... Splign Vector Alignment Search Tool (VAST) All Data & Software Resources... Domains & Structures BioSystems Cn3D Conserved Domain Database (CDD) Conserved Domain Search Service (CD Search) Structure (Molecular Modeling Database) Vector Alignment ...
National Center for Biotechnology Information
... Splign Vector Alignment Search Tool (VAST) All Data & Software Resources... Domains & Structures BioSystems Cn3D Conserved Domain Database (CDD) Conserved Domain Search Service (CD Search) Structure (Molecular Modeling Database) Vector Alignment ...
Improve homology search sensitivity of PacBio data by correcting frameshifts.
Du, Nan; Sun, Yanni
2016-09-01
Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer reads than secondary generation sequencing technologies such as Illumina. The long read length enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and identify gene isoforms with higher accuracy in transcriptomic sequencing. However, PacBio data has high sequencing error rate and most of the errors are insertion or deletion errors. During alignment-based homology search, insertion or deletion errors in genes will cause frameshifts and may only lead to marginal alignment scores and short alignments. As a result, it is hard to distinguish true alignments from random alignments and the ambiguity will incur errors in structural and functional annotation. Existing frameshift correction tools are designed for data with much lower error rate and are not optimized for PacBio data. As an increasing number of groups are using SMRT, there is an urgent need for dedicated homology search tools for PacBio data. In this work, we introduce Frame-Pro, a profile homology search tool for PacBio reads. Our tool corrects sequencing errors and also outputs the profile alignments of the corrected sequences against characterized protein families. We applied our tool to both simulated and real PacBio data. The results showed that our method enables more sensitive homology search, especially for PacBio data sets of low sequencing coverage. In addition, we can correct more errors when comparing with a popular error correction tool that does not rely on hybrid sequencing. The source code is freely available at https://sourceforge.net/projects/frame-pro/ yannisun@msu.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
CLAST: CUDA implemented large-scale alignment search tool.
Yano, Masahiro; Mori, Hiroshi; Akiyama, Yutaka; Yamada, Takuji; Kurokawa, Ken
2014-12-11
Metagenomics is a powerful methodology to study microbial communities, but it is highly dependent on nucleotide sequence similarity searching against sequence databases. Metagenomic analyses with next-generation sequencing technologies produce enormous numbers of reads from microbial communities, and many reads are derived from microbes whose genomes have not yet been sequenced, limiting the usefulness of existing sequence similarity search tools. Therefore, there is a clear need for a sequence similarity search tool that can rapidly detect weak similarity in large datasets. We developed a tool, which we named CLAST (CUDA implemented large-scale alignment search tool), that enables analyses of millions of reads and thousands of reference genome sequences, and runs on NVIDIA Fermi architecture graphics processing units. CLAST has four main advantages over existing alignment tools. First, CLAST was capable of identifying sequence similarities ~80.8 times faster than BLAST and 9.6 times faster than BLAT. Second, CLAST executes global alignment as the default (local alignment is also an option), enabling CLAST to assign reads to taxonomic and functional groups based on evolutionarily distant nucleotide sequences with high accuracy. Third, CLAST does not need a preprocessed sequence database like Burrows-Wheeler Transform-based tools, and this enables CLAST to incorporate large, frequently updated sequence databases. Fourth, CLAST requires <2 GB of main memory, making it possible to run CLAST on a standard desktop computer or server node. CLAST achieved very high speed (similar to the Burrows-Wheeler Transform-based Bowtie 2 for long reads) and sensitivity (equal to BLAST, BLAT, and FR-HIT) without the need for extensive database preprocessing or a specialized computing platform. Our results demonstrate that CLAST has the potential to be one of the most powerful and realistic approaches to analyze the massive amount of sequence data from next-generation sequencing technologies.
Worley, K C; Wiese, B A; Smith, R F
1995-09-01
BEAUTY (BLAST enhanced alignment utility) is an enhanced version of the NCBI's BLAST data base search tool that facilitates identification of the functions of matched sequences. We have created new data bases of conserved regions and functional domains for protein sequences in NCBI's Entrez data base, and BEAUTY allows this information to be incorporated directly into BLAST search results. A Conserved Regions Data Base, containing the locations of conserved regions within Entrez protein sequences, was constructed by (1) clustering the entire data base into families, (2) aligning each family using our PIMA multiple sequence alignment program, and (3) scanning the multiple alignments to locate the conserved regions within each aligned sequence. A separate Annotated Domains Data Base was constructed by extracting the locations of all annotated domains and sites from sequences represented in the Entrez, PROSITE, BLOCKS, and PRINTS data bases. BEAUTY performs a BLAST search of those Entrez sequences with conserved regions and/or annotated domains. BEAUTY then uses the information from the Conserved Regions and Annotated Domains data bases to generate, for each matched sequence, a schematic display that allows one to directly compare the relative locations of (1) the conserved regions, (2) annotated domains and sites, and (3) the locally aligned regions matched in the BLAST search. In addition, BEAUTY search results include World-Wide Web hypertext links to a number of external data bases that provide a variety of additional types of information on the function of matched sequences. This convenient integration of protein families, conserved regions, annotated domains, alignment displays, and World-Wide Web resources greatly enhances the biological informativeness of sequence similarity searches. BEAUTY searches can be performed remotely on our system using the "BCM Search Launcher" World-Wide Web pages (URL is < http:/ /gc.bcm.tmc.edu:8088/ search-launcher/launcher.html > ).
Improved alignment evaluation and optimization : final report.
DOT National Transportation Integrated Search
2007-09-11
This report outlines the development of an enhanced highway alignment evaluation and optimization : model. A GIS-based software tool is prepared for alignment optimization that uses genetic algorithms for : optimal search. The software is capable of ...
SW#db: GPU-Accelerated Exact Sequence Similarity Database Search.
Korpar, Matija; Šošić, Martin; Blažeka, Dino; Šikić, Mile
2015-01-01
In recent years we have witnessed a growth in sequencing yield, the number of samples sequenced, and as a result-the growth of publicly maintained sequence databases. The increase of data present all around has put high requirements on protein similarity search algorithms with two ever-opposite goals: how to keep the running times acceptable while maintaining a high-enough level of sensitivity. The most time consuming step of similarity search are the local alignments between query and database sequences. This step is usually performed using exact local alignment algorithms such as Smith-Waterman. Due to its quadratic time complexity, alignments of a query to the whole database are usually too slow. Therefore, the majority of the protein similarity search methods prior to doing the exact local alignment apply heuristics to reduce the number of possible candidate sequences in the database. However, there is still a need for the alignment of a query sequence to a reduced database. In this paper we present the SW#db tool and a library for fast exact similarity search. Although its running times, as a standalone tool, are comparable to the running times of BLAST, it is primarily intended to be used for exact local alignment phase in which the database of sequences has already been reduced. It uses both GPU and CPU parallelization and was 4-5 times faster than SSEARCH, 6-25 times faster than CUDASW++ and more than 20 times faster than SSW at the time of writing, using multiple queries on Swiss-prot and Uniref90 databases.
Protein Identification Using Top-Down Spectra*
Liu, Xiaowen; Sirotkin, Yakov; Shen, Yufeng; Anderson, Gordon; Tsai, Yihsuan S.; Ting, Ying S.; Goodlett, David R.; Smith, Richard D.; Bafna, Vineet; Pevzner, Pavel A.
2012-01-01
In the last two years, because of advances in protein separation and mass spectrometry, top-down mass spectrometry moved from analyzing single proteins to analyzing complex samples and identifying hundreds and even thousands of proteins. However, computational tools for database search of top-down spectra against protein databases are still in their infancy. We describe MS-Align+, a fast algorithm for top-down protein identification based on spectral alignment that enables searches for unexpected post-translational modifications. We also propose a method for evaluating statistical significance of top-down protein identifications and further benchmark various software tools on two top-down data sets from Saccharomyces cerevisiae and Salmonella typhimurium. We demonstrate that MS-Align+ significantly increases the number of identified spectra as compared with MASCOT and OMSSA on both data sets. Although MS-Align+ and ProSightPC have similar performance on the Salmonella typhimurium data set, MS-Align+ outperforms ProSightPC on the (more complex) Saccharomyces cerevisiae data set. PMID:22027200
PIPI: PTM-Invariant Peptide Identification Using Coding Method.
Yu, Fengchao; Li, Ning; Yu, Weichuan
2016-12-02
In computational proteomics, the identification of peptides with an unlimited number of post-translational modification (PTM) types is a challenging task. The computational cost associated with database search increases exponentially with respect to the number of modified amino acids and linearly with respect to the number of potential PTM types at each amino acid. The problem becomes intractable very quickly if we want to enumerate all possible PTM patterns. To address this issue, one group of methods named restricted tools (including Mascot, Comet, and MS-GF+) only allow a small number of PTM types in database search process. Alternatively, the other group of methods named unrestricted tools (including MS-Alignment, ProteinProspector, and MODa) avoids enumerating PTM patterns with an alignment-based approach to localizing and characterizing modified amino acids. However, because of the large search space and PTM localization issue, the sensitivity of these unrestricted tools is low. This paper proposes a novel method named PIPI to achieve PTM-invariant peptide identification. PIPI belongs to the category of unrestricted tools. It first codes peptide sequences into Boolean vectors and codes experimental spectra into real-valued vectors. For each coded spectrum, it then searches the coded sequence database to find the top scored peptide sequences as candidates. After that, PIPI uses dynamic programming to localize and characterize modified amino acids in each candidate. We used simulation experiments and real data experiments to evaluate the performance in comparison with restricted tools (i.e., Mascot, Comet, and MS-GF+) and unrestricted tools (i.e., Mascot with error tolerant search, MS-Alignment, ProteinProspector, and MODa). Comparison with restricted tools shows that PIPI has a close sensitivity and running speed. Comparison with unrestricted tools shows that PIPI has the highest sensitivity except for Mascot with error tolerant search and ProteinProspector. These two tools simplify the task by only considering up to one modified amino acid in each peptide, which results in a higher sensitivity but has difficulty in dealing with multiple modified amino acids. The simulation experiments also show that PIPI has the lowest false discovery proportion, the highest PTM characterization accuracy, and the shortest running time among the unrestricted tools.
rVISTA 2.0: Evolutionary Analysis of Transcription Factor Binding Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, G G; Ovcharenko, I
2004-01-28
Identifying and characterizing the patterns of DNA cis-regulatory modules represents a challenge that has the potential to reveal the regulatory language the genome uses to dictate transcriptional dynamics. Several studies have demonstrated that regulatory modules are under positive selection and therefore are often conserved between related species. Using this evolutionary principle we have created a comparative tool, rVISTA, for analyzing the regulatory potential of noncoding sequences. The rVISTA tool combines transcription factor binding site (TFBS) predictions, sequence comparisons and cluster analysis to identify noncoding DNA regions that are highly conserved and present in a specific configuration within an alignment. Heremore » we present the newly developed version 2.0 of the rVISTA tool that can process alignments generated by both zPicture and PipMaker alignment programs or use pre-computed pairwise alignments of seven vertebrate genomes available from the ECR Browser. The rVISTA web server is closely interconnected with the TRANSFAC database, allowing users to either search for matrices present in the TRANSFAC library collection or search for user-defined consensus sequences. rVISTA tool is publicly available at http://rvista.dcode.org/.« less
HSA: a heuristic splice alignment tool.
Bu, Jingde; Chi, Xuebin; Jin, Zhong
2013-01-01
RNA-Seq methodology is a revolutionary transcriptomics sequencing technology, which is the representative of Next generation Sequencing (NGS). With the high throughput sequencing of RNA-Seq, we can acquire much more information like differential expression and novel splice variants from deep sequence analysis and data mining. But the short read length brings a great challenge to alignment, especially when the reads span two or more exons. A two steps heuristic splice alignment tool is generated in this investigation. First, map raw reads to reference with unspliced aligner--BWA; second, split initial unmapped reads into three equal short reads (seeds), align each seed to the reference, filter hits, search possible split position of read and extend hits to a complete match. Compare with other splice alignment tools like SOAPsplice and Tophat2, HSA has a better performance in call rate and efficiency, but its results do not as accurate as the other software to some extent. HSA is an effective spliced aligner of RNA-Seq reads mapping, which is available at https://github.com/vlcc/HSA.
cuBLASTP: Fine-Grained Parallelization of Protein Sequence Search on CPU+GPU.
Zhang, Jing; Wang, Hao; Feng, Wu-Chun
2017-01-01
BLAST, short for Basic Local Alignment Search Tool, is a ubiquitous tool used in the life sciences for pairwise sequence search. However, with the advent of next-generation sequencing (NGS), whether at the outset or downstream from NGS, the exponential growth of sequence databases is outstripping our ability to analyze the data. While recent studies have utilized the graphics processing unit (GPU) to speedup the BLAST algorithm for searching protein sequences (i.e., BLASTP), these studies use coarse-grained parallelism, where one sequence alignment is mapped to only one thread. Such an approach does not efficiently utilize the capabilities of a GPU, particularly due to the irregularity of BLASTP in both execution paths and memory-access patterns. To address the above shortcomings, we present a fine-grained approach to parallelize BLASTP, where each individual phase of sequence search is mapped to many threads on a GPU. This approach, which we refer to as cuBLASTP, reorders data-access patterns and reduces divergent branches of the most time-consuming phases (i.e., hit detection and ungapped extension). In addition, cuBLASTP optimizes the remaining phases (i.e., gapped extension and alignment with trace back) on a multicore CPU and overlaps their execution with the phases running on the GPU.
Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology
Latendresse, Mario; Paley, Suzanne M.; Krummenacker, Markus; Ong, Quang D.; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M.; Caspi, Ron
2016-01-01
Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. PMID:26454094
STELLAR: fast and exact local alignments
2011-01-01
Background Large-scale comparison of genomic sequences requires reliable tools for the search of local alignments. Practical local aligners are in general fast, but heuristic, and hence sometimes miss significant matches. Results We present here the local pairwise aligner STELLAR that has full sensitivity for ε-alignments, i.e. guarantees to report all local alignments of a given minimal length and maximal error rate. The aligner is composed of two steps, filtering and verification. We apply the SWIFT algorithm for lossless filtering, and have developed a new verification strategy that we prove to be exact. Our results on simulated and real genomic data confirm and quantify the conjecture that heuristic tools like BLAST or BLAT miss a large percentage of significant local alignments. Conclusions STELLAR is very practical and fast on very long sequences which makes it a suitable new tool for finding local alignments between genomic sequences under the edit distance model. Binaries are freely available for Linux, Windows, and Mac OS X at http://www.seqan.de/projects/stellar. The source code is freely distributed with the SeqAn C++ library version 1.3 and later at http://www.seqan.de. PMID:22151882
Expanding the species and chemical diversity of Penicillium section Cinnamopurpurea
USDA-ARS?s Scientific Manuscript database
A set of isolates genetically similar to or potentially conspecific with an unidentified Penicillium isolate NRRL 735, was assembled using a Basic Local Alignment Search Tool (BLAST) search of internal transcribed spacer (ITS) similarity among described (GenBank) and undescribed Penicillium isolates...
Hu, Jialu; Kehr, Birte; Reinert, Knut
2014-02-15
Owing to recent advancements in high-throughput technologies, protein-protein interaction networks of more and more species become available in public databases. The question of how to identify functionally conserved proteins across species attracts a lot of attention in computational biology. Network alignments provide a systematic way to solve this problem. However, most existing alignment tools encounter limitations in tackling this problem. Therefore, the demand for faster and more efficient alignment tools is growing. We present a fast and accurate algorithm, NetCoffee, which allows to find a global alignment of multiple protein-protein interaction networks. NetCoffee searches for a global alignment by maximizing a target function using simulated annealing on a set of weighted bipartite graphs that are constructed using a triplet approach similar to T-Coffee. To assess its performance, NetCoffee was applied to four real datasets. Our results suggest that NetCoffee remedies several limitations of previous algorithms, outperforms all existing alignment tools in terms of speed and nevertheless identifies biologically meaningful alignments. The source code and data are freely available for download under the GNU GPL v3 license at https://code.google.com/p/netcoffee/.
SFESA: a web server for pairwise alignment refinement by secondary structure shifts.
Tong, Jing; Pei, Jimin; Grishin, Nick V
2015-09-03
Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate. We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software. SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.
The Exercise: An Exercise Generator Tool for the SOURCe Project
ERIC Educational Resources Information Center
Kakoyianni-Doa, Fryni; Tziafa, Eleni; Naskos, Athanasios
2016-01-01
The Exercise, an Exercise generator in the SOURCe project, is a tool that complements the properties and functionalities of the SOURCe project, which includes the search engine for the Searchable Online French-Greek parallel corpus for the UniveRsity of Cyprus (SOURCe) (Kakoyianni-Doa & Tziafa, 2013), the PENCIL (an alignment tool)…
Pathway Tools version 19.0 update: software for pathway/genome informatics and systems biology.
Karp, Peter D; Latendresse, Mario; Paley, Suzanne M; Krummenacker, Markus; Ong, Quang D; Billington, Richard; Kothari, Anamika; Weaver, Daniel; Lee, Thomas; Subhraveti, Pallavi; Spaulding, Aaron; Fulcher, Carol; Keseler, Ingrid M; Caspi, Ron
2016-09-01
Pathway Tools is a bioinformatics software environment with a broad set of capabilities. The software provides genome-informatics tools such as a genome browser, sequence alignments, a genome-variant analyzer and comparative-genomics operations. It offers metabolic-informatics tools, such as metabolic reconstruction, quantitative metabolic modeling, prediction of reaction atom mappings and metabolic route search. Pathway Tools also provides regulatory-informatics tools, such as the ability to represent and visualize a wide range of regulatory interactions. This article outlines the advances in Pathway Tools in the past 5 years. Major additions include components for metabolic modeling, metabolic route search, computation of atom mappings and estimation of compound Gibbs free energies of formation; addition of editors for signaling pathways, for genome sequences and for cellular architecture; storage of gene essentiality data and phenotype data; display of multiple alignments, and of signaling and electron-transport pathways; and development of Python and web-services application programming interfaces. Scientists around the world have created more than 9800 Pathway/Genome Databases by using Pathway Tools, many of which are curated databases for important model organisms. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Fan, Long; Hui, Jerome H L; Yu, Zu Guo; Chu, Ka Hou
2014-07-01
Species identification based on short sequences of DNA markers, that is, DNA barcoding, has emerged as an integral part of modern taxonomy. However, software for the analysis of large and multilocus barcoding data sets is scarce. The Basic Local Alignment Search Tool (BLAST) is currently the fastest tool capable of handling large databases (e.g. >5000 sequences), but its accuracy is a concern and has been criticized for its local optimization. However, current more accurate software requires sequence alignment or complex calculations, which are time-consuming when dealing with large data sets during data preprocessing or during the search stage. Therefore, it is imperative to develop a practical program for both accurate and scalable species identification for DNA barcoding. In this context, we present VIP Barcoding: a user-friendly software in graphical user interface for rapid DNA barcoding. It adopts a hybrid, two-stage algorithm. First, an alignment-free composition vector (CV) method is utilized to reduce searching space by screening a reference database. The alignment-based K2P distance nearest-neighbour method is then employed to analyse the smaller data set generated in the first stage. In comparison with other software, we demonstrate that VIP Barcoding has (i) higher accuracy than Blastn and several alignment-free methods and (ii) higher scalability than alignment-based distance methods and character-based methods. These results suggest that this platform is able to deal with both large-scale and multilocus barcoding data with accuracy and can contribute to DNA barcoding for modern taxonomy. VIP Barcoding is free and available at http://msl.sls.cuhk.edu.hk/vipbarcoding/. © 2014 John Wiley & Sons Ltd.
Kann, Maricel G.; Sheetlin, Sergey L.; Park, Yonil; Bryant, Stephen H.; Spouge, John L.
2007-01-01
The sequencing of complete genomes has created a pressing need for automated annotation of gene function. Because domains are the basic units of protein function and evolution, a gene can be annotated from a domain database by aligning domains to the corresponding protein sequence. Ideally, complete domains are aligned to protein subsequences, in a ‘semi-global alignment’. Local alignment, which aligns pieces of domains to subsequences, is common in high-throughput annotation applications, however. It is a mature technique, with the heuristics and accurate E-values required for screening large databases and evaluating the screening results. Hidden Markov models (HMMs) provide an alternative theoretical framework for semi-global alignment, but their use is limited because they lack heuristic acceleration and accurate E-values. Our new tool, GLOBAL, overcomes some limitations of previous semi-global HMMs: it has accurate E-values and the possibility of the heuristic acceleration required for high-throughput applications. Moreover, according to a standard of truth based on protein structure, two semi-global HMM alignment tools (GLOBAL and HMMer) had comparable performance in identifying complete domains, but distinctly outperformed two tools based on local alignment. When searching for complete protein domains, therefore, GLOBAL avoids disadvantages commonly associated with HMMs, yet maintains their superior retrieval performance. PMID:17596268
SA-Search: a web tool for protein structure mining based on a Structural Alphabet
Guyon, Frédéric; Camproux, Anne-Claude; Hochez, Joëlle; Tufféry, Pierre
2004-01-01
SA-Search is a web tool that can be used to mine for protein structures and extract structural similarities. It is based on a hidden Markov model derived Structural Alphabet (SA) that allows the compression of three-dimensional (3D) protein conformations into a one-dimensional (1D) representation using a limited number of prototype conformations. Using such a representation, classical methods developed for amino acid sequences can be employed. Currently, SA-Search permits the performance of fast 3D similarity searches such as the extraction of exact words using a suffix tree approach, and the search for fuzzy words viewed as a simple 1D sequence alignment problem. SA-Search is available at http://bioserv.rpbs.jussieu.fr/cgi-bin/SA-Search. PMID:15215446
SA-Search: a web tool for protein structure mining based on a Structural Alphabet.
Guyon, Frédéric; Camproux, Anne-Claude; Hochez, Joëlle; Tufféry, Pierre
2004-07-01
SA-Search is a web tool that can be used to mine for protein structures and extract structural similarities. It is based on a hidden Markov model derived Structural Alphabet (SA) that allows the compression of three-dimensional (3D) protein conformations into a one-dimensional (1D) representation using a limited number of prototype conformations. Using such a representation, classical methods developed for amino acid sequences can be employed. Currently, SA-Search permits the performance of fast 3D similarity searches such as the extraction of exact words using a suffix tree approach, and the search for fuzzy words viewed as a simple 1D sequence alignment problem. SA-Search is available at http://bioserv.rpbs.jussieu.fr/cgi-bin/SA-Search.
Mi-DISCOVERER: A bioinformatics tool for the detection of mi-RNA in human genome.
Arshad, Saadia; Mumtaz, Asia; Ahmad, Freed; Liaquat, Sadia; Nadeem, Shahid; Mehboob, Shahid; Afzal, Muhammad
2010-11-27
MicroRNAs (miRNAs) are 22 nucleotides non-coding RNAs that play pivotal regulatory roles in diverse organisms including the humans and are difficult to be identified due to lack of either sequence features or robust algorithms to efficiently identify. Therefore, we made a tool that is Mi-Discoverer for the detection of miRNAs in human genome. The tools used for the development of software are Microsoft Office Access 2003, the JDK version 1.6.0, BioJava version 1.0, and the NetBeans IDE version 6.0. All already made miRNAs softwares were web based; so the advantage of our project was to make a desktop facility to the user for sequence alignment search with already identified miRNAs of human genome present in the database. The user can also insert and update the newly discovered human miRNA in the database. Mi-Discoverer, a bioinformatics tool successfully identifies human miRNAs based on multiple sequence alignment searches. It's a non redundant database containing a large collection of publicly available human miRNAs.
Mi-DISCOVERER: A bioinformatics tool for the detection of mi-RNA in human genome
Arshad, Saadia; Mumtaz, Asia; Ahmad, Freed; Liaquat, Sadia; Nadeem, Shahid; Mehboob, Shahid; Afzal, Muhammad
2010-01-01
MicroRNAs (miRNAs) are 22 nucleotides non-coding RNAs that play pivotal regulatory roles in diverse organisms including the humans and are difficult to be identified due to lack of either sequence features or robust algorithms to efficiently identify. Therefore, we made a tool that is Mi-Discoverer for the detection of miRNAs in human genome. The tools used for the development of software are Microsoft Office Access 2003, the JDK version 1.6.0, BioJava version 1.0, and the NetBeans IDE version 6.0. All already made miRNAs softwares were web based; so the advantage of our project was to make a desktop facility to the user for sequence alignment search with already identified miRNAs of human genome present in the database. The user can also insert and update the newly discovered human miRNA in the database. Mi-Discoverer, a bioinformatics tool successfully identifies human miRNAs based on multiple sequence alignment searches. It's a non redundant database containing a large collection of publicly available human miRNAs. PMID:21364831
A Novel Partial Sequence Alignment Tool for Finding Large Deletions
Aruk, Taner; Ustek, Duran; Kursun, Olcay
2012-01-01
Finding large deletions in genome sequences has become increasingly more useful in bioinformatics, such as in clinical research and diagnosis. Although there are a number of publically available next generation sequencing mapping and sequence alignment programs, these software packages do not correctly align fragments containing deletions larger than one kb. We present a fast alignment software package, BinaryPartialAlign, that can be used by wet lab scientists to find long structural variations in their experiments. For BinaryPartialAlign, we make use of the Smith-Waterman (SW) algorithm with a binary-search-based approach for alignment with large gaps that we called partial alignment. BinaryPartialAlign implementation is compared with other straight-forward applications of SW. Simulation results on mtDNA fragments demonstrate the effectiveness (runtime and accuracy) of the proposed method. PMID:22566777
Finding Protein and Nucleotide Similarities with FASTA
Pearson, William R.
2016-01-01
The FASTA programs provide a comprehensive set of rapid similarity searching tools ( fasta36, fastx36, tfastx36, fasty36, tfasty36), similar to those provided by the BLAST package, as well as programs for slower, optimal, local and global similarity searches ( ssearch36, ggsearch36) and for searching with short peptides and oligonucleotides ( fasts36, fastm36). The FASTA programs use an empirical strategy for estimating statistical significance that accommodates a range of similarity scoring matrices and gap penalties, improving alignment boundary accuracy and search sensitivity (Unit 3.5). The FASTA programs can produce “BLAST-like” alignment and tabular output, for ease of integration into existing analysis pipelines, and can search small, representative databases, and then report results for a larger set of sequences, using links from the smaller dataset. The FASTA programs work with a wide variety of database formats, including mySQL and postgreSQL databases (Unit 9.4). The programs also provide a strategy for integrating domain and active site annotations into alignments and highlighting the mutational state of functionally critical residues. These protocols describe how to use the FASTA programs to characterize protein and DNA sequences, using protein:protein, protein:DNA, and DNA:DNA comparisons. PMID:27010337
Finding Protein and Nucleotide Similarities with FASTA.
Pearson, William R
2016-03-24
The FASTA programs provide a comprehensive set of rapid similarity searching tools (fasta36, fastx36, tfastx36, fasty36, tfasty36), similar to those provided by the BLAST package, as well as programs for slower, optimal, local, and global similarity searches (ssearch36, ggsearch36), and for searching with short peptides and oligonucleotides (fasts36, fastm36). The FASTA programs use an empirical strategy for estimating statistical significance that accommodates a range of similarity scoring matrices and gap penalties, improving alignment boundary accuracy and search sensitivity. The FASTA programs can produce "BLAST-like" alignment and tabular output, for ease of integration into existing analysis pipelines, and can search small, representative databases, and then report results for a larger set of sequences, using links from the smaller dataset. The FASTA programs work with a wide variety of database formats, including mySQL and postgreSQL databases. The programs also provide a strategy for integrating domain and active site annotations into alignments and highlighting the mutational state of functionally critical residues. These protocols describe how to use the FASTA programs to characterize protein and DNA sequences, using protein:protein, protein:DNA, and DNA:DNA comparisons. Copyright © 2016 John Wiley & Sons, Inc.
Analysis Tool Web Services from the EMBL-EBI.
McWilliam, Hamish; Li, Weizhong; Uludag, Mahmut; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Cowley, Andrew Peter; Lopez, Rodrigo
2013-07-01
Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods.
Analysis Tool Web Services from the EMBL-EBI
McWilliam, Hamish; Li, Weizhong; Uludag, Mahmut; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Cowley, Andrew Peter; Lopez, Rodrigo
2013-01-01
Since 2004 the European Bioinformatics Institute (EMBL-EBI) has provided access to a wide range of databases and analysis tools via Web Services interfaces. This comprises services to search across the databases available from the EMBL-EBI and to explore the network of cross-references present in the data (e.g. EB-eye), services to retrieve entry data in various data formats and to access the data in specific fields (e.g. dbfetch), and analysis tool services, for example, sequence similarity search (e.g. FASTA and NCBI BLAST), multiple sequence alignment (e.g. Clustal Omega and MUSCLE), pairwise sequence alignment and protein functional analysis (e.g. InterProScan and Phobius). The REST/SOAP Web Services (http://www.ebi.ac.uk/Tools/webservices/) interfaces to these databases and tools allow their integration into other tools, applications, web sites, pipeline processes and analytical workflows. To get users started using the Web Services, sample clients are provided covering a range of programming languages and popular Web Service tool kits, and a brief guide to Web Services technologies, including a set of tutorials, is available for those wishing to learn more and develop their own clients. Users of the Web Services are informed of improvements and updates via a range of methods. PMID:23671338
EGenBio: A Data Management System for Evolutionary Genomics and Biodiversity
Nahum, Laila A; Reynolds, Matthew T; Wang, Zhengyuan O; Faith, Jeremiah J; Jonna, Rahul; Jiang, Zhi J; Meyer, Thomas J; Pollock, David D
2006-01-01
Background Evolutionary genomics requires management and filtering of large numbers of diverse genomic sequences for accurate analysis and inference on evolutionary processes of genomic and functional change. We developed Evolutionary Genomics and Biodiversity (EGenBio; ) to begin to address this. Description EGenBio is a system for manipulation and filtering of large numbers of sequences, integrating curated sequence alignments and phylogenetic trees, managing evolutionary analyses, and visualizing their output. EGenBio is organized into three conceptual divisions, Evolution, Genomics, and Biodiversity. The Genomics division includes tools for selecting pre-aligned sequences from different genes and species, and for modifying and filtering these alignments for further analysis. Species searches are handled through queries that can be modified based on a tree-based navigation system and saved. The Biodiversity division contains tools for analyzing individual sequences or sequence alignments, whereas the Evolution division contains tools involving phylogenetic trees. Alignments are annotated with analytical results and modification history using our PRAED format. A miscellaneous Tools section and Help framework are also available. EGenBio was developed around our comparative genomic research and a prototype database of mtDNA genomes. It utilizes MySQL-relational databases and dynamic page generation, and calls numerous custom programs. Conclusion EGenBio was designed to serve as a platform for tools and resources to ease combined analysis in evolution, genomics, and biodiversity. PMID:17118150
Maleki, Ehsan; Babashah, Hossein; Koohi, Somayyeh; Kavehvash, Zahra
2017-07-01
This paper presents an optical processing approach for exploring a large number of genome sequences. Specifically, we propose an optical correlator for global alignment and an extended moiré matching technique for local analysis of spatially coded DNA, whose output is fed to a novel three-dimensional artificial neural network for local DNA alignment. All-optical implementation of the proposed 3D artificial neural network is developed and its accuracy is verified in Zemax. Thanks to its parallel processing capability, the proposed structure performs local alignment of 4 million sequences of 150 base pairs in a few seconds, which is much faster than its electrical counterparts, such as the basic local alignment search tool.
Freiburg RNA tools: a central online resource for RNA-focused research and teaching.
Raden, Martin; Ali, Syed M; Alkhnbashi, Omer S; Busch, Anke; Costa, Fabrizio; Davis, Jason A; Eggenhofer, Florian; Gelhausen, Rick; Georg, Jens; Heyne, Steffen; Hiller, Michael; Kundu, Kousik; Kleinkauf, Robert; Lott, Steffen C; Mohamed, Mostafa M; Mattheis, Alexander; Miladi, Milad; Richter, Andreas S; Will, Sebastian; Wolff, Joachim; Wright, Patrick R; Backofen, Rolf
2018-05-21
The Freiburg RNA tools webserver is a well established online resource for RNA-focused research. It provides a unified user interface and comprehensive result visualization for efficient command line tools. The webserver includes RNA-RNA interaction prediction (IntaRNA, CopraRNA, metaMIR), sRNA homology search (GLASSgo), sequence-structure alignments (LocARNA, MARNA, CARNA, ExpaRNA), CRISPR repeat classification (CRISPRmap), sequence design (antaRNA, INFO-RNA, SECISDesign), structure aberration evaluation of point mutations (RaSE), and RNA/protein-family models visualization (CMV), and other methods. Open education resources offer interactive visualizations of RNA structure and RNA-RNA interaction prediction as well as basic and advanced sequence alignment algorithms. The services are freely available at http://rna.informatik.uni-freiburg.de.
GWFASTA: server for FASTA search in eukaryotic and microbial genomes.
Issac, Biju; Raghava, G P S
2002-09-01
Similarity searches are a powerful method for solving important biological problems such as database scanning, evolutionary studies, gene prediction, and protein structure prediction. FASTA is a widely used sequence comparison tool for rapid database scanning. Here we describe the GWFASTA server that was developed to assist the FASTA user in similarity searches against partially and/or completely sequenced genomes. GWFASTA consists of more than 60 microbial genomes, eight eukaryote genomes, and proteomes of annotatedgenomes. Infact, it provides the maximum number of databases for similarity searching from a single platform. GWFASTA allows the submission of more than one sequence as a single query for a FASTA search. It also provides integrated post-processing of FASTA output, including compositional analysis of proteins, multiple sequences alignment, and phylogenetic analysis. Furthermore, it summarizes the search results organism-wise for prokaryotes and chromosome-wise for eukaryotes. Thus, the integration of different tools for sequence analyses makes GWFASTA a powerful toolfor biologists.
muBLASTP: database-indexed protein sequence search on multicore CPUs.
Zhang, Jing; Misra, Sanchit; Wang, Hao; Feng, Wu-Chun
2016-11-04
The Basic Local Alignment Search Tool (BLAST) is a fundamental program in the life sciences that searches databases for sequences that are most similar to a query sequence. Currently, the BLAST algorithm utilizes a query-indexed approach. Although many approaches suggest that sequence search with a database index can achieve much higher throughput (e.g., BLAT, SSAHA, and CAFE), they cannot deliver the same level of sensitivity as the query-indexed BLAST, i.e., NCBI BLAST, or they can only support nucleotide sequence search, e.g., MegaBLAST. Due to different challenges and characteristics between query indexing and database indexing, the existing techniques for query-indexed search cannot be used into database indexed search. muBLASTP, a novel database-indexed BLAST for protein sequence search, delivers identical hits returned to NCBI BLAST. On Intel Haswell multicore CPUs, for a single query, the single-threaded muBLASTP achieves up to a 4.41-fold speedup for alignment stages, and up to a 1.75-fold end-to-end speedup over single-threaded NCBI BLAST. For a batch of queries, the multithreaded muBLASTP achieves up to a 5.7-fold speedups for alignment stages, and up to a 4.56-fold end-to-end speedup over multithreaded NCBI BLAST. With a newly designed index structure for protein database and associated optimizations in BLASTP algorithm, we re-factored BLASTP algorithm for modern multicore processors that achieves much higher throughput with acceptable memory footprint for the database index.
A Systolic Array-Based FPGA Parallel Architecture for the BLAST Algorithm
Guo, Xinyu; Wang, Hong; Devabhaktuni, Vijay
2012-01-01
A design of systolic array-based Field Programmable Gate Array (FPGA) parallel architecture for Basic Local Alignment Search Tool (BLAST) Algorithm is proposed. BLAST is a heuristic biological sequence alignment algorithm which has been used by bioinformatics experts. In contrast to other designs that detect at most one hit in one-clock-cycle, our design applies a Multiple Hits Detection Module which is a pipelining systolic array to search multiple hits in a single-clock-cycle. Further, we designed a Hits Combination Block which combines overlapping hits from systolic array into one hit. These implementations completed the first and second step of BLAST architecture and achieved significant speedup comparing with previously published architectures. PMID:25969747
MetalS(3), a database-mining tool for the identification of structurally similar metal sites.
Valasatava, Yana; Rosato, Antonio; Cavallaro, Gabriele; Andreini, Claudia
2014-08-01
We have developed a database search tool to identify metal sites having structural similarity to a query metal site structure within the MetalPDB database of minimal functional sites (MFSs) contained in metal-binding biological macromolecules. MFSs describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such a local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. The database search tool, which we called MetalS(3) (Metal Sites Similarity Search), can be accessed through a Web interface at http://metalweb.cerm.unifi.it/tools/metals3/ . MetalS(3) uses a suitably adapted version of an algorithm that we previously developed to systematically compare the structure of the query metal site with each MFS in MetalPDB. For each MFS, the best superposition is kept. All these superpositions are then ranked according to the MetalS(3) scoring function and are presented to the user in tabular form. The user can interact with the output Web page to visualize the structural alignment or the sequence alignment derived from it. Options to filter the results are available. Test calculations show that the MetalS(3) output correlates well with expectations from protein homology considerations. Furthermore, we describe some usage scenarios that highlight the usefulness of MetalS(3) to obtain mechanistic and functional hints regardless of homology.
The EMBL-EBI bioinformatics web and programmatic tools framework.
Li, Weizhong; Cowley, Andrew; Uludag, Mahmut; Gur, Tamer; McWilliam, Hamish; Squizzato, Silvano; Park, Young Mi; Buso, Nicola; Lopez, Rodrigo
2015-07-01
Since 2009 the EMBL-EBI Job Dispatcher framework has provided free access to a range of mainstream sequence analysis applications. These include sequence similarity search services (https://www.ebi.ac.uk/Tools/sss/) such as BLAST, FASTA and PSI-Search, multiple sequence alignment tools (https://www.ebi.ac.uk/Tools/msa/) such as Clustal Omega, MAFFT and T-Coffee, and other sequence analysis tools (https://www.ebi.ac.uk/Tools/pfa/) such as InterProScan. Through these services users can search mainstream sequence databases such as ENA, UniProt and Ensembl Genomes, utilising a uniform web interface or systematically through Web Services interfaces (https://www.ebi.ac.uk/Tools/webservices/) using common programming languages, and obtain enriched results with novel visualisations. Integration with EBI Search (https://www.ebi.ac.uk/ebisearch/) and the dbfetch retrieval service (https://www.ebi.ac.uk/Tools/dbfetch/) further expands the usefulness of the framework. New tools and updates such as NCBI BLAST+, InterProScan 5 and PfamScan, new categories such as RNA analysis tools (https://www.ebi.ac.uk/Tools/rna/), new databases such as ENA non-coding, WormBase ParaSite, Pfam and Rfam, and new workflow methods, together with the retirement of depreciated services, ensure that the framework remains relevant to today's biological community. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Searching for SNPs with cloud computing
2009-01-01
As DNA sequencing outpaces improvements in computer speed, there is a critical need to accelerate tasks like alignment and SNP calling. Crossbow is a cloud-computing software tool that combines the aligner Bowtie and the SNP caller SOAPsnp. Executing in parallel using Hadoop, Crossbow analyzes data comprising 38-fold coverage of the human genome in three hours using a 320-CPU cluster rented from a cloud computing service for about $85. Crossbow is available from http://bowtie-bio.sourceforge.net/crossbow/. PMID:19930550
Finding similar nucleotide sequences using network BLAST searches.
Ladunga, Istvan
2009-06-01
The Basic Local Alignment Search Tool (BLAST) is a keystone of bioinformatics due to its performance and user-friendliness. Beginner and intermediate users will learn how to design and submit blastn and Megablast searches on the Web pages at the National Center for Biotechnology Information. We map nucleic acid sequences to genomes, find identical or similar mRNA, expressed sequence tag, and noncoding RNA sequences, and run Megablast searches, which are much faster than blastn. Understanding results is assisted by taxonomy reports, genomic views, and multiple alignments. We interpret expected frequency thresholds, biological significance, and statistical significance. Weak hits provide no evidence, but hints for further analyses. We find genes that may code for homologous proteins by translated BLAST. We reduce false positives by filtering out low-complexity regions. Parsed BLAST results can be integrated into analysis pipelines. Links in the output connect to Entrez, PUBMED, structural, sequence, interaction, and expression databases. This facilitates integration with a wide spectrum of biological knowledge.
HIA: a genome mapper using hybrid index-based sequence alignment.
Choi, Jongpill; Park, Kiejung; Cho, Seong Beom; Chung, Myungguen
2015-01-01
A number of alignment tools have been developed to align sequencing reads to the human reference genome. The scale of information from next-generation sequencing (NGS) experiments, however, is increasing rapidly. Recent studies based on NGS technology have routinely produced exome or whole-genome sequences from several hundreds or thousands of samples. To accommodate the increasing need of analyzing very large NGS data sets, it is necessary to develop faster, more sensitive and accurate mapping tools. HIA uses two indices, a hash table index and a suffix array index. The hash table performs direct lookup of a q-gram, and the suffix array performs very fast lookup of variable-length strings by exploiting binary search. We observed that combining hash table and suffix array (hybrid index) is much faster than the suffix array method for finding a substring in the reference sequence. Here, we defined the matching region (MR) is a longest common substring between a reference and a read. And, we also defined the candidate alignment regions (CARs) as a list of MRs that is close to each other. The hybrid index is used to find candidate alignment regions (CARs) between a reference and a read. We found that aligning only the unmatched regions in the CAR is much faster than aligning the whole CAR. In benchmark analysis, HIA outperformed in mapping speed compared with the other aligners, without significant loss of mapping accuracy. Our experiments show that the hybrid of hash table and suffix array is useful in terms of speed for mapping NGS sequencing reads to the human reference genome sequence. In conclusion, our tool is appropriate for aligning massive data sets generated by NGS sequencing.
PhAST: pharmacophore alignment search tool.
Hähnke, Volker; Hofmann, Bettina; Grgat, Tomislav; Proschak, Ewgenij; Steinhilber, Dieter; Schneider, Gisbert
2009-04-15
We present a ligand-based virtual screening technique (PhAST) for rapid hit and lead structure searching in large compound databases. Molecules are represented as strings encoding the distribution of pharmacophoric features on the molecular graph. In contrast to other text-based methods using SMILES strings, we introduce a new form of text representation that describes the pharmacophore of molecules. This string representation opens the opportunity for revealing functional similarity between molecules by sequence alignment techniques in analogy to homology searching in protein or nucleic acid sequence databases. We favorably compared PhAST with other current ligand-based virtual screening methods in a retrospective analysis using the BEDROC metric. In a prospective application, PhAST identified two novel inhibitors of 5-lipoxygenase product formation with minimal experimental effort. This outcome demonstrates the applicability of PhAST to drug discovery projects and provides an innovative concept of sequence-based compound screening with substantial scaffold hopping potential. 2008 Wiley Periodicals, Inc.
Simrank: Rapid and sensitive general-purpose k-mer search tool
2011-01-01
Background Terabyte-scale collections of string-encoded data are expected from consortia efforts such as the Human Microbiome Project http://nihroadmap.nih.gov/hmp. Intra- and inter-project data similarity searches are enabled by rapid k-mer matching strategies. Software applications for sequence database partitioning, guide tree estimation, molecular classification and alignment acceleration have benefited from embedded k-mer searches as sub-routines. However, a rapid, general-purpose, open-source, flexible, stand-alone k-mer tool has not been available. Results Here we present a stand-alone utility, Simrank, which allows users to rapidly identify database strings the most similar to query strings. Performance testing of Simrank and related tools against DNA, RNA, protein and human-languages found Simrank 10X to 928X faster depending on the dataset. Conclusions Simrank provides molecular ecologists with a high-throughput, open source choice for comparing large sequence sets to find similarity. PMID:21524302
Googling DNA sequences on the World Wide Web.
Hajibabaei, Mehrdad; Singer, Gregory A C
2009-11-10
New web-based technologies provide an excellent opportunity for sharing and accessing information and using web as a platform for interaction and collaboration. Although several specialized tools are available for analyzing DNA sequence information, conventional web-based tools have not been utilized for bioinformatics applications. We have developed a novel algorithm and implemented it for searching species-specific genomic sequences, DNA barcodes, by using popular web-based methods such as Google. We developed an alignment independent character based algorithm based on dividing a sequence library (DNA barcodes) and query sequence to words. The actual search is conducted by conventional search tools such as freely available Google Desktop Search. We implemented our algorithm in two exemplar packages. We developed pre and post-processing software to provide customized input and output services, respectively. Our analysis of all publicly available DNA barcode sequences shows a high accuracy as well as rapid results. Our method makes use of conventional web-based technologies for specialized genetic data. It provides a robust and efficient solution for sequence search on the web. The integration of our search method for large-scale sequence libraries such as DNA barcodes provides an excellent web-based tool for accessing this information and linking it to other available categories of information on the web.
Protein structural similarity search by Ramachandran codes
Lo, Wei-Cheng; Huang, Po-Jung; Chang, Chih-Hung; Lyu, Ping-Chiang
2007-01-01
Background Protein structural data has increased exponentially, such that fast and accurate tools are necessary to access structure similarity search. To improve the search speed, several methods have been designed to reduce three-dimensional protein structures to one-dimensional text strings that are then analyzed by traditional sequence alignment methods; however, the accuracy is usually sacrificed and the speed is still unable to match sequence similarity search tools. Here, we aimed to improve the linear encoding methodology and develop efficient search tools that can rapidly retrieve structural homologs from large protein databases. Results We propose a new linear encoding method, SARST (Structural similarity search Aided by Ramachandran Sequential Transformation). SARST transforms protein structures into text strings through a Ramachandran map organized by nearest-neighbor clustering and uses a regenerative approach to produce substitution matrices. Then, classical sequence similarity search methods can be applied to the structural similarity search. Its accuracy is similar to Combinatorial Extension (CE) and works over 243,000 times faster, searching 34,000 proteins in 0.34 sec with a 3.2-GHz CPU. SARST provides statistically meaningful expectation values to assess the retrieved information. It has been implemented into a web service and a stand-alone Java program that is able to run on many different platforms. Conclusion As a database search method, SARST can rapidly distinguish high from low similarities and efficiently retrieve homologous structures. It demonstrates that the easily accessible linear encoding methodology has the potential to serve as a foundation for efficient protein structural similarity search tools. These search tools are supposed applicable to automated and high-throughput functional annotations or predictions for the ever increasing number of published protein structures in this post-genomic era. PMID:17716377
Tree decomposition based fast search of RNA structures including pseudoknots in genomes.
Song, Yinglei; Liu, Chunmei; Malmberg, Russell; Pan, Fangfang; Cai, Liming
2005-01-01
Searching genomes for RNA secondary structure with computational methods has become an important approach to the annotation of non-coding RNAs. However, due to the lack of efficient algorithms for accurate RNA structure-sequence alignment, computer programs capable of fast and effectively searching genomes for RNA secondary structures have not been available. In this paper, a novel RNA structure profiling model is introduced based on the notion of a conformational graph to specify the consensus structure of an RNA family. Tree decomposition yields a small tree width t for such conformation graphs (e.g., t = 2 for stem loops and only a slight increase for pseudo-knots). Within this modelling framework, the optimal alignment of a sequence to the structure model corresponds to finding a maximum valued isomorphic subgraph and consequently can be accomplished through dynamic programming on the tree decomposition of the conformational graph in time O(k(t)N(2)), where k is a small parameter; and N is the size of the projiled RNA structure. Experiments show that the application of the alignment algorithm to search in genomes yields the same search accuracy as methods based on a Covariance model with a significant reduction in computation time. In particular; very accurate searches of tmRNAs in bacteria genomes and of telomerase RNAs in yeast genomes can be accomplished in days, as opposed to months required by other methods. The tree decomposition based searching tool is free upon request and can be downloaded at our site h t t p ://w.uga.edu/RNA-informatics/software/index.php.
BrainLiner: A Neuroinformatics Platform for Sharing Time-Aligned Brain-Behavior Data
Takemiya, Makoto; Majima, Kei; Tsukamoto, Mitsuaki; Kamitani, Yukiyasu
2016-01-01
Data-driven neuroscience aims to find statistical relationships between brain activity and task behavior from large-scale datasets. To facilitate high-throughput data processing and modeling, we created BrainLiner as a web platform for sharing time-aligned, brain-behavior data. Using an HDF5-based data format, BrainLiner treats brain activity and data related to behavior with the same salience, aligning both behavioral and brain activity data on a common time axis. This facilitates learning the relationship between behavior and brain activity. Using a common data file format also simplifies data processing and analyses. Properties describing data are unambiguously defined using a schema, allowing machine-readable definition of data. The BrainLiner platform allows users to upload and download data, as well as to explore and search for data from the web platform. A WebGL-based data explorer can visualize highly detailed neurophysiological data from within the web browser, and a data-driven search feature allows users to search for similar time windows of data. This increases transparency, and allows for visual inspection of neural coding. BrainLiner thus provides an essential set of tools for data sharing and data-driven modeling. PMID:26858636
Brown, Peter; Pullan, Wayne; Yang, Yuedong; Zhou, Yaoqi
2016-02-01
The three dimensional tertiary structure of a protein at near atomic level resolution provides insight alluding to its function and evolution. As protein structure decides its functionality, similarity in structure usually implies similarity in function. As such, structure alignment techniques are often useful in the classifications of protein function. Given the rapidly growing rate of new, experimentally determined structures being made available from repositories such as the Protein Data Bank, fast and accurate computational structure comparison tools are required. This paper presents SPalignNS, a non-sequential protein structure alignment tool using a novel asymmetrical greedy search technique. The performance of SPalignNS was evaluated against existing sequential and non-sequential structure alignment methods by performing trials with commonly used datasets. These benchmark datasets used to gauge alignment accuracy include (i) 9538 pairwise alignments implied by the HOMSTRAD database of homologous proteins; (ii) a subset of 64 difficult alignments from set (i) that have low structure similarity; (iii) 199 pairwise alignments of proteins with similar structure but different topology; and (iv) a subset of 20 pairwise alignments from the RIPC set. SPalignNS is shown to achieve greater alignment accuracy (lower or comparable root-mean squared distance with increased structure overlap coverage) for all datasets, and the highest agreement with reference alignments from the challenging dataset (iv) above, when compared with both sequentially constrained alignments and other non-sequential alignments. SPalignNS was implemented in C++. The source code, binary executable, and a web server version is freely available at: http://sparks-lab.org yaoqi.zhou@griffith.edu.au. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Lommen, Arjen; van der Kamp, Henk J; Kools, Harrie J; van der Lee, Martijn K; van der Weg, Guido; Mol, Hans G J
2012-11-09
A new alternative data processing tool set, metAlignID, is developed for automated pre-processing and library-based identification and concentration estimation of target compounds after analysis by comprehensive two-dimensional gas chromatography with mass spectrometric detection. The tool set has been developed for and tested on LECO data. The software is developed to run multi-threaded (one thread per processor core) on a standard PC (personal computer) under different operating systems and is as such capable of processing multiple data sets simultaneously. Raw data files are converted into netCDF (network Common Data Form) format using a fast conversion tool. They are then preprocessed using previously developed algorithms originating from metAlign software. Next, the resulting reduced data files are searched against a user-composed library (derived from user or commercial NIST-compatible libraries) (NIST=National Institute of Standards and Technology) and the identified compounds, including an indicative concentration, are reported in Excel format. Data can be processed batch wise. The overall time needed for conversion together with processing and searching of 30 raw data sets for 560 compounds is routinely within an hour. The screening performance is evaluated for detection of pesticides and contaminants in raw data obtained after analysis of soil and plant samples. Results are compared to the existing data-handling routine based on proprietary software (LECO, ChromaTOF). The developed software tool set, which is freely downloadable at www.metalign.nl, greatly accelerates data-analysis and offers more options for fine-tuning automated identification toward specific application needs. The quality of the results obtained is slightly better than the standard processing and also adds a quantitative estimate. The software tool set in combination with two-dimensional gas chromatography coupled to time-of-flight mass spectrometry shows great potential as a highly-automated and fast multi-residue instrumental screening method. Copyright © 2012 Elsevier B.V. All rights reserved.
H-BLAST: a fast protein sequence alignment toolkit on heterogeneous computers with GPUs.
Ye, Weicai; Chen, Ying; Zhang, Yongdong; Xu, Yuesheng
2017-04-15
The sequence alignment is a fundamental problem in bioinformatics. BLAST is a routinely used tool for this purpose with over 118 000 citations in the past two decades. As the size of bio-sequence databases grows exponentially, the computational speed of alignment softwares must be improved. We develop the heterogeneous BLAST (H-BLAST), a fast parallel search tool for a heterogeneous computer that couples CPUs and GPUs, to accelerate BLASTX and BLASTP-basic tools of NCBI-BLAST. H-BLAST employs a locally decoupled seed-extension algorithm for better performance on GPUs, and offers a performance tuning mechanism for better efficiency among various CPUs and GPUs combinations. H-BLAST produces identical alignment results as NCBI-BLAST and its computational speed is much faster than that of NCBI-BLAST. Speedups achieved by H-BLAST over sequential NCBI-BLASTP (resp. NCBI-BLASTX) range mostly from 4 to 10 (resp. 5 to 7.2). With 2 CPU threads and 2 GPUs, H-BLAST can be faster than 16-threaded NCBI-BLASTX. Furthermore, H-BLAST is 1.5-4 times faster than GPU-BLAST. https://github.com/Yeyke/H-BLAST.git. yux06@syr.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Yu, Jia; Blom, Jochen; Sczyrba, Alexander; Goesmann, Alexander
2017-09-10
The introduction of next generation sequencing has caused a steady increase in the amounts of data that have to be processed in modern life science. Sequence alignment plays a key role in the analysis of sequencing data e.g. within whole genome sequencing or metagenome projects. BLAST is a commonly used alignment tool that was the standard approach for more than two decades, but in the last years faster alternatives have been proposed including RapSearch, GHOSTX, and DIAMOND. Here we introduce HAMOND, an application that uses Apache Hadoop to parallelize DIAMOND computation in order to scale-out the calculation of alignments. HAMOND is fault tolerant and scalable by utilizing large cloud computing infrastructures like Amazon Web Services. HAMOND has been tested in comparative genomics analyses and showed promising results both in efficiency and accuracy. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Dong, Runze; Pan, Shuo; Peng, Zhenling; Zhang, Yang; Yang, Jianyi
2018-05-21
With the rapid increase of the number of protein structures in the Protein Data Bank, it becomes urgent to develop algorithms for efficient protein structure comparisons. In this article, we present the mTM-align server, which consists of two closely related modules: one for structure database search and the other for multiple structure alignment. The database search is speeded up based on a heuristic algorithm and a hierarchical organization of the structures in the database. The multiple structure alignment is performed using the recently developed algorithm mTM-align. Benchmark tests demonstrate that our algorithms outperform other peering methods for both modules, in terms of speed and accuracy. One of the unique features for the server is the interplay between database search and multiple structure alignment. The server provides service not only for performing fast database search, but also for making accurate multiple structure alignment with the structures found by the search. For the database search, it takes about 2-5 min for a structure of a medium size (∼300 residues). For the multiple structure alignment, it takes a few seconds for ∼10 structures of medium sizes. The server is freely available at: http://yanglab.nankai.edu.cn/mTM-align/.
BEAUTY-X: enhanced BLAST searches for DNA queries.
Worley, K C; Culpepper, P; Wiese, B A; Smith, R F
1998-01-01
BEAUTY (BLAST Enhanced Alignment Utility) is an enhanced version of the BLAST database search tool that facilitates identification of the functions of matched sequences. Three recent improvements to the BEAUTY program described here make the enhanced output (1) available for DNA queries, (2) available for searches of any protein database, and (3) more up-to-date, with periodic updates of the domain information. BEAUTY searches of the NCBI and EMBL non-redundant protein sequence databases are available from the BCM Search Launcher Web pages (http://gc.bcm.tmc. edu:8088/search-launcher/launcher.html). BEAUTY Post-Processing of submitted search results is available using the BCM Search Launcher Batch Client (version 2.6) (ftp://gc.bcm.tmc. edu/pub/software/search-launcher/). Example figures are available at http://dot.bcm.tmc. edu:9331/papers/beautypp.html (kworley,culpep)@bcm.tmc.edu
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments.
Daily, Jeff
2016-02-10
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an implementation based on Farrar's 'striped' approach. Rognes's SWIPE optimal database search application is still generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino acids. However, Parasail was faster for longer sequences. For global alignments, Parasail's prefix scan implementation is generally the fastest, faster even than Farrar's 'striped' approach, however the opal library is faster for single-threaded applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. Applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.
Goonesekere, Nalin Cw
2009-01-01
The large numbers of protein sequences generated by whole genome sequencing projects require rapid and accurate methods of annotation. The detection of homology through computational sequence analysis is a powerful tool in determining the complex evolutionary and functional relationships that exist between proteins. Homology search algorithms employ amino acid substitution matrices to detect similarity between proteins sequences. The substitution matrices in common use today are constructed using sequences aligned without reference to protein structure. Here we present amino acid substitution matrices constructed from the alignment of a large number of protein domain structures from the structural classification of proteins (SCOP) database. We show that when incorporated into the homology search algorithms BLAST and PSI-blast, the structure-based substitution matrices enhance the efficacy of detecting remote homologs.
ERIC Educational Resources Information Center
Wefer, Stephen H.
2003-01-01
"Name That Gene" is a simple classroom activity that incorporates bioinformatics (available biological information) into the classroom using "Basic Logical Alignment Search Tool (BLAST)." An excellent classroom activity involving bioinformatics and "BLAST" has been previously explored using sequences from bacteria, but it is tailored for college…
Nawrocki, Eric P.; Burge, Sarah W.
2013-01-01
The development of RNA bioinformatic tools began more than 30 y ago with the description of the Nussinov and Zuker dynamic programming algorithms for single sequence RNA secondary structure prediction. Since then, many tools have been developed for various RNA sequence analysis problems such as homology search, multiple sequence alignment, de novo RNA discovery, read-mapping, and many more. In this issue, we have collected a sampling of reviews and original research that demonstrate some of the many ways bioinformatics is integrated with current RNA biology research. PMID:23948768
GuiTope: an application for mapping random-sequence peptides to protein sequences.
Halperin, Rebecca F; Stafford, Phillip; Emery, Jack S; Navalkar, Krupa Arun; Johnston, Stephen Albert
2012-01-03
Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC) at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.
Indicators and Measurement Tools for Health Systems Integration: A Knowledge Synthesis.
Suter, Esther; Oelke, Nelly D; da Silva Lima, Maria Alice Dias; Stiphout, Michelle; Janke, Robert; Witt, Regina Rigatto; Van Vliet-Brown, Cheryl; Schill, Kaela; Rostami, Mahnoush; Hepp, Shelanne; Birney, Arden; Al-Roubaiai, Fatima; Marques, Giselda Quintana
2017-11-13
Despite far reaching support for integrated care, conceptualizing and measuring integrated care remains challenging. This knowledge synthesis aimed to identify indicator domains and tools to measure progress towards integrated care. We used an established framework and a Delphi survey with integration experts to identify relevant measurement domains. For each domain, we searched and reviewed the literature for relevant tools. From 7,133 abstracts, we retrieved 114 unique tools. We found many quality tools to measure care coordination, patient engagement and team effectiveness/performance. In contrast, there were few tools in the domains of performance measurement and information systems, alignment of organizational goals and resource allocation. The search yielded 12 tools that measure overall integration or three or more indicator domains. Our findings highlight a continued gap in tools to measure foundational components that support integrated care. In the absence of such targeted tools, "overall integration" tools may be useful for a broad assessment of the overall state of a system. Continued progress towards integrated care depends on our ability to evaluate the success of strategies across different levels and context. This study has identified 114 tools that measure integrated care across 16 domains, supporting efforts towards a unified measurement framework.
Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments
Yim, Won Cheol; Cushman, John C.
2017-07-22
Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less
Divide and Conquer (DC) BLAST: fast and easy BLAST execution within HPC environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yim, Won Cheol; Cushman, John C.
Bioinformatics is currently faced with very large-scale data sets that lead to computational jobs, especially sequence similarity searches, that can take absurdly long times to run. For example, the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST and BLAST+) suite, which is by far the most widely used tool for rapid similarity searching among nucleic acid or amino acid sequences, is highly central processing unit (CPU) intensive. While the BLAST suite of programs perform searches very rapidly, they have the potential to be accelerated. In recent years, distributed computing environments have become more widely accessible andmore » used due to the increasing availability of high-performance computing (HPC) systems. Therefore, simple solutions for data parallelization are needed to expedite BLAST and other sequence analysis tools. However, existing software for parallel sequence similarity searches often requires extensive computational experience and skill on the part of the user. In order to accelerate BLAST and other sequence analysis tools, Divide and Conquer BLAST (DCBLAST) was developed to perform NCBI BLAST searches within a cluster, grid, or HPC environment by using a query sequence distribution approach. Scaling from one (1) to 256 CPU cores resulted in significant improvements in processing speed. Thus, DCBLAST dramatically accelerates the execution of BLAST searches using a simple, accessible, robust, and parallel approach. DCBLAST works across multiple nodes automatically and it overcomes the speed limitation of single-node BLAST programs. DCBLAST can be used on any HPC system, can take advantage of hundreds of nodes, and has no output limitations. Thus, this freely available tool simplifies distributed computation pipelines to facilitate the rapid discovery of sequence similarities between very large data sets.« less
Parallel seed-based approach to multiple protein structure similarities detection
Chapuis, Guillaume; Le Boudic-Jamin, Mathilde; Andonov, Rumen; ...
2015-01-01
Finding similarities between protein structures is a crucial task in molecular biology. Most of the existing tools require proteins to be aligned in order-preserving way and only find single alignments even when multiple similar regions exist. We propose a new seed-based approach that discovers multiple pairs of similar regions. Its computational complexity is polynomial and it comes with a quality guarantee—the returned alignments have both root mean squared deviations (coordinate-based as well as internal-distances based) lower than a given threshold, if such exist. We do not require the alignments to be order preserving (i.e., we consider nonsequential alignments), which makesmore » our algorithm suitable for detecting similar domains when comparing multidomain proteins as well as to detect structural repetitions within a single protein. Because the search space for nonsequential alignments is much larger than for sequential ones, the computational burden is addressed by extensive use of parallel computing techniques: a coarse-grain level parallelism making use of available CPU cores for computation and a fine-grain level parallelism exploiting bit-level concurrency as well as vector instructions.« less
Chang, Suhua; Zhang, Jiajie; Liao, Xiaoyun; Zhu, Xinxing; Wang, Dahai; Zhu, Jiang; Feng, Tao; Zhu, Baoli; Gao, George F; Wang, Jian; Yang, Huanming; Yu, Jun; Wang, Jing
2007-01-01
Frequent outbreaks of highly pathogenic avian influenza and the increasing data available for comparative analysis require a central database specialized in influenza viruses (IVs). We have established the Influenza Virus Database (IVDB) to integrate information and create an analysis platform for genetic, genomic, and phylogenetic studies of the virus. IVDB hosts complete genome sequences of influenza A virus generated by Beijing Institute of Genomics (BIG) and curates all other published IV sequences after expert annotation. Our Q-Filter system classifies and ranks all nucleotide sequences into seven categories according to sequence content and integrity. IVDB provides a series of tools and viewers for comparative analysis of the viral genomes, genes, genetic polymorphisms and phylogenetic relationships. A search system has been developed for users to retrieve a combination of different data types by setting search options. To facilitate analysis of global viral transmission and evolution, the IV Sequence Distribution Tool (IVDT) has been developed to display the worldwide geographic distribution of chosen viral genotypes and to couple genomic data with epidemiological data. The BLAST, multiple sequence alignment and phylogenetic analysis tools were integrated for online data analysis. Furthermore, IVDB offers instant access to pre-computed alignments and polymorphisms of IV genes and proteins, and presents the results as SNP distribution plots and minor allele distributions. IVDB is publicly available at http://influenza.genomics.org.cn.
ARYANA: Aligning Reads by Yet Another Approach
2014-01-01
Motivation Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $106 prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. Contribution We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. Availability ARYANA with complete source code can be obtained from http://github.com/aryana-aligner PMID:25252881
ARYANA: Aligning Reads by Yet Another Approach.
Gholami, Milad; Arbabi, Aryan; Sharifi-Zarchi, Ali; Chitsaz, Hamidreza; Sadeghi, Mehdi
2014-01-01
Although there are many different algorithms and software tools for aligning sequencing reads, fast gapped sequence search is far from solved. Strong interest in fast alignment is best reflected in the $10(6) prize for the Innocentive competition on aligning a collection of reads to a given database of reference genomes. In addition, de novo assembly of next-generation sequencing long reads requires fast overlap-layout-concensus algorithms which depend on fast and accurate alignment. We introduce ARYANA, a fast gapped read aligner, developed on the base of BWA indexing infrastructure with a completely new alignment engine that makes it significantly faster than three other aligners: Bowtie2, BWA and SeqAlto, with comparable generality and accuracy. Instead of the time-consuming backtracking procedures for handling mismatches, ARYANA comes with the seed-and-extend algorithmic framework and a significantly improved efficiency by integrating novel algorithmic techniques including dynamic seed selection, bidirectional seed extension, reset-free hash tables, and gap-filling dynamic programming. As the read length increases ARYANA's superiority in terms of speed and alignment rate becomes more evident. This is in perfect harmony with the read length trend as the sequencing technologies evolve. The algorithmic platform of ARYANA makes it easy to develop mission-specific aligners for other applications using ARYANA engine. ARYANA with complete source code can be obtained from http://github.com/aryana-aligner.
Gomersall, Judith Streak; Canuto, Karla; Aromataris, Edoardo; Braunack-Mayer, Annette; Brown, Alex
2016-02-01
To describe the main characteristics of systematic reviews addressing questions of chronic disease and related risk factors for Indigenous Australians. We searched databases for systematic reviews meeting inclusion criteria. Two reviewers assessed quality and extracted characteristics using pre-defined tools. We identified 14 systematic reviews. Seven synthesised evidence about health intervention effectiveness; four addressed chronic disease or risk factor prevalence; and six conducted critical appraisal as per current best practice. Only three reported steps to align the review with standards for ethical research with Indigenous Australians and/or capture Indigenous-specific knowledge. Most called for more high-quality research. Systematic review is an under-utilised method for gathering evidence to inform chronic disease prevention and management for Indigenous Australians. Relevance of future systematic reviews could be improved by: 1) aligning questions with community priorities as well as decision maker needs; 2) involvement of, and leadership by, Indigenous researchers with relevant cultural and contextual knowledge; iii) use of critical appraisal tools that include traditional risk of bias assessment criteria and criteria that reflect Indigenous standards of appropriate research. Systematic review method guidance, tools and reporting standards are required to ensure alignment with ethical obligations and promote rigor and relevance. © 2015 Public Health Association of Australia.
ERIC Educational Resources Information Center
Tillema, Harm; Leenknecht, Martijn; Segers, Mien
2011-01-01
The interest in "assessment for learning" (AfL) has resulted in a search for new modes of assessment that are better aligned to students' learning how to learn. However, with the introduction of new assessment tools, also questions arose with respect to the quality of its measurement. On the one hand, the appropriateness of traditional,…
Indicators and Measurement Tools for Health Systems Integration: A Knowledge Synthesis
Oelke, Nelly D.; da Silva Lima, Maria Alice Dias; Stiphout, Michelle; Janke, Robert; Witt, Regina Rigatto; Van Vliet-Brown, Cheryl; Schill, Kaela; Rostami, Mahnoush; Hepp, Shelanne; Birney, Arden; Al-Roubaiai, Fatima; Marques, Giselda Quintana
2017-01-01
Background: Despite far reaching support for integrated care, conceptualizing and measuring integrated care remains challenging. This knowledge synthesis aimed to identify indicator domains and tools to measure progress towards integrated care. Methods: We used an established framework and a Delphi survey with integration experts to identify relevant measurement domains. For each domain, we searched and reviewed the literature for relevant tools. Findings: From 7,133 abstracts, we retrieved 114 unique tools. We found many quality tools to measure care coordination, patient engagement and team effectiveness/performance. In contrast, there were few tools in the domains of performance measurement and information systems, alignment of organizational goals and resource allocation. The search yielded 12 tools that measure overall integration or three or more indicator domains. Discussion: Our findings highlight a continued gap in tools to measure foundational components that support integrated care. In the absence of such targeted tools, “overall integration” tools may be useful for a broad assessment of the overall state of a system. Conclusions: Continued progress towards integrated care depends on our ability to evaluate the success of strategies across different levels and context. This study has identified 114 tools that measure integrated care across 16 domains, supporting efforts towards a unified measurement framework. PMID:29588637
Simultaneous phylogeny reconstruction and multiple sequence alignment
Yue, Feng; Shi, Jian; Tang, Jijun
2009-01-01
Background A phylogeny is the evolutionary history of a group of organisms. To date, sequence data is still the most used data type for phylogenetic reconstruction. Before any sequences can be used for phylogeny reconstruction, they must be aligned, and the quality of the multiple sequence alignment has been shown to affect the quality of the inferred phylogeny. At the same time, all the current multiple sequence alignment programs use a guide tree to produce the alignment and experiments showed that good guide trees can significantly improve the multiple alignment quality. Results We devise a new algorithm to simultaneously align multiple sequences and search for the phylogenetic tree that leads to the best alignment. We also implemented the algorithm as a C program package, which can handle both DNA and protein data and can take simple cost model as well as complex substitution matrices, such as PAM250 or BLOSUM62. The performance of the new method are compared with those from other popular multiple sequence alignment tools, including the widely used programs such as ClustalW and T-Coffee. Experimental results suggest that this method has good performance in terms of both phylogeny accuracy and alignment quality. Conclusion We present an algorithm to align multiple sequences and reconstruct the phylogenies that minimize the alignment score, which is based on an efficient algorithm to solve the median problems for three sequences. Our extensive experiments suggest that this method is very promising and can produce high quality phylogenies and alignments. PMID:19208110
Biswas, Ambarish; Brown, Chris M
2014-06-08
Gene expression in vertebrate cells may be controlled post-transcriptionally through regulatory elements in mRNAs. These are usually located in the untranslated regions (UTRs) of mRNA sequences, particularly the 3'UTRs. Scan for Motifs (SFM) simplifies the process of identifying a wide range of regulatory elements on alignments of vertebrate 3'UTRs. SFM includes identification of both RNA Binding Protein (RBP) sites and targets of miRNAs. In addition to searching pre-computed alignments, the tool provides users the flexibility to search their own sequences or alignments. The regulatory elements may be filtered by expected value cutoffs and are cross-referenced back to their respective sources and literature. The output is an interactive graphical representation, highlighting potential regulatory elements and overlaps between them. The output also provides simple statistics and links to related resources for complementary analyses. The overall process is intuitive and fast. As SFM is a free web-application, the user does not need to install any software or databases. Visualisation of the binding sites of different classes of effectors that bind to 3'UTRs will facilitate the study of regulatory elements in 3' UTRs.
SS-Wrapper: a package of wrapper applications for similarity searches on Linux clusters.
Wang, Chunlin; Lefkowitz, Elliot J
2004-10-28
Large-scale sequence comparison is a powerful tool for biological inference in modern molecular biology. Comparing new sequences to those in annotated databases is a useful source of functional and structural information about these sequences. Using software such as the basic local alignment search tool (BLAST) or HMMPFAM to identify statistically significant matches between newly sequenced segments of genetic material and those in databases is an important task for most molecular biologists. Searching algorithms are intrinsically slow and data-intensive, especially in light of the rapid growth of biological sequence databases due to the emergence of high throughput DNA sequencing techniques. Thus, traditional bioinformatics tools are impractical on PCs and even on dedicated UNIX servers. To take advantage of larger databases and more reliable methods, high performance computation becomes necessary. We describe the implementation of SS-Wrapper (Similarity Search Wrapper), a package of wrapper applications that can parallelize similarity search applications on a Linux cluster. Our wrapper utilizes a query segmentation-search (QS-search) approach to parallelize sequence database search applications. It takes into consideration load balancing between each node on the cluster to maximize resource usage. QS-search is designed to wrap many different search tools, such as BLAST and HMMPFAM using the same interface. This implementation does not alter the original program, so newly obtained programs and program updates should be accommodated easily. Benchmark experiments using QS-search to optimize BLAST and HMMPFAM showed that QS-search accelerated the performance of these programs almost linearly in proportion to the number of CPUs used. We have also implemented a wrapper that utilizes a database segmentation approach (DS-BLAST) that provides a complementary solution for BLAST searches when the database is too large to fit into the memory of a single node. Used together, QS-search and DS-BLAST provide a flexible solution to adapt sequential similarity searching applications in high performance computing environments. Their ease of use and their ability to wrap a variety of database search programs provide an analytical architecture to assist both the seasoned bioinformaticist and the wet-bench biologist.
SS-Wrapper: a package of wrapper applications for similarity searches on Linux clusters
Wang, Chunlin; Lefkowitz, Elliot J
2004-01-01
Background Large-scale sequence comparison is a powerful tool for biological inference in modern molecular biology. Comparing new sequences to those in annotated databases is a useful source of functional and structural information about these sequences. Using software such as the basic local alignment search tool (BLAST) or HMMPFAM to identify statistically significant matches between newly sequenced segments of genetic material and those in databases is an important task for most molecular biologists. Searching algorithms are intrinsically slow and data-intensive, especially in light of the rapid growth of biological sequence databases due to the emergence of high throughput DNA sequencing techniques. Thus, traditional bioinformatics tools are impractical on PCs and even on dedicated UNIX servers. To take advantage of larger databases and more reliable methods, high performance computation becomes necessary. Results We describe the implementation of SS-Wrapper (Similarity Search Wrapper), a package of wrapper applications that can parallelize similarity search applications on a Linux cluster. Our wrapper utilizes a query segmentation-search (QS-search) approach to parallelize sequence database search applications. It takes into consideration load balancing between each node on the cluster to maximize resource usage. QS-search is designed to wrap many different search tools, such as BLAST and HMMPFAM using the same interface. This implementation does not alter the original program, so newly obtained programs and program updates should be accommodated easily. Benchmark experiments using QS-search to optimize BLAST and HMMPFAM showed that QS-search accelerated the performance of these programs almost linearly in proportion to the number of CPUs used. We have also implemented a wrapper that utilizes a database segmentation approach (DS-BLAST) that provides a complementary solution for BLAST searches when the database is too large to fit into the memory of a single node. Conclusions Used together, QS-search and DS-BLAST provide a flexible solution to adapt sequential similarity searching applications in high performance computing environments. Their ease of use and their ability to wrap a variety of database search programs provide an analytical architecture to assist both the seasoned bioinformaticist and the wet-bench biologist. PMID:15511296
Embedding strategies for effective use of information from multiple sequence alignments.
Henikoff, S.; Henikoff, J. G.
1997-01-01
We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain. PMID:9070452
PFAAT version 2.0: a tool for editing, annotating, and analyzing multiple sequence alignments.
Caffrey, Daniel R; Dana, Paul H; Mathur, Vidhya; Ocano, Marco; Hong, Eun-Jong; Wang, Yaoyu E; Somaroo, Shyamal; Caffrey, Brian E; Potluri, Shobha; Huang, Enoch S
2007-10-11
By virtue of their shared ancestry, homologous sequences are similar in their structure and function. Consequently, multiple sequence alignments are routinely used to identify trends that relate to function. This type of analysis is particularly productive when it is combined with structural and phylogenetic analysis. Here we describe the release of PFAAT version 2.0, a tool for editing, analyzing, and annotating multiple sequence alignments. Support for multiple annotations is a key component of this release as it provides a framework for most of the new functionalities. The sequence annotations are accessible from the alignment and tree, where they are typically used to label sequences or hyperlink them to related databases. Sequence annotations can be created manually or extracted automatically from UniProt entries. Once a multiple sequence alignment is populated with sequence annotations, sequences can be easily selected and sorted through a sophisticated search dialog. The selected sequences can be further analyzed using statistical methods that explicitly model relationships between the sequence annotations and residue properties. Residue annotations are accessible from the alignment viewer and are typically used to designate binding sites or properties for a particular residue. Residue annotations are also searchable, and allow one to quickly select alignment columns for further sequence analysis, e.g. computing percent identities. Other features include: novel algorithms to compute sequence conservation, mapping conservation scores to a 3D structure in Jmol, displaying secondary structure elements, and sorting sequences by residue composition. PFAAT provides a framework whereby end-users can specify knowledge for a protein family in the form of annotation. The annotations can be combined with sophisticated analysis to test hypothesis that relate to sequence, structure and function.
The LANL hemorrhagic fever virus database, a new platform for analyzing biothreat viruses.
Kuiken, Carla; Thurmond, Jim; Dimitrijevic, Mira; Yoon, Hyejin
2012-01-01
Hemorrhagic fever viruses (HFVs) are a diverse set of over 80 viral species, found in 10 different genera comprising five different families: arena-, bunya-, flavi-, filo- and togaviridae. All these viruses are highly variable and evolve rapidly, making them elusive targets for the immune system and for vaccine and drug design. About 55,000 HFV sequences exist in the public domain today. A central website that provides annotated sequences and analysis tools will be helpful to HFV researchers worldwide. The HFV sequence database collects and stores sequence data and provides a user-friendly search interface and a large number of sequence analysis tools, following the model of the highly regarded and widely used Los Alamos HIV database [Kuiken, C., B. Korber, and R.W. Shafer, HIV sequence databases. AIDS Rev, 2003. 5: p. 52-61]. The database uses an algorithm that aligns each sequence to a species-wide reference sequence. The NCBI RefSeq database [Sayers et al. (2011) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res., 39, D38-D51.] is used for this; if a reference sequence is not available, a Blast search finds the best candidate. Using this method, sequences in each genus can be retrieved pre-aligned. The HFV website can be accessed via http://hfv.lanl.gov.
Chimpanzee ‘folk physics’: bringing failures into focus
Seed, Amanda; Seddon, Eleanor; Greene, Bláthnaid; Call, Josep
2012-01-01
Differences between individuals are the raw material from which theories of the evolution and ontogeny of cognition are built. For example, when 4-year-old children pass a test requiring them to communicate the content of another's falsely held belief, while 3-year-olds fail, we know that something must change over the course of the third year of life. In the search for what develops or evolves, the typical route is to probe the extents and limits of successful individuals' ability. Another is to focus on those that failed, and find out what difference or lack prevented them from passing the task. Recent research in developmental psychology has harnessed individual differences to illuminate the cognitive mechanisms that emerge to enable success. We apply this approach to explaining some of the failures made by chimpanzees when using tools to solve problems. Twelve of 16 chimpanzees failed to discriminate between a complete and a broken tool when, after being set down, the ends of the broken one were aligned in front of them. There was a correlation between performance on this aligned task and another in which after being set down, the centre of both tools was covered, suggesting that the limiting factor was not the representation of connection, but memory or attention. Some chimpanzees that passed the aligned task passed a task in which the location of the broken tool was never visible but had to be inferred. PMID:22927573
NASA Technical Reports Server (NTRS)
Wheeler, Ward C.
2003-01-01
A method to align sequence data based on parsimonious synapomorphy schemes generated by direct optimization (DO; earlier termed optimization alignment) is proposed. DO directly diagnoses sequence data on cladograms without an intervening multiple-alignment step, thereby creating topology-specific, dynamic homology statements. Hence, no multiple-alignment is required to generate cladograms. Unlike general and globally optimal multiple-alignment procedures, the method described here, implied alignment (IA), takes these dynamic homologies and traces them back through a single cladogram, linking the unaligned sequence positions in the terminal taxa via DO transformation series. These "lines of correspondence" link ancestor-descendent states and, when displayed as linearly arrayed columns without hypothetical ancestors, are largely indistinguishable from standard multiple alignment. Since this method is based on synapomorphy, the treatment of certain classes of insertion-deletion (indel) events may be different from that of other alignment procedures. As with all alignment methods, results are dependent on parameter assumptions such as indel cost and transversion:transition ratios. Such an IA could be used as a basis for phylogenetic search, but this would be questionable since the homologies derived from the implied alignment depend on its natal cladogram and any variance, between DO and IA + Search, due to heuristic approach. The utility of this procedure in heuristic cladogram searches using DO and the improvement of heuristic cladogram cost calculations are discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
Di Pietro, C; Di Pietro, V; Emmanuele, G; Ferro, A; Maugeri, T; Modica, E; Pigola, G; Pulvirenti, A; Purrello, M; Ragusa, M; Scalia, M; Shasha, D; Travali, S; Zimmitti, V
2003-01-01
In this paper we present a new Multiple Sequence Alignment (MSA) algorithm called AntiClusAl. The method makes use of the commonly use idea of aligning homologous sequences belonging to classes generated by some clustering algorithm, and then continue the alignment process ina bottom-up way along a suitable tree structure. The final result is then read at the root of the tree. Multiple sequence alignment in each cluster makes use of the progressive alignment with the 1-median (center) of the cluster. The 1-median of set S of sequences is the element of S which minimizes the average distance from any other sequence in S. Its exact computation requires quadratic time. The basic idea of our proposed algorithm is to make use of a simple and natural algorithmic technique based on randomized tournaments which has been successfully applied to large size search problems in general metric spaces. In particular a clustering algorithm called Antipole tree and an approximate linear 1-median computation are used. Our algorithm compared with Clustal W, a widely used tool to MSA, shows a better running time results with fully comparable alignment quality. A successful biological application showing high aminoacid conservation during evolution of Xenopus laevis SOD2 is also cited.
Darwin v. 2.0: an interpreted computer language for the biosciences.
Gonnet, G H; Hallett, M T; Korostensky, C; Bernardin, L
2000-02-01
We announce the availability of the second release of Darwin v. 2.0, an interpreted computer language especially tailored to researchers in the biosciences. The system is a general tool applicable to a wide range of problems. This second release improves Darwin version 1.6 in several ways: it now contains (1) a larger set of libraries touching most of the classical problems from computational biology (pairwise alignment, all versus all alignments, tree construction, multiple sequence alignment), (2) an expanded set of general purpose algorithms (search algorithms for discrete problems, matrix decomposition routines, complex/long integer arithmetic operations), (3) an improved language with a cleaner syntax, (4) better on-line help, and (5) a number of fixes to user-reported bugs. Darwin is made available for most operating systems free of char ge from the Computational Biochemistry Research Group (CBRG), reachable at http://chrg.inf.ethz.ch. darwin@inf.ethz.ch
Automated Ontology Alignment with Fuselets for Community of Interest (COI) Integration
2008-09-01
Search Example ............................................................................... 22 Figure 8 - Federated Search Example Revisited...integrating information from various sources through a single query. This is the traditional federated search problem, where the sources don’t...Figure 7 - Federated Search Example For the data sources in the graphic above, the ontologies align in a fairly straightforward manner
Smith, R F; Wiese, B A; Wojzynski, M K; Davison, D B; Worley, K C
1996-05-01
The BCM Search Launcher is an integrated set of World Wide Web (WWW) pages that organize molecular biology-related search and analysis services available on the WWW by function, and provide a single point of entry for related searches. The Protein Sequence Search Page, for example, provides a single sequence entry form for submitting sequences to WWW servers that offer remote access to a variety of different protein sequence search tools, including BLAST, FASTA, Smith-Waterman, BEAUTY, PROSITE, and BLOCKS searches. Other Launch pages provide access to (1) nucleic acid sequence searches, (2) multiple and pair-wise sequence alignments, (3) gene feature searches, (4) protein secondary structure prediction, and (5) miscellaneous sequence utilities (e.g., six-frame translation). The BCM Search Launcher also provides a mechanism to extend the utility of other WWW services by adding supplementary hypertext links to results returned by remote servers. For example, links to the NCBI's Entrez data base and to the Sequence Retrieval System (SRS) are added to search results returned by the NCBI's WWW BLAST server. These links provide easy access to auxiliary information, such as Medline abstracts, that can be extremely helpful when analyzing BLAST data base hits. For new or infrequent users of sequence data base search tools, we have preset the default search parameters to provide the most informative first-pass sequence analysis possible. We have also developed a batch client interface for Unix and Macintosh computers that allows multiple input sequences to be searched automatically as a background task, with the results returned as individual HTML documents directly to the user's system. The BCM Search Launcher and batch client are available on the WWW at URL http:@gc.bcm.tmc.edu:8088/search-launcher.html.
A Real-Time All-Atom Structural Search Engine for Proteins
Gonzalez, Gabriel; Hannigan, Brett; DeGrado, William F.
2014-01-01
Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream of search results aligned to their query within a few seconds. This instant feedback cycle enables a new “designability”-inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions, and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license). PMID:25079944
A real-time all-atom structural search engine for proteins.
Gonzalez, Gabriel; Hannigan, Brett; DeGrado, William F
2014-07-01
Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream of search results aligned to their query within a few seconds. This instant feedback cycle enables a new "designability"-inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions, and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license).
Kinjo, Akira R.; Nakamura, Haruki
2012-01-01
Comparison and classification of protein structures are fundamental means to understand protein functions. Due to the computational difficulty and the ever-increasing amount of structural data, however, it is in general not feasible to perform exhaustive all-against-all structure comparisons necessary for comprehensive classifications. To efficiently handle such situations, we have previously proposed a method, now called GIRAF. We herein describe further improvements in the GIRAF protein structure search and alignment method. The GIRAF method achieves extremely efficient search of similar structures of ligand binding sites of proteins by exploiting database indexing of structural features of local coordinate frames. In addition, it produces refined atom-wise alignments by iterative applications of the Hungarian method to the bipartite graph defined for a pair of superimposed structures. By combining the refined alignments based on different local coordinate frames, it is made possible to align structures involving domain movements. We provide detailed accounts for the database design, the search and alignment algorithms as well as some benchmark results. PMID:27493524
ModeRNA server: an online tool for modeling RNA 3D structures.
Rother, Magdalena; Milanowska, Kaja; Puton, Tomasz; Jeleniewicz, Jaroslaw; Rother, Kristian; Bujnicki, Janusz M
2011-09-01
The diverse functional roles of non-coding RNA molecules are determined by their underlying structure. ModeRNA server is an online tool for RNA 3D structure modeling by the comparative approach, based on a template RNA structure and a user-defined target-template sequence alignment. It offers an option to search for potential templates, given the target sequence. The server also provides tools for analyzing, editing and formatting of RNA structure files. It facilitates the use of the ModeRNA software and offers new options in comparison to the standalone program. ModeRNA server was implemented using the Python language and the Django web framework. It is freely available at http://iimcb.genesilico.pl/modernaserver. iamb@genesilico.pl.
Tool post modification allows easy turret lathe cutting-tool alignment
NASA Technical Reports Server (NTRS)
Fouts, L.
1966-01-01
Modified tool holder and tool post permit alignment of turret lathe cutting tools on the center of the spindle. The tool is aligned with the spindle by the holder which is kept in position by a hydraulic lock in feature of the tool post. The tool post is used on horizontal and vertical turret lathes and other engine lathes.
The LANL hemorrhagic fever virus database, a new platform for analyzing biothreat viruses
Kuiken, Carla; Thurmond, Jim; Dimitrijevic, Mira; Yoon, Hyejin
2012-01-01
Hemorrhagic fever viruses (HFVs) are a diverse set of over 80 viral species, found in 10 different genera comprising five different families: arena-, bunya-, flavi-, filo- and togaviridae. All these viruses are highly variable and evolve rapidly, making them elusive targets for the immune system and for vaccine and drug design. About 55 000 HFV sequences exist in the public domain today. A central website that provides annotated sequences and analysis tools will be helpful to HFV researchers worldwide. The HFV sequence database collects and stores sequence data and provides a user-friendly search interface and a large number of sequence analysis tools, following the model of the highly regarded and widely used Los Alamos HIV database [Kuiken, C., B. Korber, and R.W. Shafer, HIV sequence databases. AIDS Rev, 2003. 5: p. 52–61]. The database uses an algorithm that aligns each sequence to a species-wide reference sequence. The NCBI RefSeq database [Sayers et al. (2011) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res., 39, D38–D51.] is used for this; if a reference sequence is not available, a Blast search finds the best candidate. Using this method, sequences in each genus can be retrieved pre-aligned. The HFV website can be accessed via http://hfv.lanl.gov. PMID:22064861
BowMapCL: Burrows-Wheeler Mapping on Multiple Heterogeneous Accelerators.
Nogueira, David; Tomas, Pedro; Roma, Nuno
2016-01-01
The computational demand of exact-search procedures has pressed the exploitation of parallel processing accelerators to reduce the execution time of many applications. However, this often imposes strict restrictions in terms of the problem size and implementation efforts, mainly due to their possibly distinct architectures. To circumvent this limitation, a new exact-search alignment tool (BowMapCL) based on the Burrows-Wheeler Transform and FM-Index is presented. Contrasting to other alternatives, BowMapCL is based on a unified implementation using OpenCL, allowing the exploitation of multiple and possibly different devices (e.g., NVIDIA, AMD/ATI, and Intel GPUs/APUs). Furthermore, to efficiently exploit such heterogeneous architectures, BowMapCL incorporates several techniques to promote its performance and scalability, including multiple buffering, work-queue task-distribution, and dynamic load-balancing, together with index partitioning, bit-encoding, and sampling. When compared with state-of-the-art tools, the attained results showed that BowMapCL (using a single GPU) is 2 × to 7.5 × faster than mainstream multi-threaded CPU BWT-based aligners, like Bowtie, BWA, and SOAP2; and up to 4 × faster than the best performing state-of-the-art GPU implementations (namely, SOAP3 and HPG-BWT). When multiple and completely distinct devices are considered, BowMapCL efficiently scales the offered throughput, ensuring a convenient load-balance of the involved processing in the several distinct devices.
Dfam: a database of repetitive DNA based on profile hidden Markov models.
Wheeler, Travis J; Clements, Jody; Eddy, Sean R; Hubley, Robert; Jones, Thomas A; Jurka, Jerzy; Smit, Arian F A; Finn, Robert D
2013-01-01
We present a database of repetitive DNA elements, called Dfam (http://dfam.janelia.org). Many genomes contain a large fraction of repetitive DNA, much of which is made up of remnants of transposable elements (TEs). Accurate annotation of TEs enables research into their biology and can shed light on the evolutionary processes that shape genomes. Identification and masking of TEs can also greatly simplify many downstream genome annotation and sequence analysis tasks. The commonly used TE annotation tools RepeatMasker and Censor depend on sequence homology search tools such as cross_match and BLAST variants, as well as Repbase, a collection of known TE families each represented by a single consensus sequence. Dfam contains entries corresponding to all Repbase TE entries for which instances have been found in the human genome. Each Dfam entry is represented by a profile hidden Markov model, built from alignments generated using RepeatMasker and Repbase. When used in conjunction with the hidden Markov model search tool nhmmer, Dfam produces a 2.9% increase in coverage over consensus sequence search methods on a large human benchmark, while maintaining low false discovery rates, and coverage of the full human genome is 54.5%. The website provides a collection of tools and data views to support improved TE curation and annotation efforts. Dfam is also available for download in flat file format or in the form of MySQL table dumps.
Query-seeded iterative sequence similarity searching improves selectivity 5–20-fold
Li, Weizhong; Lopez, Rodrigo
2017-01-01
Abstract Iterative similarity search programs, like psiblast, jackhmmer, and psisearch, are much more sensitive than pairwise similarity search methods like blast and ssearch because they build a position specific scoring model (a PSSM or HMM) that captures the pattern of sequence conservation characteristic to a protein family. But models are subject to contamination; once an unrelated sequence has been added to the model, homologs of the unrelated sequence will also produce high scores, and the model can diverge from the original protein family. Examination of alignment errors during psiblast PSSM contamination suggested a simple strategy for dramatically reducing PSSM contamination. psiblast PSSMs are built from the query-based multiple sequence alignment (MSA) implied by the pairwise alignments between the query model (PSSM, HMM) and the subject sequences in the library. When the original query sequence residues are inserted into gapped positions in the aligned subject sequence, the resulting PSSM rarely produces alignment over-extensions or alignments to unrelated sequences. This simple step, which tends to anchor the PSSM to the original query sequence and slightly increase target percent identity, can reduce the frequency of false-positive alignments more than 20-fold compared with psiblast and jackhmmer, with little loss in search sensitivity. PMID:27923999
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Jeffrey A.
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments
Daily, Jeffrey A.
2016-02-10
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less
Non-lethal sampling for the detection of Myxobolus cerebralis in asymptomatic rainbow trout
Schill, Bane; Waldrop, Thomas; Densmore, Christine; Blazer, Vicki
1999-01-01
We have described in previous reports (Schill et al., 1998) the development of a polymerase chain reaction (PCR) amplification of 18S ribosomal RNA for the detection of Myxozoan parasites. Oligonucleotide primers were developed by multiple alignment of Myxozoan sequence information and analysis by a custom-written computer program (PRIM). Candidate pairs of primer sequences were then analyzed for specificity by BLAST (Basic Local Alignment Search Tool). From these, a set of promising primers (MYXFWD and MYXREV) was chosen for further testing. These were chosen because they should direct detection of a number of Myxozoan species (Table 1). PCR using MXYFWD and MYXREV proved to be robust and relatively free of artifact products. Further, we were able to routinely detect Myxobolus cerebralis in fish tissues (Figure 1).
Hostnik, Peter; Picard-Meyer, Evelyne; Rihtarič, Danijela; Toplak, Ivan; Cliquet, Florence
2014-04-01
Oral vaccination campaigns to eliminate fox rabies were initiated in Slovenia in 1995. In May 2012, a young fox (Vulpes vulpes) with typical rabies signs was captured. Its brain and salivary gland tissues were found to contain vaccine strain SAD B19. The Basic Logical Alignment Search Tool alignment of 589 nucleotides determined from the N gene of the virus isolated from the brain and salivary glands of the affected fox was 100% identical to the GenBank reference SAD B19 strain. Sequence analysis of the N and M genes (4,351 nucleotides) showed two nucleotide modifications at position 1335 (N gene) and 3114 (M gene) in the KC522613 isolate identified in the fox compared to SAD B19.
Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction
2012-01-01
Background Choosing appropriate primers is probably the single most important factor affecting the polymerase chain reaction (PCR). Specific amplification of the intended target requires that primers do not have matches to other targets in certain orientations and within certain distances that allow undesired amplification. The process of designing specific primers typically involves two stages. First, the primers flanking regions of interest are generated either manually or using software tools; then they are searched against an appropriate nucleotide sequence database using tools such as BLAST to examine the potential targets. However, the latter is not an easy process as one needs to examine many details between primers and targets, such as the number and the positions of matched bases, the primer orientations and distance between forward and reverse primers. The complexity of such analysis usually makes this a time-consuming and very difficult task for users, especially when the primers have a large number of hits. Furthermore, although the BLAST program has been widely used for primer target detection, it is in fact not an ideal tool for this purpose as BLAST is a local alignment algorithm and does not necessarily return complete match information over the entire primer range. Results We present a new software tool called Primer-BLAST to alleviate the difficulty in designing target-specific primers. This tool combines BLAST with a global alignment algorithm to ensure a full primer-target alignment and is sensitive enough to detect targets that have a significant number of mismatches to primers. Primer-BLAST allows users to design new target-specific primers in one step as well as to check the specificity of pre-existing primers. Primer-BLAST also supports placing primers based on exon/intron locations and excluding single nucleotide polymorphism (SNP) sites in primers. Conclusions We describe a robust and fully implemented general purpose primer design tool that designs target-specific PCR primers. Primer-BLAST offers flexible options to adjust the specificity threshold and other primer properties. This tool is publicly available at http://www.ncbi.nlm.nih.gov/tools/primer-blast. PMID:22708584
Descriptive Statistics of the Genome: Phylogenetic Classification of Viruses.
Hernandez, Troy; Yang, Jie
2016-10-01
The typical process for classifying and submitting a newly sequenced virus to the NCBI database involves two steps. First, a BLAST search is performed to determine likely family candidates. That is followed by checking the candidate families with the pairwise sequence alignment tool for similar species. The submitter's judgment is then used to determine the most likely species classification. The aim of this article is to show that this process can be automated into a fast, accurate, one-step process using the proposed alignment-free method and properly implemented machine learning techniques. We present a new family of alignment-free vectorizations of the genome, the generalized vector, that maintains the speed of existing alignment-free methods while outperforming all available methods. This new alignment-free vectorization uses the frequency of genomic words (k-mers), as is done in the composition vector, and incorporates descriptive statistics of those k-mers' positional information, as inspired by the natural vector. We analyze five different characterizations of genome similarity using k-nearest neighbor classification and evaluate these on two collections of viruses totaling over 10,000 viruses. We show that our proposed method performs better than, or as well as, other methods at every level of the phylogenetic hierarchy. The data and R code is available upon request.
Aligning Plasma-Arc Welding Oscillations
NASA Technical Reports Server (NTRS)
Norris, Jeff; Fairley, Mike
1989-01-01
Tool aids in alignment of oscillator probe on variable-polarity plasma-arc welding torch. Probe magnetically pulls arc from side to side as it moves along joint. Tensile strength of joint depends on alignment of weld bead and on alignment of probe. Operator installs new tool on front of torch body, levels it with built-in bubble glass, inserts probe in slot on tool, and locks probe in place. Procedure faster and easier and resulting alignment more accurate and repeatable.
Liu, Yongchao; Wirawan, Adrianto; Schmidt, Bertil
2013-04-04
The maximal sensitivity for local alignments makes the Smith-Waterman algorithm a popular choice for protein sequence database search based on pairwise alignment. However, the algorithm is compute-intensive due to a quadratic time complexity. Corresponding runtimes are further compounded by the rapid growth of sequence databases. We present CUDASW++ 3.0, a fast Smith-Waterman protein database search algorithm, which couples CPU and GPU SIMD instructions and carries out concurrent CPU and GPU computations. For the CPU computation, this algorithm employs SSE-based vector execution units as accelerators. For the GPU computation, we have investigated for the first time a GPU SIMD parallelization, which employs CUDA PTX SIMD video instructions to gain more data parallelism beyond the SIMT execution model. Moreover, sequence alignment workloads are automatically distributed over CPUs and GPUs based on their respective compute capabilities. Evaluation on the Swiss-Prot database shows that CUDASW++ 3.0 gains a performance improvement over CUDASW++ 2.0 up to 2.9 and 3.2, with a maximum performance of 119.0 and 185.6 GCUPS, on a single-GPU GeForce GTX 680 and a dual-GPU GeForce GTX 690 graphics card, respectively. In addition, our algorithm has demonstrated significant speedups over other top-performing tools: SWIPE and BLAST+. CUDASW++ 3.0 is written in CUDA C++ and PTX assembly languages, targeting GPUs based on the Kepler architecture. This algorithm obtains significant speedups over its predecessor: CUDASW++ 2.0, by benefiting from the use of CPU and GPU SIMD instructions as well as the concurrent execution on CPUs and GPUs. The source code and the simulated data are available at http://cudasw.sourceforge.net.
Avalanche for shape and feature-based virtual screening with 3D alignment
NASA Astrophysics Data System (ADS)
Diller, David J.; Connell, Nancy D.; Welsh, William J.
2015-11-01
This report introduces a new ligand-based virtual screening tool called Avalanche that incorporates both shape- and feature-based comparison with three-dimensional (3D) alignment between the query molecule and test compounds residing in a chemical database. Avalanche proceeds in two steps. The first step is an extremely rapid shape/feature based comparison which is used to narrow the focus from potentially millions or billions of candidate molecules and conformations to a more manageable number that are then passed to the second step. The second step is a detailed yet still rapid 3D alignment of the remaining candidate conformations to the query conformation. Using the 3D alignment, these remaining candidate conformations are scored, re-ranked and presented to the user as the top hits for further visualization and evaluation. To provide further insight into the method, the results from two prospective virtual screens are presented which show the ability of Avalanche to identify hits from chemical databases that would likely be missed by common substructure-based or fingerprint-based search methods. The Avalanche method is extended to enable patent landscaping, i.e., structural refinements to improve the patentability of hits for deployment in drug discovery campaigns.
GPU-BSM: A GPU-Based Tool to Map Bisulfite-Treated Reads
Manconi, Andrea; Orro, Alessandro; Manca, Emanuele; Armano, Giuliano; Milanesi, Luciano
2014-01-01
Cytosine DNA methylation is an epigenetic mark implicated in several biological processes. Bisulfite treatment of DNA is acknowledged as the gold standard technique to study methylation. This technique introduces changes in the genomic DNA by converting cytosines to uracils while 5-methylcytosines remain nonreactive. During PCR amplification 5-methylcytosines are amplified as cytosine, whereas uracils and thymines as thymine. To detect the methylation levels, reads treated with the bisulfite must be aligned against a reference genome. Mapping these reads to a reference genome represents a significant computational challenge mainly due to the increased search space and the loss of information introduced by the treatment. To deal with this computational challenge we devised GPU-BSM, a tool based on modern Graphics Processing Units. Graphics Processing Units are hardware accelerators that are increasingly being used successfully to accelerate general-purpose scientific applications. GPU-BSM is a tool able to map bisulfite-treated reads from whole genome bisulfite sequencing and reduced representation bisulfite sequencing, and to estimate methylation levels, with the goal of detecting methylation. Due to the massive parallelization obtained by exploiting graphics cards, GPU-BSM aligns bisulfite-treated reads faster than other cutting-edge solutions, while outperforming most of them in terms of unique mapped reads. PMID:24842718
mRAISE: an alternative algorithmic approach to ligand-based virtual screening
NASA Astrophysics Data System (ADS)
von Behren, Mathias M.; Bietz, Stefan; Nittinger, Eva; Rarey, Matthias
2016-08-01
Ligand-based virtual screening is a well established method to find new lead molecules in todays drug discovery process. In order to be applicable in day to day practice, such methods have to face multiple challenges. The most important part is the reliability of the results, which can be shown and compared in retrospective studies. Furthermore, in the case of 3D methods, they need to provide biologically relevant molecular alignments of the ligands, that can be further investigated by a medicinal chemist. Last but not least, they have to be able to screen large databases in reasonable time. Many algorithms for ligand-based virtual screening have been proposed in the past, most of them based on pairwise comparisons. Here, a new method is introduced called mRAISE. Based on structural alignments, it uses a descriptor-based bitmap search engine (RAISE) to achieve efficiency. Alignments created on the fly by the search engine get evaluated with an independent shape-based scoring function also used for ranking of compounds. The correct ranking as well as the alignment quality of the method are evaluated and compared to other state of the art methods. On the commonly used Directory of Useful Decoys dataset mRAISE achieves an average area under the ROC curve of 0.76, an average enrichment factor at 1 % of 20.2 and an average hit rate at 1 % of 55.5. With these results, mRAISE is always among the top performing methods with available data for comparison. To access the quality of the alignments calculated by ligand-based virtual screening methods, we introduce a new dataset containing 180 prealigned ligands for 11 diverse targets. Within the top ten ranked conformations, the alignment closest to X-ray structure calculated with mRAISE has a root-mean-square deviation of less than 2.0 Å for 80.8 % of alignment pairs and achieves a median of less than 2.0 Å for eight of the 11 cases. The dataset used to rate the quality of the calculated alignments is freely available at http://www.zbh.uni-hamburg.de/mraise-dataset.html. The table of all PDB codes contained in the ensembles can be found in the supplementary material. The software tool mRAISE is freely available for evaluation purposes and academic use (see http://www.zbh.uni-hamburg.de/raise).
The BioCyc collection of microbial genomes and metabolic pathways.
Karp, Peter D; Billington, Richard; Caspi, Ron; Fulcher, Carol A; Latendresse, Mario; Kothari, Anamika; Keseler, Ingrid M; Krummenacker, Markus; Midford, Peter E; Ong, Quang; Ong, Wai Kit; Paley, Suzanne M; Subhraveti, Pallavi
2017-08-17
BioCyc.org is a microbial genome Web portal that combines thousands of genomes with additional information inferred by computer programs, imported from other databases and curated from the biomedical literature by biologist curators. BioCyc also provides an extensive range of query tools, visualization services and analysis software. Recent advances in BioCyc include an expansion in the content of BioCyc in terms of both the number of genomes and the types of information available for each genome; an expansion in the amount of curated content within BioCyc; and new developments in the BioCyc software tools including redesigned gene/protein pages and metabolite pages; new search tools; a new sequence-alignment tool; a new tool for visualizing groups of related metabolic pathways; and a facility called SmartTables, which enables biologists to perform analyses that previously would have required a programmer's assistance. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Fast online and index-based algorithms for approximate search of RNA sequence-structure patterns
2013-01-01
Background It is well known that the search for homologous RNAs is more effective if both sequence and structure information is incorporated into the search. However, current tools for searching with RNA sequence-structure patterns cannot fully handle mutations occurring on both these levels or are simply not fast enough for searching large sequence databases because of the high computational costs of the underlying sequence-structure alignment problem. Results We present new fast index-based and online algorithms for approximate matching of RNA sequence-structure patterns supporting a full set of edit operations on single bases and base pairs. Our methods efficiently compute semi-global alignments of structural RNA patterns and substrings of the target sequence whose costs satisfy a user-defined sequence-structure edit distance threshold. For this purpose, we introduce a new computing scheme to optimally reuse the entries of the required dynamic programming matrices for all substrings and combine it with a technique for avoiding the alignment computation of non-matching substrings. Our new index-based methods exploit suffix arrays preprocessed from the target database and achieve running times that are sublinear in the size of the searched sequences. To support the description of RNA molecules that fold into complex secondary structures with multiple ordered sequence-structure patterns, we use fast algorithms for the local or global chaining of approximate sequence-structure pattern matches. The chaining step removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our improved online algorithm is faster than the best previous method by up to factor 45. Our best new index-based algorithm achieves a speedup of factor 560. Conclusions The presented methods achieve considerable speedups compared to the best previous method. This, together with the expected sublinear running time of the presented index-based algorithms, allows for the first time approximate matching of RNA sequence-structure patterns in large sequence databases. Beyond the algorithmic contributions, we provide with RaligNAtor a robust and well documented open-source software package implementing the algorithms presented in this manuscript. The RaligNAtor software is available at http://www.zbh.uni-hamburg.de/ralignator. PMID:23865810
Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation
2011-01-01
Background The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further speed could be gained by other approaches to parallelisation. Results A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue query sequence a speed of 106 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon X5650 six-core processor system, which is over six times more rapid than software based on Farrar's 'striped' approach. SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on processors with SSSE3. Source code is available from http://dna.uio.no/swipe/ under the GNU Affero General Public License. Conclusions Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman database searches more than six times faster than before. The approach described here could significantly widen the potential application of Smith-Waterman searches. Other applications that require optimal local alignment scores could also benefit from improved performance. PMID:21631914
Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation.
Rognes, Torbjørn
2011-06-01
The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further speed could be gained by other approaches to parallelisation. A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue query sequence a speed of 106 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon X5650 six-core processor system, which is over six times more rapid than software based on Farrar's 'striped' approach. SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on processors with SSSE3. Source code is available from http://dna.uio.no/swipe/ under the GNU Affero General Public License. Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman database searches more than six times faster than before. The approach described here could significantly widen the potential application of Smith-Waterman searches. Other applications that require optimal local alignment scores could also benefit from improved performance.
Geena 2, improved automated analysis of MALDI/TOF mass spectra.
Romano, Paolo; Profumo, Aldo; Rocco, Mattia; Mangerini, Rosa; Ferri, Fabio; Facchiano, Angelo
2016-03-02
Mass spectrometry (MS) is producing high volumes of data supporting oncological sciences, especially for translational research. Most of related elaborations can be carried out by combining existing tools at different levels, but little is currently available for the automation of the fundamental steps. For the analysis of MALDI/TOF spectra, a number of pre-processing steps are required, including joining of isotopic abundances for a given molecular species, normalization of signals against an internal standard, background noise removal, averaging multiple spectra from the same sample, and aligning spectra from different samples. In this paper, we present Geena 2, a public software tool for the automated execution of these pre-processing steps for MALDI/TOF spectra. Geena 2 has been developed in a Linux-Apache-MySQL-PHP web development environment, with scripts in PHP and Perl. Input and output are managed as simple formats that can be consumed by any database system and spreadsheet software. Input data may also be stored in a MySQL database. Processing methods are based on original heuristic algorithms which are introduced in the paper. Three simple and intuitive web interfaces are available: the Standard Search Interface, which allows a complete control over all parameters, the Bright Search Interface, which leaves to the user the possibility to tune parameters for alignment of spectra, and the Quick Search Interface, which limits the number of parameters to a minimum by using default values for the majority of parameters. Geena 2 has been utilized, in conjunction with a statistical analysis tool, in three published experimental works: a proteomic study on the effects of long-term cryopreservation on the low molecular weight fraction of serum proteome, and two retrospective serum proteomic studies, one on the risk of developing breat cancer in patients affected by gross cystic disease of the breast (GCDB) and the other for the identification of a predictor of breast cancer mortality following breast cancer surgery, whose results were validated by ELISA, a completely alternative method. Geena 2 is a public tool for the automated pre-processing of MS data originated by MALDI/TOF instruments, with a simple and intuitive web interface. It is now under active development for the inclusion of further filtering options and for the adoption of standard formats for MS spectra.
Complexity: an internet resource for analysis of DNA sequence complexity
Orlov, Y. L.; Potapov, V. N.
2004-01-01
The search for DNA regions with low complexity is one of the pivotal tasks of modern structural analysis of complete genomes. The low complexity may be preconditioned by strong inequality in nucleotide content (biased composition), by tandem or dispersed repeats or by palindrome-hairpin structures, as well as by a combination of all these factors. Several numerical measures of textual complexity, including combinatorial and linguistic ones, together with complexity estimation using a modified Lempel–Ziv algorithm, have been implemented in a software tool called ‘Complexity’ (http://wwwmgs.bionet.nsc.ru/mgs/programs/low_complexity/). The software enables a user to search for low-complexity regions in long sequences, e.g. complete bacterial genomes or eukaryotic chromosomes. In addition, it estimates the complexity of groups of aligned sequences. PMID:15215465
CoSMoS: Conserved Sequence Motif Search in the proteome
Liu, Xiao I; Korde, Neeraj; Jakob, Ursula; Leichert, Lars I
2006-01-01
Background With the ever-increasing number of gene sequences in the public databases, generating and analyzing multiple sequence alignments becomes increasingly time consuming. Nevertheless it is a task performed on a regular basis by researchers in many labs. Results We have now created a database called CoSMoS to find the occurrences and at the same time evaluate the significance of sequence motifs and amino acids encoded in the whole genome of the model organism Escherichia coli K12. We provide a precomputed set of multiple sequence alignments for each individual E. coli protein with all of its homologues in the RefSeq database. The alignments themselves, information about the occurrence of sequence motifs together with information on the conservation of each of the more than 1.3 million amino acids encoded in the E. coli genome can be accessed via the web interface of CoSMoS. Conclusion CoSMoS is a valuable tool to identify highly conserved sequence motifs, to find regions suitable for mutational studies in functional analyses and to predict important structural features in E. coli proteins. PMID:16433915
Comparative modeling without implicit sequence alignments.
Kolinski, Andrzej; Gront, Dominik
2007-10-01
The number of known protein sequences is about thousand times larger than the number of experimentally solved 3D structures. For more than half of the protein sequences a close or distant structural analog could be identified. The key starting point in a classical comparative modeling is to generate the best possible sequence alignment with a template or templates. With decreasing sequence similarity, the number of errors in the alignments increases and these errors are the main causes of the decreasing accuracy of the molecular models generated. Here we propose a new approach to comparative modeling, which does not require the implicit alignment - the model building phase explores geometric, evolutionary and physical properties of a template (or templates). The proposed method requires prior identification of a template, although the initial sequence alignment is ignored. The model is built using a very efficient reduced representation search engine CABS to find the best possible superposition of the query protein onto the template represented as a 3D multi-featured scaffold. The criteria used include: sequence similarity, predicted secondary structure consistency, local geometric features and hydrophobicity profile. For more difficult cases, the new method qualitatively outperforms existing schemes of comparative modeling. The algorithm unifies de novo modeling, 3D threading and sequence-based methods. The main idea is general and could be easily combined with other efficient modeling tools as Rosetta, UNRES and others.
OrthoSelect: a protocol for selecting orthologous groups in phylogenomics.
Schreiber, Fabian; Pick, Kerstin; Erpenbeck, Dirk; Wörheide, Gert; Morgenstern, Burkhard
2009-07-16
Phylogenetic studies using expressed sequence tags (EST) are becoming a standard approach to answer evolutionary questions. Such studies are usually based on large sets of newly generated, unannotated, and error-prone EST sequences from different species. A first crucial step in EST-based phylogeny reconstruction is to identify groups of orthologous sequences. From these data sets, appropriate target genes are selected, and redundant sequences are eliminated to obtain suitable sequence sets as input data for tree-reconstruction software. Generating such data sets manually can be very time consuming. Thus, software tools are needed that carry out these steps automatically. We developed a flexible and user-friendly software pipeline, running on desktop machines or computer clusters, that constructs data sets for phylogenomic analyses. It automatically searches assembled EST sequences against databases of orthologous groups (OG), assigns ESTs to these predefined OGs, translates the sequences into proteins, eliminates redundant sequences assigned to the same OG, creates multiple sequence alignments of identified orthologous sequences and offers the possibility to further process this alignment in a last step by excluding potentially homoplastic sites and selecting sufficiently conserved parts. Our software pipeline can be used as it is, but it can also be adapted by integrating additional external programs. This makes the pipeline useful for non-bioinformaticians as well as to bioinformatic experts. The software pipeline is especially designed for ESTs, but it can also handle protein sequences. OrthoSelect is a tool that produces orthologous gene alignments from assembled ESTs. Our tests show that OrthoSelect detects orthologs in EST libraries with high accuracy. In the absence of a gold standard for orthology prediction, we compared predictions by OrthoSelect to a manually created and published phylogenomic data set. Our tool was not only able to rebuild the data set with a specificity of 98%, but it detected four percent more orthologous sequences. Furthermore, the results OrthoSelect produces are in absolut agreement with the results of other programs, but our tool offers a significant speedup and additional functionality, e.g. handling of ESTs, computing sequence alignments, and refining them. To our knowledge, there is currently no fully automated and freely available tool for this purpose. Thus, OrthoSelect is a valuable tool for researchers in the field of phylogenomics who deal with large quantities of EST sequences. OrthoSelect is written in Perl and runs on Linux/Mac OS X. The tool can be downloaded at (http://gobics.de/fabian/orthoselect.php).
L-GRAAL: Lagrangian graphlet-based network aligner.
Malod-Dognin, Noël; Pržulj, Nataša
2015-07-01
Discovering and understanding patterns in networks of protein-protein interactions (PPIs) is a central problem in systems biology. Alignments between these networks aid functional understanding as they uncover important information, such as evolutionary conserved pathways, protein complexes and functional orthologs. A few methods have been proposed for global PPI network alignments, but because of NP-completeness of underlying sub-graph isomorphism problem, producing topologically and biologically accurate alignments remains a challenge. We introduce a novel global network alignment tool, Lagrangian GRAphlet-based ALigner (L-GRAAL), which directly optimizes both the protein and the interaction functional conservations, using a novel alignment search heuristic based on integer programming and Lagrangian relaxation. We compare L-GRAAL with the state-of-the-art network aligners on the largest available PPI networks from BioGRID and observe that L-GRAAL uncovers the largest common sub-graphs between the networks, as measured by edge-correctness and symmetric sub-structures scores, which allow transferring more functional information across networks. We assess the biological quality of the protein mappings using the semantic similarity of their Gene Ontology annotations and observe that L-GRAAL best uncovers functionally conserved proteins. Furthermore, we introduce for the first time a measure of the semantic similarity of the mapped interactions and show that L-GRAAL also uncovers best functionally conserved interactions. In addition, we illustrate on the PPI networks of baker's yeast and human the ability of L-GRAAL to predict new PPIs. Finally, L-GRAAL's results are the first to show that topological information is more important than sequence information for uncovering functionally conserved interactions. L-GRAAL is coded in C++. Software is available at: http://bio-nets.doc.ic.ac.uk/L-GRAAL/. n.malod-dognin@imperial.ac.uk Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Searching for gravitational waves from compact binaries with precessing spins
NASA Astrophysics Data System (ADS)
Harry, Ian; Privitera, Stephen; Bohé, Alejandro; Buonanno, Alessandra
2016-07-01
Current searches for gravitational waves from compact-object binaries with the LIGO and Virgo observatories employ waveform models with spins aligned (or antialigned) with the orbital angular momentum. Here, we derive a new statistic to search for compact objects carrying generic (precessing) spins. Applying this statistic, we construct banks of both aligned- and generic-spin templates for binary black holes and neutron star-black hole binaries, and compare the effectualness of these banks towards simulated populations of generic-spin systems. We then use these banks in a pipeline analysis of Gaussian noise to measure the increase in background incurred by using generic- instead of aligned-spin banks. Although the generic-spin banks have roughly a factor of ten more templates than the aligned-spin banks, we find an overall improvement in signal recovery at a fixed false-alarm rate for systems with high-mass ratio and highly precessing spins. This gain in sensitivity comes at a small loss of sensitivity (≲4 %) for systems that are already well covered by aligned-spin templates. Since the observation of even a single binary merger with misaligned spins could provide unique astrophysical insights into the formation of these sources, we recommend that the method described here be developed further to mount a viable search for generic-spin binary mergers in LIGO/Virgo data.
Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit
2015-10-01
There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2) fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF(2) fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2) fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2) fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2) fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2) fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search.
Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit
2015-01-01
There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF2 fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF2 fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF2 fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF2 fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF2 fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF2 fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search. PMID:26469938
Bharathi, Kosaraju; Sreenath, H L
2017-07-01
Coffea canephora is the commonly cultivated coffee species in the world along with Coffea arabica . Different pests and pathogens affect the production and quality of the coffee. Jasmonic acid (JA) is a plant hormone which plays an important role in plants growth, development, and defense mechanisms, particularly against insect pests. The key enzymes involved in the production of JA are lipoxygenase, allene oxide synthase, allene oxide cyclase, and 12-oxo-phytodienoic reductase. There is no report on the genes involved in JA pathway in coffee plants. We made an attempt to identify and analyze the genes coding for these enzymes in C. canephora . First, protein sequences of jasmonate pathway genes from model plant Arabidopsis thaliana were identified in the National Center for Biotechnology Information (NCBI) database. These protein sequences were used to search the web-based database Coffee Genome Hub to identify homologous protein sequences in C. canephora genome using Basic Local Alignment Search Tool (BLAST). Homologous protein sequences for key genes were identified in the C. canephora genome database. Protein sequences of the top matches were in turn used to search in NCBI database using BLAST tool to confirm the identity of the selected proteins and to identify closely related genes in species. The protein sequences from C. canephora database and the top matches in NCBI were aligned, and phylogenetic trees were constructed using MEGA6 software and identified the genetic distance of the respective genes. The study identified the four key genes of JA pathway in C. canephora , confirming the conserved nature of the pathway in coffee. The study expected to be useful to further explore the defense mechanisms of coffee plants. JA is a plant hormone that plays an important role in plant defense against insect pests. Genes coding for the 4 key enzymes involved in the production of JA viz., LOX, AOS, AOC, and OPR are identified in C. canephora (robusta coffee) by bioinformatic approaches confirming the conserved nature of the pathway in coffee. The findings are useful to understand the defense mechanisms of C. canephora and coffee breeding in the long run. JA is a plant hormone that plays an important role in plant defense against insect pests. Genes coding for the 4 key enzymes involved in the production of JA viz., LOX, AOS, AOC and OPR were identified and analyzed in C. canephora (robusta coffee) by in silico approach. The study has confirmed the conserved nature of JA pathway in coffee; the findings are useful to further explore the defense mechanisms of coffee plants. Abbreviations used: C. canephora : Coffea canephora ; C. arabica : Coffea arabica ; JA: Jasmonic acid; CGH: Coffee Genome Hub; NCBI: National Centre for Biotechnology Information; BLAST: Basic Local Alignment Search Tool; A. thaliana : Arabidopsis thaliana ; LOX: Lipoxygenase, AOS: Allene oxide synthase; AOC: Allene oxide cyclase; OPR: 12 oxo phytodienoic reductase.
Brody, Thomas; Yavatkar, Amarendra S; Park, Dong Sun; Kuzin, Alexander; Ross, Jermaine; Odenwald, Ward F
2017-06-01
Flavivirus and Filovirus infections are serious epidemic threats to human populations. Multi-genome comparative analysis of these evolving pathogens affords a view of their essential, conserved sequence elements as well as progressive evolutionary changes. While phylogenetic analysis has yielded important insights, the growing number of available genomic sequences makes comparisons between hundreds of viral strains challenging. We report here a new approach for the comparative analysis of these hemorrhagic fever viruses that can superimpose an unlimited number of one-on-one alignments to identify important features within genomes of interest. We have adapted EvoPrinter alignment algorithms for the rapid comparative analysis of Flavivirus or Filovirus sequences including Zika and Ebola strains. The user can input a full genome or partial viral sequence and then view either individual comparisons or generate color-coded readouts that superimpose hundreds of one-on-one alignments to identify unique or shared identity SNPs that reveal ancestral relationships between strains. The user can also opt to select a database genome in order to access a library of pre-aligned genomes of either 1,094 Flaviviruses or 460 Filoviruses for rapid comparative analysis with all database entries or a select subset. Using EvoPrinter search and alignment programs, we show the following: 1) superimposing alignment data from many related strains identifies lineage identity SNPs, which enable the assessment of sublineage complexity within viral outbreaks; 2) whole-genome SNP profile screens uncover novel Dengue2 and Zika recombinant strains and their parental lineages; 3) differential SNP profiling identifies host cell A-to-I hyper-editing within Ebola and Marburg viruses, and 4) hundreds of superimposed one-on-one Ebola genome alignments highlight ultra-conserved regulatory sequences, invariant amino acid codons and evolutionarily variable protein-encoding domains within a single genome. EvoPrinter allows for the assessment of lineage complexity within Flavivirus or Filovirus outbreaks, identification of recombinant strains, highlights sequences that have undergone host cell A-to-I editing, and identifies unique input and database SNPs within highly conserved sequences. EvoPrinter's ability to superimpose alignment data from hundreds of strains onto a single genome has allowed us to identify unique Zika virus sublineages that are currently spreading in South, Central and North America, the Caribbean, and in China. This new set of integrated alignment programs should serve as a useful addition to existing tools for the comparative analysis of these viruses.
SANSparallel: interactive homology search against Uniprot
Somervuo, Panu; Holm, Liisa
2015-01-01
Proteins evolve by mutations and natural selection. The network of sequence similarities is a rich source for mining homologous relationships that inform on protein structure and function. There are many servers available to browse the network of homology relationships but one has to wait up to a minute for results. The SANSparallel webserver provides protein sequence database searches with immediate response and professional alignment visualization by third-party software. The output is a list, pairwise alignment or stacked alignment of sequence-similar proteins from Uniprot, UniRef90/50, Swissprot or Protein Data Bank. The stacked alignments are viewed in Jalview or as sequence logos. The database search uses the suffix array neighborhood search (SANS) method, which has been re-implemented as a client-server, improved and parallelized. The method is extremely fast and as sensitive as BLAST above 50% sequence identity. Benchmarks show that the method is highly competitive compared to previously published fast database search programs: UBLAST, DIAMOND, LAST, LAMBDA, RAPSEARCH2 and BLAT. The web server can be accessed interactively or programmatically at http://ekhidna2.biocenter.helsinki.fi/cgi-bin/sans/sans.cgi. It can be used to make protein functional annotation pipelines more efficient, and it is useful in interactive exploration of the detailed evidence supporting the annotation of particular proteins of interest. PMID:25855811
Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor.
Kohany, Oleksiy; Gentles, Andrew J; Hankus, Lukasz; Jurka, Jerzy
2006-10-25
Repbase is a reference database of eukaryotic repetitive DNA, which includes prototypic sequences of repeats and basic information described in annotations. Updating and maintenance of the database requires specialized tools, which we have created and made available for use with Repbase, and which may be useful as a template for other curated databases. We describe the software tools RepbaseSubmitter and Censor, which are designed to facilitate updating and screening the content of Repbase. RepbaseSubmitter is a java-based interface for formatting and annotating Repbase entries. It eliminates many common formatting errors, and automates actions such as calculation of sequence lengths and composition, thus facilitating curation of Repbase sequences. In addition, it has several features for predicting protein coding regions in sequences; searching and including Pubmed references in Repbase entries; and searching the NCBI taxonomy database for correct inclusion of species information and taxonomic position. Censor is a tool to rapidly identify repetitive elements by comparison to known repeats. It uses WU-BLAST for speed and sensitivity, and can conduct DNA-DNA, DNA-protein, or translated DNA-translated DNA searches of genomic sequence. Defragmented output includes a map of repeats present in the query sequence, with the options to report masked query sequence(s), repeat sequences found in the query, and alignments. Censor and RepbaseSubmitter are available as both web-based services and downloadable versions. They can be found at http://www.girinst.org/repbase/submission.html (RepbaseSubmitter) and http://www.girinst.org/censor/index.php (Censor).
Search algorithm complexity modeling with application to image alignment and matching
NASA Astrophysics Data System (ADS)
DelMarco, Stephen
2014-05-01
Search algorithm complexity modeling, in the form of penetration rate estimation, provides a useful way to estimate search efficiency in application domains which involve searching over a hypothesis space of reference templates or models, as in model-based object recognition, automatic target recognition, and biometric recognition. The penetration rate quantifies the expected portion of the database that must be searched, and is useful for estimating search algorithm computational requirements. In this paper we perform mathematical modeling to derive general equations for penetration rate estimates that are applicable to a wide range of recognition problems. We extend previous penetration rate analyses to use more general probabilistic modeling assumptions. In particular we provide penetration rate equations within the framework of a model-based image alignment application domain in which a prioritized hierarchical grid search is used to rank subspace bins based on matching probability. We derive general equations, and provide special cases based on simplifying assumptions. We show how previously-derived penetration rate equations are special cases of the general formulation. We apply the analysis to model-based logo image alignment in which a hierarchical grid search is used over a geometric misalignment transform hypothesis space. We present numerical results validating the modeling assumptions and derived formulation.
Chang, Hui-Yin; Chen, Ching-Tai; Lih, T. Mamie; Lynn, Ke-Shiuan; Juo, Chiun-Gung; Hsu, Wen-Lian; Sung, Ting-Yi
2016-01-01
Efficient and accurate quantitation of metabolites from LC-MS data has become an important topic. Here we present an automated tool, called iMet-Q (intelligent Metabolomic Quantitation), for label-free metabolomics quantitation from high-throughput MS1 data. By performing peak detection and peak alignment, iMet-Q provides a summary of quantitation results and reports ion abundance at both replicate level and sample level. Furthermore, it gives the charge states and isotope ratios of detected metabolite peaks to facilitate metabolite identification. An in-house standard mixture and a public Arabidopsis metabolome data set were analyzed by iMet-Q. Three public quantitation tools, including XCMS, MetAlign, and MZmine 2, were used for performance comparison. From the mixture data set, seven standard metabolites were detected by the four quantitation tools, for which iMet-Q had a smaller quantitation error of 12% in both profile and centroid data sets. Our tool also correctly determined the charge states of seven standard metabolites. By searching the mass values for those standard metabolites against Human Metabolome Database, we obtained a total of 183 metabolite candidates. With the isotope ratios calculated by iMet-Q, 49% (89 out of 183) metabolite candidates were filtered out. From the public Arabidopsis data set reported with two internal standards and 167 elucidated metabolites, iMet-Q detected all of the peaks corresponding to the internal standards and 167 metabolites. Meanwhile, our tool had small abundance variation (≤0.19) when quantifying the two internal standards and had higher abundance correlation (≥0.92) when quantifying the 167 metabolites. iMet-Q provides user-friendly interfaces and is publicly available for download at http://ms.iis.sinica.edu.tw/comics/Software_iMet-Q.html. PMID:26784691
Heuristics for multiobjective multiple sequence alignment.
Abbasi, Maryam; Paquete, Luís; Pereira, Francisco B
2016-07-15
Aligning multiple sequences arises in many tasks in Bioinformatics. However, the alignments produced by the current software packages are highly dependent on the parameters setting, such as the relative importance of opening gaps with respect to the increase of similarity. Choosing only one parameter setting may provide an undesirable bias in further steps of the analysis and give too simplistic interpretations. In this work, we reformulate multiple sequence alignment from a multiobjective point of view. The goal is to generate several sequence alignments that represent a trade-off between maximizing the substitution score and minimizing the number of indels/gaps in the sum-of-pairs score function. This trade-off gives to the practitioner further information about the similarity of the sequences, from which she could analyse and choose the most plausible alignment. We introduce several heuristic approaches, based on local search procedures, that compute a set of sequence alignments, which are representative of the trade-off between the two objectives (substitution score and indels). Several algorithm design options are discussed and analysed, with particular emphasis on the influence of the starting alignment and neighborhood search definitions on the overall performance. A perturbation technique is proposed to improve the local search, which provides a wide range of high-quality alignments. The proposed approach is tested experimentally on a wide range of instances. We performed several experiments with sequences obtained from the benchmark database BAliBASE 3.0. To evaluate the quality of the results, we calculate the hypervolume indicator of the set of score vectors returned by the algorithms. The results obtained allow us to identify reasonably good choices of parameters for our approach. Further, we compared our method in terms of correctly aligned pairs ratio and columns correctly aligned ratio with respect to reference alignments. Experimental results show that our approaches can obtain better results than TCoffee and Clustal Omega in terms of the first ratio.
Gravitational wave searches for aligned-spin binary neutron stars using nonspinning templates
NASA Astrophysics Data System (ADS)
Cho, Hee-Suk; Lee, Chang-Hwan
2018-01-01
We study gravitational wave searches for merging binary neutron stars (NSs). We use nonspinning template waveforms towards the signals emitted from aligned-spin NS-NS binaries, in which the spins of the NSs are aligned with the orbital angular momentum. We use the TaylorF2 waveform model, which can generate inspiral waveforms emitted from aligned-spin compact binaries. We employ the single effective spin parameter χeff to represent the effect of two component spins (χ1, χ2) on the wave function. For a target system, we choose a binary consisting of the same component masses of 1.4 M ⊙ and consider the spins up to χ i = 0.4. We investigate fitting factors of the nonspinning templates to evaluate their efficiency in gravitational wave searches for the aligned-spin NS-NS binaries. We find that the templates can achieve the fitting factors exceeding 0.97 only for the signals in the range of -0.2 ≲ χeff ≲ 0. Therefore, we demonstrate the necessity of using aligned-spin templates not to lose the signals outside that range. We also show how much the recovered total mass can be biased from the true value depending on the spin of the signal.
Hegger, Ingrid; Marks, Lisanne K; Janssen, Susan W J; Schuit, Albertine J; Keijsers, Jolanda F M; van Oers, Hans A M
2016-09-30
To improve knowledge utilization in policymaking, alignment between researchers and policymakers during knowledge production is essential, but difficult to maintain. In three previously reported case studies, we extensively evaluated complex research projects commissioned by policymakers to investigate how alignment is achieved in a research process and to discover ways to enhance knowledge contributions to health policy. In the present study, we investigated how the findings of these three research projects could be integrated into a practical tool for researchers to enhance their contribution to evidence-based policy. A cross-case analysis was conducted to integrate the findings of the evaluation of the three research projects and to identify important alignment areas in these projects. By means of an iterative process, we prepared a tool that includes reflection questions for researchers. The "Research for Policy" tool was tested with input from the project managers of three new research projects. Based on the findings, the final version of the Research for Policy tool was prepared. By cross-case analysis of the three case studies, the following important alignment areas were identified: the goal, quality, relevance, timing, and presentation of research, the tasks and authorities of actors, the consultative structure and vertical alignment within organizations, and the organizational environment. The project managers regarded the Research for Policy tool as a useful checklist for addressing the important alignment areas in a research project. Based on their feedback, the illustrative examples from the case studies were added to the reflection questions. The project managers suggested making the tool accessible not only to researchers but also to policymakers. The format of the Research for Policy tool was further adjusted to users' needs by adding clickable links. Alignment between research and policymaking requires continuous efforts and a clear understanding of process issues in the research project. The Research for Policy tool offers practical alignment guidance and facilitates reflection on process issues, which supports researchers in aligning with policymakers and in acting in a context-sensitive way.
A High-Throughput Arabidopsis Reverse Genetics System
Sessions, Allen; Burke, Ellen; Presting, Gernot; Aux, George; McElver, John; Patton, David; Dietrich, Bob; Ho, Patrick; Bacwaden, Johana; Ko, Cynthia; Clarke, Joseph D.; Cotton, David; Bullis, David; Snell, Jennifer; Miguel, Trini; Hutchison, Don; Kimmerly, Bill; Mitzel, Theresa; Katagiri, Fumiaki; Glazebrook, Jane; Law, Marc; Goff, Stephen A.
2002-01-01
A collection of Arabidopsis lines with T-DNA insertions in known sites was generated to increase the efficiency of functional genomics. A high-throughput modified thermal asymetric interlaced (TAIL)-PCR protocol was developed and used to amplify DNA fragments flanking the T-DNA left borders from ∼100,000 transformed lines. A total of 85,108 TAIL-PCR products from 52,964 T-DNA lines were sequenced and compared with the Arabidopsis genome to determine the positions of T-DNAs in each line. Predicted T-DNA insertion sites, when mapped, showed a bias against predicted coding sequences. Predicted insertion mutations in genes of interest can be identified using Arabidopsis Gene Index name searches or by BLAST (Basic Local Alignment Search Tool) search. Insertions can be confirmed by simple PCR assays on individual lines. Predicted insertions were confirmed in 257 of 340 lines tested (76%). This resource has been named SAIL (Syngenta Arabidopsis Insertion Library) and is available to the scientific community at www.tmri.org. PMID:12468722
The MIGenAS integrated bioinformatics toolkit for web-based sequence analysis
Rampp, Markus; Soddemann, Thomas; Lederer, Hermann
2006-01-01
We describe a versatile and extensible integrated bioinformatics toolkit for the analysis of biological sequences over the Internet. The web portal offers convenient interactive access to a growing pool of chainable bioinformatics software tools and databases that are centrally installed and maintained by the RZG. Currently, supported tasks comprise sequence similarity searches in public or user-supplied databases, computation and validation of multiple sequence alignments, phylogenetic analysis and protein–structure prediction. Individual tools can be seamlessly chained into pipelines allowing the user to conveniently process complex workflows without the necessity to take care of any format conversions or tedious parsing of intermediate results. The toolkit is part of the Max-Planck Integrated Gene Analysis System (MIGenAS) of the Max Planck Society available at (click ‘Start Toolkit’). PMID:16844980
HBLAST: Parallelised sequence similarity--A Hadoop MapReducable basic local alignment search tool.
O'Driscoll, Aisling; Belogrudov, Vladislav; Carroll, John; Kropp, Kai; Walsh, Paul; Ghazal, Peter; Sleator, Roy D
2015-04-01
The recent exponential growth of genomic databases has resulted in the common task of sequence alignment becoming one of the major bottlenecks in the field of computational biology. It is typical for these large datasets and complex computations to require cost prohibitive High Performance Computing (HPC) to function. As such, parallelised solutions have been proposed but many exhibit scalability limitations and are incapable of effectively processing "Big Data" - the name attributed to datasets that are extremely large, complex and require rapid processing. The Hadoop framework, comprised of distributed storage and a parallelised programming framework known as MapReduce, is specifically designed to work with such datasets but it is not trivial to efficiently redesign and implement bioinformatics algorithms according to this paradigm. The parallelisation strategy of "divide and conquer" for alignment algorithms can be applied to both data sets and input query sequences. However, scalability is still an issue due to memory constraints or large databases, with very large database segmentation leading to additional performance decline. Herein, we present Hadoop Blast (HBlast), a parallelised BLAST algorithm that proposes a flexible method to partition both databases and input query sequences using "virtual partitioning". HBlast presents improved scalability over existing solutions and well balanced computational work load while keeping database segmentation and recompilation to a minimum. Enhanced BLAST search performance on cheap memory constrained hardware has significant implications for in field clinical diagnostic testing; enabling faster and more accurate identification of pathogenic DNA in human blood or tissue samples. Copyright © 2015 Elsevier Inc. All rights reserved.
IVisTMSA: Interactive Visual Tools for Multiple Sequence Alignments.
Pervez, Muhammad Tariq; Babar, Masroor Ellahi; Nadeem, Asif; Aslam, Naeem; Naveed, Nasir; Ahmad, Sarfraz; Muhammad, Shah; Qadri, Salman; Shahid, Muhammad; Hussain, Tanveer; Javed, Maryam
2015-01-01
IVisTMSA is a software package of seven graphical tools for multiple sequence alignments. MSApad is an editing and analysis tool. It can load 409% more data than Jalview, STRAP, CINEMA, and Base-by-Base. MSA comparator allows the user to visualize consistent and inconsistent regions of reference and test alignments of more than 21-MB size in less than 12 seconds. MSA comparator is 5,200% efficient and more than 40% efficient as compared to BALiBASE c program and FastSP, respectively. MSA reconstruction tool provides graphical user interfaces for four popular aligners and allows the user to load several sequence files at a time. FASTA generator converts seven formats of alignments of unlimited size into FASTA format in a few seconds. MSA ID calculator calculates identity matrix of more than 11,000 sequences with a sequence length of 2,696 base pairs in less than 100 seconds. Tree and Distance Matrix calculation tools generate phylogenetic tree and distance matrix, respectively, using neighbor joining% identity and BLOSUM 62 matrix.
NASA Technical Reports Server (NTRS)
Thomas, N. L.; Chisel, D. M.
1976-01-01
The success of a rocket-borne experiment depends not only on the pointing of the attitude control system, but on the alignment of the attitude control system to the payload. To ensure proper alignment, special optical tools and alignment techniques are required. Those that were used in the SPARCS program are described and discussed herein. These tools include theodolites, autocollimators, a 38-cm diameter solar simulator, a high-performance 1-m heliostat to provide a stable solar source during the integration of the rocket payload, a portable 75-cm sun tracker for use at the launch site, and an innovation called the Solar Alignment Prism. Using the real sun as the primary reference under field conditions, the Solar Alignment Prism facilitates the coalignment of the attitude sun sensor with the payload. The alignment techniques were developed to ensure the precise alignment of the solar payloads to the SPARCS attitude sensors during payload integration and to verify the required alignment under field conditions just prior to launch.
Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Version 3.0 User Guide
User Guide to describe the complete functionality of the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) Version 3.0 online tool. The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility tool (SeqAPASS; https://seqa...
YersiniaBase: a genomic resource and analysis platform for comparative analysis of Yersinia.
Tan, Shi Yang; Dutta, Avirup; Jakubovics, Nicholas S; Ang, Mia Yang; Siow, Cheuk Chuen; Mutha, Naresh Vr; Heydari, Hamed; Wee, Wei Yee; Wong, Guat Jah; Choo, Siew Woh
2015-01-16
Yersinia is a Gram-negative bacteria that includes serious pathogens such as the Yersinia pestis, which causes plague, Yersinia pseudotuberculosis, Yersinia enterocolitica. The remaining species are generally considered non-pathogenic to humans, although there is evidence that at least some of these species can cause occasional infections using distinct mechanisms from the more pathogenic species. With the advances in sequencing technologies, many genomes of Yersinia have been sequenced. However, there is currently no specialized platform to hold the rapidly-growing Yersinia genomic data and to provide analysis tools particularly for comparative analyses, which are required to provide improved insights into their biology, evolution and pathogenicity. To facilitate the ongoing and future research of Yersinia, especially those generally considered non-pathogenic species, a well-defined repository and analysis platform is needed to hold the Yersinia genomic data and analysis tools for the Yersinia research community. Hence, we have developed the YersiniaBase, a robust and user-friendly Yersinia resource and analysis platform for the analysis of Yersinia genomic data. YersiniaBase has a total of twelve species and 232 genome sequences, of which the majority are Yersinia pestis. In order to smooth the process of searching genomic data in a large database, we implemented an Asynchronous JavaScript and XML (AJAX)-based real-time searching system in YersiniaBase. Besides incorporating existing tools, which include JavaScript-based genome browser (JBrowse) and Basic Local Alignment Search Tool (BLAST), YersiniaBase also has in-house developed tools: (1) Pairwise Genome Comparison tool (PGC) for comparing two user-selected genomes; (2) Pathogenomics Profiling Tool (PathoProT) for comparative pathogenomics analysis of Yersinia genomes; (3) YersiniaTree for constructing phylogenetic tree of Yersinia. We ran analyses based on the tools and genomic data in YersiniaBase and the preliminary results showed differences in virulence genes found in Yersinia pestis and Yersinia pseudotuberculosis compared to other Yersinia species, and differences between Yersinia enterocolitica subsp. enterocolitica and Yersinia enterocolitica subsp. palearctica. YersiniaBase offers free access to wide range of genomic data and analysis tools for the analysis of Yersinia. YersiniaBase can be accessed at http://yersinia.um.edu.my .
SANSparallel: interactive homology search against Uniprot.
Somervuo, Panu; Holm, Liisa
2015-07-01
Proteins evolve by mutations and natural selection. The network of sequence similarities is a rich source for mining homologous relationships that inform on protein structure and function. There are many servers available to browse the network of homology relationships but one has to wait up to a minute for results. The SANSparallel webserver provides protein sequence database searches with immediate response and professional alignment visualization by third-party software. The output is a list, pairwise alignment or stacked alignment of sequence-similar proteins from Uniprot, UniRef90/50, Swissprot or Protein Data Bank. The stacked alignments are viewed in Jalview or as sequence logos. The database search uses the suffix array neighborhood search (SANS) method, which has been re-implemented as a client-server, improved and parallelized. The method is extremely fast and as sensitive as BLAST above 50% sequence identity. Benchmarks show that the method is highly competitive compared to previously published fast database search programs: UBLAST, DIAMOND, LAST, LAMBDA, RAPSEARCH2 and BLAT. The web server can be accessed interactively or programmatically at http://ekhidna2.biocenter.helsinki.fi/cgi-bin/sans/sans.cgi. It can be used to make protein functional annotation pipelines more efficient, and it is useful in interactive exploration of the detailed evidence supporting the annotation of particular proteins of interest. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Lewis, Meron; Lee, Amanda
2016-11-01
To undertake a systematic review to determine similarities and differences in metrics and results between recently and/or currently used tools, protocols and methods for monitoring Australian healthy food prices and affordability. Electronic databases of peer-reviewed literature and online grey literature were systematically searched using the PRISMA approach for articles and reports relating to healthy food and diet price assessment tools, protocols, methods and results that utilised retail pricing. National, state, regional and local areas of Australia from 1995 to 2015. Assessment tools, protocols and methods to measure the price of 'healthy' foods and diets. The search identified fifty-nine discrete surveys of 'healthy' food pricing incorporating six major food pricing tools (those used in multiple areas and time periods) and five minor food pricing tools (those used in a single survey area or time period). Analysis demonstrated methodological differences regarding: included foods; reference households; use of availability and/or quality measures; household income sources; store sampling methods; data collection protocols; analysis methods; and results. 'Healthy' food price assessment methods used in Australia lack comparability across all metrics and most do not fully align with a 'healthy' diet as recommended by the current Australian Dietary Guidelines. None have been applied nationally. Assessment of the price, price differential and affordability of healthy (recommended) and current (unhealthy) diets would provide more robust and meaningful data to inform health and fiscal policy in Australia. The INFORMAS 'optimal' approach provides a potential framework for development of these methods.
Development and application of an algorithm to compute weighted multiple glycan alignments.
Hosoda, Masae; Akune, Yukie; Aoki-Kinoshita, Kiyoko F
2017-05-01
A glycan consists of monosaccharides linked by glycosidic bonds, has branches and forms complex molecular structures. Databases have been developed to store large amounts of glycan-binding experiments, including glycan arrays with glycan-binding proteins. However, there are few bioinformatics techniques to analyze large amounts of data for glycans because there are few tools that can handle the complexity of glycan structures. Thus, we have developed the MCAW (Multiple Carbohydrate Alignment with Weights) tool that can align multiple glycan structures, to aid in the understanding of their function as binding recognition molecules. We have described in detail the first algorithm to perform multiple glycan alignments by modeling glycans as trees. To test our tool, we prepared several data sets, and as a result, we found that the glycan motif could be successfully aligned without any prior knowledge applied to the tool, and the known recognition binding sites of glycans could be aligned at a high rate amongst all our datasets tested. We thus claim that our tool is able to find meaningful glycan recognition and binding patterns using data obtained by glycan-binding experiments. The development and availability of an effective multiple glycan alignment tool opens possibilities for many other glycoinformatics analysis, making this work a big step towards furthering glycomics analysis. http://www.rings.t.soka.ac.jp. kkiyoko@soka.ac.jp. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
PhyreStorm: A Web Server for Fast Structural Searches Against the PDB.
Mezulis, Stefans; Sternberg, Michael J E; Kelley, Lawrence A
2016-02-22
The identification of structurally similar proteins can provide a range of biological insights, and accordingly, the alignment of a query protein to a database of experimentally determined protein structures is a technique commonly used in the fields of structural and evolutionary biology. The PhyreStorm Web server has been designed to provide comprehensive, up-to-date and rapid structural comparisons against the Protein Data Bank (PDB) combined with a rich and intuitive user interface. It is intended that this facility will enable biologists inexpert in bioinformatics access to a powerful tool for exploring protein structure relationships beyond what can be achieved by sequence analysis alone. By partitioning the PDB into similar structures, PhyreStorm is able to quickly discard the majority of structures that cannot possibly align well to a query protein, reducing the number of alignments required by an order of magnitude. PhyreStorm is capable of finding 93±2% of all highly similar (TM-score>0.7) structures in the PDB for each query structure, usually in less than 60s. PhyreStorm is available at http://www.sbg.bio.ic.ac.uk/phyrestorm/. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Liu, Yu; Hong, Yang; Lin, Chun-Yuan; Hung, Che-Lun
2015-01-01
The Smith-Waterman (SW) algorithm has been widely utilized for searching biological sequence databases in bioinformatics. Recently, several works have adopted the graphic card with Graphic Processing Units (GPUs) and their associated CUDA model to enhance the performance of SW computations. However, these works mainly focused on the protein database search by using the intertask parallelization technique, and only using the GPU capability to do the SW computations one by one. Hence, in this paper, we will propose an efficient SW alignment method, called CUDA-SWfr, for the protein database search by using the intratask parallelization technique based on a CPU-GPU collaborative system. Before doing the SW computations on GPU, a procedure is applied on CPU by using the frequency distance filtration scheme (FDFS) to eliminate the unnecessary alignments. The experimental results indicate that CUDA-SWfr runs 9.6 times and 96 times faster than the CPU-based SW method without and with FDFS, respectively.
GenoMycDB: a database for comparative analysis of mycobacterial genes and genomes.
Catanho, Marcos; Mascarenhas, Daniel; Degrave, Wim; Miranda, Antonio Basílio de
2006-03-31
Several databases and computational tools have been created with the aim of organizing, integrating and analyzing the wealth of information generated by large-scale sequencing projects of mycobacterial genomes and those of other organisms. However, with very few exceptions, these databases and tools do not allow for massive and/or dynamic comparison of these data. GenoMycDB (http://www.dbbm.fiocruz.br/GenoMycDB) is a relational database built for large-scale comparative analyses of completely sequenced mycobacterial genomes, based on their predicted protein content. Its central structure is composed of the results obtained after pair-wise sequence alignments among all the predicted proteins coded by the genomes of six mycobacteria: Mycobacterium tuberculosis (strains H37Rv and CDC1551), M. bovis AF2122/97, M. avium subsp. paratuberculosis K10, M. leprae TN, and M. smegmatis MC2 155. The database stores the computed similarity parameters of every aligned pair, providing for each protein sequence the predicted subcellular localization, the assigned cluster of orthologous groups, the features of the corresponding gene, and links to several important databases. Tables containing pairs or groups of potential homologs between selected species/strains can be produced dynamically by user-defined criteria, based on one or multiple sequence similarity parameters. In addition, searches can be restricted according to the predicted subcellular localization of the protein, the DNA strand of the corresponding gene and/or the description of the protein. Massive data search and/or retrieval are available, and different ways of exporting the result are offered. GenoMycDB provides an on-line resource for the functional classification of mycobacterial proteins as well as for the analysis of genome structure, organization, and evolution.
Tool for Inspecting Alignment of Twinaxial Connectors
NASA Technical Reports Server (NTRS)
Smith, Christopher R.
2008-01-01
A proposed tool would be used to inspect alignments of mating twinaxial-connector assemblies on interconnecting wiring harnesses. More specifically, the tool would be used to inspect the alignment of each contact pin of each connector on one assembly with the corresponding socket in the corresponding connector on the other assembly. It is necessary to inspect the alignment because if mating of the assemblies is attempted when any pin/socket pair is misaligned beyond tolerance, the connection will not be completed and the dielectric material in the socket will be damaged (see Figure 1). Although the basic principle of the tool is applicable to almost any type of mating connector assemblies, the specific geometry of the tool must match the pin-and-socket geometry of the specific mating assemblies to be inspected. In the original application for which the tool was conceived, each of the mating assemblies contains eight twinaxial connectors; the pin diameter is 0.014 in. (.0.35 mm), and the maximum allowable pin/socket misalignment is 0.007 in. (.0.18 mm). Incomplete connections can result in loss of flight data within the functional path to the space shuttle crew cockpit displays. The tool (see Figure 2) would consist mainly of a transparent disk with alignment clocking tabs that can be fitted onto either connector assembly. Sets of circles or equivalent reference markings are affixed to the face of the tool, located at the desired positions of the mating contact pairs. An inspector would simply fit the tool onto a connector assembly, engaging the clocking tabs until the tool fits tightly. The inspector would then align one set of circles positioning a line of sight perpendicular to one contact within the connector assembly. Mis alignments would be evidenced by the tip of a pin contact straying past the inner edge of the circle. Socket contact misalignments would be evidenced by a crescent-shaped portion of the white dielectric appearing within the circle. The tool could include a variable magnifier plus an illuminator that could be configured so as not to cast shadows.
The web server of IBM's Bioinformatics and Pattern Discovery group.
Huynh, Tien; Rigoutsos, Isidore; Parida, Laxmi; Platt, Daniel; Shibuya, Tetsuo
2003-07-01
We herein present and discuss the services and content which are available on the web server of IBM's Bioinformatics and Pattern Discovery group. The server is operational around the clock and provides access to a variety of methods that have been published by the group's members and collaborators. The available tools correspond to applications ranging from the discovery of patterns in streams of events and the computation of multiple sequence alignments, to the discovery of genes in nucleic acid sequences and the interactive annotation of amino acid sequences. Additionally, annotations for more than 70 archaeal, bacterial, eukaryotic and viral genomes are available on-line and can be searched interactively. The tools and code bundles can be accessed beginning at http://cbcsrv.watson.ibm.com/Tspd.html whereas the genomics annotations are available at http://cbcsrv.watson.ibm.com/Annotations/.
The web server of IBM's Bioinformatics and Pattern Discovery group
Huynh, Tien; Rigoutsos, Isidore; Parida, Laxmi; Platt, Daniel; Shibuya, Tetsuo
2003-01-01
We herein present and discuss the services and content which are available on the web server of IBM's Bioinformatics and Pattern Discovery group. The server is operational around the clock and provides access to a variety of methods that have been published by the group's members and collaborators. The available tools correspond to applications ranging from the discovery of patterns in streams of events and the computation of multiple sequence alignments, to the discovery of genes in nucleic acid sequences and the interactive annotation of amino acid sequences. Additionally, annotations for more than 70 archaeal, bacterial, eukaryotic and viral genomes are available on-line and can be searched interactively. The tools and code bundles can be accessed beginning at http://cbcsrv.watson.ibm.com/Tspd.html whereas the genomics annotations are available at http://cbcsrv.watson.ibm.com/Annotations/. PMID:12824385
Honda, Satoshi; Tsunoda, Hiroko; Fukuda, Wataru; Saida, Yukihisa
2014-12-01
The purpose is to develop a new image toggle tool with automatic density normalization (ADN) and automatic alignment (AA) for comparing serial digital mammograms (DMGs). We developed an ADN and AA process to compare the images of serial DMGs. In image density normalization, a linear interpolation was applied by taking two points of high- and low-brightness areas. The alignment was calculated by determining the point of the greatest correlation while shifting the alignment between the current and prior images. These processes were performed on a PC with a 3.20-GHz Xeon processor and 8 GB of main memory. We selected 12 suspected breast cancer patients who had undergone screening DMGs in the past. Automatic processing was retrospectively performed on these images. Two radiologists subjectively evaluated them. The process of the developed algorithm took approximately 1 s per image. In our preliminary experience, two images could not be aligned approximately. When they were aligned, image toggling allowed detection of differences between examinations easily. We developed a new tool to facilitate comparative reading of DMGs on a mammography viewing system. Using this tool for toggling comparisons might improve the interpretation efficiency of serial DMGs.
Transcriptomic analysis of the autophagy machinery in crustaceans.
Suwansa-Ard, Saowaros; Kankuan, Wilairat; Thongbuakaew, Tipsuda; Saetan, Jirawat; Kornthong, Napamanee; Kruangkum, Thanapong; Khornchatri, Kanjana; Cummins, Scott F; Isidoro, Ciro; Sobhon, Prasert
2016-08-09
The giant freshwater prawn, Macrobrachium rosenbergii, is a decapod crustacean that is commercially important as a food source. Farming of commercial crustaceans requires an efficient management strategy because the animals are easily subjected to stress and diseases during the culture. Autophagy, a stress response process, is well-documented and conserved in most animals, yet it is poorly studied in crustaceans. In this study, we have performed an in silico search for transcripts encoding autophagy-related (Atg) proteins within various tissue transcriptomes of M. rosenbergii. Basic Local Alignment Search Tool (BLAST) search using previously known Atg proteins as queries revealed 41 transcripts encoding homologous M. rosenbergii Atg proteins. Among these Atg proteins, we selected commonly used autophagy markers, including Beclin 1, vacuolar protein sorting (Vps) 34, microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B), p62/sequestosome 1 (SQSTM1), and lysosomal-associated membrane protein 1 (Lamp-1) for further sequence analyses using comparative alignment and protein structural prediction. We found that crustacean autophagy marker proteins contain conserved motifs typical of other animal Atg proteins. Western blotting using commercial antibodies raised against human Atg marker proteins indicated their presence in various M. rosenbergii tissues, while immunohistochemistry localized Atg marker proteins within ovarian tissue, specifically late stage oocytes. This study demonstrates that the molecular components of autophagic process are conserved in crustaceans, which is comparable to autophagic process in mammals. Furthermore, it provides a foundation for further studies of autophagy in crustaceans that may lead to more understanding of the reproduction- and stress-related autophagy, which will enable the efficient aquaculture practices.
Processing methods for differential analysis of LC/MS profile data
Katajamaa, Mikko; Orešič, Matej
2005-01-01
Background Liquid chromatography coupled to mass spectrometry (LC/MS) has been widely used in proteomics and metabolomics research. In this context, the technology has been increasingly used for differential profiling, i.e. broad screening of biomolecular components across multiple samples in order to elucidate the observed phenotypes and discover biomarkers. One of the major challenges in this domain remains development of better solutions for processing of LC/MS data. Results We present a software package MZmine that enables differential LC/MS analysis of metabolomics data. This software is a toolbox containing methods for all data processing stages preceding differential analysis: spectral filtering, peak detection, alignment and normalization. Specifically, we developed and implemented a new recursive peak search algorithm and a secondary peak picking method for improving already aligned results, as well as a normalization tool that uses multiple internal standards. Visualization tools enable comparative viewing of data across multiple samples. Peak lists can be exported into other data analysis programs. The toolbox has already been utilized in a wide range of applications. We demonstrate its utility on an example of metabolic profiling of Catharanthus roseus cell cultures. Conclusion The software is freely available under the GNU General Public License and it can be obtained from the project web page at: . PMID:16026613
Processing methods for differential analysis of LC/MS profile data.
Katajamaa, Mikko; Oresic, Matej
2005-07-18
Liquid chromatography coupled to mass spectrometry (LC/MS) has been widely used in proteomics and metabolomics research. In this context, the technology has been increasingly used for differential profiling, i.e. broad screening of biomolecular components across multiple samples in order to elucidate the observed phenotypes and discover biomarkers. One of the major challenges in this domain remains development of better solutions for processing of LC/MS data. We present a software package MZmine that enables differential LC/MS analysis of metabolomics data. This software is a toolbox containing methods for all data processing stages preceding differential analysis: spectral filtering, peak detection, alignment and normalization. Specifically, we developed and implemented a new recursive peak search algorithm and a secondary peak picking method for improving already aligned results, as well as a normalization tool that uses multiple internal standards. Visualization tools enable comparative viewing of data across multiple samples. Peak lists can be exported into other data analysis programs. The toolbox has already been utilized in a wide range of applications. We demonstrate its utility on an example of metabolic profiling of Catharanthus roseus cell cultures. The software is freely available under the GNU General Public License and it can be obtained from the project web page at: http://mzmine.sourceforge.net/.
Amelia, Tan Suet May; Amirul, Al-Ashraf Abdullah; Bhubalan, Kesaven
2018-02-01
We report data associated with the identification of three polyhydroxyalkanoate synthase genes (phaC) isolated from the marine bacteria metagenome of Aaptos aaptos marine sponge in the waters of Bidong Island, Terengganu, Malaysia. Our data describe the extraction of bacterial metagenome from sponge tissue, measurement of purity and concentration of extracted metagenome, polymerase chain reaction (PCR)-mediated amplification using degenerate primers targeting Class I and II phaC genes, sequencing at First BASE Laboratories Sdn Bhd, and phylogenetic analysis of identified and known phaC genes. The partial nucleotide sequences were aligned, refined, compared with the Basic Local Alignment Search Tool (BLAST) databases, and released online in GenBank. The data include the identified partial putative phaC and their GenBank accession numbers, which are Rhodocista sp. phaC (MF457754), Pseudomonas sp. phaC (MF437016), and an uncultured bacterium AR5-9d_16 phaC (MF457753).
In Search of Social Translucence: An Audit Log Analysis of Handoff Documentation Views and Updates.
Jiang, Silis Y; Hum, R Stanley; Vawdrey, David; Mamykina, Lena
2015-01-01
Communication and information sharing are critical parts of teamwork in the hospital; however, achieving open and fluid communication can be challenging. Finding specific patient information within documentation can be difficult. Recent studies on handoff documentation tools show that resident handoff notes are increasingly used as an alternative information source by non-physician clinicians. Previous findings also show that residents have become aware of this unintended use. This study investigated the alignment of resident note updating patterns and team note viewing patterns based on usage log data of handoff notes. Qualitative interviews with clinicians were used to triangulate findings based on the log analysis. The study found that notes that were frequently updated were viewed significantly more frequently than notes updated less often (p < 2.2 × 10(-16)). Almost 44% of all notes had aligned frequency of views and updates. The considerable percentage (56%) of mismatched note utilization suggests an opportunity for improvement.
Biogeographic patterns in ocean microbes emerge in a neutral agent-based model.
Hellweger, Ferdi L; van Sebille, Erik; Fredrick, Neil D
2014-09-12
A key question in ecology and evolution is the relative role of natural selection and neutral evolution in producing biogeographic patterns. We quantify the role of neutral processes by simulating division, mutation, and death of 100,000 individual marine bacteria cells with full 1 million-base-pair genomes in a global surface ocean circulation model. The model is run for up to 100,000 years and output is analyzed using BLAST (Basic Local Alignment Search Tool) alignment and metagenomics fragment recruitment. Simulations show the production and maintenance of biogeographic patterns, characterized by distinct provinces subject to mixing and periodic takeovers by neighbors (coalescence), after which neutral evolution reestablishes the province and the patterns reorganize. The emergent patterns are substantial (e.g., down to 99.5% DNA identity between North and Central Pacific provinces) and suggest that microbes evolve faster than ocean currents can disperse them. This approach can also be used to explore environmental selection. Copyright © 2014, American Association for the Advancement of Science.
Workflow and web application for annotating NCBI BioProject transcriptome data
Vera Alvarez, Roberto; Medeiros Vidal, Newton; Garzón-Martínez, Gina A.; Barrero, Luz S.; Landsman, David
2017-01-01
Abstract The volume of transcriptome data is growing exponentially due to rapid improvement of experimental technologies. In response, large central resources such as those of the National Center for Biotechnology Information (NCBI) are continually adapting their computational infrastructure to accommodate this large influx of data. New and specialized databases, such as Transcriptome Shotgun Assembly Sequence Database (TSA) and Sequence Read Archive (SRA), have been created to aid the development and expansion of centralized repositories. Although the central resource databases are under continual development, they do not include automatic pipelines to increase annotation of newly deposited data. Therefore, third-party applications are required to achieve that aim. Here, we present an automatic workflow and web application for the annotation of transcriptome data. The workflow creates secondary data such as sequencing reads and BLAST alignments, which are available through the web application. They are based on freely available bioinformatics tools and scripts developed in-house. The interactive web application provides a search engine and several browser utilities. Graphical views of transcript alignments are available through SeqViewer, an embedded tool developed by NCBI for viewing biological sequence data. The web application is tightly integrated with other NCBI web applications and tools to extend the functionality of data processing and interconnectivity. We present a case study for the species Physalis peruviana with data generated from BioProject ID 67621. Database URL: http://www.ncbi.nlm.nih.gov/projects/physalis/ PMID:28605765
PASS2: an automated database of protein alignments organised as structural superfamilies.
Bhaduri, Anirban; Pugalenthi, Ganesan; Sowdhamini, Ramanathan
2004-04-02
The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of the family members. The search engine has been improved for simpler browsing of the database. The database resolves alignments among the structural domains consisting of evolutionarily diverged set of sequences. Availability of reliable sequence alignments of distantly related proteins despite poor sequence identity and single-member superfamilies permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure-function relationships of individual superfamilies. PASS2 is accessible at http://www.ncbs.res.in/~faculty/mini/campass/pass2.html
Hybrid vehicle motor alignment
Levin, Michael Benjamin
2001-07-03
A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.
Historian: accurate reconstruction of ancestral sequences and evolutionary rates.
Holmes, Ian H
2017-04-15
Reconstruction of ancestral sequence histories, and estimation of parameters like indel rates, are improved by using explicit evolutionary models and summing over uncertain alignments. The previous best tool for this purpose (according to simulation benchmarks) was ProtPal, but this tool was too slow for practical use. Historian combines an efficient reimplementation of the ProtPal algorithm with performance-improving heuristics from other alignment tools. Simulation results on fidelity of rate estimation via ancestral reconstruction, along with evaluations on the structurally informed alignment dataset BAliBase 3.0, recommend Historian over other alignment tools for evolutionary applications. Historian is available at https://github.com/evoldoers/historian under the Creative Commons Attribution 3.0 US license. ihholmes+historian@gmail.com. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Heuristic reusable dynamic programming: efficient updates of local sequence alignment.
Hong, Changjin; Tewfik, Ahmed H
2009-01-01
Recomputation of the previously evaluated similarity results between biological sequences becomes inevitable when researchers realize errors in their sequenced data or when the researchers have to compare nearly similar sequences, e.g., in a family of proteins. We present an efficient scheme for updating local sequence alignments with an affine gap model. In principle, using the previous matching result between two amino acid sequences, we perform a forward-backward alignment to generate heuristic searching bands which are bounded by a set of suboptimal paths. Given a correctly updated sequence, we initially predict a new score of the alignment path for each contour to select the best candidates among them. Then, we run the Smith-Waterman algorithm in this confined space. Furthermore, our heuristic alignment for an updated sequence shows that it can be further accelerated by using reusable dynamic programming (rDP), our prior work. In this study, we successfully validate "relative node tolerance bound" (RNTB) in the pruned searching space. Furthermore, we improve the computational performance by quantifying the successful RNTB tolerance probability and switch to rDP on perturbation-resilient columns only. In our searching space derived by a threshold value of 90 percent of the optimal alignment score, we find that 98.3 percent of contours contain correctly updated paths. We also find that our method consumes only 25.36 percent of the runtime cost of sparse dynamic programming (sDP) method, and to only 2.55 percent of that of a normal dynamic programming with the Smith-Waterman algorithm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, R.C.
This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese's group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a groupmore » of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Ronald C.
This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese`s group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a groupmore » of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.« less
Cloud4Psi: cloud computing for 3D protein structure similarity searching.
Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur
2014-10-01
Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. © The Author 2014. Published by Oxford University Press.
Cloud4Psi: cloud computing for 3D protein structure similarity searching
Mrozek, Dariusz; Małysiak-Mrozek, Bożena; Kłapciński, Artur
2014-01-01
Summary: Popular methods for 3D protein structure similarity searching, especially those that generate high-quality alignments such as Combinatorial Extension (CE) and Flexible structure Alignment by Chaining Aligned fragment pairs allowing Twists (FATCAT) are still time consuming. As a consequence, performing similarity searching against large repositories of structural data requires increased computational resources that are not always available. Cloud computing provides huge amounts of computational power that can be provisioned on a pay-as-you-go basis. We have developed the cloud-based system that allows scaling of the similarity searching process vertically and horizontally. Cloud4Psi (Cloud for Protein Similarity) was tested in the Microsoft Azure cloud environment and provided good, almost linearly proportional acceleration when scaled out onto many computational units. Availability and implementation: Cloud4Psi is available as Software as a Service for testing purposes at: http://cloud4psi.cloudapp.net/. For source code and software availability, please visit the Cloud4Psi project home page at http://zti.polsl.pl/dmrozek/science/cloud4psi.htm. Contact: dariusz.mrozek@polsl.pl PMID:24930141
B-MIC: An Ultrafast Three-Level Parallel Sequence Aligner Using MIC.
Cui, Yingbo; Liao, Xiangke; Zhu, Xiaoqian; Wang, Bingqiang; Peng, Shaoliang
2016-03-01
Sequence alignment is the central process for sequence analysis, where mapping raw sequencing data to reference genome. The large amount of data generated by NGS is far beyond the process capabilities of existing alignment tools. Consequently, sequence alignment becomes the bottleneck of sequence analysis. Intensive computing power is required to address this challenge. Intel recently announced the MIC coprocessor, which can provide massive computing power. The Tianhe-2 is the world's fastest supercomputer now equipped with three MIC coprocessors each compute node. A key feature of sequence alignment is that different reads are independent. Considering this property, we proposed a MIC-oriented three-level parallelization strategy to speed up BWA, a widely used sequence alignment tool, and developed our ultrafast parallel sequence aligner: B-MIC. B-MIC contains three levels of parallelization: firstly, parallelization of data IO and reads alignment by a three-stage parallel pipeline; secondly, parallelization enabled by MIC coprocessor technology; thirdly, inter-node parallelization implemented by MPI. In this paper, we demonstrate that B-MIC outperforms BWA by a combination of those techniques using Inspur NF5280M server and the Tianhe-2 supercomputer. To the best of our knowledge, B-MIC is the first sequence alignment tool to run on Intel MIC and it can achieve more than fivefold speedup over the original BWA while maintaining the alignment precision.
Shih, Arthur Chun-Chieh; Lee, DT; Peng, Chin-Lin; Wu, Yu-Wei
2007-01-01
Background When aligning several hundreds or thousands of sequences, such as epidemic virus sequences or homologous/orthologous sequences of some big gene families, to reconstruct the epidemiological history or their phylogenies, how to analyze and visualize the alignment results of many sequences has become a new challenge for computational biologists. Although there are several tools available for visualization of very long sequence alignments, few of them are applicable to the alignments of many sequences. Results A multiple-logo alignment visualization tool, called Phylo-mLogo, is presented in this paper. Phylo-mLogo calculates the variabilities and homogeneities of alignment sequences by base frequencies or entropies. Different from the traditional representations of sequence logos, Phylo-mLogo not only displays the global logo patterns of the whole alignment of multiple sequences, but also demonstrates their local homologous logos for each clade hierarchically. In addition, Phylo-mLogo also allows the user to focus only on the analysis of some important, structurally or functionally constrained sites in the alignment selected by the user or by built-in automatic calculation. Conclusion With Phylo-mLogo, the user can symbolically and hierarchically visualize hundreds of aligned sequences simultaneously and easily check the changes of their amino acid sites when analyzing many homologous/orthologous or influenza virus sequences. More information of Phylo-mLogo can be found at URL . PMID:17319966
Accurate estimation of short read mapping quality for next-generation genome sequencing
Ruffalo, Matthew; Koyutürk, Mehmet; Ray, Soumya; LaFramboise, Thomas
2012-01-01
Motivation: Several software tools specialize in the alignment of short next-generation sequencing reads to a reference sequence. Some of these tools report a mapping quality score for each alignment—in principle, this quality score tells researchers the likelihood that the alignment is correct. However, the reported mapping quality often correlates weakly with actual accuracy and the qualities of many mappings are underestimated, encouraging the researchers to discard correct mappings. Further, these low-quality mappings tend to correlate with variations in the genome (both single nucleotide and structural), and such mappings are important in accurately identifying genomic variants. Approach: We develop a machine learning tool, LoQuM (LOgistic regression tool for calibrating the Quality of short read mappings, to assign reliable mapping quality scores to mappings of Illumina reads returned by any alignment tool. LoQuM uses statistics on the read (base quality scores reported by the sequencer) and the alignment (number of matches, mismatches and deletions, mapping quality score returned by the alignment tool, if available, and number of mappings) as features for classification and uses simulated reads to learn a logistic regression model that relates these features to actual mapping quality. Results: We test the predictions of LoQuM on an independent dataset generated by the ART short read simulation software and observe that LoQuM can ‘resurrect’ many mappings that are assigned zero quality scores by the alignment tools and are therefore likely to be discarded by researchers. We also observe that the recalibration of mapping quality scores greatly enhances the precision of called single nucleotide polymorphisms. Availability: LoQuM is available as open source at http://compbio.case.edu/loqum/. Contact: matthew.ruffalo@case.edu. PMID:22962451
Accelerating large-scale protein structure alignments with graphics processing units
2012-01-01
Background Large-scale protein structure alignment, an indispensable tool to structural bioinformatics, poses a tremendous challenge on computational resources. To ensure structure alignment accuracy and efficiency, efforts have been made to parallelize traditional alignment algorithms in grid environments. However, these solutions are costly and of limited accessibility. Others trade alignment quality for speedup by using high-level characteristics of structure fragments for structure comparisons. Findings We present ppsAlign, a parallel protein structure Alignment framework designed and optimized to exploit the parallelism of Graphics Processing Units (GPUs). As a general-purpose GPU platform, ppsAlign could take many concurrent methods, such as TM-align and Fr-TM-align, into the parallelized algorithm design. We evaluated ppsAlign on an NVIDIA Tesla C2050 GPU card, and compared it with existing software solutions running on an AMD dual-core CPU. We observed a 36-fold speedup over TM-align, a 65-fold speedup over Fr-TM-align, and a 40-fold speedup over MAMMOTH. Conclusions ppsAlign is a high-performance protein structure alignment tool designed to tackle the computational complexity issues from protein structural data. The solution presented in this paper allows large-scale structure comparisons to be performed using massive parallel computing power of GPU. PMID:22357132
The Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to address needs for rapid, cost effective methods of species extrapolation of chemical susceptibility. Specifically, the SeqAPASS tool compares the primary sequence (Level 1), functiona...
Bohne-Lang, Andreas; Lang, Elke; Taube, Anke
2005-06-27
Web-based searching is the accepted contemporary mode of retrieving relevant literature, and retrieving as many full text articles as possible is a typical prerequisite for research success. In most cases only a proportion of references will be directly accessible as digital reprints through displayed links. A large number of references, however, have to be verified in library catalogues and, depending on their availability, are accessible as print holdings or by interlibrary loan request. The problem of verifying local print holdings from an initial retrieval set of citations can be solved using Z39.50, an ANSI protocol for interactively querying library information systems. Numerous systems include Z39.50 interfaces and therefore can process Z39.50 interactive requests. However, the programmed query interaction command structure is non-intuitive and inaccessible to the average biomedical researcher. For the typical user, it is necessary to implement the protocol within a tool that hides and handles Z39.50 syntax, presenting a comfortable user interface. PMD2HD is a web tool implementing Z39.50 to provide an appropriately functional and usable interface to integrate into the typical workflow that follows an initial PubMed literature search, providing users with an immediate asset to assist in the most tedious step in literature retrieval, checking for subscription holdings against a local online catalogue. PMD2HD can facilitate literature access considerably with respect to the time and cost of manual comparisons of search results with local catalogue holdings. The example presented in this article is related to the library system and collections of the German Cancer Research Centre. However, the PMD2HD software architecture and use of common Z39.50 protocol commands allow for transfer to a broad range of scientific libraries using Z39.50-compatible library information systems.
Global Alignment of Pairwise Protein Interaction Networks for Maximal Common Conserved Patterns
Tian, Wenhong; Samatova, Nagiza F.
2013-01-01
A number of tools for the alignment of protein-protein interaction (PPI) networks have laid the foundation for PPI network analysis. Most of alignment tools focus on finding conserved interaction regions across the PPI networks through either local or global mapping of similar sequences. Researchers are still trying to improve the speed, scalability, and accuracy of network alignment. In view of this, we introduce a connected-components based fast algorithm, HopeMap, for network alignment. Observing that the size of true orthologs across species is small comparing to the total number of proteins in all species, we take a different approach based onmore » a precompiled list of homologs identified by KO terms. Applying this approach to S. cerevisiae (yeast) and D. melanogaster (fly), E. coli K12 and S. typhimurium , E. coli K12 and C. crescenttus , we analyze all clusters identified in the alignment. The results are evaluated through up-to-date known gene annotations, gene ontology (GO), and KEGG ortholog groups (KO). Comparing to existing tools, our approach is fast with linear computational cost, highly accurate in terms of KO and GO terms specificity and sensitivity, and can be extended to multiple alignments easily.« less
galaxie--CGI scripts for sequence identification through automated phylogenetic analysis.
Nilsson, R Henrik; Larsson, Karl-Henrik; Ursing, Björn M
2004-06-12
The prevalent use of similarity searches like BLAST to identify sequences and species implicitly assumes the reference database to be of extensive sequence sampling. This is often not the case, restraining the correctness of the outcome as a basis for sequence identification. Phylogenetic inference outperforms similarity searches in retrieving correct phylogenies and consequently sequence identities, and a project was initiated to design a freely available script package for sequence identification through automated Web-based phylogenetic analysis. Three CGI scripts were designed to facilitate qualified sequence identification from a Web interface. Query sequences are aligned to pre-made alignments or to alignments made by ClustalW with entries retrieved from a BLAST search. The subsequent phylogenetic analysis is based on the PHYLIP package for inferring neighbor-joining and parsimony trees. The scripts are highly configurable. A service installation and a version for local use are found at http://andromeda.botany.gu.se/galaxiewelcome.html and http://galaxie.cgb.ki.se
NOBAI: a web server for character coding of geometrical and statistical features in RNA structure
Knudsen, Vegeir; Caetano-Anollés, Gustavo
2008-01-01
The Numeration of Objects in Biology: Alignment Inferences (NOBAI) web server provides a web interface to the applications in the NOBAI software package. This software codes topological and thermodynamic information related to the secondary structure of RNA molecules as multi-state phylogenetic characters, builds character matrices directly in NEXUS format and provides sequence randomization options. The web server is an effective tool that facilitates the search for evolutionary history embedded in the structure of functional RNA molecules. The NOBAI web server is accessible at ‘http://www.manet.uiuc.edu/nobai/nobai.php’. This web site is free and open to all users and there is no login requirement. PMID:18448469
eShadow: A tool for comparing closely related sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovcharenko, Ivan; Boffelli, Dario; Loots, Gabriela G.
2004-01-15
Primate sequence comparisons are difficult to interpret due to the high degree of sequence similarity shared between such closely related species. Recently, a novel method, phylogenetic shadowing, has been pioneered for predicting functional elements in the human genome through the analysis of multiple primate sequence alignments. We have expanded this theoretical approach to create a computational tool, eShadow, for the identification of elements under selective pressure in multiple sequence alignments of closely related genomes, such as in comparisons of human to primate or mouse to rat DNA. This tool integrates two different statistical methods and allows for the dynamic visualizationmore » of the resulting conservation profile. eShadow also includes a versatile optimization module capable of training the underlying Hidden Markov Model to differentially predict functional sequences. This module grants the tool high flexibility in the analysis of multiple sequence alignments and in comparing sequences with different divergence rates. Here, we describe the eShadow comparative tool and its potential uses for analyzing both multiple nucleotide and protein alignments to predict putative functional elements. The eShadow tool is publicly available at http://eshadow.dcode.org/« less
Workflow and web application for annotating NCBI BioProject transcriptome data.
Vera Alvarez, Roberto; Medeiros Vidal, Newton; Garzón-Martínez, Gina A; Barrero, Luz S; Landsman, David; Mariño-Ramírez, Leonardo
2017-01-01
The volume of transcriptome data is growing exponentially due to rapid improvement of experimental technologies. In response, large central resources such as those of the National Center for Biotechnology Information (NCBI) are continually adapting their computational infrastructure to accommodate this large influx of data. New and specialized databases, such as Transcriptome Shotgun Assembly Sequence Database (TSA) and Sequence Read Archive (SRA), have been created to aid the development and expansion of centralized repositories. Although the central resource databases are under continual development, they do not include automatic pipelines to increase annotation of newly deposited data. Therefore, third-party applications are required to achieve that aim. Here, we present an automatic workflow and web application for the annotation of transcriptome data. The workflow creates secondary data such as sequencing reads and BLAST alignments, which are available through the web application. They are based on freely available bioinformatics tools and scripts developed in-house. The interactive web application provides a search engine and several browser utilities. Graphical views of transcript alignments are available through SeqViewer, an embedded tool developed by NCBI for viewing biological sequence data. The web application is tightly integrated with other NCBI web applications and tools to extend the functionality of data processing and interconnectivity. We present a case study for the species Physalis peruviana with data generated from BioProject ID 67621. URL: http://www.ncbi.nlm.nih.gov/projects/physalis/. Published by Oxford University Press 2017. This work is written by US Government employees and is in the public domain in the US.
Image analysis tools and emerging algorithms for expression proteomics
English, Jane A.; Lisacek, Frederique; Morris, Jeffrey S.; Yang, Guang-Zhong; Dunn, Michael J.
2012-01-01
Since their origins in academic endeavours in the 1970s, computational analysis tools have matured into a number of established commercial packages that underpin research in expression proteomics. In this paper we describe the image analysis pipeline for the established 2-D Gel Electrophoresis (2-DE) technique of protein separation, and by first covering signal analysis for Mass Spectrometry (MS), we also explain the current image analysis workflow for the emerging high-throughput ‘shotgun’ proteomics platform of Liquid Chromatography coupled to MS (LC/MS). The bioinformatics challenges for both methods are illustrated and compared, whilst existing commercial and academic packages and their workflows are described from both a user’s and a technical perspective. Attention is given to the importance of sound statistical treatment of the resultant quantifications in the search for differential expression. Despite wide availability of proteomics software, a number of challenges have yet to be overcome regarding algorithm accuracy, objectivity and automation, generally due to deterministic spot-centric approaches that discard information early in the pipeline, propagating errors. We review recent advances in signal and image analysis algorithms in 2-DE, MS, LC/MS and Imaging MS. Particular attention is given to wavelet techniques, automated image-based alignment and differential analysis in 2-DE, Bayesian peak mixture models and functional mixed modelling in MS, and group-wise consensus alignment methods for LC/MS. PMID:21046614
Protein 3D Structure and Electron Microscopy Map Retrieval Using 3D-SURFER2.0 and EM-SURFER.
Han, Xusi; Wei, Qing; Kihara, Daisuke
2017-12-08
With the rapid growth in the number of solved protein structures stored in the Protein Data Bank (PDB) and the Electron Microscopy Data Bank (EMDB), it is essential to develop tools to perform real-time structure similarity searches against the entire structure database. Since conventional structure alignment methods need to sample different orientations of proteins in the three-dimensional space, they are time consuming and unsuitable for rapid, real-time database searches. To this end, we have developed 3D-SURFER and EM-SURFER, which utilize 3D Zernike descriptors (3DZD) to conduct high-throughput protein structure comparison, visualization, and analysis. Taking an atomic structure or an electron microscopy map of a protein or a protein complex as input, the 3DZD of a query protein is computed and compared with the 3DZD of all other proteins in PDB or EMDB. In addition, local geometrical characteristics of a query protein can be analyzed using VisGrid and LIGSITE CSC in 3D-SURFER. This article describes how to use 3D-SURFER and EM-SURFER to carry out protein surface shape similarity searches, local geometric feature analysis, and interpretation of the search results. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Alignment Pins for Assembling and Disassembling Structures
NASA Technical Reports Server (NTRS)
Campbell, Oliver C.
2008-01-01
Simple, easy-to-use, highly effective tooling has been devised for maintaining alignment of bolt holes in mating structures during assembly and disassembly of the structures. The tooling was originally used during removal of a body flap from the space shuttle Atlantis, in which misalignments during removal of the last few bolts could cause the bolts to bind in their holes. By suitably modifying the dimensions of the tooling components, the basic design of the tooling can readily be adapted to other structures that must be maintained in alignment. The tooling includes tapered, internally threaded alignment pins designed to fit in the bolt holes in one of the mating structures, plus a draw bolt and a cup that are used to install or remove each alignment pin. In preparation for disassembly of two mating structures, external supports are provided to prevent unintended movement of the structures. During disassembly of the structures, as each bolt that joins the structures is removed, an alignment pin is installed in its place. Once all the bolts have been removed and replaced with pins, the pins maintain alignment as the structures are gently pushed or pulled apart on the supports. In assembling the two structures, one reverses the procedure described above: pins are installed in the bolt holes, the structures are pulled or pushed together on the supports, then the pins are removed and replaced with bolts. The figure depicts the tooling and its use. To install an alignment pin in a bolt hole in a structural panel, the tapered end of the pin is inserted from one side of the panel, the cup is placed over the pin on the opposite side of the panel, the draw bolt is inserted through the cup and threaded into the pin, the draw bolt is tightened to pull the pin until the pin is seated firmly in the hole, then the draw bolt and cup are removed, leaving the pin in place. To remove an alignment pin, the cup is placed over the pin on the first-mentioned side of the panel, the draw bolt is inserted through the cup and threaded into the pin, then the draw bolt is tightened to pull the pin out of the hole.
Self-learning computers for surgical planning and prediction of postoperative alignment.
Lafage, Renaud; Pesenti, Sébastien; Lafage, Virginie; Schwab, Frank J
2018-02-01
In past decades, the role of sagittal alignment has been widely demonstrated in the setting of spinal conditions. As several parameters can be affected, identifying the driver of the deformity is the cornerstone of a successful treatment approach. Despite the importance of restoring sagittal alignment for optimizing outcome, this task remains challenging. Self-learning computers and optimized algorithms are of great interest in spine surgery as in that they facilitate better planning and prediction of postoperative alignment. Nowadays, computer-assisted tools are part of surgeons' daily practice; however, the use of such tools remains to be time-consuming. NARRATIVE REVIEW AND RESULTS: Computer-assisted methods for the prediction of postoperative alignment consist of a three step analysis: identification of anatomical landmark, definition of alignment objectives, and simulation of surgery. Recently, complex rules for the prediction of alignment have been proposed. Even though this kind of work leads to more personalized objectives, the number of parameters involved renders it difficult for clinical use, stressing the importance of developing computer-assisted tools. The evolution of our current technology, including machine learning and other types of advanced algorithms, will provide powerful tools that could be useful in improving surgical outcomes and alignment prediction. These tools can combine different types of advanced technologies, such as image recognition and shape modeling, and using this technique, computer-assisted methods are able to predict spinal shape. The development of powerful computer-assisted methods involves the integration of several sources of information such as radiographic parameters (X-rays, MRI, CT scan, etc.), demographic information, and unusual non-osseous parameters (muscle quality, proprioception, gait analysis data). In using a larger set of data, these methods will aim to mimic what is actually done by spine surgeons, leading to real tailor-made solutions. Integrating newer technology can change the current way of planning/simulating surgery. The use of powerful computer-assisted tools that are able to integrate several parameters and learn from experience can change the traditional way of selecting treatment pathways and counseling patients. However, there is still much work to be done to reach a desired level as noted in other orthopedic fields, such as hip surgery. Many of these tools already exist in non-medical fields and their adaptation to spine surgery is of considerable interest.
ADOMA: A Command Line Tool to Modify ClustalW Multiple Alignment Output.
Zaal, Dionne; Nota, Benjamin
2016-01-01
We present ADOMA, a command line tool that produces alternative outputs from ClustalW multiple alignments of nucleotide or protein sequences. ADOMA can simplify the output of alignments by showing only the different residues between sequences, which is often desirable when only small differences such as single nucleotide polymorphisms are present (e.g., between different alleles). Another feature of ADOMA is that it can enhance the ClustalW output by coloring the residues in the alignment. This tool is easily integrated into automated Linux pipelines for next-generation sequencing data analysis, and may be useful for researchers in a broad range of scientific disciplines including evolutionary biology and biomedical sciences. The source code is freely available at https://sourceforge. net/projects/adoma/. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Harper, John D I; Thuet, Jacques; Lechtreck, Karl F; Hardham, Adrienne R
2009-07-01
In green algae, striated fiber assemblin (SFA) is the major protein of the striated microtubule-associated fibers that are structural elements in the flagellar basal apparatus. Using Basic Local Alignment Search Tool (BLAST) searches of recently established databases, SFA-like sequences were detected in the genomes not only of green algal species but also of a range of other protists. These included species in two alveolate subgroups, the ciliates (Tetrahymena thermophila, Paramecium tetraurelia) and the dinoflagellates (Perkinsus marinus), and two stramenopile subgroups, the oomycetes (Phytophthora sojae, Phytophthora ramorum, Phytophthora infestans) and the diatoms (Thalassiosira pseudonana, Phaeodactylum tricornutum). Together with earlier identification of SFA-like sequences in the apicomplexans, these results indicate that homologs of SFA are present across the alveolates and stramenopiles. Antibodies raised against SFA from the green alga, Spermatozopsis similis, react in immunofluorescence assays with the two basal bodies and an anteriorly directed striated fiber in the flagellar apparatus of biflagellate Phytophthora zoospores.
Molecular Identification of Fungal Contamination in Date Palm Tissue Cultures.
Abass, Mohammed H
2017-01-01
Fungal contamination of in vitro cultures of date palm (Phoenix dactylifera L.) is the major constraint to their initiation and maintenance. Different molecular approaches have been applied successfully to analyze both inter- and intraspecific variation among fungal species as well as determine their identity. This chapter describes step-by-step procedures of molecular identification of fungal contaminants by internal transcribed spacer (ITS) products of the most common fungal contaminants of date palm tissue culture. To begin with, samples of genera Alternaria, Aspergillus, Cladosporium, Epicoccum, and Penicillium were collected to isolate each fungal genus and extraction of genomic DNA. Polymerase chain reactions were accomplished by ITS primers (ITS1 and ITS4) for each fungal contaminant as well as for sequencing. Subsequently, they are analyzed by Basic Local Alignment Search Tool (BLAST) search of ITS sequence to reveal the identity of each individual fungal contaminant species. The molecular identification herein is a rapid and reliable procedure to identify date palm fungal contaminants which is very important in their control and treatment.
Optimizing high performance computing workflow for protein functional annotation.
Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene
2014-09-10
Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data.
Optimizing high performance computing workflow for protein functional annotation
Stanberry, Larissa; Rekepalli, Bhanu; Liu, Yuan; Giblock, Paul; Higdon, Roger; Montague, Elizabeth; Broomall, William; Kolker, Natali; Kolker, Eugene
2014-01-01
Functional annotation of newly sequenced genomes is one of the major challenges in modern biology. With modern sequencing technologies, the protein sequence universe is rapidly expanding. Newly sequenced bacterial genomes alone contain over 7.5 million proteins. The rate of data generation has far surpassed that of protein annotation. The volume of protein data makes manual curation infeasible, whereas a high compute cost limits the utility of existing automated approaches. In this work, we present an improved and optmized automated workflow to enable large-scale protein annotation. The workflow uses high performance computing architectures and a low complexity classification algorithm to assign proteins into existing clusters of orthologous groups of proteins. On the basis of the Position-Specific Iterative Basic Local Alignment Search Tool the algorithm ensures at least 80% specificity and sensitivity of the resulting classifications. The workflow utilizes highly scalable parallel applications for classification and sequence alignment. Using Extreme Science and Engineering Discovery Environment supercomputers, the workflow processed 1,200,000 newly sequenced bacterial proteins. With the rapid expansion of the protein sequence universe, the proposed workflow will enable scientists to annotate big genome data. PMID:25313296
An Optimized Informatics Pipeline for Mass Spectrometry-Based Peptidomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chaochao; Monroe, Matthew E.; Xu, Zhe
2015-12-26
Comprehensive MS analysis of peptidome, the intracellular and intercellular products of protein degradation, has the potential to provide novel insights on endogenous proteolytic processing and their utility in disease diagnosis and prognosis. Along with the advances in MS instrumentation, a plethora of proteomics data analysis tools have been applied for direct use in peptidomics; however an evaluation of the currently available informatics pipelines for peptidomics data analysis has yet to be reported. In this study, we set off by evaluating the results of several popular MS/MS database search engines including MS-GF+, SEQUEST and MS-Align+ for peptidomics data analysis, followed bymore » identification and label-free quantification using the well-established accurate mass and time (AMT) tag and newly developed informed quantification (IQ) approaches, both based on direct LC-MS analysis. Our result demonstrated that MS-GF+ outperformed both SEQUEST and MS-Align+ in identifying peptidome peptides. Using a database established from the MS-GF+ peptide identifications, both the AMT tag and IQ approaches provided significantly deeper peptidome coverage and less missing value for each individual data set than the MS/MS methods, while achieving robust label-free quantification. Besides having an excellent correlation with the AMT tag quantification results, IQ also provided slightly higher peptidome coverage than AMT. Taken together, we propose an optimal informatics pipeline combining MS-GF+ for initial database searching with IQ (or AMT) for identification and label-free quantification for high-throughput, comprehensive and quantitative peptidomics analysis.« less
Generation of non-genomic oligonucleotide tag sequences for RNA template-specific PCR
Pinto, Fernando Lopes; Svensson, Håkan; Lindblad, Peter
2006-01-01
Background In order to overcome genomic DNA contamination in transcriptional studies, reverse template-specific polymerase chain reaction, a modification of reverse transcriptase polymerase chain reaction, is used. The possibility of using tags whose sequences are not found in the genome further improves reverse specific polymerase chain reaction experiments. Given the absence of software available to produce genome suitable tags, a simple tool to fulfill such need was developed. Results The program was developed in Perl, with separate use of the basic local alignment search tool, making the tool platform independent (known to run on Windows XP and Linux). In order to test the performance of the generated tags, several molecular experiments were performed. The results show that Tagenerator is capable of generating tags with good priming properties, which will deliberately not result in PCR amplification of genomic DNA. Conclusion The program Tagenerator is capable of generating tag sequences that combine genome absence with good priming properties for RT-PCR based experiments, circumventing the effects of genomic DNA contamination in an RNA sample. PMID:16820068
Windows .NET Network Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST)
Dowd, Scot E; Zaragoza, Joaquin; Rodriguez, Javier R; Oliver, Melvin J; Payton, Paxton R
2005-01-01
Background BLAST is one of the most common and useful tools for Genetic Research. This paper describes a software application we have termed Windows .NET Distributed Basic Local Alignment Search Toolkit (W.ND-BLAST), which enhances the BLAST utility by improving usability, fault recovery, and scalability in a Windows desktop environment. Our goal was to develop an easy to use, fault tolerant, high-throughput BLAST solution that incorporates a comprehensive BLAST result viewer with curation and annotation functionality. Results W.ND-BLAST is a comprehensive Windows-based software toolkit that targets researchers, including those with minimal computer skills, and provides the ability increase the performance of BLAST by distributing BLAST queries to any number of Windows based machines across local area networks (LAN). W.ND-BLAST provides intuitive Graphic User Interfaces (GUI) for BLAST database creation, BLAST execution, BLAST output evaluation and BLAST result exportation. This software also provides several layers of fault tolerance and fault recovery to prevent loss of data if nodes or master machines fail. This paper lays out the functionality of W.ND-BLAST. W.ND-BLAST displays close to 100% performance efficiency when distributing tasks to 12 remote computers of the same performance class. A high throughput BLAST job which took 662.68 minutes (11 hours) on one average machine was completed in 44.97 minutes when distributed to 17 nodes, which included lower performance class machines. Finally, there is a comprehensive high-throughput BLAST Output Viewer (BOV) and Annotation Engine components, which provides comprehensive exportation of BLAST hits to text files, annotated fasta files, tables, or association files. Conclusion W.ND-BLAST provides an interactive tool that allows scientists to easily utilizing their available computing resources for high throughput and comprehensive sequence analyses. The install package for W.ND-BLAST is freely downloadable from . With registration the software is free, installation, networking, and usage instructions are provided as well as a support forum. PMID:15819992
MBAT: a scalable informatics system for unifying digital atlasing workflows.
Lee, Daren; Ruffins, Seth; Ng, Queenie; Sane, Nikhil; Anderson, Steve; Toga, Arthur
2010-12-22
Digital atlases provide a common semantic and spatial coordinate system that can be leveraged to compare, contrast, and correlate data from disparate sources. As the quality and amount of biological data continues to advance and grow, searching, referencing, and comparing this data with a researcher's own data is essential. However, the integration process is cumbersome and time-consuming due to misaligned data, implicitly defined associations, and incompatible data sources. This work addressing these challenges by providing a unified and adaptable environment to accelerate the workflow to gather, align, and analyze the data. The MouseBIRN Atlasing Toolkit (MBAT) project was developed as a cross-platform, free open-source application that unifies and accelerates the digital atlas workflow. A tiered, plug-in architecture was designed for the neuroinformatics and genomics goals of the project to provide a modular and extensible design. MBAT provides the ability to use a single query to search and retrieve data from multiple data sources, align image data using the user's preferred registration method, composite data from multiple sources in a common space, and link relevant informatics information to the current view of the data or atlas. The workspaces leverage tool plug-ins to extend and allow future extensions of the basic workspace functionality. A wide variety of tool plug-ins were developed that integrate pre-existing as well as newly created technology into each workspace. Novel atlasing features were also developed, such as supporting multiple label sets, dynamic selection and grouping of labels, and synchronized, context-driven display of ontological data. MBAT empowers researchers to discover correlations among disparate data by providing a unified environment for bringing together distributed reference resources, a user's image data, and biological atlases into the same spatial or semantic context. Through its extensible tiered plug-in architecture, MBAT allows researchers to customize all platform components to quickly achieve personalized workflows.
Lommen, Arjen
2009-04-15
Hyphenated full-scan MS technology creates large amounts of data. A versatile easy to handle automation tool aiding in the data analysis is very important in handling such a data stream. MetAlign softwareas described in this manuscripthandles a broad range of accurate mass and nominal mass GC/MS and LC/MS data. It is capable of automatic format conversions, accurate mass calculations, baseline corrections, peak-picking, saturation and mass-peak artifact filtering, as well as alignment of up to 1000 data sets. A 100 to 1000-fold data reduction is achieved. MetAlign software output is compatible with most multivariate statistics programs.
Ranwez, Vincent
2016-01-01
Multiple sequence alignment (MSA) is a crucial step in many molecular analyses and many MSA tools have been developed. Most of them use a greedy approach to construct a first alignment that is then refined by optimizing the sum of pair score (SP-score). The SP-score estimation is thus a bottleneck for most MSA tools since it is repeatedly required and is time consuming. Given an alignment of n sequences and L sites, I introduce here optimized solutions reaching O(nL) time complexity for affine gap cost, instead of O(n2L), which are easy to implement.
Self-Noise of the STS-2 and sensitivity of its computation to errors in alignment of sensors
NASA Astrophysics Data System (ADS)
Gerner, Andreas; Sleeman, Reinoud; Grasemann, Bernhard; Lenhardt, Wolfgang
2016-04-01
The assessment of a seismometer's self-noise is an important part of establishing its health, quality, and suitability. A spectral coherence technique proposed by Sleeman et al. (2006) using synchronously recorded data of triples of collocated and co-aligned seismometers has shown to be a very robust and reliable way to estimate the self-noise of modern broadband seismic sensors. It has been demonstrated in previous works that the resulting self-noise spectra, primarily in the frequency range of Earth's microseisms, are considerably affected by small errors in the alignment of sensors. Further, due to the sensitivity of the 3-channel correlation technique to misalignment, numerical rotation of the recorded traces prior to self-noise computation can be performed to find best possible alignment by searching for minimum self-noise values. In this study we focus on the sensitivity of the 3-channel correlation technique to misalignment, and investigate the possibility of complete removal of the microseism signal from self-noise estimates for the sensors' three components separately. Data from a long-term installation of four STS-2 sensors, specifically intended for self-noise studies, at the Conrad Observatory (Austria) in a collaboration between the KNMI (Netherlands) and the ZAMG (Austria) provides a reliable basis for an accurate sensitivity analysis and self-noise assessment. Our work resulted in undisturbed self-noise estimates for the vertical components, and our current focus is on improving alignment of horizontal axes, and verification of the manufacturer's specification regarding orthogonality of all three components. The tools and methods developed within this research can help to quickly establish consistent self-noise models, including estimates of orthogonality and alignment, which facilitates comparison of different models and provides us with a means to test quality and accuracy of a seismic sensor over its life span.
Optical alignment of electrodes on electrical discharge machines
NASA Technical Reports Server (NTRS)
Boissevain, A. G.; Nelson, B. W.
1972-01-01
Shadowgraph system projects magnified image on screen so that alignment of small electrodes mounted on electrical discharge machines can be corrected and verified. Technique may be adapted to other machine tool equipment where physical contact cannot be made during inspection and access to tool limits conventional runout checking procedures.
Boosting the FM-Index on the GPU: Effective Techniques to Mitigate Random Memory Access.
Chacón, Alejandro; Marco-Sola, Santiago; Espinosa, Antonio; Ribeca, Paolo; Moure, Juan Carlos
2015-01-01
The recent advent of high-throughput sequencing machines producing big amounts of short reads has boosted the interest in efficient string searching techniques. As of today, many mainstream sequence alignment software tools rely on a special data structure, called the FM-index, which allows for fast exact searches in large genomic references. However, such searches translate into a pseudo-random memory access pattern, thus making memory access the limiting factor of all computation-efficient implementations, both on CPUs and GPUs. Here, we show that several strategies can be put in place to remove the memory bottleneck on the GPU: more compact indexes can be implemented by having more threads work cooperatively on larger memory blocks, and a k-step FM-index can be used to further reduce the number of memory accesses. The combination of those and other optimisations yields an implementation that is able to process about two Gbases of queries per second on our test platform, being about 8 × faster than a comparable multi-core CPU version, and about 3 × to 5 × faster than the FM-index implementation on the GPU provided by the recently announced Nvidia NVBIO bioinformatics library.
Efficacy of clear aligners in controlling orthodontic tooth movement: a systematic review.
Rossini, Gabriele; Parrini, Simone; Castroflorio, Tommaso; Deregibus, Andrea; Debernardi, Cesare L
2015-09-01
To assess the scientific evidence related to the efficacy of clear aligner treatment (CAT) in controlling orthodontic tooth movement. PubMed, PMC, NLM, Embase, Cochrane Central Register of Controlled Clinical Trials, Web of Knowledge, Scopus, Google Scholar, and LILACs were searched from January 2000 to June 2014 to identify all peer-reviewed articles potentially relevant to the review. Methodological shortcomings were highlighted and the quality of the studies was ranked using the Cochrane Tool for Risk of Bias Assessment. Eleven relevant articles were selected (two Randomized Clinical Trials (RCT), five prospective non-randomized, four retrospective non-randomized), and the risk of bias was moderate for six studies and unclear for the others. The amount of mean intrusion reported was 0.72 mm. Extrusion was the most difficult movement to control (30% of accuracy), followed by rotation. Upper molar distalization revealed the highest predictability (88%) when a bodily movement of at least 1.5 mm was prescribed. A decrease of the Little's Index (mandibular arch: 5 mm; maxillary arch: 4 mm) was observed in aligning arches. CAT aligns and levels the arches; it is effective in controlling anterior intrusion but not anterior extrusion; it is effective in controlling posterior buccolingual inclination but not anterior buccolingual inclination; it is effective in controlling upper molar bodily movements of about 1.5 mm; and it is not effective in controlling rotation of rounded teeth in particular. However, the results of this review should be interpreted with caution because of the number, quality, and heterogeneity of the studies.
Concentration solar power optimization system and method of using the same
Andraka, Charles E
2014-03-18
A system and method for optimizing at least one mirror of at least one CSP system is provided. The system has a screen for displaying light patterns for reflection by the mirror, a camera for receiving a reflection of the light patterns from the mirror, and a solar characterization tool. The solar characterization tool has a characterizing unit for determining at least one mirror parameter of the mirror based on an initial position of the camera and the screen, and a refinement unit for refining the determined parameter(s) based on an adjusted position of the camera and screen whereby the mirror is characterized. The system may also be provided with a solar alignment tool for comparing at least one mirror parameter of the mirror to a design geometry whereby an alignment error is defined, and at least one alignment unit for adjusting the mirror to reduce the alignment error.
la Cour, L. T.; Stone, B. W.; Hopkins, W.; Menzel, C.; Fragaszy, D.
2013-01-01
Perceptuomotor functions that support using hand tools can be examined in other manipulation tasks, such as alignment of objects to surfaces. We examined tufted capuchin monkeys’ and chimpanzees’ performance at aligning objects to surfaces while managing one or two spatial relations to do so. We presented 6 subjects of each species with a single stick to place into a groove, two sticks of equal length to place into two grooves, or two sticks joined as a T to place into a T-shaped groove. Tufted capuchins and chimpanzees performed equivalently on these tasks, aligning the straight stick to within 22.5° of parallel to the groove in approximately half of their attempts to place it, and taking more attempts to place the T stick than two straight sticks. The findings provide strong evidence that tufted capuchins and chimpanzees do not reliably align even one prominent axial feature of an object to a surface, and that managing two concurrent allocentric spatial relations in an alignment problem is significantly more challenging to them than managing two sequential relations. In contrast, humans from two years of age display very different perceptuomotor abilities in a similar task: they align sticks to a groove reliably on each attempt, and they readily manage two allocentric spatial relations concurrently. Limitations in aligning objects and in managing two or more relations at a time significantly constrain how nonhuman primates can use hand tools. PMID:23820935
An isocenter estimation tool for proton gantry alignment
NASA Astrophysics Data System (ADS)
Hansen, Peter; Hu, Dongming
2017-12-01
A novel tool has been developed to automate the process of locating the isocenter, center of rotation, and sphere of confusion of a proton therapy gantry. The tool uses a Radian laser tracker to estimate how the coordinate frame of the front-end beam-line components changes as the gantry rotates. The coordinate frames serve as an empirical model of gantry flexing. Using this model, the alignment of the front and back-end beam-line components can be chosen to minimize the sphere of confusion, improving the overall beam positioning accuracy of the gantry. This alignment can be performed without the beam active, improving the efficiency of installing new systems at customer sites.
A parallel approach of COFFEE objective function to multiple sequence alignment
NASA Astrophysics Data System (ADS)
Zafalon, G. F. D.; Visotaky, J. M. V.; Amorim, A. R.; Valêncio, C. R.; Neves, L. A.; de Souza, R. C. G.; Machado, J. M.
2015-09-01
The computational tools to assist genomic analyzes show even more necessary due to fast increasing of data amount available. With high computational costs of deterministic algorithms for sequence alignments, many works concentrate their efforts in the development of heuristic approaches to multiple sequence alignments. However, the selection of an approach, which offers solutions with good biological significance and feasible execution time, is a great challenge. Thus, this work aims to show the parallelization of the processing steps of MSA-GA tool using multithread paradigm in the execution of COFFEE objective function. The standard objective function implemented in the tool is the Weighted Sum of Pairs (WSP), which produces some distortions in the final alignments when sequences sets with low similarity are aligned. Then, in studies previously performed we implemented the COFFEE objective function in the tool to smooth these distortions. Although the nature of COFFEE objective function implies in the increasing of execution time, this approach presents points, which can be executed in parallel. With the improvements implemented in this work, we can verify the execution time of new approach is 24% faster than the sequential approach with COFFEE. Moreover, the COFFEE multithreaded approach is more efficient than WSP, because besides it is slightly fast, its biological results are better.
enoLOGOS: a versatile web tool for energy normalized sequence logos
Workman, Christopher T.; Yin, Yutong; Corcoran, David L.; Ideker, Trey; Stormo, Gary D.; Benos, Panayiotis V.
2005-01-01
enoLOGOS is a web-based tool that generates sequence logos from various input sources. Sequence logos have become a popular way to graphically represent DNA and amino acid sequence patterns from a set of aligned sequences. Each position of the alignment is represented by a column of stacked symbols with its total height reflecting the information content in this position. Currently, the available web servers are able to create logo images from a set of aligned sequences, but none of them generates weighted sequence logos directly from energy measurements or other sources. With the advent of high-throughput technologies for estimating the contact energy of different DNA sequences, tools that can create logos directly from binding affinity data are useful to researchers. enoLOGOS generates sequence logos from a variety of input data, including energy measurements, probability matrices, alignment matrices, count matrices and aligned sequences. Furthermore, enoLOGOS can represent the mutual information of different positions of the consensus sequence, a unique feature of this tool. Another web interface for our software, C2H2-enoLOGOS, generates logos for the DNA-binding preferences of the C2H2 zinc-finger transcription factor family members. enoLOGOS and C2H2-enoLOGOS are accessible over the web at . PMID:15980495
-1242px}.vehicle_search_box{border:1px solid #ccc;background-color:#eee;padding:10px;height:312px }.vehicle_search_by_mfg_box{height:150px}.vehicle_detail_box{border:1px solid #ccc;background-color:#eee;padding:10px;height }.search_button{width:100%;text-align:right}h2{color:#45812E;line-height:24px}h3{margin:0;color:black}.search-btn
Tsigelny, Igor; Sharikov, Yuriy; Ten Eyck, Lynn F
2002-05-01
HMMSPECTR is a tool for finding putative structural homologs for proteins with known primary sequences. HMMSPECTR contains four major components: a data warehouse with the hidden Markov models (HMM) and alignment libraries; a search program which compares the initial protein sequences with the libraries of HMMs; a secondary structure prediction and comparison program; and a dominant protein selection program that prepares the set of 10-15 "best" proteins from the chosen HMMs. The data warehouse contains four libraries of HMMs. The first two libraries were constructed using different HHM preparation options of the HAMMER program. The third library contains parts ("partial HMM") of initial alignments. The fourth library contains trained HMMs. We tested our program against all of the protein targets proposed in the CASP4 competition. The data warehouse included libraries of structural alignments and HMMs constructed on the basis of proteins publicly available in the Protein Data Bank before the CASP4 meeting. The newest fully automated versions of HMMSPECTR 1.02 and 1.02ss produced better results than the best result reported at CASP4 either by r.m.s.d. or by length (or both) in 64% (HMMSPECTR 1.02) and 79% (HMMSPECTR 1.02ss) of the cases. The improvement is most notable for the targets with complexity 4 (difficult fold recognition cases).
Accelerated Profile HMM Searches
Eddy, Sean R.
2011-01-01
Profile hidden Markov models (profile HMMs) and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the “multiple segment Viterbi” (MSV) algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call “sparse rescaling”. These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches. PMID:22039361
Self-synchronization for spread spectrum audio watermarks after time scale modification
NASA Astrophysics Data System (ADS)
Nadeau, Andrew; Sharma, Gaurav
2014-02-01
De-synchronizing operations such as insertion, deletion, and warping pose significant challenges for watermarking. Because these operations are not typical for classical communications, watermarking techniques such as spread spectrum can perform poorly. Conversely, specialized synchronization solutions can be challenging to analyze/ optimize. This paper addresses desynchronization for blind spread spectrum watermarks, detected without reference to any unmodified signal, using the robustness properties of short blocks. Synchronization relies on dynamic time warping to search over block alignments to find a sequence with maximum correlation to the watermark. This differs from synchronization schemes that must first locate invariant features of the original signal, or estimate and reverse desynchronization before detection. Without these extra synchronization steps, analysis for the proposed scheme builds on classical SS concepts and allows characterizes the relationship between the size of search space (number of detection alignment tests) and intrinsic robustness (continuous search space region covered by each individual detection test). The critical metrics that determine the search space, robustness, and performance are: time-frequency resolution of the watermarking transform, and blocklength resolution of the alignment. Simultaneous robustness to (a) MP3 compression, (b) insertion/deletion, and (c) time-scale modification is also demonstrated for a practical audio watermarking scheme developed in the proposed framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coble, Jamie B.; Fraga, Carlos G.
2014-07-07
Preprocessing software is crucial for the discovery of chemical signatures in metabolomics, chemical forensics, and other signature-focused disciplines that involve analyzing large data sets from chemical instruments. Here, four freely available and published preprocessing tools known as metAlign, MZmine, SpectConnect, and XCMS were evaluated for impurity profiling using nominal mass GC/MS data and accurate mass LC/MS data. Both data sets were previously collected from the analysis of replicate samples from multiple stocks of a nerve-agent precursor. Each of the four tools had their parameters set for the untargeted detection of chromatographic peaks from impurities present in the stocks. The peakmore » table generated by each preprocessing tool was analyzed to determine the number of impurity components detected in all replicate samples per stock. A cumulative set of impurity components was then generated using all available peak tables and used as a reference to calculate the percent of component detections for each tool, in which 100% indicated the detection of every component. For the nominal mass GC/MS data, metAlign performed the best followed by MZmine, SpectConnect, and XCMS with detection percentages of 83, 60, 47, and 42%, respectively. For the accurate mass LC/MS data, the order was metAlign, XCMS, and MZmine with detection percentages of 80, 45, and 35%, respectively. SpectConnect did not function for the accurate mass LC/MS data. Larger detection percentages were obtained by combining the top performer with at least one of the other tools such as 96% by combining metAlign with MZmine for the GC/MS data and 93% by combining metAlign with XCMS for the LC/MS data. In terms of quantitative performance, the reported peak intensities had average absolute biases of 41, 4.4, 1.3 and 1.3% for SpectConnect, metAlign, XCMS, and MZmine, respectively, for the GC/MS data. For the LC/MS data, the average absolute biases were 22, 4.5, and 3.1% for metAlign, MZmine, and XCMS, respectively. In summary, metAlign performed the best in terms of peak discovery; however, more than one preprocessing tool should be considered to avoid missing potential chemical signatures.« less
Ma, Yazhen; Xu, Ting; Wan, Dongshi; Ma, Tao; Shi, Sheng; Liu, Jianquan; Hu, Quanjun
2015-03-17
Soil salinity is a significant factor that impairs plant growth and agricultural productivity, and numerous efforts are underway to enhance salt tolerance of economically important plants. Populus species are widely cultivated for diverse uses. Especially, they grow in different habitats, from salty soil to mesophytic environment, and are therefore used as a model genus for elucidating physiological and molecular mechanisms of stress tolerance in woody plants. The Salinity Tolerant Poplar Database (STPD) is an integrative database for salt-tolerant poplar genome biology. Currently the STPD contains Populus euphratica genome and its related genetic resources. P. euphratica, with a preference of the salty habitats, has become a valuable genetic resource for the exploitation of tolerance characteristics in trees. This database contains curated data including genomic sequence, genes and gene functional information, non-coding RNA sequences, transposable elements, simple sequence repeats and single nucleotide polymorphisms information of P. euphratica, gene expression data between P. euphratica and Populus tomentosa, and whole-genome alignments between Populus trichocarpa, P. euphratica and Salix suchowensis. The STPD provides useful searching and data mining tools, including GBrowse genome browser, BLAST servers and genome alignments viewer, which can be used to browse genome regions, identify similar sequences and visualize genome alignments. Datasets within the STPD can also be downloaded to perform local searches. A new Salinity Tolerant Poplar Database has been developed to assist studies of salt tolerance in trees and poplar genomics. The database will be continuously updated to incorporate new genome-wide data of related poplar species. This database will serve as an infrastructure for researches on the molecular function of genes, comparative genomics, and evolution in closely related species as well as promote advances in molecular breeding within Populus. The STPD can be accessed at http://me.lzu.edu.cn/stpd/ .
English, René; Peer, Nazia; Honikman, Simone; Tugendhaft, Aviva; Hofman, Karen J
2017-01-01
In South Africa (SA), despite adoption of international strategies and approaches, maternal, neonatal and child (MNC) morbidity and mortality rates have not sufficiently declined. To conduct an umbrella review (UR) that identifies interventions in low- and middle-income countries, with a high-quality evidence base, that improve MNC morbidity and mortality outcomes within the first 1000 days of life; and to assess the incorporation of the evidence into local strategies, guidelines and documents. We included publications about women and children in the first 1000 days of life; healthcare professionals and community members. Comparators were those who did not receive the intervention. Interventions were pharmacological and non-pharmacological. Outcomes were MNC morbidity and mortality. Authors conducted English language electronic and manual searches (2000-2013). The quality of systematic reviews and meta-analyses (SRs/MAs) were reviewed. Interventions were ranked according to level of evidence; and then aligned with SA strategies, policies and guidelines. A tool to extract data was developed and used by two authors who independently extracted data. Summary measures from MAs or summaries of SRs were reviewed and the specificities of the various interventions listed. A search of all local high-level documents was done and these were assessed to determine the specificities of the recommendations and their alignment to the evidence. In total, 19 interventions presented in 32 SRs were identified. Overall, SA's policymakers have sufficiently included high-quality evidence-based interventions into local policies. However, optimal period of birth spacing (two to five years) is not explicitly promoted nor was ante- and postnatal depression adequately incorporated. Antenatal care visits should be increased from four to about eight according to the evidence. Incorporation of existing evidence into policies can be strengthened in SA. The UR methods are useful to inform policymaking and identify research gaps. RESPONSIBLE EDITOR Nawi Ng, Umeå University, Sweden.
English, René; Peer, Nazia; Honikman, Simone; Tugendhaft, Aviva; Hofman, Karen J
2017-01-01
ABSTRACT Background: In South Africa (SA), despite adoption of international strategies and approaches, maternal, neonatal and child (MNC) morbidity and mortality rates have not sufficiently declined. Objectives: To conduct an umbrella review (UR) that identifies interventions in low- and middle-income countries, with a high-quality evidence base, that improve MNC morbidity and mortality outcomes within the first 1000 days of life; and to assess the incorporation of the evidence into local strategies, guidelines and documents. Methods: We included publications about women and children in the first 1000 days of life; healthcare professionals and community members. Comparators were those who did not receive the intervention. Interventions were pharmacological and non-pharmacological. Outcomes were MNC morbidity and mortality. Authors conducted English language electronic and manual searches (2000–2013). The quality of systematic reviews and meta-analyses (SRs/MAs) were reviewed. Interventions were ranked according to level of evidence; and then aligned with SA strategies, policies and guidelines. A tool to extract data was developed and used by two authors who independently extracted data. Summary measures from MAs or summaries of SRs were reviewed and the specificities of the various interventions listed. A search of all local high-level documents was done and these were assessed to determine the specificities of the recommendations and their alignment to the evidence. Results: In total, 19 interventions presented in 32 SRs were identified. Overall, SA’s policymakers have sufficiently included high-quality evidence-based interventions into local policies. However, optimal period of birth spacing (two to five years) is not explicitly promoted nor was ante- and postnatal depression adequately incorporated. Antenatal care visits should be increased from four to about eight according to the evidence. Conclusion: Incorporation of existing evidence into policies can be strengthened in SA. The UR methods are useful to inform policymaking and identify research gaps. RESPONSIBLE EDITOR Nawi Ng, Umeå University, Sweden PMID:28715934
TryTransDB: A web-based resource for transport proteins in Trypanosomatidae.
Sonar, Krushna; Kabra, Ritika; Singh, Shailza
2018-03-12
TryTransDB is a web-based resource that stores transport protein data which can be retrieved using a standalone BLAST tool. We have attempted to create an integrated database that can be a one-stop shop for the researchers working with transport proteins of Trypanosomatidae family. TryTransDB (Trypanosomatidae Transport Protein Database) is a web based comprehensive resource that can fire a BLAST search against most of the transport protein sequences (protein and nucleotide) from Trypanosomatidae family organisms. This web resource further allows to compute a phylogenetic tree by performing multiple sequence alignment (MSA) using CLUSTALW suite embedded in it. Also, cross-linking to other databases helps in gathering more information for a certain transport protein in a single website.
AMAS: a fast tool for alignment manipulation and computing of summary statistics.
Borowiec, Marek L
2016-01-01
The amount of data used in phylogenetics has grown explosively in the recent years and many phylogenies are inferred with hundreds or even thousands of loci and many taxa. These modern phylogenomic studies often entail separate analyses of each of the loci in addition to multiple analyses of subsets of genes or concatenated sequences. Computationally efficient tools for handling and computing properties of thousands of single-locus or large concatenated alignments are needed. Here I present AMAS (Alignment Manipulation And Summary), a tool that can be used either as a stand-alone command-line utility or as a Python package. AMAS works on amino acid and nucleotide alignments and combines capabilities of sequence manipulation with a function that calculates basic statistics. The manipulation functions include conversions among popular formats, concatenation, extracting sites and splitting according to a pre-defined partitioning scheme, creation of replicate data sets, and removal of taxa. The statistics calculated include the number of taxa, alignment length, total count of matrix cells, overall number of undetermined characters, percent of missing data, AT and GC contents (for DNA alignments), count and proportion of variable sites, count and proportion of parsimony informative sites, and counts of all characters relevant for a nucleotide or amino acid alphabet. AMAS is particularly suitable for very large alignments with hundreds of taxa and thousands of loci. It is computationally efficient, utilizes parallel processing, and performs better at concatenation than other popular tools. AMAS is a Python 3 program that relies solely on Python's core modules and needs no additional dependencies. AMAS source code and manual can be downloaded from http://github.com/marekborowiec/AMAS/ under GNU General Public License.
COACH: profile-profile alignment of protein families using hidden Markov models.
Edgar, Robert C; Sjölander, Kimmen
2004-05-22
Alignments of two multiple-sequence alignments, or statistical models of such alignments (profiles), have important applications in computational biology. The increased amount of information in a profile versus a single sequence can lead to more accurate alignments and more sensitive homolog detection in database searches. Several profile-profile alignment methods have been proposed and have been shown to improve sensitivity and alignment quality compared with sequence-sequence methods (such as BLAST) and profile-sequence methods (e.g. PSI-BLAST). Here we present a new approach to profile-profile alignment we call Comparison of Alignments by Constructing Hidden Markov Models (HMMs) (COACH). COACH aligns two multiple sequence alignments by constructing a profile HMM from one alignment and aligning the other to that HMM. We compare the alignment accuracy of COACH with two recently published methods: Yona and Levitt's prof_sim and Sadreyev and Grishin's COMPASS. On two sets of reference alignments selected from the FSSP database, we find that COACH is able, on average, to produce alignments giving the best coverage or the fewest errors, depending on the chosen parameter settings. COACH is freely available from www.drive5.com/lobster
Establishing homologies in protein sequences
NASA Technical Reports Server (NTRS)
Dayhoff, M. O.; Barker, W. C.; Hunt, L. T.
1983-01-01
Computer-based statistical techniques used to determine homologies between proteins occurring in different species are reviewed. The technique is based on comparison of two protein sequences, either by relating all segments of a given length in one sequence to all segments of the second or by finding the best alignment of the two sequences. Approaches discussed include selection using printed tabulations, identification of very similar sequences, and computer searches of a database. The use of the SEARCH, RELATE, and ALIGN programs (Dayhoff, 1979) is explained; sample data are presented in graphs, diagrams, and tables and the construction of scoring matrices is considered.
Alignment Tool For Inertia Welding
NASA Technical Reports Server (NTRS)
Snyder, Gary L.
1991-01-01
Compact, easy-to-use tool aligns drive bar of inertia welder over hole in stub. Ensures drive bar concentric to hole within 0.002 in. (0.051 mm.). Holds two batteries and light bulb. Electrical circuit completed, providing current to bulb when pin in contact with post. When pin centered in post hole, it does not touch post, and lamp turns off. Built for use in making repair welds on liquid-oxygen-injector posts in Space Shuttle main engine. Version having suitably modified dimensions used to facilitate alignment in other forests of post.
Xu, Duo; Jaber, Yousef; Pavlidis, Pavlos; Gokcumen, Omer
2017-09-26
Constructing alignments and phylogenies for a given locus from large genome sequencing studies with relevant outgroups allow novel evolutionary and anthropological insights. However, no user-friendly tool has been developed to integrate thousands of recently available and anthropologically relevant genome sequences to construct complete sequence alignments and phylogenies. Here, we provide VCFtoTree, a user friendly tool with a graphical user interface that directly accesses online databases to download, parse and analyze genome variation data for regions of interest. Our pipeline combines popular sequence datasets and tree building algorithms with custom data parsing to generate accurate alignments and phylogenies using all the individuals from the 1000 Genomes Project, Neanderthal and Denisovan genomes, as well as reference genomes of Chimpanzee and Rhesus Macaque. It can also be applied to other phased human genomes, as well as genomes from other species. The output of our pipeline includes an alignment in FASTA format and a tree file in newick format. VCFtoTree fulfills the increasing demand for constructing alignments and phylogenies for a given loci from thousands of available genomes. Our software provides a user friendly interface for a wider audience without prerequisite knowledge in programming. VCFtoTree can be accessed from https://github.com/duoduoo/VCFtoTree_3.0.0 .
The web server of IBM's Bioinformatics and Pattern Discovery group: 2004 update
Huynh, Tien; Rigoutsos, Isidore
2004-01-01
In this report, we provide an update on the services and content which are available on the web server of IBM's Bioinformatics and Pattern Discovery group. The server, which is operational around the clock, provides access to a large number of methods that have been developed and published by the group's members. There is an increasing number of problems that these tools can help tackle; these problems range from the discovery of patterns in streams of events and the computation of multiple sequence alignments, to the discovery of genes in nucleic acid sequences, the identification—directly from sequence—of structural deviations from α-helicity and the annotation of amino acid sequences for antimicrobial activity. Additionally, annotations for more than 130 archaeal, bacterial, eukaryotic and viral genomes are now available on-line and can be searched interactively. The tools and code bundles continue to be accessible from http://cbcsrv.watson.ibm.com/Tspd.html whereas the genomics annotations are available at http://cbcsrv.watson.ibm.com/Annotations/. PMID:15215340
The web server of IBM's Bioinformatics and Pattern Discovery group: 2004 update.
Huynh, Tien; Rigoutsos, Isidore
2004-07-01
In this report, we provide an update on the services and content which are available on the web server of IBM's Bioinformatics and Pattern Discovery group. The server, which is operational around the clock, provides access to a large number of methods that have been developed and published by the group's members. There is an increasing number of problems that these tools can help tackle; these problems range from the discovery of patterns in streams of events and the computation of multiple sequence alignments, to the discovery of genes in nucleic acid sequences, the identification--directly from sequence--of structural deviations from alpha-helicity and the annotation of amino acid sequences for antimicrobial activity. Additionally, annotations for more than 130 archaeal, bacterial, eukaryotic and viral genomes are now available on-line and can be searched interactively. The tools and code bundles continue to be accessible from http://cbcsrv.watson.ibm.com/Tspd.html whereas the genomics annotations are available at http://cbcsrv.watson.ibm.com/Annotations/.
Reducing beam shaper alignment complexity: diagnostic techniques for alignment and tuning
NASA Astrophysics Data System (ADS)
Lizotte, Todd E.
2011-10-01
Safe and efficient optical alignment is a critical requirement for industrial laser systems used in a high volume manufacturing environment. Of specific interest is the development of techniques to align beam shaping optics within a beam line; having the ability to instantly verify by a qualitative means that each element is in its proper position as the beam shaper module is being aligned. There is a need to reduce these types of alignment techniques down to a level where even a newbie to optical alignment will be able to complete the task. Couple this alignment need with the fact that most laser system manufacturers ship their products worldwide and the introduction of a new set of variables including cultural and language barriers, makes this a top priority for manufacturers. Tools and methodologies for alignment of complex optical systems need to be able to cross these barriers to ensure the highest degree of up time and reduce the cost of maintenance on the production floor. Customers worldwide, who purchase production laser equipment, understand that the majority of costs to a manufacturing facility is spent on system maintenance and is typically the largest single controllable expenditure in a production plant. This desire to reduce costs is driving the trend these days towards predictive and proactive, not reactive maintenance of laser based optical beam delivery systems [10]. With proper diagnostic tools, laser system developers can develop proactive approaches to reduce system down time, safe guard operational performance and reduce premature or catastrophic optics failures. Obviously analytical data will provide quantifiable performance standards which are more precise than qualitative standards, but each have a role in determining overall optical system performance [10]. This paper will discuss the use of film and fluorescent mirror devices as diagnostic tools for beam shaper module alignment off line or in-situ. The paper will also provide an overview methodology showing how it is possible to reduce complex alignment directions into a simplified set of instructions for layman service engineers.
Approximate matching of regular expressions.
Myers, E W; Miller, W
1989-01-01
Given a sequence A and regular expression R, the approximate regular expression matching problem is to find a sequence matching R whose optimal alignment with A is the highest scoring of all such sequences. This paper develops an algorithm to solve the problem in time O(MN), where M and N are the lengths of A and R. Thus, the time requirement is asymptotically no worse than for the simpler problem of aligning two fixed sequences. Our method is superior to an earlier algorithm by Wagner and Seiferas in several ways. First, it treats real-valued costs, in addition to integer costs, with no loss of asymptotic efficiency. Second, it requires only O(N) space to deliver just the score of the best alignment. Finally, its structure permits implementation techniques that make it extremely fast in practice. We extend the method to accommodate gap penalties, as required for typical applications in molecular biology, and further refine it to search for sub-strings of A that strongly align with a sequence in R, as required for typical data base searches. We also show how to deliver an optimal alignment between A and R in only O(N + log M) space using O(MN log M) time. Finally, an O(MN(M + N) + N2log N) time algorithm is presented for alignment scoring schemes where the cost of a gap is an arbitrary increasing function of its length.
Protein structure determination by exhaustive search of Protein Data Bank derived databases.
Stokes-Rees, Ian; Sliz, Piotr
2010-12-14
Parallel sequence and structure alignment tools have become ubiquitous and invaluable at all levels in the study of biological systems. We demonstrate the application and utility of this same parallel search paradigm to the process of protein structure determination, benefitting from the large and growing corpus of known structures. Such searches were previously computationally intractable. Through the method of Wide Search Molecular Replacement, developed here, they can be completed in a few hours with the aide of national-scale federated cyberinfrastructure. By dramatically expanding the range of models considered for structure determination, we show that small (less than 12% structural coverage) and low sequence identity (less than 20% identity) template structures can be identified through multidimensional template scoring metrics and used for structure determination. Many new macromolecular complexes can benefit significantly from such a technique due to the lack of known homologous protein folds or sequences. We demonstrate the effectiveness of the method by determining the structure of a full-length p97 homologue from Trichoplusia ni. Example cases with the MHC/T-cell receptor complex and the EmoB protein provide systematic estimates of minimum sequence identity, structure coverage, and structural similarity required for this method to succeed. We describe how this structure-search approach and other novel computationally intensive workflows are made tractable through integration with the US national computational cyberinfrastructure, allowing, for example, rapid processing of the entire Structural Classification of Proteins protein fragment database.
Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool was developed to simplify, streamline, and quantitat...
Boiler: lossy compression of RNA-seq alignments using coverage vectors
Pritt, Jacob; Langmead, Ben
2016-01-01
We describe Boiler, a new software tool for compressing and querying large collections of RNA-seq alignments. Boiler discards most per-read data, keeping only a genomic coverage vector plus a few empirical distributions summarizing the alignments. Since most per-read data is discarded, storage footprint is often much smaller than that achieved by other compression tools. Despite this, the most relevant per-read data can be recovered; we show that Boiler compression has only a slight negative impact on results given by downstream tools for isoform assembly and quantification. Boiler also allows the user to pose fast and useful queries without decompressing the entire file. Boiler is free open source software available from github.com/jpritt/boiler. PMID:27298258
NASA Astrophysics Data System (ADS)
Witzig, Stephen B.; Rebello, Carina M.; Siegel, Marcelle A.; Freyermuth, Sharyn K.; Izci, Kemal; McClure, Bruce
2014-10-01
Identifying students' conceptual scientific understanding is difficult if the appropriate tools are not available for educators. Concept inventories have become a popular tool to assess student understanding; however, traditionally, they are multiple choice tests. International science education standard documents advocate that assessments should be reform based, contain diverse question types, and should align with instructional approaches. To date, no instrument of this type targeting student conceptions in biotechnology has been developed. We report here the development, testing, and validation of a 35-item Biotechnology Instrument for Knowledge Elicitation (BIKE) that includes a mix of question types. The BIKE was designed to elicit student thinking and a variety of conceptual understandings, as opposed to testing closed-ended responses. The design phase contained nine steps including a literature search for content, student interviews, a pilot test, as well as expert review. Data from 175 students over two semesters, including 16 student interviews and six expert reviewers (professors from six different institutions), were used to validate the instrument. Cronbach's alpha on the pre/posttest was 0.664 and 0.668, respectively, indicating the BIKE has internal consistency. Cohen's kappa for inter-rater reliability among the 6,525 total items was 0.684 indicating substantial agreement among scorers. Item analysis demonstrated that the items were challenging, there was discrimination among the individual items, and there was alignment with research-based design principles for construct validity. This study provides a reliable and valid conceptual understanding instrument in the understudied area of biotechnology.
Using reconfigurable hardware to accelerate multiple sequence alignment with ClustalW.
Oliver, Tim; Schmidt, Bertil; Nathan, Darran; Clemens, Ralf; Maskell, Douglas
2005-08-15
Aligning hundreds of sequences using progressive alignment tools such as ClustalW requires several hours on state-of-the-art workstations. We present a new approach to compute multiple sequence alignments in far shorter time using reconfigurable hardware. This results in an implementation of ClustalW with significant runtime savings on a standard off-the-shelf FPGA.
Genome alignment with graph data structures: a comparison
2014-01-01
Background Recent advances in rapid, low-cost sequencing have opened up the opportunity to study complete genome sequences. The computational approach of multiple genome alignment allows investigation of evolutionarily related genomes in an integrated fashion, providing a basis for downstream analyses such as rearrangement studies and phylogenetic inference. Graphs have proven to be a powerful tool for coping with the complexity of genome-scale sequence alignments. The potential of graphs to intuitively represent all aspects of genome alignments led to the development of graph-based approaches for genome alignment. These approaches construct a graph from a set of local alignments, and derive a genome alignment through identification and removal of graph substructures that indicate errors in the alignment. Results We compare the structures of commonly used graphs in terms of their abilities to represent alignment information. We describe how the graphs can be transformed into each other, and identify and classify graph substructures common to one or more graphs. Based on previous approaches, we compile a list of modifications that remove these substructures. Conclusion We show that crucial pieces of alignment information, associated with inversions and duplications, are not visible in the structure of all graphs. If we neglect vertex or edge labels, the graphs differ in their information content. Still, many ideas are shared among all graph-based approaches. Based on these findings, we outline a conceptual framework for graph-based genome alignment that can assist in the development of future genome alignment tools. PMID:24712884
Hahn, Lars; Leimeister, Chris-André; Ounit, Rachid; Lonardi, Stefano; Morgenstern, Burkhard
2016-10-01
Many algorithms for sequence analysis rely on word matching or word statistics. Often, these approaches can be improved if binary patterns representing match and don't-care positions are used as a filter, such that only those positions of words are considered that correspond to the match positions of the patterns. The performance of these approaches, however, depends on the underlying patterns. Herein, we show that the overlap complexity of a pattern set that was introduced by Ilie and Ilie is closely related to the variance of the number of matches between two evolutionarily related sequences with respect to this pattern set. We propose a modified hill-climbing algorithm to optimize pattern sets for database searching, read mapping and alignment-free sequence comparison of nucleic-acid sequences; our implementation of this algorithm is called rasbhari. Depending on the application at hand, rasbhari can either minimize the overlap complexity of pattern sets, maximize their sensitivity in database searching or minimize the variance of the number of pattern-based matches in alignment-free sequence comparison. We show that, for database searching, rasbhari generates pattern sets with slightly higher sensitivity than existing approaches. In our Spaced Words approach to alignment-free sequence comparison, pattern sets calculated with rasbhari led to more accurate estimates of phylogenetic distances than the randomly generated pattern sets that we previously used. Finally, we used rasbhari to generate patterns for short read classification with CLARK-S. Here too, the sensitivity of the results could be improved, compared to the default patterns of the program. We integrated rasbhari into Spaced Words; the source code of rasbhari is freely available at http://rasbhari.gobics.de/.
Fidelity of Implementation and Instructional Alignment in Response to Intervention Research
ERIC Educational Resources Information Center
Hill, David R.; King, Seth A.; Lemons, Christopher J.; Partanen, Jane N.
2012-01-01
In this review, we explore the extent to which researchers evaluating the efficacy of Tier 2 elementary reading interventions within the framework of Response to Intervention reported on fidelity of implementation and alignment of instruction between tiers. A literature search identified 22 empirical studies from which conclusions were drawn.…
Effect of gravito-inertial cues on the coding of orientation in pre-attentive vision.
Stivalet, P; Marendaz, C; Barraclough, L; Mourareau, C
1995-01-01
To see if the spatial reference frame used by pre-attentive vision is specified in a retino-centered frame or in a reference frame integrating visual and nonvisual information (vestibular and somatosensory), subjects were centrifuged in a non-pendular cabin and were asked to search for a target distinguishable from distractors by difference in orientation (Treisman's "pop-out" paradigm [1]). In a control condition, in which subjects were sitting immobilized but not centrifuged, this task gave an asymmetric search pattern: Search was rapid and pre-attentional except when the target was aligned with the horizontal retinal/head axis, in which case search was slow and attentional (2). Results using a centrifuge showed that slow/serial search patterns were obtained when the target was aligned with the subjective horizontal axis (and not with the horizontal retinal/head axis). These data suggest that a multisensory reference frame is used in pre-attentive vision. The results are interpreted in terms of Riccio and Stoffregen's "ecological theory" of orientation in which the vertical and horizontal axes constitute independent reference frames (3).
Yang, Xue-Dong; Tan, Hua-Wei; Zhu, Wei-Min
2016-01-01
Spinach (Spinacia oleracea L.), which originated in central and western Asia, belongs to the family Amaranthaceae. Spinach is one of most important leafy vegetables with a high nutritional value as well as being a perfect research material for plant sex chromosome models. As the completion of genome assembly and gene prediction of spinach, we developed SpinachDB (http://222.73.98.124/spinachdb) to store, annotate, mine and analyze genomics and genetics datasets efficiently. In this study, all of 21702 spinach genes were annotated. A total of 15741 spinach genes were catalogued into 4351 families, including identification of a substantial number of transcription factors. To construct a high-density genetic map, a total of 131592 SSRs and 1125743 potential SNPs located in 548801 loci of spinach genome were identified in 11 cultivated and wild spinach cultivars. The expression profiles were also performed with RNA-seq data using the FPKM method, which could be used to compare the genes. Paralogs in spinach and the orthologous genes in Arabidopsis, grape, sugar beet and rice were identified for comparative genome analysis. Finally, the SpinachDB website contains seven main sections, including the homepage; the GBrowse map that integrates genome, genes, SSR and SNP marker information; the Blast alignment service; the gene family classification search tool; the orthologous and paralogous gene pairs search tool; and the download and useful contact information. SpinachDB will be continually expanded to include newly generated robust genomics and genetics data sets along with the associated data mining and analysis tools.
Tedersoo, Leho; Abarenkov, Kessy; Nilsson, R. Henrik; Schüssler, Arthur; Grelet, Gwen-Aëlle; Kohout, Petr; Oja, Jane; Bonito, Gregory M.; Veldre, Vilmar; Jairus, Teele; Ryberg, Martin; Larsson, Karl-Henrik; Kõljalg, Urmas
2011-01-01
Sequence analysis of the ribosomal RNA operon, particularly the internal transcribed spacer (ITS) region, provides a powerful tool for identification of mycorrhizal fungi. The sequence data deposited in the International Nucleotide Sequence Databases (INSD) are, however, unfiltered for quality and are often poorly annotated with metadata. To detect chimeric and low-quality sequences and assign the ectomycorrhizal fungi to phylogenetic lineages, fungal ITS sequences were downloaded from INSD, aligned within family-level groups, and examined through phylogenetic analyses and BLAST searches. By combining the fungal sequence database UNITE and the annotation and search tool PlutoF, we also added metadata from the literature to these accessions. Altogether 35,632 sequences belonged to mycorrhizal fungi or originated from ericoid and orchid mycorrhizal roots. Of these sequences, 677 were considered chimeric and 2,174 of low read quality. Information detailing country of collection, geographical coordinates, interacting taxon and isolation source were supplemented to cover 78.0%, 33.0%, 41.7% and 96.4% of the sequences, respectively. These annotated sequences are publicly available via UNITE (http://unite.ut.ee/) for downstream biogeographic, ecological and taxonomic analyses. In European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena/), the annotated sequences have a special link-out to UNITE. We intend to expand the data annotation to additional genes and all taxonomic groups and functional guilds of fungi. PMID:21949797
Linear positioning laser calibration setup of CNC machine tools
NASA Astrophysics Data System (ADS)
Sui, Xiulin; Yang, Congjing
2002-10-01
The linear positioning laser calibration setup of CNC machine tools is capable of executing machine tool laser calibraiotn and backlash compensation. Using this setup, hole locations on CNC machien tools will be correct and machien tool geometry will be evaluated and adjusted. Machien tool laser calibration and backlash compensation is a simple and straightforward process. First the setup is to 'find' the stroke limits of the axis. Then the laser head is then brought into correct alignment. Second is to move the machine axis to the other extreme, the laser head is now aligned, using rotation and elevation adjustments. Finally the machine is moved to the start position and final alignment is verified. The stroke of the machine, and the machine compensation interval dictate the amount of data required for each axis. These factors determine the amount of time required for a through compensation of the linear positioning accuracy. The Laser Calibrator System monitors the material temperature and the air density; this takes into consideration machine thermal growth and laser beam frequency. This linear positioning laser calibration setup can be used on CNC machine tools, CNC lathes, horizontal centers and vertical machining centers.
Ahrens, Brandon R [Albuquerque, NM; Todd, Steven N [Rio Rancho, NM
2009-04-28
A precision laser aiming system comprises a disrupter tool, a reflector, and a laser fixture. The disrupter tool, the reflector and the laser fixture are configurable for iterative alignment and aiming toward an explosive device threat. The invention enables a disrupter to be quickly and accurately set up, aligned, and aimed in order to render safe or to disrupt a target from a standoff position.
WEB-server for search of a periodicity in amino acid and nucleotide sequences
NASA Astrophysics Data System (ADS)
E Frenkel, F.; Skryabin, K. G.; Korotkov, E. V.
2017-12-01
A new web server (http://victoria.biengi.ac.ru/splinter/login.php) was designed and developed to search for periodicity in nucleotide and amino acid sequences. The web server operation is based upon a new mathematical method of searching for multiple alignments, which is founded on the position weight matrices optimization, as well as on implementation of the two-dimensional dynamic programming. This approach allows the construction of multiple alignments of the indistinctly similar amino acid and nucleotide sequences that accumulated more than 1.5 substitutions per a single amino acid or a nucleotide without performing the sequences paired comparisons. The article examines the principles of the web server operation and two examples of studying amino acid and nucleotide sequences, as well as information that could be obtained using the web server.
Shape-Based Virtual Screening with Volumetric Aligned Molecular Shapes
Koes, David Ryan; Camacho, Carlos J.
2014-01-01
Shape-based virtual screening is an established and effective method for identifying small molecules that are similar in shape and function to a reference ligand. We describe a new method of shape-based virtual screening, volumetric aligned molecular shapes (VAMS). VAMS uses efficient data structures to encode and search molecular shapes. We demonstrate that VAMS is an effective method for shape-based virtual screening and that it can be successfully used as a pre-filter to accelerate more computationally demanding search algorithms. Unique to VAMS is a novel minimum/maximum shape constraint query for precisely specifying the desired molecular shape. Shape constraint searches in VAMS are particularly efficient and millions of shapes can be searched in a fraction of a second. We compare the performance of VAMS with two other shape-based virtual screening algorithms a benchmark of 102 protein targets consisting of more than 32 million molecular shapes and find that VAMS provides a competitive trade-off between run-time performance and virtual screening performance. PMID:25049193
Mounting arrangement for the drive system of an air-bearing spindle on a machine tool
Lunsford, J.S.; Crisp, D.W.; Petrowski, P.L.
1987-12-07
The present invention is directed to a mounting arrangement for the drive system of an air-bearing spindle utilized on a machine tool such as a lathe. The mounting arrangement of the present invention comprises a housing which is secured to the casing of the air bearing in such a manner that the housing position can be selectively adjusted to provide alignment of the air-bearing drive shaft supported by the housing and the air-bearing spindle. Once this alignment is achieved the air between spindle and the drive arrangement is maintained in permanent alignment so as to overcome misalignment problems encountered in the operation of the machine tool between the air-bearing spindle and the shaft utilized for driving the air-bearing spindle.
Fragaszy, Dorothy M.; Stone, Brian; Scott, Nicole M.; Menzel, Charles
2011-01-01
This report addresses phylogenetic variation in a spatial skill that underlies tool use: aligning objects to a feature of a surface. Fragaszy and Cummins-Sebree’s [2005] model of relational spatial reasoning and Skill Development and Perception-Action theories guided the design of the study. We examined how capuchins and chimpanzees place stick objects of varying shapes into matching grooves on a flat surface. Although most individuals aligned the long axis of the object with the matching groove more often than expected by chance, all typically did so with poor precision. Some individuals managed to align a second feature, and only one (a capuchin monkey) achieved above-chance success at aligning three features with matching grooves. Our findings suggest that capuchins and chimpanzees do not reliably align objects along even one axis, and that neither species can reliably or easily master object placement tasks that require managing two or more spatial relations concurrently. Moreover, they did not systematically vary their behavior in a manner that would aid discovery of the affordances of the stick-surface combination beyond sliding the stick along the surface (which may have provided haptic information about the location of the groove). These limitations have profound consequences for the forms of tool use we can expect these individuals to master. PMID:21608008
How effective are DNA barcodes in the identification of African rainforest trees?
Parmentier, Ingrid; Duminil, Jérôme; Kuzmina, Maria; Philippe, Morgane; Thomas, Duncan W; Kenfack, David; Chuyong, George B; Cruaud, Corinne; Hardy, Olivier J
2013-01-01
DNA barcoding of rain forest trees could potentially help biologists identify species and discover new ones. However, DNA barcodes cannot always distinguish between closely related species, and the size and completeness of barcode databases are key parameters for their successful application. We test the ability of rbcL, matK and trnH-psbA plastid DNA markers to identify rain forest trees at two sites in Atlantic central Africa under the assumption that a database is exhaustive in terms of species content, but not necessarily in terms of haplotype diversity within species. We assess the accuracy of identification to species or genus using a genetic distance matrix between samples either based on a global multiple sequence alignment (GD) or on a basic local alignment search tool (BLAST). Where a local database is available (within a 50 ha plot), barcoding was generally reliable for genus identification (95-100% success), but less for species identification (71-88%). Using a single marker, best results for species identification were obtained with trnH-psbA. There was a significant decrease of barcoding success in species-rich clades. When the local database was used to identify the genus of trees from another region and did include all genera from the query individuals but not all species, genus identification success decreased to 84-90%. The GD method performed best but a global multiple sequence alignment is not applicable on trnH-psbA. Barcoding is a useful tool to assign unidentified African rain forest trees to a genus, but identification to a species is less reliable, especially in species-rich clades, even using an exhaustive local database. Combining two markers improves the accuracy of species identification but it would only marginally improve genus identification. Finally, we highlight some limitations of the BLAST algorithm as currently implemented and suggest possible improvements for barcoding applications.
How Effective Are DNA Barcodes in the Identification of African Rainforest Trees?
Parmentier, Ingrid; Duminil, Jérôme; Kuzmina, Maria; Philippe, Morgane; Thomas, Duncan W.; Kenfack, David; Chuyong, George B.; Cruaud, Corinne; Hardy, Olivier J.
2013-01-01
Background DNA barcoding of rain forest trees could potentially help biologists identify species and discover new ones. However, DNA barcodes cannot always distinguish between closely related species, and the size and completeness of barcode databases are key parameters for their successful application. We test the ability of rbcL, matK and trnH-psbA plastid DNA markers to identify rain forest trees at two sites in Atlantic central Africa under the assumption that a database is exhaustive in terms of species content, but not necessarily in terms of haplotype diversity within species. Methodology/Principal Findings We assess the accuracy of identification to species or genus using a genetic distance matrix between samples either based on a global multiple sequence alignment (GD) or on a basic local alignment search tool (BLAST). Where a local database is available (within a 50 ha plot), barcoding was generally reliable for genus identification (95–100% success), but less for species identification (71–88%). Using a single marker, best results for species identification were obtained with trnH-psbA. There was a significant decrease of barcoding success in species-rich clades. When the local database was used to identify the genus of trees from another region and did include all genera from the query individuals but not all species, genus identification success decreased to 84–90%. The GD method performed best but a global multiple sequence alignment is not applicable on trnH-psbA. Conclusions/Significance Barcoding is a useful tool to assign unidentified African rain forest trees to a genus, but identification to a species is less reliable, especially in species-rich clades, even using an exhaustive local database. Combining two markers improves the accuracy of species identification but it would only marginally improve genus identification. Finally, we highlight some limitations of the BLAST algorithm as currently implemented and suggest possible improvements for barcoding applications. PMID:23565134
Quantiprot - a Python package for quantitative analysis of protein sequences.
Konopka, Bogumił M; Marciniak, Marta; Dyrka, Witold
2017-07-17
The field of protein sequence analysis is dominated by tools rooted in substitution matrices and alignments. A complementary approach is provided by methods of quantitative characterization. A major advantage of the approach is that quantitative properties defines a multidimensional solution space, where sequences can be related to each other and differences can be meaningfully interpreted. Quantiprot is a software package in Python, which provides a simple and consistent interface to multiple methods for quantitative characterization of protein sequences. The package can be used to calculate dozens of characteristics directly from sequences or using physico-chemical properties of amino acids. Besides basic measures, Quantiprot performs quantitative analysis of recurrence and determinism in the sequence, calculates distribution of n-grams and computes the Zipf's law coefficient. We propose three main fields of application of the Quantiprot package. First, quantitative characteristics can be used in alignment-free similarity searches, and in clustering of large and/or divergent sequence sets. Second, a feature space defined by quantitative properties can be used in comparative studies of protein families and organisms. Third, the feature space can be used for evaluating generative models, where large number of sequences generated by the model can be compared to actually observed sequences.
Patient-Centered Tools for Medication Information Search
Wilcox, Lauren; Feiner, Steven; Elhadad, Noémie; Vawdrey, David; Tran, Tran H.
2016-01-01
Recent research focused on online health information seeking highlights a heavy reliance on general-purpose search engines. However, current general-purpose search interfaces do not necessarily provide adequate support for non-experts in identifying suitable sources of health information. Popular search engines have recently introduced search tools in their user interfaces for a range of topics. In this work, we explore how such tools can support non-expert, patient-centered health information search. Scoping the current work to medication-related search, we report on findings from a formative study focused on the design of patient-centered, medication-information search tools. Our study included qualitative interviews with patients, family members, and domain experts, as well as observations of their use of Remedy, a technology probe embodying a set of search tools. Post-operative cardiothoracic surgery patients and their visiting family members used the tools to find information about their hospital medications and were interviewed before and after their use. Domain experts conducted similar search tasks and provided qualitative feedback on their preferences and recommendations for designing these tools. Findings from our study suggest the importance of four valuation principles underlying our tools: credibility, readability, consumer perspective, and topical relevance. PMID:28163972
Patient-Centered Tools for Medication Information Search.
Wilcox, Lauren; Feiner, Steven; Elhadad, Noémie; Vawdrey, David; Tran, Tran H
2014-05-20
Recent research focused on online health information seeking highlights a heavy reliance on general-purpose search engines. However, current general-purpose search interfaces do not necessarily provide adequate support for non-experts in identifying suitable sources of health information. Popular search engines have recently introduced search tools in their user interfaces for a range of topics. In this work, we explore how such tools can support non-expert, patient-centered health information search. Scoping the current work to medication-related search, we report on findings from a formative study focused on the design of patient-centered, medication-information search tools. Our study included qualitative interviews with patients, family members, and domain experts, as well as observations of their use of Remedy, a technology probe embodying a set of search tools. Post-operative cardiothoracic surgery patients and their visiting family members used the tools to find information about their hospital medications and were interviewed before and after their use. Domain experts conducted similar search tasks and provided qualitative feedback on their preferences and recommendations for designing these tools. Findings from our study suggest the importance of four valuation principles underlying our tools: credibility, readability, consumer perspective, and topical relevance.
Search Engines for Tomorrow's Scholars
ERIC Educational Resources Information Center
Fagan, Jody Condit
2011-01-01
Today's scholars face an outstanding array of choices when choosing search tools: Google Scholar, discipline-specific abstracts and index databases, library discovery tools, and more recently, Microsoft's re-launch of their academic search tool, now dubbed Microsoft Academic Search. What are these tools' strengths for the emerging needs of…
Mixed Sequence Reader: A Program for Analyzing DNA Sequences with Heterozygous Base Calling
Chang, Chun-Tien; Tsai, Chi-Neu; Tang, Chuan Yi; Chen, Chun-Houh; Lian, Jang-Hau; Hu, Chi-Yu; Tsai, Chia-Lung; Chao, Angel; Lai, Chyong-Huey; Wang, Tzu-Hao; Lee, Yun-Shien
2012-01-01
The direct sequencing of PCR products generates heterozygous base-calling fluorescence chromatograms that are useful for identifying single-nucleotide polymorphisms (SNPs), insertion-deletions (indels), short tandem repeats (STRs), and paralogous genes. Indels and STRs can be easily detected using the currently available Indelligent or ShiftDetector programs, which do not search reference sequences. However, the detection of other genomic variants remains a challenge due to the lack of appropriate tools for heterozygous base-calling fluorescence chromatogram data analysis. In this study, we developed a free web-based program, Mixed Sequence Reader (MSR), which can directly analyze heterozygous base-calling fluorescence chromatogram data in .abi file format using comparisons with reference sequences. The heterozygous sequences are identified as two distinct sequences and aligned with reference sequences. Our results showed that MSR may be used to (i) physically locate indel and STR sequences and determine STR copy number by searching NCBI reference sequences; (ii) predict combinations of microsatellite patterns using the Federal Bureau of Investigation Combined DNA Index System (CODIS); (iii) determine human papilloma virus (HPV) genotypes by searching current viral databases in cases of double infections; (iv) estimate the copy number of paralogous genes, such as β-defensin 4 (DEFB4) and its paralog HSPDP3. PMID:22778697
Overlay Tolerances For VLSI Using Wafer Steppers
NASA Astrophysics Data System (ADS)
Levinson, Harry J.; Rice, Rory
1988-01-01
In order for VLSI circuits to function properly, the masking layers used in the fabrication of those devices must overlay each other to within the manufacturing tolerance incorporated in the circuit design. The capabilities of the alignment tools used in the masking process determine the overlay tolerances to which circuits can be designed. It is therefore of considerable importance that these capabilities be well characterized. Underestimation of the overlay accuracy results in unnecessarily large devices, resulting in poor utilization of wafer area and possible degradation of device performance. Overestimation will result in significant yield loss because of the failure to conform to the tolerances of the design rules. The proper methodology for determining the overlay capabilities of wafer steppers, the most commonly used alignment tool for the production of VLSI circuits, is the subject of this paper. Because cost-effective manufacturing process technology has been the driving force of VLSI, the impact on productivity is a primary consideration in all discussions. Manufacturers of alignment tools advertise the capabilities of their equipment. It is notable that no manufacturer currently characterizes his aligners in a manner consistent with the requirements of producing very large integrated circuits, as will be discussed. This has resulted in the situation in which the evaluation and comparison of the capabilities of alignment tools require the attention of a lithography specialist. Unfortunately, lithographic capabilities must be known by many other people, particularly the circuit designers and the managers responsible for the financial consequences of the high prices of modern alignment tools. All too frequently, the designer or manager is confronted with contradictory data, one set coming from his lithography specialist, and the other coming from a sales representative of an equipment manufacturer. Since the latter generally attempts to make his merchandise appear as attractive as possible, the lithographer is frequently placed in the position of having to explain subtle issues in order to justify his decisions. It is the purpose of this paper to provide that explanation.
Theoferometer for the Construction of Precision Optomechanical Assemblies
NASA Technical Reports Server (NTRS)
Korzun, Ashley M.
2006-01-01
The increasing difficulty of metrology requirements on projects involving optics and the alignment of instrumentation on spacecraft has reached a turning point. Requirements as low as 0.1 arcseconds for the static, rotational alignment of components within a coordinate system cannot be met with a theodolite, the alignment tool currently in use. A "theoferometer" is an interferometer mounted on a rotation stage with degrees of freedom in azimuth and elevation for metrology and alignment applications. The success of a prototype theoferometer in approaching these metrology requirements led to a redesign stressing mechanical, optical, and software changes to increase the sensitivity and portability of the unit. This paper covers the improvements made to the first prototype theoferometer, characteristic testing, and demonstration of the redesigned theoferometer s capabilities as a "theodolite replacement" and low-uncertainty metrology tool.
A Python Script for Aligning the STIS Echelle Blaze Function
NASA Astrophysics Data System (ADS)
Baer, Malinda; Proffitt, Charles R.; Lockwood, Sean A.
2018-01-01
Accurate flux calibration for the STIS echelle modes is heavily dependent on the proper alignment of the blaze function for each spectral order. However, due to changes in the instrument alignment over time and between exposures, the blaze function can shift in wavelength. This may result in flux calibration inconsistencies of up to 10%. We present the stisblazefix Python module as a tool for STIS users to correct their echelle spectra. The stisblazefix module assumes that the error in the blaze alignment is a linear function of spectral order, and finds the set of shifts that minimizes the flux inconsistencies in the overlap between spectral orders. We discuss the uses and limitations of this tool, and show that its use can provide significant improvements to the default pipeline flux calibration for many observations.
Cloning and expression of N-glycosylation-related glucosidase from Glaciozyma antarctica
NASA Astrophysics Data System (ADS)
Yajit, Noor Liana Mat; Kamaruddin, Shazilah; Hashim, Noor Haza Fazlin; Bakar, Farah Diba Abu; Murad, Abd. Munir Abd.; Mahadi, Nor Muhammad; Mackeen, Mukram Mohamed
2016-11-01
The need for functional oligosaccharides in various field is ever growing. The enzymatic approach for synthesis of oligosaccharides is advantageous over traditional chemical synthesis because of the regio- and stereo- selectivity that can be achieved without the need for protection chemistry. In this study, the α-glucosidase I protein sequence from Saccharomyces cerevisiae (UniProt database) was compared using Basic Local Alignment Search Tool (BLAST) with Glaciozyma antarctica genome database. Results showed 33% identity and an E-value of 1 × 10-125 for α-glucosidase I. The gene was amplified, cloned into the pPICZα C vector and used to transform Pichia pastoris X-33 cells. Soluble expression of α-Glucosidase I (˜91 kDa) was achieved at 28 °C with 1.0 % of methanol.
Fortuno, Cristina; James, Paul A; Young, Erin L; Feng, Bing; Olivier, Magali; Pesaran, Tina; Tavtigian, Sean V; Spurdle, Amanda B
2018-05-18
Clinical interpretation of germline missense variants represents a major challenge, including those in the TP53 Li-Fraumeni syndrome gene. Bioinformatic prediction is a key part of variant classification strategies. We aimed to optimize the performance of the Align-GVGD tool used for p53 missense variant prediction, and compare its performance to other bioinformatic tools (SIFT, PolyPhen-2) and ensemble methods (REVEL, BayesDel). Reference sets of assumed pathogenic and assumed benign variants were defined using functional and/or clinical data. Area under the curve and Matthews correlation coefficient (MCC) values were used as objective functions to select an optimized protein multi-sequence alignment with best performance for Align-GVGD. MCC comparison of tools using binary categories showed optimized Align-GVGD (C15 cut-off) combined with BayesDel (0.16 cut-off), or with REVEL (0.5 cut-off), to have the best overall performance. Further, a semi-quantitative approach using multiple tiers of bioinformatic prediction, validated using an independent set of non-functional and functional variants, supported use of Align-GVGD and BayesDel prediction for different strength of evidence levels in ACMG/AMP rules. We provide rationale for bioinformatic tool selection for TP53 variant classification, and have also computed relevant bioinformatic predictions for every possible p53 missense variant to facilitate their use by the scientific and medical community. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Customisation of the exome data analysis pipeline using a combinatorial approach.
Pattnaik, Swetansu; Vaidyanathan, Srividya; Pooja, Durgad G; Deepak, Sa; Panda, Binay
2012-01-01
The advent of next generation sequencing (NGS) technologies have revolutionised the way biologists produce, analyse and interpret data. Although NGS platforms provide a cost-effective way to discover genome-wide variants from a single experiment, variants discovered by NGS need follow up validation due to the high error rates associated with various sequencing chemistries. Recently, whole exome sequencing has been proposed as an affordable option compared to whole genome runs but it still requires follow up validation of all the novel exomic variants. Customarily, a consensus approach is used to overcome the systematic errors inherent to the sequencing technology, alignment and post alignment variant detection algorithms. However, the aforementioned approach warrants the use of multiple sequencing chemistry, multiple alignment tools, multiple variant callers which may not be viable in terms of time and money for individual investigators with limited informatics know-how. Biologists often lack the requisite training to deal with the huge amount of data produced by NGS runs and face difficulty in choosing from the list of freely available analytical tools for NGS data analysis. Hence, there is a need to customise the NGS data analysis pipeline to preferentially retain true variants by minimising the incidence of false positives and make the choice of right analytical tools easier. To this end, we have sampled different freely available tools used at the alignment and post alignment stage suggesting the use of the most suitable combination determined by a simple framework of pre-existing metrics to create significant datasets.
DNAAlignEditor: DNA alignment editor tool
Sanchez-Villeda, Hector; Schroeder, Steven; Flint-Garcia, Sherry; Guill, Katherine E; Yamasaki, Masanori; McMullen, Michael D
2008-01-01
Background With advances in DNA re-sequencing methods and Next-Generation parallel sequencing approaches, there has been a large increase in genomic efforts to define and analyze the sequence variability present among individuals within a species. For very polymorphic species such as maize, this has lead to a need for intuitive, user-friendly software that aids the biologist, often with naïve programming capability, in tracking, editing, displaying, and exporting multiple individual sequence alignments. To fill this need we have developed a novel DNA alignment editor. Results We have generated a nucleotide sequence alignment editor (DNAAlignEditor) that provides an intuitive, user-friendly interface for manual editing of multiple sequence alignments with functions for input, editing, and output of sequence alignments. The color-coding of nucleotide identity and the display of associated quality score aids in the manual alignment editing process. DNAAlignEditor works as a client/server tool having two main components: a relational database that collects the processed alignments and a user interface connected to database through universal data access connectivity drivers. DNAAlignEditor can be used either as a stand-alone application or as a network application with multiple users concurrently connected. Conclusion We anticipate that this software will be of general interest to biologists and population genetics in editing DNA sequence alignments and analyzing natural sequence variation regardless of species, and will be particularly useful for manual alignment editing of sequences in species with high levels of polymorphism. PMID:18366684
Text-image alignment for historical handwritten documents
NASA Astrophysics Data System (ADS)
Zinger, S.; Nerbonne, J.; Schomaker, L.
2009-01-01
We describe our work on text-image alignment in context of building a historical document retrieval system. We aim at aligning images of words in handwritten lines with their text transcriptions. The images of handwritten lines are automatically segmented from the scanned pages of historical documents and then manually transcribed. To train automatic routines to detect words in an image of handwritten text, we need a training set - images of words with their transcriptions. We present our results on aligning words from the images of handwritten lines and their corresponding text transcriptions. Alignment based on the longest spaces between portions of handwriting is a baseline. We then show that relative lengths, i.e. proportions of words in their lines, can be used to improve the alignment results considerably. To take into account the relative word length, we define the expressions for the cost function that has to be minimized for aligning text words with their images. We apply right to left alignment as well as alignment based on exhaustive search. The quality assessment of these alignments shows correct results for 69% of words from 100 lines, or 90% of partially correct and correct alignments combined.
Comet: an open-source MS/MS sequence database search tool.
Eng, Jimmy K; Jahan, Tahmina A; Hoopmann, Michael R
2013-01-01
Proteomics research routinely involves identifying peptides and proteins via MS/MS sequence database search. Thus the database search engine is an integral tool in many proteomics research groups. Here, we introduce the Comet search engine to the existing landscape of commercial and open-source database search tools. Comet is open source, freely available, and based on one of the original sequence database search tools that has been widely used for many years. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boiler: lossy compression of RNA-seq alignments using coverage vectors.
Pritt, Jacob; Langmead, Ben
2016-09-19
We describe Boiler, a new software tool for compressing and querying large collections of RNA-seq alignments. Boiler discards most per-read data, keeping only a genomic coverage vector plus a few empirical distributions summarizing the alignments. Since most per-read data is discarded, storage footprint is often much smaller than that achieved by other compression tools. Despite this, the most relevant per-read data can be recovered; we show that Boiler compression has only a slight negative impact on results given by downstream tools for isoform assembly and quantification. Boiler also allows the user to pose fast and useful queries without decompressing the entire file. Boiler is free open source software available from github.com/jpritt/boiler. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Budavari, Tamas; Langmead, Ben; Wheelan, Sarah J.; Salzberg, Steven L.; Szalay, Alexander S.
2015-01-01
When computing alignments of DNA sequences to a large genome, a key element in achieving high processing throughput is to prioritize locations in the genome where high-scoring mappings might be expected. We formulated this task as a series of list-processing operations that can be efficiently performed on graphics processing unit (GPU) hardware.We followed this approach in implementing a read aligner called Arioc that uses GPU-based parallel sort and reduction techniques to identify high-priority locations where potential alignments may be found. We then carried out a read-by-read comparison of Arioc’s reported alignments with the alignments found by several leading read aligners. With simulated reads, Arioc has comparable or better accuracy than the other read aligners we tested. With human sequencing reads, Arioc demonstrates significantly greater throughput than the other aligners we evaluated across a wide range of sensitivity settings. The Arioc software is available at https://github.com/RWilton/Arioc. It is released under a BSD open-source license. PMID:25780763
NASA Astrophysics Data System (ADS)
Indik, Nathaniel; Fehrmann, Henning; Harke, Franz; Krishnan, Badri; Nielsen, Alex B.
2018-06-01
Efficient multidimensional template placement is crucial in computationally intensive matched-filtering searches for gravitational waves (GWs). Here, we implement the neighboring cell algorithm (NCA) to improve the detection volume of an existing compact binary coalescence (CBC) template bank. This algorithm has already been successfully applied for a binary millisecond pulsar search in data from the Fermi satellite. It repositions templates from overdense regions to underdense regions and reduces the number of templates that would have been required by a stochastic method to achieve the same detection volume. Our method is readily generalizable to other CBC parameter spaces. Here we apply this method to the aligned-single-spin neutron star-black hole binary coalescence inspiral-merger-ringdown gravitational wave parameter space. We show that the template nudging algorithm can attain the equivalent effectualness of the stochastic method with 12% fewer templates.
DUK - A Fast and Efficient Kmer Based Sequence Matching Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingkun; Copeland, Alex; Han, James
2011-03-21
A new tool, DUK, is developed to perform matching task. Matching is to find whether a query sequence partially or totally matches given reference sequences or not. Matching is similar to alignment. Indeed many traditional analysis tasks like contaminant removal use alignment tools. But for matching, there is no need to know which bases of a query sequence matches which position of a reference sequence, it only need know whether there exists a match or not. This subtle difference can make matching task much faster than alignment. DUK is accurate, versatile, fast, and has efficient memory usage. It uses Kmermore » hashing method to index reference sequences and Poisson model to calculate p-value. DUK is carefully implemented in C++ in object oriented design. The resulted classes can also be used to develop other tools quickly. DUK have been widely used in JGI for a wide range of applications such as contaminant removal, organelle genome separation, and assembly refinement. Many real applications and simulated dataset demonstrate its power.« less
NASA Astrophysics Data System (ADS)
Song, Jungki; Heilmann, Ralf K.; Bruccoleri, Alexander R.; Hertz, Edward; Schatternburg, Mark L.
2017-08-01
We report progress toward developing a scanning laser reflection (LR) tool for alignment and period measurement of critical-angle transmission (CAT) gratings. It operates on a similar measurement principle as a tool built in 1994 which characterized period variations of grating facets for the Chandra X-ray Observatory. A specularly reflected beam and a first-order diffracted beam were used to record local period variations, surface slope variations, and grating line orientation. In this work, a normal-incidence beam was added to measure slope variations (instead of the angled-incidence beam). Since normal incidence reflection is not coupled with surface height change, it enables measurement of slope variations more accurately and, along with the angled-incidence beam, helps to reconstruct the surface figure (or tilt) map. The measurement capability of in-grating period variations was demonstrated by measuring test reflection grating (RG) samples that show only intrinsic period variations of the interference lithography process. Experimental demonstration for angular alignment of CAT gratings is also presented along with a custom-designed grating alignment assembly (GAA) testbed. All three angles were aligned to satisfy requirements for the proposed Arcus mission. The final measurement of roll misalignment agrees with the roll measurements performed at the PANTER x-ray test facility.
Southwest Research Institute astronomer Dan Durda checks the alignment of the SWUIS-A Xybion digital
NASA Technical Reports Server (NTRS)
2002-01-01
Southwest Research Institute astronomer Dan Durda checks the alignment of the SWUIS-A Xybion digital camera mounted in the rear cockpit of a NASA Dryden F/A-18B before taking off on an astronomy mission to search for small vulcanoids (asteroids) that may be orbiting between the sun and the planet Mercury.
Stansfield, Claire; O'Mara-Eves, Alison; Thomas, James
2017-09-01
Using text mining to aid the development of database search strings for topics described by diverse terminology has potential benefits for systematic reviews; however, methods and tools for accomplishing this are poorly covered in the research methods literature. We briefly review the literature on applications of text mining for search term development for systematic reviewing. We found that the tools can be used in 5 overarching ways: improving the precision of searches; identifying search terms to improve search sensitivity; aiding the translation of search strategies across databases; searching and screening within an integrated system; and developing objectively derived search strategies. Using a case study and selected examples, we then reflect on the utility of certain technologies (term frequency-inverse document frequency and Termine, term frequency, and clustering) in improving the precision and sensitivity of searches. Challenges in using these tools are discussed. The utility of these tools is influenced by the different capabilities of the tools, the way the tools are used, and the text that is analysed. Increased awareness of how the tools perform facilitates the further development of methods for their use in systematic reviews. Copyright © 2017 John Wiley & Sons, Ltd.
KISS for STRAP: user extensions for a protein alignment editor.
Gille, Christoph; Lorenzen, Stephan; Michalsky, Elke; Frömmel, Cornelius
2003-12-12
The Structural Alignment Program STRAP is a comfortable comprehensive editor and analyzing tool for protein alignments. A wide range of functions related to protein sequences and protein structures are accessible with an intuitive graphical interface. Recent features include mapping of mutations and polymorphisms onto structures and production of high quality figures for publication. Here we address the general problem of multi-purpose program packages to keep up with the rapid development of bioinformatical methods and the demand for specific program functions. STRAP was remade implementing a novel design which aims at Keeping Interfaces in STRAP Simple (KISS). KISS renders STRAP extendable to bio-scientists as well as to bio-informaticians. Scientists with basic computer skills are capable of implementing statistical methods or embedding existing bioinformatical tools in STRAP themselves. For bio-informaticians STRAP may serve as an environment for rapid prototyping and testing of complex algorithms such as automatic alignment algorithms or phylogenetic methods. Further, STRAP can be applied as an interactive web applet to present data related to a particular protein family and as a teaching tool. JAVA-1.4 or higher. http://www.charite.de/bioinf/strap/
Fast 3D shape screening of large chemical databases through alignment-recycling
Fontaine, Fabien; Bolton, Evan; Borodina, Yulia; Bryant, Stephen H
2007-01-01
Background Large chemical databases require fast, efficient, and simple ways of looking for similar structures. Although such tasks are now fairly well resolved for graph-based similarity queries, they remain an issue for 3D approaches, particularly for those based on 3D shape overlays. Inspired by a recent technique developed to compare molecular shapes, we designed a hybrid methodology, alignment-recycling, that enables efficient retrieval and alignment of structures with similar 3D shapes. Results Using a dataset of more than one million PubChem compounds of limited size (< 28 heavy atoms) and flexibility (< 6 rotatable bonds), we obtained a set of a few thousand diverse structures covering entirely the 3D shape space of the conformers of the dataset. Transformation matrices gathered from the overlays between these diverse structures and the 3D conformer dataset allowed us to drastically (100-fold) reduce the CPU time required for shape overlay. The alignment-recycling heuristic produces results consistent with de novo alignment calculation, with better than 80% hit list overlap on average. Conclusion Overlay-based 3D methods are computationally demanding when searching large databases. Alignment-recycling reduces the CPU time to perform shape similarity searches by breaking the alignment problem into three steps: selection of diverse shapes to describe the database shape-space; overlay of the database conformers to the diverse shapes; and non-optimized overlay of query and database conformers using common reference shapes. The precomputation, required by the first two steps, is a significant cost of the method; however, once performed, querying is two orders of magnitude faster. Extensions and variations of this methodology, for example, to handle more flexible and larger small-molecules are discussed. PMID:17880744
Pre-calculated protein structure alignments at the RCSB PDB website.
Prlic, Andreas; Bliven, Spencer; Rose, Peter W; Bluhm, Wolfgang F; Bizon, Chris; Godzik, Adam; Bourne, Philip E
2010-12-01
With the continuous growth of the RCSB Protein Data Bank (PDB), providing an up-to-date systematic structure comparison of all protein structures poses an ever growing challenge. Here, we present a comparison tool for calculating both 1D protein sequence and 3D protein structure alignments. This tool supports various applications at the RCSB PDB website. First, a structure alignment web service calculates pairwise alignments. Second, a stand-alone application runs alignments locally and visualizes the results. Third, pre-calculated 3D structure comparisons for the whole PDB are provided and updated on a weekly basis. These three applications allow users to discover novel relationships between proteins available either at the RCSB PDB or provided by the user. A web user interface is available at http://www.rcsb.org/pdb/workbench/workbench.do. The source code is available under the LGPL license from http://www.biojava.org. A source bundle, prepared for local execution, is available from http://source.rcsb.org andreas@sdsc.edu; pbourne@ucsd.edu.
GraphCrunch 2: Software tool for network modeling, alignment and clustering.
Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne; Pržulj, Nataša
2011-01-19
Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool. Finally, GraphCruch 2 implements an algorithm for clustering nodes within a network based solely on their topological similarities. Using GraphCrunch 2, we demonstrate that eukaryotic and viral PPI networks may belong to different graph model families and show that topology-based clustering can reveal important functional similarities between proteins within yeast and human PPI networks. GraphCrunch 2 is a software tool that implements the latest research on biological network analysis. It parallelizes computationally intensive tasks to fully utilize the potential of modern multi-core CPUs. It is open-source and freely available for research use. It runs under the Windows and Linux platforms.
BuddySuite: Command-Line Toolkits for Manipulating Sequences, Alignments, and Phylogenetic Trees.
Bond, Stephen R; Keat, Karl E; Barreira, Sofia N; Baxevanis, Andreas D
2017-06-01
The ability to manipulate sequence, alignment, and phylogenetic tree files has become an increasingly important skill in the life sciences, whether to generate summary information or to prepare data for further downstream analysis. The command line can be an extremely powerful environment for interacting with these resources, but only if the user has the appropriate general-purpose tools on hand. BuddySuite is a collection of four independent yet interrelated command-line toolkits that facilitate each step in the workflow of sequence discovery, curation, alignment, and phylogenetic reconstruction. Most common sequence, alignment, and tree file formats are automatically detected and parsed, and over 100 tools have been implemented for manipulating these data. The project has been engineered to easily accommodate the addition of new tools, is written in the popular programming language Python, and is hosted on the Python Package Index and GitHub to maximize accessibility. Documentation for each BuddySuite tool, including usage examples, is available at http://tiny.cc/buddysuite_wiki. All software is open source and freely available through http://research.nhgri.nih.gov/software/BuddySuite. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution 2017. This work is written by US Government employees and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
Feng, Di; Fang, Qimeng; Huang, Huaibo; Zhao, Zhengqi; Song, Ningfang
2017-12-01
The development and implementation of a practical instrument based on an embedded technique for autofocus and polarization alignment of polarization maintaining fiber is presented. For focusing efficiency and stability, an image-based focusing algorithm fully considering the image definition evaluation and the focusing search strategy was used to accomplish autofocus. For improving the alignment accuracy, various image-based algorithms of alignment detection were developed with high calculation speed and strong robustness. The instrument can be operated as a standalone device with real-time processing and convenience operations. The hardware construction, software interface, and image-based algorithms of main modules are described. Additionally, several image simulation experiments were also carried out to analyze the accuracy of the above alignment detection algorithms. Both the simulation results and experiment results indicate that the instrument can achieve the accuracy of polarization alignment <±0.1 deg.
SARA-Coffee web server, a tool for the computation of RNA sequence and structure multiple alignments
Di Tommaso, Paolo; Bussotti, Giovanni; Kemena, Carsten; Capriotti, Emidio; Chatzou, Maria; Prieto, Pablo; Notredame, Cedric
2014-01-01
This article introduces the SARA-Coffee web server; a service allowing the online computation of 3D structure based multiple RNA sequence alignments. The server makes it possible to combine sequences with and without known 3D structures. Given a set of sequences SARA-Coffee outputs a multiple sequence alignment along with a reliability index for every sequence, column and aligned residue. SARA-Coffee combines SARA, a pairwise structural RNA aligner with the R-Coffee multiple RNA aligner in a way that has been shown to improve alignment accuracy over most sequence aligners when enough structural data is available. The server can be accessed from http://tcoffee.crg.cat/apps/tcoffee/do:saracoffee. PMID:24972831
Ligand-based virtual screening under partial shape constraints.
von Behren, Mathias M; Rarey, Matthias
2017-04-01
Ligand-based virtual screening has proven to be a viable technology during the search for new lead structures in drug discovery. Despite the rapidly increasing number of published methods, meaningful shape matching as well as ligand and target flexibility still remain open challenges. In this work, we analyze the influence of knowledge-based sterical constraints on the performance of the recently published ligand-based virtual screening method mRAISE. We introduce the concept of partial shape matching enabling a more differentiated view on chemical structure. The new method is integrated into the LBVS tool mRAISE providing multiple options for such constraints. The applied constraints can either be derived automatically from a protein-ligand complex structure or by manual selection of ligand atoms. In this way, the descriptor directly encodes the fit of a ligand into the binding site. Furthermore, the conservation of close contacts between the binding site surface and the query ligand can be enforced. We validated our new method on the DUD and DUD-E datasets. Although the statistical performance remains on the same level, detailed analysis reveal that for certain and especially very flexible targets a significant improvement can be achieved. This is further highlighted looking at the quality of calculated molecular alignments using the recently introduced mRAISE dataset. The new partial shape constraints improved the overall quality of molecular alignments especially for difficult targets with highly flexible or different sized molecules. The software tool mRAISE is freely available on Linux operating systems for evaluation purposes and academic use (see http://www.zbh.uni-hamburg.de/raise ).
Ligand-based virtual screening under partial shape constraints
NASA Astrophysics Data System (ADS)
von Behren, Mathias M.; Rarey, Matthias
2017-04-01
Ligand-based virtual screening has proven to be a viable technology during the search for new lead structures in drug discovery. Despite the rapidly increasing number of published methods, meaningful shape matching as well as ligand and target flexibility still remain open challenges. In this work, we analyze the influence of knowledge-based sterical constraints on the performance of the recently published ligand-based virtual screening method mRAISE. We introduce the concept of partial shape matching enabling a more differentiated view on chemical structure. The new method is integrated into the LBVS tool mRAISE providing multiple options for such constraints. The applied constraints can either be derived automatically from a protein-ligand complex structure or by manual selection of ligand atoms. In this way, the descriptor directly encodes the fit of a ligand into the binding site. Furthermore, the conservation of close contacts between the binding site surface and the query ligand can be enforced. We validated our new method on the DUD and DUD-E datasets. Although the statistical performance remains on the same level, detailed analysis reveal that for certain and especially very flexible targets a significant improvement can be achieved. This is further highlighted looking at the quality of calculated molecular alignments using the recently introduced mRAISE dataset. The new partial shape constraints improved the overall quality of molecular alignments especially for difficult targets with highly flexible or different sized molecules. The software tool mRAISE is freely available on Linux operating systems for evaluation purposes and academic use (see http://www.zbh.uni-hamburg.de/raise).
Eddy, Sean R.
2008-01-01
Sequence database searches require accurate estimation of the statistical significance of scores. Optimal local sequence alignment scores follow Gumbel distributions, but determining an important parameter of the distribution (λ) requires time-consuming computational simulation. Moreover, optimal alignment scores are less powerful than probabilistic scores that integrate over alignment uncertainty (“Forward” scores), but the expected distribution of Forward scores remains unknown. Here, I conjecture that both expected score distributions have simple, predictable forms when full probabilistic modeling methods are used. For a probabilistic model of local sequence alignment, optimal alignment bit scores (“Viterbi” scores) are Gumbel-distributed with constant λ = log 2, and the high scoring tail of Forward scores is exponential with the same constant λ. Simulation studies support these conjectures over a wide range of profile/sequence comparisons, using 9,318 profile-hidden Markov models from the Pfam database. This enables efficient and accurate determination of expectation values (E-values) for both Viterbi and Forward scores for probabilistic local alignments. PMID:18516236
Shrader, Sarah; Farland, Michelle Z; Danielson, Jennifer; Sicat, Brigitte; Umland, Elena M
2017-08-01
Objective. To identify and describe the available quantitative tools that assess interprofessional education (IPE) relevant to pharmacy education. Methods. A systematic approach was used to identify quantitative IPE assessment tools relevant to pharmacy education. The search strategy included the National Center for Interprofessional Practice and Education Resource Exchange (Nexus) website, a systematic search of the literature, and a manual search of journals deemed likely to include relevant tools. Results. The search identified a total of 44 tools from the Nexus website, 158 abstracts from the systematic literature search, and 570 abstracts from the manual search. A total of 36 assessment tools met the criteria to be included in the summary, and their application to IPE relevant to pharmacy education was discussed. Conclusion. Each of the tools has advantages and disadvantages. No single comprehensive tool exists to fulfill assessment needs. However, numerous tools are available that can be mapped to IPE-related accreditation standards for pharmacy education.
DNA sequence alignment by microhomology sampling during homologous recombination
Qi, Zhi; Redding, Sy; Lee, Ja Yil; Gibb, Bryan; Kwon, YoungHo; Niu, Hengyao; Gaines, William A.; Sung, Patrick
2015-01-01
Summary Homologous recombination (HR) mediates the exchange of genetic information between sister or homologous chromatids. During HR, members of the RecA/Rad51 family of recombinases must somehow search through vast quantities of DNA sequence to align and pair ssDNA with a homologous dsDNA template. Here we use single-molecule imaging to visualize Rad51 as it aligns and pairs homologous DNA sequences in real-time. We show that Rad51 uses a length-based recognition mechanism while interrogating dsDNA, enabling robust kinetic selection of 8-nucleotide (nt) tracts of microhomology, which kinetically confines the search to sites with a high probability of being a homologous target. Successful pairing with a 9th nucleotide coincides with an additional reduction in binding free energy and subsequent strand exchange occurs in precise 3-nt steps, reflecting the base triplet organization of the presynaptic complex. These findings provide crucial new insights into the physical and evolutionary underpinnings of DNA recombination. PMID:25684365
ExoLocator--an online view into genetic makeup of vertebrate proteins.
Khoo, Aik Aun; Ogrizek-Tomas, Mario; Bulovic, Ana; Korpar, Matija; Gürler, Ece; Slijepcevic, Ivan; Šikic, Mile; Mihalek, Ivana
2014-01-01
ExoLocator (http://exolocator.eopsf.org) collects in a single place information needed for comparative analysis of protein-coding exons from vertebrate species. The main source of data--the genomic sequences, and the existing exon and homology annotation--is the ENSEMBL database of completed vertebrate genomes. To these, ExoLocator adds the search for ostensibly missing exons in orthologous protein pairs across species, using an extensive computational pipeline to narrow down the search region for the candidate exons and find a suitable template in the other species, as well as state-of-the-art implementations of pairwise alignment algorithms. The resulting complements of exons are organized in a way currently unique to ExoLocator: multiple sequence alignments, both on the nucleotide and on the peptide levels, clearly indicating the exon boundaries. The alignments can be inspected in the web-embedded viewer, downloaded or used on the spot to produce an estimate of conservation within orthologous sets, or functional divergence across paralogues.
Swain, Timothy D
2018-01-01
The recent rapid proliferation of novel taxon identification in the Zoanthidea has been accompanied by a parallel propagation of gene trees as a tool of species discovery, but not a corresponding increase in our understanding of phylogeny. This disparity is caused by the trade-off between the capabilities of automated DNA sequence alignment and data content of genes applied to phylogenetic inference in this group. Conserved genes or segments are easily aligned across the order, but produce poorly resolved trees; hypervariable genes or segments contain the evolutionary signal necessary for resolution and robust support, but sequence alignment is daunting. Staggered alignments are a form of phylogeny-informed sequence alignment composed of a mosaic of local and universal regions that allow phylogenetic inference to be applied to all nucleotides from both hypervariable and conserved gene segments. Comparisons between species tree phylogenies inferred from all data (staggered alignment) and hypervariable-excluded data (standard alignment) demonstrate improved confidence and greater topological agreement with other sources of data for the complete-data tree. This novel phylogeny is the most comprehensive to date (in terms of taxa and data) and can serve as an expandable tool for evolutionary hypothesis testing in the Zoanthidea. Spanish language abstract available in Text S1. Translation by L. O. Swain, DePaul University, Chicago, Illinois, 60604, USA. Copyright © 2017 Elsevier Inc. All rights reserved.
Federated Search Tools in Fusion Centers: Bridging Databases in the Information Sharing Environment
2012-09-01
considerable variation in how fusion centers plan for, gather requirements, select and acquire federated search tools to bridge disparate databases...centers, when considering integrating federated search tools; by evaluating the importance of the planning, requirements gathering, selection and...acquisition processes for integrating federated search tools; by acknowledging the challenges faced by some fusion centers during these integration processes
Sub-cell turning to accomplish micron-level alignment of precision assemblies
NASA Astrophysics Data System (ADS)
Kumler, James J.; Buss, Christian
2017-08-01
Higher performance expectations for complex optical systems demand tighter alignment requirements for lens assembly alignment. In order to meet diffraction limited imaging performance over wide spectral bands across the UV and visible wavebands, new manufacturing approaches and tools must be developed if the optical systems will be produced consistently in volume production. This is especially applicable in the field of precision microscope objectives for life science, semiconductor inspection and laser material processing systems. We observe a rising need for the improvement in the optical imaging performance of objective lenses. The key challenge lies in the micron-level decentration and tilt of each lens element. One solution for the production of high quality lens systems is sub-cell assembly with alignment turning. This process relies on an automatic alignment chuck to align the optical axis of a mounted lens to the spindle axis of the machine. Subsequently, the mount is cut with diamond tools on a lathe with respect to the optical axis of the mount. Software controlled integrated measurement technology ensures highest precision. In addition to traditional production processes, further dimensions can be controlled in a very precise manner, e.g. the air gaps between the lenses. Using alignment turning simplifies further alignment steps and reduces the risk of errors. This paper describes new challenges in microscope objective design and manufacturing, and addresses difficulties with standard production processes. A new measurement and alignment technique is described, and strengths and limitations are outlined.
Initial Navigation Alignment of Optical Instruments on GOES-R
NASA Astrophysics Data System (ADS)
Isaacson, P.; DeLuccia, F.; Reth, A. D.; Igli, D. A.; Carter, D.
2016-12-01
The GOES-R satellite is the first in NOAA's next-generation series of geostationary weather satellites. In addition to a number of space weather sensors, it will carry two principal optical earth-observing instruments, the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM). During launch, currently scheduled for November of 2016, the alignment of these optical instruments is anticipated to shift from that measured during pre-launch characterization. While both instruments have image navigation and registration (INR) processing algorithms to enable automated geolocation of the collected data, the launch-derived misalignment may be too large for these approaches to function without an initial adjustment to calibration parameters. The parameters that may require adjustment are for Line of Sight Motion Compensation (LMC), and the adjustments will be estimated on orbit during the post-launch test (PLT) phase. We have developed approaches to estimate the initial alignment errors for both ABI and GLM image products. Our approaches involve comparison of ABI and GLM images collected during PLT to a set of reference ("truth") images using custom image processing tools and other software (the INR Performance Assessment Tool Set, or "IPATS") being developed for other INR assessments of ABI and GLM data. IPATS is based on image correlation approaches to determine offsets between input and reference images, and these offsets are the fundamental input to our estimate of the initial alignment errors. Initial testing of our alignment algorithms on proxy datasets lends high confidence that their application will determine the initial alignment errors to within sufficient accuracy to enable the operational INR processing approaches to proceed in a nominal fashion. We will report on the algorithms, implementation approach, and status of these initial alignment tools being developed for the GOES-R ABI and GLM instruments.
Aligning Metabolic Pathways Exploiting Binary Relation of Reactions.
Huang, Yiran; Zhong, Cheng; Lin, Hai Xiang; Huang, Jing
2016-01-01
Metabolic pathway alignment has been widely used to find one-to-one and/or one-to-many reaction mappings to identify the alternative pathways that have similar functions through different sets of reactions, which has important applications in reconstructing phylogeny and understanding metabolic functions. The existing alignment methods exhaustively search reaction sets, which may become infeasible for large pathways. To address this problem, we present an effective alignment method for accurately extracting reaction mappings between two metabolic pathways. We show that connected relation between reactions can be formalized as binary relation of reactions in metabolic pathways, and the multiplications of zero-one matrices for binary relations of reactions can be accomplished in finite steps. By utilizing the multiplications of zero-one matrices for binary relation of reactions, we efficiently obtain reaction sets in a small number of steps without exhaustive search, and accurately uncover biologically relevant reaction mappings. Furthermore, we introduce a measure of topological similarity of nodes (reactions) by comparing the structural similarity of the k-neighborhood subgraphs of the nodes in aligning metabolic pathways. We employ this similarity metric to improve the accuracy of the alignments. The experimental results on the KEGG database show that when compared with other state-of-the-art methods, in most cases, our method obtains better performance in the node correctness and edge correctness, and the number of the edges of the largest common connected subgraph for one-to-one reaction mappings, and the number of correct one-to-many reaction mappings. Our method is scalable in finding more reaction mappings with better biological relevance in large metabolic pathways.
ERIC Educational Resources Information Center
Riofrio, Richard
2008-01-01
The author was on the academic job market in English eight years in a row. The first four times, he applied all over the place, searching for his first tenure-track job. The next four times, he applied selectively, searching for a position more closely aligned with his academic and personal interests. Although each year on the market was…
Wright, Imogen A.; Travers, Simon A.
2014-01-01
The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. PMID:24861618
A flexible motif search technique based on generalized profiles.
Bucher, P; Karplus, K; Moeri, N; Hofmann, K
1996-03-01
A flexible motif search technique is presented which has two major components: (1) a generalized profile syntax serving as a motif definition language; and (2) a motif search method specifically adapted to the problem of finding multiple instances of a motif in the same sequence. The new profile structure, which is the core of the generalized profile syntax, combines the functions of a variety of motif descriptors implemented in other methods, including regular expression-like patterns, weight matrices, previously used profiles, and certain types of hidden Markov models (HMMs). The relationship between generalized profiles and other biomolecular motif descriptors is analyzed in detail, with special attention to HMMs. Generalized profiles are shown to be equivalent to a particular class of HMMs, and conversion procedures in both directions are given. The conversion procedures provide an interpretation for local alignment in the framework of stochastic models, allowing for clear, simple significance tests. A mathematical statement of the motif search problem defines the new method exactly without linking it to a specific algorithmic solution. Part of the definition includes a new definition of disjointness of alignments.
Strategies and tools for whole genome alignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couronne, Olivier; Poliakov, Alexander; Bray, Nicolas
2002-11-25
The availability of the assembled mouse genome makespossible, for the first time, an alignment and comparison of two largevertebrate genomes. We have investigated different strategies ofalignment for the subsequent analysis of conservation of genomes that areeffective for different quality assemblies. These strategies were appliedto the comparison of the working draft of the human genome with the MouseGenome Sequencing Consortium assembly, as well as other intermediatemouse assemblies. Our methods are fast and the resulting alignmentsexhibit a high degree of sensitivity, covering more than 90 percent ofknown coding exons in the human genome. We have obtained such coveragewhile preserving specificity. With amore » view towards the end user, we havedeveloped a suite of tools and websites for automatically aligning, andsubsequently browsing and working with whole genome comparisons. Wedescribe the use of these tools to identify conserved non-coding regionsbetween the human and mouse genomes, some of which have not beenidentified by other methods.« less
Precision tool holder with flexure-adjustable, three degrees of freedom for a four-axis lathe
Bono, Matthew J [Pleasanton, CA; Hibbard, Robin L [Livermore, CA
2008-03-04
A precision tool holder for precisely positioning a single point cutting tool on 4-axis lathe, such that the center of the radius of the tool nose is aligned with the B-axis of the machine tool, so as to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-.mu.m accuracy on a four-axis lathe. The device is designed to fit on a commercial diamond turning machine and can adjust the cutting tool position in three orthogonal directions with sub-micrometer resolution. In particular, the tool holder adjusts the tool position using three flexure-based mechanisms, with two flexure mechanisms adjusting the lateral position of the tool to align the tool with the B-axis, and a third flexure mechanism adjusting the height of the tool. Preferably, the flexures are driven by manual micrometer adjusters. In this manner, this tool holder simplifies the process of setting a tool with sub-.mu.m accuracy, to substantially reduce the time required to set the tool.
Adao, Davin Edric V.; Dela Serna, Ace O.; Belleza, Maria Luz B.; Bolo, Nicole R.; Rivera, Windell L.
2016-10-01
Blastocystis sp. is a commonly reported enteric protistan parasite in faecal specimens with a worldwide distribution afflicting both humans and a wide range of animals. The aim of this study is to characterize the subtypes (STs) of Blastocystis sp. isolates from asymptomatic individuals in an urban community in Pateros, Metro Manila, Philippines. The 600-bp small subunit ribosomal RNA (SSU rRNA) barcoding region of Blastocystis sp. isolates was amplified and sequenced using the primers RD5 and BhRDr. Subtypes were identified by uploading the sequences onto the Basic Local Alignment and Search Tool (BLAST) websites, the Blastocystis Subtype (18S) and Sequence Typing (MLST) Database and by construction of a phylogenetic tree. Twenty-nine (29) out of 35 individuals were detected positive for Blastocystis sp. ST3 is the most common among the three STs detected (65.5%), followed by ST1 (31.0%) and ST4 (3.44%). This study showed that DNA barcoding can serve as a helpful tool to investigate the diversity of Blastocystis sp. in the Philippines.
An image guidance system for positioning robotic cochlear implant insertion tools
NASA Astrophysics Data System (ADS)
Bruns, Trevor L.; Webster, Robert J.
2017-03-01
Cochlear implants must be inserted carefully to avoid damaging the delicate anatomical structures of the inner ear. This has motivated several approaches to improve the safety and efficacy of electrode array insertion by automating the process with specialized robotic or manual insertion tools. When such tools are used, they must be positioned at the entry point to the cochlea and aligned with the desired entry vector. This paper presents an image guidance system capable of accurately positioning a cochlear implant insertion tool. An optical tracking system localizes the insertion tool in physical space while a graphical user interface incorporates this with patient- specific anatomical data to provide error information to the surgeon in real-time. Guided by this interface, novice users successfully aligned the tool with an mean accuracy of 0.31 mm.
ERIC Educational Resources Information Center
Lowe, Karen
2003-01-01
Discusses the process of weeding, updating, and building a school library media collection that supports the state curriculum. Explains resource alignment, a process for using the shelf list as a tool to analyze and align media center resources to state curricula, and describes a five-year plan and its usefulness for additional funding. (LRW)
SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly
Wala, Jeremiah; Beroukhim, Rameen
2017-01-01
Abstract We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. Availability and Implementation: SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. Contact: jwala@broadinstitue.org; rameen@broadinstitute.org PMID:28011768
SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly.
Wala, Jeremiah; Beroukhim, Rameen
2017-03-01
We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. jwala@broadinstitue.org ; rameen@broadinstitute.org. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
ALDB: a domestic-animal long noncoding RNA database.
Li, Aimin; Zhang, Junying; Zhou, Zhongyin; Wang, Lei; Liu, Yujuan; Liu, Yajun
2015-01-01
Long noncoding RNAs (lncRNAs) have attracted significant attention in recent years due to their important roles in many biological processes. Domestic animals constitute a unique resource for understanding the genetic basis of phenotypic variation and are ideal models relevant to diverse areas of biomedical research. With improving sequencing technologies, numerous domestic-animal lncRNAs are now available. Thus, there is an immediate need for a database resource that can assist researchers to store, organize, analyze and visualize domestic-animal lncRNAs. The domestic-animal lncRNA database, named ALDB, is the first comprehensive database with a focus on the domestic-animal lncRNAs. It currently archives 12,103 pig intergenic lncRNAs (lincRNAs), 8,923 chicken lincRNAs and 8,250 cow lincRNAs. In addition to the annotations of lincRNAs, it offers related data that is not available yet in existing lncRNA databases (lncRNAdb and NONCODE), such as genome-wide expression profiles and animal quantitative trait loci (QTLs) of domestic animals. Moreover, a collection of interfaces and applications, such as the Basic Local Alignment Search Tool (BLAST), the Generic Genome Browser (GBrowse) and flexible search functionalities, are available to help users effectively explore, analyze and download data related to domestic-animal lncRNAs. ALDB enables the exploration and comparative analysis of lncRNAs in domestic animals. A user-friendly web interface, integrated information and tools make it valuable to researchers in their studies. ALDB is freely available from http://res.xaut.edu.cn/aldb/index.jsp.
Lau, Joann M; Robinson, David L
2009-01-01
With rapid advances in biotechnology and molecular biology, instructors are challenged to not only provide undergraduate students with hands-on experiences in these disciplines but also to engage them in the "real-world" scientific process. Two common topics covered in biotechnology or molecular biology courses are gene-cloning and bioinformatics, but to provide students with a continuous laboratory-based research experience in these techniques is difficult. To meet these challenges, we have partnered with Bio-Rad Laboratories in the development of the "Cloning and Sequencing Explorer Series," which combines wet-lab experiences (e.g., DNA extraction, polymerase chain reaction, ligation, transformation, and restriction digestion) with bioinformatics analysis (e.g., evaluation of DNA sequence quality, sequence editing, Basic Local Alignment Search Tool searches, contig construction, intron identification, and six-frame translation) to produce a sequence publishable in the National Center for Biotechnology Information GenBank. This 6- to 8-wk project-based exercise focuses on a pivotal gene of glycolysis (glyceraldehyde-3-phosphate dehydrogenase), in which students isolate, sequence, and characterize the gene from a plant species or cultivar not yet published in GenBank. Student achievement was evaluated using pre-, mid-, and final-test assessments, as well as with a survey to assess student perceptions. Student confidence with basic laboratory techniques and knowledge of bioinformatics tools were significantly increased upon completion of this hands-on exercise.
Alview: Portable Software for Viewing Sequence Reads in BAM Formatted Files.
Finney, Richard P; Chen, Qing-Rong; Nguyen, Cu V; Hsu, Chih Hao; Yan, Chunhua; Hu, Ying; Abawi, Massih; Bian, Xiaopeng; Meerzaman, Daoud M
2015-01-01
The name Alview is a contraction of the term Alignment Viewer. Alview is a compiled to native architecture software tool for visualizing the alignment of sequencing data. Inputs are files of short-read sequences aligned to a reference genome in the SAM/BAM format and files containing reference genome data. Outputs are visualizations of these aligned short reads. Alview is written in portable C with optional graphical user interface (GUI) code written in C, C++, and Objective-C. The application can run in three different ways: as a web server, as a command line tool, or as a native, GUI program. Alview is compatible with Microsoft Windows, Linux, and Apple OS X. It is available as a web demo at https://cgwb.nci.nih.gov/cgi-bin/alview. The source code and Windows/Mac/Linux executables are available via https://github.com/NCIP/alview.
Dynamic programming algorithms for biological sequence comparison.
Pearson, W R; Miller, W
1992-01-01
Efficient dynamic programming algorithms are available for a broad class of protein and DNA sequence comparison problems. These algorithms require computer time proportional to the product of the lengths of the two sequences being compared [O(N2)] but require memory space proportional only to the sum of these lengths [O(N)]. Although the requirement for O(N2) time limits use of the algorithms to the largest computers when searching protein and DNA sequence databases, many other applications of these algorithms, such as calculation of distances for evolutionary trees and comparison of a new sequence to a library of sequence profiles, are well within the capabilities of desktop computers. In particular, the results of library searches with rapid searching programs, such as FASTA or BLAST, should be confirmed by performing a rigorous optimal alignment. Whereas rapid methods do not overlook significant sequence similarities, FASTA limits the number of gaps that can be inserted into an alignment, so that a rigorous alignment may extend the alignment substantially in some cases. BLAST does not allow gaps in the local regions that it reports; a calculation that allows gaps is very likely to extend the alignment substantially. Although a Monte Carlo evaluation of the statistical significance of a similarity score with a rigorous algorithm is much slower than the heuristic approach used by the RDF2 program, the dynamic programming approach should take less than 1 hr on a 386-based PC or desktop Unix workstation. For descriptive purposes, we have limited our discussion to methods for calculating similarity scores and distances that use gap penalties of the form g = rk. Nevertheless, programs for the more general case (g = q+rk) are readily available. Versions of these programs that run either on Unix workstations, IBM-PC class computers, or the Macintosh can be obtained from either of the authors.
Valença-Barbosa, Carolina; Fernandes, Fabiano Araújo; Santos, Helena Lucia Carneiro; Sarquis, Otília; Harry, Myriam; Almeida, Carlos Eduardo; Lima, Marli Maria
2015-01-01
We used the gut contents of triatomines collected from rural areas of Ceará State, northeastern Brazil, to identify their putative hosts via vertebrate cytb gene sequencing. Successful direct sequencing was obtained for 48% of insects, comprising 50 Triatoma brasiliensis, 7 Triatoma pseudomaculata, and 1 Rhodnius nasutus. Basic local alignment search tool (BLAST) procedure revealed that domestic animals, such as chickens (Gallus gallus) and goats (Capra hircus), are the main food source, including in sylvatic environment. Native hosts were also detected in peridomestic environment such as reptiles (Tropidurus sp. and Iguana iguana) and the Galea spixii (Rodentia: Caviidae). The role of goats and Galea spixii in Chagas disease epidemiology calls for further studies, because these mammals likely link the sylvatic and domestic Trypanosoma cruzi cycles. PMID:26350453
ABMapper: a suffix array-based tool for multi-location searching and splice-junction mapping.
Lou, Shao-Ke; Ni, Bing; Lo, Leung-Yau; Tsui, Stephen Kwok-Wing; Chan, Ting-Fung; Leung, Kwong-Sak
2011-02-01
Sequencing reads generated by RNA-sequencing (RNA-seq) must first be mapped back to the genome through alignment before they can be further analyzed. Current fast and memory-saving short-read mappers could give us a quick view of the transcriptome. However, they are neither designed for reads that span across splice junctions nor for repetitive reads, which can be mapped to multiple locations in the genome (multi-reads). Here, we describe a new software package: ABMapper, which is specifically designed for exploring all putative locations of reads that are mapped to splice junctions or repetitive in nature. The software is freely available at: http://abmapper.sourceforge.net/. The software is written in C++ and PERL. It runs on all major platforms and operating systems including Windows, Mac OS X and LINUX.
Leroy, Gondy; Xu, Jennifer; Chung, Wingyan; Eggers, Shauna; Chen, Hsinchun
2007-01-01
Retrieving sufficient relevant information online is difficult for many people because they use too few keywords to search and search engines do not provide many support tools. To further complicate the search, users often ignore support tools when available. Our goal is to evaluate in a realistic setting when users use support tools and how they perceive these tools. We compared three medical search engines with support tools that require more or less effort from users to form a query and evaluate results. We carried out an end user study with 23 users who were asked to find information, i.e., subtopics and supporting abstracts, for a given theme. We used a balanced within-subjects design and report on the effectiveness, efficiency and usability of the support tools from the end user perspective. We found significant differences in efficiency but did not find significant differences in effectiveness between the three search engines. Dynamic user support tools requiring less effort led to higher efficiency. Fewer searches were needed and more documents were found per search when both query reformulation and result review tools dynamically adjust to the user query. The query reformulation tool that provided a long list of keywords, dynamically adjusted to the user query, was used most often and led to more subtopics. As hypothesized, the dynamic result review tools were used more often and led to more subtopics than static ones. These results were corroborated by the usability questionnaires, which showed that support tools that dynamically optimize output were preferred.
High-speed multiple sequence alignment on a reconfigurable platform.
Oliver, Tim; Schmidt, Bertil; Maskell, Douglas; Nathan, Darran; Clemens, Ralf
2006-01-01
Progressive alignment is a widely used approach to compute multiple sequence alignments (MSAs). However, aligning several hundred sequences by popular progressive alignment tools requires hours on sequential computers. Due to the rapid growth of sequence databases biologists have to compute MSAs in a far shorter time. In this paper we present a new approach to MSA on reconfigurable hardware platforms to gain high performance at low cost. We have constructed a linear systolic array to perform pairwise sequence distance computations using dynamic programming. This results in an implementation with significant runtime savings on a standard FPGA.
Dcode.org anthology of comparative genomic tools.
Loots, Gabriela G; Ovcharenko, Ivan
2005-07-01
Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the non-coding encryption of gene regulation across genomes. To facilitate the practical application of comparative sequence analysis to genetics and genomics, we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools, zPicture and Mulan; a phylogenetic shadowing tool, eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools, rVista and multiTF; a tool for extracting cis-regulatory modules governing the expression of co-regulated genes, Creme 2.0; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here, we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ website.
Development of a PubMed Based Search Tool for Identifying Sex and Gender Specific Health Literature.
Song, Michael M; Simonsen, Cheryl K; Wilson, Joanna D; Jenkins, Marjorie R
2016-02-01
An effective literature search strategy is critical to achieving the aims of Sex and Gender Specific Health (SGSH): to understand sex and gender differences through research and to effectively incorporate the new knowledge into the clinical decision making process to benefit both male and female patients. The goal of this project was to develop and validate an SGSH literature search tool that is readily and freely available to clinical researchers and practitioners. PubMed, a freely available search engine for the Medline database, was selected as the platform to build the SGSH literature search tool. Combinations of Medical Subject Heading terms, text words, and title words were evaluated for optimal specificity and sensitivity. The search tool was then validated against reference bases compiled for two disease states, diabetes and stroke. Key sex and gender terms and limits were bundled to create a search tool to facilitate PubMed SGSH literature searches. During validation, the search tool retrieved 50 of 94 (53.2%) stroke and 62 of 95 (65.3%) diabetes reference articles selected for validation. A general keyword search of stroke or diabetes combined with sex difference retrieved 33 of 94 (35.1%) stroke and 22 of 95 (23.2%) diabetes reference base articles, with lower sensitivity and specificity for SGSH content. The Texas Tech University Health Sciences Center SGSH PubMed Search Tool provides higher sensitivity and specificity to sex and gender specific health literature. The tool will facilitate research, clinical decision-making, and guideline development relevant to SGSH.
Development of a PubMed Based Search Tool for Identifying Sex and Gender Specific Health Literature
Song, Michael M.; Simonsen, Cheryl K.; Wilson, Joanna D.
2016-01-01
Abstract Background: An effective literature search strategy is critical to achieving the aims of Sex and Gender Specific Health (SGSH): to understand sex and gender differences through research and to effectively incorporate the new knowledge into the clinical decision making process to benefit both male and female patients. The goal of this project was to develop and validate an SGSH literature search tool that is readily and freely available to clinical researchers and practitioners. Methods: PubMed, a freely available search engine for the Medline database, was selected as the platform to build the SGSH literature search tool. Combinations of Medical Subject Heading terms, text words, and title words were evaluated for optimal specificity and sensitivity. The search tool was then validated against reference bases compiled for two disease states, diabetes and stroke. Results: Key sex and gender terms and limits were bundled to create a search tool to facilitate PubMed SGSH literature searches. During validation, the search tool retrieved 50 of 94 (53.2%) stroke and 62 of 95 (65.3%) diabetes reference articles selected for validation. A general keyword search of stroke or diabetes combined with sex difference retrieved 33 of 94 (35.1%) stroke and 22 of 95 (23.2%) diabetes reference base articles, with lower sensitivity and specificity for SGSH content. Conclusions: The Texas Tech University Health Sciences Center SGSH PubMed Search Tool provides higher sensitivity and specificity to sex and gender specific health literature. The tool will facilitate research, clinical decision-making, and guideline development relevant to SGSH. PMID:26555409
GOSSIP: a method for fast and accurate global alignment of protein structures.
Kifer, I; Nussinov, R; Wolfson, H J
2011-04-01
The database of known protein structures (PDB) is increasing rapidly. This results in a growing need for methods that can cope with the vast amount of structural data. To analyze the accumulating data, it is important to have a fast tool for identifying similar structures and clustering them by structural resemblance. Several excellent tools have been developed for the comparison of protein structures. These usually address the task of local structure alignment, an important yet computationally intensive problem due to its complexity. It is difficult to use such tools for comparing a large number of structures to each other at a reasonable time. Here we present GOSSIP, a novel method for a global all-against-all alignment of any set of protein structures. The method detects similarities between structures down to a certain cutoff (a parameter of the program), hence allowing it to detect similar structures at a much higher speed than local structure alignment methods. GOSSIP compares many structures in times which are several orders of magnitude faster than well-known available structure alignment servers, and it is also faster than a database scanning method. We evaluate GOSSIP both on a dataset of short structural fragments and on two large sequence-diverse structural benchmarks. Our conclusions are that for a threshold of 0.6 and above, the speed of GOSSIP is obtained with no compromise of the accuracy of the alignments or of the number of detected global similarities. A server, as well as an executable for download, are available at http://bioinfo3d.cs.tau.ac.il/gossip/.
Plastid: nucleotide-resolution analysis of next-generation sequencing and genomics data.
Dunn, Joshua G; Weissman, Jonathan S
2016-11-22
Next-generation sequencing (NGS) informs many biological questions with unprecedented depth and nucleotide resolution. These assays have created a need for analytical tools that enable users to manipulate data nucleotide-by-nucleotide robustly and easily. Furthermore, because many NGS assays encode information jointly within multiple properties of read alignments - for example, in ribosome profiling, the locations of ribosomes are jointly encoded in alignment coordinates and length - analytical tools are often required to extract the biological meaning from the alignments before analysis. Many assay-specific pipelines exist for this purpose, but there remains a need for user-friendly, generalized, nucleotide-resolution tools that are not limited to specific experimental regimes or analytical workflows. Plastid is a Python library designed specifically for nucleotide-resolution analysis of genomics and NGS data. As such, Plastid is designed to extract assay-specific information from read alignments while retaining generality and extensibility to novel NGS assays. Plastid represents NGS and other biological data as arrays of values associated with genomic or transcriptomic positions, and contains configurable tools to convert data from a variety of sources to such arrays. Plastid also includes numerous tools to manipulate even discontinuous genomic features, such as spliced transcripts, with nucleotide precision. Plastid automatically handles conversion between genomic and feature-centric coordinates, accounting for splicing and strand, freeing users of burdensome accounting. Finally, Plastid's data models use consistent and familiar biological idioms, enabling even beginners to develop sophisticated analytical workflows with minimal effort. Plastid is a versatile toolkit that has been used to analyze data from multiple NGS assays, including RNA-seq, ribosome profiling, and DMS-seq. It forms the genomic engine of our ORF annotation tool, ORF-RATER, and is readily adapted to novel NGS assays. Examples, tutorials, and extensive documentation can be found at https://plastid.readthedocs.io .
DEMO: Sequence Alignment to Predict Across Species Susceptibility
The US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility tool (SeqAPASS; https://seqapass.epa.gov/seqapass/) was developed to comparatively evaluate protein sequence and structural similarity across species as a means to extrapolate toxic...
2011-01-01
Background Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Results Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. Conclusions The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html. PMID:21851598
Yuan, Yuan; Chen, Yi-Ping Phoebe; Ni, Shengyu; Xu, Augix Guohua; Tang, Lin; Vingron, Martin; Somel, Mehmet; Khaitovich, Philipp
2011-08-18
Comparing biological time series data across different conditions, or different specimens, is a common but still challenging task. Algorithms aligning two time series represent a valuable tool for such comparisons. While many powerful computation tools for time series alignment have been developed, they do not provide significance estimates for time shift measurements. Here, we present an extended version of the original DTW algorithm that allows us to determine the significance of time shift estimates in time series alignments, the DTW-Significance (DTW-S) algorithm. The DTW-S combines important properties of the original algorithm and other published time series alignment tools: DTW-S calculates the optimal alignment for each time point of each gene, it uses interpolated time points for time shift estimation, and it does not require alignment of the time-series end points. As a new feature, we implement a simulation procedure based on parameters estimated from real time series data, on a series-by-series basis, allowing us to determine the false positive rate (FPR) and the significance of the estimated time shift values. We assess the performance of our method using simulation data and real expression time series from two published primate brain expression datasets. Our results show that this method can provide accurate and robust time shift estimates for each time point on a gene-by-gene basis. Using these estimates, we are able to uncover novel features of the biological processes underlying human brain development and maturation. The DTW-S provides a convenient tool for calculating accurate and robust time shift estimates at each time point for each gene, based on time series data. The estimates can be used to uncover novel biological features of the system being studied. The DTW-S is freely available as an R package TimeShift at http://www.picb.ac.cn/Comparative/data.html.
PDB-Explorer: a web-based interactive map of the protein data bank in shape space.
Jin, Xian; Awale, Mahendra; Zasso, Michaël; Kostro, Daniel; Patiny, Luc; Reymond, Jean-Louis
2015-10-23
The RCSB Protein Data Bank (PDB) provides public access to experimentally determined 3D-structures of biological macromolecules (proteins, peptides and nucleic acids). While various tools are available to explore the PDB, options to access the global structural diversity of the entire PDB and to perceive relationships between PDB structures remain very limited. A 136-dimensional atom pair 3D-fingerprint for proteins (3DP) counting categorized atom pairs at increasing through-space distances was designed to represent the molecular shape of PDB-entries. Nearest neighbor searches examples were reported exemplifying the ability of 3DP-similarity to identify closely related biomolecules from small peptides to enzyme and large multiprotein complexes such as virus particles. The principle component analysis was used to obtain the visualization of PDB in 3DP-space. The 3DP property space groups proteins and protein assemblies according to their 3D-shape similarity, yet shows exquisite ability to distinguish between closely related structures. An interactive website called PDB-Explorer is presented featuring a color-coded interactive map of PDB in 3DP-space. Each pixel of the map contains one or more PDB-entries which are directly visualized as ribbon diagrams when the pixel is selected. The PDB-Explorer website allows performing 3DP-nearest neighbor searches of any PDB-entry or of any structure uploaded as protein-type PDB file. All functionalities on the website are implemented in JavaScript in a platform-independent manner and draw data from a server that is updated daily with the latest PDB additions, ensuring complete and up-to-date coverage. The essentially instantaneous 3DP-similarity search with the PDB-Explorer provides results comparable to those of much slower 3D-alignment algorithms, and automatically clusters proteins from the same superfamilies in tight groups. A chemical space classification of PDB based on molecular shape was obtained using a new atom-pair 3D-fingerprint for proteins and implemented in a web-based database exploration tool comprising an interactive color-coded map of the PDB chemical space and a nearest neighbor search tool. The PDB-Explorer website is freely available at www.cheminfo.org/pdbexplorer and represents an unprecedented opportunity to interactively visualize and explore the structural diversity of the PDB. ᅟ
Chromaligner: a web server for chromatogram alignment.
Wang, San-Yuan; Ho, Tsung-Jung; Kuo, Ching-Hua; Tseng, Yufeng J
2010-09-15
Chromaligner is a tool for chromatogram alignment to align retention time for chromatographic methods coupled to spectrophotometers such as high performance liquid chromatography and capillary electrophoresis for metabolomics works. Chromaligner resolves peak shifts by a constrained chromatogram alignment. For a collection of chromatograms and a set of defined peaks, Chromaligner aligns the chromatograms on defined peaks using correlation warping (COW). Chromaligner is faster than the original COW algorithm by k(2) times, where k is the number of defined peaks in a chromatogram. It also provides alignments based on known component peaks to reach the best results for further chemometric analysis. Chromaligner is freely accessible at http://cmdd.csie.ntu.edu.tw/~chromaligner.
Holm, Liisa; Laakso, Laura M
2016-07-08
The Dali server (http://ekhidna2.biocenter.helsinki.fi/dali) is a network service for comparing protein structures in 3D. In favourable cases, comparing 3D structures may reveal biologically interesting similarities that are not detectable by comparing sequences. The Dali server has been running in various places for over 20 years and is used routinely by crystallographers on newly solved structures. The latest update of the server provides enhanced analytics for the study of sequence and structure conservation. The server performs three types of structure comparisons: (i) Protein Data Bank (PDB) search compares one query structure against those in the PDB and returns a list of similar structures; (ii) pairwise comparison compares one query structure against a list of structures specified by the user; and (iii) all against all structure comparison returns a structural similarity matrix, a dendrogram and a multidimensional scaling projection of a set of structures specified by the user. Structural superimpositions are visualized using the Java-free WebGL viewer PV. The structural alignment view is enhanced by sequence similarity searches against Uniprot. The combined structure-sequence alignment information is compressed to a stack of aligned sequence logos. In the stack, each structure is structurally aligned to the query protein and represented by a sequence logo. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Implementation of a parallel protein structure alignment service on cloud.
Hung, Che-Lun; Lin, Yaw-Ling
2013-01-01
Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform.
Implementation of a Parallel Protein Structure Alignment Service on Cloud
Hung, Che-Lun; Lin, Yaw-Ling
2013-01-01
Protein structure alignment has become an important strategy by which to identify evolutionary relationships between protein sequences. Several alignment tools are currently available for online comparison of protein structures. In this paper, we propose a parallel protein structure alignment service based on the Hadoop distribution framework. This service includes a protein structure alignment algorithm, a refinement algorithm, and a MapReduce programming model. The refinement algorithm refines the result of alignment. To process vast numbers of protein structures in parallel, the alignment and refinement algorithms are implemented using MapReduce. We analyzed and compared the structure alignments produced by different methods using a dataset randomly selected from the PDB database. The experimental results verify that the proposed algorithm refines the resulting alignments more accurately than existing algorithms. Meanwhile, the computational performance of the proposed service is proportional to the number of processors used in our cloud platform. PMID:23671842
The Yak genome database: an integrative database for studying yak biology and high-altitude adaption
2012-01-01
Background The yak (Bos grunniens) is a long-haired bovine that lives at high altitudes and is an important source of milk, meat, fiber and fuel. The recent sequencing, assembly and annotation of its genome are expected to further our understanding of the means by which it has adapted to life at high altitudes and its ecologically important traits. Description The Yak Genome Database (YGD) is an internet-based resource that provides access to genomic sequence data and predicted functional information concerning the genes and proteins of Bos grunniens. The curated data stored in the YGD includes genome sequences, predicted genes and associated annotations, non-coding RNA sequences, transposable elements, single nucleotide variants, and three-way whole-genome alignments between human, cattle and yak. YGD offers useful searching and data mining tools, including the ability to search for genes by name or using function keywords as well as GBrowse genome browsers and/or BLAST servers, which can be used to visualize genome regions and identify similar sequences. Sequence data from the YGD can also be downloaded to perform local searches. Conclusions A new yak genome database (YGD) has been developed to facilitate studies on high-altitude adaption and bovine genomics. The database will be continuously updated to incorporate new information such as transcriptome data and population resequencing data. The YGD can be accessed at http://me.lzu.edu.cn/yak. PMID:23134687
Collimator with attachment mechanism and system
Kross, Brian J [Yorktown, VA; McKisson, John [Hampton, VA; Stolin, Aleksandr [Morgantown, WV; Weisenberger, Andrew G [Yorktown, VA; Zorn, Carl [Yorktown, VA
2012-07-10
A self-aligning collimator for a radiation imaging device that is secured and aligned through the use of a plurality of small magnets. The collimator allows for the rapid exchange, removal, or addition of collimators for the radiation imaging device without the need for tools. The accompanying method discloses the use of magnets and accompanying magnetic fields to align and secure collimators in a radiation imaging assembly.
Seismic Canvas: Evolution as a Data Exploration and Analysis Tool
NASA Astrophysics Data System (ADS)
Kroeger, G. C.
2015-12-01
SeismicCanvas, originally developed as a prototype interactive waveform display and printing application for educational use has evolved to include significant data exploration and analysis functionality. The most recent version supports data import from a variety of standard file formats including SAC and mini-SEED, as well as search and download capabilities via IRIS/FDSN Web Services. Data processing tools now include removal of means and trends, interactive windowing, filtering, smoothing, tapering, resampling. Waveforms can be displayed in a free-form canvas or as a record section based on angular or great circle distance, azimuth or back azimuth. Integrated tau-p code allows the calculation and display of theoretical phase arrivals from a variety of radial Earth models. Waveforms can be aligned by absolute time, event time, picked or theoretical arrival times and can be stacked after alignment. Interactive measurements include means, amplitudes, time delays, ray parameters and apparent velocities. Interactive picking of an arbitrary list of seismic phases is supported. Bode plots of amplitude and phase spectra and spectrograms can be created from multiple seismograms or selected windows of seismograms. Direct printing is implemented on all supported platforms along with output of high-resolution pdf files. With these added capabilities, the application is now being used as a data exploration tool for research. Coded in C++ and using the cross-platform Qt framework, the most recent version is available as a 64-bit application for Windows 7-10, Mac OS X 10.6-10.11, and most distributions of Linux, and a 32-bit version for Windows XP and 7. With the latest improvements and refactoring of trace display classes, the 64-bit versions have been tested with over 250 million samples and remain responsive in interactive operations. The source code is available under a LPGLv3 license and both source and executables are available through the IRIS SeisCode repository.
Criteria for Comparing Children's Web Search Tools.
ERIC Educational Resources Information Center
Kuntz, Jerry
1999-01-01
Presents criteria for evaluating and comparing Web search tools designed for children. Highlights include database size; accountability; categorization; search access methods; help files; spell check; URL searching; links to alternative search services; advertising; privacy policy; and layout and design. (LRW)
Malhis, Nawar; Butterfield, Yaron S N; Ester, Martin; Jones, Steven J M
2009-01-01
A plethora of alignment tools have been created that are designed to best fit different types of alignment conditions. While some of these are made for aligning Illumina Sequence Analyzer reads, none of these are fully utilizing its probability (prb) output. In this article, we will introduce a new alignment approach (Slider) that reduces the alignment problem space by utilizing each read base's probabilities given in the prb files. Compared with other aligners, Slider has higher alignment accuracy and efficiency. In addition, given that Slider matches bases with probabilities other than the most probable, it significantly reduces the percentage of base mismatches. The result is that its SNP predictions are more accurate than other SNP prediction approaches used today that start from the most probable sequence, including those using base quality.
Flores Fernández, José Miguel; Barragán Álvarez, Carla Patricia; Sánchez Hernández, Carla Vanessa; Padilla Camberos, Eduardo; González Castillo, Celia; Ortuño Sahagún, Daniel; Martínez Velázquez, Moisés
2016-11-01
The cattle tick Rhipicephalus (Boophilus) microplus is a hematophagous ectoparasite of major importance for the livestock industry. It shows a remarkable ability to survive over long periods without feeding. However, the mechanisms used to endure long-term starvation are poorly understood. It is believed that autophagy, a process of intracellular protein degradation, may play a significant role to confront adverse environmental conditions. To advance our understanding of autophagy in R. microplus, in the present study we report the molecular characterization of three autophagy-related (ATG) genes, namely, RmATG3, RmATG4 and RmATG6, as well as their expression profiles in different developmental stages and organs of the parasite. The deduced amino acid sequences derived from the characterized gene sequences were subjected to Basic Local Alignment Search Tool analysis. The testing produced significant alignments with respective ATG proteins from Haemaphysalis longicornis and Ixodes scapularis ticks. Real-time polymerase chain reaction assays revealed that RmATG4 and RmATG6 transcripts were elevated in egg and ovary tissue, when compared with larva and midgut samples, while RmATG3 expression in midgut was 2-fold higher than in egg, larva and ovary samples.
Mechanized fluid connector and assembly tool system with ball detents
NASA Technical Reports Server (NTRS)
Zentner, Ronald C. (Inventor); Smith, Steven A. (Inventor)
1991-01-01
A fluid connector system is disclosed which includes a modified plumbing union having a rotatable member for drawing said union into a fluid tight condition. A drive tool is electric motor actuated and includes a reduction gear train providing an output gear engaging an integral peripheral spur gear on the rotatable member. Coaxial alignment means are attached to both the connector assembly and the drive tool. A hand lever actuated latching system includes a plurality of circumferentially spaced latching balls selectively wedged against the alignment means attached to the connector assembly or to secure the drive tool with its output gear in mesh with the integral peripheral spur gear. The drive motor is torque, speed, and direction controllable.
Tool holder for preparation and inspection of a radiused edge cutting tool
Asmanes, Charles
1979-01-01
A tool holding fixture is provided for removably holding a radiused edge cutting tool in a tool edge lapping apparatus. The fixture allows the operator to preset the lapping radius and angle before the tool holder is placed in the fixture and the holder may be removed from the lapping apparatus to inspect the tool and simply replaced in the fixture to continue lapping in accordance with a precise alignment without realignment of the tool relative to the lap. The tool holder includes a pair of self aligning bearings in the form of precision formed steel balls connected together by a rigid shaft. The tool is held by an arm extending from the shaft and the balls set in fixed position bearing cups and the holder is oscillated back and forth about a fixed axis of rotation to lap the tool radius by means of a reversibly driven belt-pulley arrangement coupled to the shaft between the bearings. To temporarily remove the holder, the drive belt is slipped over the rearward end of the holder and the holder is lifted out of the bearing cups.
Improvements in the Protein Identifier Cross-Reference service.
Wein, Samuel P; Côté, Richard G; Dumousseau, Marine; Reisinger, Florian; Hermjakob, Henning; Vizcaíno, Juan A
2012-07-01
The Protein Identifier Cross-Reference (PICR) service is a tool that allows users to map protein identifiers, protein sequences and gene identifiers across over 100 different source databases. PICR takes input through an interactive website as well as Representational State Transfer (REST) and Simple Object Access Protocol (SOAP) services. It returns the results as HTML pages, XLS and CSV files. It has been in production since 2007 and has been recently enhanced to add new functionality and increase the number of databases it covers. Protein subsequences can be Basic Local Alignment Search Tool (BLAST) against the UniProt Knowledgebase (UniProtKB) to provide an entry point to the standard PICR mapping algorithm. In addition, gene identifiers from UniProtKB and Ensembl can now be submitted as input or mapped to as output from PICR. We have also implemented a 'best-guess' mapping algorithm for UniProt. In this article, we describe the usefulness of PICR, how these changes have been implemented, and the corresponding additions to the web services. Finally, we explain that the number of source databases covered by PICR has increased from the initial 73 to the current 102. New resources include several new species-specific Ensembl databases as well as the Ensembl Genome ones. PICR can be accessed at http://www.ebi.ac.uk/Tools/picr/.
DCODE.ORG Anthology of Comparative Genomic Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, G G; Ovcharenko, I
2005-01-11
Comparative genomics provides the means to demarcate functional regions in anonymous DNA sequences. The successful application of this method to identifying novel genes is currently shifting to deciphering the noncoding encryption of gene regulation across genomes. To facilitate the use of comparative genomics to practical applications in genetics and genomics we have developed several analytical and visualization tools for the analysis of arbitrary sequences and whole genomes. These tools include two alignment tools: zPicture and Mulan; a phylogenetic shadowing tool: eShadow for identifying lineage- and species-specific functional elements; two evolutionary conserved transcription factor analysis tools: rVista and multiTF; a toolmore » for extracting cis-regulatory modules governing the expression of co-regulated genes, CREME; and a dynamic portal to multiple vertebrate and invertebrate genome alignments, the ECR Browser. Here we briefly describe each one of these tools and provide specific examples on their practical applications. All the tools are publicly available at the http://www.dcode.org/ web site.« less
Zhou, Yanli; Faber, Tracy L.; Patel, Zenic; Folks, Russell D.; Cheung, Alice A.; Garcia, Ernest V.; Soman, Prem; Li, Dianfu; Cao, Kejiang; Chen, Ji
2013-01-01
Objective Left ventricular (LV) function and dyssynchrony parameters measured from serial gated single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) using blinded processing had a poorer repeatability than when manual side-by-side processing was used. The objective of this study was to validate whether an automatic alignment tool can reduce the variability of LV function and dyssynchrony parameters in serial gated SPECT MPI. Methods Thirty patients who had undergone serial gated SPECT MPI were prospectively enrolled in this study. Thirty minutes after the first acquisition, each patient was repositioned and a gated SPECT MPI image was reacquired. The two data sets were first processed blinded from each other by the same technologist in different weeks. These processed data were then realigned by the automatic tool, and manual side-by-side processing was carried out. All processing methods used standard iterative reconstruction and Butterworth filtering. The Emory Cardiac Toolbox was used to measure the LV function and dyssynchrony parameters. Results The automatic tool failed in one patient, who had a large, severe scar in the inferobasal wall. In the remaining 29 patients, the repeatability of the LV function and dyssynchrony parameters after automatic alignment was significantly improved from blinded processing and was comparable to manual side-by-side processing. Conclusion The automatic alignment tool can be an alternative method to manual side-by-side processing to improve the repeatability of LV function and dyssynchrony measurements by serial gated SPECT MPI. PMID:23211996
Self-aligning fixture used in lathe chuck jaw refacing
NASA Technical Reports Server (NTRS)
Linn, C. C.
1965-01-01
Self-aligning tool positions and rigidly holds lathe chuck jaws for refacing and truing of the clamping surface. The jaws clamp the fixture in the manner of clamping a workpiece. The fixture can be modified to accommodate four-jawed checks.
Image correlation method for DNA sequence alignment.
Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván
2012-01-01
The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.
Wright, Imogen A; Travers, Simon A
2014-07-01
The challenge presented by high-throughput sequencing necessitates the development of novel tools for accurate alignment of reads to reference sequences. Current approaches focus on using heuristics to map reads quickly to large genomes, rather than generating highly accurate alignments in coding regions. Such approaches are, thus, unsuited for applications such as amplicon-based analysis and the realignment phase of exome sequencing and RNA-seq, where accurate and biologically relevant alignment of coding regions is critical. To facilitate such analyses, we have developed a novel tool, RAMICS, that is tailored to mapping large numbers of sequence reads to short lengths (<10 000 bp) of coding DNA. RAMICS utilizes profile hidden Markov models to discover the open reading frame of each sequence and aligns to the reference sequence in a biologically relevant manner, distinguishing between genuine codon-sized indels and frameshift mutations. This approach facilitates the generation of highly accurate alignments, accounting for the error biases of the sequencing machine used to generate reads, particularly at homopolymer regions. Performance improvements are gained through the use of graphics processing units, which increase the speed of mapping through parallelization. RAMICS substantially outperforms all other mapping approaches tested in terms of alignment quality while maintaining highly competitive speed performance. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Functional Alignment of Metabolic Networks.
Mazza, Arnon; Wagner, Allon; Ruppin, Eytan; Sharan, Roded
2016-05-01
Network alignment has become a standard tool in comparative biology, allowing the inference of protein function, interaction, and orthology. However, current alignment techniques are based on topological properties of networks and do not take into account their functional implications. Here we propose, for the first time, an algorithm to align two metabolic networks by taking advantage of their coupled metabolic models. These models allow us to assess the functional implications of genes or reactions, captured by the metabolic fluxes that are altered following their deletion from the network. Such implications may spread far beyond the region of the network where the gene or reaction lies. We apply our algorithm to align metabolic networks from various organisms, ranging from bacteria to humans, showing that our alignment can reveal functional orthology relations that are missed by conventional topological alignments.
Díaz-Rodríguez, Jesus; Donaire-Barroso, David; Jowers, Michael J
2018-06-02
In this study, we report, through molecular identification, the first African records of a digenean trematode parasite of the genus Euryhelmis. We recovered metacercariae encysted in an anuran, the endemic Moroccan painted frog (Discoglossus scovazzi), and a vulnerable caudate, the North African fire salamander (Salamandra algira), from four localities in North Africa (Morocco). Our records go back to the past century and have been confirmed in successive fieldwork seasons thereafter. Metacercarial stages of these parasites require amphibians as the last intermediate host, but the exact identity of the primary hosts and predators of the infected animals in Africa remain unknown. Our searches with basic local alignment search tool (BLAST) from Genbank revealed that hosts were infected by parasites of Euryhelmis costaricensis, which showed almost the same genetic identity (with only one substitution) to previous reports from Costa Rica and Japan, suggesting a recent introduction in Morocco. We proceed to discuss the likely role of introduced mustelids as the potential definitive hosts of trematode adults. Under this assumption, we conclude that the infestation of Discoglossus scovazzi and Salamandra algira might pose a risk to these threatened species.
Han, Junping; Huang, Yayan; Ye, Jing; Xiao, Meitian
2015-09-04
To screen and identify a bacterium capable of converting agar to neoagaro oligosaccharides. We took samples of porphyra haitanensis and nearby seawater, and then used the medium containing 1 per thousand agar to enrich the target bacteria. The target isolates were obtained by dilution-plate method, of which crude enzymes were further obtained by liquid culture. We adopted DNS method to determine the target bacteria which can convert agar to neoagaro oligosaccharides. The phylogenetics was identified by analyzing 16S rDNA sequence and combining the strain's morphological and bacterial colonial physiological biochemical characteristics. We isolated a gram-negative bacterial strain HJPHYXJ-1 capable of transforming agar to neoagaro oligosaccharides. Basic Local Alignment Search Tool (BLAST) search of HJPHYXJ-1's 16S rDNA sequence on GenBank suggested that the similarity between this strain and Vibrio natriegens reached 99% . In addition, the morphological and physiological biochemical characteristics of HJPHYXJ-1 also showed highly similarity to Vibrio natriegens. So we identified HJPHYXJ-1 as Vibrio natriegens. The results of HPLC suggested that the metabolite of enzymatic degradation was neoagaro oligosaccharides. HJPHYXJ-1 or the new isolate of Vibrio natriegens was capable of converting agar to neoagaro oligosaccharides.
Liang, Chanjuan; van Dijk, Jeroen P; Scholtens, Ingrid M J; Staats, Martijn; Prins, Theo W; Voorhuijzen, Marleen M; da Silva, Andrea M; Arisi, Ana Carolina Maisonnave; den Dunnen, Johan T; Kok, Esther J
2014-04-01
The growing number of biotech crops with novel genetic elements increasingly complicates the detection of genetically modified organisms (GMOs) in food and feed samples using conventional screening methods. Unauthorized GMOs (UGMOs) in food and feed are currently identified through combining GMO element screening with sequencing the DNA flanking these elements. In this study, a specific and sensitive qPCR assay was developed for vip3A element detection based on the vip3Aa20 coding sequences of the recently marketed MIR162 maize and COT102 cotton. Furthermore, SiteFinding-PCR in combination with Sanger, Illumina or Pacific BioSciences (PacBio) sequencing was performed targeting the flanking DNA of the vip3Aa20 element in MIR162. De novo assembly and Basic Local Alignment Search Tool searches were used to mimic UGMO identification. PacBio data resulted in relatively long contigs in the upstream (1,326 nucleotides (nt); 95 % identity) and downstream (1,135 nt; 92 % identity) regions, whereas Illumina data resulted in two smaller contigs of 858 and 1,038 nt with higher sequence identity (>99 % identity). Both approaches outperformed Sanger sequencing, underlining the potential for next-generation sequencing in UGMO identification.
Plant Genome Resources at the National Center for Biotechnology Information
Wheeler, David L.; Smith-White, Brian; Chetvernin, Vyacheslav; Resenchuk, Sergei; Dombrowski, Susan M.; Pechous, Steven W.; Tatusova, Tatiana; Ostell, James
2005-01-01
The National Center for Biotechnology Information (NCBI) integrates data from more than 20 biological databases through a flexible search and retrieval system called Entrez. A core Entrez database, Entrez Nucleotide, includes GenBank and is tightly linked to the NCBI Taxonomy database, the Entrez Protein database, and the scientific literature in PubMed. A suite of more specialized databases for genomes, genes, gene families, gene expression, gene variation, and protein domains dovetails with the core databases to make Entrez a powerful system for genomic research. Linked to the full range of Entrez databases is the NCBI Map Viewer, which displays aligned genetic, physical, and sequence maps for eukaryotic genomes including those of many plants. A specialized plant query page allow maps from all plant genomes covered by the Map Viewer to be searched in tandem to produce a display of aligned maps from several species. PlantBLAST searches against the sequences shown in the Map Viewer allow BLAST alignments to be viewed within a genomic context. In addition, precomputed sequence similarities, such as those for proteins offered by BLAST Link, enable fluid navigation from unannotated to annotated sequences, quickening the pace of discovery. NCBI Web pages for plants, such as Plant Genome Central, complete the system by providing centralized access to NCBI's genomic resources as well as links to organism-specific Web pages beyond NCBI. PMID:16010002
Infrastructure for the life sciences: design and implementation of the UniProt website.
Jain, Eric; Bairoch, Amos; Duvaud, Severine; Phan, Isabelle; Redaschi, Nicole; Suzek, Baris E; Martin, Maria J; McGarvey, Peter; Gasteiger, Elisabeth
2009-05-08
The UniProt consortium was formed in 2002 by groups from the Swiss Institute of Bioinformatics (SIB), the European Bioinformatics Institute (EBI) and the Protein Information Resource (PIR) at Georgetown University, and soon afterwards the website http://www.uniprot.org was set up as a central entry point to UniProt resources. Requests to this address were redirected to one of the three organisations' websites. While these sites shared a set of static pages with general information about UniProt, their pages for searching and viewing data were different. To provide users with a consistent view and to cut the cost of maintaining three separate sites, the consortium decided to develop a common website for UniProt. Following several years of intense development and a year of public beta testing, the http://www.uniprot.org domain was switched to the newly developed site described in this paper in July 2008. The UniProt consortium is the main provider of protein sequence and annotation data for much of the life sciences community. The http://www.uniprot.org website is the primary access point to this data and to documentation and basic tools for the data. These tools include full text and field-based text search, similarity search, multiple sequence alignment, batch retrieval and database identifier mapping. This paper discusses the design and implementation of the new website, which was released in July 2008, and shows how it improves data access for users with different levels of experience, as well as to machines for programmatic access.http://www.uniprot.org/ is open for both academic and commercial use. The site was built with open source tools and libraries. Feedback is very welcome and should be sent to help@uniprot.org. The new UniProt website makes accessing and understanding UniProt easier than ever. The two main lessons learned are that getting the basics right for such a data provider website has huge benefits, but is not trivial and easy to underestimate, and that there is no substitute for using empirical data throughout the development process to decide on what is and what is not working for your users.
Simulation-based comprehensive benchmarking of RNA-seq aligners
Baruzzo, Giacomo; Hayer, Katharina E; Kim, Eun Ji; Di Camillo, Barbara; FitzGerald, Garret A; Grant, Gregory R
2018-01-01
Alignment is the first step in most RNA-seq analysis pipelines, and the accuracy of downstream analyses depends heavily on it. Unlike most steps in the pipeline, alignment is particularly amenable to benchmarking with simulated data. We performed a comprehensive benchmarking of 14 common splice-aware aligners for base, read, and exon junction-level accuracy and compared default with optimized parameters. We found that performance varied by genome complexity, and accuracy and popularity were poorly correlated. The most widely cited tool underperforms for most metrics, particularly when using default settings. PMID:27941783
Local alignment of two-base encoded DNA sequence
Homer, Nils; Merriman, Barry; Nelson, Stanley F
2009-01-01
Background DNA sequence comparison is based on optimal local alignment of two sequences using a similarity score. However, some new DNA sequencing technologies do not directly measure the base sequence, but rather an encoded form, such as the two-base encoding considered here. In order to compare such data to a reference sequence, the data must be decoded into sequence. The decoding is deterministic, but the possibility of measurement errors requires searching among all possible error modes and resulting alignments to achieve an optimal balance of fewer errors versus greater sequence similarity. Results We present an extension of the standard dynamic programming method for local alignment, which simultaneously decodes the data and performs the alignment, maximizing a similarity score based on a weighted combination of errors and edits, and allowing an affine gap penalty. We also present simulations that demonstrate the performance characteristics of our two base encoded alignment method and contrast those with standard DNA sequence alignment under the same conditions. Conclusion The new local alignment algorithm for two-base encoded data has substantial power to properly detect and correct measurement errors while identifying underlying sequence variants, and facilitating genome re-sequencing efforts based on this form of sequence data. PMID:19508732
Ibarra, Ignacio L; Melo, Francisco
2010-07-01
Dynamic programming (DP) is a general optimization strategy that is successfully used across various disciplines of science. In bioinformatics, it is widely applied in calculating the optimal alignment between pairs of protein or DNA sequences. These alignments form the basis of new, verifiable biological hypothesis. Despite its importance, there are no interactive tools available for training and education on understanding the DP algorithm. Here, we introduce an interactive computer application with a graphical interface, for the purpose of educating students about DP. The program displays the DP scoring matrix and the resulting optimal alignment(s), while allowing the user to modify key parameters such as the values in the similarity matrix, the sequence alignment algorithm version and the gap opening/extension penalties. We hope that this software will be useful to teachers and students of bioinformatics courses, as well as researchers who implement the DP algorithm for diverse applications. The software is freely available at: http:/melolab.org/sat. The software is written in the Java computer language, thus it runs on all major platforms and operating systems including Windows, Mac OS X and LINUX. All inquiries or comments about this software should be directed to Francisco Melo at fmelo@bio.puc.cl.
Identification and analysis of multigene families by comparison of exon fingerprints.
Brown, N P; Whittaker, A J; Newell, W R; Rawlings, C J; Beck, S
1995-06-02
Gene families are often recognised by sequence homology using similarity searching to find relationships, however, genomic sequence data provides gene architectural information not used by conventional search methods. In particular, intron positions and phases are expected to be relatively conserved features, because mis-splicing and reading frame shifts should be selected against. A fast search technique capable of detecting possible weak sequence homologies apparent at the intron/exon level of gene organization is presented for comparing spliceosomal genes and gene fragments. FINEX compares strings of exons delimited by intron/exon boundary positions and intron phases (exon fingerprint) using a global dynamic programming algorithm with a combined intron phase identity and exon size dissimilarity score. Exon fingerprints are typically two orders of magnitude smaller than their nucleic acid sequence counterparts giving rise to fast search times: a ranked search against a library of 6755 fingerprints for a typical three exon fingerprint completes in under 30 seconds on an ordinary workstation, while a worst case largest fingerprint of 52 exons completes in just over one minute. The short "sequence" length of exon fingerprints in comparisons is compensated for by the large exon alphabet compounded of intron phase types and a wide range of exon sizes, the latter contributing the most information to alignments. FINEX performs better in some searches than conventional methods, finding matches with similar exon organization, but low sequence homology. A search using a human serum albumin finds all members of the multigene family in the FINEX database at the top of the search ranking, despite very low amino acid percentage identities between family members. The method should complement conventional sequence searching and alignment techniques, offering a means of identifying otherwise hard to detect homologies where genomic data are available.
FoldMiner and LOCK 2: protein structure comparison and motif discovery on the web.
Shapiro, Jessica; Brutlag, Douglas
2004-07-01
The FoldMiner web server (http://foldminer.stanford.edu/) provides remote access to methods for protein structure alignment and unsupervised motif discovery. FoldMiner is unique among such algorithms in that it improves both the motif definition and the sensitivity of a structural similarity search by combining the search and motif discovery methods and using information from each process to enhance the other. In a typical run, a query structure is aligned to all structures in one of several databases of single domain targets in order to identify its structural neighbors and to discover a motif that is the basis for the similarity among the query and statistically significant targets. This process is fully automated, but options for manual refinement of the results are available as well. The server uses the Chime plugin and customized controls to allow for visualization of the motif and of structural superpositions. In addition, we provide an interface to the LOCK 2 algorithm for rapid alignments of a query structure to smaller numbers of user-specified targets.
Fourment, Mathieu; Gibbs, Mark J
2008-02-05
Viruses of the Bunyaviridae have segmented negative-stranded RNA genomes and several of them cause significant disease. Many partial sequences have been obtained from the segments so that GenBank searches give complex results. Sequence databases usually use HTML pages to mediate remote sorting, but this approach can be limiting and may discourage a user from exploring a database. The VirusBanker database contains Bunyaviridae sequences and alignments and is presented as two spreadsheets generated by a Java program that interacts with a MySQL database on a server. Sequences are displayed in rows and may be sorted using information that is displayed in columns and includes data relating to the segment, gene, protein, species, strain, sequence length, terminal sequence and date and country of isolation. Bunyaviridae sequences and alignments may be downloaded from the second spreadsheet with titles defined by the user from the columns, or viewed when passed directly to the sequence editor, Jalview. VirusBanker allows large datasets of aligned nucleotide and protein sequences from the Bunyaviridae to be compiled and winnowed rapidly using criteria that are formulated heuristically.
Mitigation of Angle Tracking Errors Due to Color Dependent Centroid Shifts in SIM-Lite
NASA Technical Reports Server (NTRS)
Nemati, Bijan; An, Xin; Goullioud, Renaud; Shao, Michael; Shen, Tsae-Pyng; Wehmeier, Udo J.; Weilert, Mark A.; Wang, Xu; Werne, Thomas A.; Wu, Janet P.;
2010-01-01
The SIM-Lite astrometric interferometer will search for Earth-size planets in the habitable zones of nearby stars. In this search the interferometer will monitor the astrometric position of candidate stars relative to nearby reference stars over the course of a 5 year mission. The elemental measurement is the angle between a target star and a reference star. This is a two-step process, in which the interferometer will each time need to use its controllable optics to align the starlight in the two arms with each other and with the metrology beams. The sensor for this alignment is an angle tracking CCD camera. Various constraints in the design of the camera subject it to systematic alignment errors when observing a star of one spectrum compared with a start of a different spectrum. This effect is called a Color Dependent Centroid Shift (CDCS) and has been studied extensively with SIM-Lite's SCDU testbed. Here we describe results from the simulation and testing of this error in the SCDU testbed, as well as effective ways that it can be reduced to acceptable levels.
Improving e-book access via a library-developed full-text search tool.
Foust, Jill E; Bergen, Phillip; Maxeiner, Gretchen L; Pawlowski, Peter N
2007-01-01
This paper reports on the development of a tool for searching the contents of licensed full-text electronic book (e-book) collections. The Health Sciences Library System (HSLS) provides services to the University of Pittsburgh's medical programs and large academic health system. The HSLS has developed an innovative tool for federated searching of its e-book collections. Built using the XML-based Vivísimo development environment, the tool enables a user to perform a full-text search of over 2,500 titles from the library's seven most highly used e-book collections. From a single "Google-style" query, results are returned as an integrated set of links pointing directly to relevant sections of the full text. Results are also grouped into categories that enable more precise retrieval without reformulation of the search. A heuristic evaluation demonstrated the usability of the tool and a web server log analysis indicated an acceptable level of usage. Based on its success, there are plans to increase the number of online book collections searched. This library's first foray into federated searching has produced an effective tool for searching across large collections of full-text e-books and has provided a good foundation for the development of other library-based federated searching products.
Improving e-book access via a library-developed full-text search tool*
Foust, Jill E.; Bergen, Phillip; Maxeiner, Gretchen L.; Pawlowski, Peter N.
2007-01-01
Purpose: This paper reports on the development of a tool for searching the contents of licensed full-text electronic book (e-book) collections. Setting: The Health Sciences Library System (HSLS) provides services to the University of Pittsburgh's medical programs and large academic health system. Brief Description: The HSLS has developed an innovative tool for federated searching of its e-book collections. Built using the XML-based Vivísimo development environment, the tool enables a user to perform a full-text search of over 2,500 titles from the library's seven most highly used e-book collections. From a single “Google-style” query, results are returned as an integrated set of links pointing directly to relevant sections of the full text. Results are also grouped into categories that enable more precise retrieval without reformulation of the search. Results/Evaluation: A heuristic evaluation demonstrated the usability of the tool and a web server log analysis indicated an acceptable level of usage. Based on its success, there are plans to increase the number of online book collections searched. Conclusion: This library's first foray into federated searching has produced an effective tool for searching across large collections of full-text e-books and has provided a good foundation for the development of other library-based federated searching products. PMID:17252065
Accuracy of Binary Black Hole waveforms for Advanced LIGO searches
NASA Astrophysics Data System (ADS)
Kumar, Prayush; Barkett, Kevin; Bhagwat, Swetha; Chu, Tony; Fong, Heather; Brown, Duncan; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela
2015-04-01
Coalescing binaries of compact objects are flagship sources for the first direct detection of gravitational waves with LIGO-Virgo observatories. Matched-filtering based detection searches aimed at binaries of black holes will use aligned spin waveforms as filters, and their efficiency hinges on the accuracy of the underlying waveform models. A number of gravitational waveform models are available in literature, e.g. the Effective-One-Body, Phenomenological, and traditional post-Newtonian ones. While Numerical Relativity (NR) simulations provide for the most accurate modeling of gravitational radiation from compact binaries, their computational cost limits their application in large scale searches. In this talk we assess the accuracy of waveform models in two regions of parameter space, which have only been explored cursorily in the past: the high mass-ratio regime as well as the comparable mass-ratio + high spin regime.s Using the SpEC code, six q = 7 simulations with aligned-spins and lasting 60 orbits, and tens of q ∈ [1,3] simulations with high black hole spins were performed. We use them to study the accuracy and intrinsic parameter biases of different waveform families, and assess their viability for Advanced LIGO searches.
Protein structure database search and evolutionary classification.
Yang, Jinn-Moon; Tung, Chi-Hua
2006-01-01
As more protein structures become available and structural genomics efforts provide structural models in a genome-wide strategy, there is a growing need for fast and accurate methods for discovering homologous proteins and evolutionary classifications of newly determined structures. We have developed 3D-BLAST, in part, to address these issues. 3D-BLAST is as fast as BLAST and calculates the statistical significance (E-value) of an alignment to indicate the reliability of the prediction. Using this method, we first identified 23 states of the structural alphabet that represent pattern profiles of the backbone fragments and then used them to represent protein structure databases as structural alphabet sequence databases (SADB). Our method enhanced BLAST as a search method, using a new structural alphabet substitution matrix (SASM) to find the longest common substructures with high-scoring structured segment pairs from an SADB database. Using personal computers with Intel Pentium4 (2.8 GHz) processors, our method searched more than 10 000 protein structures in 1.3 s and achieved a good agreement with search results from detailed structure alignment methods. [3D-BLAST is available at http://3d-blast.life.nctu.edu.tw].
An intuitive graphical webserver for multiple-choice protein sequence search.
Banky, Daniel; Szalkai, Balazs; Grolmusz, Vince
2014-04-10
Every day tens of thousands of sequence searches and sequence alignment queries are submitted to webservers. The capitalized word "BLAST" becomes a verb, describing the act of performing sequence search and alignment. However, if one needs to search for sequences that contain, for example, two hydrophobic and three polar residues at five given positions, the query formation on the most frequently used webservers will be difficult. Some servers support the formation of queries with regular expressions, but most of the users are unfamiliar with their syntax. Here we present an intuitive, easily applicable webserver, the Protein Sequence Analysis server, that allows the formation of multiple choice queries by simply drawing the residues to their positions; if more than one residue are drawn to the same position, then they will be nicely stacked on the user interface, indicating the multiple choice at the given position. This computer-game-like interface is natural and intuitive, and the coloring of the residues makes possible to form queries requiring not just certain amino acids in the given positions, but also small nonpolar, negatively charged, hydrophobic, positively charged, or polar ones. The webserver is available at http://psa.pitgroup.org. Copyright © 2014 Elsevier B.V. All rights reserved.
Initial Navigation Alignment of Optical Instruments on GOES-R
NASA Technical Reports Server (NTRS)
Isaacson, Peter J.; DeLuccia, Frank J.; Reth, Alan D.; Igli, David A.; Carter, Delano R.
2016-01-01
Post-launch alignment errors for the Advanced Baseline Imager (ABI) and Geospatial Lightning Mapper (GLM) on GOES-R may be too large for the image navigation and registration (INR) processing algorithms to function without an initial adjustment to calibration parameters. We present an approach that leverages a combination of user-selected image-to-image tie points and image correlation algorithms to estimate this initial launch-induced offset and calculate adjustments to the Line of Sight Motion Compensation (LMC) parameters. We also present an approach to generate synthetic test images, to which shifts and rotations of known magnitude are applied. Results of applying the initial alignment tools to a subset of these synthetic test images are presented. The results for both ABI and GLM are within the specifications established for these tools, and indicate that application of these tools during the post-launch test (PLT) phase of GOES-R operations will enable the automated INR algorithms for both instruments to function as intended.
ChromA: signal-based retention time alignment for chromatography-mass spectrometry data.
Hoffmann, Nils; Stoye, Jens
2009-08-15
We describe ChromA, a web-based alignment tool for chromatography-mass spectrometry data from the metabolomics and proteomics domains. Users can supply their data in open and standardized file formats for retention time alignment using dynamic time warping with different configurable local distance and similarity functions. Additionally, user-defined anchors can be used to constrain and speedup the alignment. A neighborhood around each anchor can be added to increase the flexibility of the constrained alignment. ChromA offers different visualizations of the alignment for easier qualitative interpretation and comparison of the data. For the multiple alignment of more than two data files, the center-star approximation is applied to select a reference among input files to align to. ChromA is available at http://bibiserv.techfak.uni-bielefeld.de/chroma. Executables and source code under the L-GPL v3 license are provided for download at the same location.
iPARTS2: an improved tool for pairwise alignment of RNA tertiary structures, version 2.
Yang, Chung-Han; Shih, Cheng-Ting; Chen, Kun-Tze; Lee, Po-Han; Tsai, Ping-Han; Lin, Jian-Cheng; Yen, Ching-Yu; Lin, Tiao-Yin; Lu, Chin Lung
2016-07-08
Since its first release in 2010, iPARTS has become a valuable tool for globally or locally aligning two RNA 3D structures. It was implemented by a structural alphabet (SA)-based approach, which uses an SA of 23 letters to reduce RNA 3D structures into 1D sequences of SA letters and applies traditional sequence alignment to these SA-encoded sequences for determining their global or local similarity. In this version, we have re-implemented iPARTS into a new web server iPARTS2 by constructing a totally new SA, which consists of 92 elements with each carrying both information of base and backbone geometry for a representative nucleotide. This SA is significantly different from the one used in iPARTS, because the latter consists of only 23 elements with each carrying only the backbone geometry information of a representative nucleotide. Our experimental results have shown that iPARTS2 outperforms its previous version iPARTS and also achieves better accuracy than other popular tools, such as SARA, SETTER and RASS, in RNA alignment quality and function prediction. iPARTS2 takes as input two RNA 3D structures in the PDB format and outputs their global or local alignments with graphical display. iPARTS2 is now available online at http://genome.cs.nthu.edu.tw/iPARTS2/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Detecting false positive sequence homology: a machine learning approach.
Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Bybee, Seth M
2016-02-24
Accurate detection of homologous relationships of biological sequences (DNA or amino acid) amongst organisms is an important and often difficult task that is essential to various evolutionary studies, ranging from building phylogenies to predicting functional gene annotations. There are many existing heuristic tools, most commonly based on bidirectional BLAST searches that are used to identify homologous genes and combine them into two fundamentally distinct classes: orthologs and paralogs. Due to only using heuristic filtering based on significance score cutoffs and having no cluster post-processing tools available, these methods can often produce multiple clusters constituting unrelated (non-homologous) sequences. Therefore sequencing data extracted from incomplete genome/transcriptome assemblies originated from low coverage sequencing or produced by de novo processes without a reference genome are susceptible to high false positive rates of homology detection. In this paper we develop biologically informative features that can be extracted from multiple sequence alignments of putative homologous genes (orthologs and paralogs) and further utilized in context of guided experimentation to verify false positive outcomes. We demonstrate that our machine learning method trained on both known homology clusters obtained from OrthoDB and randomly generated sequence alignments (non-homologs), successfully determines apparent false positives inferred by heuristic algorithms especially among proteomes recovered from low-coverage RNA-seq data. Almost ~42 % and ~25 % of predicted putative homologies by InParanoid and HaMStR respectively were classified as false positives on experimental data set. Our process increases the quality of output from other clustering algorithms by providing a novel post-processing method that is both fast and efficient at removing low quality clusters of putative homologous genes recovered by heuristic-based approaches.
Kuich, P. Henning J. L.; Hoffmann, Nils; Kempa, Stefan
2015-01-01
A current bottleneck in GC–MS metabolomics is the processing of raw machine data into a final datamatrix that contains the quantities of identified metabolites in each sample. While there are many bioinformatics tools available to aid the initial steps of the process, their use requires both significant technical expertise and a subsequent manual validation of identifications and alignments if high data quality is desired. The manual validation is tedious and time consuming, becoming prohibitively so as sample numbers increase. We have, therefore, developed Maui-VIA, a solution based on a visual interface that allows experts and non-experts to simultaneously and quickly process, inspect, and correct large numbers of GC–MS samples. It allows for the visual inspection of identifications and alignments, facilitating a unique and, due to its visualization and keyboard shortcuts, very fast interaction with the data. Therefore, Maui-Via fills an important niche by (1) providing functionality that optimizes the component of data processing that is currently most labor intensive to save time and (2) lowering the threshold of expertise required to process GC–MS data. Maui-VIA projects are initiated with baseline-corrected raw data, peaklists, and a database of metabolite spectra and retention indices used for identification. It provides functionality for retention index calculation, a targeted library search, the visual annotation, alignment, correction interface, and metabolite quantification, as well as the export of the final datamatrix. The high quality of data produced by Maui-VIA is illustrated by its comparison to data attained manually by an expert using vendor software on a previously published dataset concerning the response of Chlamydomonas reinhardtii to salt stress. In conclusion, Maui-VIA provides the opportunity for fast, confident, and high-quality data processing validation of large numbers of GC–MS samples by non-experts. PMID:25654076
Computer vision applications for coronagraphic optical alignment and image processing.
Savransky, Dmitry; Thomas, Sandrine J; Poyneer, Lisa A; Macintosh, Bruce A
2013-05-10
Modern coronagraphic systems require very precise alignment between optical components and can benefit greatly from automated image processing. We discuss three techniques commonly employed in the fields of computer vision and image analysis as applied to the Gemini Planet Imager, a new facility instrument for the Gemini South Observatory. We describe how feature extraction and clustering methods can be used to aid in automated system alignment tasks, and also present a search algorithm for finding regular features in science images used for calibration and data processing. Along with discussions of each technique, we present our specific implementation and show results of each one in operation.
In silico Analysis of 2085 Clones from a Normalized Rat Vestibular Periphery 3′ cDNA Library
Roche, Joseph P.; Cioffi, Joseph A.; Kwitek, Anne E.; Erbe, Christy B.; Popper, Paul
2005-01-01
The inserts from 2400 cDNA clones isolated from a normalized Rattus norvegicus vestibular periphery cDNA library were sequenced and characterized. The Wackym-Soares vestibular 3′ cDNA library was constructed from the saccular and utricular maculae, the ampullae of all three semicircular canals and Scarpa's ganglia containing the somata of the primary afferent neurons, microdissected from 104 male and female rats. The inserts from 2400 randomly selected clones were sequenced from the 5′ end. Each sequence was analyzed using the BLAST algorithm compared to the Genbank nonredundant, rat genome, mouse genome and human genome databases to search for high homology alignments. Of the initial 2400 clones, 315 (13%) were found to be of poor quality and did not yield useful information, and therefore were eliminated from the analysis. Of the remaining 2085 sequences, 918 (44%) were found to represent 758 unique genes having useful annotations that were identified in databases within the public domain or in the published literature; these sequences were designated as known characterized sequences. 1141 sequences (55%) aligned with 1011 unique sequences had no useful annotations and were designated as known but uncharacterized sequences. Of the remaining 26 sequences (1%), 24 aligned with rat genomic sequences, but none matched previously described rat expressed sequence tags or mRNAs. No significant alignment to the rat or human genomic sequences could be found for the remaining 2 sequences. Of the 2085 sequences analyzed, 86% were singletons. The known, characterized sequences were analyzed with the FatiGO online data-mining tool (http://fatigo.bioinfo.cnio.es/) to identify level 5 biological process gene ontology (GO) terms for each alignment and to group alignments with similar or identical GO terms. Numerous genes were identified that have not been previously shown to be expressed in the vestibular system. Further characterization of the novel cDNA sequences may lead to the identification of genes with vestibular-specific functions. Continued analysis of the rat vestibular periphery transcriptome should provide new insights into vestibular function and generate new hypotheses. Physiological studies are necessary to further elucidate the roles of the identified genes and novel sequences in vestibular function. PMID:16103642
Extracting and connecting chemical structures from text sources using chemicalize.org.
Southan, Christopher; Stracz, Andras
2013-04-23
Exploring bioactive chemistry requires navigating between structures and data from a variety of text-based sources. While PubChem currently includes approximately 16 million document-extracted structures (15 million from patents) the extent of public inter-document and document-to-database links is still well below any estimated total, especially for journal articles. A major expansion in access to text-entombed chemistry is enabled by chemicalize.org. This on-line resource can process IUPAC names, SMILES, InChI strings, CAS numbers and drug names from pasted text, PDFs or URLs to generate structures, calculate properties and launch searches. Here, we explore its utility for answering questions related to chemical structures in documents and where these overlap with database records. These aspects are illustrated using a common theme of Dipeptidyl Peptidase 4 (DPPIV) inhibitors. Full-text open URL sources facilitated the download of over 1400 structures from a DPPIV patent and the alignment of specific examples with IC50 data. Uploading the SMILES to PubChem revealed extensive linking to patents and papers, including prior submissions from chemicalize.org as submitting source. A DPPIV medicinal chemistry paper was completely extracted and structures were aligned to the activity results table, as well as linked to other documents via PubChem. In both cases, key structures with data were partitioned from common chemistry by dividing them into individual new PDFs for conversion. Over 500 structures were also extracted from a batch of PubMed abstracts related to DPPIV inhibition. The drug structures could be stepped through each text occurrence and included some converted MeSH-only IUPAC names not linked in PubChem. Performing set intersections proved effective for detecting compounds-in-common between documents and merged extractions. This work demonstrates the utility of chemicalize.org for the exploration of chemical structure connectivity between documents and databases, including structure searches in PubChem, InChIKey searches in Google and the chemicalize.org archive. It has the flexibility to extract text from any internal, external or Web source. It synergizes with other open tools and the application is undergoing continued development. It should thus facilitate progress in medicinal chemistry, chemical biology and other bioactive chemistry domains.
Lenis, Vasileios Panagiotis E; Swain, Martin; Larkin, Denis M
2018-05-01
Cross-species whole-genome sequence alignment is a critical first step for genome comparative analyses, ranging from the detection of sequence variants to studies of chromosome evolution. Animal genomes are large and complex, and whole-genome alignment is a computationally intense process, requiring expensive high-performance computing systems due to the need to explore extensive local alignments. With hundreds of sequenced animal genomes available from multiple projects, there is an increasing demand for genome comparative analyses. Here, we introduce G-Anchor, a new, fast, and efficient pipeline that uses a strictly limited but highly effective set of local sequence alignments to anchor (or map) an animal genome to another species' reference genome. G-Anchor makes novel use of a databank of highly conserved DNA sequence elements. We demonstrate how these elements may be aligned to a pair of genomes, creating anchors. These anchors enable the rapid mapping of scaffolds from a de novo assembled genome to chromosome assemblies of a reference species. Our results demonstrate that G-Anchor can successfully anchor a vertebrate genome onto a phylogenetically related reference species genome using a desktop or laptop computer within a few hours and with comparable accuracy to that achieved by a highly accurate whole-genome alignment tool such as LASTZ. G-Anchor thus makes whole-genome comparisons accessible to researchers with limited computational resources. G-Anchor is a ready-to-use tool for anchoring a pair of vertebrate genomes. It may be used with large genomes that contain a significant fraction of evolutionally conserved DNA sequences and that are not highly repetitive, polypoid, or excessively fragmented. G-Anchor is not a substitute for whole-genome aligning software but can be used for fast and accurate initial genome comparisons. G-Anchor is freely available and a ready-to-use tool for the pairwise comparison of two genomes.
Gorenflo, Grace G; Klater, David M; Mason, Marlene; Russo, Pamela; Rivera, Lillian
2014-01-01
The nationally known Malcolm Baldrige Award for Excellence ("Baldrige program") recognizes outstanding performance management and is specifically cited by the Public Health Accreditation Board (PHAB) as a potential framework for PHAB's requisite performance management system. The authors developed a crosswalk that identifies alignments between the 2 programs and is a highlight of the Quest for Exceptional Performance tool that is intended to help health departments capitalize on the connections between the 2 programs. To provide deeper insight into the most robust connections between the 2 programs. The authors developed a crosswalk by listing the PHAB measures, identifying corresponding Baldrige areas to address, and assigning a rating regarding the strength of the alignment. Subsequently, they generated a matrix with numerical scores reflecting the strength of the PHAB-Baldrige alignments that were then analyzed for frequency and strength of alignment by PHAB domain and by Baldrige category. The tool developers and 3 public health leaders with experience in the Baldrige program contributed to both the design and the analyses. The measures used reflected both the frequency and strength of alignments. Of the 123 alignments identified in the crosswalk, 39 were rated as high, 40 as medium, and 44 as low. The strongest connections were in the areas of performance management, quality improvement, strategic planning, workforce development, assessment and analysis, and customer service. While the areas with the most frequent and strongest connections provide the most useful basis for health departments pursuing Baldrige recognition or using Baldrige criteria as a framework for performance management, all alignments could be considered for both purposes.
Al-Qurainy, F; Khan, S; Nadeem, M; Tarroum, M; Alaklabi, A
2013-03-11
The rare and endangered plants of any country are important genetic resources that often require urgent conservation measures. Assessment of phylogenetic relationships and evaluation of genetic diversity is very important prior to implementation of conservation strategies for saving rare and endangered plant species. We used internal transcribed spacer sequences of nuclear ribosomal DNA for the evaluation of sequence identity from the available taxa in the GenBank database by using the Basic Local Alignment Search Tool (BLAST). Two rare plant species viz, Heliotropium strigosum claded with H. pilosum (98% branch support) and Pancratium tortuosum claded with P. tenuifolium (61% branch support) clearly. However, some species, viz Scadoxus multiflorus, Commiphora myrrha and Senecio hadiensis showed close relationships with more than one species. We conclude that nuclear ribosomal internal transcribed spacer sequences are useful markers for phylogenetic study of these rare plant species in Saudi Arabia.
NASA Astrophysics Data System (ADS)
Elangovan, Dharshini; Kamaruddin, Shazilah; Hashim, Noor Haza Fazlin; Bakar, Farah Diba Abu; Murad, Abd. Munir Abd.; Mahadi, Nor Muhammad; Allman, Sarah Ann; Mackeen, Mukram Mohamed
2016-11-01
The controlled synthesis of oligosaccharides is of growing interest due to the important roles of oligosaccharides in various biological processes. Enzymatic synthesis enables regio- and stereo-selective control during synthesis which still remains a challenge using total chemical synthesis. In this study, endoplasmic reticulum 1,2-α-mannosidase from Glaciozyma antractica was recombinantly expressed in Pichia pastoris. The gene sequence for ER mannosidase was obtained from the Glaciozyma antractica database. The BLAST (Basic Local Alignment Search Tool) results from bioinformatics screening showed that ER mannosidase had 41 % identity with the equivalent mannosidases from Sacchromyces cerevesiae. ER mannosidase from G. antartica was then cloned into the pPICZαC expression vector and used to transform in the host Pichia pastoris X33 cells. The ER mannosidase (MW˜58 kDa) was successfully expressed at 25 °C with 1.0 % methanol induction.
Automated design of degenerate codon libraries.
Mena, Marco A; Daugherty, Patrick S
2005-12-01
Degenerate codon libraries are frequently used in protein engineering and evolution studies but are often limited to targeting a small number of positions to adequately limit the search space. To mitigate this, codon degeneracy can be limited using heuristics or previous knowledge of the targeted positions. To automate design of libraries given a set of amino acid sequences, an algorithm (LibDesign) was developed that generates a set of possible degenerate codon libraries, their resulting size, and their score relative to a user-defined scoring function. A gene library of a specified size can then be constructed that is representative of the given amino acid distribution or that includes specific sequences or combinations thereof. LibDesign provides a new tool for automated design of high-quality protein libraries that more effectively harness existing sequence-structure information derived from multiple sequence alignment or computational protein design data.
Elusive treatment for human rhinosporidiosis.
Janardhanan, Jeshina; Patole, Shalom; Varghese, Lalee; Rupa, V; Tirkey, Amit Jiwan; Varghese, George M
2016-07-01
The aim of this study was to clarify the contentious taxonomic classification of Rhinosporidium seeberi, the cause of human rhinosporidiosis, which may have treatment implications. PCR was used to amplify the internal transcribed spacer (ITS)-2 region from the genomic DNA of the aetiological agent obtained from a sample of human rhinosporidiosis lesions. The amplicon was sequenced and the organism identified using the Basic Local Alignment Search Tools (BLAST). Phylogenetic analysis revealed that the aetiological agent clustered along with the R. seeberi isolated from humans and also with Amphibiocystidium ranae from frogs. This organism is a member of the order Dermocystida in the class Mesomycetozoea. A patient with disseminated rhinosporidiosis did not respond to conventional therapy with dapsone and surgical excision, and treatment with amphotericin B also proved futile. An effective treatment for R. seeberi-a eukaryote belonging to the class Mesomycetozoea-is still elusive. Copyright © 2016. Published by Elsevier Ltd.
Data on the genome-wide identification of CNL R-genes in Setaria italica (L.) P. Beauv.
Andersen, Ethan J; Nepal, Madhav P
2017-08-01
We report data associated with the identification of 242 disease resistance genes (R-genes) in the genome of Setaria italica as presented in "Genetic diversity of disease resistance genes in foxtail millet ( Setaria italica L.)" (Andersen and Nepal, 2017) [1]. Our data describe the structure and evolution of the Coiled-coil, Nucleotide-binding site, Leucine-rich repeat (CNL) R-genes in foxtail millet. The CNL genes were identified through rigorous extraction and analysis of recently available plant genome sequences using cutting-edge analytical software. Data visualization includes gene structure diagrams, chromosomal syntenic maps, a chromosomal density plot, and a maximum-likelihood phylogenetic tree comparing Sorghum bicolor , Panicum virgatum , Setaria italica , and Arabidopsis thaliana . Compilation of InterProScan annotations, Gene Ontology (GO) annotations, and Basic Local Alignment Search Tool (BLAST) results for the 242 R-genes identified in the foxtail millet genome are also included in tabular format.
SNPServer: a real-time SNP discovery tool.
Savage, David; Batley, Jacqueline; Erwin, Tim; Logan, Erica; Love, Christopher G; Lim, Geraldine A C; Mongin, Emmanuel; Barker, Gary; Spangenberg, German C; Edwards, David
2005-07-01
SNPServer is a real-time flexible tool for the discovery of SNPs (single nucleotide polymorphisms) within DNA sequence data. The program uses BLAST, to identify related sequences, and CAP3, to cluster and align these sequences. The alignments are parsed to the SNP discovery software autoSNP, a program that detects SNPs and insertion/deletion polymorphisms (indels). Alternatively, lists of related sequences or pre-assembled sequences may be entered for SNP discovery. SNPServer and autoSNP use redundancy to differentiate between candidate SNPs and sequence errors. For each candidate SNP, two measures of confidence are calculated, the redundancy of the polymorphism at a SNP locus and the co-segregation of the candidate SNP with other SNPs in the alignment. SNPServer is available at http://hornbill.cspp.latrobe.edu.au/snpdiscovery.html.
Evidence-based Medicine Search: a customizable federated search engine.
Bracke, Paul J; Howse, David K; Keim, Samuel M
2008-04-01
This paper reports on the development of a tool by the Arizona Health Sciences Library (AHSL) for searching clinical evidence that can be customized for different user groups. The AHSL provides services to the University of Arizona's (UA's) health sciences programs and to the University Medical Center. Librarians at AHSL collaborated with UA College of Medicine faculty to create an innovative search engine, Evidence-based Medicine (EBM) Search, that provides users with a simple search interface to EBM resources and presents results organized according to an evidence pyramid. EBM Search was developed with a web-based configuration component that allows the tool to be customized for different specialties. Informal and anecdotal feedback from physicians indicates that EBM Search is a useful tool with potential in teaching evidence-based decision making. While formal evaluation is still being planned, a tool such as EBM Search, which can be configured for specific user populations, may help lower barriers to information resources in an academic health sciences center.
Evidence-based Medicine Search: a customizable federated search engine
Bracke, Paul J.; Howse, David K.; Keim, Samuel M.
2008-01-01
Purpose: This paper reports on the development of a tool by the Arizona Health Sciences Library (AHSL) for searching clinical evidence that can be customized for different user groups. Brief Description: The AHSL provides services to the University of Arizona's (UA's) health sciences programs and to the University Medical Center. Librarians at AHSL collaborated with UA College of Medicine faculty to create an innovative search engine, Evidence-based Medicine (EBM) Search, that provides users with a simple search interface to EBM resources and presents results organized according to an evidence pyramid. EBM Search was developed with a web-based configuration component that allows the tool to be customized for different specialties. Outcomes/Conclusion: Informal and anecdotal feedback from physicians indicates that EBM Search is a useful tool with potential in teaching evidence-based decision making. While formal evaluation is still being planned, a tool such as EBM Search, which can be configured for specific user populations, may help lower barriers to information resources in an academic health sciences center. PMID:18379665
Massive ordering and alignment of cylindrical micro-objects by photovoltaic optoelectronic tweezers.
Elvira, Iris; Muñoz-Martínez, Juan F; Barroso, Álvaro; Denz, Cornelia; Ramiro, José B; García-Cabañes, Angel; Agulló-López, Fernando; Carrascosa, Mercedes
2018-01-01
Optical tools for manipulation and trapping of micro- and nano-objects are a fundamental issue for many applications in nano- and biotechnology. This work reports on the use of one such method, known as photovoltaic optoelectronics tweezers, to orientate and organize cylindrical microcrystals, specifically elongated zeolite L, on the surface of Fe-doped LiNbO 3 crystal plates. Patterns of aligned zeolites have been achieved through the forces and torques generated by the bulk photovoltaic effect. The alignment patterns with zeolites parallel or perpendicular to the substrate surface are highly dependent on the features of light distribution and crystal configuration. Moreover, dielectrophoretic chains of zeolites with lengths up to 100 μm have often been observed. The experimental results of zeolite trapping and alignment have been discussed and compared together with theoretical simulations of the evanescent photovoltaic electric field and the dielectrophoretic potential. They demonstrate the remarkable capabilities of the optoelectronic photovoltaic method to orientate and pattern anisotropic microcrystals. The combined action of patterning and alignment offers a unique tool to prepare functional nanostructures with potential applications in a variety of fields such as nonlinear optics or plasmonics.
Wave drag reduction due to a self-aligning aerodisk
NASA Astrophysics Data System (ADS)
Schnepf, Ch.; Wysocki, O.; Schülein, E.
2015-06-01
The effect of a self-aligning aerodisk on the wave drag of a blunt slender body in a pitching maneuver has been numerically investigated. The self-alignment was realized by a coupling of the flow solver and a flight mechanics tool. The slender body was pitched with high repetition rate between α = 0° and 20° at M = 1.41. Even at high α, the concept could align the aerodisk to the oncoming flow. In comparison to the reference body without a self-aligning aerodisk, a distinct drag reduction is achieved. A comparison with existing experimental data shows a qualitatively good agreement considering the shock and separation structure and the kinematics of the aerodisk.
A Fast, Minimalist Search Tool for Remote Sensing Data
NASA Astrophysics Data System (ADS)
Lynnes, C. S.; Macharrie, P. G.; Elkins, M.; Joshi, T.; Fenichel, L. H.
2005-12-01
We present a tool that emphasizes speed and simplicity in searching remotely sensed Earth Science data. The tool, nicknamed "Mirador" (Spanish for a scenic overlook), provides only four freetext search form fields, for Keywords, Location, Data Start and Data Stop. This contrasts with many current Earth Science search tools that offer highly structured interfaces in order to ensure precise, non-zero results. The disadvantages of the structured approach lie in its complexity and resultant learning curve, as well as the time it takes to formulate and execute the search, thus discouraging iterative discovery. On the other hand, the success of the basic Google search interface shows that many users are willing to forgo high search precision if the search process is fast enough to enable rapid iteration. Therefore, we employ several methods to increase the speed of search formulation and execution. Search formulation is expedited by the minimalist search form, with only one required field. Also, a gazetteer enables the use of geographic terms as shorthand for latitude/longitude coordinates. The search execution is accelerated by initially presenting dataset results (returned from a Google Mini appliance) with an estimated number of "hits" for each dataset based on the user's space-time constraints. The more costly file-level search is executed against a PostGres database only when the user "drills down", and then covering only the fraction of the time period needed to return the next page of results. The simplicity of the search form makes the tool easy to learn and use, and the speed of the searches enables an iterative form of data discovery.
Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, Shahin; Gleich, David F.; Kolda, Tamara G.
2015-11-01
Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangularmore » AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.« less
Unified Alignment of Protein-Protein Interaction Networks.
Malod-Dognin, Noël; Ban, Kristina; Pržulj, Nataša
2017-04-19
Paralleling the increasing availability of protein-protein interaction (PPI) network data, several network alignment methods have been proposed. Network alignments have been used to uncover functionally conserved network parts and to transfer annotations. However, due to the computational intractability of the network alignment problem, aligners are heuristics providing divergent solutions and no consensus exists on a gold standard, or which scoring scheme should be used to evaluate them. We comprehensively evaluate the alignment scoring schemes and global network aligners on large scale PPI data and observe that three methods, HUBALIGN, L-GRAAL and NATALIE, regularly produce the most topologically and biologically coherent alignments. We study the collective behaviour of network aligners and observe that PPI networks are almost entirely aligned with a handful of aligners that we unify into a new tool, Ulign. Ulign enables complete alignment of two networks, which traditional global and local aligners fail to do. Also, multiple mappings of Ulign define biologically relevant soft clusterings of proteins in PPI networks, which may be used for refining the transfer of annotations across networks. Hence, PPI networks are already well investigated by current aligners, so to gain additional biological insights, a paradigm shift is needed. We propose such a shift come from aligning all available data types collectively rather than any particular data type in isolation from others.
AlignMe—a membrane protein sequence alignment web server
Stamm, Marcus; Staritzbichler, René; Khafizov, Kamil; Forrest, Lucy R.
2014-01-01
We present a web server for pair-wise alignment of membrane protein sequences, using the program AlignMe. The server makes available two operational modes of AlignMe: (i) sequence to sequence alignment, taking two sequences in fasta format as input, combining information about each sequence from multiple sources and producing a pair-wise alignment (PW mode); and (ii) alignment of two multiple sequence alignments to create family-averaged hydropathy profile alignments (HP mode). For the PW sequence alignment mode, four different optimized parameter sets are provided, each suited to pairs of sequences with a specific similarity level. These settings utilize different types of inputs: (position-specific) substitution matrices, secondary structure predictions and transmembrane propensities from transmembrane predictions or hydrophobicity scales. In the second (HP) mode, each input multiple sequence alignment is converted into a hydrophobicity profile averaged over the provided set of sequence homologs; the two profiles are then aligned. The HP mode enables qualitative comparison of transmembrane topologies (and therefore potentially of 3D folds) of two membrane proteins, which can be useful if the proteins have low sequence similarity. In summary, the AlignMe web server provides user-friendly access to a set of tools for analysis and comparison of membrane protein sequences. Access is available at http://www.bioinfo.mpg.de/AlignMe PMID:24753425
Palmblad, Magnus; van der Burgt, Yuri E M; Dalebout, Hans; Derks, Rico J E; Schoenmaker, Bart; Deelder, André M
2009-05-02
Accurate mass determination enhances peptide identification in mass spectrometry based proteomics. We here describe the combination of two previously published open source software tools to improve mass measurement accuracy in Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). The first program, msalign, aligns one MS/MS dataset with one FTICRMS dataset. The second software, recal2, uses peptides identified from the MS/MS data for automated internal calibration of the FTICR spectra, resulting in sub-ppm mass measurement errors.
BigBWA: approaching the Burrows-Wheeler aligner to Big Data technologies.
Abuín, José M; Pichel, Juan C; Pena, Tomás F; Amigo, Jorge
2015-12-15
BigBWA is a new tool that uses the Big Data technology Hadoop to boost the performance of the Burrows-Wheeler aligner (BWA). Important reductions in the execution times were observed when using this tool. In addition, BigBWA is fault tolerant and it does not require any modification of the original BWA source code. BigBWA is available at the project GitHub repository: https://github.com/citiususc/BigBWA. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A Toolbox of Metrology-Based Techniques for Optical System Alignment
NASA Technical Reports Server (NTRS)
Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Casto, Gordon V.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.;
2016-01-01
The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a toolbox format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.
A Toolbox of Metrology-Based Techniques for Optical System Alignment
NASA Technical Reports Server (NTRS)
Coulter, Phillip; Ohl, Raymond G.; Blake, Peter N.; Bos, Brent J.; Eichhorn, William L.; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hagopian, John G.; Hayden, Joseph E.; Hetherington, Samuel E.;
2016-01-01
The NASA Goddard Space Flight Center (GSFC) and its partners have broad experience in the alignment of flight optical instruments and spacecraft structures. Over decades, GSFC developed alignment capabilities and techniques for a variety of optical and aerospace applications. In this paper, we provide an overview of a subset of the capabilities and techniques used on several recent projects in a "toolbox" format. We discuss a range of applications, from small-scale optical alignment of sensors to mirror and bench examples that make use of various large-volume metrology techniques. We also discuss instruments and analytical tools.
Asmanes, Charles
1979-01-01
A tool fixture is provided for precise pre-alignment of a radiused edge cutting tool in a tool holder relative to a fixed reference pivot point established on said holder about which the tool holder may be selectively pivoted relative to the fixture base member to change the contact point of the tool cutting edge with a workpiece while maintaining the precise same tool cutting radius relative to the reference pivot point.
Probabilistic biological network alignment.
Todor, Andrei; Dobra, Alin; Kahveci, Tamer
2013-01-01
Interactions between molecules are probabilistic events. An interaction may or may not happen with some probability, depending on a variety of factors such as the size, abundance, or proximity of the interacting molecules. In this paper, we consider the problem of aligning two biological networks. Unlike existing methods, we allow one of the two networks to contain probabilistic interactions. Allowing interaction probabilities makes the alignment more biologically relevant at the expense of explosive growth in the number of alternative topologies that may arise from different subsets of interactions that take place. We develop a novel method that efficiently and precisely characterizes this massive search space. We represent the topological similarity between pairs of aligned molecules (i.e., proteins) with the help of random variables and compute their expected values. We validate our method showing that, without sacrificing the running time performance, it can produce novel alignments. Our results also demonstrate that our method identifies biologically meaningful mappings under a comprehensive set of criteria used in the literature as well as the statistical coherence measure that we developed to analyze the statistical significance of the similarity of the functions of the aligned protein pairs.
A low-complexity add-on score for protein remote homology search with COMER.
Margelevicius, Mindaugas
2018-06-15
Protein sequence alignment forms the basis for comparative modeling, the most reliable approach to protein structure prediction, among many other applications. Alignment between sequence families, or profile-profile alignment, represents one of the most, if not the most, sensitive means for homology detection but still necessitates improvement. We aim at improving the quality of profile-profile alignments and the sensitivity induced by them by refining profile-profile substitution scores. We have developed a new score that represents an additional component of profile-profile substitution scores. A comprehensive evaluation shows that the new add-on score statistically significantly improves both the sensitivity and the alignment quality of the COMER method. We discuss why the score leads to the improvement and its almost optimal computational complexity that makes it easily implementable in any profile-profile alignment method. An implementation of the add-on score in the open-source COMER software and data are available at https://sourceforge.net/projects/comer. The COMER software is also available on Github at https://github.com/minmarg/comer and as a Docker image (minmar/comer). Supplementary data are available at Bioinformatics online.
Minnesota Frameworks for Career and Technical Education
ERIC Educational Resources Information Center
Minnesota Department of Education, 2004
2004-01-01
This framework provides tools for determining how national and industry standards align with goals and curriculum in Career and Technical Education (CTE) programs. The examples, alignment charts, and ideas for activities contained in this document are intended to encourage districts, sites, and teachers to use, adapt, and develop their own best…
A Multi-Objective Method to Align Human Resource Allocation with University Strategy
ERIC Educational Resources Information Center
Bouillard, Philippe
2016-01-01
Universities are currently under considerable pressure to reach their stakeholders' expectations. Management tools that use strategic plans, key performance indicators and quality assurance methods are increasingly deployed. This paper aims to demonstrate how resource allocation can be aligned with institutional strategic plans with a very simple…
Pinthong, Watthanai; Muangruen, Panya
2016-01-01
Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software. PMID:27547555
Challenging Google, Microsoft Unveils a Search Tool for Scholarly Articles
ERIC Educational Resources Information Center
Carlson, Scott
2006-01-01
Microsoft has introduced a new search tool to help people find scholarly articles online. The service, which includes journal articles from prominent academic societies and publishers, puts Microsoft in direct competition with Google Scholar. The new free search tool, which should work on most Web browsers, is called Windows Live Academic Search…
Web Usage Mining Analysis of Federated Search Tools for Egyptian Scholars
ERIC Educational Resources Information Center
Mohamed, Khaled A.; Hassan, Ahmed
2008-01-01
Purpose: This paper aims to examine the behaviour of the Egyptian scholars while accessing electronic resources through two federated search tools. The main purpose of this article is to provide guidance for federated search tool technicians and support teams about user issues, including the need for training. Design/methodology/approach: Log…
Interactive visual comparison of multimedia data through type-specific views
NASA Astrophysics Data System (ADS)
Burtner, Russ; Bohn, Shawn; Payne, Debbie
2013-01-01
Analysts who work with collections of multimedia to perform information foraging understand how difficult it is to connect information across diverse sets of mixed media. The wealth of information from blogs, social media, and news sites often can provide actionable intelligence; however, many of the tools used on these sources of content are not capable of multimedia analysis because they only analyze a single media type. As such, analysts are taxed to keep a mental model of the relationships among each of the media types when generating the broader content picture. To address this need, we have developed Canopy, a novel visual analytic tool for analyzing multimedia. Canopy provides insight into the multimedia data relationships by exploiting the linkages found in text, images, and video co-occurring in the same document and across the collection. Canopy connects derived and explicit linkages and relationships through multiple connected visualizations to aid analysts in quickly summarizing, searching, and browsing collected information to explore relationships and align content. In this paper, we will discuss the features and capabilities of the Canopy system and walk through a scenario illustrating how this system might be used in an operational environment.
Interactive visual comparison of multimedia data through type-specific views
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burtner, Edwin R.; Bohn, Shawn J.; Payne, Deborah A.
2013-02-05
Analysts who work with collections of multimedia to perform information foraging understand how difficult it is to connect information across diverse sets of mixed media. The wealth of information from blogs, social media, and news sites often can provide actionable intelligence; however, many of the tools used on these sources of content are not capable of multimedia analysis because they only analyze a single media type. As such, analysts are taxed to keep a mental model of the relationships among each of the media types when generating the broader content picture. To address this need, we have developed Canopy, amore » novel visual analytic tool for analyzing multimedia. Canopy provides insight into the multimedia data relationships by exploiting the linkages found in text, images, and video co-occurring in the same document and across the collection. Canopy connects derived and explicit linkages and relationships through multiple connected visualizations to aid analysts in quickly summarizing, searching, and browsing collected information to explore relationships and align content. In this paper, we will discuss the features and capabilities of the Canopy system and walk through a scenario illustrating how this system might be used in an operational environment. Keywords: Multimedia (Image/Video/Music) Visualization.« less
JWST Integrated Science Instrument Module Alignment Optimization Tool
NASA Technical Reports Server (NTRS)
Bos, Brent
2013-01-01
During cryogenic vacuum testing of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM), the global alignment of the ISIM with respect to the designed interface of the JWST optical telescope element (OTE) will be measured through a series of optical characterization tests. These tests will determine the locations and orientations of the JWST science instrument projected focal surfaces and entrance pupils with respect to their corresponding OTE optical interfaces. If any optical performance non-compliances are identified, the ISIM will be adjusted to improve its performance. In order to understand how to manipulate the ISIM's degrees of freedom properly and to prepare for the ISIM flight model testing, a series of optical-mechanical analyses have been completed to develop and identify the best approaches for bringing a non-compliant ISIM element into compliance. In order for JWST to meet its observatory-level optical requirements and ambitious science goals, the ISIM element has to meet approximately 150 separate optical requirements. Successfully achieving many of those optical requirements depends on the proper alignment of the ISIM element with respect to the OTE. To verify that the ISIM element will meet its optical requirements, a series of cryogenic vacuum tests will be conducted with an OTE Simulator (OSIM). An optical Ray Trace and Geometry Model tool was developed to help solve the multi-dimensional alignment problem. The tool allows the user to determine how best to adjust the alignment of the JWST ISIM with respect to the ideal telescope interfaces so that the approximately 150 ISIM optical performance requirements can be satisfied. This capability has not existed previously.
Yu, Xiaoyu; Reva, Oleg N
2018-01-01
Modern phylogenetic studies may benefit from the analysis of complete genome sequences of various microorganisms. Evolutionary inferences based on genome-scale analysis are believed to be more accurate than the gene-based alternative. However, the computational complexity of current phylogenomic procedures, inappropriateness of standard phylogenetic tools to process genome-wide data, and lack of reliable substitution models which correlates with alignment-free phylogenomic approaches deter microbiologists from using these opportunities. For example, the super-matrix and super-tree approaches of phylogenomics use multiple integrated genomic loci or individual gene-based trees to infer an overall consensus tree. However, these approaches potentially multiply errors of gene annotation and sequence alignment not mentioning the computational complexity and laboriousness of the methods. In this article, we demonstrate that the annotation- and alignment-free comparison of genome-wide tetranucleotide frequencies, termed oligonucleotide usage patterns (OUPs), allowed a fast and reliable inference of phylogenetic trees. These were congruent to the corresponding whole genome super-matrix trees in terms of tree topology when compared with other known approaches including 16S ribosomal RNA and GyrA protein sequence comparison, complete genome-based MAUVE, and CVTree methods. A Web-based program to perform the alignment-free OUP-based phylogenomic inferences was implemented at http://swphylo.bi.up.ac.za/. Applicability of the tool was tested on different taxa from subspecies to intergeneric levels. Distinguishing between closely related taxonomic units may be enforced by providing the program with alignments of marker protein sequences, eg, GyrA.
Yu, Xiaoyu; Reva, Oleg N
2018-01-01
Modern phylogenetic studies may benefit from the analysis of complete genome sequences of various microorganisms. Evolutionary inferences based on genome-scale analysis are believed to be more accurate than the gene-based alternative. However, the computational complexity of current phylogenomic procedures, inappropriateness of standard phylogenetic tools to process genome-wide data, and lack of reliable substitution models which correlates with alignment-free phylogenomic approaches deter microbiologists from using these opportunities. For example, the super-matrix and super-tree approaches of phylogenomics use multiple integrated genomic loci or individual gene-based trees to infer an overall consensus tree. However, these approaches potentially multiply errors of gene annotation and sequence alignment not mentioning the computational complexity and laboriousness of the methods. In this article, we demonstrate that the annotation- and alignment-free comparison of genome-wide tetranucleotide frequencies, termed oligonucleotide usage patterns (OUPs), allowed a fast and reliable inference of phylogenetic trees. These were congruent to the corresponding whole genome super-matrix trees in terms of tree topology when compared with other known approaches including 16S ribosomal RNA and GyrA protein sequence comparison, complete genome-based MAUVE, and CVTree methods. A Web-based program to perform the alignment-free OUP-based phylogenomic inferences was implemented at http://swphylo.bi.up.ac.za/. Applicability of the tool was tested on different taxa from subspecies to intergeneric levels. Distinguishing between closely related taxonomic units may be enforced by providing the program with alignments of marker protein sequences, eg, GyrA. PMID:29511354
Supervised learning of tools for content-based search of image databases
NASA Astrophysics Data System (ADS)
Delanoy, Richard L.
1996-03-01
A computer environment, called the Toolkit for Image Mining (TIM), is being developed with the goal of enabling users with diverse interests and varied computer skills to create search tools for content-based image retrieval and other pattern matching tasks. Search tools are generated using a simple paradigm of supervised learning that is based on the user pointing at mistakes of classification made by the current search tool. As mistakes are identified, a learning algorithm uses the identified mistakes to build up a model of the user's intentions, construct a new search tool, apply the search tool to a test image, display the match results as feedback to the user, and accept new inputs from the user. Search tools are constructed in the form of functional templates, which are generalized matched filters capable of knowledge- based image processing. The ability of this system to learn the user's intentions from experience contrasts with other existing approaches to content-based image retrieval that base searches on the characteristics of a single input example or on a predefined and semantically- constrained textual query. Currently, TIM is capable of learning spectral and textural patterns, but should be adaptable to the learning of shapes, as well. Possible applications of TIM include not only content-based image retrieval, but also quantitative image analysis, the generation of metadata for annotating images, data prioritization or data reduction in bandwidth-limited situations, and the construction of components for larger, more complex computer vision algorithms.
OSTI.GOV | OSTI, US Dept of Energy Office of Scientific and Technical
Information Skip to main content â° Submit Research Results Search Tools Public Access Policy Data Services & Dev Tools About FAQs News Sign In Create Account Sign In Create Account Department Information Search terms: Advanced search options Advanced Search OptionsAdvanced Search queries use a
The Theory of Planned Behaviour Applied to Search Engines as a Learning Tool
ERIC Educational Resources Information Center
Liaw, Shu-Sheng
2004-01-01
Search engines have been developed for helping learners to seek online information. Based on theory of planned behaviour approach, this research intends to investigate the behaviour of using search engines as a learning tool. After factor analysis, the results suggest that perceived satisfaction of search engine, search engines as an information…
Nicholson, Scott
2005-01-01
The paper explores the current state of generalist search education in library schools and considers that foundation in respect to the Medical Library Association's statement on expert searching. Syllabi from courses with significant searching components were examined from ten of the top library schools, as determined by the U.S. News & World Report rankings. Mixed methods were used, but primarily quantitative bibliometric methods were used. The educational focus in these searching components was on understanding the generalist searching resources and typical users and on performing a reflective search through application of search strategies, controlled vocabulary, and logic appropriate to the search tool. There is a growing emphasis on Web-based search tools and a movement away from traditional set-based searching and toward free-text search strategies. While a core set of authors is used in these courses, no core set of readings is used. While library schools provide a strong foundation, future medical librarians still need to take courses that introduce them to the resources, settings, and users associated with medical libraries. In addition, as more emphasis is placed on Web-based search tools and free-text searching, instructors of the specialist medical informatics courses will need to focus on teaching traditional search methods appropriate for common tools in the medical domain.
Nicholson, Scott
2005-01-01
Purpose: The paper explores the current state of generalist search education in library schools and considers that foundation in respect to the Medical Library Association's statement on expert searching. Setting/Subjects: Syllabi from courses with significant searching components were examined from ten of the top library schools, as determined by the U.S. News & World Report rankings. Methodology: Mixed methods were used, but primarily quantitative bibliometric methods were used. Results: The educational focus in these searching components was on understanding the generalist searching resources and typical users and on performing a reflective search through application of search strategies, controlled vocabulary, and logic appropriate to the search tool. There is a growing emphasis on Web-based search tools and a movement away from traditional set-based searching and toward free-text search strategies. While a core set of authors is used in these courses, no core set of readings is used. Discussion/Conclusion: While library schools provide a strong foundation, future medical librarians still need to take courses that introduce them to the resources, settings, and users associated with medical libraries. In addition, as more emphasis is placed on Web-based search tools and free-text searching, instructors of the specialist medical informatics courses will need to focus on teaching traditional search methods appropriate for common tools in the medical domain. PMID:15685276
Factors driving physician-hospital alignment in orthopaedic surgery.
Page, Alexandra E; Butler, Craig A; Bozic, Kevin J
2013-06-01
The relationships between physicians and hospitals are viewed as central to the proposition of delivering high-quality health care at a sustainable cost. Over the last two decades, major changes in the scope, breadth, and complexities of these relationships have emerged. Despite understanding the need for physician-hospital alignment, identification and understanding the incentives and drivers of alignment prove challenging. Our review identifies the primary drivers of physician alignment with hospitals from both the physician and hospital perspectives. Further, we assess the drivers more specific to motivating orthopaedic surgeons to align with hospitals. We performed a comprehensive literature review from 1992 to March 2012 to evaluate published studies and opinions on the issues surrounding physician-hospital alignment. Literature searches were performed in both MEDLINE(®) and Health Business™ Elite. Available literature identifies economic and regulatory shifts in health care and cultural factors as primary drivers of physician-hospital alignment. Specific to orthopaedics, factors driving alignment include the profitability of orthopaedic service lines, the expense of implants, and issues surrounding ambulatory surgery centers and other ancillary services. Evolving healthcare delivery and payment reforms promote increased collaboration between physicians and hospitals. While economic incentives and increasing regulatory demands provide the strongest drivers, cultural changes including physician leadership and changing expectations of work-life balance must be considered when pursuing successful alignment models. Physicians and hospitals view each other as critical to achieving lower-cost, higher-quality health care.
Dobi, Krisztina; Hajdú, István; Flachner, Beáta; Fabó, Gabriella; Szaszkó, Mária; Bognár, Melinda; Magyar, Csaba; Simon, István; Szisz, Dániel; Lőrincz, Zsolt; Cseh, Sándor; Dormán, György
2014-05-28
Rapid in silico selection of target focused libraries from commercial repositories is an attractive and cost effective approach. If structures of active compounds are available rapid 2D similarity search can be performed on multimillion compound databases but the generated library requires further focusing by various 2D/3D chemoinformatics tools. We report here a combination of the 2D approach with a ligand-based 3D method (Screen3D) which applies flexible matching to align reference and target compounds in a dynamic manner and thus to assess their structural and conformational similarity. In the first case study we compared the 2D and 3D similarity scores on an existing dataset derived from the biological evaluation of a PDE5 focused library. Based on the obtained similarity metrices a fusion score was proposed. The fusion score was applied to refine the 2D similarity search in a second case study where we aimed at selecting and evaluating a PDE4B focused library. The application of this fused 2D/3D similarity measure led to an increase of the hit rate from 8.5% (1st round, 47% inhibition at 10 µM) to 28.5% (2nd round at 50% inhibition at 10 µM) and the best two hits had 53 nM inhibitory activities.
Implant alignment in total elbow arthroplasty: conventional vs. navigated techniques
NASA Astrophysics Data System (ADS)
McDonald, Colin P.; Johnson, James A.; King, Graham J. W.; Peters, Terry M.
2009-02-01
Incorrect selection of the native flexion-extension axis during implant alignment in elbow replacement surgery is likely a significant contributor to failure of the prosthesis. Computer and image-assisted surgery is emerging as a useful surgical tool in terms of improving the accuracy of orthopaedic procedures. This study evaluated the accuracy of implant alignment using an image-based navigation technique compared against a conventional non-navigated approach. Implant alignment error was 0.8 +/- 0.3 mm in translation and 1.1 +/- 0.4° in rotation for the navigated alignment, compared with 3.1 +/- 1.3 mm and 5.0 +/- 3.8° for the non-navigated alignment. Five (5) of the 11 non-navigated alignments were malaligned greater than 5° while none of the navigated alignments were placed with an error of greater than 2.0°. It is likely that improved implant positioning will lead to reduced implant loading and wear, resulting in fewer implantrelated complications and revision surgeries.
ChromA: signal-based retention time alignment for chromatography–mass spectrometry data
Hoffmann, Nils; Stoye, Jens
2009-01-01
Summary: We describe ChromA, a web-based alignment tool for chromatography–mass spectrometry data from the metabolomics and proteomics domains. Users can supply their data in open and standardized file formats for retention time alignment using dynamic time warping with different configurable local distance and similarity functions. Additionally, user-defined anchors can be used to constrain and speedup the alignment. A neighborhood around each anchor can be added to increase the flexibility of the constrained alignment. ChromA offers different visualizations of the alignment for easier qualitative interpretation and comparison of the data. For the multiple alignment of more than two data files, the center-star approximation is applied to select a reference among input files to align to. Availability: ChromA is available at http://bibiserv.techfak.uni-bielefeld.de/chroma. Executables and source code under the L-GPL v3 license are provided for download at the same location. Contact: stoye@techfak.uni-bielefeld.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19505941
NASA Astrophysics Data System (ADS)
Khademolhosseini, F.; Liu, C.-C.; Lim, C. J.; Chiao, M.
2016-08-01
Commercially available cell strain tools, such as pneumatically actuated elastomer substrates, require special culture plates, pumps, and incubator setups. In this work, we present a magnetically actuated cellular strain assessment tool (MACSAT) that can be implemented using off-the-shelf components and conventional incubators. We determine the strain field on the MACSAT elastomer substrate using numerical models and experimental measurements and show that a specific region of the elastomer substrate undergoes a quasi-uniaxial 2D stretch, and that cells confined to this region of the MACSAT elastomer substrate undergo tensile, compressive, or zero axial strain depending on their angle of orientation. Using the MACSAT to apply cyclic strain on endothelial cells, we demonstrate that actin filaments within the cells reorient away from the stretching direction, towards the directions of minimum axial strain. We show that the final actin orientation angles in strained cells are spread over a region of compressive axial strain, confirming previous findings on the existence of a varied pre-tension in the actin filaments of the cytoskeleton. We also demonstrate that strained cells exhibit distinctly different values of actin alignment coherency compared to unstrained cells and therefore propose that this parameter, i.e., the coherency of actin alignment, can be used as a new readout to determine the occurrence/extent of actin alignment in cell strain experiments. The tools and methods demonstrated in this study are simple and accessible and can be easily replicated by other researchers to study the strain response of other adherent cells.
Health literacy and usability of clinical trial search engines.
Utami, Dina; Bickmore, Timothy W; Barry, Barbara; Paasche-Orlow, Michael K
2014-01-01
Several web-based search engines have been developed to assist individuals to find clinical trials for which they may be interested in volunteering. However, these search engines may be difficult for individuals with low health and computer literacy to navigate. The authors present findings from a usability evaluation of clinical trial search tools with 41 participants across the health and computer literacy spectrum. The study consisted of 3 parts: (a) a usability study of an existing web-based clinical trial search tool; (b) a usability study of a keyword-based clinical trial search tool; and (c) an exploratory study investigating users' information needs when deciding among 2 or more candidate clinical trials. From the first 2 studies, the authors found that users with low health literacy have difficulty forming queries using keywords and have significantly more difficulty using a standard web-based clinical trial search tool compared with users with adequate health literacy. From the third study, the authors identified the search factors most important to individuals searching for clinical trials and how these varied by health literacy level.
An Instructional Feedback Technique for Teaching Project Management Tools Aligned with PMBOK
ERIC Educational Resources Information Center
Gonçalves, Rafael Queiroz; von Wangenheim, Christiane Gresse; Hauck, Jean Carlo Rossa; Petri, Giani
2017-01-01
The management of contemporary software projects is unfeasible without the support of a Project Management (PM) tool. In order to enable the adoption of PM tools in practice, teaching its usage is important as part of computer education. Aiming at teaching PM tools, several approaches have been proposed, such as the development of educational PM…
ERIC Educational Resources Information Center
Silva, Pedro
2017-01-01
There are several technological tools which aim to support first year students' challenges, especially when it comes to academic writing. This paper analyses one of these tools, Wiley's AssignMentor. The Technological Pedagogical Content Knowledge framework was used to systematise this analysis. The paper showed an alignment between the tools'…
XML schemas for common bioinformatic data types and their application in workflow systems
Seibel, Philipp N; Krüger, Jan; Hartmeier, Sven; Schwarzer, Knut; Löwenthal, Kai; Mersch, Henning; Dandekar, Thomas; Giegerich, Robert
2006-01-01
Background Today, there is a growing need in bioinformatics to combine available software tools into chains, thus building complex applications from existing single-task tools. To create such workflows, the tools involved have to be able to work with each other's data – therefore, a common set of well-defined data formats is needed. Unfortunately, current bioinformatic tools use a great variety of heterogeneous formats. Results Acknowledging the need for common formats, the Helmholtz Open BioInformatics Technology network (HOBIT) identified several basic data types used in bioinformatics and developed appropriate format descriptions, formally defined by XML schemas, and incorporated them in a Java library (BioDOM). These schemas currently cover sequence, sequence alignment, RNA secondary structure and RNA secondary structure alignment formats in a form that is independent of any specific program, thus enabling seamless interoperation of different tools. All XML formats are available at , the BioDOM library can be obtained at . Conclusion The HOBIT XML schemas and the BioDOM library simplify adding XML support to newly created and existing bioinformatic tools, enabling these tools to interoperate seamlessly in workflow scenarios. PMID:17087823
New Tools to Document and Manage Data/Metadata: Example NGEE Arctic and ARM
NASA Astrophysics Data System (ADS)
Crow, M. C.; Devarakonda, R.; Killeffer, T.; Hook, L.; Boden, T.; Wullschleger, S.
2017-12-01
Tools used for documenting, archiving, cataloging, and searching data are critical pieces of informatics. This poster describes tools being used in several projects at Oak Ridge National Laboratory (ORNL), with a focus on the U.S. Department of Energy's Next Generation Ecosystem Experiment in the Arctic (NGEE Arctic) and Atmospheric Radiation Measurements (ARM) project, and their usage at different stages of the data lifecycle. The Online Metadata Editor (OME) is used for the documentation and archival stages while a Data Search tool supports indexing, cataloging, and searching. The NGEE Arctic OME Tool [1] provides a method by which researchers can upload their data and provide original metadata with each upload while adhering to standard metadata formats. The tool is built upon a Java SPRING framework to parse user input into, and from, XML output. Many aspects of the tool require use of a relational database including encrypted user-login, auto-fill functionality for predefined sites and plots, and file reference storage and sorting. The Data Search Tool conveniently displays each data record in a thumbnail containing the title, source, and date range, and features a quick view of the metadata associated with that record, as well as a direct link to the data. The search box incorporates autocomplete capabilities for search terms and sorted keyword filters are available on the side of the page, including a map for geo-searching. These tools are supported by the Mercury [2] consortium (funded by DOE, NASA, USGS, and ARM) and developed and managed at Oak Ridge National Laboratory. Mercury is a set of tools for collecting, searching, and retrieving metadata and data. Mercury collects metadata from contributing project servers, then indexes the metadata to make it searchable using Apache Solr, and provides access to retrieve it from the web page. Metadata standards that Mercury supports include: XML, Z39.50, FGDC, Dublin-Core, Darwin-Core, EML, and ISO-19115.
ACTG: novel peptide mapping onto gene models.
Choi, Seunghyuk; Kim, Hyunwoo; Paek, Eunok
2017-04-15
In many proteogenomic applications, mapping peptide sequences onto genome sequences can be very useful, because it allows us to understand origins of the gene products. Existing software tools either take the genomic position of a peptide start site as an input or assume that the peptide sequence exactly matches the coding sequence of a given gene model. In case of novel peptides resulting from genomic variations, especially structural variations such as alternative splicing, these existing tools cannot be directly applied unless users supply information about the variant, either its genomic position or its transcription model. Mapping potentially novel peptides to genome sequences, while allowing certain genomic variations, requires introducing novel gene models when aligning peptide sequences to gene structures. We have developed a new tool called ACTG (Amino aCids To Genome), which maps peptides to genome, assuming all possible single exon skipping, junction variation allowing three edit distances from the original splice sites, exon extension and frame shift. In addition, it can also consider SNVs (single nucleotide variations) during mapping phase if a user provides the VCF (variant call format) file as an input. Available at http://prix.hanyang.ac.kr/ACTG/search.jsp . eunokpaek@hanyang.ac.kr. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
d-Omix: a mixer of generic protein domain analysis tools.
Wichadakul, Duangdao; Numnark, Somrak; Ingsriswang, Supawadee
2009-07-01
Domain combination provides important clues to the roles of protein domains in protein function, interaction and evolution. We have developed a web server d-Omix (a Mixer of Protein Domain Analysis Tools) aiming as a unified platform to analyze, compare and visualize protein data sets in various aspects of protein domain combinations. With InterProScan files for protein sets of interest provided by users, the server incorporates four services for domain analyses. First, it constructs protein phylogenetic tree based on a distance matrix calculated from protein domain architectures (DAs), allowing the comparison with a sequence-based tree. Second, it calculates and visualizes the versatility, abundance and co-presence of protein domains via a domain graph. Third, it compares the similarity of proteins based on DA alignment. Fourth, it builds a putative protein network derived from domain-domain interactions from DOMINE. Users may select a variety of input data files and flexibly choose domain search tools (e.g. hmmpfam, superfamily) for a specific analysis. Results from the d-Omix could be interactively explored and exported into various formats such as SVG, JPG, BMP and CSV. Users with only protein sequences could prepare an InterProScan file using a service provided by the server as well. The d-Omix web server is freely available at http://www.biotec.or.th/isl/Domix.
StarScan: a web server for scanning small RNA targets from degradome sequencing data.
Liu, Shun; Li, Jun-Hao; Wu, Jie; Zhou, Ke-Ren; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu
2015-07-01
Endogenous small non-coding RNAs (sRNAs), including microRNAs, PIWI-interacting RNAs and small interfering RNAs, play important gene regulatory roles in animals and plants by pairing to the protein-coding and non-coding transcripts. However, computationally assigning these various sRNAs to their regulatory target genes remains technically challenging. Recently, a high-throughput degradome sequencing method was applied to identify biologically relevant sRNA cleavage sites. In this study, an integrated web-based tool, StarScan (sRNA target Scan), was developed for scanning sRNA targets using degradome sequencing data from 20 species. Given a sRNA sequence from plants or animals, our web server performs an ultrafast and exhaustive search for potential sRNA-target interactions in annotated and unannotated genomic regions. The interactions between small RNAs and target transcripts were further evaluated using a novel tool, alignScore. A novel tool, degradomeBinomTest, was developed to quantify the abundance of degradome fragments located at the 9-11th nucleotide from the sRNA 5' end. This is the first web server for discovering potential sRNA-mediated RNA cleavage events in plants and animals, which affords mechanistic insights into the regulatory roles of sRNAs. The StarScan web server is available at http://mirlab.sysu.edu.cn/starscan/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Fourment, Mathieu; Gibbs, Mark J
2008-01-01
Background Viruses of the Bunyaviridae have segmented negative-stranded RNA genomes and several of them cause significant disease. Many partial sequences have been obtained from the segments so that GenBank searches give complex results. Sequence databases usually use HTML pages to mediate remote sorting, but this approach can be limiting and may discourage a user from exploring a database. Results The VirusBanker database contains Bunyaviridae sequences and alignments and is presented as two spreadsheets generated by a Java program that interacts with a MySQL database on a server. Sequences are displayed in rows and may be sorted using information that is displayed in columns and includes data relating to the segment, gene, protein, species, strain, sequence length, terminal sequence and date and country of isolation. Bunyaviridae sequences and alignments may be downloaded from the second spreadsheet with titles defined by the user from the columns, or viewed when passed directly to the sequence editor, Jalview. Conclusion VirusBanker allows large datasets of aligned nucleotide and protein sequences from the Bunyaviridae to be compiled and winnowed rapidly using criteria that are formulated heuristically. PMID:18251994
Information Discovery and Retrieval Tools
2004-12-01
information. This session will focus on the various Internet search engines , directories, and how to improve the user experience through the use of...such techniques as metadata, meta- search engines , subject specific search tools, and other developing technologies.
Information Discovery and Retrieval Tools
2003-04-01
information. This session will focus on the various Internet search engines , directories, and how to improve the user experience through the use of...such techniques as metadata, meta- search engines , subject specific search tools, and other developing technologies.
Government Search Tools: Evaluating Fee and Free Search Alternatives.
ERIC Educational Resources Information Center
Gordon-Murnane, Laura
1999-01-01
Examines four tools that provide access to federal government information: FedWorld, Usgovsearch.com, Google/Unclesam, and GovBot. Compares search features, size of collection, ease of use, and cost or subscription requirements. (LRW)
BatMis: a fast algorithm for k-mismatch mapping.
Tennakoon, Chandana; Purbojati, Rikky W; Sung, Wing-Kin
2012-08-15
Second-generation sequencing (SGS) generates millions of reads that need to be aligned to a reference genome allowing errors. Although current aligners can efficiently map reads allowing a small number of mismatches, they are not well suited for handling a large number of mismatches. The efficiency of aligners can be improved using various heuristics, but the sensitivity and accuracy of the alignments are sacrificed. In this article, we introduce Basic Alignment tool for Mismatches (BatMis)--an efficient method to align short reads to a reference allowing k mismatches. BatMis is a Burrows-Wheeler transformation based aligner that uses a seed and extend approach, and it is an exact method. Benchmark tests show that BatMis performs better than competing aligners in solving the k-mismatch problem. Furthermore, it can compete favorably even when compared with the heuristic modes of the other aligners. BatMis is a useful alternative for applications where fast k-mismatch mappings, unique mappings or multiple mappings of SGS data are required. BatMis is written in C/C++ and is freely available from http://code.google.com/p/batmis/
Nove, Andrea; Cometto, Giorgio; Campbell, James
2017-11-09
In their adoption of WHA resolution 69.19, World Health Organization Member States requested all bilateral and multilateral initiatives to conduct impact assessments of their funding to human resources for health. The High-Level Commission for Health Employment and Economic Growth similarly proposed that official development assistance for health, education, employment and gender are best aligned to creating decent jobs in the health and social workforce. No standard tools exist for assessing the impact of global health initiatives on the health workforce, but tools exist from other fields. The objectives of this paper are to describe how a review of grey literature informed the development of a draft health workforce impact assessment tool and to introduce the tool. A search of grey literature yielded 72 examples of impact assessment tools and guidance from a wide variety of fields including gender, health and human rights. These examples were reviewed, and information relevant to the development of a health workforce impact assessment was extracted from them using an inductive process. A number of good practice principles were identified from the review. These informed the development of a draft health workforce impact assessment tool, based on an established health labour market framework. The tool is designed to be applied before implementation. It consists of a relatively short and focused screening module to be applied to all relevant initiatives, followed by a more in-depth assessment to be applied only to initiatives for which the screening module indicates that significant implications for HRH are anticipated. It thus aims to strike a balance between maximising rigour and minimising administrative burden. The application of the new tool will help to ensure that health workforce implications are incorporated into global health decision-making processes from the outset and to enhance positive HRH impacts and avoid, minimise or offset negative impacts.
People Strategy in Human Resources: Lessons for Mentoring in Higher Education
ERIC Educational Resources Information Center
Baker, Vicki L.
2015-01-01
In this article, I offer the notion of alignment, a human resources framework, as a conceptual tool for better informing the development of mentoring programming and policy in higher education. Alignment accounts for both individual and organizational factors as means for providing the necessary connections among human resources and organizational…
ASGARD: an open-access database of annotated transcriptomes for emerging model arthropod species.
Zeng, Victor; Extavour, Cassandra G
2012-01-01
The increased throughput and decreased cost of next-generation sequencing (NGS) have shifted the bottleneck genomic research from sequencing to annotation, analysis and accessibility. This is particularly challenging for research communities working on organisms that lack the basic infrastructure of a sequenced genome, or an efficient way to utilize whatever sequence data may be available. Here we present a new database, the Assembled Searchable Giant Arthropod Read Database (ASGARD). This database is a repository and search engine for transcriptomic data from arthropods that are of high interest to multiple research communities but currently lack sequenced genomes. We demonstrate the functionality and utility of ASGARD using de novo assembled transcriptomes from the milkweed bug Oncopeltus fasciatus, the cricket Gryllus bimaculatus and the amphipod crustacean Parhyale hawaiensis. We have annotated these transcriptomes to assign putative orthology, coding region determination, protein domain identification and Gene Ontology (GO) term annotation to all possible assembly products. ASGARD allows users to search all assemblies by orthology annotation, GO term annotation or Basic Local Alignment Search Tool. User-friendly features of ASGARD include search term auto-completion suggestions based on database content, the ability to download assembly product sequences in FASTA format, direct links to NCBI data for predicted orthologs and graphical representation of the location of protein domains and matches to similar sequences from the NCBI non-redundant database. ASGARD will be a useful repository for transcriptome data from future NGS studies on these and other emerging model arthropods, regardless of sequencing platform, assembly or annotation status. This database thus provides easy, one-stop access to multi-species annotated transcriptome information. We anticipate that this database will be useful for members of multiple research communities, including developmental biology, physiology, evolutionary biology, ecology, comparative genomics and phylogenomics. Database URL: asgard.rc.fas.harvard.edu.
A Vibrating Wire System For Quadrupole Fiducialization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolf, Zachary
2010-12-13
A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization stepmore » of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method of choice. We then give an overview of the measurement system showing how the vibrating wire is positioned onto the quadrupole axis, how the wire position detectors locate the wire relative to tooling balls without touching the wire, and how the tooling ball positions are all measured. The novel feature of this system is the vibrating wire which we discuss in depth. We analyze the wire dynamics and calculate the expected sensitivity of the system. The note should be an aid in debugging the system by providing calculations to compare measurements to.« less
Phylo-VISTA: Interactive visualization of multiple DNA sequence alignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, Nameeta; Couronne, Olivier; Pennacchio, Len A.
The power of multi-sequence comparison for biological discovery is well established. The need for new capabilities to visualize and compare cross-species alignment data is intensified by the growing number of genomic sequence datasets being generated for an ever-increasing number of organisms. To be efficient these visualization algorithms must support the ability to accommodate consistently a wide range of evolutionary distances in a comparison framework based upon phylogenetic relationships. Results: We have developed Phylo-VISTA, an interactive tool for analyzing multiple alignments by visualizing a similarity measure for multiple DNA sequences. The complexity of visual presentation is effectively organized using a frameworkmore » based upon interspecies phylogenetic relationships. The phylogenetic organization supports rapid, user-guided interspecies comparison. To aid in navigation through large sequence datasets, Phylo-VISTA leverages concepts from VISTA that provide a user with the ability to select and view data at varying resolutions. The combination of multiresolution data visualization and analysis, combined with the phylogenetic framework for interspecies comparison, produces a highly flexible and powerful tool for visual data analysis of multiple sequence alignments. Availability: Phylo-VISTA is available at http://www-gsd.lbl. gov/phylovista. It requires an Internet browser with Java Plugin 1.4.2 and it is integrated into the global alignment program LAGAN at http://lagan.stanford.edu« less
Voleti, Pramod B; Hamula, Mathew J; Baldwin, Keith D; Lee, Gwo-Chin
2014-09-01
The purpose of this systematic review and meta-analysis is to compare patient-specific instrumentation (PSI) versus standard instrumentation for total knee arthroplasty (TKA) with regard to coronal and sagittal alignment, operative time, intraoperative blood loss, and cost. A systematic query in search of relevant studies was performed, and the data published in these studies were extracted and aggregated. In regard to coronal alignment, PSI demonstrated improved accuracy in femorotibial angle (FTA) (P=0.0003), while standard instrumentation demonstrated improved accuracy in hip-knee-ankle angle (HKA) (P=0.02). Importantly, there were no differences between treatment groups in the percentages of FTA or HKA outliers (>3 degrees from target alignment) (P=0.7). Sagittal alignment, operative time, intraoperative blood loss, and cost were also similar between groups (P>0.1 for all comparisons). Copyright © 2014 Elsevier Inc. All rights reserved.
2010-01-01
Background Multiple sequence alignments are used to study gene or protein function, phylogenetic relations, genome evolution hypotheses and even gene polymorphisms. Virtually without exception, all available tools focus on conserved segments or residues. Small divergent regions, however, are biologically important for specific quantitative polymerase chain reaction, genotyping, molecular markers and preparation of specific antibodies, and yet have received little attention. As a consequence, they must be selected empirically by the researcher. AlignMiner has been developed to fill this gap in bioinformatic analyses. Results AlignMiner is a Web-based application for detection of conserved and divergent regions in alignments of conserved sequences, focusing particularly on divergence. It accepts alignments (protein or nucleic acid) obtained using any of a variety of algorithms, which does not appear to have a significant impact on the final results. AlignMiner uses different scoring methods for assessing conserved/divergent regions, Entropy being the method that provides the highest number of regions with the greatest length, and Weighted being the most restrictive. Conserved/divergent regions can be generated either with respect to the consensus sequence or to one master sequence. The resulting data are presented in a graphical interface developed in AJAX, which provides remarkable user interaction capabilities. Users do not need to wait until execution is complete and can.even inspect their results on a different computer. Data can be downloaded onto a user disk, in standard formats. In silico and experimental proof-of-concept cases have shown that AlignMiner can be successfully used to designing specific polymerase chain reaction primers as well as potential epitopes for antibodies. Primer design is assisted by a module that deploys several oligonucleotide parameters for designing primers "on the fly". Conclusions AlignMiner can be used to reliably detect divergent regions via several scoring methods that provide different levels of selectivity. Its predictions have been verified by experimental means. Hence, it is expected that its usage will save researchers' time and ensure an objective selection of the best-possible divergent region when closely related sequences are analysed. AlignMiner is freely available at http://www.scbi.uma.es/alignminer. PMID:20525162
Accelerating Information Retrieval from Profile Hidden Markov Model Databases.
Tamimi, Ahmad; Ashhab, Yaqoub; Tamimi, Hashem
2016-01-01
Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent protein families. Currently, several databases maintain valuable protein sequence information as profile-HMMs. There is an increasing interest to improve the efficiency of searching Profile-HMM databases to detect sequence-profile or profile-profile homology. However, most efforts to enhance searching efficiency have been focusing on improving the alignment algorithms. Although the performance of these algorithms is fairly acceptable, the growing size of these databases, as well as the increasing demand for using batch query searching approach, are strong motivations that call for further enhancement of information retrieval from profile-HMM databases. This work presents a heuristic method to accelerate the current profile-HMM homology searching approaches. The method works by cluster-based remodeling of the database to reduce the search space, rather than focusing on the alignment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clustered based on their similarities. A representative for each cluster was assigned. To enhance sensitivity, we proposed an extended step that allows overlapping among clusters. A validation benchmark of 6000 randomly selected protein sequences was used to query the clustered profiles. To evaluate the efficiency of our approach, speed and recall values were measured and compared with the sequential search approach. Using hierarchical, k-means, and connected component clustering techniques followed by the extended overlapping step, we obtained an average reduction in time of 41%, and an average recall of 96%. Our results demonstrate that representation of profile-HMMs using a clustering-based approach can significantly accelerate data retrieval from profile-HMM databases.
NASA Astrophysics Data System (ADS)
Kim, Woojin; Boonn, William
2010-03-01
Data mining of existing radiology and pathology reports within an enterprise health system can be used for clinical decision support, research, education, as well as operational analyses. In our health system, the database of radiology and pathology reports exceeds 13 million entries combined. We are building a web-based tool to allow search and data analysis of these combined databases using freely available and open source tools. This presentation will compare performance of an open source full-text indexing tool to MySQL's full-text indexing and searching and describe implementation procedures to incorporate these capabilities into a radiology-pathology search engine.
Fine-tuning structural RNA alignments in the twilight zone.
Bremges, Andreas; Schirmer, Stefanie; Giegerich, Robert
2010-04-30
A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index.
Joseph, Agnel Praveen; Srinivasan, Narayanaswamy; de Brevern, Alexandre G
2012-09-01
Comparison of multiple protein structures has a broad range of applications in the analysis of protein structure, function and evolution. Multiple structure alignment tools (MSTAs) are necessary to obtain a simultaneous comparison of a family of related folds. In this study, we have developed a method for multiple structure comparison largely based on sequence alignment techniques. A widely used Structural Alphabet named Protein Blocks (PBs) was used to transform the information on 3D protein backbone conformation as a 1D sequence string. A progressive alignment strategy similar to CLUSTALW was adopted for multiple PB sequence alignment (mulPBA). Highly similar stretches identified by the pairwise alignments are given higher weights during the alignment. The residue equivalences from PB based alignments are used to obtain a three dimensional fit of the structures followed by an iterative refinement of the structural superposition. Systematic comparisons using benchmark datasets of MSTAs underlines that the alignment quality is better than MULTIPROT, MUSTANG and the alignments in HOMSTRAD, in more than 85% of the cases. Comparison with other rigid-body and flexible MSTAs also indicate that mulPBA alignments are superior to most of the rigid-body MSTAs and highly comparable to the flexible alignment methods. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Andreini, Claudia; Cavallaro, Gabriele; Rosato, Antonio; Valasatava, Yana
2013-11-25
We developed a new software tool, MetalS(2), for the structural alignment of Minimal Functional Sites (MFSs) in metal-binding biological macromolecules. MFSs are 3D templates that describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. On our example data sets, MetalS(2) unveiled structural similarities that other programs for protein structure comparison do not consistently point out and overall identified a larger number of structurally similar MFSs. MetalS(2) supports the comparison of MFSs harboring different metals and/or with different nuclearity and is available both as a stand-alone program and a Web tool ( http://metalweb.cerm.unifi.it/tools/metals2/).
LC Data QUEST: A Technical Architecture for Community Federated Clinical Data Sharing.
Stephens, Kari A; Lin, Ching-Ping; Baldwin, Laura-Mae; Echo-Hawk, Abigail; Keppel, Gina A; Buchwald, Dedra; Whitener, Ron J; Korngiebel, Diane M; Berg, Alfred O; Black, Robert A; Tarczy-Hornoch, Peter
2012-01-01
The University of Washington Institute of Translational Health Sciences is engaged in a project, LC Data QUEST, building data sharing capacity in primary care practices serving rural and tribal populations in the Washington, Wyoming, Alaska, Montana, Idaho region to build research infrastructure. We report on the iterative process of developing the technical architecture for semantically aligning electronic health data in primary care settings across our pilot sites and tools that will facilitate linkages between the research and practice communities. Our architecture emphasizes sustainable technical solutions for addressing data extraction, alignment, quality, and metadata management. The architecture provides immediate benefits to participating partners via a clinical decision support tool and data querying functionality to support local quality improvement efforts. The FInDiT tool catalogues type, quantity, and quality of the data that are available across the LC Data QUEST data sharing architecture. These tools facilitate the bi-directional process of translational research.
LC Data QUEST: A Technical Architecture for Community Federated Clinical Data Sharing
Stephens, Kari A.; Lin, Ching-Ping; Baldwin, Laura-Mae; Echo-Hawk, Abigail; Keppel, Gina A.; Buchwald, Dedra; Whitener, Ron J.; Korngiebel, Diane M.; Berg, Alfred O.; Black, Robert A.; Tarczy-Hornoch, Peter
2012-01-01
The University of Washington Institute of Translational Health Sciences is engaged in a project, LC Data QUEST, building data sharing capacity in primary care practices serving rural and tribal populations in the Washington, Wyoming, Alaska, Montana, Idaho region to build research infrastructure. We report on the iterative process of developing the technical architecture for semantically aligning electronic health data in primary care settings across our pilot sites and tools that will facilitate linkages between the research and practice communities. Our architecture emphasizes sustainable technical solutions for addressing data extraction, alignment, quality, and metadata management. The architecture provides immediate benefits to participating partners via a clinical decision support tool and data querying functionality to support local quality improvement efforts. The FInDiT tool catalogues type, quantity, and quality of the data that are available across the LC Data QUEST data sharing architecture. These tools facilitate the bi-directional process of translational research. PMID:22779052
Schmidt, Thomas H; Kandt, Christian
2012-10-22
At the beginning of each molecular dynamics membrane simulation stands the generation of a suitable starting structure which includes the working steps of aligning membrane and protein and seamlessly accommodating the protein in the membrane. Here we introduce two efficient and complementary methods based on pre-equilibrated membrane patches, automating these steps. Using a voxel-based cast of the coarse-grained protein, LAMBADA computes a hydrophilicity profile-derived scoring function based on which the optimal rotation and translation operations are determined to align protein and membrane. Employing an entirely geometrical approach, LAMBADA is independent from any precalculated data and aligns even large membrane proteins within minutes on a regular workstation. LAMBADA is the first tool performing the entire alignment process automatically while providing the user with the explicit 3D coordinates of the aligned protein and membrane. The second tool is an extension of the InflateGRO method addressing the shortcomings of its predecessor in a fully automated workflow. Determining the exact number of overlapping lipids based on the area occupied by the protein and restricting expansion, compression and energy minimization steps to a subset of relevant lipids through automatically calculated and system-optimized operation parameters, InflateGRO2 yields optimal lipid packing and reduces lipid vacuum exposure to a minimum preserving as much of the equilibrated membrane structure as possible. Applicable to atomistic and coarse grain structures in MARTINI format, InflateGRO2 offers high accuracy, fast performance, and increased application flexibility permitting the easy preparation of systems exhibiting heterogeneous lipid composition as well as embedding proteins into multiple membranes. Both tools can be used separately, in combination with other methods, or in tandem permitting a fully automated workflow while retaining a maximum level of usage control and flexibility. To assess the performance of both methods, we carried out test runs using 22 membrane proteins of different size and transmembrane structure.
IFU simulator: a powerful alignment and performance tool for MUSE instrument
NASA Astrophysics Data System (ADS)
Laurent, Florence; Boudon, Didier; Daguisé, Eric; Dubois, Jean-Pierre; Jarno, Aurélien; Kosmalski, Johan; Piqueras, Laure; Remillieux, Alban; Renault, Edgard
2014-07-01
MUSE (Multi Unit Spectroscopic Explorer) is a second generation Very Large Telescope (VLT) integral field spectrograph (1x1arcmin² Field of View) developed for the European Southern Observatory (ESO), operating in the visible wavelength range (0.465-0.93 μm). A consortium of seven institutes is currently commissioning MUSE in the Very Large Telescope for the Preliminary Acceptance in Chile, scheduled for September, 2014. MUSE is composed of several subsystems which are under the responsibility of each institute. The Fore Optics derotates and anamorphoses the image at the focal plane. A Splitting and Relay Optics feed the 24 identical Integral Field Units (IFU), that are mounted within a large monolithic instrument mechanical structure. Each IFU incorporates an image slicer, a fully refractive spectrograph with VPH-grating and a detector system connected to a global vacuum and cryogenic system. During 2012 and 2013, all MUSE subsystems were integrated, aligned and tested to the P.I. institute at Lyon. After successful PAE in September 2013, MUSE instrument was shipped to the Very Large Telescope in Chile where that was aligned and tested in ESO integration hall at Paranal. After, MUSE was directly transferred in monolithic way without dismounting onto VLT telescope where the first light was overcame. This talk describes the IFU Simulator which is the main alignment and performance tool for MUSE instrument. The IFU Simulator mimics the optomechanical interface between the MUSE pre-optic and the 24 IFUs. The optomechanical design is presented. After, the alignment method of this innovative tool for identifying the pupil and image planes is depicted. At the end, the internal test report is described. The success of the MUSE alignment using the IFU Simulator is demonstrated by the excellent results obtained onto MUSE positioning, image quality and throughput. MUSE commissioning at the VLT is planned for September, 2014.
WormBase ParaSite - a comprehensive resource for helminth genomics.
Howe, Kevin L; Bolt, Bruce J; Shafie, Myriam; Kersey, Paul; Berriman, Matthew
2017-07-01
The number of publicly available parasitic worm genome sequences has increased dramatically in the past three years, and research interest in helminth functional genomics is now quickly gathering pace in response to the foundation that has been laid by these collective efforts. A systematic approach to the organisation, curation, analysis and presentation of these data is clearly vital for maximising the utility of these data to researchers. We have developed a portal called WormBase ParaSite (http://parasite.wormbase.org) for interrogating helminth genomes on a large scale. Data from over 100 nematode and platyhelminth species are integrated, adding value by way of systematic and consistent functional annotation (e.g. protein domains and Gene Ontology terms), gene expression analysis (e.g. alignment of life-stage specific transcriptome data sets), and comparative analysis (e.g. orthologues and paralogues). We provide several ways of exploring the data, including genome browsers, genome and gene summary pages, text search, sequence search, a query wizard, bulk downloads, and programmatic interfaces. In this review, we provide an overview of the back-end infrastructure and analysis behind WormBase ParaSite, and the displays and tools available to users for interrogating helminth genomic data. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
De novo sequencing and analysis of the transcriptome of Panax ginseng in the leaf-expansion period.
Liu, Shichao; Wang, Siming; Liu, Meichen; Yang, Fei; Zhang, Hui; Liu, Shiyang; Wang, Qun; Zhao, Yu
2016-08-01
Panax ginseng, a traditional Chinese medicine, is used worldwide for its variety of health benefits and its treatment efficacy. However, it is difficult to cultivate due to its vulnerability to environmental stresses. The present study provided the first report, to the best of our knowledge, of transcriptome analysis of ginseng at the leaf‑expansion stage. Using the Illumina sequencing platform, >40,000,000 high‑quality paired‑end reads were obtained and assembled into 100,533 unique sequences. When the sequences were searched against the publicly available National Center for Biotechnology Information protein database using The Basic Local Alignment Search Tool, 61,599 sequences exhibited similarity to known proteins. Functional annotation and classification, including use of the Gene Ontology, Clusters of Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes databases, revealed that the activated genes in ginseng were predominantly ribonuclease‑like storage genes, environmental stress genes, pathogenesis-related genes and other antioxidant genes. A number of candidate genes in environmental stress‑associated pathways were also identified. These novel data provide useful information on the growth and development stages of ginseng, and serve as an important public information platform for further understanding of the molecular mechanisms and functional genomics of ginseng.
Xi, Bing-Wen; Oros, Mikuláš; Chen, Kai; Xie, Jun
2018-02-01
A new monozoic cestode, Parabreviscolex niepini n. gen. and n. sp. (Cestoda: Caryophyllidea), is described from the type-host Schizopygopsis younghusbandi Regan, 1905 (Cyprinidae: Schizothoracinae) and Schizothorax waltoni Regan, 1905 (Cyprinidae: Schizothoracinae) in the Yarlung Tsangpo River, the upper tributary of the Brahmaputra River on the Tibetan Plateau. The new genus is placed in the Capingentidae because the vitellarium is situated partly in the medullary and cortical parenchyma, i.e., neither completely external nor internal to inner longitudinal muscles. Parabreviscolex n. gen. is characterized by possessing an afossate and cuneiform scolex; numerous vitelline follicles and testes present immediately after the scolex, and spread backward near the cirrus sac; the uterus does not loop anterior to the cirrus sac; genital pores separate, opening to the common genital atrium; the pre-ovarian vitelline follicles lateral and median, post-ovarian vitelline follicles present; ovary H-shaped, compact, and ovarian arms long, anteriorly reaching the cirrus sac. Homology search by the basic local alignment search tool (BLAST) showed that the partial 18S rDNA and complete mtDNA cox-1 sequences obtained in this report were not consistent with any sequences available in GenBank, and molecular phylogenetic analyses revealed Parabreviscolex formed a separated long branch within the caryophyllideans from cyprinids.
Saprophytic and Potentially Pathogenic Fusarium Species from Peat Soil in Perak and Pahang
Karim, Nurul Farah Abdul; Mohd, Masratulhawa; Nor, Nik Mohd Izham Mohd; Zakaria, Latiffah
2016-01-01
Isolates of Fusarium were discovered in peat soil samples collected from peat swamp forest, waterlogged peat soil, and peat soil from oil palm plantations. Morphological characteristics were used to tentatively identify the isolates, and species confirmation was based on the sequence of translation elongation factor-1α (TEF-1α) and phylogenetic analysis. Based on the closest match of Basic Local Alignment Search Tool (BLAST) searches against the GenBank and Fusarium-ID databases, five Fusarium species were identified, namely F. oxysporum (60%), F. solani (23%), F. proliferatum (14%), F. semitectum (1%), and F. verticillioides (1%). From a neighbour-joining tree of combined TEF-1α and β-tubulin sequences, isolates from the same species were clustered in the same clade, though intraspecies variations were observed from the phylogenetic analysis. The Fusarium species isolated in the present study are soil inhabitants and are widely distributed worldwide. These species can act as saprophytes and decomposers as well as plant pathogens. The presence of Fusarium species in peat soils suggested that peat soils could be a reservoir of plant pathogens, as well-known plant pathogenic species such F. oxysporum, F. solani, F. proliferatum, and F. verticillioides were identified. The results of the present study provide knowledge on the survival and distribution of Fusarium species. PMID:27019679
Xia, Minghui; Qi, Qingguo
2013-01-01
We used denaturing gradient gel electrophoresis (DGGE) to compare bacterial profiles in periodontium and root canals of teeth with combined periodontal-endodontic lesions. Samples of dental plaque and necrotic pulp were collected from thirteen extracted teeth with advanced periodontitis. Genomic DNA was extracted for polymerase chain reaction (PCR) analysis using universal bacterial primers. The PCR products were then loaded onto DGGE gels to obtain fractionated bands. Characteristic DGGE bands were excised and DNA was cloned and sequenced. The number of bands, which indicates the number of bacterial species, was compared between dental plaques and necrotic pulp tissues from the same tooth. Although the difference was statistically significant (P < 0.01), there was no positive correlation; similarity (Dice coefficient) was 13.1% to 62.5%. Some bacteria species were present in both the periodontal pockets and root canals of the same tooth; however, periodontal bacteria did not always invade the root canals, and some bacteria in root canals were not present in periodontal pockets of the same tooth. In some teeth, unique bacteria in root canals had not passed from periodontal pockets. A basic local alignment search tool (BLAST) sequence search in Genbank indicated that new bacteria species were present in periodontal pockets and root canals. Their characteristics must thus be further analyzed.
Pain assessment tools: is the content appropriate for use in palliative care?
Hølen, Jacob Chr; Hjermstad, Marianne Jensen; Loge, Jon Håvard; Fayers, Peter M; Caraceni, Augusto; De Conno, Franco; Forbes, Karen; Fürst, Carl Johan; Radbruch, Lukas; Kaasa, Stein
2006-12-01
Inadequate pain assessment prevents optimal treatment in palliative care. The content of pain assessment tools might limit their usefulness for proper pain assessment, but data on the content validity of the tools are scarce. The objective of this study was to examine the content of the existing pain assessment tools, and to evaluate the appropriateness of different dimensions and items for pain assessment in palliative care. A systematic search was performed to find pain assessment tools for patients with advanced cancer who were receiving palliative care. An ad hoc search with broader search criteria supplemented the systematic search. The items of the identified tools were allocated to appropriate dimensions. This was reviewed by an international panel of experts, who also evaluated the relevance of the different dimensions for pain assessment in palliative care. The systematic literature search generated 16 assessment tools while the ad hoc search generated 64. Ten pain dimensions containing 1,011 pain items were identified by the experts. The experts ranked intensity, temporal pattern, treatment and exacerbating/relieving factors, location, and interference with health-related quality of life as the most important dimensions. None of the assessment tools covered these dimensions satisfactorily. Most items were related to interference (231) and intensity (138). Temporal pattern (which includes breakthrough pain), ranked as the second most important dimension, was covered by 29 items only. Many tools include dimensions and items of limited relevance for patients with advanced cancer. This might reduce compliance and threaten the validity of the assessment. New tools should reflect the clinical relevance of different dimensions and be user-friendly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bono, M J; Hibbard, R L
2005-12-05
A tool holder was designed to facilitate the machining of precision meso-scale components with complex three-dimensional shapes with sub-{micro}m accuracy on a four-axis lathe. A four-axis lathe incorporates a rotary table that allows the cutting tool to swivel with respect to the workpiece to enable the machining of complex workpiece forms, and accurately machining complex meso-scale parts often requires that the cutting tool be aligned precisely along the axis of rotation of the rotary table. The tool holder designed in this study has greatly simplified the process of setting the tool in the correct location with sub-{micro}m precision. The toolmore » holder adjusts the tool position using flexures that were designed using finite element analyses. Two flexures adjust the lateral position of the tool to align the center of the nose of the tool with the axis of rotation of the B-axis, and another flexure adjusts the height of the tool. The flexures are driven by manual micrometer adjusters, each of which provides a minimum increment of motion of 20 nm. This tool holder has simplified the process of setting a tool with sub-{micro}m accuracy, and it has significantly reduced the time required to set a tool.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quock, D. E. R.; Cianciarulo, M. B.; APS Engineering Support Division
2007-01-01
The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, themore » necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.« less
FLASHFLOOD: A 3D Field-based similarity search and alignment method for flexible molecules
NASA Astrophysics Data System (ADS)
Pitman, Michael C.; Huber, Wolfgang K.; Horn, Hans; Krämer, Andreas; Rice, Julia E.; Swope, William C.
2001-07-01
A three-dimensional field-based similarity search and alignment method for flexible molecules is introduced. The conformational space of a flexible molecule is represented in terms of fragments and torsional angles of allowed conformations. A user-definable property field is used to compute features of fragment pairs. Features are generalizations of CoMMA descriptors (Silverman, B.D. and Platt, D.E., J. Med. Chem., 39 (1996) 2129.) that characterize local regions of the property field by its local moments. The features are invariant under coordinate system transformations. Features taken from a query molecule are used to form alignments with fragment pairs in the database. An assembly algorithm is then used to merge the fragment pairs into full structures, aligned to the query. Key to the method is the use of a context adaptive descriptor scaling procedure as the basis for similarity. This allows the user to tune the weights of the various feature components based on examples relevant to the particular context under investigation. The property fields may range from simple, phenomenological fields, to fields derived from quantum mechanical calculations. We apply the method to the dihydrofolate/methotrexate benchmark system, and show that when one injects relevant contextual information into the descriptor scaling procedure, better results are obtained more efficiently. We also show how the method works and include computer times for a query from a database that represents approximately 23 million conformers of seventeen flexible molecules.
Model of myosin node aggregation into a contractile ring: the effect of local alignment
NASA Astrophysics Data System (ADS)
Ojkic, Nikola; Wu, Jian-Qiu; Vavylonis, Dimitrios
2011-09-01
Actomyosin bundles frequently form through aggregation of membrane-bound myosin clusters. One such example is the formation of the contractile ring in fission yeast from a broad band of cortical nodes. Nodes are macromolecular complexes containing several dozens of myosin-II molecules and a few formin dimers. The condensation of a broad band of nodes into the contractile ring has been previously described by a search, capture, pull and release (SCPR) model. In SCPR, a random search process mediated by actin filaments nucleated by formins leads to transient actomyosin connections among nodes that pull one another into a ring. The SCPR model reproduces the transport of nodes over long distances and predicts observed clump-formation instabilities in mutants. However, the model does not generate transient linear elements and meshwork structures as observed in some wild-type and mutant cells during ring assembly. As a minimal model of node alignment, we added short-range aligning forces to the SCPR model representing currently unresolved mechanisms that may involve structural components, cross-linking and bundling proteins. We studied the effect of the local node alignment mechanism on ring formation numerically. We varied the new parameters and found viable rings for a realistic range of values. Morphologically, transient structures that form during ring assembly resemble those observed in experiments with wild-type and cdc25-22 cells. Our work supports a hierarchical process of ring self-organization involving components drawn together from distant parts of the cell followed by progressive stabilization.
The twilight zone of cis element alignments.
Sebastian, Alvaro; Contreras-Moreira, Bruno
2013-02-01
Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein-DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein-DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments.
The twilight zone of cis element alignments
Sebastian, Alvaro; Contreras-Moreira, Bruno
2013-01-01
Sequence alignment of proteins and nucleic acids is a routine task in bioinformatics. Although the comparison of complete peptides, genes or genomes can be undertaken with a great variety of tools, the alignment of short DNA sequences and motifs entails pitfalls that have not been fully addressed yet. Here we confront the structural superposition of transcription factors with the sequence alignment of their recognized cis elements. Our goals are (i) to test TFcompare (http://floresta.eead.csic.es/tfcompare), a structural alignment method for protein–DNA complexes; (ii) to benchmark the pairwise alignment of regulatory elements; (iii) to define the confidence limits and the twilight zone of such alignments and (iv) to evaluate the relevance of these thresholds with elements obtained experimentally. We find that the structure of cis elements and protein–DNA interfaces is significantly more conserved than their sequence and measures how this correlates with alignment errors when only sequence information is considered. Our results confirm that DNA motifs in the form of matrices produce better alignments than individual sequences. Finally, we report that empirical and theoretically derived twilight thresholds are useful for estimating the natural plasticity of regulatory sequences, and hence for filtering out unreliable alignments. PMID:23268451
NASA Astrophysics Data System (ADS)
Pierre Auger Collaboration; Abreu, P.; Aglietta, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Bäcker, T.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Fajardo Tapia, I.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Gesterling, K.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hague, J. D.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mićanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Moura, C. A.; Mueller, S.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Parsons, R. D.; Pastor, S.; Paul, T.; Pech, M.; PeĶala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Phan, N.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Robledo, C.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tamashiro, A.; Tapia, A.; Tartare, M.; Taşcău, O.; Tavera Ruiz, C. G.; Tcaciuc, R.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tiwari, D. K.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Warner, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Winnick, M. G.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zimbres Silva, M.; Ziolkowski, M.
2012-01-01
We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or 'multiplets') which exhibit a correlation between arrival direction and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cosmic rays. We describe the largest multiplets found and compute the probability that they appeared by chance from an isotropic distribution. We find no statistically significant evidence for the presence of multiplets arising from magnetic deflections in the present data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abreu, P.; /Lisbon, IST; Aglietta, M.
2011-11-01
We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or ''multiplets'') which exhibit a correlation between arrival direction and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of themore » cosmic rays. We describe the largest multiplets found and compute the probability that they appeared by chance from an isotropic distribution. We find no statistically significant evidence for the presence of multiplets arising from magnetic deflections in the present data.« less
Identification of food-grade subtilisins as gluten-degrading enzymes to treat celiac disease
Wei, Guoxian; Tian, Na; Siezen, Roland; Schuppan, Detlef
2016-01-01
Gluten are proline- and glutamine-rich proteins present in wheat, barley, and rye and contain the immunogenic sequences that drive celiac disease (CD). Rothia mucilaginosa, an oral microbial colonizer, can cleave these gluten epitopes. The aim was to isolate and identify the enzymes and evaluate their potential as novel enzyme therapeutics for CD. The membrane-associated R. mucilaginosa proteins were extracted and separated by DEAE chromatography. Enzyme activities were monitored with paranitroanilide-derivatized and fluorescence resonance energy transfer (FRET) peptide substrates, and by gliadin zymography. Epitope elimination was determined in R5 and G12 ELISAs. The gliadin-degrading Rothia enzymes were identified by LC-ESI-MS/MS as hypothetical proteins ROTMU0001_0241 (C6R5V9_9MICC), ROTMU0001_0243 (C6R5W1_9MICC), and ROTMU0001_240 (C6R5V8_9MICC). A search with the Basic Local Alignment Search Tool revealed that these are subtilisin-like serine proteases belonging to the peptidase S8 family. Alignment of the major Rothia subtilisins indicated that all contain the catalytic triad with Asp (D), His (H), and Ser (S) in the D-H-S order. They cleaved succinyl-Ala-Ala-Pro-Phe-paranitroanilide, a substrate for subtilisin with Pro in the P2 position, as in Tyr-Pro-Gln and Leu-Pro-Tyr in gluten, which are also cleaved. Consistently, FRET substrates of gliadin immunogenic epitopes comprising Xaa-Pro-Xaa motives were rapidly hydrolyzed. The Rothia subtilisins and two subtilisins from Bacillus licheniformis, subtilisin A and the food-grade Nattokinase, efficiently degraded the immunogenic gliadin-derived 33-mer peptide and the immunodominant epitopes recognized by the R5 and G12 antibodies. This study identified Rothia and food-grade Bacillus subtilisins as promising new candidates for enzyme therapeutics in CD. PMID:27469368
PARTS: Probabilistic Alignment for RNA joinT Secondary structure prediction
Harmanci, Arif Ozgun; Sharma, Gaurav; Mathews, David H.
2008-01-01
A novel method is presented for joint prediction of alignment and common secondary structures of two RNA sequences. The joint consideration of common secondary structures and alignment is accomplished by structural alignment over a search space defined by the newly introduced motif called matched helical regions. The matched helical region formulation generalizes previously employed constraints for structural alignment and thereby better accommodates the structural variability within RNA families. A probabilistic model based on pseudo free energies obtained from precomputed base pairing and alignment probabilities is utilized for scoring structural alignments. Maximum a posteriori (MAP) common secondary structures, sequence alignment and joint posterior probabilities of base pairing are obtained from the model via a dynamic programming algorithm called PARTS. The advantage of the more general structural alignment of PARTS is seen in secondary structure predictions for the RNase P family. For this family, the PARTS MAP predictions of secondary structures and alignment perform significantly better than prior methods that utilize a more restrictive structural alignment model. For the tRNA and 5S rRNA families, the richer structural alignment model of PARTS does not offer a benefit and the method therefore performs comparably with existing alternatives. For all RNA families studied, the posterior probability estimates obtained from PARTS offer an improvement over posterior probability estimates from a single sequence prediction. When considering the base pairings predicted over a threshold value of confidence, the combination of sensitivity and positive predictive value is superior for PARTS than for the single sequence prediction. PARTS source code is available for download under the GNU public license at http://rna.urmc.rochester.edu. PMID:18304945
Identification of true EST alignments for recognising transcribed regions.
Ma, Chuang; Wang, Jia; Li, Lun; Duan, Mo-Jie; Zhou, Yan-Hong
2011-01-01
Transcribed regions can be determined by aligning Expressed Sequence Tags (ESTs) with genome sequences. The kernel of this strategy is to effectively distinguish true EST alignments from spurious ones. In this study, three measures including Direction Check, Identity Check and Terminal Check were introduced to more effectively eliminate spurious EST alignments. On the basis of these introduced measures and other widely used measures, a computational tool, named ESTCleanser, has been developed to identify true EST alignments for obtaining reliable transcribed regions. The performance of ESTCleanser has been evaluated on the well-annotated human ENCyclopedia of DNA Elements (ENCODE) regions using human ESTs in the dbEST database. The evaluation results show that the accuracy of ESTCleanser at exon and intron levels is more remarkably enhanced than that of UCSC-spliced EST alignments. This work would be helpful to EST-based researches on finding new genes, complementing genome annotation, recognising alternative splicing events and Single Nucleotide Polymorphisms (SNPs), etc.
1996-10-01
aligned using an octree search algorithm combined with cross correlation analysis . Successive 4x downsampling with optional and specifiable neighborhood...desired and the search engine embedded in the OODBMS will find the requested imagery and que it to the user for further analysis . This application was...obtained during Hoftmann-LaRoche production pathology imaging performed at UMICH. Versant works well and is easy to use; 3) Pathology Image Analysis
Treangen, Todd J; Ondov, Brian D; Koren, Sergey; Phillippy, Adam M
2014-01-01
Whole-genome sequences are now available for many microbial species and clades, however existing whole-genome alignment methods are limited in their ability to perform sequence comparisons of multiple sequences simultaneously. Here we present the Harvest suite of core-genome alignment and visualization tools for the rapid and simultaneous analysis of thousands of intraspecific microbial strains. Harvest includes Parsnp, a fast core-genome multi-aligner, and Gingr, a dynamic visual platform. Together they provide interactive core-genome alignments, variant calls, recombination detection, and phylogenetic trees. Using simulated and real data we demonstrate that our approach exhibits unrivaled speed while maintaining the accuracy of existing methods. The Harvest suite is open-source and freely available from: http://github.com/marbl/harvest.
Wave drag reduction with a self-aligning aerodisk on a missile configuration
NASA Astrophysics Data System (ADS)
Schnepf, C.; Wysocki, O.; Schülein, E.
2017-06-01
A self-aligning aerodisk to reduce the wave drag on a pitching missile is numerically investigated. The motion and the Mach number were chosen to match a maneuver flight of an actual missile: pitching frequency f = 7.5 Hz, Mach number M = 2.2, and range of angle of attack 0° < < 21° . The self-alignment was realized with a coupling of the §ow solver with a 6DoF (6 degrees of freedom) tool. In the entire range of angle of attack, the drag could be reduced with the self-aligning aerodisk. A comparison with experimental data showed in parts a quite good agreement in the aerodynamic coe©cients, in the shock structure, and in the alignment of the aerodisk.
The Development of a Visual-Perceptual Chemistry Specific (VPCS) Assessment Tool
ERIC Educational Resources Information Center
Oliver-Hoyo, Maria; Sloan, Caroline
2014-01-01
The development of the Visual-Perceptual Chemistry Specific (VPCS) assessment tool is based on items that align to eight visual-perceptual skills considered as needed by chemistry students. This tool includes a comprehensive range of visual operations and presents items within a chemistry context without requiring content knowledge to solve…
The Three C's for Urban Science Education
ERIC Educational Resources Information Center
Emdin, Chris
2008-01-01
In this article, the author outlines briefly what he calls the three C's--a set of tools that can be used to improve urban science education. The author then describes ways that these tools can support students who have traditionally been marginalized. These three aligned and closely connected tools provide practical ways to engage students in…
ERIC Educational Resources Information Center
Price, Geoffrey P.; Wright, Vivian H.
2012-01-01
Using John Creswell's Research Process Cycle as a framework, this article describes various web-based collaborative technologies useful for enhancing the organization and efficiency of educational research. Visualization tools (Cacoo) assist researchers in identifying a research problem. Resource storage tools (Delicious, Mendeley, EasyBib)…
The Budget Can Be a Management Tool.
ERIC Educational Resources Information Center
Van Keuren, James
2002-01-01
Describes how the budget can be used as a management tool (continuous-improvement plan) to help align district financial resources with school-reform efforts. Cites example of a continuous-improvement plan developed by the Ohio Department of Education. (PKP)
Fast and accurate reference-free alignment of subtomograms.
Chen, Yuxiang; Pfeffer, Stefan; Hrabe, Thomas; Schuller, Jan Michael; Förster, Friedrich
2013-06-01
In cryoelectron tomography alignment and averaging of subtomograms, each dnepicting the same macromolecule, improves the resolution compared to the individual subtomogram. Major challenges of subtomogram alignment are noise enhancement due to overfitting, the bias of an initial reference in the iterative alignment process, and the computational cost of processing increasingly large amounts of data. Here, we propose an efficient and accurate alignment algorithm via a generalized convolution theorem, which allows computation of a constrained correlation function using spherical harmonics. This formulation increases computational speed of rotational matching dramatically compared to rotation search in Cartesian space without sacrificing accuracy in contrast to other spherical harmonic based approaches. Using this sampling method, a reference-free alignment procedure is proposed to tackle reference bias and overfitting, which also includes contrast transfer function correction by Wiener filtering. Application of the method to simulated data allowed us to obtain resolutions near the ground truth. For two experimental datasets, ribosomes from yeast lysate and purified 20S proteasomes, we achieved reconstructions of approximately 20Å and 16Å, respectively. The software is ready-to-use and made public to the community. Copyright © 2013 Elsevier Inc. All rights reserved.
Hu, Jun; Liu, Zi; Yu, Dong-Jun; Zhang, Yang
2018-02-15
Sequence-order independent structural comparison, also called structural alignment, of small ligand molecules is often needed for computer-aided virtual drug screening. Although many ligand structure alignment programs are proposed, most of them build the alignments based on rigid-body shape comparison which cannot provide atom-specific alignment information nor allow structural variation; both abilities are critical to efficient high-throughput virtual screening. We propose a novel ligand comparison algorithm, LS-align, to generate fast and accurate atom-level structural alignments of ligand molecules, through an iterative heuristic search of the target function that combines inter-atom distance with mass and chemical bond comparisons. LS-align contains two modules of Rigid-LS-align and Flexi-LS-align, designed for rigid-body and flexible alignments, respectively, where a ligand-size independent, statistics-based scoring function is developed to evaluate the similarity of ligand molecules relative to random ligand pairs. Large-scale benchmark tests are performed on prioritizing chemical ligands of 102 protein targets involving 1,415,871 candidate compounds from the DUD-E (Database of Useful Decoys: Enhanced) database, where LS-align achieves an average enrichment factor (EF) of 22.0 at the 1% cutoff and the AUC score of 0.75, which are significantly higher than other state-of-the-art methods. Detailed data analyses show that the advanced performance is mainly attributed to the design of the target function that combines structural and chemical information to enhance the sensitivity of recognizing subtle difference of ligand molecules and the introduces of structural flexibility that help capture the conformational changes induced by the ligand-receptor binding interactions. These data demonstrate a new avenue to improve the virtual screening efficiency through the development of sensitive ligand structural alignments. http://zhanglab.ccmb.med.umich.edu/LS-align/. njyudj@njust.edu.cn or zhng@umich.edu. Supplementary data are available at Bioinformatics online.
Project Lefty: More Bang for the Search Query
ERIC Educational Resources Information Center
Varnum, Ken
2010-01-01
This article describes the Project Lefty, a search system that, at a minimum, adds a layer on top of traditional federated search tools that will make the wait for results more worthwhile for researchers. At best, Project Lefty improves search queries and relevance rankings for web-scale discovery tools to make the results themselves more relevant…
ERIC Educational Resources Information Center
Maguire, Bryan; Mernagh, Edwin; Murray, Jim
2008-01-01
In this paper, the issues involved in aligning national and meta-frameworks are explored and analysed. The exploration is timely, given that two qualifications meta-frameworks are currently being developed and implemented in Europe: the question is now how relationships should be established between these new reference tools and national…
acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data
Lux, Markus; Kruger, Jan; Rinke, Christian; ...
2016-12-20
A major obstacle in single-cell sequencing is sample contamination with foreign DNA. To guarantee clean genome assemblies and to prevent the introduction of contamination into public databases, considerable quality control efforts are put into post-sequencing analysis. Contamination screening generally relies on reference-based methods such as database alignment or marker gene search, which limits the set of detectable contaminants to organisms with closely related reference species. As genomic coverage in the tree of life is highly fragmented, there is an urgent need for a reference-free methodology for contaminant identification in sequence data. We present acdc, a tool specifically developed to aidmore » the quality control process of genomic sequence data. By combining supervised and unsupervised methods, it reliably detects both known and de novo contaminants. First, 16S rRNA gene prediction and the inclusion of ultrafast exact alignment techniques allow sequence classification using existing knowledge from databases. Second, reference-free inspection is enabled by the use of state-of-the-art machine learning techniques that include fast, non-linear dimensionality reduction of oligonucleotide signatures and subsequent clustering algorithms that automatically estimate the number of clusters. The latter also enables the removal of any contaminant, yielding a clean sample. Furthermore, given the data complexity and the ill-posedness of clustering, acdc employs bootstrapping techniques to provide statistically profound confidence values. Tested on a large number of samples from diverse sequencing projects, our software is able to quickly and accurately identify contamination. Results are displayed in an interactive user interface. Acdc can be run from the web as well as a dedicated command line application, which allows easy integration into large sequencing project analysis workflows. Acdc can reliably detect contamination in single-cell genome data. In addition to database-driven detection, it complements existing tools by its unsupervised techniques, which allow for the detection of de novo contaminants. Our contribution has the potential to drastically reduce the amount of resources put into these processes, particularly in the context of limited availability of reference species. As single-cell genome data continues to grow rapidly, acdc adds to the toolkit of crucial quality assurance tools.« less
acdc – Automated Contamination Detection and Confidence estimation for single-cell genome data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lux, Markus; Kruger, Jan; Rinke, Christian
A major obstacle in single-cell sequencing is sample contamination with foreign DNA. To guarantee clean genome assemblies and to prevent the introduction of contamination into public databases, considerable quality control efforts are put into post-sequencing analysis. Contamination screening generally relies on reference-based methods such as database alignment or marker gene search, which limits the set of detectable contaminants to organisms with closely related reference species. As genomic coverage in the tree of life is highly fragmented, there is an urgent need for a reference-free methodology for contaminant identification in sequence data. We present acdc, a tool specifically developed to aidmore » the quality control process of genomic sequence data. By combining supervised and unsupervised methods, it reliably detects both known and de novo contaminants. First, 16S rRNA gene prediction and the inclusion of ultrafast exact alignment techniques allow sequence classification using existing knowledge from databases. Second, reference-free inspection is enabled by the use of state-of-the-art machine learning techniques that include fast, non-linear dimensionality reduction of oligonucleotide signatures and subsequent clustering algorithms that automatically estimate the number of clusters. The latter also enables the removal of any contaminant, yielding a clean sample. Furthermore, given the data complexity and the ill-posedness of clustering, acdc employs bootstrapping techniques to provide statistically profound confidence values. Tested on a large number of samples from diverse sequencing projects, our software is able to quickly and accurately identify contamination. Results are displayed in an interactive user interface. Acdc can be run from the web as well as a dedicated command line application, which allows easy integration into large sequencing project analysis workflows. Acdc can reliably detect contamination in single-cell genome data. In addition to database-driven detection, it complements existing tools by its unsupervised techniques, which allow for the detection of de novo contaminants. Our contribution has the potential to drastically reduce the amount of resources put into these processes, particularly in the context of limited availability of reference species. As single-cell genome data continues to grow rapidly, acdc adds to the toolkit of crucial quality assurance tools.« less
Rana, Gurpreet K; Bradley, Doreen R; Hamstra, Stanley J; Ross, Paula T; Schumacher, Robert E; Frohna, John G; Haftel, Hilary M; Lypson, Monica L
2011-01-01
The objective of this study was to validate an assessment instrument for MEDLINE search strategies at an academic medical center. Two approaches were used to investigate if the search assessment tool could capture performance differences in search strategy construction. First, data from an evaluation of MEDLINE searches from a pediatric resident's longitudinal assessment were investigated. Second, a cross-section of search strategies from residents in one incoming class was compared with strategies of residents graduating a year later. MEDLINE search strategies formulated by faculty who had been identified as having search expertise were used as a gold standard comparison. Participants were presented with a clinical scenario and asked to identify the search question and conduct a MEDLINE search. Two librarians rated the blinded search strategies. Search strategy scores were significantly higher for residents who received training than the comparison group with no training. There was no significant difference in search strategy scores between senior residents who received training and faculty experts. The results provide evidence for the validity of the instrument to evaluate MEDLINE search strategies. This assessment tool can measure improvements in information-seeking skills and provide data to fulfill Accreditation Council for Graduate Medical Education competencies.
Marsh, Herbert W; Guo, Jiesi; Parker, Philip D; Nagengast, Benjamin; Asparouhov, Tihomir; Muthén, Bengt; Dicke, Theresa
2017-01-12
Scalar invariance is an unachievable ideal that in practice can only be approximated; often using potentially questionable approaches such as partial invariance based on a stepwise selection of parameter estimates with large modification indices. Study 1 demonstrates an extension of the power and flexibility of the alignment approach for comparing latent factor means in large-scale studies (30 OECD countries, 8 factors, 44 items, N = 249,840), for which scalar invariance is typically not supported in the traditional confirmatory factor analysis approach to measurement invariance (CFA-MI). Importantly, we introduce an alignment-within-CFA (AwC) approach, transforming alignment from a largely exploratory tool into a confirmatory tool, and enabling analyses that previously have not been possible with alignment (testing the invariance of uniquenesses and factor variances/covariances; multiple-group MIMIC models; contrasts on latent means) and structural equation models more generally. Specifically, it also allowed a comparison of gender differences in a 30-country MIMIC AwC (i.e., a SEM with gender as a covariate) and a 60-group AwC CFA (i.e., 30 countries × 2 genders) analysis. Study 2, a simulation study following up issues raised in Study 1, showed that latent means were more accurately estimated with alignment than with the scalar CFA-MI, and particularly with partial invariance scalar models based on the heavily criticized stepwise selection strategy. In summary, alignment augmented by AwC provides applied researchers from diverse disciplines considerable flexibility to address substantively important issues when the traditional CFA-MI scalar model does not fit the data. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Finding collaborators: toward interactive discovery tools for research network systems.
Borromeo, Charles D; Schleyer, Titus K; Becich, Michael J; Hochheiser, Harry
2014-11-04
Research networking systems hold great promise for helping biomedical scientists identify collaborators with the expertise needed to build interdisciplinary teams. Although efforts to date have focused primarily on collecting and aggregating information, less attention has been paid to the design of end-user tools for using these collections to identify collaborators. To be effective, collaborator search tools must provide researchers with easy access to information relevant to their collaboration needs. The aim was to study user requirements and preferences for research networking system collaborator search tools and to design and evaluate a functional prototype. Paper prototypes exploring possible interface designs were presented to 18 participants in semistructured interviews aimed at eliciting collaborator search needs. Interview data were coded and analyzed to identify recurrent themes and related software requirements. Analysis results and elements from paper prototypes were used to design a Web-based prototype using the D3 JavaScript library and VIVO data. Preliminary usability studies asked 20 participants to use the tool and to provide feedback through semistructured interviews and completion of the System Usability Scale (SUS). Initial interviews identified consensus regarding several novel requirements for collaborator search tools, including chronological display of publication and research funding information, the need for conjunctive keyword searches, and tools for tracking candidate collaborators. Participant responses were positive (SUS score: mean 76.4%, SD 13.9). Opportunities for improving the interface design were identified. Interactive, timeline-based displays that support comparison of researcher productivity in funding and publication have the potential to effectively support searching for collaborators. Further refinement and longitudinal studies may be needed to better understand the implications of collaborator search tools for researcher workflows.
Finding Collaborators: Toward Interactive Discovery Tools for Research Network Systems
Schleyer, Titus K; Becich, Michael J; Hochheiser, Harry
2014-01-01
Background Research networking systems hold great promise for helping biomedical scientists identify collaborators with the expertise needed to build interdisciplinary teams. Although efforts to date have focused primarily on collecting and aggregating information, less attention has been paid to the design of end-user tools for using these collections to identify collaborators. To be effective, collaborator search tools must provide researchers with easy access to information relevant to their collaboration needs. Objective The aim was to study user requirements and preferences for research networking system collaborator search tools and to design and evaluate a functional prototype. Methods Paper prototypes exploring possible interface designs were presented to 18 participants in semistructured interviews aimed at eliciting collaborator search needs. Interview data were coded and analyzed to identify recurrent themes and related software requirements. Analysis results and elements from paper prototypes were used to design a Web-based prototype using the D3 JavaScript library and VIVO data. Preliminary usability studies asked 20 participants to use the tool and to provide feedback through semistructured interviews and completion of the System Usability Scale (SUS). Results Initial interviews identified consensus regarding several novel requirements for collaborator search tools, including chronological display of publication and research funding information, the need for conjunctive keyword searches, and tools for tracking candidate collaborators. Participant responses were positive (SUS score: mean 76.4%, SD 13.9). Opportunities for improving the interface design were identified. Conclusions Interactive, timeline-based displays that support comparison of researcher productivity in funding and publication have the potential to effectively support searching for collaborators. Further refinement and longitudinal studies may be needed to better understand the implications of collaborator search tools for researcher workflows. PMID:25370463
Kerschner, Joseph E; Erdos, Geza; Hu, Fen Ze; Burrows, Amy; Cioffi, Joseph; Khampang, Pawjai; Dahlgren, Margaret; Hayes, Jay; Keefe, Randy; Janto, Benjamin; Post, J Christopher; Ehrlich, Garth D
2010-04-01
We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response. Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries. Randomly selected clones were subjected to sequence analysis to characterize the libraries and to provide DNA sequence for phylogenetic analyses. Reverse transcription-polymerase chain reaction of the RNA pools was used to generate cDNA sequences corresponding to genes associated with leukotriene biosynthesis and metabolism. Sequence analysis of 921 randomly selected clones from the uninfected MEM cDNA library produced approximately 250,000 nucleotides of almost entirely novel sequence data. Searches of the GenBank database with the Basic Local Alignment Search Tool provided for identification of 515 unique genes expressed in the MEM and not previously described in chinchillas. In almost all cases, the chinchilla cDNA sequences displayed much greater homology to human or other primate genes than with rodent species. Genes associated with leukotriene metabolism were present in both normal and infected MEM. Based on both phylogenetic comparisons and gene expression similarities with humans, chinchilla MEM appears to be an excellent model for the study of middle ear inflammation and infection. The higher degree of sequence similarity between chinchillas and humans compared to chinchillas and rodents was unexpected. The cDNA libraries from normal and infected chinchilla MEM will serve as useful molecular tools in the study of otitis media and should yield important information with respect to middle ear pathogenesis.
Kerschner, Joseph E.; Erdos, Geza; Hu, Fen Ze; Burrows, Amy; Cioffi, Joseph; Khampang, Pawjai; Dahlgren, Margaret; Hayes, Jay; Keefe, Randy; Janto, Benjamin; Post, J. Christopher; Ehrlich, Garth D.
2010-01-01
Objectives We sought to construct and partially characterize complementary DNA (cDNA) libraries prepared from the middle ear mucosa (MEM) of chinchillas to better understand pathogenic aspects of infection and inflammation, particularly with respect to leukotriene biogenesis and response. Methods Chinchilla MEM was harvested from controls and after middle ear inoculation with nontypeable Haemophilus influenzae. RNA was extracted to generate cDNA libraries. Randomly selected clones were subjected to sequence analysis to characterize the libraries and to provide DNA sequence for phylogenetic analyses. Reverse transcription–polymerase chain reaction of the RNA pools was used to generate cDNA sequences corresponding to genes associated with leukotriene biosynthesis and metabolism. Results Sequence analysis of 921 randomly selected clones from the uninfected MEM cDNA library produced approximately 250,000 nucleotides of almost entirely novel sequence data. Searches of the GenBank database with the Basic Local Alignment Search Tool provided for identification of 515 unique genes expressed in the MEM and not previously described in chinchillas. In almost all cases, the chinchilla cDNA sequences displayed much greater homology to human or other primate genes than with rodent species. Genes associated with leukotriene metabolism were present in both normal and infected MEM. Conclusions Based on both phylogenetic comparisons and gene expression similarities with humans, chinchilla MEM appears to be an excellent model for the study of middle ear inflammation and infection. The higher degree of sequence similarity between chinchillas and humans compared to chinchillas and rodents was unexpected. The cDNA libraries from normal and infected chinchilla MEM will serve as useful molecular tools in the study of otitis media and should yield important information with respect to middle ear pathogenesis. PMID:20433028
mobile_icon{margin-right:5px;margin-left:8px}div#tools-main span i{margin-right:6px;float:left}div #tools-main i.icon-eere-arrow-header-link{margin:0 0 0 4px;vertical-align:center}div#tools-main div.highlight-box{margin-top:20px}div#tools-main div.highlight-box div{height:70px;width:33px;display:inline
Chip breaking system for automated machine tool
Arehart, Theodore A.; Carey, Donald O.
1987-01-01
The invention is a rotary selectively directional valve assembly for use in an automated turret lathe for directing a stream of high pressure liquid machining coolant to the interface of a machine tool and workpiece for breaking up ribbon-shaped chips during the formation thereof so as to inhibit scratching or other marring of the machined surfaces by these ribbon-shaped chips. The valve assembly is provided by a manifold arrangement having a plurality of circumferentially spaced apart ports each coupled to a machine tool. The manifold is rotatable with the turret when the turret is positioned for alignment of a machine tool in a machining relationship with the workpiece. The manifold is connected to a non-rotational header having a single passageway therethrough which conveys the high pressure coolant to only the port in the manifold which is in registry with the tool disposed in a working relationship with the workpiece. To position the machine tools the turret is rotated and one of the tools is placed in a material-removing relationship of the workpiece. The passageway in the header and one of the ports in the manifold arrangement are then automatically aligned to supply the machining coolant to the machine tool workpiece interface for breaking up of the chips as well as cooling the tool and workpiece during the machining operation.
Solving Power Tool Problems in the School Shop
ERIC Educational Resources Information Center
Irvin, Daniel W.
1976-01-01
The school shop instructor is largely responsible for the preventive maintenance of power tools. These preventive measures primarily involve proper alignment, good lubrication, a reasonable maintenance program, and good operating procedures. Suggestions for maintenance of specific equipment is provided. (Author/BP)
XML schemas for common bioinformatic data types and their application in workflow systems.
Seibel, Philipp N; Krüger, Jan; Hartmeier, Sven; Schwarzer, Knut; Löwenthal, Kai; Mersch, Henning; Dandekar, Thomas; Giegerich, Robert
2006-11-06
Today, there is a growing need in bioinformatics to combine available software tools into chains, thus building complex applications from existing single-task tools. To create such workflows, the tools involved have to be able to work with each other's data--therefore, a common set of well-defined data formats is needed. Unfortunately, current bioinformatic tools use a great variety of heterogeneous formats. Acknowledging the need for common formats, the Helmholtz Open BioInformatics Technology network (HOBIT) identified several basic data types used in bioinformatics and developed appropriate format descriptions, formally defined by XML schemas, and incorporated them in a Java library (BioDOM). These schemas currently cover sequence, sequence alignment, RNA secondary structure and RNA secondary structure alignment formats in a form that is independent of any specific program, thus enabling seamless interoperation of different tools. All XML formats are available at http://bioschemas.sourceforge.net, the BioDOM library can be obtained at http://biodom.sourceforge.net. The HOBIT XML schemas and the BioDOM library simplify adding XML support to newly created and existing bioinformatic tools, enabling these tools to interoperate seamlessly in workflow scenarios.
YAHA: fast and flexible long-read alignment with optimal breakpoint detection.
Faust, Gregory G; Hall, Ira M
2012-10-01
With improved short-read assembly algorithms and the recent development of long-read sequencers, split mapping will soon be the preferred method for structural variant (SV) detection. Yet, current alignment tools are not well suited for this. We present YAHA, a fast and flexible hash-based aligner. YAHA is as fast and accurate as BWA-SW at finding the single best alignment per query and is dramatically faster and more sensitive than both SSAHA2 and MegaBLAST at finding all possible alignments. Unlike other aligners that report all, or one, alignment per query, or that use simple heuristics to select alignments, YAHA uses a directed acyclic graph to find the optimal set of alignments that cover a query using a biologically relevant breakpoint penalty. YAHA can also report multiple mappings per defined segment of the query. We show that YAHA detects more breakpoints in less time than BWA-SW across all SV classes, and especially excels at complex SVs comprising multiple breakpoints. YAHA is currently supported on 64-bit Linux systems. Binaries and sample data are freely available for download from http://faculty.virginia.edu/irahall/YAHA. imh4y@virginia.edu.
Dunnican, Ward J; Singh, T Paul; Ata, Ashar; Bendana, Emma E; Conlee, Thomas D; Dolce, Charles J; Ramakrishnan, Rakesh
2010-06-01
Reverse alignment (mirror image) visualization is a disconcerting situation occasionally faced during laparoscopic operations. This occurs when the camera faces back at the surgeon in the opposite direction from which the surgeon's body and instruments are facing. Most surgeons will attempt to optimize trocar and camera placement to avoid this situation. The authors' objective was to determine whether the intentional use of reverse alignment visualization during laparoscopic training would improve performance. A standard box trainer was configured for reverse alignment, and 34 medical students and junior surgical residents were randomized to train with either forward alignment (DIRECT) or reverse alignment (MIRROR) visualization. Enrollees were tested on both modalities before and after a 4-week structured training program specific to their modality. Student's t test was used to determine differences in task performance between the 2 groups. Twenty-one participants completed the study (10 DIRECT, 11 MIRROR). There were no significant differences in performance time between DIRECT or MIRROR participants during forward or reverse alignment initial testing. At final testing, DIRECT participants had improved times only in forward alignment performance; they demonstrated no significant improvement in reverse alignment performance. MIRROR participants had significant time improvement in both forward and reverse alignment performance at final testing. Reverse alignment imaging for laparoscopic training improves task performance for both reverse alignment and forward alignment tasks. This may be translated into improved performance in the operating room when faced with reverse alignment situations. Minimal lab training can account for drastic adaptation to this environment.
ERIC Educational Resources Information Center
Georgas, Helen
2014-01-01
This study examines the information-seeking behavior of undergraduate students within a research context. Student searches were recorded while the participants used Google and a library (federated) search tool to find sources (one book, two articles, and one other source of their choosing) for a selected topic. The undergraduates in this study…
ERIC Educational Resources Information Center
Georgas, Helen
2013-01-01
Federated searching was once touted as the library world's answer to Google, but ten years since federated searching technology's inception, how does it actually compare? This study focuses on undergraduate student preferences and perceptions when doing research using both Google and a federated search tool. Students were asked about their…
Fine-tuning structural RNA alignments in the twilight zone
2010-01-01
Background A widely used method to find conserved secondary structure in RNA is to first construct a multiple sequence alignment, and then fold the alignment, optimizing a score based on thermodynamics and covariance. This method works best around 75% sequence similarity. However, in a "twilight zone" below 55% similarity, the sequence alignment tends to obscure the covariance signal used in the second phase. Therefore, while the overall shape of the consensus structure may still be found, the degree of conservation cannot be estimated reliably. Results Based on a combination of available methods, we present a method named planACstar for improving structure conservation in structural alignments in the twilight zone. After constructing a consensus structure by alignment folding, planACstar abandons the original sequence alignment, refolds the sequences individually, but consistent with the consensus, aligns the structures, irrespective of sequence, by a pure structure alignment method, and derives an improved sequence alignment from the alignment of structures, to be re-submitted to alignment folding, etc.. This circle may be iterated as long as structural conservation improves, but normally, one step suffices. Conclusions Employing the tools ClustalW, RNAalifold, and RNAforester, we find that for sequences with 30-55% sequence identity, structural conservation can be improved by 10% on average, with a large variation, measured in terms of RNAalifold's own criterion, the structure conservation index. PMID:20433706
Gemi: PCR Primers Prediction from Multiple Alignments
Sobhy, Haitham; Colson, Philippe
2012-01-01
Designing primers and probes for polymerase chain reaction (PCR) is a preliminary and critical step that requires the identification of highly conserved regions in a given set of sequences. This task can be challenging if the targeted sequences display a high level of diversity, as frequently encountered in microbiologic studies. We developed Gemi, an automated, fast, and easy-to-use bioinformatics tool with a user-friendly interface to design primers and probes based on multiple aligned sequences. This tool can be used for the purpose of real-time and conventional PCR and can deal efficiently with large sets of sequences of a large size. PMID:23316117
NASA Astrophysics Data System (ADS)
Eastman, Clarke K.
2017-08-01
The Michelson interferometer is a classic tool for demonstrating the wave nature of light, and it is a cornerstone of the optics curriculum. But many students' experiences with this device are higher in frustration than they are in learning. That situation motivated an effort to make aligning the tool less a test of a visual acuity and patience, and more of an introduction to optics phenomena and optical engineering. Key improvements included an added beam-splitter to accommodate multiple observers, a modified telescope to quickly and reliably obtain parallel mirrors, and a series of increasing spectral-width light sources to obtain equal path lengths. This greatly improved students' chances of success, as defined by achieving "white light fringes". When presenting these new features to the students, high importance is placed on understanding why alignment was so difficult with the original design, and why the changes made alignment easier. By exposing the rationale behind the improvements, students can observe the process of problem-solving in an optical engineering scenario. Equally important is the demonstration that solutions can be devised or adapted based on the parts at hand, and that implementations only achieve a highly "polished' state after several design iterations.
An Instructional Feedback Technique for Teaching Project Management Tools Aligned With PMBOK
ERIC Educational Resources Information Center
Goncalves, Rafael Queiroz; von Wangenheim, Christiane A. Gresse; Hauck, Jean C. R.; Zanella, Andreia
2018-01-01
Contribution: An approach is presented to provide contextualized feedback for students using a project management (PM) tool. This approach covers the ten PM knowledge areas, guiding students through the planning of software projects. Background: Because software PM is unfeasible without the support of a PM tool there is a growing demand that these…
HAL: a hierarchical format for storing and analyzing multiple genome alignments.
Hickey, Glenn; Paten, Benedict; Earl, Dent; Zerbino, Daniel; Haussler, David
2013-05-15
Large multiple genome alignments and inferred ancestral genomes are ideal resources for comparative studies of molecular evolution, and advances in sequencing and computing technology are making them increasingly obtainable. These structures can provide a rich understanding of the genetic relationships between all subsets of species they contain. Current formats for storing genomic alignments, such as XMFA and MAF, are all indexed or ordered using a single reference genome, however, which limits the information that can be queried with respect to other species and clades. This loss of information grows with the number of species under comparison, as well as their phylogenetic distance. We present HAL, a compressed, graph-based hierarchical alignment format for storing multiple genome alignments and ancestral reconstructions. HAL graphs are indexed on all genomes they contain. Furthermore, they are organized phylogenetically, which allows for modular and parallel access to arbitrary subclades without fragmentation because of rearrangements that have occurred in other lineages. HAL graphs can be created or read with a comprehensive C++ API. A set of tools is also provided to perform basic operations, such as importing and exporting data, identifying mutations and coordinate mapping (liftover). All documentation and source code for the HAL API and tools are freely available at http://github.com/glennhickey/hal. hickey@soe.ucsc.edu or haussler@soe.ucsc.edu Supplementary data are available at Bioinformatics online.
MSP-Tool: a VBA-based software tool for the analysis of multispecimen paleointensity data
NASA Astrophysics Data System (ADS)
Monster, Marilyn; de Groot, Lennart; Dekkers, Mark
2015-12-01
The multispecimen protocol (MSP) is a method to estimate the Earth's magnetic field's past strength from volcanic rocks or archeological materials. By reducing the amount of heating steps and aligning the specimens parallel to the applied field, thermochemical alteration and multi-domain effects are minimized. We present a new software tool, written for Microsoft Excel 2010 in Visual Basic for Applications (VBA), that evaluates paleointensity data acquired using this protocol. In addition to the three ratios (standard, fraction-corrected and domain-state-corrected) calculated following Dekkers and Böhnel (2006) and Fabian and Leonhardt (2010) and a number of other parameters proposed by Fabian and Leonhardt (2010), it also provides several reliability criteria. These include an alteration criterion, whether or not the linear regression intersects the y axis within the theoretically prescribed range, and two directional checks. Overprints and misalignment are detected by isolating the remaining natural remanent magnetization (NRM) and the partial thermoremanent magnetization (pTRM) gained and comparing their declinations and inclinations. The NRM remaining and pTRM gained are then used to calculate alignment-corrected multispecimen plots. Data are analyzed using bootstrap statistics. The program was tested on lava samples that were given a full TRM and that acquired their pTRMs at angles of 0, 15, 30 and 90° with respect to their NRMs. MSP-Tool adequately detected and largely corrected these artificial alignment errors.
MultiSeq: unifying sequence and structure data for evolutionary analysis
Roberts, Elijah; Eargle, John; Wright, Dan; Luthey-Schulten, Zaida
2006-01-01
Background Since the publication of the first draft of the human genome in 2000, bioinformatic data have been accumulating at an overwhelming pace. Currently, more than 3 million sequences and 35 thousand structures of proteins and nucleic acids are available in public databases. Finding correlations in and between these data to answer critical research questions is extremely challenging. This problem needs to be approached from several directions: information science to organize and search the data; information visualization to assist in recognizing correlations; mathematics to formulate statistical inferences; and biology to analyze chemical and physical properties in terms of sequence and structure changes. Results Here we present MultiSeq, a unified bioinformatics analysis environment that allows one to organize, display, align and analyze both sequence and structure data for proteins and nucleic acids. While special emphasis is placed on analyzing the data within the framework of evolutionary biology, the environment is also flexible enough to accommodate other usage patterns. The evolutionary approach is supported by the use of predefined metadata, adherence to standard ontological mappings, and the ability for the user to adjust these classifications using an electronic notebook. MultiSeq contains a new algorithm to generate complete evolutionary profiles that represent the topology of the molecular phylogenetic tree of a homologous group of distantly related proteins. The method, based on the multidimensional QR factorization of multiple sequence and structure alignments, removes redundancy from the alignments and orders the protein sequences by increasing linear dependence, resulting in the identification of a minimal basis set of sequences that spans the evolutionary space of the homologous group of proteins. Conclusion MultiSeq is a major extension of the Multiple Alignment tool that is provided as part of VMD, a structural visualization program for analyzing molecular dynamics simulations. Both are freely distributed by the NIH Resource for Macromolecular Modeling and Bioinformatics and MultiSeq is included with VMD starting with version 1.8.5. The MultiSeq website has details on how to download and use the software: PMID:16914055
Identification of a Herbal Powder by Deoxyribonucleic Acid Barcoding and Structural Analyses.
Sheth, Bhavisha P; Thaker, Vrinda S
2015-10-01
Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. To identify a herbal powder obtained from a herbalist in the local vicinity of Rajkot, Gujarat, using deoxyribonucleic acid (DNA) barcoding and molecular tools. The DNA was extracted from a herbal powder and selected Cassia species, followed by the polymerase chain reaction (PCR) and sequencing of the rbcL barcode locus. Thereafter the sequences were subjected to National Center for Biotechnology Information (NCBI) basic local alignment search tool (BLAST) analysis, followed by the protein three-dimension structure determination of the rbcL protein from the herbal powder and Cassia species namely Cassia fistula, Cassia tora and Cassia javanica (sequences obtained in the present study), Cassia Roxburghii, and Cassia abbreviata (sequences retrieved from Genbank). Further, the multiple and pairwise structural alignment were carried out in order to identify the herbal powder. The nucleotide sequences obtained from the selected species of Cassia were submitted to Genbank (Accession No. JX141397, JX141405, JX141420). The NCBI BLAST analysis of the rbcL protein from the herbal powder showed an equal sequence similarity (with reference to different parameters like E value, maximum identity, total score, query coverage) to C. javanica and C. roxburghii. In order to solve the ambiguities of the BLAST result, a protein structural approach was implemented. The protein homology models obtained in the present study were submitted to the protein model database (PM0079748-PM0079753). The pairwise structural alignment of the herbal powder (as template) and C. javanica and C. roxburghii (as targets individually) revealed a close similarity of the herbal powder with C. javanica. A strategy as used here, incorporating the integrated use of DNA barcoding and protein structural analyses could be adopted, as a novel rapid and economic procedure, especially in cases when protein coding loci are considered. Authentic identification of plants is essential for exploiting their medicinal properties as well as to stop the adulteration and malpractices with the trade of the same. A herbal powder was obtained from a herbalist in the local vicinity of Rajkot, Gujarat. An integrated approach using DNA barcoding and structural analyses was carried out to identify the herbal powder. The herbal powder was identified as Cassia javanica L.
Choosing iPad Apps with a Purpose: Aligning Skills and Standards
ERIC Educational Resources Information Center
Powell, Selma
2014-01-01
With the number of apps available today, browsing the iTunes store can become overwhelming for any teacher. A teacher can quickly try free apps, but to have full access, cost is often involved. Purchasing numerous apps can be expensive and time consuming and, most important, may not produce an outcome of acquiring tools that are well aligned with…
Aberration caused by the errors of alignment and adjustment in reflecting telescope
NASA Astrophysics Data System (ADS)
Tan, Hui-Song
The 2-mirror Cassegrain geometry has firmly become a standard tool for modern astronomical research. The alignment and adjustment of aplanatic (RC) Cassegrain telescope is therefore by far the most important aspect. The errors that arise in telescope through maladjustment are discussed and the aberrations are calculated for the 2.4 m telescope which will be mounted at Gaomeigu.
cljam: a library for handling DNA sequence alignment/map (SAM) with parallel processing.
Takeuchi, Toshiki; Yamada, Atsuo; Aoki, Takashi; Nishimura, Kunihiro
2016-01-01
Next-generation sequencing can determine DNA bases and the results of sequence alignments are generally stored in files in the Sequence Alignment/Map (SAM) format and the compressed binary version (BAM) of it. SAMtools is a typical tool for dealing with files in the SAM/BAM format. SAMtools has various functions, including detection of variants, visualization of alignments, indexing, extraction of parts of the data and loci, and conversion of file formats. It is written in C and can execute fast. However, SAMtools requires an additional implementation to be used in parallel with, for example, OpenMP (Open Multi-Processing) libraries. For the accumulation of next-generation sequencing data, a simple parallelization program, which can support cloud and PC cluster environments, is required. We have developed cljam using the Clojure programming language, which simplifies parallel programming, to handle SAM/BAM data. Cljam can run in a Java runtime environment (e.g., Windows, Linux, Mac OS X) with Clojure. Cljam can process and analyze SAM/BAM files in parallel and at high speed. The execution time with cljam is almost the same as with SAMtools. The cljam code is written in Clojure and has fewer lines than other similar tools.
Wan, Shixiang; Zou, Quan
2017-01-01
Multiple sequence alignment (MSA) plays a key role in biological sequence analyses, especially in phylogenetic tree construction. Extreme increase in next-generation sequencing results in shortage of efficient ultra-large biological sequence alignment approaches for coping with different sequence types. Distributed and parallel computing represents a crucial technique for accelerating ultra-large (e.g. files more than 1 GB) sequence analyses. Based on HAlign and Spark distributed computing system, we implement a highly cost-efficient and time-efficient HAlign-II tool to address ultra-large multiple biological sequence alignment and phylogenetic tree construction. The experiments in the DNA and protein large scale data sets, which are more than 1GB files, showed that HAlign II could save time and space. It outperformed the current software tools. HAlign-II can efficiently carry out MSA and construct phylogenetic trees with ultra-large numbers of biological sequences. HAlign-II shows extremely high memory efficiency and scales well with increases in computing resource. THAlign-II provides a user-friendly web server based on our distributed computing infrastructure. HAlign-II with open-source codes and datasets was established at http://lab.malab.cn/soft/halign.
Alignment of high-throughput sequencing data inside in-memory databases.
Firnkorn, Daniel; Knaup-Gregori, Petra; Lorenzo Bermejo, Justo; Ganzinger, Matthias
2014-01-01
In times of high-throughput DNA sequencing techniques, performance-capable analysis of DNA sequences is of high importance. Computer supported DNA analysis is still an intensive time-consuming task. In this paper we explore the potential of a new In-Memory database technology by using SAP's High Performance Analytic Appliance (HANA). We focus on read alignment as one of the first steps in DNA sequence analysis. In particular, we examined the widely used Burrows-Wheeler Aligner (BWA) and implemented stored procedures in both, HANA and the free database system MySQL, to compare execution time and memory management. To ensure that the results are comparable, MySQL has been running in memory as well, utilizing its integrated memory engine for database table creation. We implemented stored procedures, containing exact and inexact searching of DNA reads within the reference genome GRCh37. Due to technical restrictions in SAP HANA concerning recursion, the inexact matching problem could not be implemented on this platform. Hence, performance analysis between HANA and MySQL was made by comparing the execution time of the exact search procedures. Here, HANA was approximately 27 times faster than MySQL which means, that there is a high potential within the new In-Memory concepts, leading to further developments of DNA analysis procedures in the future.
Heavy duty precision leveling jacks expedite setup time on horizontal boring mill
NASA Technical Reports Server (NTRS)
Dellenbaugh, W.; Jones, C.
1966-01-01
Leveling jack is a precise alignment tool which expedites the setup of components or assemblies up to 2500 pounds on horizontal boring mills. This tool eliminates the necessity of wedges and blocks to shim the components to proper position.
New Tools to Document and Manage Data/Metadata: Example NGEE Arctic and UrbIS
NASA Astrophysics Data System (ADS)
Crow, M. C.; Devarakonda, R.; Hook, L.; Killeffer, T.; Krassovski, M.; Boden, T.; King, A. W.; Wullschleger, S. D.
2016-12-01
Tools used for documenting, archiving, cataloging, and searching data are critical pieces of informatics. This discussion describes tools being used in two different projects at Oak Ridge National Laboratory (ORNL), but at different stages of the data lifecycle. The Metadata Entry and Data Search Tool is being used for the documentation, archival, and data discovery stages for the Next Generation Ecosystem Experiment - Arctic (NGEE Arctic) project while the Urban Information Systems (UrbIS) Data Catalog is being used to support indexing, cataloging, and searching. The NGEE Arctic Online Metadata Entry Tool [1] provides a method by which researchers can upload their data and provide original metadata with each upload. The tool is built upon a Java SPRING framework to parse user input into, and from, XML output. Many aspects of the tool require use of a relational database including encrypted user-login, auto-fill functionality for predefined sites and plots, and file reference storage and sorting. The UrbIS Data Catalog is a data discovery tool supported by the Mercury cataloging framework [2] which aims to compile urban environmental data from around the world into one location, and be searchable via a user-friendly interface. Each data record conveniently displays its title, source, and date range, and features: (1) a button for a quick view of the metadata, (2) a direct link to the data and, for some data sets, (3) a button for visualizing the data. The search box incorporates autocomplete capabilities for search terms and sorted keyword filters are available on the side of the page, including a map for searching by area. References: [1] Devarakonda, Ranjeet, et al. "Use of a metadata documentation and search tool for large data volumes: The NGEE arctic example." Big Data (Big Data), 2015 IEEE International Conference on. IEEE, 2015. [2] Devarakonda, R., Palanisamy, G., Wilson, B. E., & Green, J. M. (2010). Mercury: reusable metadata management, data discovery and access system. Earth Science Informatics, 3(1-2), 87-94.
Lee, Joy L; Matthias, Marianne S; Menachemi, Nir; Frankel, Richard M; Weiner, Michael
2018-04-01
Patient-provider electronic communication has proliferated in recent years, yet there is a dearth of published research either leading to, or including, recommendations that improve clinical care and prevent unintended negative consequences. We critically appraise published guidelines and suggest an agenda for future work in this area. To understand how existing guidelines align with current practice, evidence, and technology. We performed a narrative review of provider-targeted guidelines for electronic communication between patients and providers, searching Ovid MEDLINE, Embase, and PubMed databases using relevant terms. We limited the search to articles published in English, and manually searched the citations of relevant articles. For each article, we identified and evaluated the suggested practices. Across 11 identified guidelines, the primary focus was on technical and administrative concerns, rather than on relational communication. Some of the security practices recommended by the guidelines are no longer needed because of shifts in technology. It is unclear the extent to which the recommendations that are still relevant are being followed. Moreover, there is no guideline-cited evidence of the effectiveness of the practices that have been proposed. Our analysis revealed major weaknesses in current guidelines for electronic communication between patients and providers: the guidelines appear to be based on minimal evidence and offer little guidance on how best to use electronic tools to communicate effectively. Further work is needed to systematically evaluate and identify effective practices, create a framework to evaluate quality of communication, and assess the relationship between electronic communication and quality of care.
Electronic Collection Management and Electronic Information Services
2004-12-01
federated search tools are still being perfected with much debate surrounding their use. Encouragingly, as the federated search tools have evolved...institutional repositories to be included in a federated search process, libraries would have to harvest the metadata from the repositories and then make...providers in Library High Tech News. At this time, federated search engines serve some user groups better than others. Undergraduate students are well
KinView: A visual comparative sequence analysis tool for integrated kinome research
McSkimming, Daniel Ian; Dastgheib, Shima; Baffi, Timothy R.; Byrne, Dominic P.; Ferries, Samantha; Scott, Steven Thomas; Newton, Alexandra C.; Eyers, Claire E.; Kochut, Krzysztof J.; Eyers, Patrick A.
2017-01-01
Multiple sequence alignments (MSAs) are a fundamental analysis tool used throughout biology to investigate relationships between protein sequence, structure, function, evolutionary history, and patterns of disease-associated variants. However, their widespread application in systems biology research is currently hindered by the lack of user-friendly tools to simultaneously visualize, manipulate and query the information conceptualized in large sequence alignments, and the challenges in integrating MSAs with multiple orthogonal data such as cancer variants and post-translational modifications, which are often stored in heterogeneous data sources and formats. Here, we present the Multiple Sequence Alignment Ontology (MSAOnt), which represents a profile or consensus alignment in an ontological format. Subsets of the alignment are easily selected through the SPARQL Protocol and RDF Query Language for downstream statistical analysis or visualization. We have also created the Kinome Viewer (KinView), an interactive integrative visualization that places eukaryotic protein kinase cancer variants in the context of natural sequence variation and experimentally determined post-translational modifications, which play central roles in the regulation of cellular signaling pathways. Using KinView, we identified differential phosphorylation patterns between tyrosine and serine/threonine kinases in the activation segment, a major kinase regulatory region that is often mutated in proliferative diseases. We discuss cancer variants that disrupt phosphorylation sites in the activation segment, and show how KinView can be used as a comparative tool to identify differences and similarities in natural variation, cancer variants and post-translational modifications between kinase groups, families and subfamilies. Based on KinView comparisons, we identify and experimentally characterize a regulatory tyrosine (Y177PLK4) in the PLK4 C-terminal activation segment region termed the P+1 loop. To further demonstrate the application of KinView in hypothesis generation and testing, we formulate and validate a hypothesis explaining a novel predicted loss-of-function variant (D523NPKCβ) in the regulatory spine of PKCβ, a recently identified tumor suppressor kinase. KinView provides a novel, extensible interface for performing comparative analyses between subsets of kinases and for integrating multiple types of residue specific annotations in user friendly formats. PMID:27731453
Liao, Ai-Jun; Su, Qi; Wang, Xun; Zeng, Bin; Shi, Wei
2008-01-01
AIM: To isolate and analyze the DNA sequences which are methylated differentially between gastric cancer and normal gastric mucosa. METHODS: The differentially methylated DNA sequences between gastric cancer and normal gastric mucosa were isolated by methylation-sensitive representational difference analysis (MS-RDA). Similarities between the separated fragments and the human genomic DNA were analyzed with Basic Local Alignment Search Tool (BLAST). RESULTS: Three differentially methylated DNA sequences were obtained, two of which have been accepted by GenBank. The accession numbers are AY887106 and AY887107. AY887107 was highly similar to the 11th exon of LOC440683 (98%), 3’ end of LOC440887 (99%), and promoter and exon regions of DRD5 (94%). AY887106 was consistent (98%) with a CpG island in ribosomal RNA isolated from colorectal cancer by Minoru Toyota in 1999. CONCLUSION: The methylation degree is different between gastric cancer and normal gastric mucosa. The differentially methylated DNA sequences can be isolated effectively by MS-RDA. PMID:18322944
The RCSB Protein Data Bank: new resources for research and education
Rose, Peter W.; Bi, Chunxiao; Bluhm, Wolfgang F.; Christie, Cole H.; Dimitropoulos, Dimitris; Dutta, Shuchismita; Green, Rachel K.; Goodsell, David S.; Prlić, Andreas; Quesada, Martha; Quinn, Gregory B.; Ramos, Alexander G.; Westbrook, John D.; Young, Jasmine; Zardecki, Christine; Berman, Helen M.; Bourne, Philip E.
2013-01-01
The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB) develops tools and resources that provide a structural view of biology for research and education. The RCSB PDB web site (http://www.rcsb.org) uses the curated 3D macromolecular data contained in the PDB archive to offer unique methods to access, report and visualize data. Recent activities have focused on improving methods for simple and complex searches of PDB data, creating specialized access to chemical component data and providing domain-based structural alignments. New educational resources are offered at the PDB-101 educational view of the main web site such as Author Profiles that display a researcher’s PDB entries in a timeline. To promote different kinds of access to the RCSB PDB, Web Services have been expanded, and an RCSB PDB Mobile application for the iPhone/iPad has been released. These improvements enable new opportunities for analyzing and understanding structure data. PMID:23193259
Molecular Detection of Rickettsia felis in Different Flea Species from Caldas, Colombia
Ramírez-Hernández, Alejandro; Montoya, Viviana; Martínez, Alejandra; Pérez, Jorge E.; Mercado, Marcela; de la Ossa, Alberto; Vélez, Carolina; Estrada, Gloria; Correa, Maria I.; Duque, Laura; Ariza, Juan S.; Henao, Cesar; Valbuena, Gustavo; Hidalgo, Marylin
2013-01-01
Rickettsioses caused by Rickettsia felis are an emergent global threat. Historically, the northern region of the province of Caldas in Colombia has reported murine typhus cases, and recently, serological studies confirmed high seroprevalence for both R. felis and R. typhi. In the present study, fleas from seven municipalities were collected from dogs, cats, and mice. DNA was extracted and amplified by polymerase chain reaction (PCR) to identify gltA, ompB, and 17kD genes. Positive samples were sequenced to identify the species of Rickettsia. Of 1,341 fleas, Ctenocephalides felis was the most prevalent (76.7%). Positive PCR results in the three genes were evidenced in C. felis (minimum infection rates; 5.3%), C. canis (9.2%), and Pulex irritans (10.0%). Basic Local Alignment Search Tool (BLAST) analyses of sequences showed high identity values (> 98%) with R. felis, and all were highly related by phylogenetic analyses. This work shows the first detection of R. felis in fleas collected from animals in Colombia. PMID:23878183
Wang, Tao; Zheng, Nanning; Xin, Jingmin; Ma, Zheng
2011-01-01
This paper presents a systematic scheme for fusing millimeter wave (MMW) radar and a monocular vision sensor for on-road obstacle detection. As a whole, a three-level fusion strategy based on visual attention mechanism and driver’s visual consciousness is provided for MMW radar and monocular vision fusion so as to obtain better comprehensive performance. Then an experimental method for radar-vision point alignment for easy operation with no reflection intensity of radar and special tool requirements is put forward. Furthermore, a region searching approach for potential target detection is derived in order to decrease the image processing time. An adaptive thresholding algorithm based on a new understanding of shadows in the image is adopted for obstacle detection, and edge detection is used to assist in determining the boundary of obstacles. The proposed fusion approach is verified through real experimental examples of on-road vehicle/pedestrian detection. In the end, the experimental results show that the proposed method is simple and feasible. PMID:22164117
Wang, Tao; Zheng, Nanning; Xin, Jingmin; Ma, Zheng
2011-01-01
This paper presents a systematic scheme for fusing millimeter wave (MMW) radar and a monocular vision sensor for on-road obstacle detection. As a whole, a three-level fusion strategy based on visual attention mechanism and driver's visual consciousness is provided for MMW radar and monocular vision fusion so as to obtain better comprehensive performance. Then an experimental method for radar-vision point alignment for easy operation with no reflection intensity of radar and special tool requirements is put forward. Furthermore, a region searching approach for potential target detection is derived in order to decrease the image processing time. An adaptive thresholding algorithm based on a new understanding of shadows in the image is adopted for obstacle detection, and edge detection is used to assist in determining the boundary of obstacles. The proposed fusion approach is verified through real experimental examples of on-road vehicle/pedestrian detection. In the end, the experimental results show that the proposed method is simple and feasible.
Odronic, Shelley I; Scheidemantel, Thomas; Tuohy, Marion J; Chute, Deborah; Procop, Gary W; Booth, Christine N
2012-12-01
We present 2 cases of Cokeromyces recurvatus in routine, liquid-based Papanicolaou tests (ThinPrep). Patient 1 is a healthy, asymptomatic, 26-year-old woman with no pertinent past medical history. Patient 2 is a healthy, asymptomatic, 47-year-old woman with no pertinent past medical history. The Papanicolaou tests from both patients showed many fungal-like elements as globose, yeastlike forms measuring 10 to 30 µm in diameter with multiple, narrowly attached apparent "daughter" buds. This morphology was consistent with Paracoccidioides brasiliensis. However, broad-range fungal polymerase chain reaction and deoxyribonucleic acid sequence analysis performed with GenBank Basic Local Alignment Search Tool showed an exact match for C recurvatus. Our cases highlight the importance of molecular techniques to prevent misdiagnosis of C recurvatus as P brasiliensis, based on morphology alone. There have been 8 previously published cases of C recurvatus infection in humans, 3 of which were reported in the female genital tract.
Parson, W; Gusmão, L; Hares, D R; Irwin, J A; Mayr, W R; Morling, N; Pokorak, E; Prinz, M; Salas, A; Schneider, P M; Parsons, T J
2014-11-01
The DNA Commission of the International Society of Forensic Genetics (ISFG) regularly publishes guidelines and recommendations concerning the application of DNA polymorphisms to the question of human identification. Previous recommendations published in 2000 addressed the analysis and interpretation of mitochondrial DNA (mtDNA) in forensic casework. While the foundations set forth in the earlier recommendations still apply, new approaches to the quality control, alignment and nomenclature of mitochondrial sequences, as well as the establishment of mtDNA reference population databases, have been developed. Here, we describe these developments and discuss their application to both mtDNA casework and mtDNA reference population databasing applications. While the generation of mtDNA for forensic casework has always been guided by specific standards, it is now well-established that data of the same quality are required for the mtDNA reference population data used to assess the statistical weight of the evidence. As a result, we introduce guidelines regarding sequence generation, as well as quality control measures based on the known worldwide mtDNA phylogeny, that can be applied to ensure the highest quality population data possible. For both casework and reference population databasing applications, the alignment and nomenclature of haplotypes is revised here and the phylogenetic alignment proffered as acceptable standard. In addition, the interpretation of heteroplasmy in the forensic context is updated, and the utility of alignment-free database searches for unbiased probability estimates is highlighted. Finally, we discuss statistical issues and define minimal standards for mtDNA database searches. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics.
Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf
2015-08-01
RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of [Formula: see text]. Subsequently, numerous faster 'Sankoff-style' approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks down for RNAs with sequence identities below 60%. Alignment approaches like LocARNA that do not require sequence-based heuristics, have been limited to high complexity ([Formula: see text] quartic time). Breaking this barrier, we introduce the novel Sankoff-style algorithm 'sparsified prediction and alignment of RNAs based on their structure ensembles (SPARSE)', which runs in quadratic time without sequence-based heuristics. To achieve this low complexity, on par with sequence alignment algorithms, SPARSE features strong sparsification based on structural properties of the RNA ensembles. Following PMcomp, SPARSE gains further speed-up from lightweight energy computation. Although all existing lightweight Sankoff-style methods restrict Sankoff's original model by disallowing loop deletions and insertions, SPARSE transfers the Sankoff algorithm to the lightweight energy model completely for the first time. Compared with LocARNA, SPARSE achieves similar alignment and better folding quality in significantly less time (speedup: 3.7). At similar run-time, it aligns low sequence identity instances substantially more accurate than RAF, which uses sequence-based heuristics. © The Author 2015. Published by Oxford University Press.
SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes.
Pruesse, Elmar; Peplies, Jörg; Glöckner, Frank Oliver
2012-07-15
In the analysis of homologous sequences, computation of multiple sequence alignments (MSAs) has become a bottleneck. This is especially troublesome for marker genes like the ribosomal RNA (rRNA) where already millions of sequences are publicly available and individual studies can easily produce hundreds of thousands of new sequences. Methods have been developed to cope with such numbers, but further improvements are needed to meet accuracy requirements. In this study, we present the SILVA Incremental Aligner (SINA) used to align the rRNA gene databases provided by the SILVA ribosomal RNA project. SINA uses a combination of k-mer searching and partial order alignment (POA) to maintain very high alignment accuracy while satisfying high throughput performance demands. SINA was evaluated in comparison with the commonly used high throughput MSA programs PyNAST and mothur. The three BRAliBase III benchmark MSAs could be reproduced with 99.3, 97.6 and 96.1 accuracy. A larger benchmark MSA comprising 38 772 sequences could be reproduced with 98.9 and 99.3% accuracy using reference MSAs comprising 1000 and 5000 sequences. SINA was able to achieve higher accuracy than PyNAST and mothur in all performed benchmarks. Alignment of up to 500 sequences using the latest SILVA SSU/LSU Ref datasets as reference MSA is offered at http://www.arb-silva.de/aligner. This page also links to Linux binaries, user manual and tutorial. SINA is made available under a personal use license.
piri, Zakieh; Raef, Behnaz; moftian, Nazila; dehghani, Mohamad; khara, Rouhallah
2017-01-01
Background and aims Business-IT Alignment Evaluation is One of the most important issues that managers should monitor and make decisions about it. Dashboard software combines data and graphical indicators to deliver at-a-glance summaries of information for users to view the state of their business and quickly respond. The aim of this study was to design a dashboard to assess the business-IT alignment strategies for hospitals organizations in Tehran University of Medical Sciences. Methods This is a functional-developmental study. Initially, we searched related databases (PubMed and ProQuest) to determine the key performance indicators of business-IT alignment for selecting the best model for dashboard designing. After selecting the Luftman model, the key indicators were extracted for designing the dashboard model. In the next stage, an electronic questionnaire was designed based on extracted indicators. This questionnaire sends to Hospital managers and IT administrators. Collected data were analyzed by Excel 2015 and displayed in dashboard page. Results The number of key performance indicators was 39. After recognition the technical requirements the dashboard was designed in Excel. The overall business-IT alignment rate in hospitals was 3.12. Amir-aalam hospital has the highest business-IT alignment rate (3.55) and vali-asr hospital has the lowest business-IT alignment rat (2.80). Conclusion Using dashboard software improves the alignment and reduces the time and energy compared with doing this process manually.
Distance education through the Internet: the GNA-VSNS biocomputing course.
de la Vega, F M; Giegerich, R; Fuellen, G
1996-01-01
A prototype course on biocomputing was delivered via international computer networks in early summer 1995. The course lasted 11 weeks, and was offered free of charge. It was organized by the BioComputing Division of the Virtual School of Natural Sciences, which is a member school of the Globewide Network Academy. It brought together 34 students and 7 instructors from all over the world, and covered the basics of sequence analysis. Five authors from Germany and USA prepared a hypertext book which was discussed in weekly study sessions that took place in a virtual classroom at the BioMOO electronic conferencing system. The course aimed at students with backgrounds in molecular biology, biomedicine or computer science, complementing and extending their skills with an interdisciplinary curriculum. Special emphasis was placed on the use of Internet resources, and the development of new teaching tools. The hypertext book includes direct links to sequence analysis and databank search services on the Internet. A tool for the interactive visualization of unit-cost pairwise sequence alignment was developed for the course. All course material will stay accessible at the World Wide Web address (Uniform Resource Locator) http://+www.techfak.uni-bielefeld.de/bcd/welcome .html. This paper describes the aims and organization of the course, and gives a preliminary account of this novel experience in distance education.
A greedy, graph-based algorithm for the alignment of multiple homologous gene lists.
Fostier, Jan; Proost, Sebastian; Dhoedt, Bart; Saeys, Yvan; Demeester, Piet; Van de Peer, Yves; Vandepoele, Klaas
2011-03-15
Many comparative genomics studies rely on the correct identification of homologous genomic regions using accurate alignment tools. In such case, the alphabet of the input sequences consists of complete genes, rather than nucleotides or amino acids. As optimal multiple sequence alignment is computationally impractical, a progressive alignment strategy is often employed. However, such an approach is susceptible to the propagation of alignment errors in early pairwise alignment steps, especially when dealing with strongly diverged genomic regions. In this article, we present a novel accurate and efficient greedy, graph-based algorithm for the alignment of multiple homologous genomic segments, represented as ordered gene lists. Based on provable properties of the graph structure, several heuristics are developed to resolve local alignment conflicts that occur due to gene duplication and/or rearrangement events on the different genomic segments. The performance of the algorithm is assessed by comparing the alignment results of homologous genomic segments in Arabidopsis thaliana to those obtained by using both a progressive alignment method and an earlier graph-based implementation. Especially for datasets that contain strongly diverged segments, the proposed method achieves a substantially higher alignment accuracy, and proves to be sufficiently fast for large datasets including a few dozens of eukaryotic genomes. http://bioinformatics.psb.ugent.be/software. The algorithm is implemented as a part of the i-ADHoRe 3.0 package.
Tool enables proper mating of accelerometer and cable connector
NASA Technical Reports Server (NTRS)
Steed, C. N.
1966-01-01
Tool supports accelerometer in axial alignment with an accelerometer cable connector and permits tightening of the accelerometer to the cable connector with a torque wrench. This is done without damaging the components or permitting them to work loose under sustained, high-level vibrations.
Kiryu, Hisanori; Kin, Taishin; Asai, Kiyoshi
2007-02-15
Recent transcriptomic studies have revealed the existence of a considerable number of non-protein-coding RNA transcripts in higher eukaryotic cells. To investigate the functional roles of these transcripts, it is of great interest to find conserved secondary structures from multiple alignments on a genomic scale. Since multiple alignments are often created using alignment programs that neglect the special conservation patterns of RNA secondary structures for computational efficiency, alignment failures can cause potential risks of overlooking conserved stem structures. We investigated the dependence of the accuracy of secondary structure prediction on the quality of alignments. We compared three algorithms that maximize the expected accuracy of secondary structures as well as other frequently used algorithms. We found that one of our algorithms, called McCaskill-MEA, was more robust against alignment failures than others. The McCaskill-MEA method first computes the base pairing probability matrices for all the sequences in the alignment and then obtains the base pairing probability matrix of the alignment by averaging over these matrices. The consensus secondary structure is predicted from this matrix such that the expected accuracy of the prediction is maximized. We show that the McCaskill-MEA method performs better than other methods, particularly when the alignment quality is low and when the alignment consists of many sequences. Our model has a parameter that controls the sensitivity and specificity of predictions. We discussed the uses of that parameter for multi-step screening procedures to search for conserved secondary structures and for assigning confidence values to the predicted base pairs. The C++ source code that implements the McCaskill-MEA algorithm and the test dataset used in this paper are available at http://www.ncrna.org/papers/McCaskillMEA/. Supplementary data are available at Bioinformatics online.
An efficient multi-resolution GA approach to dental image alignment
NASA Astrophysics Data System (ADS)
Nassar, Diaa Eldin; Ogirala, Mythili; Adjeroh, Donald; Ammar, Hany
2006-02-01
Automating the process of postmortem identification of individuals using dental records is receiving an increased attention in forensic science, especially with the large volume of victims encountered in mass disasters. Dental radiograph alignment is a key step required for automating the dental identification process. In this paper, we address the problem of dental radiograph alignment using a Multi-Resolution Genetic Algorithm (MR-GA) approach. We use location and orientation information of edge points as features; we assume that affine transformations suffice to restore geometric discrepancies between two images of a tooth, we efficiently search the 6D space of affine parameters using GA progressively across multi-resolution image versions, and we use a Hausdorff distance measure to compute the similarity between a reference tooth and a query tooth subject to a possible alignment transform. Testing results based on 52 teeth-pair images suggest that our algorithm converges to reasonable solutions in more than 85% of the test cases, with most of the error in the remaining cases due to excessive misalignments.
Lieff, Susan J
2009-10-01
Retention of faculty in academic medicine is a growing challenge. It has been suggested that inattention to the humanistic values of the faculty is contributing to this problem. Professional development should consider faculty members' search for meaning, purpose, and professional fulfillment and should support the development of an ability to reflect on these issues. Ensuring the alignment of academic physicians' inner direction with their outer context is critical to professional fulfillment and effectiveness. Personal reflection on the synergy of one's strengths, passions, and values can help faculty members define meaningful work so as to enable clearer career decision making. The premise of this article is that an awareness of and the pursuit of meaningful work and its alignment with the academic context are important considerations in the professional fulfillment and retention of academic faculty. A conceptual framework for understanding meaningful work and alignment and ways in which that framework can be applied and taught in development programs are presented and discussed.
Floden, Evan W; Tommaso, Paolo D; Chatzou, Maria; Magis, Cedrik; Notredame, Cedric; Chang, Jia-Ming
2016-07-08
The PSI/TM-Coffee web server performs multiple sequence alignment (MSA) of proteins by combining homology extension with a consistency based alignment approach. Homology extension is performed with Position Specific Iterative (PSI) BLAST searches against a choice of redundant and non-redundant databases. The main novelty of this server is to allow databases of reduced complexity to rapidly perform homology extension. This server also gives the possibility to use transmembrane proteins (TMPs) reference databases to allow even faster homology extension on this important category of proteins. Aside from an MSA, the server also outputs topological prediction of TMPs using the HMMTOP algorithm. Previous benchmarking of the method has shown this approach outperforms the most accurate alignment methods such as MSAProbs, Kalign, PROMALS, MAFFT, ProbCons and PRALINE™. The web server is available at http://tcoffee.crg.cat/tmcoffee. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
BioWord: A sequence manipulation suite for Microsoft Word
2012-01-01
Background The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. Results BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. Conclusions BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms. PMID:22676326
Hestand, Matthew S; van Galen, Michiel; Villerius, Michel P; van Ommen, Gert-Jan B; den Dunnen, Johan T; 't Hoen, Peter AC
2008-01-01
Background The identification of transcription factor binding sites is difficult since they are only a small number of nucleotides in size, resulting in large numbers of false positives and false negatives in current approaches. Computational methods to reduce false positives are to look for over-representation of transcription factor binding sites in a set of similarly regulated promoters or to look for conservation in orthologous promoter alignments. Results We have developed a novel tool, "CORE_TF" (Conserved and Over-REpresented Transcription Factor binding sites) that identifies common transcription factor binding sites in promoters of co-regulated genes. To improve upon existing binding site predictions, the tool searches for position weight matrices from the TRANSFACR database that are over-represented in an experimental set compared to a random set of promoters and identifies cross-species conservation of the predicted transcription factor binding sites. The algorithm has been evaluated with expression and chromatin-immunoprecipitation on microarray data. We also implement and demonstrate the importance of matching the random set of promoters to the experimental promoters by GC content, which is a unique feature of our tool. Conclusion The program CORE_TF is accessible in a user friendly web interface at . It provides a table of over-represented transcription factor binding sites in the users input genes' promoters and a graphical view of evolutionary conserved transcription factor binding sites. In our test data sets it successfully predicts target transcription factors and their binding sites. PMID:19036135
BioWord: a sequence manipulation suite for Microsoft Word.
Anzaldi, Laura J; Muñoz-Fernández, Daniel; Erill, Ivan
2012-06-07
The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms.
Zhou, Carol L Ecale
2015-01-01
In order to better define regions of similarity among related protein structures, it is useful to identify the residue-residue correspondences among proteins. Few codes exist for constructing a one-to-many multiple sequence alignment derived from a set of structure or sequence alignments, and a need was evident for creating such a tool for combining pairwise structure alignments that would allow for insertion of gaps in the reference structure. This report describes a new Python code, CombAlign, which takes as input a set of pairwise sequence alignments (which may be structure based) and generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA). The use and utility of CombAlign was demonstrated by generating gapped MSSAs using sets of pairwise structure-based sequence alignments between structure models of the matrix protein (VP40) and pre-small/secreted glycoprotein (sGP) of Reston Ebolavirus and the corresponding proteins of several other filoviruses. The gapped MSSAs revealed structure-based residue-residue correspondences, which enabled identification of structurally similar versus differing regions in the Reston proteins compared to each of the other corresponding proteins. CombAlign is a new Python code that generates a one-to-many, gapped, multiple structure- or sequence-based sequence alignment (MSSA) given a set of pairwise sequence alignments (which may be structure based). CombAlign has utility in assisting the user in distinguishing structurally conserved versus divergent regions on a reference protein structure relative to other closely related proteins. CombAlign was developed in Python 2.6, and the source code is available for download from the GitHub code repository.
Comparison of three web-scale discovery services for health sciences research.
Hanneke, Rosie; O'Brien, Kelly K
2016-04-01
The purpose of this study was to investigate the relative effectiveness of three web-scale discovery (WSD) tools in answering health sciences search queries. Simple keyword searches, based on topics from six health sciences disciplines, were run at multiple real-world implementations of EBSCO Discovery Service (EDS), Ex Libris's Primo, and ProQuest's Summon. Each WSD tool was evaluated in its ability to retrieve relevant results and in its coverage of MEDLINE content. All WSD tools returned between 50%-60% relevant results. Primo returned a higher number of duplicate results than the other 2 WSD products. Summon results were more relevant when search terms were automatically mapped to controlled vocabulary. EDS indexed the largest number of MEDLINE citations, followed closely by Summon. Additionally, keyword searches in all 3 WSD tools retrieved relevant material that was not found with precision (Medical Subject Headings) searches in MEDLINE. None of the 3 WSD products studied was overwhelmingly more effective in returning relevant results. While difficult to place the figure of 50%-60% relevance in context, it implies a strong likelihood that the average user would be able to find satisfactory sources on the first page of search results using a rudimentary keyword search. The discovery of additional relevant material beyond that retrieved from MEDLINE indicates WSD tools' value as a supplement to traditional resources for health sciences researchers.
Comparison of three web-scale discovery services for health sciences research*
Hanneke, Rosie; O'Brien, Kelly K.
2016-01-01
Objective The purpose of this study was to investigate the relative effectiveness of three web-scale discovery (WSD) tools in answering health sciences search queries. Methods Simple keyword searches, based on topics from six health sciences disciplines, were run at multiple real-world implementations of EBSCO Discovery Service (EDS), Ex Libris's Primo, and ProQuest's Summon. Each WSD tool was evaluated in its ability to retrieve relevant results and in its coverage of MEDLINE content. Results All WSD tools returned between 50%–60% relevant results. Primo returned a higher number of duplicate results than the other 2 WSD products. Summon results were more relevant when search terms were automatically mapped to controlled vocabulary. EDS indexed the largest number of MEDLINE citations, followed closely by Summon. Additionally, keyword searches in all 3 WSD tools retrieved relevant material that was not found with precision (Medical Subject Headings) searches in MEDLINE. Conclusions None of the 3 WSD products studied was overwhelmingly more effective in returning relevant results. While difficult to place the figure of 50%–60% relevance in context, it implies a strong likelihood that the average user would be able to find satisfactory sources on the first page of search results using a rudimentary keyword search. The discovery of additional relevant material beyond that retrieved from MEDLINE indicates WSD tools' value as a supplement to traditional resources for health sciences researchers. PMID:27076797
Blom, Mozes P K
2015-08-05
Recently developed molecular methods enable geneticists to target and sequence thousands of orthologous loci and infer evolutionary relationships across the tree of life. Large numbers of genetic markers benefit species tree inference but visual inspection of alignment quality, as traditionally conducted, is challenging with thousands of loci. Furthermore, due to the impracticality of repeated visual inspection with alternative filtering criteria, the potential consequences of using datasets with different degrees of missing data remain nominally explored in most empirical phylogenomic studies. In this short communication, I describe a flexible high-throughput pipeline designed to assess alignment quality and filter exonic sequence data for subsequent inference. The stringency criteria for alignment quality and missing data can be adapted based on the expected level of sequence divergence. Each alignment is automatically evaluated based on the stringency criteria specified, significantly reducing the number of alignments that require visual inspection. By developing a rapid method for alignment filtering and quality assessment, the consistency of phylogenetic estimation based on exonic sequence alignments can be further explored across distinct inference methods, while accounting for different degrees of missing data.
Implementing a search for gravitational waves from binary black holes with nonprecessing spin
NASA Astrophysics Data System (ADS)
Capano, Collin; Harry, Ian; Privitera, Stephen; Buonanno, Alessandra
2016-06-01
Searching for gravitational waves (GWs) from binary black holes (BBHs) with LIGO and Virgo involves matched-filtering data against a set of representative signal waveforms—a template bank—chosen to cover the full signal space of interest with as few template waveforms as possible. Although the component black holes may have significant angular momenta (spin), previous searches for BBHs have filtered LIGO and Virgo data using only waveforms where both component spins are zero. This leads to a loss of signal-to-noise ratio for signals where this is not the case. Combining the best available template placement techniques and waveform models, we construct a template bank of GW signals from BBHs with component spins χ1 ,2∈[-0.99 ,0.99 ] aligned with the orbital angular momentum, component masses m1 ,2∈[2 ,48 ]M⊙ , and total mass Mtotal≤50 M⊙ . Using effective-one-body waveforms with spin effects, we show that less than 3% of the maximum signal-to-noise ratio (SNR) of these signals is lost due to the discreetness of the bank, using the early Advanced LIGO noise curve. We use simulated Advanced LIGO noise to compare the sensitivity of this bank to a nonspinning bank covering the same parameter space. In doing so, we consider the competing effects between improved SNR and signal-based vetoes and the increase in the rate of false alarms of the aligned-spin bank due to covering a larger parameter space. We find that the aligned-spin bank can be a factor of 1.3-5 more sensitive than a nonspinning bank to BBHs with dimensionless spins >+0.6 and component masses ≳20 M⊙ . Even larger gains are obtained for systems with equally high spins but smaller component masses.
CUDA compatible GPU cards as efficient hardware accelerators for Smith-Waterman sequence alignment
Manavski, Svetlin A; Valle, Giorgio
2008-01-01
Background Searching for similarities in protein and DNA databases has become a routine procedure in Molecular Biology. The Smith-Waterman algorithm has been available for more than 25 years. It is based on a dynamic programming approach that explores all the possible alignments between two sequences; as a result it returns the optimal local alignment. Unfortunately, the computational cost is very high, requiring a number of operations proportional to the product of the length of two sequences. Furthermore, the exponential growth of protein and DNA databases makes the Smith-Waterman algorithm unrealistic for searching similarities in large sets of sequences. For these reasons heuristic approaches such as those implemented in FASTA and BLAST tend to be preferred, allowing faster execution times at the cost of reduced sensitivity. The main motivation of our work is to exploit the huge computational power of commonly available graphic cards, to develop high performance solutions for sequence alignment. Results In this paper we present what we believe is the fastest solution of the exact Smith-Waterman algorithm running on commodity hardware. It is implemented in the recently released CUDA programming environment by NVidia. CUDA allows direct access to the hardware primitives of the last-generation Graphics Processing Units (GPU) G80. Speeds of more than 3.5 GCUPS (Giga Cell Updates Per Second) are achieved on a workstation running two GeForce 8800 GTX. Exhaustive tests have been done to compare our implementation to SSEARCH and BLAST, running on a 3 GHz Intel Pentium IV processor. Our solution was also compared to a recently published GPU implementation and to a Single Instruction Multiple Data (SIMD) solution. These tests show that our implementation performs from 2 to 30 times faster than any other previous attempt available on commodity hardware. Conclusions The results show that graphic cards are now sufficiently advanced to be used as efficient hardware accelerators for sequence alignment. Their performance is better than any alternative available on commodity hardware platforms. The solution presented in this paper allows large scale alignments to be performed at low cost, using the exact Smith-Waterman algorithm instead of the largely adopted heuristic approaches. PMID:18387198
ERIC Educational Resources Information Center
Abbott, Laura Lynn Tanner
2014-01-01
The purpose of this quantitative non-experimental predictive study was to determine if CIA alignment factors and related district support systems are associated with student achievement to enable the turnaround of schools in crisis. This study aimed to utilize the District Snapshot Tool to determine if the district systems that support CIA…
MISFITS: evaluating the goodness of fit between a phylogenetic model and an alignment.
Nguyen, Minh Anh Thi; Klaere, Steffen; von Haeseler, Arndt
2011-01-01
As models of sequence evolution become more and more complicated, many criteria for model selection have been proposed, and tools are available to select the best model for an alignment under a particular criterion. However, in many instances the selected model fails to explain the data adequately as reflected by large deviations between observed pattern frequencies and the corresponding expectation. We present MISFITS, an approach to evaluate the goodness of fit (http://www.cibiv.at/software/misfits). MISFITS introduces a minimum number of "extra substitutions" on the inferred tree to provide a biologically motivated explanation why the alignment may deviate from expectation. These extra substitutions plus the evolutionary model then fully explain the alignment. We illustrate the method on several examples and then give a survey about the goodness of fit of the selected models to the alignments in the PANDIT database.
Rod-Shaped Neural Units for Aligned 3D Neural Network Connection.
Kato-Negishi, Midori; Onoe, Hiroaki; Ito, Akane; Takeuchi, Shoji
2017-08-01
This paper proposes neural tissue units with aligned nerve fibers (called rod-shaped neural units) that connect neural networks with aligned neurons. To make the proposed units, 3D fiber-shaped neural tissues covered with a calcium alginate hydrogel layer are prepared with a microfluidic system and are cut in an accurate and reproducible manner. These units have aligned nerve fibers inside the hydrogel layer and connectable points on both ends. By connecting the units with a poly(dimethylsiloxane) guide, 3D neural tissues can be constructed and maintained for more than two weeks of culture. In addition, neural networks can be formed between the different neural units via synaptic connections. Experimental results indicate that the proposed rod-shaped neural units are effective tools for the construction of spatially complex connections with aligned nerve fibers in vitro. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.