spin of the spacecraft (4 s). These distributions often measure field-aligned ion beams (H+, He+ and O+) accelerated out of the ionosphere. The standard model of these beams relies on a quasi-static U-shaped potential model. The beams contain important information about the structure and distribution of the U-shaped potential structures. For example, a simple beam with a narrow velocity range tells us that the particles are accelerated going through a quasi-static U-shaped potential structure localized in space. A more complex beam with a large range of velocities varying smoothly (a few tens of kilometers per second to > 100 km s-1) tells us that the potential structure is extended and distributed along the magnetic field. The Cluster experiment has now revealed new features about the beams. Some beams are broken into many individual structures each with their own velocity. The U-shaped potential model would interpret the new features in terms of particles accelerated by narrow isolated potential structures maintained over an extended region of the magnetic field. Another interpretation is that these features arise as Cluster traverses toward the center of a small-scale U-shaped potential region detecting particles accelerated on different equipotential contours. The estimate of the distance of the adjacent contours is ~ 590-610 m at a Cluster height of ~ 3.5 RE. The observed dimensions map to ~ 295-305 m in the ionosphere, suggesting Cluster has measured the potential structure of an auroral arc.

  9. Geometry of low-frequency solar wind magnetic turbulence: Evidence for radially aligned Alfénic fluctuations

    NASA Astrophysics Data System (ADS)

    Saur, Joachim; Bieber, John W.

    1999-05-01

    We employ ``omnitape'' magnetic field data to determine the geometry of low-frequency (5- to 12-hour timescales) magnetic fluctuations in the solar wind. We consider three axisymmetric geometries, slab, two-dimensional (2-D), and isotropic, as well as binary combinations of them. Both the radial direction and the mean magnetic field direction are considered as candidate symmetry axes. We apply simultaneously three different tests for distinguishing these geometries. Our analysis decisively favors a binary geometry composed of 2-D turbulence symmetric with respect to the mean field direction and slab turbulence symmetric with respect to the radial direction. The presence of a slab component with radial symmetry provides observational support for a long-standing theoretical prediction of radially aligned Alfvénic fluctuations at 1 AU. We also find a variation of turbulence properties with solar wind speed, such that magnetic fluctuations in slow wind are more energetic and possess a greater proportion of slab modes than those in fast wind, and the ratio of longitudinal to transverse power in the 2-D component increases with wind speed.

  10. Megagauss Magnetic Field Sensors Based on Ag2Te

    SciTech Connect

    Stephen Mitchen; Allen L. Johnson; John W. Farley

    2006-11-30

    Pulsed power machines capable of producing tremendous energy face various diagnostic and characterizing challenges. Such devices, which may produce 10 - 100MAs, have traditionally relied on Faraday rotation and Rogowski coil technology for time-varying current measurements. Faraday rotation requires a host of costly optical components, including fibers, polarizers, retarders, lasers, and detectors, as well as setup, alignment, and time-consuming post-processing to unwrap the time-dependent current signal. Rogowski coils face potential problems such as physical distortion to the sensor itself due to the tremendous strain caused by magnetically induced pressures, which is proportional to the magnetic field squared (B2). Electrical breakdown in the intense field region is also a major concern. Other related challenges include, but are not limited to, bandwidth and inductance limitations and susceptibility issues related to electrical magnetic interference (EMI).

  11. Magnetic field waves at Uranus

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Goldstein, Melvyn L.; Lepping, Ronald P.; Mish, William H.; Wong, Hung K.

    1991-01-01

    The proposed research efforts funded by the UDAP grant to the BRI involve the study of magnetic field waves associated with the Uranian bow shock. This is a collaborative venture bringing together investigators at the BRI, Southwest Research Institute (SwRI), and Goddard Space Flight Center (GSFC). In addition, other collaborations have been formed with investigators granted UDAP funds for similar studies and with investigators affiliated with other Voyager experiments. These investigations and the corresponding collaborations are included in the report. The proposed effort as originally conceived included an examination of waves downstream from the shock within the magnetosheath. However, the observations of unexpected complexity and diversity within the upstream region have necessitated that we confine our efforts to those observations recorded upstream of the bow shock on the inbound and outbound legs of the encounter by the Voyager 2 spacecraft.

  12. Nonadiabatic molecular alignment of linear molecules probed by strong-field ionization yields of photoelectrons

    NASA Astrophysics Data System (ADS)

    Kaya, G.; Kaya, N.; Strohaber, J.; Hart, N. A.; Kolomenskii, A. A.; Schuessler, H. A.

    2016-12-01

    The dynamics of rotational wave packets of laser-aligned linear molecules were studied with femtosecond laser-driven strong-field ionization (SFI). The dynamics were observed as a function of the delay between a femtosecond probe pulse and a linearly polarized aligning pump pulse. The induced nonadiabatic molecular alignment was directly monitored by the total SFI yield. The measured revival signatures were compared to the calculated degree of molecular alignment taking into account the effects of electronic structure and symmetry of the molecules. By fitting the calculated alignment parameter to the measured experimental data, we also determined the molecular rotational constants of N2, CO, O2, and C2H2 gas molecules.

  13. Representation of magnetic fields in space

    NASA Technical Reports Server (NTRS)

    Stern, D. P.

    1975-01-01

    Several methods by which a magnetic field in space can be represented are reviewed with particular attention to problems of the observed geomagnetic field. Time dependence is assumed to be negligible, and five main classes of representation are described by vector potential, scalar potential, orthogonal vectors, Euler potentials, and expanded magnetic field.

  14. DC-based magnetic field controller

    DOEpatents

    Kotter, Dale K.; Rankin, Richard A.; Morgan, John P,.

    1994-01-01

    A magnetic field controller for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage.

  15. DC-based magnetic field controller

    DOEpatents

    Kotter, D.K.; Rankin, R.A.; Morgan, J.P.

    1994-05-31

    A magnetic field controller is described for laboratory devices and in particular to dc operated magnetic field controllers for mass spectrometers, comprising a dc power supply in combination with improvements to a Hall probe subsystem, display subsystem, preamplifier, field control subsystem, and an output stage. 1 fig.

  16. Low-degree Structure in Mercury's Planetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    Anderson, Brian J.; Johnson, Catherine L.; Korth, Haje; Winslow, Reka M.; Borovsky, Joseph E.; Purucker, Michael E.; Slavin, James A.; Solomon, Sean C.; Zuber, Maria T.; McNutt, Ralph L. Jr.

    2012-01-01

    The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, Beta (sub rho). The low-altitude crossings are offset 479 +/- 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8 deg.. The high-altitude crossings yield a northward offset of the magnetic equator of 486 +/- 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial Beta (sub rho) = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-R-cube (sub M) yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core.

  17. Static uniform magnetic fields and amoebae

    SciTech Connect

    Berk, S.G.; Srikanth, S.; Mahajan, S.M.; Ventrice, C.A.

    1997-03-01

    Three species of potentially pathogenic amoebae were exposed to 71 and 106.5 mT from constant homogeneous magnetic fields and examined for inhibition of population growth. The number of amoebae for three species was significantly less than controls after a 72 h exposure to the magnetic fields when the temperature was 20 C or above. Axenic cultures, i.e., cultures grown without bacteria, were significantly affected after only 24 h. In 20 of 21 tests using the three species, the magnetic field significantly inhibited the growth of amoebae. In one test in which the temperature was 20 C for 48 h, exposure to the magnetic field was not inhibitory. Final numbers of magnetic field-exposed amoebae ranged from 9 to 72% lower than the final numbers of unexposed controls, depending on the species. This research may lead to disinfection strategies utilizing magnetic fields for surfaces on which pathogenic amoebae may proliferate.

  18. The magnetic field and dust filaments in the Polaris Flare

    NASA Astrophysics Data System (ADS)

    Panopoulou, G. V.; Psaradaki, I.; Tassis, K.

    2016-10-01

    In diffuse molecular clouds, possible precursors of star-forming clouds, the effect of the magnetic field is unclear. In this work, we compare the orientations of filamentary structures in the Polaris Flare, as seen through dust emission by Herschel, to the plane-of-the-sky magnetic field orientation (Bpos) as revealed by stellar optical polarimetry with RoboPol. Dust structures in this translucent cloud show a strong preference for alignment with Bpos. Of the field orientations, 70 per cent are consistent with those of the filaments (within 30°). We explore the spatial variation of the relative orientations and find it to be uncorrelated with the dust emission intensity and correlated to the dispersion of polarization angles. Concentrating on the area around the highest column density filament, and on the region with the most uniform field, we infer the Bpos strength to be 24-120 μG. Assuming that the magnetic field can be decomposed into a turbulent and an ordered component, we find a turbulent-to-ordered ratio of 0.2-0.8, implying that the magnetic field is dynamically important, at least in these two areas. We discuss implications for three-dimensional field properties, as well as for the distance estimate of the cloud.

  19. Nonlinear energy dissipation of magnetic nanoparticles in oscillating magnetic fields

    NASA Astrophysics Data System (ADS)

    Soto-Aquino, D.; Rinaldi, C.

    2015-11-01

    The heating of magnetic nanoparticle suspensions subjected to alternating magnetic fields enables a variety of emerging applications such as magnetic fluid hyperthermia and triggered drug release. Rosensweig (2002) [25] obtained a model for the heat dissipation rate of a collection of non-interacting particles. However, the assumptions made in this analysis make it rigorously valid only in the limit of small applied magnetic field amplitude and frequency (i.e., values of the Langevin parameter that are much less than unity and frequencies below the inverse relaxation time). In this contribution we approach the problem from an alternative point of view by solving the phenomenological magnetization relaxation equation exactly for the case of arbitrary magnetic field amplitude and frequency and by solving a more accurate magnetization relaxation equation numerically. We also use rotational Brownian dynamics simulations of non-interacting magnetic nanoparticles subjected to an alternating magnetic field to estimate the rate of energy dissipation and compare the results of the phenomenological theories to the particle-scale simulations. The results are summarized in terms of a normalized energy dissipation rate and show that Rosensweig's expression provides an upper bound on the energy dissipation rate achieved at high field frequency and amplitude. Estimates of the predicted dependence of energy dissipation rate, quantified as specific absorption rate (SAR), on magnetic field amplitude and frequency, and particle core and hydrodynamic diameter, are also given.

  20. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    NASA Technical Reports Server (NTRS)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  1. Effects of Magnetic Field on Biological Cells and Applications

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Jen

    2001-03-01

    While there has been extensive research performed in the physics of magnetic fields and the physics and chemistry in life sciences, independent of each other, there has been a paucity of scientific research and development investigating the possible applications of magnetic fields in life sciences. The focus of this presentation is to present the stimulation mechanism by which magnetic fields affect (a) yeast cells (b) plant cells and (c) mammalian normal and cancer cells. Recently we have found that the Saccharomyces Cerevsa yeast growth increases by about 30to a 1 tesla field and the production of CO2 increases by about 30of yeast metabolism may be due to an increase in intercellular interaction and protein channel alignment, the introduction of an alteration in the DNA from the magnetic field exposure or a combination of these mechanisms. We also have found that the application of high magnetic fields (1 tesla and above) can have marked effects on the germination and growth of plants, especially corn, beans and peas. This finding has opened up the possibility of technology developments in botanical growth systems to accelerate seed germination and crop harvesting. Most recently we have investigated the application of high magnetic fields on leukemia, CaCoII and HEP G2 cancer cell lines. We found that when leukemia are exposed to a 12 tesla field for 2 hours has an increase in cell death by about 30that were not exposed to the magnetic field. Viability of CaCoII cells sandwiched between permanent magnets of maximum strength of 1.2 tesla was measured. A decrease in viable cells by 33unexposed cells. HSP 70 was measured for HEPG2 cells that were exposed to permanent magnetic field of 1.2 tesla for 40 minutes and for unexposed cells. It was found that the exposed cells produce 19 times more HSP70 compared to unexposed cells. Our results together with other investigators report suggest a strong evidence of a reduction in the cell growth rate for cancer cells when

  2. Electric-field and magnetic-field sensors

    NASA Astrophysics Data System (ADS)

    Wieckowski, T. W.

    1993-05-01

    Analysis of double-loaded loop antennas and their properties has led to the design of new measuring sensors which enable has led to determination of both electric field strength and magnetic field strength. Sensors of the design proposed are applicable to a quasipoint measurement providing independent determination of the electric and magnetic component of the field.

  3. Magnetically modified bioсells in constant magnetic field

    NASA Astrophysics Data System (ADS)

    Abramov, E. G.; Panina, L. K.; Kolikov, V. A.; Bogomolova, E. V.; Snetov, V. N.; Cherepkova, I. A.; Kiselev, A. A.

    2017-02-01

    Paper addresses the inverse problem in determining the area, where the external constant magnetic field captures the biological cells modified by the magnetic nanoparticles. Zero velocity isolines, in area where the modified cells are captured by the magnetic field were determined by numerical method for two locations of the magnet. The problem was solved taking into account the gravitational field, magnetic induction, density of medium, concentration and size of cells, and size and magnetization of nanoparticles attached to the cell. Increase in the number of the nanoparticles attached to the cell and decrease in the cell' size, enlarges the area, where the modified cells are captured and concentrated by the magnet. Solution is confirmed by the visible pattern formation of the modified cells Saccharomyces cerevisiae.

  4. Swarm: ESA's Magnetic Field Mission

    NASA Astrophysics Data System (ADS)

    Drinkwater, M. R.; Haagmans, R.; Floberghagen, R.; Plank, G.; Menard, Y.

    2011-12-01

    Swarm is the fifth Earth Explorer mission in ESA's Living Planet Programme, and is scheduled for launch in 2012. The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field and its temporal evolution using a constellation of 3 identical satellites. The Mission shall deliver data that allow access to new insights into the Earth system by improved scientific understanding of the Earth's interior and near-Earth electromagnetic environment. After launch and triple satellite release at an initial altitude of about 490 km, a pair of the satellites will fly side-by-side with slowly decaying altitude, while the third satellite will be lifted to 530 km to complete the Swarm constellation. High-precision and high-resolution measurements of the strength, direction and variation of the magnetic field, complemented by precise navigation, accelerometer and electric field measurements, will provide the observations required to separate and model various sources of the geomagnetic field and near-Earth current systems. The mission science goals are to provide a unique view into Earth core dynamics, mantle conductivity, crustal magnetisation, ionospheric and magnetospheric current systems and upper atmosphere dynamics - ranging from understanding the geodynamo to contributing to space weather. The scientific objectives and results from recent scientific studies will be presented. In addition the current status of the project, which is presently approaching the final stage of the development phase, will be addressed. A consortium of European scientific institutes is developing a distributed processing system to produce geophysical (Level 2) data products to the Swarm user community. The setup of Swarm ground segment and the contents of the data products will be addressed. More information on the Swarm mission can be found at the mission web site (see URL below).

  5. Field-Aligned Current at Plasma Sheet Boundary Layers During Storm Time: Cluster Observation

    NASA Astrophysics Data System (ADS)

    Shi, J.; Cheng, Z.; Zhang, T.; Dunlop, M.; Liu, Z.

    2007-05-01

    The magnetic field data from the FGM instruments on board the four Cluster spacecrafts were used to study Field Aligned Current (FAC) at the Plasma Sheet Boundary Layers (PSBLs) with the so called "curlometer technique". We analyzed the date obtained in 2001 in the magnetotail and only two cases were found in the storm time. One (August 17, 2001) occurred from sudden commencement to main phase, and the other (October 1, 2001) lay in the main phase and recovery phase. The relationship between the FAC density and the AE index was studied and the results are shown as follows. (1) In the sudden commencement and the main phase the density of the FAC increases obviously, in the recovery phase the density of the FAC increases slightly. (2) From the sudden commencement to the initial stage of the main phase the FAC increases with decreasing AE index and decreases with increasing AE index. From the late stage of the main phase to initial stage of the recovery phase, the FAC increases with increasing AE index and decreases with decreasing AE index. In the late stage of the recovery phase the disturbance of the FAC is not so violent, so that the FAC varying with the AE index is not very obvious.

  6. The particle carriers of field-aligned currents in the Earth's magnetotail during a substorm

    NASA Astrophysics Data System (ADS)

    Cheng, Z. W.; Zhang, J. C.; Shi, J. K.; Kistler, L. M.; Dunlop, M.; Dandouras, I.; Fazakerley, A.

    2016-04-01

    Although the particle carriers of field-aligned currents (FACs) in the Earth's magnetotail play an important role in the transfer of momentum and energy between the solar wind, magnetosphere, and ionosphere, the characteristics of the FAC carriers have been poorly understood. Taking advantage of multiinstrument magnetic field and plasma data collected by the four spacecraft of the Cluster constellation as they traversed the northern plasma sheet boundary layer in the magnetotail on 14 September 2004, we identified the species type and energy range of the FAC carriers for the first time. The results indicate that part of tailward FACs is carried by energetic keV ions, which are probably originated from the ionosphere through outflow, and they are not too small (~2 nA/m2) to be ignored. The earthward (tailward) FACs are mainly carried by the dominant tailward (earthward) motion of electrons, and higher-energy electrons (from ~0.5 to 26 keV) are the main carriers.

  7. Minimizing magnetic fields for precision experiments

    SciTech Connect

    Altarev, I.; Fierlinger, P.; Lins, T.; Marino, M. G.; Nießen, B.; Petzoldt, G.; Reisner, M.; Stuiber, S. Sturm, M.; Taggart Singh, J.; Taubenheim, B.; Rohrer, H. K.; Schläpfer, U.

    2015-06-21

    An increasing number of measurements in fundamental and applied physics rely on magnetically shielded environments with sub nano-Tesla residual magnetic fields. State of the art magnetically shielded rooms (MSRs) consist of up to seven layers of high permeability materials in combination with highly conductive shields. Proper magnetic equilibration is crucial to obtain such low magnetic fields with small gradients in any MSR. Here, we report on a scheme to magnetically equilibrate MSRs with a 10 times reduced duration of the magnetic equilibration sequence and a significantly lower magnetic field with improved homogeneity. For the search of the neutron's electric dipole moment, our finding corresponds to a 40% improvement of the statistical reach of the measurement. However, this versatile procedure can improve the performance of any MSR for any application.

  8. Optical Photometry of BY Cam Modeled Using a Multipolar Magnetic Field Structure

    NASA Astrophysics Data System (ADS)

    Morales, John; Mason, P. A.; Zhilkin, A.; Bisikalo, D. V.; Robinson, E. L.

    2014-01-01

    We present new high-speed broad-band optical photometry of the asynchronous polar (magnetic cataclysmic variable) BY Cam. Observations were obtained at the 2.1-m Otto Struve Telescope of McDonald observatory with 3s integration times. In an attempt to understand the complex changes in accretion flow geometry, we performed full 3D MHD simulations assuming a variety of white dwarf magnetic field structures including both aligned and non-aligned dipole plus quadrupole field components. We compare model predictions with photometry and various phases of the beat cycle and find that synthetic light curves derived from a multipolar field structure are consistent with the optical photometry.

  9. Free oscillations of magnetic fluid in strong magnetic field

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Ryapolov, P. A.; Platonov, V. B.; Kuz'ko, A. E.

    2016-05-01

    The paper presents the esults of measuring the elastic parameters of an oscillatory system (coefficient of pondermotive elasticity, damping factor, and oscillation frequency) whose viscous inertial element is represented by a magnetic fluid confined in a tube by magnetic levitation in a strong magnetic field. The role of elasticity is played by the pondermotive force acting on thin layers at the upper and lower ends of the fluid column. It is shown that, by measuring the elastic oscillation frequencies of the magnetic fluid column, it is possible to develop a fundamentally new absolute method for determining the saturation magnetization of a magnetic colloid.

  10. A numerical model of ionospheric convection derived from field-alignment currents and the corresponding conductivity

    NASA Astrophysics Data System (ADS)

    Blomberg, L. G.; Marklund, G. T.

    1991-08-01

    A numerical model for the calculation of ionospheric convection patterns from given distributions of field aligned current and ionospheric conductivity is described. The model includes a coupling between the conductivity and the field aligned current. The input contributions, the field aligned current and the conductivity, are parametrized. From the primary model output a number of other quantities can be computed: the potential in the inertial frame, the potential in the magnetospheric equatorial plane, the distribution of ionosheric current, and the Joule heating in the ionosphere. This model was used together with a technique to caculate the high latitude potential distribution prevailing during a particular event by combining information from global auroral images and local measurements of fields and particles. The model potential variation along the satellite orbit was found to be in agreement with that calculated from the measured electric field. The model was also used to study some fundamental properties of the electrodynamics of the high latitude ionosphere.

  11. Numerical analysis of magnetic field in superconducting magnetic energy storage

    SciTech Connect

    Kanamaru, Y. ); Amemiya, Y. )

    1991-09-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.

  12. Magnetic monopole field exposed by electrons

    NASA Astrophysics Data System (ADS)

    Béché, Armand; van Boxem, Ruben; van Tendeloo, Gustaaf; Verbeeck, Jo

    2014-01-01

    The experimental search for magnetic monopole particles has, so far, been in vain. Nevertheless, these elusive particles of magnetic charge have fuelled a rich field of theoretical study. Here, we created an approximation of a magnetic monopole in free space at the end of a long, nanoscopically thin magnetic needle. We experimentally demonstrate that the interaction of this approximate magnetic monopole field with a beam of electrons produces an electron vortex state, as theoretically predicted for a true magnetic monopole. This fundamental quantum mechanical scattering experiment is independent of the speed of the electrons and has consequences for all situations where electrons meet such monopole magnetic fields, as, for example, in solids. The set-up not only shows an attractive way to produce electron vortex states but also provides a unique insight into monopole fields and shows that electron vortices might well occur in unexplored solid-state physics situations.

  13. Magnetic vector field tag and seal

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R.

    2004-08-31

    One or more magnets are placed in a container (preferably on objects inside the container) and the magnetic field strength and vector direction are measured with a magnetometer from at least one location near the container to provide the container with a magnetic vector field tag and seal. The location(s) of the magnetometer relative to the container are also noted. If the position of any magnet inside the container changes, then the measured vector fields at the these locations also change, indicating that the tag has been removed, the seal has broken, and therefore that the container and objects inside may have been tampered with. A hollow wheel with magnets inside may also provide a similar magnetic vector field tag and seal. As the wheel turns, the magnets tumble randomly inside, removing the tag and breaking the seal.

  14. Bats Respond to Very Weak Magnetic Fields

    PubMed Central

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  15. Magnetic field spectrum at cosmological recombination revisited

    NASA Astrophysics Data System (ADS)

    Saga, Shohei; Ichiki, Kiyotomo; Takahashi, Keitaro; Sugiyama, Naoshi

    2015-06-01

    If vector type perturbations are present in the primordial plasma before recombination, the generation of magnetic fields is known to be inevitable through the Harrison mechanism. In the context of the standard cosmological perturbation theory, nonlinear couplings of first-order scalar perturbations create second-order vector perturbations, which generate magnetic fields. Here we reinvestigate the generation of magnetic fields at second-order in cosmological perturbations on the basis of our previous study, and extend it by newly taking into account the time evolution of purely second-order vector perturbations with a newly developed second-order Boltzmann code. We confirm that the amplitude of magnetic fields from the product-terms of the first-order scalar modes is consistent with the result in our previous study. However, we find, both numerically and analytically, that the magnetic fields from the purely second-order vector perturbations partially cancel out the magnetic fields from one of the product-terms of the first-order scalar modes, in the tight coupling regime in the radiation dominated era. Therefore, the amplitude of the magnetic fields on small scales, k ≳10 h Mpc-1 , is smaller than the previous estimates. The amplitude of the generated magnetic fields at cosmological recombination is about Brec=5.0 ×10-24 Gauss on k =5.0 ×10-1 h Mpc-1 . Finally, we discuss the reason for the discrepancies that exist in estimates of the amplitude of magnetic fields among other authors.

  16. Ferroelectric Cathodes in Transverse Magnetic Fields

    SciTech Connect

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-07-29

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.

  17. Simulation of Magnetic Field Guided Plasma Expansion

    NASA Astrophysics Data System (ADS)

    Ebersohn, Frans; Sheehan, J. P.; Gallimore, Alec; Shebalin, John

    2015-09-01

    Magnetic field guided expansion of a radio-frequency plasma was simulated with a quasi-one-dimensional particle-in-cell code. Two-dimensional effects were included in a one-dimensional particle-in-cell code by varying the cross-sectional area of the one dimensional domain and including forces due to the magnetic field. Acceleration of electrons by the magnetic field forces leads to the formation of potential structures which then accelerate the ions into a beam. Density changes due to the plasma expansion only weakly affect the ion acceleration. Rapidly diverging magnetic fields lead to more rapid acceleration and the electrons cool as they expand.

  18. Flow Transitions in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    1996-01-01

    Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

  19. Anisotropic magnetic and superconducting properties of aligned weak-ferromagnetic superconductor RuSr2GdCu2O8

    NASA Astrophysics Data System (ADS)

    Ku, H. C.; Chang, B. C.; Hsu, C. H.; Chen, Y. F.; Tai, M. F.

    2009-03-01

    The RuSr2GdCu2O8 Ru-1212 cuprate is a weak-ferromagnetic superconductor with a magnetic ordering of Ru moments at TN(Ru) = 131 K, a superconducting transition in the CuO2 layers at Tc = 56 K, and a low temperature Gd antiferromagnetic ordering at TN(Gd) = 2.5 K. The c-axis aligned powder can be achieved at room temperature using the field-rotation method where the tetragonal c-axis is perpendicular to the aligned magnetic field Ba and along the rotation axis. The anisotropic temperature dependence of magnetic susceptibility for the aligned powder down to 2 K indicates weak anisotropy with Xc > Xab at room temperature due to strong anisotropic Gd contribution and Xc < Xab below 185 K where strong Ru anisotropic short-range exchange interaction overtakes the Gd contribution. Anisotropic diamagnetic superconducting intragrain shielding signal of aligned microcrystalline powder-in-epoxy below vortex lattice melting temperature at 39 K in 1-G field is much weaker than the intergrain polycrystalline bulk sample signal due to the small grain size (d ~ 1-10 μm), long penetration depth (λab ~ 0.6 μm, λc ~ 2 μm) and the two-dimensional (2D) character of CuO2 layers.

  20. Spatial relationships between region 2 field-aligned currents and electron and ion precipitation in the evening sector

    NASA Technical Reports Server (NTRS)

    Fujii, R.; Hoffman, R. A.; Sugiura, M.

    1990-01-01

    The equatorward cutoff of ion and electron precipitation in relation to the evening region 2 field-aligned current during isolated substorms has been investigated using the magnetic field and plasma data obtained from the Dynamics Explorer 2 satellite. The equatorward boundaries of the region 2 currents relative to those of central plasma sheet (CPS) electron precipitation are determined predominantly by magnetic local time and subsequently change with substorm phases. With approaching midnight, the equatorward boundary of CPS electron precipitation extends toward and eventually equatorward of that of the region 2 current. On the other hand, the equatorward boundary of the region 2 current coincides well with that of 10-20 keV ion precipitation during the whole course of substorms. It is proposed that these ions originate in the so-called Alfven layer and that the location of this inner boundary determines the lower latitude boundary of the region 2 current.

  1. Reducing Field Distortion in Magnetic Resonance Imaging

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  2. Magnetic field evolution in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.

    2011-09-01

    Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to

  3. Alignment and magnet error tolerances for the LCLS x-ray FEL

    SciTech Connect

    Nuhn, H.D.; Scharlemann, E.T.; Schlueter, R.

    1995-05-01

    We have examined the influence of misalignments and magnet errors on the predicted performance of the Linac Coherent Light Source (LCLS). Due to the extremely large number of wiggler periods (> 10{sup 3}) and the small optical mode size (20 {mu}m), alignment and magnet tolerances will be quite demanding. These demands may increase if the wiggler is split into separate sections by the possible inclusion of diagnostic stations, dispersive sections, etc. We have attempted to quantify such tolerances using the numerical simulation code FRED-3D.

  4. Magnetic field strength in solar coronal waveguides

    NASA Astrophysics Data System (ADS)

    Arregui, I.; Asensio Ramos, A.

    2017-03-01

    We applied Bayesian techniques to the problem of inferring the magnetic field strength in transversely oscillating solar coronal loops from observed periods and damping times. This was done by computing the marginal posterior probability density for parameters such as the waveguide density, the density contrast, the transverse inhomogeneity length scale, and the magnetic field strength under the assumption that the observed waves can be modelled as standing or propagating magnetohydrodynamic (MHD) kink modes of magnetic flux tubes. Our results indicate that the magnetic field strength can be inferred, even if the densities inside and outside the structure are largely unknown. When information on plasma density is available, the method enables to self-consistently include this knowledge to further constrain the inferred magnetic field strength. The inclusion of the observed oscillation damping enables to obtain information on the transverse density structuring and considerably alters the obtained posterior for the magnetic field strength.

  5. KINETIC ALFVEN WAVE INSTABILITY DRIVEN BY FIELD-ALIGNED CURRENTS IN SOLAR CORONAL LOOPS

    SciTech Connect

    Chen, L.; Wu, D. J. E-mail: djwu@pmo.ac.cn

    2012-08-01

    Magneto-plasma loops, which trace closed solar magnetic field lines, are the primary structural elements of the solar corona. Kinetic Alfven wave (KAW) can play an important role in inhomogeneous heating of these magneto-plasma structures in the corona. By the use of a low-frequency kinetic dispersion equation, which is presented in this paper and is valid in a finite-{beta} plasma with Q < {beta} < 1 plasma (where {beta} is the kinetic to magnetic pressure ratio and Q = m{sub e} /m{sub i} is the mass ratio of electrons to ions), KAW instability driven by a field-aligned current in the current-carrying loops in the solar corona is investigated. The results show that the KAW instability can occur in wave number regimes 0 < k{sub z} < k{sup c}{sub z} and 0 < k < k{sup c} , and that the critical wave numbers k{sup c}{sub z} and k{sup c} and the growth rate both considerably increase as the drift velocity V{sub D} of the current-carrying electrons increases in the loops. In particular, for typical parameters of the current-carrying loops in the solar corona this instability mechanism results in a high growth rate of KAWs, {omega}{sub i} {approx} 0.01-0.1{omega}{sub ci} {approx} 10{sup 3}-10{sup 4} s{sup -1}. The results are of importance in understanding the physics of the electric current dissipation and plasma heating of the current-carrying loops in the solar corona.

  6. Reducing the Viscosity of Blood by Pulsed Magnetic Field

    NASA Astrophysics Data System (ADS)

    Tao, R.; Huang, K.

    2010-03-01

    Blood viscosity is a major player in heart disease. When blood is viscous, in addition to a high blood pressure required for the blood circulation, blood vessel walls are also easy to be damaged. While this issue is very important, currently the only method to reduce the blood viscosity is to take medicine, such as aspirin. Here we report our new finding that the blood viscosity can be reduced by pulsed magnetic field. Blood is a suspension of red blood cells (erythrocytes), white blood cells (leukocytes) and platelets in plasma, a complex solution of gases, salts, proteins, carbohydrates, and lipids. The base liquid, plasma, has low viscosity. The effective viscosity of whole blood increases mainly due to the red blood cells, which have a volume fraction about 40% or above. Red blood cells contain iron and are sensitive to magnetic field. Therefore, when we apply a strong magnetic field, the red cells make their diameters align in the field direction to form short chains. This change in rheology reduces the effective viscosity as high as 20-30%. While this reduction is not permanent, it lasts for several hours and repeatable. The reduction rate can be controlled by selecting suitable magnetic field and duration of field application to make blood viscosity within the normal range.

  7. Field-aligned currents in Saturn's northern nightside magnetosphere: Evidence for interhemispheric current flow associated with planetary period oscillations

    NASA Astrophysics Data System (ADS)

    Hunt, G. J.; Cowley, S. W. H.; Provan, G.; Bunce, E. J.; Alexeev, I. I.; Belenkaya, E. S.; Kalegaev, V. V.; Dougherty, M. K.; Coates, A. J.

    2015-09-01

    We investigate the magnetic perturbations associated with field-aligned currents observed on 34 Cassini passes over the premidnight northern auroral region during 2008. These are found to be significantly modulated not only by the northern planetary-period oscillation (PPO) system, similar to the southern currents by the southern PPO system found previously, but also by the southern PPO system as well, thus providing the first clear evidence of PPO-related interhemispheric current flow. The principal field-aligned currents of the two PPO systems are found to be co-located in northern ionospheric colatitude, together with the currents of the PPO-independent (subcorotation) system, located between the vicinity of the open-closed field boundary and field lines mapping to ~9 Saturn radius (Rs) in the equatorial plane. All three systems are of comparable magnitude, ~3 MA in each PPO half-cycle. Smaller PPO-related field-aligned currents of opposite polarity also flow in the interior region, mapping between ~6 and ~9 Rs in the equatorial plane, carrying a current of ~ ±2 MA per half-cycle, which significantly reduce the oscillation amplitudes in the interior region. Within this interior region the amplitudes of the northern and southern oscillations are found to fall continuously with distance along the field lines from the corresponding hemisphere, thus showing the presence of cross-field currents, with the southern oscillations being dominant in the south, and modestly lower in amplitude than the northern oscillations in the north. As in previous studies, no oscillations related to the opposite hemisphere are found on open field lines in either hemisphere.

  8. Impact of a high magnetic field on the orientation of gravitactic unicellular organisms--a critical consideration about the application of magnetic fields to mimic functional weightlessness.

    PubMed

    Hemmersbach, Ruth; Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C M; Albers, Peter W; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-03-01

    The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity.

  9. Impact of a High Magnetic Field on the Orientation of Gravitactic Unicellular Organisms—A Critical Consideration about the Application of Magnetic Fields to Mimic Functional Weightlessness

    PubMed Central

    Simon, Anja; Waßer, Kai; Hauslage, Jens; Christianen, Peter C.M.; Albers, Peter W.; Lebert, Michael; Richter, Peter; Alt, Wolfgang; Anken, Ralf

    2014-01-01

    Abstract The gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity. Exposing Astasia longa, a flagellate that is closely related to Euglena but lacks chloroplasts and the photoreceptor, as well as the chloroplast-free mutant E. gracilis 1F, to a high magnetic field revealed no reorientation to the perpendicular direction as in the case of wild-type E. gracilis, indicating the existence of an anisotropic structure (chloroplasts) that determines the direction of passive orientation. Immobilized Euglena and Paramecium cells could not be levitated even in the highest available magnetic field gradient as sedimentation persisted with little impact of the field on the sedimentation velocities. We conclude that magnetic fields are not suited as a microgravity simulation for gravitactic unicellular organisms due to the strong effect of the magnetic field itself, which masks the effects known from experiments in real microgravity. Key Words: Levitation—Microgravity—Gravitaxis—Gravikinesis—Gravity. Astrobiology 14, 205–215. PMID:24621307

  10. Magnetic field decay in model SSC dipoles

    SciTech Connect

    Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.

    1988-08-01

    We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs.

  11. Freestanding vertically aligned arrays of individual carbon nanotubes on metallic substrates for field emission cathodes

    NASA Astrophysics Data System (ADS)

    Mauger, M.; Binh, Vu Thien; Levesque, A.; Guillot, D.

    2004-07-01

    Direct growth of individual and vertically aligned carbon nanotubes (CNTs) onto a metallic tip apex using a two-chamber radio-frequency plasma-enhanced chemical vapor deposition is reported. Individual Ni nanocatalysts, obtained by a sol-gel combustion technique, were dots for the nucleation of individual CNTs that were freestanding, clean, and vertically aligned by the presence of a controlled applied field. The arrays of CNTs obtained, having a low-density spatial distribution to avoid mutual electrostatic field screening, gave uniform stable overall field emission patterns after a conditioning process. Effective total current densities up to 1A /cm2 can be extracted.

  12. Supersolid phases in the magnetic fields

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Guo; Yang, Shi-Jie

    2017-02-01

    We study the ground state phases of the ultracold atomic condensates loaded in a two-dimensional optical lattice with the magnetic fields. Apart from uniform superfluid (SF) phase, four types of supersolid (SS) phases in the presence of the uniform magnetic fluxes and two types of SS phases in the presence of the staggered magnetic fluxes are found. For the system without magnetic flux, except for a certain unit phase factor ϕ x (y) = π, the magnetic field has no effect on the system.

  13. Magnetic Field Investigations During ROSETTA's Steins Flyby

    NASA Astrophysics Data System (ADS)

    Glassmeier, K.; Auster, H.; Richter, I.; Motschmann, U.; RPC/ROMAP Teams

    2009-05-01

    During the recent Steins flyby of the ROSETTA spacecraft magnetic field measurements have been made with both, the RPC orbiter magnetometer and the ROMAP lander magnetometer. These combined magnetic field measurements allow a detailed examination of any magnetic signatures caused either directly by the asteroid or indirectly by Steins different modes of interaction with the solar wind. Comparing our measurements with simulation results show that Steins does not possess a significant remanent magnetization. The magnetization is estimated at less than 1 mAm2/kg. This is significantly different from results at Braille and Gaspra.

  14. The Evolution of the Earth's Magnetic Field.

    ERIC Educational Resources Information Center

    Bloxham, Jeremy; Gubbins, David

    1989-01-01

    Describes the change of earth's magnetic field at the boundary between the outer core and the mantle. Measurement techniques used during the last 300 years are considered. Discusses the theories and research for explaining the field change. (YP)

  15. Assembly of magnetic spheres in strong homogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Messina, René; Stanković, Igor

    2017-01-01

    The assembly in two dimensions of spherical magnets in strong magnetic field is addressed theoretically. It is shown that the attraction and assembly of parallel magnetic chains is the result of a delicate interplay of dipole-dipole interactions and short ranged excluded volume correlations. Minimal energy structures are obtained by numerical optimization procedure as well as analytical considerations. For a small number of constitutive magnets Ntot ≤ 26, a straight chain is found to be the ground state. In the regime of larger Ntot ≥ 27, the magnets form two touching chains with equally long tails at both ends. We succeed to identify the transition from two to three touching chains at Ntot = 129. Overall, this study sheds light on the mechanisms of the recently experimentally observed ribbon formation of superparamagnetic colloids via lateral aggregation of magnetic chains in magnetic field (Darras et al., 2016).

  16. Magnetization of disclinated graphene in nonuniform magnetic field

    NASA Astrophysics Data System (ADS)

    Roshanzamir-Nikou, M.; Goudarzi, H.

    2017-02-01

    Two-dimensional disclinated atomic graphene layer in curved space-time is exactly discussed, and the explicit dependence of Landau levels on the topological defect and external magnetic field are obtained in the presence of nonuniform magnetic field. It is worth mentioning that the presence of topological defect reduces the degeneracy of energy levels. The persistent current, magnetization, susceptibility and the magnetoresistance of structure are investigated. It can be shown that the curvature of the conical surface affects the pattern of oscillations of persistent current and, of course, corresponding magnetoresistance. The behavior of the above physical quantities as a function of magnetic flux is explicitly found for various defects. We observe that increasing magnetic field leads to a aperiodic oscillation. The large Aharonov-Bohm flux gives rise to vanish the magnetization oscillations.

  17. Control of magnetism by electric fields.

    PubMed

    Matsukura, Fumihiro; Tokura, Yoshinori; Ohno, Hideo

    2015-03-01

    The electrical manipulation of magnetism and magnetic properties has been achieved across a number of different material systems. For example, applying an electric field to a ferromagnetic material through an insulator alters its charge-carrier population. In the case of thin films of ferromagnetic semiconductors, this change in carrier density in turn affects the magnetic exchange interaction and magnetic anisotropy; in ferromagnetic metals, it instead changes the Fermi level position at the interface that governs the magnetic anisotropy of the metal. In multiferroics, an applied electric field couples with the magnetization through electrical polarization. This Review summarizes the experimental progress made in the electrical manipulation of magnetization in such materials, discusses our current understanding of the mechanisms, and finally presents the future prospects of the field.

  18. Re-grown aligned carbon nanotubes with improved field emission.

    PubMed

    Lim, Xiaodai; Zhu, Yanwu; Varghese, Binni; Gao, Xingyu; Wee, Andrew Thye Shen; Sow, Chorng-Haur

    2012-01-01

    In this work, a simple technique to improve the field emission property of multi-walled carbon nanotubes is presented. Re-grown multi-walled carbon nanotubes are grown on the same substrates after the as-grown multi-walled carbon nanotubes are transferred to other substrates using polydimethylsiloxane as intermediation. For the duration of the synthesis of the re-grown multi-walled carbon nanotubes, similar synthesis parameters used in growing the as-grown multi-walled carbon nanotubes are utilized. As a form of possible application, field emission studies show -2.6 times improvement in field enhancement factor and more uniform emission for the re-grown multi-walled carbon nanotubes. In addition, the turn-on field is reduced from 2.85 V/microm to 1.40 V/microm. Such significant improvements are attributed to new emission sites comprising of sharp carbonaceous impurities encompassing both tip and upper portion of the multi-walled carbon nanotubes. As such, this technique presents a viable route for the production of multi-walled carbon nanotubes with better field emission quality.

  19. Reduction of the field-aligned potential drop in the polar cap during large geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Kitamura, N.; Seki, K.; Nishimura, Y.; Hori, T.; Terada, N.; Ono, T.; Strangeway, R. J.

    2013-12-01

    We have studied photoelectron flows and the inferred field-aligned potential drop in the polar cap during 5 large geomagnetic storms that occurred in the periods when the photoelectron observations in the polar cap were available near the apogee of the FAST satellite (~4000 km) at solar maximum, and the footprint of the satellite paths in the polar cap was under sunlit conditions most of the time. In contrast to the ~20 V potential drop during geomagnetically quiet periods at solar maximum identified by Kitamura et al. [JGR, 2012], the field-aligned potential drop frequently became smaller than ~5 V during the main and early recovery phases of the large geomagnetic storms. Because the potential acts to inhibit photoelectron escape, this result indicates that the corresponding acceleration of ions by the field-aligned potential drop in the polar cap and the lobe region is smaller during the main and early recovery phases of large geomagnetic storms compared to during geomagnetically quiet periods. Under small field-aligned current conditions, the number flux of outflowing ions should be nearly equal to the net escaping electron number flux. Since ions with large flux originating from the cusp/cleft ionosphere convect into the polar cap during geomagnetic storms [e.g., Kitamura et al., JGR, 2010], the net escaping electron number flux should increase to balance the enhanced ion outflows. The magnitude of the field-aligned potential drop would be reduced to let a larger fraction of photoelectrons escape.

  20. Three-dimensional MHD simulation of the interaction of the solar wind with the earth's magnetosphere: The generation of field-aligned currents

    SciTech Connect

    Ogino, T.

    1986-06-01

    A global computer simulation of the interaction of the solar wind with the earth's magnetosphere was executed by using a three-dimensional magnetohydrodynamic model. As a result, we were able to reproduce quasi-steady-state magnetospheric configurations and a Birkeland field-aligned current system which depend on the polarity of the z-italic component of the interplanetary magnetic field (IMF). Twin convection cells and a dawn to dusk electric potential of 30--100 kV appeared at the equator in the magnetosphere. Four types of field-aligned currents were observed. Region 1 and 2 field-aligned currents generated for all IMF conditions were 0.6--1.0 x 10/sup 6/ A and 0.15--0.61 x 10/sup 6/ A, respectively, in the total current. Region 1 currents at high latitudes are generated from the field-aligned vorticity at the flanks through a viscous interaction and are strengthened by a twisting of open magnetic field lines in the tail region for southward IMF. On the other hand, the low-latitude region 2 currents probably are generated mainly from the inner pressure gradient of the plasma sheet. The region 1 current obtained from the simulation was in good agreement with an estimate from our theoretical analysis of the localized Alfve-acute-accentn mode. The other two types of field-aligned currents are the dayside magnetopause currents in the dayside cusp region, which increase for northward IMF, and the dayside cusp currents for southward IMF. The cusp currents are associated with a twisting of open magnetic field lines in the magnetopause region.

  1. Magnetic field evolution of accreting neutron stars

    NASA Astrophysics Data System (ADS)

    Istomin, Y. N.; Semerikov, I. A.

    2016-01-01

    The flow of a matter, accreting on to a magnetized neutron star, is accompanied by an electric current. The closing of the electric current occurs in the crust of a neutron stars in the polar region across the magnetic field. But the conductivity of the crust along the magnetic field greatly exceeds the conductivity across the field, so the current penetrates deep into the crust down up to the superconducting core. The magnetic field, generated by the accretion current, increases greatly with the depth of penetration due to the Hall conductivity of the crust is also much larger than the transverse conductivity. As a result, the current begins to flow mainly in the toroidal direction, creating a strong longitudinal magnetic field, far exceeding an initial dipole field. This field exists only in the narrow polar tube of r width, narrowing with the depth, i.e. with increasing of the crust density ρ, r ∝ ρ-1/4. Accordingly, the magnetic field B in the tube increases with the depth, B∝ρ1/2, and reaches the value of about 1017 Gauss in the core. It destroys superconducting vortices in the core of a star in the narrow region of the size of the order of 10 cm. Because of generated density gradient of vortices, they constantly flow into this dead zone and the number of vortices decreases, the magnetic field of a star decreases as well. The attenuation of the magnetic field is exponential, B = B0(1 + t/τ)-1. The characteristic time of decreasing of the magnetic field τ is equal to τ ≃ 103 yr. Thus, the magnetic field of accreted neutron stars decreases to values of 108-109 Gauss during 107-106 yr.

  2. A magnetically actuated cellular strain assessment tool for quantitative analysis of strain induced cellular reorientation and actin alignment

    NASA Astrophysics Data System (ADS)

    Khademolhosseini, F.; Liu, C.-C.; Lim, C. J.; Chiao, M.

    2016-08-01

    Commercially available cell strain tools, such as pneumatically actuated elastomer substrates, require special culture plates, pumps, and incubator setups. In this work, we present a magnetically actuated cellular strain assessment tool (MACSAT) that can be implemented using off-the-shelf components and conventional incubators. We determine the strain field on the MACSAT elastomer substrate using numerical models and experimental measurements and show that a specific region of the elastomer substrate undergoes a quasi-uniaxial 2D stretch, and that cells confined to this region of the MACSAT elastomer substrate undergo tensile, compressive, or zero axial strain depending on their angle of orientation. Using the MACSAT to apply cyclic strain on endothelial cells, we demonstrate that actin filaments within the cells reorient away from the stretching direction, towards the directions of minimum axial strain. We show that the final actin orientation angles in strained cells are spread over a region of compressive axial strain, confirming previous findings on the existence of a varied pre-tension in the actin filaments of the cytoskeleton. We also demonstrate that strained cells exhibit distinctly different values of actin alignment coherency compared to unstrained cells and therefore propose that this parameter, i.e., the coherency of actin alignment, can be used as a new readout to determine the occurrence/extent of actin alignment in cell strain experiments. The tools and methods demonstrated in this study are simple and accessible and can be easily replicated by other researchers to study the strain response of other adherent cells.

  3. Equilibrium configurations of Vlasov plasmas carrying a current component along an external magnetic field.

    NASA Technical Reports Server (NTRS)

    Kan, J. R.

    1972-01-01

    A model of equilibrium configurations of Vlasov plasmas is considered which represents a combination of the models of Harris (1962) and Nicholson (1963). These plasma configurations carry a current component along an external magnetic field. The considered slab model contains a diamagnetic current and a field-aligned current for an arbitrary ratio of particle pressure to magnetic pressure of the applied constant field. For a fixed pressure ratio and field-aligned current, the model admits a family of equilibrium solutions in which the diamagnetic currents range from zero to a maximum value. The amount of diamagnetic current flowing in a machine depends on the width of the machine, the field-aligned current and other plasma parameters.

  4. Single-layer high field dipole magnets

    SciTech Connect

    Vadim V. Kashikhin and Alexander V. Zlobin

    2001-07-30

    Fermilab is developing high field dipole magnets for post-LHC hadron colliders. Several designs with a nominal field of 10-12 T, coil bore size of 40-50 mm based on both shell-type and block-type coil geometry are currently under consideration. This paper presents a new approach to magnet design, based on simple and robust single-layer coils optimized for the maximum field, good field quality and minimum number of turns.

  5. Two-axis magnetic field sensor

    NASA Technical Reports Server (NTRS)

    Jander, Albrecht (Inventor); Nordman, Catherine A. (Inventor); Qian, Zhenghong (Inventor); Smith, Carl H. (Inventor)

    2006-01-01

    A ferromagnetic thin-film based magnetic field sensor with first and second sensitive direction sensing structures each having a nonmagnetic intermediate layer with two major surfaces on opposite sides thereof having a magnetization reference layer on one and an anisotropic ferromagnetic material sensing layer on the other having a length in a selected length direction and a smaller width perpendicular thereto and parallel to the relatively fixed magnetization direction. The relatively fixed magnetization direction of said magnetization reference layer in each is oriented in substantially parallel to the substrate but substantially perpendicular to that of the other. An annealing process is used to form the desired magnetization directions.

  6. Beginning stages of local magnetic field formation

    NASA Astrophysics Data System (ADS)

    Bumba, V.

    Based on a study of the initial stages of local magnetic field formation, the appearance of a new magnetic flux in the photosphere is studied. This magnetic flux is found to occur both under the influence of different modes of convective motion as well as under the action of Paleomagnetic fields. Waldmeier's Heliographic Maps of the Photosphere and Mt. Wilson Observatory daily magnetic maps were used in the analysis. Observed regularities could not be explained by a model of magnetic flux tubes emerging on the photospheric surface. This model can not account for the practically simultaneous development of separate active regions, belonging to different solar hemispheres and different cycles of solar activity in one, relatively narrow, 'unipolar' sector of the background field. It is also difficult to explain the different roles and velocities of negative and positive polarities during the formation of new magnetic fields. The importance of velocity measurements and maps for solving the observed phenomenon is stressed.

  7. Characterization and performance of a field aligned ion cyclotron range of frequency antenna in Alcator C-Mod

    SciTech Connect

    Wukitch, S. J.; Garrett, M. L.; Ochoukov, R.; Terry, J. L.; Hubbard, A.; Labombard, B.; Lau, C.; Lin, Y.; Lipschultz, B.; Miller, D.; Reinke, M. L.; Whyte, D.; Collaboration: Alcator C-Mod Team

    2013-05-15

    Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are being considered. Impurity contamination linked to ICRF antenna operation remains a major challenge particularly for devices with high Z metallic PFCs. Here, we report on an experimental investigation to test whether a field aligned (FA) antenna can reduce impurity contamination and impurity sources. We compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E|| (electric field along a magnetic field line) via symmetry. A finite element method RF antenna model coupled to a cold plasma model verifies that the integrated E|| should be reduced for all antenna phases. Monopole phasing in particular is expected to have the lowest integrated E||. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20%–30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. However, inconsistent with expectations, we observe RF induced plasma potentials (via gas-puff imaging and emissive probes to be nearly identical for FA and TA antennas when operated in dipole phasing). Moreover, the highest levels of RF-induced plasma potentials are observed using monopole phasing with the FA antenna. Thus, while impurity contamination and sources are indeed

  8. Characterization and performance of a field aligned ion cyclotron range of frequency antenna in Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Wukitch, S. J.; Garrett, M. L.; Ochoukov, R.; Terry, J. L.; Hubbard, A.; Labombard, B.; Lau, C.; Lin, Y.; Lipschultz, B.; Miller, D.; Reinke, M. L.; Whyte, D.; Alcator C-Mod Team

    2013-05-01

    Ion cyclotron range of frequency (ICRF) heating is expected to provide auxiliary heating for ITER and future fusion reactors where high Z metallic plasma facing components (PFCs) are being considered. Impurity contamination linked to ICRF antenna operation remains a major challenge particularly for devices with high Z metallic PFCs. Here, we report on an experimental investigation to test whether a field aligned (FA) antenna can reduce impurity contamination and impurity sources. We compare the modification of the scrape of layer (SOL) plasma potential of the FA antenna to a conventional, toroidally aligned (TA) antenna, in order to explore the underlying physics governing impurity contamination linked to ICRF heating. The FA antenna is a 4-strap ICRF antenna where the current straps and antenna enclosure sides are perpendicular to the total magnetic field while the Faraday screen rods are parallel to the total magnetic field. In principle, alignment with respect to the total magnetic field minimizes integrated E|| (electric field along a magnetic field line) via symmetry. A finite element method RF antenna model coupled to a cold plasma model verifies that the integrated E|| should be reduced for all antenna phases. Monopole phasing in particular is expected to have the lowest integrated E||. Consistent with expectations, we observed that the impurity contamination and impurity source at the FA antenna are reduced compared to the TA antenna. In both L and H-mode discharges, the radiated power is 20%-30% lower for a FA-antenna heated discharge than a discharge heated with the TA-antennas. However, inconsistent with expectations, we observe RF induced plasma potentials (via gas-puff imaging and emissive probes to be nearly identical for FA and TA antennas when operated in dipole phasing). Moreover, the highest levels of RF-induced plasma potentials are observed using monopole phasing with the FA antenna. Thus, while impurity contamination and sources are indeed

  9. Disruption of coronal magnetic field arcades

    NASA Technical Reports Server (NTRS)

    Mikic, Zoran; Linker, Jon A.

    1994-01-01

    The ideal and resistive properties of isolated large-scale coronal magnetic arcades are studied using axisymmetric solutions of the time-dependent magnetohydrodynamic (MHD) equations in spherical geometry. We examine how flares and coronal mass ejections may be initiated by sudden disruptions of the magnetic field. The evolution of coronal arcades in response to applied shearing photospheric flows indicates that disruptive behavior can occur beyond a critical shear. The disruption can be traced to ideal MHD magnetic nonequilibrium. The magnetic field expands outward in a process that opens the field lines and produces a tangential discontinuity in the magnetic field. In the presence of plasma resistivity, the resulting current sheet is the site of rapid reconnection, leading to an impulsive release of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these results to previous studies of force-free fields and to the properties of the open-field configuration. We show that the field lines in an arcade are forced open when the magnetic energy approaches (but is still below) the open-field energy, creating a partially open field in which most of the field lines extend away from the solar surface. Preliminary application of this model to helmet streamers indicates that it is relevant to the initiation of coronal mass ejections.

  10. Fluctuating magnetic field induced resonant activation

    SciTech Connect

    Mondal, Shrabani; Das, Sudip; Baura, Alendu; Bag, Bidhan Chandra

    2014-12-14

    In this paper, we have studied the properties of a Brownian particle at stationary state in the presence of a fluctuating magnetic field. Time dependence of the field makes the system thermodynamically open. As a signature of that the steady state distribution function becomes function of damping strength, intensity of fluctuations and constant parts of the applied magnetic field. It also depends on the correlation time of the fluctuating magnetic field. Our another observation is that the random magnetic field can induce the resonant activation phenomenon. Here correlation time is increased under the fixed variance of the fluctuating field. But if the correlation time (τ) increases under the fixed field strength then the mean first passage time rapidly grows at low τ and it almost converges at other limit. This is sharp contrast to the usual colored noise driven open system case where the mean first passage time diverges exponentially. We have also observed that a giant enhancement of barrier crossing rate occurs particularly at large strength of constant parts of the applied magnetic field even for very weak fluctuating magnetic field. Finally, break down of the Arrhenius result and disappearance of the Kramers’ turn over phenomenon may occur in the presence of a fluctuating magnetic field.

  11. Interplanetary stream magnetism: Kinematic effects. [solar magnetic fields and wind

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Barouch, E.

    1974-01-01

    The particle density, and the magnetic field intensity and direction are calculated in corotating streams of the solar wind, assuming that the solar wind velocity is constant and radial and that its azimuthal variations are not two rapid. The effects of the radial velocity profile in corotating streams on the magnetic fields were examined using kinematic approximation and a variety of field configurations on the inner boundary. Kinematic and dynamic effects are discussed.

  12. Magnetic Fields at the Center of Coils

    ERIC Educational Resources Information Center

    Binder, Philippe; Hui, Kaleonui; Goldman, Jesse

    2014-01-01

    In this note we synthesize and extend expressions for the magnetic field at the center of very short and very long current-carrying coils. Elementary physics textbooks present the following equation for the magnetic field inside a very long current-carrying coil (solenoid): B[subscript sol] = µ[subscript 0] (N/L) I, (1) where I is the current, N…

  13. Modeling the evolution of galactic magnetic fields

    SciTech Connect

    Yar-Mukhamedov, D.

    2015-04-15

    An analytic model for evolution of galactic magnetic fields in hierarchical galaxy formation frameworks is introduced. Its major innovative components include explicit and detailed treatment of the physics of merger events, mass gains and losses, gravitational energy sources and delays associated with formation of large-scale magnetic fields. This paper describes the model, its implementation, and core results obtained by its means.

  14. Paramagnetic ellipsoidal microswimmer in a magnetic field

    NASA Astrophysics Data System (ADS)

    Sandoval, Mario; Fan, Louis; Pak, On Shun

    We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at low-Reynolds-number and subject to a magnetic field. Its corresponding mean-square displacement tensor showing the effect of particles's shape, activity and magnetic field, on the microswimmer's diffusion is analytically obtained. A comparison among analytical and computational results is also made and we obtain excellent agreement.

  15. Solar Magnetic Field: Zeeman and Hanle Effects

    NASA Astrophysics Data System (ADS)

    Stenflo, J.; Murdin, P.

    2001-10-01

    An external magnetic field causes the atomic energy levels to split into different sublevels, and the emitted radiation becomes polarized. This phenomenon is called the ZEEMAN EFFECT. When atoms in a magnetic field scatter radiation via bound-bound transitions, the phase relations or quantum interferences between the Zeeman-split sublevels give rise to POLARIZATION phenomena that go under the nam...

  16. Magnetic fields in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Viganò, D.; Pons, J. A.; Miralles, J. A.; Rea, N.

    2015-05-01

    Isolated neutron stars show a diversity in timing and spectral properties, which has historically led to a classification in different sub-classes. The magnetic field plays a key role in many aspects of the neutron star phenomenology: it regulates the braking torque responsible for their timing properties and, for magnetars, it provides the energy budget for the outburst activity and high quiescent luminosities (usually well above the rotational energy budget). We aim at unifying this observational variety by linking the results of the state-of-the-art 2D magneto-thermal simulations with observational data. The comparison between theory and observations allows to place two strong constraints on the physical properties of the inner crust. First, strong electrical currents must circulate in the crust, rather than in the star core. Second, the innermost part of the crust must be highly resistive, which is in principle in agreement with the presence of a novel phase of matter so-called nuclear pasta phase.

  17. In vivo heating of magnetic nanoparticles in alternating magnetic field.

    PubMed

    Babincová, M; Altanerová, V; Altaner, C; Cicmanec, P; Babinec, P

    2004-08-01

    We have evaluated heating capabilities of new magnetic nanoparticles. In in vitro experiments they were exposed to an alternating magnetic field with frequency 3.5 MHz and induction 1.5 mT produced in three turn pancake coil. In in vivo experiments rats with injected magnetic nanoparticles were also exposed to an ac field. An optimal increase of temperature of the tumor to 44 degrees C was achieved after 10 minutes of exposure. Obtained results showed that magnetic nanoparticles may be easily heated in vitro as well as in vivo, and may be therefore useful for hyperthermic therapy of cancer.

  18. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  19. Ground Vehicle Navigation Using Magnetic Field Variation

    DTIC Science & Technology

    2012-09-13

    65 4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . 65 4.1.1 Measurements only in the Body Frame . . . . 65 4.1.2 Changes in the Earth’s...existing information to determine position. Examples include terrain navigation, celestial navigation (astronavigation), inertial navigation, magnetic...tion when the magnetic field measurements are resolved with the body axis, high- lighting magnetic field measurements from magnetometers which do not

  20. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  1. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  2. Electrokinetics of scalable, electric-field-assisted fabrication of vertically aligned carbon-nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Castellano, Richard J.; Akin, Cevat; Giraldo, Gabriel; Kim, Sangil; Fornasiero, Francesco; Shan, Jerry W.

    2015-06-01

    Composite thin films incorporating vertically aligned carbon nanotubes (VACNTs) offer promise for a variety of applications where the vertical alignment of the CNTs is critical to meet performance requirements, e.g., highly permeable membranes, thermal interfaces, dry adhesives, and films with anisotropic electrical conductivity. However, current VACNT fabrication techniques are complex and difficult to scale up. Here, we describe a solution-based, electric-field-assisted approach as a cost-effective and scalable method to produce large-area VACNT composites. Multiwall-carbon nanotubes are dispersed in a polymeric matrix, aligned with an alternating-current (AC) electric field, and electrophoretically concentrated to one side of the thin film with a direct-current (DC) component to the electric field. This approach enables the fabrication of highly concentrated, individually aligned nanotube composites from suspensions of very dilute ( ϕ = 4 × 10 - 4 ) volume fraction. We experimentally investigate the basic electrokinetics of nanotube alignment under AC electric fields, and show that simple models can adequately predict the rate and degree of nanotube alignment using classical expressions for the induced dipole moment, hydrodynamic drag, and the effects of Brownian motion. The composite AC + DC field also introduces complex fluid motion associated with AC electro-osmosis and the electrochemistry of the fluid/electrode interface. We experimentally probe the electric-field parameters behind these electrokinetic phenomena, and demonstrate, with suitable choices of processing parameters, the ability to scalably produce large-area composites containing VACNTs at number densities up to 1010 nanotubes/cm2. This VACNT number density exceeds that of previous electric-field-fabricated composites by an order of magnitude, and the surface-area coverage of the 40 nm VACNTs is comparable to that of chemical-vapor-deposition-grown arrays of smaller-diameter nanotubes.

  3. Analysis of the vector magnetic fields of complex sunspots

    NASA Technical Reports Server (NTRS)

    Patty, S. R.

    1981-01-01

    An analysis of the vector magnetic field in the delta-configurations of two complex sunspot groups is presented, noting several characteristics identified in the delta-configurations. The observations of regions 2469 (S12E80) and 2470 (S21E83) took place in May, 1980 with a vector magnetograph, verified by optical viewing. Longitudinal magnetic field plots located the delta-configurations in relation to the transverse field neutral line. It is shown that data on the polarization yields qualitative information on the magnetic field strengths, while the azimuth of the transverse field can be obtained from the relative intensities of linear polarization measurements aligned with respect to the magnetograph analyses axis at 0 and 90 deg, and at the plus and minus 45 deg positions. Details of the longitudinal fields are discussed. A strong, sheared transverse field component is found to be a signature of strong delta. A weak delta is accompanied by a weak longitudinal gradient with an unsheared transverse component of variable strength.

  4. Tracing magnetic field orientation in starless cores

    NASA Astrophysics Data System (ADS)

    Maheswar, G.; Ramaprakash, A. N.; Lee, C. W.; Dib, S.

    It is now well understood that stars are formed in the interiors of dense, gravitationally bound molecular cloud cores that are both magnetized and turbulent. But the relative role played by the magnetic field and the turbulence in cloud formation and evolution and in the subsequent star formation is a matter of debate. In a magnetically dominated scenario, the magnetic field geometry of the cores is expected to be inherited unchanged from their low-density envelope, even for an hour glass geometry of the field, unless the action of turbulence disturbs it. We carried out polarimetry of stars projected on starless molecular clouds, LDN 183 and LDN 1544, in R-filter. The comparison of these fields with those in the interiors of the cloud cores inferred from the sub-mm polarization shows that both magnetic field and turbulence are important in the cloud formation and evolution of star formation.

  5. Observations of field-aligned currents, particles, and plasma drift in the polar cusps near solstice

    NASA Technical Reports Server (NTRS)

    Bythrow, P. F.; Potemra, T. A.; Hoffman, R. A.

    1982-01-01

    Magnetic perturbations observed by the TRIAD magnetometer within two hours of an AE-C spacecraft pass provide field-aligned current data, from the same local time in the northern hemisphere, for a study of the polar cusp. The AE-C spinning mode has allowed the use of the Z-axis magnetometer for Birkeland current observations, in conjunction with particle and drift measurements. The average B(z) were found to be 1.9 nT and -1.1 nT during the first two hourly intervals on January 15, 1977. Measurements from the low energy electron experiment revealed intense fluxes of soft, cusp-like 100 eV Maxwellian electrons throughout the prenoon polar cap. The upward directed current can be identified as the dominant cusp current appropriate for B(y) values lower than zero, while the downward directed current, which has the appropriate sign of a dayside region 1 current, is observed to lie entirely within a westerly, antisunward-convecting plasma.

  6. Chaotic magnetic fields: Particle motion and energization

    SciTech Connect

    Dasgupta, Brahmananda; Ram, Abhay K.; Li, Gang; Li, Xiaocan

    2014-02-11

    Magnetic field line equations correspond to a Hamiltonian dynamical system, so the features of a Hamiltonian systems can easily be adopted for discussing some essential features of magnetic field lines. The integrability of the magnetic field line equations are discussed by various authors and it can be shown that these equations are, in general, not integrable. We demonstrate several examples of realistic chaotic magnetic fields, produced by asymmetric current configurations. Particular examples of chaotic force-free field and non force-free fields are shown. We have studied, for the first time, the motion of a charged particle in chaotic magnetic fields. It is found that the motion of a charged particle in a chaotic magnetic field is not necessarily chaotic. We also showed that charged particles moving in a time-dependent chaotic magnetic field are energized. Such energization processes could play a dominant role in particle energization in several astrophysical environments including solar corona, solar flares and cosmic ray propagation in space.

  7. ITG modes in the presence of inhomogeneous field-aligned flow

    NASA Astrophysics Data System (ADS)

    Sen, S.; McCarthy, D. R.; Lontano, M.; Lazzaro, E.; Honary, F.

    2010-02-01

    In a recent paper, Varischetti et al. (Plasma Phys. Contr. F. 2008, 50, 105008-1-15) have found that in a slab geometry the effect of the flow shear in the field-aligned parallel flow on the linear mode stability of the ion temperature gradient (ITG)-driven modes is not very prominent. They found that the flow shear also has a negligible effect on the mode characteristics. The work in this paper shows that the inclusion of flow curvature in the field-aligned flow can have a considerable effect on the mode stability; it can also change the mode structure so as to effect the mixing length transport in the core region of a fusion device. Flow shear, on the other hand, has indeed an insignificant role in the mode stability and mode structure. Inhomogeneous field-aligned flow should therefore still be considered for a viable candidate in controlling the ITG mode stability and mode structure.

  8. A discussion of Bl conservation on a two dimensional magnetic field plane in watt balances

    NASA Astrophysics Data System (ADS)

    Li, Shisong; Zhao, Wei; Huang, Songling

    2016-05-01

    The watt balance is an experiment being pursued in national metrology institutes for precision determination of the Planck constant h. In watt balances, the 1/r magnetic field, expected to generate a geometrical factor Bl independent to any coil horizontal displacement, can be created by a strict two dimensional, symmetric (horizontal r and vertical z) construction of the magnet system. In this paper, we present an analytical understanding of magnetic field distribution when the r symmetry of the magnet is broken and the establishment of the Bl conservation is shown. By using either Gauss’s law on magnetism with monopoles or conformal transformations, we extend the Bl conservation to arbitrary two dimensional magnetic planes where the vertical magnetic field component equals zero. The generalized Bl conservation allows a relaxed physical alignment criteria for watt balance magnet systems.

  9. Kinetic Alfven Waves Carrying Intense Field Aligned Currents: Particle Trapping and Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Artemyev, A.

    2015-12-01

    It is now common knowledge that dispersive scale Alfvén waves can drive parallel electron acceleration [Lotko et al., JGR, 1998; Samson et al., Ann. Geophys., 2003; Wygant et al., JGR, 2002] and transverse ion energization in the auroral zone and inner magnetosphere [Johnson and Cheng, JGR, 2001; Chaston et al., 2004]. In this paper we show that relatively low energy electrons (plasma sheet electrons with energies ranging up to ˜100 eV) can be accelerated very efficiently as they interact nonlinearly with kinetic Alfvén waves (KAWs) that carry intense field aligned currents from the equatorial plane toward the ionosphere in the inner magnetosphere. We propose a theoretical model describing electron trapping into an effective wave potential generated by parallel wave electric fields (with perpendicular wavelengths on the order of the ion gyro-radius) and the mirror force acting on electrons as they propagate along geomagnetic field lines. We demonstrate that waves with an electric potential amplitude between ~100 - 400 V can trap and accelerate electrons to energies approaching several keVs. Trapping acceleration corresponds to conservation of the electron magnetic moment and, thus, results in a significant decrease of the electron equatorial pitch-angle with time. Analytical and numerical estimates of the maximum energy and probability of trapping are presented. We discuss the application of the proposed model in light of recent observations of electromagnetic fluctuations in the inner magnetosphere that are present during periods of strong geomagnetic activity [Chaston et al., GRL, 2014; Califf et al., JGR, 2015].

  10. Ion gyroradius effects on Alfvenic field aligned currents and electron energization in planetary magnetospheres.

    NASA Astrophysics Data System (ADS)

    Damiano, P. A.; Johnson, J.; Chaston, C. C.; Fox, W. R., II; Delamere, P. A.; Stauffer, B. H.

    2015-12-01

    Alfvenic current systems are a ubiquitous feature of planetary magnetospheres that can be generated by several mechanisms including the braking of flows (e.g. associated with reconnection at substorm onset) and via moon-planet interactions. The energetic electrons needed to carry the field-aligned currents are generally thought to be accelerated on either electron inertial or ion acoustic gyroradius scale lengths in the limit of inertial and kinetic Alfven waves respectively. Recent 2D dipolar hybrid gyrofluid-kinetic electron simulations of kinetic Alfven waves (Damiano et al., JGR, 2015), associated with the braking of fast flows in the terrestrial magnetotail, have illustrated that hot ion effects can act to limit the extent of the parallel current (all along the field line) from what would be expected in the cold ion limit. This correspondingly affects the characteristics of the electron energization, reducing both the parallel elongation in the electron distribution function associated with electron trapping in the kinetic Alfven wave regime and the extent of high energy tails evident in the inertial Alfven wave region above the ionosphere. In this presentation, we build on these initial simulation results analyzing the characteristics of the parallel current system and electron acceleration (associated with both inertial and kinetic Alfven waves) for a range of wave amplitudes and ratios of the electron to ion temperature. One finding is that for a given ion temperature, increasing wave amplitude recovers some of the features of the electron energization evident in the cold ion limit, but this is modulated by the effect of wave energy dispersion perpendicular to the ambient magnetic field. These results will be summarized and the relevance and extension of this work to consider Alfvenic aurora in the Jupiter magnetosphere (e.g. via either interchange motion or the Io-Jupiter interaction) will also be discussed.

  11. The detailed spatial structure of field-aligned currents comprising the substorm current wedge

    NASA Astrophysics Data System (ADS)

    Murphy, Kyle R.; Mann, Ian R.; Rae, I. Jonathan; Waters, Colin L.; Frey, Harald U.; Kale, Andy; Singer, Howard J.; Anderson, Brian J.; Korth, Haje

    2013-12-01

    We present a comprehensive two-dimensional view of the field-aligned currents (FACs) during the late growth and expansion phases for three isolated substorms utilizing in situ observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment and from ground-based magnetometer and optical instrumentation from the Canadian Array for Realtime Investigations of Magnetic Activity and Time History of Events and Macroscale Interactions during Substorms ground-based arrays. We demonstrate that the structure of FACs formed during the expansion phase and associated with the substorm current wedge is significantly more complex than a simple equivalent line current model comprising a downward FAC in the east and upward FAC in the west. This two-dimensional view demonstrates that azimuthal bands of upward and downward FACs with periodic structuring in latitude form across midnight and can span up to 8 h of magnetic local time. However, when averaged over latitude, the overall longitudinal structure of the net FACs resembles the simpler equivalent line current description of the substorm current wedge (SCW). In addition, we demonstrate that the upward FAC elements of the structured SCW are spatially very well correlated with discrete aurora during the substorm expansion phase and that discrete changes in the FAC topology are observed in the late growth phase prior to auroral substorm expansion phase onset. These observations have important implications for determining how the magnetosphere and ionosphere couple during the late growth phase and expansion phase, as well as providing important constraints on the magnetospheric generator of the FACs comprising the SCW.

  12. Magnetodeformation effects and the swelling of ferrogels in a uniform magnetic field.

    PubMed

    Filipcsei, Genoveva; Zrínyi, Miklos

    2010-07-14

    Magnetic field sensitive gels (ferrogels or magnetoelastic gels) are three-dimensional cross-linked networks of flexible polymers swollen by ferrofluids or magnetic fluids. We have studied the response of magnetic field sensitive polymer gels to an external magnetic field. Two phenomena were investigated in detail: deformation and swelling under a uniform magnetic field. Gel spheres containing magnetic particles distributed randomly in the gel matrix as well as pearl chain aggregates chemically fixed in the network were exposed to a static homogeneous magnetic field. It was found that the spatial distribution of the magnetic particles plays an essential role in the magnetodeformation effect. A weak effect was observed for gels containing randomly distributed magnetic particles. In response to the magnetic field induction, these gel spheres elongated along the field lines and were compressed in the perpendicular direction. No magnetodeformation was observed for gels containing aligned particles in the polymer matrix. The influence of an external magnetic field on the equilibrium swelling degree was also the subject of this study. Using thermodynamic arguments it was shown that a uniform external field may result in deswelling of the ferrogels at high field intensities.

  13. Teaching Representation Translations with Magnetic Field Experiments

    NASA Astrophysics Data System (ADS)

    Tillotson, Wilson Andrew; McCaskey, Timothy; Nasser, Luis

    2017-01-01

    We have developed a laboratory exercise designed to help students translate between different field representations. It starts with students qualitatively mapping field lines for various bar magnet configurations and continues with a Hall probe experiment in which students execute a series of scaffolded tasks, culminating in the prediction and measurement of the spatial variation of magnetic field components along a line near magnets. We describe the experimental tasks, various difficulties students have throughout, and ways this lab makes even their incorrect predictions better. We suggest that developing lab activities of this nature brings a new dimension to the ways students learn and interact with field concepts.

  14. Warm inflation in presence of magnetic fields

    SciTech Connect

    Piccinelli, Gabriella; Ayala, Alejandro; Mizher, Ana Julia

    2013-07-23

    We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, magnetic fields seem to be present in the universe on all scales which rises de possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger's proper time method.

  15. Viking satellite program - preliminary results from the APL Magnetic Field Experiment

    SciTech Connect

    Potemra, T.A.; Zanetti, L.J.; Erlandson, R.E.; Gustafsson, G.; Acuna, M.H.

    1986-12-01

    Sweden's Viking satellite, launched in February 1986, has been conducting plasma process observations in the earth magnetosphere and auroral regions; the U.S.-supplied APL Magnetic Field Experiment aboard Viking is used to determine field-aligned Birkeland current characteristics in previously unsampled regions of near-earth space. The Magnetic Field Experiment has an equivalent spatial resolution of 12 m in the auroral ionosphere when making measurements near apogee. The purposes of Viking's other instruments and their relationship to the Magnetic Field Experiment are discussed.

  16. The Viking satellite program - Preliminary results from the APL Magnetic Field Experiment

    NASA Astrophysics Data System (ADS)

    Potemra, Thomas A.; Zanetti, Lawrence J.; Erlandson, Robert E.; Gustafsson, Georg; Acuna, Mario H.

    1986-12-01

    Sweden's Viking satellite, launched in February 1986, has been conducting plasma process observations in the earth magnetosphere and auroral regions; the U.S.-supplied APL Magnetic Field Experiment aboard Viking is used to determine field-aligned Birkeland current characteristics in previously unsampled regions of near-earth space. The Magnetic Field Experiment has an equivalent spatial resolution of 12 m in the auroral ionosphere when making measurements near apogee. The purposes of Viking's other instruments and their relationship to the Magnetic Field Experiment are discussed.

  17. The Viking satellite program - Preliminary results from the APL Magnetic Field Experiment

    NASA Technical Reports Server (NTRS)

    Potemra, Thomas A.; Zanetti, Lawrence J.; Erlandson, Robert E.; Gustafsson, Georg; Acuna, Mario H.

    1986-01-01

    Sweden's Viking satellite, launched in February 1986, has been conducting plasma process observations in the earth magnetosphere and auroral regions; the U.S.-supplied APL Magnetic Field Experiment aboard Viking is used to determine field-aligned Birkeland current characteristics in previously unsampled regions of near-earth space. The Magnetic Field Experiment has an equivalent spatial resolution of 12 m in the auroral ionosphere when making measurements near apogee. The purposes of Viking's other instruments and their relationship to the Magnetic Field Experiment are discussed.

  18. The magnetic field of ζ Orionis A

    NASA Astrophysics Data System (ADS)

    Blazère, A.; Neiner, C.; Tkachenko, A.; Bouret, J.-C.; Rivinius, Th.

    2015-10-01

    Context. ζ Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. Aims: We aim at verifying the presence of a magnetic field in ζ Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field. Methods: Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the least-squares deconvolution technique to extract the magnetic information. Results: We confirm that ζ Ori A is magnetic. We find that the supergiant component ζ Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a period of 6.829 d. This is the only magnetic O supergiant known as of today. With an oblique dipole field model of the Stokes V profiles, we show that the polar field strength is ~140 G. Because the magnetic field is weak and the stellar wind is strong, ζ Ori Aa does not host a centrifugally supported magnetosphere. It may host a dynamical magnetosphere. Its companion ζ Ori Ab does not show any magnetic signature, with an upper limit on the undetected field of ~300 G. Based on observations obtained at the Télescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.Appendix A is available in electronic form at http://www.aanda.org

  19. Alignment of the high beta magnets in the RHIC interaction regions

    SciTech Connect

    Trbojevic, D.; Jain, A.; Tepikian, S.; Grandinetti, R.; Ganetis, G.; Wei, J.; Karl, F.

    1997-07-01

    The betatron functions inside the triplet quadrupoles in the Relativistic Heavy Ion Collider-RHIC are of the order of 1,500 m, necessitating additional attention in the alignment procedure. On each side of the interaction regions eight cryogenic elements (six quadrupoles and two horizontal bending dipoles) are placed inside large cryostats. The quadrupole magnetic centers are obtained by antenna measurements with an accuracy of {+-} 60 {micro}m. The signals from the antenna were cross calibrated with the colloidal cell measurements of the same magnet. The positions of the fiducials are related to the magnet centers during the antenna measurements. Elements are positioned warm inside the cryostats, with offsets to account for shrinkage during the cool down. The supports at the middle of the two central quadrupoles are fixed, while every other element slides longitudinally inside the cryostat during cool down or warm up.

  20. The Effect of the Earth's and Stray Magnetic Fields on Mobile Mass Spectrometer Systems

    NASA Astrophysics Data System (ADS)

    Bell, Ryan J.; Davey, Nicholas G.; Martinsen, Morten; Short, R. Timothy; Gill, Chris G.; Krogh, Erik T.

    2015-02-01

    Development of small, field-portable mass spectrometers has enabled a rapid growth of in-field measurements on mobile platforms. In such in-field measurements, unexpected signal variability has been observed by the authors in portable ion traps with internal electron ionization. The orientation of magnetic fields (such as the Earth's) relative to the ionization electron beam trajectory can significantly alter the electron flux into a quadrupole ion trap, resulting in significant changes in the instrumental sensitivity. Instrument simulations and experiments were performed relative to the earth's magnetic field to assess the importance of (1) nonpoint-source electron sources, (2) vertical versus horizontal electron beam orientation, and (3) secondary magnetic fields created by the instrument itself. Electron lens focus effects were explored by additional simulations, and were paralleled by experiments performed with a mass spectrometer mounted on a rotating platform. Additionally, magnetically permeable metals were used to shield (1) the entire instrument from the Earth's magnetic field, and (2) the electron beam from both the Earth's and instrument's magnetic fields. Both simulation and experimental results suggest the predominant influence on directionally dependent signal variability is the result of the summation of two magnetic vectors. As such, the most effective method for reducing this effect is the shielding of the electron beam from both magnetic vectors, thus improving electron beam alignment and removing any directional dependency. The improved ionizing electron beam alignment also allows for significant improvements in overall instrument sensitivity.

  1. Magnetic fields in noninvasive brain stimulation.

    PubMed

    Vidal-Dourado, Marcos; Conforto, Adriana Bastos; Caboclo, Luis Otávio Sales Ferreira; Scaff, Milberto; Guilhoto, Laura Maria de Figueiredo Ferreira; Yacubian, Elza Márcia Targas

    2014-04-01

    The idea that magnetic fields could be used therapeutically arose 2000 years ago. These therapeutic possibilities were expanded after the discovery of electromagnetic induction by the Englishman Michael Faraday and the American Joseph Henry. In 1896, Arsène d'Arsonval reported his experience with noninvasive brain magnetic stimulation to the scientific French community. In the second half of the 20th century, changing magnetic fields emerged as a noninvasive tool to study the nervous system and to modulate neural function. In 1985, Barker, Jalinous, and Freeston presented transcranial magnetic stimulation, a relatively focal and painless technique. Transcranial magnetic stimulation has been proposed as a clinical neurophysiology tool and as a potential adjuvant treatment for psychiatric and neurologic conditions. This article aims to contextualize the progress of use of magnetic fields in the history of neuroscience and medical sciences, until 1985.

  2. Field Mapping System for Solenoid Magnet

    NASA Astrophysics Data System (ADS)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  3. Sensitivity of magnetic field gradients over Fennoscandia

    NASA Astrophysics Data System (ADS)

    Baykiev, Eldar; Ebbing, Jörg; Brönner, Marco; Fabian, Karl

    2016-04-01

    Magnetic fields from forward calculations of global crustal or lithospheric models cannot be compared easily with spherical harmonic (SH) crustal field models derived from the satellite observations. The reason for this is, that the lithospheric field has a significant part in the low-degree spherical harmonics (n<14) that are dominated by the core field. These low-degree harmonics are commonly zeroed out to retrieve the lithospheric magnetic field. In addition, at satellite height far-field effects from sources outside a regional study affect the long-wavelength part of the magnetic field. Because magnetic field gradients are less sensitive to the long wavelength anomalies, they are also less affected by the far field. However, the gradients still contain information about deep lithospheric structures. We present sensitivity tests based on a synthetic model of the Fennoscandian lithosphere to validate the influence of induced and remanent magnetization in magnetic data at the height of airborne surveys and satellite missions. The use of airborne data and satellite data is complementary because, due to their different height, they are sensitive to different depth domains. To correctly account for global and local aspects of the lithospheric field, our analysis is based on surface discretization by tesseroids (spherical prisms).

  4. The Magnetic Field of Cloud 3 in L204

    NASA Astrophysics Data System (ADS)

    Cashman, Lauren R.; Clemens, D. P.

    2014-10-01

    The L204 dark cloud complex is a nearby filamentary structure in Ophiuchus North that has no signs of active star formation. Past studies show that L204 is interacting with the nearby runaway O star, ζ Oph, and hosts a magnetic field that is coherent across parsec-length scales. Near-infrared H-band (1.6 μm) linear polarization measurements were obtained for 3896 background stars across a 1° × 1.°5 region centered on the dense Cloud 3 in L204, using the Mimir near-infrared instrument on the 1.8 m Perkins Telescope. Analysis of these observations reveals both large-scale properties and small-scale changes in the magnetic field direction in Cloud 3. In the northern and western ζ Oph facing regions of the cloud, the magnetic field appears to be pushed up against the face of the cloud. This may indicate that the UV flux from ζ Oph has compressed the magnetic field on the western edge of L204. The plane-of-sky magnetic field strength is estimated to be ~11-26 μG using the Chandrasekhar-Fermi method. The polarimetry data also reveal that the polarization efficiency (PE ≡ P H/A V) steadily decreases with distance from ζ Oph (-0.09% ± 0.03% mag-1 pc-1). Additionally, power-law fits of PE versus A V for localized samples of probe stars show steeper negative indices with distance from ζ Oph. Both findings highlight the importance of external illumination, here from ζ Oph, in aligning dust grains to embedded magnetic fields.

  5. The magnetic field of cloud 3 in L204

    SciTech Connect

    Cashman, Lauren R.; Clemens, D. P. E-mail: clemens@bu.edu

    2014-10-01

    The L204 dark cloud complex is a nearby filamentary structure in Ophiuchus North that has no signs of active star formation. Past studies show that L204 is interacting with the nearby runaway O star, ζ Oph, and hosts a magnetic field that is coherent across parsec-length scales. Near-infrared H-band (1.6 μm) linear polarization measurements were obtained for 3896 background stars across a 1° × 1.°5 region centered on the dense Cloud 3 in L204, using the Mimir near-infrared instrument on the 1.8 m Perkins Telescope. Analysis of these observations reveals both large-scale properties and small-scale changes in the magnetic field direction in Cloud 3. In the northern and western ζ Oph facing regions of the cloud, the magnetic field appears to be pushed up against the face of the cloud. This may indicate that the UV flux from ζ Oph has compressed the magnetic field on the western edge of L204. The plane-of-sky magnetic field strength is estimated to be ∼11-26 μG using the Chandrasekhar-Fermi method. The polarimetry data also reveal that the polarization efficiency (PE ≡ P {sub H}/A {sub V}) steadily decreases with distance from ζ Oph (–0.09% ± 0.03% mag{sup –1} pc{sup –1}). Additionally, power-law fits of PE versus A {sub V} for localized samples of probe stars show steeper negative indices with distance from ζ Oph. Both findings highlight the importance of external illumination, here from ζ Oph, in aligning dust grains to embedded magnetic fields.

  6. INTERSTELLAR MAGNETIC FIELD SURROUNDING THE HELIOPAUSE

    SciTech Connect

    Whang, Y. C.

    2010-02-20

    This paper presents a three-dimensional analytical solution, in the limit of very low plasma beta-ratio, for the distortion of the interstellar magnetic field surrounding the heliopause. The solution is obtained using a line dipole method that is the integration of point dipole along a semi-infinite line; it represents the magnetic field caused by the presence of the heliopause. The solution allows the variation of the undisturbed magnetic field at any inclination angle. The heliosphere is considered as having blunt-nosed geometry on the upwind side and it asymptotically approaches a cylindrical geometry having an open exit for the continuous outflow of the solar wind on the downwind side. The heliopause is treated as a magnetohydrodynamic tangential discontinuity; the interstellar magnetic field lines at the boundary are tangential to the heliopause. The interstellar magnetic field is substantially distorted due to the presence of the heliopause. The solution shows the draping of the field lines around the heliopause. The magnetic field strength varies substantially near the surface of the heliopause. The effect on the magnetic field due to the presence of the heliopause penetrates very deep into the interstellar space; the depth of penetration is of the same order of magnitude as the scale length of the heliosphere.

  7. Dynamic Magnetic Field Applications for Materials Processing

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Grugel, Richard N.; Motakef, S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Magnetic fields, variable in time and space, can be used to control convection in electrically conducting melts. Flow induced by these fields has been found to be beneficial for crystal growth applications. It allows increased crystal growth rates, and improves homogeneity and quality. Particularly beneficial is the natural convection damping capability of alternating magnetic fields. One well-known example is the rotating magnetic field (RMF) configuration. RMF induces liquid motion consisting of a swirling basic flow and a meridional secondary flow. In addition to crystal growth applications, RMF can also be used for mixing non-homogeneous melts in continuous metal castings. These applied aspects have stimulated increasing research on RMF-induced fluid dynamics. A novel type of magnetic field configuration consisting of an axisymmetric magnetostatic wave, designated the traveling magnetic field (TMF), has been recently proposed. It induces a basic flow in the form of a single vortex. TMF may find use in crystal growth techniques such as the vertical Bridgman (VB), float zone (FZ), and the traveling heater method. In this review, both methods, RMF and TMF are presented. Our recent theoretical and experimental results include such topics as localized TMF, natural convection dumping using TMF in a vertical Bridgman configuration, the traveling heater method, and the Lorentz force induced by TMF as a function of frequency. Experimentally, alloy mixing results, with and without applied TMF, will be presented. Finally, advantages of the traveling magnetic field, in comparison to the more mature rotating magnetic field method, will be discussed.

  8. Protein detection with magnetic nanoparticles in a rotating magnetic field

    NASA Astrophysics Data System (ADS)

    Dieckhoff, Jan; Lak, Aidin; Schilling, Meinhard; Ludwig, Frank

    2014-01-01

    A detection scheme based on magnetic nanoparticle (MNP) dynamics in a rotating magnetic field for a quantitative and easy-to-perform detection of proteins is illustrated. For the measurements, a fluxgate-based setup was applied, which measures the MNP dynamics, while a rotating magnetic field is generated. The MNPs exhibit single iron oxide cores of 25 nm and 40 nm diameter, respectively, as well as a protein G functionalized shell. IgG antibodies were utilized as binding target molecules for the physical proof-of-concept. The measurement results were fitted with a theoretical model describing the magnetization dynamics in a rotating magnetic field. The established detection scheme allows quantitative determination of proteins even at a concentration lower than of the particles. The observed differences between the two MNP types are discussed on the basis of logistic functions.

  9. External-field-free magnetic biosensor

    SciTech Connect

    Li, Yuanpeng; Wang, Yi; Klein, Todd; Wang, Jian-Ping

    2014-03-24

    In this paper, we report a magnetic nanoparticle (MNP) detection scheme without the presence of any external magnetic field. The proposed magnetic sensor uses a patterned groove structure within the sensor so that no external magnetic field is needed to magnetize the MNPs. An example is given based on a giant magnetoresistance (GMR) sensing device with a spin valve structure. For this structure, the detection of MNPs located inside the groove and near the free layer is demonstrated under no external magnetic field. Micromagnetic simulations are performed to calculate the signal to noise level of this detection scheme. A maximum signal to noise ratio (SNR) of 18.6 dB from one iron oxide magnetic nanoparticle with 8 nm radius is achieved. As proof of concept, this external-field-free GMR sensor with groove structure of 200 nm × 200 nm is fabricated using a photo and an electron beam integrated lithography process. Using this sensor, the feasibility demonstration of the detection SNR of 9.3 dB is achieved for 30 μl magnetic nanoparticles suspension (30 nm iron oxide particles, 1 mg/ml). This proposed external-field-free sensor structure is not limited to GMR devices and could be applicable to other magnetic biosensing devices.

  10. The Measurement of Magnetic Fields

    ERIC Educational Resources Information Center

    Berridge, H. J. J.

    1973-01-01

    Discusses five experimental methods used by senior high school students to provide an accurate calibration curve of magnet current against the magnetic flux density produced by an electromagnet. Compares the relative merits of the five methods, both as measurements and from an educational viewpoint. (JR)

  11. Decay of Resonaces in Strong Magnetic Field

    NASA Astrophysics Data System (ADS)

    Filip, Peter

    2015-08-01

    We suggest that decay properties (branching ratios) of hadronic resonances may become modified in strong external magnetic field. The behavior of K±*, K0* vector mesons as well as Λ* (1520) and Ξ0* baryonic states is considered in static fields 1013-1015 T. In particular, n = 0 Landau level energy increase of charged particles in the external magnetic field, and the interaction of hadron magnetic moments with