Science.gov

Sample records for aliphatic acid anions

  1. Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of crude oils

    USGS Publications Warehouse

    Kharaka, Y.K.; Lundegard, P.D.; Ambats, G.; Evans, William C.; Bischoff, J.L.

    1993-01-01

    Two crude oils with relatively high (0.60 wt%) and low (0.18 wt%) oxygen contents were heated in the presence of water in gold-plated reactors at 300??C for 2348 h. The high-oxygen oil was also heated at 200??C for 5711 h. The compositions of aqueous organic acid anions of the oils and of the headspace gases were monitored inn order to investigate the distribution of organic acids that can be generated from liquid petroleum. The oil with higher oxygen content generated about five times as much organic anions as the other oil. The dominant organic anions produced were acetate, propionate and butyrate. Small amounts of formate, succinate, methyl succinate and oxalate were also produced. The dominant oxygen-containing product was CO2, as has been observed in similar studies on the hydrous pyrolysis of kerogen. These results indicate that a significant portion (10-30%) of organic acid anions reported i be generated by thermal alteration of oils in reservoir rocks. The bulk of organic acid anions present in formation waters, however, is most likely generated by thermal alteration of kerogen in source rocks. Kerogen is more abundant than oil in sedimentary basins and the relative yields of organic acid anions reported from the hydrous pyrolysis of kerogen are much higher than the yields obtained for the two oils. ?? 1993.

  2. Short chain aliphatic acid anions in oil field waters and their contribution to the measured alkalinity

    USGS Publications Warehouse

    Willey, L.M.; Kharaka, Y.K.; Presser, T.S.; Rapp, J.B.; Barnes, I.

    1975-01-01

    High alkalinity values found in some formation waters from Kettleman North Dome oil field are due chiefly to acetate and propionate ions, with some contribution from higher molecular weight organic acid ions. Some of these waters contain no detectable bicarbonate alkalinity. For waters such as these, high supersaturation with respect to calcite will be incorrectly indicated by thermodynamic calculations based upon carbonate concentrations inferred from traditional alkalinity measurements. ?? 1975.

  3. Combinatorics of aliphatic amino acids.

    PubMed

    Grützmann, Konrad; Böcker, Sebastian; Schuster, Stefan

    2011-01-01

    This study combines biology and mathematics, showing that a relatively simple question from molecular biology can lead to complicated mathematics. The question is how to calculate the number of theoretically possible aliphatic amino acids as a function of the number of carbon atoms in the side chain. The presented calculation is based on earlier results from theoretical chemistry concerning alkyl compounds. Mathematical properties of this number series are highlighted. We discuss which of the theoretically possible structures really occur in living organisms, such as leucine and isoleucine with a chain length of four. This is done both for a strict definition of aliphatic amino acids only involving carbon and hydrogen atoms in their side chain and for a less strict definition allowing sulphur, nitrogen and oxygen atoms. While the main focus is on proteinogenic amino acids, we also give several examples of non-proteinogenic aliphatic amino acids, playing a role, for instance, in signalling. The results are in agreement with a general phenomenon found in biology: Usually, only a small number of molecules are chosen as building blocks to assemble an inconceivable number of different macromolecules as proteins. Thus, natural biological complexity arises from the multifarious combination of building blocks. PMID:21120449

  4. Oxygenases for aliphatic hydrocarbons and fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxygenases catalyzing the insertion of oxygen into either aliphatic hydrocarbons or fatty acids have great similarity. There are two classes of oxygenases: monooxygenases and dioxygenases. Dioxygenase inserts both atoms of molecular oxygen into a substrate, whereas monooxygenase incorporates one a...

  5. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  6. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  7. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  8. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  9. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  10. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  11. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  12. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  13. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  14. Halides with Fifteen Aliphatic C-H···Anion Interaction Sites.

    PubMed

    Shi, Genggongwo; Aliakbar Tehrani, Zahra; Kim, Dongwook; Cho, Woo Jong; Youn, Il-Seung; Lee, Han Myoung; Yousuf, Muhammad; Ahmed, Nisar; Shirinfar, Bahareh; Teator, Aaron J; Lastovickova, Dominika N; Rasheed, Lubna; Lah, Myoung Soo; Bielawski, Christopher W; Kim, Kwang S

    2016-01-01

    Since the aliphatic C-H···anion interaction is relatively weak, anion binding using hydrophobic aliphatic C-H (Cali-H) groups has generally been considered not possible without the presence of additional binding sites that contain stronger interactions to the anion. Herein, we report X-ray structures of organic crystals that feature a chloride anion bound exclusively by hydrophobic Cali-H groups. An X-ray structure of imidazolium-based scaffolds using Cali-H···A(-) interactions (A(-) = anion) shows that a halide anion is directly interacting with fifteen Cali-H groups (involving eleven hydrogen bonds, two bidentate hydrogen-bond-type binding interactions and two weakly hydrogen-bonding-like binding interactions). Additional supporting interactions and/or other binding sites are not observed. We note that such types of complexes may not be rare since such high numbers of binding sites for an anion are also found in analogous tetraalkylammonium complexes. The Cali-H···A(-) interactions are driven by the formation of a near-spherical dipole layer shell structure around the anion. The alternating layers of electrostatic charge around the anion arise because the repulsions between weakly positively charged H atoms are reduced by the presence of the weakly negatively charged C atoms connected to H atoms. PMID:27444513

  15. Halides with Fifteen Aliphatic C–H···Anion Interaction Sites

    NASA Astrophysics Data System (ADS)

    Shi, Genggongwo; Aliakbar Tehrani, Zahra; Kim, Dongwook; Cho, Woo Jong; Youn, Il-Seung; Lee, Han Myoung; Yousuf, Muhammad; Ahmed, Nisar; Shirinfar, Bahareh; Teator, Aaron J.; Lastovickova, Dominika N.; Rasheed, Lubna; Lah, Myoung Soo; Bielawski, Christopher W.; Kim, Kwang S.

    2016-07-01

    Since the aliphatic C–H···anion interaction is relatively weak, anion binding using hydrophobic aliphatic C–H (Cali–H) groups has generally been considered not possible without the presence of additional binding sites that contain stronger interactions to the anion. Herein, we report X-ray structures of organic crystals that feature a chloride anion bound exclusively by hydrophobic Cali–H groups. An X-ray structure of imidazolium-based scaffolds using Cali–H···A‑ interactions (A‑ = anion) shows that a halide anion is directly interacting with fifteen Cali–H groups (involving eleven hydrogen bonds, two bidentate hydrogen-bond-type binding interactions and two weakly hydrogen-bonding-like binding interactions). Additional supporting interactions and/or other binding sites are not observed. We note that such types of complexes may not be rare since such high numbers of binding sites for an anion are also found in analogous tetraalkylammonium complexes. The Cali–H···A‑ interactions are driven by the formation of a near-spherical dipole layer shell structure around the anion. The alternating layers of electrostatic charge around the anion arise because the repulsions between weakly positively charged H atoms are reduced by the presence of the weakly negatively charged C atoms connected to H atoms.

  16. Halides with Fifteen Aliphatic C–H···Anion Interaction Sites

    PubMed Central

    Shi, Genggongwo; Aliakbar Tehrani, Zahra; Kim, Dongwook; Cho, Woo Jong; Youn, Il-Seung; Lee, Han Myoung; Yousuf, Muhammad; Ahmed, Nisar; Shirinfar, Bahareh; Teator, Aaron J.; Lastovickova, Dominika N.; Rasheed, Lubna; Lah, Myoung Soo; Bielawski, Christopher W.; Kim, Kwang S.

    2016-01-01

    Since the aliphatic C–H···anion interaction is relatively weak, anion binding using hydrophobic aliphatic C–H (Cali–H) groups has generally been considered not possible without the presence of additional binding sites that contain stronger interactions to the anion. Herein, we report X-ray structures of organic crystals that feature a chloride anion bound exclusively by hydrophobic Cali–H groups. An X-ray structure of imidazolium-based scaffolds using Cali–H···A− interactions (A− = anion) shows that a halide anion is directly interacting with fifteen Cali–H groups (involving eleven hydrogen bonds, two bidentate hydrogen-bond-type binding interactions and two weakly hydrogen-bonding-like binding interactions). Additional supporting interactions and/or other binding sites are not observed. We note that such types of complexes may not be rare since such high numbers of binding sites for an anion are also found in analogous tetraalkylammonium complexes. The Cali–H···A− interactions are driven by the formation of a near-spherical dipole layer shell structure around the anion. The alternating layers of electrostatic charge around the anion arise because the repulsions between weakly positively charged H atoms are reduced by the presence of the weakly negatively charged C atoms connected to H atoms. PMID:27444513

  17. Characterization of a Saturated and Flexible Aliphatic Polyol Anion Receptor

    SciTech Connect

    Shokri, Alireza; Schmidt, Jacob C.; Wang, Xue B.; Kass, Steven R.

    2012-10-17

    Nature employs flexible molecules to bind anions in a variety of physiologically important processes whereas supramolecular chemists have been designing rigid substrates that minimize or eliminate intramolecular hydrogen bond interactions to carry out anion recogni-tion. Herein, the association of a flexible polyhydroxy alkane with chloride ion is described and the bound re-ceptor is characterized by infrared and photoelectron spectroscopy in the gas phase, computations, and its bind-ing constant as a function of temperature in acetonitrile.

  18. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses... salt (PMN P-92-1352) is subject to reporting under this section for the significant new uses...

  19. Anion Effects in Oxidative Aliphatic Carbon-Carbon Bond Cleavage Reactions of Cu(II) Chlorodiketonate Complexes.

    PubMed

    Saraf, Sushma L; Miłaczewska, Anna; Borowski, Tomasz; James, Christopher D; Tierney, David L; Popova, Marina; Arif, Atta M; Berreau, Lisa M

    2016-07-18

    Aliphatic oxidative carbon-carbon bond cleavage reactions involving Cu(II) catalysts and O2 as the terminal oxidant are of significant current interest. However, little is currently known regarding how the nature of the Cu(II) catalyst, including the anions present, influence the reaction with O2. In previous work, we found that exposure of the Cu(II) chlorodiketonate complex [(6-Ph2TPA)Cu(PhC(O)CClC(O)Ph)]ClO4 (1) to O2 results in oxidative aliphatic carbon-carbon bond cleavage within the diketonate unit, leading to the formation of benzoic acid, benzoic anhydride, benzil, and 1,3-diphenylpropanedione as organic products. Kinetic studies of this reaction revealed a slow induction phase followed by a rapid decay of the absorption features of 1. Notably, the induction phase is not present when the reaction is performed in the presence of a catalytic amount of chloride anion. In the studies presented herein, a combination of spectroscopic (UV-vis, EPR) and density functional theory (DFT) methods have been used to examine the chloride and benzoate ion binding properties of 1 under anaerobic conditions. These studies provide evidence that each anion coordinates in an axial position of the Cu(II) center. DFT studies reveal that the presence of the anion in the Cu(II) coordination sphere decreases the barrier for O2 activation and the formation of a Cu(II)-peroxo species. Notably, the chloride anion more effectively lowers the barrier associated with O-O bond cleavage. Thus, the nature of the anion plays an important role in determining the rate of reaction of the diketonate complex with O2. The same type of anion effects were observed in the O2 reactivity of the simple Cu(II)-bipyridine complex [(bpy)Cu(PhC(O)C(Cl)C(O)Ph)ClO4] (3). PMID:27377103

  20. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, H.L.; Palasz, P.D.; Ratcliff, M.A.

    1984-12-20

    A process is described for producing peracids from lactic acid-containing solutions derived from biomass processing systems. It consists of adjusting the pH of the solution to about 8 to 9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids. The solution is oxidized to produce volatile lower aliphatic aldehydes. The aldehydes are removed as they are generated and converted to peracids.

  1. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, Helena L.; Ratcliff, Matthew A.; Palasz, Peter D.

    1986-01-01

    A process for producing peracids from lactic acid-containing solutions derived from biomass processing systems comprising: adjusting the pH of the solution to about 8-9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids; oxidizing the solution to produce volatile lower aliphatic aldehydes; removing said aldehydes as they are generated; and converting said aldehydes to peracids.

  2. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis

    PubMed Central

    Ventre, Sandrine; Petronijevic, Filip R.; MacMillan, David W. C.

    2016-01-01

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F• transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol. PMID:25881929

  3. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of... polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). (a) Chemical substance and... acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (PMN P-11-333) is subject...

  4. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of... polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). (a) Chemical substance and... acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (PMN P-11-333) is subject...

  5. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of... polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). (a) Chemical substance and... acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (PMN P-11-333) is subject...

  6. Polarized Raman spectra and intensities of aliphatic amino acids

    NASA Astrophysics Data System (ADS)

    Himmler, Hans J.; Eysel, Hans H.

    1989-01-01

    Raman spectra of aliphatic α- L-amino acids, glycine, alanine, and valine were re-investigated both in aqueous solution and deuterium oxide solution. The spectra were taken of the zwitterionic and of the completely deprotonated form of the amino acids. Spectra of leucine and isoleucine were studied in water at the isoelectric point. Spectra were recorded both with parallel and perpendicular polarization and the isotropic and anisotropic scattering components were isolated. The integrated intensities of CH stretch, CC stretch and carboxylate bend vibrations are discussed. Linear relations between the number of CC and CH bonds and the total scattered intensity in the appropriate spectral regions are observed. The sum over the carboxylate modes shows characteristic intensities for the first three members of the aliphatic amino acids. An increase of isotropic scattering of ϱ co 2 near 510 cm -1 with increasing chain length of the amino acid (or with increasing concentration) is interpreted as the result of micelle formation.

  7. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  8. Direct enantioseparation of underivatized aliphatic 3-hydroxyalkanoic acids with a quinine-based zwitterionic chiral stationary phase.

    PubMed

    Ianni, Federica; Pataj, Zoltán; Gross, Harald; Sardella, Roccaldo; Natalini, Benedetto; Lindner, Wolfgang; Lämmerhofer, Michael

    2014-10-10

    While aliphatic 2-hydroxyalkanoic acids have been more or less successfully enantioseparated with various chiral stationary phases by HPLC and GC, analogous applications on underivatized aliphatic 3-hydroxyalkanoic acids are completely absent in the scientific literature. With the aim of closing this gap, the enantioseparation of 3-hydroxybutyric acid, 3-hydroxydecanoic acid and 3-hydroxymyristic acid has been performed with two ion-exchange type chiral stationary phases (CSPs): one containing the anion-exchange type tert-butyl carbamoyl quinine chiral selector motif (Chiralpak QN-AX), and the other carrying the new zwitterionic variant based on trans-(S,S)-2-aminocyclohexanesulfonic acid-derivatized quinine carbamate (Chiralpak ZWIX(+)) as the chiral selector and enantiodiscriminating element, respectively. The zwitterionic enantiorecognition material provided better results in terms of enantioselectivity and resolution compared to the anion-exchanger CSP at reduced retention times due to the intramolecular counterion effect imposed by the sulfonic acid moiety and its competition with the 3-hydroxyalkanoic acid analyte for ionic interaction at the quininium-anion exchanger site. It is thus recommended as the CSP of first choice for enantioseparations of the class of aliphatic 3-hydroxyalkanoic acids. With use of polar organic eluent composed of ACN/MeOH/AcOH - 95/5/0.05 (v/v/v), a good compromise in terms of analysis time and enantioresolution quality was accomplished. The major experimental variables have been investigated for optimization of the resolution and allowed to derive information on the enantiorecognition mechanism. Corresponding Chiralpak ZWIX(-), based on pseudo-enantiomeric selector derived from quinidine and trans-(R,R)-2-aminocyclohexanesulfonic acid with opposite configurations provided reversed enantiomer elution orders. It has further to be stressed that these separations can be obtained with mass spectrometry compatible mobile phases. PMID

  9. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic polycarboxylic acid...

  10. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... salt (generic). 721.2098 Section 721.2098 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  11. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... salt (generic). 721.2098 Section 721.2098 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  12. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... salt (generic). 721.2098 Section 721.2098 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  13. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... salt (generic). 721.2098 Section 721.2098 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  14. Retention behavior of C1-C6 aliphatic monoamines on anion-exchange and polymethacrylate resins with heptylamine as eluent.

    PubMed

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae Jeong; Lee, Kwang-Pill

    2004-06-11

    Retention behavior of C1-C6, aliphatic monoamines (methylamine, ethylamine, propylamine, butylamine, amylamine and hexylamine) on columns (150 mm x 6 mm i.d.) packed with various anion-exchange resins (styrene-divinylbenzene (PS-DVB) copolymer-based strongly basic anion-exchange resin: TSKgel SAX, polymethacrylate-based strongly basic anion-exchange resin: TSKgel SuperQ-5PW and polymethacrylate-based weakly basic anion-exchange resin: TSKgel DEAE-5PW) and unfunctionized polymethacrylate resins (TSKgel G5000PW and TSKgel G3000PWXL) was investigated with basic solutions (sodium hydroxide and heptylamine) as the eluents. Due to strongly electrostatic repulsion (ion-exclusion effect) between these anion-exchange resins and these amines, peak resolution between these amines on these anion-exchange resin columns was unsatisfactory with both sodium hydroxide and heptylamine as the eluents. In contrast, these polymethacrylate resins were successfully applied as the stationary phases for the separation of these C1-C6 amines with heptylamine as eluent, because of both small hydrophobicity and small cation-exchange ability of these resins. Excellent simultaneous separation, highly sensitive conductimetric detection and symmetrical peaks for these C1-C6 amines were achieved on the TSKgel G3000PWXL column in 35 min with 5 mM heptylamine at pH 11.1 as the eluent. PMID:15250421

  15. Silver-Catalyzed Decarboxylative Allylation of Aliphatic Carboxylic Acids in Aqueous Solution.

    PubMed

    Cui, Lei; Chen, He; Liu, Chao; Li, Chaozhong

    2016-05-01

    Direct decarboxylative radical allylation of aliphatic carboxylic acids is described. With K2S2O8 as the oxidant and AgNO3 as the catalyst, the reactions of aliphatic carboxylic acids with allyl sulfones in aqueous CH3CN solution gave the corresponding alkenes in satisfactory yields under mild conditions. This site-specific allylation method is applicable to all primary, secondary, and tertiary alkyl acids and exhibits wide functional group compatibility. PMID:27065060

  16. Separation and conductimetric detection of C1-C7 aliphatic monocarboxylic acids and C1-C7 aliphatic monoamines on unfunctionized polymethacrylate resin columns.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi; Takeuchi, Toyohide

    2004-06-11

    The application of unfunctionized polymethacrylate resin (TSKgel G3000PWXL) as a stationary phase in liquid chromatography with conductimetric detection for C1-C7 aliphatic monocarboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, 3,3-dimethylbutyric acid, 4-methylvaleric acid, hexanoic acid, 2-methylhexanoic acid, 5-methylhexanoic acid and heptanoic acid) and C1-C7 aliphatic monoamines (methylamine, ethylamine, propylamine, isobutylamine, butylamine, isoamylamine, amylamine, 1,3-dimethylbutylamine, hexylamine, 2-heptylamine and heptylamine) was attempted with C8 aliphatic monocarboxylic acids (2-propylvaleric acid, 2-ethylhexanoic acid, 2-methylheptanoic acid and octanoic acid) and C8 aliphatic monoamines (1,5-dimethylhexylamine, 2-ethylhexylamine, 1-methylheptylamine and octylamine) as eluents, respectively. Using 1 mM 2-methylheptanoic acid at pH 4.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 carboxylic acids were achieved on a TSKgel G3000PWXL column (150 mm x 6 mm i.d.) in 60 min. Using 2 mM octylamine at pH 11.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 amines were also achieved on the TSKgel G3000PWXL column in 60 min. PMID:15250420

  17. THE EFFECTS OF AROMATIC AND ALIPHATIC ANIONIC SURFACTANTS ON SC(OTF)3-CATALYZED MUKAIYAMA ALDOL REACTION IN WATER. (R822668)

    EPA Science Inventory

    Abstract

    Aromatic (2c and 2d) and aliphatic (2a and 2b) anionic surfactants were employed in Sc(OTf)3-catalyzed aldol reactions of some labile silyl enol ethers (3a and

  18. Mass spectral analysis of C3 and C4 aliphatic amino acid derivatives.

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Chadha, M. S.

    1971-01-01

    Diagnostic criteria are obtained for the distinction of alpha, beta, gamma, and N-methyl isomers of the C3 and C4 aliphatic amino acids, using mass spectral analysis of the derivatives of these acids. The use of deuterium labeling has helped in the understanding of certain fragmentation pathways.

  19. Purification Or Organic Acids Using Anion Exchange Chromatography.

    DOEpatents

    Ponnampalam; Elankovan

    2001-09-04

    Disclosed is a cost-effective method for purifying and acidifying carboxylic acids, including organic acids and amino acids. The method involves removing impurities by allowing the anionic form of the carboxylic acid to bind to an anion exchange column and washing the column. The carboxylic anion is displaced as carboxylic acid by washing the resin with a strong inorganic anion. This method is effective in removing organic carboxylic acids and amino acids from a variety of industrial sources, including fermentation broths, hydrolysates, and waste streams.

  20. Simultaneous and sensitive analysis of aliphatic carboxylic acids by ion-chromatography using on-line complexation with copper(II) ion.

    PubMed

    Kemmei, Tomoko; Kodama, Shuji; Yamamoto, Atsushi; Inoue, Yoshinori; Hayakawa, Kazuichi

    2015-01-01

    A new approach to ion chromatography is proposed to improve the UV detection of aliphatic carboxylic acids separated by anion-exchange chromatography. When copper(II) ion added to the mobile phase, it forms complexes with carboxylic acids that can be detected at 240 nm. The absorbance was found to increase with increasing copper(II) ion concentration. The retention times of α-hydroxy acids were also found to depend on the copper(II) ion concentration. Addition of acetonitrile to the mobile phase improved the separation of aliphatic carboxylic acids. The detection limits of the examined carboxylic acids (formate, glycolate, acetate, lactate, propionate, 3-hydroxypropionate, n-butyrate, isobutyrate, n-valerate, isovalerate, n-caproate) calculated at S/N=3 ranged from 0.06 to 3 μM. The detector signal was linear over three orders of magnitude of carboxylic acid concentration. The proposed method was successfully applied to analyze aliphatic carboxylic acids in rainwater and bread. PMID:25523885

  1. 40 CFR 721.530 - Substituted aliphatic acid halide (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substance and significant new uses subject to reporting. (1) The chemical substance substituted aliphatic acid halide (PMN P-84-491) is subject to reporting under this section for the significant new uses... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses...

  2. 40 CFR 721.530 - Substituted aliphatic acid halide (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substance and significant new uses subject to reporting. (1) The chemical substance substituted aliphatic acid halide (PMN P-84-491) is subject to reporting under this section for the significant new uses... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses...

  3. Kinetics of acid-catalyzed aldol condensation reactions of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Casale, Mia T.; Richman, Aviva R.; Elrod, Matthew J.; Garland, Rebecca M.; Beaver, Melinda R.; Tolbert, Margaret A.

    Field observations of atmospheric aerosols have established that organic compounds compose a large fraction of the atmospheric aerosol mass. However, the physical/chemical pathway by which organic compounds are incorporated into atmospheric aerosols remains unclear. The potential role of acid-catalyzed reactions of organic compounds on acidic aerosols has been explored as a possible chemical pathway for the incorporation of organic material into aerosols. In the present study, ultraviolet-visible (UV-vis) spectroscopy was used to monitor the kinetics of formation of the products of the acid-catalyzed aldol condensation reaction of a range of aliphatic aldehydes (C 2-C 8). The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature. While the kinetic data are generally consistent with previous laboratory reports of aldehyde reactivity in various sulfuric acid media, the aldol condensation reactions involving aliphatic aldehydes do not appear fast enough to be responsible for significant transfer of organic material into atmospheric aerosols.

  4. Determination of aliphatic organic acids by high-performance liquid chromatography with pulsed electrochemical detection.

    PubMed

    Casella, Innocenzo G; Gatta, Maria

    2002-01-01

    A new ion exclusion HPLC procedure accomplished with a pulsed electrochemical detection for the determination of several common aliphatic acids is described. A triple-step waveform of the applied potentials, based on the formation/inhibition of PtOH species on the electrode surface, is successfully used for sensitive detection of several aliphatic acids in flowing systems avoiding pre- or postcolumn derivatization and/or cleanup procedures. Under optimal chromatographic conditions (i.e., 50 mM HClO(4)) the proposed method allowed detection limits between 0.5 and 7 microM for all investigated acids, and the dynamic linear range spanned generally over 1 or 2 orders of magnitude. Determination of citric, malic, tartaric, lactic, formic, and acetic acids in several foods and beverages was performed, in approximately 15 min, without the necessity of any sample pretreatment. PMID:11754537

  5. Self-assembly of short peptides composed of only aliphatic amino acids and a combination of aromatic and aliphatic amino acids.

    PubMed

    Subbalakshmi, Chilukuri; Manorama, Sunkara V; Nagaraj, Ramakrishnan

    2012-05-01

    The morphology of structures formed by the self-assembly of short N-terminal t-butyloxycarbonyl (Boc) and C-terminal methyl ester (OMe) protected and Boc-deprotected hydrophobic peptide esters was investigated. We have observed that Boc-protected peptide esters composed of either only aliphatic hydrophobic amino acids or aliphatic hydrophobic amino acids in combination with aromatic amino acids, formed highly organized structures, when dried from methanol solutions. Transmission and scanning electron microscopic images of the peptides Boc-Ile-Ile-OMe, Boc-Phe-Phe-Phe-Ile-Ile-OMe and Boc-Trp-Ile-Ile-OMe showed nanotubular structures. Removal of the Boc group resulted in disruption of the ability to form tubular structures though spherical aggregates were formed. Both Boc-Leu-Ile-Ile-OMe and H-Leu-Ile-Ile-OMe formed only spherical nanostructures. Dynamic light scattering studies showed that aggregates of varying dimensions were present in solution suggesting that self-assembly into ordered structures is facilitated by aggregation in solution. Fourier transform infrared spectroscopy and circular dichroism spectroscopy data show that although all four of the protected peptides adopt well-defined tertiary structures, upon removal of the Boc group, only H-Phe-Phe-Phe-Ile-Ile-OMe had the ability to adopt β-structure. Our results indicate that hydrophobic interaction is a very important determinant for self-assembly and presence of charged and aromatic amino acids in a peptide is not necessary for self-assembly. PMID:22431418

  6. Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

    PubMed Central

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  7. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    PubMed

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  8. Aliphatic structure of humic acids; a clue to their origin

    USGS Publications Warehouse

    Hatcher, P.G.; Maciel, G.E.; Dennis, L.W.

    1981-01-01

    Nuclear magnetic resonance spectra (both 1H and 13C) of humic acids from diverse depositional environments indicate the presence of aromatic chemical structures, most likely derived from lignin of vascular plants, and complex, paraffinic structures, most likely derived from algal or microbial sources. The latter components account for a major fraction of humic acid structures in both terrestrial and aquatic environments, suggesting that algae or microbes play a large role in humification of organic remains from both systems. ?? 1981.

  9. Survey of organic acid eluents for anion chromatography

    SciTech Connect

    Book, D.E.

    1981-10-01

    Of all the potential eluents surveyed (including aromatic, sulfonic, phosphonic, among other acids), only the carboxylic acids and the nitrophenols are recommended as eluents for anion chromatography. The concentration of the eluent should be in the range 5 x 10/sup -5/ to 1 x 10/sup -3/ M. The eluent should have the same charge as inorganic anions, a higher charge than organic acid samples. Choice of eluents for separation of halides, chloride and sulfate, multivalent inorganic anions, small alkyl acids, and aromatic acids is discussed. (DLC)

  10. Electron ionization and dissociation of aliphatic amino acids

    NASA Astrophysics Data System (ADS)

    Papp, P.; Shchukin, P.; Kočíšek, J.; Matejčík, Š.

    2012-09-01

    We present experimental and theoretical study of electron ionization and dissociative ionization to the gas phase amino acids valine, leucine, and isoleucine. A crossed electron/molecular beams technique equipped with quadrupole mass analyzer has been applied to measure mass spectra and ion efficiency curves for formation of particular ions. From experimental data the ionization energies of the molecules and the appearance energies of the fragment ions were determined. Ab initio calculations (Density Functional Theory and G3MP2 methods) were performed in order to calculate the fragmentation paths and interpret the experimental data. The experimental ionization energies of parent molecules [P]+ 8.91 ± 0.05, 8.85 ± 0.05, and 8.79 ± 0.05 eV and G3MP2 ionization energies (adiabatic) of 8.89, 8.88, and 8.81 eV were determined for valine, leucine, and isoleucine, respectively, as well as the experimental and theoretical threshold energies for dissociative ionization channels. The comparison of experimental data with calculations resulted in identification of the ions as well as the neutral fragments formed in the dissociative reactions. Around 15 mass/charge ratio fragments were identified from the mass spectra by comparison of experimental appearance energies with calculated reaction enthalpies for particular dissociative reactions.

  11. 2,4,5-Trimethylimidazolium Scaffold for Anion Recognition Receptors Acting Through Charge-Assisted Aliphatic and Aromatic C-H Interactions.

    PubMed

    Sabater, Paula; Zapata, Fabiola; Caballero, Antonio; Fernández, Israel; Ramirez de Arellano, Carmen; Molina, Pedro

    2016-05-01

    A series of two-armed 2,4,5-trimethylimidazolium-based oxoanion receptors, which incorporate two end-capped photoactive anthracene rings, being the central core an aromatic or heteroaromatic ring, has been designed. In the presence of HP2O7(3-), H2PO4(-), and SO4(2-) anions, (1)H- and (31)P NMR spectroscopical data clearly indicate the simultaneous occurrence of several charge-assisted aliphatic and aromatic C-H noncovalent interactions, i.e., significant downfield shifts were observed for the imidazolium C(2)-CH3 protons, the methylene N-CH2 protons, and the inner aromatic proton or the outer heteroaromatic protons. Density functional theory calculations confirm the occurrence of these noncovalent interaction and suggest that the interaction between the anions and the receptors is mainly electrostatic in nature. PMID:27078523

  12. Kinetics of Acid-Catalyzed Aldol Condensation Reactions of Aliphatic Aldehydes

    NASA Astrophysics Data System (ADS)

    Elrod, M. J.; Casale, M. T.; Richman, A. R.; Beaver, M. R.; Garland, R. M.; Tolbert, M. A.

    2006-12-01

    While it is well established that organic compounds compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, ultraviolet-visible (UV-Vis) spectroscopy was used to monitor the kinetics of formation of the products of the aldol condensation reaction of a range of aliphatic aldehydes (C2-C8) The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature.

  13. Chiroptical study of α-aliphatic amino acid films in the vacuum ultraviolet region.

    PubMed

    Tanaka, Masahito; Yagi-Watanabe, Kazutoshi; Kaneko, Fusae; Nakagawa, Kazumichi

    2010-11-11

    A series of natural circular dichroism (CD) and absorption spectra for films of α-aliphatic amino acids--such as alanine, aminobutyric acid, norvaline, norleucine, valine, leucine, and isoleucine--in the vacuum ultraviolet (VUV) region were observed with the absolute values of optical constants at the undulator-based CD beamline TERAS BL5. Preliminary predictions of some CD spectra were also performed, based on quantum-chemical calculations using the crystal structure. Although the absorption spectra show similar features to each other, significant differences between the CD spectra were found, especially in the 7-8 eV region. The CD spectra of aliphatic amino acids with branched alkyl groups in the side-chain--such as valine, leucine, and isoleucine--exhibit strong negative CD peaks in this energy region. In contrast, the corresponding CD peaks were weak or absent in the spectra of amino acids with straight alkyl groups. Our simple calculation, and the absorption spectra of alkanes, suggest that this difference partly originates from the contribution of the alkyl group. Clear discrepancies between the CD spectra of these amino acids in solutions and those in the solid state were also observed; this is probably caused by the different molecular structures in each state. Our results clearly indicated that CD spectra in the VUV region were very sensitive to the conformations of chiral molecules. PMID:20958008

  14. Effects of aliphatic acids, furfural, and phenolic compounds on Debaryomyces hansenii CCMI 941.

    PubMed

    Duarte, Luís C; Carvalheiro, Florbela; Neves, Inês; Gírio, Francisco M

    2005-01-01

    Debaryomyces hansenii is a polyol overproducing yeast that can have a potential use for upgrading lignocellulosic hydrolysates. Therefore, the establishment of its tolerance to metabolic inhibitors found in hydrolysates is of major interest. We studied the effects of selected aliphatic acids, phenolic compounds, and furfural. Acetic acid favored biomass production for concentrations <6.0 g/L. Formic acid was more toxic than acetic acid and induced xylitol accumulation (maximum yield of 0.21 g/g of xylose). All tested phenolics strongly decreased the specific growth rate. Increased toxicity was found for hydroquinone, syringaldehyde, and 4-methylcatechol and was correlated to the compound's hydrophobicity. Increasing the amount of furfural led to longer lag phases and had a detrimental effect on specific growth rate and biomass productivity. PMID:15917618

  15. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10188 Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic)....

  16. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acids, tall-oil, reaction... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10188 Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic)....

  17. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acids, tall-oil, reaction... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10188 Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic)....

  18. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10188 Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic)....

  19. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acids, tall-oil, reaction... SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10188 Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic)....

  20. Linear and cyclic aliphatic carboxamides of the Murchison meteorite: Hydrolyzable derivatives of amino acids and other carboxylic acids

    NASA Astrophysics Data System (ADS)

    Cooper, G. W.; Cronin, J. R.

    1995-03-01

    Analyses of fractionated aqueous extracts of the Murchison meteorite by gas chromatographymass spectrometry after silylation with N-methyl-N ( tert-butyldimethylsilyl) trifluoroacetamide have revealed an extensive series of linear and cyclic aliphatic amides. These include monocarboxylic acid amides, dicarboxylic acid monoamides, hydroxy acid amides, lactams, carboxy lactams, lactims, N-acetyl amino acids, and substituted hydantoins. Numerous isomers and homologues through at least C 8 were observed in all cases, except for the N-acetyl amino acids and hydantoins. Carboxy lactams, lactams, hydantoins, and N-acetyl amino acids are converted to amino acids by acid hydrolysis, thus, these compounds qualitatively account for the earlier observation of acid-labile amino acid precursors in meteoritic extracts. Laboratory studies of the spontaneous decomposition of N-carbamyl-α-amino acids and their dehydration products, the 5-substituted hydantoins, have led to the recognition of a series of aqueous phase reactions by which amino acids and cyanic acid/cyanate ion in the primitive parent body might have given rise to several of the observed classes of amides, as well as to monocarboxylic acids, dicarboxylic acids, and hydroxy acids. A previously undescribed reaction of 5-substituted hydantoins with cyanic acid/cyanate ion to give carboxamides of the 5-substituent groups was observed in the course of these studies. The presence of an extensive suite of amides in a CM chondrite appears to be consistent with the interstellar-parent body formation hypothesis for the organic compounds of these meteorites. The presence of carboxy lactams and lactams along with free amino acids suggests the possibility of further chemical evolution of meteorite amino acids by thermal polymerization. The cyclic amides, given their potential for hydrogen-bonded pair formation, might be considered candidate bases for a primitive sequence coding system.

  1. Fragmentation and dimerization of aliphatic amino acid films induced by vacuum ultraviolet irradiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Masahito; Kaneko, Fusae; Koketsu, Toshiyuki; Nakagawa, Kazumichi; Yamada, Toru

    2008-10-01

    The chemical reaction of aliphatic amino acid, such as alanine (Ala) and leucine (Leu), in the solid phase induced by vacuum ultraviolet (VUV) irradiation was studied by high-performance liquid chromatography technique and mass spectroscopic method. Quantum efficiencies of dimerization of Ala in the solid phase obviously showed irradiated VUV wavelength dependence. The values of quantum efficiencies of formation of Ala dimer were determined to be 5.7×10-5, 1.3×10-3, and 2.4×10-4 for 208, 183, and 87 nm irradiation, respectively. VUV-induced fragment desorption from Ala and Leu films has also been examined by mass spectroscopic method. Observed mass spectra clearly indicated that both the deamination and decarboxylation reactions were common in both Ala and Leu films, and the dissociation of side chain occurred only in Leu film.

  2. DEVELOPMENTAL TOXICITY AND STRUCTURE-ACTIVITY RELATIONSHIPS OF ALIPHATIC ACIDS, INCLUDING DOSE-RESPONSE ASSESSMENT OF VALPROIC ACID IN MICE AND RATS

    EPA Science Inventory

    The anticonvulsant valproic acid (VPA), or 2-propylpentanoic acid, is a short-chain aliphatic acid that is teratogenic in humans and rodents. PA and 14 related using the Chernoff/Kavlock assay Sprague-Dawley rats were gavaged with the test agent in corn oil once daily organogenes...

  3. An Aliphatic Solvent-Soluble Lithium Salt of the Perhalogenated Weakly Coordinating Anion [Al(OC(CCl3)(CF3)2)4](-).

    PubMed

    Zheng, Xin; Zhang, Zaichao; Tan, Gengwen; Wang, Xinping

    2016-02-01

    The facile synthesis of a new highly aliphatic solvent-soluble Li(+) salt of the perhalogenated weakly coordinating anion [Al(OC(CCl3)(CF3)2)4](-) and its application in stabilizing the Ph3C(+) cation were investigated. The lithium salt Li[Al(OC(CCl3)(CF3)2)4] (4) was prepared by the treatment of 4 mol equiv of HOC(CCl3)(CF3)2 with purified LiAlH4 in n-hexane from -20 °C to room temperature. Compound 4 is highly soluble in both polar and nonpolar solvents, and it bears both CCl3 and CF3 groups, resulting in a lower symmetry around the Al center compared to that of Li[Al(OC(CF3)3)4] (1). Treatment of 4 with Ph3CCl afforded the ionic compound [Ph3C][Al(OC(CCl3)(CF3)2)4] (5) bearing the Ph3C(+) cation with concomitant elimination of LiCl, suggesting the potential application of [Al(OC(CCl3)(CF3)2)4](-) in stabilizing reactive cationic species. Compounds 4 and 5 were fully characterized by spectroscopic and structural methods. PMID:26784742

  4. Marsh plant response to metals: Exudation of aliphatic low molecular weight organic acids (ALMWOAs)

    NASA Astrophysics Data System (ADS)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2016-03-01

    Metal exposure is known to induce the production and secretion of substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere by plant roots. Knowledge on this matter is extensive for soil plants but still considerably scarce regarding marsh plants roots adapted to high salinity media. Phragmites australis and Halimione portulacoides, two marsh plants commonly distributed in European estuarine salt marshes, were used to assess the response of roots of both species, in terms of ALMWOAs exudation, to Cu, Ni and Cd exposure (isolated and in mixture since in natural environment, they are exposed to mixture of metals). As previous studies were carried out in unrealistic and synthetic media, here a more natural medium was selected. Therefore, in vitro experiments were carried out, with specimens of both marsh plants, and in freshwater contaminated with two different Cu, Ni and Cd concentrations (individual metal and in mixture). Both marsh plants were capable of liberating ALMWOAs into the surrounding medium. Oxalic, citric and maleic acids were found in P. australis root exudate solutions and oxalic and maleic acids in H. portulacoides root exudate solutions. ALMWOA liberation by both plants was plant species and metal-dependent. For instance, Cu affected the exudation of oxalic acid by H. portulacoides and of oxalic and citric acids by P. australis roots. In contrast, Ni and Cd did not stimulate any specific response. Regarding the combination of all metals, H. portulacoides showed a similar response to that observed for Cu individually. However, in the P. australis case, at high metal concentration mixture, a synergetic effect led to the increase of oxalic acid levels in root exudate solution and to a decrease of citric acid liberation. A correlation between ALMWOAs exudation and metal accumulation could not be established. P. australis and H. portulacoides are considered suitable metal phytoremediators of estuarine impacted areas

  5. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates.

    PubMed

    Chou, Danny Hung-Chieh; Webber, Matthew J; Tang, Benjamin C; Lin, Amy B; Thapa, Lavanya S; Deng, David; Truong, Jonathan V; Cortinas, Abel B; Langer, Robert; Anderson, Daniel G

    2015-02-24

    Since its discovery and isolation, exogenous insulin has dramatically changed the outlook for patients with diabetes. However, even when patients strictly follow an insulin regimen, serious complications can result as patients experience both hyperglycemic and hypoglycemic states. Several chemically or genetically modified insulins have been developed that tune the pharmacokinetics of insulin activity for personalized therapy. Here, we demonstrate a strategy for the chemical modification of insulin intended to promote both long-lasting and glucose-responsive activity through the incorporation of an aliphatic domain to facilitate hydrophobic interactions, as well as a phenylboronic acid for glucose sensing. These synthetic insulin derivatives enable rapid reversal of blood glucose in a diabetic mouse model following glucose challenge, with some derivatives responding to repeated glucose challenges over a 13-h period. The best-performing insulin derivative provides glucose control that is superior to native insulin, with responsiveness to glucose challenge improved over a clinically used long-acting insulin derivative. Moreover, continuous glucose monitoring reveals responsiveness matching that of a healthy pancreas. This synthetic approach to insulin modification could afford both long-term and glucose-mediated insulin activity, thereby reducing the number of administrations and improving the fidelity of glycemic control for insulin therapy. The described work is to our knowledge the first demonstration of a glucose-binding modified insulin molecule with glucose-responsive activity verified in vivo. PMID:25675515

  6. Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates

    PubMed Central

    Chou, Danny Hung-Chieh; Webber, Matthew J.; Tang, Benjamin C.; Lin, Amy B.; Thapa, Lavanya S.; Deng, David; Truong, Jonathan V.; Cortinas, Abel B.; Langer, Robert; Anderson, Daniel G.

    2015-01-01

    Since its discovery and isolation, exogenous insulin has dramatically changed the outlook for patients with diabetes. However, even when patients strictly follow an insulin regimen, serious complications can result as patients experience both hyperglycemic and hypoglycemic states. Several chemically or genetically modified insulins have been developed that tune the pharmacokinetics of insulin activity for personalized therapy. Here, we demonstrate a strategy for the chemical modification of insulin intended to promote both long-lasting and glucose-responsive activity through the incorporation of an aliphatic domain to facilitate hydrophobic interactions, as well as a phenylboronic acid for glucose sensing. These synthetic insulin derivatives enable rapid reversal of blood glucose in a diabetic mouse model following glucose challenge, with some derivatives responding to repeated glucose challenges over a 13-h period. The best-performing insulin derivative provides glucose control that is superior to native insulin, with responsiveness to glucose challenge improved over a clinically used long-acting insulin derivative. Moreover, continuous glucose monitoring reveals responsiveness matching that of a healthy pancreas. This synthetic approach to insulin modification could afford both long-term and glucose-mediated insulin activity, thereby reducing the number of administrations and improving the fidelity of glycemic control for insulin therapy. The described work is to our knowledge the first demonstration of a glucose-binding modified insulin molecule with glucose-responsive activity verified in vivo. PMID:25675515

  7. Properties of Copolymers of Aspartic Acid and Aliphatic Dicarboxylic Acids Prepared by Reactive Extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartic acid may be prepared chemically or by the fermentation of carbohydrates. Currently, low molecular weight polyaspartic acids are prepared commercially by heating aspartic acid at high temperatures (greater than 220 degrees C) for several hours in the solid state. In an effort to develop a ...

  8. Aliphatic acid-conjugated antimicrobial peptides--potential agents with anti-tumor, multidrug resistance-reversing activity and enhanced stability.

    PubMed

    Deng, Xin; Qiu, Qianqian; Ma, Ke; Wang, Xuekun; Huang, Wenlong; Qian, Hai

    2015-07-28

    Compared with traditional therapeutics, antimicrobial peptides as novel anti-tumor agents have prominent advantages of higher specificity and circumvention of multi-drug resistance. In a previous study, we found that B1, an antimicrobial peptide derived from Cathelicidin-BF15, presented specific anti-tumor activity against several tumor cells. Since aliphatic chain-conjugated peptides have shown ameliorative activity and stability, we conjugated aliphatic acids with different lengths to the amino terminal of B1. All the conjugated peptides exhibited improved anti-tumor activity over B1. Further investigations revealed that the peptides were capable of disrupting the cell membrane, stimulating cytochrome c release into the cytosol, which results in apoptosis. The peptides also acted against multidrug resistant cells and had multidrug resistance-reversing effects. Additionally, conjugation of aliphatic acid enhanced the peptide stability in plasma. In summary, aliphatic acid-modified peptides might be promising anti-tumor agents in the future. PMID:26083110

  9. Formation constants of ternary complexes of some heavy metal ions with N-(2-acetamido)iminodiacetic acid and aliphatic or aromatic acids

    SciTech Connect

    Hamed, M.M.A.; Mahmoud, M.R. . Dept. of Chemistry); Saleh, M.B.; Ahmed, I.T. . Dept. of Chemistry)

    1994-07-01

    N-(2-Acetamido)iminodiacetic acid (H[sub 2]ADA) is considered as one of the biologically important ligands. It is used as a complexing agent in the field of metal ion buffers working at the physiological pH range. Furthermore, it is widely used as an analytical chelating agent for the spectrophotometric determination of metal ions. Solution equilibria of the ternary systems involving La(III), Y(III), Ce(III), and UO[sub 2][sup 2+], N-(2-acetamido)iminodiacetic acid, and some aliphatic or aromatic acids have been investigated potentiometrically. The formation of 1:1:1 mixed ligand complexes is inferred from the potentiometric titration curves. Formation constants of the different binary and ternary complexes formed in such systems were determined at 25 [+-] 0.1 C and [mu] = 0.1 mol dm[sup [minus]3] (KNO[sub 3]). It is deduced that the mixed ligand complexes are more stable than the corresponding binary complexes containing the aliphatic or aromatic acidate moiety. The order of stability of the binary and ternary complexes is investigated and discussed in terms of the nature of both the metal ion and the secondary ligand (aliphatic or aromatic acid).

  10. Determination of some aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography with conductimetric detection on a weakly acidic cation-exchange resin column.

    PubMed

    Ito, Kazuaki; Takayama, Yohichi; Ikedo, Mikaru; Mori, Masanobu; Taoda, Hiroshi; Xu, Qun; Hu, Wenzhi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2004-06-11

    The determination of seven aliphatic carboxylic acids, formic, acetic, propionic, isobutyric, n-butyric, isovaleric and n-valeric acids in anaerobic digestion process waters was examined using ion-exclusion chromatography with conductimetric detection. The analysis of these biologically important carboxylic acids is necessary as a measure for evaluating and controlling the process. The ion-exclusion chromatography system employed consisted of polymethacrylate-based weakly acidic cation-exchange resin columns (TSKgel OApak-A or TSKgel Super IC-A/C). weakly acidic eluent (benzoic acid), and conductimetric detection. Particle size and cation-exchange capacity were 5 microm and 0.1 meq./ml for TSKgel OApak-A and 3 microm and 0.2 meq./ml for TSKgel Super IC-A/C, respectively. A dilute eluent (1.0-2.0 mM) of benzoic acid was effective for the high resolution and highly conductimetric detection of the carboxylic acids. The good separation of isobutyric and n-butyric acids was performed using the TSKgel Super IC-A/C column (150 mm x 6.0 mm i.d. x 2). The simple and good chromatograms were obtained by the optimized ion-exclusion chromatography conditions for real samples from mesophilic anaerobic digestors, thus the aliphatic carboxylic acids were successfully determined without any interferences. PMID:15250416

  11. Ion-exclusion chromatography with conductimetric detection of aliphatic carboxylic acids on a weakly acidic cation-exchange resin by elution with benzoic acid-beta-cyclodextrin.

    PubMed

    Tanaka, Kazuhiko; Mori, Masanobu; Xu, Qun; Helaleh, Murad I H; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Fritz, James S; Haddad, Paul R

    2003-05-16

    In this study, an aqueous solution consisting of benzoic acid with low background conductivity and beta-cyclodextrin (beta-CD) of hydrophilic nature and the inclusion effect to benzoic acid were used as eluent for the ion-exclusion chromatographic separation of aliphatic carboxylic acids with different pKa values and hydrophobicity on a polymethacrylate-based weakly acidic cation-exchange resin in the H+ form. With increasing concentration of beta-cyclodextrin in the eluent, the retention times of the carboxylic acids decreased due to the increased hydrophilicity of the polymethacrylate-based cation-exchange resin surface from the adsorption of OH groups of beta-cyclodextrin. Moreover, the eluent background conductivity decreased with increasing concentration of beta-cyclodextrin in 1 mM benzoic acid, which could result in higher sensitivity for conductimetric detection. The ion-exclusion chromatographic separation of carboxylic acids with high resolution and sensitivity was accomplished successfully by elution with a 1 mM benzoic acid-10 mM cyclodextrin solution without chemical suppression. PMID:12830884

  12. Ion-Exclusion High-Performance Liquid Chromatography of Aliphatic Organic Acids Using a Surfactant-Modified C18 Column.

    PubMed

    Fasciano, Jennifer M; Mansour, Fotouh R; Danielson, Neil D

    2016-07-01

    Ion exclusion chromatography (IELC) of short chain aliphatic carboxylic acids is normally done using a cation exchange column under standard HPLC conditions but not in the ultra-HPLC (UHPLC) mode. A novel IELC method for the separation of this class of carboxylic acids by either HPLC or UHPLC utilizing a C18 column dynamically modified with sodium dodecyl sulfate has been developed. The sample capacity is estimated to be near 10 mM for a 20 µL injection or 0.2 µmol using a 150 × 4.6 mm column. The optimum mobile phase determined for three standard mixtures of organic acids is 1.84 mM sulfuric acid at pH 2.43 and a flow rate of 0.6 mL/min. Under optimized conditions, a HPLC separation of four aliphatic carboxylic acids such as tartaric, malonic, lactic and acetic can be achieved in under 4 min and in <2 min in the UHPLC mode at 2.1 mL/min. A variety of fruit juice and soft drink samples are analyzed. Stability of the column as measured by the retention order of maleic and fumaric acid is estimated to be ∼4,000 column volumes using HPLC and 600 by UHPLC. Reproducible chromatograms are achieved over at least a 2-month period. This study shows that the utility of a C18 column can be easily extended when needed to IELC under either standard or UHPLC conditions. PMID:27006111

  13. Synthesis of nanomagnetic fluids and their UV spectrophotometric response with aliphatic organic acids and 1st tier dendrimers

    NASA Astrophysics Data System (ADS)

    Pandya, Shivani R.; Singh, Man

    2016-04-01

    Synthesis of Magnetic nanoparticles were made using coprecipitation method on mixing Fe+3 and Fe+2 in 2:1 ratio with aqueous 8M NaOH which on heating at 90°C for 2 h has yielded 85% magnetic (Fe3O4) nanoparticles (MNPs), characterized by XRD, VSM, SEM, and HR-TEM. The formic acid (FA), oxalic acid (OA) and citric acid (CA), the series of aliphatic organic acids along with Trimesoyl 1, 3, 5 tridimethyl malonate (TTDMM), trimesoyl 1, 3, 5 tridiethyl malonate (TTDEM), trimesoyl 1, 3, 5 tridipropyl malonate (TTDPM), trimesoyl 1, 3, 5 tridibutyl malonate (TTDBM) and trimesoyl 1, 3, 5 tridihexyl malonate (TTDHM) 1st tier dendrimers were used separately for preparing nanomagnetic fluid. From 25 to 150 µM MNPs at an interval of 25 µM were dispersed in 150 µM of acids and dendrimers separately with DMSO. UV-VIS spectrophotometry showed a maximum MNPs dispersion with TTDMM against others and found to be most stable nanomagnetic fluid on account of capping type mechanism of acids.

  14. Experimental study of the hydrothermal reactivity of organic acids and acid anions: II. Acetic acid, acetate, and valeric acid

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Seewald, Jeffrey S.

    2003-10-01

    Organic acids and acid anions occur in substantial concentrations in many aqueous geologic fluids and are thought to take part in a variety of geochemical processes ranging from the transport of metals in ore-forming fluids to the formation of natural gas to serving as a metabolic energy source for microbes in subsurface habitats. The widespread occurrence of organic acids and their potential role in diverse geologic processes has led to numerous experimental studies of their thermal stability, yet there remain substantial gaps in our knowledge of the factors that control the rates and reaction pathways for the decomposition of these compounds under geologic conditions. In order to address some of these uncertainties, a series of laboratory experiments were conducted to examine the behavior of organic acids and acid anions under hydrothermal conditions in the presence of minerals. Reported here are results of experiments where aqueous solutions of acetic acid, sodium acetate, or valeric acid ( n-pentanoic acid) were heated at 325°C, 350 bars in the presence of the mineral assemblages hematite + magnetite + pyrite, pyrite + pyrrhotite + magnetite, and hematite + magnetite. The results indicate that aqueous acetic acid and acetate decompose by a combination of two reaction pathways: decarboxylation and oxidation. Both reactions are promoted by minerals, with hematite catalyzing the oxidation reaction while magnetite catalyzes decarboxylation. The oxidation reaction is much faster, so that oxidation dominates the decomposition of acetic acid and acetate when hematite is present. In contrast to previous reports that acetate decomposed more slowly than acetic acid, we found that acetate decomposed at slightly faster rates than the acid in the presence of minerals. Although longer-chain monocarboxylic acids are generally thought to decompose by decarboxylation, valeric acid appeared to decompose primarily by "deformylation" to 1-butene plus formic acid. Subsequent

  15. DeltapH-Dependent Amino Acid Transport into Plasma Membrane Vesicles Isolated from Sugar Beet (Beta vulgaris L.) Leaves: II. Evidence for Multiple Aliphatic, Neutral Amino Acid Symports.

    PubMed

    Li, Z C; Bush, D R

    1991-08-01

    Proton-coupled aliphatic, neutral amino acid transport was investigated in plasma membrane vesicles isolated from sugar beet (Beta vulgaris L., cv Great Western) leaves. Two neutral amino acid symport systems were resolved based on inter-amino acid transport competition and on large variations in the specific activity of each porter in different species. Competitive inhibition was observed for transport competition between alanine, methionine, glutamine, and leucine (the alanine group) and between isoleucine, valine, and threonine (the isoleucine group). The apparent K(m) and K(i) values were similar for transport competition among amino acids within the alanine group. In contrast, the kinetics of transport competition between these two groups of amino acids did not fit a simple competitive model. Furthermore, members of the isoleucine group were weak transport antagonists of the alanine group. These results are consistent with two independent neutral amino acid porters. In support of that conclusion, the ratio of the specific activity of alanine transport versus isoleucine transport varied from two- to 13-fold in plasma membrane vesicles isolated from different plant species. This ratio would be expected to remain relatively stable if these amino acids were moving through a single transport system and, indeed, the ratio of alanine to glutamine transport varied less than twofold. Analysis of the predicted structure of the aliphatic, neutral amino acids in solution shows that isoleucine, valine, and threonine contain a branched methyl or hydroxyl group at the beta-carbon position that places a dense electron cloud close to the alpha-amino group. This does not occur for the unbranched amino acids or those that branch further away, e.g. leucine. We hypothesize that this structural feature of isoleucine, valine, and threonine results in unfavorable steric interactions with the alanine transport system that limits their flux through this porter. Hydrophobicity and

  16. Use of potassium-form cation-exchange resin as a conductimetric enhancer in ion-exclusion chromatography of aliphatic carboxylic acids.

    PubMed

    Iwata, Tomotaka; Mori, Masanobu; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2009-09-15

    In this study, a cation-exchange resin (CEX) of the K(+)-form, i.e., an enhancer resin, is used as a postcolumn conductimetric enhancer in the ion-exclusion chromatography of aliphatic carboxylic acids. The enhancer resin is filled in the switching valve of an ion chromatograph; this valve is usually used as a suppressor valve in ion-exchange chromatography. An aliphatic carboxylic acid (e.g., CH(3)COOH) separated by a weakly acidic CEX column of the H(+)-form converts into that of the K(+)-form (e.g., CH(3)COOK) by passing through the enhancer resin. In contrast, the background conductivity decreases because a strong acid (e.g., HNO(3)) with a higher conductimetric response in an eluent converts into a salt (e.g., KNO(3)) with a lower conductimetric response. Since the pH of the eluent containing the resin enhancer increases from 3.27 to 5.85, the enhancer accelerates the dissociations of analyte acids. Consequently, peak heights and peak areas of aliphatic carboxylic acids (e.g., acetic acid, propionic acid, butyric acid, and valeric acid) with the enhancer resin are 6.3-8.0 times higher and 7.2-9.2 times larger, respectively, than those without the enhancer resin. Calibrations of peak areas for injected analytes are linear in the concentration range of 0.01-1.0mM. The detection limits (signal-to-noise ratio=3) range from 0.10 microM to 0.39 microM in this system, as opposed to those in the range of 0.24-7.1 microM in the separation column alone. The developed system is successfully applied to the determination of aliphatic carboxylic acids in a chicken droppings sample. PMID:19615503

  17. Ion-exclusion chromatographic behavior of aliphatic carboxylic acids and benzenecarboxylic acids on a sulfonated styrene--divinylbenzene co-polymer resin column with sulfuric acid containing various alcohols as eluent.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The addition of C1-C7 alcohols (methanol, ethanol, propanol, butanol, heptanol, hexanol and heptanol) to dilute sulfuric acid as eluent in ion-exclusion chromatography using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as the stationary phase was carried out for the simultaneous separations of both (a) C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, 2-methylvaleric, isocaproic, caproic, 2,2-dimethyl-n-valeric, 2-methylhexanoic, 5-methylhexanoic and heptanoic acids) and (b) benzenecarboxylic acids (pyromellitic, hemimellitic, trimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic and salicylic acids and phenol). Heptanol was the most effective modifier in ion-exclusion chromatography for the improvement of peak shapes and a reduction in retention volumes for higher aliphatic carboxylic acids and benzenecarboxylic acids. Excellent simultaneous separation and relatively highly sensitive conductimetric detection for these C1-C7 aliphatic carboxylic acids were achieved on the TSKgel SCX column (150 x 6 mm I.D.) in 30 min using 0.5 mM sulfuric acid containing 0.025% heptanol as eluent. Excellent simultaneous separation and highly sensitive UV detection at 200 nm for these benzenecarboxylic acids were also achieved on the TSKgel SCX column in 30 min using 5 mM sulfuric acid containing 0.075% heptanol as eluent. PMID:12830881

  18. Characterization of the hyperline of D1/D0 conical intersections between the maleic acid and fumaric acid anion radicals

    NASA Astrophysics Data System (ADS)

    Takahashi, Ohgi; Sumita, Masato

    2004-10-01

    The cation and anion radicals of symmetrical 1,2-disubstituted ethylenes are expected to have a symmetry-allowed conical intersection (CI) between the ground doublet state (D0) and the lowest excited doublet state (D1) near a 90°-twisted geometry. By the complete active space self-consistent field method, we characterized the hyperline formed by D1/D0 CIs between the anion radicals of maleic acid (cis) and fumaric acid (trans). An implication of the results for the known one-way cis→trans photoisomerization of the maleic acid anion radical and other related ion radicals is presented.

  19. The effect of carboxylic acid anions on the stability of framework mineral grains in petroleum reservoirs

    SciTech Connect

    MacGowan, D.B.; Surdam, R.C.; Ewing, R.E. )

    1990-06-01

    This paper presents experimental and empirical evidence to show that carboxylic acid anions (CAA's) are a major diagenetic control on first-cycle basins in Jurassic-to-Pleistocene reservoirs in the 80-to-120{degrees}C thermal window.

  20. Phenolic and Short-Chained Aliphatic Organic Acid Constituents of Wild Oat (Avena fatua L.) Seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to identify and quantify the phenolic acids present in the seeds 3 of three wild-type populations of wild oat and compare these results to the phenolic acid 4 composition and concentration of seeds from two commonly utilized wild oat isolines (M73 and 5 SH430). Phe...

  1. Aliphatic Hydrocarbons and Fatty Acids of Some Marine and Freshwater Microorganisms

    PubMed Central

    Oró, J.; Tornabene, T. G.; Nooner, D. W.; Gelpi, E.

    1967-01-01

    Gas chromatography and combined gas chromatography-mass spectrometry have been used to study the fatty acids and hydrocarbons of a bacterium from the Pacific Ocean, Vibrio marinus, a freshwater blue-green alga, Anacystis nidulans, and algal mat communities from the Gulf of Mexico. Both types of microorganisms (bacteria and algae) showed relatively simple hydrocarbon and fatty acid patterns, the hydrocarbons predominating in the region of C-17 and the fatty acids in the range of C-14 to C-18. The patterns of V. marinus were more comparable to those of the algal populations than to patterns reported for other bacteria. An incomplete correlation between fatty acids and hydrocarbons in both types of organisms was observed, making it difficult to accept the concept that the biosynthesis of hydrocarbons follows a simple fatty acid decarboxylation process. PMID:6025301

  2. Acid-sensing ion channels (ASICs) are differentially modulated by anions dependent on their subunit composition

    PubMed Central

    Kusama, Nobuyoshi; Gautam, Mamta; Harding, Anne Marie S.; Snyder, Peter M.

    2013-01-01

    Acid-sensing ion channels (ASICs) are sodium channels gated by extracellular protons. ASIC1a channels possess intersubunit Cl−-binding sites in the extracellular domain, which are highly conserved between ASIC subunits. We previously found that anions modulate ASIC1a gating via these sites. Here we investigated the effect of anion substitution on native ASICs in rat sensory neurons and heterologously expressed ASIC2a and ASIC3 channels by whole cell patch clamp. Similar to ASIC1a, anions modulated the kinetics of desensitization of other ASIC channels. However, unlike ASIC1a, anions also modulated the pH dependence of activation. Moreover, the order of efficacy of different anions to modulate ASIC2a and -3 was very different from that of ASIC1a. More surprising, mutations of conserved residues that form an intersubunit Cl−-binding site in ASIC1a only partially abrogated the effects of anion modulation of ASIC2a and had no effect on anion modulation of ASIC3. The effects of anions on native ASICs in rat dorsal root ganglion neurons mimicked those in heterologously expressed ASIC1a/3 heteromeric channels. Our data show that anions modulate a variety of ASIC properties and are dependent on the subunit composition, and the mechanism of modulation for ASIC2a and -3 is distinct from that of ASIC1a. We speculate that modulation of ASIC gating by Cl− is a novel mechanism to sense shifts in extracellular fluid composition. PMID:23135698

  3. Competitive anion transport in desalting of mixtures of organic acids by batch electrodialysis.

    SciTech Connect

    Moon, P. J.; Parulekar, S. J.; Tsai, S.-P.; Energy Systems; Illinois Inst. of Tech.

    1998-04-01

    Desalting and separation of binary and quaternary acid mixtures via batch electrodialysis are investigated in this article. A monoselective cation exchange membrane and either a non-selective or a monoselective anion exchange membrane are employed in the electrodialysis stack. The effects of current density and composition of the initial feed of the electrodialysis stack (employing a non-selective anion exchange membrane) on its performance are studied in experiments involving mixtures of acetic and succinic acids. The effect of the type of the anion exchange membrane on the process performance is examined in desalting experiments involving a mixture of acetic, formic, lactic, and succinic acids. The trends observed in the experiments are interpreted in terms of species-specific parameters (such as molar concentration, charge on ionic species, molecular weight, degree of ionization, and ionic equivalent conductivity) and characteristics of anion exchange membrane used.

  4. Thermal-induced conversion of maleic and fumaric acid anion radicals in poly(methyl methacrylate)

    SciTech Connect

    Torikai, A.; Fukumoto, M.

    1980-04-01

    Thermal-induced conversion of maleic and fumaric acid anion radicals produced by ..gamma.. irradiation at 77/sup 0/K in poly(methyl methacrylate) (PMMA) was studied by electron spin resonance (ESR) and optical absorption spectroscopic measurements. The ESR spectra of these acid anion radicals change into two-line spectra with a line separation of ca. 10 G by thermal annealing. This spectrum is assigned to a protonated radical of each acid anion radical. Anion radicals of the solutes are relatively stable below the ..gamma.. transition point of PMMA and the conversion reaction takes place near this point. This means that the molecular motion of matrix molecule affects the radical conversion reaction.

  5. Anion-π interactions in complexes of proteins and halogen-containing amino acids.

    PubMed

    Borozan, Sunčica Z; Zlatović, Mario V; Stojanović, Srđan Đ

    2016-06-01

    We analyzed the potential influence of anion-π interactions on the stability of complexes of proteins and halogen-containing non-natural amino acids. Anion-π interactions are distance and orientation dependent and our ab initio calculations showed that their energy can be lower than -8 kcal mol(-1), while most of their interaction energies lie in the range from -1 to -4 kcal mol(-1). About 20 % of these interactions were found to be repulsive. We have observed that Tyr has the highest occurrence among the aromatic residues involved in anion-π interactions, while His made the least contribution. Furthermore, our study showed that 67 % of total interactions in the dataset are multiple anion-π interactions. Most of the amino acid residues involved in anion-π interactions tend to be buried in the solvent-excluded environment. The majority of the anion-π interacting residues are located in regions with helical secondary structure. Analysis of stabilization centers for these complexes showed that all of the six residues capable of anion-π interactions are important in locating one or more of such centers. We found that anion-π interacting residues are sometimes involved in simultaneous interactions with halogens as well. With all that in mind, we can conclude that the anion-π interactions can show significant influence on molecular organization and on the structural stability of the complexes of proteins and halogen-containing non-natural amino acids. Their influence should not be neglected in supramolecular chemistry and crystal engineering fields as well. PMID:26910415

  6. Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants

    PubMed Central

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium(Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H+-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  7. Roles of organic acid anion secretion in aluminium tolerance of higher plants.

    PubMed

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium (Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H(+)-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  8. Design, Synthesis, EPR-Studies and Conformational Bias of Novel Spin-Labeled DCC-Analogues for the Highly Regioselective Labeling of Aliphatic and Aromatic Carboxylic Acids.

    PubMed

    Gölz, Jan Philipp; NejatyJahromy, Yaser; Bauer, Mirko; Muhammad, Ashraf; Schnakenburg, Gregor; Grimme, Stefan; Schiemann, Olav; Menche, Dirk

    2016-07-01

    Novel types of spin-labeled N,N'-dicyclohexylcarbodiimides (DCC) are reported that bear a 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) residue on one side and different aromatic and aliphatic cyclohexyl analogues on the other side of the diimide core. These readily available novel reagents add efficiently to aliphatic and aromatic carboxylic acids, forming two possible spin-labeled amide derivatives with different radical distances of the resulting amide. The addition of aromatic DCC analogues proceeds with excellent selectivity, giving amides where the carboxylic acid is exclusively connected to the aromatic residue, while little or no selectivity was observed for the aliphatic congeners. The usefulness of these adducts in structural studies was demonstrated by EPR (electron paramagnetic resonance) measurements of biradical adducts of biphenyl-4,4'-dicarboxylic acids. These analyses also reveal high degrees of conformational bias for aromatic DCC derivatives, which further underlines the powerfulness of these novel reagents. This observation was further corroborated by quantum chemical calculations, giving a detailed understanding of the structural dynamics, while detailed information on the solid state structure of all novel reagents was obtained by X-ray structure analyses. PMID:27272435

  9. Cation–Anion Interactions within the Nucleic Acid Ion Atmosphere Revealed by Ion Counting

    PubMed Central

    Gebala, Magdalena; Giambasu, George M.; Lipfert, Jan; Bisaria, Namita; Bonilla, Steve; Li, Guangchao; York, Darrin M.; Herschlag, Daniel

    2016-01-01

    The ion atmosphere is a critical structural, dynamic, and energetic component of nucleic acids that profoundly affects their interactions with proteins and ligands. Experimental methods that “count” the number of ions thermodynamically associated with the ion atmosphere allow dissection of energetic properties of the ion atmosphere, and thus provide direct comparison to theoretical results. Previous experiments have focused primarily on the cations that are attracted to nucleic acid polyanions, but have also showed that anions are excluded from the ion atmosphere. Herein, we have systematically explored the properties of anion exclusion, testing the zeroth-order model that anions of different identity are equally excluded due to electrostatic repulsion. Using a series of monovalent salts, we find, surprisingly, that the extent of anion exclusion and cation inclusion significantly depends on salt identity. The differences are prominent at higher concentrations and mirror trends in mean activity coefficients of the electrolyte solutions. Salts with lower activity coefficients exhibit greater accumulation of both cations and anions within the ion atmosphere, strongly suggesting that cation–anion correlation effects are present in the ion atmosphere and need to be accounted for to understand electrostatic interactions of nucleic acids. To test whether the effects of cation–anion correlations extend to nucleic acid kinetics and thermodynamics, we followed the folding of P4–P6, a domain of the Tetrahymena group I ribozyme, via single-molecule fluorescence resonance energy transfer in solutions with different salts. Solutions of identical concentration but lower activity gave slower and less favorable folding. Our results reveal hitherto unknown properties of the ion atmosphere and suggest possible roles of oriented ion pairs or anion-bridged cations in the ion atmosphere for electrolyte solutions of salts with reduced activity. Consideration of these new

  10. Ion exhange and molecular sorption of oxalic acid with a highly basic anion exchanger

    NASA Astrophysics Data System (ADS)

    Krisilova, E. V.; Oros, G. Yu.; Krisilov, A. V.; Selemenev, V. F.

    2014-04-01

    Ab initio modeling of a matrix fragment of resin and geometry optimization of the molecular structure of oxalic acid were performed. The isotherm of oxalic acid sorption with AV-17-8 anion exchange resin was obtained by the variable concentrations technique. The ion-exchange and molecular components of sorbate fixation with the ion exchanger were determined. The hydration of the highly basic anion exchanger that absorbed different quantities of dicarboxylic acid was evaluated by the centrifuging method. The dependence of the amount of water and sorbate concentration in the resin was linear antibatic.

  11. Separation of the rare earths by anion-exchange in the presence of lactic acid

    NASA Technical Reports Server (NTRS)

    Faris, J. P.

    1969-01-01

    Investigation of adsorption of rare earths and a few other elements to an anion-exchange resin from mixed solvents containing lactic acid shows that the lanthanides are absorbed more strongly than from the alpha-hydroxyisobutryric acid system, but with less separation between adjacent members of the series.

  12. Ion-exclusion chromatographic separations of C1-C6 aliphatic carboxylic acids on a sulfonated styrene-divinylbenzene co-polymer resin column with 5-methylhexanoic acid as eluent.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The application of C7 aliphatic carboxylic acids (heptanoic, 2-methylhexanoic, 5-methylhexanoic and 2,2-dimethyl-n-valeric acids) as eluents in ion-exclusion chromatography with conductimetric detection for C1-C6 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, isocaproic and caproic acids) was carried out using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as a stationary phase. When using 0.05 mM sulfuric acid at pH 4.0 as the eluent, peak shapes of hydrophobic carboxylic acids (isovaleric, valeric, isocaproic and caproic acids) were tailed strongly. In contrast, when using 1 mM these C7 carboxylic acids at pH ca. 4 as the eluents, although system peaks (vacant peaks) corresponding to these C7 carboxylic acids appeared, peak shapes of these hydrophobic acids were improved drastically. Excellent simultaneous separation and relatively high sensitive conductimetric detection for these C1-C6 aliphatic carboxylic acids were achieved in 25 min on the TSKgel SCX column (150 x 6 mm I.D.) using 1 mM 5-methylhexanoic acid at pH 4.0 as the eluent. PMID:12830882

  13. Transepithelial transport of aliphatic carboxylic acids studied in Madin Darby canine kidney (MDCK) cell monolayers

    SciTech Connect

    Cho, M.J.; Adson, A.; Kezdy, F.J. )

    1990-04-01

    Transport of 14C-labeled acetic, propionic (PA), butyric, valeric, heptanoic (HA), and octanoic (OA) acids across the Madin Darby canine kidney (MDCK) epithelial cell monolayer grown on a porous polycarbonate membrane was studied in Hanks' balanced salt solution (HBSS) at 37{degrees}C in both apical-to-basolateral and basolateral-to-apical directions. At micromolar concentrations of solutes, metabolic decomposition was significant as evidenced by (14C)CO2 production during the OA transport. The apparent permeability (Pe) indicates that as lipophilicity increases, diffusion across the unstirred boundary layer becomes rate limiting. In support of this notion, transport of OA and HA was enhanced by agitation, showed an activation energy of 3.7 kcal/mol for OA, and resulted in identical Pe values for both transport directions. Analysis of Pe changes with varying alkyl chain length resulted in a delta G of -0.68 +/- 0.09 kcal/mol for -CH2-group transfer from an aqueous phase to the MDCK cells. When the intercellular tight junctions were opened by the divalent chelator EGTA in Ca2+/Mg2(+)-free HBSS, transport of the fluid-phase marker Lucifer yellow greatly increased because of paracellular leakage. PA transport also showed a significant increase, but OA transport was independent of EGTA. Although albumin also undergoes paracellular transport in the presence of EGTA and OA binds strongly to albumin, OA transport in EGTA solution was unchanged by albumin. These observations indicate that transmembrane transport is the major mechanism for lipophilic substances. The present study, together with earlier work on the transport of polar substances, shows that the MDCK cell monolayer is an excellent model of the transepithelial transport barrier.

  14. Distinct pharmacological and molecular properties of the acid-sensitive outwardly rectifying (ASOR) anion channel from those of the volume-sensitive outwardly rectifying (VSOR) anion channel.

    PubMed

    Sato-Numata, Kaori; Numata, Tomohiro; Inoue, Ryuji; Okada, Yasunobu

    2016-05-01

    Expressed by many cell types, acid-sensitive outwardly rectifying (ASOR) anion channels are known to be activated by extracellular acidification and involved in acidotoxic necrotic cell death. In contrast, ubiquitously expressed volume-sensitive outwardly rectifying (VSOR) anion channels are activated by osmotic cell swelling and involved in cell volume regulation and apoptotic cell death. Distinct inhibitors to distinguish ASOR from VSOR anion channels have not been identified. Although leucine-rich repeats containing 8A (LRRC8A) was recently found to be an essential component of VSOR anion channels, the possibility of an LRRC8 family member serving as a component of ASOR anion channels has not been examined. In this study, we explored the effects of 12 known VSOR channel inhibitors and small interfering RNA (siRNA)-mediated knockdown of LRRC8 family members on ASOR and VSOR currents in HeLa cells. Among these inhibitors, eight putative VSOR blockers, including 4-(2-butyl-6,7-dichlor-2-cyclopentylindan-1-on-5-yl) oxobutyric acid (DCPIB) and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), were totally ineffective at blocking ASOR channel activity, whereas suramin, R-(+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy] acetic acid (DIOA), arachidonic acid, and niflumic acid were found to be effective ASOR anion channel antagonists. In addition, gene-silencing studies showed that no LRRC8 family members are essentially involved in ASOR anion channel activity, whereas LRRC8A is involved in VSOR anion channel activity in HeLa cells. PMID:26743872

  15. Experimental alkali feldspar dissolution at 100 degree C by carboxylic acids and their anions

    SciTech Connect

    Stoessell, R.K. ); Pittman, E.D. )

    1990-05-01

    Feldspar dissolution will enhance sandstone porosity if the released aluminum can be transported away in the subsurface waters. Carboxylic acids have been proposed to provide hydrogen ions to promote dissolution and anions to complex aqueous aluminum to keep it in solution. However, the hydrogen ions should react quickly following acid generation in source beds, leaving monocarboxylic anions with lesser amounts of dicarboxylic acids and their anions on feldspar dissolution and the apparent complexing of aluminum in solution. Two-week dissolution experiments of alkali feldspar were run at 100{degree}C and 300 bars in acetic acid, oxalic acid, and sodium salt solutions of chloride, acetate, propionate, oxalate, and malonate. Extrapolation of the results, to reservoir conditions during sandstone diagenesis, implies that concentrations of aluminum-organic complexes are not significant for acetate and propionate and are possibly significant for oxalate and malonate, depending upon fluid compositions. Propionate appeared to inhibit feldspar dissolution and hence might decrease secondary porosity formation. Increases in aluminum concentrations in the presence of oxalic and acetic acid solutions appear to be due to enhanced dissolution kinetics and greater aluminum solubility under low-pH conditions. Such low-pH fluids are generally absent in subsurface reservoirs, making this an unlikely mechanism for enhancing porosity. Furthermore, the observed thermal instability of oxalate and malonate anions explains their general low concentrations in subsurface fluids which limits their aluminum complexing potential in reservoirs during late diagenesis.

  16. The difluoromethylene (CF2) group in aliphatic chains: Synthesis and conformational preference of palmitic acids and nonadecane containing CF2 groups.

    PubMed

    Wang, Yi; Callejo, Ricardo; Slawin, Alexandra M Z; O'Hagan, David

    2014-01-01

    The syntheses of palmitic acids and a nonadecane are reported with CF2 groups located 1,3 or 1,4 to each other along the aliphatic chain. Specifically 8,8,10,10- and 8,8,11,11-tetrafluorohexadecanoic acids (6b and 6c) are prepared as well as the singly modified analogue 8,8-difluorohexadecanoic acid (6a). Also 8,8,11,11-tetrafluorononadecane (27) is prepared as a pure hydrocarbon containing a 1,4-di-CF2 motif. The modified palmitic acids are characterized by differential scanning calorimetry (DSC) to determine melting points and phase behaviour relative to palmitic acid (62.5 °C). It emerges that 6c, with the CF2 groups placed 1,4- to each other, has a significantly higher melting point (89.9 °C) when compared to the other analogues and palmitic acid itself. It is a crystalline compound and the structure reveals an extended anti-zig-zag chain. Similarly 8,8,11,11-tetrafluorononadecane (27) adopts an extended anti-zig-zag structure. This is rationalized by dipolar relaxation between the two CF2 groups placed 1,4 to each other in the extended anti-zig-zag chain and suggests a design modification for long chain aliphatics which can introduce conformational stability. PMID:24454560

  17. The difluoromethylene (CF2) group in aliphatic chains: Synthesis and conformational preference of palmitic acids and nonadecane containing CF2 groups

    PubMed Central

    Wang, Yi; Callejo, Ricardo; Slawin, Alexandra M Z

    2014-01-01

    Summary The syntheses of palmitic acids and a nonadecane are reported with CF2 groups located 1,3 or 1,4 to each other along the aliphatic chain. Specifically 8,8,10,10- and 8,8,11,11-tetrafluorohexadecanoic acids (6b and 6c) are prepared as well as the singly modified analogue 8,8-difluorohexadecanoic acid (6a). Also 8,8,11,11-tetrafluorononadecane (27) is prepared as a pure hydrocarbon containing a 1,4-di-CF2 motif. The modified palmitic acids are characterized by differential scanning calorimetry (DSC) to determine melting points and phase behaviour relative to palmitic acid (62.5 °C). It emerges that 6c, with the CF2 groups placed 1,4- to each other, has a significantly higher melting point (89.9 °C) when compared to the other analogues and palmitic acid itself. It is a crystalline compound and the structure reveals an extended anti-zig-zag chain. Similarly 8,8,11,11-tetrafluorononadecane (27) adopts an extended anti-zig-zag structure. This is rationalized by dipolar relaxation between the two CF2 groups placed 1,4 to each other in the extended anti-zig-zag chain and suggests a design modification for long chain aliphatics which can introduce conformational stability. PMID:24454560

  18. Communication: Remarkable electrophilicity of the oxalic acid monomer: An anion photoelectron spectroscopy and theoretical study

    SciTech Connect

    Buonaugurio, Angela; Graham, Jacob; Buytendyk, Allyson; Bowen, Kit H. E-mail: kbowen@jhu.edu; Ryder, Matthew R. Gutowski, Maciej E-mail: kbowen@jhu.edu; Keolopile, Zibo G. E-mail: kbowen@jhu.edu; Haranczyk, Maciej

    2014-06-14

    Our experimental and computational results demonstrate an unusual electrophilicity of oxalic acid, the simplest dicarboxylic acid. The monomer is characterized by an adiabatic electron affinity and electron vertical detachment energy of 0.72 and 1.08 eV (±0.05 eV), respectively. The electrophilicity results primarily from the bonding carbon-carbon interaction in the singly occupied molecular orbital of the anion, but it is further enhanced by intramolecular hydrogen bonds. The well-resolved structure in the photoelectron spectrum is reproduced theoretically, based on Franck-Condon factors for the vibronic anion → neutral transitions.

  19. Amino acids form strongly bound anions when substituted with superhalogen ligands

    NASA Astrophysics Data System (ADS)

    Sieradzan, Iwona; Anusiewicz, Iwona

    2013-04-01

    The properties of AA-Y- anions (where AA = cysteine, aspartic acid, lysine; Y = BF3, PF5) were investigated at the ab initio Outer Valence Green's Function (OVGF)/6-311++G(3df,3pd)//MP2/6-311++G(d,p) level of theory. It is shown that introducing a superhalogen-like substituent to an amino acid (i.e., Cys, Asp, and Lys) results in obtaining molecules that bind an excess electron relatively strongly. The electronic stabilities of such resulting daughter anions are predicted to be substantial (5.3-6.9 eV).

  20. Susceptibility of antibiotic-resistant and antibiotic-sensitive foodborne pathogens to acid anionic sanitizers.

    PubMed

    Lopes, J A

    1998-10-01

    Acid anionic sanitizers for treatment of fruits and vegetables were prepared using ingredients generally recognized as safe by the U.S. Food and Drug Administration or anionic surfactants and organic acid food additives. They met the regulatory definition as sanitizers by showing bactericidal efficacy of 99.999% in 30 s against Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 11229. These sanitizers showed a broad spectrum of microbicidal activity against both gram-positive and gram-negative bacteria. Antibiotic-sensitive and resistant strains of Listeria monocytogenes and Salmonella typhimurium were equally susceptible to these sanitizers. The acid anionic sanitizers showed microbicidal efficacy equal to that of hypochlorite against Aeromonas hydrophila, E. coli O157:H7, L. monocytogenes, Pseudomonas aeruginosa, S. typhimurium, and S. aureus. Unlike most other sanitizers, these agents do not covalently react with organic components of food; unlike cationic agents, they do not leave residues. The acid anionic sanitizers are prepared using stable, biodegradable, and nontoxic ingredients. Rapid microbicidal activity and the ease of storage, transportation, and use make these sanitizers an attractive alternative to hypochlorite for sanitizing fruits and vegetables. PMID:9798163

  1. Nickel(II) and copper(II) complexes with humic acid anions and their derivatives

    SciTech Connect

    Ryabova, I.N.

    2008-01-15

    Complexation of Ni(II) and Cu(II) in aqueous solutions with anions of humic acids, extracted from naturally oxidized coal, and with their hydroxymethyl derivatives is studied spectrophotometrically and potentiometrically. The complexation stoichiometry and the stability constants of the complexes are determined.

  2. Thermodynamics of Boroxine Formation from the Aliphatic Boronic Acid Monomers R–B(OH)2 (R = H, H3C, H2N, HO, and F): A Computational Investigation

    PubMed Central

    Bhat, Krishna L.; Markham, George D.; Larkin, Joseph D.; Bock, Charles W.

    2011-01-01

    Boroxines are the 6-membered cyclotrimeric dehydration products of organoboronic acids: 3 R– B(OH)2 → R3B3O3 + 3 H2O, and in recent years have emerged as a useful class of organoboron molecules with applications in organic synthesis both as reagents and catalysts, as structural components in boronic acid derived pharmaceutical agents, as anion acceptors and electrolyte additives for battery materials [AL Korich and PM Iovine, Dalton Trans. 39 (2010) 1423–1431]. Second-order Møller-Plesset perturbation theory, in conjunction with the Dunning-Woon correlation-consistent cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ basis sets, was used to investigate the structures and relative energies of the endo-exo, anti, and syn conformers of the aliphatic boronic acids R–B(OH)2 (R = H, H3C, H2N, HO, and F), as well as the thermodynamics of their boroxine formation; single-point calculations at the MP2/aug-cc-pVQZ, MP2/aug-cc-pV5Z, and CCSD(T)/aug-cc-pVTZ level using the MP2/aug-cc-pVTZ optimized geometries were also performed in selected cases. The endo-exo conformer was generally lowest in energy in vacuo, as well as in PCM and CPCM models of aqueous and carbon tetrachloride media. The values of ΔH2980 for boroxine formation via dehydration from the endo-exo conformers of these aliphatic boronic acids ranged from −2.9 for (H2N)3B3O3 to +12.2 kcal/mol for H3B3O3 at the MP2/aug-cc-pVTZ level in vacuo; for H3B3O3 the corresponding values in PCM:UFF implicit carbon tetrachloride and aqueous media were +11.2 and +9.8 kcal/mol, respectively. Based on our calculations, we recommend that ΔHf(298 K) for boroxine listed in the JANAF compilation needs to be revised from −290.0 kcal/mol to approximately −277.0 kcal/mol. PMID:21650154

  3. Directing Group in Decarboxylative Cross-Coupling: Copper-Catalyzed Site-Selective C-N Bond Formation from Nonactivated Aliphatic Carboxylic Acids.

    PubMed

    Liu, Zhao-Jing; Lu, Xi; Wang, Guan; Li, Lei; Jiang, Wei-Tao; Wang, Yu-Dong; Xiao, Bin; Fu, Yao

    2016-08-01

    Copper-catalyzed directed decarboxylative amination of nonactivated aliphatic carboxylic acids is described. This intramolecular C-N bond formation reaction provides efficient access to the synthesis of pyrrolidine and piperidine derivatives as well as the modification of complex natural products. Moreover, this reaction presents excellent site-selectivity in the C-N bond formation step through the use of directing group. Our work can be considered as a big step toward controllable radical decarboxylative carbon-heteroatom cross-coupling. PMID:27439145

  4. Gamma-aminobutyric acid esters. 1. Synthesis, brain uptake, and pharmacological studies of aliphatic and steroid esters of gamma-aminobutyric acid

    SciTech Connect

    Shashoua, V.E.; Jacob, J.N.; Ridge, R.; Campbell, A.; Baldessarini, R.J.

    1984-05-01

    Labeled and unlabeled aliphatic and steroid esters of gamma-amino(U-/sup 14/C)butyric acid (GABA) were synthesized and tested for their capacity to penetrate the blood-brain barrier and for evidence of central neuropharmacological activity in rodents. The uptake of the labeled 9,12,15-octadecatrienyl (linolenyl), 3-cholesteryl, 1-butyl, and the 9-fluoro-11 beta,17-dihydroxy-16 alpha-methyl-3,20-dioxopregna -1,4-dien-21-yl (dexamethasone) esters of GABA into mouse brain increased 2-, 25-, 74-, and 81-fold over GABA, respectively. The cholesteryl ester of GABA depressed the general motor activity of mice and rats in a dose-dependent manner, whereas the 1-butyl, linolenyl, and dexamethasone esters were inactive by this test. Studies of the rates of hydrolysis, GABA receptor binding capacity, and octanol/water partition coefficients indicated that pharmacological activity of the esters after entry into the central nervous system (CNS) was dependent on their capacity to release GABA by enzymatic hydrolysis and their lipid solubility.

  5. Separation of phenolic acids from natural plant extracts using molecularly imprinted anion-exchange polymer confined ionic liquids.

    PubMed

    Bi, Wentao; Tian, Minglei; Row, Kyung Ho

    2012-04-01

    Polymer-confined ionic liquids were used for the separation of phenolic acids from natural plant extract by utilizing an anion-exchange mechanism. They were synthesized using molecular imprinting technique to reduce non-directional ion-ion interactions during anion-exchange and other interactions with interference substances that could decrease selectivity. A suitable sorbent for phenolic acid separation could be identified based on the adsorption behaviors of phenolic acids on different polymer-confined ionic liquids. Thus, the developed ionic liquid-based molecularly imprinted anion-exchange polymer (IMAP) achieved high recovery rates by solid-phase extraction of phenolic acids from Salicornia herbacea L. extract: 90.1% for protocatechuic acid, 95.5% for ferulic acid and 96.6% for caffeic acid. Moreover, the phenolic acids were separable from each other by repeated solid phase extraction cycles. The proposed method could be used to separate other phenolic acids or organic acids from complex samples. PMID:21903215

  6. Theoretical study on structure, conformation, stability and electronic transition of C4 and C5 anions of ascorbic acid stereoisomers

    NASA Astrophysics Data System (ADS)

    Dabbagh, Hossein A.; Azami, Fatemeh; Farrokhpour, Hossein; Chermahini, Alireza Najafi

    2014-03-01

    The structures, stabilities, conformational analysis and electronic transitions of L-ascorbic acid anions (four stereoisomers) were studied theoretically. These anions are produced from the de-protonation of C4-H and C5-H sites of L-ascorbic acid stereoisomers. The geometries of these anions were fully optimized in gas phase and aqueous phase in order to determine their relative stabilities. It was observed that the de-protonation at C5 site of two stereoisomers leads to the ring opening in both phases. Isomerization of the L-form to one of the D-form was observed during the optimization of the anions at C5. Conformational analysis (potential energy surface scan) of the opened ring anions was performed in search of energy minima and/or maxima. The absorption electronic transitions of the anions in the UV region were calculated using Time-Dependent Density Functional Theory (TD-DFT).

  7. Interaction and dynamics of ionic liquids based on choline and amino acid anions

    SciTech Connect

    Campetella, M.; Bodo, E. Caminiti, R. Martino, A.; Gontrani, L.; D’Apuzzo, F.; Lupi, S.

    2015-06-21

    The combination of amino acid anions with the choline cation gives origin to a new and potentially important class of organic ionic liquids that might represent a viable and bio-compatible alternative with respect to the traditional ones. We present here a detailed study of the bulk phase of the prototype system composed of the simplest amino acid (alanine) anion and the choline cation, based on ab initio and classical molecular dynamics. Theoretical findings have been validated by comparing with accurate experimental X-ray diffraction data and infrared spectra. We find that hydrogen bonding (HB) features in these systems are crucial in establishing their local geometric structure. We have also found that these HBs once formed are persistent and that the proton resides exclusively on the choline cation. In addition, we show that a classical force field description for this particular ionic liquid can be accurately performed by using a slightly modified version of the generalized AMBER force field.

  8. Interaction and dynamics of ionic liquids based on choline and amino acid anions

    NASA Astrophysics Data System (ADS)

    Campetella, M.; Bodo, E.; Caminiti, R.; Martino, A.; D'Apuzzo, F.; Lupi, S.; Gontrani, L.

    2015-06-01

    The combination of amino acid anions with the choline cation gives origin to a new and potentially important class of organic ionic liquids that might represent a viable and bio-compatible alternative with respect to the traditional ones. We present here a detailed study of the bulk phase of the prototype system composed of the simplest amino acid (alanine) anion and the choline cation, based on ab initio and classical molecular dynamics. Theoretical findings have been validated by comparing with accurate experimental X-ray diffraction data and infrared spectra. We find that hydrogen bonding (HB) features in these systems are crucial in establishing their local geometric structure. We have also found that these HBs once formed are persistent and that the proton resides exclusively on the choline cation. In addition, we show that a classical force field description for this particular ionic liquid can be accurately performed by using a slightly modified version of the generalized AMBER force field.

  9. The dynamics of sorption of sulfuric acid by weakly basic polyacrylic anion exchangers

    NASA Astrophysics Data System (ADS)

    Mamchenko, A. V.; Kushnir, T. V.

    2009-05-01

    The nonequilibrium dynamics of sorption of sulfuric acid by free base forms of Amberlite IRA-67 and Lewatite VP.OC.1072 weakly basic anion exchangers is studied. It is established that, in hydrodynamic regimes of filtration, which are typical of OH filters of the first stage of water-desalting plants, the limiting stage of sorption kinetics is inside diffusion. It is concluded that the process is correctly described by an asymptotic solution to the inside-diffusion model of sorption dynamics.

  10. Use of a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin column and propionic acid as an eluent in ion-exclusion/adsorption chromatography of aliphatic carboxylic acids and ethanol in food samples.

    PubMed

    Mori, Masanobu; Hironaga, Takahiro; Kajiwara, Hiroe; Nakatani, Nobutake; Kozaki, Daisuke; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2011-01-01

    We developed an ion-exclusion/adsorption chromatography (IEAC) method employing a polystyrene-divinylbenzene-based weakly acidic cation-exchange resin (PS-WCX) column with propionic acid as the eluent for the simultaneous determination of multivalent aliphatic carboxylic acids and ethanol in food samples. The PS-WCX column well resolved mono-, di-, and trivalent carboxylic acids in the acidic eluent. Propionic acid as the eluent gave a higher signal-to-noise ratio, and enabled sensitive conductimetric detection of analyte acids. We found the optimal separation condition to be the combination of a PS-WCX column and 20-mM propionic acid. Practical applicability of the developed method was confirmed by using a short precolumn with a strongly acidic cation-exchange resin in the H(+)-form connected before the separation column; this was to remove cations from food samples by converting them to hydrogen ions. Consequently, common carboxylic acids and ethanol in beer, wine, and soy sauce were successfully separated by the developed method. PMID:21558657

  11. Tunable macromolecular-based materials for the adsorption of perfluorooctanoic and octanoic acid anions.

    PubMed

    Karoyo, Abdalla H; Wilson, Lee D

    2013-07-15

    The sorption properties of tunable urethane-based copolymer materials containing β-cyclodextrin (β-CD) were evaluated with perfluorooctanoic acid (PFOA) and octanoic acid (OA) anions in aqueous solutions, respectively. The copolymer materials are herein referred to as macromolecular imprinted materials (MIMs) since their design strategy incorporates a porogen macromolecule (β-CD) within a cross-linked hexamethylene diisocyanate (HDI) framework. We report the tunable uptake of OA and PFOA anions from aqueous solution with variable adsorption modes, in accordance with the composition of the MIMs. The sorption results with granular activated carbon (GAC) were compared at 295 K and pH values exceeding the pKa values of each adsorbate. The BET and Sips models provided estimates of the monolayer sorption capacity (Qm) and related equilibrium sorption parameters. The Qm value for GAC with PFOA was ~1.4 mmol/g; whereas, a greater Qm value for PFOA (up to 2.6 mmol/g) was observed with the MIMs. GAC displays greater sorption capacity toward PFOA at relatively low Ce values and saturation of the monolayer occurs at Ce~0.5 mM. The MIMs/PFOA system displays monolayer completion at values of Ce~1 mM and multilayer sorption when Ce>1mM. Equilibrium sorption of PFOA onto MIMs occurs at the inclusion sites of β-CD and interstitial binding sites of the polymeric framework. Surface adsorption of the PFOA anion occurs between the PFOA carboxylate head group and dipolar interstitial domains of the cross-linker framework. The MIMs sorbents display tunable and favorable binding with PFOA and OA anions where the uptake (per mg MIMs) with PFOA was ~5-33% (5 μM-5 mM) and with OA was ~0.5-5% (1-20 mM). The overall sorptive uptake of OA and PFOA anions by the MIMs sorbents meets or exceeds those observed for GAC. PMID:23664395

  12. Predicting the stability of aprotic solvents in Li-air batteries: pKa calculations of aliphatic C-H acids in dimethyl sulfoxide

    NASA Astrophysics Data System (ADS)

    Bryantsev, Vyacheslav S.

    2013-02-01

    Superoxide is a strong base that can induce base-catalyzed autoxidation of weakly acidic solvents. We report on the performance of several computational protocols for predicting pKa values for a wide range of aliphatic C-H acids in DMSO. Calculations at the MP2/CBS level with CCSD(T)/aug-cc-pVDZ corrections and solvent effects calculated using the SVPE model provide the best overall performance (rms deviation is 0.65 pKa). The B3LYP, M06, and M06-2X functionals can also achieve high accuracy (<1 pKa) by employing empirical corrections to fit the experimental data. Computational results provide a convenient means of screening for suitable solvents in Li-air batteries.

  13. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.

    PubMed

    Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong

    2015-11-01

    Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process. PMID:26444653

  14. DFT computational study on decarboxylation mechanism of salicylic acid and its derivatives in the anionic state

    NASA Astrophysics Data System (ADS)

    Gao, Lu; Hu, Yanying; Zhang, Huitu; Liu, Yanchun; Song, Zhidan; Dai, Yujie

    2016-07-01

    The mechanisms of the decarboxylation of salicylic acid anion and its ortho substituted derivatives in gas phase and aqueous solution have been investigated by B3LYP method of DFT theory using the 6-31++G (d,p) basis set. The decarboxylation process includes hydrogen transfers from hydroxyl to carboxyl group and from carboxyl to the α-C of the aryl ring. The mechanism suggested is a pseudo-unimolecular decomposition of the salicylic acid anion and the hydrogen transfer from carboxyl to the α-C of the aryl ring is the rate determining step. Compared with the decarboxylation process in gas phase, the energy barriers in aqueous solution approximately declined by 25%-31%with the water mediation of the hydrogen transfer from carboxyl to the α-C of the aryl ring. The effects of substituents at the ortho position on the decarboxylation process were also investigated. Both the electron donating CH3 and withdrawing group NO2 at the ortho position of carboxyl group can further reduce the reaction energy barriers of the decarboxylation of salicylic acid anions.

  15. The influence of aliphatic amines, diamines, and amino acids on the polymorph of calcium carbonate precipitated by the introduction of carbon dioxide gas into calcium hydroxide aqueous suspensions

    NASA Astrophysics Data System (ADS)

    Chuajiw, Wittaya; Takatori, Kazumasa; Igarashi, Teruki; Hara, Hiroki; Fukushima, Yoshiaki

    2014-01-01

    The influence of aliphatic organic additives including amines, diamines and amino acids, on the polymorph of calcium carbonate (CaCO3) precipitated from a calcium hydroxide (Ca(OH)2) suspensions and carbon dioxide gas (CO2) was studied by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). The amorphous calcium carbonate, vaterite, aragonite and calcite were observed for the precipitated samples with organic additives. While the precipitation without organic additive, only the stable phase; calcite was obtained. The observed crystal phases were related with the alkyl chain length in the aliphatic part of additives. These results suggested that hydrophobic interactions due to the van der Waals force between organic additives and surface of inorganic precipitates could not be ignored. We concluded that covering or adsorbing of these organic additives on the precipitates surfaces retarded the successive dissolution/recrystallisation process in the aqueous systems. The results revealed that not only the polar interaction from the hydrophilic functional groups, as the former reports proposed, but also the van der Waals interactions from the hydrophobic alkyl groups played the important role in the phase transformation of CaCO3.

  16. Mixed ligand complexes of Cu(II)-2-(2-pyridyl)-benzimidazole and aliphatic or aromatic dicarboxylic acids: Synthesis, characterization and biological activity

    NASA Astrophysics Data System (ADS)

    El-Sherif, Ahmed A.; Jeragh, Bakir J. A.

    2007-11-01

    The synthesis and structural characterization of mixed ligand complexes derived from 2-(2-pyridyl)-benzimidazole (PBI) (1ry ligand) and aliphatic or aromatic dicarboxylic acids (2ry ligand) are reported. Cu(II) complexes were characterized on the bases of their elemental analyses, IR, ESR and thermal analyses. The elemental analysis indicated the formation of mixed ligand complexes in a mole ratio 1:1:1 (Cu:L 1:L 2), L 1 = PBI and L 2 = oxalic acid, phthalic acid or malonic acid. IR spectra showed that PBI acts as a neutral bidentate coordinated to the Cu(II) via the pyridyl and imidazolyl nitrogen atoms. The dicarboxylic acids are bidentate with monodentate carboxylate groups. Thermal decomposition study of complexes was monitored by thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis in N 2 atmosphere. The decomposition course and steps were analysed and the activation parameters of the nonisothermal decomposition were calculated from the TG curves and discussed. The isolated metal chelates were screened for their antimicrobial activities and the results are reported, discussed and compared with some known antibiotics.

  17. Secondary porosity revisited: The chemistry of feldspar dissolution by carboxylic acids and anions

    SciTech Connect

    Stoessell, R.K. ); Pittman, E.D. )

    1990-12-01

    Carboxylic acids in subsurface waters have been proposed as agents for dissolving feldspars and complexing aluminum to create secondary porosity in sandstones. Previously published experimental work indicated high aluminum mobility in the presence of carboxylic acid solutions. In order to further evaluate aluminum mobility, alkali feldspar dissolution experiments were run at 100C and 300 bars in the presence of mono- and dicarboxylic acids and their anions. Experimental results imply that under reservoir conditions, aluminum-organic anion complexes are insignificant for acetate and propionate and possibly significant for oxalate and malonate. Propionate appeared to inhibit alkali feldspar dissolution and, hence, may retard aluminum mobility. Dissolution of feldspar in the presence of oxalic and acetic acid can be explained by enhanced dissolution kinetics and greater aluminum mobility under low-pH conditions. The general absence of such low-pH fluids in subsurface reservoirs makes this an unlikely mechanism for creating secondary porosity. Also, the thermal instability of oxalate and malonate limits their aluminum-complexing potential in reservoirs at temperatures above 100C.

  18. Excess electron reactivity in amino acid aqueous solution revealed by ab initio molecular dynamics simulation: anion-centered localization and anion-relayed electron transfer dissociation.

    PubMed

    Wu, Xiuxiu; Gao, Liang; Liu, Jinxiang; Yang, Hongfang; Wang, Shoushan; Bu, Yuxiang

    2015-10-28

    Studies on the structure, states, and reactivity of excess electrons (EEs) in biological media are of great significance. Although there is information about EE interaction with desolvated biological molecules, solution effects are hardly explored. In this work, we present an ab initio molecular dynamics simulation study on the interaction and reactivity of an EE with glycine in solution. Our simulations reveal two striking results. Firstly, a pre-solvated EE partially localizes on the negatively charged -COO(-) group of the zwitterionic glycine and the remaining part delocalizes over solvent water molecules, forming an anion-centered quasi-localized structure, due to relative alignment of the lowest unoccupied molecular orbital energy levels of potential sites for EE residence in the aqueous solution. Secondly, after a period of anion-centered localization of an EE, the zwitterionic glycine is induced to spontaneously fragment through the cleavage of the N-Cα bond, losing ammonia (deamination), and leaving a ˙CH2-COO(-) anion radical, in good agreement with experimental observations. Introduction of the same groups (-COO(-) or -NH3(+)) in the side chain (taking lysine and aspartic acid as examples) can affect EE localization, with the fragmentation of the backbone part of these amino acids dependent on the properties of the side chain groups. These findings provide insights into EE interaction mechanisms with the backbone parts of amino acids and low energy EE induced fragmentation of amino acids and even peptides and proteins. PMID:26399512

  19. Anion Effects on Sodium Ion and Acid Molecule Adduction to Protein Ions in Electrospray Ionization Mass Spectrometry

    PubMed Central

    Flick, Tawnya G.; Merenbloom, Samuel I.; Williams, Evan R.

    2012-01-01

    Gaseous protein–metal ion and protein–molecule complexes can be readily formed by electrospray ionization (ESI) from aqueous solutions containing proteins and millimolar concentrations of sodium salts of various anions. The extent of sodium and acid molecule adduction to multiply charged protein ions is inversely related and depends strongly on the proton affinity (PA) of the anion, with extensive sodium adduction occurring for anions with PA values greater than ~300 kcal·mol−1 and extensive acid molecule adduction occurring for anions with PA values less than 315 kcal·mol−1. The role of the anion on the extent of sodium and acid molecule adduction does not directly follow the Hofmeister series, suggesting that direct protein–ion interactions may not play a significant role in the observed effect of anions on protein structure in solution. These results indicate that salts with anions that have low PA values may be useful solution-phase additives to minimize nonspecific metal ion adduction in ESI experiments designed to identify specific protein-metal ion interactions. PMID:21952761

  20. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.

    PubMed

    Popov, L

    2016-09-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials. PMID:27451111

  1. Abscisic acid influx into human nucleated cells occurs through the anion exchanger AE2.

    PubMed

    Vigliarolo, Tiziana; Zocchi, Elena; Fresia, Chiara; Booz, Valeria; Guida, Lucrezia

    2016-06-01

    Abscisic acid (ABA) is a hormone conserved from cyanobacteria to higher plants, where it regulates responses to environmental stimuli. ABA also plays a role in mammalian physiology, pointedly in inflammatory responses and in glycemic control. As the animal ABA receptor is on the intracellular side of the plasma membrane, a transporter is required for the hormone's action. Here we demonstrate that ABA transport in human nucleated cells occurs via the anion exchanger AE2. Together with the recent demonstration that ABA influx into human erythrocytes occurs via Band 3, this result identifies the AE family members as the mammalian ABA transporters. PMID:27015766

  2. Acridine-based complex as amino acid anion fluorescent sensor in aqueous solution

    NASA Astrophysics Data System (ADS)

    Dai, Yanpeng; Xu, Kuoxi; Li, Qian; Wang, Chaoyu; Liu, Xiaoyan; Wang, Peng

    2016-03-01

    Novel acridine-based fluorescence sensors containing alaninol ligands, L1 and D1, were designed and synthesized. The structure of the compound was characterized by IR, 1H NMR, 13C NMR, MS spectra. L1 and D1 possess efficient Cu2 + cation ON-OFF selective signaling behavior based on ligand-to-metal binding mechanism at physiological pH condition. Additionally, the L1-Cu(II) and D1-Cu(II) complexes could further serve as reversible OFF-ON signaling sensing ensemble to allow ratiometric response to amino acid anion in aqueous solution.

  3. Influence of season and salinity on the exudation of aliphatic low molecular weight organic acids (ALMWOAs) by Phragmites australis and Halimione portulacoides roots

    NASA Astrophysics Data System (ADS)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2015-01-01

    Plant roots have the ability to produce and secrete substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere. This phenomenon occurs for several purposes, for instance, the detoxification of pollutants. Nevertheless, knowledge about the exudation of such substances from marsh plants roots is still scarce. This work aimed at studying: 1) the ability of marsh plants, freshly collected in estuarine marshes, to liberate ALMWOAs into the surrounding medium and 2) the influence of the physiological cycle of these plants on the exudation of those substances. In vitro experiments were carried out, in different seasons, with Phragmites australis and Halimione portulacoides (two marsh plants widely distributed in Europe). Root exudates were collected in freshwater to which plant specimens, in different physiological stages, were exposed. Both marsh plants were capable of liberating oxalic and citric acids into the surrounding medium. Formic acid was also released by P. australis roots and acetic acid by H. portulacoides. There was a seasonal effect on the liberation of ALMWOAs by both plant roots. Marked changes were registered in the nature and levels of the ALMWOAs liberated and such changes depended upon the season in which the specimens were collected. In growing season, a significantly higher liberation of oxalic and citric acids (and acetic acid but only in H. portulacoides case) was observed. For P. australis, formic acid was only found in the decaying stage (autumn and winter). The nature of the medium (in particular, salinity) was a feature conditioning the exudation of ALMWOAs. Both plants were shown to contribute for the presence of ALMWOAs in marsh rhizosediments (some ALMWOAs were found in pore waters extracted). The nature and extent of this contribution will be however dependent upon plants' physiological stage, in addition to plant species. Therefore, these features should be taken into consideration in the event of

  4. Synergistic mechanism between SDBS and oleic acid in anionic flotation of rhodochrosite

    NASA Astrophysics Data System (ADS)

    Bu, Yong-jie; Liu, Run-qing; Sun, Wei; Hu, Yue-hua

    2015-05-01

    Pure mineral flotation experiments, zeta potential testing, and infrared spectroscopy were employed to investigate the interfacial reactions of oleic acid (collector), sodium dodecyl benzene sulfonate (SDBS, synergist), and rhodochrosite in an anionic system. The pure mineral test shows that oleic acid has a strong ability to collect products on rhodochrosite. Under neutral to moderately alkaline conditions, low temperature (e.g., 10°C) adversely affects the flotation performance of oleic acid; the addition of SDBS significantly improves the dispersion and solubility of oleic acid, enhancing its collecting ability and flotation recovery. The zeta potential test shows that rhodochrosite interacts with oleic acid and SDBS, resulting in a more negative zeta potential and the co-adsorption of the collector and synergist at the mineral surface. Infrared spectroscopy demonstrated that when oleic acid and SDBS are used as a mixed collector, oleates along with -COO- and -COOH functional groups are formed on the mineral surface, indicating chemical adsorption on rhodochrosite. The results demonstrate that oleic acid and SDBS co-adsorb chemically on the surface of rhodochrosite, thereby improving the flotation performance of the collector.

  5. Synergistic effects in solvent-extraction systems based on alkylsalicylic acids. I. Extraction of trivalent rare-earth metals in the presence of aliphatic amides

    SciTech Connect

    Preston, J.S.; Preez, A.C. du

    1995-07-01

    Aliphatic carboxylic acid amides were found to cause synergistic shifts in the pH{sub 50} values for the extraction of the trivalent rare-earth metals from chloride media by solutions of alkylsalicylic acids in xylene. For the different types of amide examined, the synergistic shifts for the extraction of neodymium by 3,5-diisopropylsalicylic acid (DIPSA) generally decrease in the order: R.CO.NR{sub 2}` > R.CO.NHR` > R.CO.NH{sub 2}, where R and R` are alkyl groups. With the N,N-dialkyl amides (R.CO.NR{sub 2}`) and the N-alkyl amides (R.CO.NHR`), the extent of the synergistic effect decreases with increasing chain-branching in either of the alkyl groups R and R`. For additions to 0.25 M alkylsalicylic acid, the synergistic effect increases with concentrations of up to 0.1 M amide, and decreases with higher concentrations. The extent of the synergistic shift produced by a given amide, as well as the separation in pH{sub 50} values from lanthanum to lutetium, increases with increasing steric bulk of the alkylsalicylic acid used. The separations between adjacent lanthanides are too small to be of any practical interest, however. Measurement of the solubility of salicylic acids (HA) in xylene containing various amounts of N,N-dialkyl amide (L) indicate that essentially complete formation of the HA.L adduct takes place. Treatment of metal-distribution data by slope analysis, and measurement of the solubility of the neodymium-DIPSA complex in xylene in the presence of amide suggest that the mixed-ligand complex has the stoichiometry NdA{sub 3}L{sub 2}. 18 refs., 6 figs., 3 refs.

  6. Russian studies of the safety of anion exchange in nitric acid

    SciTech Connect

    Hyder, M.L.; Bartenev, S.A.; Lazarev, L.N.

    1997-07-01

    Synthetic ion exchange resins came into use in the Soviet Union in the 1950`s, and domestic anion exchange resins based on quaternary amine groups have long been used in the Russian nuclear industry. These resins are similar to resins used in the West, and include pyridine-based resins, as well as the more conventional aryl polymers with substituted methyl amines. (Slide 1) The sensitivity of these amines to reaction with nitric acid and other oxidants has been a concern in Russia as in the West, and numerous laboratory studies have been conducted on the reactions involved. Several incidents involving pressure or temperature excursions have provided incentives for such studies. (Slide 2) This report briefly summarizes this work. A report by the Russian authors of this paper providing greater detail is to be issued as a U.S. Dept. of Energy document. Additionally, a second report by these authors, describing new studies on anion exchange resin safety, will also be issued as a DOE report. The separation of plutonium, neptunium, etc. from other materials by ion exchange requires rather strong nitric acid (6-8 M). In some systems, such as the processing of {sup 238}Pu, intense ionizing radiation may also be present during ion exchange separation. As a result, it is necessary to consider not only thermal hydrolysis and oxidation and their effects on the resin, but also radiolysis. All of these were investigated in the Russian studies.

  7. Aliphatic amines in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Jungclaus, G.; Cronin, J. R.; Moore, C. B.; Yuen, G. U.

    1976-01-01

    The paper reports on the determination of aliphatic amines in water extracts of the Murchison meteorite. The amines were analyzed by gas chromatography both as the free amines and as 2,4-dinitrophenyl (DNP) derivatives. The results give evidence for the presence of all of the possible primary aliphatic monoamines (eight) with fewer than five carbon atoms. Two of the seven possible secondary or tertiary aliphatic monoamines were identified. The identified primary amines total 80 nmol per g meteorite, and seem to be chemically or physically trapped in the meteorite. Similarities between the water-extractable amines and amino acids suggest that (1) a simple carbon compound, methane, for example, is the precursor of meteorite amines and amino acids, and (2) both amines and amino acids are extracted from the meteorite both as such and in the form of acid-hydrolyzable derivative or precursor species.

  8. Modulation of fatty acid oxidation alters contact hypersensitivity to urushiols: role of aliphatic chain beta-oxidation in processing and activation of urushiols.

    PubMed

    Kalergis, A M; López, C B; Becker, M I; Díaz, M I; Sein, J; Garbarino, J A; De Ioannes, A E

    1997-01-01

    Lithraea caustica, or litre, a tree of the Anacardiaceae family that is endemic to the central region of Chile, induces a severe contact dermatitis in susceptible human beings. The allergen was previously isolated and characterized as a 3-(pentadecyl-10-enyl) catechol, a molecule belonging to the urushiol group of allergens isolated from poison ivy and poison oak plants. Because urushiols are pro-electrophilic haptens, it is believed that the reactive species are generated intracellularly by skin keratinocytes and Langerhans cells. The active species are presumed to modify self proteins which, after proteolytic processing, would generate immunogenic peptides carrying the hapten. The presence of a 15-carbon-length hydrophobic chain should impair antigen presentation of self-modified peptides by class I MHC molecules, either by steric hindrance or by limiting their sorting to the ER lumen. We have proposed that the shortening of the aliphatic chain by beta-oxidation within peroxisomes and/or mitochondria should be a requirement for the antigen presentation process. To test this hypothesis we investigated the effect of drugs that modify the fatty acid metabolism on urushiol-induced contact dermatitis in mice. Clofibrate, a peroxisomal proliferator in mice, increased the immune response to the urushiols from litre by 50%. Conversely, tetradecyl glycidic acid, an inhibitor of the uptake of fatty acids by mitochondria, decreased the hypersensitivity to the hapten. An increase in the level in glutathione by treatment of the animals with 2-oxotiazolidin-4-carboxilic acid lowered the response. Those findings strongly support a role for the fatty acid oxidative metabolism in the processing and activation of urushiols in vivo. PMID:8980288

  9. New soft porous frameworks based on lambda-zirconium phosphate and aliphatic dicarboxylates: Synthesis and structural characterization

    NASA Astrophysics Data System (ADS)

    Alhendawi, Hussein; Brunet, Ernesto; Juanes, Olga; Hammouda, Huda; Idhair, Salem; Rodríguez Payán, Elena; de Victoria Rodríguez, María

    2015-11-01

    New dicarboxylate-functionalized pillared materials with a general formula of λ-ZrPO4(OH)1-x(OOC(CH2)nCOO)x/2(dmso) (n=6, 8 and 10) have been prepared by post-synthesis modification of the inorganic layers of λ-zirconium phosphate (λ-ZrP), where the superficial Chloride monovalent anionic ligands of λ-layer are partially exchanged with the divalent anionic ligands of a series of long-chain aliphatic dicarboxylic acids, namely octanedioic acid, decanedioic acid and dodecanedioic acid. The synthesized materials are characterized by X-ray diffractometry, FT-IR spectrophotometry, elemental and thermogravimetric analyses. The X-ray diffraction patterns show that the obtained solid phases are pure. Furthermore, the interlayer distance of λ-ZrP systematically increases from 1.02 to 1.59 nm as a result of the incorporation of the mentioned acids inside the interlayer gallery.

  10. Noninnocently Behaving Bridging Anions of the Widely Distributed Antioxidant Ellagic Acid in Diruthenium Complexes.

    PubMed

    Mandal, Abhishek; Grupp, Anita; Schwederski, Brigitte; Kaim, Wolfgang; Lahiri, Goutam Kumar

    2015-10-19

    Dinuclear compounds [L2Ru(μ-E)RuL2](n) where L is acetylacetonate (acac(-), 2,4-pentanedionate), 2,2'-bipyridine (bpy), or 2-phenylazopyridine (pap) and EH4 is ellagic acid, an antioxidative bis-catechol natural product, were studied by voltammetric and spectroelectrochemical techniques (UV-vis-NIR and electron paramagnetic resonance (EPR)). The electronic structures of the isolated forms (NBu4)2[(acac)2Ru(μ-E)Ru(acac)2] ((NBu4)2[1]), [(bpy)2Ru(μ-E)Ru(bpy)2]ClO4 ([2]ClO4), and [(pap)2Ru(μ-E)Ru(pap)2] ([3]) were characterized by density functional theory (DFT) in conjunction with EPR and UV-vis-NIR measurements. The crystal structure of (NBu4)2[1] revealed the meso form and a largely planar Ru(μ-E)Ru center. Several additional charge states of the compounds were electrochemically accessible and were identified mostly as complexes with noninnocently behaving pap(0/•-) or bridging ellagate (E(n-)) anions (n = 2, 3, 4) but not as mixed-valence intermediates. The free anions E(n-), n = 1-4, were calculated by time-dependent DFT to reveal NIR transitions for the radical forms with n = 1 and 3 and a triplet ground state for the bis(o-semiquinone) dianion E(2-). PMID:26441246

  11. Single-Photon, Double Photodetachment of Nickel Phthalocyanine Tetrasulfonic Acid 4- Anions.

    PubMed

    Daly, Steven; Girod, Marion; Vojkovic, Marin; Giuliani, Alexandre; Antoine, Rodolphe; Nahon, Laurent; O'Hair, Richard A J; Dugourd, Philippe

    2016-07-01

    Single-photon, two-electron photodetachment from nickel phthalocyanine tetrasulfonic acid tetra anions, [NiPc](4-), was examined in the gas-phase using a linear ion trap coupled to the DESIRS VUV beamline of the SOLEIL Synchrotron. This system was chosen since it has a low detachment energy, known charge localization, and well-defined geometrical and electronic structures. A threshold for two-electron loss is observed at 10.2 eV, around 1 eV lower than previously observed double detachment thresholds on multiple charged protein anions. The photodetachment energy of [NiPc](4-) has been previously determined to be 3.5 eV and the photodetachment energy of [NiPc](3-•) is determined in this work to be 4.3 eV. The observed single photon double electron detachment threshold is hence 5.9 eV higher than the energy required for sequential single electron loss. Possible mechanisms are for double photodetachment are discussed. These observations pave the way toward new, exciting experiments for probing double photodetachment at relatively low energies, including correlation measurements on emitted photoelectrons. PMID:27327376

  12. Sorption and diffusion of organic acids through clayrock: Comparison with inorganic anions

    NASA Astrophysics Data System (ADS)

    Dagnelie, R. V. H.; Descostes, M.; Pointeau, I.; Klein, J.; Grenut, B.; Radwan, J.; Lebeau, D.; Georgin, D.; Giffaut, E.

    2014-04-01

    Organic complexing species are known to affect radionuclide mobility in the environment. The migration behaviour of several organic ligands was evaluated in the context of a proposed French radioactive waste repository in the Callovo-Oxfordian clayrock formation (COx). This study focuses on four anthropogenic acids (ethylenediaminetetraacetate, isosaccharinate, phthalate, oxalate) that are used in the nuclear fuel cycle or that occur as hydrosoluble degradation products of waste materials. Batch sorption and diffusion experiments were performed with COx clayrock samples using 14C-labelled radiotracers. The observed effective diffusion coefficients were low (De ∼ 1-6 × 10-12 m2 s-1), an order of magnitude lower than that of tritiated water in the same material, and roughly the same as values for inorganic anions such as I-, Cl- and SO42-. The observed correlation of De with molecular mass, M-1/3, differs significantly from that observed for cations. The organic ligands displayed significant affinity for the COx clayrock, with distribution ratios measured in batch experiments, Rd = 1-30 L kg-1, which are much higher than usually observed for anionic species. While this result was confirmed by through-diffusion experiments, the Kd values obtained by fitting diffusion modelling were significantly lower than those measured in the batch experiments.

  13. Purification of organic acids by chromatography with strong anionic resins: Investigation of uptake mechanisms.

    PubMed

    Lemaire, Julien; Blanc, Claire-Line; Lutin, Florence; Théoleyre, Marc-André; Stambouli, Moncef; Pareau, Dominique

    2016-08-01

    Bio-based organic acids are promising renewable carbon sources for the chemical industry. However energy-consuming purification processes are used, like distillation or crystallization, to reach high purities required in some applications. That is why preparative chromatography was studied as an alternative separation technique. In a previous work dealing with the purification of lactic, succinic and citric acids, the Langmuir model was insufficient to explain the elution profiles obtained with a strong anionic resin. Consequently the Langmuir model was coupled with a usual ion-exchange model to take into account the retention of their conjugate bases (<2%), which are commonly neglected at low pH (<1.5). Elution simulations with both uptake mechanisms fitted very well with experimental pulse tests. Only two parameters were optimized (equilibrium constant of acid uptake and ion-exchange selectivity coefficient of conjugate base) and their value were coherent with experimental and resin suppliers' data. These results confirmed that the singular tailing and apparent delay observed with succinic and citric acids can be explained by the high affinity of succinate and citrate for resin cationic sites. The model was implemented in a preparative chromatography simulation program in order to optimize operating parameters of our pilot-scale ISMB unit (Improved Simulated Moving Bed). The comparison with experimental ISMB profiles was conclusive. PMID:27373374

  14. Valence anions in complexes of adenine and 9-methyladenine with formic acid: stabilization by intermolecular proton transfer.

    PubMed

    Mazurkiewicz, Kamil; Harańczyk, Maciej; Gutowski, Maciej; Rak, Janusz; Radisic, Dunja; Eustis, Soren N; Wang, Di; Bowen, Kit H

    2007-02-01

    Photoelectron spectra of adenine-formic acid (AFA(-)) and 9-methyladenine-formic acid (MAFA(-)) anionic complexes have been recorded with 2.540 eV photons. These spectra reveal broad features with maxima at 1.5-1.4 eV that indicate formation of stable valence anions in the gas phase. The neutral and anionic complexes of adenine/9-methyladenine and formic acid were also studied computationally at the B3LYP, second-order Møller-Plesset, and coupled-cluster levels of theory with the 6-31++G** and aug-cc-pVDZ basis sets. The neutral complexes form cyclic hydrogen bonds, and the most stable dimers are bound by 17.7 and 16.0 kcal/mol for AFA and MAFA, respectively. The theoretical results indicate that the excess electron in both AFA(-) and MAFA(-) occupies a pi* orbital localized on adenine/9-methyladenine, and the adiabatic stability of the most stable anions amounts to 0.67 and 0.54 eV for AFA(-) and MAFA(-), respectively. The attachment of the excess electron to the complexes induces a barrier-free proton transfer (BFPT) from the carboxylic group of formic acid to a N atom of adenine or 9-methyladenine. As a result, the most stable structures of the anionic complexes can be characterized as neutral radicals of hydrogenated adenine (9-methyladenine) solvated by a deprotonated formic acid. The BFPT to the N atoms of adenine may be biologically relevant because some of these sites are not involved in the Watson-Crick pairing scheme and are easily accessible in the cellular environment. We suggest that valence anions of purines might be as important as those of pyrimidines in the process of DNA damage by low-energy electrons. PMID:17263404

  15. Chemiluminescence involving acidic and ambient ion light emitters. The chemiluminescence of the 9-acridinepercarboxylate anion

    SciTech Connect

    White, E.H.; Roswell, D.F.; Dupont, A.C.; Wilson, A.A.

    1987-08-19

    The reaction of phenyl 9-acridinecarboxylate with an excess of peroxide ion in THF/water (67/33 mol %) leads to the emission of either bright yellow-green light or bright blue light, depending on the reaction conditions. The blue emission is favored by high concentrations of hydrogen peroxide and water, for example. 9-Acridinepercarboxylic acid is a common intermediate in the reactions. The light emitter responsible for the blue chemiluminescence is acridone, whereas that responsible for the yellow-green chemiluminescence is the anion of acridone. The effects of base concentration and solvent composition on the relative proportions of these two emitters have produced evidence that, contrary to the expectation of simple theory, a dioxetanone is not an intermediate in the reaction. Other cases where chemiluminescence may involve percarboxylate and peroxide ions are discussed.

  16. Enrichment of aliphatic, alicyclic and aromatic acids by oil-degrading bacteria isolated from the rhizosphere of plants growing in oil-contaminated soil from Kazakhstan.

    PubMed

    Mikolasch, Annett; Omirbekova, Anel; Schumann, Peter; Reinhard, Anne; Sheikhany, Halah; Berzhanova, Ramza; Mukasheva, Togzhan; Schauer, Frieder

    2015-05-01

    Three microbial strains were isolated from the rhizosphere of alfalfa (Medicago sativa), grass mixture (Festuca rubra, 75 %; Lolium perenne, 20 %; Poa pratensis, 10 %), and rape (Brassica napus) on the basis of their high capacity to use crude oil as the sole carbon and energy source. These isolates used an unusually wide spectrum of hydrocarbons as substrates (more than 80), including n-alkanes with chain lengths ranging from C12 to C32, monomethyl- and monoethyl-substituted alkanes (C12-C23), n-alkylcyclo alkanes with alkyl chain lengths from 4 to 18 carbon atoms, as well as substituted monoaromatic and diaromatic hydrocarbons. These three strains were identified as Gordonia rubripertincta and Rhodococcus sp. SBUG 1968. During their transformation of this wide range of hydrocarbon substrates, a very large number of aliphatic, alicyclic, and aromatic acids was detected, 44 of them were identified by GC/MS analyses, and 4 of them are described as metabolites for the first time. Inoculation of plant seeds with these highly potent bacteria had a beneficial effect on shoot and root development of plants which were grown on oil-contaminated sand. PMID:25592733

  17. Anion photoelectron spectroscopy of acid-base systems, solvated molecules and MALDI matrix molecules

    NASA Astrophysics Data System (ADS)

    Eustis, Soren Newman

    Gas phase, mass-selected, anion photoelectron spectroscopic studies were performed on a variety of molecular systems. These studies can be grouped into three main themes: acid-base interactions, solvation, and ions of analytical interest. Acid-base interactions represent some of the most fundamental processes in chemistry. The study of these processes elucidates elementary principles such as inner and outer sphere complexes, hard and soft ions, and salt formation---to name a few. Apart from their appeal from a pedagogical standpoint, the ubiquity of chemical reactions which involve acids, bases or the resulting salts makes the study of their fundamental interactions both necessary and fruitful. With this in mind, the neutral and anionic series (NH3···HX) (X= F, Cl, Br, I) were examined experimentally and theoretically. The relatively small size of these systems, combined with the advances in computational methods, allowed our experimental results to be compared with very high level ab initio theoretical results. The synergy between theory and experiment yielded an understanding of the nature of the complexes that could not be achieved with either method in isolation. The second theme present in this body or work is molecular solvation. Solvation is a phenomenon which is present in biology, chemistry and physics. Many biological molecules do not become 'active' until they are solvated by water. Thus, the study of biologically relevant species solvated by water is one step in a bottom up approach to studying the biochemical interactions in living organisms. Furthermore, the hydration of acidic molecules in the atmosphere is what drives the formation of 'free' protons or hydronium ions which are the key players in acid driven chemistry. Here are presented two unique solvation studies, Adenine(H2O)-n and C6F6(H2O)-n, these systems are very distinct, but show somewhat similar responses to hydration. The last theme presented in this work is the electronic properties

  18. Excess Electron Attachment Induces Barrier-Free Proton Transfer in Anionic Complexes of Thymine and Uracil with Formic Acid

    SciTech Connect

    Haranczyk, Maciej; Dabkowska, Iwona; Rak, Janusz; Gutowski, Maciej S.; Nilles, J.M.; Stokes, Sarah; Radisic, Dunja; Bowen, Kit H.

    2004-06-03

    The anionic complexes of formic acid with uracil and thymine reveal broad features in photoelectron spectroscopy (PES) experiments with maxima at 1.7 and 1.1 eV, respectively. The results of quantum chemical calculations suggest that electron vertical detachment energies (VDE) of 1.6-1.9 eV correspond to anionic structures in which a proton has been transferred from the carboxylic group of the formic acid to the O8 atom of uracil or thymine. Smaller values of VDE (0.8 to 1.3 eV) correspond to chemically untransformed complexes, in which anionic uracil or thymine interacts through two hydrogen bonds with the carboxylic group of the intact formic acid. The recorded spectra and the results of quantum chemical calculations suggest that both nucleic acid bases undergo barrier-free proton transfer in anionic complexes with formic acid. The difference in experimental spectra of UF- and TF- provides an indication that the methyl group of thymine could make a difference in the intermolecular proton transfer.

  19. Modulation of the voltage-dependent anion channel of mitochondria by elaidic acid.

    PubMed

    Tewari, Debanjan; Bera, Amal Kanti

    2016-08-26

    Dietary trans fatty acids (TFAs) are known to increase the risk of cardiovascular diseases by altering plasma lipid profile and activating various inflammatory signaling pathways. Here we show that elaidic acid (EA), the most abundant TFA in diet, alters the electrophysiological properties of voltage-dependent anion channel (VDAC) of mitochondria. Purified bovine brain VDAC, when incorporated in the planar lipid bilayer (PLB) composed of 1,2-diphytanoyl-sn-glycero-3 phosphatidyl choline (DPhPC) and EA in a 9 to 1 ratio (wt/wt), exhibited complete closing events at different voltages. The closing events were observed at even -10 mV, a voltage at which VDAC usually remains fully open all the time. Additionally, the voltage sensitivity of VDAC was lost in presence of EA; the channel conductance did not decrease with increasing voltages. In identical experimental conditions, membrane containing oleic acid (OA), the cis isomer of EA did not produce any such effect. We propose that EA possibly exerts its adverse effect by modulating VDAC. PMID:27318085

  20. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.

    PubMed

    Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki

    2014-04-01

    Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments. PMID:24522729

  1. Phosphorylation of the vacuolar anion exchanger AtCLCa is required for the stomatal response to abscisic acid.

    PubMed

    Wege, Stefanie; De Angeli, Alexis; Droillard, Marie-Jo; Kroniewicz, Laetitia; Merlot, Sylvain; Cornu, David; Gambale, Franco; Martinoia, Enrico; Barbier-Brygoo, Hélène; Thomine, Sébastien; Leonhardt, Nathalie; Filleur, Sophie

    2014-01-01

    Eukaryotic anion/proton exchangers of the CLC (chloride channel) family mediate anion fluxes across intracellular membranes. The Arabidopsis thaliana anion/proton exchanger AtCLCa is involved in vacuolar accumulation of nitrate. We investigated the role of AtCLCa in leaf guard cells, a specialized plant epidermal cell that controls gas exchange and water loss through pores called stomata. We showed that AtCLCa not only fulfilled the expected role of accumulating anions in the vacuole during stomatal opening but also mediated anion release during stomatal closure in response to the stress hormone abscisic acid (ABA). We found that this dual role resulted from a phosphorylation-dependent change in the activity of AtCLCa. The protein kinase OST1 (also known as SnRK2.6) is a key signaling player and central regulator in guard cells in response to ABA. Phosphorylation of Thr(38) in the amino-terminal cytoplasmic domain of AtCLCa by OST1 increased the outward anion fluxes across the vacuolar membrane, which are essential for stomatal closure. We provide evidence that bidirectional activities of an intracellular CLC exchanger are physiologically relevant and that phosphorylation regulates the transport mode of this exchanger. PMID:25005229

  2. Wheat gluten amino acid analysis by high-performance anion-exchange chromatography with integrated pulsed amperometric detection.

    PubMed

    Rombouts, Ine; Lagrain, Bert; Lamberts, Lieve; Celus, Inge; Brijs, Kristof; Delcour, Jan A

    2012-01-01

    This chapter describes an accurate and user-friendly method for determining amino acid composition of wheat gluten proteins and their gliadin and glutenin fractions. The method consists of hydrolysis of the peptide bonds in 6.0 M hydrochloric acid solution at 110°C for 24 h, followed by evaporation of the acid and separation of the free amino acids by high-performance anion-exchange chromatography with integrated pulsed amperometric detection. In contrast to conventional methods, the analysis requires neither pre- or postcolumn derivatization, nor a time-consuming oxidation or derivatization step prior to hydrolysis. Correction factors account for incomplete release of Val and Ile even after hydrolysis for 24 h, and for losses of Ser during evaporation. Gradient conditions including an extra eluent allow multiple sequential sample analyses without risk of Glu accumulation on the anion-exchange column which otherwise would result from high Gln levels in gluten proteins. PMID:22125156

  3. Characterization of the hyperline of D{sub 1}/D{sub 0} conical intersections between the maleic acid and fumaric acid anion radicals

    SciTech Connect

    Takahashi, Ohgi; Sumita, Masato

    2004-10-08

    The cation and anion radicals of symmetrical 1,2-disubstituted ethylenes are expected to have a symmetry-allowed conical intersection (CI) between the ground doublet state (D{sub 0}) and the lowest excited doublet state (D{sub 1}) near a 90 deg.-twisted geometry. By the complete active space self-consistent field method, we characterized the hyperline formed by D{sub 1}/D{sub 0} CIs between the anion radicals of maleic acid (cis) and fumaric acid (trans). An implication of the results for the known one-way cis{yields}trans photoisomerization of the maleic acid anion radical and other related ion radicals is presented.

  4. Primary structure of a sperm cell anion exchanger and its messenger ribonucleic acid expression during spermatogenesis.

    PubMed

    Holappa, K; Mustonen, M; Parvinen, M; Vihko, P; Rajaniemi, H; Kellokumpu, S

    1999-10-01

    Chloride/bicarbonate (Cl-/HCO(3)-) exchangers are a family of proteins (anion exchanger [AE] gene family) that regulate many vital cellular processes such as intracellular pH, cell volume, and Cl- concentration. They may also be involved in the regulation of sperm cell motility and acrosome reaction during fertilization, as these two phenomena are bicarbonate dependent, and we have previously shown that a polypeptide immunologically related to erythrocyte band 3 is expressed in mammalian sperm cells. We have now identified this putative sperm cell anion exchanger as the AE2 isoform of this gene family. First, we determined its complete primary structure from the human testis lambda gt 11 cDNA library. The cloned sequence was found to consist of 3896 base pairs (bp) with an open reading frame of 3726 bp, and to be almost identical to the previously published human genomic AE2 sequence. Only four amino acid disparities were found between these two sequences. Second, our in situ hybridization analyses showed that AE2 mRNA is expressed in developing sperm cells, indicating that the cloned sequence corresponds to the sperm cell AE. Our reverse transcription-polymerase chain reaction analyses suggested further that the expression of AE2 mRNA was variable to some extent during the epithelial cell cycle. Strongest expression was observed at stages VII-XIV except for stage X, i.e., when major structural and morphological changes take place. These results suggest that the full-length AE2 isoform regulates HCO(3)- transport in mature sperm cells and thus their motility in vivo. PMID:10491633

  5. [Acidity and interaction with superoxide anion radical of echinochrome and its structural analogs].

    PubMed

    Lebedev, A V; Ivanova, M V; Krasnovid, N I; Kol'tsova, E A

    1999-01-01

    Weak acid properties, autoxidation and interaction of natural polyhydroxy1,4-naphthoquinones (PHNQ) with superoxide anion-radical (O2-.) were studied by methods of potentiometric titration, polarography, and UV- and visible spectrophotometry. Sea urchin pigments 3-acetyl-2,6,7-trihydroxynaphthazarin (spinochrome C), 2,3,6,7-trihydroxynaphthazarin (spinochrome D), 2,3,6,7-trihydroxynaphthazarin (spinochrome E), 6-ethyl-2,3,7-trihydroxynaphthazarin (echinochrome A), synthetic 2,3-dihydroxy-6,7-dimethylnaphthazarin and 6-ethyl-2,3,7-trimethoxynaphthazarin (trimethoxyechinochrome A) were tested. Determined dissociation constants (pKi) were in the range of pH 5.3-8.5 (40% ethanol solvent). PHNQ autoxidation observrd in basic pH were inhibited by superoxide dismutase. Xanthine and xanthine oxidase was applied for O2-. generation. Interaction with O2-. led to sufficient time-dependent changing in spectra of echinochrome A, spinochromes D and E. There was weak O2-. influence on spinochrome C spectrum and no changing in trimethoxyechinochrome A spectrum. The spectra, that were transforming during time of reaction, contained pronounced isobestic point. It means formation the single reaction product. We proposed formation of 1,2,3,4-tetraketones from 2,3,5,8-tetrahydroxy-1,4-naphthoquinones (echinochrome A, spinochromes D and E) due to O2-.-induced oxidation of their OH-groups in 2 and 3 positions. Reaction constants were determined by competition method using nitro blue tetrazolium (NBT). The reaction constants were about 10(4)-10(5) M-1s-1. They were decreased in the order: echinochrome A > spinochrome D > spinochrome C > NBT > trimethoxyechinochrome A. Thus, we concluded that some of the natural PGNQ, containing hydroxyl groups in 2nd and 3rd positions, could operate as powerful superoxide anion-radical scavengers. PMID:10378300

  6. Separation of boric acid in liquid waste with anion exchange membrane contactor

    SciTech Connect

    Park, J.K.; Lee, K.J.

    1995-12-31

    In order to separate boric acid in liquid waste, some possible technologies were investigated and the membrane contactor without dispersion and density differences was selected. The separation experiments on a Celgard 3401{reg_sign} hydrophilic microporous membrane contactor were first performed to obtain the basic data and to determine the properties of the contactor. The experimental conditions were as follows: boric acid concentrations up to 2.0 M, pH 7.0, temperatures of 25 and 55 C, and flow rates of 100, 300, 500, and 800 cm{sup 3}/min. Secondly, an AFN{reg_sign} anion exchange membrane contactor was tested at temperatures of 40 and 55 C and flow rate 400 cm{sup 3}/min. Boric acid solutions were prepared by the same method as that for Celgard 3401{reg_sign} but contained 5.0{times}10{sup {minus}4} M cobalt chloride (CoCl{sub 2}). To simulate membrane contractors, parameters such as the differential diffusion coefficients of boric acid and the mass transfer coefficients in the AFN membrane were measured, and regression models estimating the diffusion coefficient at several conditions were developed. The Celgard 3401{reg_sign} membrane contactor was simulated and compared with experimental data. Simulation results agreed with the experimental data well when a proper correction factor was utilized. The correction factor was independent of the solution temperature and was 8.75 at the flow rates of 300--800 cm{sup 3}/min. This correction factor was also applied to simulate the AFN{reg_sign} resulted in a good agreement with experiment at 40 C, but not 55 C. The retention on cobalt was also better at 40 c than 55 C. The simulating computer program was also applied to a life size contactor designed conceptually.

  7. Effect of dietary potassium and anionic salts on acid-base and mineral status in periparturient cows.

    PubMed

    Rérat, M; Schlegel, P

    2014-06-01

    Dry cow diets based on grassland forage from intensive production contain high amounts of K and could be responsible for a reduced ability to maintain Ca homoeostasis. The aim of this study was to determine whether a moderate anionic salt supplementation to a forage-based pre-calving diet with varying native K content affects the mineral and acid-base status in transition cows. Twenty-four dry and pregnant Holstein cows, without antecedent episodes of clinical hypocalcemia, were assigned to two diets during the last 4 weeks before estimated calving date. Twelve cows were fed a hay-based diet low in K (18 g K/kg DM), and 12, a hay-based diet high in K (35 g K/kg DM). Within each diet, six cows received anionic salts during the last 2 weeks before the estimated calving day. After calving, all cows received the high K diet ad libitum. Blood samples were taken daily from day 11 pre-partum to day 5 post-partum. Urine samples were taken on days 7 and 2 pre-partum and on day 2 post-partum. The anionic salt did not alter feed intake during the pre-partum period. Serum Ca was not influenced by the dietary treatments. Feeding pre-partum diets with low K concentrations induced a reduced metabolic alkalotic charge, as indicated by reduced pre-partum urinary base-acid quotient. Transition cows fed the low K diet including anionic salts induced a mild metabolic acidosis before calving, as indicated by higher urinary Ca, lower urinary pH and net acid-base excretion. Although serum Ca during the post-partum period was not affected by dietary treatment, feeding a low K diet moderately supplemented with anionic salts to reach a dietary cation-anion difference close to zero permitted to obtain a metabolic response in periparturient cows without altering the dry matter intake. PMID:23796109

  8. Solvation free energies in [bmim]-based ionic liquids: Anion effect toward solvation of amino acid side chain analogues

    NASA Astrophysics Data System (ADS)

    Latif, Muhammad Alif Mohammad; Micaêlo, Nuno; Abdul Rahman, Mohd Basyaruddin

    2014-11-01

    Stochastic molecular dynamics simulations were performed to investigate the solvation free energy of 15 neutral amino acid side chain analogues in aqueous and five, 1-butyl-3-methylimidazolium ([BMIM])-based ionic liquids. The results in aqueous were found highly correlated with previous experimental and simulation data. Meanwhile, [BMIM]-based RTILs showed better solvation thermodynamics than water to an extent that they were capable of solvating molecules immiscible in water. Non-polar analogues showed stronger solvation in hydrophobic RTIL anions such as [PF6]- and [Tf2N]- while polar analogues showed stronger solvation in the more hydrophilic RTIL anions such as [Cl]-, [TfO]- and [BF4]-.

  9. Controlled-release fertilizer prepared using a biodegradable aliphatic copolyester of poly(butylene succinate) and dimerized fatty acid.

    PubMed

    Lubkowski, Krzysztof; Smorowska, Aleksandra; Grzmil, Barbara; Kozłowska, Agnieszka

    2015-03-18

    The preparation and characterization of a controlled-release multicomponent (NPK) fertilizer with the coating layer consisting of a biodegradable copolymer of poly(butylene succinate) and a butylene ester of dilinoleic acid (PBS/DLA) is reported. The morphology and structure of the resulting polymer-coated materials and the thickness of the covering layers were examined using X-ray diffraction and scanning electron microscopy coupled with energy dispersive X-ray analysis. The mechanical properties of these materials were determined with a strength-testing machine. Nutrient release was measured in water using spectrophotometry, potentiometry, and conductivity methods. The results of the nutrient release experiments from these polymer-coated materials were compared with the requirements for controlled-release fertilizers. A conceptual model is presented describing the mechanism of nutrient release from the materials prepared in this study. This model is based on the concentrations of mineral components inside the water-penetrated fertilizer granules, the diffusion properties of the nutrients in water, and a diffusion coefficient through the polymer layer. The experimental kinetic data on nutrient release were interpreted using the sigmoidal model equation developed in this study. PMID:25715823

  10. Relative effectiveness of various anions on the solubility of acidic Hypoderma lineatum collagenase at pH 7.2.

    PubMed Central

    Carbonnaux, C.; Ries-Kautt, M.; Ducruix, A.

    1995-01-01

    The effects of various anions on decreasing the solubility of acidic Hypoderma lineatum collagenase at pH 7.2 and 18 degrees C were qualitatively defined by replacing the crystallizing agent of known crystallization conditions by various ammonium salts. The solubility curves measured in the presence of the sulfate, phosphate, citrate, and chloride ammonium salts gave the following ranking of anions: HPO4(2-)/H2PO4- > SO4(2-) > citrate 3-/citrate2- >> Cl-. This order is in agreement with the Hofmeister series. In a previous study on the solubility at pH 4.5 of lysozyme, a basic protein, the effectiveness of anions in decreasing the solubility was found to be in the reverse order. This suggests that the effectiveness of anions in the crystallization of proteins is dependent on the net charge of the protein, i.e., depending on whether a basic protein is crystallized at acidic pH or an acidic protein at basic pH. PMID:8535249

  11. Importance of Time Scale and Local Environment in Electron-Driven Proton Transfer. The Anion of Acetoacetic Acid.

    PubMed

    Keolopile, Zibo G; Gutowski, Maciej; Buonaugurio, Angela; Collins, Evan; Zhang, Xinxing; Erb, Jeremy; Lectka, Thomas; Bowen, Kit H; Allan, Michael

    2015-11-18

    Anion photoelectron spectroscopy (PES) and electron energy-loss spectroscopy (EELS) probe different regions of the anionic potential energy surface. These complementary techniques provided information about anionic states of acetoacetic acid (AA). Electronic structure calculations facilitated the identification of the most stable tautomers and conformers for both neutral and anionic AA and determined their relative stabilities and excess electron binding energies. The most stable conformers of the neutral keto and enol tautomers differ by less than 1 kcal/mol in terms of electronic energies corrected for zero-point vibrations. Thermal effects favor these conformers of the keto tautomer, which do not support an intramolecular hydrogen bond between the keto and the carboxylic groups. The valence anion displays a distinct minimum which results from proton transfer from the carboxylic to the keto group; thus, we name it an ol structure. The minimum is characterized by a short intramolecular hydrogen bond, a significant electron vertical detachment energy of 2.38 eV, but a modest adiabatic electron affinity of 0.33 eV. The valence anion was identified in the anion PES experiments, and the measured electron vertical detachment energy of 2.30 eV is in good agreement with our computational prediction. We conclude that binding an excess electron in a π* valence orbital changes the localization of a proton in the fully relaxed structure of the AA(-) anion. The results of EELS experiments do not provide evidence for an ultrarapid proton transfer in the lowest π* resonance of AA(-), which would be capable of competing with electron autodetachment. This observation is consistent with our computational results, indicating that major gas-phase conformers and tautomers of neutral AA do not support the intramolecular hydrogen bond that would facilitate ultrarapid proton transfer and formation of the ol valence anion. This is confirmed by our vibrational EELS spectrum. Anions

  12. Aliphatic polyamines in physiology and diseases.

    PubMed

    Ramani, D; De Bandt, J P; Cynober, L

    2014-02-01

    Aliphatic polyamines are a family of polycationic molecules derived from decarboxylation of the amino acid ornithine that classically comprise three molecules: putrescine, spermidine and spermine. In-cell polyamine homeostasis is tightly controlled at key steps of cell metabolism. Polyamines are involved in an array of cellular functions from DNA stabilization, and regulation of gene expression to ion channel function and, particularly, cell proliferation. As such, aliphatic polyamines play an essential role in rapidly dividing cells such as in the immune system and digestive tract. Because of their role in cell proliferation, polyamines are also involved in carcinogenesis, prompting intensive research into polyamine metabolism as a target in cancer therapy. More recently, another aliphatic polyamine, agmatine, the decarboxylated derivative of arginine, has been identified as a neurotransmitter in mammals, and investigations have focused on its effects in the CNS, notably as a neuroprotector in brain injury. PMID:24144912

  13. Use of anionic clays for photoprotection and sunscreen photostability: Hydrotalcites and phenylbenzimidazole sulfonic acid

    NASA Astrophysics Data System (ADS)

    Perioli, Luana; Ambrogi, Valeria; Rossi, Carlo; Latterini, Loredana; Nocchetti, Morena; Costantino, Umberto

    2006-05-01

    Layered double hydroxides of hydrotalcite (HTlc) type have many applications as matrices in pharmaceutical and cosmetic fields when intercalated with active species in anionic form. The aim of this work was to intercalate 2-phenyl-1H-benzimidazole-5-sulfonic acid (Eusolex 232) (EUS) as sunscreen molecule into hydrotalcites in order to obtain the sunscreen stabilization, the reduction of its photodegradation and the elimination of close contact between skin and filter. Hydrotalcites MgAl and ZnAl were used as hosts and the intercalation products obtained were characterized by TG, RX and DSC. They were also submitted to spectrophotometric assays in order to study the matrix influence on sunlight protection and on sunscreen photostability. These experiments showed that both MgAl and ZnAl HTlc intercalation products maintained the sunscreen properties and eusolex photodegradation was reduced. The in vitro EUS release from both formulations was almost negligible when compared with formulations containing free EUS. The EUS intercalation in HTlc and the respective formulations provided advantages in the maintenance of photoprotection efficacy, filter photostabilization and avoidance of a close contact between skin and filter, with consequent elimination of allergy problems and photocross reactions.

  14. Role of organic anion-transporting polypeptides for cellular mesalazine (5-aminosalicylic acid) uptake.

    PubMed

    König, Jörg; Glaeser, Hartmut; Keiser, Markus; Mandery, Kathrin; Klotz, Ulrich; Fromm, Martin F

    2011-06-01

    The therapeutic effects and metabolism of mesalazine (5-aminosalicylic acid) in patients with inflammatory bowel disease require intracellular accumulation of the drug in intestinal epithelial cells and hepatocytes. The molecular mechanisms of mesalazine uptake into cells have not been characterized so far. Using human embryonic kidney cells stably expressing uptake transporters of the organic anion-transporting polypeptide (OATP) family, which are expressed in human intestine and/or liver, we found that mesalazine uptake is mediated by OATP1B1, OATP1B3, and OATP2B1 but not by OATP1A2 and OATP4A1. Moreover, genetic variations (*1b, *5, *15) in the SLCO1B1 gene encoding OATP1B1 reduced the K(m) value for mesalazine uptake from 55.1 to 16.3, 24.3, and 32.4 μM, respectively, and the respective V(max) values. Finally, budesonide, cyclosporine, and rifampin were identified as inhibitors of OATP1B1-, OATP1B3-, and OATP2B1-meditated mesalazine uptake. These in vitro data indicate that OATP-mediated uptake and its modification by genetic factors and comedications may play a role for mesalazine effects. PMID:21430235

  15. Chlorpromazine, clozapine and olanzapine inhibit anionic amino acid transport in cultured human fibroblasts.

    PubMed

    Marchesi, C; Dall'Asta, V; Rotoli, B M; Bianchi, M G; Maggini, C; Gazzola, G C; Bussolati, O

    2006-09-01

    We report here that chlorpromazine, a first generation antipsychotic drug, inhibits anionic amino acid transport mediated by system X(-) (AG) (EAAT transporters) in cultured human fibroblasts. With 30 microM chlorpromazine, transport inhibition is detectable after 3 h of treatment, maximal after 48 h (>60%), and referable to a decrease in V(max). Chlorpromazine effect is not dependent upon changes of membrane potential and is selective for system X(-) (AG) since transport systems A and y(+) are not affected. Among antipsychotic drugs, the inhibitory effect of chlorpromazine is shared by two dibenzodiazepines, clozapine and olanzapine, while other compounds, such as risperidon, zuclopentixol, sertindol and haloperidol, are not effective. Transport inhibition by clozapine and olanzapine, but not by chlorpromazine, is reversible, suggesting that the mechanisms involved are distinct. These results indicate that a subset of antipsychotic drugs inhibits EAAT transporters in non-nervous tissues and prompt further investigation on possible alterations of glutamate transport in peripheral tissues of schizophrenic patients. PMID:16699818

  16. Electro-oxidation of methanol on Pt(111) in acid solutions: effects of electrolyte anions during electrocatalytic reactions

    NASA Astrophysics Data System (ADS)

    Ogasawara, Hirohito; Ito, Masatoki

    1995-10-01

    The electro-oxidation of methanol on a Pt(111) surface in both sulfuric and perchloric acid solutions was investigated by combined apparatus under both ultra-high vacuum and electrochemical environments. In sulfuric acid solution, a strong lateral interaction was observed between adsorbed bisulfate and CO derived from methanol. Coadsorption of CO derived from methanol with bisulfate ion yielded a (√7 × √7)-R19.1°-CO-bisulfate structure. In perchloric acid solution, however, no lateral interaction between adsorbed CO and perchlorate was seen. The difference in reaction rates of methanol oxidation in both solutions was explained by these specific anion adsorption effects.

  17. Molecular evidence for an involvement of organic anion transporters (OATs) in aristolochic acid nephropathy.

    PubMed

    Bakhiya, Nadiya; Arlt, Volker M; Bahn, Andrew; Burckhardt, Gerhard; Phillips, David H; Glatt, Hansruedi

    2009-10-01

    Aristolochic acid (AA), present in Aristolochia species, is the major causative agent in the development of severe renal failure and urothelial cancers in patients with AA nephropathy. It may also be a cause of Balkan endemic nephropathy. Epithelial cells of the proximal tubule are the primary cellular target of AA. To study whether organic anion transporters (OATs) expressed in proximal tubule cells are involved in uptake of AA, we used human epithelial kidney (HEK293) cells stably expressing human (h) OAT1, OAT3 or OAT4. AA potently inhibited the uptake of characteristic substrates, p-aminohippurate for hOAT1 and estrone sulfate for hOAT3 and hOAT4. Aristolochic acid I (AAI), the more cytotoxic and genotoxic AA congener, exhibited high affinity for hOAT1 (K(i)=0.6 microM) as well as hOAT3 (K(i)=0.5 microM), and lower affinity for hOAT4 (K(i)=20.6 microM). Subsequently, AAI-DNA adduct formation (investigated by (32)P-postlabelling) was used as a measure of AAI uptake. Significantly higher levels of adducts occurred in hOAT-expressing cells than in control cells: this effect was abolished in the presence of the OAT inhibitor probenecid. In Xenopus laevis oocytes hOAT-mediated efflux of p-aminohippurate was trans-stimulated by extracellular AA, providing further molecular evidence for AA translocation by hOATs. Our study indicates that OATs can mediate the uptake of AA into proximal tubule cells and thereby participate in kidney cell damage by this toxin. PMID:19643159

  18. Gluconic acid production in bioreactor with immobilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange membrane.

    PubMed

    Godjevargova, Tzonka; Dayal, Rajeshwar; Turmanova, Sevdalina

    2004-10-20

    Gluconic acid was obtained in the permeate side of the bioreactor with glucose oxidase (GOD) immobilized onto anion-exchange membrane (AEM) of low-density polyethylene grafted with 4-vinylpiridine. The electric resistance of the anion-exchange membranes was increased after the enzyme immobilization on the membrane. The gluconic acid productions were relatively low with the GOD immobilized by any method on the AEM. To increase the enzyme reaction efficiency, GOD was immobilized on membrane of AN copolymer (PAN) adjacent to an anion-exchange membrane in bioreactor. Uses of anion-exchange membrane led to selective removal of the gluconic acid from the glucose solution and reduce the gluconic acid inhibition. The amount of gluconic acid obtained in the permeate side of the bioreactor with the GOD immobilized on the PAN membrane adjacent to the AEM under electrodialysis was about 30 times higher than that obtained with enzyme directly bound to the AEM. The optimal substrate concentration in the feed side was found to be about 1 g/l. Further experiments were carried out with the co-immobilized GOD plus Catalase (CAT) on the PAN membrane adjacent to the AEM to improve the efficiency of the immobilize system. The yield of this process was at least 95%. The storage stability of the co-immobilized GOD and CAT was studied (lost 20% of initial activity for 90 d). The results obtained clearly showed the higher potential of the dual membrane bioreactor with GOD plus CAT bound to ultrafiltration polymer membrane adjacent to the AEM. Storage stability of GOD activity in GOD plus CAT immobilized on PAN//AEM membranes and on AEM. PMID:15497133

  19. Wheat gluten amino acid composition analysis by high-performance anion-exchange chromatography with integrated pulsed amperometric detection.

    PubMed

    Rombouts, Ine; Lamberts, Lieve; Celus, Inge; Lagrain, Bert; Brijs, Kristof; Delcour, Jan A

    2009-07-17

    A simple accurate method for determining amino acid composition of wheat gluten proteins and their gliadin and glutenin fractions using high-performance anion-exchange chromatography with integrated pulsed amperometric detection is described. In contrast to most conventional methods, the analysis requires neither pre- or post-column derivatization, nor oxidation of the sample. It consists of hydrolysis (6.0M hydrochloric acid solution at 110 degrees C for 24h), evaporation of hydrolyzates (110 degrees C), and chromatographic separation of the liberated amino acids. Correction factors (f) accounted for incomplete cleavage of peptide bonds involving Val (f=1.07) and Ile (f=1.13) after hydrolysis for 24h and for Ser (f=1.32) losses during evaporation. Gradient conditions including an extra eluent (0.1M acetic acid solution) allowed multiple sequential sample analyses without risk of Glu contamination on the anion-exchange column. While gluten amino acid compositions by the present method were mostly comparable to those obtained by a conventional method involving oxidation, acid hydrolysis and post-column ninhydrin derivatization, the latter method underestimated Tyr, Val and Ile levels. Results for the other amino acids obtained by the different methods were linearly correlated (r>0.99, slope=1.03). PMID:19523641

  20. Protic anions [H(B12X12)]- (X = F, Cl, Br, I) that act as Brønsted acids in the gas phase.

    PubMed

    Jenne, Carsten; Keßler, Mathias; Warneke, Jonas

    2015-04-01

    The acidity of protic cations and neutral molecules has been studied extensively in the gas phase, and the gas-phase acidity has been established previously as a very useful measure of the intrinsic acidity of neutral and cationic compounds. However, no data for any anionic acids were available prior to this study. The protic anions [H(B12X12)](-) (X = F, Cl, Br, I) are expected to be the most acidic anions known to date. Therefore, they were investigated in this study with respect to their ability to protonate neutral molecules in the gas phase by using a combination of mass spectrometry and quantum-chemical calculations. For the first time it was shown that in the gas phase protic anions are also able to protonate neutral molecules and thus act as Brønsted acids. According to theoretical calculations, [H(B12I12)](-) is the most acidic gas-phase anion, whereas in actual protonation experiments [H(B12Cl12)](-) is the most potent gas-phase acidic anion for the protonation of neutral molecules. This discrepancy is explained by ion pairing and kinetic effects. PMID:25735766

  1. Direct determination of seleno-amino acids in biological tissues by anion-exchange separation and electrochemical detection.

    PubMed

    Cavalli, S; Cardellicchio, N

    1995-07-01

    Several studies have described the determination of selenium in protein extracts from tissues of marine or terrestrial animals, but have not identified the different chemical forms of selenium that are present. Selenium may be present as seleno-amino acids. Selenocysteine, for example, is a normal component of glutathione peroxidase, an antioxidant enzyme which may behave like other antioxidants, such as vitamin E, protecting tissues against methylmercury toxicity. The present study illustrates a method for the characterization of seleno-amino acids, such as selenocysteine and selenomethionine, in proteins extracted from the liver of marine mammals. The mechanism of detoxification of methylmercury, which involves seleno-compounds, is identified. The analytical determination was carried out using high-performance anion-exchange chromatography coupled with integrated pulsed amperometric detection (HPAEC-IPAD). This method allows the direct determination of underivatized amino acids, eliminating the procedure of pre- or postcolumn derivatization. The chromatographic separation was carried out on an anion-exchange column using a quaternary gradient elution. In order to optimize this method, interferences of amino acids and the influence of pH and ionic strength on the separation and electrochemical detection were studied. The IPAD response for the direct detection of amino acids is optimum at pH > 11. The detection limit (S/N = 3) for selenocysteine was found to be 450 micrograms/l. The application of this method for the identification of seleno-amino acids in protein hydrolysates is also shown. PMID:7640774

  2. The effects of anion exchange functional-group variations on the sorption of Pu(IV) from nitric acid

    SciTech Connect

    Marsh, S.F.

    1995-12-01

    A macroporous, polyvinylpyridine anion exchange resin has been used for more than five years at the Los Alamos Plutonium Facility to recover plutonium from nitrate media. This strong-base anion exchanger, Reillex{trademark} HPQ, offers higher capacity, faster kinetics, and significantly higher resistance to chemical and radiation damage than conventional polystyrene-based resins. In this study, we measured the sorption of Pu(IV) on Reillex{trademark} HPQ and on three macroporous, strong-base anion exchange resins that differ from Reillex{trademark} HPQ only in the alkyl group used to quaternize the pyridinium. nitrogen. These four resins, prepared by Reilly Industries, Inc., are copolymers of 1-alkyl-4-vinylpyridine, where the alkyl groups are methyl, butyl, hexyl, and octyl. We compare the trends in Pu(IV) sorption on these four resins to those obtained in our previous study of four polystyrene anion exchange resins having trimethyl, triethyl, tripropyl, and tributyl ammonium functionality. The Pu(IV) sorption was measured from 1 M to 9 M nitric acid in both studies.

  3. Atmospheric deposition and canopy exchange of anions and cations in two plantation forests under acid rain influence

    NASA Astrophysics Data System (ADS)

    Shen, Weijun; Ren, Huili; Darrel Jenerette, G.; Hui, Dafeng; Ren, Hai

    2013-01-01

    Acid deposition as a widely concerned environmental problem in China has been less studied in plantation forests compared to urban and secondary forests, albeit they constitute 1/3 of the total forested areas of the country. We measured the rainwater amount and chemistry outside and beneath the canopies of two widely distributed plantations (Acacia mangium and Dimocarpus longan) in the severe acid rain influenced Pearl River Delta region of southeastern China for two years. Our results showed that the frequency of acid rain was 96% on the basis of pH value <5.6. The volume-weighted mean (vwm) pH was 4.62 and higher in the dry (Oct.-Mar.) than in the wet (Apr.-Sep.) seasons. The major acidic anion was sulfate with vwm concentration of 140 μeq l-1 and annual deposition flux of 110.3 kg ha-1 yr-1. The major neutralizing cations were calcium (94.8 μeq l-1 and 28 kg ha-1 yr-1) and ammonium (41.2 μeq l-1 and 11.7 kg ha-1 yr-1). Over 95% of these major acidic anions and neutralizing cations were derived from anthropogenic and terrestrial sources as a result of industrial, agricultural and forestry activities. Plantation canopy had marked impacts on rainwater chemistry, with the measured anion and cation concentrations being significantly enriched in throughfall (TF) and stemflow (SF) rainwater by 1.4 (for NO) to 20-fold (for K+) compared to those in bulk precipitation (BP). Dry deposition generally contributed about 13-22% of the total deposition while canopy leaching mainly occurred for K+ (>88%) and NH (10-38%). The two tree species showed distinct impacts on rainfall redistribution and rainwater chemistry due to their differences in canopy architecture and leaf/bark texture, suggesting that species-specific effects should not be overlooked while assessing the acid deposition in forested areas.

  4. Boric acid increases the expression levels of human anion exchanger genes SLC4A2 and SLC4A3.

    PubMed

    Akbas, F; Aydin, Z

    2012-01-01

    Boron is an important micronutrient in plants and animals. The role of boron in living systems includes coordinated regulation of gene expression, growth and proliferation of higher plants and animals. There are several well-defined genes associated with boron transportation and tolerance in plants and these genes show close homology with human anion exchanger genes. Mutation of these genes also characterizes some genetic disorders. We investigated the toxic effects of boric acid on HEK293 cells and mRNA expression of anion exchanger (SLC4A1, SLC4A2 and SLC4A3) genes. Cytotoxicity of boric acid at different concentrations was tested by using the methylthiazolyldiphenyl-tetrazolium bromide assay. Gene expression profiles were examined using quantitative real-time PCR. In the HEK293 cells, the nontoxic upper concentration of boric acid was 250 μM; more than 500 μM caused cytotoxicity. The 250 μM boric acid concentration increased gene expression level of SLC4A2 up to 8.6-fold and SLC4A3 up to 2.6-fold, after 36-h incubation. There was no significant effect of boric acid on SLC4A1 mRNA expression levels. PMID:22576912

  5. Acute and subchronic toxicity of metal complex azo acid dye and anionic surfactant oil on fish Oreochromis niloticus.

    PubMed

    Amwele, Hilma Rantilla; Papirom, Pittaya; Chukanhom, Kanit; Beamish, Fredrick Henry William; Petkam, Rakpong

    2015-01-01

    The acute toxicity study of metal complex dark green azo acid dye, anionic surfactant oil and their mixture determined the 96 hr LC50, and fish behaviours. Subchronic toxicity determined haematology parameters and concentrations of copper and chromium in blood. The 96 hr LC50 was determined by probit analysis and subchronic toxicity was conducted in 90 days. No mortalities were observed in control and anionic surfactant oil treatments. The 96 hr LC50 value of mixture was 26.7 mg I(-1) (95% CL = 20.7 - 46.8) and that of metal complex dark green azo acid dye was not met as the percentage of dead was below 50% of tested organisms. In a treatment of anionic surfactant oil and that of mixture observed behaviours were respiration response, uncoordinated movement, loss of equilibrium, erratic posture and loss of responsiveness. Subchronic toxicity indicated fluctuations in number of erythrocytes, leukocytes and thrombocytes in all chemical treatments. Erythrocyte morphology such as anisocytosis, erythrocytes hypertrophy, karyolysis, cytoplasm vacuolation, ghost cell were observed in fish blood in all chemical treatments. An inverse relation was observed between total copper and chromium concentration in blood. However, the toxicity effect was chemical dose dependent and length of exposure. PMID:26536793

  6. Asymmetric Anion-π Catalysis of Iminium/Nitroaldol Cascades To Form Cyclohexane Rings with Five Stereogenic Centers Directly on π-Acidic Surfaces.

    PubMed

    Liu, Le; Cotelle, Yoann; Avestro, Alyssa-Jennifer; Sakai, Naomi; Matile, Stefan

    2016-06-29

    Anion-π interactions have been introduced to catalysis only recently, and evidence for their significance is so far limited to one classical model reaction in enolate and enamine chemistry. In this report, asymmetric anion-π catalysis is achieved for the first time for a more demanding cascade process. The selected example affords six-membered carbocycles with five stereogenic centers in a single step from achiral and acyclic substrates. Rates, yields, turnover, diastereo- and enantioselectivity are comparable with conventional catalysts. Rates and stereoselectivity increase with the π-acidity of the new anion-π catalysts. Further support for operational anion-π interactions in catalysis is obtained from inhibition with nitrate. As part of the stereogenic cascade reaction, iminium chemistry and conjugate additions are added to the emerging repertoire of asymmetric anion-π catalysis. PMID:27327089

  7. Self-assembly in solvates of 2,4-diamino-6-(4-methyl- phenyl)-1,3,5-triazine and in its molecular adducts with some aliphatic dicarboxylic acids

    NASA Astrophysics Data System (ADS)

    Nandy, Purnendu; Nayak, Amrita; Biswas, Sharmita Nandy; Pedireddi, V. R.

    2016-03-01

    Solid state structures of 2,4-diamino-6-(4-methylphenyl)-1,3,5-triazine, 1, in the form of methanol and dimethylsulfoxide (DMSO) solvates, as well as supramolecular assemblies of 1 with various aliphatic dicarboxylic acids, oxalic (a), malonic (b), succinic (c), glutaric (d) and adipic (e) have been reported. Analysis of the assemblies has been carried out by single crystal X-ray diffraction and thermal methods. Triazine 1 yields anhydrous molecular adducts with acids a-d, upon co-crystallization either from CH3OH and DMSO solvents. However acid e gives anhydrous adduct from DMSO solvent, while it gives a methanol adduct from CH3OH. Structure determination reveals that molecular adducts 1a, 1d and 1e are in a 2:1 ratio of 1 and the corresponding acid. However the ratio is 1:1, in 1b, perhaps due to the involvement of one of the acid groups in the intramolecular hydrogen bonding and in adduct 1c the ratio observed is 3:2. Structural features in all these assemblies have been rationalised in terms of various recognition patterns formed between the acceptor and donor groups. A noteworthy feature is that -COOH groups in acid a establish interaction with 1 through amino groups, while such interactions are observed to be through hetero -N atoms in case of the acids b-e.

  8. Mechanics of networks of aliphatic fibers in aqueous surfactant media

    NASA Astrophysics Data System (ADS)

    Zanchetta, Giuliano; Caggioni, Marco; Guida, Vincenzo; Trappe, Veronique

    2012-02-01

    We investigate the structural and rheological properties of aliphatic fibers dispersed in aqueous solutions of anionic surfactants, typically used in liquid detergents to provide yield stress. This system displays an onset to solid-like properties that depends on fiber concentration. In this contribution we will discuss how tuning the state of the surfactant background influences the fiber-fiber interactions and the mechanical properties of the gel.

  9. Investigating the Weak to Evaluate the Strong: An Experimental Determination of the Electron Binding Energy of Carborane Anions and the Gas phase Acidity of Carborane Acids

    SciTech Connect

    Meyer, Matthew M; Wang, Xue B; Reed, Christopher A; Wang, Lai S; Kass, Steven R

    2009-12-23

    Five CHB11X6Y5- carborane anions from the series X = Br, Cl, I and Y = H, Cl, CH3 were generated by electrospray ionization, and their reactivity with a series of Brønsted acids and electron transfer reagents were examined in the gas phase. The undecachlorocarborane acid, H(CHB11Cl11), was found to be far more acidic than the former record holder, (1-C4F9SO2)2NH (i.e., ΔH°acid = 241 ± 29 vs 291.1 ± 2.2 kcal mol-1) and bridges the gas-phase acidity and basicity scales for the first time. Its conjugate base, CHB11Cl11-, was found by photoelectron spectroscopy to have a remarkably large electron binding energy (6.35 ± 0.02 eV) but the value for the (1-C4F9SO2)2N- anion is even larger (6.5 ± 0.1 eV). Consequently, it is the weak H-(CHB11Cl11) BDE (70.0 kcal mol-1, G3(MP2)) compared to the strong BDE of (1-C4F9SO2)2N-H (127.4 ± 3.2 kcal mol-1) that accounts for the greater acidity of carborane acids.

  10. Hydroxylation versus Halogenation of Aliphatic C-H Bonds by a Dioxygen-Derived Iron-Oxygen Oxidant: Functional Mimicking of Iron Halogenases.

    PubMed

    Chatterjee, Sayanti; Paine, Tapan Kanti

    2016-06-27

    An iron-oxygen intermediate species generated in situ in the reductive activation of dioxygen by an iron(II)-benzilate complex of a monoanionic facial N3 ligand, promoted the halogenation of aliphatic C-H bonds in the presence of a protic acid and a halide anion. An electrophilic iron(IV)-oxo oxidant with a coordinated halide is proposed as the active oxidant. The halogenation reaction with dioxygen and the iron complex mimics the activity of non-heme iron halogenases. PMID:26822989

  11. Mutual Lewis acid-base interactions of cations and anions in ionic liquids.

    PubMed

    Holzweber, Markus; Lungwitz, Ralf; Doerfler, Denise; Spange, Stefan; Koel, Mihkel; Hutter, Herbert; Linert, Wolfgang

    2013-01-01

    Solute properties are known to be strongly influenced by solvent molecules due to solvation. This is due to mutual interaction as both the properties of the solute and of the solvent strongly depend on each other. The present paper is based on the idea that ionic liquids are cations solvated by anions and anions solvated by cations. To show this (in this system strongly pronounced) interaction the long time established donor-acceptor concept for solvents and ions in solution by Viktor Gutmann is extended to ionic liquids. A number of solvent parameters, such as the Kamlet-Abboud-Taft and the Dimroth-Reichardt E(T) scale for ionic liquids neglect this mutual influence, which, however, seems to be in fact necessary to get a proper description of ionic liquid properties. It is shown how strong such parameters vary when the influence of the counter ion is taken into account. Furthermore, acceptor and donor numbers for ionic liquids are presented. PMID:23180598

  12. Anaerobic digestion of aliphatic polyesters.

    PubMed

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry. PMID:27191559

  13. Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis

    SciTech Connect

    Li, J.

    1999-04-01

    A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several different eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.

  14. Application of anion-exchange imidazolium silica for the multiphase dispersive extraction of phenolic acids.

    PubMed

    Bi, Wentao; Row, Kyung Ho

    2013-08-01

    This paper reports the application of a multiphase dispersive extraction method to the extraction, separation, and determination of the phenolic acids from Salicornia herbacea L. using silica-confined ionic liquids as sorbents. A suitable sorbent for phenolic acid extraction and separation was first identified based on the adsorption behavior of the phenolic acids on different silica-confined ionic liquids. The sample was then mixed with the optimized sorbent and solvent to achieve multiphase dispersive extraction. The sample/sorbent ratio was optimized using theoretical calculations from the adsorption isotherm and experiments. After transferring the supernatant to an empty cartridge, an SPE process was used to separate the three phenolic acids from the other interference. Through systematic optimization, the optimal conditions produced high recovery rates of protocatechuic acid (91.20%), caffeic acid (94.03%), and ferulic acid (91.33%). Overall, the proposed method is expected to have wide applicability. PMID:23861179

  15. Synthesis of cationic single-isomer cyclodextrins for the chiral separation of amino acids and anionic pharmaceuticals.

    PubMed

    Tang, Weihua; Ng, Siu-Choon

    2007-01-01

    We describe a protocol for the synthesis of mono-6(A)-(1-butyl-3-imidazolium)-6(A)-deoxy-beta-cyclodextrin chloride (BIMCD), a cationic, water-soluble cyclodextrin used in the chiral separation of amino acids and anionic pharmaceuticals by capillary electrophoresis. Starting from commercially available chemicals, BIMCD is synthesized in five steps. The first step involves a nucleophilic substitution between p-toluenesulfonyl chloride and imidazole to afford 1-(p-toluenesulfonyl)imidazole (A). In the second step, a nucleophilic substitution between beta-cyclodextrin and A affords mono-6(A)-(p-toluenesulfonyl)-6(A)-deoxy-beta-cyclodextrin (B). In the third step, a nucleophilic substitution between 1-bromobutane and imidazole affords 1-butylimidazole (C). In the fourth step, a nucleophilic addition between A and C affords BIMCD tosylate. In the final step, anion exchange using an ion-exchange resin yields BIMCD as a highly water-soluble solid. Each step takes up to 2 d, including the time required for product purification. The overall protocol requires approximately 6 d. PMID:18079719

  16. New insight on aliphatic linkages in the macromolecular organic fraction of Orgueil and Murchison meteorites through ruthenium tetroxide oxidation

    NASA Astrophysics Data System (ADS)

    Remusat, Laurent; Derenne, Sylvie; Robert, François

    2005-09-01

    Ruthenium tetroxide oxidation was used to examine the macromolecular insoluble organic matter (IOM) from the Orgueil and Murchison meteorites and especially to characterize the aliphatic linkages. Already applied to various terrestrial samples, ruthenium tetroxide is a selective oxidant which destroys aromatic units, converting them into CO 2, and yields aliphatic and aromatic acids. In our experiment on chondritic IOM, it produces mainly short aliphatic diacids and polycarboxylic aromatic acids. Some short hydroxyacids are also detected. Aliphatic diacids are interpreted as aliphatic bridges between aromatic units in the chemical structure, and polycarboxylic aromatic acids are the result of the fusion of polyaromatic units. The product distribution shows that aliphatic links are short with numerous substitutions. No indigenous monocarboxylic acid was detected, showing that free aliphatic chains must be very short (less than three carbon atoms). The hydroxyacids are related to the occurrence of ester and ether functional groups within the aliphatic bridges between the aromatic units. This technique thus allows us to characterize in detail the aliphatic linkages of the IOMs, and the derived conclusions are in agreement with spectroscopic, pyrolytic, and degradative results previously reported. Compared to terrestrial samples, the aliphatic part of chondritic IOM is shorter and highly substituted. Aromatic units are smaller and more cross-linked than in coals, as already proposed from NMR data. Orgueil and Murchison IOM exhibit some tiny differences, especially in the length of aliphatic chains.

  17. Anion-exchange separation of Pt and Pd using perchloric and hydrochloric acid solutions

    USGS Publications Warehouse

    Petrie, R.K.; Morgan, J.W.

    1982-01-01

    On Biorad Ag-1X8 anion-exchange resin (200-400 mesh), Pd and Pt may be separated from one another by elution with 0.2M HClO4, and 5M HClO4, respectively. If present, Au may be retained by making the elutriants 0.003M in HCl. Alternatively, reduction by H2SO3 enables elution of Pt2+ with 6M HCl before recovery of Pd2+ with 0.2M HClO4??Ir4+ is reduced to Ir3+ by H2SO3 and may be eluted ahead of Pt2+ by 2M HCl. ?? 1982 Akade??miai Kiado??.

  18. [5-0xoproline (pyroglutamic acid) acidosis and acetaminophen- a differential diagnosis in high anion gap metabolic acidosis].

    PubMed

    Weiler, Stefan; Bellmann, Romuald; Kullak-Ublick, Gerd A

    2015-12-01

    Rare cases of high anion gap metabolic acidosis during long-term paracetamol administration in therapeutic doses with causative 5-oxoproline (pyroglutamic acid} accumulation have been reported. Other concomitant risk factors such as malnutrition, alcohol abuse, renal or hepatic dysfunction, comedication with flue/oxacillin, vigabatrin, netilmicin or sepsis have been described. The etiology seems to be a drug-induced reversible inhibition of glutathione synthetase or 5-oxoprolinase leading to elevated serum and urine levels of 5-oxoproline. Other more frequent differential diagnoses, such as intoxications, ketoacidosis or lactic acidosis should be excluded. Causative substances should be stopped. 5-oxoproline concentrations in urine can be quantified to establish the diagnosis. Adverse drug reactions, which are not listed or insufficiently described in the respective Swiss product information, should be reported to the regional pharmacovigilance centres for early signal detection. 5-0 xoproline acidosis will be integrated as a potential adverse drug reaction in the Swiss product information for paracetamol. PMID:26654818

  19. Carboxylate-assisted formation of alkylcarbonate species from CO(2) and tetramethylammonium salts with a β-amino acid anion.

    PubMed

    Hong, Sung Yun; Cheon, Youngeun; Shin, Seung Hoon; Lee, Hyunjoo; Cheong, Minserk; Kim, Hoon Sik

    2013-05-01

    Tetramethylammonium-based molten salts bearing a β-amino acid anion (TMAAs) are synthesized through Michael addition reactions of amines with methyl acrylate followed by hydrolysis and subsequent neutralization by using aqueous tetramethylammonium hydroxide. The CO(2) capture performances of the TMAAs are evaluated and are shown to interact with CO(2) in a 1:1 mode in both water and alcohol. FTIR and (13)C NMR spectroscopic studies on the interactions of TMAAs with CO(2) indicate that the type of CO(2) adduct varies with the solvent used. When water is used as the solvent, a bicarbonate species is produced, whereas hydroxyethylcarbonate and methylcarbonate species are generated in ethylene glycol and methanol, respectively. Computational calculations show that the carboxylate groups of TMAAs contribute towards the formation and stabilization of 1:1 CO(2) adducts through hydrogen bonding interactions with the hydrogen atoms of the amino groups. PMID:23576306

  20. Kinetics of sorption of Cu(II)-ethylenediaminetetraacetic acid chelated anions on cross-linked, polyaminated chitosan beads

    SciTech Connect

    Juang, R.S.; Ju, C.Y.

    1998-08-01

    Rates of sorption of Cu(II)-ethylenediaminetetraacetic acid (EDTA) chelated anions from aqueous solutions on cross-linked, poly(ethylenimine) (PEI)-modified chitosan beads were measured in a batch stirred vessel. All experiments were carried out in an equimolar solution of Cu(II) and EDTA (0.47--3.15 mol/m{sup 3}). It was shown that the rates of sorption increased with an increase in the initial concentration of Cu(II), pH, and temperature but decreased with an increase in the molecular weight of PEI introduced in the beads. The widely used homogeneous diffusion model based on Fick`s law and the shrinking core model cannot describe the sorption process. On the contrary, the kinetic data were well fit by the Elovich equation. The apparent activation energies evaluated (3.5--8.4 kcal/mol at pH 3) indicated the combined film and particle diffusion mechanism.

  1. Excess cation uptake, and extrusion of protons and organic acid anions by Lupinus albus under phosphorus deficiency.

    PubMed

    Sas, L; Rengel, Z; Tang, C

    2001-05-01

    In symbiotically-grown legumes, rhizosphere acidification may be caused by a high cation/anion uptake ratio and the excretion of organic acids, the relative importance of the two processes depending on the phosphorus nutritional status of the plants. The present study examined the effect of P deficiency on extrusions of H(+) and organic acid anions (OA(-)) in relation to uptake of excess cations in N(2)-fixing white lupin (cv. Kiev Mutant). Plants were grown for 49 days in nutrient solutions treated with 1, 5 or 25 mmol P m(-3) Na(2)HPO(4) in a phytotron room. The increased formation of cluster roots occurred prior to a decrease in plant growth in response to P deficiency. The number of cluster roots was negatively correlated with tissue P concentrations below 2.0 g kg(-1) in shoots and 3 g kg(-1) in roots. Cluster roots generally had higher concentrations of Mg, Ca, N, Cu, Fe, and Mn but lower concentrations of K than non-cluster roots. Extrusion of protons and OA(-) (90% citrate and 10% malate) from roots was highly dependent on P supply. The amounts of H(+) extruded per unit root biomass decreased with time during the experiment. On the equimolar basis, H(+) extrusion by P-deficient plants (grown at 1 and 5 mmol P m(-3)) were, on average, 2-3-fold greater than OA(-) exudation. The excess cation content in plants was generally the highest at 1 mmol P m(-3) and decreased with increasing P supply. The ratio of H(+) release to excess cation uptake increased with decreasing P supply. The results suggest that increased exudation of OA(-) due to P deficiency is associated with H(+) extrusion but contributes only a part of total acidification. PMID:11337076

  2. Nanohybrids of Mg/Al layered double hydroxide and long-chain (C18) unsaturated fatty acid anions: Structure and sorptive properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-chain (C18) unsaturated fatty acid anions, elaidate (ELA), oleate (OLE), linoleate (LINO), and linolenate (LINOLEN), were intercalated into Mg/Al (3:1) layered double hydroxide (LDH) and the resultant organo-LDH nanohybrid materials were characterized and subsequently evaluated as sorbents of s...

  3. Amino Acid Sequence of Anionic Peroxidase from the Windmill Palm Tree Trachycarpus fortunei

    PubMed Central

    2015-01-01

    Palm peroxidases are extremely stable and have uncommon substrate specificity. This study was designed to fill in the knowledge gap about the structures of a peroxidase from the windmill palm tree Trachycarpus fortunei. The complete amino acid sequence and partial glycosylation were determined by MALDI-top-down sequencing of native windmill palm tree peroxidase (WPTP), MALDI-TOF/TOF MS/MS of WPTP tryptic peptides, and cDNA sequencing. The propeptide of WPTP contained N- and C-terminal signal sequences which contained 21 and 17 amino acid residues, respectively. Mature WPTP was 306 amino acids in length, and its carbohydrate content ranged from 21% to 29%. Comparison to closely related royal palm tree peroxidase revealed structural features that may explain differences in their substrate specificity. The results can be used to guide engineering of WPTP and its novel applications. PMID:25383699

  4. Photoelectron Spectroscopy of cis-Nitrous Acid Anion (cis-HONO(-)).

    PubMed

    Oliveira, Allan M; Lehman, Julia H; McCoy, Anne B; Lineberger, W Carl

    2016-03-17

    We report photoelectron spectra of cis-HONO(-) formed from an association reaction of OH(-) and NO in a pulsed, plasma-entrainment ion source. The experimental data are assigned to the cis-HONO(-) isomer, which is predicted to be the global minimum on the anion potential energy surface. We do not find evidence for a significant contribution from trans-HONO(-). Electron photodetachment of cis-HONO(-) with 1613, 1064, 532, 355, and 301 nm photons accesses the ground X̃ (1)A' (S0) and excited ã (3)A″ (T1) states of neutral HONO. The photoelectron spectrum resulting from detachment forming cis-HONO (S0) exhibits a long vibrational progression, dominated by overtones and combination bands involving the central O-N stretching and ONO bending vibrations. This indicates that there is a significant change in the central O-N bond length between cis-HONO(-) and cis-HONO (S0). The electron affinity (EA) of cis-HONO is determined to be 0.356(8) eV. We also report the dissociation energy (D0) of cis-HONO(-), forming OH(-) + NO, as 0.594(9) eV, which is a factor of 4 decrease in the central O-N bond strength compared to neutral cis-HONO. The T1 state of cis-HONO is shown to be ∼2.3 eV higher in energy than cis-HONO (S0). Electron photodetachment to form cis-HONO (T1) accesses a transition state along the HO-NO bond dissociation coordinate. The resulting photoelectron spectrum exhibits broad peaks spaced by the terminal N═O stretching frequency. Electronic structure calculations and photoelectron spectrum simulations reported here show very good agreement with the experimental data. PMID:26886478

  5. Nitric acid-organic mixtures surveyed for use in separation by anion exchange methods

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. A. A.; Faris, J. P.; Stewart, D. C.

    1968-01-01

    Column elution-spectrographic analysis technique compares certain solvents directly to the methanol system, using inert rare earths instead of actinides. Distribution ratios for americium between 90 percent solvent, 10 percent 5 M nitric acid and Dowex 1 nitrate form resin for a large group of organics miscible in water was determined.

  6. Anion-exchange high-performance liquid chromatography with post-column detection for the analysis of phytic acid and other inositol phosphates

    NASA Technical Reports Server (NTRS)

    Rounds, M. A.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1993-01-01

    The use of gradient anion-exchange HPLC, with a simple post-column detection system, is described for the separation of myo-inositol phosphates, including "phytic acid" (myo-inositol hexaphosphate). Hexa-, penta-, tetra-, tri- and diphosphate members of this homologous series are clearly resolved within 30 min. This method should facilitate analysis and quantitation of "phytic acid" and other inositol phosphates in plant, food, and soil samples.

  7. Proton and anion transport at the tonoplast in crassulacean-acid-metabolism plants: specificity of the malate-influx system in Kalanchoë daigremontiana.

    PubMed

    White, P J; Smith, J A

    1989-09-01

    Tonoplast vesicles were prepared from leaf mesophyll homogenates of the crassulacean-acid-metabolism plant Kalanchoë daigremontiana Hamet et Perrier de la Bâthie to study the effects of anions on ATP- and inorganic-pyrophosphate (PPi)-dependent H(+) transport. In the presence of gramicidin, substrate hydrolysis by the tonoplast ATPase was characteristically stimulated by chloride and inhibited by nitrate, but was unaffected by malate and a wide range of other organic-acid anions; the PPiase was anion-insensitive. Malate was more effective than chloride both in stimulating ATP- and PPi-dependent vesicle acidification (measured as quinacrine-fluorescence quenching) and in dissipating a pre-existing inside-positive membrane potential (measured as oxonol-V-fluorescence quenching), indicating that malate was more readily transported across the tonoplast. Certain other four-carbon dicarboxylates also supported high rates of vesicle acidification, their order of effectiveness being fumarate ≫ malate ∼-succinate > oxalacetate ∼- tartrate; the five-carbon dicarboxylates 2-oxoglutarate and glutarate were also transported, although at lower rates. Experiments with non-naturally occurring anions indicated that the malate transporter was not stereospecific, but that it required the trans-carboxyl configuration for transport. Shorter-chain or longer-chain dicarboxylates were not transported, and neither were monocarboxylates, the amino-acid anions aspartate and glutamate, nor the tricarboxylate isocitrate. The non-permeant anions maleate and tartronate appeared to be competitive inhibitors of malate transport but did not affect chloride transport, indicating that malate and chloride influx at the tonoplast might be mediated by separate transporters. PMID:24201527

  8. Dysfunction of organic anion transporting polypeptide 1a1 alters intestinal bacteria and bile acid metabolism in mice.

    PubMed

    Zhang, Youcai; Limaye, Pallavi B; Lehman-McKeeman, Lois D; Klaassen, Curtis D

    2012-01-01

    Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in liver and is able to transport bile acids (BAs) in vitro. Male Oatp1a1-null mice have increased concentrations of taurodeoxycholic acid (TDCA), a secondary BA generated by intestinal bacteria, in both serum and livers. Therefore, in the present study, BA concentrations and intestinal bacteria in wild-type (WT) and Oatp1a1-null mice were quantified to investigate whether the increase of secondary BAs in Oatp1a1-null mice is due to alterations in intestinal bacteria. The data demonstrate that Oatp1a1-null mice : (1) have similar bile flow and BA concentrations in bile as WT mice; (2) have a markedly different BA composition in the intestinal contents, with a decrease in conjugated BAs and an increase in unconjugated BAs; (3) have BAs in the feces that are more deconjugated, desulfated, 7-dehydroxylated, 3-epimerized, and oxidized, but less 7-epimerized; (4) have 10-fold more bacteria in the small intestine, and 2-fold more bacteria in the large intestine which is majorly due to a 200% increase in Bacteroides and a 30% reduction in Firmicutes; and (5) have a different urinary excretion of bacteria-related metabolites than WT mice. In conclusion, the present study for the first time established that lack of a liver transporter (Oatp1a1) markedly alters the intestinal environment in mice, namely the bacteria composition. PMID:22496825

  9. Dysfunction of Organic Anion Transporting Polypeptide 1a1 Alters Intestinal Bacteria and Bile Acid Metabolism in Mice

    PubMed Central

    Zhang, Youcai; Limaye, Pallavi B.; Lehman-McKeeman, Lois D.; Klaassen, Curtis D.

    2012-01-01

    Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in liver and is able to transport bile acids (BAs) in vitro. Male Oatp1a1-null mice have increased concentrations of taurodeoxycholic acid (TDCA), a secondary BA generated by intestinal bacteria, in both serum and livers. Therefore, in the present study, BA concentrations and intestinal bacteria in wild-type (WT) and Oatp1a1-null mice were quantified to investigate whether the increase of secondary BAs in Oatp1a1-null mice is due to alterations in intestinal bacteria. The data demonstrate that Oatp1a1-null mice : (1) have similar bile flow and BA concentrations in bile as WT mice; (2) have a markedly different BA composition in the intestinal contents, with a decrease in conjugated BAs and an increase in unconjugated BAs; (3) have BAs in the feces that are more deconjugated, desulfated, 7-dehydroxylated, 3-epimerized, and oxidized, but less 7-epimerized; (4) have 10-fold more bacteria in the small intestine, and 2-fold more bacteria in the large intestine which is majorly due to a 200% increase in Bacteroides and a 30% reduction in Firmicutes; and (5) have a different urinary excretion of bacteria-related metabolites than WT mice. In conclusion, the present study for the first time established that lack of a liver transporter (Oatp1a1) markedly alters the intestinal environment in mice, namely the bacteria composition. PMID:22496825

  10. Temperature-Induced Aggregate Transitions in Mixtures of Cationic Ammonium Gemini Surfactant with Anionic Glutamic Acid Surfactant in Aqueous Solution.

    PubMed

    Ji, Xiuling; Tian, Maozhang; Wang, Yilin

    2016-02-01

    The aggregation behaviors of the mixtures of cationic gemini surfactant 1,4-bis(dodecyl-N,N-dimethylammonium bromide)-2,3-butanediol (C12C4(OH)2C12Br2) and anionic amino acid surfactant N-dodecanoylglutamic acid (C12Glu) in aqueous solution of pH = 10.0 have been studied. The mixture forms spherical micelles, vesicles, and wormlike micelles at 25 °C by changing mixing ratios and/or total surfactant concentration. Then these aggregates undergo a series of transitions upon increasing the temperature. Smaller spherical micelles transfer into larger vesicles, vesicles transfer into solid spherical aggregates and then into larger irregular aggregates, and entangled wormlike micelles transfer into branched wormlike micelles. Moreover, the larger irregular aggregates and branched micelles finally lead to precipitation and clouding phenomenon, respectively. All these transitions are thermally reversible, and the transition temperatures can be tuned by varying the mixing ratios and/or total concentration. These temperature-dependent aggregate transitions can be elucidated on the basis of the temperature-induced variations in the dehydration, electrostatic interaction, and hydrogen bonds of the headgroup area and in the hydrophobic interaction between the hydrocarbon chains. The results suggest that the surfactants carrying multiple binding sites will greatly improve the regulation ability and temperature sensitivity. PMID:26750978

  11. Preparation and characterization of Fe(III)-loaded iminodiacetic acid modified GMA grafted nonwoven fabric adsorbent for anion adsorption

    NASA Astrophysics Data System (ADS)

    Kavaklı, Pınar Akkaş; Kavaklı, Cengiz; Güven, Olgun

    2014-01-01

    An Fe(III)-loaded chelating fabric with iminodiacetic acid (IDA) functional groups was prepared by radiation induced graft polymerization of an epoxy group containing monomer, glycidyl methacrylate, onto a nonwoven fabric made of polypropylene coated by polyethylene (PE/PP) and subsequent Fe(III) loading. Grafting conditions were optimized, and GMA grafted polymer was modified with iminodiacetic acid in isopropyl alcohol/water at 80 °C. In order to prepare the polymeric ligand exchanger (PLE) for the removal of phosphate, IDA fabrics were loaded with Fe(III) ions. Fe(III) loading capacity of IDA fabric was determined to be 2.83 mmol Fe(III)/g of polymer. For removal of phosphate anion, adsorption experiments were performed in batch mode at different pH (2-9) and phosphate concentrations. It was found that phosphate adsorption by the Fe(III)-loaded IDA fabric is maximum at pH 2.00. The effect of initial concentration of phosphate on the adsorption behaviour of Fe(III)-loaded IDA nonwoven fabric was determined at low phosphate concentrations (0.5-25 ppm) and at high phosphate concentrations (50-1000 ppm).

  12. A Continuum of Anionic Charge: Structures and Functions of d-Alanyl-Teichoic Acids in Gram-Positive Bacteria†

    PubMed Central

    Neuhaus, Francis C.; Baddiley, James

    2003-01-01

    Teichoic acids (TAs) are major wall and membrane components of most gram-positive bacteria. With few exceptions, they are polymers of glycerol-phosphate or ribitol-phosphate to which are attached glycosyl and d-alanyl ester residues. Wall TA is attached to peptidoglycan via a linkage unit, whereas lipoteichoic acid is attached to glycolipid intercalated in the membrane. Together with peptidoglycan, these polymers make up a polyanionic matrix that functions in (i) cation homeostasis; (ii) trafficking of ions, nutrients, proteins, and antibiotics; (iii) regulation of autolysins; and (iv) presentation of envelope proteins. The esterification of TAs with d-alanyl esters provides a means of modulating the net anionic charge, determining the cationic binding capacity, and displaying cations in the wall. This review addresses the structures and functions of d-alanyl-TAs, the d-alanylation system encoded by the dlt operon, and the roles of TAs in cell growth. The importance of dlt in the physiology of many organisms is illustrated by the variety of mutant phenotypes. In addition, advances in our understanding of d-alanyl ester function in virulence and host-mediated responses have been made possible through targeted mutagenesis of dlt. Studies of the mechanism of d-alanylation have identified two potential targets of antibacterial action and provided possible screening reactions for designing novel agents targeted to d-alanyl-TA synthesis. PMID:14665680

  13. Anion-exchange separation techniques with methanol-water solutions of hydrochloric and nitric acids.

    PubMed

    Morrow, R J

    1966-09-01

    Mixed methanol-water systems were shown to be of use in the analysis of samples containing 500-mg amounts of metallic impurities for rare earths and actinides. Detailed study of the hydrochloric acid-methanol system led to improved separation of einsteinium and californium from americium and curium as well as to lanthanideactinide separations. Comparisons of elution orders are also drawn between these systems and the corresponding lithium salt systems, with emphasis on ion-hydration theories. PMID:18960002

  14. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore.

    PubMed

    Severin, Fedor F; Severina, Inna I; Antonenko, Yury N; Rokitskaya, Tatiana I; Cherepanov, Dmitry A; Mokhova, Elena N; Vyssokikh, Mikhail Yu; Pustovidko, Antonina V; Markova, Olga V; Yaguzhinsky, Lev S; Korshunova, Galina A; Sumbatyan, Nataliya V; Skulachev, Maxim V; Skulachev, Vladimir P

    2010-01-12

    A unique phenomenon of mitochondria-targeted protonophores is described. It consists in a transmembrane H(+)-conducting fatty acid cycling mediated by penetrating cations such as 10-(6'-plastoquinonyl)decyltriphenylphosphonium (SkQ1) or dodecyltriphenylphosphonium (C(12)TPP). The phenomenon has been modeled by molecular dynamics and directly proved by experiments on bilayer planar phospholipid membrane, liposomes, isolated mitochondria, and yeast cells. In bilayer planar phospholipid membrane, the concerted action of penetrating cations and fatty acids is found to result in conversion of a pH gradient (DeltapH) to a membrane potential (Deltapsi) of the Nernstian value (about 60 mV Deltapsi at DeltapH = 1). A hydrophobic cation with localized charge (cetyltrimethylammonium) failed to substitute for hydrophobic cations with delocalized charge. In isolated mitochondria, SkQ1 and C(12)TPP, but not cetyltrimethylammonium, potentiated fatty acid-induced (i) uncoupling of respiration and phosphorylation, and (ii) inhibition of H(2)O(2) formation. In intact yeast cells, C(12)TPP stimulated respiration regardless of the extracellular pH value, whereas a nontargeted protonophorous uncoupler (trifluoromethoxycarbonylcyanide phenylhydrazone) stimulated respiration at pH 5 but not at pH 3. Hydrophobic penetrating cations might be promising to treat obesity, senescence, and some kinds of cancer that require mitochondrial hyperpolarization. PMID:20080732

  15. Penetrating cation/fatty acid anion pair as a mitochondria-targeted protonophore

    PubMed Central

    Severin, Fedor F.; Severina, Inna I.; Antonenko, Yury N.; Rokitskaya, Tatiana I.; Cherepanov, Dmitry A.; Mokhova, Elena N.; Vyssokikh, Mikhail Yu.; Pustovidko, Antonina V.; Markova, Olga V.; Yaguzhinsky, Lev S.; Korshunova, Galina A.; Sumbatyan, Nataliya V.; Skulachev, Maxim V.; Skulachev, Vladimir P.

    2010-01-01

    A unique phenomenon of mitochondria-targeted protonophores is described. It consists in a transmembrane H+-conducting fatty acid cycling mediated by penetrating cations such as 10-(6’-plastoquinonyl)decyltriphenylphosphonium (SkQ1) or dodecyltriphenylphosphonium (C12TPP). The phenomenon has been modeled by molecular dynamics and directly proved by experiments on bilayer planar phospholipid membrane, liposomes, isolated mitochondria, and yeast cells. In bilayer planar phospholipid membrane, the concerted action of penetrating cations and fatty acids is found to result in conversion of a pH gradient (ΔpH) to a membrane potential (Δψ) of the Nernstian value (about 60 mV Δψ at ΔpH = 1). A hydrophobic cation with localized charge (cetyltrimethylammonium) failed to substitute for hydrophobic cations with delocalized charge. In isolated mitochondria, SkQ1 and C12TPP, but not cetyltrimethylammonium, potentiated fatty acid-induced (i) uncoupling of respiration and phosphorylation, and (ii) inhibition of H2O2 formation. In intact yeast cells, C12TPP stimulated respiration regardless of the extracellular pH value, whereas a nontargeted protonophorous uncoupler (trifluoromethoxycarbonylcyanide phenylhydrazone) stimulated respiration at pH 5 but not at pH 3. Hydrophobic penetrating cations might be promising to treat obesity, senescence, and some kinds of cancer that require mitochondrial hyperpolarization. PMID:20080732

  16. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... should be tested and approved for the gas/vapor substance (i.e., organic vapor, acid gas, or substance... combination cartridges, cartridges should be tested and approved for the gas/vapor substance (i.e., organic... Specific Chemical Substances § 721.10199 Substituted aliphatic amine (generic). (a) Chemical substance...

  17. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... should be tested and approved for the gas/vapor substance (i.e., organic vapor, acid gas, or substance... combination cartridges, cartridges should be tested and approved for the gas/vapor substance (i.e., organic... Specific Chemical Substances § 721.10199 Substituted aliphatic amine (generic). (a) Chemical substance...

  18. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... should be tested and approved for the gas/vapor substance (i.e., organic vapor, acid gas, or substance... combination cartridges, cartridges should be tested and approved for the gas/vapor substance (i.e., organic... Specific Chemical Substances § 721.10199 Substituted aliphatic amine (generic). (a) Chemical substance...

  19. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... should be tested and approved for the gas/vapor substance (i.e., organic vapor, acid gas, or substance... combination cartridges, cartridges should be tested and approved for the gas/vapor substance (i.e., organic... Specific Chemical Substances § 721.10199 Substituted aliphatic amine (generic). (a) Chemical substance...

  20. Anion channel sensitivity to cytosolic organic acids implicates a central role for oxaloacetate in integrating ion flux with metabolism in stomatal guard cells

    PubMed Central

    Wang, Yizhou; Blatt, Michael R.

    2011-01-01

    Stomatal guard cells play a key role in gas exchange for photosynthesis and in minimizing transpirational water loss from plants by opening and closing the stomatal pore. The bulk of the osmotic content driving stomatal movements depends on ionic fluxes across both the plasma membrane and tonoplast, the metabolism of organic acids, primarily Mal (malate), and its accumulation and loss. Anion channels at the plasma membrane are thought to comprise a major pathway for Mal efflux during stomatal closure, implicating their key role in linking solute flux with metabolism. Nonetheless, little is known of the regulation of anion channel current (ICl) by cytosolic Mal or its immediate metabolite OAA (oxaloacetate). In the present study, we have examined the impact of Mal, OAA and of the monocarboxylic acid anion acetate in guard cells of Vicia faba L. and report that all three organic acids affect ICl, but with markedly different characteristics and sidedness to their activities. Most prominent was a suppression of ICl by OAA within the physiological range of concentrations found in vivo. These findings indicate a capacity for OAA to co-ordinate organic acid metabolism with ICl through the direct effect of organic acid pool size. The findings of the present study also add perspective to in vivo recordings using acetate-based electrolytes. PMID:21745184

  1. Anion channel sensitivity to cytosolic organic acids implicates a central role for oxaloacetate in integrating ion flux with metabolism in stomatal guard cells.

    PubMed

    Wang, Yizhou; Blatt, Michael R

    2011-10-01

    Stomatal guard cells play a key role in gas exchange for photosynthesis and in minimizing transpirational water loss from plants by opening and closing the stomatal pore. The bulk of the osmotic content driving stomatal movements depends on ionic fluxes across both the plasma membrane and tonoplast, the metabolism of organic acids, primarily Mal (malate), and its accumulation and loss. Anion channels at the plasma membrane are thought to comprise a major pathway for Mal efflux during stomatal closure, implicating their key role in linking solute flux with metabolism. Nonetheless, little is known of the regulation of anion channel current (I(Cl)) by cytosolic Mal or its immediate metabolite OAA (oxaloacetate). In the present study, we have examined the impact of Mal, OAA and of the monocarboxylic acid anion acetate in guard cells of Vicia faba L. and report that all three organic acids affect I(Cl), but with markedly different characteristics and sidedness to their activities. Most prominent was a suppression of ICl by OAA within the physiological range of concentrations found in vivo. These findings indicate a capacity for OAA to co-ordinate organic acid metabolism with I(Cl) through the direct effect of organic acid pool size. The findings of the present study also add perspective to in vivo recordings using acetate-based electrolytes. PMID:21745184

  2. Experimental IR and Raman spectra and quantum chemical studies of molecular structures, conformers and vibrational characteristics of L-ascorbic acid and its anion and cation

    NASA Astrophysics Data System (ADS)

    Yadav, R. A.; Rani, P.; Kumar, M.; Singh, R.; Singh, Priyanka; Singh, N. P.

    2011-12-01

    IR and spectra of the L-ascorbic acid ( L-AA) also known as vitamin C have been recorded in the region 4000-50 cm -1. In order to make vibrational assignments of the observed IR and Raman bands computations were carried out by employing the RHF and DFT methods to calculate the molecular geometries and harmonic vibrational frequencies along with other related parameters for the neutral L-AA and its singly charged anionic ( L-AA -) and cationic ( L-AA +) species. Significant changes have been found for different characteristics of a number of vibrational modes. The four ν(O-H) modes of the L-AA molecule are found in the order ν(O 9-H 10) > ν(O 19-H 20) > ν(O 7-H 8) > ν(O 14-H 15) which could be due to complexity of hydrogen bonding in the lactone ring and the side chain. The C dbnd O stretching wavenumber ( ν46) decreases by 151 cm -1 in going from the neutral to the anionic species whereas it increases by 151 cm -1 in going from the anionic to the cationic species. The anionic radicals have less kinetic stabilities and high chemical reactivity as compared to the neutral molecule. It is found that the cationic radical of L-AA is kinetically least stable and chemically most reactive as compared to its neutral and anionic species.

  3. 40 CFR 721.3364 - Aliphatic ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic ether. 721.3364 Section 721... Aliphatic ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aliphatic ether (PMN P-93-1381) is subject to reporting under...

  4. 40 CFR 721.3364 - Aliphatic ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic ether. 721.3364 Section 721... Aliphatic ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aliphatic ether (PMN P-93-1381) is subject to reporting under...

  5. Molecular Switch Controlling the Binding of Anionic Bile Acid Conjugates to Human Apical Sodium-dependent Bile Acid Transporter

    PubMed Central

    Rais, Rana; Acharya, Chayan; Tririya, Gasirat; MacKerell, Alexander D.; Polli, James E.

    2010-01-01

    The human apical sodium-dependent bile acid transporter (hASBT) may serve as a prodrug target for oral drug absorption. Synthetic, biological, NMR and computational approaches identified the structure-activity relationships of mono- and dianionic bile acid conjugates for hASBT binding. Experimental data combined with a conformationally-sampled pharmacophore/QSAR modeling approach (CSP-SAR) predicted that dianionic substituents with intramolecular hydrogen bonding between hydroxyls on the cholane skeleton and the acid group on the conjugate's aromatic ring increased conjugate hydrophobicity and improved binding affinity. Notably, the model predicted the presence of a conformational molecular switch, where shifting the carboxylate substituent on an aromatic ring by a single position controlled binding affinity. Model validation was performed by effectively shifting the spatial location of the carboxylate by inserting a methylene adjacent to the aromatic ring, resulting in the predicted alteration in binding affinity. This work illustrates conformation as a determinant of ligand binding affinity to a biological transporter. PMID:20504026

  6. ReaxFF molecular dynamics simulations of intermediate species in dicyanamide anion and nitric acid hypergolic combustion

    NASA Astrophysics Data System (ADS)

    Weismiller, Michael R.; Junkermeier, Chad E.; Russo, Michael F., Jr.; Salazar, Michael R.; Bedrov, Dmitry; van Duin, Adri C. T.

    2015-10-01

    Ionic liquids based on the dicyanamide anion (DCA) are of interest as replacements for current hypergolic fuels, which are highly toxic. To better understand the reaction dynamics of these ionic liquid fuels, this study reports the results of molecular dynamics simulations performed for two predicted intermediate compounds in DCA-based ionic liquids/nitric acid (HNO3) combustion, i.e. protonated DCA (DCAH) and nitro-dicyanamide-carbonyl (NDC). Calculations were performed using a ReaxFF reactive force field. Single component simulations show that neat NDC undergo exothermic decomposition and ignition. Simulations with HNO3 were performed at both a low (0.25 g ml-1) and high (1.00 g ml-1) densities, to investigate the reaction in a dense vapor and liquid phase, respectively. Both DCAH and NDC react hypergolically with HNO3, and increased density led to shorter times for the onset of thermal runaway. Contrary to a proposed mechanism for DCA combustion, neither DCAH nor NDC are converted to 1,5-Dinitrobiuret (DNB) before thermal runaway. Details of reaction pathways for these processes are discussed.

  7. DNA-strand breaks induced by dimethylarsinic acid, a metabolite of inorganic arsenics, are strongly enhanced by superoxide anion radicals.

    PubMed

    Rin, K; Kawaguchi, K; Yamanaka, K; Tezuka, M; Oku, N; Okada, S

    1995-01-01

    We previously reported that dimethylarsinic acid (DMAA), a major metabolite of inorganic arsenics, induced DNA single-strand breaks (ssb) both in vivo and in cultured alveolar type II (L-132) cells in vitro, possibly via the production of dimethylarsenic peroxyl radicals. Here, the interaction of superoxide anion radicals (O2-) in the induction of ssb in L-132 cells was investigated using paraquat, an O2(-)-producing agent. A significant enhancement of ssb formation was observed in the DMAA-exposed cells when coexposed to paraquat. This enhancement occurred even when post-exposed to DMAA after washing, suggesting that the DMAA exposure caused some modification of DNA such as DNA-adducts, which was recognized by active oxygens to form ssb. An experiment with UV-irradiation, which was likely to induce ssb at the modified region, supported the possibility of DNA modification by DMAA exposure. An ESR study indicated that O2- produced by paraquat in DMAA-exposed cells was more consumed than in non-exposed cells, assumingly through the reaction with the dimethylarsenic-modified region of DNA. The species of active oxygens were estimated by using diethyldithiocarbamate, aminotriazole, diethylmaleate, hydrogen peroxide (H2O2), gamma-irradiation and ethanol. O2- but neither H2O2 nor hydroxyl radicals was very likely to contribute to the ssb-enhancing action of paraquat. PMID:7735248

  8. Self-assembly directed by NH⋅⋅⋅O hydrogen bonding: New layered molecular arrays derived from 4-tert- butylbenzoic acid and aliphatic diamines

    PubMed Central

    Armstrong, Robert S.; Atkinson, Ian M.; Carter, Elizabeth; Mahinay, Myrna S.; Skelton, Brian W.; Turner, Peter; Wei, Gang; White, Allan H.; Lindoy, Leonard F.

    2002-01-01

    1H and 13C NMR titrations in both CDCl3 and CD3OD demonstrate that 4-tert-butylbenzoic acid interacts with both propane-1,2-diamine and propane-1,3-diamine to yield 1:2 host–guest complexes in these solvents. Based on this observation, the isolation of new three-dimensional molecular arrays through cocrystallization of the above diamines and 4-tert-butylbenzoic acid (in a 1:2 molar ratio) has been achieved. X-ray studies of these self-assembled structures show that they incorporate [propane-1,2-diamine⋅(4-tert-butylbenzoic acid)2] or [propane-1,3-diamine⋅(4-tert-butylbenzoic acid)2] hydrogen-bonded motifs. Three structural derivatives of the latter type (two monohydrate forms and one anhydrous form) have been characterized. The structures are compared with a previously described three-dimensional array based on the “parent” [ethane-1,2-diamine⋅(benzoic acid)2] motif. Similarities occur between each of the structures. In each, a two-dimensional “ionic” layer consisting of an extensive network of hydrogen bonds is sandwiched between two “less polar” aromatic ring-containing layers. In the respective ionic layers, the carboxylic acid protons have been transferred onto the amines to yield diammonium cations, with all ammonium protons being involved in hydrogen bonding. In part, the adoption of these unusual layered structures seems to reflect a tendency toward maximization of both the number and strengths of the hydrogen bond interactions in the respective ionic layers. PMID:11929968

  9. Formation of isomers of anionic hemiesters of sugars and carbonic acid in aqueous medium.

    PubMed

    Dos Santos, Vagner B; Vidal, Denis T R; Francisco, Kelliton J M; Ducati, Lucas C; do Lago, Claudimir L

    2016-06-16

    Hemiesters of carbonic acid can be freely formed in aqueous media containing HCO3(-)/CO2 and mono- or poly-hydroxy compounds. Herein, (13)C NMR spectroscopy was used to identify isomers formed in aqueous solutions of glycerol (a prototype compound) and seven carbohydrates, as well as to estimate the equilibrium constant of formation (Keq). Although both isomers are formed, glycerol 1-carbonate corresponds to 90% of the product. While fructose and ribose form an indistinct mixture of isomers, the anomers of d-glucopyranose 6-carbonate correspond to 74% of the eight isomers of glucose carbonate that were detected. The values of Keq for the disaccharides sucrose (4.3) and maltose (4.2) are about twice the values for the monosaccharides glucose (2.0) and fructose (2.3). Ribose (Keq = 0.89)-the only sugar without a significant concentration of a species containing a -CH2OH group in an aqueous solution-resulted in the smallest Keq. On the basis of the Keq value and the concentrations of HCO3(-) and glucose in blood, one can anticipate a concentration of 2-4 µmol L(-1) for glucose 6-carbonate, which corresponds to ca. of 10% of its phosphate counterpart (glucose 6-phosphate). PMID:27111726

  10. Site-directed mutagenesis of tobacco anionic peroxidase: Effect of additional aromatic amino acids on stability and activity.

    PubMed

    Poloznikov, A A; Zakharova, G S; Chubar, T A; Hushpulian, D M; Tishkov, V I; Gazaryan, I G

    2015-08-01

    Tobacco anionic peroxidase (TOP) is known to effectively catalyze luminol oxidation without enhancers, in contrast to horseradish peroxidase (HRP). To pursue structure-activity relationship studies for TOP, two amino acids have been chosen for mutation, namely Thr151, close to the heme plane, and Phe140 at the entrance to the active site pocket. Three mutant forms TOP F140Y, T151W and F140Y/T151W have been expressed in Escherichia coli, and reactivated to yield active enzymes. Single-point mutations introducing additional aromatic amino acid residues at the surface of TOP exhibit a significant effect on the enzyme catalytic activity and stability as judged by the results of steady-state and transient kinetics studies. TOP T151W is up to 4-fold more active towards a number of aromatic substrates including luminol, whereas TOP F140Y is 2-fold more stable against thermal inactivation and 8-fold more stable in the reaction course. These steady-state observations have been rationalized with the help of transient kinetic studies on the enzyme reaction with hydrogen peroxide in a single turnover regime. The stopped-flow data reveal (a) an increased stability of F140Y Compound I towards hydrogen peroxide, and thus, a higher operational stability as compared to the wild-type enzyme, and (b) a lesser leakage of oxidative equivalents from TOP T151W Compound I resulting in the increased catalytic activity. The results obtained show that TOP unique properties can be further improved for practical applications by site-directed mutagenesis. PMID:25957835

  11. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones.

    PubMed Central

    Bormann, J; Hamill, O P; Sakmann, B

    1987-01-01

    1. The ion-selective and ion transport properties of glycine receptor (GlyR) and gamma-aminobutyric acid receptor (GABAR) channels in the soma membrane of mouse spinal cord neurones were investigated using the whole-cell, cell-attached and outside-out patch versions of the patch-clamp technique. 2. Current-voltage (I-V) relations of transmitter-activated currents obtained from whole-cell measurements with 145 mM-Cl- intracellularly and extracellularly, showed outward rectification. In voltage-jump experiments, the instantaneous I-V relations were linear, and the steady-state I-V relations were rectifying outwardly indicating that the gating of GlyR and GABAR channels is voltage sensitive. 3. The reversal potential of whole-cell currents shifted 56 mV per tenfold change in internal Cl- activity indicating activation of Cl(-)-selective channels. The permeability ratio of K+ to Cl- (PK/PCl) was smaller than 0.05 for both channels. 4. The permeability sequence for large polyatomic anions was formate greater than bicarbonate greater than acetate greater than phosphate greater than propionate for GABAR channels; phosphate and propionate were not measurably permeant in GlyR channels. This indicates that open GlyR and GABAR channels have effective pore diameters of 5.2 and 5.6 A, respectively. The sequence of relative permeabilities for small anions was SCN- greater than I- greater than Br- greater than Cl- greater than F- for both channels. 5. GlyR and GABAR channels are multi-conductance-state channels. In cell-attached patches the single-channel slope conductances close to 0 mV membrane potential were 29, 18 and 10 pS for glycine, and 28, 17 and 10 pS for GABA-activated channels. The most frequently observed (main) conductance states were 29 and 17 pS for the GlyR and GABAR channel, respectively. 6. In outside-out patches with equal extracellular and intracellular concentrations of 145 mM-Cl-, the conductance states were 46, 30, 20 and 12 pS for GlyR channels and 44, 30

  12. Intercalation of p-methycinnamic acid anion into Zn-Al layered double hydroxide to improve UV aging resistance of asphalt

    NASA Astrophysics Data System (ADS)

    Peng, Chao; Dai, Jing; Yu, Jianying; Yin, Jian

    2015-02-01

    A UV absorber, p-methycinnamic acid (PMCA), was intercalated into Zn-Al layered double hydroxide (LDH) by calcination recovery. Fourier transform infrared spectroscopy showed that the PMCA anions completely replaced the CO32- anions in the interlayer galleries of Zn-Al-LDH containing PMCA anions (Zn-Al-PMCA-LDH). X-ray diffraction and transmission electron microscopy showed that the interlayer distance increased from 0.78 nm to 1.82 nm after the substitution of PMCA anions for CO32- anions. The similar diffraction angles of the CO32- anion-containing Zn-Al-LDH (Zn-Al-CO32--LDH) and the Zn-Al-CO32--LDH/styrene-butadiene-styrene (SBS) modified asphalt implied that the asphalt molecules do not enter into the LDH interlayer galleries to form separated-phase structures. The different diffraction angles of Zn-Al-PMCA-LDH and Zn-Al-PMCA-LDH/SBS modified asphalt indicated that the asphalt molecules penetrated into the LDH interlayer galleries to form an expanded-phase structure. UV-Vis absorbance analyses showed that Zn-Al-PMCA-LDH was better able to block UV light due to the synergistic effects of PMCA and Zn-Al-LDH. Conventional physical tests and atomic force microscopy images of the SBS modified asphalt, Zn-Al-CO32--LDH/SBS modified asphalt and Zn-Al-PMCA-LDH/SBS modified asphalt before and after UV aging indicated that Zn-Al-PMCA-LDH improved the UV aging resistance of SBS modified asphalts.

  13. Intercalation of p-methycinnamic acid anion into Zn-Al layered double hydroxide to improve UV aging resistance of asphalt

    SciTech Connect

    Peng, Chao; Dai, Jing; Yu, Jianying; Yin, Jian

    2015-02-15

    A UV absorber, p-methycinnamic acid (PMCA), was intercalated into Zn-Al layered double hydroxide (LDH) by calcination recovery. Fourier transform infrared spectroscopy showed that the PMCA anions completely replaced the CO{sub 3}{sup 2−} anions in the interlayer galleries of Zn-Al-LDH containing PMCA anions (Zn-Al-PMCA-LDH). X-ray diffraction and transmission electron microscopy showed that the interlayer distance increased from 0.78 nm to 1.82 nm after the substitution of PMCA anions for CO{sub 3}{sup 2−} anions. The similar diffraction angles of the CO{sub 3}{sup 2−} anion-containing Zn-Al-LDH (Zn-Al-CO{sub 3}{sup 2−}-LDH) and the Zn-Al-CO{sub 3}{sup 2−}-LDH/styrene–butadiene–styrene (SBS) modified asphalt implied that the asphalt molecules do not enter into the LDH interlayer galleries to form separated-phase structures. The different diffraction angles of Zn-Al-PMCA-LDH and Zn-Al-PMCA-LDH/SBS modified asphalt indicated that the asphalt molecules penetrated into the LDH interlayer galleries to form an expanded-phase structure. UV-Vis absorbance analyses showed that Zn-Al-PMCA-LDH was better able to block UV light due to the synergistic effects of PMCA and Zn-Al-LDH. Conventional physical tests and atomic force microscopy images of the SBS modified asphalt, Zn-Al-CO{sub 3}{sup 2−}-LDH/SBS modified asphalt and Zn-Al-PMCA-LDH/SBS modified asphalt before and after UV aging indicated that Zn-Al-PMCA-LDH improved the UV aging resistance of SBS modified asphalts.

  14. Guided desaturation of unactivated aliphatics

    NASA Astrophysics Data System (ADS)

    Voica, Ana-Florina; Mendoza, Abraham; Gutekunst, Will R.; Fraga, Jorge Otero; Baran, Phil S.

    2012-08-01

    The excision of hydrogen from an aliphatic carbon chain to produce an isolated olefin (desaturation) without overoxidation is one of the most impressive and powerful biosynthetic transformations for which there are no simple and mild laboratory substitutes. The versatility of olefins and the range of reactions they undergo are unsurpassed in functional group space. Thus, the conversion of a relatively inert aliphatic system into its unsaturated counterpart could open new possibilities in retrosynthesis. In this article, the invention of a directing group to achieve such a transformation under mild, operationally simple, metal-free conditions is outlined. This ‘portable desaturase’ (TzoCl) is a bench-stable, commercial entity (Aldrich, catalogue number L510092) that is facile to install on alcohol and amine functionalities to ultimately effect remote desaturation, while leaving behind a synthetically useful tosyl group.

  15. Ligand-modified polyelectrolyte-enhanced ultrafiltration with electrostatic attachment of ligands. 2. Use of diethylenetriaminepentaacetic acid/cationic polyelectrolyte mixtures to remove both cations and anions from aqueous streams

    SciTech Connect

    Tuncay, M. Univ. of Oklahoma, Norman, OK ); Christian, S.D.; Tucker, E.E.; Taylor, R.W.; Scamehorn, J.F. )

    1994-12-01

    A mixture of a cationic polyelectrolyte, poly(diallyldimethylammonium chloride) or PDADMAC, and the anionic ligand diethylenetriaminepentaacetic acid (DTPA) can be added to aqueous streams as a water-soluble colloid to bind simultaneously divalent cations, such as Cu[sup 2+] and Pb[sup 2+], and anions, such as CrO[sub 4][sup 2[minus

  16. Anion-π catalysis.

    PubMed

    Zhao, Yingjie; Beuchat, César; Domoto, Yuya; Gajewy, Jadwiga; Wilson, Adam; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2014-02-01

    The introduction of new noncovalent interactions to build functional systems is of fundamental importance. We here report experimental and theoretical evidence that anion-π interactions can contribute to catalysis. The Kemp elimination is used as a classical tool to discover conceptually innovative catalysts for reactions with anionic transition states. For anion-π catalysis, a carboxylate base and a solubilizer are covalently attached to the π-acidic surface of naphthalenediimides. On these π-acidic surfaces, transition-state stabilizations up to ΔΔGTS = 31.8 ± 0.4 kJ mol(-1) are found. This value corresponds to a transition-state recognition of KTS = 2.7 ± 0.5 μM and a catalytic proficiency of 3.8 × 10(5) M(-1). Significantly increasing transition-state stabilization with increasing π-acidity of the catalyst, observed for two separate series, demonstrates the existence of "anion-π catalysis." In sharp contrast, increasing π-acidity of the best naphthalenediimide catalysts does not influence the more than 12 000-times weaker substrate recognition (KM = 34.5 ± 1.6 μM). Together with the disappearance of Michaelis-Menten kinetics on the expanded π-surfaces of perylenediimides, this finding supports that contributions from π-π interactions are not very important for anion-π catalysis. The linker between the π-acidic surface and the carboxylate base strongly influences activity. Insufficient length and flexibility cause incompatibility with saturation kinetics. Moreover, preorganizing linkers do not improve catalysis much, suggesting that the ideal positioning of the carboxylate base on the π-acidic surface is achieved by intramolecular anion-π interactions rather than by an optimized structure of the linker. Computational simulations are in excellent agreement with experimental results. They confirm, inter alia, that the stabilization of the anionic transition states (but not the neutral ground states) increases with the π-acidity of the

  17. Aliphatic hydrocarbons of the fungi.

    NASA Technical Reports Server (NTRS)

    Weete, J. D.

    1972-01-01

    Review of studies of aliphatic hydrocarbons which have been recently detected in the spores of phytopathogenic fungi, and are found to be structurally very similar to the alkanes of higher plants. It appears that the hydrocarbon components of the few mycelial and yeast forms reported resemble the distribution found in bacteria. The occurence and distribution of these compounds in the fungi is discussed. Suggested functional roles of fungal spore alkanes are presented.

  18. Anion-π Enzymes

    PubMed Central

    2016-01-01

    In this report, we introduce artificial enzymes that operate with anion-π interactions, an interaction that is essentially new to nature. The possibility to stabilize anionic intermediates and transition states on an π-acidic surface has been recently demonstrated, using the addition of malonate half thioesters to enolate acceptors as a biologically relevant example. The best chiral anion-π catalysts operate with an addition/decarboxylation ratio of 4:1, but without any stereoselectivity. To catalyze this important but intrinsically disfavored reaction stereoselectively, a series of anion-π catalysts was equipped with biotin and screened against a collection of streptavidin mutants. With the best hit, the S112Y mutant, the reaction occurred with 95% ee and complete suppression of the intrinsically favored side product from decarboxylation. This performance of anion-π enzymes rivals, if not exceeds, that of the best conventional organocatalysts. Inhibition of the S112Y mutant by nitrate but not by bulky anions supports that contributions from anion-π interactions exist and matter, also within proteins. In agreement with docking results, K121 is shown to be essential, presumably to lower the pKa of the tertiary amine catalyst to operate at the optimum pH around 3, that is below the pKa of the substrate. Most importantly, increasing enantioselectivity with different mutants always coincides with increasing rates and conversion, i.e., selective transition-state stabilization. PMID:27413782

  19. Anion-π Enzymes.

    PubMed

    Cotelle, Yoann; Lebrun, Vincent; Sakai, Naomi; Ward, Thomas R; Matile, Stefan

    2016-06-22

    In this report, we introduce artificial enzymes that operate with anion-π interactions, an interaction that is essentially new to nature. The possibility to stabilize anionic intermediates and transition states on an π-acidic surface has been recently demonstrated, using the addition of malonate half thioesters to enolate acceptors as a biologically relevant example. The best chiral anion-π catalysts operate with an addition/decarboxylation ratio of 4:1, but without any stereoselectivity. To catalyze this important but intrinsically disfavored reaction stereoselectively, a series of anion-π catalysts was equipped with biotin and screened against a collection of streptavidin mutants. With the best hit, the S112Y mutant, the reaction occurred with 95% ee and complete suppression of the intrinsically favored side product from decarboxylation. This performance of anion-π enzymes rivals, if not exceeds, that of the best conventional organocatalysts. Inhibition of the S112Y mutant by nitrate but not by bulky anions supports that contributions from anion-π interactions exist and matter, also within proteins. In agreement with docking results, K121 is shown to be essential, presumably to lower the pK a of the tertiary amine catalyst to operate at the optimum pH around 3, that is below the pK a of the substrate. Most importantly, increasing enantioselectivity with different mutants always coincides with increasing rates and conversion, i.e., selective transition-state stabilization. PMID:27413782

  20. Physiological and Molecular Analysis of Aluminium-Induced Organic Acid Anion Secretion from Grain Amaranth (Amaranthus hypochondriacus L.) Roots

    PubMed Central

    Fan, Wei; Xu, Jia-Meng; Lou, He-Qiang; Xiao, Chuan; Chen, Wei-Wei; Yang, Jian-Li

    2016-01-01

    Grain amaranth (Amaranthus hypochondriacus L.) is abundant in oxalate and can secrete oxalate under aluminium (Al) stress. However, the features of Al-induced secretion of organic acid anions (OA) and potential genes responsible for OA secretion are poorly understood. Here, Al-induced OA secretion in grain amaranth roots was characterized by ion charomatography and enzymology methods, and suppression subtractive hybridization (SSH) together with quantitative real-time PCR (qRT-PCR) was used to identify up-regulated genes that are potentially involved in OA secretion. The results showed that grain amaranth roots secrete both oxalate and citrate in response to Al stress. The secretion pattern, however, differs between oxalate and citrate. Neither lanthanum chloride (La) nor cadmium chloride (Cd) induced OA secretion. A total of 84 genes were identified as up-regulated by Al, in which six genes were considered as being potentially involved in OA secretion. The expression pattern of a gene belonging to multidrug and toxic compound extrusion (MATE) family, AhMATE1, was in close agreement with that of citrate secretion. The expression of a gene encoding tonoplast dicarboxylate transporter and four genes encoding ATP-binding cassette transporters was differentially regulated by Al stress, but the expression pattern was not correlated well with that of oxalate secretion. Our results not only reveal the secretion pattern of oxalate and citrate from grain amaranth roots under Al stress, but also provide some genetic information that will be useful for further characterization of genes involved in Al toxicity and tolerance mechanisms. PMID:27144562

  1. Physiological and Molecular Analysis of Aluminium-Induced Organic Acid Anion Secretion from Grain Amaranth (Amaranthus hypochondriacus L.) Roots.

    PubMed

    Fan, Wei; Xu, Jia-Meng; Lou, He-Qiang; Xiao, Chuan; Chen, Wei-Wei; Yang, Jian-Li

    2016-01-01

    Grain amaranth (Amaranthus hypochondriacus L.) is abundant in oxalate and can secrete oxalate under aluminium (Al) stress. However, the features of Al-induced secretion of organic acid anions (OA) and potential genes responsible for OA secretion are poorly understood. Here, Al-induced OA secretion in grain amaranth roots was characterized by ion charomatography and enzymology methods, and suppression subtractive hybridization (SSH) together with quantitative real-time PCR (qRT-PCR) was used to identify up-regulated genes that are potentially involved in OA secretion. The results showed that grain amaranth roots secrete both oxalate and citrate in response to Al stress. The secretion pattern, however, differs between oxalate and citrate. Neither lanthanum chloride (La) nor cadmium chloride (Cd) induced OA secretion. A total of 84 genes were identified as up-regulated by Al, in which six genes were considered as being potentially involved in OA secretion. The expression pattern of a gene belonging to multidrug and toxic compound extrusion (MATE) family, AhMATE1, was in close agreement with that of citrate secretion. The expression of a gene encoding tonoplast dicarboxylate transporter and four genes encoding ATP-binding cassette transporters was differentially regulated by Al stress, but the expression pattern was not correlated well with that of oxalate secretion. Our results not only reveal the secretion pattern of oxalate and citrate from grain amaranth roots under Al stress, but also provide some genetic information that will be useful for further characterization of genes involved in Al toxicity and tolerance mechanisms. PMID:27144562

  2. The Relative Abundance of Oxygen Alkyl-Related Groups in Aliphatic Domains Is Involved in the Main Pharmacological-Pleiotropic Effects of Humic Acids

    PubMed Central

    Vashishta, Aruna; Fuentes, Marta; Baigorri, Roberto; Garcia-Mina, Jose M.; Yvin, Jean-Claude

    2013-01-01

    Abstract Despite the rather common presence of humic acid (HA), our full knowledge of its biological effect is still lacking. In this article, we first performed a physicochemical characterization of several HAs, and next, we evaluated their ability to affect interleukin-2 secretion, antibody secretion, wound healing (an in vitro model using HaCaT cells), cancer growth (the Lewis lung carcinoma model), and protection against hepatotoxicity. In all tested reactions, HA showed significant stimulation on immune reactions, including suppression of cancer growth and inhibition of lipopolysaccharide-induced hepatotoxicity. These effects were dependent on its chemical properties. The pleiotropic effects of HA observed in this article suggest the possible role of these compounds in human nutrition. PMID:23875902

  3. Complexation of carboxylate anions with the arginine gas-phase amino acid: Effects of chain length on the geometry of extended ion binding

    NASA Astrophysics Data System (ADS)

    Luxford, Thomas F. M.; Milner, Edward M.; Yoshikawa, Naruo; Bullivant, Chad; Dessent, Caroline E. H.

    2013-07-01

    Complexation of deprotonated carboxylic acids with arginine was investigated using collision-induced dissociation to probe the nature of isolated carboxylate-amino acid interactions as a function of anion size. Monocarboxylic CH3(CH2)nCOO-·Arg (n = 3-7, 9, 10) and dicarboxylic acid COOH(CH2)nCOO-·Arg (n = 3-5, 7-10) complexes were investigated. For the dicarboxylic acid clusters, chain length has a significant effect on the %fragmentation energies with the n = 9, 10 systems fragmenting at significantly lower energies than the corresponding shorter chain systems. Molecular mechanics calculations suggest that this fragmentation energy shift is associated with the longer-chain dicarboxylic acid-Arg clusters switching to ring structures.

  4. The effect of the length and flexibility of the side chain of basic amino acids on the binding of antimicrobial peptides to zwitterionic and anionic membrane model systems.

    PubMed

    Russell, Amanda L; Williams, Brittany C; Spuches, Anne; Klapper, David; Srouji, Antoine H; Hicks, Rickey P

    2012-03-01

    The intent of this investigation was to determine the effect of varying the side chain length of the basic amino acids residues on the binding of a series of antimicrobial peptides (AMPs) to zwitterionic and anionic LUVs, SUVs and micelles. These AMPs are based on the incorporation of three dipeptide units consisting of the unnatural amino acids Tic-Oic in the sequence, Ac-GF-Tic-Oic-GX-Tic-Oic-GF-Tic-Oic-GX-Tic-XXXX-CONH(2), where X (Spacer #2) may be one of the following amino acids, Lys, Orn, Dab, Dpr or Arg. A secondary focus of this study was to attempt to correlate the possible mechanisms of membrane binding of these AMPs to their bacterial strain potency and selectivity. These AMPs produced different CD spectra in the presence of zwitterionic DPC and anionic SDS micelles. This observation indicates that these AMPs adopt different conformations on binding to the surface of zwitterionic and anionic membrane model systems. The CD spectra of these AMPs in the presence of zwitterionic POPC and anionic 4:1 POPC/POPG LUVs and SUVs also were different, indicating that they adopt different conformations on interaction with the zwitterionic and anionic liposomes. This observation was supported by ITC and calcein leakage data that indicated that these AMPs interact via very different mechanisms with anionic and zwitterionic LUVs. The enthalpy for the binding of these AMPs to POPC directly correlates to the length of Spacer #2. The enthalpy of binding of these AMPs to 4:1 POPC/POPG, however do not correlate with the length of Spacer #2. Clear evidence exists that the AMP containing the Dpr residues (the shortest length spacer) interacts very differently with both POPC and 4:1 POPC/POPG LUVs compared to the other four compounds. Data indicates that both the hydrophobicity and the charge distribution of Spacer #2, contribute to defining antibacterial activity. These observations have major implications on the development of these analogs as potential therapeutic agents

  5. Synthesis of 3,5-Isoxazolidinediones and 1H-2,3-Benzoxazine-1,4(3H)-diones from Aliphatic Oximes and Dicarboxylic Acid Chlorides

    PubMed Central

    2015-01-01

    The synthesis of the title compounds was carried out by reacting dicarboxylic acid chlorides with oximes in the presence of excess triethylamine. Disubstituted malonyl chlorides gave 2-alkenyl-4,4-dialkyl-3,5-isoxazolidinediones (8a–f) and 2,2′-ethylidene-bis[4,4-dialkyl-3,5-isoxazolidinedione]s (9a–f). Compounds 9 were formed from 8 and its N-unsubstituted 3,5-isoxazolidinedione decomposition product. Phthaloyl chlorides reacted with acetone oxime to yield 3-(1-methylethenyl)-1H-2,3-benzoxazine-1,4(3H)-diones (16a–e). Products 16 spontaneously decomposed to give N-unsubstituted 1H-2,3-benzoxazine-1,4(3H)-diones (17a–e) at rates that were dependent on temperature and solvent. Kinetic studies showed that two of the compounds decomposed by zero-order kinetics under neutral conditions. Butanedioyl chloride did not produce a cyclic product. PMID:24620711

  6. Structural characterization of electron-induced proton transfer in the formic acid dimer anion, (HCOOH)2-, with vibrational and photoelectron spectroscopies.

    PubMed

    Gerardi, Helen K; DeBlase, Andrew F; Leavitt, Christopher M; Su, Xiaoge; Jordan, Kenneth D; McCoy, Anne B; Johnson, Mark A

    2012-04-01

    The (HCOOH)(2) anion, formed by electron attachment to the formic acid dimer (FA(2)), is an archetypal system for exploring the mechanics of the electron-induced proton transfer motif that is purported to occur when neutral nucleic acid base-pairs accommodate an excess electron [K. Aflatooni, G. A. Gallup, and P. D. Burrow, J. Phys. Chem. A 102, 6205 (1998); J. H. Hendricks, S. A. Lyapustina, H. L. de Clercq, J. T. Snodgrass, and K. H. Bowen, J. Chem Phys. 104, 7788 (1996); C. Desfrancois, H. Abdoul-Carime, and J. P. Schermann, ibid. 104, 7792 (1996)]. The FA(2) anion and several of its H∕D isotopologues were isolated in the gas phase and characterized using Ar-tagged vibrational predissociation and electron autodetachment spectroscopies. The photoelectron spectrum of the FA(2) anion was also recorded using velocity-map imaging. The resulting spectroscopic information verifies the equilibrium FA(2)(-) geometry predicted by theory which features a symmetrical, double H-bonded bridge effectively linking together constituents that most closely resemble the formate ion and a dihydroxymethyl radical. The spectroscopic signatures of this ion were analyzed with the aid of calculated anharmonic vibrational band patterns. PMID:22482563

  7. Polyelectrolyte functionalized multi-walled carbon nanotubes as strong anion-exchange material for the extraction of acidic degradation products of nerve agents.

    PubMed

    Kanaujia, Pankaj K; Pardasani, Deepak; Purohit, Ajay K; Tak, Vijay; Dubey, D K

    2011-12-30

    Extraction, enrichment and gas chromatography mass spectrometric analysis of degradation products of nerve agents from water is of significant importance for verification of Chemical Weapons Convention (CWC) and gathering forensic evidence of use of nerve agents. Multi-walled carbon nanotubes (MWCNTs) were non-covalently functionalized with poly(diallyldimethylammonium chloride) (PDDA) to afford the cationic functionalized nano-tubes, which were used as solid-phase anionic-exchanger sorbents to extract the acidic degradation products of nerve agents from water. Extraction efficiencies of MWCNTs-PDDA were compared with those of mixed mode anion-exchange (HLB) and silica based strong anion-exchange (Si-SAX) cartridges. Optimized extraction parameters included MWCNTs-PDDA 12 mg, washing solvent 5 mL water and eluting solvent 3 mL of 0.1M aqueous HCl followed by 3 mL methanol. At 1 ng mL(-1) spiking concentration of mono- and di-basic phosphonic acids, MWCNTs-PDDA exhibited higher extraction efficiencies in comparison to Si-SAX and HLB. The limits of detection were achieved down to 0.05 and 0.11 ng mL(-1) in selected ion and full scan monitoring mode respectively; and limits of quantification in selected ion monitoring mode were achieved down to 0.21 ng mL(-1). PMID:22119612

  8. A New Approach to Non-Coordinating Anions: Lewis Acid Enhancement of Porphyrin Metal Centers in a Zwitterionic Metal-Organic Framework.

    PubMed

    Johnson, Jacob A; Petersen, Brenna M; Kormos, Attila; Echeverría, Elena; Chen, Yu-Sheng; Zhang, Jian

    2016-08-17

    We describe a new strategy to generate non-coordinating anions using zwitterionic metal-organic frameworks (MOFs). By assembly of anionic inorganic secondary building blocks (SBUs) ([In(CO2)4](-)) with cationic metalloporphyrin-based organic linkers, we prepared zwitterionic MOFs in which the complete internal charge separation effectively prevents the potential binding of the counteranion to the cationic metal center. We demonstrate the enhanced Lewis acidity of Mn(III)- and Fe(III)-porphyrins in the zwitterionic MOFs in three representative electrocyclization reactions: [2 + 1] cycloisomerization of enynes, [3 + 2] cycloaddition of aziridines and alkenes, and [4 + 2] hetero-Diels-Alder cycloaddition of aldehydes with dienes. This work paves a new way to design functional MOFs for tunable chemical catalysis. PMID:27435751

  9. Anion Recognition Triggered Nanoribbon-Like Self-Assembly: A Fluorescent Chemosensor for Nitrate in Acidic Aqueous Solution and Living Cells.

    PubMed

    Yang, Yaping; Chen, Shiyan; Ni, Xin-Long

    2015-07-21

    A water-soluble π-conjugated bispyridinium phenylenevinylene-based fluorogenic probe has been developed as a novel fluorescent chemosensor for highly selective, sensitive, and rapid detection of NO3(-) anion in acidic aqueous media. This system self-assembles to a nanoribbon as a result of ionic interaction. The positively charged chemosensor generates a nearly instantaneous significant fluorescence signal (475 vs 605 nm) in response to NO3(-) in the green/yellow spectral region, with a large Stokes shift (130 nm). The fluorescence changes can be attributed to the self-aggregation of the sensor triggered by ionic interaction, which occurs as a consequence of the subtle cooperation of electrostatic ionic bonding, van der Waals forces, and π-stacking of the π-conjugated aromatic moieties. Importantly, this chemosensor has been employed for the first time for the fluorescence detection of intracellular NO3(-) anion in cultured cells. PMID:26084357

  10. Rhodium-Catalyzed Enantioselective Arylation of Aliphatic Imines.

    PubMed

    Kato, Naoya; Shirai, Tomohiko; Yamamoto, Yasunori

    2016-06-01

    Chiral rhodium(I)-catalyzed highly enantioselective arylation of aliphatic N-sulfonyl aldimines with arylboronic acids has been developed. This transformation is achieved by the use of a rhodium/bis(phosphoramidite) catalyst to give enantiomerically enriched α-branched amines (up to 99 % ee). In addition, this system enables efficient synthesis of (+)-NPS R-568 and Cinacalcet which are calcimimetic agents. PMID:27119262

  11. Interaction of the Spo20 Membrane-Sensor Motif with Phosphatidic Acid and Other Anionic Lipids, and Influence of the Membrane Environment

    PubMed Central

    Horchani, Habib; de Saint-Jean, Maud; Barelli, Hélène; Antonny, Bruno

    2014-01-01

    The yeast protein Spo20 contains a regulatory amphipathic motif that has been suggested to recognize phosphatidic acid, a lipid involved in signal transduction, lipid metabolism and membrane fusion. We have investigated the interaction of the Spo20 amphipathic motif with lipid membranes using a bioprobe strategy that consists in appending this motif to the end of a long coiled-coil, which can be coupled to a GFP reporter for visualization in cells. The resulting construct is amenable to in vitro and in vivo experiments and allows unbiased comparison between amphipathic helices of different chemistry. In vitro, the Spo20 bioprobe responded to small variations in the amount of phosphatidic acid. However, this response was not specific. The membrane binding of the probe depended on the presence of phosphatidylethanolamine and also integrated the contribution of other anionic lipids, including phosphatidylserine and phosphatidyl-inositol-(4,5)bisphosphate. Inverting the sequence of the Spo20 motif neither affected the ability of the probe to interact with anionic liposomes nor did it modify its cellular localization, making a stereo-specific mode of phosphatidic acid recognition unlikely. Nevertheless, the lipid binding properties and the cellular localization of the Spo20 alpha-helix differed markedly from that of another amphipathic motif, Amphipathic Lipid Packing Sensor (ALPS), suggesting that even in the absence of stereo specific interactions, amphipathic helices can act as subcellular membrane targeting determinants in a cellular context. PMID:25426975

  12. Different aliphatic dicarboxylates affected assemble of new coordination polymers constructed from flexible-rigid mixed ligands

    SciTech Connect

    Xu Xinxin; Ma Ying; Wang Enbo

    2007-11-15

    In this article, seven coordination polymers: [Cd(C{sub 5}H{sub 6}O{sub 4})(C{sub 10}H{sub 8}N{sub 2})]{sub n} (1), [Zn(C{sub 5}H{sub 6}O{sub 4})(C{sub 10}H{sub 8}N{sub 2})]{sub n} (2), [Cd(C{sub 6}H{sub 8}O{sub 4})(C{sub 10}H{sub 8}N{sub 2})]{sub n} (3), {l_brace}[Mn(C{sub 10}H{sub 8}N{sub 2})(H{sub 2}O){sub 4}] (C{sub 4}H{sub 4}O{sub 4}).4H{sub 2}O{r_brace}{sub n} (4), [Mn{sub 5}(C{sub 4}H{sub 4}O{sub 4}){sub 4}(O)]{sub n} (5), [Cd(C{sub 4}H{sub 4}O{sub 4})(C{sub 10}H{sub 8}N{sub 2})(H{sub 2}O)]{sub n} (6) and [Zn(C{sub 6}H{sub 6}O{sub 4})(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)]{sub n} (7) were synthesized and characterized by single-crystallographic X-ray diffraction. Compounds 1 and 2 are two-dimensional layers connected by glutarate anions and 4,4'-bpy. Unlike compounds 1 and 2, compound 3 is a two-fold interpenetration network. Compound 4 is a one-dimensional chain-like structure, which is further extended to two-dimensional supramolecular layer structure with hydrogen bond. During the synthesis of compound 4, to our surprise, we got compound 5; compound 5 is an interesting three-dimensional network composed of pentanuclear Mn(II) building units and succinate anions. Compound 6 is also a two-dimensional supramolecular layer structure composed of one-dimensional chain-like structure with hydrogen bonds and {pi}-{pi} interactions. Compound 7 is also a one-dimensional chain-like structure, which is further connected with the same kind of interaction to generate two-dimensional supramolecular layer structure. Furthermore, compounds 1 and 2 both exhibit fluorescent property at room temperature. - Graphical abstract: Seven complexes composed by 3D metal ions, aliphatic acid ligand and rigid bidentate nitrogen ligands: 4,4'-bpy, 2,2'-bpy and 1,10'-phen. With the change of the carbon number of the backbone of aliphatic dicarboxylate ligand, we can synthesize different complexes with various structures.

  13. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    PubMed

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay. PMID:23313636

  14. Application of dissolvable layered double hydroxides as sorbent in dispersive solid-phase extraction and extraction by co-precipitation for the determination of aromatic acid anions.

    PubMed

    Tang, Sheng; Lee, Hian Kee

    2013-08-01

    Three types of magnesium-aluminum layered double hydroxides were synthesized and employed as solid-phase extraction (SPE) sorbents to extract several aromatic acids (protocatechuic acid, mandelic acid, phthalic acid, benzoic acid, and salicylic acid) from aqueous samples. An interesting feature of these sorbents is that they dissolve when the pH of the solution is lower than 4. Thus, the analyte elution step, as needed in conventional sorbent-based extraction, was obviated by dissolving the sorbent in acid after extraction and separation from the sample solution. The extract was then directly injected into a high-performance liquid chromatography-ultraviolet detection system for analysis. In the key adsorption process, both dispersive SPE and co-precipitation extraction with the sorbents were conducted and experimental parameters such as pH, temperature, and extraction time were optimized. The results showed that both extraction methods provided low limits of detection (0.03-1.47 μg/L) and good linearity (r(2) > 0.9903). The optimized extraction conditions were applied to human urine and sports drink samples. This new and interesting extraction approach was demonstrated to be a fast and efficient procedure for the extraction of organic anions from aqueous samples. PMID:23855757

  15. Dielectric relaxations in aliphatic polyesters

    NASA Astrophysics Data System (ADS)

    Sen, Sudeepto

    2001-07-01

    The dielectric technique was used to study the relaxation processes of five linear aliphatic polyesters. The polyesters studied were poly (ethylene succinate/adipate) or PESA, poly (trimethylene succinate/adipate) or PTSA, poly (butylene succinate/adipate) or PBSA, poly (ethylene succinate) or PES, and poly (ethylene adipate) or PEA. Three of the polyesters were copolymers (PESA, PTSA, and PBSA), and the remaining two (PES and PEA) were homopolymers. Two of the five were amorphous (PESA and PTSA), and the remaining three (PBSA, PES, and PEA) were semicrystalline. All the five polyesters were synthesized in the laboratory using a poly-condensation reaction between a series of aliphatic diols and diesters. The succinic and adipic groups in the copolymers are in equimolar amounts. The polymers were characterized by differential scanning calorimetry and density measurements. Elemental analysis done on the polymers confirmed that their compositions matched theoretical estimates. The relaxation processes were studied dielectrically using an IMASS time domain dielectric spectrometer (TDS) and an HP 4284A LCR meter. Together they allowed a frequency range from 0.001 Hz to 1 MHz. Typically in the subglass region, good data were obtained between 0.01 Hz and 100 kHz. In the glass transition region, good data were occasionally available over the entire range. Two relaxation processes were detected in the subglass temperature region for all the polymers, and in the case of the copolymers PTSA and PBSA, they were also well resolved. Both the processes showed Arrhenius behavior with modest activation energies characteristic of subglass processes in general. They also progressively merged with increasing temperature, which implies a lower activation energy for the faster process which is consistent with the current understanding of relaxation phenomena. The glass transition region of all the polymers also showed a merging of the dominant alpha relaxation with the subglass

  16. Three Highly Stable Cobalt MOFs Based on "Y"-Shaped Carboxylic Acid: Synthesis and Absorption of Anionic Dyes.

    PubMed

    Yan, Wei; Han, Li-Juan; Jia, Hai-Lang; Shen, Kang; Wang, Ting; Zheng, He-Gen

    2016-09-01

    Three Co(II) metal-organic frameworks (MOFs) were synthesized employing a rational design approach. On the basis of the different structures of three complexes, we tested their absorption properties toward two anionic dyes. The absorption results indicate that not only uncoordinated functional groups in the structure play an important role in adsorbing capacity but also physical forces can affect absorbing ability. Water stability testing shows that three crystals display high stability in aqueous solutions with different pH values. To our delight, the framework integrity of three complexes can be well-retained even after absorbing dyes. PMID:27525379

  17. Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid.

    PubMed

    Maierhofer, Tobias; Diekmann, Marion; Offenborn, Jan Niklas; Lind, Christof; Bauer, Hubert; Hashimoto, Kenji; S Al-Rasheid, Khaled A; Luan, Sheng; Kudla, Jörg; Geiger, Dietmar; Hedrich, Rainer

    2014-09-01

    Under drought stress, abscisic acid (ABA) triggers closure of leaf cell pores called stomata, which are formed by two specialized cells called guard cells in plant epidermis. Two pathways downstream of ABA stimulate phosphorylation of the S-type anion channels SLAC1 (slow anion channel associated 1) and SLAH3 (SLAC1 homolog 3), which causes these channels to open, reducing guard cell volume and triggering stomatal closure. One branch involves OST1 (open stomata 1), a calcium-independent SnRK2-type kinase, and the other branch involves calcium-dependent protein kinases of the CPK (calcium-dependent protein kinase) family. We used coexpression analyses in Xenopus oocytes to show that the calcineurin B-like (CBL) calcium sensors CBL1 and CBL9 and their interacting protein kinase CIPK23 also triggered SLAC1 and SLAH3 opening. We analyzed whether regulation of SLAC1 opening by these different families of kinases involved the same or different sites on SLAC1 by measuring channel conductance of SLAC1 with mutations in the putative phosphorylation sites in the amino or carboxyl termini coexpressed with specific kinases in Xenopus oocytes. SLAC1 mutants lacking the OST1-phosphorylated site were still activated by CPK or by CBL/CIPK complexes. Phosphorylation and activation of SLAC1 by any of the kinases were inhibited by the phosphatase ABI1 (ABA insensitive 1), which is inactivated in response to ABA signaling. These findings identified CBL/CIPK complexes as potential regulators of stomatal aperture through S-type anion channels and indicated that phosphorylation at distinct sites enables SLAC1 activation by both calcium-dependent and calcium-independent pathways downstream of ABA. PMID:25205850

  18. Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Cl− channel expressed in mammalian cell lines

    PubMed Central

    Linsdell, Paul; Zheng, Shu-Xian; Hanrahan, John W

    1998-01-01

    The effects of individually mutating two adjacent threonine residues in the sixth membrane-spanning region (TM6) of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel on permeation properties were examined using patch clamp recording from mammalian cell lines stably expressing human CFTR.A number of mutations of T338 significantly affected the permeation properties of the channel. Increases and decreases in single channel conductance were observed for different mutants. Anion selectivity was strongly affected, with no two channel variants sharing the same selectivity sequence. Several mutations led to strong inward rectification of the macroscopic current-voltage relationship. The effects of these mutations on permeation properties were correlated with the size of the amino acid side chain substituted, rather than its chemical nature.Most mutations of T339 resulted in a lack of functional channel expression and apparent misprocessing of the protein. One mutant, T339V, was characterized in detail; its permeation properties were significantly altered, although these effects were not as strong as for T338 mutations.These results suggest an important role for T338 in controlling the permeation properties of the CFTR Cl− channel. It is suggested that mutation of this residue alters the interaction between permeating anions and the channel pore via an indirect effect on the orientation of the TM6 helix. PMID:9729613

  19. Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Cl- channel expressed in mammalian cell lines.

    PubMed

    Linsdell, P; Zheng, S X; Hanrahan, J W

    1998-10-01

    1. The effects of individually mutating two adjacent threonine residues in the sixth membrane-spanning region (TM6) of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel on permeation properties were examined using patch clamp recording from mammalian cell lines stably expressing human CFTR. 2. A number of mutations of T338 significantly affected the permeation properties of the channel. Increases and decreases in single channel conductance were observed for different mutants. Anion selectivity was strongly affected, with no two channel variants sharing the same selectivity sequence. Several mutations led to strong inward rectification of the macroscopic current-voltage relationship. The effects of these mutations on permeation properties were correlated with the size of the amino acid side chain substituted, rather than its chemical nature. 3. Most mutations of T339 resulted in a lack of functional channel expression and apparent misprocessing of the protein. One mutant, T339V, was characterized in detail; its permeation properties were significantly altered, although these effects were not as strong as for T338 mutations. 4. These results suggest an important role for T338 in controlling the permeation properties of the CFTR Cl- channel. It is suggested that mutation of this residue alters the interaction between permeating anions and the channel pore via an indirect effect on the orientation of the TM6 helix. PMID:9729613

  20. New structural motifs and properties of squaric acid anions in the presence of the L-lysinium counterion

    NASA Astrophysics Data System (ADS)

    Kolev, Tsonko; Mayer-Figge, Heike; Seidel, Rüdiger W.; Sheldrick, William S.; Spiteller, Michael; Koleva, Bojidarka B.

    2009-02-01

    Two novel L-lysinium hydrogensquarate monohydrate ( 1) and the corresponding salt of the L-lysinium dication ( 2) are synthesized and their structure and properties elucidated in detail spectroscopically, thermally and structurally, using single crystal X-ray diffraction, linear-polarized solid-state IR-spectroscopy oriented colloid suspensions in nematic host, TGA, DSC, DTA methods, positive and negative HPLC tandem mass spectrometry (ESI-MS·MS). Quantum chemical methods are used to calculate the electronic structure, vibrational data and electronic spectra. Two novel structural motifs have been obtained, isolated [(HSq -)] and tetramolecular [(H 2Sq)(HSq) 2(Sq)] 4- anion, respectively. Preliminary second harmonic generation measurements are also performed.

  1. A three-dimensional model of human organic anion transporter 1: aromatic amino acids required for substrate transport.

    PubMed

    Perry, Jennifer L; Dembla-Rajpal, Neetu; Hall, Laura A; Pritchard, John B

    2006-12-01

    Organic anion transporters (OATs) play a critical role in the handling of endogenous and exogenous organic anions by excretory and barrier tissues. Little is known about the OAT three-dimensional structure or substrate/protein interactions involved in transport. In this investigation, a theoretical three-dimensional model was generated for human OAT1 (hOAT1) based on fold recognition to the crystal structure of the glycerol 3-phosphate transporter (GlpT) from Escherichia coli. GlpT and hOAT1 share several sequence motifs as major facilitator superfamily members. The structural hOAT1 model shows that helices 5, 7, 8, 10, and 11 surround an electronegative putative active site ( approximately 830A(3)). The site opens to the cytoplasm and is surrounded by three residues not previously examined for function (Tyr(230) (domain 5) and Lys(431) and Phe(438) (domain 10)). Effects of these residues on p-aminohippurate (PAH) and cidofovir transport were assessed by point mutations in a Xenopus oocyte expression system. Membrane protein expression was severely limited for the Y230A mutant. For the K431A and F438A mutants, [(3)H]PAH uptake was less than 30% of wild-type hOAT1 uptake after protein expression correction. Reduced V(max) values for the F438A mutant confirmed lower protein expression. In addition, the F438A mutant exhibited an increased affinity for cidofovir but was not significantly different for PAH. Differences in handling of PAH and cidofovir were also observed for the Y230F mutant. Little uptake was determined for cidofovir, whereas PAH uptake was similar to wild-type hOAT1. Therefore, the hOAT1 structural model has identified two new residues, Tyr(230) and Phe(438), which are important for substrate/protein interactions. PMID:17038320

  2. Preparation and characterization of anion exchange resin decorated with magnetite nanoparticles for removal of p-toluic acid from aqueous solution

    NASA Astrophysics Data System (ADS)

    Davarpanah, Morteza; Ahmadpour, Ali; Rohani Bastami, Tahereh

    2015-02-01

    Polystyrene resin was covalently functionalized with diethanolamine and then decorated with magnetite nanoparticles by a novel and simple co-precipitation method using iron(II) sulfate as precursor. The products were characterized by Fourier transform infrared spectroscopy, elemental analysis, X-ray diffraction, Mössbauer spectroscopy, field-emission scanning electron microscopy and vibrating sample magnetometer. Adsorption of p-toluic acid (p-TA) onto magnetite-decorated polystyrene (MAG-PS) was studied and compared with that of diethanolamine-functionalized polystyrene and a commercial anion exchange resin. Results showed that the magnetite nanoparticles with an average size of 20.4 nm were successfully formed on the surface of polystyrene resin, and MAG-PS was exhibited high affinity for the removal of p-TA.

  3. Resistance of Streptococcus bovis to acetic acid at low pH: Relationship between intracellular pH and anion accumulation

    SciTech Connect

    Russell, J.B. )

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grown at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). Y{sub ATP} (grams of cells per mole at ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up ({sup 14}C)acetate and ({sup 14}C)benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation.

  4. Molecular structure investigation of neutral, dimer and anion forms of 3,4-pyridinedicarboxylic acid: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Karabacak, Mehmet; Bilgili, Sibel; Atac, Ahmet

    2015-01-01

    In this study, the structural and vibrational analysis of 3,4-pyridinedicarboxylic acid (3,4-PDCA) are presented using experimental techniques as FT-IR, FT-Raman, NMR, UV and quantum chemical calculations. FT-IR and FT-Raman spectra of 3,4-pyridinedicarboxylic acid in the solid phase are recorded in the region 4000-400 cm-1 and 4000-50 cm-1, respectively. The geometrical parameters and energies of all different and possible monomer, dimer, anion-1 and anion-2 conformers of 3,4-PDCA are obtained from Density Functional Theory (DFT) with B3LYP/6-311++G(d,p) basis set. There are sixteen conformers (C1sbnd C16) for this molecule (neutral form). The most stable conformer of 3,4-PDCA is the C1 conformer. The complete assignments are performed on the basis of the total energy distribution (TED) of the vibrational modes calculated with scaled quantum mechanics (SQM) method. 1H and 13C NMR spectra are recorded and the chemical shifts are calculated by using DFT/B3LYP methods with 6-311++G(d,p) basis set. The UV absorption spectrum of the studied compound is recorded in the range of 200-400 nm by dissolved in ethanol. The optimized geometric parameters were compared with experimental data via the X-ray results derived from complexes of this molecule. In addition these, molecular electrostatic potential (MEP), thermodynamic and electronic properties, HOMO-LUMO energies and Mulliken atomic charges, are performed.

  5. Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation.

    PubMed Central

    Russell, J B

    1991-01-01

    Streptococcus bovis JB1, an acid-tolerant ruminal bacterium, was able to grow at pHs from 6.7 to 4.5, and 100 mM acetate had little effect on growth rate or proton motive force across the cell membrane. When S. bovis was grown in glucose-limited chemostats at pH 5.2, the addition of sodium acetate (as much as 100 mM) had little effect on the production of bacterial protein. At higher concentrations of sodium acetate (100 to 360 mM), production of bacterial protein declined, but this decrease could largely be explained by a shift in fermentation products (acetate, formate, and ethanol production to lactate production) and a decline in ATP production (3 ATP per glucose versus 2 ATP per glucose). YATP (grams of cells per mole of ATP) was not decreased significantly even by high concentrations of acetate. Cultures supplemented with 100 mM sodium acetate took up [14C]acetate and [14C]benzoate in accordance with the Henderson-Hasselbalch equation and gave similar estimates of intracellular pH. As the extracellular pH declined, S. bovis allowed its intracellular pH to decrease and maintained a relatively constant pH gradient across the cell membrane (0.9 unit). The decrease in intracellular pH prevented S. bovis from accumulating large amounts of acetate anion. On the basis of these results it did not appear that acetate was acting as an uncoupler. The sensitivity of other bacteria to volatile fatty acids at low pH is explained most easily by a high transmembrane pH gradient and anion accumulation. PMID:2036013

  6. Corynebacterium jeikeium jk0268 Constitutes for the 40 Amino Acid Long PorACj, Which Forms a Homooligomeric and Anion-Selective Cell Wall Channel

    PubMed Central

    Norouzy, Amir; Schulz, Robert; Nau, Werner M.; Kleinekathöfer, Ulrich; Tauch, Andreas; Benz, Roland

    2013-01-01

    Corynebacterium jeikeium, a resident of human skin, is often associated with multidrug resistant nosocomial infections in immunodepressed patients. C. jeikeium K411 belongs to mycolic acid-containing actinomycetes, the mycolata and contains a channel-forming protein as judged from reconstitution experiments with artificial lipid bilayer experiments. The channel-forming protein was present in detergent treated cell walls and in extracts of whole cells using organic solvents. A gene coding for a 40 amino acid long polypeptide possibly responsible for the pore-forming activity was identified in the known genome of C. jeikeium by its similar chromosomal localization to known porH and porA genes of other Corynebacterium strains. The gene jk0268 was expressed in a porin deficient Corynebacterium glutamicum strain. For purification temporarily histidine-tailed or with a GST-tag at the N-terminus, the homogeneous protein caused channel-forming activity with an average conductance of 1.25 nS in 1M KCl identical to the channels formed by the detergent extracts. Zero-current membrane potential measurements of the voltage dependent channel implied selectivity for anions. This preference is according to single-channel analysis caused by some excess of cationic charges located in the channel lumen formed by oligomeric alpha-helical wheels. The channel has a suggested diameter of 1.4 nm as judged from the permeability of different sized hydrated anions using the Renkin correction factor. Surprisingly, the genome of C. jeikeium contained only one gene coding for a cell wall channel of the PorA/PorH type found in other Corynebacterium species. The possible evolutionary relationship between the heterooligomeric channels formed by certain Corynebacterium strains and the homooligomeric pore of C. jeikeium is discussed. PMID:24116064

  7. Studies of oxide anions

    NASA Astrophysics Data System (ADS)

    Castleman, A. W., Jr.

    1991-06-01

    Several metal and metal oxide anion sources were used to investigate the formation and reactivity of species of relevance to the AFGL program. A new class of reactions were identified between anions of the form H(x)M(y)O(z) for several metals including M=W, Ta, Ti, Mo, and HCl. The reactions have analogy to acid-base reactions. In another series of experiments, reactions of Al(n)(-), and these clusters bound with V and or Nb, with O2 were investigated. It was found that the Jellium model, though by no means a compendious concept, provides a good guide to the electronic structure of clusters and their general patterns of reactivity.

  8. A combined theoretical and experimental study on the oxidation of fulvic acid by the sulfate radical anion.

    PubMed

    Gara, Pedro M David; Bosio, Gabriela N; Gonzalez, Mónica C; Russo, Nino; Del Carmen Michelini, Maria; Diez, Reinaldo Pis; Mártire, Daniel O

    2009-07-01

    The kinetics of the reaction of sulfate radicals with the IHSS Waskish peat fulvic acid in water was investigated in the temperature range from 289.2 to 305.2 K. The proposed mechanism considers the reversible binding of the sulfate radicals by the fulvic acid. The kinetic analysis of the data allows the determination of the thermodynamic parameters DeltaG degrees = -10.2 kcal mol(-1), DeltaH degrees = -16 kcal mol(-1) and DeltaS degrees = -20.3 cal K(-1) mol(-1) for the reversible association at 298.2 K. Theoretical (DFT) calculations performed with the Buffle model of the fulvic acids support the formation of H-bonded adducts between the inorganic radicals and the humic substances. The experimental enthalpy change compares well with the theoretical values found for some of the investigated adducts. PMID:19582275

  9. Activation of microglia with zymosan promotes excitatory amino acid release via volume-regulated anion channels: the role of NADPH oxidases

    PubMed Central

    Harrigan, Timothy J.; Abdullaev, Iskandar F.; Jourd'heuil, David; Mongin, Alexander A.

    2008-01-01

    Microglia are the resident immune cells of the CNS, which are important for preserving neural tissue functions, but may also contribute to neurodegeneration. Activation of these cells in infection, inflammation, or trauma leads to the release of various toxic molecules, including reactive oxygen species (ROS) and the excitatory amino acid glutamate. In this study we used an electrophysiological approach and a D-[3H]aspartate (glutamate) release assay to explore the ROS-dependent regulation of glutamate-permeable volume-regulated anion channels (VRACs). Exposure of rat microglia to hypoosmotic media stimulated Cl− currents and D-[3H]aspartate release, both of which were inhibited by the selective VRAC blocker DCPIB. Exogenously applied H2O2 potently increased swelling-activated glutamate release. Stimulation of microglia with zymosan triggered production of endogenous ROS and strongly enhanced glutamate release via VRAC in swollen cells. The effects of zymosan were attenuated by the ROS scavenger MnTMPyP, and by two inhibitors of NADPH oxidase (NOX) diphenyliodonium and thioridazine. However, zymosan-stimulated glutamate release was insensitive to other NOX blockers, apocynin and AEBSF. This pharmacological profile pointed to the potential involvement of apocynin-insensitive NOX4. Using RT-PCR we confirmed that NOX4 is expressed in rat microglial cells, along with NOX1 and NOX2. To check for potential involvement of phagocytic NOX2 we stimulated this isoform using protein kinase C (PKC) activator PMA, or inhibited it with the broad spectrum PKC blocker Gö6983. Both agents potently modulated endogenous ROS production by NOX2, but not VRAC activity. Taken together, these data suggest that the anion channel VRAC may contribute to microglial glutamate release, and that its activity is regulated by endogenous ROS originating from NOX4. PMID:18624925

  10. Slow magnetic relaxation in four square-based pyramidal dysprosium hydroxo clusters ligated by chiral amino acid anions - a comparative study.

    PubMed

    Thielemann, Dominique T; Wagner, Anna T; Lan, Yanhua; Anson, Christopher E; Gamer, Michael T; Powell, Annie K; Roesky, Peter W

    2013-10-01

    The synthesis and characterization of three chiral and one achiral amino acid anion ligated dysprosium hydroxo clusters [Dy5(OH)5(α-AA)4(Ph2acac)6] (α-AA = d-PhGly, l-Pro, l-Trp, Ph2Gly; Ph2acac = dibenzoylmethanide) are reported. The solid state structures were determined using single crystal X-ray diffraction and show that five Dy(iii) ions are arranged in a square-based pyramidal geometry with NO7-donor-sets for the basal and O8-donor-sets for the apical Dy atom. Both static (dc) and dynamic (ac) magnetic properties were investigated for all four compounds and show a slow relaxation of magnetization, indicative of single molecule magnet (SMM) behaviour below 10 K in all cases. The similar SMM behaviour observed for all four compounds suggests that the very similar coordination geometries seen for the dysprosium atoms in all members of this family, which are independent of the amino acid ligand used, play a decisive role in steering the contribution of the single ion anisotropies to the observed magnetic relaxation. PMID:23986134

  11. Short-chain aliphatic ester synthesis using Thermobifida fusca cutinase.

    PubMed

    Su, Lingqia; Hong, Ruoyu; Guo, Xiaojie; Wu, Jing; Xia, Yongmei

    2016-09-01

    Short-chain aliphatic esters are commonly used as fruit flavorings in the food industry. In this study, Thermobifida fusca (T. fusca) cutinase was used for the synthesis of aliphatic esters, and the maximum yield of ethyl caproate reached 99.2% at a cutinase concentration of 50U/ml, 40°C, and water content of 0.5%, representing the highest ester yield to date. The cutinase-catalyzed esterification displayed strong tolerance for water content (up to 8%) and acid concentration (up to 0.8M). At substrate concentrations ⩽0.8M, the ester yield remained above 80%. Moreover, ester yields of more than 98% and 95% were achieved for acids of C3-C8 and alcohols of C1-C6, respectively, indicating extensive chain length selectivity of the cutinase. These results demonstrate the superior ability of T. fusca cutinase to catalyze the synthesis of short-chain esters. This study provides the basis for industrial production of short-chain esters using T. fusca cutinase. PMID:27041308

  12. Fluorescence properties and sequestration of peripheral anionic site specific ligands in bile acid hosts: Effect on acetylcholinesterase inhibition activity.

    PubMed

    Islam, Mullah Muhaiminul; Aguan, Kripamoy; Mitra, Sivaprasad

    2016-05-01

    The increase in fluorescence intensity of model acetyl cholinesterase (AChE) inhibitors like propidium iodide (PI) and ethidium bromide (EB) is due to sequestration of the probes in primary micellar aggregates of bile acid (BA) host medium with moderate binding affinity of ca. 10(2)-10(3)M(-1). Multiple regression analysis of solvent dependent fluorescence behavior of PI indicates the decrease in total nonradiative decay rate due to partial shielding of the probe from hydrogen bond donation ability of the aqueous medium in bile acid bound fraction. Both PI and EB affects AChE activity through mixed inhibition and consistent with one site binding model; however, PI (IC50=20±1μM) shows greater inhibition in comparison with EB (IC50=40±3μM) possibly due to stronger interaction with enzyme active site. The potency of AChE inhibition for both the compounds is drastically reduced in the presence of bile acid due to the formation of BA-inhibitor complex and subsequent reduction of active inhibitor fraction in the medium. Although the inhibition mechanism still remains the same, the course of catalytic reaction critically depends on equilibrium binding among several species present in the solution; particularly at low inhibitor concentration. All the kinetic parameters for enzyme inhibition reaction are nicely correlated with the association constant for BA-inhibitor complex formation. PMID:26974580

  13. Understanding and modeling removal of anionic organic contaminants (AOCs) by anion exchange resins.

    PubMed

    Zhang, Huichun; Shields, Anthony J; Jadbabaei, Nastaran; Nelson, Maurice; Pan, Bingjun; Suri, Rominder P S

    2014-07-01

    Ionic organic contaminants (OCs) are a growing concern for water treatment and the environment and are removed inefficiently by many existing technologies. This study examined removal of anionic OCs by anion exchange resins (AXRs) as a promising alternative. Results indicate that two polystyrene AXRs (IRA910 and IRA96) have higher sorption capacities and selectivity than a polyacrylate resin (A860). For the polystyrene resins, selectivity follows: phenolates ≥ aromatic dicarboxylates > aromatic monocarboxylates > benzenesulfonate > aliphatic carboxylates. This trend can be explained based on hydration energy, the number of exchange groups, and aromaticity and hydrophobicity of the nonpolar moiety (NPM) of the anions. For A860, selectivity only varies within a narrow range (0.13-1.64). Despite the importance of the NPM of the anions, neutral solutes were sorbed much less, indicating synergistic combinations of electrostatic and nonelectrostatic interactions in the overall sorption. By conducting multiple linear regression between Abraham's descriptors and nature log of selectivity, induced dipole-related interactions and electrostatic interactions were found to be the most important interaction forces for sorption of the anions, while solute H-bond basicity has a negative effect. A predictive model was then developed for carboxylates and phenolates based on the poly parameter linear free energy relationships established for a diverse range of 16 anions and 5 neutral solutes, and was validated by accurate prediction of sorption of five test solutes within a wide range of equilibrium concentrations and that of benzoate at different pH. PMID:24877792

  14. Effect of dietary cation-anion difference on ruminal metabolism, total apparent digestibility, blood and renal acid-base regulation in lactating dairy cows.

    PubMed

    Martins, C M M R; Arcari, M A; Welter, K C; Gonçalves, J L; Santos, M V

    2016-01-01

    The present study aimed to evaluate the effect of dietary cation-anion difference (DCAD) on ruminal fermentation, total apparent digestibility, blood and renal metabolism of lactating dairy cows. Sixteen Holstein cows were distributed in four contemporary 4×4 Latin Square designs, which consisted of four periods of 21 days and four treatments according to DCAD: +290; +192; +98 and -71 milliequivalent (mEq)/kg dry matter (DM). Ruminal pH and concentrations of acetic and butyric acid increased linearly according to the increase of DCAD. Similarly, NDF total apparent digestibility linearly increased by 6.38% when DCAD increased from -71 to 290 mEq/kg DM [Y=65.90 (SE=2.37)+0.0167 (SE=0.0068)×DCAD (mEq/kg DM)]. Blood pH was also increased according to DCAD, which resulted in reduction of serum concentrations of Na, K and ionic calcium (iCa). To maintain the blood acid-base homeostasis, renal metabolism played an important role in controlling serum concentrations of Na and K, since the Na and K urinary excretion increased linearly by 89.69% and 46.06%, respectively, from -71 to 290 mEq/kg DM. Changes in acid-base balance of biological fluids may directly affect the mineral composition of milk, as milk concentrations of Na, K, iCa and chlorides were reduced according to blood pH increased. Thus, it can be concluded that the increase of DCAD raises the pH of ruminal fluid, NDF total apparent digestibility, and blood pH, and decreases the milk concentration of cationic minerals, as well as the efficiency of Na utilization to milk production. PMID:26289745

  15. Elution of Re-188 from W-188/Re-188 generators with salts of weak acids permits efficient concentration to low volumes using a new tandem cation/anion exchange system

    SciTech Connect

    Guhlke, S. |; Beets, A.L.; Knapp, F.F. Jr.

    1997-05-01

    Re-188, available from a W-188/Re-188 generator, is an important therapeutic radioisotope for bone pain palliation, cancer therapy and intravascular brachytherapy, etc. Because of the relatively low specific activity of reactor-produced W-188 (ORNL HFIR, 296-370 MBq mCi/mg W-186 for 2 cycles), methods of concentrating the Re-188 bolus (10-12 mL) from clinical scale (18.5-37 BGq W-188) generators (5-6 gm alumina) are thus very important. We demonstrate for the first time a new strategy of generator elution with salts of weak acids and specific perrhenate anion {open_quotes}trapping{close_quotes} with QMA anion columns. Re-188 perrhenate is efficiently eluted (65-75%) from the alumina-based generator with 0.15-0.3 M ammonium acetate. An acetic acid solution of Re-188 perrhenic acid is obtained by subsequent on-line passage of the generator eluant through a DOWEX AG 50Wx8 (200-400 mesh, H{sup +} form) column. Since acetic acid is not ionized (< 0.001%) at this pH (< pK{sub a} = 4.76) the perrhenate anion is then specifically trapped on a QMA {open_quotes}Light{close_quotes} anion extraction column. QMA elution with 0.9% NaCl, provides Re-188 perrhenate solution in <1 mL. Concentration of 10-20 mL of Re-188 solution (> 15 BGq) in <1 mL has been demonstrated using this simple new approach, which is also effective for concentration of Tc-99m from low specific activity Mo-99 (n,y) generators. The cation/anion tandem system is inexpensive and disposable and use can be easily automated. The availability of this very simple, efficient system is important for broad use of rhenium-188.

  16. Bound anionic states of adenine

    SciTech Connect

    Haranczyk, Maciej; Gutowski, Maciej S; Li, Xiang; Bowen, Kit H

    2007-03-20

    Anionic states of nucleic acid bases are involved in DNA damage by low-energy electrons and in charge transfer through DNA. Previous gas phase studies of free, unsolvated nucleic acid base parent anions probed only dipole-bound states, which are not present in condensed phase environments, but did not observe valence anionic states, which for purine bases, are thought to be adiabatically unbound. Contrary to this expectation, we have demonstrated that some thus far ignored tautomers of adenine, which result from enamine-imine transformations, support valence anionic states with electron vertical detachment energies as large as 2.2 eV, and at least one of these anionic tautomers is adiabatically bound. Moreover, we predict that the new anionic tautomers should also dominate in solutions and should be characterized by larger values of electron vertical detachment energy than the canonical valence anion. All of the new-found anionic tautomers might be formed in the course of dissociative electron attachment followed by a hydrogen atom attachment to a carbon atom, and they might affect the structure and properties of DNA and RNA exposed to low-energy electrons. The discovery of these valence anionic states of adenine was facilitated by the development of: (i) a new experimental method for preparing parent anions of nucleic acid bases for photoelectron experiments, and (ii) a new combinatorial/ quantum chemical approach for identification of the most stable tautomers of organic molecules. The computational portion of this work was supported by the: (i) Polish State Committee for Scientific Research (KBN) Grants: DS/8000-4-0140-7 (M.G.) and N204 127 31/2963 (M.H.), (ii) European Social Funds (EFS) ZPORR/2.22/II/2.6/ARP/U/2/05 (M.H.), and (iii) US DOE Office of Biological and Environmental Research, Low Dose Radiation Research Program (M.G.). M.H. holds the Foundation for Polish Science (FNP) award for young scientists. The calculations were performed at the Academic

  17. Enzymatic degradation of aliphatic nitriles by Rhodococcus rhodochrous BX2, a versatile nitrile-degrading bacterium.

    PubMed

    Fang, Shumei; An, Xuejiao; Liu, Hongyuan; Cheng, Yi; Hou, Ning; Feng, Lu; Huang, Xinning; Li, Chunyan

    2015-06-01

    Nitriles are common environmental pollutants, and their removal has attracted increasing attention. Microbial degradation is considered to be the most acceptable method for removal. In this work, we investigated the biodegradation of three aliphatic nitriles (acetonitrile, acrylonitrile and crotononitrile) by Rhodococcus rhodochrous BX2 and the expression of their corresponding metabolic enzymes. This organism can utilize all three aliphatic nitriles as sole carbon and nitrogen sources, resulting in the complete degradation of these compounds. The degradation kinetics were described using a first-order model. The degradation efficiency was ranked according to t1/2 as follows: acetonitrile>trans-crotononitrile>acrylonitrile>cis-crotononitrile. Only ammonia accumulated following the three nitriles degradation, while amides and carboxylic acids were transient and disappeared by the end of the assay. mRNA expression and enzyme activity indicated that the tested aliphatic nitriles were degraded via both the inducible NHase/amidase and the constitutive nitrilase pathways, with the former most likely preferred. PMID:25746475

  18. 40 CFR 721.10534 - Brominated aliphatic alcohol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated aliphatic alcohol (generic... Specific Chemical Substances § 721.10534 Brominated aliphatic alcohol (generic). (a) Chemical substance and... aliphatic alcohol (PMN P-12-260) is subject to reporting under this section for the significant new...

  19. 40 CFR 721.10534 - Brominated aliphatic alcohol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated aliphatic alcohol (generic... Specific Chemical Substances § 721.10534 Brominated aliphatic alcohol (generic). (a) Chemical substance and... aliphatic alcohol (PMN P-12-260) is subject to reporting under this section for the significant new...

  20. 40 CFR 721.3520 - Aliphatic polyglycidyl ether.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic polyglycidyl ether. 721.3520... Substances § 721.3520 Aliphatic polyglycidyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance aliphatic polyglycidyl ether (PMN P-89-1036) is subject...

  1. 40 CFR 721.3520 - Aliphatic polyglycidyl ether.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic polyglycidyl ether. 721.3520... Substances § 721.3520 Aliphatic polyglycidyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance aliphatic polyglycidyl ether (PMN P-89-1036) is subject...

  2. Novel use of positively charged nylon transfer membranes for trapping indoleacetic acid or other small anions during efflux from plant tissues

    NASA Technical Reports Server (NTRS)

    Evans, M. L.; Hangarter, R. P.

    1993-01-01

    Positively charged nylon blotting membranes were used as an anion binding medium to trap [14C]indoleactic acid (IAA) as it exited cells at the basal ends of Coleus blumei L. stem and Zea mays L. coleoptile segments. Autoradiography was used to visualize where the [14C] that moved out of the cut ends was localized on the nylon membrane. Diffusion of [14C]IAA from the initial point of contact with the nylon membrane was minimal. Comparison of the autoradiograms with anatomical tissue prints of the cut ends of the segments was used to determine what tissues participate in IAA movement. The results of these initial studies were consistent with other reports suggesting that [14C]IAA movement was primarily associated with vascular tissues in both C. blumei stems and corn coleoptiles, but the resolution was not sufficient to identify which vascular tissues were involved in IAA transport. With further refinements, this technique could also be used for studying the movement of other small charged molecules through plant tissues.

  3. Adsorption affinity of anions on metal oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.

    2013-03-01

    The dependences of anion (phosphate, carbonate, sulfate, chromate, oxalate, tartrate, and citrate) adsorption affinity anions from geometric characteristics, acid-base properties, and complex forming ability are generalized. It is shown that adsorption depends on the nature of both the anions and the ionic medium and adsorbent. It is established that anions are generally grouped into the following series of adsorption affinity reduction: PO{4/3-}, CO{3/2-} > C2O{4/2-}, C(OH)(CH2)2(COO){3/3-}, (CHOH)2(COO){2/2-} > CrO{4/2-} ≫ SO{4/2-}.

  4. Covalent and non-covalent binding in the ion/ion charge inversion of peptide cations with benzene-disulfonic acid anions.

    PubMed

    Stutzman, John R; Luongo, Carl A; McLuckey, Scott A

    2012-06-01

    Protonated angiotensin II and protonated leucine enkephalin-based peptides, which included YGGFL, YGGFLF, YGGFLH, YGGFLK and YGGFLR, were subjected to ion/ion reactions with the doubly deprotonated reagents 4-formyl-1,3-benzenedisulfonic acid (FBDSA) and 1,3-benzenedisulfonic acid (BDSA). The major product of the ion/ion reaction is a negatively charged complex of the peptide and reagent. Following dehydration of [M + FBDSA-H](-) via collisional-induced dissociation (CID), angiotensin II (DRVYIHPF) showed evidence for two product populations, one in which a covalent modification has taken place and one in which an electrostatic modification has occurred (i.e. no covalent bond formation). A series of studies with model systems confirmed that strong non-covalent binding of the FBDSA reagent can occur with subsequent ion trap CID resulting in dehydration unrelated to the adduct. Ion trap CID of the dehydration product can result in cleavage of amide bonds in competition with loss of the FBDSA adduct. This scenario is most likely for electrostatically bound complexes in which the peptide contains both an arginine residue and one or more carboxyl groups. Otherwise, loss of the reagent species from the complex, either as an anion or as a neutral species, is the dominant process for electrostatically bound complexes. The results reported here shed new light on the nature of non-covalent interactions in gas phase complexes of peptide ions that can be used in the rationale design of reagent ions for specific ion/ion reaction applications. PMID:22707160

  5. Renaissance of Aliphatic Polycarbonates: New Techniques and Biomedical Applications

    PubMed Central

    Xu, Jianwen; Feng, Ellva; Song, Jie

    2014-01-01

    Aliphatic polycarbonates were discovered a long time ago, with their conventional applications mostly limited to low molecular weight oligomeric intermediates for copolymerization with other polymers. Recent developments in polymerization techniques have overcome the difficulty in preparing high molecular weight aliphatic polycarbonates. These in turn, along with new functional monomers, have enabled the preparation of a wide range of aliphatic polycarbonates with diverse chemical compositions and structures. This review summarizes the latest polymerization techniques for preparing well-defined functional aliphatic polycarbonates, as well as the new applications of those aliphatic polycarbonates, esecially in the biomedical field. PMID:24994939

  6. Oxidation of Gas-Phase SO2 on the Surfaces of Acidic Microdroplets: Implications for Sulfate and Sulfate Radical Anion Formation in the Atmospheric Liquid Phase.

    PubMed

    Hung, Hui-Ming; Hoffmann, Michael R

    2015-12-01

    The oxidation of SO2(g) on the interfacial layers of microdroplet surfaces was investigated using a spray-chamber reactor coupled to an electrospray ionization mass spectrometer. Four major ions, HSO3(-), SO3(•-), SO4(•-) and HSO4(-), were observed as the SO2(g)/N2(g) gas-mixture was passed through a suspended microdroplet flow, where the residence time in the dynamic reaction zone was limited to a few hundred microseconds. The relatively high signal intensities of SO3(•-), SO4(•-), and HSO4(-) compared to those of HSO3(-) as observed at pH < 3 without addition of oxidants other than oxygen suggests an efficient oxidation pathway via sulfite and sulfate radical anions on droplets possibly via the direct interfacial electron transfer from HSO3(-) to O2. The concentrations of HSO3(-) in the aqueous aerosol as a function of pH were controlled by the deprotonation of hydrated sulfur dioxide, SO2·H2O, which is also affected by the pH dependent uptake coefficient. When H2O2(g) was introduced into the spray chamber simultaneously with SO2(g), HSO3(-) is rapidly oxidized to form bisulfate in the pH range of 3 to 5. Conversion to sulfate was less at pH < 3 due to relatively low HSO3(-) concentration caused by the fast interfacial reactions. The rapid oxidation of SO2(g) on the acidic microdroplets was estimated as 1.5 × 10(6) [S(IV)] (M s(-1)) at pH ≤ 3. In the presence of acidic aerosols, this oxidation rate is approximately 2 orders of magnitude higher than the rate of oxidation with H2O2(g) at a typical atmospheric H2O2(g) concentration of 1 ppb. This finding highlights the relative importance of the acidic surfaces for SO2 oxidation in the atmosphere. Surface chemical reactions on aquated aerosol surfaces, as observed in this study, are overlooked in most atmospheric chemistry models. These reaction pathways may contribute to the rapid production of sulfate aerosols that is often observed in regions impacted by acidic haze aerosol such as Beijing and other

  7. Methane production, oxidation and emission in United Kingdom peatlands and the effect of anions from acid rain

    NASA Astrophysics Data System (ADS)

    Watson, Andrea

    The production, oxidation and emission of methane in UK peatlands was investigated. The main field study site was Ellergower Moss, Dumfriesshire where the peat was characterised by hollows (water-filled depressions) and hummocks (raised vegetative areas). The pathways of carbon flow in peat under hummocks and hollows were determined and compared on a seasonal basis. Methane emissions were significantly greater from hollows than hummocks (0.88 mols and 0.07 mols CH4 m-2 y-1 respectively). Methane emission rates varied seasonally e.g. for hollows were 0.04 mmols CH4 m-2 d-1 for January and 2.3 mmols CH4 m-2 d-1 for June. Methane emissions were modulated by biological methane oxidation by 0% of methane produced in the winter months, increasing during spring until 97% of methane produced was oxidised in the summer months. Both methane oxidation and methanogenesis were strongly temperature dependant with Q10 values of 2.2 and 16, respectively. Rates of methane oxidation potential (MOP) were greatest between 4-8 cm depths below the level of the water table, and were located above the most active zone of methanogenesis (8-16 cm depths below the water table levels). This enabled vertically diffusing methane to be utilised by methanotrophic bacteria, providing a very efficient filter for methane. Methanogenesis was limited by hydrogen availability in the peat, but not by acetate, suggesting that methane was produced by hydrogenophilic methanogenic bacteria (MB), rather than acetate utilising MB. Acid rain pollutants were found to significantly affect carbon flow, with sulphate deposition causing a seasonal inhibition in methanogenesis. Carbon flow predominated through sulphate reduction in the winter and spring months (sulphate reduction to methane production ratio was 1008 and 189, for hummocks and hollows respectively) when sulphate was freely available and when temperatures were low. During the summer when temperatures increased and sulphate became limited carbon flow

  8. Fluoro- and perfluoralkylsulfonylpentafluoroanilides: synthesis and characterization of NH acids for weakly coordinating anions and their gas-phase and solution acidities.

    PubMed

    Kögel, Julius F; Linder, Thomas; Schröder, Fabian G; Sundermeyer, Jörg; Goll, Sascha K; Himmel, Daniel; Krossing, Ingo; Kütt, Karl; Saame, Jaan; Leito, Ivo

    2015-04-01

    Fluoro- and perfluoralkylsulfonyl pentafluoroanilides [HN(C6F5)(SO2X); X = F, CF3, C4F9, C8F17] are a class of imides with two different strongly electron-withdrawing substituents attached to a nitrogen atom. They are NH acids, the unsymmetrical hybrids of the well-known symmetrical bissulfonylimides and bispentafluorophenylamine. The syntheses, the structures of these perfluoroanilides, their solvates, and some selected lithium salts give rise to a structural variety beyond the symmetrical parent compounds. The acidities of representative subsets of these novel NH acids have been investigated experimentally and quantum-chemically and their gas-phase acidities (GAs) are reported, as well as the pKa values of these compounds in acetonitrile (MeCN) and DMSO solution. In quantum chemical investigations with the vertical and relaxed COSMO cluster-continuum models (vCCC/rCCC), the unusual situation is encountered that the DMSO-solvated acid Me2SO-H-N(SO2CF3)2, optimized in the gas phase (vCCC model), dissociates to Me2SO-H(+)-N(SO2CF3)2(-) during structural relaxation and full optimization with the solvation model turned on (rCCC model). This proton transfer underlines the extremely high acidity of HN(SO2CF3)2. The importance of this effect is studied computationally in DMSO and MeCN solution. Usually this effect is less pronounced in MeCN and is of higher importance in the more basic solvent DMSO. Nevertheless, the neglect of the structural relaxation upon solvation causes typical changes in the computational pKa values of 1 to 4 orders of magnitude (4-20 kJ mol(-1)). The results provide evidence that the published experimental DMSO pKa value of HN(SO2CF3)2 should rather be interpreted as the pKa of a Me2SO-H(+)-N(SO2CF3)2(-) contact ion pair. PMID:25727401

  9. Photolysis of aryl chlorides with aliphatic amines

    SciTech Connect

    Bunce, N.J.

    1982-05-07

    Kinetic arguments show that the aliphatic amine assisted photodechlorinations of chlorides of the benzene, naphthalene, and biphenyl series take place mainly from the triplet excited state. Deuterium labeling studies have been used to determine the origin of the hydrogen atom which replaces chlorine when 4-chlorobiphenyl is photoreduced. Three pathways are inferred: hydrogen abstraction from the solvent and protonation both within the exciplex (or radical ion pair) and by external proton donors.

  10. Individual biotransformation rates in chlorinated aliphatic mixtures

    SciTech Connect

    Hughes, J.B.; Parkin, G.F.

    1996-02-01

    Anaerobic biotransformation of chlorinated aliphatics has been widely studied over the past decade, and anaerobic bioremediation is considered a promising technique for restoration of contaminated aquifers. Studies using batch cultures and continuously fed attached-growth systems investigated the effect of mixtures of chlorinated aliphatics on the anaerobic biotransformation rates of individual components of the mixture. Dichloromethane (DCM), chloroform (CF), and 1,1,1-trichloroethane (TCA) were selected for study because of their frequent detection in groundwater. Biotransformation of CF and TCA occurred in all systems. When CF and TCA were fed together, transformation rates for both aliphatics were lower than when fed individually. DCM generally had minor to negligible effects on the transformation of CF and TCA, but in one case, it caused a slight but statistically significant decrease in TCA transformation (p = 0.05). DCM transformation was not observed when fed individually or in mixtures to batch resting cultures, so the effect of CF and TCA on DCM transformation could not be determined.

  11. Ambident reactivities of pyridone anions.

    PubMed

    Breugst, Martin; Mayr, Herbert

    2010-11-01

    The kinetics of the reactions of the ambident 2- and 4-pyridone anions with benzhydrylium ions (diarylcarbenium ions) and structurally related Michael acceptors have been studied in DMSO, CH(3)CN, and water. No significant changes of the rate constants were found when the counterion was varied (Li(+), K(+), NBu(4)(+)) or the solvent was changed from DMSO to CH(3)CN, whereas a large decrease of nucleophilicity was observed in aqueous solution. The second-order rate constants (log k(2)) correlated linearly with the electrophilicity parameters E of the electrophiles according to the correlation log k(2) = s(N + E) (Angew. Chem., Int. Ed. Engl. 1994, 33, 938-957), allowing us to determine the nucleophilicity parameters N and s for the pyridone anions. The reactions of the 2- and 4-pyridone anions with stabilized amino-substituted benzhydrylium ions and Michael acceptors are reversible and yield the thermodynamically more stable N-substituted pyridones exclusively. In contrast, highly reactive benzhydrylium ions (4,4'-dimethylbenzhydrylium ion), which react with diffusion control, give mixtures arising from N- and O-attack with the 2-pyridone anion and only O-substituted products with the 4-pyridone anion. For some reactions, rate and equilibrium constants were determined in DMSO, which showed that the 2-pyridone anion is a 2-4 times stronger nucleophile, but a 100 times stronger Lewis base than the 4-pyridone anion. Quantum chemical calculations at MP2/6-311+G(2d,p) level of theory showed that N-attack is thermodynamically favored over O-attack, but the attack at oxygen is intrinsically favored. Marcus theory was employed to develop a consistent scheme which rationalizes the manifold of regioselectivities previously reported for the reactions of these anions with electrophiles. In particular, Kornblum's rationalization of the silver ion effect, one of the main pillars of the hard and soft acid/base concept of ambident reactivity, has been revised. Ag(+) does not

  12. A co-crystal of nona-hydrated disodium(II) with mixed anions from m-chloro-benzoic acid and furosemide.

    PubMed

    London, Bianca King; Claville, Michelle O Fletcher; Babu, Sainath; Fronczek, Frank R; Uppu, Rao M

    2015-10-01

    In the title compound, [Na2(H2O)9](C7H4ClO2)(C12H10ClN2O5S) {systematic name: catena-poly[[[triaquasodium(I)]-di-μ-aqua-[triaquasodium(I)]-μ-aqua] 3-chlorobenzoate 4-chloro-2-[(furan-2-ylmethyl)amino]-5-sulfamoylbenzoate]}, both the original m-chloro-benzoic acid and furosemide exist with deprotonated carboxyl-ates, and the sodium cations and water mol-ecules exist in chains with stoichiometry [Na2(OH2)9](2+) that propagate in the [-110] direction. Each of the two independent Na(+) ions is coordinated by three monodentate water mol-ecules, two double-water bridges, and one single-water bridge. There is considerable cross-linking between the [Na2(OH2)9](2+) chains and to furosemide sulfonamide and carboxyl-ate by inter-molecular O-H⋯O hydrogen bonds. All hydrogen-bond donors participate in a complex two-dimensional array parallel to the ab plane. The furosemide NH group donates an intra-molecular hydrogen bond to the carboxyl-ate group, and the furosemide NH2 group donates an intra-molecular hydrogen bond to the Cl atom and an inter-molecular one to the m-chloro-benzoate O atom. The plethora of hydrogen-bond donors on the cation/water chain leads to many large rings, up to graph set R 4 (4)(24), involving two chains and two furosemide anions. The chloro-benzoate is involved in only one R 2 (2)(8) ring, with two water mol-ecules cis-coordinated to Na. The furan O atom is not hydrogen bonded. PMID:26594422

  13. Identification and characterization of anion binding sites in RNA

    SciTech Connect

    Kieft, Jeffrey S.; Chase, Elaine; Costantino, David A.; Golden, Barbara L.

    2010-05-24

    Although RNA molecules are highly negatively charged, anions have been observed bound to RNA in crystal structures. It has been proposed that anion binding sites found within isolated RNAs represent regions of the molecule that could be involved in intermolecular interactions, indicating potential contact points for negatively charged amino acids from proteins or phosphate groups from an RNA. Several types of anion binding sites have been cataloged based on available structures. However, currently there is no method for unambiguously assigning anions to crystallographic electron density, and this has precluded more detailed analysis of RNA-anion interaction motifs and their significance. We therefore soaked selenate into two different types of RNA crystals and used the anomalous signal from these anions to identify binding sites in these RNA molecules unambiguously. Examination of these sites and comparison with other suspected anion binding sites reveals features of anion binding motifs, and shows that selenate may be a useful tool for studying RNA-anion interactions.

  14. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis.

    PubMed

    Chen, Sixue; Glawischnig, Erich; Jørgensen, Kirsten; Naur, Peter; Jørgensen, Bodil; Olsen, Carl-Erik; Hansen, Carsten H; Rasmussen, Hasse; Pickett, John A; Halkier, Barbara A

    2003-03-01

    Cytochromes P450 of the CYP79 family catalyze the conversion of amino acids to oximes in the biosynthesis of glucosinolates, a group of natural plant products known to be involved in plant defense and as a source of flavor compounds, cancer-preventing agents and bioherbicides. We report a detailed biochemical analysis of the substrate specificity and kinetics of CYP79F1 and CYP79F2, two cytochromes P450 involved in the biosynthesis of aliphatic glucosinolates in Arabidopsis thaliana. Using recombinant CYP79F1 and CYP79F2 expressed in Escherichia coli and Saccharomyces cerevisiae, respectively, we show that CYP79F1 metabolizes mono- to hexahomomethionine, resulting in both short- and long-chain aliphatic glucosinolates. In contrast, CYP79F2 exclusively metabolizes long-chain elongated penta- and hexahomomethionines. CYP79F1 and CYP79F2 are spatially and developmentally regulated, with different gene expression patterns. CYP79F2 is highly expressed in hypocotyl and roots, whereas CYP79F1 is strongly expressed in cotyledons, rosette leaves, stems, and siliques. A transposon-tagged CYP79F1 knockout mutant completely lacks short-chain aliphatic glucosinolates, but has an increased level of long-chain aliphatic glucosinolates, especially in leaves and seeds. The level of long-chain aliphatic glucosinolates in a transposon-tagged CYP79F2 knockout mutant is substantially reduced, whereas the level of short-chain aliphatic glucosinolates is not affected. Biochemical characterization of CYP79F1 and CYP79F2, and gene expression analysis, combined with glucosinolate profiling of knockout mutants demonstrate the functional role of these enzymes. This provides valuable insights into the metabolic network leading to the biosynthesis of aliphatic glucosinolates, and into metabolic engineering of altered aliphatic glucosinolate profiles to improve nutritional value and pest resistance. PMID:12609033

  15. Mass spectrometry study of the sublimation of aliphatic dipeptides

    NASA Astrophysics Data System (ADS)

    Badelin, V. G.; Tyunina, E. Yu.; Krasnov, A. V.; Tyunina, V. V.; Giricheva, N. I.; Girichev, A. V.

    2012-03-01

    The sublimation of glycyl-L-α-alanine (Gly-Ala), L-α-alanyl-L-α-alanine (Ala-Ala), and DL-α-alanyl-DL-α-valine (Ala-Val) aliphatic dipeptides is studied by electron ionization mass spectrometry in combination with Knudsen effusion. The temperature range in which substances sublime as monomer molecular forms is determined. Enthalpies of sublimation Δs H°( T) are determined for Gly-Ala, Ala-Ala, and Ala-Val. It is shown that the enthalpy of sublimation of dipeptides increases with an increase in the side hydrocarbon radical. The unknown Δs H°(298) values for 17 amino acids and nine dipeptides are estimated using the proposed "structure-property" correlation model, in which the geometry and electron characteristics of molecules are used as structural descriptors.

  16. Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase

    PubMed Central

    Chang, Wei-chen; Layne, Andrew P; Miles, Linde A; Krebs, Carsten

    2014-01-01

    Iron-dependent halogenases employ cis-halo-Fe(IV)-oxo (haloferryl) complexes to functionalize unactivated aliphatic carbon centers, a capability elusive to synthetic chemists. Halogenation requires (1) coordination of a halide anion (Cl− or Br−) to the enzyme's Fe(II) cofactor; (2) coupled activation of O2 and decarboxylation of α-ketoglutarate to generate the haloferryl intermediate; (3) abstraction of hydrogen (H•) from the substrate by the ferryl oxo group; and (4) transfer of the cis halogen as Cl• or Br• to the substrate radical. This enzymatic solution to an unsolved chemical challenge is potentially generalizable to installation of other functional groups, provided that the corresponding anions can support the four requisite steps. We show here that the wild-type halogenase SyrB2 can indeed direct aliphatic nitration and azidation reactions by the same chemical logic. The discovery and enhancement by mutagenesis of these previously unknown reaction types suggests unrecognized or untapped versatility in ferryl-mediated enzymatic C–H-bond activation. PMID:24463698

  17. Dendrimer-functionalized mesoporous silica as a reversed-phase/anion-exchange mixed-mode sorbent for solid phase extraction of acid drugs in human urine.

    PubMed

    Li, Yun; Yang, Jiajia; Huang, Chaonan; Wang, Longxing; Wang, Jincheng; Chen, Jiping

    2015-05-01

    A new dendrimer-functionalized mesoporous silica material based on large-pore 3D cubic Korea Advanced Institute of Science and Technology-6 (KIT-6) was synthesized by the growing of dendritic branches inside the mesopores of aminopropyl functionalized KIT-6. Detailed physical characterizations using transmission electron microscopy, nitrogen adsorption-desorption measurements, Fourier transform infrared (FTIR) spectroscopy, and elemental analysis reveal that the multifunctional dendrimers have been grown successfully within the confined spaces of mesopores. Although the 3D ordered mesoporous architecture of KIT-6 was well preserved, there was a significant and continuous decrease in pore size, specific surface area (SBET) and pore volume when increasing dendrimer generation up to six. In order to get a compromise between the SBET, pore size and density of functionalities, the dendrimer-functionalized KIT-6 (DF-KIT-6) for generation 2 (SBET, 314.2 m(2) g(-1); pore size, 7.9 nm; carbon and nitrogen contents, 19.80% and 1.92%) was selected for solid phase extraction (SPE) applications. The DF-KIT-6 was then evaluated as a reversed-phase/anion-exchange mixed-mode sorbent for extraction of the selected acidic drugs (ketoprofen, KEP; naproxen, NAP; and ibuprofen, IBU), since the dendrimers contained both hydrocarbonaceous and amine functionalities. The effective parameters on extraction efficiency such as sample pH and volume, type and volume of eluent and wash solvents were optimized. Under the optimized experimental conditions, the DF-KIT-6 based SPE coupled with HPLC-UV method demonstrated good sensitivity (0.4-4.6 ng mL(-1) detection of limits) and linearity (R(2)>0.990 for 10-2000 ng mL(-1) of KEP and IBU, and 1-200 ng mL(-1) of NAP). The potential use of DF-KIT-6 sorbent for preconcentration and cleanup of acid drugs in human urine samples was also demonstrated. Satisfactory recoveries at two spiking levels (30 and 300 ng mL(-1) for KEP and IBU, 3 and 30 ng mL(-1

  18. Potential for food-drug interactions by dietary phenolic acids on human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11).

    PubMed

    Wang, Li; Sweet, Douglas H

    2012-10-15

    Phenolic acids exert beneficial health effects such as anti-oxidant, anti-carcinogenic, and anti-inflammatory activities and show systemic exposure after consumption of common fruits, vegetables, and beverages. However, knowledge regarding which components convey therapeutic benefits and the mechanism(s) by which they cross cell membranes is extremely limited. Therefore, we determined the inhibitory effects of nine food-derived phenolic acids, p-coumaric acid, ferulic acid, gallic acid, gentisic acid, 4-hydroxybenzoic acid, protocatechuic acid, sinapinic acid, syringic acid, and vanillic acid, on human organic anion transporter 1 (hOAT1), hOAT3, and hOAT4. In the present study, inhibition of OAT-mediated transport of prototypical substrates (1 μM) by phenolic acids (100 μM) was examined in stably expressing cell lines. All compounds significantly inhibited hOAT3 transport, while just ferulic, gallic, protocatechuic, sinapinic, and vanillic acid significantly blocked hOAT1 activity. Only sinapinic acid inhibited hOAT4 (~35%). For compounds exhibiting inhibition > ~60%, known clinical plasma concentration levels and plasma protein binding in humans were examined to select compounds to evaluate further with dose-response curves (IC(50) values) and drug-drug interaction (DDI) index determinations. IC(50) values ranged from 1.24 to 18.08 μM for hOAT1 and from 7.35 to 87.36 μM for hOAT3. Maximum DDI indices for gallic and gentisic acid (≫0.1) indicated a very strong potential for DDIs on hOAT1 and/or hOAT3. This study indicates that gallic acid from foods or supplements, or gentisic acid from salicylate-based drug metabolism, may significantly alter the pharmacokinetics (efficacy and toxicity) of concomitant therapeutics that are hOAT1 and/or hOAT3 substrates. PMID:22877817

  19. Spreading coefficients of aliphatic hydrocarbons on water

    SciTech Connect

    Takii, Taichi; Mori, Y.H. . Dept. of Mechanical Engineering)

    1993-11-01

    Experiments have been performed to determine the equilibrium spreading coefficients of some aliphatic hydrocarbons (C[sub 6]C[sub 10]) on water. The thickness of a discrete lens of each hydrocarbon sample floating on a stagnant water pool was measured interferometrically and used to calculate the spreading coefficient of the hydrocarbon with the aid of Langmuir's capillarity theory. The dependences of the spreading coefficient, thus observed, on temperature (0--50 C) and on the number of carbon atoms in the hydrocarbon molecule are in qualitative agreement with the predictions based on the Lifshitz theory of van der Waals forces.

  20. Aliphatic hydrocarbons of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cronin, John R.; Pizzarello, Sandra

    1990-01-01

    Hydrocarbon fractions from the Murchison meteorite were prepared using benzene-methanol as the extraction solvent, fractionated on silica gel columns, and analyzed using gas chromatography combined with mass spectrometry and IR and NMR techniques. Results indicate that the most abundant aliphatic hydrocarbon components of the Murchison meteorite are C15 to C30 branched-alkyl-substituted mono-, di-, and tricyclic alkanes. It is shown that the n-alkanes, methyl alkanes, and isoprenoid alkanes that are sometimes found in extracts of the Murchison meteorite are terrestrial contaminants.

  1. Anion exchange membrane

    DOEpatents

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  2. The Antimicrobial Agent Fusidic Acid Inhibits Organic Anion Transporting Polypeptide-Mediated Hepatic Clearance and May Potentiate Statin-Induced Myopathy.

    PubMed

    Eng, Heather; Scialis, Renato J; Rotter, Charles J; Lin, Jian; Lazzaro, Sarah; Varma, Manthena V; Di, Li; Feng, Bo; West, Michael; Kalgutkar, Amit S

    2016-05-01

    Chronic treatment of methicillin-resistantStaphylococcus aureusstrains with the bacteriostatic agent fusidic acid (FA) is frequently associated with myopathy including rhabdomyolysis upon coadministration with statins. Because adverse effects with statins are usually the result of drug-drug interactions, we evaluated the inhibitory effects of FA against human CYP3A4 and clinically relevant drug transporters such as organic anion transporting polypeptides OATP1B1 and OATP1B3, multidrug resistant protein 1, and breast cancer resistance protein, which are involved in the oral absorption and/or systemic clearance of statins including atorvastatin, rosuvastatin, and simvastatin. FA was a weak reversible (IC50= 295 ± 1.0μM) and time-dependent (KI= 216 ± 41μM andkinact= 0.0179 ± 0.001 min(-1)) inhibitor of CYP3A4-catalyzed midazolam-1'-hydroxylase activity in human liver microsomes. FA demonstrated inhibition of multidrug resistant protein 1-mediated digoxin transport with an IC50value of 157 ± 1.0μM and was devoid of breast cancer resistance protein inhibition (IC50> 500μM). In contrast, FA showed potent inhibition of OATP1B1- and OATP1B3-specific rosuvastatin transport with IC50values of 1.59μM and 2.47μM, respectively. Furthermore, coadministration of oral rosuvastatin and FA to rats led to an approximately 19.3-fold and 24.6-fold increase in the rosuvastatin maximum plasma concentration and area under the plasma concentration-time curve, respectively, which could be potentially mediated through inhibitory effects of FA on rat Oatp1a4 (IC50= 2.26μM) and Oatp1b2 (IC50= 4.38μM) transporters, which are responsible for rosuvastatin uptake in rat liver. The potent inhibition of human OATP1B1/OATP1B3 by FA could attenuate hepatic uptake of statins, resulting in increased blood and tissue concentrations, potentially manifesting in musculoskeletal toxicity. PMID:26888941

  3. Anions in Cometary Comae

    NASA Technical Reports Server (NTRS)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  4. Sodium hypochlorite oxidation of petroleum aliphatic contaminants in calcareous soils.

    PubMed

    Picard, François; Chaouki, Jamal

    2016-02-01

    This research project investigated the sodium hypochlorite (NaClO) oxidation of aliphatic petroleum contaminants (C10-C50) in a calcareous soil (average 5473 ppm C10-C50, 15 wt% Ca), which had been excavated from a contaminated industrial site. The decontamination objective was to lower the C10-C50 concentration to 700 ppm. CO2 acidity was used in the project to boost the NaClO oxidation yield and seems to have played a role in desorbing the natural organic matter. The experimental conditions were a 2- to 16-h reaction time, at room temperature, with a 1 to 12.5 wt% NaClO oxidative solution and a fixed 2:1 solution-to-soil ratio. With a 3 wt% NaClO solution and with a CO2 overhead, the NaClO dosage requirement was maintained below 60 g NaClO/g of oxidized C10-C50 over the entire decontamination range. The strong chlorine smell remaining after the reaction was completed suggests that part of the NaClO requirement can be recycled. Except traces of chloroform, there were no regulation-listed organochloride contaminants detected on either the treated soil samples or leachates and the total count of chlorinated compounds in treated soil samples was below the detection limit of 250 mg/kg. The NaClO oxidation mechanism on aliphatic substrates might be triggered by transition metals, such as manganese, but no attempt has been made to investigate the oxidation mechanism. Further investigations would include a constant-fed NaClO system and other techniques to lower the required NaClO dosage. PMID:26702553

  5. Selective photometric method for the determination of aliphatic amines in air

    SciTech Connect

    Yarym-Agaeva, N.T.; Putilina, O.N.

    1986-09-01

    This paper presents a sensitive, selective, rapid and simple method to determine aliphatic amines in air that insures an operational analysis procedure. The authors used consecutive reactions with hypochlorite and iodide in the presence of starch, proposed for the determination of ethylamine and diethylamine in the liquid phase for the study of the kinetics of the hydrolysis of N-ethylmaleamic and N,N-diethylmaleamic acid. The method is selective in the presence of aromatic amines, isocyanates and ammonia.

  6. Multifunctional aliphatic polyester nanofibers for tissue engineering.

    PubMed

    Zhan, Jianan; Singh, Anirudha; Zhang, Zhe; Huang, Ling; Elisseeff, Jennifer H

    2012-01-01

    Electrospun fibers based on aliphatic polyesters, such as poly(ε-caprolactone) (PCL), have been widely used in regenerative medicine and drug delivery applications due to their biocompatibility, low cost and ease of fabrication. However, these aliphatic polyester fibers are hydrophobic in nature, resulting in poor wettability, and they lack functional groups for decorating the scaffold with chemical and biological cues. Current strategies employed to overcome these challenges include coating and blending the fibers with bioactive components or chemically modifying the fibers with plasma treatment and reactants. In the present study, we report on designing multifunctional electrospun nanofibers based on the inclusion complex of PCL-α-cyclodextrin (PCL-α-CD), which provides both structural support and multiple functionalities for further conjugation of bioactive components. This strategy is independent of any chemical modification of the PCL main chain, and electrospinning of PCL-α-CD is as easy as electrospinning PCL. Here, we describe synthesis of the PCL-α-CD electrospun nanofibers, elucidate composition and structure, and demonstrate the utility of functional groups on the fibers by conjugating a fluorescent small molecule and a polymeric-nanobead to the nanofibers. Furthermore, we demonstrate the application of PCL-α-CD nanofibers for promoting osteogenic differentiation of human adipose-derived stem cells (hADSCs), which induced a higher level of expression of osteogenic markers and enhanced production of extracellular matrix (ECM) proteins or molecules compared with control PCL fibers. PMID:23507886

  7. pH-responsive ion transport in polyelectrolyte multilayers of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA) bearing strong- and weak anionic groups.

    PubMed

    Maza, Eliana; Tuninetti, Jimena S; Politakos, Nikolaos; Knoll, Wolfgang; Moya, Sergio; Azzaroni, Omar

    2015-11-28

    The layer-by-layer construction of interfacial architectures displaying stimuli-responsive control of mass transport is attracting increasing interest in materials science. In this work, we describe the creation of interfacial architectures displaying pH-dependent ionic transport properties which until now have not been observed in polyelectrolyte multilayers. We describe a novel approach to create pH-controlled ion-rectifying systems employing polyelectrolyte multilayers assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), alternately deposited with poly(diallyldimethylammonium chloride) (PDADMAC). The conceptual framework is based on the very contrasting and differential interactions of PSS and MA units with PDADMAC. In our setting, sulfonate groups play a structural role by conferring stability to the multilayer due to the strong electrostatic interactions with the polycations, while the weakly interacting MA groups remain "silent" within the film and then act as on-demand pH-responsive units. When these multilayers are combined with a strong cationic capping layer that repels the passage of cationic probes, a pH-gateable rectified transport of anions is observed. Concomitantly, we also observed that these functional properties are significantly affected when multilayers are subjected to extensive pH cycling as a consequence of irreversible morphological changes taking place in the film. We envision that the synergy derived from combining weak and strong interactions within the same multilayer will play a key role in the construction of new interfacial architectures displaying tailorable ion transport properties. PMID:26489595

  8. 40 CFR 721.4497 - Aliphatic polyisocyanates (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic polyisocyanates (generic name). 721.4497 Section 721.4497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.4497 Aliphatic polyisocyanates (generic name). (a) Chemical...

  9. 40 CFR 721.4497 - Aliphatic polyisocyanates (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aliphatic polyisocyanates (generic name). 721.4497 Section 721.4497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.4497 Aliphatic polyisocyanates (generic name). (a) Chemical...

  10. 40 CFR 721.4497 - Aliphatic polyisocyanates (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aliphatic polyisocyanates (generic name). 721.4497 Section 721.4497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.4497 Aliphatic polyisocyanates (generic name). (a) Chemical...

  11. 40 CFR 721.4497 - Aliphatic polyisocyanates (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aliphatic polyisocyanates (generic name). 721.4497 Section 721.4497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.4497 Aliphatic polyisocyanates (generic name). (a) Chemical...

  12. 40 CFR 721.4497 - Aliphatic polyisocyanates (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic polyisocyanates (generic name). 721.4497 Section 721.4497 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.4497 Aliphatic polyisocyanates (generic name). (a) Chemical...

  13. NO3 and OH initiated secondary aerosol formation from aliphatic amines - salt formation and effect of water vapor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aliphatic amines enter the atmosphere from a variety of sources, and have been detected existing in gas and particle phases in the atmosphere. Similar to ammonia, amines can form inorganic salt through acid-base reactions. However, the atmospheric behavior of amines with atmospheric oxidants (e.g. n...

  14. Aliphatic Halogenase Enables Late-Stage C-H Functionalization: Selective Synthesis of a Brominated Fischerindole Alkaloid with Enhanced Antibacterial Activity.

    PubMed

    Zhu, Qin; Hillwig, Matthew L; Doi, Yohei; Liu, Xinyu

    2016-03-15

    The anion promiscuity of a newly discovered standalone aliphatic halogenase WelO5 was probed and enabled the selective synthesis of 13R-bromo-12-epi-fischerindole U via late-stage enzymatic functionalization of an unactivated sp(3) C-H bond. Pre-saturating the WelO5 active site with a non-native bromide anion was found to be critical to the highly selective in vitro transfer of bromine, instead of chlorine, to the target carbon center and also allowed the relative binding affinity of bromide and chloride towards the WelO5 enzyme to be assessed. This study further revealed the critical importance of halogen substitution on modulating the antibiotic activity of fischerindole alkaloids and highlights the promise of WelO5-type aliphatic halogenases as enzymatic tools to fine-tune the bioactivity of complex natural products. PMID:26749394

  15. Mechanistic studies on the reactions of molybdenum(VI), tungsten(VI), vanadium(V), and arsenic(V) tetraoxo anions with the Fe{sup II}Fe{sup III} form of purple acid phosphatase from porcine uteri (Uteroferrin)

    SciTech Connect

    Lim, J.S.; Aquino, M.A.S.; Skyes, A.G.

    1996-01-31

    The Fe{sup II}-Fe{sup III} form of purple acid phosphatase (PAP{sub r}) from porcine uteri (uteroferrin) catalyses the hydrolysis of phosphate esters. Here, kinetic studies have been extended to include the complexing of tetraoxo XO{sub 4} anions of molybdate(VI), tungstate(VI), vanadate(V), and arsenate(V) with PAP{sub r}. UV-vis absorbance changes are small and the range of concentrations is restricted by the need to maximise monomer XO{sub 4} forms. Rate constants k{sub obs}(25{degrees}C) were determined by stopped-flow monitoring of the reactions at {approximately}520 nm.

  16. Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Curran, Jerome

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Headquarters chartered the Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objective of this effort is to demonstrate and validate alternatives to aliphatic isocyanate polyurethane coatings. Successful completion of this project will result in one or more isocyanate-free coating systems qualified for use at Air Force Space Command (AFSPC) and NASA centers participating in this study. The objective of this project is to qualify the candidates under the specifications for the standard system. This project will compare coating performance of the proposed alternatives to existing coating systems or standards.

  17. Polyimide nanofoams from aliphatic polyester based copolymers

    SciTech Connect

    Hedrick, J.L.; Carter, K.R.; Richter, R.; Russell, T.P.

    1996-10-01

    High temperature polymer foams were prepared using microphase separated block copolymers where the major component is thermally stable block and the minor component is thermally labile. Upon thermal treatment, the dispersed minor component undergoes thermolysis leaving pores the size and shape of which are dictated by the initial copolymer morphology. The driving force behind the survey of aliphatic polyesters as possible labile blocks stems from their quantitative degradation into low boiling, polar degradation products via a backbiting process. Block copolymers were prepared using either a monofunctional caprolactone or a valerolactone oligomer and a high T. polyimide. Microphase morphologies were observed in each case. Thermal decomposition of the polyester blocks was accomplished by a thermal treatment at 370{degrees}C for 5 h. Significant density reductions were measured, and the resulting foams showed pore sizes in the 60-70 {Angstrom} range.

  18. Stable isotope investigations of chlorinated aliphatic hydrocarbons.

    SciTech Connect

    Abrajano, T.; Heraty, L. J.; Holt, B. D.; Huang, L.; Sturchio, N. C.

    1999-06-01

    Stable isotope ratio measurements for carbon (C) and chlorine (Cl) can be used to elucidate the processes affecting transformation and transportation of chlorinated aliphatic hydrocarbons (CAHs) in the environment. Methods recently developed in our laboratory for isotopic analysis of CAHs have been applied to laboratory measurements of the kinetic isotope effects associated with aerobic degradation of dichloromethane (DCM) and with both anaerobic and aerobic cometabolic degradation of trichlomethene (TCE) in batch and column microbial cultures. These experimental determinations of fractionation factors are crucial for understanding the behavior of CAHs in complex natural systems, where the extent of biotransformation can be masked by dispersion and volatilization. We have also performed laboratory investigations of kinetic isotope effects accompanying evaporation of CAHs, as well as field investigations of natural attenuation and in situ remediation of CAHs in a number of contaminated shallow aquifers at sites operated by the federal government and the private sector.

  19. Transient Anion States of Biomolecules

    NASA Astrophysics Data System (ADS)

    Varella, Marcio

    2012-10-01

    Much of the interest on electron interactions with biomolecules is related to radiation damage [Gohlke and Illenberger, Europhys. News 33, 207 (2002)]. The high energy photons employed in radiology and radiotherapy generate a large number of fast electrons in living cells. These electrons thermalize in a picosecond scale, eventually forming dissociative matestable anions with water and biomolecules. In this work, we employ the parallel version of Schwinger Multichannel Method with Pseudopotentials [Bettega et al., Phys. Rev. A 47, 1111 (1993); Santos et al., J. Phys. Chem. 136, 084307 (2012)] to investigate transient anion states of protein and nucleic acid precursors. We address glycine in both neutral and zwitterionic forms, as well as glycine-water clusters and disulfide bonds. The interest on the two forms of glycine (and other amino acids) relies on the fact that only the neutral form is stable in the gas phase, while the zwitterion is more stable in solution, pointing out limitations of standard gas-phase studies. Electron attachment to disulfide bonds also has potential impact on protein stability. Finally we address transient anion states of substituted uracil molecules in the gas phase. [4pt] In collaboration with M. H. F. Bettega, S. d'A. Sanchez, R. F. da Costa, M. A. P. Lima, J. S. dos Santos, and F. Kossoski.

  20. Hollow-fiber liquid-phase microextraction coupled with miniature capillary electrophoresis for the trace analysis of four aliphatic aldehydes in water samples.

    PubMed

    Li, Ying; Yi, Fan; Zheng, Yiliang; Wang, Yu; Ye, Jiannong; Chu, Qingcui

    2015-08-01

    An environmentally friendly method for the trace analysis of four aliphatic aldehydes as water disinfection byproducts has been developed based on hollow-fiber liquid-phase microextraction followed by miniature capillary electrophoresis with amperometric detection. After derivatization with 2-thiobarbituric acid, four aliphatic aldehydes (formaldehyde, acetaldehyde, propylaldehyde, and butyraldehyde) became detectable by the amperometric detector. Under the optimum conditions, four aliphatic aldehydes can be well separated from the coexisting interferents as well as their homologs (pentanal, glyoxal, and methyl-glyoxal), and the limits of detection (S/N = 3) could reach sub-nanogram-per-milliliter level based on hollow-fiber liquid-phase microextraction. The proposed method has been applied for the analyses of above four aliphatic aldehydes in different water samples such as drinking water, tap water, and river water, and the average recoveries were in the range of 90-113%, providing an alternative to conventional and microchip capillary electrophoresis approaches. PMID:26046452

  1. Ligand-Controlled Asymmetric Arylation of Aliphatic α-Amino Anion Equivalents

    PubMed Central

    2015-01-01

    A palladium-catalyzed asymmetric arylation of 9-aminofluorene-derived imines using a chiral dialkylbiaryl phosphine as the supporting ligand has been developed. This transformation allows for enantioselective access to a diverse range of α-branched benzylamines. PMID:24621247

  2. An enhanced procedure for measuring organic acids and methyl esters in PM2.5

    NASA Astrophysics Data System (ADS)

    Liu, F.; Duan, F.; He, K.; Ma, Y.; Rahn, K. A.; Zhang, Q.

    2015-03-01

    We have developed an enhanced analytical procedure to measure organic acids and methyl esters in fine aerosol with much greater specificity and sensitivity than previously available. This capability is important because of these species and their low concentrations, even in highly polluted atmospheres like Beijing, China. The procedure first separates the acids and esters from the other organic compounds with anion-exchange solid- phase extraction (SPE), then, quantifies them by gas chromatography coupled with mass spectrometry. This allows us to accurately quantify the C4-C11 dicarboxylic and the C8-C30 monocarboxylic acids. Then the acids are separated from the esters on an aminopropyl SPE cartridge, whose weak retention isolates and enriches the acids from esters prevents the fatty acids and dimethyl phthalate from being overestimated. The resulting correlations between the aliphatic acids and fatty acid methyl esters (FAMEs) suggest that FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. In all, 17 aromatic acids were identified and quantified using this procedure coupled with gas chromatography-tandem mass spectrometry, including the five polycyclic aromatic hydrocarbon (PAH) acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH-acids and the dicarboxylic and aromatic acids indicated that the first three acids and 1,8-naphthalic anhydride were mainly secondary, the last two mainly primary.

  3. Anion solvation in alcohols

    SciTech Connect

    Jonah, C.D.; Xujia, Zhang; Lin, Yi

    1996-03-01

    Anion solvation is measured in alcohols using pump-probe pulse radiolysis and the activation energy of solvation is determined. Solvation of an anion appears to be different than excited state solvation. The continuum dielectric model does not appear to explain the results.

  4. Adsorption properties of hyperbranched aliphatic polyester grafted attapulgite towards heavy metal ions.

    PubMed

    Liu, Peng; Wang, Tingmei

    2007-10-01

    The AB(2) type monomer, 2,2-bis (hydroxymethyl) propionic acid (bis-MPA), was successfully grafted from the surfaces of the amino groups modified attapulgite nano-fibrillar clay (A-ATP) via a melt polycondensation method with p-toluenesulfonic acid (p-TSA) as catalyst. The competitive adsorption properties of the hyperbranched aliphatic polyester grafted attapulgite (HAPE-ATP) towards the heavy metal ions (Cu(II), Hg(II), Zn(II), and Cd(II)) were investigated preliminarily. PMID:17467898

  5. Synthesis and reactivity of aliphatic sulfur pentafluorides from substituted (pentafluorosulfanyl)benzenes

    PubMed Central

    Vida, Norbert; Václavík, Jiří

    2016-01-01

    Summary Oxidation of 3- and 4-pentafluorosulfanyl-substituted anisoles and phenols with hydrogen peroxide and sulfuric acid provided a mixture of SF5-substituted muconolactone, maleic, and succinic acids. A plausible mechanism for the formation of the aliphatic SF5 compounds was presented and their chemical reactivity was investigated. SF5-substituted para-benzoquinone was synthesized; its oxidation led to an improved yield of 2-(pentafluorosulfanyl)maleic acid. The reaction of SF5-substituted maleic anhydride and para-benzoquinone with cyclopentadiene afforded the Diels–Alder adducts. Decomposition of 3-(pentafluorosulfanyl)muconolactone in acidic, neutral and basic aqueous media was investigated and the decarboxylation of 2-(pentafluorosulfanyl)maleic acid provided 3-(pentafluorosulfanyl)acrylic acid. PMID:26877813

  6. Synthesis and reactivity of aliphatic sulfur pentafluorides from substituted (pentafluorosulfanyl)benzenes.

    PubMed

    Vida, Norbert; Václavík, Jiří; Beier, Petr

    2016-01-01

    Oxidation of 3- and 4-pentafluorosulfanyl-substituted anisoles and phenols with hydrogen peroxide and sulfuric acid provided a mixture of SF5-substituted muconolactone, maleic, and succinic acids. A plausible mechanism for the formation of the aliphatic SF5 compounds was presented and their chemical reactivity was investigated. SF5-substituted para-benzoquinone was synthesized; its oxidation led to an improved yield of 2-(pentafluorosulfanyl)maleic acid. The reaction of SF5-substituted maleic anhydride and para-benzoquinone with cyclopentadiene afforded the Diels-Alder adducts. Decomposition of 3-(pentafluorosulfanyl)muconolactone in acidic, neutral and basic aqueous media was investigated and the decarboxylation of 2-(pentafluorosulfanyl)maleic acid provided 3-(pentafluorosulfanyl)acrylic acid. PMID:26877813

  7. Identification of N-acetylhexosamines produced by enzymes of the N-acetylneuraminic acid metabolic pathway by borate complex anion-exchange chromatography of the corresponding N-acetylhexosaminitols

    SciTech Connect

    Scocca, J.R.

    1986-01-01

    A mixture of hexosaminitols obtained by reducing N-acetylglucosamine, N-acetylgalactosamine, and N-acetylmannosamine with sodium borohydride was resolved by borate complex anion-exchange chromatography. This procedure yielded a complete separation of N-acetylglucosaminitol, N-acetylgalactosaminitol, and N-acetylmannosaminitol and provided a rapid and accurate means for identifying and measuring N-acetylhexosamines in biological samples. This method was applied to studies on N-acetylneuraminic acid metabolism in human skin fibroblasts. It was used to identify reaction products in two enzymatic reactions: the conversion of UDP-N-acetylglucosamine to N-acetylmannosamine and UDP by UDP-N-acetylglucosamine 2-epimerase and the conversion of N-acetylneuraminic acid to N-acetylmannosamine and pyruvate by N-acetylneuraminate pyruvate-lyase. It was also used to identify the free /sup 3/H-labeled N-acetylhexosamines found in fibroblasts cultured in the presence of N-(/sup 3/H)acetylmannosamine.

  8. Molecular physiology of EAAT anion channels.

    PubMed

    Fahlke, Christoph; Kortzak, Daniel; Machtens, Jan-Philipp

    2016-03-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by a family of five glutamate transporters, the so-called excitatory amino acid transporters (EAAT1-5). EAATs are prototypic members of the growing number of dual-function transport proteins: they are not only glutamate transporters, but also anion channels. Whereas the mechanisms underlying secondary active glutamate transport are well understood at the functional and at the structural level, mechanisms and cellular roles of EAAT anion conduction have remained elusive for many years. Recently, molecular dynamics simulations combined with simulation-guided mutagenesis and experimental analysis identified a novel anion-conducting conformation, which accounts for all experimental data on EAAT anion currents reported so far. We here review recent findings on how EAATs accommodate a transporter and a channel in one single protein. PMID:26687113

  9. Composites of vinyl polystyrylpyridine/bismaleimide-aliphatic ether copolymers

    NASA Technical Reports Server (NTRS)

    Heimbuch, Alvin H.; Rosser, Robert W.; Hsu, Ming-Ta S.

    1989-01-01

    An aliphatic ether bismaleimide was prepared and coreacted with a polyvinylstyrylpyridine (VPSP) oligomer. Studies showed that a controlled ratio of aliphatic to aromatic units in the polymer backbone improved both processibility and interlaminar shear properties for the carbon-fiber composite system. This modified resin was readily soluble in tetrahydrofuran, allowing for better fiber impregnation and thus enhancing adhesive properties and reproducibility. DSC studies have shown a lower cure temperature for the copolymer than for the neat aliphatic bismaleimide, and a glass transition temperature of 260 C, which is more than adequate for most applications. Limited measurements indicated an improvement in toughness (impact resistance).

  10. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    SciTech Connect

    Bowman-James, Kristen

    2004-12-01

    This project have focuses on the basic chemical aspects of anion receptor design of functional pH independent systems, with the ultimate goal of targeting the selective binding of sulfate, as well as design of separations strategies for selective and efficient removal of targeted anions. Key findings include: (1) the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate anion from acidic, nitrate-containing aqueous media. Areas probed during the last funding period include: the design, synthesis, and physical and structural characterization of receptors and investigation of anion and dual ion pair extraction using lipophilic amide receptors for anion binding. A new collaboration has been added to the project in addition to the one with Dr. Bruce Moyer at Oak Ridge National Laboratory, with Professor Jonathan Sessler at the University of Texas at Austin.

  11. Theoretical and Electrochemical Study of the Quinone-Benzoic Acid Adduct Linked by Hydrogen Bonds DFT Study of Electronic Structure and Geometry of Neutral and Anionic Silver Clusters

    SciTech Connect

    Matulis, Vitaly E.; Ivashkevich, Oleg A.; Gurin, Valerij

    2003-12-15

    A comparative analysis of bond lengths vertical detachment energies (VDE), excitation energies of neutral clusters with geometry of anions and vertical ionization potentials of neutral clusters calculated within density functional theory (DFT) using different functionals with both effective core potential (ECP) and all-electron basis sets for silver clusters Ag n, have been carried out. DFT methods provide a good agreement between calculated and experimental data of some characteristics. The accurate prediction of all characteristics simultaneously can be achieved with all-electron DZVP basis set only. A new functional has been developed. It provides results close to experimental data using the moderate basis set. For anionic clusters Ag2?10-, the difference between calculations with this functional and experimental values of VDE and for the most stable isomers does not exceed 0.1 eV. Based on both total energy calculations and comparison of experimental and calculated photoelectron spectra, the structural assignment of clusters Ag7-, Ag9- and Ag10- has been made. The electronic structure and geometrical characteristics of the low-lying isomers has been studied.

  12. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  13. Olfactory discrimination ability for aliphatic esters in squirrel monkeys and humans.

    PubMed

    Laska, M; Freyer, D

    1997-08-01

    Using a behavioral paradigm designed to simulate olfactory-guided foraging, the ability of five squirrel monkeys to distinguish iso-amyl acetate from n- and iso-forms of other acetic esters (ethyl acetate to decyl acetate) and from other esters carrying the iso-amyl group (iso-amyl propionate to iso-amyl capronate) was investigated. We found (i) that all five animals were clearly able to discriminate between all odor pairs tested; (ii) a significant negative correlation between discrimination performance and structural similarity of odorants in terms of differences in carbon chain length of both the aliphatic alcohol group and the aliphatic acid group of the esters; and (iii) that iso- and n-amyl acetate were perceived as qualitatively similar despite different steric conformation. Using a triple-forced choice procedure, 20 human subjects were tested on the same tasks in parallel and showed a very similar pattern of discrimination performance compared with the squirrel monkeys. Thus, the results of this study provide evidence of well-developed olfactory discrimination ability in squirrel monkeys for aliphatic esters and support the assumption that human and non-human primates may share common principles of odor quality perception. PMID:9279468

  14. Evaluation of antibacterial activity of synthetic aliphatic and aromatic monoacylglycerols.

    PubMed

    Batovska, Daniela; Todorova, Iva; Parushev, Stoyan; Tsvetkova, Iva; Najdenski, Hristo; Ubukata, Makoto

    2008-01-01

    The antibacterial activity of synthetic aliphatic and aromatic monoacylglycerols (MAGs) was studied against two human pathogens: Staphylococcus aureus and Escherichia coli. The active compounds inhibited selectively S. aureus. The most active compounds amongst them were those with medium size aliphatic chain and aromatic MAGs with electron withdrawing substituents at the aryl ring. The introduction of one or two-carbon spacer between the aryl ring and the carboxylic function did not influence antibacterial effectiveness. PMID:19004249

  15. Aliphatic chain length by isotropic mixing (ALCHIM): determining composition of complex lipid samples by 1H NMR spectroscopy

    PubMed Central

    Yi, Ruiyang; Volden, Paul A.; Conzen, Suzanne D.

    2015-01-01

    Quantifying the amounts and types of lipids present in mixtures is important in fields as diverse as medicine, food science, and biochemistry. Nuclear magnetic resonance (NMR) spectroscopy can quantify the total amounts of saturated and unsaturated fatty acids in mixtures, but identifying the length of saturated fatty acid or the position of unsaturation by NMR is a daunting challenge. We have developed an NMR technique, aliphatic chain length by isotropic mixing, to address this problem. Using a selective total correlation spectroscopy technique to excite and transfer magnetization from a resolved resonance, we demonstrate that the time dependence of this transfer to another resolved site depends linearly on the number of aliphatic carbons separating the two sites. This technique is applied to complex natural mixtures allowing the identification and quantification of the constituent fatty acids. The method has been applied to whole adipocytes demonstrating that it will be of great use in studies of whole tissues. PMID:24831341

  16. Topsoil drying combined with increased sulfur supply leads to enhanced aliphatic glucosinolates in Brassica juncea leaves and roots.

    PubMed

    Tong, Yu; Gabriel-Neumann, Elke; Ngwene, Benard; Krumbein, Angelika; George, Eckhard; Platz, Stefanie; Rohn, Sascha; Schreiner, Monika

    2014-01-01

    The decrease of water availability is leading to an urgent demand to reduce the plants' water supply. This study evaluates the effect of topsoil drying, combined with varying sulfur (S) supply on glucosinolates in Brassica juncea in order to reveal whether a partial root drying may already lead to a drought-induced glucosinolate increase promoted by an enhanced S supply. Without decreasing biomass, topsoil drying initiated an increase in aliphatic glucosinolates in leaves and in topsoil dried roots supported by increased S supply. Simultaneously, abscisic acid was determined, particularly in dehydrated roots, associated with an increased abscisic acid concentration in leaves under topsoil drying. This indicates that the dehydrated roots were the direct interface for the plants' stress response and that the drought-induced accumulation of aliphatic glucosinolates is related to abscisic acid formation. Indole and aromatic glucosinolates decreased, suggesting that these glucosinolates are less involved in the plants' response to drought. PMID:24444925

  17. Intrinsic anion oxidation potentials.

    PubMed

    Johansson, Patrik

    2006-11-01

    Anions of lithium battery salts have been investigated by electronic structure calculations with the objective to find a computational measure to correlate with the observed (in)stability of nonaqueous lithium battery electrolytes vs oxidation often encountered in practice. Accurate prediction of intrinsic anion oxidation potentials is here made possible by computing the vertical free energy difference between anion and neutral radical (Delta Gv) and further strengthened by an empirical correction using only the anion volume as a parameter. The 6-311+G(2df,p) basis set, the VSXC functional, and the C-PCM SCRF algorithm were used. The Delta Gv calculations can be performed using any standard computational chemistry software. PMID:17078600

  18. Anion exchange polymer electrolytes

    SciTech Connect

    Kim, Yu Seung; Kim, Dae Sik

    2015-06-02

    Anion exchange polymer electrolytes that include guanidinium functionalized polymers may be used as membranes and binders for electrocatalysts in preparation of anodes for electrochemical cells such as solid alkaline fuel cells.

  19. Investigation of Changes in the Microscopic Structure of Anionic Poly(N-isopropylacrylamide-co-Acrylic acid) Microgels in the Presence of Cationic Organic Dyes toward Precisely Controlled Uptake/Release of Low-Molecular-Weight Chemical Compound.

    PubMed

    Kureha, Takuma; Shibamoto, Takahisa; Matsui, Shusuke; Sato, Takaaki; Suzuki, Daisuke

    2016-05-10

    Changes in a microscopic structure of an anionic poly(N-isopropylacrylamide-co-acrylic acid) microgel were investigated using small- and wide-angle X-ray scattering (SWAXS). The scattering profiles of the microgels were analyzed in a wide scattering vector (q) range of 0.07 ≤ q/nm(-1) ≤ 20. In particular, the microscopic structure of the microgel in the presence of a cationic dye rhodamine 6G (R6G) was characterized in terms of its correlation length (ξ), which represents the length scale of the spatial correlation of the network density fluctuations, and characteristic distance (d*), which originated from the local packing of isopropyl groups of two neighboring chains. In the presence of cationic R6G, ξ exhibited a divergent-like behavior, which was not seen in the absence of R6G, and d* was decreased with decreasing the volume of the microgel upon increasing temperature. At the same time, the amount of R6G adsorbed per unit mass of the microgel increased upon heating. These results suggested that a coil-to-globule transition of the poly(N-isopropylacrylamide) chains in the present anionic microgel occurred because of efficiently screened, thus, short ranged electrostatic repulsion between the charged groups, and hydrophobic interaction between the isopropyl groups in the presence of cationic R6G. The combination of hydrophobic and electrostatic interaction between the cationic dye and the microgel affected the separation and volume transition behavior of the microgel. PMID:27101468

  20. Direct injection ion chromatography for the control of chlorinated drinking water: simultaneous estimation of nine haloacetic acids and quantitation of bromate, chlorite and chlorate along with the major inorganic anions.

    PubMed

    Garcia-Villanova, Rafael J; Raposo Funcia, César; Oliveira Dantas Leite, M Vilani; Toruño Fonseca, Ivania M; Espinosa Nieto, Miguel; Espuelas India, Javier

    2014-09-01

    Most methods for the analysis of haloacetic acids published in recent years are based on ion chromatography with direct injection, employing a gradient elution with potassium hydroxide (KOH). This work reports the exploration of an alternative eluent, a buffer of sodium carbonate/sodium hydrogen carbonate, aimed at the simultaneous analysis of nine haloacetic acids along with bromate, chlorite and chlorate. The alternative of both a less alkaline eluent and a lower temperature of operation may prevent the partial decomposition of some of the haloacetic acids during the analytical process, especially the more vulnerable brominated ones. Gradient elution at temperature of 7 °C yielded the best results, with an acceptable separation of 17 analytes (which includes the major natural inorganic anions) and a good linearity. Precision ranges from 0.3 to 23.4 (% V.C.), and detection limits are within units of μg L⁻¹, except for tribromoacetic acid - somewhat high in comparison with those of the official methods. Nonetheless, with the basic instrumentation setup herein described, this method may be suitable for monitoring when the drinking water treatments are to be optimized. This is especially interesting for small communities or for developing/developed countries in which regulations on disinfection by-products others than trihalomethanes are being addressed. PMID:25252348

  1. 8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE PROCESS. THE ANION EXCHANGE PROCESS PURIFIED AND CONCENTRATED PLUTONIUM-BEARING NITRIC ACID SOLUTIONS TO MAKE THEM ACCEPTABLE AS FEED FOR CONVERSION TO METAL. (6/20/60) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  2. SAMPLING ARTIFACT ESTIMATES FOR ALKANES, HOPANES, AND ALIPHATIC CARBOXYLIC ACIDS

    EPA Science Inventory

    Sampling artifacts for molecular markers from organic speciation of particulate matter were investigated by analyzing forty-one samples collected in Philadelphia as a part of the Northeast Oxidant and Particulate Study (NEOPS). Samples were collected using a high volume sampler ...

  3. Correction of the anion gap for albumin in order to detect occult tissue anions in shock

    PubMed Central

    Hatherill, M; Waggie, Z; Purves, L; Reynolds, L; Argent, A

    2002-01-01

    Background: It is believed that hypoalbuminaemia confounds interpretation of the anion gap (AG) unless corrected for serum albumin in critically ill children with shock. Aim: To compare the ability of the AG and the albumin corrected anion gap (CAG) to detect the presence of occult tissue anions. Methods: Prospective observational study in children with shock in a 22 bed multidisciplinary paediatric intensive care unit of a university childrenrsquo;s hospital. Blood was sampled at admission and at 24 hours, for acid-base parameters, serum albumin, and electrolytes. Occult tissue anions (lactate + truly "unmeasured" anions) were calculated from the strong ion gap. The anion gap ((Na + K) - (Cl + bicarbonate)) was corrected for serum albumin using the equation of Figge: AG + (0.25 x (44 - albumin)). Occult tissue anions (TA) predicted by the anion gap were calculated by (anion gap - 15 mEq/l). Optimal cut off values of anion gap were compared by means of receiver operating characteristic (ROC) curves. Ninety three sets of data from 55 children (median age 7 months, median weight 4.9 kg) were analysed. Data are expressed as mean (SD), and mean bias (limits of agreement). Results: The incidence of hypoalbuminaemia was 76% (n = 42/55). Mean serum albumin was 25 g/l (SD 8). Mean AG was 15.0 mEq/l (SD 6.1), compared to the CAG of 19.9 mEq/l (SD 6.6). Mean TA was 10.2 mmol/l (SD 6.3). The AG underestimated TA with mean bias 10.2 mmol/l (4.1–16.1), compared to the CAG, mean bias 5.3 mmol/l (0.4–10.2). A clinically significant increase of TA >5 mmol/l was present in 83% (n = 77/93) of samples, of which the AG detected 48% (n = 36/77), and the CAG 87% (n = 67/77). Post hoc ROC analysis revealed optimal cut off values for detection of TA >5 mmol/l to be AG >10 mEq/l, and CAG >15.5 mEq/l. Conclusion: Hypoalbuminaemia is common in critically ill children with shock, and is associated with a low observed anion gap that may fail to detect clinically significant amounts of

  4. Effect of a short-term in vitro exposure to the marine toxin domoic acid on viability, tumor necrosis factor-alpha, matrix metalloproteinase-9 and superoxide anion release by rat neonatal microglia

    PubMed Central

    Mayer, Alejandro MS; Hall, Mary; Fay, Michael J; Lamar, Peter; Pearson, Celeste; Prozialeck, Walter C; Lehmann, Virginia KB; Jacobson, Peer B; Romanic, Anne M; Uz, Tolga; Manev, Hari

    2001-01-01

    Background The excitatory amino acid domoic acid, a glutamate and kainic acid analog, is the causative agent of amnesic shellfish poisoning in humans. No studies to our knowledge have investigated the potential contribution to short-term neurotoxicity of the brain microglia, a cell type that constitutes circa 10% of the total glial population in the brain. We tested the hypothesis that a short-term in vitro exposure to domoic acid, might lead to the activation of rat neonatal microglia and the concomitant release of the putative neurotoxic mediators tumor necrosis factor-α (TNF-α), matrix metalloproteinases-2 and-9 (MMP-2 and -9) and superoxide anion (O2-). Results In vitro, domoic acid [10 μM-1 mM] was significantly neurotoxic to primary cerebellar granule neurons. Although neonatal rat microglia expressed ionotropic glutamate GluR4 receptors, exposure during 6 hours to domoic acid [10 μM-1 mM] had no significant effect on viability. By four hours, LPS (10 ng/mL) stimulated an increase in TNF-α mRNA and a 2,233 % increase in TNF-α protein In contrast, domoic acid (1 mM) induced a slight rise in TNF-α expression and a 53 % increase (p < 0.01) of immunoreactive TNF-α protein. Furthermore, though less potent than LPS, a 4-hour treatment with domoic acid (1 mM) yielded a 757% (p < 0.01) increase in MMP-9 release, but had no effect on MMP-2. Finally, while PMA (phorbol 12-myristate 13-acetate) stimulated O2- generation was elevated in 6 hour LPS-primed microglia, a similar pretreatment with domoic acid (1 mM) did not prime O2- release. Conclusions To our knowledge this is the first experimental evidence that domoic acid, at in vitro concentrations that are toxic to neuronal cells, can trigger a release of statistically significant amounts of TNF-α and MMP-9 by brain microglia. These observations are of considerable pathophysiological significance because domoic acid activates rat microglia several days after in vivo administration. PMID:11686853

  5. Kinetic evidence for an anion binding pocket in the active site of nitronate monooxygenase.

    PubMed

    Francis, Kevin; Gadda, Giovanni

    2009-10-01

    A series of monovalent, inorganic anions and aliphatic aldehydes were tested as inhibitors for Hansenula mrakii and Neurospora crassa nitronate monooxygenase, formerly known as 2-nitropropane dioxygenase, to investigate the structural features that contribute to the binding of the anionic nitronate substrates to the enzymes. A linear correlation between the volumes of the inorganic anions and their effectiveness as competitive inhibitors of the enzymes was observed in a plot of pK(is)versus the ionic volume of the anion with slopes of 0.041+/-0.001 mM/A(3) and 0.027+/-0.001 mM/A(3) for the H. mrakii and N. crassa enzymes, respectively. Aliphatic aldehydes were weak competitive inhibitors of the enzymes, with inhibition constants that are independent of their alkyl chain lengths. The reductive half reactions of H. mrakii nitronate monooxygenase with primary nitronates containing two to four carbon atoms all showed apparent K(d) values of approximately 5 mM. These results are consistent with the presence of an anion binding pocket in the active site of nitronate monooxygenase that interacts with the nitro group of the substrate, and suggest a minimal contribution of the hydrocarbon chain of the nitronates to the binding of the ligands to the enzyme. PMID:19683782

  6. Synthesis of aliphatic sulfur pentafluorides by oxidation of SF₅-containing anisole, phenols, and anilines.

    PubMed

    Vida, Norbert; Pastýříková, Tereza; Klepetářová, Blanka; Beier, Petr

    2014-09-19

    4-(Pentafluorosulfanyl)catechol, 2-amino-4-(pentafluorosulfanyl)phenol, and 2-amino-5-(pentafluorosulfanyl)phenol undergo oxidation by lead tetraacetate at ambient temperature leading to dearomatization and the formation of SF5-substituted nitriles and esters of cis,cis-hexa-2,4-dienedioic (muconic) acid in good yields. 4-(Pentafluorosulfanyl)phenol and 4-(pentafluorosulfanyl)anisole are oxidized by 30% aqueous hydrogen peroxide in concentrated sulfuric acid to provide 2-(5-oxo-3-(pentafluorosulfanyl)-2,5-dihydrofuran-2-yl)acetic acid [3-(pentafluorosulfanyl)muconolactone] and small amounts of side products--SF5-containing maleic and succinic acids. The methods presented are the first examples of the practical synthesis of aliphatic SF5-containing compounds from readily available aromatic ones. PMID:25137015

  7. Iron-Catalyzed Oxyfunctionalization of Aliphatic Amines at Remote Benzylic C-H Sites.

    PubMed

    Mbofana, Curren T; Chong, Eugene; Lawniczak, James; Sanford, Melanie S

    2016-09-01

    We report the development of an iron-catalyzed method for the selective oxyfunctionalization of benzylic C(sp(3))-H bonds in aliphatic amine substrates. This transformation is selective for benzylic C-H bonds that are remote (i.e., at least three carbons) from the amine functional group. High site selectivity is achieved by in situ protonation of the amine with trifluoroacetic acid, which deactivates more traditionally reactive C-H sites that are α to nitrogen. The scope and synthetic utility of this method are demonstrated via the synthesis and derivatization of a variety of amine-containing, biologically active molecules. PMID:27529646

  8. An Experimental and Computational Study of the Gas-Phase Acidities of the Common Amino Acid Amides.

    PubMed

    Plummer, Chelsea E; Stover, Michele L; Bokatzian, Samantha S; Davis, John T M; Dixon, David A; Cassady, Carolyn J

    2015-07-30

    Using proton-transfer reactions in a Fourier transform ion cyclotron resonance mass spectrometer and correlated molecular orbital theory at the G3(MP2) level, gas-phase acidities (GAs) and the associated structures for amides corresponding to the common amino acids have been determined for the first time. These values are important because amino acid amides are models for residues in peptides and proteins. For compounds whose most acidic site is the C-terminal amide nitrogen, two ions populations were observed experimentally with GAs that differ by 4-7 kcal/mol. The lower energy, more acidic structure accounts for the majority of the ions formed by electrospray ionization. G3(MP2) calculations predict that the lowest energy anionic conformer has a cis-like orientation of the [-C(═O)NH](-) group whereas the higher energy, less acidic conformer has a trans-like orientation of this group. These two distinct conformers were predicted for compounds with aliphatic, amide, basic, hydroxyl, and thioether side chains. For the most acidic amino acid amides (tyrosine, cysteine, tryptophan, histidine, aspartic acid, and glutamic acid amides) only one conformer was observed experimentally, and its experimental GA correlates with the theoretical GA related to side chain deprotonation. PMID:26196065

  9. BEDT-TFF salts with fluorinated sulfonate anions.

    SciTech Connect

    Geiser, U.; Schlueter, J. A.; Kini, A. M.; Wang, H. H.; Ward, B. H.; Mohtasham, J.; Gard, G. L.; Portland State Univ.

    2003-01-01

    A number of layered conducting BEDT-TTF, bis(ethylenedithio)tetrathiafulvalene, salts with heavily fluorinated organosulfonate anions have been prepared and characterized. Of particular interest are the salts containing SF{sub 5}RSO{sub 3}{sup -} anions, where R is a partially fluorinated aliphatic backbone. While structurally similar --the {beta}' packing type predominates--the ground state of these salts varies from superconducting in the case of {beta}'-(BEDT-TTF){sub 2}SF{sub 5}CH{sub 2}CF{sub 2}SO{sub 3} [1] to insulating. Many of the salts with insulating ground states are metallic at room temperature, but charge localization and disproportionation over crystallographically non-equivalent sites occurs at low temperature. The organosulfonate group exhibits a propensity to bind to lithium ions, thus ternary salts incorporating Li+ into the complex anion layer are often found. The fluorophilic effect in organofluorine compounds may be exploited to form salts where the conducting BEDT-TTF layers are separated by extremely bulky anion bilayers. The crystal structure of one such system, (BEDT-TTF){sub 3}[(CF{sub 3}){sub 2}CFC{sub 2}H{sub 4}SO{sub 3}]{sub 4}(H{sub 5}O{sub 2}){sub 2}, is described here.

  10. Hyperbranched Aliphatic Polyester Modified Activated Carbon Particles with Homogenized Surface Groups

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, Liuxue

    The hyperbranched aliphatic polyester grafted activated carbon (HAPE-AC), was successfully prepared by the simple "one-pot" method. The surface functional groups of commercial activated carbon particles were homogenized to hydroxyl groups by being oxidized with nitric acid and then reduced with lithium tetrahydroaluminate (LiAlH4) at first. Secondly, the surface hydroxyl groups were used as the active sites for the solution polycondensation of the AB2 monomer, 2, 2-bis(hydroxymethyl)propionic acid (bis-MPA), with the catalysis of p-toluenesulfonic acid (p-TSA). The homogenization of the surface groups of the activated carbon particles and the graft polymerization of the hyperbranched aliphatic polyester were investigated by X-ray photoelectron spectroscopy (XPS) technique. The products were also characterized with Fourier transform infrared (FT-IR) and scanning electron microscope (SEM). The competitive adsorption properties of the products toward the heavy metal ions (Cu(II), Hg(II), Zn(II), and Cd(II)) also proved the translations of the surface groups.

  11. Differential effects of indole and aliphatic glucosinolates on lepidopteran herbivores.

    PubMed

    Müller, René; de Vos, Martin; Sun, Joel Y; Sønderby, Ida E; Halkier, Barbara A; Wittstock, Ute; Jander, Georg

    2010-08-01

    Glucosinolates are a diverse group of defensive secondary metabolites that is characteristic of the Brassicales. Arabidopsis thaliana (L.) Heynh. (Brassicaceae) lines with mutations that greatly reduce abundance of indole glucosinolates (cyp79B2 cyp79B3), aliphatic glucosinolates (myb28 myb29), or both (cyp79B2 cyp79B3 myb28 myb29) make it possible to test the in vivo defensive function of these two major glucosinolate classes. In experiments with Lepidoptera that are not crucifer-feeding specialists, aliphatic and indole glucosinolates had an additive effect on Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) larval growth, whereas Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) and Manduca sexta (L.) (Lepidoptera: Sphingidae) were affected only by the absence of aliphatic glucosinolates. In the case of two crucifer-feeding specialists, Pieris rapae (L.) (Lepidoptera: Pieridae) and Plutella xylostella (L.) (Lepidoptera: Plutellidae), there were no major changes in larval performance due to decreased aliphatic and/or indole glucosinolate content. Nevertheless, choice tests show that aliphatic and indole glucosinolates act in an additive manner to promote larval feeding of both species and P. rapae oviposition. Together, these results support the hypothesis that a diversity of glucosinolates is required to limit the growth of multiple insect herbivores. PMID:20617455

  12. Halogen bonding anion recognition.

    PubMed

    Brown, Asha; Beer, Paul D

    2016-07-01

    A halogen bond is an attractive non-covalent interaction between an electrophilic region in a covalently bonded halogen atom and a Lewis base. While these interactions have long been exploited as a tool in crystal engineering their powerful ability to direct supramolecular self-assembly and molecular recognition processes in solution has, until recently, been overlooked. During the last decade however an ever-increasing number of studies on solution-phase halogen-bond-mediated anion recognition processes has emerged. This Feature Article summarises advancements which have been made thus far in this rapidly developing research area. We survey the use of iodoperfluoroarene, haloimidazolium and halotriazole/triazolium halogen-bond-donor motifs in anion receptor design, before providing an account of our research into the application of mechanically interlocked rotaxane and catenane frameworks as halogen bonding anion host systems. PMID:27273600

  13. Vanadogermanate cluster anions.

    PubMed

    Whitfield, T; Wang, X; Jacobson, A J

    2003-06-16

    Three novel vanadogermanate cluster anions have been synthesized by hydrothermal reactions. The cluster anions are derived from the (V(18)O(42)) Keggin cluster shell by substitution of V=O(2+) "caps" by Ge(2)O(OH)(2)(4+) species. In Cs(8)[Ge(4)V(16)O(42)(OH)(4)].4.7H(2)O, 1, (monoclinic, space group C2/c (No. 15), Z = 8, a = 44.513(2) A, b = 12.7632(7) A, c = 22.923(1) A, beta = 101.376(1) degrees ) and (pipH(2))(4)(pipH)(4)[Ge(8)V(14)O(50).(H(2)O)] (pip = C(4)N(2)H(10)), 2 (tetragonal, space group P4(2)/nnm (No. 134), Z = 2, a = 14.9950(7) A, c = 18.408(1) A), two and four VO(2+) caps are replaced, respectively, and each cluster anion encapsulates a water molecule. In K(5)H(8)Ge(8)V(12)SO(52).10H(2)O, 3, (tetragonal, space group I4/m (No. 87), Z = 2, a = 15.573(1) A, c = 10.963(1) A), four VO(2+) caps are replaced by Ge(2)O(OH)(2)(4+) species, and an additional two are omitted. The cluster ion in 3 contains a sulfate anion disordered over two positions. The cluster anions are analogous to the vanadoarsenate anions [V(18)(-)(n)()As(2)(n)()O(42)(X)](m)(-) (X = SO(3), SO(4), Cl; n = 3, 4) previously reported. PMID:12793808

  14. Composition and sources of aliphatic lipids and sterols in sediments of a tropical island, southern South China Sea: preliminary assessment.

    PubMed

    Mohd Tahir, N; Pang, S Y; Abdullah, N A; Suratman, S

    2013-12-01

    Near-shore surface sediment was collected from five stations off Redang Island located on the eastern coast of Peninsular Malaysia. Freeze-dried sediments were Soxhlet extracted and then fractionated using column chromatography into aliphatic and polar fractions. Determination of these fractions was carried out using gas chromatography mass spectrometry. The concentration of total resolved aliphatic hydrocarbons in sediments ranged from 157 to 308 ng/g. The distribution of aliphatic fraction showed the presence of n-alkanes ranging from nC15 to nC33 with a minor odd-to-even predominance exhibiting carbon maximum, depending on station, at nC17, nC26, nC29 or nC31. Calculation of Carbon Preference Index (CPI) for CPI(15-33) gave values ranging from 1.09 to 1.46. n-Alkanol in all sediment exhibits even-to-odd carbon predominance ranging from nC16 to nC28 and maximising at nC22. n-Fatty acids distribution ranged from nC14 to nC24 with a dominant maximum at nC16 and exhibiting high values of short chain fatty acids (≤nC20) to long chain fatty acids (>nC20) ratios. Unsaturated fatty acids, particularly nC16:1 and nC18:1 is also ubiquitous in all samples. Cholesterol is the most abundant compound amongst the sterol group ranging from 42.8 to 62.6% of the total sterols. β-Sitosterol, brassicasterol and stigmasterol, are also present but of relatively lower amount. These observations suggest that the aliphatic lipids and sterols in the study area originate, mainly, from biogenic sources of marine microbial with minor contribution from epiticular waxes of terrestrial plants. PMID:23856812

  15. A Cyanuric Acid Platform Based Tripodal Bis-heteroleptic Ru(II) Complex of Click Generated Ligand for Selective Sensing of Phosphates via C-H···Anion Interaction.

    PubMed

    Chowdhury, Bijit; Dutta, Ranjan; Khatua, Snehadrinarayan; Ghosh, Pradyut

    2016-01-01

    A new bis-heteroleptic trinuclear Ru(II) complex (1[PF6]6) has been synthesized from electron deficient cyanuric acid platform based copper-catalyzed azide-alkyne cycloaddition, i.e., CuAAC click generated ligand, 1,3,5-tris [(2-aminoethyl-1H-1,2,3-triazol-4-yl)-pyridine]-1,3,5-triazinane-2,4,6-trione (L1). Complex 1[PF6]6 displays weak luminescence (ϕf = 0.002) at room temperature with a short lifetime of ∼5 ns in acetonitrile. It shows selective sensing of hydrogen pyrophosphate (HP2O7(3-)) through 20-fold enhanced emission intensity (ϕf = 0.039) with a 15 nm red shift in emission maxima even in the presence of a large excess of various competitive anions like F(-), Cl(-), AcO(-), BzO(-), NO3(-), HCO3(-), HSO4(-), HO(-), and H2PO4(-) in acetonitrile. Selective change in the decay profile as well as in the lifetime of 1[PF6]6 in the presence of HP2O7(3-) (108 ns) further supports its selectivity toward HP2O7(3-). UV-vis and photoluminescence titration profiles and corresponding Job's plot analyses suggest 1:3 host-guest stoichiometric binding between 1[PF6]6 and HP2O7(3-). High emission enhancement of 1[PF6]6 in the presence of HP2O7(3-) has resulted in the detection limit of the anion being as low as 0.02 μM. However, 1[PF6]6 shows selectivity toward higher analogues of phosphates (e.g., ATP, ADP, and AMP) over HP2O7(3-)/H2PO4(-) in 10% Tris HCl buffer (10 mM)/acetonitrile medium. Downfield shifting of the triazole C-H in a (1)H NMR titration study confirms that the binding of HP2O7(3-)/H2PO4(-) is occurring via C-H···anion interaction. The single crystal X-ray structure of complex 1 having NO3(-) counteranion, 1[NO3]6 shows binding of NO3(-) with complex 1 via C-H···NO3(-) interactions. PMID:26653882

  16. Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: The case of AmALMT1-an anion selective transporter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The toxic effects of aluminum (Al) on crop root systems constitute a major agricultural problem in many areas of the world. Root exudation of Al-chelating molecules such as organic acids has been shown to be an important mechanism of plant Al resistance. Differences observed in the root physiology f...

  17. Catalytic Asymmetric Hydroamination of Unactivated Internal Olefins to Aliphatic Amines

    PubMed Central

    Yang, Yang; Shi, Shi-Liang; Niu, Dawen; Liu, Peng; Buchwald, Stephen L.

    2015-01-01

    Catalytic assembly of enantiopure aliphatic amines from abundant and readily available precursors has long been recognized as a paramount challenge in synthetic chemistry. Herein, we describe a mild and general copper-catalyzed hydroamination that effectively converts unactivated internal olefins, an important yet unexploited class of abundant feedstock chemicals, into highly enantioenriched α-branched amines (≥ 96% enantiomeric excess) featuring two minimally differentiated aliphatic substituents. This method provides a powerful means to access a broad range of advanced, highly functionalized enantioenriched amines of interest in pharmaceutical research and other areas. PMID:26138973

  18. Location of a permeant anion binding site in the cystic fibrosis transmembrane conductance regulator chloride channel pore.

    PubMed

    Rubaiy, Hussein N; Linsdell, Paul

    2015-05-01

    In the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, lyotropic anions with high permeability also bind relatively tightly within the pore. However, the location of permeant anion binding sites, as well as their relationship to anion permeability, is not known. We have identified lysine residue K95 as a key determinant of permeant anion binding in the CFTR pore. Lyotropic anion binding affinity is related to the number of positively charged amino acids located in the inner vestibule of the pore. However, mutations that change the number of positive charges in this pore region have minimal effects on anion permeability. In contrast, a mutation at the narrow pore region alters permeability with minimal effects on anion binding. Our results suggest that a localized permeant anion binding site exists in the pore; however, anion binding to this site has little influence over anion permeability. Implications of this work for the mechanisms of anion recognition and permeability in CFTR are discussed. PMID:25673337

  19. ION CHROMATOGRAPHY OF ANIONS

    EPA Science Inventory

    A Dionex Model 10 Ion Chromatograph was evaluated for the measurement of anionic species in water. The theoretical effect of hydrogen ion activity (pH) on the elution time of phosphate and arsenate was tested and empirical selectivity coefficients were determined for the major pr...

  20. Determination of aliphatic aldehydes by liquid chromatography with pulsed amperometric detection.

    PubMed

    Casella, Innocenzo G; Contursi, Michela

    2005-01-21

    An electrochemical detection method for short-chain saturated and unsaturated aliphatic aldehydes separated by liquid chromatography in moderately acidic medium is described. A triple-step waveform of the potentials applied to the polycrystalline platinum electrode, is proposed for sensitive detection of aliphatic aldehydes in flowing streams avoiding tedious pre- or post-column derivatization and/or cleanup procedures. The influences of the perchloric acid concentration and dissolved oxygen in the mobile phase, on the amperometric and chromatographic performance were evaluated and considered in terms of sensitivity and selectivity. Under the optimised experimental conditions (i.e., deoxygenated 50mM HClO4) the proposed analytical method allowed detection limits between 0.2 microM for acrolein and 2.5 microM for valeraldehyde. Regression analysis of calibration data indicates that responses for all investigated compounds are linear over about 2 orders of magnitude above the LOD, with correlation coefficients >0.990. The method was successfully applied to the determination of formaldehyde, acetaldehyde, propionaldehyde and acrolein in real matrices such as spiked water and red wines with good mean recoveries (81-97%). PMID:15700464

  1. Identification and characterization of anion binding sites in RNA.

    PubMed

    Kieft, Jeffrey S; Chase, Elaine; Costantino, David A; Golden, Barbara L

    2010-06-01

    Although RNA molecules are highly negatively charged, anions have been observed bound to RNA in crystal structures. It has been proposed that anion binding sites found within isolated RNAs represent regions of the molecule that could be involved in intermolecular interactions, indicating potential contact points for negatively charged amino acids from proteins or phosphate groups from an RNA. Several types of anion binding sites have been cataloged based on available structures. However, currently there is no method for unambiguously assigning anions to crystallographic electron density, and this has precluded more detailed analysis of RNA-anion interaction motifs and their significance. We therefore soaked selenate into two different types of RNA crystals and used the anomalous signal from these anions to identify binding sites in these RNA molecules unambiguously. Examination of these sites and comparison with other suspected anion binding sites reveals features of anion binding motifs, and shows that selenate may be a useful tool for studying RNA-anion interactions. PMID:20410239

  2. Electron-Withdrawing Trifluoromethyl Groups in Combination with Hydrogen Bonds in Polyols: Brønsted Acids, Hydrogen-Bond Catalysts, and Anion Receptors

    SciTech Connect

    Shokri, Alireza; Wang, Xue B.; Kass, Steven R.

    2013-06-26

    Electron withdrawing trifluoromethyl groups were characterized in combination with hydrogen bond interactions in three polyols (i.e., CF3CH(OH)CH2CH(OH)CF3, 1; (CF3)2C(OH)C(OH)(CF3)2, 2; ((CF3)2C(OH)CH2)2CHOH, 3) by pKa measurements in DMSO and H2O, negative ion photoelectron spectroscopy and binding constant determinations with Cl–. Their catalytic behavior in several reactions were also examined and compared to a BrØnsted acid (HOAc) and a commonly employed thiourea ((3,5-(CF3)3C6H3NH)2CS). The combination of inductive stabilization and hydrogen bonds was found to afford potent acids which are effective catalysts. It also appears that hydrogen bonds can transmit the inductive effect over distance even in an aqueous environment, and this has far reaching implications.

  3. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  4. Introducing Aliphatic Substitution with a Discovery Experiment Using Competing Electrophiles

    ERIC Educational Resources Information Center

    Curran, Timothy P.; Mostovoy, Amelia J.; Curran, Margaret E.; Berger, Clara

    2016-01-01

    A facile, discovery-based experiment is described that introduces aliphatic substitution in an introductory undergraduate organic chemistry curriculum. Unlike other discovery-based experiments that examine substitution using two competing nucleophiles with a single electrophile, this experiment compares two isomeric, competing electrophiles…

  5. Selective stabilization of aliphatic organic carbon by iron oxide

    PubMed Central

    Adhikari, Dinesh; Yang, Yu

    2015-01-01

    Stabilization of organic matter in soil is important for natural ecosystem to sequestrate carbon and mitigate greenhouse gas emission. It is largely unknown what factors govern the preservation of organic carbon in soil, casting shadow on predicting the response of soil to climate change. Iron oxide was suggested as an important mineral preserving soil organic carbon. However, ferric minerals are subject to reduction, potentially releasing iron and decreasing the stability of iron-bound organic carbon. Information about the stability of iron-bound organic carbon in the redox reaction is limited. Herein, we investigated the sorptive interactions of organic matter with hematite and reductive release of hematite-bound organic matter. Impacts of organic matter composition and conformation on its sorption by hematite and release during the reduction reaction were analyzed. We found that hematite-bound aliphatic carbon was more resistant to reduction release, although hematite preferred to sorb more aromatic carbon. Resistance to reductive release represents a new mechanism that aliphatic soil organic matter was stabilized by association with iron oxide. Selective stabilization of aliphatic over aromatic carbon can greatly contribute to the widely observed accumulation of aliphatic carbon in soil, which cannot be explained by sorptive interactions between minerals and organic matter. PMID:26061259

  6. Triphosgene–Amine Base Promoted Chlorination of Unactivated Aliphatic Alcohols

    PubMed Central

    Villalpando, Andrés; Ayala, Caitlan E.; Watson, Christopher B.; Kartika, Rendy

    2014-01-01

    Unactivated α-branched primary and secondary aliphatic alcohols have been successfully transformed into their corresponding alkyl chlorides in high yields upon treatment with a mixture of triphosgene and pyridine in dichloromethane at reflux. These mild chlorination conditions are high yielding, stereospecific, and well tolerated by numerous sensitive functionalities. Furthermore, no nuisance waste products are generated in the course of the reactions. PMID:23496045

  7. Cloud condensation nuclei activity of aliphatic amine secondary aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...

  8. A thermostable transketolase evolved for aliphatic aldehyde acceptors.

    PubMed

    Yi, Dong; Saravanan, Thangavelu; Devamani, Titu; Charmantray, Franck; Hecquet, Laurence; Fessner, Wolf-Dieter

    2015-01-11

    Directed evolution of the thermostable transketolase from Geobacillus stearothermophilus based on a pH-based colorimetric screening of smart libraries yielded several mutants with up to 16-fold higher activity for aliphatic aldehydes and high enantioselectivity (>95% ee) in the asymmetric carboligation step. PMID:25415647

  9. Binuclear biologically active Co(II) complexes with octazamacrocycle and aliphatic dicarboxylates

    NASA Astrophysics Data System (ADS)

    Tanasković, S. B.; Vučković, G.; Antonijević-Nikolić, M.; Stanojković, T.; Gojgić-Cvijović, G.

    2012-12-01

    Four new cationic Co(II) complexes with N,N',N'',N'''-tetrakis (2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc) and dianion of one the aliphatic dicarboxylic acids: butanedioic acid (succinic) acid = succH2, pentanedioic (glutaric) acid = gluH2, hexanedioic acid (adipic) acid = adipH2 or decanedioic acid (sebacic) acid = sebH2 of general formula [Co2(L)(tpmc)](ClO4)2ṡxY, L2- = succ, x = 1, Y = H2O; L = glu, x = 1, Y = H2O; L = adip, x = 1.5, Y = H2O; L = seb, x = 1, Y = CH3CN were isolated. The composition and charge are proposed based on elemental analyses (C, H, N) and electrical conductivity measurements. UV-Vis and FTIR spectral data and magnetic moments were in accordance with high-spin Co(II) state. It is proposed that in all complexes Co(II) is hexa-coordinated out of cyclam ring and that both carboxylic groups from dicarboxylate bridge participate in coordination. Oxygens from one group are most likely bonded to the same Co(II) ion thus forming a four-membered ring. The in vitro antibacterial/antiproliferative activities of the complexes were in some cases enhanced compared with the simple Co(II) salt and free ligands, tested as controls.

  10. Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1989-01-01

    Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)

  11. Synthesis and Evaluation of New 4-Chloro-2-(3-chloro-4-fluorophenyl)-5-(aliphatic/cyclic saturated amino)pyridazin-3(2H)-one Derivatives as Anticancer, Antiangiogenic, and Antioxidant Agents.

    PubMed

    Kamble, Vinod T; Sawant, Ajay S; Sawant, Sanjay S; Pisal, Parshuram M; Gacche, Rajesh N; Kamble, Sonali S; Kamble, Vilas A

    2015-05-01

    Pyridazinones are widely recognized as versatile scaffolds with a wide spectrum of biological activities. In the present work, a series of new 4-chloro-2-(3-chloro-4-fluorophenyl)-5-(aliphatic/cyclic saturated amino)pyridazin-3(2H)-one derivatives 4a-i were synthesized and characterized by spectral techniques. The inhibitory effects of the synthesized compounds 4a-i on the viability of three human cancer cell lines, HEP3BPN 11 (liver), MDA 453 (breast), and HL 60 (leukemia), were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Among the compounds 4a-i screened, 4g and 4i exhibited inhibitory activity very close to the standard methotrexate; therefore, these lead compounds were further tested for their potential to inhibit the proangiogenic cytokines involved in tumor progression. Compound 4g was found to be a potent antiangiogenic agent against TNFα, VEGF, FGFb, and TGFβ, whereas 4i showed potent antiangiogenic activity against TNFα, VEGF, FGFb, and leptin. All the compounds 4a-i were screened for their antioxidant activities using 2,2-diphenyl-1-picryl hydrazine (DPPH), OH, and superoxide anion radicals. Compound 4f showed better OH radical scavenging activity than the standard ascorbic acid. PMID:25846009

  12. 40 CFR 721.10608 - Aliphatic diisocyanate polymer with alkanediol and alkylglycol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aliphatic diisocyanate polymer with... Significant New Uses for Specific Chemical Substances § 721.10608 Aliphatic diisocyanate polymer with.... (1) The chemical substance identified generically as aliphatic diisocyanate polymer with...

  13. 40 CFR 721.10608 - Aliphatic diisocyanate polymer with alkanediol and alkylglycol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aliphatic diisocyanate polymer with... Significant New Uses for Specific Chemical Substances § 721.10608 Aliphatic diisocyanate polymer with.... (1) The chemical substance identified generically as aliphatic diisocyanate polymer with...

  14. Hydrated hydride anion clusters

    NASA Astrophysics Data System (ADS)

    Lee, Han Myoung; Kim, Dongwook; Singh, N. Jiten; Kołaski, Maciej; Kim, Kwang S.

    2007-10-01

    On the basis of density functional theory (DFT) and high level ab initio theory, we report the structures, binding energies, thermodynamic quantities, IR spectra, and electronic properties of the hydride anion hydrated by up to six water molecules. Ground state DFT molecular dynamics simulations (based on the Born-Oppenheimer potential surface) show that as the temperature increases, the surface-bound hydride anion changes to the internally bound structure. Car-Parrinello molecular dynamics simulations are also carried out for the spectral analysis of the monohydrated hydride. Excited-state ab initio molecular dynamics simulations show that the photoinduced charge-transfer-to-solvent phenomena are accompanied by the formation of the excess electron-water clusters and the detachment of the H radical from the clusters. The dynamics of the detachment process of a hydrogen radical upon the excitation is discussed.

  15. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.

    1984-01-01

    Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.

  16. Anion permselective membrane

    NASA Astrophysics Data System (ADS)

    Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.

    1984-07-01

    Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.

  17. Biodegradation of Aliphatic-Aromatic Copolyesters by Thermomonospora fusca and Other Thermophilic Compost Isolates

    PubMed Central

    Kleeberg, Ilona; Hetz, Claudia; Kroppenstedt, Reiner Michael; Müller, Rolf-Joachim; Deckwer, Wolf-Dieter

    1998-01-01

    Random aliphatic-aromatic copolyesters synthesized from 1,4-butanediol, adipic acid, and terephthalic acid (BTA) have excellent thermal and mechanical properties and are biodegradable by mixed cultures (e.g., in compost). Over 20 BTA-degrading strains were isolated by using compost as a microbial source. Among these microorganisms, thermophilic actinomycetes obviously play an outstanding role and appear to dominate the initial degradation step. Two actinomycete strains exhibited about 20-fold higher BTA degradation rates than usually observed in a common compost test. These isolates were identified as Thermomonospora fusca strains. They appeared to be particularly suitable for establishment of rapid degradation tests and were used in comparative studies on the biodegradation of various polyesters. PMID:9572944

  18. Analysis of aliphatic waxes associated with root periderm or exodermis from eleven plant species.

    PubMed

    Kosma, Dylan K; Rice, Adam; Pollard, Mike

    2015-09-01

    Aliphatic waxes can be found in association with suberized tissues, including roots. Non-polar lipids were isolated by rapid solvent extraction of mature regions of intact roots from eleven angiosperms, including both monocots and dicots. The majority of roots analyzed were taproots or tuberous taproots that had undergone secondary growth and thus were covered by a suberized periderm. The exceptions therein were maize (Zea mays L.) and rice (Oryza sativa L.), which present a suberized exodermis. The analysis herein focused on aliphatic waxes, with particular emphasis on alkyl hydroxycinnamates (AHCs). AHCs were widely distributed, absent from only one species, were found in both aerial and subterranean portions of tuberous taproots, and were associated with the fibrous roots of both maize and rice. Most species also contained monoacylglycerols, fatty alcohols and/or free fatty acids. Carrot (Daucus carrota L.) was the outlier, containing only free fatty acids, sterols, and polyacetylenes as identified components. Sterols were the only ubiquitous component across all roots analyzed. Monoacylglycerols of ω-hydroxy fatty acids were present in maize and rice root waxes. For species within the Brassiceae, wax compositions varied between subspecies or varieties and between aerial and subterranean portions of taproots. In addition, reduced forms of photo-oxidation products of ω-hydroxy oleate and its corresponding dicarboxylic acid (10,18-dihydroxy-octadec-8-enoate, 9,18-dihydroxy-octadec-10-enoate and 9-hydroxyoctadec-10-ene-1,18-dioate) were identified as naturally occurring suberin monomers in rutabaga (Brassica napus subsp. rapifera Metzg.) periderm tissues. PMID:26143051

  19. Quantitative structure-activity relationship (QSAR) prediction of (eco)toxicity of short aliphatic protic ionic liquids.

    PubMed

    Peric, Brezana; Sierra, Jordi; Martí, Esther; Cruañas, Robert; Garau, Maria Antonia

    2015-05-01

    Ionic liquids (ILs) are considered as a group of very promising compounds due to their excellent properties (practical non-volatility, high thermal stability and very good and diverse solving capacity). The ILs have a good prospect of replacing traditional organic solvents in vast variety of applications. However, the complete information on their environmental impact is still not available. There is also an enormous number of possible combinations of anions and cations which can form ILs, the fact that requires a method allowing the prediction of toxicity of existing and potential ILs. In this study, a group contribution QSAR model has been used in order to predict the (eco)toxicity of protic and aprotic ILs for five tests (Microtox®, Pseudokirchneriella subcapitata and Lemna minor growth inhibition test, and Acetylcholinestherase inhibition and Cell viability assay with IPC-81 cells). The predicted and experimental toxicity are well correlated. A prediction of EC50 for these (eco)toxicity tests has also been made for eight representatives of the new family of short aliphatic protic ILs, whose toxicity has not been determined experimentally to date. The QSAR model applied in this study can allow the selection of potentially less toxic ILs amongst the existing ones (e.g. in the case of aprotic ILs), but it can also be very helpful in directing the synthesis efforts toward developing new "greener" ILs respectful with the environment (e.g. short aliphatic protic ILs). PMID:25728357

  20. Adsorption and photocatalysis of nanocrystalline TiO2 particles for Reactive Red 195 removal: effect of humic acids, anions and scavengers.

    PubMed

    Chládková, B; Evgenidou, E; Kvítek, L; Panáček, A; Zbořil, R; Kovář, P; Lambropoulou, D

    2015-11-01

    In the present study, the coupling of adsorption capacity and photocatalytic efficiency of two different industrially produced titania catalysts was investigated and compared. The azo dye Reactive Red 195 was selected as a model compound. The tested catalysts, PK-10 and PK-180, exhibited different adsorption capacities due to their significant difference in their specific surface, but both have proven to be effective photocatalysts for photodegradation of the studied dye. PK-10 exhibited strong adsorption of the studied dye due to its high specific surface area, while the second studied catalyst, PK-180, demonstrated negligible adsorption of Reactive Red 195. The effect of the pH, the concentration of the catalyst and the initial concentration of the dye appear to affect the photocatalytic rate. The effect of the presence of humic acids and inorganic ions was also examined, while the contribution of various reactive species was indirectly evaluated through the addition of various scavengers. To evaluate the extent of mineralisation of the studied dye, total organic carbon (TOC) measurements during the experiment were also conducted. Besides total colour removal, evident reduction of TOC was also achieved using both catalysts. PMID:26054457

  1. Aliphatic esters as targets of esterase activity in the parsnip webworm (Depressaria pastinacella).

    PubMed

    Zangerl, Arthur R; Liao, Ling-Hsiu; Jogesh, Tania; Berenbaum, May R

    2012-02-01

    As a specialist on the reproductive structures of Pastinaca sativa and species in the related genus Heracleum, the parsnip webworm (Depressaria pastinacella) routinely encounters a distinctive suite of phytochemicals in hostplant tissues. Little is known, however, about the detoxification mechanisms upon which this species relies to metabolize these compounds. In this study, larval guts containing hostplant tissues were homogenized, and metabolism was determined by incubating reactions with and without NADPH and analyzing for substrate disappearance and product appearance by gas chromatography-mass spectrometry. Using this approach, we found indications of carboxylesterase activity, in the form of appropriate alcohol metabolites for three aliphatic esters in hostplant tissues-octyl acetate, octyl butyrate, and hexyl butyrate. Involvement of webworm esterases in hostplant detoxification subsequently was confirmed with metabolism assays with pure compounds. This study is the first to implicate esterases in lepidopteran larval midgut metabolism of aliphatic esters, ubiquitous constituents of flowers and fruits. In addition, this method confirmed that webworms detoxify furanocoumarins and myristicin in their hostplants via cytochrome P450-mediated metabolism, and demonstrated that these enzymes also metabolize the coumarin osthol and the fatty acid derivative palmitolactone. PMID:22350520

  2. Competitive Oxidation and Reduction of Aliphatic Alcohols over (WO3)3 Clusters

    SciTech Connect

    Kim, Yu K.; Dohnalek, Zdenek; Kay, Bruce D.; Rousseau, Roger J.

    2009-06-04

    The reactions of C1 to C4 aliphatic alcohols over (WO3)3 clusters were studied experimentally and theoretically using temperature-programmed desorption, infrared reflection-absorption spectroscopy and density functional theory. The results reveal that all C1 to C4 aliphatic alcohols readily react with (WO3)3 clusters by heterolytic cleavage of the RO-H bond to give alkoxy (RO ) bound to W(VI) centers and a proton (H+) attached to the terminal oxygen atom of a tungstyl group (W=O). Two protons adsorbed onto the cluster readily react with the doubly-bonded oxygen to from a water molecule that desorbs at 200-300 K and the alkoxy that undergoes decomposition at higher temperatures into the corresponding alkene, aldehyde, and/or ether. Our theory predicts that all three channels proceed over the W(VI) Lewis acid site with energy barriers of 30-40 kcal/mol, where dehydration is favored over the others. We also present further analysis of the yield and reaction temperature as a function of the alkyl substituents and discuss the origin of the reaction selectivity among the three reaction channels.

  3. Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01

    SciTech Connect

    Zaldivar, J.; Ingram, L.O.

    1999-07-01

    Hemicellulose residues can be hydrolyzed into a sugar syrup using dilute mineral acids. Although this syrup represents a potential feedstock for biofuel production, toxic compounds generated during hydrolysis limit microbial metabolism. Escherichia coli LY01, an ethanologenic biocatalyst engineered to ferment the mixed sugars in hemicellulose syrups, has been tested for resistance to selected organic acids that re present in hemicellulose hydrolysates. Compounds tested include aromatic acids derived from lignin (ferulic, gallic, 4-hydroxybenzoic, syringic, and vanillic acids), acetic acid from the hydrolysis of acetylxylan, and others derived from sugar destruction (furoic, formic, levulinic, and caproic acids). Toxicity was related to hydrophobicity. Combinations of acids were roughly additive as inhibitors of cell growth. When tested at concentrations that inhibited growth by 80%, none appeared to strongly inhibit glycolysis and energy generation, or to disrupt membrane integrity. Toxicity was not markedly affected by inoculum size or incubation temperature. The toxicity of all acids except gallic acid was reduced by an increase in initial pH (from pH 6.0 to pH 7.0 to pH 8.0). Together, these results are consistent with the hypothesis that both aliphatic and mononuclear organic acids inhibit growth and ethanol production in LY01 by collapsing ion gradients and increasing internal anion concentrations.

  4. Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediation of an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris).

    PubMed

    Vafaei, Fatemeh; Movafeghi, Ali; Khataee, Alireza

    2013-11-01

    The potential of pennywort (Hydrocotyle vulgaris) for phytoremediation of C.I. Acid Blue 92 (AB92) was evaluated. The effects of various experimental parameters including pH, temperature, dye concentration and plant weight on dye removal efficiency were investigated. The results showed that the optimal condition for dye removal were pH 3.5 and temperature 25 degree C. Moreover, the absolute dye removal enhanced with increase in the initial dye concentration and plant weight. Pennywort showed the same removal efficiency in repeated experiments (four runs) as that obtained from the first run (a 6-day period). Therefore, the ability of the plant in consecutive removal of AB92 confirmed the biodegradation process. Accordingly, a number of produced intermediate compounds were identified. The effect of treatment on photosynthesis and antioxidant defense system including superoxide dismutase, peroxidase and catalase in plant roots and leaves were evaluated. The results revealed a reduction in photosynthetic pigments content under dye treatments. Antioxidant enzyme responses showed marked variations with respect to the plant organ and dye concentration in the liquid medium. Overall, the increase in antioxidant enzyme activity under AB92 stress in the roots was much higher than that in the leaves. Nevertheless, no significant increase in malondialdehyde content was detected in roots or leaves, implying that the high efficiency of antioxidant system in the elimination of reactive oxygen species. Based on these results, pennywort was founded to be a capable species for phytoremediation of AB92-contaminated water, may be effective for phytoremediation dye-contaminated polluted aquatic ecosystems. PMID:24552049

  5. Anion, cation, and zwitterion selectivity of phospholemman channel molecules.

    PubMed Central

    Kowdley, G C; Ackerman, S J; Chen, Z; Szabo, G; Jones, L R; Moorman, J R

    1997-01-01

    Phospholemman (PLM), a 72-amino acid membrane protein with a single transmembrane domain, forms taurine-selective ion channels in lipid bilayers. Because taurine forms zwitterions, a taurine-selective channel might have binding sites for both anions and cations. Here we show that PLM channels indeed allow fluxes of both cations and anions, making instantaneous and voltage-dependent transitions among conformations with drastically different ion selectivity characteristics. This surprising and novel ion channel behavior offers a molecular explanation for selective taurine flux across cell membranes and may explain why molecules in the phospholemman family can induce cation- or anion-selective conductances when expressed in Xenopus oocytes. PMID:8994599

  6. Specific Anion Effects on the Kinetics of Iodination of Acetone.

    PubMed

    Lo Nostro, Pierandrea; Mazzini, Virginia; Ninham, Barry W; Ambrosi, Moira; Dei, Luigi; Baglioni, Piero

    2016-08-18

    Specific ion effects on the kinetics of iodination of acetone in an acidic medium are investigated by UV/Vis spectrophotometry as a function of nature of the acid and temperature. The results indicate that the order of the reaction with respect to acetone is practically unaffected by the composition of the acid while the value of the mixed constant k1 K increases according to the sequence HBranion and of the interaction between the cationic intermediate and the anion. PMID:27171120

  7. Radiolytic crosslinking and chain scission in aliphatic and alkyl-aromatic polyamides—II

    NASA Astrophysics Data System (ADS)

    Lyons, Bernard J.; Glover, Leon C.

    Regression analysis of the radiation parameters of nine aliphatic polyamides exposed to ionizing radiation leads to the conclusion that the decline in the ratio of chain scission to crosslinking in higher aliphatic polyamides is best related to the linear increase in the methylene content of, or the number of methylene groups in, the polyamide repeat unit. G(crosslink) [ G(X)] and G(chain scission) [ G(CS)] values, however, do not correlate well with either of these parameters. Rather it is found that the major determinant of yields [about 80-85% of the variation for G(X), 70% for G(CS)] is the number of hydrogen atoms or methylene groups in the amine residue. A minor determinant [15% of the variation for G(X) and 30% for G(CS)] is the number of hydrogen atoms or methylene groups in the acid residue of the repeat unit. Significantly, although there was little sign of a decrease in G(CS) in the higher aliphatic homologues (up to 11 methylene residues per amide group), G(CS) is found to be positively related to the number of methylene groups in the amine residue but negatively related to the number of methylene groups in the acid residue. Thus although the amine residue dominates the radiolytic response, the acid residue plays a critical if lesser role in determining chain scission yields in polyamides. Thus a polyamide with the repeat unit —(CH 2) 3 nCONH(CH 2) nNHCO— would be predicted to have a very low or zero G(CS) and, if n is 10 or more, a G(X) comparable to that of polyethylene. Although, logically, the yields of crosslinks and chain scissions in polyamides would be expected to tend to that of polyethylene as the number of methylene groups in the repeat unit increases, use of two models assuming an exponential trend to the G(X) value characteristic of polyethylene in the analysis did not provide better fits to the data than the simple linear model referred to above. Indeed, the assumption of a significant exponential trend factor led to a marked drop in

  8. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.

    1980-01-01

    The efforts on the synthesis of polymer anion redox membranes were mainly concentrated in two areas, membrane development and membrane fabrication. Membrane development covered the preparation and evaluation of experimental membranes systems with improved resistance stability and/or lower permeability. Membrane fabrication covered the laboratory scale production of prime candidate membranes in quantities of up to two hundred and sizes up to 18 inches x 18 inches (46 cm x 46 cm). These small (10 in x 11 in) and medium sized membranes were mainly for assembly into multicell units. Improvements in processing procedures and techniques for preparing such membrane sets lifted yields to over 90 percent.

  9. Hydrodefluorination and other hydrodehalogenation of aliphatic carbon-halogen bonds using silylium catalysis.

    PubMed

    Douvris, Christos; Nagaraja, C M; Chen, Chun-Hsing; Foxman, Bruce M; Ozerov, Oleg V

    2010-04-01

    Trialkylsilylium cation equivalents partnered with halogenated carborane anions (such as Et(3)Si[HCB(11)H(5)Cl(6)]) function as efficient and long-lived catalysts for hydrodehalogenation of C-F, C-Cl, and C-Br bonds with trialkylsilanes as stoichiometric reagents. Only C(sp(3))-halogen bonds undergo this reaction. The range of C-F bond-containing substrates that participate in this reaction is quite broad and includes simple alkyl fluorides, benzotrifluorides, and compounds with perfluoroalkyl groups attached to an aliphatic chain. However, CF(4) has proven immune to this reaction. Hydrodechlorination was carried out with a series of alkyl chlorides and benzotrichlorides, and hydrodebromination was studied only with primary alkyl bromide substrates. Competitive experiments established a pronounced kinetic preference of the catalytic system for activation of a carbon-halogen bond of a lighter halide in primary alkyl halides. On the contrary, hydrodechlorination of C(6)F(5)CCl(3) proceeded much faster than hydrodefluorination of C(6)F(5)CF(3) in one-pot experiments. A solid-state structure of Et(3)Si[HCB(11)H(5)Cl(6)] was determined by X-ray diffraction methods. PMID:20218686

  10. Formation and Morphology of "shish-like" Fibril Crystals of Aliphatic Polyesters from the Sheared Melt

    SciTech Connect

    Yamazaki, S.; Itoh, M; Oka, T; Kimura, K

    2010-01-01

    We found the formation of 'shish-like' fibril crystals of aliphatic polyesters such as poly(L-lactic acid) (PLLA), poly({var_epsilon}-caprolactone) (PCL), poly(12-hydroxydodecanoic acid) (PHDA) and poly(16-hydroxyhexadecanoic acid) (PHHA) from the sheared melt with shear rate {gamma} = 5 s{sup -1} observed by polarizing optical microscope (POM). The melting temperature T{sub m}s of obtained fibril crystals of PLLA and PCL were higher than those of spherulites and were close to the equilibrium melting temperature T{sub m}{sup 0}. The small angle X-ray scattering (SAXS) patterns from the bulk sample including fibril crystals, small amount of unoriented small crystals and amorphous showed no peaks arose from the existence of long periods in fibril crystals. These are the evidence that the observed fibril crystals consist of assemblies of a lot of extended chain crystals (ECCs). We observed the morphology of moderately extracted single strand of fibril crystals at the magnification of POM by means of scanning electron microscope. We found that macroscopic fibril crystals of PLLA with diameter d = 10 {micro}m consist of the bundle structure of microscopic fibril crystals with d = 2 {micro}m. From POM observation of the formation of fibril crystals of PLLA and PCL, we showed phase diagrams of molecular weight M and crystallization temperature T{sub c} for the formation of fibril crystals. From these phase diagrams, we evaluated a critical M and T{sub c} for the formation of fibril crystals. Moreover, from the sequential melting and crystallization experiments, it was implied that the entanglement and transesterification play an important role on the formation of fibril crystals of aliphatic polyesters.

  11. Determination of aliphatic hydrocarbons in the alga Himanthalia elongata.

    PubMed

    Punín Crespo, M O; Lage Yusty, M A

    2004-02-01

    The algae considered new foods according to Regulation CE 258/97 need a guarantee of their healthfulness before being in the European market. In this work ten samples of the brown alga Himanthalia elongata have been analyzed with the aim of verifying the absence of aliphatic hydrocarbons, due to the ability of the macroalgae to capture lipophilic organic compounds of the marine water coming from accidental or continuous leaks of raw oil and refined products, which happen each year with the growth of the industrialization and the demand of energy. The fat of the samples were Soxhlet extracted using hexane:dichloromethane (1:1) for 7h. The organic fractions were purified using silica microcolumns. The identification and quantification of the aliphatic hydrocarbons have been carried out using gas chromatography (GC) with flame ionization detector (FID). The total hydrocarbon content was between 14.8 and 40.2 microg g(-1) dry weight. PMID:14759670

  12. Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds

    NASA Technical Reports Server (NTRS)

    Smith, G. B.

    1996-01-01

    The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.

  13. Aliphatics hydrocarbon content in surface sediment from Jakarta Bay, Indonesia

    NASA Astrophysics Data System (ADS)

    YAzis, M.; Asia, L.; Piram, A.; Doumenq, P.; Syakti, A. D.

    2016-02-01

    Sedimentary aliphatic hydrocarbons content have been studied quantitatively and qualitatively using GC/MS method in eight coastal stations located in the Jakarta Bay, North of Jakarta, Indonesia. The total concentrations n-alkanes have ranged from 480 μg.kg-1to 1,935 μg.kg-1sediment dry weight. Several ratios (e.g. CPI24-32, NAR, TAR, Pr/Phy, n-C17/Pr, n- C18/Phyt,n-C29/n-C17, Ʃn-alkanes/n-C16LMW/HMW, Paq and TMD) were used to evaluate the possible sources of terrestrial-marine inputs of these hydrocarbons in the sediments. The various origins of aliphatic hydrocarbons were generally biogenic, including both terrigenous and marine, with an anthropogenic pyrolytic contribution (petrogenic and biogenic combustion). Two stations (G,H) were thehighest concentration and had potential risk to environment

  14. Manganese-Mediated Coupling Reaction of Vinylarenes and Aliphatic Alcohols

    PubMed Central

    Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Wang, Yan-Jing; Lan, Xing-Wang; Xing, Yalan; Li, Yi-He; Wen, Jia-Long

    2015-01-01

    Alcohols and alkenes are the most abundant and commonly used organic building blocks in the large-scale chemical synthesis. Herein, this is the first time to report a novel and operationally simple coupling reaction of vinylarenes and aliphatic alcohols catalyzed by manganese in the presence of TBHP (tert-butyl hydroperoxide). This coupling reaction provides the oxyalkylated products of vinylarenes with good regioselectivity and accomplishes with the principles of step-economies. A possible reaction mechanism has also been proposed. PMID:26470633

  15. 40 CFR 721.4490 - Capped aliphatic isocyanate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... reporting. (1) The chemical substance identified generically as a capped aliphatic isocyanate (PMN P-86-1146...) (concentration set at 0.1 percent), (f), (h)(1)(ii)(G), (h)(1)(iii)(A), (h)(1)(iii)(B), (h)(1)(iii)(D), and (h)(1...(h). (iv) Disposal. Requirements as specified in § 721.90 (a)(1), (a)(2), (b)(1), (b)(2), (c)(1),...

  16. 40 CFR 721.4490 - Capped aliphatic isocyanate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... reporting. (1) The chemical substance identified generically as a capped aliphatic isocyanate (PMN P-86-1146...) (concentration set at 0.1 percent), (f), (h)(1)(ii)(G), (h)(1)(iii)(A), (h)(1)(iii)(B), (h)(1)(iii)(D), and (h)(1...(h). (iv) Disposal. Requirements as specified in § 721.90 (a)(1), (a)(2), (b)(1), (b)(2), (c)(1),...

  17. 40 CFR 721.4490 - Capped aliphatic isocyanate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting. (1) The chemical substance identified generically as a capped aliphatic isocyanate (PMN P-86-1146...) (concentration set at 0.1 percent), (f), (h)(1)(ii)(G), (h)(1)(iii)(A), (h)(1)(iii)(B), (h)(1)(iii)(D), and (h)(1...(h). (iv) Disposal. Requirements as specified in § 721.90 (a)(1), (a)(2), (b)(1), (b)(2), (c)(1),...

  18. 40 CFR 721.4490 - Capped aliphatic isocyanate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reporting. (1) The chemical substance identified generically as a capped aliphatic isocyanate (PMN P-86-1146...) (concentration set at 0.1 percent), (f), (h)(1)(ii)(G), (h)(1)(iii)(A), (h)(1)(iii)(B), (h)(1)(iii)(D), and (h)(1...(h). (iv) Disposal. Requirements as specified in § 721.90 (a)(1), (a)(2), (b)(1), (b)(2), (c)(1),...

  19. Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons

    DOEpatents

    Fliermans, Carl B.

    1989-01-01

    A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

  20. Manganese-Mediated Coupling Reaction of Vinylarenes and Aliphatic Alcohols.

    PubMed

    Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Wang, Yan-Jing; Lan, Xing-Wang; Xing, Yalan; Li, Yi-He; Wen, Jia-Long

    2015-01-01

    Alcohols and alkenes are the most abundant and commonly used organic building blocks in the large-scale chemical synthesis. Herein, this is the first time to report a novel and operationally simple coupling reaction of vinylarenes and aliphatic alcohols catalyzed by manganese in the presence of TBHP (tert-butyl hydroperoxide). This coupling reaction provides the oxyalkylated products of vinylarenes with good regioselectivity and accomplishes with the principles of step-economies. A possible reaction mechanism has also been proposed. PMID:26470633

  1. Manganese-Mediated Coupling Reaction of Vinylarenes and Aliphatic Alcohols

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Wang, Yan-Jing; Lan, Xing-Wang; Xing, Yalan; Li, Yi-He; Wen, Jia-Long

    2015-10-01

    Alcohols and alkenes are the most abundant and commonly used organic building blocks in the large-scale chemical synthesis. Herein, this is the first time to report a novel and operationally simple coupling reaction of vinylarenes and aliphatic alcohols catalyzed by manganese in the presence of TBHP (tert-butyl hydroperoxide). This coupling reaction provides the oxyalkylated products of vinylarenes with good regioselectivity and accomplishes with the principles of step-economies. A possible reaction mechanism has also been proposed.

  2. Segregation and Alteration of Phenolic and Aliphatic Components of Root and Leaf Litter by Detritivores and Microbes

    NASA Astrophysics Data System (ADS)

    Filley, T. R.; Altmann, J.; Szlavecz, K. A.; Kalbitz, K.; Gamblin, D.; Nierop, K.

    2012-12-01

    The physical and microbial transformation of plant detritus in the litter layer and soil is accompanied by chemical separation of progressively soluble fractions and their movement into the rhizosphere driving subsequent soil processes. We investigated the combined action of specific detritivores, microbial decay, and leaching on the chemical separation of plant aromatic and aliphatic components from root, wood, and leaf tissue using 13C-TMAH thermochemolysis. This method enabled the simultaneous analysis of hydrolyzable tannin and lignin fragments, substituted fatty acids, and condensed tannin composition and revealed process-specific chemical transformations to plant secondary compounds. Long-term incubation and field sampling demonstrated how plant residues are progressively leached of the water soluble, oxidized fragments generated through decay. The residues appeared only slightly altered, in the case of brown rot wood, or enriched in aliphatic fragments, in the case of leaf and root tissue. Water extractable fractions were always selectively dominated by polyphenolics, either as demethylated lignin or tannins, and nearly devoid of aliphatic materials, despite high concentrations in the starting materials. Additionally, for plant materials with high tannin contents, such as pine needles, consumption and passage through some arthropod guts revealed what appeared to be microbially-mediated methylation of phenols, and a loss of tannins in leachates. These findings are indications for an in-situ phenol detoxification mechanism. This research provides important information regarding the links between biochemical decay and the chemical nature of organic matter removed and remaining in the soil profile.

  3. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized arctic soils

    USGS Publications Warehouse

    Braddock, J.F.

    1999-01-01

    A study was carried out to test a simple bioremediation treatment strategy in the Arctic and analyze the influence of fertilization the degradation of aliphatic and aromatic hydrocarbons, e.g., pristine, n-tetradecane, n-pentadecane, 2-methylnaphthalene, naphthalene, and acenaphthalene. The site was a coarse sand pad that once supported fuel storage tanks. Diesel-range organics concentrations were 250-860 mg/kg soil at the beginning of the study. Replicate field plots treated with fertilizer yielded final concentrations of 0, 50, 100, or 200 mg N/kg soil. Soil pH and soil-water potentials decreased due to fertilizer application. The addition of fertilizer considerably increased soil respiration potentials, but not the populations of microorganisms measured. Fertilizer addition also led to ??? 50% loss of measured aliphatic and aromatic hydrocarbons in surface and subsurface soils. For fertilized plots, hydrocarbon loss was not associated with the quantity of fertilizer added. Losses of aliphatic hydrocarbons were ascribed to biotic processes, while losses of aromatic hydrocarbons were due to biotic and abiotic processes.

  4. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.

    1982-01-01

    The synthesis and fabrication of polymeric anion permselective membranes for redox systems are discussed. Variations of the prime candidate anion membrane formulation to achieve better resistance and/or lower permeability were explored. Processing parameters were evaluated to lower cost and fabricate larger sizes. The processing techniques to produce more membranes per batch were successfully integrated with the fabrication of larger membranes. Membranes of about 107 cm x 51 cm were made in excellent yield. Several measurements were made on the larger sample membranes. Among the data developed were water transport and transference numbers for these prime candidate membranes at 20 C. Other work done on this system included characterization of a number of specimens of candidate membranes which had been returned after service lives of up to sixteen months. Work with new polymer constituents, with new N.P.'s, catalysts and backing fabrics is discussed. Some work was also done to evaluate other proportions of the ingredients of the prime candidate system. The adoption of a flow selectivity test at elevated temperature was explored.

  5. Pseudorotation in fullerene anions

    NASA Astrophysics Data System (ADS)

    Dunn, Janette L.; Hands, Ian D.; Bates, Colin A.

    2007-07-01

    Jahn-Teller (JT) problems are often characterised by an adiabatic potential energy surface (APES) containing either a set of isoenergetic wells or a trough of equivalent-energy points, which may be warped by higher-order coupling terms or anisotropic effects. In all three cases, the JT effect will be dynamic. Either tunnelling between the wells or rotation (of a distortion) around the trough will restore the original symmetry of the system. This motion is referred to as pseudorotation. It should be possible to observe a JT system in a distorted geometry if measurements are made on a sufficiently short timescale. In various cubic systems, this timescale has been calculated to be the order of picoseconds. Such timescales are accessible using modern methods of ultrafast spectroscopy. Measurements of pseudorotation rates can lead to important information on the strength and nature of the JT coupling present. We will present analytical calculations that allow the rate of pseudorotation to be determined in terms of the vibronic coupling parameters. We will show how these results can be applied to E ⊗ e systems and then to the more complicated system applicable to C60- anions. This is of particular interest because of the high icosahedral symmetry of fullerene ions and also because of the many potential uses of materials containing these ions. We conclude by outlining experiments that should be capable of measuring pseudorotation in C 60 anions.

  6. Effect of anionic amphophiles on erythrocyte properties.

    PubMed

    McMillan, D E; Utterback, N G; Wujek, J J

    1983-01-01

    This preliminary study describes effects of two pharmacologic agents on erythrocyte behavior. Increased erythrocyte aggregation has been proposed as important in the pathogenesis of a number of disorders, but the exact mechanism by which it plays a role in disease production remains unclear. Several anionic amphophiles have been reported to benefit diabetic vascular disease and atherosclerosis. If anionic amphophiles enter the erythrocyte plasma membrane they can increase its negative charge, reducing the energy of attraction between red blood cells and diminishing erythrocyte aggregation. Erythrocytes were studied after suspension in phosphate-buffered saline containing dextran as an aggregation-promoting agent. A marginal reduction of the suspension's viscosity was found at low shear rate when 2,5- dihydroxybenzene sulfonate was added. Additionally, erythrocyte sedimentation rate was marginally influenced. Both dihydroxybenzene sulfonate and acetylsalicylate protected human erythrocytes from hemolysis at concentrations from 10(-3) to 10(-5) M. The removal of erythrocyte sialic acid using neuraminidase to reduce surface negative charge led to unequivocal interference with aggregation (MAI technique of CHIEN et al., J. Gen. Physiol., 1973) by both anionic amphophiles were studied. Dihydroxybenzene sulfonate and actylsalicylate reduced the aggregation propensity of sialic-free erythrocytes, suggesting that the effect on the low shear rate viscosity of sialic acid-containing erythrocytes, though modest, is real. PMID:6587820

  7. Dynamic chemistry of anion recognition

    SciTech Connect

    Custelcean, Radu

    2012-01-01

    In the past 40 years, anion recognition by synthetic receptors has grown into a rich and vibrant research topic, developing into a distinct branch of Supramolecular Chemistry. Traditional anion receptors comprise organic scaffolds functionalized with complementary binding groups that are assembled by multistep organic synthesis. Recently, a new approach to anion receptors has emerged, in which the host is dynamically self-assembled in the presence of the anionic guest, via reversible bond formation between functional building units. While coordination bonds were initially employed for the self-assembly of the anion hosts, more recent studies demonstrated that reversible covalent bonds can serve the same purpose. In both cases, due to their labile connections, the molecular constituents have the ability to assemble, dissociate, and recombine continuously, thereby creating a dynamic combinatorial library (DCL) of receptors. The anionic guests, through specific molecular recognition, may then amplify (express) the formation of a particular structure among all possible combinations (real or virtual) by shifting the equilibria involved towards the most optimal receptor. This approach is not limited to solution self-assembly, but is equally applicable to crystallization, where the fittest anion-binding crystal may be selected. Finally, the pros and cons of employing dynamic combinatorial chemistry (DCC) vs molecular design for developing anion receptors, and the implications of both approaches to selective anion separations, will be discussed.

  8. Cost-Benefit Analysis for Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    NASA and Air Force Space Command (AFSPC) have similar missions and therefore similar facilities and structures in similar environments. The standard practice for protecting metallic substrates in atmospheric environments is the application of an applied coating system. The most common topcoats used in coating systems are polyurethanes that contain isocyanates. Isocyanates are classified as potential human carcinogens and are known to cause cancer in animals. The primary objective of this effort was to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes resulting in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project. This Cost-Benefit Analysis (CBA) quantifies the estimated capital and process costs of coating alternatives and cost savings relative to the current coatings. The estimates in this CBA are to be used for assessing the relative merits of the selected alternatives. The actual economic effects at any specific facility will depend on the alternative material or technology implemented, the number of actual applications converted, future workloads, and other factors . The participants initially considered eighteen (18) alternative coatings as described in the Potential Alternatives Report entitled Potential Alternatives Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, prepared by ITB. Of those, 8 alternatives were selected for testing in accordance with the Joint Test Protocol entitled Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, and the Field Test Plan entitled Field Evaluations Test Plan for Validation of Alternatives 10 Aliphatic Isocyanate Polyurethanes, both of which were prepared by ITB. A joint Test Report entitled Joint Test Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, prepared by ITB, documents the results of the laboratory and field testing, as well as any

  9. Novel aliphatic lipid-based diesters for use in lubricant formulations: Structure property investigations

    NASA Astrophysics Data System (ADS)

    Raghunanan, Latchmi Cindy

    Structure-property relationships are increasingly valued for the identification of specifically engineered materials with properties optimized for targeted application(s). In this work, linear and branched diesters for use in lubricant formulations are prepared from lipid-based oleochemicals and their structure-property relationships reported. It is shown that the branched diesters possess exceptional physical property profiles, including suppression of crystallization, and are superior alternatives for use in lubricant formulations. For the linear aliphatic diesters, both high and low temperature properties were predictable functions of total chain length, and both were differently influenced by the fatty acid versus diol chain length. Symmetry did not influence either, although thermal stability decreased and thermal transition temperatures increased with increasing saturation. All of the linear diesters demonstrated Newtonian flow behaviour. Viscosity was also predictable as a function of total chain length; any microstructural features due to structural effects were superseded by mass effects.

  10. Assessing the Origins of Aliphatic Amines in the Murchison Meteorite from their Compound-Specific Carbon Isotopic Ratios and Enantiomeric Composition

    NASA Technical Reports Server (NTRS)

    Aponte, Jose; Dworkin, Jason; Elsila, Jamie E.

    2014-01-01

    The study of meteoritic organic compounds provides a unique window into the chemical inventory of the early Solar System and prebiotic chemistry that may have been important for the origin of life on Earth. Multiple families of organic compounds have been extracted from the Murchison meteorite, which is one of the most thoroughly studied carbonaceous chondrites. The amino acids extracted from Murchison have been extensively analyzed, including measurements of non-terrestrial stable isotopic ratios and discoveries of L-enantiomeric excesses for alpha-dialkyl amino acids, notably isovaline. However, although the isotopic signatures of bulk amine-containing fractions have been measured, the isotopic ratios and enantiomeric composition of individual aliphatic amines, compounds that are chemically related to amino acids, remain unknown. Here, we report a novel method for the extraction, separation, identification and quantitation of aliphatic monoamines extracted from the Murchison meteorite. Our results show a complete suite of structural isomers, with a larger concentration of methylamine and ethylamine and decreasing amine concentrations with increasing carbon number. The carbon isotopic compositions of fourteen meteoritic aliphatic monoamines were measured, with delta C-13 values ranging from +21% to +129%, showing a decrease in C-13 with increasing carbon number, a relationship that may be consistent with the chain elongation mechanism under kinetic control previously proposed for meteoritic amino acids. We also found the enantiomeric composition of sec-butylamine, a structural analog to isovaline, was racemic within error, while the isovaline extracted from the same Murchison piece showed an L-enantiomeric excess of 9.7; this result suggested that processes leading to enantiomeric excess in the amino acid did not affect the amine. We used these collective data to assess the primordial synthetic origins of these meteoritic aliphatic amines and their potential

  11. Evaluation of a new, macroporous polyvinylpyridine resin for processing plutonium using nitrate anion exchange

    SciTech Connect

    Marsh, S.F.

    1989-04-01

    Anion exchange in nitric acid is the major aqueous process used to recover and purify plutonium from impure scrap materials. Most strong-base anion exchange resins incorporate a styrene-divinylbenzene copolymer. A newly available, macroporous anion exchange resin based on a copolymer of 1-methyl-4-vinylpyridine and divinylbenzene has been evaluated. Comparative data for Pu(IV) sorption kinetics and capacity are presented for this new resin and two other commonly used anion exchange resins. The new resin offers high capacity and rapid sorption kinetics for Pu(IV) from nitric acid, as well as greatly stability to chemical and radiolytic degradation. 8 refs., 14 figs.

  12. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Alexander, S.; Hodgdon, R. B.

    1977-01-01

    The objective of NAS 3-20108 was the development and evaluation of improved anion selective membranes useful as efficient separators in a redox power storage cell system being constructed. The program was divided into three parts, (a) optimization of the selected candidate membrane systems, (b) investigation of alternative membrane/polymer systems, and (c) characterization of candidate membranes. The major synthesis effort was aimed at improving and optimizing as far as possible each candidate system with respect to three critical membrane properties essential for good redox cell performance. Substantial improvements were made in 5 candidate membrane systems. The critical synthesis variables of cross-link density, monomer ratio, and solvent composition were examined over a wide range. In addition, eight alternative polymer systems were investigated, two of which attained candidate status. Three other alternatives showed potential but required further research and development. Each candidate system was optimized for selectivity.

  13. Organic Anion Transporting Polypeptides

    PubMed Central

    Stieger, Bruno; Hagenbuch, Bruno

    2013-01-01

    Organic anion transporting polypeptides or OATPs are central transporters in the disposition of drugs and other xenobiotics. In addition, they mediate transport of a wide variety of endogenous substrates. The critical role of OATPs in drug disposition has spurred research both in academia and in the pharmaceutical industry. Translational aspects with clinical questions are the focus in academia, while the pharmaceutical industry tries to define and understand the role these transporters play in pharmacotherapy. The present overview summarizes our knowledge on the interaction of food constituents with OATPs, and on the OATP transport mechanisms. Further, it gives an update on the available information on the structure-function relationship of the OATPs, and finally, covers the transcriptional and posttranscriptional regulation of OATPs. PMID:24745984

  14. Spontaneous formation of biocompatible vesicles in aqueous mixtures of amino acid-based cationic surfactants and SDS/SDBS.

    PubMed

    Shome, Anshupriya; Kar, Tanmoy; Das, Prasanta K

    2011-02-01

    The spontaneous formation of vesicles by six amino acid-based cationic surfactants and two anionic surfactants (sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS)) is reported. The head-group structure of the cationic surfactants is minutely altered to understand their effect on vesicle formation. To establish the regulatory role of the aromatic group in self-aggregation, both aliphatic and aromatic side-chain-substituted amino acid-based cationic surfactants are used. The presence of aromaticity in any one of the constituents favors the formation of vesicles by cationic/anionic surfactant mixtures. The formation of vesicles is primarily dependent on the balance between the hydrophobicity and hydrophilicity of both cationic and anionic surfactants. Vesicle formation is characterized by surface tension, fluorescence anisotropy, transmission electron microscopy, dynamic light scattering, and phase diagrams. These vesicles are thermally stable up to 65 °C, determined by temperature-dependent fluorescence anisotropy. According to the MTT assay, these catanionic vesicles are nontoxic to NIH3T3 cells, thus indicating their wider applicability as delivery vehicles to cells. Among the six cationic surfactants examined, tryptophan- and tyrosine-based surfactants have the ability to reduce HAuCl(4) to gold nanoparticles (GNPs), which is utilized to obtain in-situ-synthesized GNPs entrapped in vesicles without the need for any external reducing agent. PMID:21275029

  15. Periparturient effects of feeding a low dietary cation-anion difference diet on acid-base, calcium, and phosphorus homeostasis and on intravenous glucose tolerance test in high-producing dairy cows.

    PubMed

    Grünberg, W; Donkin, S S; Constable, P D

    2011-02-01

    Feeding rations with low dietary cation-anion difference (DCAD) to dairy cows during late gestation is a common strategy to prevent periparturient hypocalcemia. Although the efficacy of low-DCAD rations in reducing the incidence of clinical hypocalcemia is well documented, potentially deleterious effects have not been explored in detail. The objective of the study presented here was to determine the effect of fully compensated metabolic acidosis on calcium and phosphorus homeostasis, insulin responsiveness, and insulin sensitivity as well as on protein metabolism. Twenty multiparous Holstein-Friesian dairy cows were assigned to 1 of 2 treatment groups and fed a low-DCAD ration (DCAD = -9 mEq/100g, group L) or a control ration (DCAD = +11 mEq/100g, group C) for the last 3 wk before the expected calving date. Blood and urine samples were obtained periodically between 14 d before to 14 d after calving. Intravenous glucose tolerance tests and 24-h volumetric urine collection were conducted before calving as well as 7 and 14 d postpartum. Cows fed the low-DCAD ration had lower urine pH and higher net acid excretion, but unchanged blood pH and bicarbonate concentration before calving. Protein-corrected plasma Ca concentration 1 d postpartum was higher in cows on the low-DCAD diet when compared with control animals. Urinary Ca and P excretion was positively associated with urine net acid excretion and negatively associated with urine pH. Whereas metabolic acidosis resulted in a 6-fold increase in urinary Ca excretion, the effect on renal P excretion was negligible. A more pronounced decline of plasma protein and globulin concentration in the periparturient period was observed in cows on the low-DCAD diets resulting in significantly lower total protein and globulin concentrations after calving in cows on low-DCAD diets. Intravenous glucose tolerance tests conducted before and after calving did not reveal group differences in insulin response or insulin sensitivity. Our

  16. An anion channel in Arabidopsis hypocotyls activated by blue light.

    PubMed Central

    Cho, M H; Spalding, E P

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition. PMID:8755616

  17. New anion-exchange polymers for improved separations

    SciTech Connect

    Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.

    1997-08-01

    Objective is to improve the understanding of how the structure of a new class of anion-exchange polymers controls the binding of anionic actinide complexes from solution. This is needed to develop practical separation systems that will reduce the cost of actinide processing operations within the DOE complex. In addition anion exchange is widely used in industry. Several new series of bifunctional anion- exchange polymers have been designed, synthesized, and tested for removing Pu(IV), Am(III), and U(VI) from nitric acid. The polymers contain a pyridinium site derived from the host poly(4-vinylpyridine) and a second cationic site attached through a chain of 2 to 6 methylene groups. The new polymers removed Pu four to ten times more efficiently than the best commercial materials.

  18. An anion channel in Arabidopsis hypocotyls activated by blue light

    NASA Technical Reports Server (NTRS)

    Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.

  19. Nitrate anion exchange in 238Pu aqueous scrap recovery operations

    NASA Astrophysics Data System (ADS)

    Pansoy-Hjelvik, M. E.; Silver, G. L.; Reimus, M. A. H.; Ramsey, K. B.

    1999-01-01

    Strong base, nitrate anion exchange (IX) is crucial to the purification of 238Pu solution feedstocks with gross levels of impurities. This paper discusses the work involved in bench scale experiments to optimize the nitrate anion exchange process. In particular, results are presented of experiments conducted to a) demonstrate that high levels of impurities can be separated from 238Pu solutions via nitrate anion exchange and, b) work out chemical pretreatment methodology to adjust and maintain 238Pu in the IV oxidation state to optimize the Pu(IV)-hexanitrato anionic complex sorption to Reillex-HPQ resin. Additional experiments performed to determine the best chemical treatment methodology to enhance recovery of sorbed Pu from the resin and VIS-NIR absorption studies to determine the steady state equilibrium of Pu(IV), Pu(III), and Pu(VI) in nitric acid are discussed.

  20. Unmeasured anions and mortality in critically ill patients in 2016.

    PubMed

    Kotake, Yoshifumi

    2016-01-01

    The presence of acid-base disturbances, especially metabolic acidosis may negatively affect the outcome of critically ill patients. Lactic acidosis is the most frequent etiology and has largest impact on the prognosis. Since lactate measurement might not have always been available at bedside, it had been regarded as one of the unmeasured anions. Therefore, anion gap and strong ion gap has been used to as a surrogate of lactate concentration. From this perspective, the relationship between either anion gap or strong ion gap and mortality has been explored. Then, lactate became routinely measurable at bedside and the direct comparison between directly measured lactate and these surrogate parameters can be possible. Currently available evidence suggests that directly measured lactate has larger prognostic ability for mortality than albumin-corrected anion gap and strong ion gap without lactate. In this commentary, the rationale and possible clinical implications of these findings are discussed. PMID:27429758

  1. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    NASA Astrophysics Data System (ADS)

    He, Yubin; Pan, Jiefeng; Wu, Liang; Zhu, Yuan; Ge, Xiaolin; Ran, Jin; Yang, Zhengjin; Xu, Tongwen

    2015-08-01

    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH- conductive anion exchange polyelectrolytes with good alkaline tolerance and excellent dimensional stability. Polymer backbones were grafted with flexible aliphatic chains containing two or three quaternized ammonium groups. The highly flexible and hydrophilic multi-functionalized side chains prefer to aggregate together to facilitate the formation of well-defined hydrophilic-hydrophobic microphase separation, which is crucial for the superior OH- conductivity of 69 mS/cm at room temperature. Besides, the as-prepared AEMs also exhibit excellent alkaline tolerance as well as improved dimensional stability due to their carefully designed polymer architecture, which provide new directions to pursue high performance AEMs and are promising to serve as a candidate for fuel cell technology.

  2. A Novel Methodology to Synthesize Highly Conductive Anion Exchange Membranes

    PubMed Central

    He, Yubin; Pan, Jiefeng; Wu, Liang; Zhu, Yuan; Ge, Xiaolin; Ran, Jin; Yang, ZhengJin; Xu, Tongwen

    2015-01-01

    Alkaline polyelectrolyte fuel cell now receives growing attention as a promising candidate to serve as the next generation energy-generating device by enabling the use of non-precious metal catalysts (silver, cobalt, nickel et al.). However, the development and application of alkaline polyelectrolyte fuel cell is still blocked by the poor hydroxide conductivity of anion exchange membranes. In order to solve this problem, we demonstrate a methodology for the preparation of highly OH− conductive anion exchange polyelectrolytes with good alkaline tolerance and excellent dimensional stability. Polymer backbones were grafted with flexible aliphatic chains containing two or three quaternized ammonium groups. The highly flexible and hydrophilic multi-functionalized side chains prefer to aggregate together to facilitate the formation of well-defined hydrophilic-hydrophobic microphase separation, which is crucial for the superior OH− conductivity of 69 mS/cm at room temperature. Besides, the as-prepared AEMs also exhibit excellent alkaline tolerance as well as improved dimensional stability due to their carefully designed polymer architecture, which provide new directions to pursue high performance AEMs and are promising to serve as a candidate for fuel cell technology. PMID:26311616

  3. Structural studies of aliphatic substituted phthalocyanine-lipid multilayers.

    PubMed

    Zarbakhsh, Ali; Campana, Mario; Mills, David; Webster, John R P

    2010-10-01

    A Langmuir-Blodgett film of aliphatic substituted phthalocyanines on a C18 silane supporting layer coupled onto a silicon substrate has been investigated using neutron reflectometry. This multilayer structure is seen as a possible candidate for phthalocyanine-lipid biosensor devices. The results show the suitability of the C18 ligands as an anchoring layer for the phthalocyanines. The scattering length density profiles demonstrate the effectiveness of a lipid monolayer in partitioning the composition of phthalocyanine layers from that of the bulk liquid. The effectiveness of this barrier is a critical factor in the efficiency of such devices. PMID:20831252

  4. Aliphatic Polyethers: Classical Polymers for the 21st Century.

    PubMed

    Klein, Rebecca; Wurm, Frederik R

    2015-06-01

    Polyethers-polymers with the structural element (R'-O-R)n in their backbone--are an old class of polymers which were already used at the time of the ancient Egyptians. However, still today these materials are highly important with applications in all areas of our life, reaching from the automotive and paper industry to cosmetics and biomedical applications. In this Review, different aliphatic polyethers like poly(epoxide)s, poly(oxetane)s, and poly(tetrahydrofuran) are discussed. Special emphasis is placed on the history, the polymerization techniques (industrially and in academia), the properties, the applications as well as recent developments of these materials. PMID:25967116

  5. Chemical Modeling of Cometary Anions

    NASA Astrophysics Data System (ADS)

    Cordiner, Martin; Charnley, S. B.

    2009-09-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of 1P/Halley. The anions O-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not previously been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydrodynamical model of Rodgers & Charnley (2002), we investigate the role of the hydrocarbon and nitrile anions Cn-, CnH- and CnN- in the coma. We calculate the effects of these anions on the charge balance and examine their impact on cometary coma chemistry. References: Chaizy, P. et al. 1991, Nature, 349, 393 Rodgers, S.D. & Charnley, S.B. 2002, MNRAS, 330, 660

  6. Olfactory sensitivity and odor structure-activity relationships for aliphatic ketones in CD-1 mice.

    PubMed

    Laska, Matthias

    2014-06-01

    Using a conditioning paradigm, the olfactory sensitivity of CD-1 mice for a homologous series of aliphatic 2-ketones (2-butanone to 2-nonanone) and several of their isomeric forms was investigated. With all 11 odorants, the animals significantly discriminated concentrations as low as 0.01 ppm (parts per million) from the solvent, and with two odorants (2-octanone and 5-nonanone), the best-scoring animals even detected concentrations as low as 3 ppt (parts per trillion). Analysis of odor structure-activity relationships showed that the correlation between olfactory detection thresholds of the mice for the 2-ketones and carbon chain length can best be described as a U-shaped function with the lowest threshold values at 2-octanone. Similarly, the correlation between olfactory sensitivity and carbon chain length of symmetrical ketones (3-pentanone to 6-undecanone) can best be described as a U-shaped function. In contrast, no significant correlation was found between olfactory detection thresholds of the mice and position of the functional carbonyl group attached to a C7 backbone. A comparison between the olfactory detection thresholds obtained here with those obtained in earlier studies suggests that mice are significantly more sensitive for 2-ketones than for n-carboxylic acids of the same carbon chain length. Across-species comparisons suggest that mice are significantly more sensitive for aliphatic ketones than squirrel monkeys and pigtail macaques, whereas the ranges of human olfactory detection threshold values overlap with those of the mice with seven of the 11 ketones tested. Further comparisons suggest that odor structure-activity relationships are both substance class and species specific. PMID:24621664

  7. Aliphatic and aromatic plant biopolymer dynamics in soil particles isolated from sequential density fractionation

    NASA Astrophysics Data System (ADS)

    Caldwell, B.; Filley, T.; Sollins, P.; Lajtha, K.; Swanston, C.; Kleber, M.; Kramer, M.

    2007-12-01

    A recent multi-layer-based soil organic matter-mineral interaction mechanistic model to describe the nature of soil organic matter-mineral surface mechanism for soil organic matter stabilization predicts that proteinaceous and aliphatic materials establish the core of strong binding-interactions upon which other organic matter is layered. A key methodology providing data underpinning this hypothesis is sequential density fractionation where soil is partitioned into particles of increasing density with the assumption that a partial control on organic matter distribution through density series is the thickness of its layering. Four soils of varying mineralogy and texture were investigated for their biopolymer, isotopic, and mineralogical properties. Light fractions (<1.8 g/cm3), although dominanted by organic detritus, did not always contain the highest concentration of lignin and substituted fatty acids from cutin and suberin while heavier fractions, 1.8-2.6 g/cm3, exhibited a progressive decrease in concentration in plant derived biopolymers with density. Extractable lignin phenols exhibited a progressive oxidation state with density. The concentration of biopolymers roughly mirrored the C:N ratio of soil particles which dropped consistently with increasing particle density. Although, in all soils, both lignin phenols and SFA concentration generally decreased with increasing density the ratio SFA/lignin varied with density and depending upon the soil. All soils, except the oxisol, exhibited an increase in SFA with respect to lignin suggesting a selective stabilization of those material with respect to lignin. In the oxisol, which showed little variation in its hematite dominated mineralogy across density, SFA/lignin remained constant, potentially indicating a greater capacity to stabilize lignin in that system. Interestingly, the lignin oxidation state increased with density in the oxisol. Given the variation in soil character, the consistency in these trends it

  8. Precise, fast, and flexible determination of protein interactions by affinity capillary electrophoresis: part 3: anions.

    PubMed

    Xu, Yuanhong; Redweik, Sabine; El-Hady, Deia Abd; Albishri, Hassan M; Preu, Lutz; Wätzig, Hermann

    2014-08-01

    The binding of physiologically anionic species or negatively charged drug molecules to proteins is of great importance in biochemistry and medicine. Since affinity capillary electrophoresis (ACE) has already proven to be a suitable analytical tool to study the influence of ions on proteins, this technique was applied here for comprehensively studying the influence of various anions on proteins of BSA, β-lactoglobulin, ovalbumin, myoglobin, and lysozyme. The analysis was performed using different selected anions of succinate, glutamate, phosphate, acetate, nitrate, iodide, thiocyanate, and pharmaceuticals (salicylic acid, aspirin, and ibuprofen) that exist in the anionic form at physiological pH 7.4. Due to the excellent repeatability and precision of the ACE measurements, not necessarily strong but significant influences of the anions on the proteins were found in many cases. Different influences in the observed bindings indicated change of charge, mass, or conformational changes of the proteins due to the binding with the studied anions. Combining the mobility-shift and pre-equilibrium ACE modes, rapidity and reversibility of the protein-anion bindings were discussed. Further, circular dichroism has been used as an orthogonal approach to characterize the interactions between the studied proteins and anions to confirm the ACE results. Since phosphate and various anions from amino acids and small organic acids such as succinate or acetate are present in very high concentrations in the cellular environment, even weak influences are certainly relevant as well. PMID:24436007

  9. ANION EXCHANGE METHOD FOR SEPARATION OF METAL VALUES

    DOEpatents

    Hyde, E.K.; Raby, B.A.

    1959-02-10

    A method is described for selectively separating radium, bismuth, poloniums and lead values from a metallic mixture of thc same. The mixture is dissolved in aqueous hydrochloric acid and the acidity is adjusted to between 1 to 2M in hydrochloric acid to form the anionic polychloro complexes of polonium and bismuth. The solution is contacted with a first anion exchange resin such as strong base quaternary ammonia type to selectively absorb the polonium and bismuth leaving the radium and lead in the effluent. The effluent, after treatment in hydrochloric acid to increase the hydrochloric acid concentration to 6M is contacted with a second anion exchange iesin of the same type as the above to selectively adsorb the lead leaving the radium in the effluent. Radium is separately recovered from the effluent from the second exchange column. Lead is stripped from the loaded resin of the second column by treatment with 3M hydrochloric acid solution. The loaded resin of the first column is washed with 8M hydrochloric acid solution to recover bismuth and then treated with strong nitric acid solution to recover polonium.

  10. Tailoring NO donors metallopharmaceuticals: ruthenium nitrosyl ammines and aliphatic tetraazamacrocycles.

    PubMed

    Tfouni, E; Doro, F G; Figueiredo, L E; Pereira, J C M; Metzker, G; Franco, D W

    2010-01-01

    The discovery of the involvement of nitric oxide (NO) in several physiological and pathophysiological processes launched a spectacular increase in studies in areas such as chemistry, biochemistry, and pharmacology. As a consequence, the development of NO donors or scavengers for regulation of its concentration and bioavailability in vivo is required. In this sense, ruthenium nitrosyl ammines and aliphatic tetraazamacrocyles have attracted a lot of attention due to their unique chemical properties. These complexes are water soluble and stable in solution, not to mention that they can deliver NO when photochemically or chemically activated by the reduction of the coordinated nitrosonium (NO+). The tuning of the energies of the charge transfer bands, the redox potential, and the specific rate constants of NO liberation, in both solution and matrices, is desirable for the achievement of selective NO delivery to biological targets, hence making the ruthenium ammines and aliphatic tetraazamacrocyles a quite versatile platform for biological application purposes. These ruthenium nitrosyls have shown to be active in firing neurons in mouse hippocampus, performing redox reactions in mitochondria, acting in blood pressure control, exhibiting cytotoxic activities against trypanosomatids (T.cruzi and L.major) and tumor cells. This tailoring approach is explored here, being heavily supported by the accumulated knowledge on the chemistry and photochemistry of ruthenium complexes, which allows NO donors/scavengers systems to be custom made designed. PMID:20846113

  11. Terrestrial ecotoxicity of short aliphatic protic ionic liquids.

    PubMed

    Peric, Brezana; Martí, Esther; Sierra, Jordi; Cruañas, Robert; Iglesias, Miguel; Garau, Maria Antonia

    2011-12-01

    A study of the ecotoxicity of different short aliphatic protic ionic liquids (PILs) on terrestrial organisms was conducted. Tests performed within the present study include those assessing the effects of PILs on soil microbial functions (carbon and nitrogen mineralization) and terrestrial plants. The results show that the nominal lowest-observed-adverse-effect concentration (LOAEC) values were 5,000 mg/kg (dry soil) for the plant test in two species (Lolium perenne, Allium cepa), 1,000 mg/kg (dry soil) for the plant test in one species (Raphanus sativus), and 10,000 mg/kg (dry soil) for carbon and nitrogen microbial transformation tests (all concentrations are nominal). Most of the median effective concentration values (EC50) were above 1,000 mg/kg (dry soil). Based on the obtained results, these compounds can be described as nontoxic for soil microbiota and the analyzed plants, and potentially biodegradable in soils, as can be deduced from the respirometric experiment. The toxicity rises with the increase of complexity of the PILs molecule (branch and length of aliphatic chain) among the three PILs analyzed. PMID:21935980

  12. Kinetics of bacterial growth on chlorinated aliphatic compounds

    SciTech Connect

    Wijngaard, A.J. van den; Wind, R.E.; Janssen, D.B. )

    1993-07-01

    Halogenated aliphatic compounds are frequent constituents of industrial waste gases. Because of the environmental and biological toxic effects of these compounds, there is a growing interest in technologies for their removal. Biological waste gas purification is an option if specialized bacterial strains that use halogenated aliphatics as sole carbon and energy sources can be used. Elimination efficiency of the compounds depends not only on the process technology but on the degradation properties of the bacterial strains. Important aspects of bacterial growth are the Monod half-saturation constant and the maximum growth rate. In this study the kinetic properties of the organisms (Ancylobacter aquaticus AD20 and AD25, Xanthobacter autotrophicus GJ10, Pseudomonas sp. strain AD1) weree measured during growth in continuous cultures and wer compared with the kinetic properties of the first catabolic enzyme involved in the degradation of the growth substrate. The results indicate that the growth of the strains examined followed Monod kinetics. Stains AD20 and GJ10 showed growth rates on DCE somewhat higher than predicted from the amount of haloalkane dehalogenase present in the cells, while strain AD25 was much lower. 33 refs., 3 figs., 4 tabs.

  13. Ion-Pairing Assemblies Based on Pentacyano-Substituted Cyclopentadienide as a π-Electronic Anion.

    PubMed

    Bando, Yuya; Haketa, Yohei; Sakurai, Tsuneaki; Matsuda, Wakana; Seki, Shu; Takaya, Hikaru; Maeda, Hiromitsu

    2016-06-01

    Pentacyanocyclopentadienide (PCCp(-) ), a stable π-electronic anion, provided various ion-pairing assemblies in combination with various cations. PCCp(-) -based assemblies exist as single crystals and mesophases owing to interionic interactions with π-electronic and aliphatic cations with a variety of geometries, substituents, and electronic structures. Single-crystal X-ray analysis revealed that PCCp(-) formed cation-dependent arrangements with contributions from charge-by-charge and charge-segregated assembly modes for ion pairs with π-electronic and aliphatic cations, respectively. Furthermore, some aliphatic cations gave dimension-controlled organized structures with PCCp(-) , as observed in the mesophases, for which synchrotron XRD analysis suggested the formation of charge-segregated modes. Noncontact evaluation of conductivity for (C12 H25 )3 MeN(+) ⋅PCCp(-) films revealed potential hole-transporting properties, yielding a local-scale hole mobility of 0.4 cm(2)  V(-1)  s(-1) at semiconductor-insulator interfaces. PMID:27120581

  14. Regeneration of strong-base anion-exchange resins by sequential chemical displacement

    SciTech Connect

    Brown, Gilbert M.; Gu, Baohua; Moyer, Bruce A.; Bonnesen, Peter V.

    2002-01-01

    A method for regenerating strong-base anion exchange resins utilizing a sequential chemical displacement technique with new regenerant formulation. The new first regenerant solution is composed of a mixture of ferric chloride, a water-miscible organic solvent, hydrochloric acid, and water in which tetrachloroferrate anion is formed and used to displace the target anions on the resin. The second regenerant is composed of a dilute hydrochloric acid and is used to decompose tetrachloroferrate and elute ferric ions, thereby regenerating the resin. Alternative chemical displacement methods include: (1) displacement of target anions with fluoroborate followed by nitrate or salicylate and (2) displacement of target anions with salicylate followed by dilute hydrochloric acid. The methodology offers an improved regeneration efficiency, recovery, and waste minimization over the conventional displacement technique using sodium chloride (or a brine) or alkali metal hydroxide.

  15. Anion Transport with Chalcogen Bonds.

    PubMed

    Benz, Sebastian; Macchione, Mariano; Verolet, Quentin; Mareda, Jiri; Sakai, Naomi; Matile, Stefan

    2016-07-27

    In this report, we introduce synthetic anion transporters that operate with chalcogen bonds. Electron-deficient dithieno[3,2-b;2',3'-d]thiophenes (DTTs) are identified as ideal to bind anions in the focal point of the σ holes on the cofacial endocyclic sulfur atoms. Anion binding in solution and anion transport across lipid bilayers are found to increase with the depth of the σ holes of the DTT anionophores. These results introduce DTTs and related architectures as a privileged motif to engineer chalcogen bonds into functional systems, complementary in scope to classics such as 2,2'-bipyrroles or 2,2'-bipyridines that operate with hydrogen bonds and lone pairs, respectively. PMID:27433964

  16. Two Novel Flavin-Containing Monooxygenases Involved in Biosynthesis of Aliphatic Glucosinolates

    PubMed Central

    Kong, Wenwen; Li, Jing; Yu, Qingyue; Cang, Wei; Xu, Rui; Wang, Yang; Ji, Wei

    2016-01-01

    Glucosinolates, a class of secondary metabolites from cruciferous plants, are derived from amino acids and have diverse biological activities, such as in biotic defense, depending on their side chain modification. The first structural modification step in the synthesis of aliphatic (methionine-derived) glucosinolates—S-oxygenation of methylthioalkyl glucosinolates to methylsulfinylalkyl glucosinolates—was found to be catalyzed by five flavin-containing monooxygenases (FMOs), FMOGS-OX1-5. Here, we report two additional FMOGS-OX enzymes, FMOGS-OX6, and FMOGS-OX7, encoded by At1g12130 and At1g12160, respectively. The overexpression of both FMOGS-OX6 and FMOGS-OX7 decreased the ratio of methylthioalkyl glucosinolates to the sum of methylthioalkyl and methylsulfinylalkyl glucosinolates, suggesting that the introduction of the two genes converted methylthioalkyl glucosinolates into methylsulfinylalkyl glucosinolates. Analysis of expression pattern revealed that the spatial expression of the two genes is quite similar and partially overlapped with the other FMOGS-OX genes, which are primarily expressed in vascular tissue. We further analyzed the responsive expression pattern of all the seven FMOGS-OX genes to exogenous treatment with abscisic acid, 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonic acid (JA), salicylic acid, indole-3-acetic acid (IAA), and low and high temperatures. Although these genes showed same tendency toward the changing stimulus, the sensitivity of each gene was quite different. The variety in spatial expression among the FMOGS-OX genes while responding to environmental stimulus indicated a complex and finely tuned regulation of glucosinolates modifications. Identification of these two novel FMOGS-OX enzymes will enhance the understanding of glucosinolates modifications and the importance of evolution of these duplicated genes. PMID:27621741

  17. Two Novel Flavin-Containing Monooxygenases Involved in Biosynthesis of Aliphatic Glucosinolates.

    PubMed

    Kong, Wenwen; Li, Jing; Yu, Qingyue; Cang, Wei; Xu, Rui; Wang, Yang; Ji, Wei

    2016-01-01

    Glucosinolates, a class of secondary metabolites from cruciferous plants, are derived from amino acids and have diverse biological activities, such as in biotic defense, depending on their side chain modification. The first structural modification step in the synthesis of aliphatic (methionine-derived) glucosinolates-S-oxygenation of methylthioalkyl glucosinolates to methylsulfinylalkyl glucosinolates-was found to be catalyzed by five flavin-containing monooxygenases (FMOs), FMOGS-OX1-5. Here, we report two additional FMOGS-OX enzymes, FMOGS-OX6, and FMOGS-OX7, encoded by At1g12130 and At1g12160, respectively. The overexpression of both FMOGS-OX6 and FMOGS-OX7 decreased the ratio of methylthioalkyl glucosinolates to the sum of methylthioalkyl and methylsulfinylalkyl glucosinolates, suggesting that the introduction of the two genes converted methylthioalkyl glucosinolates into methylsulfinylalkyl glucosinolates. Analysis of expression pattern revealed that the spatial expression of the two genes is quite similar and partially overlapped with the other FMOGS-OX genes, which are primarily expressed in vascular tissue. We further analyzed the responsive expression pattern of all the seven FMOGS-OX genes to exogenous treatment with abscisic acid, 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonic acid (JA), salicylic acid, indole-3-acetic acid (IAA), and low and high temperatures. Although these genes showed same tendency toward the changing stimulus, the sensitivity of each gene was quite different. The variety in spatial expression among the FMOGS-OX genes while responding to environmental stimulus indicated a complex and finely tuned regulation of glucosinolates modifications. Identification of these two novel FMOGS-OX enzymes will enhance the understanding of glucosinolates modifications and the importance of evolution of these duplicated genes. PMID:27621741

  18. Mechanism and Thermodynamics of Reductive Cleavage of Carbon-Halogen Bonds in the Polybrominated Aliphatic Electrophiles.

    PubMed

    Rosokha, Sergiy V; Lukacs, Emoke; Ritzert, Jeremy T; Wasilewski, Adam

    2016-03-17

    Quantum-mechanical computations revealed that, despite the presence of electron-withdrawing and/or π-acceptor substituents, the lowest unoccupied molecular orbitals (LUMO) of the polybromosubstituted aliphatic molecules R-Br (R-Br = C3Br2F6, CBr3NO2, CBr3CN, CBr3CONH2, CBr3CO2H, CHBr3, CFBr3, CBr4, CBr3COCBr3) are delocalized mostly over their bromine-containing fragments. The singly occupied molecular orbitals in the corresponding vertically excited anion radicals (R-Br(•-))* are characterized by essentially the same shapes and show nodes in the middle of the C-Br bonds. An injection of an electron into the antibonding LUMO results in the barrierless dissociation of the anion-radical species and the concerted reductive cleavages of C-Br bonds leading to the formation of the loosely bonded {R(•)···Br(-)} associates. The interaction energies between the fragments of these ion-radical pairs vary from ∼10 to 20 kcal mol(-1) in the gas phase and from 1 to 3 kcal mol(-1) in acetonitrile. In accord with the concerted mechanism of reductive cleavage, all R-Br molecules showed completely irreversible reduction waves in the voltammograms in the whole range of the scan rates employed (from 0.05 to 5 V s(-1)). Also, the transfer coefficients α, established from the width of these waves and dependence of reduction peak potentials Ep on the scan rates, were significantly lower than 0.5. The standard reduction potentials of the R-Br electrophiles, E(o)R-Br/R·+X(-), and the corresponding R(•) radicals, E(o)R(•)/R(-), were calculated in acetonitrile using the appropriate thermodynamic cycles. In agreement with these calculations, which indicated that the R(•) radicals resulting from the reductive cleavage of the R-Br molecules are stronger oxidants than their parents, the reduction peaks' currents in cyclic voltammograms were consistent with the two-electron transfer processes. PMID:26816138

  19. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  20. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  1. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  2. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  3. 40 CFR 721.9952 - Alkoxylated aliphatic diisocyanate allyl ether (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... allyl ether (generic). 721.9952 Section 721.9952 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.9952 Alkoxylated aliphatic diisocyanate allyl ether... identified generically as alkoxylated aliphatic diisocyanate allyl ether (PMN P-00-0353) is subject...

  4. 40 CFR 721.9952 - Alkoxylated aliphatic diisocyanate allyl ether (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... allyl ether (generic). 721.9952 Section 721.9952 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.9952 Alkoxylated aliphatic diisocyanate allyl ether... identified generically as alkoxylated aliphatic diisocyanate allyl ether (PMN P-00-0353) is subject...

  5. 40 CFR 721.10606 - Alkyl substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl substituted alkanediol polymer... alkanediol polymer with aliphatic and alicyclic diisocyanates (generic). (a) Chemical substance and... substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (PMN P-11-486) is subject...

  6. 40 CFR 721.10605 - Polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyoxyalkylene ether, polymer with..., polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic). (a) Chemical substance and... polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (PMN P-11-485) is...

  7. 40 CFR 721.10605 - Polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyoxyalkylene ether, polymer with..., polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic). (a) Chemical substance and... polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (PMN P-11-485) is...

  8. 40 CFR 721.10606 - Alkyl substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl substituted alkanediol polymer... alkanediol polymer with aliphatic and alicyclic diisocyanates (generic). (a) Chemical substance and... substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (PMN P-11-486) is subject...

  9. Preferences in removal of aliphatic and aromatic gasoline components by biofiltration under varied loading.

    PubMed

    Halecky, Martin; Paca, Jan; Kozliak, Evguenii I

    2012-01-01

    Removal of gasoline vapors from waste air was investigated in a bench-scale perlite biofilter for three aromatic-to-aliphatic mass ratios (62/38, 92/8 and 44/56) under different loads, varied by changing both the substrate inlet concentration and air flow rate. The measurement of concentration profiles along the bed height allowed for an assessment of interactions between the aromatic and aliphatic fractions of gasoline. Variations in both the inlet concentrations and empty bed residence time significantly influenced the removal of aliphatic gasoline components. Except for the lowest organic loads, the whole biofilter bed was required for achieving an acceptable removal efficiency of aliphatic hydrocarbons. The presence of large amounts of aromatics negatively impacted the removal of aliphatics. By contrast, the aromatic gasoline components were near-completely removed from any mixtures; the bulk of them were degraded in the first (out of three) biofilter section, even at high concentrations of aliphatic hydrocarbons. The observed effect was shown to be due to competitive interactions of aliphatic and aromatic components, which is consistent with the biological steps being rate limiting. Mass transfer, particularly for aliphatic components due to their high Henry's law constants, was shown to be rate-limiting under extreme scenarios, such as low loading rates and EBRT. PMID:22486669

  10. Anion exchange polymer electrolytes

    DOEpatents

    Kim, Yu Seung; Kim, Dae Sik; Lee, Kwan-Soo

    2013-07-23

    Solid anion exchange polymer electrolytes and compositions comprising chemical compounds comprising a polymeric core, a spacer A, and a guanidine base, wherein said chemical compound is uniformly dispersed in a suitable solvent and has the structure: ##STR00001## wherein: i) A is a spacer having the structure O, S, SO.sub.2, --NH--, --N(CH.sub.2).sub.n, wherein n=1-10, --(CH.sub.2).sub.n--CH.sub.3--, wherein n=1-10, SO.sub.2-Ph, CO-Ph, ##STR00002## wherein R.sub.5, R.sub.6, R.sub.7 and R.sub.8 each are independently --H, --NH.sub.2, F, Cl, Br, CN, or a C.sub.1-C.sub.6 alkyl group, or any combination of thereof; ii) R.sub.9, R.sub.10, R.sub.11, R.sub.12, or R.sub.13 each independently are --H, --CH.sub.3, --NH.sub.2, --NO, --CH.sub.nCH.sub.3 where n=1-6, HC.dbd.O--, NH.sub.2C.dbd.O--, --CH.sub.nCOOH where n=1-6, --(CH.sub.2).sub.n--C(NH.sub.2)--COOH where n=1-6, --CH--(COOH)--CH.sub.2--COOH, --CH.sub.2--CH(O--CH.sub.2CH.sub.3).sub.2, --(C.dbd.S)--NH.sub.2, --(C.dbd.NH)--N--(CH.sub.2).sub.nCH.sub.3, where n=0-6, --NH--(C.dbd.S)--SH, --CH.sub.2--(C.dbd.O)--O--C(CH.sub.3).sub.3, --O--(CH.sub.2).sub.n--CH--(NH.sub.2)--COOH, where n=1-6, --(CH.sub.2).sub.n--CH.dbd.CH wherein n=1-6, --(CH.sub.2).sub.n--CH--CN wherein n=1-6, an aromatic group such as a phenyl, benzyl, phenoxy, methylbenzyl, nitrogen-substituted benzyl or phenyl groups, a halide, or halide-substituted methyl groups; and iii) wherein the composition is suitable for use in a membrane electrode assembly.

  11. Anionic derivatives of uracil: fragmentation and reactivity.

    PubMed

    Cole, Callie A; Wang, Zhe-Chen; Snow, Theodore P; Bierbaum, Veronica M

    2014-09-01

    Uracil is an essential biomolecule for terrestrial life, yet its prebiotic formation mechanisms have proven elusive for decades. Meteorites have been shown to contain uracil and the interstellar abundance of aromatic species and nitrogen-containing molecules is well established, providing support for uracil's presence in the interstellar medium (ISM). The ion chemistry of uracil may provide clues to its prebiotic synthesis and role in the origin of life. The fragmentation of biomolecules provides valuable insights into their formation. Previous research focused primarily on the fragmentation and reactivity of cations derived from uracil. In this study, we explore deprotonated uracil-5-carboxylic acid and its anionic fragments to elucidate novel reagents of uracil formation and to characterize the reactivity of uracil's anionic derivatives. The structures of these fragments are identified through theoretical calculations, further fragmentation, experimental acidity bracketing, and reactivity with several detected and potential interstellar species (SO2, OCS, CS2, NO, N2O, CO, NH3, O2, and C2H4). Fragmentation is achieved through collision induced dissociation (CID) in a commercial ion trap mass spectrometer, and all reaction rate constants are measured using a modification of this instrument. Experimental data are supported by theoretical calculations at the B3LYP/6-311++G(d,p) level of theory. Lastly, the astrochemical implications of the observed fragmentation and reaction processes are discussed. PMID:25036757

  12. The force field for imidazolium-based ionic liquids: Novel anions with polar residues

    NASA Astrophysics Data System (ADS)

    Fileti, Eudes Eterno; Chaban, Vitaly V.

    2015-07-01

    Many molecules can be converted into ions via relatively simple procedures. These ions can be combined into ionic liquids (ILs). We develop a new force field (FF) for the seven selected AAILs comprising 1-ethyl-3-methylimidazolium cation and amino acid anions with polar residues. All anions were obtained via deprotonation of carboxyl group in analogy with acetate anion. We account for peculiar interactions between the anion and the cation by fitting electrostatic potential for an ion pair, in contrast to isolated ions. Furthermore, we account for hydrogen bonds obtained via electronic structure consideration. The developed model fosters computational investigation of ionic liquids.

  13. A statistical approach to the interpretation of aliphatic hydrocarbon distributions in marine sediments

    USGS Publications Warehouse

    Rapp, J.B.

    1991-01-01

    Q-mode factor analysis was used to quantitate the distribution of the major aliphatic hydrocarbon (n-alkanes, pristane, phytane) systems in sediments from a variety of marine environments. The compositions of the pure end members of the systems were obtained from factor scores and the distribution of the systems within each sample was obtained from factor loadings. All the data, from the diverse environments sampled (estuarine (San Francisco Bay), fresh-water (San Francisco Peninsula), polar-marine (Antarctica) and geothermal-marine (Gorda Ridge) sediments), were reduced to three major systems: a terrestrial system (mostly high molecular weight aliphatics with odd-numbered-carbon predominance), a mature system (mostly low molecular weight aliphatics without predominance) and a system containing mostly high molecular weight aliphatics with even-numbered-carbon predominance. With this statistical approach, it is possible to assign the percentage contribution from various sources to the observed distribution of aliphatic hydrocarbons in each sediment sample. ?? 1991.

  14. Anion selectivity and pumping mechanism of halorhodopsin.

    PubMed

    Otomo, J

    1995-01-01

    Comparison of the amino acid sequences in the A-B and B-C interhelical loop segments in all bacteriorhodopsins and halorhodopsins has shed light on the anion selectivity and pumping mechanism of halorhodopsin. The nucleotide sequences of two haloopsins from two new halobacterial strains, shark and port, have been determined, and shark halorhodopsin was functionally overexpressed in Halobacterium halobium. Although a series of six amino acid residues (EMPAGH) in the B-C interhelical loop segment was substituted by QMPPGH, all putative charged residues were conserved. It was also shown that His-95 mutants had lower pumping activity in low chloride concentrations. These results further support the hypothesis that His-95 is important in the halorhodopsin function. PMID:7662863

  15. The Impact of the Absence of Aliphatic Glucosinolates on Insect Herbivory in Arabidopsis

    PubMed Central

    van Dam, Nicole M.; Bertossi, Monica; Grandi, Valentina; Mizzi, Luca; Soloviev, Mikhail; Szabados, Laszlo; Molthoff, Jos W.; Schipper, Bert; Verbocht, Hans; de Vos, Ric C. H.; Morandini, Piero; Aarts, Mark G. M.; Bovy, Arnaud

    2008-01-01

    Aliphatic glucosinolates are compounds which occur in high concentrations in Arabidopsis thaliana and other Brassicaceae species. They are important for the resistance of the plant to pest insects. Previously, the biosynthesis of these compounds was shown to be regulated by transcription factors MYB28 and MYB29. We now show that MYB28 and MYB29 are partially redundant, but in the absence of both, the synthesis of all aliphatic glucosinolates is blocked. Untargeted and targeted biochemical analyses of leaf metabolites showed that differences between single and double knock-out mutants and wild type plants were restricted to glucosinolates. Biosynthesis of long-chain aliphatic glucosinolates was blocked by the myb28 mutation, while short-chain aliphatic glucosinolates were reduced by about 50% in both the myb28 and the myb29 single mutants. Most remarkably, all aliphatic glucosinolates were completely absent in the double mutant. Expression of glucosinolate biosynthetic genes was slightly but significantly reduced by the single myb mutations, while the double mutation resulted in a drastic decrease in expression of these genes. Since the myb28myb29 double mutant is the first Arabidopsis genotype without any aliphatic glucosinolates, we used it to establish the relevance of aliphatic glucosinolate biosynthesis to herbivory by larvae of the lepidopteran insect Mamestra brassicae. Plant damage correlated inversely to the levels of aliphatic glucosinolates observed in those plants: Larval weight gain was 2.6 fold higher on the double myb28myb29 mutant completely lacking aliphatic glucosinolates and 1.8 higher on the single mutants with intermediate levels of aliphatic glucosinolates compared to wild type plants. PMID:18446225

  16. Hydrogen in anion vacancies of semiconductors

    SciTech Connect

    Du, Mao-Hua; Singh, David J

    2009-01-01

    Density functional calculations show that, depending on the anion size, hydrogen in anion vacancies of various II-VI semiconductors can be either two-fold or four-fold coordinated, and has either amphoteric or shallow donor character. In general, the multi-coordination of hydrogen in an anion vacancy is the indication of an anionic H, H { ion, in the relatively ionic environment. In more covalent semiconductors, H would form a single cation-H bond in the anion vacancy.

  17. The role of essential fatty acids in development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acids are aliphatic monocarboxylic acids. They are classified as saturated, monounsaturated, or polyunsaturated fatty acids depending upon the number of double bonds in the carbon chain. Saturated fatty acids have no double bonds, monounsaturated fatty acids have 1 double bond, and polyunsat...

  18. Electrostatic charge confinement using bulky tetraoctylammonium cation and four anions

    NASA Astrophysics Data System (ADS)

    Andreeva, Nadezhda A.; Chaban, Vitaly V.

    2016-04-01

    Thanks to large opposite electrostatic charges, cations and anions establish strong ionic bonds. However, applications of ionic systems - electrolytes, gas capture, solubilization, etc. - benefit from weaker non-covalent bonds. The common approaches are addition of cosolvents and delocalization of electron charge density via functionalization of ions. We report fine tuning of closest-approach distances, effective radii, and cation geometry by different anions using the semi-empirical molecular dynamics simulations. We found that long fatty acid chains employed in the tetraalkylammonium cation are largely inefficient and new substituents must be developed. The reported results foster progress of task-specific ionic liquids.

  19. Pu Anion Exchange Process Intensification

    SciTech Connect

    Taylor-Pashow, K.

    2015-10-08

    This project seeks to improve the efficiency of the plutonium anion-exchange process for purifying Pu through the development of alternate ion-exchange media. The objective of the project in FY15 was to develop and test a porous foam monolith material that could serve as a replacement for the current anion-exchange resin, Reillex® HPQ, used at the Savannah River Site (SRS) for purifying Pu. The new material provides advantages in efficiency over the current resin by the elimination of diffusive mass transport through large granular resin beads. By replacing the large resin beads with a porous foam there is much more efficient contact between the Pu solution and the anion-exchange sites present on the material. Several samples of a polystyrene based foam grafted with poly(4-vinylpyridine) were prepared and the Pu sorption was tested in batch contact tests.

  20. A polycomponent metal-catalyzed aliphatic, allylic, and benzylic fluorination.

    PubMed

    Bloom, Steven; Pitts, Cody Ross; Miller, David Curtin; Haselton, Nathan; Holl, Maxwell Gargiulo; Urheim, Ellen; Lectka, Thomas

    2012-10-15

    A group effort: Reported is the title reaction using a polycomponent catalytic system involving commercially available Selectfluor, a putative radical precursor N-hydroxyphthalimide, an anionic phase-transfer catalyst (KB(C(6)F(5))(4)), and a copper(I) bis(imine). The catalyst system formed leads to monofluorinated compounds selectively (see example) without the necessity for an excess of the alkane substrate. PMID:22976771

  1. Molecular Simulations of Anion and Temperature Dependence on Structure and Dynamics of 1-Hexyl-3-methylimidazolium Ionic Liquids.

    PubMed

    Ramya, K R; Kumar, Praveen; Venkatnathan, Arun

    2015-11-19

    In this study, we examine the effect of various anions and temperature on structure and dynamics of 1-hexyl-3-methylimidazolium ionic liquids (ILs) from molecular dynamics simulations. The structural properties show that ILs containing smaller anions like Cl(-) and Br(-) are relatively higher cation-anion interactions, compared to ILs containing larger anions like OTf(-) and NTf2(-). In all ILs, the spatial distribution of anions is closer to the acidic hydrogen atom of the cation compared to the two nonacidic hydrogen atoms of the cation. The diffusion coefficients of cations and anions (ionic conductivity) increase with anionic size. At each temperature, the cationic and anionic diffusions and ionic conductivity are lowest in ILs containing anions like Cl(-) and Br(-) and highest in ILs containing anions like BF4(-), OTf(-), and NTf2(-). Consistent with experiments, simulations predict that ILs with an intermediate size BF4(-) anion show the highest cationic and anionic diffusion (and ionic conductivity). At each temperature, the interactions between ion pairs of each IL show that a decrease in ion-pair lifetimes is directly related to the increase in diffusion coefficients and conductivity in ILs, suggesting that characterization of ion-pair lifetimes is sufficient to validate the trends seen in dynamical properties of ILs. PMID:26507854

  2. Combined size exclusion chromatography, supercritical fluid chromatography and electrospray ionization mass spectrometry for the analysis of complex aliphatic polyesters.

    PubMed

    Pretorius, Nadine O; Willemse, Chandré M; de Villiers, André; Pasch, Harald

    2014-02-21

    Aliphatic polyesters are complex products of polycondensation that are distributed regarding the degree of polycondensation, the end group functionality and the molecular topology. To address the molecular heterogeneity of polyesters based on phthalic acid and propylene glycol, for the first time the combination of SEC, SFC and ESI-MS have been used. In a first set of experiments, samples were fractionated by SEC and the collected fractions analyzed by SFC for a tentative assignment of the degrees of polycondensation. More conclusive results were obtained by semi-preparative SFC fractionation of the bulk samples and the subsequent analysis of the collected fractions by ESI-MS. The ESI-MS spectra of the SFC fractions provided detailed information on the presence of linear and cyclic oligomers, their degrees of polycondensation and their end groups. Information on the presence of propylene oxide oligomers was also obtained and it was shown how they were inserted in the polymer structures. Compared to previous work, the present approach provides significantly more detailed information on the molecular complexity of aliphatic polyesters. This is mainly due to the fact that SFC has been used as the second chromatographic dimension which is known to have superior separation capabilities. PMID:24472839

  3. A Route to Aliphatic Poly(ester)s with Thiol Pendant Groups: From Monomer Design to Editable Porous Scaffolds.

    PubMed

    Fuoco, Tiziana; Finne-Wistrand, Anna; Pappalardo, Daniela

    2016-04-11

    Biodegradable aliphatic polyesters such as poly(lactide) and poly(ε-caprolactone), largely used in tissue engineering applications, lack suitable functional groups and biological cues to enable interactions with cells. Because of the ubiquity of thiol groups in the biological environment and the pliability of thiol chemistry, we aimed to design and synthesize poly(ester) chains bearing pendant thiol-protected groups. To achieve this, 3-methyl-6-(tritylthiomethyl)-1,4-dioxane-2,5-dione, a lactide-type monomer possessing a pendant thiol-protected group, was synthesized. This molecule, when used as a monomer in controlled ring-opening polymerization in combination with lactide and ε-caprolactone, appeared to be a convenient "building block" for the preparation of functionalized aliphatic copolyesters, which were easily modified further. A polymeric sample bearing pyridyl disulfide groups, able to bind a cysteine-containing peptide, was efficiently obtained from a two-step modification reaction. Porous scaffolds were then prepared by blending this latter copolymer sample with poly(l-lactide-co-ε-caprolactone) followed by salt leaching. A further disulfide exchange reaction performed in aqueous medium formed porous scaffolds with covalently linked arginine-glycine-aspartic acid sequences. The scaffolds were characterized by thermal and mechanical tests, and scanning electron microscopy surface images revealed a highly porous morphology. Moreover, a cytotoxicity test indicated good cell viability. PMID:26915640

  4. Theoretical and experimental studies of the isomeric protonation in solution for a prototype aliphatic ring containing two nitrogens

    PubMed Central

    Maheshwari, Aditya; Kim, Yong-Wah

    2009-01-01

    Theoretical calculations were carried out for studying the tautomeric protonation of N-methyl piperazine as a prototype six-member aliphatic ring containing a secondary and a tertiary nitrogen atom. The protonation was investigated in three solvents: water, acetonitrile, and dichloromethane. Calculations were performed up to the B3LYP/aug-cc-pvtz and QCISD(T)/CBS levels by applying the IEF-PCM polarizable continuum dielectric solvent model. Relative solvation free energies also were calculated upon explicit solvent models by utilizing the free-energy perturbation theory as implemented in Monte Carlo simulations. The relative free energy for the N-methyl piperazine tautomer protonated at the secondary (NMps) rather than at the tertiary (NMpt) nitrogen was calculated at a ratio of 47/53 in infinitely dilute aqueous solution. The ratio further decreases in lower polarity solvents. In contrast, NMR experiments suggest that the protonation takes place primarily at the secondary nitrogen in 0.37 molar aqueous solution with NMps/NMpt = 80/20. The NMps tautomer is exclusive in dichloromethane at the same concentration. The discrepancy between theory and experiment was resolved by considering association equilibria in parallel with the protonation for the solute. As a result, the theoretically predicted tautomer ratios were obtained in close agreement with the experimental values. The NMps tautomer could form a preferable dimeric structure, where one or two chloride anion(s) is/are in hydrogen bonds with protons of the associating monomers. The calculations suggest that the proton relocation may take place by solvent assistance in water or along an intramolecular proton jump in the twist-boat conformation. The predicted activation free energy was about 10 kcal/mol on the basis of variable temperature NMR experiments in DCM. PMID:19994881

  5. Multiple-anion nonvolatile acetal (MANA) resists

    NASA Astrophysics Data System (ADS)

    Guevremont, Jeffrey M.; Brainard, Robert L.; Reeves, Scott D.; Zhou, Xin; Nguyen, Thinh B.; Mackevich, Joseph F.; Anderson, Erik H.; Taylor, Gary N.

    2001-08-01

    New acetal or ketal blocking reagents were investigated for use in e-beam lithography and compared with the performance of ethyl vinyl either (EVE). Three blocking groups, (alpha) -Angelicalactone (AL), 6-methylene-5,6-benzo-1,4- dioxane (MBD), and MANA50 (an undisclosed blocking group used to show the potential of this chemistry) were reacted with poly(p-hydroxystyrene) (PHS) under acid catalyzed conditions to form AL-PHS, MBD-PHS, MANA50-PHS. The performance objectives pursued in the design of these new materials was to use acetal (ketal) chemistry to deliver wide process latitudes (e.g. good PED performance and minimal PEB sensitivity), use high molecular weight blocking groups to eliminate outgassing, and use the novel concept of multiple anions to deliver lithographic performance. These new materials are called Multiple Anion Nonvolatile Acetal (MANA) resists. Resists films were exposed with 50kV electrons, post exposure baked (PEB), and developed with 0.26 N TMAH. Resists prepared with the third blocking group, MANA50, gave contrast and imaging performance independent of PEB humidity and were relatively insensitive to PEB temperature and post exposure delay (PED). These resists gave the best resolution (90 nm) and profiles of all the materials tested, as well as showing no outgassing (as measured by film thickness loss).

  6. Protein Camouflage: Supramolecular Anion Recognition by Ubiquitin.

    PubMed

    Mallon, Madeleine; Dutt, Som; Schrader, Thomas; Crowley, Peter B

    2016-04-15

    Progress in the field of bio-supramolecular chemistry, the bottom-up assembly of protein-ligand systems, relies on a detailed knowledge of molecular recognition. To address this issue, we have characterised complex formation between human ubiquitin (HUb) and four supramolecular anions. The ligands were: pyrenetetrasulfonic acid (4PSA), p-sulfonato-calix[4]arene (SCLX4), bisphosphate tweezers (CLR01) and meso-tetrakis (4-sulfonatophenyl)porphyrin (TPPS), which vary in net charge, size, shape and hydrophobicity. All four ligands induced significant changes in the HSQC spectrum of HUb. Chemical shift perturbations and line-broadening effects were used to identify binding sites and to quantify affinities. Supporting data were obtained from docking simulations. It was found that these weakly interacting ligands bind to extensive surface patches on HUb. A comparison of the data suggests some general indicators for the protein-binding specificity of supramolecular anions. Differences in binding were observed between the cavity-containing and planar ligands. The former had a preference for the arginine-rich, flexible C terminus of HUb. PMID:26818656

  7. Anion binding in biological systems

    NASA Astrophysics Data System (ADS)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  8. Tuning the structure and solubility of nanojars by peripheral ligand substitution, leading to unprecedented liquid-liquid extraction of the carbonate ion from water into aliphatic solvents.

    PubMed

    Ahmed, Basil M; Calco, Brice; Mezei, Gellert

    2016-05-28

    Nanojars, a novel class of neutral anion-incarcerating agents of the general formula [Cu(II)(OH)(pz)]n (Cun; n = 27-31, pz = pyrazolate anion), efficiently sequester various oxoanions with large hydration energies from water. In this work, we explore whether substituents on the pyrazole ligand interfere with nanojar formation, and whether appropriate substituents could be employed to tune the solubility of nanojars in solvents of interest, such as long-chain aliphatic hydrocarbons (solvent of choice for large-scale liquid-liquid extraction processes) and water. To this end, we conducted a comprehensive study using 40 different pyrazole ligands, with one, two or three substituents in their 3-, 4- and 5-positions. The corresponding nanojars are characterized by single-crystal X-ray diffraction and/or electrospray-ionization mass spectrometry (ESI-MS). The results show that Cun-nanojars with various substituents in the pyrazole 4-position, including long chains, phenyl and CF3 groups, can be obtained. Straight chains are also tolerated at the pyrazole 3-position, and favor the Cu30-nanojar. Homoleptic nanojars, however, could not be obtained with phenyl or CF3 groups. Nevertheless, if used in mixture with the parent non-substituted pyrazole, sterically hindered pyrazoles do form heteroleptic nanojars. With 3,5-disubstituted pyrazoles, only heteroleptic nanojars are accessible. The crystal structure of novel nanojars (Bu4N)2[CO3⊂{Cu30(OH)30(3,5-Me2pz)y(pz)30-y}] (y = 14 and 15) is presented. We find that in contrast to the parent nanojar, which is insoluble in aliphatic solvents and water, nanojars with alkyl substituents are soluble in saturated hydrocarbon solvents, whereas nanojars based on novel pyrazoles, functionalized with oligoether chains, are readily soluble in water. Liquid-liquid extraction of carbonate from water under basic pH is presented for the first time. PMID:27048621

  9. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminum (Al) toxicity is a primary limitation to crop productivity on acid soils throughout the plant. Root efflux of organic acid anions constitutes a mechanism by which plants cope with toxic aluminum (Al) ions on acid soils. In this study, we have characterized ZmALMT2 (a member of aluminum-acti...

  10. Effects of anions on the positive ion electrospray ionization mass spectra of peptides and proteins.

    PubMed

    Mirza, U A; Chait, B T

    1994-09-15

    Positive ion electrospray ionization mass spectra of polypeptides are usually obtained from solutions that are acidified and therefore contain relatively high concentrations of anions. The present study describes an investigation of the effects of these ubiquitous anions on the positive ion electrospray ionization mass spectra of peptides and proteins. Certain anionic species in the spray solutions were observed to cause a marked decrease in the net average charge of peptide and protein ions in the mass spectra compared to the average charge measured in the absence of these anions. This charge neutralization effect was found to depend solely on the nature of the anionic species and was independent of the source of the anion (acid or salt), with the propensity for neutralization following the order: CCl3COO- > CF3COO- > CH3COO- approximately Cl-. A mechanism for the observed charge reduction effect is proposed that involves two steps. The first step occurs in solution, where an anion pairs with a positively charged basic group on the peptide. The second step occurs during the process of desolvation or in the gas phase, where the ion pair dissociates to yield the neutral acid and the peptide with reduced charge state. The different propensities for charge neutralization of the different anionic species is presumed to reflect the avidity of the anion-peptide interaction. These findings demonstrate that any attempt to correlate the distribution of charge states observed on proteins in the gas phase (by positive ion electrospray ionization mass spectrometry) with the net charge residing on the protein in solution will require that the described anion effect be taken into account. In addition, it appears that some control over the distribution of charge states on peptides and protein ions can be exercised by an appropriate choice of anion in the electrospray solution. PMID:7978296

  11. Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore.

    PubMed Central

    Linsdell, P; Evagelidis, A; Hanrahan, J W

    2000-01-01

    Ionic selectivity in many cation channels is achieved over a short region of the pore known as the selectivity filter, the molecular determinants of which have been identified in Ca(2+), Na(+), and K(+) channels. However, a filter controlling selectivity among different anions has not previously been identified in any Cl(-) channel. In fact, because Cl(-) channels are only weakly selective among small anions, and because their selectivity has proved so resistant to site-directed mutagenesis, the very existence of a discrete anion selectivity filter has been called into question. Here we show that mutation of a putative pore-lining phenylalanine residue, F337, in the sixth membrane-spanning region of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, dramatically alters the relative permeabilities of different anions in the channel. Specifically, mutations that reduce the size of the amino acid side chain present at this position virtually abolish the relationship between anion permeability and hydration energy, a relationship that characterizes the anion selectivity not only of wild-type CFTR, but of most classes of Cl(-) channels. These results suggest that the pore of CFTR may indeed contain a specialized region, analogous to the selectivity filter of cation channels, at which discrimination between different permeant anions takes place. Because F337 is adjacent to another amino acid residue, T338, which also affects anion selectivity in CFTR, we suggest that selectivity is predominantly determined over a physically discrete region of the pore located near these important residues. PMID:10827976

  12. Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore.

    PubMed

    Linsdell, P; Evagelidis, A; Hanrahan, J W

    2000-06-01

    Ionic selectivity in many cation channels is achieved over a short region of the pore known as the selectivity filter, the molecular determinants of which have been identified in Ca(2+), Na(+), and K(+) channels. However, a filter controlling selectivity among different anions has not previously been identified in any Cl(-) channel. In fact, because Cl(-) channels are only weakly selective among small anions, and because their selectivity has proved so resistant to site-directed mutagenesis, the very existence of a discrete anion selectivity filter has been called into question. Here we show that mutation of a putative pore-lining phenylalanine residue, F337, in the sixth membrane-spanning region of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel, dramatically alters the relative permeabilities of different anions in the channel. Specifically, mutations that reduce the size of the amino acid side chain present at this position virtually abolish the relationship between anion permeability and hydration energy, a relationship that characterizes the anion selectivity not only of wild-type CFTR, but of most classes of Cl(-) channels. These results suggest that the pore of CFTR may indeed contain a specialized region, analogous to the selectivity filter of cation channels, at which discrimination between different permeant anions takes place. Because F337 is adjacent to another amino acid residue, T338, which also affects anion selectivity in CFTR, we suggest that selectivity is predominantly determined over a physically discrete region of the pore located near these important residues. PMID:10827976

  13. Aliphatic hyperbranched polyester: A new building block in the construction of multifunctional nanoparticles and nanocomposites**

    PubMed Central

    Santra, Santimukul; Kaittanis, Charalambos; Perez, J. Manuel

    2009-01-01

    Herein we report the design and synthesis of multifunctional hyperbranched polyester-based nanoparticles and nanocomposites with properties ranging from magnetic, fluorescence, antioxidant and X-ray contrast. The fabrication of these nanostructures was achieved using a novel aliphatic and biodegradable hyperbranched polyester (HBPE) synthesized from readily available diethylmalonate. The polymer’s globular structure with functional surface carboxylic groups and hydrophobic cavities residing in the polymer’s interior allows for the formation of multifunctional polymeric nanoparticles, which are able to encapsulate a diversity of hydrophobic cargos. Via simple surface chemistry modifications, the surface carboxylic acid groups were modified to yield nanoparticles with a variety of surface functionalizations, such as amino, azide and propargyl groups, which mediated the conjugation of small molecules. This capability achieved the engineering of the HBPE nanoparticle surface for specific cell internalization studies and the formation of nanoparticle assemblies for the creation of novel nanocomposites that retained, and in some cases enhanced, the properties of the parental nanoparticle building blocks. Considering these results, the HBPE polymer, nanoparticles and composites should be ideal for biomedical, pharmaceutical, nanophotonics and material applications. PMID:19957939

  14. Structural analysis of aliphatic versus aromatic substrate specificity in a copper amine oxidase from Hansenula polymorpha.

    PubMed

    Klema, Valerie J; Solheid, Corinne J; Klinman, Judith P; Wilmot, Carrie M

    2013-04-01

    Copper amine oxidases (CAOs) are responsible for the oxidative deamination of primary amines to their corresponding aldehydes. The CAO catalytic mechanism can be divided into two half-reactions: a reductive half-reaction in which a primary amine substrate is oxidized to its corresponding aldehyde with the concomitant reduction of the organic cofactor 2,4,5-trihydroxyphenylalanine quinone (TPQ) and an oxidative half-reaction in which reduced TPQ is reoxidized with the reduction of molecular oxygen to hydrogen peroxide. The reductive half-reaction proceeds via Schiff base chemistry, in which the primary amine substrate first attacks the C5 carbonyl of TPQ, forming a series of covalent Schiff base intermediates. The X-ray crystal structures of copper amine oxidase-1 from the yeast Hansenula polymorpha (HPAO-1) in complex with ethylamine and benzylamine have been determined to resolutions of 2.18 and 2.25 Å, respectively. These structures reveal the two amine substrates bound at the back of the active site coincident with TPQ in its two-electron-reduced aminoquinol form. Rearrangements of particular amino acid side chains within the substrate channel and specific protein-substrate interactions provide insight into the substrate specificity of HPAO-1. These changes begin to account for this CAO's kinetic preference for small, aliphatic amines over the aromatic amines or whole peptides preferred by some of its homologues. PMID:23452079

  15. Divergent layer topologies in divalent metal aliphatic dicarboxylate coordination polymers containing 3-pyridylmethylnicotinamide

    NASA Astrophysics Data System (ADS)

    White, Charmaine L.; Torres Salgado, Maria D.; Mizzi, Jessica E.; LaDuca, Robert L.

    2015-12-01

    Hydrothermal reaction of the requisite metal salt, an aliphatic dicarboxylic acid, and the hydrogen-bonding capable dipyridylamide ligand 3-pyridylmethylnicotinamide (3-pmna) resulted in four coordination polymers whose connectedness and layer topology depend on the metal coordination environment and dicarboxylate binding mode. These new crystalline phases were characterized by single crystal X-ray diffraction. [Cu(ox)(3-pmna)]n (1, ox = oxalate) manifests stacked 3-connected (6,3) herringbone layer motifs. {[Cd(mal)(3-pmna)(H2O)]·3H2O}n (2, mal = malonate) shows a 4-connected (4,4) grid topology with entrained water molecule trimeric chains in the interlamellar regions. {[Cd2(suc)2(3-pmna)(H2O)2]·3H2O}n (3, suc = succinate) possesses {Cd2O2} dimer-based [Cd(suc)]n layers pillared by 3-pmna ligands into a 5-connected sandwich motif with 4862 topology. {[Cd(glu)(3-pmna)(H2O)]·3H2O}n (4, glu = glutarate) manifests a rippled (4,4) grid topology. Luminescent behavior in the cadmium complexes is ascribed to intra-ligand molecular orbital transitions. Thermal decomposition behavior is also discussed herein.

  16. Sum frequency generation image reconstruction: aliphatic membrane under spherical cap geometry.

    PubMed

    Volkov, Victor

    2014-10-01

    The article explores an opportunity to approach structural properties of phospholipid membranes using Sum Frequency Generation microscopy. To establish the principles of sum frequency generation image reconstruction in such systems, at first approach, we may adopt an idealistic spherical cap uniform assembly of hydrocarbon molecules. Quantum mechanical studies for decanoic acid (used here as a representative molecular system) provide necessary information on transition dipole moments and Raman tensors of the normal modes specific to methyl terminal - a typical moiety in aliphatic (and phospholipid) membranes. Relative degree of localization and frequencies of the normal modes of methyl terminals make nonlinearities of this moiety to be promising in structural analysis using Sum Frequency Generation imaging. Accordingly, the article describes derivations of relevant macroscopic nonlinearities and suggests a mapping procedure to translate amplitudes of the nonlinearities onto microscopy image plane according to geometry of spherical assembly, local molecular orientation, and optical geometry. Reconstructed images indicate a possibility to extract local curvature of bilayer envelopes of spherical character. This may have practical implications for structural extractions in membrane systems of practical relevance. PMID:25296798

  17. Sum frequency generation image reconstruction: Aliphatic membrane under spherical cap geometry

    SciTech Connect

    Volkov, Victor

    2014-10-07

    The article explores an opportunity to approach structural properties of phospholipid membranes using Sum Frequency Generation microscopy. To establish the principles of sum frequency generation image reconstruction in such systems, at first approach, we may adopt an idealistic spherical cap uniform assembly of hydrocarbon molecules. Quantum mechanical studies for decanoic acid (used here as a representative molecular system) provide necessary information on transition dipole moments and Raman tensors of the normal modes specific to methyl terminal – a typical moiety in aliphatic (and phospholipid) membranes. Relative degree of localization and frequencies of the normal modes of methyl terminals make nonlinearities of this moiety to be promising in structural analysis using Sum Frequency Generation imaging. Accordingly, the article describes derivations of relevant macroscopic nonlinearities and suggests a mapping procedure to translate amplitudes of the nonlinearities onto microscopy image plane according to geometry of spherical assembly, local molecular orientation, and optical geometry. Reconstructed images indicate a possibility to extract local curvature of bilayer envelopes of spherical character. This may have practical implications for structural extractions in membrane systems of practical relevance.

  18. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  19. Field Evaluations Test Plan for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    The objective of this project is to qualify candidate alternatives to Aliphatic Isocyanate Polyurethane coatings under the specifications for the standard system. This project will compare coating performance of the proposed alternatives to existing coating systems or standards.

  20. Project Summary. IN-SITU AQUIFER RESTORATION OF CHLORINATED ALIPHATICS BY METHANOTROPHIC BACTERIA

    EPA Science Inventory

    This project evaluated the potential of an innovative approach to aquifer restoration: enhanced in-situ biotransformation of chlorinated aliphatic solvents by a bacterial community grown on methane under aerobic conditions. The target chlorinated compounds were trichloroethene (...

  1. ANAEROBIC TRANSFORMATION OF CHLORINATED ALIPHATIC HYDROCARBONS IN A SAND AQUIFER BASED ON SPATIAL CHEMICAL DISTRIBUTIONS

    EPA Science Inventory

    We estimated the distribution of chlorinated aliphatic hydrocarbons (CAHs) from groundwater samples collected along three transects in a sand aquifer. richloroethylene (TCE) leaked and contaminated the aquifer probably more than a decade before we collected the measurements. he d...

  2. CHEMICAL DISTRIBUTION AND ANAEROBIC TRANSFORMATION OF CHLORINATED ALIPHATIC HYDROCARBONS IN A SAND AQUIFER

    EPA Science Inventory

    We estimated the distribution of chlorinated aliphatic hydrocarbons (CAHS) from groundwater samples collected along three transects in a sand aquifer. richloroethylene (TCE) leaked and contaminated the aquifer probably more than a decade before we collected the measurements. he d...

  3. Process for the synthesis of aliphatic alcohol-containing mixtures

    DOEpatents

    Greene, M.I.; Gelbein, A.P.

    1984-10-16

    A process for the synthesis of mixtures which include saturated aliphatic alcohols is disclosed. In the first step of the process, the first catalyst activation stage, a catalyst, which comprises the oxides of copper, zinc, aluminum, potassium and one or two additional metals selected from the group consisting of chromium, magnesium, cerium, cobalt, thorium and lanthanum, is partially activated. In this step, a reducing gas stream, which includes hydrogen and at least one inert gas, flows past the catalyst at a space velocity of up to 5,000 liters (STP) per hour, per kilogram of catalyst. The partially activated catalyst is then subjected to the second step of the process, second-stage catalyst activation. In this step, the catalyst is contacted by an activation gas stream comprising hydrogen and carbon monoxide present in a volume ratio of 0.5:1 and 4:1, respectively, at a temperature of 200 to 450 C and a pressure of between 35 and 200 atmospheres. The activation gas flows at a space velocity of from 1,000 to 20,000 liters (STP) per hour, per kilogram of catalyst. Second-stage activation continues until the catalyst is contacted with at least 500,000 liters (STP) of activation gas per kilogram of catalyst. The fully activated catalyst, in the third step of the process, contacts a synthesis gas stream comprising hydrogen and carbon monoxide.

  4. Process for the synthesis of aliphatic alcohol-containing mixtures

    DOEpatents

    Greene, Marvin I.; Gelbein, Abraham P.

    1984-01-01

    A process for the synthesis of mixtures which include saturated aliphatic alcohols is disclosed. In the first step of the process, the first catalyst activation stage, a catalyst, which comprises the oxides of copper, zinc, aluminum, potassium and one or two additional metals selected from the group consisting of chromium, magnesium, cerium, cobalt, thorium and lanthanum, is partially activated. In this step, a reducing gas stream, which includes hydrogen and at least one inert gas, flows past the catalyst at a space velocity of up to 5,000 liters (STP) per hour, per kilogram of catalyst. The partially activated catalyst is then subjected to the second step of the process, second-stage catalyst activation. In this step, the catalyst is contacted by an activation gas stream comprising hydrogen and carbon monoxide present in a volume ratio of 0.5:1 and 4:1, respectively, at a temperature of 200.degree. to 450.degree. C. and a pressure of between 35 and 200 atmospheres. The activation gas flows at a space velocity of from 1,000 to 20,000 liters (STP) per hour, per kilogram of catalyst. Second-stage activation continues until the catalyst is contacted with at least 500,000 liters (STP) of activation gas per kilogram of catalyst. The fully activated catalyst, in the third step of the process, contacts a synthesis gas stream comprising hydrogen and carbon monoxide.

  5. Shape memory polymers based on uniform aliphatic urethane networks

    SciTech Connect

    Wilson, T S; Bearinger, J P; Herberg, J L; Marion III, J E; Wright, W J; Evans, C L; Maitland, D J

    2007-01-19

    Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, in order to form amorphous networks with very uniform supermolecular structures which can be used as photo-thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,N{prime},N{prime}-tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3-butanediol (BD). The new polymers were characterized by solvent extraction, NMR, XPS, UV/VIS, DSC, DMTA, and tensile testing. The resulting polymers were found to be single phase amorphous networks with very high gel fraction, excellent optical clarity, and extremely sharp single glass transitions in the range of 34 to 153 C. Thermomechanical testing of these materials confirms their excellent shape memory behavior, high recovery force, and low mechanical hysteresis (especially on multiple cycles), effectively behaving as ideal elastomers above T{sub g}. We believe these materials represent a new and potentially important class of SMPs, and should be especially useful in applications such as biomedical microdevices.

  6. Aliphatic hydrocarbons in Great Barrier Reef organisms and environment

    NASA Astrophysics Data System (ADS)

    Coates, M.; Connell, D. W.; Bodero, J.; Miller, G. J.; Back, R.

    1986-07-01

    This investigation was undertaken to assess the chemical nature, occurrence, and possible origin of petroleum hydrocarbons in the Great Barrier Reef ecosystem. Aliphatic hydrocarbons in surface sediments, water, and a suite of seven species from widely separated coral reefs in the Great Barrier Reef area were analysed by gas chromatography, and by gas chromatography coupled with mass spectrometry. The hydrocarbons found were substantially of biogenic origin. The major components were n-pentadecane, n-heptadecane, pristane and mono-alkenes based on heptadecane, and were believed to originate from benthic algae and phytoplankton. There was no evidence to suggest that lipid content had any influence on hydrocarbon content. Hydrocarbons from the organisms and sediments have characteristic composition patterns which would be altered by the presence of petroleum hydrocarbons. An unresolved complex mixture, usually considered indicative of petroleum contamination, was found in greater than trace amounts only in Holothuria (sea cucumber) and Acropora (coral) from the Capricorn Group, and in some sediment samples from the Capricorn Group and Lizard Island area.

  7. Photochemistry of (E)-1-(9-anthryl)-2-(4-nitrophenyl)ethene in the presence of aliphatic amines: H-bonding and charge-transfer effects.

    PubMed

    Bortolus, Pietro; Galiazzo, Guido; Gennari, Giorgio; Monti, Sandra E

    2002-06-01

    Polysubstituted aliphatic and aromatic amines and alcohols quench the fluorescence of (E)-1-(9-anthryl)-2-(4-nitrophenyl)ethene (NA). The quenching occurs without modification of the NA emission characteristics, follows a Stern-Volmer (SV) relationship and correlates with the decrease of the photoisomerization and intersystem crossing (ISC) yields. The dependence of the quenching rate constants (k(q)) on the ionization potentials suggests a charge-transfer interaction for the amines. The dependence of the k(q) values on alcohol acidity indicates the intervention of H-bonding phenomena. The interaction of primary aliphatic amines and NA in low-polarity solvents results in a broadening and a quenching of the NA emission. The quenching does not follow the SV relationship, has no effect on the E --> Z photoisomerization nor on the population of the triplet state, and increases the yield of the photobleaching reaction, especially in more polar solvents (chlorobenzene). This peculiar behaviour of primary aliphatic amines is attributed to H-bonded complexes in both the ground and the lowest excited singlet state. PMID:12856709

  8. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.

    1997-01-01

    Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  9. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.

    1997-09-23

    Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  10. THE CARRIERS OF THE INTERSTELLAR UNIDENTIFIED INFRARED EMISSION FEATURES: AROMATIC OR ALIPHATIC?

    SciTech Connect

    Li Aigen; Draine, B. T. E-mail: draine@astro.princeton.edu

    2012-12-01

    The unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 {mu}m, commonly attributed to polycyclic aromatic hydrocarbon (PAH) molecules, have been recently ascribed to coal- or kerogen-like organic nanoparticles with a mixed aromatic-aliphatic structure. However, we show in this Letter that this hypothesis is inconsistent with observations. We estimate the aliphatic fraction of the UIE carriers based on the observed intensities of the 3.4 {mu}m and 6.85 {mu}m emission features by attributing them exclusively to aliphatic C-H stretch and aliphatic C-H deformation vibrational modes, respectively. We derive the fraction of carbon atoms in aliphatic form to be <15%. We conclude that the UIE emitters are predominantly aromatic, with aliphatic material at most a minor part of the UIE carriers. The PAH model is consistent with astronomical observations and PAHs dominate the strong UIE bands.

  11. A Theoretical Study on the Vibrational Spectra of Polycyclic Aromatic Hydrocarbon Molecules with Aliphatic Sidegroups

    NASA Astrophysics Data System (ADS)

    Sadjadi, SeyedAbdolreza; Zhang, Yong; Kwok, Sun

    2015-03-01

    The role of aliphatic side groups in the formation of astronomical unidentified infrared emission (UIE) features is investigated by applying the density functional theory to a series of molecules with mixed aliphatic-aromatic structures. The effects of introducing various aliphatic groups to a fixed polycyclic aromatic hydrocarbon (PAH) core (ovalene) are studied. Simulated spectra for each molecule are produced by applying a Drude profile at T = 500 K while the molecule is kept at its electronic ground state. The vibrational normal modes are classified using a semi-quantitative method. This allows us to separate the aromatic and aliphatic vibrations, and therefore provides clues to what types of vibrations are responsible for the emissions bands at different wavelengths. We find that many of the UIE bands are not pure aromatic vibrational bands but may represent coupled vibrational modes. The effects of aliphatic groups on the formation of the 8 μm plateau are quantitatively determined. The vibrational motions of methyl (-CH3) and methylene (-CH2 -) groups can cause the merging of the vibrational bands of the parent PAH and the forming of broad features. These results suggest that aliphatic structures can play an important role in the UIE phenomenon.

  12. Enantioselective synthesis of d-α-amino amides from aliphatic aldehydes† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc00064e Click here for additional data file. Click here for additional data file.

    PubMed Central

    Schwieter, Kenneth E.

    2015-01-01

    Peptides consisting of d-amino amides are highly represented among both biologically active natural products and non-natural small molecules used in therapeutic development. Chemical synthesis of d-amino amides most often involves approaches based on enzymatic resolution or fractional recrystallization of their diastereomeric amino acid salt precursors, techniques that produce an equal amount of the l-amino acid. Enantioselective synthesis, however, promises selective and general access to a specific α-amino amide, and may enable efficient peptide synthesis regardless of the availability of the corresponding α-amino acid. This report describes the use of a cinchona alkaloid-catalyzed aza-Henry reaction using bromonitromethane, and the integration of its product with umpolung amide synthesis. The result is a straightforward 3-step protocol beginning from aliphatic aldehydes that provides homologated peptides bearing an aliphatic side chain at the resulting d-α-amino amide. PMID:25838883

  13. Polymerization of anionic wormlike micelles.

    PubMed

    Zhu, Zhiyuan; González, Yamaira I; Xu, Hangxun; Kaler, Eric W; Liu, Shiyong

    2006-01-31

    Polymerizable anionic wormlike micelles are obtained upon mixing the hydrotropic salt p-toluidine hydrochloride (PTHC) with the reactive anionic surfactant sodium 4-(8-methacryloyloxyoctyl)oxybenzene sulfonate (MOBS). Polymerization captures the cross-sectional radius of the micelles (approximately 2 nm), induces micellar growth, and leads to the formation of a stable single-phase dispersion of wormlike micellar polymers. The unpolymerized and polymerized micelles were characterized using static and dynamic laser light scattering, small-angle neutron scattering, 1H NMR, and stopped-flow light scattering. Stopped-flow light scattering was also used to measure the average lifetime of the unpolymerized wormlike micelles. A comparison of the average lifetime of unpolymerized wormlike micelles with the surfactant monomer propagation rate was used to elucidate the mechanism of polymerization. There is a significant correlation between the ratio of the average lifetime to the monomer propagation rate and the average aggregation number of the polymerized wormlike micelles. PMID:16430253

  14. Anion Solvation in Carbonate Electrolytes

    SciTech Connect

    Zhang, Zhengcheng

    2015-11-16

    With the correlation between Li+ solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. As of now, most studies are dedicated to the solvation of Li+, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. As a mirror effort to prior Li+ solvation studies, this work focuses on the interactions between carbonate-based solvents and two anions (hexafluorophosphate, PF6–, and tetrafluoroborate, BF4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.

  15. Aza compounds as anion receptors

    DOEpatents

    Lee, H.S.; Yang, X.Q.; McBreen, J.

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li{sup +} ion in alkali metal batteries. 3 figs.

  16. Aza compounds as anion receptors

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James

    1998-01-06

    A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li.sup.+ ion in alkali metal batteries.

  17. Aliphatic polyester block polymers: renewable, degradable, and sustainable.

    PubMed

    Hillmyer, Marc A; Tolman, William B

    2014-08-19

    Nearly all polymers are derived from nonrenewable fossil resources, and their disposal at their end of use presents significant environmental problems. Nonetheless, polymers are ubiquitous, key components in myriad technologies and are simply indispensible for modern society. An important overarching goal in contemporary polymer research is to develop sustainable alternatives to "petro-polymers" that have competitive performance properties and price, are derived from renewable resources, and may be easily and safely recycled or degraded. Aliphatic polyesters are particularly attractive targets that may be prepared in highly controlled fashion by ring-opening polymerization of bioderived lactones. However, property profiles of polyesters derived from single monomers (homopolymers) can limit their applications, thus demanding alternative strategies. One such strategy is to link distinct polymeric segments in an A-B-A fashion, with A and B chosen to be thermodynamically incompatible so that they can self-organize on a nanometer-length scale and adopt morphologies that endow them with tunable properties. For example, such triblock copolymers can be useful as thermoplastic elastomers, in pressure sensitive adhesive formulations, and as toughening modifiers. Inspired by the tremendous utility of petroleum-derived styrenic triblock copolymers, we aimed to develop syntheses and understand the structure-property profiles of sustainable alternatives, focusing on all renewable and all readily degradable aliphatic polyester triblocks as targets. Building upon oxidation chemistry reported more than a century ago, a constituent of the peppermint plant, (-)-menthol, was converted to the ε-caprolactone derivative menthide. Using a diol initiator and controlled catalysis, menthide was polymerized to yield a low glass transition temperature telechelic polymer (PM) that was then further functionalized using the biomass-derived monomer lactide (LA) to yield fully renewable PLA

  18. Anomalous regioselective four-member multicomponent Biginelli reaction II: one-pot parallel synthesis of spiro heterobicyclic aliphatic rings.

    PubMed

    Byk, Gerardo; Kabha, Eihab

    2004-01-01

    In a previous preliminary study, we found that a cyclic five-member ring beta-keto ester (lactone) reacts with one molecule of urea and two of aldehyde to give a new family of spiro heterobicyclic aliphatic rings in good yields with no traces of the expected dihydropyrimidine (Biginelli) products. The reaction is driven by a regiospecific condensation of two molecules of aldehyde with urea and beta-keto-gamma-lactone to afford only products harboring substitutions exclusively in a syn configuration (Byk, G.; Gottlieb, H. E.; Herscovici, J.; Mirkin, F. J. Comb. Chem. 2000, 2, 732-735). In the present work ((a) Presented in part at ISCT Combitech, October 15, 2002, Israel, and Eurocombi-2, Copenhagen 2003 (oral and poster presentation). (b) Also in American Peptide Society Symposium, Boston, 2003 (poster presentation). (c) Abstract in Biopolymers 2003, 71 (3), 354-355), we report a large and exciting extension of this new reaction utilizing parallel organic synthesis arrays, as demonstrated by the use of chiral beta-keto-gamma-lactams, derived from natural amino acids, instead of tetronic acid (beta-keto-gamma-lactone) and the potential of the spirobicyclic products for generating "libraries from libraries". Interestingly, we note an unusual and important anisotropy effect induced by perpendicular interactions between rigid pi systems and different groups placed at the alpha position of the obtained spirobicyclic system. Stereo/regioselectivity of the aldehyde condensation is driven by the nature of the substitutions on the starting beta-keto-gamma-lactam. Aromatic aldehydes can be used as starting reagents with good yields; however, when aliphatic aldehydes are used, the desired products are obtained in poor yields, as observed in the classical Biginelli reaction. The possible reasons for these poor yields are addressed and clarify, to some extent, the complexity of the Biginelli multicomponent reaction mechanism and, in particular, the mechanism of the present

  19. Pharmacological activities of cilantro's aliphatic aldehydes against Leishmania donovani.

    PubMed

    Donega, Mateus A; Mello, Simone C; Moraes, Rita M; Jain, Surendra K; Tekwani, Babu L; Cantrell, Charles L

    2014-12-01

    Leishmaniasis is a chronic infectious disease caused by different Leishmania species. Global occurrences of this disease are primarily limited to tropical and subtropical regions. Treatments are available; however, patients complain of side effects. Different species of plants have been screened as a potential source of new drugs against leishmaniasis. In this study, we investigated the antileishmanial activity of cilantro (Coriandrum sativum) essential oil and its main components: (E)-2-undecenal, (E)-2-decenal, (E)-2-dodecenal, decanal, dodecanal, and tetradecanal. The essential oil of C. sativum leaves inhibits growth of Leishmani donovani promastigotes in culture with an IC50 of 26.58 ± 6.11 µg/mL. The aliphatic aldehydes (E)-2-decenal (7.85 ± 0.28 µg/mL), (E)-2-undecenal (2.81 ± 0.21 µg/mL), and (E)-2-dodecenal (4.35 ± 0.15 µg/mL), all isolated from C. sativum essential oil, are effective inhibitors of in vitro cultures of L. donovani promastigotes. Aldehydes (E)-2-decenal, (E)-2-undecenal, and (E)-2-dodecenal were also evaluated against axenic amastigotes and IC50 values were determined to be 2.47 ± 0.25 µg/mL, 1.25 ± 0.11 µg/mL, and 4.78 ± 1.12 µg/mL, respectively. (E)-2-Undecenal and (E)-2-dodecenal demonstrated IC50 values of 5.65 ± 0.19 µg/mL and 9.60 ± 0.89 µg/mL, respectively, against macrophage amastigotes. These cilantro compounds showed no cytotoxicity against THP-1 macrophages. PMID:25340465

  20. Development of anion-selective membranes. [for energy storage

    NASA Technical Reports Server (NTRS)

    Lacey, R. E.; Cowsar, D. R.

    1975-01-01

    Methods were studied of preparing anion-exchange membranes that would have low resistance, high selectivity, and physical and chemical stability when used in acidic media in a redox energy storage system. Of the twelve systems selected for study, only the system that was based on crosslinked poly-4-vinylpyridinium chloride produced physically strong membranes when equilibrated in l M HCl. The resistivity of the best membrane was 12 ohm-cm, and the transference number for chloride ions was 0.81.

  1. Comment on "Local impermeant anions establish the neuronal chloride concentration".

    PubMed

    Luhmann, Heiko J; Kirischuk, Sergei; Kilb, Werner

    2014-09-01

    Glykys et al. (Reports, 7 February 2014, p. 670) proposed that cytoplasmic impermeant anions and polyanionic extracellular matrix glycoproteins establish the local neuronal intracellular chloride concentration, [Cl(-)]i, and thereby the polarity of γ-aminobutyric acid type A (GABAA) receptor signaling. The experimental procedures and results in this study are insufficient to support these conclusions. Contradictory results previously published by these authors and other laboratories are not referred to. PMID:25190788

  2. 2-METHYLHEXANOIC ACID DEVELOPMENTAL TOXICITY TESTING

    EPA Science Inventory

    As part of an investigation of the developmental effects and structure-activity relationships of aliphatic acids, 2-methylhexanoic acid was administered by gavage to Sprague-Dawley rats on gestation days 6-15 at doses of 0, 300, and 400 mg/kg/day. The dams were allowed to deliver...

  3. 5-METHYLHEXANOIC ACID DEVELOPMENTAL TOXICITY TESTING

    EPA Science Inventory

    As part of an investigation of the developmental effects and structure-activity relationships of aliphatic acids, 5- methylhexanoic acid was administered by gavage to Sprague-Dawley rats on gestation days 6-15 at doses of 0, 300, and 400 mg/kg/day. The dams were allowed to delive...

  4. Metal- and anion-directed assemblies of CuII, CoII, NiII, and ZnII coordination polymers based on a bent dipyridyl ligand 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole and malonic acid

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng-Hui; Qi, Yan-Mei; Sun, Yu; Chi, Qin; Guo, Ya-Mei

    2012-06-01

    This work presents six CuII, CoII, NiII, and ZnII coordination polymers assembled from a bent dipyridyl ligand 4-amino-3,5-bis(3-pyridyl)-1,2,4-triazole (3-bpt) and malonic acid (H2mal), which have been prepared at ambient conditions in water-methanol solution. Single-crystal X-ray diffraction indicates that these complexes show a variety of 1-D (for 2-6) and 2-D (for 1) coordination patterns. The results evidently reveal the versatility of 3-bpt with different configurations and binding modes in coordination assemblies, which will be profoundly influenced by the metal ions and even inorganic counter anions. Furthermore, extended supramolecular architectures are constructed via multiple secondary interactions such as hydrogen bonding and aromatic stacking.

  5. High-capacity anion exchangers based on poly (glycidylmethacrylate-divinylbenzene) microspheres for ion chromatography.

    PubMed

    Liu, Junwei; Wang, Yong; Cheng, Heli; Wang, Nani; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2016-10-01

    Poly (glycidylmethacrylate-divinylbenzene) microspheres were prepared by the two-staged swelling and polymerization method and applied to prepare anion exchange stationary phases. Methylamine, dimethylamine, trimethylamine, diethylamine and triethylamine were selected to prepare the quaternary ammonium groups of anion exchangers, respectively. The diameters and surface characteristics of microspheres were measured by scanning electron microscope and nitrogen adsorption-desorption measurements. The anion exchangers were characterized by Fourier transform infrared spectrum, elemental analysis and breakthrough curve methods. The chromatographic performances of anion exchangers were illustrated by separating conventional anions, organic weak acids and carbohydrates. The results indicated that the anion exchange capacities were controllable by changing either the content of glycidylmethacrylate in microspheres or the number of bonded quaternary ammonium layer. Meanwhile, the substituents of quaternary ammonium groups greatly influenced the separation properties of anion exchangers. Finally, the three-layer methylamine-quaternized anion exchanger was successfully applied for the determination of fluoride in tea sample. The content of fluoride was detected to be 0.13mgg(-1) without the interference of acetate and formate. PMID:27474308

  6. Purification of Pseudomonas putida acyl coenzyme A ligase active with a range of aliphatic and aromatic substrates.

    PubMed Central

    Fernández-Valverde, M; Reglero, A; Martinez-Blanco, H; Luengo, J M

    1993-01-01

    Acyl coenzyme A (acyl-CoA) ligase (acyl-CoA synthetase [ACoAS]) from Pseudomonas putida U was purified to homogeneity (252-fold) after this bacterium was grown in a chemically defined medium containing octanoic acid as the sole carbon source. The enzyme, which has a mass of 67 kDa, showed maximal activity at 40 degrees C in 10 mM K2PO4H-NaPO4H2 buffer (pH 7.0) containing 20% (wt/vol) glycerol. Under these conditions, ACoAS showed hyperbolic behavior against acetate, CoA, and ATP; the Kms calculated for these substrates were 4.0, 0.7, and 5.2 mM, respectively. Acyl-CoA ligase recognizes several aliphatic molecules (acetic, propionic, butyric, valeric, hexanoic, heptanoic, and octanoic acids) as substrates, as well as some aromatic compounds (phenylacetic and phenoxyacetic acids). The broad substrate specificity of ACoAS from P. putida was confirmed by coupling it with acyl-CoA:6-aminopenicillanic acid acyltransferase from Penicillium chrysogenum to study the formation of several penicillins. Images PMID:8476289

  7. Formation and Decay of the Dehydrogenated Parent Anion upon Electron Attachment to Dialanine

    PubMed Central

    Gschliesser, David; Vizcaino, Violaine; Probst, Michael; Scheier, Paul; Denifl, Stephan

    2012-01-01

    Abstract The dehydrogenated parent anion [M−H]− is one of the most dominant anions formed in dissociative electron attachment to various small biomolecules like nucleobases and single amino acids. In the present study, we investigate the [M−H]− channel for the dipeptide dialanine by utilizing an electron monochromator and a two-sector-field mass spectrometer. At electron energies below 2 eV, the measured high-resolution ion-efficiency curve has a different shape to that for the single amino acid alanine, which is explained by the altered threshold energies for formation of [M−H]− determined in quantum chemical calculations. Moreover, the structure of the formed [M−H]− anion is further studied by investigating the unimolecular and collision-induced decay of this anion. Trajectory calculations have been carried out to aid the interpretation of the experimentally observed fragmentation patterns. PMID:22374822

  8. Aliphatic amines in Antarctic CR2, CM2, and CM1/2 carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Aponte, José C.; McLain, Hannah L.; Dworkin, Jason P.; Elsila, Jamie E.

    2016-09-01

    Meteoritic water-soluble organic compounds provide a unique record of the processes that occurred during the formation of the solar system and the chemistry preceding the origins of life on Earth. We have investigated the molecular distribution, compound-specific δ13C isotopic ratios and enantiomeric compositions of aliphatic monoamines present in the hot acid-water extracts of the carbonaceous chondrites LAP 02342 (CR2), GRA 95229 (CR2), LON 94101 (CM2), LEW 90500 (CM2), and ALH 83100 (CM1/2). Analyses of the concentration of monoamines in these meteorites revealed: (a) the CR2 chondrites studied here contain higher concentrations of monoamines relative to the analyzed CM2 chondrites; (b) the concentration of monoamines decreases with increasing carbon number; and (c) isopropylamine is the most abundant monoamine in these CR2 chondrites, while methylamine is the most abundant amine species in these CM2 and CM1/2 chondrites. The δ13C values of monoamines in CR2 chondrite do not correlate with the number of carbon atoms; however, in CM2 and CM1/2 chondrites, the 13C enrichment decreases with increasing monoamine carbon number. The δ13C values of methylamine in CR2 chondrites ranged from -1 to +10‰, while in CM2 and CM1/2 chondrites the δ13C values of methylamine ranged from +41 to +59‰. We also observed racemic compositions of sec-butylamine, 3-methyl-2-butylamine, and sec-pentylamine in the studied carbonaceous chondrites. Additionally, we compared the abundance and δ13C isotopic composition of monoamines to those of their structurally related amino acids. We found that monoamines are less abundant than amino acids in CR2 chondrites, with the opposite being true in CM2 and CM1/2 chondrites. We used these collective data to evaluate different primordial synthetic pathways for monoamines in carbonaceous chondrites and to understand the potential common origins these molecules may share with meteoritic amino acids.

  9. Efficiency of superoxide anions in the inactivation of selected dehydrogenases

    NASA Astrophysics Data System (ADS)

    Rodacka, Aleksandra; Serafin, Eligiusz; Puchala, Mieczyslaw

    2010-09-01

    The most ubiquitous of the primary reactive oxygen species, formed in all aerobes, is the superoxide free radical. It is believed that the superoxide anion radical shows low reactivity and in oxidative stress it is regarded mainly as an initiator of more reactive species such as rad OH and ONOO -. In this paper, the effectiveness of inactivation of selected enzymes by radiation-generated superoxide radicals in comparison with the effectiveness of the other products of water radiolysis is examined. We investigate three enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alcohol dehydrogenase (ADH) and lactate dehydrogenase (LDH). We show that the direct contribution of the superoxide anion radical to GAPDH and ADH inactivation is significant. The effectiveness of the superoxide anion in the inactivation of GAPDH and ADG was only 2.4 and 2.8 times smaller, respectively, in comparison with hydroxyl radical. LDH was practically not inactivated by the superoxide anion. Despite the fact that the studied dehydrogenases belong to the same class of enzymes (oxidoreductases), all have a similar molecular weight and are tetramers, their susceptibility to free-radical damage varies. The differences in the radiosensitivity of the enzymes are not determined by the basic structural parameters analyzed. A significant role in inactivation susceptibility is played by the type of amino acid residues and their localization within enzyme molecules.

  10. Photocatalytic Anion Oxidation and Applications in Organic Synthesis.

    PubMed

    Hering, Thea; Meyer, Andreas Uwe; König, Burkhard

    2016-08-19

    Ions and radicals of the same kind differ by one electron only. The oxidation of many stable inorganic anions yields their corresponding highly reactive radicals, and visible light excitable photocatalysts can provide the required oxidation potential for this transformation. Air oxygen serves as the terminal oxidant, or cheap sacrificial oxidants are used, providing a very practical approach for generating reactive inorganic radicals for organic synthesis. We discuss in this perspective several recently reported examples: Nitrate radicals are obtained by one-electron photooxidation of nitrate anions and are very reactive toward organic molecules. The photooxidation of sulfinate salts yields the much more stable sulfone radicals, which smoothly add to double bonds. A two-electron oxidation of chloride anions to electrophilic chlorine species reacting with arenes in aromatic substitutions extends the method beyond radical reactions. The chloride anion oxidation proceeds via photocatalytically generated peracidic acid as the oxidation reagent. Although the number of reported examples of photocatalytically generated inorganic radical intermediates for organic synthesis is still small, future extension of the concept to other inorganic ions as radical precursors is a clear perspective. PMID:27355754

  11. Sheathless capillary electrophoresis-mass spectrometry for anionic metabolic profiling.

    PubMed

    Gulersonmez, Mehmet Can; Lock, Stephen; Hankemeier, Thomas; Ramautar, Rawi

    2016-04-01

    The performance of CE coupled on-line to MS via a sheathless porous tip sprayer was evaluated for anionic metabolic profiling. A representative metabolite mixture and biological samples were used for the evaluation of various analytical parameters, such as peak efficiency (plate numbers), migration time and peak area repeatability, and LODs. The BGE, i.e. 10% acetic acid (pH 2.2), previously used for cationic metabolic profiling was now assessed for anionic metabolic profiling by using MS detection in negative ion mode. For test compounds, RSDs for migration times and peak areas were below 2 and 11%, respectively, and plate numbers ranged from 60 000 to 40 0000 demonstrating a high separation efficiency. Critical metabolites with low or no retention on reversed-phase LC could be efficiently separated and selectively analyzed by the sheathless CE-MS method. An injection volume of only circa 20 nL resulted in LODs between 10 and 200 nM (corresponding to an amount of 0.4-4 fmol), which was an at least tenfold improvement as compared to LODs obtained by conventional CE-MS approaches for these analytes. The methodology was applied to anionic metabolic profiling of glioblastoma cell line extracts. Overall, a sheathless CE-MS method has been developed for highly efficient and sensitive anionic metabolic profiling studies, which can also be used for cationic metabolic profiling studies by only switching the MS detection and separation voltage polarity. PMID:26593113

  12. Gating mechanisms of a natural anion channelrhodopsin

    PubMed Central

    Sineshchekov, Oleg A.; Govorunova, Elena G.; Li, Hai; Spudich, John L.

    2015-01-01

    Anion channelrhodopsins (ACRs) are a class of light-gated channels recently identified in cryptophyte algae that provide unprecedented fast and powerful hyperpolarizing tools for optogenetics. Analysis of photocurrents generated by Guillardia theta ACR 1 (GtACR1) and its mutants in response to laser flashes showed that GtACR1 gating comprises two separate mechanisms with opposite dependencies on the membrane voltage and pH and involving different amino acid residues. The first mechanism, characterized by slow opening and fast closing of the channel, is regulated by Glu-68. Neutralization of this residue (the E68Q mutation) specifically suppressed this first mechanism, but did not eliminate it completely at high pH. Our data indicate the involvement of another, yet-unidentified pH-sensitive group X. Introducing a positive charge at the Glu-68 site (the E68R mutation) inverted the channel gating so that it was open in the dark and closed in the light, without altering its ion selectivity. The second mechanism, characterized by fast opening and slow closing of the channel, was not substantially affected by the E68Q mutation, but was controlled by Cys-102. The C102A mutation reduced the rate of channel closing by the second mechanism by ∼100-fold, whereas it had only a twofold effect on the rate of the first. The results show that anion conductance by ACRs has a fundamentally different structural basis than the relatively well studied conductance by cation channelrhodopsins (CCRs), not attributable to simply a modification of the CCR selectivity filter. PMID:26578767

  13. Determination of free and total myo-inositol in infant formula and adult/pediatric nutritional formula by high- performance anion exchange chromatography with pulsed amperometric detection, including a novel total extraction using microwave-assisted acid hydrolysis and enzymatic treatment: first action 2012.12.

    PubMed

    Ellingson, David; Pritchard, Ted; Foy, Pamela; King, Kathryn; Mitchell, Barbara; Austad, John; Winters, Doug; Sullivan, Darryl; Dowell, Dawn

    2013-01-01

    After an assessment of data generated from a single-laboratory validation study published in J. AOAC Int. 95, 1469-1478 (2012), a method for determining total myo-inositol in infant formula and adult/ pediatric nutritional formula by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), including extraction by using microwave-assisted acid hydrolysis and enzymatic treatment was presented for consideration by AOAC during the AOAC Annual Meeting held in Las Vegas, NV, from September 30 to October 3, 2012. The Expert Review Panel on Infant Formula and Adult Nutritionals concluded that the method met the criteria set by the standard method performance requirements (SMPRs) for the determination of free myo-inositol and approved the method as AOAC Official First Action. The method also determines total myo-inositol, but includes bound sources that the SMPRs exclude. The method involves using HPAEC-PAD for free myo-inositol and a total myo-inositol determination by two different techniques. The first technique uses the conventional acid hydrolysis with 6 h incubation in an autoclave. The second uses a microwave-assisted acid hydrolysis with enzymatic treatment that decreases the extraction time. PMID:24282949

  14. CATALYTIC PROMOTION OF THE ADSORPTION OF VANADIUM ON AN ANIONIC EXCHANGE RESIN

    DOEpatents

    Bailes, R.H.; Ellis, D.A.

    1958-08-26

    An improvement in the process for the recovery of vanadium from acidic phosphatic solutions is presented. In this process the vanadium is first oxidized to the pentavaleat state, and is then separated by contacting such solutions with an anion exchange resin whereby adsorption of the complexed pentavalent vanadium is effected. The improvement lies in the fact that adsorp tion of the vanadium complex by the anion exchange resin is promoted and improved by providing fiuoride ions in solution to be contacted.

  15. The Anion Gap is a Predictive Clinical Marker for Death in Patients with Acute Pesticide Intoxication.

    PubMed

    Lee, Sun-Hyo; Park, Samel; Lee, Jung-Won; Hwang, Il-Woong; Moon, Hyung-Jun; Kim, Ki-Hwan; Park, Su-Yeon; Gil, Hyo-Wook; Hong, Sae-Yong

    2016-07-01

    Pesticide formulation includes solvents (methanol and xylene) and antifreeze (ethylene glycol) whose metabolites are anions such as formic acid, hippuric acid, and oxalate. However, the effect of the anion gap on clinical outcome in acute pesticide intoxication requires clarification. In this prospective study, we compared the anion gap and other parameters between surviving versus deceased patients with acute pesticide intoxication. The following parameters were assessed in 1,058 patients with acute pesticide intoxication: blood chemistry (blood urea nitrogen, creatinine, glucose, lactic acid, liver enzymes, albumin, globulin, and urate), urinalysis (ketone bodies), arterial blood gas analysis, electrolytes (Na(+), K(+), Cl(-) HCO3 (-), Ca(++)), pesticide field of use, class, and ingestion amount, clinical outcome (death rate, length of hospital stay, length of intensive care unit stay, and seriousness of toxic symptoms), and the calculated anion gap. Among the 481 patients with a high anion gap, 52.2% had a blood pH in the physiologic range, 35.8% had metabolic acidosis, and 12.1% had acidemia. Age, anion gap, pesticide field of use, pesticide class, seriousness of symptoms (all P < 0.001), and time lag after ingestion (P = 0.048) were significant risk factors for death in univariate analyses. Among these, age, anion gap, and pesticide class were significant risk factors for death in a multiple logistic regression analysis (P < 0.001). In conclusions, high anion gap is a significant risk factor for death, regardless of the accompanying acid-base balance status in patients with acute pesticide intoxication. PMID:27366016

  16. The Anion Gap is a Predictive Clinical Marker for Death in Patients with Acute Pesticide Intoxication

    PubMed Central

    2016-01-01

    Pesticide formulation includes solvents (methanol and xylene) and antifreeze (ethylene glycol) whose metabolites are anions such as formic acid, hippuric acid, and oxalate. However, the effect of the anion gap on clinical outcome in acute pesticide intoxication requires clarification. In this prospective study, we compared the anion gap and other parameters between surviving versus deceased patients with acute pesticide intoxication. The following parameters were assessed in 1,058 patients with acute pesticide intoxication: blood chemistry (blood urea nitrogen, creatinine, glucose, lactic acid, liver enzymes, albumin, globulin, and urate), urinalysis (ketone bodies), arterial blood gas analysis, electrolytes (Na+, K+, Cl- HCO3-, Ca++), pesticide field of use, class, and ingestion amount, clinical outcome (death rate, length of hospital stay, length of intensive care unit stay, and seriousness of toxic symptoms), and the calculated anion gap. Among the 481 patients with a high anion gap, 52.2% had a blood pH in the physiologic range, 35.8% had metabolic acidosis, and 12.1% had acidemia. Age, anion gap, pesticide field of use, pesticide class, seriousness of symptoms (all P < 0.001), and time lag after ingestion (P = 0.048) were significant risk factors for death in univariate analyses. Among these, age, anion gap, and pesticide class were significant risk factors for death in a multiple logistic regression analysis (P < 0.001). In conclusions, high anion gap is a significant risk factor for death, regardless of the accompanying acid-base balance status in patients with acute pesticide intoxication. PMID:27366016

  17. Primordial transport of sugars and amino acids via Schiff bases

    NASA Astrophysics Data System (ADS)

    Stillwell, William; Rau, Aruna

    1981-09-01

    Experimental support is given for a model concerning the origin of a primordial transport system. The model is based on the facilitated diffusion of amino acids stimulated by aliphatic aldehyde carriers and sugars stimulated by aliphatic amine carriers. The lipid-soluble diffusing species is the Schiff base. The possible role of this simple transport system in the origin of an early protocell is discussed.

  18. Determining gold in water by anion-exchange batch extraction

    USGS Publications Warehouse

    McHugh, J.B.

    1986-01-01

    This paper describes a batch procedure for determining gold in natural waters. It is completely adaptable to field operations. The water samples are filtered and acidified before they are equilibrated with an anion-exchange resin by shaking. The gold is then eluted with acetone-nitric acid solution, and the eluate evaporated to dryness. The residue is taken up in hydrobromic acid-bromine solution and the gold is extracted with methyl isobutyl ketone. The extract is electrothermally atomized in an atomic-absorption spectrophotometer. The limit of determination is 1 ng 1. ?? 1986.

  19. Novel Fragmentation Pathways of Anionic Adducts of Steroids Formed by Electrospray Anion Attachment Involving Regioselective Attachment, Regiospecific Decompositions, Charge-Induced Pathways, and Ion-Dipole Complex Intermediates

    NASA Astrophysics Data System (ADS)

    Rannulu, Nalaka S.; Cole, Richard B.

    2012-09-01

    The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.

  20. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.