Science.gov

Sample records for alignment research instrumentation

  1. 2. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. HYDRAULIC ENGINEER PILOTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. HYDRAULIC ENGINEER PILOTING VIDEO-CONTROLED BOAT MODEL FROM CONTROL TRAILER. NOTE VIEW FROM BOAT-MOUNTED VIDEO CAMERA SHOWN ON MONITOR, AND MODEL WATERWAY VISIBLE THROUGH WINDOW AT LEFT. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  2. 1. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. ENGINEERING TECHNICIAN WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. ENGINEERING TECHNICIAN WITH VIDEO-CONTROLED MODEL BOAT IN MODEL NAVIGATION CHANNEL. NOTE CONTROL TRAILER IN BACKGROUND. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  3. 3. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. VIDEOCONTROLED MODEL BOAT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. VIDEO-CONTROLED MODEL BOAT IN MODEL NAVIGATION CHANNEL, HEADING AWAY FROM SHELTER AND CONTROL TRAILER. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  4. 5. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. VIDEOCONTROLED MODEL BOAT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. VIDEO-CONTROLED MODEL BOAT IN MODEL NAVIGATION CHANNEL, HEADING INTO SHELTER AND TOWARD CONTROL TRAILER. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  5. 4. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. VIDEOCONTROLED MODEL BOAT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. CHANNEL DIMENSIONS AND ALIGNMENT RESEARCH INSTRUMENTATION. VIDEO-CONTROLED MODEL BOAT AT FAR END OF MODEL NAVIGATION CHANNEL, HEADING INTO SHELTER AND TOWARD CONTROL TRAILER. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  6. SIM Lite: ground alignment of the instrument

    NASA Astrophysics Data System (ADS)

    Dekens, Frank G.; Goullioud, Renaud; Nicaise, Fabien; Kuan, Gary; Morales, Mauricio

    2010-07-01

    We present the start of the ground alignment plan for the SIM Lite Instrument. We outline the integration and alignment of the individual benches on which all the optics are mounted, and then the alignment of the benches to form the Science and Guide interferometers. The Instrument has a guide interferometer with only a 40 arc-seconds field of regard, and 200 arc-seconds of alignment adjustability. This requires each sides of the interferometer to be aligned to a fraction of that, while at the same time be orthogonal to the baseline defined by the External Metrology Truss. The baselines of the Science and Guide interferometers must also be aligned to be parallel. The start of these alignment plans is captured in a SysML Instrument System model, in the form of activity diagrams. These activity diagrams are then related to the hardware design and requirements. We finish with future plans for the alignment and integration activities and requirements.

  7. SIM Lite: Ground Alignment of the Instrument

    NASA Technical Reports Server (NTRS)

    Dekens, Frank G.; Goullioud, Renaud; Nicaise, Fabien; Kuan, Gary; Morales, Mauricio

    2010-01-01

    We present the start of the ground alignment plan for the SIM Lite Instrument. We outline the integration and alignment of the individual benches on which all the optics are mounted, and then the alignment of the benches to form the Science and Guide interferometers. The Instrument has a guide interferometer with only a 40 arc-seconds field of regard, and 200 arc-seconds of alignment adjustability. This requires each sides of the interferometer to be aligned to a fraction of that, while at the same time be orthogonal to the baseline defined by the External Metrology Truss. The baselines of the Science and Guide interferometers must also be aligned to be parallel. The start of these alignment plans is captured in a SysML Instrument System model, in the form of activity diagrams. These activity diagrams are then related to the hardware design and requirements. We finish with future plans for the alignment and integration activities and requirements.

  8. Research Instruments

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The GENETI-SCANNER, newest product of Perceptive Scientific Instruments, Inc. (PSI), rapidly scans slides, locates, digitizes, measures and classifies specific objects and events in research and diagnostic applications. Founded by former NASA employees, PSI's primary product line is based on NASA image processing technology. The instruments karyotype - a process employed in analysis and classification of chromosomes - using a video camera mounted on a microscope. Images are digitized, enabling chromosome image enhancement. The system enables karyotyping to be done significantly faster, increasing productivity and lowering costs. Product is no longer being manufactured.

  9. Pupil Alignment Measuring Technique and Alignment Reference for Instruments or Optical Systems

    NASA Technical Reports Server (NTRS)

    Hagopian, John G.

    2010-01-01

    A technique was created to measure the pupil alignment of instruments in situ by measuring calibrated pupil alignment references (PARs) in instruments. The PAR can also be measured using an alignment telescope or an imaging system. PAR allows the verification of the science instrument (SI) pupil alignment at the integrated science instrument module (ISIM) level of assembly at ambient and cryogenic operating temperature. This will allow verification of the ISIM+SI alignment, and provide feedback to realign the SI if necessary.

  10. Curriculum Alignment Research Suggests that Alignment Can Improve Student Achievement

    ERIC Educational Resources Information Center

    Squires, David

    2012-01-01

    Curriculum alignment research has developed showing the relationship among three alignment categories: the taught curriculum, the tested curriculum and the written curriculum. Each pair (for example, the taught and the written curriculum) shows a positive impact for aligning those results. Following this, alignment results from the Third…

  11. JWST Integrated Science Instrument Module Alignment Optimization Tool

    NASA Technical Reports Server (NTRS)

    Bos, Brent

    2013-01-01

    During cryogenic vacuum testing of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM), the global alignment of the ISIM with respect to the designed interface of the JWST optical telescope element (OTE) will be measured through a series of optical characterization tests. These tests will determine the locations and orientations of the JWST science instrument projected focal surfaces and entrance pupils with respect to their corresponding OTE optical interfaces. If any optical performance non-compliances are identified, the ISIM will be adjusted to improve its performance. In order to understand how to manipulate the ISIM's degrees of freedom properly and to prepare for the ISIM flight model testing, a series of optical-mechanical analyses have been completed to develop and identify the best approaches for bringing a non-compliant ISIM element into compliance. In order for JWST to meet its observatory-level optical requirements and ambitious science goals, the ISIM element has to meet approximately 150 separate optical requirements. Successfully achieving many of those optical requirements depends on the proper alignment of the ISIM element with respect to the OTE. To verify that the ISIM element will meet its optical requirements, a series of cryogenic vacuum tests will be conducted with an OTE Simulator (OSIM). An optical Ray Trace and Geometry Model tool was developed to help solve the multi-dimensional alignment problem. The tool allows the user to determine how best to adjust the alignment of the JWST ISIM with respect to the ideal telescope interfaces so that the approximately 150 ISIM optical performance requirements can be satisfied. This capability has not existed previously.

  12. Methodological Alignment in Design-Based Research

    ERIC Educational Resources Information Center

    Hoadley, Christopher M.

    2004-01-01

    Empirical research is all about trying to model and predict the world. In this article, I discuss how design-based research methods can help do this effectively. In particular, design-based research methods can help with the problem of methodological alignment: ensuring that the research methods we use actually test what we think they are testing.…

  13. Instrument Reporting Practices in Second Language Research

    ERIC Educational Resources Information Center

    Derrick, Deirdre J.

    2016-01-01

    Second language (L2) researchers often have to develop or change the instruments they use to measure numerous constructs (Norris & Ortega, 2012). Given the prevalence of researcher-developed and -adapted data collection instruments, and given the profound effect instrumentation can have on results, thorough reporting of instrumentation is…

  14. Ambient Optomechanical Alignment and Pupil Metrology for the Flight Instruments Aboard the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Coulter, Phillip; Beaton, Alexander; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hayden, Joseph E.; Hummel, Susann; Hylan, Jason E.; Lee, David; Madison, Timothy J.; Maszkiewicz, Michael; Mclean, Kyle F.; McMann, Joseph; Melf, Markus; Miner, Linda; Ohl, Raymond G.; Redman, Kevin; Roedel, Andreas; Schweiger, Paul; Plate, Maurice T.; Wells, Martyn; Wenzel, Greg W.; Williams, Patrick K.; Young, Jerrod

    2014-01-01

    The James Webb Space Telescope science instruments are in the final stages of being integrated into the Integrated Science Instrument Module (ISIM) element. Each instrument is tied into a common coordinate system through mechanical references that are used for optical alignment and metrology within ISIM after element-level assembly. In addition, a set of ground support equipment (GSE) consisting of large, precisely calibrated, ambient, and cryogenic structures are used as alignment references and gauges during various phases of integration and test (I&T). This GSE, the flight instruments, and ISIM structure feature different types of complimentary metrology targeting. These GSE targets are used to establish and track six degrees of freedom instrument alignment during I&T in the vehicle coordinate system (VCS). This paper describes the optomechanical metrology conducted during science instrument integration and alignment in the Spacecraft Systems Development and Integration Facility (SSDIF) cleanroom at NASA Goddard Space Flight Center (GSFC). The measurement of each instrument's ambient entrance pupil location in the telescope coordinate system is discussed. The construction of the database of target locations and the development of metrology uncertainties is also discussed.

  15. Evaluation of an instrument to improve PET timing alignment

    NASA Astrophysics Data System (ADS)

    Hancock, J.; Thompson, C. J.

    2010-08-01

    PurposeIn order to increase the simplicity and accuracy of performing the time alignment on a positron emission tomography (PET) scanner, a new generation timing alignment probe has been developed. MethodsA timing alignment probe containing a plastic scintillator with an embedded sodium-22 source which is optically coupled to a fast photomultiplier tube (PMT) is described and tested. When a positron is ejected from the radioactive atom's nucleus, its kinetic energy is absorbed in and can be detected as a light flash from the scintillator. This is used as the reference time for each atom's positron decay. It is only after the positron slows that it can combine with an electron, forming positronium after which the 511 keV annihilation photons will be created, possibly traveling to the PET detectors. In practice, the probe is placed in the center of the scanner's field of view and connected to the coincidence circuit. Since the delay between an annihilation photon's detection and positron detection is almost identical (the lifetime of positronium in a solid is extremely short, and the gamma rays' path lengths are equal with the probe in the center of the scanner), the probe's signal provides a fixed reference time to which the response of individual crystals in the PET detectors can be compared. We present an evaluation of the performance of this probe. We first investigated the intrinsic performance of the time-alignment probe comparing its timing resolution with two barium fluoride crystals in coincidence. We then investigated the timing performance of the probe in coincidence with various individual scintillation crystals and with detectors from two commercial PET scanners. ResultsThe best full-width at half-maximum (FWHM) timing resolution of the probe was found when in coincidence with BaF 2 at 400 ps. The common commercial scintillator lutetium oxy-orthosilicate (LSO) was tested and its FWHM was 510 ps. When testing the crystal arrays used in two commercial

  16. A new optical axle measuring instrument for wheel alignment in assembly-line production

    SciTech Connect

    Bruhn, H.; Felske, A.

    1985-01-01

    The newly developed optical measuring system allows adjustment of front and rear wheel angularities - toe, camber, caster - in assembly-line production. There is no need to align the car, since the measuring base for the angle alignment is formed by the car itself. Defined spring compression values and direct caster angle determination lead to higher accuracy. Adjustment is carried out directly on the assembly line. Measuring pits are not required. The working time for each car and the working area required, which are important cost factors, are markedly lower than with conventional instruments. The axle measuring system was developed for the VW Vanagon, but can also be used for passenger car chassis. The measuring principle, the optical and mechanical design of the device, and a statistical analysis of over 100 cars aligned by means of this system are described in comparison with conventional measuring instruments.

  17. Experimental Estimation of CLASP Spatial Resolution: Results of the Instrument's Optical Alignment

    NASA Technical Reports Server (NTRS)

    Giono, Gabrial; Katsukawa, Yukio; Ishikawa, Ryoko; Narukage, Noriyuki; Bando, Takamasa; Kano, Ryohei; Suematsu, Yoshinori; Kobayashi, Ken; Winebarger, Amy; Auchere, Frederic

    2015-01-01

    The Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) is a sounding-rocket experiment currently being built at the National Astronomical Observatory of Japan. This instrument aims to probe for the first time the magnetic field strength and orientation in the solar upper-chromosphere and lower-transition region. CLASP will measure the polarization of the Lyman-Alpha line (121.6nm) with an unprecedented accuracy, and derive the magnetic field information through the Hanle effect. Although polarization accuracy and spectral resolution are crucial for the Hanle effect detection, spatial resolution is also important to get reliable context image via the slit-jaw camera. As spatial resolution is directly related with the alignment of optics, it is also a good way of ensuring the alignment of the instrument to meet the scientific requirement. This poster will detail the experiments carried out to align CLASP's optics (telescope and spectrograph), as both part of the instrument were aligned separately. The telescope was aligned in double-pass mode, and a laser interferometer (He-Ne) was used to measure the telescope's wavefront error (WFE). The secondary mirror tilt and position were adjusted to remove comas and defocus aberrations from the WFE. Effect of gravity on the WFE measurement was estimated and the final WFE derived in zero-g condition for CLASP telescope will be presented. In addition, an estimation of the spot shape and size derived from the final WFE will also be shown. The spectrograph was aligned with a custom procedure: because Ly-??light is absorbed by air, the spectrograph's off-axis parabolic mirrors were aligned in Visible Light (VL) using a custom-made VL grating instead of the flight Ly-? grating. Results of the alignment in Visible Light will be shown and the spot shape recorded with CCDs at various position along the slit will be displayed. Results from both alignment experiment will be compared to the design requirement, and will be combined in

  18. Broadband wide-angle dispersion measurements: Instrumental setup, alignment, and pitfalls

    SciTech Connect

    Farhang, A.; Abasahl, B.; Dutta-Gupta, S.; Lovera, A.; Martin, O. J. F.; Mandracci, P.; Descrovi, E.

    2013-03-15

    The construction, alignment, and performance of a setup for broadband wide-angle dispersion measurements, with emphasis on surface plasmon resonance (SPR) measurements, are presented in comprehensive detail. In contrast with most SPR instruments working with a monochromatic source, this setup takes advantage of a broadband/white light source and has full capability for automated angle vs. wavelength dispersion measurements for any arbitrary nanostructure array. A cylindrical prism is used rather than a triangular one in order to mitigate refraction induced effects and allow for such measurements. Although seemingly simple, this instrument requires use of many non-trivial methods in order to achieve proper alignment over all angles of incidence. Here we describe the alignment procedure for such a setup, the pitfalls introduced from the finite beam width incident onto the cylindrical prism, and deviations in the reflected/transmitted beam resulting from the finite thickness of the sample substrate. We address every one of these issues and provide experimental evidences on the success of this instrument and the alignment procedure used.

  19. IFU simulator: a powerful alignment and performance tool for MUSE instrument

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Boudon, Didier; Daguisé, Eric; Dubois, Jean-Pierre; Jarno, Aurélien; Kosmalski, Johan; Piqueras, Laure; Remillieux, Alban; Renault, Edgard

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transferred in monolithic way without dismounting onto VLT telescope where the first light was overcame. This talk describes the IFU Simulator which is the main alignment and performance tool for MUSE instrument. The IFU Simulator mimics the optomechanical interface between the MUSE pre-optic and the 24 IFUs. The optomechanical design is presented. After, the alignment method of this innovative tool for identifying the pupil and image planes is depicted. At the end, the internal test report is described. The success of the MUSE alignment using the IFU Simulator is demonstrated by the excellent results obtained onto MUSE positioning, image quality and throughput. MUSE commissioning at the VLT is planned for September, 2014.

  20. Characterization of cryo-vacuum chamber windows for NIRCam instrument alignment and testing

    NASA Astrophysics Data System (ADS)

    Schweiger, Paul F.; Andersen, Torben B.

    2015-09-01

    The Near Infrared Camera (NIRCam) instrument used to align and obtain science data for NASA's James Webb Space Telescope (JWST) was tested at the module level at flight-like cryogenic temperature. This paper explains the innovative techniques used to measure the precise location and orientation of the modules. A laser tracker was used to precision locate the instrument, using a flat reference mirror/reticle surface on the modules inside a chamber through its port windows. This technique established 6 degrees of freedom of position and orientation. The accuracy achieved was on the order of 20 microns in position and 5 arc-seconds in angular orientation.

  1. Optical development system lab alignment solutions for the ICESat-2 ATLAS instrument

    NASA Astrophysics Data System (ADS)

    Evans, T.

    The ATLAS Instrument for the ICESat-2 mission at NASA's Goddard Space Flight Center requires an alignment test-bed to prove out new concepts. The Optical Development System (ODS) lab was created to test prototype models of individual instrument components to simulate how they will act as a system. The main ICESat-2 instrument is the Advanced Topographic Laser Altimeter System (ATLAS). It measures ice elevation by transmitting laser pulses, and collecting the reflection in a telescope. Because the round trip time is used to calculate distance, alignment between the outgoing transmitter beam and the incoming receiver beams are critical. An automated closed loop monitoring control system is currently being tested at the prototype level to prove out implementation for the final spacecraft. To achieve an error of less than 2 micro-radians, an active deformable mirror was used to correct the lab wave front from the collimated “ ground reflection” beam. The lab includes a focal plane assembly set up, a one meter diameter collimator optic, and a 0.8 meter flight spare telescope for alignment. ATLAS prototypes and engineering models of transmitter and receiver optics and sub-systems are brought in to develop and integrate systems as well as write procedures to be used in integration and testing. By having a fully integrated system with prototypes and engineering units, lessons can be learned before flight designs are finalized.

  2. Patient-specific instrumentation does not improve radiographic alignment or clinical outcomes after total knee arthroplasty.

    PubMed

    Huijbregts, Henricus J T A M; Khan, Riaz J K; Sorensen, Emma; Fick, Daniel P; Haebich, Samantha

    2016-08-01

    Background and purpose - Patient-specific instrumentation (PSI) for total knee arthroplasty (TKA) has been introduced to improve alignment and reduce outliers, increase efficiency, and reduce operation time. In order to improve our understanding of the outcomes of patient-specific instrumentation, we conducted a meta-analysis. Patients and methods - We identified randomized and quasi-randomized controlled trials (RCTs) comparing patient-specific and conventional instrumentation in TKA. Weighted mean differences and risk ratios were determined for radiographic accuracy, operation time, hospital stay, blood loss, number of surgical trays required, and patient-reported outcome measures. Results - 21 RCTs involving 1,587 TKAs were included. Patient-specific instrumentation resulted in slightly more accurate hip-knee-ankle axis (0.3°), coronal femoral alignment (0.3°, femoral flexion (0.9°), tibial slope (0.7°), and femoral component rotation (0.5°). The risk ratio of a coronal plane outlier (> 3° deviation of chosen target) for the tibial component was statistically significantly increased in the PSI group (RR =1.64). No significance was found for other radiographic measures. Operation time, blood loss, and transfusion rate were similar. Hospital stay was significantly shortened, by approximately 8 h, and the number of surgical trays used decreased by 4 in the PSI group. Knee Society scores and Oxford knee scores were similar. Interpretation - Patient-specific instrumentation does not result in clinically meaningful improvement in alignment, fewer outliers, or better early patient-reported outcome measures. Efficiency is improved by reducing the number of trays used, but PSI does not reduce operation time. PMID:27249110

  3. Using Translated Instruments in Research

    ERIC Educational Resources Information Center

    Beauford, Judith E.; Nagashima, Yosuke; Wu, Ming-Hsun

    2009-01-01

    The "need for global exchange" for research is apparent in all areas of study, both because of the global interchange of commerce and the improvements that can be accomplished worldwide as people learn from one another. The globalization of higher education includes cross-cultural research projects often conducted by teams from many countries and…

  4. High-resolution dual-trap optical tweezers with differential detection: alignment of instrument components.

    PubMed

    Bustamante, Carlos; Chemla, Yann R; Moffitt, Jeffrey R

    2009-10-01

    Optical traps or "optical tweezers" have become an indispensable tool in understanding fundamental biological processes. Using our design, a dual-trap optical tweezers with differential detection, we can detect length changes to a DNA molecule tethering the trapped beads of 1 bp. By forming two traps from the same laser and maximizing the common optical paths of the two trapping beams, we decouple the instrument from many sources of environmental and instrumental noise that typically limit spatial resolution. The performance of a high-resolution instrument--the formation of strong traps, the minimization of background signals from trap movements, or the mitigation of the axial coupling, for example--can be greatly improved through careful alignment. This procedure, which is described in this article, starts from the laser and advances through the instrument, component by component. Alignment is complicated by the fact that the trapping light is in the near infrared (NIR) spectrum. Standard infrared viewing cards are commonly used to locate the beam, but unfortunately, bleach quickly. As an alternative, we use an IR-viewing charge-coupled device (CCD) camera equipped with a C-mount telephoto lens and display its image on a monitor. By visualizing the scattered light on a pair of irises of identical height separated by >12 in., the beam direction can be set very accurately along a fixed axis. PMID:20147041

  5. New instruments for solar research

    NASA Technical Reports Server (NTRS)

    Rust, David M.; O'Byrne, John W.; Sterner, Raymond E., II

    1990-01-01

    In fulfilment of its goal to develop early detection and warning of emerging solar magnetic fields, the Center for Applied Solar Physics (CASP) has designed and constructed a solar vector magnetograph (VMG) that will provide unique data on the sunspot regions where flares originate. The instrument is reportedly beginning to approach its goals of measuring all three components of the solar magnetic field with a sensitivity of 50 to 100 G and a spatial resolution on the sun of about 700 km (1 arcsec). Importance of new high-resolution capabilities is stressed and the interpretation of VMG measurements is discussed. The performance of the solar VMG, installed in a 6-m dome at the National Solar Observatory at Sacramento Peak in Sunspot, New Mexico, and its construction and environment are described; particular attention is given to the use and function of the filters. Initial results are examined, including a description and analysis of a magnetogram obtained after installation of an improved blocking filter.

  6. New instruments for solar research

    NASA Astrophysics Data System (ADS)

    Rust, David M.; O'Byrne, John W.; Sterner, Raymond E., II

    1990-06-01

    In fulfilment of its goal to develop early detection and warning of emerging solar magnetic fields, the Center for Applied Solar Physics (CASP) has designed and constructed a solar vector magnetograph (VMG) that will provide unique data on the sunspot regions where flares originate. The instrument is reportedly beginning to approach its goals of measuring all three components of the solar magnetic field with a sensitivity of 50 to 100 G and a spatial resolution on the sun of about 700 km (1 arcsec). Importance of new high-resolution capabilities is stressed and the interpretation of VMG measurements is discussed. The performance of the solar VMG, installed in a 6-m dome at the National Solar Observatory at Sacramento Peak in Sunspot, New Mexico, and its construction and environment are described; particular attention is given to the use and function of the filters. Initial results are examined, including a description and analysis of a magnetogram obtained after installation of an improved blocking filter.

  7. Instrumentation opportunities for ocean science research

    SciTech Connect

    Clark, H.L.

    1993-02-01

    Progress in ocean research is inextricably linked to advances in instrumentation and technology. Modern ocean science research increasingly deals with the dynamic physical, chemical, and biological processes within the oceans and how these processes interact over long time and spatial scales. This type of research requires strong links between scientists conducting the research and others developing the instruments and technology. The National Science Foundation (NSF) provides approximately 70 percent of all funding for basic ocean science research in the U.S. Research activities fall within the four primary ocean science disciplines: biological, chemical, physical oceanography, and marine geology and geophysics. Despite great diversity in observational needs between these diciplines, three general categories of instrument development projects sponsored by NSF reflect distinct community requirements. Demonstration if feasibility projects test an idea for improving existing instrumentation. Goals are readily achievable over a short duration and have modest budgets. Implementation projects are wide-ranging, multi-year projects involving development of new instrumentation. Instrumentation systems development projects integrate a number of observational and operational systems. These require cooperative efforts between scientists and engineers and are both lengthy and expensive. Given the diversity of ocean science activities, important roles exist for federal mission agencies, private and state research institutions, industry and individuals.

  8. A non-contacting vertical alignment system for mass properties measuring instruments

    SciTech Connect

    James, G.H. III; Suazo, J.E.; Varga, R.C.

    1993-11-01

    A non-contact system for alignment of objects on mass properties measuring instruments is described. Test parts can be aligned to within the capabilities of the user and the fixture to make the adjustments. The current implementation can align objects to less than .001 inches at two points with final requested adjustments of a few ten-thousands of an inch. The non-contact capability allows the alignment of objects which are too compliant or fragile for traditional contacting measurement methods. Also, this system allows the definition of a reference axis on objects which are not perfectly symmetric. The reference axis is defined at the top of the object by an appropriate marker and defined at the bottom by a best fit circle through the surface at a specified height. A general description of the hardware, procedures, and results are presented for the non-user. Appendices which contain a complete description of the software, usage, and mathematical implementation are provided for the reader who is interested in using or further developing the system.

  9. Instrumentation techniques for the automatic alignment of large, tiled fixed matrix displays

    NASA Astrophysics Data System (ADS)

    Marshall, P.

    2005-09-01

    Modern display systems for simulation applications, be they for aviation, naval, automotive or even large visualization and educational/entertainment systems, are all using a tiled approach to achieve high resolution and large fields of view. The aviation applications are particularly demanding, as the fidelity of the matching and blending between the tiled segments needs to be of a high order for flight simulation. This paper looks at the measurement instrumentation techniques that can be used in order to align such large and critical systems. Ultimately such measurement systems allow a fully automatic alignment of color, color uniformity, blending between tiles and gamma to be made. While front- or rear-projected systems are the main references for the analysis, much, if not most, of the principles outlined can apply to tiled large flat panel displays as well.

  10. Alignment Measurements of the Microwave Anisotropy Probe (MAP) Instrument in a Thermal/Vacuum Chamber

    NASA Technical Reports Server (NTRS)

    Hill, Michael D.; Herrera, Acey A.; Crane, J. Allen; Packard, Edward A.; Aviado, Carlos; Sampler, Henry P.

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a fall 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (approximately 0.2 degree) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back Gregorian telescopes to focus the microwave signals into 10 differential microwave receivers, via 20 feed horns. Proper alignment of the telescope reflectors and the feed horns at the operating temperature of 90 K is a critical element to ensure mission success. We describe the hardware and methods used to validate the displacement/deformation predictions of the reflectors and the microwave feed horns during thermal/vacuum testing of the reflectors and the microwave instrument. The smallest deformation predictions to be measured were on the order of +/- 0.030 inches (+/- 0.762 mm). Performance of these alignment measurements inside a thermal/vacuum chamber with conventional alignment equipment posed several limitations. The most troublesome limitation was the inability to send personnel into the chamber to perform the measurements during the test due to vacuum and the temperature extremes. The photogrammetry (PG) system was chosen to perform the measurements since it is a non- contact measurement system, the measurements can be made relatively quickly and accurately, and the photogrammetric camera can be operated remotely. The hardware and methods developed to perform the MAP alignment measurements using PG proved to be highly successful. The measurements met the desired requirements, for the metal structures enabling the desired distortions to be measured resolving deformations an order of magnitude smaller than the imposed requirements. Viable data were provided to the MAP Project for a full analysis of the on-orbit performance of the Instrument's microwave system.

  11. Transfer alignment from a personal locator system to a handheld or head-mounted instrument

    NASA Astrophysics Data System (ADS)

    Ojeda, Lauro; Borenstein, Johann

    2011-06-01

    This paper presents a method for computing position and attitude of an instrument attached to the human body such as a handheld or head-mounted video camera. The system uses two Inertial Measurement Units (IMUs). One IMU is part of our earlier-developed Personal Dead-Reckoning (PDR) system, which tracks the position and heading of a walking person relative to a known starting position. The other IMU is rigidly attached to the handheld or head-mounted instrument. Our existing PDR system is substantially more accurate than conventional IMU-based systems because the IMU is mounted on the foot of the user where error correction techniques can be applied that are unavailable for IMUs mounted anywhere else on the body. However, if the walker is waving a handheld or head-mounted instrument, the position and attitude of the instrument is not known. Equipping the instrument with an additional IMU is by itself an unsatisfactory solution because that IMU is subject to accelerometer and gyro drift, which, unlike in the case of the foot-mounted IMU, cannot be corrected and cause unbounded position and heading errors. Our approach uses transfer alignment techniques and takes advantage of the fact that the handheld IMU moves with the walker. This constraint is used to bound and correct errors by a Kalman filter. The paper explains our method and presents extensive experimental results. The results show up to a five-fold reduction in heading errors for the handheld IMU.

  12. Phase aligner for the Electronically Scanned Thinned Array Radiometer (ESTAR) instrument

    NASA Technical Reports Server (NTRS)

    Chren, William A., Jr.; Zomberg, Brian G.

    1993-01-01

    A prototype Phase Aligner (PA) or the Electronically Scanned Thinned Array Radiometer instrument has been designed and tested. Implemented in a single Xilinx XC3042PC84-125 Field Programmable Gate Array (FPGA), it is a dual-port register file which allows independent storage and phase coherent retrieval of antenna array data by the Central Processing Unit (CPU). It has dimensions of 4 x 20 bits and can be used at clock frequencies as high as 25 MHz. The ESTAR is a passive synthetic-aperture radiometer designed to sense soil moisture and ocean salinity at L-band.

  13. Aligning Objectives and Assessment in Responsible Conduct of Research Instruction

    PubMed Central

    Antes, Alison L.; DuBois, James M.

    2014-01-01

    Efforts to advance research integrity in light of concerns about misbehavior in research rely heavily on education in the responsible conduct of research (RCR). However, there is limited evidence for the effectiveness of RCR instruction as a remedy. Assessment is essential in RCR education if the research community wishes to expend the effort of instructors, students, and trainees wisely. This article presents key considerations that instructors and course directors must consider in aligning learning objectives with instructional methods and assessment measures, and it provides illustrative examples. Above all, in order for RCR educators to assess outcomes more effectively, they must align assessment to their learning objectives and attend to the validity of the measures used. PMID:25574258

  14. Learning the Concept of Researcher as Instrument in Qualitative Research

    ERIC Educational Resources Information Center

    Xu, Mengxuan Annie; Storr, Gail Blair

    2012-01-01

    The authors describe the process whereby a student with a background in economics was guided to understand the central role in qualitative research of the researcher as instrument. The instructor designed a three-part mock research project designed to provide experiential knowledge of the enterprise of qualitative research. Students, as neophyte…

  15. Experimental Estimation of CLASP Spatial and Spectral Resolutions: Results of the Instrument's Optical Alignment

    NASA Technical Reports Server (NTRS)

    Giono, G.; Katsukawa, Y.; Ishikawa, R.; Narukage, N.; Bando, T.; Kano, R.; Suematsu, Y.; Winebarger, A.; Kobayashi, K.; Auchere, F.

    2015-01-01

    The Chromospheric Lyman-Alpha SpectroPolarimeter is a sounding rocket experiment design to measure for the first time the polarization signal of the Lyman-Alpha line (121.6nm), emitted in the solar upper-chromosphere and transition region. This instrument aims to detect the Hanle effect's signature hidden in the Ly-alpha polarization, as a tool to probe the chromospheric magnetic field. Hence, an unprecedented polarization accuracy is needed ((is) less than 10 (exp -3). Nevertheless, spatial and spectral resolutions are also crucial to observe chhromospheric feature such as spicules, and to have precise measurement of the Ly-alpha line core and wings. Hence, this poster will present how the telescope and the spectrograph were separately aligned, and their combined spatial and spectral resolutions.

  16. Mobile Spectroscopic Instrumentation in Archaeometry Research.

    PubMed

    Vandenabeele, Peter; Donais, Mary Kate

    2016-01-01

    Mobile instrumentation is of growing importance to archaeometry research. Equipment is utilized in the field or at museums, thus avoiding transportation or risk of damage to valuable artifacts. Many spectroscopic techniques are nondestructive and micro-destructive in nature, which preserves the cultural heritage objects themselves. This review includes over 160 references pertaining to the use of mobile spectroscopy for archaeometry. Following a discussion of terminology related to mobile instrumental methods, results of a literature survey on their applications for cultural heritage objects is presented. Sections devoted to specific techniques are then provided: Raman spectroscopy, X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, laser-induced breakdown spectroscopy, and less frequently used techniques. The review closes with a discussion of combined instrumental approaches. PMID:26767631

  17. Recent Developments in the Alignment and Test Plans for the James Webb Space Telescope Integrated Science Instrument Module

    NASA Technical Reports Server (NTRS)

    Ohl, Raymond

    2008-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approximately 40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The SIs and Guider are mounted to a composite metering structure with outer dimensions of 2.1 x 2.2 x 1.9m. The SI and Guider units are integrated to the ISIM structure and optically tested at NASA/Goddard Space Flight Center as an instrument suite using an OTE SIMulator (OSIM). OSIM is a high-fidelity, cryogenic JWST telescope simulator that features a approximately 1.5m diameter powered mirror. The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. Temperature-induced mechanical SI alignment and structural changes are measured using a photogrammetric measurement system at ambient and cryogenic temperatures. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors in six degrees of freedom. SI performance, including focus, pupil shear and wavefront error, is evaluated at the operating temperature using OSIM. We present an updated plan for the assembly and ambient and cryogenic optical alignment, test and verification of the ISIM element.

  18. Solar Energy Research Center Instrumentation Facility

    SciTech Connect

    Meyer, Thomas, J.; Papanikolas, John, P.

    2011-11-11

    SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR

  19. Scholar Quest: A Residency Research Program Aligned with Faculty Goals

    PubMed Central

    Panchal, Ashish R.; Stolz, Uwe; Denninghoff, Kurt R.; Munger, Benson

    2014-01-01

    Introduction: The ACGME requires that residents perform scholarly activities prior to graduation, but this is difficult to complete and challenging to support. We describe a residency research program, taking advantage of environmental change aligning resident and faculty goals, to become a contributor to departmental cultural change and research development. Methods: A research program, Scholar Quest (SQ), was developed as a part of an Information Mastery program. The goal of SQ is for residents to gain understanding of scholarly activity through a mentor-directed experience in original research. This curriculum is facilitated by providing residents protected time for didactics, seed grants and statistical/staff support. We evaluated total scholarly activity and resident/faculty involvement before and after implementation (PRE-SQ; 2003–2005 and POST-SQ; 2007–2009). Results: Scholarly activity was greater POST-SQ versus PRE-SQ (123 versus 27) (p<0.05) with an incidence rate ratio (IRR)=2.35. Resident and faculty involvement in scholarly activity also increased PRE-SQ to POST-SQ (22 to 98 residents; 10 to 39 faculty, p<0.05) with an IRR=2.87 and 2.69, respectively. Conclusion: Implementation of a program using department environmental change promoting a resident longitudinal research curriculum yielded increased resident and faculty scholarly involvement, as well as an increase in total scholarly activity. PMID:24868308

  20. Updates to the optical alignment and test plan for the James Webb Space Telescope integrated science instrument module

    NASA Astrophysics Data System (ADS)

    Ohl, R.

    2009-08-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (~40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The SIs and Guider are mounted to a composite metering structure with outer dimensions of ~2.2x2.2x1.7m. The SI and Guider units are integrated to the ISIM structure and optically tested at NASA Goddard Space Flight Center as an instrument suite using a telescope simulator (Optical telescope element SIMulator; OSIM). OSIM is a high-fidelity, cryogenic JWST telescope simulator that features a ~1.5m diameter powered mirror. The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using optomechanical metrology. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors in six degrees of freedom. SI performance, including focus, pupil shear, pupil roll, boresight, wavefront error, and image quality, is evaluated at the operating temperature using OSIM. This work updates the assembly and ambient and cryogenic optical alignment, test and verification plan for ISIM.

  1. ARM Climate Research Facility Instrumentation Status and Information February 2010

    SciTech Connect

    Voyles, JW

    2010-03-25

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  2. ARM Climate Research Facility Instrumentation Status and Information October 2009

    SciTech Connect

    JW Voyles

    2009-10-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  3. ARM Climate Research Facility Instrumentation Status and Information March 2010

    SciTech Connect

    Voyles, JW

    2010-04-19

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  4. ARM Climate Research Facility Instrumentation Status and Information January 2010

    SciTech Connect

    JW Voyles

    2010-02-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  5. ARM Climate Research Facility Instrumentation Status and Information April 2010

    SciTech Connect

    Voyles, JW

    2010-05-15

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  6. ARM Climate Research Facility Instrumentation Status and Information December 2009

    SciTech Connect

    JW Voyles

    2010-12-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  7. ARM Climate Research Facility Monthly Instrument Report May 2010

    SciTech Connect

    Voyles, JW

    2010-06-21

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  8. ARM Climate Research Facility Monthly Instrument Report August 2010

    SciTech Connect

    Voyles, JW

    2010-09-28

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  9. ARM Climate Research Facility Monthly Instrument Report July 2010

    SciTech Connect

    Voyles, JW

    2010-08-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  10. ARM Climate Research Facility Monthly Instrument Report June 2010

    SciTech Connect

    Voyles, JW

    2010-07-13

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  11. ARM Climate Research Facility Monthly Instrument Report September 2010

    SciTech Connect

    Voyles, JW

    2010-10-18

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  12. Instrumentation for a radon research house

    SciTech Connect

    Nazaroff, W.W.; Revzan, K.L.; Robb, A.W.

    1981-07-01

    A highly automated monitoring and control system for studying radon and radon-daughter behavior in residences has been designed and built. The system has been installed in a research house, a test space contained in a two-story wood-framed building, which allows us to conduct controlled studies of (1) pollutant transport within and between rooms, (2) the dynamics of radon daughter behavior, and (3) techniques for controlling radon and radon daughters. The system's instrumentation is capable of measuring air-exchange rate, four-point radon concentration, individual radon daughter concentrations, indoor temerature and humidity, and outdoor weather parameters (temperature, humidity, modules, wind speed, and wind direction). It is also equipped with modules that control the injection of radon and tracer gas into the test space, the operation of the forced-air furnace, the mechanical ventilation system, and the mixing fans located in each room. A microcomputer controls the experiments and records the data on magnetic tape and on a printing terminal. The data on tape is transferred to a larger computer system for reduction and analysis. In this paper we describe the essential design and function of the instrumentation system, as a whole, singling out those components that measure ventilation rate, radon concentration, and radon daughter concentrations.

  13. An Attitude Scale on Individual Instrument and Individual Instrument Course: Validity-Reliability Research

    ERIC Educational Resources Information Center

    Kuçukosmanoglu, Hayrettin Onur

    2015-01-01

    The main purpose of this study is to develop a scale to determine students' attitude levels on individual instruments and individual instrument courses in instrument training, which is an important dimension of music education, and to conduct a validity-reliability research of the scale that has been developed. The scale consists of 16 items. The…

  14. Wave Probe - New Instrument For Space Research

    NASA Astrophysics Data System (ADS)

    Korepanov, V.; Dudkin, F.

    2007-12-01

    The dispersion relations are very important for the wave activity study in space plasmas. One of the most efficient methods for their analysis is the simultaneous measurements of spatial current density and magnetic field fluctuations during such a wave process. Whereas the measurement of the magnetic field is a routine task realized onboard practically every spacecraft (SC), the direct measurement of spatial current density (SCD) still remains a complicated scientific and technological problem. First attempt to solve it was executed in late 60-ties by a group headed by F. Mozer. They proposed and launched in a rocket experiment the device named "Split Langmuir Probe" (SLP) - two conducting plates separated by a thin insulated split. Unfortunately this experiment failed what diverted the attention of experimenters in space branch from this instrument for many years, practically till now. But the importance to know the SCD stimulated the development of new principles and devices to measure it. A short review of known versions is discussed. The newly evoked interest to this problem caused next attempt to improve the SLP construction and methodology of its application for SCD measurements, which resulted in first successful attempt in 1985: the measured SCD onboard Prognos-10 SC in the bow shock region was in rather good agreement with the calculated value. This attempt was continued onboard Interball-Tail SC (1995-2000) where again a qualitatively good coincidence of measured and calculated values was observed. The obtained experience and further theoretical research allowed developing a new instrument - Wave Probe - which is a combination of induction magnetometer and SLP in one body. Both on-ground tests in plasma chamber and the spatial experiment executed onboard Ukrainian "Sich-1M" SC (2004) showed that the combined in-situ simultaneous measurements of SCD and magnetic field fluctuations allowed obtaining the wave number of the whistler wave. The same wave

  15. Optomechanical Alignment of the Grating Wheel Mechanism for a Ground-based, Cryogenic, Near-Infrared Astronomy Instrument

    NASA Technical Reports Server (NTRS)

    Gutkowski, Sharon M.; Ohl, Raymond G.; Hagopian, John G.; Kraft, Stephen E.; Mentzell, J. Eric; Schepis, Joseph P.; Sparr, Leroy M.; Greenhouse, Matthew A.; Hyland, Jason; Mackenty, John W.

    2003-01-01

    We describe the population, optomechanical alignment, and alignment verification of near-infrared gratings on the grating wheel mechanism (GWM) for the Infrared Multi- Object Spectrometer (IRMOS). IRMOS is a cryogenic (80 K) facility instrument for the Mayall Telescope (3.8 m) at Kitt Peak National Observatory and a MEMS spectrometer concept demonstrator for NASA's James Webb Space Telescope. The IRMOS optics, bench, and mechanisms are predominantly made of Al 6061 -T651. The GWM consists of 13 planar diffraction gratings and one flat imaging mirror (58 x 57 mm), each mounted at a unique compound angle on a 31.8 cm diameter gear. The Al 6061 grating substrates are stress relieved for enhanced cryogenic performance and the optical surface is replicated from an off-the-shelf master. The imaging mirror is diamond turned and post-polished. The grating mechanism spans a projected diameter of approximately 48cm when fully assembled, utilizes several flexure designs throughout the system to accommodate thermal gradient situations, and is controlled using custom software with an off-the-shelf controller. Each optic is aligned in six degrees of freedom relative to the GWM coordinate system, which is defined relative to an optical alignment cube mounted at the center of the gear. The tip/tilt (Rx, Ry) orientation of a given grating is measured using the zero-order return from an autocollimating theodolite. Each optic's mount includes a one-piece shim located between the optic and the gear. The shim is machined to fine align each optic. We also describe alignment verification, where grating diffractive properties are compared to model predictions.

  16. Alignment of the Grating Wheel Mechanism for a Ground-Based, Cryogenic, Near-Infrared Astronomy Instrument

    NASA Technical Reports Server (NTRS)

    Gutkowski, Sharon M.; Ohl, Raymond G.; Hylan, Jason E.; Hagopian, John G.; Kraft, Stephen E.; Mentzell, J. Eric; Connelly, Joseph A.; Schepis, Joseph P.; Sparr, Leroy M.; Greenhouse, Matthew A.

    2003-01-01

    We describe the population, optomechanical alignment, and alignment verification of near-infrared gratings on the grating wheel mechanism (GWM) for the Infrared Multi-Object Spectrometer (IRMOS). IRMOS is a cryogenic (80 K), principle investigator-class instrument for the 2.1 m and Mayall 3.8 m telescopes at Kitt Peak National Observatory, and a MEMS spectrometer concept demonstrator for the James Webb Space Telescope. The GWM consists of 13 planar diffraction gratings and one flat imaging mirror (58 x 57 mm), each mounted at a unique compound angle on a 32 cm diameter gear. The mechanism is predominantly made of Al 6061. The grating substrates are stress relieved for enhanced cryogenic performance. The optical surfaces are replicated from off-the-shelf masters. The imaging mirror is diamond turned. The GWM spans a projected diameter of approx. 48 cm when fully assembled, utilizes several flexure designs to accommodate potential thermal gradients, and is controlled using custom software with an off-the-shelf controller. Under ambient conditions, each grating is aligned in six degrees of freedom relative to a coordinate system that is referenced to an optical alignment cube mounted at the center of the gear. The local tip/tilt (Rx/Ry) orientation of a given grating is measured using the zero-order return from an autocollimating theodolite. The other degrees of freedom are measured using a two-axis cathetometer and rotary table. Each grating's mount includes a one-piece shim located between the optic and the gear. The shim is machined to fine align each grating. We verify ambient alignment by comparing grating difractive properties to model predictions.

  17. Educational Leaders' Doctoral Research That Informed Strategies to Steer Their Organizations towards Cultural Alignment

    ERIC Educational Resources Information Center

    Taysum, Alison

    2016-01-01

    This research generates new knowledge about how 24 educational leaders in the USA and England used their doctoral research to build narrative capital to inform strategies to steer their organizations towards cultural alignment. Cultural alignment prevents forms of segregation rooted in nation-states' wider historiography of education segregation…

  18. Alignment Measurements of the Microwave Anisotropy Probe (MAP) Instrument in a Thermal/Vacuum Chamber Using Photogrammetry

    NASA Technical Reports Server (NTRS)

    Hill, Michael D.; Herrera, Acey A.; Crane, J. Allen; Packard, Edward A.; Aviado, Carlos; Sampler, Henry P.; Obenschain, Arthur (Technical Monitor)

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a late 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (< 0.3 deg at 90 GHz.) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back Gregorian telescopes to focus the microwave signals into 10 differential microwave receivers, via 20 feed horns. Proper alignment of the telescope reflectors and the feed horns at the operating temperature of 90 K is a critical element to ensure mission success. We describe the hardware and methods used to validate the displacement/deformation predictions of the reflectors and the microwave feed horns during thermal/vacuum testing of the reflectors and the microwave instrument. The smallest deformations to be resolved by the measurement system were on the order of +/- 0.030 inches (0.762 mm). Performance of these alignment measurements inside a thermal/vacuum chamber with conventional alignment equipment posed several limitations. A photogrammetry (PG) system was chosen to perform the measurements since it is a non-contact measurement system, the measurements can be made relatively quickly and accurately, and the photogrammetric camera can be operated remotely. The hardware and methods developed to perform the MAP alignment measurements using PG proved to be highly successful. The PG measurements met the desired requirements, enabling the desired deformations to be measured and even resolved to an order of magnitude smaller than the imposed requirements. Viable data were provided to the MAP Project for a full analysis of the on-orbit performance of the Instrument's microwave system.

  19. A neutron imaging device for sample alignment in a pulsed neutron scattering instrument

    SciTech Connect

    Grazzi, F.; Scherillo, A.; Zoppi, M.

    2009-09-15

    A neutron-imaging device for alignment purposes has been tested on the INES beamline at ISIS, the pulsed neutron source of Rutherford Appleton Laboratory (U.K.). Its use, in conjunction with a set of movable jaws, turns out extremely useful for scattering application to complex samples where a precise and well-defined determination of the scattering volume is needed.

  20. The Cincinnati Observatory as a Research Instrument for Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Abel, Nicholas; Regas, Dean; Flateau, Davin C.; Larrabee, Cliff

    2016-06-01

    The Cincinnati Observatory, founded in 1842, was the first public observatory in the Western Hemisphere. The history of Cincinnati is closely intertwined with the history of the Observatory, and with the history of science in the United States. Previous directors of the Observatory helped to create the National Weather Service, the Minor Planet Center, and the first astronomical journal in the U.S. The Cincinnati Observatory was internationally known in the late 19th century, with Jules Verne mentioning the Cincinnati Observatory in two of his books, and the Observatory now stands as a National Historic Landmark.No longer a research instrument, the Observatory is now a tool for promoting astronomy education to the general public. However, with the 11" and 16" refracting telescopes, the Observatory telescopes are very capable of collecting data to fuel undergraduate research projects. In this poster, we will discuss the history of the Observatory, types of student research projects capable with the Cincinnati Observatory, future plans, and preliminary results. The overall goal of this project is to produce a steady supply of undergraduate students collecting, analyzing, and interpreting data, and thereby introduce them to the techniques and methodology of an astronomer at an early stage of their academic career.

  1. Research instrumentation for tornado electromagnetics emissions detection

    NASA Technical Reports Server (NTRS)

    Jenkins, H. H.; Wilson, C. S.

    1977-01-01

    Instrumentation for receiving, processing, and recording HF/VHF electromagnetic emissions from severe weather activity is described. Both airborne and ground-based instrumentation units are described on system and subsystem levels. Design considerations, design decisions, and the rationale behind the decisions are given. Performance characteristics are summarized and recommendations for improvements are given. The objectives, procedures, and test results of the following are presented: (1) airborne flight test in the Midwest U.S.A. (Spring 1975) and at the Kennedy Space Center, Florida (Summer 1975); (2) ground-based data collected in North Georgia (Summer/Fall 1975); and (3) airborne flight test in the Midwest (late Spring 1976) and at the Kennedy Space Center, Florida (Summer 1976). The Midwest tests concentrated on severe weather with tornadic activity; the Florida and Georgia tests monitored air mass convective thunderstorm characteristics. Supporting ground truth data from weather radars and sferics DF nets are described.

  2. Instrumentation for Molecular Electronics Device Research

    NASA Astrophysics Data System (ADS)

    Kibel, Ashley Ann

    This dissertation describes work on three projects concerning the design and implementation of instrumentation used to study potential organic electronic devices. The first section describes the conducting atomic force microscope (CAFM) in the study of the mechanical and electronic interactions between DNA bases and nucleosides. Previous STM data suggested that an STM tip could recognize single base pairs through an electronic interaction after a functionalized tip made contact with a self assembled monolayer then was retracted. The conducting AFM was employed in order to understand the mechanical interactions of such a system and how they were affecting electrical responses. The results from the conducting AFM showed that the scanning probe system was measuring multiple base-pair interactions, and thus did not have single base resolution. Further, results showed that the conductance between a single base-nucleoside pair is below the detection limit of a potential commercial sequencing device. The second section describes the modifications of a scanning probe microscope in order to study the conductance of single organic molecules under illumination. Modifications to the scanning probe microscope are described as are the control and data analysis software for an experiment testing the single molecule conductance of an organic molecule under illumination. This instrument was then tested using a novel charge-separation molecule, which is being considered for its potential photovoltaic properties. The experiments showed that the instrumentation is capable of detecting differences in conductance upon laser illumination of the molecule on a transparent conductive surface. The third section describes measurements using the illuminated CAFM, as well as the design and construction of an illuminated mercury drop electrode apparatus. Both instruments were tested by attempting to observe photovoltaic behavior in a novel self-organized film of the charge-separation molecules

  3. Recommendations for future research in hypersonic instrumentation

    NASA Technical Reports Server (NTRS)

    Ocheltree, S. L.

    1993-01-01

    An overview of the NATO Advanced Research Workshop is presented. It describes the process followed to obtain a group consensus on the main technical recommendations for each of the five technical sessions of the Workshop and presents the general conclusions and recommendations for future research agreed upon by the workshop participants.

  4. Aeropropulsion 1987. Session 4: Instrumentation and Controls Research

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Lewis Research Center has had a long history of research directed toward advancing the national capability in the areas of propulsion research instrumentation and propulsion controls. Some of the major advances from this research that are currently in use are highlighted as well as some of the ongoing and planned research that will strongly impact the future capabilities. The presentations will cover the efforts on research instrumentation and controls as well as the research on high temperature electronics. This introductory section will focus on the major drivers or needs of the aeropropulsion industry that have shaped the instrumentation and controls research programs. Also covered will be the technological opportunities that have greatly impacted the program and that permitted break-throughs in several areas.

  5. Chapter 6: Instrumentation for Research and Management in Animal Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Defining thermal environments and an animal’s response to its environment is critical; this chapter ‘Chapter 6 - Instrumentation for Research and Management in Animal Agriculture’ of the book ‘Thermal Environment and Livestock Energetics’ deals with instrumentation with respect to physiological meas...

  6. Instrumentation Technology. Project Report Phase I with Research Findings.

    ERIC Educational Resources Information Center

    Sappe', Hoyt; Squires, Sheila S.

    This report provides results of Phase I of a project that researched the occupational area of instrumentation technology, established appropriate committees, and conducted task verification. These results are intended to guide development of a program designed to train instrumentation technicians. Section 1 contains general information: purpose of…

  7. The Automated Bicron Tester: Automated electronic instrument diagnostic, testing, and alignment system with records generation

    SciTech Connect

    Rao, G.S.; Maddox, S.R.; Turner, G.W.; Vandermolen, R.I.

    1995-11-01

    The Bicron Surveyor MX is a portable radiation monitoring instrument used by the Office of Radiation Protection at Oak Ridge National Laboratory. This instrument must be calibrated in order to assure reliable operation. A manual calibration procedure was developed, but it was time consuming and repetitive. Therefore, an automated tester station that would allow the technicians to calibrate the instruments faster and more reliably was developed. With the automated tester station, calibration records and accountability could be generated and maintained automatically. This allows the technicians to concentrate on repairing defective units. The Automated Bicron Tester consists of an operator interface, an analog board, and a digital controller board. The panel is the user interface that allows the technician to communicate with the tester. The analog board has an analog-to-digital converter (ADC) that converts the signals from the instrument into digital data that the tester can manipulate. The digital controller board contains the circuitry to perform the test and to communicate the results to the host personal computer (PC). The tester station is connected to the unit under test through a special test harness that attaches to a header on the Bicron. The tester sends pulse trains to the Bicron and measures the resulting meter output. This is done to determine if the unit is functioning properly. The testers are connected to the host PC through an RS-485 serial line. The host PC polls all the tester stations that are connected to it and collects data from those that have completed a calibration. It logs these data and stores the record in a format ready for export to the Maintenance, Accountability, Jobs, and Inventory Control (MAJIC) database. It also prints a report. The programs for the Automated Bicron Tester and the host are written in the C language.

  8. Global alignment optimization strategies, procedures, and tools for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    NASA Astrophysics Data System (ADS)

    Bos, Brent J.; Howard, Joseph M.; Young, Philip J.; Gracey, Renee; Seals, Lenward T.; Ohl, Raymond G.

    2012-09-01

    During cryogenic vacuum testing of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM), the global alignment of the ISIM with respect to the designed interface of the JWST optical telescope element (OTE) will be measured through a series of optical characterization tests. These tests will determine the locations and orientations of the JWST science instrument projected focal surfaces and entrance pupils with respect to their corresponding OTE optical interfaces. Thermal, finite element and optical modeling will then be used to predict the on-orbit optical performance of the observatory. If any optical performance non-compliances are identified, the ISIM will be adjusted to improve its performance. If this becomes necessary, ISIM has a variety of adjustments that can be made. The lengths of the six kinematic mount struts that attach the ISIM to the OTE can be modified and five science instrument focus positions and two pupil positions can be individually adjusted as well. In order to understand how to manipulate the ISIM’s degrees of freedom properly and to prepare for the ISIM flight model testing, we have completed a series of optical-mechanical analyses to develop and identify the best approaches for bringing a non-compliant ISIM Element back into compliance. During this work several unknown misalignment scenarios were produced and the simulated optical performance metrics were input into various mathematical modeling and optimization tools to determine how the ISIM degrees of freedom should be adjusted to provide the best overall optical performance.

  9. Thermal and Alignment Analysis of the Instrument-Level ATLAS Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Bradshaw, Heather

    2012-01-01

    This paper describes the thermal analysis and test design performed in preparation for the ATLAS thermal vacuum test. NASA's Advanced Topographic Laser Altimeter System (ATLAS) will be flown as the sole instrument aboard the Ice, Cloud, and land Elevation Satellite-2 (ICESat-2). It will be used to take measurements of topography and ice thickness for Arctic and Antarctic regions, providing crucial data used to predict future changes in worldwide sea levels. Due to the precise measurements ATLAS is taking, the laser altimeter has very tight pointing requirements. Therefore, the instrument is very sensitive to temperature-induced thermal distortions. For this reason, it is necessary to perform a Structural, Thermal, Optical Performance (STOP) analysis not only for flight, but also to ensure performance requirements can be operationally met during instrument-level thermal vacuum testing. This paper describes the thermal model created for the chamber setup, which was used to generate inputs for the environmental STOP analysis. This paper also presents the results of the STOP analysis, which indicate that the test predictions adequately replicate the thermal distortions predicted for flight. This is a new application of an existing process, as STOP analyses are generally performed to predict flight behavior only. Another novel aspect of this test is that it presents the opportunity to verify pointing results of a STOP model, which is not generally done. It is possible in this case, however, because the actual pointing will be measured using flight hardware during thermal vacuum testing and can be compared to STOP predictions.

  10. Stray light in PICARD SODISM instrument: design, check, flight results, and alignment issues

    NASA Astrophysics Data System (ADS)

    Etcheto, P.; Meftah, M.; Meissonnier, M.; Irbah, A.; Assus, P.; Thuillier, G.

    2011-10-01

    The PICARD satellite is dedicated to the monitoring of solar activity. It carries several imaging and radiometric instruments. One of them, SODISM, is a high-resolution radio-imaging telescope measuring the Sun diameter and total flux in near UV and visible wavelengths. Along with mirrors, SODISM includes highly reflective filters and attenuators, which generate ghost images. These disturb the Sun edge area, the total flux measurement and also the fine aiming channel. This is compounded with tilt tolerances, which shift and modify the ghosts images. Stray light was studied through ASAP simulation, with broad sources and high order splits. Each path was studied separately, checking its effect on instrument performance and the possible effect of tilts. Some design improvements allowed to reduce the most critical paths, while others, although relatively intense, stood clear from the critical areas. However ground tests and flight results show some residual ghosts, which could not be fully suppressed due to mechanical tolerances. They shall be taken into account by image processing.

  11. Advanced instrumentation for aircraft icing research

    NASA Technical Reports Server (NTRS)

    Bachalo, W.; Smith, J.; Rudoff, R.

    1990-01-01

    A compact and rugged probe based on the phase Doppler method was evaluated as a means for characterizing icing clouds using airborne platforms and for advancing aircraft icing research in large scale wind tunnels. The Phase Doppler Particle Analyzer (PDPA) upon which the new probe was based is now widely recognized as an accurate method for the complete characterization of sprays. The prototype fiber optic-based probe was evaluated in simulated aircraft icing clouds and found to have the qualities essential to providing information that will advance aircraft icing research. Measurement comparisons of the size and velocity distributions made with the standard PDPA and the fiber optic probe were in excellent agreement as were the measurements of number density and liquid water content. Preliminary testing in the NASA Lewis Icing Research Tunnel (IRT) produced reasonable results but revealed some problems with vibration and signal quality at high speeds. The cause of these problems were identified and design changes were proposed to eliminate the shortcomings of the probe.

  12. Advanced research in instrumentation and diagnostics technology

    SciTech Connect

    Sheen, S.H.; Lawrence, W.P.; Raptis, A.C.

    1992-09-01

    this research project will develop an ultrasonic flow imaging system based on tomographic technique. Initially, we will demonstrate both the reflection and diffraction tomographic applied to flow imaging. Then, the direct inversion problem will be examined. In this paper, we present the initial assessment of the feasibility and the evaluation of practical wedge designs. Major tasks of the project include (1) a feasibility study, (2) evaluation of sensing geometry and wedge design, (3) development of image reconstruction algorithm, and (4) flow tests of the imaging system. At present, we have completed the feasibility study and are in the process of evaluating wedge design.

  13. Research on geothermal chemistry and advanced instrumentation

    NASA Astrophysics Data System (ADS)

    Robertus, R. J.; Shannon, D. W.; Sullivan, R. G.; Kindle, C. H.; Pool, K. H.

    1985-09-01

    Research at the Pacific Northwest Laboratory (PNL) focuses on long-term geothermal power plant reliability. Past work concentrated on development of continuous high-temperature probes for monitoring process variables. PNL also completed a comprehensive handbook of brine treatment processes as they relate to injection well longevity. A recently completed study analyzed corrosion in the hydrocarbon system of a binary cycle plant. Over the two-year monitoring period, corrosion rates were less than 1 MPY in any part of the hydrocarbon system. The system was kept completely dry so the rates seem reasonable. Present projects include: (1) determination of gas breakout conditions at the Herber Binary Demonstration Plant operated by San Diego Gas and Electric Company; (2) generation of water mixing solubility data; (3) installation of prototype leak detectors at the Herber Plant; and (4) evaluation of state-of-the-art particle counters.

  14. Foundations of Intervention Research in Instrumental Practice.

    PubMed

    Hatfield, Johannes L; Lemyre, Pierre-Nicolas

    2015-01-01

    The goals of the present study are to evaluate, implement, and adapt psychological skills used in the realm of sports into music performance. This research project also aims to build foundations on how to implement future interventions to guide music students on how to optimize practice toward performance. A 2-month psychological skills intervention was provided to two students from the national music academy's bachelor program in music performance to better understand how to adapt and construct psychological skills training programs for performing music students. The program evaluated multiple intervention tools including the use of questionnaires, performance profiling, iPads, electronic practice logs, recording the perceived value of individual and combined work, as well as the effectiveness of different communication forms. Perceived effects of the intervention were collected through semi-structured interviews, observations, and logs. PMID:26834660

  15. Foundations of Intervention Research in Instrumental Practice

    PubMed Central

    Hatfield, Johannes L.; Lemyre, Pierre-Nicolas

    2016-01-01

    The goals of the present study are to evaluate, implement, and adapt psychological skills used in the realm of sports into music performance. This research project also aims to build foundations on how to implement future interventions to guide music students on how to optimize practice toward performance. A 2-month psychological skills intervention was provided to two students from the national music academy's bachelor program in music performance to better understand how to adapt and construct psychological skills training programs for performing music students. The program evaluated multiple intervention tools including the use of questionnaires, performance profiling, iPads, electronic practice logs, recording the perceived value of individual and combined work, as well as the effectiveness of different communication forms. Perceived effects of the intervention were collected through semi-structured interviews, observations, and logs. PMID:26834660

  16. Research instrumentation for hot section components of turbine engines

    NASA Technical Reports Server (NTRS)

    Englund, D. R.

    1986-01-01

    Programs to develop research instrumentation for use on hot section components of turbine engines are discussed. These programs can be separated into two categories: one category includes instruments which can measure the environment within the combustor and turbine components, the other includes instruments which measure the response of engine components to the imposed environment. Included in the first category are instruments to measure total heat flux and fluctuating gas temperature. High temperature strain measuring systems, thin film sensors (e.g., turbine blade thermocouples) and a system to view the interior of a combustor during engine operation are programs which comprise the second category. The paper will describe the state of development of these sensors and measuring systems and, in some cases, show examples of measurements made with this instrumentation. The discussion will cover work done at NASA Lewis and at various contractor facilities.

  17. Ambient optomechanical alignment and pupil metrology for the flight instruments aboard the James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Coulter, Phillip; Beaton, Alexander; Gum, Jeffery S.; Hadjimichael, Theodore J.; Hayden, Joseph E.; Hummel, Susann; Hylan, Jason E.; Lee, David; Madison, Timothy J.; Maszkiewicz, Michael; Mclean, Kyle F.; McMann, Joseph; Melf, Markus; Miner, Linda; Ohl, Raymond G.; Redman, Kevin; Roedel, Andreas; Schweiger, Paul; Te Plate, Maurice; Wells, Martyn; Wenzel, Greg W.; Williams, Patrick K.; Young, Jerrod

    2014-09-01

    While efforts within the optics community focus on the development of high-quality systems and data products, comparatively little attention is paid to their use. Our standards for verification and validation are high; but in some user domains, standards are either lax or do not exist at all. In forensic imagery analysis, for example, standards exist to judge image quality, but do not exist to judge the quality of an analysis. In litigation, a high quality analysis is by default the one performed by the victorious attorney's expert. This paper argues for the need to extend quality standards into the domain of imagery analysis, which is expected to increase in national visibility and significance with the increasing deployment of unmanned aerial vehicle—UAV, or "drone"—sensors in the continental U. S.. It argues that like a good radiometric calibration, made as independent of the calibrated instrument as possible, a good analysis should be subject to standards the most basic of which is the separation of issues of scientific fact from analysis results.

  18. Developing Multiple Language Versions of Instruments for Intercultural Research

    PubMed Central

    Erkut, Sumru

    2011-01-01

    This article examines the strengths and weaknesses of several translation techniques currently in use through the lens of emerging opinions on the science and ethics of intercultural research. Broad scientific and ethical dimensions relevant to translating instruments and a distinction between generating multiple language forms of two kinds of instruments are introduced: those in which wording in the source language cannot be altered and those in which constraints of the target language can lead to changes in the original instrument's wording. Developmental psychologists engaged in intercultural research can consider techniques for minimizing the influence of Western perspectives while pursuing conceptual equivalence in order to satisfy science's concern for internal validity of translated instruments. PMID:21423824

  19. Remote sensing technology research and instrumentation platform design

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An instrumented pallet concept and definition of an aircraft with performance and payload capability to meet NASA's airborne turbulent flux measurement needs for advanced multiple global climate research and field experiments is presented. The report addresses airborne measurement requirements for general circulation model sub-scale parameterization research, specifies instrumentation capable of making these measurements, and describes a preliminary support pallet design. Also, a review of aircraft types and a recommendation of a manned and an unmanned aircraft capable of meeting flux parameterization research needs is given.

  20. The petrographic microscope: Evolution of a mineralogical research instrument

    USGS Publications Warehouse

    Kile, D.E.

    2003-01-01

    The petrographic microscope, designed to observe and measure the optical properties of minerals as a means of identifying them, has provided a foundation for mineralogical and petrological research for more than 120 years. Much of what is known today in these fields is attributable to this instrument, the development of which paralleled an evolution of fundamental optical theory and its correlation with mineral structure and composition. This instrument and its related accessories have evolved through a range of models and designs, which are in themselves distinctive for their scientific function and elegant construction, and are today prized by collectors of scientific instruments.

  1. Lost in Translation: Aligning Strategies for Research in New Zealand

    ERIC Educational Resources Information Center

    Billot, Jennie; Codling, Andrew

    2012-01-01

    In New Zealand, the funding of higher education research has been influenced by revised policy-driven imperatives. Amidst the institutional reactions to new criteria for governmental funding, individual academics are being asked to increase their productivity in order for their employing institution to access public funding. For this to occur,…

  2. Multidimensional Dyspnea Profile: an instrument for clinical and laboratory research

    PubMed Central

    O'Donnell, Carl R.; Guilfoyle, Tegan E.; Parshall, Mark B.; Schwartzstein, Richard M.; Meek, Paula M.; Gracely, Richard H.; Lansing, Robert W.

    2015-01-01

    There is growing awareness that dyspnoea, like pain, is a multidimensional experience, but measurement instruments have not kept pace. The Multidimensional Dyspnea Profile (MDP) assesses overall breathing discomfort, sensory qualities, and emotional responses in laboratory and clinical settings. Here we provide the MDP, review published evidence regarding its measurement properties and discuss its use and interpretation. The MDP assesses dyspnoea during a specific time or a particular activity (focus period) and is designed to examine individual items that are theoretically aligned with separate mechanisms. In contrast, other multidimensional dyspnoea scales assess recalled recent dyspnoea over a period of days using aggregate scores. Previous psychophysical and psychometric studies using the MDP show that: 1) subjects exposed to different laboratory stimuli could discriminate between air hunger and work/effort sensation, and found air hunger more unpleasant; 2) the MDP immediate unpleasantness scale (A1) was convergent with common dyspnoea scales; 3) in emergency department patients, two domains were distinguished (immediate perception, emotional response); 4) test–retest reliability over hours was high; 5) the instrument responded to opioid treatment of experimental dyspnoea and to clinical improvement; 6) convergent validity with common instruments was good; and 7) items responded differently from one another as predicted for multiple dimensions. PMID:25792641

  3. A Framework for Evaluating and Enhancing Alignment in Self-Regulated Learning Research

    PubMed Central

    Dent, Amy L.; Hoyle, Rick H.

    2015-01-01

    We discuss the articles of this special issue with reference to an important yet previously only implicit dimension of study quality: alignment across the theoretical and methodological decisions that collectively define an approach to self-regulated learning. Integrating and extending work by leaders in the field, we propose a framework for evaluating alignment in the way self-regulated learning research is both conducted and reported. Within this framework, the special issue articles provide a springboard for discussing methodological promises and pitfalls of increasingly sophisticated research on the dynamic, contingent, and contextualized features of self-regulated learning. PMID:25825589

  4. School Principal Evaluation in Wyoming: Alignment between Instruments Used to Evaluate School Principals in Wyoming and the ISLLC 2008 Standards for School Leaders

    ERIC Educational Resources Information Center

    Woodford, Rick

    2012-01-01

    This study is premised on the discrepancy that exists in the standards used to train and credential school principals and the elements of principal evaluation found on evaluation instruments used to evaluate the performance of school principals in Wyoming school districts. The purpose of this study was to explore the alignment between the ISLLC…

  5. Fidelity of Implementation and Instructional Alignment in Response to Intervention Research

    ERIC Educational Resources Information Center

    Hill, David R.; King, Seth A.; Lemons, Christopher J.; Partanen, Jane N.

    2012-01-01

    In this review, we explore the extent to which researchers evaluating the efficacy of Tier 2 elementary reading interventions within the framework of Response to Intervention reported on fidelity of implementation and alignment of instruction between tiers. A literature search identified 22 empirical studies from which conclusions were drawn.…

  6. Southwest Research Institute astronomer Dan Durda checks the alignment of the SWUIS-A Xybion digital

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Southwest Research Institute astronomer Dan Durda checks the alignment of the SWUIS-A Xybion digital camera mounted in the rear cockpit of a NASA Dryden F/A-18B before taking off on an astronomy mission to search for small vulcanoids (asteroids) that may be orbiting between the sun and the planet Mercury.

  7. Communities of Practice: Engagement, Imagination, and Alignment in Research on Teacher Education.

    ERIC Educational Resources Information Center

    Au, Kathryn H.

    2002-01-01

    Describes research on teacher education designed to create a system for preparing and supporting effective literacy teachers for a single diverse community, conceptualizing teacher education as the process of developing and linking communities of practice following three modes of belonging (engagement, imagination, and alignment) and concluding…

  8. Research and Development on a Public Attitude Instrument for Stuttering

    ERIC Educational Resources Information Center

    St. Louis, Kenneth O.

    2012-01-01

    This paper summarizes research associated with the development of the "Public Opinion Survey of Human Attributes-Stuttering" ("POSHA-S"), a survey instrument designed to provide a worldwide standard measure of public attitudes toward stuttering. Pilot studies with early experimental prototypes of the "POSHA-S" are summarized that relate to…

  9. Naturalistic Observation as a Research Instrument in Curriculum Development.

    ERIC Educational Resources Information Center

    Berlak, Harold

    A number of problems are identified and questions raised about the usefulness of conventional instruments of educational and psychological measurement in curriculum evaluation and research. Four purposes of curriculum evaluation data are identified: (1) advancement of science, (2) curriculum revision, (3) provision of data for the formulation of…

  10. Shuttle Tethered Aerothermodynamics Research Facilty (STARFAC) instrumentation requirements

    NASA Technical Reports Server (NTRS)

    Wood, G. M.; Siemers, P. M.; Carlomagno, G. M.; Hoffman, J.

    1986-01-01

    The instrumentation requirements for the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) are presented. The typical physical properties of the terrestrial atmosphere are given along with representative atmospheric daytime ion concentrations and the equilibrium and nonequilibrium gas property comparison from a point away from a wall. STARFAC science and engineering measurements are given as are the TSS free stream gas analysis. The potential nonintrusive measurement techniques for hypersonic boundary layer research are outlined along with the quantitative physical measurement methods for aerothermodynamic studies.

  11. Strategies for Using the Views on Scientific Inquiry VOSI Instrument for Astronomy Education Research

    NASA Astrophysics Data System (ADS)

    Slater, Stephanie; Lyons, D. J.; Slater, T. F.; Astronomy, Center; Physics Education ResearchCAPER Team

    2011-01-01

    As astronomy education research, AER, becomes more sophisticated, so increases the number of assessment instruments available to the community. We are finding significant success with the "Views on Scientific Inquiry,” or VOSI, instrument for targeting how students’ understanding of science's model for progress. Initially developed by Rene Schwartz, Norman Lederman and colleagues, the VOSI is an open-ended written or interview instrument focusing on eliciting elements of scientific inquiry. The VOSI team examined how a number of cross-disciplinary scientists viewed scientific inquiry to create the VOSI. The underlying hope was to find a way to measure enhancements in how students could learn more about scientific inquiry and understand more about how students are apt to go into STEM fields or, at least, become more science literate citizens who value science. The VOSI measures as many as eight categories of science attributes aligned with the goals of education including: descriptive, conceptualization, problem solving, ethical reasoning, scientific values and attitudes, communication, collaboration, and self-assessment. Surprisingly, these categories seem to receive the only a scant amount of attention in a conventional ASTRO 101 class. We propose that a parallel direction for fruitful research and development in astronomy education research is enhanced VOSI scores rather than only enhanced astronomy content knowledge.

  12. Impact of new instrumentation on advanced turbine research

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1980-01-01

    A description is presented of an orderly test program that progresses from the simplest stationary geometry to the more complex, three dimensional, rotating turbine stage. The instrumentation requirements for this evolution of testing are described. The heat transfer instrumentation is emphasized. Recent progress made in devising new measurement techniques has greatly improved the development and confirmation of more accurate analytical methods for the prediction of turbine performance and heat transfer. However, there remain challenging requirements for novel measurement techniques that could advance the future research to be done in rotating blade rows of turbomachines.

  13. Airborne Instrumentation Needs for Climate and Atmospheric Research

    SciTech Connect

    McFarquhar, Greg; Schmid, Beat; Korolev, Alexei; Ogren, John A.; Russell, P. B.; Tomlinson, Jason M.; Turner, David D.; Wiscombe, Warren J.

    2011-10-06

    Observational data are of fundamental importance for advances in climate and atmospheric research. Advances in atmospheric science are being made not only through the use of ground-based and space-based observations, but also through the use of in-situ and remote sensing observations acquired on instrumented aircraft. In order for us to enhance our knowledge of atmospheric processes, it is imperative that efforts be made to improve our understanding of the operating characteristics of current instrumentation and of the caveats and uncertainties in data acquired by current probes, as well as to develop improved observing methodologies for acquisition of airborne data.

  14. Research and development of network virtual instrument laboratory

    NASA Astrophysics Data System (ADS)

    Cui, Hongmei; Pei, Xichun; Ma, Hongyue; Ma, Shuoshi

    2006-11-01

    A software platform of the network virtual instrument test laboratory has been developed to realize the network function of the test and signal analysis as well as the share of the hardware based on the data transmission theory and the study of the present technologies of the network virtual instrument. The whole design procedure was also presented in this paper. The main work of the research is as follows. 1. A suitable scheme of the test system with B/S mode and the virtual instrument laboratory with BSDA (Browser/Server/Database/Application) mode was determined. 2. The functions were classified and integrated by adopting the multilayer structure. The application for the virtual instruments running in the client terminal and the network management server managing the multiuser in the test laboratory according to the "Concurrent receival, sequential implementation" strategy in Java as well as the code of the test server application responding the client's requests of test and signal analysis in LabWindows/CVI were developed. As the extending part of network function of the original virtual test and analysis instruments, a software platform of network virtual instrument test laboratory was built as well. 3. The communication of the network data between Java and the LabWindows/CVI was realized. 4. The database was imported to store the data as well as the correlative information acquired by the server and help the network management server to manage the multiuser in the test laboratory. 5. A website embedding Java Applet of virtual instrument laboratory with the on-line help files was designed.

  15. ARM Climate Research Facility Quarterly Instrument Report Fourth Quarter: October 1–December 30, 2010

    SciTech Connect

    Voyles, JW

    2011-01-17

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  16. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    SciTech Connect

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  17. NASA Research For Instrument Approaches To Closely Spaced Parallel Runways

    NASA Technical Reports Server (NTRS)

    Elliott, Dawn M.; Perry, R. Brad

    2000-01-01

    Within the NASA Aviation Systems Capacity Program, the Terminal Area Productivity (TAP) Project is addressing airport capacity enhancements during instrument meteorological condition (IMC). The Airborne Information for Lateral Spacing (AILS) research within TAP has focused on an airborne centered approach for independent instrument approaches to closely spaced parallel runways using Differential Global Positioning System (DGPS) and Automatic Dependent Surveillance-Broadcast (ADS-B) technologies. NASA Langley Research Center (LaRC), working in partnership with Honeywell, Inc., completed in AILS simulation study, flight test, and demonstration in 1999 examining normal approaches and potential collision scenarios to runways with separation distances of 3,400 and 2,500 feet. The results of the flight test and demonstration validate the simulation study.

  18. Cryogenic performance of a high precision photogrammetry system for verification of the James Webb Space Telescope Integrated Science Instrument Module and associated ground support equipment structural alignment requirements

    NASA Astrophysics Data System (ADS)

    Nowak, Maria D.; Cleveland, Paul E.; Cofie, Emmanuel; Crane, J. Allen; Davila, Pamela S.; Eegholm, Bente H.; Hammond, Randolph P.; Heaney, James B.; Hylan, Jason E.; Johnston, John D.; Ohl, Raymond G.; Orndorff, Joseph D.; Osgood, Dean L.; Redman, Kevin W.; Sampler, Henry P.; Smee, Stephen A.; Stock, Joseph M.; Threat, Felix T.; Woodruff, Robert A.; Young, Philip J.

    2010-08-01

    The James Webb Space Telescope (JWST) is a general astrophysics mission which consists of a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (~35K). The JWST Observatory architecture includes the Optical Telescope Element and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The alignment philosophy of ISIM is such that the cryogenic changes in the alignment of the SI interfaces are captured in the ISIM alignment error budget. The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. The ISIM structure is thermally cycled and temperature-induced structural changes are concurrently measured with a photogrammetry metrology system to ensure they are within requirements. We compare the ISIM photogrammetry system performance to the ISIM metrology requirements and describe the cryogenic data acquired to verify photogrammetry system level requirements, including measurement uncertainty. The ISIM photogrammetry system is the baseline concept for future tests involving the Optical Telescope Element (OTE) and Observatory level testing at Johnson Space Flight Center.

  19. Research Update: The electronic structure of hybrid perovskite layers and their energetic alignment in devices

    NASA Astrophysics Data System (ADS)

    Olthof, Selina

    2016-09-01

    In recent years, the interest in hybrid organic-inorganic perovskites has increased at a rapid pace due to their tremendous success in the field of thin film solar cells. This area closely ties together fundamental solid state research and device application, as it is necessary to understand the basic material properties to optimize the performances and open up new areas of application. In this regard, the energy levels and their respective alignment with adjacent charge transport layers play a crucial role. Currently, we are lacking a detailed understanding about the electronic structure and are struggling to understand what influences the alignment, how it varies, or how it can be intentionally modified. This research update aims at giving an overview over recent results regarding measurements of the electronic structure of hybrid perovskites using photoelectron spectroscopy to summarize the present status.

  20. The Portable Dynamic Fundus Instrument: Uses in telemedicine and research

    NASA Technical Reports Server (NTRS)

    Hunter, Norwood; Caputo, Michael; Billica, Roger; Taylor, Gerald; Gibson, C. Robert; Manuel, F. Keith; Mader, Thomas; Meehan, Richard

    1994-01-01

    For years ophthalmic photographs have been used to track the progression of many ocular diseases such as macular degeneration and glaucoma as well as the ocular manifestations of diabetes, hypertension, and hypoxia. In 1987 a project was initiated at the Johnson Space Center (JSC) to develop a means of monitoring retinal vascular caliber and intracranial pressure during space flight. To conduct telemedicine during space flight operations, retinal images would require real-time transmissions from space. Film-based images would not be useful during in-flight operations. Video technology is beneficial in flight because the images may be acquired, recorded, and transmitted to the ground for rapid computer digital image processing and analysis. The computer analysis techniques developed for this project detected vessel caliber changes as small as 3 percent. In the field of telemedicine, the Portable Dynamic Fundus Instrument demonstrates the concept and utility of a small, self-contained video funduscope. It was used to record retinal images during the Gulf War and to transmit retinal images from the Space Shuttle Columbia during STS-50. There are plans to utilize this device to provide a mobile ophthalmic screening service in rural Texas. In the fall of 1993 a medical team in Boulder, Colorado, will transmit real-time images of the retina during remote consultation and diagnosis. The research applications of this device include the capability of operating in remote locations or small, confined test areas. There has been interest shown utilizing retinal imaging during high-G centrifuge tests, high-altitude chamber tests, and aircraft flight tests. A new design plan has been developed to incorporate the video instrumentation into face-mounted goggle. This design would eliminate head restraint devices, thus allowing full maneuverability to the subjects. Further development of software programs will broaden the application of the Portable Dynamic Fundus Instrument in

  1. Instrumentation and Equipment for Three Independent Research Labs

    SciTech Connect

    Darlene Roth

    2012-03-29

    Completed in 2011, Albright's new Science Center includes three independent student and faculty research labs in Biology, Chemistry/Biochemistry, and Physics (separate from teaching labs). Providing independent research facilities, they eliminate disruptions in classrooms and teaching labs, encourage and accommodate increased student interest, and stimulate advanced research. The DOE grant of $369,943 enabled Albright to equip these advanced labs for 21st century science research, with much instrumentation shared among departments. The specialty labs will enable Albright to expand its student-faculty research program to meet growing interest, help attract superior science students, maximize faculty expertise, and continue exceeding its already high rates of acceptance for students applying for postgraduate education or pharmaceutical research positions. Biology instrumentation/equipment supports coursework and independent and collaborative research by students and faculty. The digital shaker, CO{sub 2} and water bath incubators (for controlled cell growth), balance, and micropipettes support cellular biology research in the advanced cell biology course and student-faculty research into heavy metal induction of heat shock proteins in cultured mammalian cells and the development of PCR markers from different populations of the native tree, Franklinia. The gravity convection oven and lyophilizer support research into physical and chemical analysis of floodplain sediments used in assessment of riparian restoration efforts. The Bio-Rad thermocycler permits fast and accurate DNA amplification as part of research into genetic diversity in small mammal populations and how those populations are affected by land-use practices and environmental management. The Millipore water deionizing system and glassware washer provide general support of the independent research lab and ensure quality control of coursework and interdisciplinary research at the intersection of biology

  2. A new approach to helicopter rotor blade research instrumentation

    NASA Technical Reports Server (NTRS)

    Knight, V. H., Jr.

    1978-01-01

    A rotor-blade-mounted telemetry instrumentation system developed and used in flight tests by the NASA/Langley Research Center is described. The system uses high-speed digital techniques to acquire research data from miniature pressure transducers on advanced rotor airfoils which are flight tested using an AH-1G helicopter. The system employs microelectronic PCM multiplexer-digitizer stations located remotely on the blade and in a hub-mounted metal canister. The electronics contained in the canister digitizes up to 16 sensors, formats this data with serial PCM data from the remote stations, and transmits the data from the canister which is above the plane of the rotor. Data is transmitted over an RF link to the ground for real-time monitoring and to the helicopter fuselage for tape recording.

  3. Virtual preoperative measurement and surgical manipulation of sagittal spinal alignment using a novel research and educational software program.

    PubMed

    Pettigrew, David B; Morgan, Chad J; Anderson, R Brian; Wilsey, Philip A; Kuntz, Charles

    2010-03-01

    Understanding regional as well as global spinal alignment is increasingly recognized as important for the spine surgeon. A novel software program for virtual preoperative measurement and surgical manipulation of sagittal spinal alignment was developed to provide a research and educational tool for spine surgeons. This first-generation software program provides tools to measure sagittal spinal alignment from the occiput to the pelvis, and to allow for virtual surgical manipulation of sagittal spinal alignment. The software was developed in conjunction with Clifton Labs, Inc. Photographs and radiographs were imported into the software program, and a 2D virtual spine was constructed from the images. The software then measured regional and global sagittal spinal alignment from the virtual spine construct, showing the user how to perform the measurements. After measuring alignment, the program allowed for virtual surgical manipulation, simulating surgical procedures such as interbody fusion, facet osteotomy, pedicle subtraction osteotomy, and reduction of spondylolisthesis, as well as allowing for rotation of the pelvis on the hip axis. Following virtual manipulation, the program remeasured regional and global sagittal spinal alignment. Computer software can be used to measure and manipulate sagittal spinal alignment virtually, providing a new research and educational tool. In the future, more comprehensive programs may allow for measurement and interaction in the coronal, axial, and sagittal planes. PMID:20192663

  4. Is naturalistic driving research possible with highly instrumented cars? Lessons learnt in three research centres.

    PubMed

    Valero-Mora, Pedro M; Tontsch, Anita; Welsh, Ruth; Morris, Andrew; Reed, Steven; Touliou, Katerina; Margaritis, Dimitris

    2013-09-01

    This paper provides an overview of the experiences using Highly Instrumented Cars (HICs) in three research Centres across Europe; Spain, the UK and Greece. The data collection capability of each car is described and an overview presented relating to the relationship between the level of instrumentation and the research possible. A discussion then follows which considers the advantages and disadvantages of using HICs for ND research. This includes the obtrusive nature of the data collection equipment, the cost of equipping the vehicles with sophisticated Data Acquisition Systems (DAS) and the challenges for data storage and analysis particularly with respect to video data. It is concluded that the use of HICs substantially increases the depth of knowledge relating to the driver's behaviour and their interaction with the vehicle and surroundings. With careful study design and integration into larger studies with Low(ly) instrumented Cars (LICs), HICs can contribute significantly and in a relatively naturalistic manner to the driver behaviour research. PMID:23332021

  5. Interviewing the Investigator: Strategies for Addressing Instrumentation and Researcher Bias Concerns in Qualitative Research

    ERIC Educational Resources Information Center

    Chenail, Ronald J.

    2011-01-01

    Instrumentation rigor and bias management are major challenges for qualitative researchers employing interviewing as a data generation method in their studies. A usual procedure for testing the quality of an interview protocol and for identifying potential researcher biases is the pilot study in which investigators try out their proposed methods…

  6. Field-Aligned Electron Events Observed in the Radiation Belts by the HOPE Instruments aboard the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Lejosne, S.; Agapitov, O. V.; Mozer, F.

    2015-12-01

    Field-aligned electron events (FAEs) are defined as events having the ratio of field-aligned to perpendicular flux greater than three. Time Domain Structures (TDS) are known to produce FAEs. Whistler and ECH waves are other possible candidates. Our objective is to derive the general features of the FAEs, to identify their driving mechanisms and to evaluate the importance of the different mechanisms. More than two years of measurements by the Helium Oxygen Proton Electron mass spectrometer and the Electric Field and Waves experiment are analyzed to identify low-energy (100eV-50keV) FAEs and to quantify the concurrent electric and magnetic wave components. We also peek at the observable waveforms with bursts of high-time resolution measurements. From statistical analysis and case studies, we suggest in particular that TDS cause field-alignment of ~300eV electrons in the pre-midnight sector while chorus waves cause field-alignment of electrons of ~10keV in the morning sector of the outer belt.

  7. Human and animal research guidelines: aligning ethical constructs with new scientific developments.

    PubMed

    Ferdowsian, Hope

    2011-10-01

    Both human research and animal research operate within established standards and procedures. Although the human research environment has been criticized for its sometimes inefficient and imperfect process, reported abuses of human subjects in research served as the impetus for the establishment of the Nuremberg Code, Declaration of Helsinki, and the National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research and the resulting Belmont Report. No similar, comprehensive and principled effort has addressed the use of animals in research. Although published policies regarding animal research provide relevant regulatory guidance, these policies have not emerged from the process of specifying consistent and reasoned ethical principles. The lack of a fundamental effort to explore the ethical issues and principles regarding the use of animals in research has led to unclear and disparate policies. Recent studies have increased our understanding of animal cognition and emotion, suggesting that animals' potential for experiencing a wide variety of harms, such as pain and fear, is greater than has been previously appreciated. Furthermore, relationships between methods of captivity and certain laboratory procedures and the resulting adverse physical, social and psychological effects have been established. In light of this information, current protections may need to be reconsidered and modified. This paper explores the historical convergence and divergence in the creation of human and animal research guidelines, as well as opportunities to align ethical frameworks with new scientific discoveries. PMID:21929707

  8. The Upper Atmosphere Research Satellite microwave limb sounder instrument

    NASA Technical Reports Server (NTRS)

    Barath, F. T.; Chavez, M. C.; Cofield, R. E.; Flower, D. A.; Frerking, M. A.; Gram, M. B.; Harris, W. M.; Holden, J. R.; Jarnot, R. F.; Kloezeman, W. G.

    1993-01-01

    The microwave limb sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is the first satellite experiment using limb sounding techniques at microwave frequencies. Primary measurement objectives are stratospheric ClO, O3, H2O, temperature, and pressure. Measurements are of thermal emission: all are performed simultaneously and continuously and are not degraded by ice clouds or volcanic aerosols. The instrument has a 1.6-m mechanically scanning antenna system and contains heterodyne radiometers in spectral bands centred near 63, 183, and 205 GHz. The radiometers operate at ambient temperature and use Schottky-diode mixers with local oscillators derived from phase-locked Gunn oscillators. Frequency tripling by varactor multipliers generates the 183- and 205-GHz local oscillators, and quasi-optical techniques inject these into the mixers. Six 15-channel filter banks spectrally resolve stratospheric thermal emission lines and produce an output spectrum every 2 s. Thermal stability is sufficient for 'total power' measurements which do not require fast chopping. Radiometric calibration, consisting of measurements of cold space and an internal target, is performed every 65-s limb scan. Instrument in-orbit performance has been excellent, and all objectives are being met.

  9. Aligning Web-Based Tools to the Research Process Cycle: A Resource for Collaborative Research Projects

    ERIC Educational Resources Information Center

    Price, Geoffrey P.; Wright, Vivian H.

    2012-01-01

    Using John Creswell's Research Process Cycle as a framework, this article describes various web-based collaborative technologies useful for enhancing the organization and efficiency of educational research. Visualization tools (Cacoo) assist researchers in identifying a research problem. Resource storage tools (Delicious, Mendeley, EasyBib)…

  10. Facilitating Research and Learning in Petrology and Geochemistry through Classroom Applications of Remotely Operable Research Instrumentation

    NASA Astrophysics Data System (ADS)

    Ryan, J. G.

    2012-12-01

    Bringing the use of cutting-edge research tools into student classroom experiences has long been a popular educational strategy in the geosciences and other STEM disciplines. The NSF CCLI and TUES programs have funded a large number of projects that placed research-grade instrumentation at educational institutions for instructional use and use in supporting undergraduate research activities. While student and faculty response to these activities has largely been positive, a range of challenges exist related to their educational effectiveness. Many of the obstacles these approaches have faced relate to "scaling up" of research mentoring experiences (e.g., providing training and time for use for an entire classroom of students, as opposed to one or two), and to time tradeoffs associated with providing technical training for effective instrument use versus course content coverage. The biggest challenge has often been simple logistics: a single instrument, housed in a different space, is difficult to integrate effectively into instructional activities. My CCLI-funded project sought primarily to knock down the logistical obstacles to research instrument use by taking advantage of remote instrument operation technologies, which allow the in-classroom use of networked analytical tools. Remote use of electron microprobe and SEM instruments of the Florida Center for Analytical Electron Microscopy (FCAEM) in Miami, FL was integrated into two geoscience courses at USF in Tampa, FL. Remote operation permitted the development of whole-class laboratory exercises to familiarize students with the tools, their function, and their capabilities; and it allowed students to collect high-quality chemical and image data on their own prepared samples in the classroom during laboratory periods. These activities improve student engagement in the course, appear to improve learning of key concepts in mineralogy and petrology, and have led to students pursuing independent research projects, as

  11. Aligning Research and Policy on Social-Emotional and Academic Competence for Young Children

    PubMed Central

    Nadeem, Erum; Maslak, Kristi; Chacko, Anil; Hoagwood, Kimberly Eaton

    2014-01-01

    Research Findings The purpose of this article is to describe current education policies as they relate to the promotion of social, emotional, and academic (SEA) development and competence for young children. Academic and social–emotional competencies are described and conceptualized as developmentally linked, reciprocal processes that should be supported by education in an integrated, holistic manner. Practice or Policy The article reviews major public policies and national initiatives that have implications for the education of young children (e.g., Head Start, No Child Left Behind, IDEA) and highlights opportunities within these policies to promote programs that can support SEA competencies, as well as the limitations of these policies. The article also includes a review of the limitations of existing resources available to educators to identify evidence-based programs that support SEA competencies and concludes with recommendations for better alignment between research and policy to support SEA competencies. PMID:25632216

  12. Assessing Student Outcomes of Undergraduate Research with URSSA, the Undergraduate Student Self-Assessment Instrument

    NASA Astrophysics Data System (ADS)

    Laursen, S. L.; Weston, T. J.; Thiry, H.

    2012-12-01

    URSSA is the Undergraduate Research Student Self-Assessment, an online survey instrument for programs and departments to use in assessing the student outcomes of undergraduate research (UR). URSSA focuses on what students learn from their UR experience, rather than whether they liked it. The online questionnaire includes both multiple-choice and open-ended items that focus on students' gains from undergraduate research. These gains include skills, knowledge, deeper understanding of the intellectual and practical work of science, growth in confidence, changes in identity, and career preparation. Other items probe students' participation in important research-related activities that lead to these gains (e.g. giving presentations, having responsibility for a project). These activities, and the gains themselves, are based in research and thus constitute a core set of items. Using these items as a group helps to align a particular program assessment with research-demonstrated outcomes. Optional items may be used to probe particular features that are augment the research experience (e.g. field trips, career seminars, housing arrangements). The URSSA items are based on extensive, interview-based research and evaluation work on undergraduate research by our group and others. This grounding in research means that URSSA measures what we know to be important about the UR experience The items were tested with students, revised and re-tested. Data from a large pilot sample of over 500 students enabled statistical testing of the items' validity and reliability. Optional items about UR program elements were developed in consultation with UR program developers and leaders. The resulting instrument is flexible. Users begin with a set of core items, then customize their survey with optional items to probe students' experiences of specific program elements. The online instrument is free and easy to use, with numeric results available as raw data, summary statistics, cross-tabs, and

  13. Assessing State Models of Value-Added Teacher Evaluations: Alignment of Policy, Instruments, and Literature-Based Concepts

    ERIC Educational Resources Information Center

    Hutchison-Lupardus, Tammy R.; Hatfield, Timothy E.; Snyder, Jennifer E.

    2012-01-01

    This problem-based learning project addressed the need to improve the construction and implementation of value-added teacher evaluation policies and instruments. State officials are constructing value-added teacher evaluation models due to accountability initiatives, while ignoring the holes and problems in its implementation. The team's…

  14. Aligning Assessment Instruments with the Sterling Quality Criteria: Technical Report for the Teaching and Leadership Center at Florida Atlanta University.

    ERIC Educational Resources Information Center

    Pisapia, John; Coukos-Semmel, Eleni

    Florida Atlantic University College of Education was commissioned by the South Florida Annenberg Challenge to develop and create five diagnostic and assessment instruments for leaders that will provide candidate information about: (1) personality skills related to leadership; (2) transformational leadership potential; (3) leadership skills; (4)…

  15. Survey Instrument Validity Part I: Principles of Survey Instrument Development and Validation in Athletic Training Education Research

    ERIC Educational Resources Information Center

    Burton, Laura J.; Mazerolle, Stephanie M.

    2011-01-01

    Context: Instrument validation is an important facet of survey research methods and athletic trainers must be aware of the important underlying principles. Objective: To discuss the process of survey development and validation, specifically the process of construct validation. Background: Athletic training researchers frequently employ the use of…

  16. The Mentoring Competency Assessment: Validation of a New Instrument to Evaluate Skills of Research Mentors

    PubMed Central

    Fleming, Michael; House, Stephanie; Shewakramani, Vansa; Yu, Lan; Garbutt, Jane; McGee, Richard; Kroenke, Kurt; Abedin, Zainab; Rubio, Doris M.

    2013-01-01

    Purpose To determine the psychometric properties of the Mentoring Competency Assessment (MCA), a 26-item skills inventory that enables research mentors and mentees to evaluate six competencies of mentors: maintaining effective communication, aligning expectations, assessing understanding, addressing diversity, and fostering independence promoting professional development. Method In 2010, investigators administered the MCA to 283 mentor–mentee pairs from 16 universities participating in a trial of a mentoring curriculum for clinical and translational research mentors. The authors analyzed baseline MCA data to describe the instrument’s psychometric properties. Results Coefficient alpha scores for the MCA showed reliability (internal consistency). The hypothesized model with its six latent constructs (competencies) resulted in an acceptable fit to the data. For the instrument completed by mentors, chi-square = 663.20; df = 284; P < .001; root mean square error of approximation (RMSEA) = 0.069 (90% CI, 0.062–0.076); confirmatory fit index (CFI) = 0.85; and Tucker-Lewis index (TLI) = 0.83. For the instrument completed by mentees, chi-square = 840.62; df = 284; P < .001; RMSEA = 0.080 (90% CI, 0.063–0.077); CFI = 0.87; and TLI = 0.85. The correlations among the six competencies were high: 0.49–0.87 for mentors, 0.58–0.92 for mentees. All parameter estimates for the individual items were significant; standardized factor loadings ranged from 0.32–0.81 for mentors and 0.56–0.86 for mentees. Conclusions The findings demonstrate that the MCA has reliability and validity. In addition, this study provides preliminary norms derived from a national sample of mentors and mentees. PMID:23702534

  17. The Brazilian Portuguese Lexicon: An Instrument for Psycholinguistic Research

    PubMed Central

    Estivalet, Gustavo L.; Meunier, Fanny

    2015-01-01

    In this article, we present the Brazilian Portuguese Lexicon, a new word-based corpus for psycholinguistic and computational linguistic research in Brazilian Portuguese. We describe the corpus development, the specific characteristics on the internet site and database for user access. We also perform distributional analyses of the corpus and comparisons to other current databases. Our main objective was to provide a large, reliable, and useful word-based corpus with a dynamic, easy-to-use, and intuitive interface with free internet access for word and word-criteria searches. We used the Núcleo Interinstitucional de Linguística Computacional’s corpus as the basic data source and developed the Brazilian Portuguese Lexicon by deriving and adding metalinguistic and psycholinguistic information about Brazilian Portuguese words. We obtained a final corpus with more than 30 million word tokens, 215 thousand word types and 25 categories of information about each word. This corpus was made available on the internet via a free-access site with two search engines: a simple search and a complex search. The simple engine basically searches for a list of words, while the complex engine accepts all types of criteria in the corpus categories. The output result presents all entries found in the corpus with the criteria specified in the input search and can be downloaded as a.csv file. We created a module in the results that delivers basic statistics about each search. The Brazilian Portuguese Lexicon also provides a pseudoword engine and specific tools for linguistic and statistical analysis. Therefore, the Brazilian Portuguese Lexicon is a convenient instrument for stimulus search, selection, control, and manipulation in psycholinguistic experiments, as also it is a powerful database for computational linguistics research and language modeling related to lexicon distribution, functioning, and behavior. PMID:26630138

  18. The Brazilian Portuguese Lexicon: An Instrument for Psycholinguistic Research.

    PubMed

    Estivalet, Gustavo L; Meunier, Fanny

    2015-01-01

    In this article, we present the Brazilian Portuguese Lexicon, a new word-based corpus for psycholinguistic and computational linguistic research in Brazilian Portuguese. We describe the corpus development, the specific characteristics on the internet site and database for user access. We also perform distributional analyses of the corpus and comparisons to other current databases. Our main objective was to provide a large, reliable, and useful word-based corpus with a dynamic, easy-to-use, and intuitive interface with free internet access for word and word-criteria searches. We used the Núcleo Interinstitucional de Linguística Computacional's corpus as the basic data source and developed the Brazilian Portuguese Lexicon by deriving and adding metalinguistic and psycholinguistic information about Brazilian Portuguese words. We obtained a final corpus with more than 30 million word tokens, 215 thousand word types and 25 categories of information about each word. This corpus was made available on the internet via a free-access site with two search engines: a simple search and a complex search. The simple engine basically searches for a list of words, while the complex engine accepts all types of criteria in the corpus categories. The output result presents all entries found in the corpus with the criteria specified in the input search and can be downloaded as a.csv file. We created a module in the results that delivers basic statistics about each search. The Brazilian Portuguese Lexicon also provides a pseudoword engine and specific tools for linguistic and statistical analysis. Therefore, the Brazilian Portuguese Lexicon is a convenient instrument for stimulus search, selection, control, and manipulation in psycholinguistic experiments, as also it is a powerful database for computational linguistics research and language modeling related to lexicon distribution, functioning, and behavior. PMID:26630138

  19. Research and realization of signal simulation on virtual instrument

    NASA Astrophysics Data System (ADS)

    Zhao, Qi; He, Wenting; Guan, Xiumei

    2010-02-01

    In the engineering project, arbitrary waveform generator controlled by software interface is needed by simulation and test. This article discussed the program using the SCPI (Standard Commands For Programmable Instruments) protocol and the VISA (Virtual Instrument System Architecture) library to control the Agilent signal generator (Agilent N5182A) by instrument communication over the LAN interface. The program can conduct several signal generations such as CW (continuous wave), AM (amplitude modulation), FM (frequency modulation), ΦM (phase modulation), Sweep. As the result, the program system has good operability and portability.

  20. Comparative Analysis of the Measurement of Total Instructional Alignment

    ERIC Educational Resources Information Center

    Kick, Laura C.

    2013-01-01

    In 2007, Lisa Carter created the Total Instructional Alignment system--a process that aligns standards, curriculum, assessment, and instruction. Employed in several hundred school systems, the TIA process is a successful professional development program. The researcher developed an instrument to measure the success of the TIA process with the…

  1. Exploration of Instruments Measuring Concepts of Graduateness in a Research University Context

    ERIC Educational Resources Information Center

    Steur, J. M.; Jansen, E. P. W. A.; Hofman, W. H. A.

    2011-01-01

    This article considers the appropriateness of international instruments to measure the separate concepts of graduateness for a research university context. The four concepts of graduateness--reflective thinking, scholarship, moral citizenship and lifelong learning--are operationalized using five existing instruments. These instruments were…

  2. FY09 Advanced Instrumentation and Active Interrogation Research for Safeguards

    SciTech Connect

    D. L. Chichester; S. A. Pozzi; E. H. Seabury; J. L. Dolan; M. Flaska; J. T. Johnson; S. M. Watson; J. Wharton

    2009-08-01

    Multiple small-scale projects have been undertaken to investigate advanced instrumentation solutions for safeguard measurement challenges associated with advanced fuel cycle facilities and next-generation fuel reprocessing installations. These activities are in support of the U.S. Department of Energy's Fuel Cycle Research and Development program and its Materials Protection, Accounting, and Control for Transmutation (MPACT) campaign. 1) Work was performed in a collaboration with the University of Michigan (Prof. Sara Pozzi, co-PI) to investigate the use of liquid-scintillator radiation detectors for assaying mixed-oxide (MOX) fuel, to characterize its composition and to develop advanced digital pulse-shape discrimination algorithms for performing time-correlation measurements in the MOX fuel environment. This work included both simulations and experiments and has shown that these techniques may provide a valuable approach for use within advanced safeguard measurement scenarios. 2) Work was conducted in a collaboration with Oak Ridge National Laboratory (Dr. Paul Hausladen, co-PI) to evaluate the strengths and weaknesses of the fast-neutron coded-aperture imaging technique for locating and characterizing fissile material, and as a tool for performing hold-up measurements in fissile material handling facilities. This work involved experiments at Idaho National Laboratory, using MOX fuel and uranium metal, in both passive and active interrogation configurations. A complete analysis has not yet been completed but preliminary results suggest several potential uses for the fast neutron imaging technique. 3) Work was carried out to identify measurement approaches for determining nitric acid concentration in the range of 1 – 4 M and beyond. This work included laboratory measurements to investigate the suitability of prompt-gamma neutron activation analysis for this measurement and product reviews of other commercial solutions. Ultrasonic density analysis appears to be

  3. Engine component instrumentation development facility at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Buggele, Alvin E.; Lepicovsky, Jan

    1992-01-01

    The Engine Components Instrumentation Development Facility at NASA Lewis is a unique aeronautics facility dedicated to the development of innovative instrumentation for turbine engine component testing. Containing two separate wind tunnels, the facility is capable of simulating many flow conditions found in most turbine engine components. This facility's broad range of capabilities as well as its versatility provide an excellent location for the development of novel testing techniques. These capabilities thus allow a more efficient use of larger and more complex engine component test facilities.

  4. Scientific Applications of Optical Instruments to Materials Research

    NASA Technical Reports Server (NTRS)

    Witherow, William K.

    1997-01-01

    Microgravity is a unique environment for materials and biotechnology processing. Microgravity minimizes or eliminates some of the effects that occur in one g. This can lead to the production of new materials or crystal structures. It is important to understand the processes that create these new materials. Thus, experiments are designed so that optical data collection can take place during the formation of the material. This presentation will discuss scientific application of optical instruments at MSFC. These instruments include a near-field scanning optical microscope, a miniaturized holographic system, and a phase-shifting interferometer.

  5. Thin Film Physical Sensor Instrumentation Research and Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.

    2006-01-01

    A range of thin film sensor technology has been demonstrated enabling measurement of multiple parameters either individually or in sensor arrays including temperature, strain, heat flux, and flow. Multiple techniques exist for refractory thin film fabrication, fabrication and integration on complex surfaces and multilayered thin film insulation. Leveraging expertise in thin films and high temperature materials, investigations for the applications of thin film ceramic sensors has begun. The current challenges of instrumentation technology are to further develop systems packaging and component testing of specialized sensors, further develop instrumentation techniques on complex surfaces, improve sensor durability, and to address needs for extreme temperature applications. The technology research and development ongoing at NASA Glenn for applications to future launch vehicles, space vehicles, and ground systems is outlined.

  6. Management and Research Perspectives on the CFK School Climate Instrument.

    ERIC Educational Resources Information Center

    Johnson, William L.; Nussbaum, Claire

    This document investigates the widely used school climate assessment instrument, the CFK Ltd. School Climate Profile. Part A (General School Climate Factors) was administered by school to a junior high campus (n=257) and a high school campus (n=906) in a major metropolitan area in the Southwestern United States to gather data for administrative…

  7. Choosing Assessment Instruments for Bulimia Practice and Outcome Research

    ERIC Educational Resources Information Center

    Sandberg, Katie; Erford, Bradley T.

    2013-01-01

    Six commonly used instruments for assessment of eating disorders were analyzed. Effect size results from Erford et al.'s (2013) meta-analysis for the treatment of bulimia nervosa were used to compare each scale's ability to measure treatment outcomes for bulimia nervosa. Effect size comparisons indicated higher overall effect sizes using…

  8. Report on monitoring and support instruments for solar physics research from Spacelab

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Quick Reaction and Special Purpose Facility Definition Team for Solar Physics Spacelab Payloads examined a variety of instruments to fulfill the following functions: (1) solar physics research appropriate to Spacelab, (2) correlative data for research in such fields as aeronomy, magnetospheric physics, ionospheric physics, meteorology and climatology, (3) target selection for activity alert monitoring and (4) pointing accuracy monitoring of Spacelab platforms. In this examination the team accepted a number of restrictions and qualifications: (1) the cost of such instruments must be low, so as not to adversely impact the development of new, research class instrumentation in the early Spacelab era; (2) the instruments should be of such a size that they each would occupy a small fraction of a pointing system, and (3) the weight and power consumption of the instruments should also be small. With these restrictions, the instruments chosen are: the visible light telescope and magnetograph, the extreme-ultraviolet telescope, and the solar irradiance monitor.

  9. Subminiaturization for ERAST instrumentation (Environmental Research Aircraft and Sensor Technology)

    NASA Technical Reports Server (NTRS)

    Madou, Marc; Lowenstein, Max; Wegener, Steven

    1995-01-01

    We are focusing on the Argus as an example to demonstrate our philosophy on miniaturization of airborne analytical instruments for the study of atmospheric chemistry. Argus is a two channel, tunable-diode laser absorption spectrometer developed at NASA for the measurement of nitrogen dioxide (N2O) (4.5 micrometers) and ammonia (CH3) (3.3 micrometers) at the 0.1 parts per billion (ppb) level from the Perseus aircraft platform at altitudes up to 30 km. Although Argus' mass is down to 23 kg from the 197 kg Atlas, its predecessor, our goal is to design a next-generation subminiaturized instrument weighing less than 1 kg, measuring a few cm(exp 3) and able to eliminate dewars for cooling. Current designs enable use to make a small,inexpensive, monolithic spectrometer without the required sensitivity range. Further work is on its way to increase sensitivity. We are continuing to zero-base the technical approach in terms of the specifications for the given instrument. We are establishing a check list of questions to hone into the best micromachining approach and to superpose on the answers insights in scaling laws and flexible engineering designs to enable more relaxed tolerances for the smallest of the components.

  10. Advanced instrumentation for research in diving and hyperbaric medicine.

    PubMed

    Sieber, Arne; L'Abbate, Antonio; Kuch, Benjamin; Wagner, Matthias; Benassi, Antonio; Passera, Mirko; Bedini, Remo

    2010-01-01

    Improving the safety of diving and increasing knowledge about the adaptation of the human body to underwater and hyperbaric environment require specifically developed underwater instrumentation for physiological measurements. In fact, none of the routine clinical devices for health control is suitable for in-water and/or under-pressure operation. The present paper addresses novel technological acquisitions and the development of three dedicated devices: * an underwater data logger for recording O2 saturation (reflective pulsoxymetry), two-channel ECG, depth and temperature; * an underwater blood pressure meter based on the oscillometric method; and * an underwater echography system. Moreover, examples of recordings are presented and discussed. PMID:20929183

  11. Researching the researcher-as-instrument: an exercise in interviewer self-reflexivity

    PubMed Central

    Pezalla, Anne E; Pettigrew, Jonathan; Miller-Day, Michelle

    2015-01-01

    Because the researcher is the instrument in semistructured or unstructured qualitative interviews, unique researcher characteristics have the potential to influence the collection of empirical materials. This concept, although widely acknowledged, has garnered little systematic investigation. This article discusses the interviewer characteristics of three different interviewers who are part of a qualitative research team. The researcher/interviewers – and authors of this article – reflect on their own and each other’s interviews and explore the ways in which individual interview practices create unique conversational spaces. The results suggest that certain interviewer characteristics may be more effective than others in eliciting detailed narratives from respondents depending on the perceived sensitivity of the topic, but that variation in interviewer characteristics may benefit rather than detract from the goals of team-based qualitative inquiry. The authors call for the inclusion of enhanced self-reflexivity in interviewer training and development activities and argue against standardization of interviewer practices in qualitative research teams. PMID:26294895

  12. The Instrumental Value of Conceptual Frameworks in Educational Technology Research

    ERIC Educational Resources Information Center

    Antonenko, Pavlo D.

    2015-01-01

    Scholars from diverse fields and research traditions agree that the conceptual framework is a critically important component of disciplined inquiry. Yet, there is a pronounced lack of shared understanding regarding the definition and functions of conceptual frameworks, which impedes our ability to design effective research and mentor novice…

  13. Serendipity: Genesis of the Electrochemical Instrumentation at Princeton Applied Research Corporation

    ERIC Educational Resources Information Center

    Flato, J. B.

    2007-01-01

    Princeton Applied Research Corporation (PAR) was a small electronic instrument company in early 1960s but once they entered electrochemistry they were very successful. Since then they have developed and designed successful instruments with their tremendous knowledge and have made great contribution to the field of analytical chemistry.

  14. Exploring South African Grade 11 Learners' Perceptions of Classroom Inquiry: Validation of a Research Instrument

    ERIC Educational Resources Information Center

    Dudu, Washington T.; Vhurumuku, Elaosi

    2012-01-01

    This paper discusses the adoption and validation of a research instrument, on determining learners' levels of perception of classroom inquiry based on data collected from South African Grade 11 learners. The Learners' Perception of Classroom Inquiry (LPCI) instrument consists only of Likert-type items which rank activities according to how often…

  15. A Framework for Evaluating and Enhancing Alignment in Self-Regulated Learning Research

    ERIC Educational Resources Information Center

    Dent, Amy L.; Hoyle, Rick H.

    2015-01-01

    We discuss the articles of this special issue with reference to an important yet previously only implicit dimension of study quality: alignment across the theoretical and methodological decisions that collectively define an approach to self-regulated learning. Integrating and extending work by leaders in the field, we propose a framework for…

  16. Academic Research Equipment in Selected Science/Engineering Fields, 1982-83. An Analysis of Findings from the Baseline National Survey of Academic Research Instruments and Instrumentation Needs.

    ERIC Educational Resources Information Center

    Burgdorf, Kenneth; Hausman, Howard J.

    The analysis of data from the baseline cycle of the National Science Foundation instrumentation survey has two principal objectives, namely, to construct and examine a variety of quantitative statistical indicators describing major characteristics of the current national stock of academic research equipment and to document differences among…

  17. [Research and application of SUPER-1 intellectural instrument used in physiology laboratory].

    PubMed

    Cheng, J; Meng, P; Lan, T; Zha, Z

    1991-03-01

    Research work for making a biomedical signal processing instrument based on the APPLE-II computer is reported in this paper. According to the theory of the computer, two interface boards were designed as the hardware of the instrument. The memorizing waveform program was designed as the main program in the software system. Through a functional extended program, also called software inter face, more than ten programs especially for physiology can be easily linked to the main program. with the combination of both the software and hard ware several parameters of the instrument, such as sampling speed, gain of the amplifier, etc. can be controlled by a closed loop. This instrument is available in the physiology laboratory to replace oscilloscope, recorder, stimulator simultaneously. The functions of the instrument are stronger than those of the conventional instruments. PMID:1774026

  18. Interviewer as Instrument: Accounting for Human Factors in Evaluation Research

    ERIC Educational Resources Information Center

    Brown, Joel H.

    2006-01-01

    This methodological study examines an original data collection model designed to incorporate human factors and enhance data richness in qualitative and evaluation research. Evidence supporting this model is drawn from in-depth youth and adult interviews in one of the largest policy/program evaluations undertaken in the United States, the Drug,…

  19. Serendipity: Genesis of the Electrochemical Instrumentation at Princeton Applied Research Corporation

    NASA Astrophysics Data System (ADS)

    Flato, J. B.

    2007-04-01

    Development of commercial scientific instrumentation is very different from constructing a single device to be used in a researcher's laboratory. The history of the development of Princeton Applied Research Corporation's first electrochemistry instrument is used to illustrate the process and to review, by example, the pitfalls that may arise when scientists with little or no commercial or practical engineering experience undertake the development of a product destined for commercial manufacturing and distribution.

  20. Political Instruments Employed by Governments to Enhance University Research and Knowledge Transfer Capacity

    ERIC Educational Resources Information Center

    Harman, Grant

    2005-01-01

    Governments of developed nations use a variety of policy instruments to enhance university research and knowledge transfer capabilities. These include advocacy, persuasion and information; consultation and committees of enquiry; creation of major research centres and commercialisation agencies, and investment in research infrastructure; grants,…

  1. Research Assessment as an Instrument for Steering Higher Education--A Comparative Study

    ERIC Educational Resources Information Center

    Orr, Dominic

    2004-01-01

    This paper argues that research assessment is of increasing importance as an instrument of New Public Management and within the context of efforts to establish a European Research Area. Specifically, it compares the procedures of research assessment in the Netherlands, the United Kingdom, Ireland and Germany in an attempt to distil basic design…

  2. How can research on anthropogenic greenhouse gas flux quantification be better aligned with US climate change policy needs?

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.

    2014-12-01

    Scientific research on quantification of anthropogenic greenhouse gas emissions at national and sub-national scales within the US has advanced considerably in the last decade. Large investment has been made in building systems capable of observing greenhouse gases in the atmosphere at multiple scales, measuring direct anthropogenic fluxes near sources and modeling the linkages between fluxes and observed concentrations. Much of this research has been focused at improving the "verification" component of "monitoring, reporting, and verification" and indeed, has achieved successes in recent years. However, there are opportunities for ongoing scientific research to contribute critical new information to policymakers. In order to realize this contribution, additional but complementary, research foci must be emphasized. Examples include more focus on anthropogenic emission drivers, quantification at scales relevant to human decision-making, and exploration of cost versus uncertainty in observing/modeling systems. I will review what I think are the opportunities to better align scientific research with current and emerging US climate change policymaking. I will then explore a few examples of where expansion or alteration of greenhouse gas flux quantification research focus could better align with current and emerging US climate change policymaking such as embodied in the proposed EPA rule aimed at reducing emissions from US power plants, California's ongoing emissions reduction policymaking and aspirational emission reduction efforts in multiple US cities.

  3. The rhesus measurement system: A new instrument for space research

    NASA Technical Reports Server (NTRS)

    Schonfeld, Julie E.; Hines, John W.

    1993-01-01

    The Rhesus Research Facility (RRF) is a research environment designed to study the effects of microgravity using rhesus primates as human surrogates. This experimental model allows investigators to study numerous aspects of microgravity exposure without compromising crew member activities. Currently, the RRF is slated for two missions to collect its data, the first mission is SLS-3, due to fly in late 1995. The RRF is a joint effort between the United States and France. The science and hardware portions of the project are being shared between the National Aeronautics and Space Administration (NASA) and France's Centre National D'Etudes Spatiales (CNES). The RRF is composed of many different subsystems in order to acquire data, provide life support, environmental enrichment, computer facilities and measurement capabilities for two rhesus primates aboard a nominal sixteen day mission. One of these subsystems is the Rhesus Measurement System (RMS). The RMS is designed to obtain in-flight physiological measurements from sensors interfaced with the subject. The RMS will acquire, preprocess, and transfer the physiologic data to the Flight Data System (FDS) for relay to the ground during flight. The measurements which will be taken by the RMS during the first flight will be respiration, measured at two different sites; electromyogram (EMG) at three different sites; electroencephalogram (EEG); electrocardiogram (ECG); and body temperature. These measurements taken by the RMS will assist the research team in meeting the science objectives of the RRF project.

  4. Research on Initial Alignment and Self-Calibration of Rotary Strapdown Inertial Navigation Systems

    PubMed Central

    Gao, Wei; Zhang, Ya; Wang, Jianguo

    2015-01-01

    The errors of inertial sensors affect the navigation accuracy of the strapdown inertial navigation system (SINS) and are accumulated over time in nature. In order to continuously maintain the high navigation accuracy of vehicles for a long time period, an initial alignment and self-calibration is necessary after the SINS starts. Additionally, the observability analysis is one of the key techniques during the initial alignment and self-calibration process. For marine systems, the observability of inertial sensor errors is extremely low, as their motion states are always slow. Therefore, studying the rotating SINS is urgent. Since traditional analysis methods have their limitations, the global observation analysis method was used in this paper. On the basis of this method, the relationship between the observability and the kinestate of the rotating SINS has been established. After the discussion about the factors that affect the observability in detail, the design principle of the initial alignment and self-calibration rotating scheme, which is appropriate for marine systems, id proposed. With the proposed principle, a novel initial alignment and self-calibration method, named the eight-position rotating scheme, is designed. Simulations and experiments are carried out to verify its performance. The results have shown that compared with other rotating schemes and the static state, the estimated accuracy of the eight-position scheme rotating about axes x and y was the best, and the position error was significantly reduced with this new rotating scheme. The feasibility and effectiveness of the proposed design principle and the rotating scheme were verified. PMID:25647743

  5. Cross-cultural adaptation of research instruments: language, setting, time and statistical considerations

    PubMed Central

    2010-01-01

    Background Research questionnaires are not always translated appropriately before they are used in new temporal, cultural or linguistic settings. The results based on such instruments may therefore not accurately reflect what they are supposed to measure. This paper aims to illustrate the process and required steps involved in the cross-cultural adaptation of a research instrument using the adaptation process of an attitudinal instrument as an example. Methods A questionnaire was needed for the implementation of a study in Norway 2007. There was no appropriate instruments available in Norwegian, thus an Australian-English instrument was cross-culturally adapted. Results The adaptation process included investigation of conceptual and item equivalence. Two forward and two back-translations were synthesized and compared by an expert committee. Thereafter the instrument was pretested and adjusted accordingly. The final questionnaire was administered to opioid maintenance treatment staff (n=140) and harm reduction staff (n=180). The overall response rate was 84%. The original instrument failed confirmatory analysis. Instead a new two-factor scale was identified and found valid in the new setting. Conclusions The failure of the original scale highlights the importance of adapting instruments to current research settings. It also emphasizes the importance of ensuring that concepts within an instrument are equal between the original and target language, time and context. If the described stages in the cross-cultural adaptation process had been omitted, the findings would have been misleading, even if presented with apparent precision. Thus, it is important to consider possible barriers when making a direct comparison between different nations, cultures and times. PMID:20144247

  6. The Soft X-ray research instrument at the Linac Coherent Light Source

    SciTech Connect

    Dakovski, Georgi L.; Heimann, Philip; Holmes, Michael; Krupin, Oleg; European XFEL, Hamburg; Minitti, Michael P.; Mitra, Ankush; Moeller, Stefan; Rowen, Michael; Schlotter, William F.; Turner, Joshua J.

    2015-04-02

    The Soft X-ray Research instrument provides intense ultrashort X-ray pulses in the energy range 280–2000 eV. A diverse set of experimental stations may be installed to investigate a broad range of scientific topics such as ultrafast chemistry, highly correlated materials, magnetism, surface science, and matter under extreme conditions. A brief description of the main instrument components will be given, followed by some selected scientific highlights.

  7. The Soft X-ray Research instrument at the Linac Coherent Light Source

    PubMed Central

    Dakovski, Georgi L.; Heimann, Philip; Holmes, Michael; Krupin, Oleg; Minitti, Michael P.; Mitra, Ankush; Moeller, Stefan; Rowen, Michael; Schlotter, William F.; Turner, Joshua J.

    2015-01-01

    The Soft X-ray Research instrument provides intense ultrashort X-ray pulses in the energy range 280–2000 eV. A diverse set of experimental stations may be installed to investigate a broad range of scientific topics such as ultrafast chemistry, highly correlated materials, magnetism, surface science, and matter under extreme conditions. A brief description of the main instrument components will be given, followed by some selected scientific highlights. PMID:25931059

  8. Teachers' Engagement with Research Texts: Beyond Instrumental, Conceptual or Strategic Use

    ERIC Educational Resources Information Center

    Cain, Tim

    2015-01-01

    Recent policy statements have urged greater use of research to guide teaching, with some commentators calling for a "revolution" in evidence-based practice. Scholarly literature suggests that research can influence policy and practice in "instrumental," "conceptual" or "strategic" ways. This paper analyses…

  9. A Review of Musical Instrument Instruction in Scotland. Research Report Series.

    ERIC Educational Resources Information Center

    Hall, John

    Changes in the provision of musical instrument instruction provided by local authorities in Scotland since local government reorganization are charted in this research report. The report outlines some of the more important messages from recent research about the value of musical instruction, reviews the findings of some recent surveys of the…

  10. Future Directions for Dissemination and Implementation Science: Aligning Ecological Theory and Public Health to Close the Research to Practice Gap.

    PubMed

    Atkins, Marc S; Rusch, Dana; Mehta, Tara G; Lakind, Davielle

    2016-01-01

    Dissemination and implementation science (DI) has evolved as a major research model for children's mental health in response to a long-standing call to integrate science and practice and bridge the elusive research to practice gap. However, to address the complex and urgent needs of the most vulnerable children and families, future directions for DI require a new alignment of ecological theory and public health to provide effective, sustainable, and accessible mental health services. We present core principles of ecological theory to emphasize how contextual factors impact behavior and allow for the reciprocal impact individuals have on the settings they occupy, and an alignment of these principles with a public health model to ensure that services span the prevention to intervention continuum. We provide exemplars from our ongoing work in urban schools and a new direction for research to address the mental health needs of immigrant Latino families. Through these examples we illustrate how DI can expand its reach by embedding within natural settings to build on local capacity and indigenous resources, incorporating the local knowledge necessary to more substantively address long-standing mental health disparities. This paradigm shift for DI, away from an overemphasis on promoting program adoption, calls for fitting interventions within settings that matter most to children's healthy development and for utilizing and strengthening available community resources. In this way, we can meet the challenge of addressing our nation's mental health burden by supporting the needs and values of families and communities within their own unique social ecologies. PMID:26155972

  11. Instrumentation and Controls Division Overview: Sensors Development for Harsh Environments at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Zeller, Mary V.; Lei, Jih-Fen

    2002-01-01

    The Instrumentation and Controls Division is responsible for planning, conducting and directing basic and applied research on advanced instrumentation and controls technologies for aerospace propulsion and power applications. The Division's advanced research in harsh environment sensors, high temperature high power electronics, MEMS (microelectromechanical systems), nanotechnology, high data rate optical instrumentation, active and intelligent controls, and health monitoring and management will enable self-feeling, self-thinking, self-reconfiguring and self-healing Aerospace Propulsion Systems. These research areas address Agency challenges to deliver aerospace systems with reduced size and weight, and increased functionality and intelligence for future NASA missions in advanced aeronautics, economical space transportation, and pioneering space exploration. The Division also actively supports educational and technology transfer activities aimed at benefiting all humankind.

  12. Thirty meters small angle neutron scattering instrument at China advanced research reactor

    NASA Astrophysics Data System (ADS)

    Zhang, Hongxia; Cheng, He; Yuan, Guangcui; Han, Charles C.; Zhang, Li; Li, Tianfu; Wang, Hongli; Liu, Yun Tao; Chen, Dongfeng

    2014-01-01

    A high resolution 30 m small angle neutron scattering (SANS) instrument has been constructed by the Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and installed at China Advanced Research Reactor (CARR). It is equipped with a mechanical velocity selector, pinhole (including multi-pinhole) collimation system, sample chamber, and high resolution two dimensional 3He position sensitive neutron detector. The flexible variations of incident neutron wavelength, source to sample distance, sample to detector distance and the presence of neutron focusing lenses enable a wide Q range from 0.001 Å-1 to 0.5 Å-1 in reciprocal space and to optimize the resolution required. The instrument is the first SANS instrument in China, and can be widely used for the structure characterization of various materials, as well as kinetic and dynamic observation during external stimulation. The design and characteristics of the instrument are presented in the manuscript.

  13. Considerations in the construction of an instrument to assess attitudes regarding critical illness gene variation research.

    PubMed

    Freeman, Bradley D; Kennedy, Carie R; Bolcic-Jankovic, Dragana; Eastman, Alexander; Iverson, Ellen; Shehane, Erica; Celious, Aaron; Barillas, Jennifer; Clarridge, Brian

    2012-02-01

    Clinical studies conducted in intensive care units are associated with logistical and ethical challenges. Diseases investigated are precipitous and life-threatening, care is highly technological, and patients are often incapacitated and decision-making is provided by surrogates. These investigations increasingly involve collection of genetic data. The manner in which the exigencies of critical illness impact attitudes regarding genetic data collection is unstudied. Given interest in understanding stakeholder preferences as a foundation for the ethical conduct of research, filling this knowledge gap is timely. The conduct of opinion research in the critical care arena is novel. This brief report describes the development of parallel patient/surrogate decision-maker quantitative survey instruments for use in this environment. Future research employing this instrument or a variant of it with diverse populations promises to inform research practices in critical illness gene variation research. PMID:22378135

  14. Considerations in the Construction of an Instrument to Assess Attitudes Regarding Critical Illness Gene Variation Research

    PubMed Central

    Freeman, Bradley D.; Kennedy, Carie R.; Bolcic-Jankovic, Dragana; Eastman, Alexander; Iverson, Ellen; Shehane, Erica; Celious, Aaron; Barillas, Jennifer; Clarridge, Brian

    2012-01-01

    Clinical studies conducted in intensive care units are associated with logistical and ethical challenges. Diseases investigated are precipitous and life-threatening, care is highly technological, and patients are often incapacitated and decision-making is provided by surrogates. These investigations increasingly involve collection of genetic data. The manner in which the exigencies of critical illness impact attitudes regarding genetic data collection is unstudied. Given interest in understanding stakeholder preferences as a foundation for the ethical conduct of research, filling this knowledge gap is timely. The conduct of opinion research in the critical care arena is novel. This brief report describes the development of parallel patient/surrogate decision-maker quantitative survey instruments for use in this environment. Future research employing this instrument or a variant of it with diverse populations promises to inform research practices in critical illness gene variation research. PMID:22378135

  15. Latin American Lidar Network (LALINET) for aerosol research: Diagnosis on network instrumentation

    NASA Astrophysics Data System (ADS)

    Guerrero-Rascado, Juan Luis; Landulfo, Eduardo; Antuña, Juan Carlos; de Melo Jorge Barbosa, Henrique; Barja, Boris; Bastidas, Álvaro Efrain; Bedoya, Andrés Esteban; da Costa, Renata Facundes; Estevan, René; Forno, Ricardo; Gouveia, Diego Alvés; Jiménez, Cristofer; Larroza, Eliane Gonçalves; da Silva Lopes, Fábio Juliano; Montilla-Rosero, Elena; Arruda Moreira, Gregori de; Nakaema, Walker Morinobu; Nisperuza, Daniel; Alegria, Dairo; Múnera, Mauricio; Otero, Lidia; Papandrea, Sebastián; Pallota, Juan Vicente; Pawelko, Ezequiel; Quel, Eduardo Jaime; Ristori, Pablo; Rodrigues, Patricia Ferrini; Salvador, Jacobo; Sánchez, Maria Fernanda; Silva, Antonieta

    2016-02-01

    LALINET (Latin American Lidar Network), previously known as ALINE, is the first fully operative lidar network for aerosol research in South America, probing the atmosphere on regular basis since September 2013. The general purpose of this network is to attempt to fill the gap in the knowledge on aerosol vertical distribution over South America and its direct and indirect impact on weather and climate by the establishment of a vertically-resolved dataset of aerosol properties. Similarly to other lidar research networks, most of the LALINET instruments are not commercially produced and, consequently, configurations, capabilities and derived-products can be remarkably different among stations. It is a fact that such un-biased 4D dataset calls for a strict standardization from the instrumental and data processing point of view. This study has been envisaged to investigate the ongoing network configurations with the aim of highlighting the instrumental strengths and weaknesses of LALINET.

  16. Optical alignment of a 0.5 meter ultra-violet spectrometer for Apollo 17

    NASA Technical Reports Server (NTRS)

    Schroader, I. H.; Holliday, C. T.; Bush, G. B.

    1973-01-01

    Description of the design and performance of a 0.5 m Ebert spectrometer mounted on Apollo 17 for research on the ultraviolet spectrum of the lunar atmosphere. The instrument was designed for operation in the range 1175 to 1675 A. A method was developed for aligning subassemblies in such a way that the assembled instrument would be aligned in the ultraviolet to an accuracy of 2 A with maximum efficiency.

  17. The Southwest Research Institute's SWUIS-A digital imaging system was installed on the instrument pa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Southwest Research Institute's SWUIS-A digital imaging system, including a sophisticated Xybion camera and associated control equipment, was installed on the instrument panel of a NASA Dryden F/A-18B for a series of astronomy flights to search for tiny vulcanoids (asteroids) that may be circling between the orbit of Mercury and the sun.

  18. Information Consumption by Low Income Families to Reduce Rural Poverty in Florida. Volume I, Research Instruments.

    ERIC Educational Resources Information Center

    Dhillon, Jogindar S.

    Volume I of this 4-volume report contains the research instruments used in an 18-month project which was designed to understand the rural poor in terms of their information-seeking and information-utilization behavior patterns. Randomly divided into 3 groups, 840 families from 7 target counties in northwestern Florida were studied by a group of…

  19. An ergonomics based design research method for the arrangement of helicopter flight instrument panels.

    PubMed

    Alppay, Cem; Bayazit, Nigan

    2015-11-01

    In this paper, we study the arrangement of displays in flight instrument panels of multi-purpose civil helicopters following a user-centered design method based on ergonomics principles. Our methodology can also be described as a user-interface arrangement methodology based on user opinions and preferences. This study can be outlined as gathering user-centered data using two different research methods and then analyzing and integrating the collected data to come up with an optimal instrument panel design. An interview with helicopter pilots formed the first step of our research. In that interview, pilots were asked to provide a quantitative evaluation of basic interface arrangement principles. In the second phase of the research, a paper prototyping study was conducted with same pilots. The final phase of the study entailed synthesizing the findings from interviews and observational studies to formulate an optimal flight instrument arrangement methodology. The primary results that we present in our paper are the methodology that we developed and three new interface arrangement concepts, namely relationship of inseparability, integrated value and locational value. An optimum instrument panel arrangement is also proposed by the researchers. PMID:26154208

  20. Choosing Assessment Instruments for Anxiety Practice and Outcome Research with School-Aged Youth

    ERIC Educational Resources Information Center

    Erford, Bradley T.; Lutz, Julie A.

    2015-01-01

    Using effect size results from our meta-analysis for the treatment of anxiety in school-aged youth, the practical and technical aspects of five commonly used anxiety instruments were analyzed, and effect size estimates compared to indicate the best choices for use in anxiety outcome research.

  1. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    Research concerning the development of pressure instrumentation for the space shuttle main engine is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

  2. The Effectiveness of Internet-Controlled Astronomical Research Instrumentation for Education

    ERIC Educational Resources Information Center

    Pratap, Preethi; Salah, Joseph

    2004-01-01

    Over the last decade, remote instruments have become widely used in astronomy. Educational applications are more recent. This paper describes a program to bring radio astronomy into the undergraduate classroom through the use of a remote research-grade radio telescope, the MIT Haystack Observatory 37 m telescope. We examine the effectiveness of…

  3. Instruments Used in Doctoral Dissertations in Educational Sciences in Turkey: Quality of Research and Analytical Errors

    ERIC Educational Resources Information Center

    Karadag, Engin

    2011-01-01

    The aim of this study was to define the level of quality and types of analytical errors for measurement instruments used [i.e., interview forms, achievement tests and scales] in doctoral dissertations produced in educational sciences in Turkey. The study was designed to determine the levels of factors concerning quality in research methods and the…

  4. INNOVATIVE TECHNOLOGY EVALUATION REPORT, SEDIMENT SAMPLING TECHNOLOGY, AQUATIC RESEARCH INSTRUMENTS, RUSSIAN PEAT BORER

    EPA Science Inventory

    The Russian Peat Borer designed and fabricated by Aquatic Research Instruments was demonstrated under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation Program in April and May 1999 at sites in EPA Regions 1 and 5, respectively. In additio...

  5. THAT INSTRUMENT IS LOUSY! IN SEARCH OF AGREEMENT WHEN USING INSTRUMENTAL VARIABLES ESTIMATION IN SUBSTANCE USE RESEARCH

    PubMed Central

    Popovici, Ioana

    2009-01-01

    SUMMARY The primary statistical challenge that must be addressed when using cross-sectional data to estimate the consequences of consuming addictive substances is the likely endogeneity of substance use. While economists are in agreement on the need to consider potential endogeneity bias and the value of instrumental variables estimation, the selection of credible instruments is a topic of heated debate in the field. Rather than attempt to resolve this debate, our paper highlights the diversity of judgments about what constitutes appropriate instruments for substance use based on a comprehensive review of the economics literature since 1990. We then offer recommendations related to the selection of reliable instruments in future studies. PMID:20029936

  6. Development of Research-Based Protocol Aligned to Predict High Levels of Teaching Quality

    ERIC Educational Resources Information Center

    Schumacher, Gary; Grigsby, Bettye; Vesey, Winona

    2011-01-01

    This study proposes a research-based teacher selection protocol. The protocol is intended to offer school district hiring authorities a tool to identify teacher candidates with the behaviors expected to predict effective teaching. It is hypothesized that a particular series of research-based interview questions focusing on teaching behaviors in…

  7. Future Directions for Dissemination and Implementation Science: Aligning Ecological Theory and Public Health to Close the Research to Practice Gap

    PubMed Central

    Rusch, Dana; Mehta, Tara G.; Lakind, Davielle

    2015-01-01

    Dissemination and implementation science (DI) has evolved as a major research model for children’s mental health in response to a longstanding call to integrate science and practice and bridge the elusive research to practice gap. However, to address the complex and urgent needs of the most vulnerable children and families, future directions for DI require a new alignment of ecological theory and public health to provide effective, sustainable, and accessible mental health services. We present core principles of ecological theory to emphasize how contextual factors impact behavior and allow for the reciprocal impact individuals have on the settings they occupy, and an alignment of these principles with a public health model to ensure that services span the prevention to intervention continuum. We provide exemplars from our ongoing work in urban schools, and a new direction for research to address the mental health needs of immigrant Latino families. Through these examples we illustrate how DI can expand its reach by embedding within natural settings to build on local capacity and indigenous resources, incorporating the local knowledge necessary to more substantively address long-standing mental health disparities. This paradigm shift for DI, away from an over-emphasis on promoting program adoption, calls for fitting interventions within settings that matter most to children’s healthy development, and utilizing and strengthening available community resources. In this way, we can meet the challenge of addressing our nation’s mental health burden by supporting the needs and values of families and communities within their own unique social ecologies. PMID:26155972

  8. Aligning research to meet policy objectives for migrant families: an example from Canada

    PubMed Central

    Gagnon, AJ; Joly, MP; Bocking, J

    2009-01-01

    Background 'Evidence-based policy making' for immigrants is a complicated undertaking. In striving toward this goal, federal Canadian partners created the Metropolis Project in 1995 to optimize a two-way transfer of knowledge (researchers – policy makers) within five Canadian Centres of Excellence focused on migrants newly arrived in Canada. Most recently, Metropolis federal partners, including the Public Health Agency of Canada, defined one of six research priority areas as, immigrant 'families, children, and youth'. In order to build on previous work in the partnership, we sought to determine what has been studied within this research-policy partnership about immigrant 'families, children, and youth' since its inception. Methods Annual reports and working papers produced in the five Centres of Excellence between 1996–2006 were culled. Data on academic works were extracted, results coded according to eleven stated federal policy priority themes, and analyzed descriptively. Results 139 academic works were reviewed. All federal priority themes, but few specific policy questions were addressed. The greatest volume of policy relevant works were identified for Services (n = 42) and Education and Cultural Identity (n = 39) priority themes. Conclusion Research conducted within the last 10 years is available to inform certain, not all, federal policy questions. Greater specificity in federal priorities can be expected to more clearly direct future research within this policy-research partnership. PMID:19515260

  9. Single particle counting diagnostic system for measuring fine particulates at high number densities in research and industrial applications. Final report summarizing instrument development, validation and operating instructions

    SciTech Connect

    Holve, D.J.

    1983-10-01

    Optical methods for particle size distribution measurements in practical high temperature environments have achieved feasibility and offer significant advantages over conventional sampling methods. The present report describes a mobile electro-optical system which has been designed for general use in a wide range of research and industrial environments. Specific features of this system include a method of providing in situ alignment and incorporation of an extinction measurement for application to optically thick aerosol flows. The instrument has demonstrated capability for measuring individual particles in the size range 0.25 to 100 microns at number densities up to 10/sup 12//m/sup 3/. In addition to demonstration of the system's wide dynamic range, we show the utility of the in situ alignment method in hot (1100 K) turbulent flows where beam steering can be a problem. As an example of the instrument's application, number and mass frequency distribution measurements of flyash and pulverized coal obtained in an atmospheric combustion exhaust simulator show that the raw pulverized coal contains large numbers of submicron particles similar to the flyash formed after combustion.

  10. Multi-Sensor Data from A-Train Instruments Brought Together for Atmospheric Research

    NASA Technical Reports Server (NTRS)

    Smith, Peter M.; Kempler, Steven J.; Leptoukh, Greg; Savtchenko, Andrey; Stephens, Graeme; Winker, David M.

    2007-01-01

    The A-Train is comprised of a series of instruments, developed independently, that measure highly related atmospheric components along the same flight path. In order to intercompare data from this multitude of sensors, researchers must access, subset, visualize, analyze and correlate distributed atmosphere measurements from the various A-Train instruments. The A-Train Data Depot (ATDD) has been operational for over a year, successfully performing the aforementioned functions on behalf of researchers, thus providing co-registered data from the Cloudsat, CALIOP, AIRS, and MODIS instruments for further intercomparisons. Of late, significant data from OM1 and POLDER are now included in the 'depot'. By specifying the desired spatial and temporal range, the researcher can subset, visualize, co-register, and access multi-sensor A-Train data related to: Cloud, aerosol, atmospheric temperature, and water vapor parameters (vertical profile visualizations); Cloud Pressure, cloud top temperature, water vapor, cloud optical thickness, and aerosol products (horizontal strips subsetted +/- 100km from the profile visualizations), and; Cloud pressure parameters (2-D line plots overlayed on the vertical profiles). All data is plotted using the GIOVANNI data exploration tool. A new feature of GIOVANNI is its ability to have collocated and subsetted data sets as well as PNG image files downloaded to the researcher's computing facility. By providing a convenient way to visualize and acquire multi-sensor data, ATDD affords users more time and effort to further their research.

  11. Improving the work environment through the use of research instruments: an example.

    PubMed

    Sieloff, Christina Leibold

    2010-01-01

    Over the past several years, although the quality of the work environment has improved for registered nurses, there is much that still needs to be done. However, much of the published research conducted in relation to the quality of work environments has focused on the more traditional components of the work environment. To assess the nontraditional components of a work environment, it is critical that reliable and valid instruments be utilized in order to ensure that the data gathered is accurate and truly reflective of what exists within the work environment. This article will describe one instrument, the Sieloff-King Assessment of Group Outcome Attainment within Organizations, that has demonstrated reliability and validity. The application of this instrument in the improvement of the health care environment will be discussed. PMID:20023562

  12. Antares alignment gimbal positioner

    SciTech Connect

    Day, R.D.; Viswanathan, V.K.; Saxman, A.C.; Lujan, R.E.; Woodfin, G.L.; Sweatt, W.C.

    1981-01-01

    Antares is a 24-beam 40-TW carbon-dioxide (CO/sub 2/) laser fusion system currently under construction at the Los Alamos National Laboratory. The Antares alignment gimbal positioner (AGP) is an optomechanical instrument that will be used for target alignment and alignment of the 24 laser beams, as well as beam quality assessments. The AGP will be capable of providing pointing, focusing, and wavefront optical path difference, as well as aberration information at both helium-neon (He-Ne) and CO/sub 2/ wavelengths. It is designed to allow the laser beams to be aligned to any position within a 1-cm cube to a tolerance of 10 ..mu..m.

  13. Fostering Interdisciplinary Research in Universities: A Case Study of Leadership, Alignment and Support

    ERIC Educational Resources Information Center

    Townsend, Tony; Pisapia, John; Razzaq, Jamila

    2015-01-01

    The aim of this paper is to describe actions designed to foster interdisciplinary research efforts at a major university in the UK. The study employed a descriptive mixed method case study approach to collecting and analysing the data used to draw its conclusions. One hundred and twenty-seven academic staff responded to the survey. The results of…

  14. Assessment of Teaching Effectiveness: Lack of Alignment between Instructors, Institutions, and Research Recommendations

    ERIC Educational Resources Information Center

    Henderson, Charles; Turpen, Chandra; Dancy, Melissa; Chapman, Tricia

    2014-01-01

    Ideally, instructors and their institutions would have a shared set of metrics by which they determine teaching effectiveness. And, ideally, these metrics would overlap with research findings on measuring teaching effectiveness. Unfortunately, the current situation at most institutions is far from this ideal. As part of a larger interview study,…

  15. Re-Aligning Research into Teacher Education for CALL and Bringing It into the Mainstream

    ERIC Educational Resources Information Center

    Motteram, Gary

    2014-01-01

    This paper explores three research projects conducted by the writer and others with a view to demonstrating the importance of effective theory and methodology in the analysis of teaching situations where Computer Assisted Language Learning (CALL), teacher practice and teacher education meet. It argues that there is a tendency in the field of…

  16. Innovativeness as an emergent property: a new alignment of comparative and experimental research on animal innovation.

    PubMed

    Griffin, Andrea S

    2016-03-19

    Innovation and creativity are key defining features of human societies. As we face the global challenges of the twenty-first century, they are also facets upon which we must become increasingly reliant. But what makes Homo sapiens so innovative and where does our high innovation propensity come from? Comparative research on innovativeness in non-human animals allows us to peer back through evolutionary time and investigate the ecological factors that drove the evolution of innovativeness, whereas experimental research identifies and manipulates underpinning creative processes. In commenting on the present theme issue, I highlight the controversies that have typified this research field and show how a paradigmatic shift in our thinking about innovativeness will contribute to resolving these tensions. In the past decade, innovativeness has been considered by many as a trait, a direct product of cognition, and a direct target of selection. The evidence I review here suggests that innovativeness will be hereon viewed as one component, or even an emergent property of a larger array of traits, which have evolved to deal with environmental variation. I illustrate how research should capitalize on taxonomic diversity to unravel the full range of psychological processes that underpin innovativeness in non-human animals. PMID:26926287

  17. Aligning Research and Policy on Social-Emotional and Academic Competence for Young Children

    ERIC Educational Resources Information Center

    Nadeem, Erum; Maslak, Kristi; Chacko, Anil; Hoagwood, Kimberly Eaton

    2010-01-01

    Research Findings: The purpose of this article is to describe current education policies as they relate to the promotion of social, emotional, and academic (SEA) development and competence for young children. Academic and social-emotional competencies are described and conceptualized as developmentally linked, reciprocal processes that should be…

  18. U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors

    SciTech Connect

    Wood, Richard Thomas

    2012-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD&D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors.

  19. Study of a module alignment measuring system for UARS

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An alignment measurement system (AMS) which precisely determines the boresights pointing directions of the Upper Atmosphere Research Satellite (UARS) instruments relative to the UARS attitude control system (ACS) was studied. The technology used in on the MAGSAT mission was considered. The AMS optical, mechanical, thermal and electrical system properties were defined. The AMS is constrained to interface with the UARS instrument module and spacecraft layout.

  20. Theory of grain alignment in molecular clouds

    NASA Technical Reports Server (NTRS)

    Roberge, Wayne G.

    1993-01-01

    Research accomplishments are presented and include the following: (1) mathematical theory of grain alignment; (2) super-paramagnetic alignment of molecular cloud grains; and (3) theory of grain alignment by ambipolar diffusion.

  1. Satellite communications provisions on NASA Ames instrumented aircraft platforms for Earth science research/applications

    NASA Technical Reports Server (NTRS)

    Shameson, L.; Brass, J. A.; Hanratty, J. J.; Roberts, A. C.; Wegener, S. S.

    1995-01-01

    Earth science activities at NASA Ames are research in atmospheric and ecosystem science, development of remote sensing and in situ sampling instruments, and their integration into scientific research platform aircraft. The use of satellite communications can greatly extend the capability of these agency research platform aircraft. Current projects and plans involve satellite links on the Perseus UAV and the ER-2 via TDRSS and a proposed experiment on the NASA Advanced Communications Technology Satellite. Provisions for data links on the Perseus research platform, via TDRSS S-band multiple access service, have been developed and are being tested. Test flights at Dryden are planned to demonstrate successful end-to-end data transfer. A Unisys Corp. airborne satcom STARLink system is being integrated into an Ames ER-2 aircraft. This equipment will support multiple data rates up to 43 Mb/s each via the TDRS S Ku-band single access service. The first flight mission for this high-rate link is planned for August 1995. Ames and JPL have proposed an ACTS experiment to use real-time satellite communications to improve wildfire research campaigns. Researchers and fire management teams making use of instrumented aircraft platforms at a prescribed burn site will be able to communicate with experts at Ames, the U.S. Forest Service, and emergency response agencies.

  2. Leveraging the Zachman framework implementation using action - research methodology - a case study: aligning the enterprise architecture and the business goals

    NASA Astrophysics Data System (ADS)

    Nogueira, Juan Manuel; Romero, David; Espadas, Javier; Molina, Arturo

    2013-02-01

    With the emergence of new enterprise models, such as technology-based enterprises, and the large quantity of information generated through technological advances, the Zachman framework continues to represent a modelling tool of great utility and value to construct an enterprise architecture (EA) that can integrate and align the IT infrastructure and business goals. Nevertheless, implementing an EA requires an important effort within an enterprise. Small technology-based enterprises and start-ups can take advantage of EAs and frameworks but, because these enterprises have limited resources to allocate for this task, an enterprise framework implementation is not feasible in most cases. This article proposes a new methodology based on action-research for the implementation of the business, system and technology models of the Zachman framework to assist and facilitate its implementation. Following the explanation of cycles of the proposed methodology, a case study is presented to illustrate the results of implementing the Zachman framework in a technology-based enterprise: PyME CREATIVA, using action-research approach.

  3. Study of the Reliability of CCSS-Aligned Math Measures (2012 Research Version): Grades 6-8. Technical Report #1312

    ERIC Educational Resources Information Center

    Anderson, Daniel; Alonzo, Julie; Tindal, Gerald

    2012-01-01

    In this technical report, we describe the results of a study of mathematics items written to align with the Common Core State Standards (CCSS) in grades 6-8. In each grade, CCSS items were organized into forms, and the reliability of these forms was evaluated along with an experimental form including items aligned with the National Council of…

  4. Constructive Alignment and the Research Skills Development Framework: Using Theory to Practically Align Graduate Attributes, Learning Experiences, and Assessment Tasks in Undergraduate Midwifery

    ERIC Educational Resources Information Center

    Pretorius, Lynette; Bailey, Carolyn; Miles, Maureen

    2013-01-01

    Midwifery educators have to provide students with stimulating curricula that teach academic and vocational content, as well as transferable skills. The Research Skills Development (RSD) framework provides a conceptual model that allows educators to explicitly scaffold the development of their students' research skills. This paper aims to…

  5. Engagement, Alignment, and Rigor as Vital Signs of High-Quality Instruction: A Classroom Visit Protocol for Instructional Improvement and Research

    ERIC Educational Resources Information Center

    Early, Diane M.; Rogge, Ronald D.; Deci, Edward L.

    2014-01-01

    This paper investigates engagement (E), alignment (A), and rigor (R) as vital signs of high-quality teacher instruction as measured by the EAR Classroom Visit Protocol, designed by the Institute for Research and Reform in Education (IRRE). Findings indicated that both school leaders and outside raters could learn to score the protocol with…

  6. New customizable phased array UT instrument opens door for furthering research and better industrial implementation

    SciTech Connect

    Dao, Gavin; Ginzel, Robert

    2014-02-18

    Phased array UT as an inspection technique in itself continues to gain wide acceptance. However, there is much room for improvement in terms of implementation of Phased Array (PA) technology for every unique NDT application across several industries (e.g. oil and petroleum, nuclear and power generation, steel manufacturing, etc.). Having full control of the phased array instrument and customizing a software solution is necessary for more seamless and efficient inspections, from setting the PA parameters, collecting data and reporting, to the final analysis. NDT researchers and academics also need a flexible and open platform to be able to control various aspects of the phased array process. A high performance instrument with advanced PA features, faster data rates, a smaller form factor, and capability to adapt to specific applications, will be discussed.

  7. New In-pile Instrumentation to Support Fuel Cycle Research and Development

    SciTech Connect

    J. Rempe; H. MacLean; R. Schley; D. Hurley; J. Daw; S. Taylor; J. Smith; J. Svoboda; D. Kotter; D. Knudson; M. Guers; S. C. Wilkins

    2011-01-01

    New and enhanced nuclear fuels are a key enabler for new and improved reactor technologies. For example, the goals of the next generation nuclear plant (NGNP) will not be met without irradiations successfully demonstrating the safety and reliability of new fuels. Likewise, fuel reliability has become paramount in ensuring the competitiveness of nuclear power plants. Recently, the Office of Nuclear Energy in the Department of Energy (DOE-NE) launched a new direction in fuel research and development that emphasizes an approach relying on first principle models to develop optimized fuel designs that offer significant improvements over current fuels. To facilitate this approach, high fidelity, real-time, data are essential for characterizing the performance of new fuels during irradiation testing. A three-year strategic research program is proposed for developing the required test vehicles with sensors of unprecedented accuracy and resolution for obtaining the data needed to characterize three-dimensional changes in fuel microstructure during irradiation testing. When implemented, this strategy will yield test capsule designs that are instrumented with new sensor technologies for the Advanced Test Reactor (ATR) and other irradiation locations for the Fuel Cycle Research and Development (FC R&D) program. Prior laboratory testing, and as needed, irradiation testing, of these sensors will have been completed to give sufficient confidence that the irradiation tests will yield the required data. Obtaining these sensors must draw upon the expertise of a wide-range of organizations not currently supporting nuclear fuels research. This document defines this strategic program and provides the necessary background information related to fuel irradiation testing, desired parameters for detection, and an overview of currently available in-pile instrumentation. In addition, candidate sensor technologies are identified in this document, and a list of proposed criteria for ranking

  8. Alignment validation

    SciTech Connect

    ALICE; ATLAS; CMS; LHCb; Golling, Tobias

    2008-09-06

    The four experiments, ALICE, ATLAS, CMS and LHCb are currently under constructionat CERN. They will study the products of proton-proton collisions at the Large Hadron Collider. All experiments are equipped with sophisticated tracking systems, unprecedented in size and complexity. Full exploitation of both the inner detector andthe muon system requires an accurate alignment of all detector elements. Alignmentinformation is deduced from dedicated hardware alignment systems and the reconstruction of charged particles. However, the system is degenerate which means the data is insufficient to constrain all alignment degrees of freedom, so the techniques are prone to converging on wrong geometries. This deficiency necessitates validation and monitoring of the alignment. An exhaustive discussion of means to validate is subject to this document, including examples and plans from all four LHC experiments, as well as other high energy experiments.

  9. SPIDER: A new instrument for fission fragment research at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Tovesson, Fredrik; Arnold, Charles; Blakeley, Rick; Hecht, Adam; Laptev, Alexander; Mader, Drew; Meierbachtol, Krista; Snyder, Lucas; White, Morgan

    2013-12-01

    The study of fission fragment yields and how they behave as a function of excitation energy provides insight into the process in which they are formed. Fission yields are also important for nuclear applications, as they can be used as a diagnostic tool. A new instrument, SPIDER (Spectrometer for Ion DEtermination in fission Research), is being developed for measuring fission yields as a function of incident neutron energy at the Los Alamos Neutron Science Center. The instrument employs a time-of-flight mass spectrometry method in which the velocity and kinetic energy of the fragments are measured in order to determine their mass. Additionally, by using Bragg peak spectroscopy, the charge of the fragments can be identified. A prototype instrument has been developed and preliminary results indicate that ˜ 1 mass unit resolution is feasible using this approach. A larger detector array is currently being designed, and will be used at study fission yields from thermal neutron energies up to at least 20 MeV.

  10. MUSE optical alignment procedure

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Loupias, Magali; Kosmalski, Johan; Anwand, Heiko; Bacon, Roland; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dubois, Jean-Pierre; Dupuy, Christophe; Kelz, Andreas; Lizon, Jean-Louis; Nicklas, Harald; Parès, Laurent; Remillieux, Alban; Seifert, Walter; Valentin, Hervé; Xu, Wenli

    2012-09-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation VLT integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently assembling and testing MUSE in the Integration Hall of the Observatoire de Lyon for the Preliminary Acceptance in Europe, scheduled for 2013. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2011, all MUSE subsystems were integrated, aligned and tested independently in each institute. After validations, the systems were shipped to the P.I. institute at Lyon and were assembled in the Integration Hall This paper describes the end-to-end optical alignment procedure of the MUSE instrument. The design strategy, mixing an optical alignment by manufacturing (plug and play approach) and few adjustments on key components, is presented. We depict the alignment method for identifying the optical axis using several references located in pupil and image planes. All tools required to perform the global alignment between each subsystem are described. The success of this alignment approach is demonstrated by the good results for the MUSE image quality. MUSE commissioning at the VLT (Very Large Telescope) is planned for 2013.

  11. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 2: Experiment selection

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The selection and definition of candidate experiments and the associated experiment instrumentation requirements are described. Information is presented that addresses the following study objectives: (1) determine specific research and technology needs in the comm/nav field through a survey of the scientific/technical community; (2) develop manned low earth orbit space screening criteria and compile lists of potential candidate experiments; (3) in Blue Book format, define and describe selected candidate experiments in sufficient detail to develop laboratory configuration designs and layouts; and (4) develop experiment time phasing criteria and recommend a payload for sortie can/early laboratory missions.

  12. The key-role of instrumentation for the new generation of research reactors

    SciTech Connect

    Bignan, G.; Villard, J. F.; Destouches, C.; Baeten, P.; Vermeeren, L.; Michiels, S.

    2011-07-01

    Experimental reactors have been indispensable since the beginning of the use of nuclear energy to support many important fields of industry and research: safety, lifetime management and operation optimisation of nuclear power plants, development of new types of reactors with improved resources and fuel cycle management, medical applications, material development for fusion... Over the last decade, modifications of the operational needs and the ageing of the nuclear facilities have led to several closures and time is coming for new key European Experimental Reactors (EER) within a European and International Framework. Projects like MYRRHA and JHR are underway to define and implement a new consistent EER policy: - Meeting industry and public needs, keeping a high level of scientific expertise; - With a limited number of EER, specified within a rational compromise between specialisation, complementarities and back-up capacities; - To be put into effective operation in this or the next decade. These new projects will give to the scientific community high performances allowing innovative fields of R and D. A new generation of instrumentation to address new phenomena and that allows better on-line investigation of some key physical parameters is necessary to achieve these challenges. One initiative to progress in this direction is the Joint Instrumentation Laboratory between CEA and SCK.CEN which has already given significant results and patents. Major scientific challenges to achieve in the field of instrumentation for this new generation of European Research Reactors have to be investigated and are described in this paper as well as a short description of the JHR and MYRRHA reactors that will be serving as flexible irradiation facilities for testing them. (authors)

  13. The imperative of strategic alignment across organizations: the experience of the Canadian Cancer Society's Centre for Behavioural Research and Program Evaluation.

    PubMed

    Cameron, Roy; Riley, Barbara L; Campbell, H Sharon; Manske, Stephen; Lamers-Bellio, Kim

    2009-01-01

    The Canadian Cancer Society's Centre for Behavioural Research and Program Evaluation (CBRPE) is a national asset for building pan-Canadian capacity to support intervention studies that guide population-level policies and programs. This paper briefly describes CBRPE's experience in advancing this work in the field of prevention. The aim is to illuminate issues of central importance for advancing the goals of the Population Health Intervention Research Initiative for Canada. According to our experience, success in building the population intervention field will depend heavily on purposeful alignment across organizations to enable integration of research, evaluation, surveillance, policy and practice. CBRPE's capacity development roles include a) a catalytic role in shaping this aligned inter-organizational milieu and b) investing our resources in building tangible assets (teams, indicators, data systems) that contribute relevant capacities within this emerging milieu. Challenges in building capacity in this field are described. PMID:19263980

  14. Development of a Portable, Ground-Based Ozone Lidar Instrument for Tropospheric Ozone Research and Educational Training

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas; Zenker, Thomas

    1998-01-01

    The objective of this project is to develop a portable, eye-safe, ground-based ozone lidar instrument specialized for ozone differential absorption lidar (DIAL) measurements in the troposphere. This prototype instrument is intended to operate at remote field sites and to serve as the basic unit for monitoring projects requiring multi-instrument networks, such as that discussed in the science plan for the Global Tropospheric Ozone Project (GTOP). This instrument will be based at HU for student training in lidar technology as well as atmospheric ozone data analysis and interpretation. It will be also available for off-site measurement campaigns and will serve as a test bed for further instrument development. Later development beyond this grant to extend the scientific usefulness of the instrument may include incorporation of an aerosol channel and upgrading the laser to make stratospheric ozone measurements. Undergraduate and graduate students have been and will be active participants in this research effort.

  15. Upper atmospheric effects of the hf active auroral research program ionospheric research instrument (HAARP IRI)

    SciTech Connect

    Eccles, V.; Armstrong, R.

    1993-05-01

    The earth's ozone layer occurs in the stratosphere, primarily between 10 and 30 miles altitude. The amount of ozone, O3, present is the result of a balance between production and destruction processes. Experiments have shown that natural processes such as auroras create molecules that destroy O. One family of such molecules is called odd nitrogen of which nitric oxide (NO) is an example. Because the HAARP (HF Active Auroral Research Program) facility is designed to mimic and investigate certain natural processes, a study of possible effects of HAARP on the ozone layer was conducted. The study used a detailed model of the thermal and chemical effects of the high power HF beam, which interacts with free electrons in the upper atmosphere above 50 miles altitude. It was found only a small fraction of the beam energy goes into the production of odd nitrogen molecules, whereas odd nitrogen is efficiently produced by auroras. Since the total energy emitted by HAARP in the year is some 200,000 times less than the energy deposited in the upper atmosphere by auroras, the study demonstrates that HAARP HF beam experiments will cause no measurable depletion of the earth's ozone layer.... Ozone, Ozone depletion, Ozone layer, Odd nitrogen, Nitric oxide, HAARP Emitter characteristics.

  16. Solar Alignments - Identification and Analysis

    NASA Astrophysics Data System (ADS)

    Belmonte, Juan Antonio

    The sun was such an important divinity in antiquity, and even today, that solar alignments should be expected within a large variety of places and cultures. These are probably the most conspicuous kind of astronomical alignments a field researcher can deal with. The need for a correct identification is thus evident. The different kind of solar phenomena susceptible of being determined by astronomical alignments will be scrutinized, following by the way in which such alignments can materialize in space. It will be shown that analyzing solar alignments is not always an easy task.

  17. Contributions OF SAGE II Instrument to NASA Earth Science Enterprise Research

    NASA Astrophysics Data System (ADS)

    Kaye, J. A.

    2002-05-01

    NASA's Earth Science Enterprise (ESE) has a research strategy based on a hierarchy of questions that are both scientifically and societally important. These questions are organized into five categories - variability, forcing, response, consequence, and prediction. The 17 years of data from the second Stratospheric Aerosol and Gas Experiment (SAGE II) instrument have contributed to ESE's progress in all of these categories, and had significant impacts on several of the 23 questions that constitute the most detailed level of the ESE Science Research Strategy. In this talk, the major contributions of SAGE II to these areas will be reviewed, and lessons learned from the SAGE II experience that can be incorporated into planning for future satellite missions will be reviewed.

  18. Proceedings of the advanced research and technology development direct utilization, instrumentation and diagnostics contractors' review meeting

    SciTech Connect

    Geiling, D.W. ); Goldberg, P.M. )

    1990-01-01

    The 1990 Advanced Research and Technology Development (AR TD) Direct Utilization, and Instrumentation and Diagnostics Contractors Review Meeting was held September 16--18, 1990, at the Hyatt at Chatham Center in Pittsburgh, PA. The meeting was sponsored by the US Department of Energy (DOE), Office of Fossil Energy, and the Pittsburgh and Morgantown Energy Technology Centers. Each year the meeting provides a forum for the exchange of information among the DOE AR TD contractors and interested parties. This year's meeting was hosted by the Pittsburgh Energy Technology Center and was attended by 120 individuals from industry, academia, national laboratories, and other governmental agencies. Papers were presented on research addressing coal surface, science, devolatilization and combustion, ash behavior, emission controls for gases particulates, fluid bed combustion and utilization in diesels and turbines. Individual reports are processed separately for the data bases.

  19. An automated calibration laboratory for flight research instrumentation: Requirements and a proposed design approach

    NASA Technical Reports Server (NTRS)

    Oneill-Rood, Nora; Glover, Richard D.

    1990-01-01

    NASA's Dryden Flight Research Facility (Ames-Dryden), operates a diverse fleet of research aircraft which are heavily instrumented to provide both real time data for in-flight monitoring and recorded data for postflight analysis. Ames-Dryden's existing automated calibration (AUTOCAL) laboratory is a computerized facility which tests aircraft sensors to certify accuracy for anticipated harsh flight environments. Recently, a major AUTOCAL lab upgrade was initiated; the goal of this modernization is to enhance productivity and improve configuration management for both software and test data. The new system will have multiple testing stations employing distributed processing linked by a local area network to a centralized database. The baseline requirements for the new AUTOCAL lab and the design approach being taken for its mechanization are described.

  20. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    NASA Technical Reports Server (NTRS)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    The purpose of Modification No. 5 of this contract is to expand the scope of work (Task C) of this research study effort to develop pressure instrumentation for the SSME. The objective of this contract (Task C) is to direct Honeywell's Solid State Electronics Division's (SSED) extensive experience and expertise in solid state sensor technology to develop prototype pressure transducers which are targeted to meet the SSME performance design goals and to fabricate, test and deliver a total of 10 prototype units. SSED's basic approach is to effectively utilize the many advantages of silicon piezoresistive strain sensing technology to achieve the objectives of advanced state-of-the-art pressure sensors in terms of reliability, accuracy and ease of manufacture. More specifically, integration of multiple functions on a single chip is the key attribute of this technology which will be exploited during this research study.

  1. Laboratory Instruments Available to Support Space Station Researchers at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Panda, Binayak; Gorti, Sridhar

    2013-01-01

    A number of research instruments are available at NASA's Marshall Space Flight Center (MSFC) to support ISS researchers and their investigations. These modern analytical tools yield valuable and sometimes new informative resulting from sample characterization. Instruments include modern scanning electron microscopes equipped with field emission guns providing analytical capabilities that include angstron-level image resolution of dry, wet and biological samples. These microscopes are also equipped with silicon drift X-ray detectors (SDD) for fast yet precise analytical mapping of phases, as well as electron back-scattered diffraction (EBSD) units to map grain orientations in crystalline alloys. Sample chambers admit large samples, provide variable pressures for wet samples, and quantitative analysis software to determine phase relations. Advances in solid-state electronics have also facilitated improvements for surface chemical analysis that are successfully employed to analyze metallic materials and alloys, ceramics, slags, and organic polymers. Another analytical capability at MSFC is a mganetic sector Secondary Ion Mass Spectroscopy (SIMS) that quantitatively determines and maps light elements such as hydrogen, lithium, and boron along with their isotopes, identifies and quantifies very low level impurities even at parts per billion (ppb) levels. Still other methods available at MSFC include X-ray photo-electron spectroscopy (XPS) that can determine oxidation states of elements as well as identify polymers and measure film thicknesses on coated materials, Scanning Auger electron spectroscopy (SAM) which combines surface sensitivity, spatial lateral resolution (approximately 20 nm), and depth profiling capabilities to describe elemental compositions in near surface regions and even the chemical state of analyzed atoms. Conventional Transmission Electron Microscope (TEM) for observing internal microstructures at very high magnifications and the Electron Probe

  2. Field astrobiology research in Moon-Mars analogue environments: instruments and methods

    NASA Astrophysics Data System (ADS)

    Foing, B. H.; Stoker, C.; Zavaleta, J.; Ehrenfreund, P.; Thiel, C.; Sarrazin, P.; Blake, D.; Page, J.; Pletser, V.; Hendrikse, J.; Direito, S.; Kotler, J. M.; Martins, Z.; Orzechowska, G.; Gross, C.; Wendt, L.; Clarke, J.; Borst, A. M.; Peters, S. T. M.; Wilhelm, M.-B.; Davies, G. R.; Davies

    2011-07-01

    We describe the field demonstration of astrobiology instruments and research methods conducted in and from the Mars Desert Research Station (MDRS) in Utah during the EuroGeoMars campaign 2009 coordinated by ILEWG, ESA/ESTEC and NASA Ames, with the contribution of academic partners. We discuss the entire experimental approach from determining the geological context using remote sensing, in situ measurements, sorties with sample collection and characterization, analysis in the field laboratory, to the post sample analysis using advanced laboratory facilities. We present the rationale for terrestrial field campaigns to strengthen astrobiology research and the link between in situ and orbital remote sensing data. These campaigns are supporting the preparation for future missions such as Mars Science Laboratory, ExoMars or Mars Sample Return. We describe the EuroGeoMars 2009 campaign conducted by MDRS crew 76 and 77, focused on the investigation of surface processes in their geological context. Special emphasis was placed on sample collection and pre-screening using in-situ portable instruments. Science investigations included geological and geochemical measurements as well as detection and diagnostic of water, oxidants, organic matter, minerals, volatiles and biota. EuroGeoMars 2009 was an example of a Moon-Mars field research campaign dedicated to the demonstration of astrobiology instruments and a specific methodology of comprehensive measurements from selected sampling sites. We discuss in sequence: the campaign objectives and trade-off based on science, technical or operational constraints. This includes remote sensing data and maps, and geological context; the monitoring of environmental parameters; the geophysical context and mineralogy studies; geology and geomorphology investigations; geochemistry characterization and subsurface studies. We describe sample handling (extraction and collection) methods, and the sample analysis of soils and rocks performed in the

  3. Pro-Am Collaborations with research grade robotic instruments and their contribution to outreach

    NASA Astrophysics Data System (ADS)

    Howes, N.

    2014-04-01

    Robotic telescopes in both the commercial sector and outreach area have increasingly provided both professional and amateur astronomers with high quality data. Projects like the Faulkes Telescope, which is an educational and research arm of the Las Cumbres Observatory Global Telescope Network (LCOGTN) with their network of 1 and 2-metre robotic telescopes, have been directly involved in support for missions such as the European Space Agency Rosetta and Gaia missions, as well as involvement in a variety of NASA Comet missions such as the EPOXI/Comet 103P encounter. These telescope networks are unique in that they provide school students and high end amateur astronomers, with access to research grade instrumentation and equipment which may not have been affordable to them in many instances. With social media collaboration and dedicated websites, increasingly bridging the gap between the professional and amateur community, more and more amateurs are working as collaborators with scientists in not only providing data, but also in data reduction. Amateur astronomers have increasingly also been working with schools suggesting projects which have provided valuable scientific input to professional astronomers, whilst also giving young scientists in secondary education, an opportunity to work with professional instrumentation and methods, albeit at an entry level. We aim to demonstrate the long term value of these collaborations, and propose better working methodologies to help the professional community get more from amateur input. We will cite some examples of research paper collaborations, and scientifically valuable data sharing between professional and amateur astronomers, • Observations and results from the global campaign on Comet C/2007 Q3; Ref.[1] • Observations of the fragmentation of Comet 168P; Ref.[2] • Observations relating to the evolution of Comet C/2012 S1; Ref.[3

  4. Alignment fixture

    DOEpatents

    Bell, Grover C.; Gibson, O. Theodore

    1980-01-01

    A part alignment fixture is provided which may be used for precise variable lateral and tilt alignment relative to the fixture base of various shaped parts. The fixture may be used as a part holder for machining or inspection of parts or alignment of parts during assembly and the like. The fixture includes a precisely machined diameter disc-shaped hub adapted to receive the part to be aligned. The hub is nested in a guide plate which is adapted to carry two oppositely disposed pairs of positioning wedges so that the wedges may be reciprocatively positioned by means of respective micrometer screws. The sloping faces of the wedges contact the hub at respective quadrants of the hub periphery. The lateral position of the hub relative to the guide plate is adjusted by positioning the wedges with the associated micrometer screws. The tilt of the part is adjusted relative to a base plate, to which the guide plate is pivotally connected by means of a holding plate. Two pairs of oppositely disposed wedges are mounted for reciprocative lateral positioning by means of separate micrometer screws between flanges of the guide plate and the base plate. Once the wedges are positioned to achieve the proper tilt of the part or hub on which the part is mounted relative to the base plate, the fixture may be bolted to a machining, inspection, or assembly device.

  5. The Scintillation and TEC Radio Instrument in Space (SCITRIS) Program at the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Bernhardt, P.; Siefring, C.; Huba, J.; Galysh, I.

    SCITRIS, a new space-based system to monitor total electron content (TEC) and ionospheric scintillations (IS), is scheduled for launch in late 2006. Two satellites, the Air Force S ace Test Program STPSAT1 and the Naval Postgraduate Schoolp NPSAT1, will host the SCITRIS instruments. The satellites will orbit at 560 km altitude with an inclination of 35 degrees. The CITRIS receiver on STPSAT1 will record signals from radio beacons o erating near 150, 400, 1067 and 2036 MHz.p The frequency pair 401.25 and 2036.25 MHz will be transmitted from the 50 ground transmitters that comprise the Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) system maintained by CNES in France. The frequencies 150.012, 400.032, and 1066.752 MHz will be transmitted using the Naval Research Laboratories' Coherent Electromagnetic Radio Tomography (CERTO) beacon from the NPSAT1 satellite. The NRL Langmuir probe will also be located on NPSAT1 to provide in situ electron density. The CITRIS receiver will process the measurements of complex amplitude from the multifrequency beacons to yield TEC and scintillation indices (S 4, ). Global maps of electron density and ionospheric irregularities will be produced using the SCITRIS instruments.

  6. Design and Application of New Low-Cost Instruments for Marine Environmental Research

    PubMed Central

    Marcelli, Marco; Piermattei, Viviana; Madonia, Alice; Mainardi, Umberto

    2014-01-01

    The development of low-cost instrumentation plays a key role in marine environmental studies and represents one of the most innovative aspects of current oceanographic research. These kinds of devices can be used for several applications, ranging from vertical profilers to stand-alone systems, and can be installed on different platforms (buoys, Voluntary Observing Ships, underwater vehicles, etc.). The availability of low-cost technologies enables the realization of extended observatory networks for the study of marine physical and biological processes through an integrated approach merging in situ observations, forecasting models and remotely sensed data. We present new low-cost sensors and probes developed to measure marine temperature, conductivity, chlorophyll a and Chromophoric Dissolved Organic Matter fluorescence, focusing on sensing strategies, general architecture, laboratory trials, in situ tests and comparison with standard instruments. Furthermore, we report the expendable (New T-FLaP), vertical profiler (T-FLaPpro) and stand-alone (Spectra) applications of these technological developments that were tested during several oceanographic surveys in the Mediterranean Sea. PMID:25490594

  7. Diode laser based photoacoustic gas measuring instruments intended for medical research

    NASA Astrophysics Data System (ADS)

    Szabó, Anna; Mohácsi, Árpád; Novák, Péter; Aladzic, Daniela; Turzó, Kinga; Rakonczay, Zoltán; Erős, Gábor; Boros, Mihály; Nagy, Katalin; Szabó, Gábor

    2012-06-01

    Analysis of breath and gases emanated from skin can be used for early and non-invasive diagnosis of various kinds of diseases. Two portable, compact, photoacoustic spectroscopy based trace gas sensors were developed for the detection of methane emanated from skin and ammonia emanated from oral cavity. The light sources were distributed feedback diode lasers emitting at the absorption lines of ammonia and methane, at 1.53 μm and 1.65 μm, respectively. Photoacoustic method ensures high selectivity, therefore cross-sensitivity was negligible even with large amount of water vapor and carbon dioxide in the gas sample. In case of ammonia a preconcentration unit was used to achieve lower minimum detectable concentration. Gas sample from the oral cavity was drawn through a glass tube to the preconcentration unit that chemically bonded ammonia and released it when heated. The minimum detectable concentration of ammonia was 10 ppb for 15 s gas sampling time (gas sample of 250 cm3). For methane minimum detectable concentration of 0.25 ppm was found with 12 s integration time, and it was proved to be adequate for the detection of methane emanated from human skin and from mice. Instruments measuring methane and ammonia are currently installed at two medical research laboratories at University of Szeged and tested as instruments for non-invasive clinical trials. The aim of the measurements is to determine correlations between diseases or metabolic processes and emanated gases.

  8. Radon entry into basements: Approach, experimental structures, and instrumentation of the small structures research project

    SciTech Connect

    Fisk, W.J.; Modera, M.P.; Sextro, R.G.; Garbesi, K.; Wollenberg, H.A.; Narasimhan, T.N.; Nuzum, T.; Tsang, Y.W.

    1992-02-01

    We describe the experimental approach, structures, and instrumentation of a research project on radon generation and transport in soil and entry into basements. The overall approach is to construct small precisely-fabricated basements in areas of different geology and climate, to control the pressures and ventilation rates in the structures, and to monitor radon concentrations and other relevant parameters over a period of one year or more. Two nearly air-tight structures have been constructed at the first site. The floor of each structure contains adjustable-width slots that serve as the only significant pathway for advective entry of radon. A layer of gravel underlays the floor of one structure; otherwise they are identical. The structures are instrumented for continuous or periodic monitoring of soil, structural, and meteorological parameters that affect radon entry. The pressure difference that drives advective radon entry can be maintained constant or varied over time. Soil gas and radon entry rates and associated parameters, such as soil gas pressures and radon concentrations, have been monitored for a range of steady-state and time-varying pressure differences between the interior of the structure and the soil. Examples of the experimentally-measured pressure and permeability fields in the soil around a structure are presented and discussed.

  9. Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology

    SciTech Connect

    Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony; Russell, P. B.; Schmid, Beat; Flynn, Connor J.; Redemann, Jens; Shinozuka, Yohei; Livingston, J.; Segal Rozenhaimer, Michal

    2013-08-06

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy, to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.

  10. Global spectroscopy and imaging of atmospheric X-ray bremsstrahlung - Instrumentation and initial results from the PEM/AXIS instrument aboard the Upper Atmosphere Research Satellite

    NASA Technical Reports Server (NTRS)

    Chenette, D. L.; Datlowe, D. W.; Imhof, W. L.; Schumaker, T. L.; Tobin, J. D.

    1992-01-01

    The Atmospheric X-ray Imaging Spectrometer (PEM/AXIS) aboard NASA's Upper Atmosphere Research Satellite provides continuous horizon to horizon images, both day and night, of the 3- to 100-keV X-ray flux emitted from the top of the atmosphere. AXIS achieves a spatial resolution to better than 100 km using a one-dimensional array of 16 passively cooled silicon detectors. The primary purpose of this instrument is to provide a global monitor of electron energy input to the upper atmosphere. We describe the design, development, and calibration of AXIS and provide an assessment of its excellent on-orbit performance. The unique capabilities of X-ray imaging spectrometers are demonstrated through an analysis of specific examples from October and November 1991. Important new developments for follow-on instruments also will be described.

  11. THE UNITED PRESBYTERIAN NATIONAL EDUCATIONAL SURVEY, AN INTERDISCIPLINARY RESEARCH PROJECT. VOLUME III, RESEARCH INSTRUMENTS AND TABULATIONS OF RESEARCH DATA.

    ERIC Educational Resources Information Center

    WHITMAN, LAURIS B.; AND OTHERS

    THE DEPARTMENT OF RESEARCH OF THE NATIONAL COUNCIL OF CHURCHES CONDUCTED A SURVEY FOR THE UNITED PRESBYTERIAN CHURCH OF ITS MEMBERSHIP AND RELIGIOUS BELIEFS. VOLUME III OF ITS REPORT IS THE STUDY APPENDIXES. THERE ARE MARGINAL TABULATIONS ON THE SAMPLE CHURCHES AND COMMUNITY BACKGROUND, WHICH INCLUDE SUCH INFORMATION AS MEMBERSHIP, BUDGET,…

  12. ALIGNING JIG

    DOEpatents

    Culver, J.S.; Tunnell, W.C.

    1958-08-01

    A jig or device is described for setting or aligning an opening in one member relative to another member or structure, with a predetermined offset, or it may be used for measuring the amount of offset with which the parts have previously been sct. This jig comprises two blocks rabbeted to each other, with means for securing thc upper block to the lower block. The upper block has fingers for contacting one of the members to be a1igmed, the lower block is designed to ride in grooves within the reference member, and calibration marks are provided to determine the amount of offset. This jig is specially designed to align the collimating slits of a mass spectrometer.

  13. Instrument Adaptation in Cross-Cultural Studies of Students' Mathematics-Related Beliefs: Learning from Healthcare Research

    ERIC Educational Resources Information Center

    Andrews, Paul; Diego-Mantecón, Jose

    2015-01-01

    Much comparative research into education-related beliefs has exploited questionnaires developed in one culture for use in another. This has been particularly the case in mathematics education, the focus of this paper. In so doing, researchers have tended to assume that translation alone is sufficient to warrant a reliable and valid instrument for…

  14. Image alignment

    DOEpatents

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  15. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Projects at NASA Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    This document is intended to enable the more effective transition of NASA Glenn Research Center (GRC) SBIR technologies funded by the Small Business Innovation Research (SBIR) program as well as its companion, the Small Business Technology Transfer (STTR) program into NASA Aeronautics Research Mission Directorate (ARMD) projects. Primarily, it is intended to help NASA program and project managers find useful technologies that have undergone extensive research and development (RRD), through Phase II of the SBIR program; however, it can also assist non-NASA agencies and commercial companies in this process. aviation safety, unmanned aircraft, ground and flight test technique, low emissions, quiet performance, rotorcraft

  16. MUSE alignment onto VLT

    NASA Astrophysics Data System (ADS)

    Laurent, Florence; Renault, Edgard; Boudon, Didier; Caillier, Patrick; Daguisé, Eric; Dupuy, Christophe; Jarno, Aurélien; Lizon, Jean-Louis; Migniau, Jean-Emmanuel; Nicklas, Harald; Piqueras, Laure

    2014-07-01

    MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph developed for the European Southern Observatory (ESO). It combines a 1' x 1' field of view sampled at 0.2 arcsec for its Wide Field Mode (WFM) and a 7.5"x7.5" field of view for its Narrow Field Mode (NFM). Both modes will operate with the improved spatial resolution provided by GALACSI (Ground Atmospheric Layer Adaptive Optics for Spectroscopic Imaging), that will use the VLT deformable secondary mirror and 4 Laser Guide Stars (LGS) foreseen in 2015. MUSE operates in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transported, fully aligned and without any optomechanical dismounting, onto VLT telescope where the first light was overcame the 7th of February, 2014. This paper describes the alignment procedure of the whole MUSE instrument with respect to the Very Large Telescope (VLT). It describes how 6 tons could be move with accuracy better than 0.025mm and less than 0.25 arcmin in order to reach alignment requirements. The success

  17. Research Highlights and Recent Enhancements at the NEES@UCSB Permanently Instrumented Field Sites

    NASA Astrophysics Data System (ADS)

    Steidl, J. H.; Hegarty, P.; Seale, S. H.; Lamere, T.; Stinson, E.; Wojcik, K.

    2012-12-01

    The NEES@UCSB facility consists of experimental facilities and cyber infrastructure for active testing and passive earthquake monitoring at instrumented geotechnical field sites. There have been a number of facility enhancements to both the experimental facilities and the cyber infrastructure for facilitating research at the sites and access to the data they produce. Through both the maintenance and operations and the NEES Research program funding sources, the scope of monitoring at the field sites continues to expand. A permanent cross-hole source and sensor array has been installed at both the Wildlife Liquefaction Array (WLA) and at the Garner Valley Downhole Array (GVDA) field sites. This enhancement provides daily measurements of shear-wave velocity and automated post-earthquake observations of velocity to examine soil modulus reduction and recovery. After a very large event, where nonlinear soil behavior is expected, cross-hole hammer source time intervals are as short as 5 minutes. While waiting for larger earthquakes to occur, the daily cross-hole hammer tests are providing interesting data on shear-wave velocity changes with seasonal water table height. Testing of a small reconfigurable structure at both the WLA and GVDA sites was conducted using the NEES@UCLA mobile shakers. The structure, which is a smaller version of a permanent structure at GVDA, has been left at the GVDA site and can be used for future experiments or site instrumentation enhancements. The large soil-foundation-interaction structure at GVDA has a 1D shaker mounted under its roof slab. This shaker runs nightly and the data provide insight into the influence of environmental conditions on the response of the structure. At WLA, additional sensors have been installed in a dense Shape Accelerometer Array (SAA). Each of the seven arrays contain 24 3-component MEMS accelerometers at approximately 0.3 meter spacing that span the upper 8 meters of the site, from above to below the liquefiable

  18. The Morehead Radio Telescope: Design and Fabrication of a Research Instrument for Undergraduate Faculty and Student Research in Radio Frequency Astrophysics

    NASA Astrophysics Data System (ADS)

    Malphrus, B. K.

    1996-12-01

    Faculty and students of the Departments of Physical Sciences and Industrial Education and Technology at Morehead State University have designed and assembled the Morehead Radio Telescope (MRT) to provide a research instrument for undergraduate astronomy and physics students and an active laboratory for physics, engineering, and computer science undergraduates and faculty. The instrument will function as a research and educational instrument for undergraduate students, faculty, and science teachers throughout Kentucky. The goals of the MRT program are to enhance the curricula in physics, physical science, electronics, and science education programs by serving to provide: 1.) a research instrument for investigations in astronomy and astrophysics; 2.) an active laboratory in astronomy, physics, electrical engineering, and computer science; and 3.) a research instrument and laboratory for science teacher education and inservice programs. The MRT utilizes a 40-foot parabolic reflector, a low-noise hydrogen line receiver and a fully- automated alt-azimuth positioning system. The telescope incorporates a modular design in which components may be easily removed for use in laboratory investigations and for student research and design projects. The performance characteristics of the telescope allow a varied and in-depth scientific program. The sensitivity and versatility of the telescope design facilitate the investigation of a wide variety of astrophysically interesting phenomena.

  19. Academic Research Equipment in the Physical and Computer Sciences and Engineering. An Analysis of Findings from Phase I of the National Science Foundation's National Survey of Academic Research Instruments and Instrumentation Needs.

    ERIC Educational Resources Information Center

    Burgdorf, Kenneth; White, Kristine

    This report presents information from phase I of a survey designed to develop quantitative indicators of the current national stock, cost/investment, condition, obsolescence, utilization, and need for major research instruments in academic settings. Data for phase I (which focused on the physical and computer sciences and engineering) were…

  20. Response properties of atmospheric turbulence measurement instruments using Russian research aircraft

    NASA Astrophysics Data System (ADS)

    Strunin, M. A.; Hiyama, T.

    2004-11-01

    Instruments that measure atmospheric turbulence for the estimation of turbulent fluxes of heat, water vapor, and carbon dioxide were tested in the laboratory and during in-flight conditions aboard a Russian research Ilyushin-18 aircraft. The response characteristics of the aircraft turbulence sensors were first tested to decrease measurement errors for turbulent heat transfer and fluxes, including water vapour flux, before being installed on the Ilyushin-18 aircraft that was used in joint Russian-Japanese atmospheric boundary-layer research. The results show that the atmospheric turbulence measured in a frequency range of 0.01 to 10 Hz yielded proper estimates of fluxes. Errors in measurements of the turbulence made from the aircraft were also analysed. Aerodynamic distortions linked to the aircraft's body and propellers were determined from flight test experiments. Time lags between vertical wind speed fluctuations and air temperature fluctuations measured by the aircraft thermometer, and those between vertical wind speed fluctuations and air humidity fluctuations measured by an ultraviolet hygrometer (open-path system) and an infrared hygrometer (closed-path system) were estimated. The vertical wind speed and air temperature sensor measurements showed no time lag, but a time lag of 0.6 s occurred between vertical wind speed and ultraviolet hygrometer measurements. The time lag between vertical wind speed and the infrared hygrometer measurements depended on flight conditions due to air pumping load, and had to be defined for each sampling leg. Accounting for the time lag was critical for water vapour flux measurements and helped to eliminate large systematic errors.

  1. National Aeronautics and Space Administration's research program in earth remote sensing instrumentation

    NASA Technical Reports Server (NTRS)

    Plotkin, Henry H.; Sokoloski, Martin M.; Rubin, Bernard

    1991-01-01

    Terrestrial and atmospheric missions of NASA's program to develop remote sensing instrumentation are described along with several of the instruments and related mission. Systems such as lidar and radar, passive coherent sensors, passive noncoherent sensors, as well as cryogenic cooler technology are discussed.

  2. Choosing Assessment Instruments for Depression Outcome Research with School-Age Youth

    ERIC Educational Resources Information Center

    Muller, Brooke E.; Erford, Bradley T.

    2012-01-01

    Using effect size results from Erford et al.'s (2011) meta-analysis for treatment of depression in school-age youth, the authors analyzed 6 commonly used instruments for practical and technical strengths and weaknesses. Effect size estimates from these 6 instruments were compared to indicate likely results when used in future depression outcome…

  3. Assessing the Application of the Neighborhood Cohesion Instrument to Community Research in East Asia

    ERIC Educational Resources Information Center

    Li, Chun-Hao; Hsu, Ping-Hsiang; Hsu, Shu-Yao

    2011-01-01

    Buckner (1988) extensively reviewed theoretical concepts proposed by a variety of scholars and developed the Neighborhood Cohesion Instrument (NCI) to measure three latent constructs (attraction to neighborhood, neighboring, and psychological sense of community). This instrument has been applied in most Western countries. The purpose of this…

  4. IUS prerelease alignment

    NASA Technical Reports Server (NTRS)

    Evans, F. A.

    1978-01-01

    Space shuttle orbiter/IUS alignment transfer was evaluated. Although the orbiter alignment accuracy was originally believed to be the major contributor to the overall alignment transfer error, it was shown that orbiter alignment accuracy is not a factor affecting IUS alignment accuracy, if certain procedures are followed. Results are reported of alignment transfer accuracy analysis.

  5. The Cultural Adaptation of the Youth Quality of Life Instrument-Research Version for Latino Children and Adolescents

    ERIC Educational Resources Information Center

    Chavez, Ligia M.; Matias-Carrelo, Leida; Barrio, Concepcion; Canino, Glorisa

    2007-01-01

    We reviewed the Spanish translation of the Youth Quality of Life Instrument-Research Version (YQOL-R) and culturally adapted the measure with Puerto Rican and Mexican American children and adolescents. The YQOL-R is a self-reported measure that includes four domains: Sense of Self, Social Relationships, Environment, and General Quality of Life. A…

  6. A Reliable and Valid Weighted Scoring Instrument for Use in Grading APA-Style Empirical Research Report

    ERIC Educational Resources Information Center

    Greenberg, Kathleen Puglisi

    2012-01-01

    The scoring instrument described in this article is based on a deconstruction of the seven sections of an American Psychological Association (APA)-style empirical research report into a set of learning outcomes divided into content-, expression-, and format-related categories. A double-weighting scheme used to score the report yields a final grade…

  7. Qualitative to Quantitative and Spectrum to Report: An Instrument-Focused Research Methods Course for First-Year Students

    ERIC Educational Resources Information Center

    Thomas, Alyssa C.; Boucher, Michelle A.; Pulliam, Curtis R.

    2015-01-01

    Our Introduction to Research Methods course is a first-year majors course built around the idea of helping students learn to work like chemists, write like chemists, and think like chemists. We have developed this course as a hybrid hands-on/ lecture experience built around instrumentation use and report preparation. We take the product from one…

  8. Translation and Cross-Cultural Adaptation of Assessment Instruments Used in Psychological Research with Children and Families

    ERIC Educational Resources Information Center

    van Widenfelt, Brigit M.; Treffers, Philip D. A.; de Beurs, Edwin; Siebelink, Bart M.; Koudijs, Els

    2005-01-01

    With the increased globalization of psychology and related fields, having reliable and valid measures that can be used in a number of languages and cultures is critical. Few guidelines or standards have been established in psychology for the translation and cultural adaptation of instruments. Usually little is reported in research publications…

  9. Structuring Professional Learning to Develop a Culture of Data Use: Aligning Knowledge from the Field and Research Findings

    ERIC Educational Resources Information Center

    Gerzon, Nancy

    2015-01-01

    Background: This research review provides an analysis of current research related to school and district data use, with a particular focus on identifying key characteristics of schools and districts with effective "data using cultures." The research review identifies and analyzes findings in five key areas of practice: communicating…

  10. Transitioning a Fundamental Research Program to Align with the NASA Exploration Initiative-Perspectives from Microgravity Combustion Science and Fluid Physics

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Kohl, Fred J.

    2004-01-01

    A new Vision for Space Exploration was announced earlier this year by U.S. President George W. Bush. NASA has evaluated on-going programs for strategic alignment with this vision. The evaluation proceeded at a rapid pace and is resulting in changes to the scope and focus of experimental research that will be conducted in support of the new vision. The existing network of researchers in the physical sciences - a highly capable, independent, and loosely knitted community - typically have shared conclusions derived from their work within appropriate discipline-specific peer reviewed journals and publications. The initial result of introducing this Vision for Space Exploration has been to shift research focus from a broad coverage of numerous, widely varying topics into a research program focused on a nearly-singular set of supporting research objectives to enable advances in space exploration. Two of these traditional physical science research disciplines, Combustion Science and Fluid Physics, are implementing a course adjustment from a portfolio dominated by "Fundamental Science Research" to one focused nearly exclusively on supporting the Exploration Vision. Underlying scientific and engineering competencies and infrastructure of the Microgravity Combustion Science and Fluid Physics disciplines do provide essential research capabilities to support the contemporary thrusts of human life support, radiation countermeasures, human health, low gravity research for propulsion and materials and, ultimately, research conducted on the Moon and Mars. A perspective on how these two research disciplines responded to the course change will be presented. The relevance to the new NASA direction is provided, while demonstrating through two examples how the prior investment in fundamental research is being brought to bear on solving the issues confronting the successful implementation of the exploration goals.

  11. Piping inspection instrument carriage

    SciTech Connect

    Zollinger, W.T.; Treanor, R.C.

    1993-09-20

    This invention is comprised of a pipe inspection instrument carriage for use with a pipe crawler or other locomotion means for performing internal inspections of piping surfaces. The carriage has a front leg assembly, a rear leg assembly and a central support connecting the two assemblies and for mounting an instrument arm having inspection instruments. The instrument arm has means mounted distally thereon for axially aligning the inspection instrumentation and means for extending the inspection instruments radially outward to operably position the inspection instruments on the piping interior. Also, the carriage has means for rotating the central support and the front leg assembly with respect to the rear leg assembly so that the inspection instruments azimuthally scan the piping interior. The instrument carriage allows performance of all piping inspection operations with a minimum of moving parts, thus decreasing the likelihood of performance failure.

  12. Comparison of Data From Far Ultraviolet Limb Scanning and Imaging Instrumentation Aboard the Advanced Research and Global Observation Satellite (ARGOS)

    NASA Astrophysics Data System (ADS)

    Walker, P. W.; Carruthers, G. R.; Dymond, K. F.; Finch, M. A.; McDonald, S. E.; Nicholas, A. C.; Thonnard, S. E.; Budzien, S. A.; McCoy, R. P.

    2001-05-01

    The ARGOS satellite includes two Naval Research Laboratory experiments that monitor naturally occurring far ultraviolet emissions in the Earth's upper atmosphere. Coincident observations between these two instruments, the Global Imaging Monitor of the Ionosphere (GIMI) and the Low Resolution Airglow and Auroral Spectrograph (LORAAS), have been obtained. The GIMI instrument produces 9 ° x 9 ° limb images with passband coverage between 131 and 200 nm. The LORAAS instrument provides the spectral distribution from 80 to 170 nm for 2.4 ° x 17 ° field of regard. The two instruments are coaligned aboard the spacecraft, aft-looking in the orbital plane. Preliminary comparisons of observations obtained from the imaging and scanning instruments under quiet geomagnetic conditions are reported, including irradiances and spectral distributions. By combining the GIMI data with that from LORAAS, the study of the dynamics of the ionosphere can be expanded to investigate both horizontal and vertical distrubutions and their variances. The improved capability can extend to the study of active periods with highly variable and disturbed ionospheres, and examples are discussed from data acquired during periods of high geomagnetic activity. These results provide the first direct comparison between near simultaneous limb scans and images from ARGOS, and show promise as a validation technique to improve capabilities for the study of ionospheric variability.

  13. Introductory overview of research instruments for recording the electrical activity of neurons in the human brain

    NASA Astrophysics Data System (ADS)

    Garell, P. C.; Granner, M. A.; Noh, M. D.; Howard, M. A.; Volkov, I. O.; Gillies, G. T.

    1998-12-01

    Scientific advancement is often spurred by the development of new instruments for investigation. Over the last several decades, many new instruments have been produced to further our understanding of the physiology of the human brain. We present a partial overview of some of these instruments, paying particular attention to those which record the electrical activity of the human brain. We preface the review with a brief primer on neuroanatomy and physiology, followed by a discussion of the latest types of apparatus used to investigate various properties of the central nervous system. A special focus is on microelectrode investigations that employ both intracellular and extracellular methods of recording the electrical activity of single neurons; another is on the modern electroencephalographic, electrocorticographic, and magnetoencephalographic methods used to study the spontaneous and evoked field potentials of the brain. Some examples of clinical applications are included, where appropriate.

  14. Binocular collimation vs conditional alignment

    NASA Astrophysics Data System (ADS)

    Cook, William J.

    2012-10-01

    As binocular enthusiasts share their passion, topics related to collimation abound. Typically, we find how observers, armed only with a jeweler's screwdriver, can "perfectly collimate" his or her binocular, make it "spot on," or other verbiage of similar connotation. Unfortunately, what most are addressing is a form of pseudo-collimation I have referred to since the mid-1970s as "Conditional Alignment." Ignoring the importance of the mechanical axis (hinge) in the alignment process, this "condition," while having the potential to make alignment serviceable, or even outstanding—within a small range of IPD (Interpupillary Distance) settings relative to the user's spatial accommodation (the ability to accept small errors in parallelism of the optical axes)—may take the instrument farther from the 3-axis collimation conscientious manufacturers seek to implement. Becoming more optically savvy—and especially with so many mechanically inferior binoculars entering the marketplace— the consumer contemplating self-repair and alignment has a need to understand the difference between clinical, 3-axis "collimation" (meaning both optical axes are parallel with the axis of the hinge) and "conditional alignment," as differentiated in this paper. Furthermore, I believe there has been a long-standing need for the term "Conditional Alignment," or some equivalent, to be accepted as part of the vernacular of those who use binoculars extensively, whether for professional or recreational activities. Achieving that acceptance is the aim of this paper.

  15. The Deep Space Network as an instrument for radio science research

    NASA Technical Reports Server (NTRS)

    Asmar, S. W.; Renzetti, N. A.

    1993-01-01

    Radio science experiments use radio links between spacecraft and sensor instrumentation that is implemented in the Deep Space Network. The deep space communication complexes along with the telecommunications subsystem on board the spacecraft constitute the major elements of the radio science instrumentation. Investigators examine small changes in the phase and/or amplitude of the radio signal propagating from a spacecraft to study the atmospheric and ionospheric structure of planets and satellites, planetary gravitational fields, shapes, masses, planetary rings, ephemerides of planets, solar corona, magnetic fields, cometary comae, and such aspects of the theory of general relativity as gravitational waves and gravitational redshift.

  16. Research in Space Physics at the University of Iowa. [spaceborne experiments and instruments

    NASA Technical Reports Server (NTRS)

    Vanallen, J. A.

    1981-01-01

    Currently active projects conducted to extend knowledge of the energetic particles and the electric, magnetic, and electromagnetic fields associated with Earth, other celestial bodies, and the interplanetary medium are summarized. These include investigations and/or instruments for Hawkeye 1; Pioneers 10 and 11; Voyagers 1 and 2; ISEE; IMP 8; Dynamics Explorer; Galileo; Spacelab and Orbital flight test missions; VLBI; and the International Solar Polar mission. Experiments and instruments proposed for the future international comet mission, the origin of plasmas in the Earth's environment mission, and the NASA active magnetospheric particle tracer experiment are mentioned.

  17. Research of metal solidification in zero-g state. [test apparatus and instrumentation

    NASA Technical Reports Server (NTRS)

    Aubin, W. M.; Larson, D., Jr.; Geschwind, G. I.

    1973-01-01

    An experiment test apparatus that allows metal melting and resolidification in the three seconds available during free fall in a drop tower was built and tested in the tower. Droplets (approximately 0.05 cm) of pure nickel and 1090 steel were prepared in this fashion. The apparatus, including instrumentation, is described. As part of the instrumentation, a method for measuring temperature-time histories of the free floating metal droplets was developed. Finally, a metallurgical analysis of the specimens prepared in the apparatus is presented.

  18. Determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution

    NASA Technical Reports Server (NTRS)

    Ioup, George E.; Ioup, Juliette W.

    1991-01-01

    The final report for work on the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution is presented. Papers and theses prepared during the research report period are included. Among all the research results reported, note should be made of the specific investigation of the determination of design and operation parameters for upper atmospheric research instrumentation to yield optimum resolution with deconvolution. A methodology was developed to determine design and operation parameters for error minimization when deconvolution is included in data analysis. An error surface is plotted versus the signal-to-noise ratio (SNR) and all parameters of interest. Instrumental characteristics will determine a curve in this space. The SNR and parameter values which give the projection from the curve to the surface, corresponding to the smallest value for the error, are the optimum values. These values are constrained by the curve and so will not necessarily correspond to an absolute minimum in the error surface.

  19. GLORIA: A new instrument for atmospheric research deployed to Geophysica and HALO during the ESSENCE and TACTS/ESMVAL missions.

    NASA Astrophysics Data System (ADS)

    Oelhaf, Hermann; Preusse, Peter; Friedl-Vallon, Felix

    2013-04-01

    The Gimballed Limb Radiance Imager of the Atmosphere (GLORIA) is a newly developed unique instrument that bridges the gap from scanning to imaging in the Infrared spectral domain. This is realized by combining a classical Fourier transform spectrometer (FTS) with a 2-D detector array tailored to the FTS needs. Imaging allows the spatial sampling to be improved by up to an order of magnitude when compared to a limb scanning instrument. GLORIA is designed to operate on various high altitude research platforms. The instrument is a joint development of the Helmholtz Large Research Facilities Karlsruhe Institute of Technology (KIT) and Research Centre Jülich (FZJ). GLORIA builds upon the heritage of KIT and FZJ in developing and operating IR limb sounders (CRISTA, MIPAS). Atmospheric quantities to be measured are Temperature, H2O, HDO, O3, N2O, CH4, CFCs, HNO3, ClONO2 and some minor species indicating biomass burning and pollution, along with cloud distribution. A unique property of GLORIA measurements is the provision of well-resolved 2D-cross sections ('curtains') of atmospheric parameters along the flight path of the airplane or even 3D fields of trace species when dedicated flight patterns are carried out. These capabilities are a valuable added value to missions that are primarily equipped with in-situ instruments since it complements the vertical domain to the measurements taken by in-situ instruments on the flight level. GLORIA has flown for the first time in December 2011 on board the Russian Geophysica M55 research aircraft from Kiruna/Sweden in the framework of the ESSENCE campaign. In August and September 2012 GLORIA was an integral part of the first large HALO missions dedicated to atmospheric research, TACTS and ESMVAL. The data which span latitudes from 80°N to 65°S form a unique treasure which allows to study a number of scientific questions, such as outflow of biomass burning products from Africa to the Atlantic Sea, filamentation at the edge of the

  20. Bridging the Educational Research-Teaching Practice Gap: Tools for Evaluating the Quality of Assessment Instruments

    ERIC Educational Resources Information Center

    Anderson, Trevor R.; Rogan, John M.

    2010-01-01

    Student assessment is central to the educational process and can be used for multiple purposes including, to promote student learning, to grade student performance and to evaluate the educational quality of qualifications. It is, therefore, of utmost importance that assessment instruments are of a high quality. In this article, we present various…

  1. Incorporating Students' Self-Designed, Research-Based Analytical Chemistry Projects into the Instrumentation Curriculum

    ERIC Educational Resources Information Center

    Gao, Ruomei

    2015-01-01

    In a typical chemistry instrumentation laboratory, students learn analytical techniques through a well-developed procedure. Such an approach, however, does not engage students in a creative endeavor. To foster the intrinsic motivation of students' desire to learn, improve their confidence in self-directed learning activities and enhance their…

  2. Integrating Advanced High School Chemistry Research with Organic Chemistry and Instrumental Methods of Analysis

    ERIC Educational Resources Information Center

    Kennedy, Brian J.

    2008-01-01

    This paper describes and discusses the unique chemistry course opportunities beyond the advanced placement-level available at a science and technology magnet high school. Students may select entry-level courses such as honors and advanced placement chemistry; they may also take electives in organic chemistry with instrumental methods of analysis;…

  3. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation)

    SciTech Connect

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled 'Instrumentation and Quantitative Methods of Evaluation.' Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging.

  4. Chemistry research and development. Progress report, December 1978-May 1979. [Component, pilot plant, instrumentation

    SciTech Connect

    Miner, F. J.

    1980-06-30

    Progress and activities are reported on component development, pilot plant development, and instrumentation and statistical systems. Specific items studied include processing of pond sludge, transport of radioactive materials and wastes, corrosion, decontamination and cleaning, fluidized-bed incineration, Pu contamination of soils, chemical analysis, radiometric analysis, security. (DLC)

  5. DNA Align Editor: DNA Alignment Editor Tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SNPAlignEditor is a DNA sequence alignment editor that runs on Windows platforms. The purpose of the program is to provide an intuitive, user-friendly tool for manual editing of multiple sequence alignments by providing functions for input, editing, and output of nucleotide sequence alignments....

  6. Flutter Clearance of the F-18 High-angle-of-attack Research Vehicle with Experimental Wingtip Instrumentation Pods

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    1989-01-01

    An F-18 aircraft was modified with wingtip instrumentation pods for use in NASA's high-angle-of-attack research program. Ground vibration and flight flutter testing were performed to clear an acceptable flight envelope for the aircraft. Flight test utilized atmospheric turbulence for structural excitation; the aircraft displayed no adverse aeroelastic trends within the envelope tested. The data presented in this report include mode shapes from the ground vibration and estimates of frequency and damping as a function of Mach number.

  7. The Molecule Microscope: A New Instrument for Biological and Biomedical Research

    PubMed Central

    Weaver, James C.; King, John G.

    1973-01-01

    We describe a new instrument, the molecule microscope, which reveals directly spatial variations in the rate of evaporation of molecules from surfaces by using neutral molecules instead of light or charged particles used in existing kinds of microscopes. The surface composition of the sample determines the binding energy of the evaporating molecules and, hence, the rate of evaporation, which also depends on permeability of the sample when the molecules come either from within or from the other side. We show first results obtained with our apparatus, discuss the design of an instrument now under construction with ≈1-μm resolution, and describe briefly some more advanced versions under consideration with ≈100-Å resolution. Images PMID:4542778

  8. V/STOL tilt rotor research aircraft. Volume 3: Ship 2 instrumentation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information covering sensor cables, sensor installation, and sensor calibration for the XV-15 aircraft number 2 is included. For each junction box (J-box) designation there is a schematic of the J-box disconnect harness, instrumentation worksheets which show sensor location, and calibration data sheets for each sensor associated with that J-box. An index of measurement data codes to J-box locations is given in a table. Cross references are given.

  9. Droplet sizing instrumentation used for icing research: Operation, calibration, and accuracy

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1989-01-01

    The accuracy of the Forward Scattering Spectrometer Probe (FSSP) is determined using laboratory tests, wind tunnel comparisons, and computer simulations. Operation in an icing environment is discussed and a new calibration device for the FSSP (the rotating pinhole) is demonstrated to be a valuable tool. Operation of the Optical Array Probe is also presented along with a calibration device (the rotating reticle) which is suitable for performing detailed analysis of that instrument.

  10. V/STOL tilt rotor research aircraft. Volume 2: Ship 1 instrumentation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information covering sensor cables, sensor installation, and sensor calibration for the XV-15 aircraft number 1 is included. For each junction box (J-box) designation there is a schematic of the J-box disconnect harness instrumentation worksheets which show sensor location, and calibration data sheets for each sensor associated with that J-box. An index of measurement item codes to J-box locations is given in a table. Cross references are given.

  11. Instrumentation concepts and requirements for a space vacuum research facility. [molecular shield for spaceborne experiments

    NASA Technical Reports Server (NTRS)

    Norton, H. N.

    1979-01-01

    An earth-orbiting molecular shield that offers a unique opportunity for conducting physics, chemistry, and material processing experiments under a combination of environmental conditions that are not available in terrestrial laboratories is equipped with apparatus for forming a molecular beam from the freestream. Experiments are carried out using a moderate energy, high flux density, high purity atomic oxygen beam in the very low density environment within the molecular shield. As a minimum, the following instruments are required for the molecular shield: (1) a mass spectrometer; (2) a multifunction material analysis instrumentation system; and (3) optical spectrometry equipment. The design is given of a furlable molecular shield that allows deployment and retrieval of the system (including instrumentation and experiments) to be performed without contamination. Interfaces between the molecular shield system and the associated spacecraft are given. An in-flight deployment sequence is discussed that minimizes the spacecraft-induced contamination in the vicinity of the shield. Design approaches toward a precursor molecular shield system are shown.

  12. Negotiating Meaning with Educational Practice: Alignment of Preservice Teachers' Mission, Identity, and Beliefs with the Practice of Collaborative Action Research

    ERIC Educational Resources Information Center

    Carpenter, Jan Marie

    2010-01-01

    The case studies examined how three preservice teachers within a Master of Arts in Teaching program at a small, private university negotiated meaning around an educational practice--collaborative action research. Preservice teachers must negotiate multiple, and often competing, internal and external discourses as they "sort out" what educational…

  13. The Shortwave Solar Spectroradiometer - Hemispheric: A New ARM Instrument for Aerosol and Cloud Research

    NASA Astrophysics Data System (ADS)

    Barnard, J.; Flynn, C.; Ermold, B.

    2012-12-01

    The Shortwave Array Spectroradiometer - Hemispheric (SAS-He) is a ground-based, shadowband instrument that measures all three components of the shortwave irradiance: the total irradiance, the diffuse irradiance, and the direct normal irradiance. In this regard, the instrument is similar to the Multi-Filter Rotating Shadowband Radiometer (MFRSR) - an instrument that has been in the ACRF stable for more than 15 years. However, the two instruments differ significantly in wavelength resolution and range. In particular, the SAS measures the shortwave spectrum, from about 325 nm to 1700 nm at a wavelength resolution of about 1 to several nanometers, while the MFRSR only observes the spectrum in six discrete wavelength channels of about 10 nm in width. The markedly enhanced wavelength resolution and range of the SAS-He opens a new window of opportunity for studies that will significantly improve our understanding of cloud and aerosol optical properties in the shortwave spectrum. Additionally, the shadowband of the SAS-He is able to sweep across the irradiance sensor in small steps, and this permits the applications of new algorithms (Yin et al., 2011) that use the shape of the forward scattering lobe to infer the properties of aerosols and clouds. More specifically, these algorithms can remotely determine liquid/ice water path (LWP/IWP). Ground-based retrievals of LWP/IWP are particularly difficult for the important case of clouds with low optical thickness (Turner et al., 2007), and any advance in this area is significant. Moreover, the extended wavelength range of the SAS-He facilitates, for example, more reliable retrievals of aerosol size distributions, including the coarse mode. This is particularly important because the coarse mode is now gaining more prominence as an important factor in direct aerosol radiative forcing (Kassianov et al., 2012). Here we describe the key optical features of the SAS-He and data processing, including calibration of the instrument using

  14. True alignment of preclinical and clinical research to enhance success in CNS drug development: a review of the current evidence.

    PubMed

    Goetghebeur, Pascal Jd; Swartz, Jina E

    2016-07-01

    Central nervous system pharmacological research and development has reached a critical turning point. Patients suffering from disorders afflicting the central nervous system are numerous and command significant attention from the pharmaceutical industry. However, given the numerous failures of promising drugs, many companies are no longer investing in or, indeed, are divesting from this therapeutic area. Central nervous system drug development must change in order to develop effective therapies to treat these patients. Preclinical research is a cornerstone of drug development; however, it is frequently criticised for its lack of predictive validity. Animal models and assays can be shown to be more predictive than reported and, on many occasions, the lack of thorough preclinical testing is potentially to blame for some of the clinical failures. Important factors such as translational aspects, nature of animal models, variances in acute versus chronic dosing, development of add-on therapies and understanding of the full dose-response relationship are too often neglected. Reducing the attrition rate in central nervous system drug development could be achieved by addressing these important questions before novel compounds enter the clinical phase. This review illustrates the relevance of employing these criteria to translational central nervous system research, better to ensure success in developing new drugs in this therapeutic area. PMID:27147593

  15. The UW Center for Photonics Instrumentation Education and Research (PIER): An Inquiry-Centered Graduate Training Program

    NASA Astrophysics Data System (ADS)

    Sheinis, A. I.; Hooper, E. J.; Eliceiri, K. W.

    2010-12-01

    Experimental and/or applied optics is an indispensable part of many research enterprises in a wide range of disciplines, from astronomy to biology, mechanical engineering to medicine, chemistry to atmospheric science, etc. Many researchers have limited background in optics, making it difficult to train their graduate students comprehensively enough so that they in turn can be effective principal investigators in their own optics-based research activities. Even with a mentor who is an expert optical scientist, the traditional apprenticeship training model prevalent in many optics research programs leaves the students with the knowledge needed to execute the aims of their project but insufficient breadth and depth. The emerging University of Wisconsin-Madison Center for Photonics Instrumentation Education and Research (PIER) seeks to address these problems by providing a comprehensive multidisciplinary training program for graduate students whose interests and research incorporate advanced optical science and engineering. In addition to coursework, which will comprise the Ph.D. minor, PIER will have an inquiry-based instrument lab to ensure students have an applied knowledge of optics. The heart of the program, this lab will allow teams of early-career graduate students to experience the entire arc of an optics research project, from design to evaluation, to building and testing, and finally application. The projects will be short in duration but focused real-world optical experiments which can be completed by a team at the end of the third year of graduate school, in addition to the usual coursework and beginning Ph.D. research in each student's home program.

  16. Aligning the Goals of Community-Engaged Research: Why and How Academic Health Centers Can Successfully Engage with Communities to Improve Health

    PubMed Central

    Michener, Lloyd; Cook, Jennifer; Ahmed, Syed M.; Yonas, Michael A.; Coyne-Beasley, Tamera; Aguilar-Gaxiola, Sergio

    2012-01-01

    Community engagement (CE) and community-engaged research (CEnR) are increasingly viewed as the keystone to translational medicine and improving the health of the nation. In this article, the authors seek to assist academic health centers (AHCs) in learning how to better engage with their communities and build a CEnR agenda by suggesting five steps: defining community and identify partners; learning the etiquette of community engagement; building a sustainable network of CEnR researchers; recognizing that CEnR will require the development of new methodologies; and improving translation and dissemination plans. Health disparities that lead to uneven access to and quality of care as well as high costs will persist without a CEnR agenda that finds answers to both medical and public health questions. One of the biggest barriers toward a national CEnR agenda, however, are the historical structures and processes of an AHC – including the complexities of how institutional review boards operate, accounting practices and indirect funding policies, and tenure and promotion paths. Changing institutional culture starts with the leadership and commitment of top decision-makers in an institution. By aligning the motivations and goals of their researchers, clinicians, and community members into a vision of a healthier population, AHC leadership will not just improve their own institutions, but improve the health of the nation – starting with improving the health of their local communities, one community at a time. PMID:22373619

  17. Aligning the goals of community-engaged research: why and how academic health centers can successfully engage with communities to improve health.

    PubMed

    Michener, Lloyd; Cook, Jennifer; Ahmed, Syed M; Yonas, Michael A; Coyne-Beasley, Tamera; Aguilar-Gaxiola, Sergio

    2012-03-01

    Community engagement (CE) and community-engaged research (CEnR) are increasingly viewed as the keystone to translational medicine and improving the health of the nation. In this article, the authors seek to assist academic health centers (AHCs) in learning how to better engage with their communities and build a CEnR agenda by suggesting five steps: defining community and identifying partners, learning the etiquette of CE, building a sustainable network of CEnR researchers, recognizing that CEnR will require the development of new methodologies, and improving translation and dissemination plans. Health disparities that lead to uneven access to and quality of care as well as high costs will persist without a CEnR agenda that finds answers to both medical and public health questions. One of the biggest barriers toward a national CEnR agenda, however, are the historical structures and processes of an AHC-including the complexities of how institutional review boards operate, accounting practices and indirect funding policies, and tenure and promotion paths. Changing institutional culture starts with the leadership and commitment of top decision makers in an institution. By aligning the motivations and goals of their researchers, clinicians, and community members into a vision of a healthier population, AHC leadership will not just improve their own institutions but also improve the health of the nation-starting with improving the health of their local communities, one community at a time. PMID:22373619

  18. New instrumentation for temperature measurement. Phase 1: Program solicitation, small business innovation research

    NASA Astrophysics Data System (ADS)

    Fergason, J. L.

    1980-08-01

    Temperature sensitive liquid crystals designed to meet the need for a measuring device to accurately measure temperature and temperature distribution in the presence of electric, magnetic, and sonic fields, especially with high space and thermal resolution are discussed. A technique was developed to make highly reproducible, stable configurations of liquid crystal encapsulates. Temperature stable sensors have been produced which can be calibrated to the National Bureau of Standards. The thermal properties of the liquid crystal can be matched to the properties of the surrounding medium. Since a two dimensional representation of the temperature distribution is possible, the use of this instrumentation has significant implications for bioengineering.

  19. Research and Development of Laser Diode Based Instruments for Applications in Space

    NASA Technical Reports Server (NTRS)

    Krainak, Michael; Abshire, James; Cornwell, Donald; Dragic, Peter; Duerksen, Gary; Switzer, Gregg

    1999-01-01

    Laser diode technology continues to advance at a very rapid rate due to commercial applications such as telecommunications and data storage. The advantages of laser diodes include, wide diversity of wavelengths, high efficiency, small size and weight and high reliability. Semiconductor and fiber optical-amplifiers permit efficient, high power master oscillator power amplifier (MOPA) transmitter systems. Laser diode systems which incorporate monolithic or discrete (fiber optic) gratings permit single frequency operation. We describe experimental and theoretical results of laser diode based instruments currently under development at NASA Goddard Space Flight Center including miniature lidars for measuring clouds and aerosols, water vapor and wind for Earth and planetary (Mars Lander) use.

  20. CubeSat-Scale UV and RF Remote Sensing Instruments for Upper Atmosphere Research

    NASA Astrophysics Data System (ADS)

    Doe, R. A.; Noto, J.; Crowley, G.; Bust, G. S.

    2012-12-01

    Increasing opportunities for in-situ measurements of atmospheric state variables (composition, temperatures, drifts) from CubeSats such as the USAF SENSE and the University of Michigan CADRE missions will soon establish a rich set of thermosphere data not available since the era of DE-2. Of particular significance is the parallel development of optical and RF remote sensing instruments purpose built for the CubeSat standard. These sensors are have been flight qualified and are available for inclusion in future CubeSat payloads.This presentation will present an overview of two such remote sensing instruments. The radio aurora explorer (RAX) is an on-orbit UHF bistatic radar that characterizes ionospheric turbulence illuminated by high power ground-based transmitters. The CubeSat Tiny Ionospheric Photometer (CTIP) acquires naturally-occurring 135.6-nm radiance measurements as a proxy for line-of-sight ionospheric density with applications that include both nadir and scanning orientation. We will also discuss RAX and CTIP mission design, highlight recent mission discoveries, and summarize future sensor enhancements.

  1. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 4: Programmatics

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Details are provided for scheduling, cost estimates, and support research and technology requirements for a space shuttle supported manned research laboratory to conduct selected communication and navigation experiments. A summary of the candidate program and its time phasing is included, as well as photographs of the 1/20 scale model of the shuttle supported Early Comm/Nav Research Lab showing the baseline, in-bay arrangement and the out-of-bay configuration.

  2. Development of a Portable, Ground-based Ozone Lidar Instrument for Tropospheric Ozone Research and Educational Training

    NASA Technical Reports Server (NTRS)

    Chyba, Thomas; Zemker, Thomas; Fishman, Jack (Technical Monitor)

    1999-01-01

    The objective of this research project is to develop a portable, eye-safe, ground-based ozone lidar instrument specialized for ozone differential absorption lidar (DIAL) measurements in the troposphere. This research project directly supports the goal of NASA's Earth Science Enterprise to understand the distribution and budget of tropospheric ozone (objective 1.5 of the Earth Science Strategic Enterprise Plan, 1998-2002). It can participate in ground validation experiments for TES, a tropospheric ozone satellite mission due to be launched in 2002. It can also be utilized for correlative ground measurements in future GTE (Global Tropospheric Experiment) and space-based ozone lidar missions, such as ORACLE. Multiple ground-based ozone lidar systems would improve the data obtained through current ozone-sonde networks. This prototype instrument could to serve as the basic unit for these and other future monitoring projects requiring multi-instrument networks, such as that proposed for the Global Tropospheric Ozone Project (GTOP). GTOP is currently being formulated by a scientific panel of the International Global Atmospheric Chemistry Project to meet its goal to better understand the processes that control the global distribution of tropospheric ozone. In order for the lidar to be widely deployed in networks, it must be fairly easy to use and maintain as well as being cost-competitive with a ground station launching ozonesondes several times a day. A second 2-year grant to continue this effort with students participating in ground tests and system improvements has been awarded by the Office of Equal Employment Opportunities (OEOP). This project also supports existing NASA lidar missions through its development of advanced, compact lidar technology. Innovations in both transmitters and receivers have been made in this project. Finally, this system could be modified in the future to probe more deeply into the stratosphere. This could be accomplished by increasing the

  3. Hot film wall shear instrumentation for compressible boundary layer transition research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1992-01-01

    Experimental and analytical studies of hot film wall shear instrumentation were performed. A new hot film anemometer was developed and tested. The anemometer performance was not quite as good as that of commercial anemometers, but the cost was much less and testing flexibility was improved. The main focus of the project was a parametric study of the effect of sensor size and substrate material on the performance of hot film surface sensors. Both electronic and shock-induced flow experiments were performed to determine the sensitivity and frequency response of the sensors. The results are presented in Michael Moen's M.S. thesis, which is appended. A condensed form of the results was also submitted for publication.

  4. Speech research: Studies on the nature of speech, instrumentation for its investigation, and practical applications

    NASA Astrophysics Data System (ADS)

    Liberman, A. M.

    1982-03-01

    This report is one of a regular series on the status and progress of studies on the nature of speech, instrumentation for its investigation and practical applications. Manuscripts cover the following topics: Speech perception and memory coding in relation to reading ability; The use of orthographic structure by deaf adults: Recognition of finger-spelled letters; Exploring the information support for speech; The stream of speech; Using the acoustic signal to make inferences about place and duration of tongue-palate contact. Patterns of human interlimb coordination emerge from the the properties of nonlinear limit cycle oscillatory processes: Theory and data; Motor control: Which themes do we orchestrate? Exploring the nature of motor control in Down's syndrome; Periodicity and auditory memory: A pilot study; Reading skill and language skill: On the role of sign order and morphological structure in memory for American Sign Language sentences; Perception of nasal consonants with special reference to Catalan; and Speech production Characteristics of the hearing impaired.

  5. The Goldstone solar system radar: A science instrument for planetary research

    NASA Technical Reports Server (NTRS)

    Dvorsky, J. D.; Renzetti, N. A.; Fulton, D. E.

    1992-01-01

    The Goldstone Solar System Radar (GSSR) station at NASA's Deep Space Communications Complex in California's Mojave Desert is described. A short chronological account of the GSSR's technical development and scientific discoveries is given. This is followed by a basic discussion of how information is derived from the radar echo and how the raw information can be used to increase understanding of the solar system. A moderately detailed description of the radar system is given, and the engineering performance of the radar is discussed. The operating characteristics of the Arcibo Observatory in Puerto Rico are briefly described and compared with those of the GSSR. Planned and in-process improvements to the existing radar, as well as the performance of a hypothetical 128-m diameter antenna radar station, are described. A comprehensive bibliography of referred scientific and engineering articles presenting results that depended on data gathered by the instrument is provided.

  6. Enticing Students to Enter into Undergraduate Research: The Instrumentality of an Undergraduate Course

    ERIC Educational Resources Information Center

    Behar-Horenstein, Linda S.; Johnson, Melissa L.

    2010-01-01

    To encourage students to seek research opportunities with campus faculty, one large university in the Southeast created a course entitled Science for All. A major goal of the course was to encourage students to work directly with faculty on research projects of their interest. Overall, the findings show that some of the participants began to…

  7. K-12 Participation Is Instrumental in Enhancing Undergraduate Research and Scholarship Experience

    ERIC Educational Resources Information Center

    Ahn, Changwoo

    2015-01-01

    This article reports a case of incorporating a field-based ecological project as a resource into an undergraduate research and scholarship (RS) intensive course. Student research projects were conducted in an outdoor experimental compound with wetland mesocosms as well as in local created wetlands to study soil organic matter content as part of an…

  8. Present status of aircraft instruments

    NASA Technical Reports Server (NTRS)

    1932-01-01

    This report gives a brief description of the present state of development and of the performance characteristics of instruments included in the following group: speed instruments, altitude instruments, navigation instruments, power-plant instruments, oxygen instruments, instruments for aerial photography, fog-flying instruments, general problems, summary of instrument and research problems. The items considered under performance include sensitivity, scale errors, effects of temperature and pressure, effects of acceleration and vibration, time lag, damping, leaks, elastic defects, and friction.

  9. Research Methods, Statistical Procedures, and Psychometric Integrity of Instruments Used in Doctor of Education Dissertations at the University of Alabama 1984-1988.

    ERIC Educational Resources Information Center

    Jarrell, Michele E.; And Others

    Procedures used in Doctor of Education (Ed.D.) dissertations at the University of Alabama (Tuscaloosa) were studied. Focus was on identifying: (1) characteristics of the research designs used; (2) sources of the instruments used to collect data; (3) reports of reliability estimates and evidence of validity of the instruments; and (4) types of…

  10. Multiscale peak alignment for chromatographic datasets.

    PubMed

    Zhang, Zhi-Min; Liang, Yi-Zeng; Lu, Hong-Mei; Tan, Bin-Bin; Xu, Xiao-Na; Ferro, Miguel

    2012-02-01

    Chromatography has been extensively applied in many fields, such as metabolomics and quality control of herbal medicines. Preprocessing, especially peak alignment, is a time-consuming task prior to the extraction of useful information from the datasets by chemometrics and statistics. To accurately and rapidly align shift peaks among one-dimensional chromatograms, multiscale peak alignment (MSPA) is presented in this research. Peaks of each chromatogram were detected based on continuous wavelet transform (CWT) and aligned against a reference chromatogram from large to small scale gradually, and the aligning procedure is accelerated by fast Fourier transform cross correlation. The presented method was compared with two widely used alignment methods on chromatographic dataset, which demonstrates that MSPA can preserve the shapes of peaks and has an excellent speed during alignment. Furthermore, MSPA method is robust and not sensitive to noise and baseline. MSPA was implemented and is available at http://code.google.com/p/mspa. PMID:22222564

  11. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 3: Laboratory descriptions

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The following study objectives are covered: (1) identification of major laboratory equipment; (2) systems and operations analysis in support of the laboratory design; and (3) conceptual design of the comm/nav research laboratory.

  12. Seismic telescope for astrophysical research from space (STARS) triply reflecting telescope: a space instrument for astrophysics.

    PubMed

    Badiali, M; Amoretti, M

    1997-12-01

    We describe the characteristics of the wide-field, triply reflecting telescope adopted for the European Space Agency project STARS (seismic telescope for astrophysical research from space), operating in the visible and UV range. PMID:18264439

  13. A single-chip event sequencer and related microcontroller instrumentation for atomic physics research

    NASA Astrophysics Data System (ADS)

    Eyler, E. E.

    2011-01-01

    A 16-bit digital event sequencer with 50 ns resolution and 50 ns trigger jitter is implemented by using an internal 32-bit timer on a dsPIC30F4013 microcontroller, controlled by an easily modified program written in standard C. It can accommodate hundreds of output events, and adjacent events can be spaced as closely as 1.5 μs. The microcontroller has robust 5 V inputs and outputs, allowing a direct interface to common laboratory equipment and other electronics. A USB computer interface and a pair of analog ramp outputs can be added with just two additional chips. An optional display/keypad unit allows direct interaction with the sequencer without requiring an external computer. Minor additions also allow simple realizations of other complex instruments, including a precision high-voltage ramp generator for driving spectrum analyzers or piezoelectric positioners, and a low-cost proportional integral differential controller and lock-in amplifier for laser frequency stabilization with about 100 kHz bandwidth.

  14. Cryogenic Pupil Alignment Test Architecture for Aberrated Pupil Images

    NASA Technical Reports Server (NTRS)

    Bos, Brent; Kubalak, David A.; Antonille, Scott; Ohl, Raymond; Hagopian, John G.

    2009-01-01

    A document describes cryogenic test architecture for the James Webb Space Telescope (JWST) integrated science instrument module (ISIM). The ISIM element primarily consists of a mechanical metering structure, three science instruments, and a fine guidance sensor. One of the critical optomechanical alignments is the co-registration of the optical telescope element (OTE) exit pupil with the entrance pupils of the ISIM instruments. The test architecture has been developed to verify that the ISIM element will be properly aligned with the nominal OTE exit pupil when the two elements come together. The architecture measures three of the most critical pupil degrees-of-freedom during optical testing of the ISIM element. The pupil measurement scheme makes use of specularly reflective pupil alignment references located inside the JWST instruments, ground support equipment that contains a pupil imaging module, an OTE simulator, and pupil viewing channels in two of the JWST flight instruments. Pupil alignment references (PARs) are introduced into the instrument, and their reflections are checked using the instrument's mirrors. After the pupil imaging module (PIM) captures a reflected PAR image, the image will be analyzed to determine the relative alignment offset. The instrument pupil alignment preferences are specularly reflective mirrors with non-reflective fiducials, which makes the test architecture feasible. The instrument channels have fairly large fields of view, allowing PAR tip/tilt tolerances on the order of 0.5deg.

  15. Space Acceleration Measurement System-II: Microgravity Instrumentation for the International Space Station Research Community

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.

    1999-01-01

    The International Space Station opens for business in the year 2000, and with the opening, science investigations will take advantage of the unique conditions it provides as an on-orbit laboratory for research. With initiation of scientific studies comes a need to understand the environment present during research. The Space Acceleration Measurement System-II provides researchers a consistent means to understand the vibratory conditions present during experimentation on the International Space Station. The Space Acceleration Measurement System-II, or SAMS-II, detects vibrations present while the space station is operating. SAMS-II on-orbit hardware is comprised of two basic building block elements: a centralized control unit and multiple Remote Triaxial Sensors deployed to measure the acceleration environment at the point of scientific research, generally within a research rack. Ground Operations Equipment is deployed to complete the command, control and data telemetry elements of the SAMS-II implementation. Initially, operations consist of user requirements development, measurement sensor deployment and use, and data recovery on the ground. Future system enhancements will provide additional user functionality and support more simultaneous users.

  16. Research on the Problem of High-Precision Deployment for Large-Aperture Space-Based Science Instruments

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Peterson, Lee D.; Hachkowski, M. Roman; Hinkle, Jason D.; Hardaway, Lisa R.

    1998-01-01

    The present paper summarizes results from an ongoing research program conducted jointly by the University of Colorado and NASA Langley Research Center since 1994. This program has resulted in general guidelines for the design of high-precision deployment mechanisms, and tests of prototype deployable structures incorporating these mechanisms have shown microdynamically stable behavior (i.e., dimensional stability to parts per million). These advancements have resulted from the identification of numerous heretofore unknown microdynamic and micromechanical response phenomena, and the development of new test techniques and instrumentation systems to interrogate these phenomena. In addition, recent tests have begun to interrogate nanomechanical response of materials and joints and have been used to develop an understanding of nonlinear nanodynamic behavior in microdynamically stable structures. The ultimate goal of these efforts is to enable nano-precision active control of micro-precision deployable structures (i.e., active control to a resolution of parts per billion).

  17. Instrumentation Considerations in Research Involving Eye-Movement Contingent Stimulus Control. Technical Report No. 305.

    ERIC Educational Resources Information Center

    McConkie, George W.; And Others

    In the study of perception during reading, the use of eye movement contingent control of the stimulus display has proved to be a useful research technique. With such a system, it is possible to experimentally manipulate, in real time, the characteristics of the stimulus display that is present on selected fixations as reading is in progress and to…

  18. Linking CALL and SLA: Using the IRIS Database to Locate Research Instruments

    ERIC Educational Resources Information Center

    Handley, Zöe; Marsden, Emma

    2014-01-01

    To establish an evidence base for future computer-assisted language learning (CALL) design, CALL research needs to move away from CALL versus non-CALL comparisons, and focus on investigating the differential impact of individual coding elements, that is, specific features of a technology which might have an impact on learning (Pederson, 1987).…

  19. Using Instrumental Variables to Account for Selection Effects in Research on First-Year Programs

    ERIC Educational Resources Information Center

    Pike, Gary R.; Hansen, Michele J.; Lin, Ching-Hui

    2011-01-01

    The widespread popularity of programs for first-year students is due, in large part, to studies showing that participation in first-year programs is significantly related to students' academic success. Because students choose to participate in first-year programs, self-selection effects prevent researchers from making causal claims about the…

  20. Using Instrumental Variables to Account for Selection Effects in Research on First-Year Programs

    ERIC Educational Resources Information Center

    Pike, Gary R.; Hansen, Michele J.; Lin, Ching-Hui

    2010-01-01

    The widespread popularity of programs for first-year students is due, in large part, to studies showing that participation in first-year programs is significantly related to students' academic success. Because students choose to participate in first-year programs, self-selection effects prevent researchers from making causal claims about the…

  1. The Social Network Map as an Instrument for Identifying Social Relations in Deaf Research and Practice

    ERIC Educational Resources Information Center

    Hintermair, Manfred

    2009-01-01

    Social support has shown itself to be an important factor in many areas in regard to mental health development and conservation. Numerous empirical findings also document its significance in various areas of research into deafness. Questionnaires are only one means of gathering information when we are trying to gain access to the social networks…

  2. Open-source hardware is a low-cost alternative for scientific instrumentation and research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scientific research requires the collection of data in order to study, monitor, analyze, describe, or understand a particular process or event. Data collection efforts are often a compromise: manual measurements can be time-consuming and labor-intensive, resulting in data being collected at a low f...

  3. Instruments of Change: An Action Research Study of Studio Art Instruction in Teacher Education

    ERIC Educational Resources Information Center

    Soganci, Ismail O.

    2016-01-01

    This article narrates a nine-month action research project conducted in order to improve studio art instruction in a preservice art education programme in Turkey. Setting out to determine the relevant problems through interpretation of conversations, anecdotes, essays and observations of 16 third-year BA students, the instructional atmosphere was…

  4. Instrumentations and projects of research groups in Switzerland related to the research on rocket and balloon carriers

    NASA Astrophysics Data System (ADS)

    Cogoli, Marianne; Kopp, Ernest

    2003-08-01

    In the past few years four very active Swiss groups involved in the research by means of rocket and balloon carriers have terminated their programmes. These groups were located at the University of Bern (Ernest Kopp), the World Radiation Center in Davos (Klaus Fröhlich), the ETH Zürich (Kurt Kneubühl) and the Observatoire de Genève (Daniel Huguenin). The remaining groups are the Space Biology Group in the field of Life Science in Space, the Applied Physics Institute in Bern with its observation of water vapor and ozone constituents using the microwave remote sensing technique, the meteorological soundings from the SMA balloon station in Payerne and the ozone soundings from the Institute of Atmosphere and Climate (IAC) at the ETH Zürich. In this report we will mainly present the activities of these groups in the past and in future. An addition three well known groups at the Laboratoire de Pollution Atmospherique (LPAS) at the EPFL in Lausanne, the IAC and the Laboratory of Atmospheric Chemistry (LAC) located at the Paul Scherrer Institute, which is associated to the ETH in Zürich, are contributing lab- and field research for the diagnostics and research of aerosols. The LPAS Group of Michael Rossi in Lausanne is determining heterogeneous chemical reaction rates in the laboratory. The research group of Thomas Peter at the IAC in Zürich is investigating fundamental physical and chemical processes of aerosols and the interaction to the gas phase of the atmosphere. In addition these results are combined with field measurements and model calculations. The LAC under Urs Baltensberger is investigating the key processes determining the gas phase and aerosol composition in the polluted atmospheric boundary layer, and the identification of their sources and sinks.

  5. Transforming Vectors Measured By Noncoaligned Instruments

    NASA Technical Reports Server (NTRS)

    Ritter, James R.; Dahlstrom, Eric L.

    1993-01-01

    Method for computing relationships between coordinate axes of two vector-measuring instruments not aligned with each other, one need only measure two nonparallel vectors u and v simultaneously in both coordinate systems. These measurements provide all data needed to compute transformation of any vector from one coordinate system to other. Particularly useful in computing alignments and transformations between accelerometers, gyroscopes, and instruments mounted on platforms subjected to vibrations, thermal strains, and other distortions causing alignments to vary unpredictably with time.

  6. IN-PILE INSTRUMENTATION TO SUPPORT FUEL CYCLE RESEARCH AND DEVELOPMENT - FY12 STATUS REPORT

    SciTech Connect

    J. . Rempe; J. Daw; D. Knudson; R. Schley

    2012-09-01

    As part of the FCRD program objective to emphasize science-based, goal-oriented research, a strategic research program is underway to develop new sensors that can be used to obtain the high fidelity, real-time, data required for characterizing the performance of new fuels during irradiation testing. The overarching goal of this initiative is to develop new test vehicles with new sensors of unprecedented accuracy and resolution that can obtain the required data. Prior laboratory testing and, as needed, irradiation testing of sensors in these capsules will be completed as part of this initiative to give sufficient confidence that the irradiation tests will yield the required data. This report documents FY12 progress in this initiative.

  7. Nearest Alignment Space Termination

    2006-07-13

    Near Alignment Space Termination (NAST) is the Greengenes algorithm that matches up submitted sequences with the Greengenes database to look for similarities and align the submitted sequences based on those similarities.

  8. Alignment of Single-Case Design (SCD) Research with Individuals Who Are Deaf or Hard of Hearing with the What Works Clearinghouse Standards for SCD Research

    ERIC Educational Resources Information Center

    Wendel, Erica; Cawthon, Stephanie W.; Ge, Jin Jin; Beretvas, S. Natasha

    2015-01-01

    The authors assessed the quality of single-case design (SCD) studies that assess the impact of interventions on outcomes for individuals who are deaf or hard-of-hearing (DHH). More specifically, the What Works Clearinghouse (WWC) standards for SCD research were used to assess design quality and the strength of evidence of peer-reviewed studies…

  9. Alignment of Single-Case Design (SCD) Research with Individuals Who Are Deaf or Hard of Hearing with the What Works Clearinghouse Standards for SCD Research

    ERIC Educational Resources Information Center

    Wendel, Erica; Cawthon, Stephanie W.; Ge, Jin Jin; Beretvas, S. Natasha

    2015-01-01

    The authors assessed the quality of single-case design (SCD) studies that assess the impact of interventions on outcomes for individuals who are deaf or hard-of-hearing (DHH). More specifically, the What Works Clearinghouse (WWC) standards for SCD research were used to assess design quality and strength of evidence of peer-reviewed studies…

  10. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into NASA Programs Associated with the Aeronautics Research Mission Directorate

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Aeronautics and Mission Directorate (ARMD) programs. Other Government and commercial program managers can also find this information useful.

  11. Prism Window for Optical Alignment

    NASA Technical Reports Server (NTRS)

    Tang, Hong

    2008-01-01

    A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.

  12. Montreal Archive of Sleep Studies: an open-access resource for instrument benchmarking and exploratory research.

    PubMed

    O'Reilly, Christian; Gosselin, Nadia; Carrier, Julie; Nielsen, Tore

    2014-12-01

    Manual processing of sleep recordings is extremely time-consuming. Efforts to automate this process have shown promising results, but automatic systems are generally evaluated on private databases, not allowing accurate cross-validation with other systems. In lacking a common benchmark, the relative performances of different systems are not compared easily and advances are compromised. To address this fundamental methodological impediment to sleep study, we propose an open-access database of polysomnographic biosignals. To build this database, whole-night recordings from 200 participants [97 males (aged 42.9 ± 19.8 years) and 103 females (aged 38.3 ± 18.9 years); age range: 18-76 years] were pooled from eight different research protocols performed in three different hospital-based sleep laboratories. All recordings feature a sampling frequency of 256 Hz and an electroencephalography (EEG) montage of 4-20 channels plus standard electro-oculography (EOG), electromyography (EMG), electrocardiography (ECG) and respiratory signals. Access to the database can be obtained through the Montreal Archive of Sleep Studies (MASS) website (http://www.ceams-carsm.ca/en/MASS), and requires only affiliation with a research institution and prior approval by the applicant's local ethical review board. Providing the research community with access to this free and open sleep database is expected to facilitate the development and cross-validation of sleep analysis automation systems. It is also expected that such a shared resource will be a catalyst for cross-centre collaborations on difficult topics such as improving inter-rater agreement on sleep stage scoring. PMID:24909981

  13. Shiva automatic pinhole alignment

    SciTech Connect

    Suski, G.J.

    1980-09-05

    This paper describes a computer controlled closed loop alignment subsystem for Shiva, which represents the first use of video sensors for large laser alignment at LLNL. The techniques used on this now operational subsystem are serving as the basis for all closed loop alignment on Nova, the 200 terawatt successor to Shiva.

  14. Fast statistical alignment.

    PubMed

    Bradley, Robert K; Roberts, Adam; Smoot, Michael; Juvekar, Sudeep; Do, Jaeyoung; Dewey, Colin; Holmes, Ian; Pachter, Lior

    2009-05-01

    We describe a new program for the alignment of multiple biological sequences that is both statistically motivated and fast enough for problem sizes that arise in practice. Our Fast Statistical Alignment program is based on pair hidden Markov models which approximate an insertion/deletion process on a tree and uses a sequence annealing algorithm to combine the posterior probabilities estimated from these models into a multiple alignment. FSA uses its explicit statistical model to produce multiple alignments which are accompanied by estimates of the alignment accuracy and uncertainty for every column and character of the alignment--previously available only with alignment programs which use computationally-expensive Markov Chain Monte Carlo approaches--yet can align thousands of long sequences. Moreover, FSA utilizes an unsupervised query-specific learning procedure for parameter estimation which leads to improved accuracy on benchmark reference alignments in comparison to existing programs. The centroid alignment approach taken by FSA, in combination with its learning procedure, drastically reduces the amount of false-positive alignment on biological data in comparison to that given by other methods. The FSA program and a companion visualization tool for exploring uncertainty in alignments can be used via a web interface at http://orangutan.math.berkeley.edu/fsa/, and the source code is available at http://fsa.sourceforge.net/. PMID:19478997

  15. Evaluation of liquid water measuring instruments in cold clouds sampled during FIRE. [First ISCCP Research Experiment

    NASA Technical Reports Server (NTRS)

    Heymsfield, Andrew J.; Miloshevich, Larry M.

    1989-01-01

    Airborne liquid water content (LWC) measurements were conducted with an icing detector and a forward-scattering spectrometer probe during 10 flights into cold clouds, as part of the First ISCCP Research Experiment (FIRE). The LWC measurements thus obtained compare favorably with those from the hot-wire probes in the range where LWC is above the detection limits of the latter; the hot-wire probes have detection thresholds about one order of magnitude higher than is possible with the icing detector and spectrometer probe. FIRE experiment data indicate that LWC should be taken into consideration in cloud studies at temperatures down to at least 35 C.

  16. Earth Data Multimedia Instrument - EDMI: A NASA-funded Showcase That Brings Research Technology to Secondary Education

    NASA Astrophysics Data System (ADS)

    Caron, B.; Gautier, C.; Landsfeld, M.; Engle, D.

    2001-12-01

    Through its NASA-funded work in partnership with scientists, schools and curriculum developers, Planet Earth Science Inc. (PES) develops multimedia education software to support Earth science education at the secondary level. One of the main ingredients of PES software is the use of geographical data sets from satellite or climate models to illustrate and explain complex and interacting Earth processes. The exploration of science learning and actual Earth-system data sets occurs in parallel, the science and the data continuously interacting with each other. Data exploration is made possible through a novel interactive courseware product (the EDMIT or Earth Data Multimedia Instrument) PES is developing that melds the data visualization and analysis capabilities of Kodak's IDLT with the interactive, multimedia authoring capabilities of Macromedia's DirectorT. The Earth Data Multimedia Instrument (EDMIT) is "mini-IDL" capability within an interactive Director-based GUI. In this session we will demonstrate the EDMI technology through a couple of applications that showcase its powerful capability to grow a community of developers that can create cost-efficient tools to bring real (and real-time) data into secondary schools and better integrate research and education. We will also highlight the role scientists play in finding ways to successfully partner with different constituencies, from educators to the private sector, to bring the best technology to the students' desktop.

  17. Dreams In Jungian Psychology: The use of Dreams as an Instrument For Research, Diagnosis and Treatment of Social Phobia

    PubMed Central

    Khodarahimi, Siamak

    2009-01-01

    Background: The significance of dreams has been explained in psychoanalysis, depth psychology and gestalt therapy. There are many guidelines in analytic psychology for dream interpretation and integration in clinical practice. The present study, based on the Jungian analytic model, incorporated dreams as an instrument for assessment of aetiology, the psychotherapy process and the outcome of treatment for social phobia within a clinical case study. Method: This case study describes the use of dream analysis in treating a female youth with social phobia. Results: The present findings supported the three stage paradigm efficiency in the Jungian model for dream working within a clinical setting, i.e. written details, reassembly with amplification and assimilation. It was indicated that childhood and infantile traumatic events, psychosexual development malfunctions, and inefficient coping skills for solving current life events were expressed in the patient’s dreams. Conclusion: Dreams can reflect a patient’s aetiology, needs, illness prognosis and psychotherapy outcome. Dreams are an instrument for the diagnosis, research and treatment of mental disturbances in a clinical setting. PMID:22135511

  18. Alignment Cube with One Diffractive Face

    NASA Technical Reports Server (NTRS)

    Ohl, Raymond G.; Sampler, Henry P.; Strojny, Carl R.; Hagopian, John G.; McMann, Joseph C.

    2006-01-01

    An enhanced alignment cube has been invented for use in a confined setting (e.g., a cryogenic chamber) in which optical access may be limited to a single line of sight. Whereas traditional alignment-cube practice entails the use of two theodolites aimed along two lines of sight, the enhanced alignment cube yields complete alignment information through use of a single theodolite aimed along a single line of sight. Typically, an alignment cube is placed in contact with a datum surface or other reference feature on a scientific instrument during assembly or testing of the instrument. The alignment cube is then used in measuring a small angular deviation of the feature from a precise required orientation. Commonly, the deviation is expressed in terms of rotations (Rx,Ry,Rz) of the cube about the corresponding Cartesian axes (x,y,z). In traditional practice, in order to measure all three rotations, it is necessary to use two theodolites aimed at two orthogonal faces of the alignment cube, as shown in the upper part of the figure. To be able to perform such a measurement, one needs optical access to these two faces. In the case of an alignment cube inside a cryogenic chamber or other enclosed space, the optical-access requirement translates to a requirement for two windows located along the corresponding two orthogonal lines of sight into the chamber. In a typical application, it is difficult or impossible to provide two windows. The present enhanced version of the alignment cube makes it possible to measure all three rotations by use of a single line of sight, thereby obviating a second window.

  19. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This study was undertaken to develop conceptual designs for a manned, space shuttle sortie mission laboratory capable of supporting a wide variety of experiments in conjunction with communications and navigation research. This space/laboratory would be one in which man may effectively increase experiment efficiency by certain observations, modifications, setup, calibration, and limited maintenance steps. In addition, man may monitor experiment progress and perform preliminary data evaluation to verify proper equipment functioning and may terminate or redirect experiments to obtain the most desirable end results. The flexibility and unique capabilities of man as an experimenter in such a laboratory will add greatly to the simplification of space experiments and this provides the basis for commonality in many of the supportive subsystems, thus reaping the benefits of reusability and reduced experiment costs. For Vol. 4, see N73-19268.

  20. Advancements of vertically aligned liquid crystal displays.

    PubMed

    Kumar, Pankaj; Jaggi, Chinky; Sharma, Vandna; Raina, Kuldeep Kumar

    2016-02-01

    This review describes the recent advancements in the field of the vertical aligned (VA) liquid crystal displays. The process and formation of different vertical alignment modes such as conventional VA, patterned VA, multi-domain VA, and polymer stabilised VA etc are widely discussed. Vertical alignment of liquid crystal due to nano particle dispersion in LC host, bifunctional PR-SAM formed by silane coupling reaction to oxide surfaces, azo dye etc., are also highlighted and discussed. Overall, the article highlights the advances in the research of vertical aligned liquid crystal in terms of their scientific and technological aspects. PMID:26800482

  1. Regional Instrumentation Centers.

    ERIC Educational Resources Information Center

    Cromie, William J.

    1980-01-01

    Focuses on the activities of regional instrumentation centers that utilize the state-of-the-art instruments and methodology in basic scientific research. The emphasis is on the centers involved in mass spectroscopy, magnetic resonance spectroscopy, lasers, and accelerators. (SA)

  2. Girder Alignment Plan

    SciTech Connect

    Wolf, Zackary; Ruland, Robert; LeCocq, Catherine; Lundahl, Eric; Levashov, Yurii; Reese, Ed; Rago, Carl; Poling, Ben; Schafer, Donald; Nuhn, Heinz-Dieter; Wienands, Uli; /SLAC

    2010-11-18

    The girders for the LCLS undulator system contain components which must be aligned with high accuracy relative to each other. The alignment is one of the last steps before the girders go into the tunnel, so the alignment must be done efficiently, on a tight schedule. This note documents the alignment plan which includes efficiency and high accuracy. The motivation for girder alignment involves the following considerations. Using beam based alignment, the girder position will be adjusted until the beam goes through the center of the quadrupole and beam finder wire. For the machine to work properly, the undulator axis must be on this line and the center of the undulator beam pipe must be on this line. The physics reasons for the undulator axis and undulator beam pipe axis to be centered on the beam are different, but the alignment tolerance for both are similar. In addition, the beam position monitor must be centered on the beam to preserve its calibration. Thus, the undulator, undulator beam pipe, quadrupole, beam finder wire, and beam position monitor axes must all be aligned to a common line. All relative alignments are equally important, not just, for example, between quadrupole and undulator. We begin by making the common axis the nominal beam axis in the girder coordinate system. All components will be initially aligned to this axis. A more accurate alignment will then position the components relative to each other, without incorporating the girder itself.

  3. Instructional Alignment under No Child Left Behind

    ERIC Educational Resources Information Center

    Polikoff, Morgan S.

    2012-01-01

    The alignment of instruction with the content of standards and assessments is the key mediating variable separating the policy of standards-based reform (SBR) from the outcome of improved student achievement. Few studies have investigated SBR's effects on instructional alignment, and most have serious methodological limitations. This research uses…

  4. The European Research Infrastructure IAGOS - From dedicated field studies to routine observations of the atmosphere by instrumented passenger aircraft

    NASA Astrophysics Data System (ADS)

    Petzold, Andreas; Volz-Thomas, Andreas; Gerbig, Christoph; Thouret, Valerie; Cammas, Jean-Pierre; Brenninkmeijer, Carl A. M.; Iagos Team

    2013-04-01

    The global distribution of trace species is controlled by a complex interplay between natural and anthropogenic sources and sinks, atmospheric short- to long-range transport, and in future by diverse, largely not yet quantified feedback mechanisms such as enhanced evaporation of water vapour in a warming climate or possibly the release of methane from melting marine clathrates. Improving global trace gas budgets and reducing the uncertainty of climate predictions crucially requires representative data from routine long-term observations as independent constraint for the evaluation and improvement of model parameterizations. IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) is a new European Research Infrastructure which operates a unique global observing system by deploying autonomous instruments aboard a fleet of passenger aircraft. IAGOS consists of two complementary building blocks: IAGOS-CORE deploys newly developed high-tech instrumentation for regular in-situ measurements of atmospheric chemical species (O3, CO, CO2, NOx, NOy, H2O, CH4), aerosols and cloud particles. Involved airlines ensure global operation of the network. In IAGOS-CARIBIC a cargo container is operated as a flying laboratory aboard one passenger aircraft. IAGOS aims at the provision of long-term, frequent, regular, accurate, and spatially resolved in-situ observations of the atmospheric chemical composition in the UTLS and the extra tropical troposphere and on vertical profiles of greenhouse gases, reactive trace gases and aerosols throughout the troposphere. It builds on almost 20 years of scientific and technological expertise gained in the research projects MOZAIC (Measurement of Ozone and Water Vapour on Airbus In-service Aircraft) and CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container). The European consortium includes research centres, universities, national weather services, airline operators and aviation

  5. Quantitative assessment of upper limb motor function in Multiple Sclerosis using an instrumented Action Research Arm Test

    PubMed Central

    2014-01-01

    Background Arm impairment in Multiple Sclerosis (MS) is commonly assessed with clinical scales, such as Action Research Arm Test (ARAT) which evaluates the ability to handle and transport smaller and larger objects. ARAT provides a complete upper limb assessment, as it considers both proximal arm and hand, but suffers from subjectivity and poor sensitivity to mild impairment. In this study an instrumented ARAT is proposed to overcome these limitations and supplement the assessment of arm function in MS. Methods ARAT was executed by 12 healthy volunteers and 21 MS subjects wearing a single inertial sensor on the wrist. Accelerometers and gyroscopes signals were used to calculate the duration of each task and its sub-phases (reaching, manipulation, transport, release and return). A jerk index was computed to quantify movement smoothness. For each parameter, z-scores were calculated to analyze the deviation from normative data. MS subjects were clinically assessed with ARAT score, Nine-Hole Peg test (9HPT) and Fahn Tremor Rating Scale (FTRS). Results ARAT tasks executed by MS patients were significantly slower (duration increase: 70%) and less smooth (jerk increase: 16%) with respect to controls. These anomalies were mainly related to manipulation, transport and release sub-movements, with the former showing the greatest alterations. A statistically significant decrease in movement velocity and smoothness was also noticed in patients with normal ARAT score. Z-scores related to duration and jerk were strongly correlated with ARAT rating (r < -0.80, p < 0.001) and 9HPT (r < -0.75, p < 0.001) and were significantly different among MS sub-groups with different levels of arm impairments (p < 0.001). Moreover, Z-score related to manipulation-phase jerk was significantly correlated with the FTRS rating of intention tremor (r = 0.84, p < 0.001). Conclusions The present study showed that the proposed method is able to discriminate between control

  6. Proceedings of the first international workshop on accelerator alignment

    SciTech Connect

    Not Available

    1990-10-01

    This report contains papers on the following accelerator topics: current alignment topics; toolboxes: instrumentation, software, and methods; fiducialization of conventional magnets; fiducialization of superconducting magnets; and next generation linear colliders.

  7. Oil-damped mercury pool makes precise optical alignment tool

    NASA Technical Reports Server (NTRS)

    Thekaekara, M. P.

    1965-01-01

    Mercury pool with a cover layer of high viscosity oil provides a reference reflector for precise alignment of optical instruments. The cover layer effectively damps any ripples in the mercury from support structure vibrations.

  8. Smart and precise alignment of optical systems

    NASA Astrophysics Data System (ADS)

    Langehanenberg, Patrik; Heinisch, Josef; Stickler, Daniel

    2013-09-01

    For the assembly of any kind of optical systems the precise centration of every single element is of particular importance. Classically the precise alignment of optical components is based on the precise centering of all components to an external axis (usually a high-precision rotary spindle axis). Main drawback of this timeconsuming process is that it is significantly sensitive to misalignments of the reference (e.g. the housing) axis. In order to facilitate process in this contribution we present a novel alignment strategy for the TRIOPTICS OptiCentric® instrument family that directly aligns two elements with respect to each other by measuring the first element's axis and using this axis as alignment reference without the detour of considering an external reference. According to the optical design any axis in the system can be chosen as target axis. In case of the alignment to a barrel this axis is measured by using a distance sensor (e.g., the classically used dial indicator). Instead of fine alignment the obtained data is used for the calculation of its orientation within the setup. Alternatively, the axis of an optical element (single lens or group of lenses) whose orientation is measured with the standard OptiCentric MultiLens concept can be used as a reference. In the instrument's software the decentering of the adjusting element to the calculated axis is displayed in realtime and indicated by a target mark that can be used for the manual alignment. In addition, the obtained information can also be applied for active and fully automated alignment of lens assemblies with the help of motorized actuators.

  9. Radar Image and Rain-gauge Alignment using the Multi-resolution Viscous Alignment (MVA) Algorithm

    NASA Astrophysics Data System (ADS)

    Chatdarong, V.

    2007-12-01

    Rainfall is a complex environmental variable that is difficult to describe either deterministically or statistically. To understand rainfall behaviors, many types of instruments are employed to detect and collect rainfall information. Among them, radar seems to provide the most comprehensive rainfall measurement at fine spatial and temporal resolution and over a relatively wide area. Nevertheless, it does not detects surface rainfall directly like what rain-gauge does. The accuracy radar rainfall, therefore, depends greatly on the Z-R relationship which convert radar reflectivity (Z) to surface rainrate (R). This calibration is usually done by fitting the rain-gauge data with the corresponding radar reflectivity using the regression analysis. To best fit the data, the radar reflectivity at neighbor pixels are usually used to best match the rain-gauge data. However, when applying the Z-R relationship to the radar image, there is no position adjustment despite the calibration technique. Hence, it is desirable to adjust the position of the radar reflectivity images prior to applying the Z-R relationship to improve the accuracy of the rainfall estimation. In this research, the Multi-resolution Viscous Alignment (MVA) algorithm is applied to best align radar reflectivity images to rain-gauge data in order to improve rainfall estimation from the Z-R relationship. The MVA algorithm solves the motion estimation problems using a Bayesian formulation to minimize misfits between two data sets. In general, the problem are ill-posed; therefore, some regularizations and constraints based on smoothness and non-divergence assumptions are employed. This algorithm is superior to the conventional techniques and correlation based techniques. It is fast, robust, easy to implement, and does not require data training. In addition, it can handle higher-order, missing data, and small-scale deformations. The algorithm provides spatially dense, consistency, and smooth transition vector. The

  10. Integrated, Comprehensive Alignment as a Foundation for Measuring Student Progress

    ERIC Educational Resources Information Center

    Martineau, Joseph; Paek, Pamela; Keene, John; Hirsch, Thomas

    2007-01-01

    This paper describes a comprehensive model of alignment that provides a foundation for meaningful reporting of students' academic progress over time. The model includes both horizontal and vertical alignment as integral parts of the development of content standards, test blueprints, items, item pools, instruments, performance level descriptors,…

  11. Horizontal carbon nanotube alignment.

    PubMed

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  12. Orthodontics and Aligners

    MedlinePlus

    ... Repairing Chipped Teeth Teeth Whitening Tooth-Colored Fillings Orthodontics and Aligners Straighten teeth for a healthier smile. Orthodontics When consumers think about orthodontics, braces are the ...

  13. Alignability of Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Beech, Russell Scott

    With the continuing drive towards higher speed, density, and functionality in electronics, electrical interconnects become inadequate. Due to optics' high speed and bandwidth, freedom from capacitive loading effects, and freedom from crosstalk, optical interconnects can meet more stringent interconnect requirements. But, an optical interconnect requires additional components, such as an optical source and detector, lenses, holographic elements, etc. Fabrication and assembly of an optical interconnect requires precise alignment of these components. The successful development and deployment of optical interconnects depend on how easily the interconnect components can be aligned and/or how tolerant the interconnect is to misalignments. In this thesis, a method of quantitatively specifying the relative difficulty of properly aligning an optical interconnect is described. Ways of using this theory of alignment to obtain design and packaging guidelines for optical interconnects are examined. The measure of the ease with which an optical interconnect can be aligned, called the alignability, uses the efficiency of power transfer as a measure of alignment quality. The alignability is related to interconnect package design through the overall cost measure, which depends upon various physical parameters of the interconnect, such as the cost of the components and the time required for fabrication and alignment. Through a mutual dependence on detector size, the relationship between an interconnect's alignability and its bandwidth, signal-to-noise ratio, and bit-error -rate is examined. The results indicate that a range of device sizes exists for which given performance threshold values are satisfied. Next, the alignability of integrated planar-optic backplanes is analyzed in detail. The resulting data show that the alignability can be optimized by varying the substrate thickness or the angle of reflection. By including the effects of crosstalk, in a multi-channel backplane, the

  14. Tidal alignment of galaxies

    NASA Astrophysics Data System (ADS)

    Blazek, Jonathan; Vlah, Zvonimir; Seljak, Uroš

    2015-08-01

    We develop an analytic model for galaxy intrinsic alignments (IA) based on the theory of tidal alignment. We calculate all relevant nonlinear corrections at one-loop order, including effects from nonlinear density evolution, galaxy biasing, and source density weighting. Contributions from density weighting are found to be particularly important and lead to bias dependence of the IA amplitude, even on large scales. This effect may be responsible for much of the luminosity dependence in IA observations. The increase in IA amplitude for more highly biased galaxies reflects their locations in regions with large tidal fields. We also consider the impact of smoothing the tidal field on halo scales. We compare the performance of this consistent nonlinear model in describing the observed alignment of luminous red galaxies with the linear model as well as the frequently used "nonlinear alignment model," finding a significant improvement on small and intermediate scales. We also show that the cross-correlation between density and IA (the "GI" term) can be effectively separated into source alignment and source clustering, and we accurately model the observed alignment down to the one-halo regime using the tidal field from the fully nonlinear halo-matter cross correlation. Inside the one-halo regime, the average alignment of galaxies with density tracers no longer follows the tidal alignment prediction, likely reflecting nonlinear processes that must be considered when modeling IA on these scales. Finally, we discuss tidal alignment in the context of cosmic shear measurements.

  15. Alignment and integration of large optical systems based on advanced metrology.

    NASA Astrophysics Data System (ADS)

    Aliverti, M.; Riva, M.; Moschetti, M.; Pariani, G.; Genoni, M.; Zerbi, F. M.

    Optical alignment is a key activity in opto-mechanical system Integration. Traditional techniques require adjustable mounting, driven by optical references that allows the tuning of the optics position along all 6 Degree of Freedom. Nevertheless, the required flexibility imposes reduced stiffness and consequently less stability of the system. The Observatory of Brera (OAB) started few years ago a research activity focused onto the overcoming of this limits exploiting the high metrology performances of Coordinate Measuring Machines (CMM) with the main objectives of relax the manufacturing tolerances and maximize mounting stiffness. Through the T-REX grants, OAB acquired all the instrumentation needed for that activity furthermore considering the ESPRESSO project training and testing also oriented to large scale instrumentation like the E-ELT one. We will present in this paper the definition of the VLTs convergence point and the feasibility study of large mirrors alignment done by mechanical measurements methods. skip=8pt

  16. Probabilistic sequence alignment of stratigraphic records

    NASA Astrophysics Data System (ADS)

    Lin, Luan; Khider, Deborah; Lisiecki, Lorraine E.; Lawrence, Charles E.

    2014-10-01

    The assessment of age uncertainty in stratigraphically aligned records is a pressing need in paleoceanographic research. The alignment of ocean sediment cores is used to develop mutually consistent age models for climate proxies and is often based on the δ18O of calcite from benthic foraminifera, which records a global ice volume and deep water temperature signal. To date, δ18O alignment has been performed by manual, qualitative comparison or by deterministic algorithms. Here we present a hidden Markov model (HMM) probabilistic algorithm to find 95% confidence bands for δ18O alignment. This model considers the probability of every possible alignment based on its fit to the δ18O data and transition probabilities for sedimentation rate changes obtained from radiocarbon-based estimates for 37 cores. Uncertainty is assessed using a stochastic back trace recursion to sample alignments in exact proportion to their probability. We applied the algorithm to align 35 late Pleistocene records to a global benthic δ18O stack and found that the mean width of 95% confidence intervals varies between 3 and 23 kyr depending on the resolution and noisiness of the record's δ18O signal. Confidence bands within individual cores also vary greatly, ranging from ~0 to >40 kyr. These alignment uncertainty estimates will allow researchers to examine the robustness of their conclusions, including the statistical evaluation of lead-lag relationships between events observed in different cores.

  17. The NetQuakes Project - Research-quality Seismic Data Transmitted via the Internet from Citizen-hosted Instruments (Invited)

    NASA Astrophysics Data System (ADS)

    Luetgert, J. H.; Oppenheimer, D. H.; Hamilton, J.

    2010-12-01

    The USGS seeks accelerograph spacing of 5-10 km in selected urban areas of the US to obtain spatially un-aliased recordings of strong ground motions during large earthquakes. These dense measurements will improve our ability to make rapid post-earthquake assessments of expected damage and contribute to the continuing development of engineering standards for construction. To achieve this goal the USGS and its university partners are deploying “NetQuakes” seismographs, designed to record moderate to large earthquakes from the near field to about 100 km. The instruments have tri-axial Colibrys 2005SF MEMS sensors, clip at 3g, and have 18-bit resolution. These instruments are uniquely designed for deployment in private homes, businesses, public buildings and schools where there is an existing Broadband connection to the Internet. The NetQuakes instruments connect to a local network using WiFi and then via the Internet to USGS servers to a) upload triggered accelerograms in miniSEED format, P arrival times, and computed peak ground motion parameters immediately after an earthquake; b) download software updates; c) respond to requests for log files, execute UNIX scripts, and upload waveforms from long-term memory for quakes with peak motions below the trigger threshold; d) send state-of-health (SOH) information in XML format every 10 minutes; and e) synchronize instrument clocks to 1ms accuracy using the Network Time Protocol. NetQuakes instruments cost little to operate and save about $600/yr/site compared to instruments that transmit data via leased telemetry. After learning about the project through press releases, thousands of citizens have registered to host an instrument at http://earthquake.usgs.gov/netquakes using a Google Map interface that depicts where we seek instrument sites. The website also provides NetQuakes hosts access to waveform images recorded by instruments installed in their building. Since 3/2009, the NetQuakes project has installed over 100

  18. Proceedings of the Federal Interagency Sediment Monitoring Instrument and Analysis Research Workshop, September 9-11, 2003, Flagstaff, Arizona

    USGS Publications Warehouse

    Gray, John R.

    2005-01-01

    The Advisory Committee on Water Information's Subcommittee on Sedimentation sponsored the Federal Interagency Sediment Monitoring Instrument and Analysis Research Workshop on September 9-11, 2003, at the U.S. Geological Survey Flagstaff Field Center, Arizona. The workshop brought together a diverse group representing most Federal agencies whose mission includes fluvial-sediment issues; academia; the private sector; and others with interests and expertise in fluvial-sediment monitoring ? suspended sediment, bedload, bed material, and bed topography ? and associated data-analysis techniques. The workshop emphasized technological and theoretical advances related to measurements of suspended sediment, bedload, bed material and bed topography, and data analyses. This workshop followed and expanded upon part of the 2002 Federal Interagency Workshop on Turbidity and Other Sediment Surrogates (http://water.usgs.gov/pubs/circ/2003/circ1250/), which initiated a process to provide national standards for measurement and use of turbidity and other sediment-surrogate data. This report provides a description of the salient attributes of the workshop and related information, major deliberations and findings, and principal recommendations. This information is available for evaluation by the Subcommittee on Sedimentation, which may opt to develop an action plan based on the recommendations that it endorses for consideration by the Advisory Committee on Water Information.

  19. SPEAR3 Construction Alignment

    SciTech Connect

    LeCocq, Catherine; Banuelos, Cristobal; Fuss, Brian; Gaudreault, Francis; Gaydosh, Michael; Griffin, Levirt; Imfeld, Hans; McDougal, John; Perry, Michael; Rogers, Michael; /SLAC

    2005-08-17

    An ambitious seven month shutdown of the existing SPEAR2 synchrotron radiation facility was successfully completed in March 2004 when the first synchrotron light was observed in the new SPEAR3 ring, SPEAR3 completely replaced SPEAR2 with new components aligned on a new highly-flat concrete floor. Devices such as magnets and vacuum chambers had to be fiducialized and later aligned on girder rafts that were then placed into the ring over pre-aligned support plates. Key to the success of aligning this new ring was to ensure that the new beam orbit matched the old SPEAR2 orbit so that existing experimental beamlines would not have to be reoriented. In this presentation a pictorial summary of the Alignment Engineering Group's surveying tasks for the construction of the SPEAR3 ring is provided. Details on the networking and analysis of various surveys throughout the project can be found in the accompanying paper.

  20. Multiple Whole Genome Alignments Without a Reference Organism

    SciTech Connect

    Dubchak, Inna; Poliakov, Alexander; Kislyuk, Andrey; Brudno, Michael

    2009-01-16

    Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor. Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and sixDrosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes from multigene families?perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.

  1. Afterword: Instruments as media, media as instruments.

    PubMed

    Rheinberger, Hans-Jörg

    2016-06-01

    The collection of essays comes under the heading of two catchwords: instruments and media. This Afterword looks at their interaction and roles in exploring the characteristics of living beings throughout history, especially their melding and gliding into each other. Before turning to the papers, I will make some more general remarks on instruments and media in scientific, and in particular, biological research. PMID:27053536

  2. Mars Miniature Science Instruments

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Hayati, Samad; Lavery, David; McBrid, Karen

    2006-01-01

    For robotic Mars missions, all the science information is gathered through on-board miniature instruments that have been developed through many years of R&D. Compared to laboratory counterparts, the rover instruments require miniaturization, such as low mass (1-2 kg), low power (> 10 W) and compact (1-2 liter), yet with comparable sensitivity. Since early 1990's, NASA recognized the need for the miniature instruments and launched several instrument R&D programs, e.g., PIDDP (Planetary Instrument Definition and Development). However, until 1998, most of the instrument R&D programs supported only up to a breadboard level (TRL 3, 4) and there is a need to carry such instruments to flight qualifiable status (TU 5, 6) to respond to flight AOs (Announcement of Opportunity). Most of flight AOs have only limited time and financial resources, and can not afford such instrument development processes. To bridge the gap between instrument R&D programs and the flight instrument needs, NASA's Mars Technology Program (MTP) created advanced instrumentation program, Mars Instrument Development Project (MIDP). MIDP candidate instruments are selected through NASA Research Announcement (NRA) process [l]. For example, MIDP 161998-2000) selected and developed 10 instruments, MIDP II (2003-2005) 16 instruments, and MIDP III (2004-2006) II instruments.Working with PIs, JPL has been managing the MIDP tasks since September 1998. All the instruments being developed under MIDP have been selected through a highly competitive NRA process, and employ state-of-the-art technology. So far, four MIDP funded instruments have been selected by two Mars missions (these instruments have further been discussed in this paper).

  3. Business-IT Alignment: A Current-State Evaluation of Strategic Alignment within the Hospital Organization

    ERIC Educational Resources Information Center

    Evers, Kevin W.

    2010-01-01

    More than thirty years of research has shown that the practical value of business-IT alignment is significant and that its importance derives from strategic impact on business outcomes. The purpose of this exploratory study is to identify the current-state of business-IT alignment maturity within the hospital organization. Data for this study was…

  4. Research on and Guidelines for Effective Use of Assessment Instruments and Strategies for Adult Learners Enrolled in Adult Basic and Literacy Education Programs. Final Report.

    ERIC Educational Resources Information Center

    Pennsylvania State Univ., University Park. Inst. for the Study of Adult Literacy.

    The goal of this research project was to create a guide on the effective use of assessment instruments and methodologies, related resources, and guidelines for measuring adult learners' attainment of basic skills and competencies to document educational gains and demonstrate program quality. The project focused on confirming current use of…

  5. Conducting Reflective, Hands-On Research with Advanced Characterization Instruments: A High-Level Undergraduate Practical Exploring Solid-State Polymorphism

    ERIC Educational Resources Information Center

    Coles, S. J.; Mapp, L. K.

    2016-01-01

    An undergraduate practical exercise has been designed to provide hands-on, instrument-based experience of advanced characterization techniques. A research experience approach is taken, centered around the concept of solid-state polymorphism, which requires a detailed knowledge of molecular and crystal structure to be gained by advanced analytical…

  6. Corrective optics space telescope axial replacement alignment system

    NASA Astrophysics Data System (ADS)

    Slusher, Robert B.; Satter, Michael J.; Kaplan, Michael L.; Martella, Mark A.; Freymiller, Ed D.; Buzzetta, Victor

    1993-10-01

    To facilitate the accurate placement and alignment of the corrective optics space telescope axial replacement (COSTAR) structure, mechanisms, and optics, the COSTAR Alignment System (CAS) has been designed and assembled. It consists of a 20-foot optical bench, support structures for holding and aligning the COSTAR instrument at various stages of assembly, a focal plane target fixture (FPTF) providing an accurate reference to the as-built Hubble Space Telescope (HST) focal plane, two alignment translation stages with interchangeable alignment telescopes and alignment lasers, and a Zygo Mark IV interferometer with a reference sphere custom designed to allow accurate double-pass operation of the COSTAR correction optics. The system is used to align the fixed optical bench (FOB), the track, the deployable optical bench (DOB), the mechanisms, and the optics to ensure that the correction mirrors are all located in the required positions and orientations on-orbit after deployment. In this paper, the layout of the CAS is presented and the various alignment operations are listed along with the relevant alignment requirements. In addition, calibration of the necessary support structure elements and alignment aids is described, including the two-axis translation stages, the latch positions, the FPTF, and the COSTAR-mounted alignment cubes.

  7. Precision alignment device

    DOEpatents

    Jones, N.E.

    1988-03-10

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam. 5 figs.

  8. Precision alignment device

    DOEpatents

    Jones, Nelson E.

    1990-01-01

    Apparatus for providing automatic alignment of beam devices having an associated structure for directing, collimating, focusing, reflecting, or otherwise modifying the main beam. A reference laser is attached to the structure enclosing the main beam producing apparatus and produces a reference beam substantially parallel to the main beam. Detector modules containing optical switching devices and optical detectors are positioned in the path of the reference beam and are effective to produce an electrical output indicative of the alignment of the main beam. This electrical output drives servomotor operated adjustment screws to adjust the position of elements of the structure associated with the main beam to maintain alignment of the main beam.

  9. Hybrid vehicle motor alignment

    DOEpatents

    Levin, Michael Benjamin

    2001-07-03

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  10. Motorized Beam Alignment of a Commercial X-ray Diffractometer

    NASA Technical Reports Server (NTRS)

    Van Zandt, Noah R.; Myers, James F.; Rogers, Richard B

    2013-01-01

    X-ray diffraction (XRD) is a powerful analysis method that allows researchers to noninvasively probe the crystalline structure of a material. This includes the ability to determine the crystalline phases present, quantify surface residual stresses, and measure the distribution of crystallographic orientations. The Structures and Materials Division at the NASA Glenn Research Center (GRC) heavily uses the on-site XRD lab to characterize advanced metal alloys, ceramics, and polymers. One of the x-ray diffractometers in the XRD lab (Bruker D8 Discover) uses three different x-ray tubes (Cu, Cr, and Mn) for optimal performance over numerous material types and various experimental techniques. This requires that the tubes be switched out and aligned between experiments. This alignment maximizes the x-ray tube s output through an iterative process involving four set screws. However, the output of the x-ray tube cannot be monitored during the adjustment process due to standard radiation safety engineering controls that prevent exposure to the x-ray beam when the diffractometer doors are open. Therefore, the adjustment process is a very tedious series of blind adjustments, each followed by measurement of the output beam using a PIN diode after the enclosure doors are shut. This process can take up to 4 hr to perform. This technical memorandum documents an in-house project to motorize this alignment process. Unlike a human, motors are not harmed by x-ray radiation of the energy range used in this instrument. Therefore, using motors to adjust the set screws will allow the researcher to monitor the x-ray tube s output while making interactive adjustments from outside the diffractometer. The motorized alignment system consists of four motors, a motor controller, and a hand-held user interface module. Our goal was to reduce the alignment time to less than 30 min. The time available was the 10-week span of the Lewis' Educational and Research Collaborative Internship Project (LERCIP

  11. Exploring the Validity and Robustness of a Competency Self-Report Instrument for Vocational and Higher Competence-Based Education

    ERIC Educational Resources Information Center

    Khaled, Anne E.; Gulikers, Judith T. M.; Tobi, Hilde; Biemans, Harm J. A.; Oonk, Carla; Mulder, Martin

    2014-01-01

    Research on the effectiveness of competence-based education (CB-education) across educational contexts and levels requires a new evaluation measurement. This study explores the face validity, construct validity, and robustness of a competency self-report instrument that is aligned with contemporary competence theory and with current educational…

  12. The NASA Thunderstorm Overflight Program (TOP): Research in atmospheric electricity from an instrumented U-2 aircraft platform

    NASA Technical Reports Server (NTRS)

    Vaughan, O. H., Jr.

    1983-01-01

    An overview of the NASA Thunderstorm Overflight Program (TOP) is presented. The various instruments flown on the NASA U-2 aircraft, as well as the ground instrumentation used to collect optical and electronic signature from the lightning events, are discussed. Samples of some of the photographic and electronic signatures are presented. Approximately 6400 electronic data samples of optical pulses were collected and are being analyzed.

  13. EINSTEIN Cluster Alignments Revisited

    NASA Astrophysics Data System (ADS)

    Chambers, S. W.; Melott, A. L.; Miller, C. J.

    2000-12-01

    We have examined whether the major axes of rich galaxy clusters tend to point (in projection) toward their nearest neighboring cluster. We used the data of Ulmer, McMillan and Kowalski, who used x-ray morphology to define position angles. Our cluster samples, with well measured redshifts and updated positions, were taken from the MX Northern Abell Cluster Survey. The usual Kolmogorov-Smirnov test shows no significant alignment signal for nonrandom angles for all separations less than 100 Mpc/h. Refining the null hypothesis, however, with the Wilcoxon rank-sum test, reveals a high confidence signal for alignment. This confidence is highest when we restrict our sample to small nearest neighbor separations. We conclude that we have identified a more powerful tool for testing cluster-cluster alignments. Moreover, there is a strong signal in the data for alignment, consistent with a picture of hierarchical cluster formation in which matter falls into clusters along large scale filamentary structures.

  14. Development of a method of alignment between various SOLAR MAXIMUM MISSION experiments

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Results of an engineering study of the methods of alignment between various experiments for the solar maximum mission are described. The configuration studied consists of the instruments, mounts and instrument support platform located within the experiment module. Hardware design, fabrication methods and alignment techniques were studied with regard to optimizing the coalignment between the experiments and the fine sun sensor. The proposed hardware design was reviewed with regard to loads, stress, thermal distortion, alignment error budgets, fabrication techniques, alignment techniques and producibility. Methods of achieving comparable alignment accuracies on previous projects were also reviewed.

  15. Pairwise Sequence Alignment Library

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprintmore » that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.« less

  16. Pairwise Sequence Alignment Library

    SciTech Connect

    Jeff Daily, PNNL

    2015-05-20

    Vector extensions, such as SSE, have been part of the x86 CPU since the 1990s, with applications in graphics, signal processing, and scientific applications. Although many algorithms and applications can naturally benefit from automatic vectorization techniques, there are still many that are difficult to vectorize due to their dependence on irregular data structures, dense branch operations, or data dependencies. Sequence alignment, one of the most widely used operations in bioinformatics workflows, has a computational footprint that features complex data dependencies. The trend of widening vector registers adversely affects the state-of-the-art sequence alignment algorithm based on striped data layouts. Therefore, a novel SIMD implementation of a parallel scan-based sequence alignment algorithm that can better exploit wider SIMD units was implemented as part of the Parallel Sequence Alignment Library (parasail). Parasail features: Reference implementations of all known vectorized sequence alignment approaches. Implementations of Smith Waterman (SW), semi-global (SG), and Needleman Wunsch (NW) sequence alignment algorithms. Implementations across all modern CPU instruction sets including AVX2 and KNC. Language interfaces for C/C++ and Python.

  17. Optical Alignment of the JWST ISIM to the OTE Simulator (OSIM): Current Concept and Design Studies

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Davila, Pamela S.; Marsh, James M.; Ohl, Raymond G.; Sullivan, Joseph

    2007-01-01

    The James Webb Space Telescope's (JWST) Integrated Science Instrument Module (ISIM) is the scientific payload of the observatory and contai ns four science instruments. During alignment and test of the integrated ISIM (i.e. ISIM + science instruments) at NASA's Goddard Space Fli ght Center (GSFC), the Optical telescope element SIMulator (OSIM) wil l be used to optically stimulate the science instruments to verify their operation and performance. In this paper we present the design of two cryogenic alignment fixtures that will be used to determine and verify the proper alignment of OSIM to ISIM during testing at GSFC. The se fixtures, the Master Alignment Target Fixture (MATF) and the ISIM Alignment Target Fixture (IATF), will provide continuous, 6 degree of freedom feedback to OSIM during initial ambient alignment as well as during cryogenic vacuum testing.

  18. PDV Probe Alignment Technique

    SciTech Connect

    Whitworth, T L; May, C M; Strand, O T

    2007-10-26

    This alignment technique was developed while performing heterodyne velocimetry measurements at LLNL. There are a few minor items needed, such as a white card with aperture in center, visible alignment laser, IR back reflection meter, and a microscope to view the bridge surface. The work was performed on KCP flyers that were 6 and 8 mils wide. The probes used were Oz Optics manufactured with focal distances of 42mm and 26mm. Both probes provide a spot size of approximately 80?m at 1550nm. The 42mm probes were specified to provide an internal back reflection of -35 to -40dB, and the probe back reflections were measured to be -37dB and -33dB. The 26mm probes were specified as -30dB and both measured -30.5dB. The probe is initially aligned normal to the flyer/bridge surface. This provides a very high return signal, up to -2dB, due to the bridge reflectivity. A white card with a hole in the center as an aperture can be used to check the reflected beam position relative to the probe and launch beam, and the alignment laser spot centered on the bridge, see Figure 1 and Figure 2. The IR back reflection meter is used to measure the dB return from the probe and surface, and a white card or similar object is inserted between the probe and surface to block surface reflection. It may take several iterations between the visible alignment laser and the IR back reflection meter to complete this alignment procedure. Once aligned normal to the surface, the probe should be tilted to position the visible alignment beam as shown in Figure 3, and the flyer should be translated in the X and Y axis to reposition the alignment beam onto the flyer as shown in Figure 4. This tilting of the probe minimizes the amount of light from the bridge reflection into the fiber within the probe while maintaining the alignment as near normal to the flyer surface as possible. When the back reflection is measured after the tilt adjustment, the level should be about -3dB to -6dB higher than the probes

  19. Ion Implantation with Scanning Probe Alignment

    SciTech Connect

    Persaud, A.; Liddle, J.A.; Schenkel, T.; Bokor, J.; Ivanov, Tzv.; Rangelow, I.W.

    2005-07-12

    We describe a scanning probe instrument which integrates ion beams with the imaging and alignment function of a piezo-resistive scanning probe in high vacuum. The beam passes through several apertures and is finally collimated by a hole in the cantilever of the scanning probe. The ion beam spot size is limited by the size of the last aperture. Highly charged ions are used to show hits of single ions in resist, and we discuss the issues for implantation of single ions.

  20. Gyroscopic Instruments for Instrument Flying

    NASA Technical Reports Server (NTRS)

    Brombacher, W G; Trent, W C

    1938-01-01

    The gyroscopic instruments commonly used in instrument flying in the United States are the turn indicator, the directional gyro, the gyromagnetic compass, the gyroscopic horizon, and the automatic pilot. These instruments are described. Performance data and the method of testing in the laboratory are given for the turn indicator, the directional gyro, and the gyroscopic horizon. Apparatus for driving the instruments is discussed.

  1. A precision press-fit instrument for assembling small parts

    NASA Astrophysics Data System (ADS)

    Lou, Zhifeng; Wang, Xiaodong; You, Bo; Xu, Yang

    2015-02-01

    In the paper, a precision press-fit instrument for assembling small interference fitting parts is introduced, which includes pressing module and parts alignment module. The pressing module was used to clamp and position parts, and parts alignment module was used for the two parts' alignment. Through analyzing press-fit control method, component alignment and adjustment strategy, and machine vision device calibration method, the instrument meets the pressing requirements of precision small components. Finite element method is used to predict the reasonable range of press-fit force, and pressing result of the instrument is tested by experiments.

  2. Career Education Measurement Handbooks. Career Education Measures: A Compendium of Evaluation Instruments. Research & Development Series No. 166.

    ERIC Educational Resources Information Center

    McCaslin, N. L.; And Others

    This document is the second volume in a set of five Career Education Measurement Handbooks intended to help local education personnel in measurement and evaluation. This handbook is designed to provide descriptions of an assortment of measurement instruments currently being used to assess career education objectives. A brief introduction describes…

  3. Toward the Development of an Instrument to Measure the Attitude Toward Science of Negro Students: A Research Report

    ERIC Educational Resources Information Center

    Tilford, Michael P.

    1973-01-01

    An instrument designed to measure the attitude of Negro students toward science was administered to 195 students at a predominantly Negro college in Alabama. Results indicated that attitudes of Negroes are essentially the same as those of white students, except for those relating to the role of Black people in science. (JR)

  4. Prevalence Estimation and Validation of New Instruments in Psychiatric Research: An Application of Latent Class Analysis and Sensitivity Analysis

    ERIC Educational Resources Information Center

    Pence, Brian Wells; Miller, William C.; Gaynes, Bradley N.

    2009-01-01

    Prevalence and validation studies rely on imperfect reference standard (RS) diagnostic instruments that can bias prevalence and test characteristic estimates. The authors illustrate 2 methods to account for RS misclassification. Latent class analysis (LCA) combines information from multiple imperfect measures of an unmeasurable latent condition to…

  5. Nuclear medicine and imaging research (instrumentation and quantitative methods of evaluation). Progress report, January 15, 1992--January 14, 1993

    SciTech Connect

    Beck, R.N.; Cooper, M.; Chen, C.T.

    1992-07-01

    This document is the annual progress report for project entitled ``Instrumentation and Quantitative Methods of Evaluation.`` Progress is reported in separate sections individually abstracted and indexed for the database. Subject areas reported include theoretical studies of imaging systems and methods, hardware developments, quantitative methods of evaluation, and knowledge transfer: education in quantitative nuclear medicine imaging.

  6. Multiple Homicide as a Function of Prisonization and Concurrent Instrumental Violence: Testing an Interactive Model--A Research Note

    ERIC Educational Resources Information Center

    DeLisi, Matt; Walters, Glenn D.

    2011-01-01

    Prisonization (as measured by number of prior incarcerations) and concurrent instrumental offending (as measured by contemporaneous kidnapping, rape, robbery, and burglary offenses) were found to interact in 160 multiple-homicide offenders and 494 single-homicide offenders. Controlling for age, gender, race, criminal history, prior incarcerations,…

  7. Pupil Alignment Considerations for Large, Deployable Space Telescopes

    NASA Technical Reports Server (NTRS)

    Bos, Brent J.; Ohl, Raymond G.; Kubalak, Daivd A.

    2011-01-01

    For many optical systems the properties and alignment of the internal apertures and pupils are not critical or controlled with high precision during optical system design, fabrication or assembly. In wide angle imaging systems, for instance, the entrance pupil position and orientation is typically unconstrained and varies over the system s field of view in order to optimize image quality. Aperture tolerances usually do not receive the same amount of scrutiny as optical surface aberrations or throughput characteristics because performance degradation is typically graceful with misalignment, generally only causing a slight reduction in system sensitivity due to vignetting. But for a large deployable space-based observatory like the James Webb Space Telescope (JWST), we have found that pupil alignment is a key parameter. For in addition to vignetting, JWST pupil errors cause uncertainty in the wavefront sensing process that is used to construct the observatory on-orbit. Furthermore they also open stray light paths that degrade the science return from some of the telescope s instrument channels. In response to these consequences, we have developed several pupil measurement techniques for the cryogenic vacuum test where JWST science instrument pupil alignment is verified. These approaches use pupil alignment references within the JWST science instruments; pupil imaging lenses in three science instrument channels; and unique pupil characterization features in the optical test equipment. This will allow us to verify and crosscheck the lateral pupil alignment of the JWST science instruments to approximately 1-2% of their pupil diameters.

  8. Little solar impact from planets' alignment

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Contrary to some projections, planetary alignments of the type that have begun recently (when the sun, Venus, Earth, Jupiter, and Saturn move into almost perfect alignment) should have no perceptible effect on solar flare activity. Some researchers have postulated that the increased gravitational attraction exerted on the sun by the aligned planets could produce massive eruptions near sunspots. The radiation and particles directed earthward by the sun, according to this hypothesis, would change the atmosphere in a way that would slow the earth's rotation; and this change in rotation rate would cause the large plates which constitute the earth's crust to grind together more vigorously and cause major earthquakes. Because Jupiter is the largest of the planets, and so exerts the most gravitational attraction, this geophysical domino theory is sometimes referred to as the Jupiter Effect. But, at least at the solar end of this theory, one would not expect much change in solar activity from planetary alignments of this type.

  9. Assembly and alignment of infrared refractive system

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Lin, Jian-chun; Wang, Ya-jing; Chen, Fan-sheng

    2013-09-01

    Optical systems for scientific instrumentation frequently include lens or mirrors with critical mechanical requirements. Position issues of those components are inextricably bound to the efficiency of the instrument. The position referring to the lens system mainly means spacer and rotation of all elements concerned. Instrument could not be completed without the accuracy assembly even the previous design was top one. The alignment of infrared optical system always is a tough thing due to the IR material being opaque to visible light which hardly effect on the imaging ability of the system. In this paper a large-aperture IR refractive system was described in details and the alignment of this system was presented. The brief work describes the assembly and integration of the camera barrel in lab. First of all, all the mechanical elements must be manufactured with high accuracy requirements to meet alignment tolerances and minimum errors mostly could be ignored. The rotations relative to the optical axis were hardy restricted by the space between barrel and cells. The lens vertex displacements were determined through high accuracy titanium alloy spacer. So the actual shape data of the optical lenses were obtained by coordinate measuring machining (CMM) to calculate the real space between lenses after alignment1 done. All the measured results were critical for instruction of the practical assemble. Based on the properties and tolerances of the system, the camera barrel includes sets of six lenses with their respective supports and cells which are composed of two parts: the flied lens group and the relay lenses group. The first one was aligned by the geometry centering used CMM. And the relay lenses were integrated one by one after centered individually with a classical centering instrument. Then the two separate components were assembled under the monitor of the CMM with micron precision. Three parameters on the opti-mechanical elements which include decenter, tilt and

  10. FMIT alignment cart

    SciTech Connect

    Potter, R.C.; Dauelsberg, L.B.; Clark, D.C.; Grieggs, R.J.

    1981-01-01

    The Fusion Materials Irradiation Test (FMIT) Facility alignment cart must perform several functions. It must serve as a fixture to receive the drift-tube girder assembly when it is removed from the linac tank. It must transport the girder assembly from the linac vault to the area where alignment or disassembly is to take place. It must serve as a disassembly fixture to hold the girder while individual drift tubes are removed for repair. It must align the drift tube bores in a straight line parallel to the girder, using an optical system. These functions must be performed without violating any clearances found within the building. The bore tubes of the drift tubes will be irradiated, and shielding will be included in the system for easier maintenance.

  11. Barrel alignment fixture

    NASA Astrophysics Data System (ADS)

    Sheeley, J. D.

    1981-04-01

    Fabrication of slapper type detonator cables requires bonding of a thin barrel over a bridge. Location of the barrel hole with respect to the bridge is critical: the barrel hole must be centered over the bridge uniform spacing on each side. An alignment fixture which permits rapid adjustment of the barrel position with respect to the bridge is described. The barrel is manipulated by pincer-type fingers which are mounted on a small x-y table equipped with micrometer adjustments. Barrel positioning, performed under a binocular microscopy, is rapid and accurate. After alignment, the microscope is moved out of position and an infrared (IR) heat source is aimed at the barrel. A 5-second pulse of infrared heat flows the adhesive under the barrel and bonds it to the cable. Sapphire and Fotoform glass barrels were bonded successfully with the alignment fixture.

  12. Improved docking alignment system

    NASA Technical Reports Server (NTRS)

    Monford, Leo G. (Inventor)

    1988-01-01

    Improved techniques are provided for the alignment of two objects. The present invention is particularly suited for 3-D translation and 3-D rotational alignment of objects in outer space. A camera is affixed to one object, such as a remote manipulator arm of the spacecraft, while the planar reflective surface is affixed to the other object, such as a grapple fixture. A monitor displays in real-time images from the camera such that the monitor displays both the reflected image of the camera and visible marking on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.

  13. Optics Alignment Panel

    NASA Technical Reports Server (NTRS)

    Schroeder, Daniel J.

    1992-01-01

    The Optics Alignment Panel (OAP) was commissioned by the HST Science Working Group to determine the optimum alignment of the OTA optics. The goal was to find the position of the secondary mirror (SM) for which there is no coma or astigmatism in the camera images due to misaligned optics, either tilt or decenter. The despace position was reviewed of the SM and the optimum focus was sought. The results of these efforts are as follows: (1) the best estimate of the aligned position of the SM in the notation of HDOS is (DZ,DY,TZ,TY) = (+248 microns, +8 microns, +53 arcsec, -79 arcsec), and (2) the best focus, defined to be that despace which maximizes the fractional energy at 486 nm in a 0.1 arcsec radius of a stellar image, is 12.2 mm beyond paraxial focus. The data leading to these conclusions, and the estimated uncertainties in the final results, are presented.

  14. Using Quasi-Horizontal Alignment in the absence of the actual alignment.

    PubMed

    Banihashemi, Mohamadreza

    2016-10-01

    Horizontal alignment is a major roadway characteristic used in safety and operational evaluations of many facility types. The Highway Safety Manual (HSM) uses this characteristic in crash prediction models for rural two-lane highways, freeway segments, and freeway ramps/C-D roads. Traffic simulation models use this characteristic in their processes on almost all types of facilities. However, a good portion of roadway databases do not include horizontal alignment data; instead, many contain point coordinate data along the roadways. SHRP 2 Roadway Information Database (RID) is a good example of this type of data. Only about 5% of this geodatabase contains alignment information and for the rest, point data can easily be produced. Even though the point data can be used to extract actual horizontal alignment data but, extracting horizontal alignment is a cumbersome and costly process, especially for a database of miles and miles of highways. This research introduces a so called "Quasi-Horizontal Alignment" that can be produced easily and automatically from point coordinate data and can be used in the safety and operational evaluations of highways. SHRP 2 RID for rural two-lane highways in Washington State is used in this study. This paper presents a process through which Quasi-Horizontal Alignments are produced from point coordinates along highways by using spreadsheet software such as MS EXCEL. It is shown that the safety and operational evaluations of the highways with Quasi-Horizontal Alignments are almost identical to the ones with the actual alignments. In the absence of actual alignment the Quasi-Horizontal Alignment can easily be produced from any type of databases that contain highway coordinates such geodatabases and digital maps. PMID:27391796

  15. Orientation and Alignment Echoes

    NASA Astrophysics Data System (ADS)

    Karras, G.; Hertz, E.; Billard, F.; Lavorel, B.; Hartmann, J.-M.; Faucher, O.; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh.

    2015-04-01

    We present one of the simplest classical systems featuring the echo phenomenon—a collection of randomly oriented free rotors with dispersed rotational velocities. Following excitation by a pair of time-delayed impulsive kicks, the mean orientation or alignment of the ensemble exhibits multiple echoes and fractional echoes. We elucidate the mechanism of the echo formation by the kick-induced filamentation of phase space, and provide the first experimental demonstration of classical alignment echoes in a thermal gas of CO2 molecules excited by a pair of femtosecond laser pulses.

  16. Segment alignment control system

    NASA Technical Reports Server (NTRS)

    Aubrun, JEAN-N.; Lorell, Ken R.

    1988-01-01

    The segmented primary mirror for the LDR will require a special segment alignment control system to precisely control the orientation of each of the segments so that the resulting composite reflector behaves like a monolith. The W.M. Keck Ten Meter Telescope will utilize a primary mirror made up of 36 actively controlled segments. Thus the primary mirror and its segment alignment control system are directly analogous to the LDR. The problems of controlling the segments in the face of disturbances and control/structures interaction, as analyzed for the TMT, are virtually identical to those for the LDR. The two systems are briefly compared.

  17. Optical alignment of high resolution Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Ocallaghan, F. G.; Cassie, A. G.

    1980-01-01

    Remote sensing, high resolution FTS instruments often contain three primary optical subsystems: Fore-Optics, Interferometer Optics, and Post, or Detector Optics. We discuss the alignment of a double-pass FTS containing a cat's-eye retro-reflector. Also, the alignment of fore-optics containing confocal paraboloids with a reflecting field stop which relays a field image onto a camera is discussed.

  18. Vertical Alignment and Collaboration.

    ERIC Educational Resources Information Center

    Bergman, Donna; Calzada, Lucio; LaPointe, Nancy; Lee, Audra; Sullivan, Lynn

    This study investigated whether vertical (grade level sequence) alignment of the curriculum in conjunction with teacher collaboration would enhance student performance on the Texas Assessment of Academic Skills (TAAS) test in south Texas school districts of various sizes. Surveys were mailed to the office of the superintendent of 47 school…

  19. Curriculum Alignment: Establishing Coherence

    ERIC Educational Resources Information Center

    Gagné, Philippe; Dumont, Laurence; Brunet, Sabine; Boucher, Geneviève

    2013-01-01

    In this paper, we present a step-by-step guide to implement a curricular alignment project, directed at professional development and student support, and developed in a higher education French as a second language department. We outline best practices and preliminary results from our experience and provide ways to adapt our experience to other…

  20. Aligning brains and minds

    PubMed Central

    Tong, Frank

    2012-01-01

    In this issue of Neuron, Haxby and colleagues describe a new method for aligning functional brain activity patterns across participants. Their study demonstrates that objects are similarly represented across different brains, allowing for reliable classification of one person’s brain activity based on another’s. PMID:22017984

  1. Aligned-or Not?

    ERIC Educational Resources Information Center

    Roseman, Jo Ellen; Koppal, Mary

    2015-01-01

    When state leaders and national partners in the development of the Next Generation Science Standards met to consider implementation strategies, states and school districts wanted to know which materials were aligned to the new standards. The answer from the developers was short but not sweet: You won't find much now, and it's going to…

  2. Optically Aligned Drill Press

    NASA Technical Reports Server (NTRS)

    Adderholdt, Bruce M.

    1994-01-01

    Precise drill press equipped with rotary-indexing microscope. Microscope and drill exchange places when turret rotated. Microscope axis first aligned over future hole, then rotated out of way so drill axis assumes its precise position. New procedure takes less time to locate drilling positions and produces more accurate results. Apparatus adapted to such other machine tools as milling and measuring machines.

  3. SPAM: A precision alignment device for spectrometer sightlines

    SciTech Connect

    Ramsey, A.T.; Bartolick, J.M. )

    1990-10-01

    As fusion devices become larger and their environments become harsher for instruments, diagnostics find themselves farther and farther away from the plasma. On TFTR, the UV survey spectrometer SPRED is over 9 m from the plasma. In these conditions, the alignment of the optical axis of the spectrometer to the desired portion of the plasma becomes both more critical and more difficult. We have developed a device which allows visual alignment along an optical axis both back into the spectrometer and toward the plasma. This SPRED alignment mechanism (SPAM) generates forward and backward laser alignment beams which are exactly coaxial, and gives coincident visual sightlines, also coaxial, in both directions. It is compact, hardy, precise, and cheap. SPAM also has been used to align visible and UV spectrometers with equal success.

  4. Optical Instruments

    NASA Astrophysics Data System (ADS)

    1990-01-01

    Precision Lapping and Optical Co. has developed a wide variety of hollow retroreflector systems for applications involving the entire optical spectrum; they are, according to company literature, cheaper, more accurate, lighter and capable of greater size than solid prisms. Precision Lapping's major customers are aerospace and defense companies, government organizations, R&D and commercial instrument companies. For example, Precision Lapping supplies hollow retroreflectors for the laser fire control system of the Army's Abrams tank, and retroreflectors have been and are being used in a number of space tests relative to the Air Force's Strategic Defense Initiative research program. An example of a customer/user is Chesapeake Laser Systems, producer of the Laser Tracker System CMS-2000, which has applications in SDI research and industrial robotics. Another customer is MDA Scientific, Inc., manufacturer of a line of toxic gas detection systems used to monitor hazardous gases present in oil fields, refineries, offshore platforms, chemical plants, waste storage sites and other locations where gases are released into the environment.

  5. Molecular dynamics simulation of organometallic reaction dynamics, and, Enhancing achievement in chemistry for African American students through innovations in pedagogy aligned with supporting assessment and curriculum and integrated under an alternative research paradigm

    NASA Astrophysics Data System (ADS)

    Mebane, Sheryl Dee

    Part I. Molecular dynamics simulation of organometallic reaction dynamics. To study the interplay of solute and solvent dynamics, large-scale molecular dynamics simulations were employed. Lennard-Jones and electrostatic models of potential energies from solvent-only studies were combined with solute potentials generated from ab-initio calculations. Radial distribution functions and other measures revealed the polar solvent's response to solute dynamics following CO dissociation. In future studies, the time-scale for solvent coordination will be confirmed with ultrafast spectroscopy data. Part II. Enhancing achievement in chemistry for African American students through innovations in pedagogy aligned with supporting assessment and curriculum and integrated under an alternative research paradigm. Much progress has been made in the area of research in education that focuses on teaching and learning in science. Much effort has also centered on documenting and exploring the disparity in academic achievement between underrepresented minority students and students comprising a majority in academic circles. However, few research projects have probed educational inequities in the context of mainstream science education. In order to enrich this research area and to better reach underserved learning communities, the educational experience of African American students in an ethnically and academically diverse high school science class has been examined throughout one, largely successful, academic year. The bulk of data gathered during the study was obtained through several qualitative research methods and was interpreted using research literature that offered fresh theoretical perspectives on equity that may better support effective action.

  6. Review of Instrumented Indentation

    PubMed Central

    VanLandingham, Mark R.

    2003-01-01

    Instrumented indentation, also known as depth-sensing indentation or nanoindentation, is increasingly being used to probe the mechanical response of materials from metals and ceramics to polymeric and biological materials. The additional levels of control, sensitivity, and data acquisition offered by instrumented indentation systems have resulted in numerous advances in materials science, particularly regarding fundamental mechanisms of mechanical behavior at micrometer and even sub-micrometer length scales. Continued improvements of instrumented indentation testing towards absolute quantification of a wide range of material properties and behavior will require advances in instrument calibration, measurement protocols, and analysis tools and techniques. In this paper, an overview of instrumented indentation is given with regard to current instrument technology and analysis methods. Research efforts at the National Institute of Standards and Technology (NIST) aimed at improving the related measurement science are discussed.

  7. Development of a Survey Instrument to Measure TEFL Academics' Perceptions about, Individual and Workplace Characteristics for Conducting Research

    ERIC Educational Resources Information Center

    Bai, Li; Hudson, Peter; Millwater, Jan; Tones, Megan

    2013-01-01

    A 30-item survey was devised to determine Chinese TEFL (Teaching English as a Foreign Language) academics' potential for conducting research. A five-part Likert scale was used to gather data from 182 academics on four factors: (1) perceptions on teaching-research nexus, (2) personal perspectives for conducting research, (3) predispositions for…

  8. Desktop aligner for fabrication of multilayer microfluidic devices

    PubMed Central

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-01-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm−1. To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices. PMID:26233409

  9. Desktop aligner for fabrication of multilayer microfluidic devices

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Yu, Zeta Tak For; Geraldo, Dalton; Weng, Shinuo; Alve, Nitesh; Dun, Wu; Kini, Akshay; Patel, Karan; Shu, Roberto; Zhang, Feng; Li, Gang; Jin, Qinghui; Fu, Jianping

    2015-07-01

    Multilayer assembly is a commonly used technique to construct multilayer polydimethylsiloxane (PDMS)-based microfluidic devices with complex 3D architecture and connectivity for large-scale microfluidic integration. Accurate alignment of structure features on different PDMS layers before their permanent bonding is critical in determining the yield and quality of assembled multilayer microfluidic devices. Herein, we report a custom-built desktop aligner capable of both local and global alignments of PDMS layers covering a broad size range. Two digital microscopes were incorporated into the aligner design to allow accurate global alignment of PDMS structures up to 4 in. in diameter. Both local and global alignment accuracies of the desktop aligner were determined to be about 20 μm cm-1. To demonstrate its utility for fabrication of integrated multilayer PDMS microfluidic devices, we applied the desktop aligner to achieve accurate alignment of different functional PDMS layers in multilayer microfluidics including an organs-on-chips device as well as a microfluidic device integrated with vertical passages connecting channels located in different PDMS layers. Owing to its convenient operation, high accuracy, low cost, light weight, and portability, the desktop aligner is useful for microfluidic researchers to achieve rapid and accurate alignment for generating multilayer PDMS microfluidic devices.

  10. Low Achieving Eighth Graders Learn to Crack Word Problems: A Design Research Project for Aligning a Strategic Scaffolding Tool to Students' Mental Processes

    ERIC Educational Resources Information Center

    Prediger, Susanne; Krägeloh, Nadine

    2015-01-01

    Topic-specific didactical design research provides means not only to investigate how to learn but also what to learn, i.e., for specifying learning contents by analyzing students' comprehension processes in detail. This important characteristic of didactical design research is exemplarily shown for students' difficulties in finding symbolic…

  11. The Flare Irradiance Spectral Model (FISM) and its Contributions to Space Weather Research, the Flare Energy Budget, and Instrument Design

    NASA Technical Reports Server (NTRS)

    Chamberlin, Phillip

    2008-01-01

    The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at 1 nm spectral resolution and on a 1-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric models. The seminar will begin with a brief overview of the FISM model, and also how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM. Some current studies will then be presented that use FISM estimations of the solar VUV irradiance to quantify the contributions of the increased irradiance from flares to Earth's increased thermospheric and ionospheric densites. Initial results will also be presented from a study looking at the electron density increases in the Martian atmosphere during a solar flare. Results will also be shown quantifying the VUV contributions to the total flare energy budget for both the impulsive and gradual phases of solar flares. Lastly, an example of how FISM can be used to simplify the design of future solar VUV irradiance instruments will be discussed, using the future NOAA GOES-R Extreme Ultraviolet and X-Ray Sensors (EXIS) space weather instrument.

  12. Cordless Instruments

    NASA Astrophysics Data System (ADS)

    1981-01-01

    Black & Decker's new cordless lightweight battery powered precision instruments, adapted from NASA's Apollo Lunar Landing program, have been designed to give surgeons optimum freedom and versatility in the operating room. Orthopedic instrument line includes a drill, a driver/reamer and a sagittal saw. All provide up to 20 minutes on a single charge. Power pack is the instrument's handle which is removable for recharging. Microprocessor controlled recharging unit can recharge two power packs together in 30 minutes. Instruments can be gas sterilized, steam-sterilized in an autoclave or immersed for easy cleaning.

  13. Monitoring Instruments

    ERIC Educational Resources Information Center

    Environmental Science and Technology (Environmental Control Issue), 1977

    1977-01-01

    This section contains a listing of the manufacturers of environmental monitoring instruments. The manufacturers are listed alphabetically under product headings. Addresses are included in a different section. (MA)

  14. Inflation by alignment

    SciTech Connect

    Burgess, C.P.; Roest, Diederik

    2015-06-08

    Pseudo-Goldstone bosons (pGBs) can provide technically natural inflatons, as has been comparatively well-explored in the simplest axion examples. Although inflationary success requires trans-Planckian decay constants, f≳M{sub p}, several mechanisms have been proposed to obtain this, relying on (mis-)alignments between potential and kinetic energies in multiple-field models. We extend these mechanisms to a broader class of inflationary models, including in particular the exponential potentials that arise for pGB potentials based on noncompact groups (and so which might apply to moduli in an extra-dimensional setting). The resulting potentials provide natural large-field inflationary models and can predict a larger primordial tensor signal than is true for simpler single-field versions of these models. In so doing we provide a unified treatment of several alignment mechanisms, showing how each emerges as a limit of the more general setup.

  15. Alignments of RNA structures.

    PubMed

    Blin, Guillaume; Denise, Alain; Dulucq, Serge; Herrbach, Claire; Touzet, Hélène

    2010-01-01

    We describe a theoretical unifying framework to express the comparison of RNA structures, which we call alignment hierarchy. This framework relies on the definition of common supersequences for arc-annotated sequences and encompasses the main existing models for RNA structure comparison based on trees and arc-annotated sequences with a variety of edit operations. It also gives rise to edit models that have not been studied yet. We provide a thorough analysis of the alignment hierarchy, including a new polynomial-time algorithm and an NP-completeness proof. The polynomial-time algorithm involves biologically relevant edit operations such as pairing or unpairing nucleotides. It has been implemented in a software, called gardenia, which is available at the Web server http://bioinfo.lifl.fr/RNA/gardenia. PMID:20431150

  16. On the alignment space.

    PubMed

    Shen, Shi-Yi; Wang, Kui; Hu, Gang; Chen, Lu-Sheng; Zhang, Hua; Xia, Shu-Tao

    2005-01-01

    Sequences with generalized errors which are called mutations in bioinformatics and generalized error-correcting codes are studied in this paper. In the areas of bioinformatics, computer science and information theory, sequences with generalized errors are discussed respectively for different aims. Firstly, we give the definitions of alignment distance and Levenshtein distance by expansion sequences and discuss their properties and relations. Then the modular structure theory is introduced for strictly describe the expansion sequences. We show that the expansion modular structures of sequences form a Boolean algebra. As applications of the modular structure theory, we give a new and more strict proof of triangle inequality for alignment distance. At last, the definition and construction of generalized error-correcting codes are studied, and some optimal codes with small length are listed. PMID:17282158

  17. Alignment reference device

    DOEpatents

    Patton, Gail Y.; Torgerson, Darrel D.

    1987-01-01

    An alignment reference device provides a collimated laser beam that minimizes angular deviations therein. A laser beam source outputs the beam into a single mode optical fiber. The output end of the optical fiber acts as a source of radiant energy and is positioned at the focal point of a lens system where the focal point is positioned within the lens. The output beam reflects off a mirror back to the lens that produces a collimated beam.

  18. Nuclear reactor alignment plate configuration

    DOEpatents

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  19. Dynamic Alignment at SLS

    SciTech Connect

    Ruland, Robert E.

    2003-04-23

    The relative alignment of components in the storage ring of the Swiss Light Source (SLS) is guaranteed by mechanical means. The magnets are rigidly fixed to 48 girders by means of alignment rails with tolerances of less than {+-}15 {micro}m. The bending magnets, supported by 3 point ball bearings, overlap adjacent girders and thus establish virtual train links between the girders, located near the bending magnet centres. Keeping the distortion of the storage ring geometry within a tolerance of {+-}100 {micro}m in order to guarantee sufficient dynamic apertures, requires continuous monitoring and correction of the girder locations. Two monitoring systems for the horizontal and the vertical direction will be installed to measure displacements of the train link between girders, which are due to ground settings and temperature effects: The hydrostatic levelling system (HLS) gives an absolute vertical reference, while the horizontal positioning system (HPS), which employs low cost linear encoders with sub-micron resolution, measures relative horizontal movements. The girder mover system based on five DC motors per girder allows a dynamic realignment of the storage ring within a working window of more than {+-}1 mm for girder translations and {+-}1 mrad for rotations. We will describe both monitoring systems (HLS and HPS) as well as the applied correction scheme based on the girder movers. We also show simulations indicating that beam based girder alignment takes care of most of the static closed orbit correction.

  20. Docking alignment system

    NASA Technical Reports Server (NTRS)

    Monford, Leo G. (Inventor)

    1990-01-01

    Improved techniques are provided for alignment of two objects. The present invention is particularly suited for three-dimensional translation and three-dimensional rotational alignment of objects in outer space. A camera 18 is fixedly mounted to one object, such as a remote manipulator arm 10 of the spacecraft, while the planar reflective surface 30 is fixed to the other object, such as a grapple fixture 20. A monitor 50 displays in real-time images from the camera, such that the monitor displays both the reflected image of the camera and visible markings on the planar reflective surface when the objects are in proper alignment. The monitor may thus be viewed by the operator and the arm 10 manipulated so that the reflective surface is perpendicular to the optical axis of the camera, the roll of the reflective surface is at a selected angle with respect to the camera, and the camera is spaced a pre-selected distance from the reflective surface.

  1. An instrument for theory and research development using the behavioral systems model for nursing: the cancer patient. Part II.

    PubMed

    Derdiarian, A K; Forsythe, A B

    1983-01-01

    The purpose of the Derdiarian Behavioral System Model (DBSM) instrument was to measure and describe, within the Johnson Behavioral System Model (JBSM) perspective, the perceived behavioral changes of the cancer patient. Based on Johnson's (1968, 1980) premise that illness as a noxious stimulus effects imbalance in the behavioral system of the human being, it was extrapolated that changes that occur in a patient's behavioral patterns would be perceived by the patient. Thus, changes would reflect the description of the imbalance in the patient's behavioral system, which needs to be identified and described in a systematic way. The description of change was envisioned in terms of (1) the perceived existence of change; (2) the direction of change--increase or decrease; (3) the quality of change--positive or negative; (4) the importance of change--its significance; and (5) the physical, psychological, or emotional effect(s) of the illness perceived as causally associated with the change. PMID:6554614

  2. Measuring Research Quality Using the Journal Impact Factor, Citations and "Ranked Journals": Blunt Instruments or Inspired Metrics?

    ERIC Educational Resources Information Center

    Jarwal, Som D.; Brion, Andrew M.; King, Maxwell L.

    2009-01-01

    This paper examines whether three bibliometric indicators--the journal impact factor, citations per paper and the Excellence in Research for Australia (ERA) initiative's list of "ranked journals"--can predict the quality of individual research articles as assessed by international experts, both overall and within broad disciplinary groupings. The…

  3. Variability among Research Diagnostic Interview Instruments in the Application of "DSM-IV-TR" Criteria for Pediatric Bipolar Disorder

    ERIC Educational Resources Information Center

    Galanter, Cathryn A.; Hundt, Stephanie R.; Goyal, Parag; Le, Jenna; Fisher, Prudence W.

    2012-01-01

    Objective: The "DSM-IV-TR "criteria for a manic episode and bipolar disorder (BD) were developed for adults but are used for children. The manner in which clinicians and researchers interpret these criteria may have contributed to the increase in BD diagnoses given to youth. Research interviews are designed to improve diagnostic reliability and…

  4. Polar cap arcs: Sun-aligned or cusp-aligned?

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Paxton, L. J.; Zhang, Qinghe; Xing, Zanyang

    2016-08-01

    Polar cap arcs are often called sun-aligned arcs. Satellite observations reveal that polar cap arcs join together at the cusp and are actually cusp aligned. Strong ionospheric plasma velocity shears, thus field aligned currents, were associated with polar arcs and they were likely caused by Kelvin-Helmholtz waves around the low-latitude magnetopause under a northward IMF Bz. The magnetic field lines around the magnetopause join together in the cusp region so are the field aligned currents and particle precipitation. This explains why polar arcs are cusp aligned.

  5. Alignment and alignment transition of bent core nematics

    NASA Astrophysics Data System (ADS)

    Elamain, Omaima; Hegde, Gurumurthy; Komitov, Lachezar

    2013-07-01

    We report on the alignment of nematics consisting of bimesogen bent core molecules of chlorine substituent of benzene derivative and their binary mixture with rod like nematics. It was found that the alignment layer made from polyimide material, which is usually used for promoting vertical (homeotropic) alignment of rod like nematics, promotes instead a planar alignment of the bent core nematic and its nematic mixtures. At higher concentration of the rod like nematic component in these mixtures, a temperature driven transition from vertical to planar alignment was found near the transition to isotropic phase.

  6. Alignment as a Teacher Variable

    ERIC Educational Resources Information Center

    Porter, Andrew C.; Smithson, John; Blank, Rolf; Zeidner, Timothy

    2007-01-01

    With the exception of the procedures developed by Porter and colleagues (Porter, 2002), other methods of defining and measuring alignment are essentially limited to alignment between tests and standards. Porter's procedures have been generalized to investigating the alignment between content standards, tests, textbooks, and even classroom…

  7. SURVEY INSTRUMENT

    DOEpatents

    Borkowski, C J

    1954-01-19

    This pulse-type survey instrument is suitable for readily detecting {alpha} particles in the presence of high {beta} and {gamma} backgrounds. The instruments may also be used to survey for neutrons, {beta} particles and {gamma} rays by employing suitably designed interchangeable probes and selecting an operating potential to correspond to the particular probe.

  8. Aligning Technology Education Teaching with Brain Development

    ERIC Educational Resources Information Center

    Katsioloudis, Petros

    2015-01-01

    This exploratory study was designed to determine if there is a level of alignment between technology education curriculum and theories of intellectual development. The researcher compared Epstein's Brain Growth Theory and Piaget's Status of Intellectual Development with technology education curriculum from Australia, England, and the United…

  9. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into NASA Programs Associated With the Human Exploration and Operations Mission Directorate

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Human Exploration and Operations Mission Directorate (HEOMD) programs. Other Government and commercial project managers can also find this information useful.

  10. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology into NASA Programs Associated with the Science Mission Directorate

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    This report is intended to help NASA program and project managers incorporate Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) technologies that have gone through Phase II of the SBIR program into NASA Science Mission Directorate (SMD) programs. Other Government and commercial project managers can also find this information useful.

  11. Postlaunch calibration of spacecraft attitude instruments

    NASA Technical Reports Server (NTRS)

    Davis, W.; Hashmall, J.; Garrick, J.; Harman, R.

    1993-01-01

    The accuracy of both onboard and ground attitude determination can be significantly enhanced by calibrating spacecraft attitude instruments (sensors) after launch. Although attitude sensors are accurately calibrated before launch, the stresses of launch and the space environment inevitably cause changes in sensor parameters. During the mission, these parameters may continue to drift requiring repeated on-orbit calibrations. The goal of attitude sensor calibration is to reduce the systematic errors in the measurement models. There are two stages at which systematic errors may enter. The first occurs in the conversion of sensor output into an observation vector in the sensor frame. The second occurs in the transformation of the vector from the sensor frame to the spacecraft attitude reference frame. This paper presents postlaunch alignment and transfer function calibration of the attitude sensors for the Compton Gamma Ray Observatory (GRO), the Upper Atmosphere Research Satellite (UARS), and the Extreme Ultraviolet Explorer (EUVE).

  12. Laboratory simulation of field-aligned currents

    NASA Technical Reports Server (NTRS)

    Wessel, Frank J.; Rostoker, Norman

    1993-01-01

    A summary of progress during the period Apr. 1992 to Mar. 1993 is provided. Objectives of the research are (1) to simulate, via laboratory experiments, the three terms of the field-aligned current equation; (2) to simulate auroral-arc formation processes by configuring the boundary conditions of the experimental chamber and plasma parameters to produce highly localized return currents at the end of a field-aligned current system; and (3) to extrapolate these results, using theoretical and computational techniques, to the problem of magnetospheric-ionospheric coupling and to compare them with published literature signatures of auroral-arc phenomena.

  13. Creation of an instrument to measure graduate student and postdoctoral mentoring abilities in engineering and science undergraduate research settings

    NASA Astrophysics Data System (ADS)

    Ahn, Benjamin

    Studies and national reports have shown numerous benefits for engineering and science undergraduate students who have successful research experiences. One of the most critical elements to having a successful undergraduate research (UR) experience is the interaction between a mentor and a UR student. Recent studies have shown that many UR students are mentored by graduate students or postdoctoral researchers, yet, there are very few studies examining the successful mentoring practices by these mentors and/or assessing their abilities in engineering and science UR settings. Therefore, the purpose of this study was (1) to identify instructively effective graduate students' and postdoc researchers' mentoring abilities in engineering and science UR settings, and (2) to develop a psychometrically sound survey that assesses these mentors' mentoring abilities in UR settings. In the first phase (Phase I) of the study, semi-structured interviews were conducted with one postdoctoral researcher and 16 graduate students from engineering and science departments at a Midwestern university who were recognized as outstanding mentors by their UR students. From Phase I, the study determined the mentors' effective mentoring practices across various UR students' research activities (e.g., performing a literature review, conducting experiments, analyzing data) along with important mentoring knowledge, skills, and attributes (KSAs). In the second phase (Phase II) of the study, survey items for assessing graduate and postdoctoral mentors' KSAs were generated based on the results from Phase I. The survey items were administered to 101 graduate students and postdoctoral researchers who had mentoring experiences in UR settings. An exploratory factor analysis and an item analysis resulted in the creation of a 30-item survey assessing the most desirable abilities for UR mentors categorized into four factors: (1) Building a positive working relationship with the UR students, (2) Recognizing the

  14. Target Assembly to Check Boresight Alignment of Active Sensors

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, Luis; Scott, V. Stanley; Riris, Haris; Cavanaugh, John; Liiva, Peter; Rodriguez, Michael

    2011-01-01

    A compact and portable target assembly (Fig. 1) has been developed to measure the boresite alignment of LRO's Lunar Orbiter Laser Altimeter (LOLA) instrument at the spacecraft level. The concept for this target assembly has evolved over many years with earlier versions used to test the Mars Observer Laser Altimeter (MOLA), the Geoscience Laser Altimeter System (GLAS), and the Mercury Laser Altimeter (MLA) space-based instruments.

  15. Photo-aligned ferroelectric liquid crystals in microchannels.

    PubMed

    Budaszewski, Daniel; Srivastava, Abhishek K; Tam, Alwin M W; Wolinski, Tomasz R; Chigrinov, Vladimir G; Kwok, Hoi-Sing

    2014-08-15

    In this Letter we disclose a method to realize a good alignment of ferroelectric liquid crystals (FLCs) in microchannels, based on photo-alignment. The sulfonic azo dye used in our research offers variable anchoring energy depending on the irradiation energy and thus provides good control on the FLC alignment in microchannels. The good FLC alignment has been observed only when anchoring energy normalized to the capillary diameter is less than the elastic energy of the FLC helix. The same approach can also be used for the different microstructures viz. photonic crystal fibers, microwaveguides, etc. which gives an opportunity for designing a photonic devices based on FLC. PMID:25121847

  16. Including health equity considerations in development of instruments for rheumatology research: an introduction to a novel OMERACT paradigm.

    PubMed

    O'Neill, Jennifer; Rader, Tamara; Guillemin, Francis; Boonen, Annelies; Christensen, Robin; Lyddiatt, Anne; Pardo, Jordi Pardo; Welch, Vivian; Singh, Jasvinder A; Tugwell, Peter

    2014-01-01

    The Outcome Measures in Rheumatology (OMERACT) Equity Special Interest Group (SIG) was established in 2008 to create a preliminary core set of outcome measures for clinical trials that can assess equity gaps in healthcare and the effectiveness of interventions to close or narrow gaps between advantaged and disadvantaged populations with musculoskeletal (MSK) conditions. At the OMERACT 11 meeting in 2012, the Equity SIG workshop focused on health assessment scales and their applicability for disadvantaged patients with MSK conditions. The intent was to determine whether the items and domains in 2 common questionnaires, the Health Assessment Questionnaire and the Medical Outcome Study Short Form-36 Survey, are appropriate for the activities and life experiences of certain disadvantaged populations, and whether completion of any of the scales would present a challenge to disadvantaged persons. To generate discussion, we considered the reading level of items in these questionnaires and whether they would be accessible to people with different levels of literacy. The group concluded that the choice of measurement instrument may contribute to "outcome measure-generated inequalities" because disadvantaged groups might have difficulty understanding some of the questions. The future work of the Equity SIG will explore the appropriateness of different measurement scales as they relate to inequities in arthritis as well as the risk of exacerbating disadvantages for patients with low literacy. PMID:24128775

  17. Development of the Test Of Astronomy STandards (TOAST) Assessment Instrument

    NASA Astrophysics Data System (ADS)

    Slater, Timothy F.; Slater, S. J.

    2008-05-01

    Considerable effort in the astronomy education research (AER) community over the past several years has focused on developing assessment tools in the form of multiple-choice conceptual diagnostics and content knowledge surveys. This has been critically important in advancing the AER discipline so that researchers could establish the initial knowledge state of students as well as to attempt measure some of the impacts of innovative instructional interventions. Unfortunately, few of the existing instruments were constructed upon a solid list of clearly articulated and widely agreed upon learning objectives. This was not done in oversight, but rather as a result of the relative youth of AER as a discipline. Now that several important science education reform documents exist and are generally accepted by the AER community, we are in a position to develop, validate, and disseminate a new assessment instrument which is tightly aligned to the consensus learning goals stated by the American Astronomical Society - Chair's Conference on ASTRO 101, the American Association of the Advancement of Science's Project 2061 Benchmarks, and the National Research Council's National Science Education Standards. In response, researchers from the Cognition in Astronomy, Physics and Earth sciences Research (CAPER) Team at the University of Wyoming's Science & Math Teaching Center (UWYO SMTC) have designed a criterion-referenced assessment tool, called the Test Of Astronomy STandards (TOAST). Through iterative development, this instrument has a high degree of reliability and validity for instructors and researchers needing information on students’ initial knowledge state at the beginning of a course and can be used, in aggregate, to help measure the impact of course-length duration instructional strategies for courses with learning goals tightly aligned to the consensus goals of our community.

  18. Teacher Education, Experience, and the Practice of Aligned Instruction

    ERIC Educational Resources Information Center

    Polikoff, Morgan S.

    2013-01-01

    Research over the past two decades has shown the alignment of teachers’ instruction with state standards is generally weak. Proposing that alignment is a useful measure of teachers' curricular knowledge (Shulman, 1986), this study uses a large database of teacher reports of their content coverage to understand the relationship of teacher…

  19. Curriculum Alignment: Exploring Student Perception of Learning Achievement Measures

    ERIC Educational Resources Information Center

    Kuhn, Kerri-Ann L.; Rundle-Thiele, Sharyn R.

    2009-01-01

    The importance of constructively aligned curriculum is well understood in higher education. Based on the principles of constructive alignment, this research considers whether student perception of learning achievement measures can be used to gain insights into how course activities and pedagogy are assisting or hindering students in accomplishing…

  20. Parameterized BLOSUM Matrices for Protein Alignment.

    PubMed

    Song, Dandan; Chen, Jiaxing; Chen, Guang; Li, Ning; Li, Jin; Fan, Jun; Bu, Dongbo; Li, Shuai Cheng

    2015-01-01

    Protein alignment is a basic step for many molecular biology researches. The BLOSUM matrices, especially BLOSUM62, are the de facto standard matrices for protein alignments. However, after widely utilization of the matrices for 15 years, programming errors were surprisingly found in the initial version of source codes for their generation. And amazingly, after bug correction, the "intended" BLOSUM62 matrix performs consistently worse than the "miscalculated" one. In this paper, we find linear relationships among the eigenvalues of the matrices and propose an algorithm to find optimal unified eigenvectors. With them, we can parameterize matrix BLOSUMx for any given variable x that could change continuously. We compare the effectiveness of our parameterized isentropic matrix with BLOSUM62. Furthermore, an iterative alignment and matrix selection process is proposed to adaptively find the best parameter and globally align two sequences. Experiments are conducted on aligning 13,667 families of Pfam database and on clustering MHC II protein sequences, whose improved accuracy demonstrates the effectiveness of our proposed method. PMID:26357279

  1. TSGC and JSC Alignment

    NASA Technical Reports Server (NTRS)

    Sanchez, Humberto

    2013-01-01

    NASA and the SGCs are, by design, intended to work closely together and have synergistic Vision, Mission, and Goals. The TSGC affiliates and JSC have been working together, but not always in a concise, coordinated, nor strategic manner. Today we have a couple of simple ideas to present about how TSGC and JSC have started to work together in a more concise, coordinated, and strategic manner, and how JSC and non-TSG Jurisdiction members have started to collaborate: Idea I: TSGC and JSC Technical Alignment Idea II: Concept of Clusters.

  2. Robust algorithm for aligning two-dimensional chromatograms.

    PubMed

    Gros, Jonas; Nabi, Deedar; Dimitriou-Christidis, Petros; Rutler, Rebecca; Arey, J Samuel

    2012-11-01

    Comprehensive two-dimensional gas chromatography (GC × GC) chromatograms typically exhibit run-to-run retention time variability. Chromatogram alignment is often a desirable step prior to further analysis of the data, for example, in studies of environmental forensics or weathering of complex mixtures. We present a new algorithm for aligning whole GC × GC chromatograms. This technique is based on alignment points that have locations indicated by the user both in a target chromatogram and in a reference chromatogram. We applied the algorithm to two sets of samples. First, we aligned the chromatograms of twelve compositionally distinct oil spill samples, all analyzed using the same instrument parameters. Second, we applied the algorithm to two compositionally distinct wastewater extracts analyzed using two different instrument temperature programs, thus involving larger retention time shifts than the first sample set. For both sample sets, the new algorithm performed favorably compared to two other available alignment algorithms: that of Pierce, K. M.; Wood, Lianna F.; Wright, B. W.; Synovec, R. E. Anal. Chem.2005, 77, 7735-7743 and 2-D COW from Zhang, D.; Huang, X.; Regnier, F. E.; Zhang, M. Anal. Chem.2008, 80, 2664-2671. The new algorithm achieves the best matches of retention times for test analytes, avoids some artifacts which result from the other alignment algorithms, and incurs the least modification of quantitative signal information. PMID:23082816

  3. The School-Wide Evaluation Tool (SET): A Research Instrument for Assessing School-Wide Positive Behavior Support

    ERIC Educational Resources Information Center

    Horner, Robert H.; Todd, Anne W.; Lewis-Palmer, Teri; Irvin, Larry K.; Sugai, George; Boland, Joseph B.

    2004-01-01

    Schools throughout the country are now encouraged to implement school-wide positive behavior support (PBS) procedures as a way to improve their behavioral climate, safety, and social culture. Research is needed to determine (a) the extent to which schools already use school-wide PBS, (b) if training and technical assistance efforts result in…

  4. The High Energy Density science instrument at the European XFEL, Hamburg, Germany: a new platform for shock compression research

    NASA Astrophysics Data System (ADS)

    Appel, Karen; Nakatsutsumi, Motoaki; Priebe, Gerd; Pelka, Alexander; Thorpe, Ian; Tschentscher, Thomas

    2015-06-01

    The High Energy Density science instrument (HED) at the European XFEL, Hamburg, Germany will provide unique experimental possibilities for the investigation of near solid material driven to extreme states and will also establish a new platform to study materials response to shock compression. HED is located at the SASE2 undulator, which provides up to 27000 pulses per second with about 1012 photons per pulse, photon energies between 3 and 24 keV and pulse lengths of 2 - 100 fs. Self-seeding is foreseen, as well as natural bandwidth (BW) SASE radiation. In addition, energy BW of 10-4 and 10-6 will be available through monochromators. Focussing is based on CRL optics, which will allow to provide beam sizes of 2 μm, 10-20 μm and 150 - 260 μm at the sample position. Samples will be driven to extreme states by different types of optical lasers (either 200 kHz/3 mJ/15 fs, 10 Hz/100 TW/30 fs or 10 Hz/100J/ns), the pump-probe FEL beam (delays of up to 2 -23 ps for 5 -20 keV using a split-and-delay unit) and pulsed magnetic fields (up to 50 T). Pump probe experiments can be performed at adapted repetition rates (4.5 MHz, 1 - 10 Hz, single shot). X-ray techniques comprise diffraction, imaging and spectroscopic methods. User operation is planned for fall 2017. We will present the science case of HED, the current layout and present ideas on first shock compression experiments.

  5. Instrumentation '79.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Surveys the state of commerical development of analytical instrumentation as reflected by the Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy. Includes optical spectroscopy, liquid chromatography, magnetic spectrometers, and x-ray. (Author/MA)

  6. Ocean Observation Instrument

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Airborne Ocean Color Imager (AOCI) was developed by Daedalus Enterprises, Inc. for Ames Research Center under a Small Business Innovation Research (SBIR) contract as a simulator for an advanced oceanographic satellite instrument. The instrument measures water temperature and detects water color in nine wavelengths. Water color indicates chlorophyll content or phytoplankton. After EOCAP assistance and technical improvements, the AOCI was successfully commercialized by Daedalus Enterprises, Inc. One version provides commercial fishing fleets with information about fish locations, and the other is used for oceanographic research.

  7. Information Technology (IT) Strategic Alignment: A Correlational Study between the Impact of IT Governance Structures and IT Strategic Alignment

    ERIC Educational Resources Information Center

    Asante, Keith K.

    2010-01-01

    This dissertation explored the extent to which Information Technology (IT) strategic alignment are impacted by IT governance structures. The study discusses several strategic alignment and IT governance literature that presents a gap in the literature domain. Subsequent studies researched issues surrounding why organizations are not able to align…

  8. Astronomical instruments.

    NASA Astrophysics Data System (ADS)

    Rai, R. N.

    Indian astronomers have devised a number of instruments and the most important of these is the armillary sphere. The earliest armillary spheres were very simple instruments. Ptolemy in his Almagest enumerates at least three. The simplest of all was the equinoctial armilla. They had also the solstitial armilla which was a double ring, erected in the plane of the meridian with a rotating inner circle. This was used to measure the solar altitude.

  9. Oceanographic Instrument

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Developed under NASA contract, the Fast Repetition Rate (FRR) fluorometer is a computer-controlled instrument for measuring the fluorescence of phytoplankton, microscopic plant forms that provide sustenance for animal life in the oceans. The fluorometer sensor is towed by ship through the water and the resulting printouts are compared with satellite data. The instrument is non-destructive and can be used in situ, providing scientific information on ocean activity and productivity.

  10. Conditional alignment random fields for multiple motion sequence alignment.

    PubMed

    Kim, Minyoung

    2013-11-01

    We consider the multiple time-series alignment problem, typically focusing on the task of synchronizing multiple motion videos of the same kind of human activity. Finding an optimal global alignment of multiple sequences is infeasible, while there have been several approximate solutions, including iterative pairwise warping algorithms and variants of hidden Markov models. In this paper, we propose a novel probabilistic model that represents the conditional densities of the latent target sequences which are aligned with the given observed sequences through the hidden alignment variables. By imposing certain constraints on the target sequences at the learning stage, we have a sensible model for multiple alignments that can be learned very efficiently by the EM algorithm. Compared to existing methods, our approach yields more accurate alignment while being more robust to local optima and initial configurations. We demonstrate its efficacy on both synthetic and real-world motion videos including facial emotions and human activities. PMID:24051737

  11. Analytical Instrument Obsolescence Examined.

    ERIC Educational Resources Information Center

    Haggin, Joseph

    1982-01-01

    The threat of instrument obsolescence and tight federal budgets have conspired to threaten the existence of research analytical laboratories. Despite these and other handicaps most existing laboratories expect to keep operating in support of basic research, though there may be serious penalties in the future unless funds are forthcoming. (Author)

  12. Microgravity science and applications overview - Research, facility and instrumentation development, Space Station Freedom operations and utilization planning

    NASA Technical Reports Server (NTRS)

    Kicza, M. E.

    1990-01-01

    An overview is provided of NASA's Microgravity Science and Applications Program, with emphasis on plans for evolution to the Space Station. The Microgravity Science and Applications Division program consists of two major parts including the ground-based research program and the flight program. Transition to flight experiment status may occur only after the ground-based research and testing demonstrates sufficient technical maturity to assure that scientific objectives can be met in space with a high degree of success. Program strategy calls for a transition to the Space Station Freedom before the end of the century. In this connection, six multi-user facilities are planned to be phased into operation aboard the Space Station over an extended time frame. It is projected that the design of these facilities will evolve based on experience with precursor experiment hardware designed and operated on Skylab and other carriers.

  13. Using automatic alignment to analyze endangered language data: testing the viability of untrained alignment.

    PubMed

    DiCanio, Christian; Nam, Hosung; Whalen, Douglas H; Bunnell, H Timothy; Amith, Jonathan D; García, Rey Castillo

    2013-09-01

    While efforts to document endangered languages have steadily increased, the phonetic analysis of endangered language data remains a challenge. The transcription of large documentation corpora is, by itself, a tremendous feat. Yet, the process of segmentation remains a bottleneck for research with data of this kind. This paper examines whether a speech processing tool, forced alignment, can facilitate the segmentation task for small data sets, even when the target language differs from the training language. The authors also examined whether a phone set with contextualization outperforms a more general one. The accuracy of two forced aligners trained on English (hmalign and p2fa) was assessed using corpus data from Yoloxóchitl Mixtec. Overall, agreement performance was relatively good, with accuracy at 70.9% within 30 ms for hmalign and 65.7% within 30 ms for p2fa. Segmental and tonal categories influenced accuracy as well. For instance, additional stop allophones in hmalign's phone set aided alignment accuracy. Agreement differences between aligners also corresponded closely with the types of data on which the aligners were trained. Overall, using existing alignment systems was found to have potential for making phonetic analysis of small corpora more efficient, with more allophonic phone sets providing better agreement than general ones. PMID:23967953

  14. Cosmological information in the intrinsic alignments of luminous red galaxies

    SciTech Connect

    Chisari, Nora Elisa; Dvorkin, Cora E-mail: cdvorkin@ias.edu

    2013-12-01

    The intrinsic alignments of galaxies are usually regarded as a contaminant to weak gravitational lensing observables. The alignment of Luminous Red Galaxies, detected unambiguously in observations from the Sloan Digital Sky Survey, can be reproduced by the linear tidal alignment model of Catelan, Kamionkowski and Blandford (2001) on large scales. In this work, we explore the cosmological information encoded in the intrinsic alignments of red galaxies. We make forecasts for the ability of current and future spectroscopic surveys to constrain local primordial non-Gaussianity and Baryon Acoustic Oscillations (BAO) in the cross-correlation function of intrinsic alignments and the galaxy density field. For the Baryon Oscillation Spectroscopic Survey, we find that the BAO signal in the intrinsic alignments is marginally significant with a signal-to-noise ratio of 1.8 and 2.2 with the current LOWZ and CMASS samples of galaxies, respectively, and increasing to 2.3 and 2.7 once the survey is completed. For the Dark Energy Spectroscopic Instrument and for a spectroscopic survey following the EUCLID redshift selection function, we find signal-to-noise ratios of 12 and 15, respectively. Local type primordial non-Gaussianity, parametrized by f{sub NL} = 10, is only marginally significant in the intrinsic alignments signal with signal-to-noise ratios < 2 for the three surveys considered.

  15. Cosmological information in the intrinsic alignments of luminous red galaxies

    NASA Astrophysics Data System (ADS)

    Chisari, Nora Elisa; Dvorkin, Cora

    2013-12-01

    The intrinsic alignments of galaxies are usually regarded as a contaminant to weak gravitational lensing observables. The alignment of Luminous Red Galaxies, detected unambiguously in observations from the Sloan Digital Sky Survey, can be reproduced by the linear tidal alignment model of Catelan, Kamionkowski & Blandford (2001) on large scales. In this work, we explore the cosmological information encoded in the intrinsic alignments of red galaxies. We make forecasts for the ability of current and future spectroscopic surveys to constrain local primordial non-Gaussianity and Baryon Acoustic Oscillations (BAO) in the cross-correlation function of intrinsic alignments and the galaxy density field. For the Baryon Oscillation Spectroscopic Survey, we find that the BAO signal in the intrinsic alignments is marginally significant with a signal-to-noise ratio of 1.8 and 2.2 with the current LOWZ and CMASS samples of galaxies, respectively, and increasing to 2.3 and 2.7 once the survey is completed. For the Dark Energy Spectroscopic Instrument and for a spectroscopic survey following the EUCLID redshift selection function, we find signal-to-noise ratios of 12 and 15, respectively. Local type primordial non-Gaussianity, parametrized by fNL = 10, is only marginally significant in the intrinsic alignments signal with signal-to-noise ratios < 2 for the three surveys considered.

  16. The cup anemometer, a fundamental meteorological instrument for the wind energy industry. Research at the IDR/UPM Institute.

    PubMed

    Pindado, Santiago; Cubas, Javier; Sorribes-Palmer, Félix

    2014-01-01

    The results of several research campaigns investigating cup anemometer performance carried out since 2008 at the IDR/UPM Institute are included in the present paper. Several analysis of large series of calibrations were done by studying the effect of the rotor's geometry, climatic conditions during calibration, and anemometers' ageing. More specific testing campaigns were done regarding the cup anemometer rotor aerodynamics, and the anemometer signals. The effect of the rotor's geometry on the cup anemometer transfer function has been investigated experimentally and analytically. The analysis of the anemometer's output signal as a way of monitoring the anemometer status is revealed as a promising procedure for detecting anomalies. PMID:25397921

  17. The Cup Anemometer, a Fundamental Meteorological Instrument for the Wind Energy Industry. Research at the IDR/UPM Institute

    PubMed Central

    Pindado, Santiago; Cubas, Javier; Sorribes-Palmer, Félix

    2014-01-01

    The results of several research campaigns investigating cup anemometer performance carried out since 2008 at the IDR/UPM Institute are included in the present paper. Several analysis of large series of calibrations were done by studying the effect of the rotor's geometry, climatic conditions during calibration, and anemometers' ageing. More specific testing campaigns were done regarding the cup anemometer rotor aerodynamics, and the anemometer signals. The effect of the rotor's geometry on the cup anemometer transfer function has been investigated experimentally and analytically. The analysis of the anemometer's output signal as a way of monitoring the anemometer status is revealed as a promising procedure for detecting anomalies. PMID:25397921

  18. Fourier transform interferometer alignment method.

    PubMed

    Goldberg, Kenneth A; Naulleau, Patrick; Bokor, Jeffrey

    2002-08-01

    A rapid and convenient method has been developed to facilitate the alignment of the image-plane components of point-diffraction interferometers, including the phase-shifting point-diffraction interferometer. In real time, the Fourier transform of the detected image is used to calculate a pseudoimage of the electric field in the image plane of the test optic where thecritical alignment o f variousoptical components is performed. Reconstruction of the pseudoimage is similar to off-axis, Fourier transform holography. Intermediate steps in the alignment procedure are described. Fine alignment is aided by the introduction and optimization of a global-contrast parameter that is easily calculated from the Fourier transform. Additional applications include the alignment of image-plane apertures in general optical systems, the rapid identification of patterned image-plane alignment marks, and the probing of important image-plane field properties. PMID:12153074

  19. Onorbit IMU alignment error budget

    NASA Technical Reports Server (NTRS)

    Corson, R. W.

    1980-01-01

    The Star Tracker, Crew Optical Alignment Sight (COAS), and Inertial Measurement Unit (IMU) from a complex navigation system with a multitude of error sources were combined. A complete list of the system errors is presented. The errors were combined in a rational way to yield an estimate of the IMU alignment accuracy for STS-1. The expected standard deviation in the IMU alignment error for STS-1 type alignments was determined to be 72 arc seconds per axis for star tracker alignments and 188 arc seconds per axis for COAS alignments. These estimates are based on current knowledge of the star tracker, COAS, IMU, and navigation base error specifications, and were partially verified by preliminary Monte Carlo analysis.

  20. Nuclear reactor internals alignment configuration

    DOEpatents

    Gilmore, Charles B.; Singleton, Norman R.

    2009-11-10

    An alignment system that employs jacking block assemblies and alignment posts around the periphery of the top plate of a nuclear reactor lower internals core shroud to align an upper core plate with the lower internals and the core shroud with the core barrel. The distal ends of the alignment posts are chamfered and are closely received within notches machined in the upper core plate at spaced locations around the outer circumference of the upper core plate. The jacking block assemblies are used to center the core shroud in the core barrel and the alignment posts assure the proper orientation of the upper core plate. The alignment posts may alternately be formed in the upper core plate and the notches may be formed in top plate.

  1. Toolkit for Evaluating Alignment of Instructional and Assessment Materials to the Common Core State Standards

    ERIC Educational Resources Information Center

    Achieve, Inc., 2014

    2014-01-01

    In joint partnership, Achieve, The Council of Chief State School Officers, and Student Achievement Partners have developed a Toolkit for Evaluating the Alignment of Instructional and Assessment Materials to the Common Core State Standards (CCSS). The Toolkit is a set of interrelated, freely available instruments for evaluating alignment to the…

  2. Toolkit for Evaluating Alignment of Instructional and Assessment Materials to the Common Core State Standards

    ERIC Educational Resources Information Center

    Achieve, Inc., 2014

    2014-01-01

    In joint partnership, Achieve, The Council of Chief State School Officers, and Student Achievement Partners have developed a Toolkit for Evaluating the Alignment of Instructional and Assessment Materials to the Common Core State Standards. The Toolkit is a set of interrelated, freely available instruments for evaluating alignment to the CCSS; each…

  3. A breast cancer clinical registry in an Italian comprehensive cancer center: an instrument for descriptive, clinical, and experimental research.

    PubMed

    Baili, Paolo; Torresani, Michele; Agresti, Roberto; Rosito, Giuseppe; Daidone, Maria Grazia; Veneroni, Silvia; Cavallo, Ilaria; Funaro, Francesco; Giunco, Marco; Turco, Alberto; Amash, Hade; Scavo, Antonio; Minicozzi, Pamela; Bella, Francesca; Meneghini, Elisabetta; Sant, Milena

    2015-01-01

    In clinical research, many potentially useful variables are available via the routine activity of cancer center-based clinical registries (CCCR). We present the experience of the breast cancer clinical registry at Fondazione IRCCS "Istituto Nazionale dei Tumori" to give an example of how a CCCR can be planned, implemented, and used. Five criteria were taken into consideration while planning our CCCR: (a) available clinical and administrative databases ought to be exploited to the maximum extent; (b) open source software should be used; (c) a Web-based interface must be designed; (d) CCCR data must be compatible with population-based cancer registry data; (e) CCCR must be an open system, able to be connected with other data repositories. The amount of work needed for the implementation of a CCCR is inversely linked with the amount of available coded data: the fewer data are available in the input databases as coded variables, the more work will be necessary, for information technology staff, text mining analysis, and registrars (for collecting data from clinical records). A cancer registry in a comprehensive cancer center can be used for several research aspects, such as estimate of the number of cases needed for clinical studies, assessment of biobank specimens with specific characteristics, evaluation of clinical practice and adhesion to clinical guidelines, comparative studies between clinical and population sets of patients, studies on cancer prognosis, and studies on cancer survivorship. PMID:25953447

  4. Instrument for measuring the misalignments of ocular surfaces

    NASA Astrophysics Data System (ADS)

    Tabernero, Juan; Benito, Antonio; Nourrit, Vincent; Artal, Pablo

    2006-10-01

    A compact and robust instrument for measuring the alignment of ocular surfaces has been designed and used in living eyes. It is based on recording Purkinje images (reflections of light at the ocular surfaces) at nine different angular fixations. A complete analysis on the causes of misalignments of Purkinje images and its relations with those physical variables to be measured (global eye tilt, lens decentration and lens tilt) is presented. A research prototype based on these ideas was built and tested in normal and pseudophakic eyes (after cataract surgery). The new analysis techniques, together with the semicircular extended source and multiple fixation tests that we used, are significant improvements towards a robust approach to measuring the misalignments of the ocular surfaces in vivo. This instrument will be of use in both basic studies of the eye’s optics and clinical ophthalmology.

  5. Aligned Defrosting Dunes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    17 August 2004 This July 2004 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a group of aligned barchan sand dunes in the martian north polar region. At the time, the dunes were covered with seasonal frost, but the frost had begun to sublime away, leaving dark spots and dark outlines around the dunes. The surrounding plains exhibit small, diffuse spots that are also the result of subliming seasonal frost. This northern spring image, acquired on a descending ground track (as MGS was moving north to south on the 'night' side of Mars) is located near 78.8oN, 34.8oW. The image covers an area about 3 km (1.9 mi) across and sunlight illuminates the scene from the upper left.

  6. Alignment system for encoders

    NASA Technical Reports Server (NTRS)

    Villani, Daniel D. (Inventor)

    1988-01-01

    An improved encoder alignment system is disclosed which provides an indication of the extent of misalignment and a measure of the rate at which the misalignment may be changing. The invention is adapted for use with a conventional encoder which provides a digital coarse word having at least significant bit and a digital fine word having a least significant bit and a most significant bit. The invention generates the exclusive or of the least significant bit of the coarse digital signal and the least significant bit of the fine digital signal to provide a first signal. The invention then generates the exclusive or of the first signal and the complement of the most significant bit of the fine digital signal to provide an output signal which represents the misalignment of the encoder.

  7. Performance of the vertical optical filter for the NG-3 30 m SANS instrument at the National Institute of Standards and Technology's Center for Neutron Research

    SciTech Connect

    Cook, Jeremy C.; Glinka, Charles J.; Schroeder, Ivan G.

    2005-02-01

    The straight neutron guide and crystal filter formerly used to supply a cold neutron beam to the NG-3 30 m small angle scattering instrument at the National Institute of Standards and Technology Center for Neutron Research has been replaced by a vertically-kinked 'optical filter' neutron guide that eliminates direct lines-of-sight between the instrument and the neutron source. Due to pre-existing lateral spatial constraints, the optical filter bend is in a vertical plane requiring a vertical displacement of the sample-detector axis by about 14 cm. The optical filter is successful in excluding unwanted fast neutrons and gamma rays from the beam at the sample position without the use of crystal filters. We show that the optical filter provides neutron current density gains at the sample by a factor of about 1.8 at 15 A neutron wavelength with negligible increase in the beam divergence, whilst allowing some measurement capability at wavelengths shorter than 4 A (previously excluded by the beryllium-bismuth crystal filter)

  8. Lunar Alignments - Identification and Analysis

    NASA Astrophysics Data System (ADS)

    González-García, A. César

    Lunar alignments are difficult to establish given the apparent lack of written accounts clearly pointing toward lunar alignments for individual temples. While some individual cases are reviewed and highlighted, the weight of the proof must fall on statistical sampling. Some definitions for the lunar alignments are provided in order to clarify the targets, and thus, some new tools are provided to try to test the lunar hypothesis in several cases, especially in megalithic astronomy.

  9. CSA: An efficient algorithm to improve circular DNA multiple alignment

    PubMed Central

    Fernandes, Francisco; Pereira, Luísa; Freitas, Ana T

    2009-01-01

    Background The comparison of homologous sequences from different species is an essential approach to reconstruct the evolutionary history of species and of the genes they harbour in their genomes. Several complete mitochondrial and nuclear genomes are now available, increasing the importance of using multiple sequence alignment algorithms in comparative genomics. MtDNA has long been used in phylogenetic analysis and errors in the alignments can lead to errors in the interpretation of evolutionary information. Although a large number of multiple sequence alignment algorithms have been proposed to date, they all deal with linear DNA and cannot handle directly circular DNA. Researchers interested in aligning circular DNA sequences must first rotate them to the "right" place using an essentially manual process, before they can use multiple sequence alignment tools. Results In this paper we propose an efficient algorithm that identifies the most interesting region to cut circular genomes in order to improve phylogenetic analysis when using standard multiple sequence alignment algorithms. This algorithm identifies the largest chain of non-repeated longest subsequences common to a set of circular mitochondrial DNA sequences. All the sequences are then rotated and made linear for multiple alignment purposes. To evaluate the effectiveness of this new tool, three different sets of mitochondrial DNA sequences were considered. Other tests considering randomly rotated sequences were also performed. The software package Arlequin was used to evaluate the standard genetic measures of the alignments obtained with and without the use of the CSA algorithm with two well known multiple alignment algorithms, the CLUSTALW and the MAVID tools, and also the visualization tool SinicView. Conclusion The results show that a circularization and rotation pre-processing step significantly improves the efficiency of public available multiple sequence alignment algorithms when used in the

  10. Gold Alignment and Internal Dissipation

    NASA Astrophysics Data System (ADS)

    Lazarian, A.

    1997-07-01

    The measures of mechanical alignment are obtained for both prolate and oblate grains whose temperatures are comparable to the grain kinetic energy divided by k, the Boltzmann constant. For such grains, the alignment of angular momentum, J, with the axis of maximal inertia, a, is only partial, which substantially alters the mechanical alignment as compared with the results obtained by Lazarian and Roberge, Hanany, & Messinger under the assumption of perfect alignment. We also describe Gold alignment when the Barnett dissipation is suppressed and derive an analytical expression that relates the measure of alignment to the parameters of grain nonsphericity and the direction of the gas-grain drift. This solution provides the lower limit for the measure of alignment, while the upper limit is given by the method derived by Lazarian. Using the results of a recent study of incomplete internal relaxation by Lazarian & Roberge, we find measures of alignment for the whole range of ratios of grain rotational energy to kTs, where Ts is the grain temperature. To describe alignment for mildly supersonic drifts, we suggest an analytical approach that provides good correspondence with the results of direct numerical simulations by Roberge, Hanany, & Messinger. We also extend our approach to account for simultaneous action of the Gold and Davis-Greenstein mechanisms.

  11. Instrumented SSH

    SciTech Connect

    Campbell, Scott; Campbell, Scott

    2009-05-27

    NERSC recently undertook a project to access and analyze Secure Shell (SSH) related data. This includes authentication data such as user names and key fingerprints, interactive session data such as keystrokes and responses, and information about noninteractive sessions such as commands executed and files transferred. Historically, this data has been inaccessible with traditional network monitoring techniques, but with a modification to the SSH daemon, this data can be passed directly to intrusion detection systems for analysis. The instrumented version of SSH is now running on all NERSC production systems. This paper describes the project, details about how SSH was instrumented, and the initial results of putting this in production.

  12. Geoscience instrumentation

    NASA Technical Reports Server (NTRS)

    Wolff, E. A. (Editor); Mercanti, E. P.

    1974-01-01

    Geoscience instrumentation systems are considered along with questions of geoscience environment, signal processing, data processing, and design problems. Instrument platforms are examined, taking into account ground platforms, airborne platforms, ocean platforms, and space platforms. In situ and laboratory sensors described include acoustic wave sensors, age sensors, atmospheric constituent sensors, biological sensors, cloud particle sensors, electric field sensors, electromagnetic field sensors, precision geodetic sensors, gravity sensors, ground constituent sensors, horizon sensors, humidity sensors, ion and electron sensors, magnetic field sensors, tide sensors, and wind sensors. Remote sensors are discussed, giving attention to sensing techniques, acoustic echo-sounders, gamma ray sensors, optical sensors, radar sensors, and microwave radiometric sensors.

  13. French registry of workers handling engineered nanomaterials as an instrument of integrated system for surveillance and research

    NASA Astrophysics Data System (ADS)

    Guseva Canu, I.; Boutou-Kempf, O.; Delabre, L.; Ducamp, S.; Iwatsubo, Y.; Marchand, J. L.; Imbernon, E.

    2013-04-01

    Despite the lack of data on the human health potential risks related to the engineered nanomaterials (ENM) exposure, ENM handling spreads in industry. The French government officially charged the InVS to develop an epidemiological surveillance of workers occupationally exposed to ENM. An initial surveillance plan was proposed on the basis of literature review and discussions with national and international ENM and occupational safety and health (OSH) experts. In site investigations and technical visits were then carried out to build an adequate surveillance system and to assess its feasibility. The current plan consists of a multi-step methodology where exposure registry construction is paramount. Workers potentially exposed to carbon nanotubes (CNT) or nanometric titanium dioxide (TiO2) will be identified using a 3-level approach: 1-identification and selection of companies concerned with ENM exposure (based on compulsory declaration and questionnaires), 2-in site exposure assessment and identification of the jobs/tasks with ENM exposure (based on job-expose matrix, further supplemented with measurements), and 3-identification of workers concerned. Data of interest will be collected by questionnaire. Companies and workers inclusion questionnaires are designed and currently under validation. This registration is at the moment planned for three years but could be extended and include other ENM. A prospective cohort study will be established from this registry, to pursue surveillance objectives and serve as an infrastructure for performing epidemiological and panel studies with specific research objectives.

  14. Well surveying instrument sensor

    SciTech Connect

    Poquette, R.S.

    1981-01-20

    A surveying instrument sensor which includes a gimbal supported for rotation within a casing, a torquer coupled to rotate the gimbal with a first two-axis flexure suspended gyro supported on the gimbal with its spin axis perpendicular to the axis of the gimbal and one of its sensitive axes aligned with the axis of the gimbal, a second two-axis flexure suspended gyro disposed on the gimbal with its spin axis alinged with the axis of the gimbal and having two sensitive axes outputs orthogonal thereto. The output of the first gyro is coupled to the torquer to form a gimbal stabilized loop and the outputs and torquing inputs of the second gimbal coupled into rate capture loops with output signals obtained from the rate captured loops permitting fast and accurate surveying of a well pipe.

  15. Cardiovascular instrumentation for spaceflight

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Polhemus, J. T.; Ganiaris, N. J.

    1976-01-01

    The observation mechanisms dealing with pressure, flow, morphology, temperature, etc. are discussed. The approach taken in the performance of this study was to (1) review ground and space-flight data on cardiovascular function, including earlier related ground-based and space-flight animal studies, Mercury, Gemini, Apollo, Skylab, and recent bed-rest studies, (2) review cardiovascular measurement parameters required to assess individual performance and physiological alternations during space flight, (3) perform an instrumentation survey including a literature search as well as personal contact with the applicable investigators, (4) assess instrumentation applicability with respect to the established criteria, and (5) recommend future research and development activity. It is concluded that, for the most part, the required instrumentation technology is available but that mission-peculiar criteria will require modifications to adapt the applicable instrumentation to a space-flight configuration.

  16. Empirical studies on informal patient payments for health care services: a systematic and critical review of research methods and instruments

    PubMed Central

    2010-01-01

    Background Empirical evidence demonstrates that informal patient payments are an important feature of many health care systems. However, the study of these payments is a challenging task because of their potentially illegal and sensitive nature. The aim of this paper is to provide a systematic review and analysis of key methodological difficulties in measuring informal patient payments. Methods The systematic review was based on the following eligibility criteria: English language publications that reported on empirical studies measuring informal patient payments. There were no limitations with regard to the year of publication. The content of the publications was analysed qualitatively and the results were organised in the form of tables. Data sources were Econlit, Econpapers, Medline, PubMed, ScienceDirect, SocINDEX. Results Informal payments for health care services are most often investigated in studies involving patients or the general public, but providers and officials are also sample units in some studies. The majority of the studies apply a single mode of data collection that involves either face-to-face interviews or group discussions. One of the main methodological difficulties reported in the publication concerns the inability of some respondents to distinguish between official and unofficial payments. Another complication is associated with the refusal of some respondents to answer questions on informal patient payments. We do not exclude the possibility that we have missed studies that reported in non-English language journals as well as very recent studies that are not yet published. Conclusions Given the recent evidence from research on survey methods, a self-administrated questionnaire during a face-to-face interview could be a suitable mode of collecting sensitive data, such as data on informal patient payments. PMID:20849658

  17. Image correlation method for DNA sequence alignment.

    PubMed

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment. PMID:22761742

  18. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  19. Automated stereo vision instrument tracking for intraoperative OCT guided anterior segment ophthalmic surgical maneuvers

    PubMed Central

    El-Haddad, Mohamed T.; Tao, Yuankai K.

    2015-01-01

    Microscope-integrated intraoperative OCT (iOCT) enables imaging of tissue cross-sections concurrent with ophthalmic surgical maneuvers. However, limited acquisition rates and complex three-dimensional visualization methods preclude real-time surgical guidance using iOCT. We present an automated stereo vision surgical instrument tracking system integrated with a prototype iOCT system. We demonstrate, for the first time, automatically tracked video-rate cross-sectional iOCT imaging of instrument-tissue interactions during ophthalmic surgical maneuvers. The iOCT scan-field is automatically centered on the surgical instrument tip, ensuring continuous visualization of instrument positions relative to the underlying tissue over a 2500 mm2 field with sub-millimeter positional resolution and <1° angular resolution. Automated instrument tracking has the added advantage of providing feedback on surgical dynamics during precision tissue manipulations because it makes it possible to use only two cross-sectional iOCT images, aligned parallel and perpendicular to the surgical instrument, which also reduces both system complexity and data throughput requirements. Our current implementation is suitable for anterior segment surgery. Further system modifications are proposed for applications in posterior segment surgery. Finally, the instrument tracking system described is modular and system agnostic, making it compatible with different commercial and research OCT and surgical microscopy systems and surgical instrumentations. These advances address critical barriers to the development of iOCT-guided surgical maneuvers and may also be translatable to applications in microsurgery outside of ophthalmology. PMID:26309764

  20. Automated stereo vision instrument tracking for intraoperative OCT guided anterior segment ophthalmic surgical maneuvers.

    PubMed

    El-Haddad, Mohamed T; Tao, Yuankai K

    2015-08-01

    Microscope-integrated intraoperative OCT (iOCT) enables imaging of tissue cross-sections concurrent with ophthalmic surgical maneuvers. However, limited acquisition rates and complex three-dimensional visualization methods preclude real-time surgical guidance using iOCT. We present an automated stereo vision surgical instrument tracking system integrated with a prototype iOCT system. We demonstrate, for the first time, automatically tracked video-rate cross-sectional iOCT imaging of instrument-tissue interactions during ophthalmic surgical maneuvers. The iOCT scan-field is automatically centered on the surgical instrument tip, ensuring continuous visualization of instrument positions relative to the underlying tissue over a 2500 mm(2) field with sub-millimeter positional resolution and <1° angular resolution. Automated instrument tracking has the added advantage of providing feedback on surgical dynamics during precision tissue manipulations because it makes it possible to use only two cross-sectional iOCT images, aligned parallel and perpendicular to the surgical instrument, which also reduces both system complexity and data throughput requirements. Our current implementation is suitable for anterior segment surgery. Further system modifications are proposed for applications in posterior segment surgery. Finally, the instrument tracking system described is modular and system agnostic, making it compatible with different commercial and research OCT and surgical microscopy systems and surgical instrumentations. These advances address critical barriers to the development of iOCT-guided surgical maneuvers and may also be translatable to applications in microsurgery outside of ophthalmology. PMID:26309764

  1. RHIC instrumentation

    SciTech Connect

    Shea, T. J.; Witkover, R. L.

    1998-12-10

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  2. RHIC instrumentation

    NASA Astrophysics Data System (ADS)

    Shea, T. J.; Witkover, R. L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 1011 protons to 250 GeV, or 109 fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test.

  3. RHIC instrumentation

    SciTech Connect

    Shea, T.J.; Witkover, R.L.

    1998-12-01

    The Relativistic Heavy Ion Collider (RHIC) consists of two 3.8 km circumference rings utilizing 396 superconducting dipoles and 492 superconducting quadrupoles. Each ring will accelerate approximately 60 bunches of 10{sup 11} protons to 250 GeV, or 10{sup 9} fully stripped gold ions to 100 GeV/nucleon. Commissioning is scheduled for early 1999 with detectors for some of the 6 intersection regions scheduled for initial operation later in the year. The injection line instrumentation includes: 52 beam position monitor (BPM) channels, 56 beam loss monitor (BLM) channels, 5 fast integrating current transformers and 12 video beam profile monitors. The collider ring instrumentation includes: 667 BPM channels, 400 BLM channels, wall current monitors, DC current transformers, ionization profile monitors (IPMs), transverse feedback systems, and resonant Schottky monitors. The use of superconducting magnets affected the beam instrumentation design. The BPM electrodes must function in a cryogenic environment and the BLM system must prevent magnet quenches from either fast or slow losses with widely different rates. RHIC is the first superconducting accelerator to cross transition, requiring close monitoring of beam parameters at this time. High space-charge due to the fully stripped gold ions required the IPM to collect magnetically guided electrons rather than the conventional ions. Since polarized beams will also be accelerated in RHIC, additional constraints were put on the instrumentation. The orbit must be well controlled to minimize depolarizing resonance strengths. Also, the position monitors must accommodate large orbit displacements within the Siberian snakes and spin rotators. The design of the instrumentation will be presented along with results obtained during bench tests, the injection line commissioning, and the first sextant test. {copyright} {ital 1998 American Institute of Physics.}

  4. Drive alignment pays maintenance dividends

    SciTech Connect

    Fedder, R.

    2008-12-15

    Proper alignment of the motor and gear drive on conveying and processing equipment will result in longer bearing and coupling life, along with lower maintenance costs. Selecting an alignment free drive package instead of a traditional foot mounted drive and motor is a major advancement toward these goals. 4 photos.

  5. Lexical alignment in triadic communication

    PubMed Central

    Foltz, Anouschka; Gaspers, Judith; Thiele, Kristina; Stenneken, Prisca; Cimiano, Philipp

    2015-01-01

    Lexical alignment refers to the adoption of one’s interlocutor’s lexical items. Accounts of the mechanisms underlying such lexical alignment differ (among other aspects) in the role assigned to addressee-centered behavior. In this study, we used a triadic communicative situation to test which factors may modulate the extent to which participants’ lexical alignment reflects addressee-centered behavior. Pairs of naïve participants played a picture matching game and received information about the order in which pictures were to be matched from a voice over headphones. On critical trials, participants did or did not hear a name for the picture to be matched next over headphones. Importantly, when the voice over headphones provided a name, it did not match the name that the interlocutor had previously used to describe the object. Participants overwhelmingly used the word that the voice over headphones provided. This result points to non-addressee-centered behavior and is discussed in terms of disrupting alignment with the interlocutor as well as in terms of establishing alignment with the voice over headphones. In addition, the type of picture (line drawing vs. tangram shape) independently modulated lexical alignment, such that participants showed more lexical alignment to their interlocutor for (more ambiguous) tangram shapes compared to line drawings. Overall, the results point to a rather large role for non-addressee-centered behavior during lexical alignment. PMID:25762955

  6. Semiautomated improvement of RNA alignments

    PubMed Central

    Andersen, Ebbe S.; Lind-Thomsen, Allan; Knudsen, Bjarne; Kristensen, Susie E.; Havgaard, Jakob H.; Torarinsson, Elfar; Larsen, Niels; Zwieb, Christian; Sestoft, Peter; Kjems, Jørgen; Gorodkin, Jan

    2007-01-01

    We have developed a semiautomated RNA sequence editor (SARSE) that integrates tools for analyzing RNA alignments. The editor highlights different properties of the alignment by color, and its integrated analysis tools prevent the introduction of errors when doing alignment editing. SARSE readily connects to external tools to provide a flexible semiautomatic editing environment. A new method, Pcluster, is introduced for dividing the sequences of an RNA alignment into subgroups with secondary structure differences. Pcluster was used to evaluate 574 seed alignments obtained from the Rfam database and we identified 71 alignments with significant prediction of inconsistent base pairs and 102 alignments with significant prediction of novel base pairs. Four RNA families were used to illustrate how SARSE can be used to manually or automatically correct the inconsistent base pairs detected by Pcluster: the mir-399 RNA, vertebrate telomase RNA (vert-TR), bacterial transfer-messenger RNA (tmRNA), and the signal recognition particle (SRP) RNA. The general use of the method is illustrated by the ability to accommodate pseudoknots and handle even large and divergent RNA families. The open architecture of the SARSE editor makes it a flexible tool to improve all RNA alignments with relatively little human intervention. Online documentation and software are available at http://sarse.ku.dk. PMID:17804647

  7. Well-pump alignment system

    DOEpatents

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  8. On the alignment of quasars

    NASA Astrophysics Data System (ADS)

    Zhu, X.-F.

    1986-06-01

    Taking the two Savage-Bolton 5 deg x 5 deg regions of optical quasar patrol as samples, a systematic analysis of the number of aligned quasars was made and compared with the random data generated by Monte Carlo method. The statistical result is that, at least for these two samples, there is no clear evidence for alignment.

  9. On the alignment of quasars

    NASA Astrophysics Data System (ADS)

    Zhu, Xing-fen

    1986-06-01

    Taking the two Savage-Bolton 5° × 5° regions of optical quasar patrol as samples, I made a systematic analysis of the number of aligned quasars and compared with the random data generated by Monte Carlo method. The statistical result is that, at least for these two samples, there is no clear evidence for alignment.

  10. CATO: The Clone Alignment Tool.

    PubMed

    Henstock, Peter V; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow. PMID:27459605

  11. CATO: The Clone Alignment Tool

    PubMed Central

    Henstock, Peter V.; LaPan, Peter

    2016-01-01

    High-throughput cloning efforts produce large numbers of sequences that need to be aligned, edited, compared with reference sequences, and organized as files and selected clones. Different pieces of software are typically required to perform each of these tasks. We have designed a single piece of software, CATO, the Clone Alignment Tool, that allows a user to align, evaluate, edit, and select clone sequences based on comparisons to reference sequences. The input and output are designed to be compatible with standard data formats, and thus suitable for integration into a clone processing pipeline. CATO provides both sequence alignment and visualizations to facilitate the analysis of cloning experiments. The alignment algorithm matches each of the relevant candidate sequences against each reference sequence. The visualization portion displays three levels of matching: 1) a top-level summary of the top candidate sequences aligned to each reference sequence, 2) a focused alignment view with the nucleotides of matched sequences displayed against one reference sequence, and 3) a pair-wise alignment of a single reference and candidate sequence pair. Users can select the minimum matching criteria for valid clones, edit or swap reference sequences, and export the results to a summary file as part of the high-throughput cloning workflow. PMID:27459605

  12. ACRF Instrumentation Status and Information September 2009

    SciTech Connect

    JW Voyles

    2009-10-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  13. ACRF Instrumentation Status and Information - June 2009

    SciTech Connect

    JW Voyles

    2009-06-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  14. ACRF Instrumentation Status and Information August 2009

    SciTech Connect

    JW Voyles

    2009-09-09

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  15. ACRF Instrumentation Status and Information April 2009

    SciTech Connect

    Voyles, JW

    2009-05-07

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  16. ACRF Instrumentation Status and Information July 2009

    SciTech Connect

    JW Voyles

    2009-08-13

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  17. ACRF Instrumentation Status and Information May 2009

    SciTech Connect

    JW Voyles

    2009-05-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  18. Status Report on Speech Research: A Report on the Status and Progress of Studies on the Nature of Speech, Instrumentation for Its Investigation, and Practical Applications, July 1 - December 31, 1979.

    ERIC Educational Resources Information Center

    Haskins Labs., New Haven, CT.

    Thirteen manuscripts and extended reports on the nature of speech, instrumentation for its investigation, and practical applications of research are presented in this status report on speech research for the period of July-December 1979. The topics dealt with include speech perception, children's memory for sentences and word strings in relation…

  19. Status Report on Speech Research: A Report on the Status and Progress of Studies on the Nature of Speech, Instrumentation for Its Investigation, and Practical Applications, January 1-March 31, 1983.

    ERIC Educational Resources Information Center

    Studdert-Kennedy, Michael, Ed.; O'Brian, Nancy, Ed.

    Research reports on the nature of speech, instrumentation for its investigation, and practical applications of research are provided in this status report covering the period of January 1 through March 31, 1983. The 16 reports deal with the following topics: (1) the influence of subcategorical mismatches on lexical access, (2) the Serbo-Croatian…

  20. Status Report on Speech Research: A Report on the Status and Progress of Studies on the Nature of Speech, Instrumentation for Its Investigation, and Practical Applications, July 1-December 31, 1980.

    ERIC Educational Resources Information Center

    Haskins Labs., New Haven, CT.

    Research reports on the nature of speech, instrumentation for the investigation of speech, and practical applications of research are included in this status report for the July 1-December 31, 1980, period. The 19 reports deal with the following topics: (1) the structuring of language; (2) whether movements are prepared in parts; (3)…

  1. Space Mirror Alignment System

    NASA Technical Reports Server (NTRS)

    Jau, Bruno M.; McKinney, Colin; Smythe, Robert F.; Palmer, Dean L.

    2011-01-01

    An optical alignment mirror mechanism (AMM) has been developed with angular positioning accuracy of +/-0.2 arcsec. This requires the mirror s linear positioning actuators to have positioning resolutions of +/-112 nm to enable the mirror to meet the angular tip/tilt accuracy requirement. Demonstrated capabilities are 0.1 arc-sec angular mirror positioning accuracy, which translates into linear positioning resolutions at the actuator of 50 nm. The mechanism consists of a structure with sets of cross-directional flexures that enable the mirror s tip and tilt motion, a mirror with its kinematic mount, and two linear actuators. An actuator comprises a brushless DC motor, a linear ball screw, and a piezoelectric brake that holds the mirror s position while the unit is unpowered. An interferometric linear position sensor senses the actuator s position. The AMMs were developed for an Astrometric Beam Combiner (ABC) optical bench, which is part of an interferometer development. Custom electronics were also developed to accommodate the presence of multiple AMMs within the ABC and provide a compact, all-in-one solution to power and control the AMMs.

  2. Alignment positioning mechanism

    NASA Technical Reports Server (NTRS)

    Fantasia, Peter M. (Inventor)

    1991-01-01

    An alignment positioning mechanism for correcting and compensating for misalignment of structures to be coupled is disclosed. The mechanism comprises a power screw with a base portion and a threaded shank portion. A mounting fixture is provided for rigidly coupling said base portion to the mounting interface of a supporting structure with the axis of the screw perpendicular thereto. A traveling ball nut threaded on the power screw is formed with an external annular arcuate surface configured in the form of a spherical segment and enclosed by a ball nut housing with a conforming arcuate surface for permitting gimballed motion thereon. The ball nut housing is provided with a mounting surface which is positionable in cooperable engagement with the mounting interface of a primary structure to be coupled to the supporting structure. Cooperative means are provided on the ball nut and ball nut housing, respectively, for positioning the ball nut and ball nut housing in relative gimballed position within a predetermined range of relative angular relationship whereby severe structural stresses due to unequal loadings and undesirable bending moments on the mechanism are avoided.

  3. Tests of Alignment among Assessment, Standards, and Instruction Using Generalized Linear Model Regression

    ERIC Educational Resources Information Center

    Fulmer, Gavin W.; Polikoff, Morgan S.

    2014-01-01

    An essential component in school accountability efforts is for assessments to be well-aligned with the standards or curriculum they are intended to measure. However, relatively little prior research has explored methods to determine statistical significance of alignment or misalignment. This study explores analyses of alignment as a special case…

  4. Optically Probed Laser-Induced Field-Free Molecular Alignment

    NASA Astrophysics Data System (ADS)

    Faucher, O.; Lavorel, B.; Hertz, E.; Chaussard, F.

    Molecular alignment induced by laser fields has been investigated in research laboratories for over two decades. It led to a better understanding of the fundamental processes at play in the interaction of strong laser fields with molecules, and also provided significant contributions to the fields of high harmonic generation, laser spectroscopy, and laser filamentation. In this chapter, we discuss molecular alignment produced under field-free conditions, as resulting from the interaction of a laser pulse of duration shorter than the rotational period of the molecule. The experimental results presented will be confined to the optically probed alignment of linear as well as asymmetric top molecules. Special care will be taken to describe and compare various optical methods that can be employed to characterize laser-induced molecular alignment. Promising applications of optically probed molecular alignment will be also demonstrated.

  5. Alignment-Annotator web server: rendering and annotating sequence alignments

    PubMed Central

    Gille, Christoph; Fähling, Michael; Weyand, Birgit; Wieland, Thomas; Gille, Andreas

    2014-01-01

    Alignment-Annotator is a novel web service designed to generate interactive views of annotated nucleotide and amino acid sequence alignments (i) de novo and (ii) embedded in other software. All computations are performed at server side. Interactivity is implemented in HTML5, a language native to web browsers. The alignment is initially displayed using default settings and can be modified with the graphical user interfaces. For example, individual sequences can be reordered or deleted using drag and drop, amino acid color code schemes can be applied and annotations can be added. Annotations can be made manually or imported (BioDAS servers, the UniProt, the Catalytic Site Atlas and the PDB). Some edits take immediate effect while others require server interaction and may take a few seconds to execute. The final alignment document can be downloaded as a zip-archive containing the HTML files. Because of the use of HTML the resulting interactive alignment can be viewed on any platform including Windows, Mac OS X, Linux, Android and iOS in any standard web browser. Importantly, no plugins nor Java are required and therefore Alignment-Anotator represents the first interactive browser-based alignment visualization. Availability: http://www.bioinformatics.org/strap/aa/ and http://strap.charite.de/aa/. PMID:24813445

  6. A Toolbox of Metrology-Based Techniques for Optical System Alignment

    NASA Technical Reports Server (NTRS)

    Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Casto, Gordon V.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.; Hicks, Samantha L.; Kubalak, Dave; Mclean, Kyle F.; McMann, Joseph; Redman, Kevin; Wenzel, Greg; Young, Jerrod

    2016-01-01

    The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a toolbox format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.

  7. Precise rotational alignment of x-ray transmission diffraction gratings

    SciTech Connect

    Hill, S.L.

    1988-03-28

    Gold transmission diffraction gratings used for x-ray spectroscopy must sometimes be rotationally aligned to the axis of a diagnostic instrument to within sub-milliradian accuracy. We have fabricated transmission diffraction gratings with high line-densities (grating period of 200 and 300 nm) using uv holographic and x-ray lithography. Since the submicron features of the gratings are not optically visible, precision alignment is time consuming and difficult to verify in situ. We have developed a technique to write an optically visible alignment pattern onto these gratings using a scanning electron microscope (SEM). At high magnification (15000 X) several submicron lines of the grating are observable in the SEM, making it possible to write an alignment pattern parallel to the grating lines in an electron-beam-sensitive coating that overlays the grating. We create an alignment pattern by following a 1-cm-long grating line using the SEM's joystick-controlled translation stage. By following the same grating line we are assured the traveled direction of the SEM electron beam is parallel to the grating to better than 10 ..mu..radian. The electron-beam-exposed line-width can be large (5 to 15 ..mu..m wide) depending on the SEM magnification, and is therefore optically visible. The exposed pattern is eventually made a permanent feature of the grating by ion beam etching or gold electroplating. The pattern can be used to accurately align the grating to the axis of a diagnostic instrument. More importantly, the alignment of the grating can be quickly verified in situ.

  8. Testing the tidal alignment model of galaxy intrinsic alignment

    SciTech Connect

    Blazek, Jonathan; Seljak, Uroš; McQuinn, Matthew E-mail: mmcquinn@berkeley.edu

    2011-05-01

    Weak gravitational lensing has become a powerful probe of large-scale structure and cosmological parameters. Precision weak lensing measurements require an understanding of the intrinsic alignment of galaxy ellipticities, which can in turn inform models of galaxy formation. It is hypothesized that elliptical galaxies align with the background tidal field and that this alignment mechanism dominates the correlation between ellipticities on cosmological scales (in the absence of lensing). We use recent large-scale structure measurements from the Sloan Digital Sky Survey to test this picture with several statistics: (1) the correlation between ellipticity and galaxy overdensity, w{sub g+}; (2) the intrinsic alignment auto-correlation functions; (3) the correlation functions of curl-free, E, and divergence-free, B, modes, the latter of which is zero in the linear tidal alignment theory; (4) the alignment correlation function, w{sub g}(r{sub p},θ), a recently developed statistic that generalizes the galaxy correlation function to account for the angle between the galaxy separation vector and the principle axis of ellipticity. We show that recent measurements are largely consistent with the tidal alignment model and discuss dependence on galaxy luminosity. In addition, we show that at linear order the tidal alignment model predicts that the angular dependence of w{sub g}(r{sub p},θ) is simply w{sub g+}(r{sub p})cos (2θ) and that this dependence is consistent with recent measurements. We also study how stochastic nonlinear contributions to galaxy ellipticity impact these statistics. We find that a significant fraction of the observed LRG ellipticity can be explained by alignment with the tidal field on scales ∼> 10 \\hMpc. These considerations are relevant to galaxy formation and evolution.

  9. Survey and alignment of the Fermilab Booster Accelerator

    SciTech Connect

    Oshinowo, Babatunde O'Sheg; Kyle, John; /Fermilab

    2005-07-01

    The Fermilab Booster is a fast-cycling synchrotron which accelerates protons from 400 MeV to 8 GeV of kinetic energy for injection into the Main Injector and for use by all of the Lab's physics programs. The Booster was originally built in 1970. In 2004, as part of the Booster upgrade, a decision was made to upgrade the Booster survey network by densification with monuments and to survey the main Booster components using modern survey and alignment instruments. This paper discusses the survey and alignment methodology employed for the Booster Accelerator upgrade.

  10. Ultracompact alignment-free single molecule fluorescence device with a foldable light path

    NASA Astrophysics Data System (ADS)

    Kumar Singh, Niraj; Chacko, Jenu V.; Sreenivasan, Varun K. A.; Nag, Suman; Maiti, Sudipta

    2011-02-01

    Instruments with single-molecule level detection capabilities can potentially benefit a wide variety of fields, including medical diagnostics. However, the size, cost, and complexity of such devices have prevented their widespread use outside sophisticated research laboratories. Fiber-only devices have recently been suggested as smaller and simpler alternatives, but thus far, they have lacked the resolution and sensitivity of a full-fledged system, and accurate alignment remains a critical requirement. Here we show that through-space reciprocal optical coupling between a fiber and a microscope objective, combined with wavelength division multiplexing in optical fibers, allows a drastic reduction of the size and complexity of such an instrument while retaining its resolution. We demonstrate a 4×4×18 cm3 sized fluorescence correlation spectrometer, which requires no alignment, can analyze kinetics at the single-molecule level, and has an optical resolution similar to that of much larger microscope based devices. The sensitivity can also be similar in principle, though in practice it is limited by the large background fluorescence of the commonly available optical fibers. We propose this as a portable and field deployable single molecule device with practical diagnostic applications.

  11. Ultracompact alignment-free single molecule fluorescence device with a foldable light path.

    PubMed

    Singh, Niraj Kumar; Chacko, Jenu V; Sreenivasan, Varun K A; Nag, Suman; Maiti, Sudipta

    2011-02-01

    Instruments with single-molecule level detection capabilities can potentially benefit a wide variety of fields, including medical diagnostics. However, the size, cost, and complexity of such devices have prevented their widespread use outside sophisticated research laboratories. Fiber-only devices have recently been suggested as smaller and simpler alternatives, but thus far, they have lacked the resolution and sensitivity of a full-fledged system, and accurate alignment remains a critical requirement. Here we show that through-space reciprocal optical coupling between a fiber and a microscope objective, combined with wavelength division multiplexing in optical fibers, allows a drastic reduction of the size and complexity of such an instrument while retaining its resolution. We demonstrate a 4 × 4 × 18 cm(3) sized fluorescence correlation spectrometer, which requires no alignment, can analyze kinetics at the single-molecule level, and has an optical resolution similar to that of much larger microscope based devices. The sensitivity can also be similar in principle, though in practice it is limited by the large background fluorescence of the commonly available optical fibers. We propose this as a portable and field deployable single molecule device with practical diagnostic applications. PMID:21361684

  12. Optical alignment and diagnostics for the ATF microundulator FEL oscillator

    SciTech Connect

    Babzien, M.; Ben-Zvi, I.; Fang, J.M.

    1995-12-31

    The microundulator FEL oscillator has a wiggler period of 8.8 mm, and is designed for initial lasing at 0.5 microns with a 50 MeV electron beam. The design and performance of the optical diagnostics and alignment are discussed. A HeNe coalignment laser is mode-matched to the resonator cavity for transverse alignment. Interference fringes are observed in the cavity with a pellicle, allowing an alignment tolerance of +/- 10 micro-radians. The same pellicle is used to produce transition radiation by the electron beam. This enables precise transverse alignment of the electron beam to the resonator axis. The HeNe laser is also used to align the wiggler by backlighting its bore. This method aligns the wiggler to the optic axis to a tolerance of +/- 50 microns. A frequency-doubled,pulsed Nd:YAG laser that produces the electron bunch train is also mode-matched to the FEL cavity. The cavity length is adjusted to resonate with this pulse train. Light from the FEL is transported to the diagnostic room using two separate paths: one for the single pass spontaneous emission, and the second for the multipass cavity output. Several diagnostics (CCD camera, photodiode, photomultiplier tube, joulemeter, spectrometer, and streak camera) are used to characterize the light. These instruments measure light energy per micropulse ranging from 10 femto-Joules to 10 micro-Joules.

  13. High accuracy alignment facility for the receiver and transmitter of the BepiColombo Laser Altimeter.

    PubMed

    Chakraborty, Sumita; Affolter, Michael; Gunderson, Kurt; Neubert, Jakob; Thomas, Nicolas; Beck, Thomas; Gerber, Michael; Graf, Stefan; Piazza, Daniele; Pommerol, Antoine; Roethlisberger, Guillaume; Seiferlin, Karsten

    2012-07-10

    The accurate co-alignment of the transmitter to the receiver of the BepiColombo Laser Altimeter is a challenging task for which an original alignment concept had to be developed. We present here the design, construction and testing of a large collimator facility built to fulfill the tight alignment requirements. We describe in detail the solution found to attenuate the high energy of the instrument laser transmitter by an original beam splitting pentaprism group. We list the different steps of the calibration of the alignment facility and estimate the errors made at each of these steps. We finally prove that the current facility is ready for the alignment of the flight instrument. Its angular accuracy is 23 μrad. PMID:22781273

  14. The keyboard instruments.

    PubMed

    Manchester, Ralph A

    2014-06-01

    Now that the field of performing arts medicine has been in existence for over three decades, we are approaching a key point: we should start to see more articles that bring together the data that have been collected from several studies in order to draw more robust conclusions. Review articles and their more structured relative, the meta-analysis, can help to improve our understanding of a particular topic, comparing and synthesizing the results of previous research that has been done on that subject area. One way this could be done would be to review the research that has been carried out on the performance-related problems associated with playing a particular instrument or group of instruments. While I am not going to do that myself, I hope that others will. In this editorial, I will do a very selective review of the playing-related musculoskeletal disorders (PRMDs) associated with one instrument group (the keyboard instruments), focusing on the most played instrument in that group (the piano;). PMID:24925170

  15. Advanced Mask Aligner Lithography (AMALITH)

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard; Vogler, Uwe; Bramati, Arianna

    2015-03-01

    Mask aligner lithography is very attractive for less-critical lithography layers and is widely used for LED, display, CMOS image sensor, micro-fluidics and MEMS manufacturing. Mask aligner lithography is also a preferred choice the semiconductor back-end for 3D-IC, TSV interconnects, advanced packaging (AdP) and wafer-level-packaging (WLP). Mask aligner lithography is a mature technique based on shadow printing and has not much changed since the 1980s. In shadow printing lithography a geometric pattern is transferred by free-space propagation from a photomask to a photosensitive layer on a wafer. The inherent simplicity of the pattern transfer offers ease of operation, low maintenance, moderate capital expenditure, high wafers-per-hour (WPH) throughput, and attractive cost-of-ownership (COO). Advanced mask aligner lithography (AMALITH) comprises different measures to improve shadow printing lithography beyond current limits. The key enabling technology for AMALITH is a novel light integrator systems, referred to as MO Exposure Optics® (MOEO). MOEO allows to fully control and shape the properties of the illumination light in a mask aligner. Full control is the base for accurate simulation and optimization of the shadow printing process (computational lithography). Now photolithography enhancement techniques like customized illumination, optical proximity correction (OPC), phase masks (AAPSM), half-tone lithography and Talbot lithography could be used in mask aligner lithography. We summarize the recent progress in advanced mask aligner lithography (AMALITH) and discuss possible measures to further improve shadow printing lithography.

  16. Interstellar Silicate Dust: Modeling and Grain Alignment

    NASA Astrophysics Data System (ADS)

    Das, Indrajit

    We examine some aspects of the alignment of silicate dust grains with respect to the interstellar magnetic field. First, we consider possible observational constraints on the magnetic properties of the grains. Second, we investigate the role of collisions with gas atoms and the production of H2 molecules on the grain surface in the alignment process when the grain is drifting in the gaseous medium. Paramagnetism associated with Fe content in the dust is thought to play a critical role in alignment. Min et al (2007) claimed that the Fe content of the silicate dust can be constrained by the shape of the 10 μm extinction feature. They found low Fe abundances, potentially posing problems for grain alignment theories. We revisit this analysis modeling the grains with irregularly shaped Gaussian Random Sphere (GRS). We give a comprehensive review of all the relevant constraints researchers apply and discuss their effects on the inferred mineralogy. Also, we extend this analysis to examine whether constraints can be placed on the presence of Fe-rich inclusions which could yield "super-paramagnetism". This possibility has long been speculated, but so far observational constraints are lacking. Every time a gas atom collides with a grain, the grain's angular momentum is slightly modified. Likewise when an H2 molecule forms on the surface and is ejected. Here also we model the grain with GRS shape and considered various scenarios about how the colliding gas particles depart the grain. We develop theoretical and computational tools to estimate the torques associated with these aforementioned events for a range of grain drift speeds---from low subsonic to high supersonic speeds. Code results were verified with spherical grain for which analytical results were available. Finally, the above torque results were used to study the grain rotational dynamics. Solving dynamical equations we examine how these torques influence the grain alignment process. Our analysis suggests that

  17. Optical alignment of the SPICE EUV imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Caldwell, Martin; Eccleston, Paul; Griffin, Doug; Greenway, Paul; Fludra, Andrzej; Middleton, Kevin; Tosh, Ian; Richards, Tony; Phillipon, Anne; Schühle, Udo

    2015-09-01

    SPICE is a high resolution imaging spectrometer operating at extreme ultraviolet wavelengths, 70.4 - 79.0 nm and 97.3 - 104.9 nm. It is a facility instrument on the ESA Solar Orbiter mission. SPICE will address the key science goals of Solar Orbiter by providing the quantitative knowledge of the physical state and composition of the plasmas in the solar atmosphere, in particular investigating the source regions of outflows and ejection processes which link the solar surface and corona to the heliosphere. By observing the intensities of selected spectral lines and line profiles, SPICE will derive temperature, density, flow and composition information for the plasmas in the temperature range from 10,000 K to 10MK. The optical components of the instrument consist of an off axis parabolic mirror mounted on a mechanism with a scan range of 8 arc minutes. This allows the rastering of an image of the spectrometer slit, which is interchangeable defining the instrument resolution, on the sky. A concave toroidal variable line space grating disperses, magnifies, and re-images incident radiation onto a pair of photocathode coated microchannel plate image intensifiers, coupled to active pixel sensors. For the instrument to meet the scientific and engineering objectives these components must be tightly aligned with each other and the mechanical interface to the spacecraft. This alignment must be maintained throughout the environmental exposure of the instrument to vibration and thermal cycling seen during launch, and as the spacecraft orbits around the sun. The built alignment is achieved through a mixture of dimensional metrology, autocollimation, interferometry and imaging tests. This paper shall discuss the requirements and the methods of optical alignment.

  18. Research study of pressure instrumentation

    NASA Technical Reports Server (NTRS)

    Hoogenboom, L.; Hull-Allen, G.

    1984-01-01

    To obtain a more vibration resistant pressure sensor for use on the Space Shuttle Main Engine, a proximity probe based, diaphragm type pressure sensor breadboard was developed. A fiber optic proximity probe was selected as the sensor. In combination with existing electronics, a thermal stability evaluation of the entire probe system was made. Based upon the results, a breadboard design of the pressure sensor and electronics was made and fabricated. A brief series of functional experiments was made with the breadboard to calibrate, thermally compensate, and linearize its response. In these experiments, the performance obtained in the temperature range of -320 F (liquid N2) to +200 F was comparable to that of the strain gage based sensor presently in use on the engine. In tests at NASA-Marshall Space Flight Center (MSFC), after some time at or near liquid nitrogen temperatures, the sensor output varied over the entire output range. These large spurious signals were attributed to condensation of air in the sensing gap. In the next phase of development of this sensor, an evaluation of fabrication techniques toward greater thermal and mechanical stability of the fiber probe assembly must be made. In addition to this, a positive optics to metal seal must be developed to withstand the pressure that would result from a diaphragm failure.

  19. Aligning for Innovation - Alignment Strategy to Drive Innovation

    NASA Technical Reports Server (NTRS)

    Johnson, Hurel; Teltschik, David; Bussey, Horace, Jr.; Moy, James

    2010-01-01

    With the sudden need for innovation that will help the country achieve its long-term space exploration objectives, the question of whether NASA is aligned effectively to drive the innovation that it so desperately needs to take space exploration to the next level should be entertained. Authors such as Robert Kaplan and David North have noted that companies that use a formal system for implementing strategy consistently outperform their peers. They have outlined a six-stage management systems model for implementing strategy, which includes the aligning of the organization towards its objectives. This involves the alignment of the organization from the top down. This presentation will explore the impacts of existing U.S. industrial policy on technological innovation; assess the current NASA organizational alignment and its impacts on driving technological innovation; and finally suggest an alternative approach that may drive the innovation needed to take the world to the next level of space exploration, with NASA truly leading the way.

  20. Attention is necessary for subliminal instrumental conditioning.

    PubMed

    Mastropasqua, Tommaso; Turatto, Massimo

    2015-01-01

    The capacity of humans and other animals to provide appropriate responses to stimuli anticipating motivationally significant events is exemplified by instrumental conditioning. Interestingly, in humans instrumental conditioning can occur also for subliminal outcome-predicting stimuli. However, it remains unclear whether attention is necessary for subliminal instrumental conditioning to take place. In two experiments, human participants had to learn to collect rewards (monetary gains) while avoiding punishments (monetary losses), on the basis of subliminal outcome-predicting cues. We found that instrumental conditioning can proceed subconsciously only if spatial attention is aligned with the subliminal cue. Conversely, if spatial attention is briefly diverted from the subliminal cue, then instrumental conditioning is blocked. In humans, attention but not awareness is therefore mandatory for instrumental conditioning, thus revealing a dissociation between awareness and attention in the control of motivated behavior. PMID:26257144

  1. Fusion bonding and alignment fixture

    DOEpatents

    Ackler, Harold D.; Swierkowski, Stefan P.; Tarte, Lisa A.; Hicks, Randall K.

    2000-01-01

    An improved vacuum fusion bonding structure and process for aligned bonding of large area glass plates, patterned with microchannels and access holes and slots, for elevated glass fusion temperatures. Vacuum pumpout of all the components is through the bottom platform which yields an untouched, defect free top surface which greatly improves optical access through this smooth surface. Also, a completely non-adherent interlayer, such as graphite, with alignment and location features is located between the main steel platform and the glass plate pair, which makes large improvements in quality, yield, and ease of use, and enables aligned bonding of very large glass structures.

  2. Adaptive control of molecular alignment

    SciTech Connect

    Horn, C.; Wollenhaupt, M.; Krug, M.; Baumert, T.; Nalda, R. de; Banares, L.

    2006-03-15

    We demonstrate control on nonadiabatic molecular alignment by using a spectrally phase-shaped laser pulse. An evolutionary algorithm in a closed feedback loop has been used in order to find pulse shapes that maximize a given effect. In particular, this scheme has been applied to the optimization of total alignment, and to the control of the temporal structure of the alignment transient within a revival. Asymmetric temporal pulse shapes have been found to be very effective for the latter and have been studied separately in a single-parameter control scheme. Our experimental results are supported by numerical simulations.

  3. Two Radiative/Thermochemical Instruments

    NASA Technical Reports Server (NTRS)

    Tapphorn, Ralph M.; Janoff, Dwight D.; Shelley, Richard M.

    1990-01-01

    Measurements of absorption and emission complement thermal measurements. Two laboratory instruments for research in combustion and pyrolysis equipped for radiative as well as thermal measurements. One instrument essentially differential scanning calorimeter (DSC) modified to detect radiation emitted by flames. Provides means to evaluate limits of flammability of materials exhibiting exothermic reactions in DSC's. Other instrument used to determine pyrolysis properties of specimens exposed to various gases by measurement of infrared absorption spectra of pyrolysis products.

  4. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, Charles R.; Hammond, Robert B.

    1981-01-01

    The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  5. Laser beam alignment apparatus and method

    DOEpatents

    Gruhn, C.R.; Hammond, R.B.

    The disclosure related to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

  6. Protein structure alignment beyond spatial proximity

    PubMed Central

    Wang, Sheng; Ma, Jianzhu; Peng, Jian; Xu, Jinbo

    2013-01-01

    Protein structure alignment is a fundamental problem in computational structure biology. Many programs have been developed for automatic protein structure alignment, but most of them align two protein structures purely based upon geometric similarity without considering evolutionary and functional relationship. As such, these programs may generate structure alignments which are not very biologically meaningful from the evolutionary perspective. This paper presents a novel method DeepAlign for automatic pairwise protein structure alignment. DeepAlign aligns two protein structures using not only spatial proximity of equivalent residues (after rigid-body superposition), but also evolutionary relationship and hydrogen-bonding similarity. Experimental results show that DeepAlign can generate structure alignments much more consistent with manually-curated alignments than other automatic tools especially when proteins under consideration are remote homologs. These results imply that in addition to geometric similarity, evolutionary information and hydrogen-bonding similarity are essential to aligning two protein structures. PMID:23486213

  7. [Hardening of dental instruments].

    PubMed

    Gerasev, G P

    1981-01-01

    The possibility of prolonging the service life of stomatological instruments by the local hardening of their working parts is discussed. Such hardening should be achieved by using hard and wear-resistant materials. The examples of hardening dental elevators and hard-alloy dental drills are given. New trends in the local hardening of instruments are the treatment of their working parts with laser beams, the application of coating on their surface by the gas-detonation method. The results of research work and trials are presented. PMID:7300627

  8. Microtechnology for instrumentation

    SciTech Connect

    Mariella, R.

    1998-01-01

    For the last two decades, the majority of research and development at LLNL in microtechnology has focused on photonics devices and bulk micromachining, including miccroelectro-mechanical systems and associated areas. For the last ten years, we have used these capabilities to address our analytical instrumentation needs. Just as the miniature photonics have enable the fabrication of analytical instruments that are either higher performance, smaller, more portable, or are combinations of these. Examples of these are our portable thermal cyclers for DNA analysis, our hand-held gas chromatograph, our flow-stream-waveguide-based flow cytometer, and our etched-microchannel electrophoresis systems. This presentation will describe these and related developments.

  9. Fixture for aligning motor assembly

    DOEpatents

    Shervington, Roger M.; Vaghani, Vallabh V.; Vanek, Laurence D.; Christensen, Scott A.

    2009-12-08

    An alignment fixture includes a rotor fixture, a stator fixture and a sensor system which measures a rotational displacement therebetween. The fixture precisely measures rotation of a generator stator assembly away from a NULL position referenced by a unique reference spline on the rotor shaft. By providing an adjustable location of the stator assembly within the housing, the magnetic axes within each generator shall be aligned to a predetermined and controlled tolerance between the generator interface mounting pin and the reference spline on the rotor shaft. Once magnetically aligned, each generator is essentially a line replaceable unit which may be readily mounted to any input of a multi-generator gearbox assembly with the assurance that the magnetic alignment will be within a predetermined tolerance.

  10. A new generation active arrays for optical flexibility in astronomical instrumentation

    NASA Astrophysics Data System (ADS)

    Kroes, G.; Jaskó, A.; Pragt, J. H.; Venema, L.; De Haan, M.

    2012-09-01

    Throughout the history of telescopes and astronomical instrumentation, new ways were found to open up unexplored possibilities in fundamental astronomical research by increasing the telescope size and instrumentation complexity. The ever demanding requirements on instrument performance pushes instrument complexity to the edge. In order to take the next leap forward in instrument development the optical design freedom needs to be increased drastically. The use of more complex and more accurate optics allows for shorter optical trains with smaller sizes, smaller number of components and reduced fabrication and alignment verification time and costs. Current optics fabrication is limited in surface form complexity and/or accuracy. Traditional active and adaptive optics lack the needed intrinsic long term stability and simplicity in design, manufacturing, verification and control. This paper explains how and why active arrays literally provide a flexible but stable basis for the next generation optical instruments. Combing active arrays with optically high quality face sheets more complex and accurate optical surface forms can be provided including extreme a-spherical (freeform) surfaces and thus allow for optical train optimization and even instrument reconfiguration. A zero based design strategy is adopted for the development of the active arrays addressing fundamental issues in opto-mechanical engineering. The various choices are investigated by prototypes and Finite Element Analysis. Finally an engineering concept will be presented following a highly stable adjustment strategy allowing simple verification and control. The Optimization metrology is described in an additional paper for this conference by T. Agócs et al.

  11. Well-pump alignment system

    DOEpatents

    Drumheller, D.S.

    1998-10-20

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump are disclosed, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping. 6 figs.

  12. Characterization of Leonid meteor head echo data collected using the VHF-UHF Advanced Research Projects Agency Long-Range Tracking and Instrumentation Radar (ALTAIR)

    NASA Astrophysics Data System (ADS)

    Close, S.; Hunt, S. M.; McKeen, F. M.; Minardi, M. J.

    2002-02-01

    The Leonid meteor shower, which was predicted to hit storm-like activity on 17 November 1998, was observed using radar and optical sensors at the Kwajalein Missile Range in order to study potential threats to orbiting spacecraft. Meteor head echo data were collected during the predicted peak of the ``storm'' primarily using the Advanced Research Projects Agency Long-Range Tracking and Instrumentation Radar (ALTAIR). ALTAIR is a dual-frequency radar at VHF (160 MHz) and UHF (422 MHz) that is uniquely suited for detecting meteor head echoes due to high sensitivity, precise calibration, and the ability to record radar data at a high rate (Gb/min). ALTAIR transmits right-circular (RC) polarized energy and records left-circular (LC) sum, RC sum, LC azimuth angle difference, and LC elevation angle difference channels; these four measurements facilitate the determination of three-dimensional target position and velocity as a function of radar cross section and time. During the predicted peak of the storm, ALTAIR detected 734 VHF head echoes in 29 min of data and 472 UHF head echoes in 17 min of data, as well as numerous specular and nonspecular ionization trails. This paper contains analysis on the head echo data, including dual-frequency statistics and the variability of head echo decelerations. We also include results from the analysis of the radius-density parameter, which shows a strong correlation with deceleration.

  13. Advances in handheld FT-IR instrumentation

    NASA Astrophysics Data System (ADS)

    Arnó, Josep; Cardillo, Len; Judge, Kevin; Frayer, Maxim; Frunzi, Michael; Hetherington, Paul; Levy, Dustin; Oberndorfer, Kyle; Perec, Walter; Sauer, Terry; Stein, John; Zuidema, Eric

    2012-06-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. The challenges of ConOps (Concepts of Operation) in emergency response and military field applications require a significant redesign of the stationary FT-IR bench-top instruments typically used in laboratories. Specifically, field portable units require high levels of resistance against mechanical shock and chemical attack, ease of use in restrictive gear, quick and easy interpretation of results, and reduced size. In the last 20 years, FT-IR instruments have been re-engineered to fit in small suitcases for field portable use and recently further miniaturized for handheld operation. This article introduces the advances resulting from a project designed to overcome the challenges associated with miniaturizing FT-IR instruments. The project team developed a disturbance-corrected permanently aligned cube corner interferometer for improved robustness and optimized opto-mechanical design to maximize optical throughput and signal-to-noise ratios. Thermal management and heat flow were thoroughly modeled and studied to isolate sensitive components from heat sources and provide the widest temperature operation range. Similarly, extensive research on mechanical designs and compensation techniques to protect against shock and vibration will be discussed. A user interface was carefully created for military and emergency response applications to provide actionable information in a visual, intuitive format. Similar to the HazMatID family of products, state-of-the-art algorithms were used to quickly identify the chemical composition of complex samples based on the spectral information. This article includes an overview of the design considerations, tests results, and performance validation of the mechanical ruggedness, spectral, and thermal performance.

  14. Projection-Based Volume Alignment

    PubMed Central

    Yu, Lingbo; Snapp, Robert R.; Ruiz, Teresa; Radermacher, Michael

    2013-01-01

    When heterogeneous samples of macromolecular assemblies are being examined by 3D electron microscopy (3DEM), often multiple reconstructions are obtained. For example, subtomograms of individual particles can be acquired from tomography, or volumes of multiple 2D classes can be obtained by random conical tilt reconstruction. Of these, similar volumes can be averaged to achieve higher resolution. Volume alignment is an essential step before 3D classification and averaging. Here we present a projection-based volume alignment (PBVA) algorithm. We select a set of projections to represent the reference volume and align them to a second volume. Projection alignment is achieved by maximizing the cross-correlation function with respect to rotation and translation parameters. If data are missing, the cross-correlation functions are normalized accordingly. Accurate alignments are obtained by averaging and quadratic interpolation of the cross-correlation maximum. Comparisons of the computation time between PBVA and traditional 3D cross-correlation methods demonstrate that PBVA outperforms the traditional methods. Performance tests were carried out with different signal-to-noise ratios using modeled noise and with different percentages of missing data using a cryo-EM dataset. All tests show that the algorithm is robust and highly accurate. PBVA was applied to align the reconstructions of a subcomplex of the NADH: ubiquinone oxidoreductase (Complex I) from the yeast Yarrowia lipolytica, followed by classification and averaging. PMID:23410725

  15. BinAligner: a heuristic method to align biological networks.

    PubMed

    Yang, Jialiang; Li, Jun; Grünewald, Stefan; Wan, Xiu-Feng

    2013-01-01

    The advances in high throughput omics technologies have made it possible to characterize molecular interactions within and across various species. Alignments and comparison of molecular networks across species will help detect orthologs and conserved functional modules and provide insights on the evolutionary relationships of the compared species. However, such analyses are not trivial due to the complexity of network and high computational cost. Here we develop a mixture of global and local algorithm, BinAligner, for network alignments. Based on the hypotheses that the similarity between two vertices across networks would be context dependent and that the information from the edges and the structures of subnetworks can be more informative than vertices alone, two scoring schema, 1-neighborhood subnetwork and graphlet, were introduced to derive the scoring matrices between networks, besides the commonly used scoring scheme from vertices. Then the alignment problem is formulated as an assignment problem, which is solved by the combinatorial optimization algorithm, such as the Hungarian method. The proposed algorithm was applied and validated in aligning the protein-protein interaction network of Kaposi's sarcoma associated herpesvirus (KSHV) and that of varicella zoster virus (VZV). Interestingly, we identified several putative functional orthologous proteins with similar functions but very low sequence similarity between the two viruses. For example, KSHV open reading frame 56 (ORF56) and VZV ORF55 are helicase-primase subunits with sequence identity 14.6%, and KSHV ORF75 and VZV ORF44 are tegument proteins with sequence identity 15.3%. These functional pairs can not be identified if one restricts the alignment into orthologous protein pairs. In addition, BinAligner identified a conserved pathway between two viruses, which consists of 7 orthologous protein pairs and these proteins are connected by conserved links. This pathway might be crucial for virus packing and

  16. Quantitative analysis of organizational culture in occupational health research: a theory-based validation in 30 workplaces of the organizational culture profile instrument

    PubMed Central

    2013-01-01

    Background This study advances a measurement approach for the study of organizational culture in population-based occupational health research, and tests how different organizational culture types are associated with psychological distress, depression, emotional exhaustion, and well-being. Methods Data were collected over a sample of 1,164 employees nested in 30 workplaces. Employees completed the 26-item OCP instrument. Psychological distress was measured with the General Health Questionnaire (12-item); depression with the Beck Depression Inventory (21-item); and emotional exhaustion with five items from the Maslach Burnout Inventory general survey. Exploratory factor analysis evaluated the dimensionality of the OCP scale. Multilevel regression models estimated workplace-level variations, and the contribution of organizational culture factors to mental health and well-being after controlling for gender, age, and living with a partner. Results Exploratory factor analysis of OCP items revealed four factors explaining about 75% of the variance, and supported the structure of the Competing Values Framework. Factors were labeled Group, Hierarchical, Rational and Developmental. Cronbach’s alphas were high (0.82-0.89). Multilevel regression analysis suggested that the four culture types varied significantly between workplaces, and correlated with mental health and well-being outcomes. The Group culture type best distinguished between workplaces and had the strongest associations with the outcomes. Conclusions This study provides strong support for the use of the OCP scale for measuring organizational culture in population-based occupational health research in a way that is consistent with the Competing Values Framework. The Group organizational culture needs to be considered as a relevant factor in occupational health studies. PMID:23642223

  17. Alignment and Performance of the Infrared Multi-Object Spectrometer

    NASA Technical Reports Server (NTRS)

    Connelly, Joseph A.; Ohl, Raymond G.; Mentzell, J. Eric; Madison, Timothy J.; Hylan, Jason E.; Mink, Ronald G.; Saha, Timo T.; Tveekrem, June L.; Sparr, Leroy M.; Chambers, V. John; Fitzgerald, Danetter; Greenhouse, Matthew A.; MacKenty, John W.

    2004-01-01

    The Infrared Multi-Object Spectrometer (IRMOS) is a principle investigator class instrument for the Kitt Peak National Observatory 4 and 2.1 meter telescopes. IRMOS is a near-IR (0.8 - 2.5 micron) spectrometer with low-to mid-resolving power (R = 300 - 3000). IRMOS produces simultaneous spectra of approximately 100 objects in its 2.8 x 2.0 arc-min field of view (4 m telescope) using a commercial Micro Electro-Mechanical Systems (MEMS) micro-mirror array (MMA) from Texas Instruments. The IRMOS optical design consists of two imaging subsystems. The focal reducer images the focal plane of the telescope onto the MMA field stop, and the spectrograph images the MMA onto the detector. We describe ambient breadboard subsystem alignment and imaging performance of each stage independently, and ambient imaging performance of the fully assembled instrument. Interferometric measurements of subsystem wavefront error serve as a qualitative alignment guide, and are accomplished using a commercial, modified Twyman-Green laser unequal path interferometer. Image testing provides verification of the optomechanical alignment method and a measurement of near-angle scattered light due to mirror small-scale surface error. Image testing is performed at multiple field points. A mercury-argon pencil lamp provides a spectral line at 546.1 nanometers, a blackbody source provides a line at 1550 nanometers, and a CCD camera and IR camera are used as detectors. We use commercial optical modeling software to predict the point-spread function and its effect on instrument slit transmission and resolution. Our breadboard and instrument level test results validate this prediction. We conclude with an instrument performance prediction for cryogenic operation and first light in late 2003.

  18. Alignment and performance of the Infrared Multi-Object Spectrometer

    NASA Astrophysics Data System (ADS)

    Connelly, Joseph A.; Ohl, Raymond G.; Mentzell, J. E.; Madison, Timothy J.; Hylan, Jason E.; Mink, Ronald G.; Saha, Timo T.; Tveekrem, June L.; Sparr, Leroy M.; Chambers, Victor J.; Fitzgerald, Danette L.; Greenhouse, Matthew A.; MacKenty, John W.

    2003-10-01

    The Infrared Multi-Object Spectrometer (IRMOS) is a principle investigator class instrument for the Kitt Peak National Observatory 4 and 2.1 m telescopes. IRMOS is a near-IR (0.8 2.5 μm) spectrometer with low- to mid-resolving power (R = 300 3000). IRMOS produces simultaneous spectra of ~100 objects in its 2.8 ´ 2.0 arc-min field of view (4 m telescope) using a commercial Micro Electro-Mechanical Systems (MEMS) micro-mirror array (MMA) from Texas Instruments. The IRMOS optical design consists of two imaging subsystems. The focal reducer images the focal plane of the telescope onto the MMA field stop, and the spectrograph images the MMA onto the detector. We describe ambient breadboard subsystem alignment and imaging performance of each stage independently, and ambient imaging performance of the fully assembled instrument. Interferometric measurements of subsystem wavefront error serve as a qualitative alignment guide, and are accomplished using a commercial, modified Twyman-Green laser unequal path interferometer. Image testing provides verification of the optomechanical alignment method and a measurement of near-angle scattered light due to mirror small-scale surface error. Image testing is performed at multiple field points. A mercury-argon pencil lamp provides a spectral line at 546.1 nm, a blackbody source provides a line at 1550 nm, and a CCD camera and IR camera are used as detectors. We use commercial optical modeling software to predict the point-spread function and its effect on instrument slit transmission and resolution. Our breadboard and instrument level test results validate this prediction. We conclude with an instrument performance prediction for cryogenic operation and first light in late 2003.

  19. ACRF Instrumentation Status: New, Current, and Future October 2006

    SciTech Connect

    JC Liljegren

    2006-10-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  20. ACRF Instrumentation Status: New, Current, and Future May 2007

    SciTech Connect

    JC Liljegren

    2007-04-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.