Sample records for aliphatic dimethylarsinoyl compounds

  1. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  2. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  3. Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds

    NASA Technical Reports Server (NTRS)

    Smith, G. B.

    1996-01-01

    The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.

  4. Lipstick dermatitis due to C18 aliphatic compounds.

    PubMed

    Hayakawa, R; Matsunaga, K; Suzuki, M; Arima, Y; Ohkido, Y

    1987-04-01

    An 18-year-old girl developed cheilitis. She had a past history of lip cream dermatitis, but the cause was not found. Patch tests with 2 lipsticks were strongly positive. Tests with the ingredients were positive to 2 aliphatic compounds, glyceryl diisostearate and diisostearyl malate. Impurities in the materials were suspected as the cause. Analysis by gas chromatography detected 3 chemicals in glyceryl diisostearate and 1 in diisostearyl malate as impurities. Patch testing with the impurities and glyceryl monoisostearate 0.01% pet in glyceryl diisostearate and isostearyl alcohol 0.25% pet in diisostearyl malate were strongly positive. The characteristics common to the 2 chemicals were liquidity at room temperature, branched C18 aliphatic compound and primary alcohol. Chemicals lacking any of the above 3 features did not react.

  5. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  6. A comprehensive evaluation of the toxicology of cigarette ingredients: aliphatic carbonyl compounds.

    PubMed

    Coggins, Christopher R E; Jerome, Ann M; Edmiston, Jeffery S; Oldham, Michael J

    2011-06-01

    Aliphatic carbonyl compounds are used as ingredients in cigarette tobacco or cigarette filters. A battery of tests was used to compare toxicity of mainstream smoke from experimental cigarettes containing 15 aliphatic carbonyl compounds that were added individually to experimental cigarettes at three different levels. Smoke from experimental and control cigarettes were evaluated using analytical chemistry, in vitro cytotoxicity (neutral red uptake), and mutagenicity (five bacterial strains) studies. For one compound, glycerol triacetate (GTA), two 90-day inhalation studies were also performed, using different inclusion levels into either tobacco or cigarette filter. Several smoke constituent concentrations were reduced with the highest inclusion level of GTA in tobacco; incorporation of GTA into the filter, and the other compounds into tobacco, produced effectively no changes. Cytotoxicity was reduced by the highest inclusion of GTA into tobacco for both gas-vapor and particulate phases of smoke; incorporation of GTA into the filter, and the other compounds into tobacco, showed no changes. Mutagenicity was reduced by the middle and high inclusion levels of GTA into tobacco (TA1537 strain with S9); incorporation of GTA into the filter, and the other compounds into tobacco, showed no changes. Inclusion of GTA in tobacco at 100,000 ppm reduced the biological effects of the smoke in the various test systems reported in this study, although inclusion into the filter did not appear to have any major effect on the endpoints studied. The other 14 aliphatic carbonyl compounds that were tested lacked a toxicological response.

  7. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  8. Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium Nitrosomonas europaea.

    PubMed

    Vannelli, T; Logan, M; Arciero, D M; Hooper, A B

    1990-04-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane, Tetrachloromethane (carbon tetrachloride), tetrachloroethylene (perchloroethylene), and trans-dibromoethylene were not degraded.

  9. Spider monkeys (Ateles geoffroyi) are less sensitive to the odor of aliphatic ketones than to the odor of other classes of aliphatic compounds.

    PubMed

    Eliasson, Moa; Hernandez Salazar, Laura Teresa; Laska, Matthias

    2015-10-01

    Aliphatic ketones are widely present in body-borne and food odors of primates. Therefore, we used an operant conditioning paradigm and determined olfactory detection thresholds in four spider monkeys for a homologous series of aliphatic 2-ketones (2-butanone to 2-nonanone) and two of their isomers (3- and 4-heptanone). We found that, with the exception of the two shortest-chained ketones, all animals detected concentrations <1 ppm (parts per million), and with five odorants individual animals even reached threshold values <0.1 ppm. Further, we found a significant correlation between olfactory sensitivity of the spider monkeys and carbon chain length of the 2-ketones which can best be described as a U-shaped function. In contrast, no significant correlation was found between olfactory sensitivity and position of the functional carbonyl group. Across-odorant and across-species comparisons revealed the following: spider monkeys are significantly less sensitive to the odors of aliphatic ketones than to the odor of other classes of aliphatic compounds (1-alcohols, n-aldehydes, n-acetic esters, and n-carboxylic acids) sharing the same carbon length. Spider monkeys do not differ significantly in their olfactory sensitivity for aliphatic ketones from squirrel monkeys and pigtail macaques, but are significantly less sensitive to these odorants compared to human subjects and mice. These findings support the notion that neuroanatomical and genetic properties do not allow for reliable predictions with regard to a species' olfactory sensitivity. Further, we conclude that the frequency of occurrence of a class of odorants in a species' chemical environment does not allow for reliable predictions of the species' olfactory sensitivity. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  10. Effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds using a modified QSAR model.

    PubMed

    Lim, Seung Joo; Fox, Peter

    2014-02-01

    The effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds were investigated using a modified half life equation. The potential future pharmaceutical compounds investigated were approximately 2000 pharmaceutical drugs currently undergoing the United States Food and Drug Administration (US FDA) testing. EPI Suite (BIOWIN) model estimates the fates of compounds based on the biodegradability under aerobic conditions. While BIOWIN considered the biodegradability of a compound only, the half life equation used in this study was modified by biodegradability, sorption and cometabolic oxidation. It was possible that the potential future pharmaceutical compounds were more accurately estimated using the modified half life equation. The modified half life equation considered sorption and cometabolic oxidation of halogenated aromatic/aliphatics and nitrogen(N)-heterocyclic aromatics in the sub-surface, while EPI Suite (BIOWIN) did not. Halogenated aliphatics in chemicals were more persistent than halogenated aromatics in the sub-surface. In addition, in the sub-surface environment, the fates of organic chemicals were much more affected by halogenation in chemicals than by nitrogen(N)-heterocyclic aromatics. © 2013.

  11. Assessing the Origins of Aliphatic Amines in the Murchison Meteorite from their Compound-Specific Carbon Isotopic Ratios and Enantiomeric Composition

    NASA Technical Reports Server (NTRS)

    Aponte, Jose; Dworkin, Jason; Elsila, Jamie E.

    2014-01-01

    The study of meteoritic organic compounds provides a unique window into the chemical inventory of the early Solar System and prebiotic chemistry that may have been important for the origin of life on Earth. Multiple families of organic compounds have been extracted from the Murchison meteorite, which is one of the most thoroughly studied carbonaceous chondrites. The amino acids extracted from Murchison have been extensively analyzed, including measurements of non-terrestrial stable isotopic ratios and discoveries of L-enantiomeric excesses for alpha-dialkyl amino acids, notably isovaline. However, although the isotopic signatures of bulk amine-containing fractions have been measured, the isotopic ratios and enantiomeric composition of individual aliphatic amines, compounds that are chemically related to amino acids, remain unknown. Here, we report a novel method for the extraction, separation, identification and quantitation of aliphatic monoamines extracted from the Murchison meteorite. Our results show a complete suite of structural isomers, with a larger concentration of methylamine and ethylamine and decreasing amine concentrations with increasing carbon number. The carbon isotopic compositions of fourteen meteoritic aliphatic monoamines were measured, with delta C-13 values ranging from +21% to +129%, showing a decrease in C-13 with increasing carbon number, a relationship that may be consistent with the chain elongation mechanism under kinetic control previously proposed for meteoritic amino acids. We also found the enantiomeric composition of sec-butylamine, a structural analog to isovaline, was racemic within error, while the isovaline extracted from the same Murchison piece showed an L-enantiomeric excess of 9.7; this result suggested that processes leading to enantiomeric excess in the amino acid did not affect the amine. We used these collective data to assess the primordial synthetic origins of these meteoritic aliphatic amines and their potential

  12. Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures.

    PubMed Central

    Chang, H L; Alvarez-Cohen, L

    1996-01-01

    The microbial degradation of chlorinated and nonchlorinated methanes, ethanes, and ethanes by a mixed methane-oxidizing culture grown under chemostat and batch conditions is evaluated and compared with that by two pure methanotrophic strains: CAC1 (isolated from the mixed culture) and Methylosinus trichosporium OB3b. With the exception of 1,1-dichloroethylene, the transformation capacity (Tc) for each chlorinated aliphatic hydrocarbon was generally found to be in inverse proportion to its chlorine content within each aliphatic group (i.e., methanes, ethanes, and ethenes), whereas similar trends were not observed for degradation rate constants. Tc trends were similar for all methane-oxidizing cultures tested. None of the cultures were able to degrade the fully chlorinated aliphatics such as perchloroethylene and carbon tetrachloride. Of the four cultures tested, the chemostat-grown mixed culture exhibited the highest Tc for trichloroethylene, cis-1,2-dichloroethylene, tetrachloroethane, 1,1,1-trichloroethane, and 1,2-dichloroethane, whereas the pure batch-grown OB3b culture exhibited the highest Tc for all other compounds tested. The product toxicity of chlorinated aliphatic hydrocarbons in a mixture containing multiple compounds was cumulative and predictable when using parameters measured from the degradation of individual compounds. The Tc for each chlorinated aliphatic hydrocarbon in a mixture (Tcmix) and the total Tc for the mixture (sigma Tcmix) are functions of the individual Tc, the initial substrate concentration (S0), and the first-order rate constant (k/Ks) of each compound in the mixture, indicating the importance of identifying the properties and compositions of all potentially degradable compounds in a contaminant mixture. PMID:8795228

  13. Investigation on modes of toxic action to rats based on aliphatic and aromatic compounds and comparison with fish toxicity based on exposure routes.

    PubMed

    He, Jia; Li, Jin J; Wen, Yang; Tai, Hong W; Yu, Yang; Qin, Wei C; Su, Li M; Zhao, Yuan H

    2015-06-01

    The modes of toxic action (MOAs) play an important role in the assessment of the ecotoxicity of organic pollutants. However, few studies have been reported on the MOAs in rat toxicity. In this paper, the toxic contributions of functional groups in 1255 aromatic compounds were calculated from regression and were then compared with the toxic contributions in aliphatic compounds. The results show that some functional groups have same toxic contributions both in aromatic and aliphatic compounds, but some have not. To investigate the MOAs in rat toxicity, the distribution of toxic ratio (TR) was examined for well-known baseline and less inert compounds and thresholds of log TR=0.3 and 0.5 were used to classify baseline, less inert and reactive compounds. The results showed that some compounds identified as baseline compounds in fish toxicity were also classified as baseline compounds in rat toxicity. Except for phenols and anilines which were identified as less inert compounds in fish toxicity, aromatic compounds with functional groups such as ether, nitrile, nitrophenol, isocyanatoe and chloro were identified as less inert chemicals in rat toxicity. Reactive compounds identified in fish toxicity exhibit greater toxicity to rats. These compounds can undergo nucleophilic substitution, acylation and Schiff base formation with biological macromolecules. The critical body residues (CBRs) calculated from absorption and bioconcentration show that log 1/CBRs in rat toxicity are not equal to that in fish for some compounds. It suggests that the exposure route can affect the identification of MOAs between these two species for these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Boiling points of halogenated aliphatic compounds: a quantitative structure-property relationship for prediction and validation.

    PubMed

    Oberg, Tomas

    2004-01-01

    Halogenated aliphatic compounds have many technical uses, but substances within this group are also ubiquitous environmental pollutants that can affect the ozone layer and contribute to global warming. The establishment of quantitative structure-property relationships is of interest not only to fill in gaps in the available database but also to validate experimental data already acquired. The three-dimensional structures of 240 compounds were modeled with molecular mechanics prior to the generation of empirical descriptors. Two bilinear projection methods, principal component analysis (PCA) and partial-least-squares regression (PLSR), were used to identify outliers. PLSR was subsequently used to build a multivariate calibration model by extracting the latent variables that describe most of the covariation between the molecular structure and the boiling point. Boiling points were also estimated with an extension of the group contribution method of Stein and Brown.

  15. The fate of chlorinated aliphatics in anaerobic treatment under transient loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, Y.C.

    1993-01-01

    A CSTR with dispersed-growth anaerobic bacteria that simultaneously remove COD and chlorinated aliphatics was used. Seven chlorinated aliphatics (methylene chloride, chloroform, carbon tetrachloride, 1,1,1-trichloroethane, 1,1-dichloroethylene, trichloroethylene, and tetrachloroethylene) were biotransformed into lower-chlorinated compounds by anaerobic treatment, utilizing propionic acid (HPr) or acetic acid (HAc). The microorganisms supplied with HAc grew and were sustained at higher BSS concentrations (4,500 to 11,000 mg/L) than those with HPr (2,000 to 5,000 mg/L). The anaerobic treatment process has a considerable potential for acclimation to and biotransformation of toxic chlorinated aliphatics. For providing a safe operation range, the maximum loading rates of the chlorinated aliphaticsmore » are defined as the observed daily injection of those compounds which resulted in 50% activity of the biomass. Based on the reactor volume, the maximum chlorinated compound loading rates to the microorganisms metabolizing HPr were from 0.4 to 90 mg/L-day, while the rates ranged from 0.6 to 190 mg/L-day for the microorganisms metabolizing HAc. When based on biomass, the maximum loading rates of the microorganisms metabolizing HPr were from 0.2 to 26 mg/g cell-day, while rates for the microorganisms metabolizing HAc ranged from 0.1 to 19 mg/g cell-day. Anaerobic microorganisms have higher resistance to chlorinated aliphatic alkenes than alkanes, and can biotransform about 0.04 to 68 pound chlorinated aliphatics while simultaneously metabolizing 1,000 pounds COD. Therefore, within the safe operation range, the anaerobic process can stabilize organic pollution at a high rate while still biotransforming chlorinated aliphatics.« less

  16. Multi-element compound specific stable isotope analysis of chlorinated aliphatic contaminants derived from chlorinated pitches.

    PubMed

    Filippini, Maria; Nijenhuis, Ivonne; Kümmel, Steffen; Chiarini, Veronica; Crosta, Giovanni; Richnow, Hans H; Gargini, Alessandro

    2018-05-30

    Tetrachloroethene and trichloroethene are typical by-products of the industrial production of chloromethanes. These by-products are known as "chlorinated pitches" and were often dumped in un-contained waste disposal sites causing groundwater contaminations. Previous research showed that a strongly depleted stable carbon isotope signature characterizes chlorinated compounds associated with chlorinated pitches whereas manufactured commercial compounds have more enriched carbon isotope ratios. The findings were restricted to a single case study and one element (i.e. carbon). This paper presents a multi-element Compound-Specific Stable Isotope Analysis (CSIA, including carbon, chlorine and hydrogen) of chlorinated aliphatic contaminants originated from chlorinated pitches at two sites with different hydrogeology and different producers of chloromethanes. The results show strongly depleted carbon signatures at both sites whereas the chlorine and the hydrogen signatures are comparable to those presented in the literature for manufactured commercial compounds. Multi-element CSIA allowed the identification of sources and site-specific processes affecting chloroethene transformation in groundwater as a result of emergency remediation measures. CSIA turned out to be an effective forensic tool to address the liability for the contamination, leading to a conviction for the crimes of unintentional aggravated public water supply poisoning and environmental disaster. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.

    PubMed

    Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki

    2014-04-01

    Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.

  18. The adjuvant activity of aliphatic nitrogenous bases

    PubMed Central

    Gall, D.

    1966-01-01

    By the use of diphtheria toxoid in guinea-pigs, high adjuvant activity has been found in a number of aliphatic nitrogenous bases including amines, quaternary ammonium compounds, guanidines, benzamidines and thiouroniums. Activity appears to depend on a combination of basicity and a long aliphatic chain of twelve or more carbon atoms. Such adjuvants tend to be haemolytic, and cause damage to tissue culture monolayers. It is suggested that their activity is connected with their surface activity and hence their ability to alter cell membranes, but that the basicity plays a further as yet undetermined role. ImagesFIG. 1-2FIG. 3-4 PMID:5924622

  19. Estimating the Octanol/Water Partition Coefficient for Aliphatic Organic Compounds Using Semi-Empirical Electrotopological Index

    PubMed Central

    Souza, Erica Silva; Zaramello, Laize; Kuhnen, Carlos Alberto; Junkes, Berenice da Silva; Yunes, Rosendo Augusto; Heinzen, Vilma Edite Fonseca

    2011-01-01

    A new possibility for estimating the octanol/water coefficient (log P) was investigated using only one descriptor, the semi-empirical electrotopological index (ISET). The predictability of four octanol/water partition coefficient (log P) calculation models was compared using a set of 131 aliphatic organic compounds from five different classes. Log P values were calculated employing atomic-contribution methods, as in the Ghose/Crippen approach and its later refinement, AlogP; using fragmental methods through the ClogP method; and employing an approach considering the whole molecule using topological indices with the MlogP method. The efficiency and the applicability of the ISET in terms of calculating log P were demonstrated through good statistical quality (r > 0.99; s < 0.18), high internal stability and good predictive ability for an external group of compounds in the same order as the widely used models based on the fragmental method, ClogP, and the atomic contribution method, AlogP, which are among the most used methods of predicting log P. PMID:22072945

  20. Estimating the octanol/water partition coefficient for aliphatic organic compounds using semi-empirical electrotopological index.

    PubMed

    Souza, Erica Silva; Zaramello, Laize; Kuhnen, Carlos Alberto; Junkes, Berenice da Silva; Yunes, Rosendo Augusto; Heinzen, Vilma Edite Fonseca

    2011-01-01

    A new possibility for estimating the octanol/water coefficient (log P) was investigated using only one descriptor, the semi-empirical electrotopological index (I(SET)). The predictability of four octanol/water partition coefficient (log P) calculation models was compared using a set of 131 aliphatic organic compounds from five different classes. Log P values were calculated employing atomic-contribution methods, as in the Ghose/Crippen approach and its later refinement, AlogP; using fragmental methods through the ClogP method; and employing an approach considering the whole molecule using topological indices with the MlogP method. The efficiency and the applicability of the I(SET) in terms of calculating log P were demonstrated through good statistical quality (r > 0.99; s < 0.18), high internal stability and good predictive ability for an external group of compounds in the same order as the widely used models based on the fragmental method, ClogP, and the atomic contribution method, AlogP, which are among the most used methods of predicting log P.

  1. Combinatorics of aliphatic amino acids

    NASA Astrophysics Data System (ADS)

    Grützmann, Konrad; Böcker, Sebastian; Schuster, Stefan

    2011-01-01

    This study combines biology and mathematics, showing that a relatively simple question from molecular biology can lead to complicated mathematics. The question is how to calculate the number of theoretically possible aliphatic amino acids as a function of the number of carbon atoms in the side chain. The presented calculation is based on earlier results from theoretical chemistry concerning alkyl compounds. Mathematical properties of this number series are highlighted. We discuss which of the theoretically possible structures really occur in living organisms, such as leucine and isoleucine with a chain length of four. This is done both for a strict definition of aliphatic amino acids only involving carbon and hydrogen atoms in their side chain and for a less strict definition allowing sulphur, nitrogen and oxygen atoms. While the main focus is on proteinogenic amino acids, we also give several examples of non-proteinogenic aliphatic amino acids, playing a role, for instance, in signalling. The results are in agreement with a general phenomenon found in biology: Usually, only a small number of molecules are chosen as building blocks to assemble an inconceivable number of different macromolecules as proteins. Thus, natural biological complexity arises from the multifarious combination of building blocks.

  2. Aliphatic hydrocarbons of the fungi.

    NASA Technical Reports Server (NTRS)

    Weete, J. D.

    1972-01-01

    Review of studies of aliphatic hydrocarbons which have been recently detected in the spores of phytopathogenic fungi, and are found to be structurally very similar to the alkanes of higher plants. It appears that the hydrocarbon components of the few mycelial and yeast forms reported resemble the distribution found in bacteria. The occurence and distribution of these compounds in the fungi is discussed. Suggested functional roles of fungal spore alkanes are presented.

  3. Fingerprinting aliphatic hydrocarbon pollutants over agricultural lands surrounding Tehran oil refinery.

    PubMed

    Bayat, Javad; Hashemi, Seyed Hossein; Khoshbakht, Korros; Deihimfard, Reza

    2016-11-01

    The analysis of aliphatic hydrocarbons, which are composed of n-alkanes as well as branched and cyclic alkanes, can be used to distinguish between the sources of hydrocarbon contamination. In this study, the concentration of aliphatic hydrocarbons, soil pH, and organic matter in agricultural soils located south of Tehran were monitored. Eighty-three soil samples were taken from two depth ranges of 0-30 and 30-60 cm. The results showed that aliphatic compounds ranged from 0.22-68.11 mg kg -1 at the top to 0.33-53.18 mg kg -1 at subsoil. The amount of hydrocarbons increases from the northern parts toward the south, and hydrocarbon pollutants originated from both petroleum and non-petroleum sources. Higher concentrations of aliphatic compounds in the southern parts indicated that, aside from the practice of irrigating with untreated wastewater, leakage from oil refinery storage tanks possibly contributed to soil pollution. The results also showed that several sources have polluted the agricultural soils. It is necessary to develop a new local pollution criterion as a diagnostic index that includes not only hydrocarbons but also other parameters such as heavy metal content in both soil and untreated wastewater, surface runoff, and other irrigation water resources to determine the exact origin of pollution.

  4. A case study on the myth of emission from aliphatic amides

    NASA Astrophysics Data System (ADS)

    Singh, Avinash Kumar; Das, Sreyashi; Datta, Anindya

    2016-12-01

    For several decades, aliphatic amidic compounds have been believed to be emissive. We report that this contention is incorrect and that the anomalous emission from amides originates in fluorescent impurities generated during their synthesis. In order to make this point, we have synthesized fluorescent compounds and have compared the absorption spectra with excitation spectra.

  5. IN-SITU AQUIFER RESTORATION OF CHLORINATED ALIPHATICS BY METHANOTROPHIC BACTERIA

    EPA Science Inventory

    This project evaluated the potential of enhanced in-situ biotransformation of chlorinated aliphatic solvents by a bacterial community grown on methane under aerobic conditions. The target chlorinated compounds were trichloroethene (TCE), cis-and trans-1,2-dichloroethene (DCE), an...

  6. Project Summary. IN-SITU AQUIFER RESTORATION OF CHLORINATED ALIPHATICS BY METHANOTROPHIC BACTERIA

    EPA Science Inventory

    This project evaluated the potential of an innovative approach to aquifer restoration: enhanced in-situ biotransformation of chlorinated aliphatic solvents by a bacterial community grown on methane under aerobic conditions. The target chlorinated compounds were trichloroethene (...

  7. Bisquaternary pyridinium oximes: Comparison of in-vitro reactivation potency of compounds bearing aliphatic linkers and heteroaromatic linkers for paraoxon-inhibited electric eel and recombinant human acetylcholinesterase

    PubMed Central

    Bharate, Sandip B.; Guo, Lilu; Reeves, Tony E.; Cerasoli, Douglas M.; Thompson, Charles M.

    2009-01-01

    Oxime reactivators are the drugs of choice for the post-treatment of OP (organophosphorus) intoxication and used widely for mechanistic and kinetic studies of OP-inhibited cholinesterases. The purpose of the present study was to evaluate new oxime compounds to reactivate acetylcholinesterase (AChE) inhibited by the OP paraoxon. Several new bisquaternary pyridinium oximes with heterocyclic linkers along with some known bisquaternary pyridinium oximes bearing aliphatic linkers were synthesized and evaluated for their in vitro reactivation potency against paraoxon-inhibited electric eel acetylcholinesterase (EeAChE) and recombinant human acetylcholinesterase (rHuAChE). Results herein indicate that most of the compounds are better reactivators of EeAChE than of rHuAChE. The reactivation potency of two different classes of compounds with varying linker chains was compared and observed that the structure of the connecting chain is an important factor for the activity of the reactivators. At a higher concentration (10−3 M), compounds bearing aliphatic linker showed better reactivation than compounds with heterocyclic linkers. Interestingly, oximes with a heterocyclic linker inhibited AChE at higher concentration (10−3 M), whereas their ability to reactivate was increased at lower concentrations (10−4 M and 10−5 M). Compounds bearing either a thiophene linker 26, 46 or a furan linker 31 showed 59%, 49% and 52% reactivation of EeAChE, respectively, at 10−5 M. These compounds showed 14%, 6% and 15% reactivation of rHuAChE at 10−4 M. Amongst newly synthesized analogs with heterocyclic linkers (26–35 and 45–46), compound 31, bearing furan linker chain, was found to be the most effective reactivator with a kr 0.042 min−1, which is better than obidoxime (3) for paraoxon-inhibited EeAChE. Compound 31 showed a kr 0.0041 min−1 that is near equal to pralidoxime (1) for paraoxon-inhibited rHuAChE. PMID:20005727

  8. BIOTRANSFORMATION OF MIXTURES OF CHLORINATED ALIPHATIC HYDROCARBONS BY AN ACETATE-GROWN METHANOGENIC ENRICHMENT CULTURE. (R825549C053)

    EPA Science Inventory

    Biotransformation of chlorinated aliphatic hydrocarbons under anaerobic conditions has received considerable attention due to the prevalence of these compounds as groundwater contaminants. However, information concerning the impact of mixtures of chlorinated compounds on their...

  9. Certain Aliphatic Nitramines and Related Compounds

    DTIC Science & Technology

    1944-11-29

    I N02 This reaction served in positively establishing the nature . the alkyl group attachment as N- methyl and not 0- methyl . Also N...dinitroplperazine» • • 76 Reaction of N- methyl - ethylenedinitramine and Ethylcne •Dibromide. ; 73 Structure of High-Melting Compound Formed in...Alkylatiori of N- methyl - ethyl enedinitramine 80 Structure of Low-Melting Compound Formed in Alkylation • of N- methyl -ethylcnedinitramine. . 0

  10. Aliphatic Hydrocarbon Content of Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Günay, B.; Schmidt, T. W.; Burton, M. G.; Afşar, M.; Krechkivska, O.; Nauta, K.; Kable, S. H.; Rawal, A.

    2018-06-01

    There is considerable uncertainty as to the amount of carbon incorporated in interstellar dust. The aliphatic component of the carbonaceous dust is of particular interest because it produces a significant 3.4 μm absorption feature when viewed against a background radiation source. The optical depth of the 3.4 μm absorption feature is related to the number of aliphatic carbon C-H bonds along the line of sight. It is possible to estimate the column density of carbon locked up in the aliphatic hydrocarbon component of interstellar dust from quantitative analysis of the 3.4 μm interstellar absorption feature providing that the absorption coefficient of aliphatic hydrocarbons incorporated in the interstellar dust is known. We report laboratory analogues of interstellar dust by experimentally mimicking interstellar/circumstellar conditions. The resultant spectra of these dust analogues closely match those from astronomical observations. Measurements of the absorption coefficient of aliphatic hydrocarbons incorporated in the analogues were carried out by a procedure combining FTIR and 13C NMR spectroscopies. The absorption coefficients obtained for both interstellar analogues were found to be in close agreement (4.76(8) × 10-18 cm group-1 and 4.69(14) × 10-18 cm group-1), less than half those obtained in studies using small aliphatic molecules. The results thus obtained permit direct calibration of the astronomical observations, providing rigorous estimates of the amount of aliphatic carbon in the interstellar medium.

  11. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic acid...

  12. Contact allergy to reactive diluents and related aliphatic epoxy resins.

    PubMed

    Aalto-Korte, Kristiina; Kuuliala, Outi; Henriks-Eckerman, Maj-Len; Suuronen, Katri

    2015-06-01

    Diglycidyl ether of bisphenol A resin (DGEBA-R) is the most common sensitizer in epoxy systems, but a minority of patients also develop contact allergy to reactive diluents. To analyse the frequency and clinical relevance of allergic reactions to different epoxy reactive diluents and related aliphatic epoxy resins. Test files (January 1991 to June 2014) were screened, and the clinical records of patients with allergic reactions were analysed for occupation, concomitant allergic reactions, and exposure. A total of 67 patients reacted to at least one of the compounds. The largest numbers of allergic reactions were to phenyl glycidyl ether (PGE; n = 41), 1,4-butanediol diglycidyl ether (BDDGE; n = 34), and p-tert-butylphenyl glycidyl ether (PTBPGE; n = 19). Ten of the patients did not have contact allergy to DGEBA-R. The reactions of 5 of these were related to the use of BDDGE-containing products. We found no significant exposure to PGE or PTBPGE in patients sensitized to them, but some of the patients had used cresyl glycidyl ether-containing products. Allergic reactions to reactive diluents and related aliphatic epoxy resins usually occurred together with reactions to DGEBA-R. BDDGE was the clinically most significant compound, and was the sole cause of occupational allergic contact dermatitis in 3 patients. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Process for reducing organic compounds with calcium, amine, and alcohol

    DOEpatents

    Benkeser, Robert A.; Laugal, James A.; Rappa, Angela

    1985-01-01

    Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about -10.degree. C. to about 30.degree. C. or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

  14. Process for reducing organic compounds with calcium, amine, and alcohol

    DOEpatents

    Benkeser, R.A.; Laugal, J.A.; Rappa, A.

    1985-08-06

    Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about [minus]10 C to about 30 C or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

  15. Antennal olfactory responses of adult meadow spittlebug, Philaenus spumarius, to volatile organic compounds (VOCs)

    PubMed Central

    Ganassi, Sonia; Pistillo, Marco O.; Di Domenico, Carmela; De Cristofaro, Antonio; Di Palma, Antonella Marta

    2017-01-01

    The meadow spittlebug, Philaenus spumarius L. (Hemiptera, Aphrophoridae) is a commonly found vector of Xylella fastidiosa Wells et al. (1987) strain subspecies pauca associated with the “Olive Quick Decline Syndrome” in Italy. To contribute to the knowledge of the adult P. spumarius chemoreceptivity, electroantennographic (EAG) responses of both sexes to 50 volatile organic compounds (VOCs) including aliphatic aldehydes, alcohols, esters, and ketones, terpenoids, and aromatics were recorded. Measurable EAG responses were elicited by all compounds tested. In both sexes, octanal, 2-octanol, 2-decanone, (E)-2-hexenyl acetate, and vanillin elicited the strongest antennal amplitude within the chemical groups of aliphatic saturated aldehydes, aliphatic alcohols, aliphatic acetates and aromatics, respectively. Male and female EAG responses to sulcatol, (±)linalool, and sulcatone were higher than those to other terpenoinds. In both sexes, the weakest antennal stimulants were phenethyl alcohol and 2-pentanone. Sexual differences in the EAG amplitude were found only for four of test compounds suggesting a general similarity between males and females in antennal sensitivity. The olfactory system of both sexes proved to be sensitive to changes in stimulus concentration, carbon chain length, and compound structure. Compounds with short carbon chain length (C5—C6) elicited lower EAG amplitudes than compounds with higher carbon chain length (C9—C10) in all classes of aliphatic hydrocarbons with different functional groups. The elucidation of the sensitivity profile of P. spumarius to a variety of VOCs provides a basis for future identification of behaviorally-active compounds useful for developing semiochemical-based control strategies of this pest. PMID:29287108

  16. Highly chemo- and enantioselective cross-benzoin reaction of aliphatic aldehydes and α-ketoesters.

    PubMed

    Thai, Karen; Langdon, Steven M; Bilodeau, François; Gravel, Michel

    2013-05-03

    An electron-deficient, valine-derived triazolium salt is shown to catalyze a highly chemo- and enantioselective cross-benzoin reaction between aliphatic aldehydes and α-ketoesters. This methodology represents the first high yielding and highly enantioselective intermolecular cross-benzoin reaction using an organocatalyst (up to 94% ee). Further diastereoselective reduction of the products gives access to densely oxygenated compounds with high chemo- and diastereoselectivity.

  17. Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

    PubMed Central

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  18. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    PubMed

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-11-10

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.

  19. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Ambrosio, Steven M.; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; Han, Chunhua

    2011-06-10

    Highlights: {yields} The aliphatic acetogenins [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] (1) and [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate] (2) isolated from avocado fruit inhibit phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). {yields} Aliphatic acetogenin 2, but not 1, prevents EGF-induced activation of EGFR (Tyr1173). {yields} Combination of both aliphatic acetogenins synergistically inhibits c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation and human oral cancer cell proliferation. {yields} The potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins targeting two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. {yields} Providing a double hit on a critical cancer pathway such as EGFR/RAS/RAF/MEK/ERK1/2 by phytochemicals like thosemore » found in avocado fruit could lead to more effective approach toward cancer prevention. -- Abstract: Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but

  20. Identification and biotransformation of aliphatic hydrocarbons during co-composting of sewage sludge-Date Palm waste using Pyrolysis-GC/MS technique.

    PubMed

    El Fels, Loubna; Lemee, Laurent; Ambles, André; Hafidi, Mohamed

    2016-08-01

    The behavior of aliphatic hydrocarbons during co-composting of sewage sludge activated with palm tree waste was studied for 6 months using Py-GC/MS. The main aliphatic compounds represented as doublet alkenes/alkanes can be classified into three groups. The first group consists of 11 alkenes (undecene, tridecene, pentadecene, hexadecene, heptadecene, octadecene, nonadecene, eicosene, uncosene, docosene, tricosene) and 15 alkanes (heptane, octane, nonane, decane, undecane, dodecane, tetradecane, pentadecane, heptadecane, octadecane, nonadecane, eicosane, uncosane, docosane, and tricosane), which remain stable during the co-composting process. The stability of these compounds is related to their recalcitrance behavior. The second group consists of five alkenes (heptene, octene, nonene, decene, dodecene) and tridecane as a single alkane that decreases during co-composting. The decrease in these compounds is the combined result of their metabolism and their conversion into other compounds. The third group is constituted with tetradecene and hexadecane that increase during composting, which could be explained by accumulation of these compounds, which are released by the partial breakdown of the substrate. As a result, these molecules are incorporated or adsorbed in the structure of humic substances.

  1. The molecular assembly of the ionic liquid/aliphatic carboxylic acid/aliphatic amine as effective and safety transdermal permeation enhancers.

    PubMed

    Kubota, Koji; Shibata, Akira; Yamaguchi, Toshikazu

    2016-04-30

    In spite of numerous advantages, transdermal drug delivery systems are unfeasible for most drugs because of the barrier effect of the stratum corneum. Ionic liquids were recently used to enhance transdermal drug delivery by improving drug solubility. In the present study, safe and effective ionic liquids for transdermal absorption were obtained as salts generated by a neutralization reaction between highly biocompatible aliphatic carboxylic acids (octanoic acid or isostearic acid) and aliphatic amines (diisopropanolamine or triisopropanolamine) (Medrx Co., Ltd., 2009). The mechanism of skin permeability enhancement by ionic liquids was investigated by hydrophilic phenol red and hydrophobic tulobuterol. Further, the skin permeation enhancing effect was remarkably superior in the acid excess state rather than the neutralization state. Infrared absorption spectrum analysis confirmed that ionic liquids/aliphatic carboxylic acid/aliphatic amine are coexisting at all mixing states. In the acid excess state, ionic liquids interact with aliphatic carboxylic acids via hydrogen bonds. Thus, the skin permeation enhancing effect is not caused by the ionic liquid alone. The "liquid salt mixture," referred to as a complex of ingredients coexisting with ionic liquids, forms a molecular assembly incorporating hydrophilic drug. This molecular assembly was considered an effective and safety enhancer of transdermal drug permeation. Copyright © 2016. Published by Elsevier B.V.

  2. 40 CFR 721.4568 - Methylpolychloro aliphatic ketone.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Methylpolychloro aliphatic ketone. 721... Substances § 721.4568 Methylpolychloro aliphatic ketone. (a) Chemical substance and significant new uses... ketone (PMN No. P-91-1321) is subject to reporting under this section for the significant new uses...

  3. Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1989-01-01

    Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)

  4. CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis.

    PubMed

    Chen, Sixue; Glawischnig, Erich; Jørgensen, Kirsten; Naur, Peter; Jørgensen, Bodil; Olsen, Carl-Erik; Hansen, Carsten H; Rasmussen, Hasse; Pickett, John A; Halkier, Barbara A

    2003-03-01

    Cytochromes P450 of the CYP79 family catalyze the conversion of amino acids to oximes in the biosynthesis of glucosinolates, a group of natural plant products known to be involved in plant defense and as a source of flavor compounds, cancer-preventing agents and bioherbicides. We report a detailed biochemical analysis of the substrate specificity and kinetics of CYP79F1 and CYP79F2, two cytochromes P450 involved in the biosynthesis of aliphatic glucosinolates in Arabidopsis thaliana. Using recombinant CYP79F1 and CYP79F2 expressed in Escherichia coli and Saccharomyces cerevisiae, respectively, we show that CYP79F1 metabolizes mono- to hexahomomethionine, resulting in both short- and long-chain aliphatic glucosinolates. In contrast, CYP79F2 exclusively metabolizes long-chain elongated penta- and hexahomomethionines. CYP79F1 and CYP79F2 are spatially and developmentally regulated, with different gene expression patterns. CYP79F2 is highly expressed in hypocotyl and roots, whereas CYP79F1 is strongly expressed in cotyledons, rosette leaves, stems, and siliques. A transposon-tagged CYP79F1 knockout mutant completely lacks short-chain aliphatic glucosinolates, but has an increased level of long-chain aliphatic glucosinolates, especially in leaves and seeds. The level of long-chain aliphatic glucosinolates in a transposon-tagged CYP79F2 knockout mutant is substantially reduced, whereas the level of short-chain aliphatic glucosinolates is not affected. Biochemical characterization of CYP79F1 and CYP79F2, and gene expression analysis, combined with glucosinolate profiling of knockout mutants demonstrate the functional role of these enzymes. This provides valuable insights into the metabolic network leading to the biosynthesis of aliphatic glucosinolates, and into metabolic engineering of altered aliphatic glucosinolate profiles to improve nutritional value and pest resistance.

  5. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under this...

  6. In-situ micro-FTIR Study of Thermal Changes of Organics in Tagish Lake Meteorite: Behavior of Aliphatic Oxygenated Functions and Effects of Minerals

    NASA Technical Reports Server (NTRS)

    Kebukawa, Yoko; Nakashima, Satoru; Nakamura-Messenger, Keiko; Zolensky, Michael E.

    2007-01-01

    Systematic in-situ FTIR heating experiments of Tagish Lake meteorite grains have been performed in order to study thermal stability of chondritic organics. Some aliphatic model organic substances have also been used to elucidate effects of hydrous phyllosilicate minerals on the thermal stability of organics. The experimental results indicated that organic matter in the Tagish Lake meteorite might contain oxygenated aliphatic hydrocarbons which are thermally stable carbonyls such as ester and/or C=O in ring compounds. The presence of hydrous phyllosilicate minerals has a pronounced effect on the increase of the thermal stability of aliphatic and oxygenated functions. These oxygenated aliphatic organics in Tagish Lake can be formed during the aqueous alteration in the parent body and the formation temperature condition might be less than 200 C, based especially on the thermal stability of C-O components. The hydrous phyllosilicates might provide sites for organic globule formation and protected some organic decomposition

  7. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic dicarboxylic acid salt. 721.2270 Section 721.2270 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2270 Aliphatic...

  8. Selective oxidation of aliphatic C-H bonds in alkylphenols by a chemomimetic biocatalytic system.

    PubMed

    Du, Lei; Dong, Sheng; Zhang, Xingwang; Jiang, Chengying; Chen, Jingfei; Yao, Lishan; Wang, Xiao; Wan, Xiaobo; Liu, Xi; Wang, Xinquan; Huang, Shaohua; Cui, Qiu; Feng, Yingang; Liu, Shuang-Jiang; Li, Shengying

    2017-06-27

    Selective oxidation of aliphatic C-H bonds in alkylphenols serves significant roles not only in generation of functionalized intermediates that can be used to synthesize diverse downstream chemical products, but also in biological degradation of these environmentally hazardous compounds. Chemo-, regio-, and stereoselectivity; controllability; and environmental impact represent the major challenges for chemical oxidation of alkylphenols. Here, we report the development of a unique chemomimetic biocatalytic system originated from the Gram-positive bacterium Corynebacterium glutamicum The system consisting of CreHI (for installation of a phosphate directing/anchoring group), CreJEF/CreG/CreC (for oxidation of alkylphenols), and CreD (for directing/anchoring group offloading) is able to selectively oxidize the aliphatic C-H bonds of p - and m -alkylated phenols in a controllable manner. Moreover, the crystal structures of the central P450 biocatalyst CreJ in complex with two representative substrates provide significant structural insights into its substrate flexibility and reaction selectivity.

  9. Selective oxidation of aliphatic C–H bonds in alkylphenols by a chemomimetic biocatalytic system

    PubMed Central

    Du, Lei; Dong, Sheng; Zhang, Xingwang; Jiang, Chengying; Chen, Jingfei; Yao, Lishan; Wang, Xiao; Wan, Xiaobo; Liu, Xi; Wang, Xinquan; Huang, Shaohua; Cui, Qiu; Liu, Shuang-Jiang; Li, Shengying

    2017-01-01

    Selective oxidation of aliphatic C–H bonds in alkylphenols serves significant roles not only in generation of functionalized intermediates that can be used to synthesize diverse downstream chemical products, but also in biological degradation of these environmentally hazardous compounds. Chemo-, regio-, and stereoselectivity; controllability; and environmental impact represent the major challenges for chemical oxidation of alkylphenols. Here, we report the development of a unique chemomimetic biocatalytic system originated from the Gram-positive bacterium Corynebacterium glutamicum. The system consisting of CreHI (for installation of a phosphate directing/anchoring group), CreJEF/CreG/CreC (for oxidation of alkylphenols), and CreD (for directing/anchoring group offloading) is able to selectively oxidize the aliphatic C–H bonds of p- and m-alkylated phenols in a controllable manner. Moreover, the crystal structures of the central P450 biocatalyst CreJ in complex with two representative substrates provide significant structural insights into its substrate flexibility and reaction selectivity. PMID:28607077

  10. 40 CFR 721.10608 - Aliphatic diisocyanate polymer with alkanediol and alkylglycol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aliphatic diisocyanate polymer with... Significant New Uses for Specific Chemical Substances § 721.10608 Aliphatic diisocyanate polymer with.... (1) The chemical substance identified generically as aliphatic diisocyanate polymer with alkanediol...

  11. 40 CFR 721.10608 - Aliphatic diisocyanate polymer with alkanediol and alkylglycol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aliphatic diisocyanate polymer with... Significant New Uses for Specific Chemical Substances § 721.10608 Aliphatic diisocyanate polymer with.... (1) The chemical substance identified generically as aliphatic diisocyanate polymer with alkanediol...

  12. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates

    NASA Astrophysics Data System (ADS)

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-04-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars ( d-allose and d-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars d-allose and d-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  13. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates.

    PubMed

    Small, Meagan C; Aytenfisu, Asaminew H; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D

    2017-04-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (D-allose and D-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars D-allose and D-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  14. A Quantitative Structure-Property Relationship (QSPR) Study of Aliphatic Alcohols by the Method of Dividing the Molecular Structure into Substructure

    PubMed Central

    Liu, Fengping; Cao, Chenzhong; Cheng, Bin

    2011-01-01

    A quantitative structure–property relationship (QSPR) analysis of aliphatic alcohols is presented. Four physicochemical properties were studied: boiling point (BP), n-octanol–water partition coefficient (lg POW), water solubility (lg W) and the chromatographic retention indices (RI) on different polar stationary phases. In order to investigate the quantitative structure–property relationship of aliphatic alcohols, the molecular structure ROH is divided into two parts, R and OH to generate structural parameter. It was proposed that the property is affected by three main factors for aliphatic alcohols, alkyl group R, substituted group OH, and interaction between R and OH. On the basis of the polarizability effect index (PEI), previously developed by Cao, the novel molecular polarizability effect index (MPEI) combined with odd-even index (OEI), the sum eigenvalues of bond-connecting matrix (SX1CH) previously developed in our team, were used to predict the property of aliphatic alcohols. The sets of molecular descriptors were derived directly from the structure of the compounds based on graph theory. QSPR models were generated using only calculated descriptors and multiple linear regression techniques. These QSPR models showed high values of multiple correlation coefficient (R > 0.99) and Fisher-ratio statistics. The leave-one-out cross-validation demonstrated the final models to be statistically significant and reliable. PMID:21731451

  15. Fig volatile compounds--a first comparative study.

    PubMed

    Grison-Pigé, Laure; Hossaert-McKey, Martine; Greeff, Jaco M; Bessière, Jean-Marie

    2002-09-01

    We analysed the compounds of volatile blends released by receptive figs of twenty Ficus species to attract their specific pollinating wasps. In all, 99 different compounds were identified. The compounds are mainly terpenoids, aliphatic compounds and products from the shikimic acid pathway. In each species blend, there are few major compounds, which are generally common among floral fragrances. Most species blends also include rare compounds, but generally their proportion in the blend is low. A possible basis for species-specificity of Ficus-wasp interactions is discussed in relation to the patterns of volatiles found in this interspecies comparison. Copyright 2002 Elsevier Science Ltd.

  16. Aliphatic and polycyclic aromatic hydrocarbons characterisation of Coimbra and Oporto PM2.5 urban aerosol

    NASA Astrophysics Data System (ADS)

    Rocha, A. C.; Mirante, F.; Gonçalves, C.; Nunes, T.; Alves, C.; Evtyugina, M.; Kowacz, M.; Pio, C.; Rocha, C.; Vasconcelos, T.

    2009-04-01

    The concentration of organic pollutants in urban areas is mostly due to incomplete combustion from vehicles, industries and domestic heating. Some of these compounds, principally the aliphatic (ALIPH) and polycyclic aromatic hydrocarbons (PAHs) promote harmful effects in human health. The determination of the ALIPH and PAHs concentration levels and their possible emission sources are useful for air quality management and source apportionment studies. In order to estimate and compare the ambient concentrations and establish the main sources of these compounds, the fine fraction of the atmospheric particulate matter (PM2.5) was collected simultaneously in Oporto and Coimbra during summer and winter seasons using a high volume sampler. The organic compounds were extracted from the particulate matter, under reflux with dichloromethane and the total organic extract (TOE) was fractionated by flash chromatography using five different eluents with increasing polarity. The hydrocarbon fractions were analysed by gas chromatography/mass spectrometry (GC/MS). Here we present and discuss the qualitative and quantitative composition of the aliphatic and aromatic fractions present in PM2.5 samples from both cities. The homologous series of C14 to C34 n-alkanes, isoprenoid hydrocarbons (pristane and phytane), PAHs and some petroleum markers have been identified and quantified. With the purpose of identifying the possible sources, various molecular diagnostic ratios were calculated. The global carbon preference index (CPI) closer to the unity, the large concentration of the unresolved complex mixture (UCM) and the presence of PAHs indicate that motor vehicle exhaust was the main emission source of the aliphatic and polycyclic aromatic fractions of Oporto and Coimbra aerosol, especially in the first city. Also, the remarkable presence of petroleum biomarkers such, as hopanes, confirms the previous results. Concentration ratios between PAHs were calculated and used to assign emission

  17. Aliphatic alcohols in spirits inhibit phagocytosis by human monocytes.

    PubMed

    Pál, László; Árnyas, Ervin M; Bujdosó, Orsolya; Baranyi, Gergő; Rácz, Gábor; Ádány, Róza; McKee, Martin; Szűcs, Sándor

    2015-04-01

    A large volume of alcoholic beverages containing aliphatic alcohols is consumed worldwide. Previous studies have confirmed the presence of ethanol-induced immunosuppression in heavy drinkers, thereby increasing susceptibility to infectious diseases. However, the aliphatic alcohols contained in alcoholic beverages might also impair immune cell function, thereby contributing to a further decrease in microbicidal activity. Previous research has shown that aliphatic alcohols inhibit phagocytosis by granulocytes but their effect on human monocytes has not been studied. This is important as they play a crucial role in engulfment and killing of pathogenic microorganisms and a decrease in their phagocytic activity could lead to impaired antimicrobial defence in heavy drinkers. The aim of this study was to measure monocyte phagocytosis following their treatment with those aliphatic alcohols detected in alcoholic beverages. Monocytes were separated from human peripheral blood and phagocytosis of opsonized zymosan particles by monocytes treated with ethanol and aliphatic alcohols individually and in combination was determined. It was shown that these alcohols could suppress the phagocytic activity of monocytes in a concentration-dependent manner and when combined with ethanol, they caused a further decrease in phagocytosis. Due to their additive effects, it is possible that they may inhibit phagocytosis in a clinically meaningful way in alcoholics and episodic heavy drinkers thereby contribute to their increased susceptibility to infectious diseases. However, further research is needed to address this question.

  18. A rapid and sensitive method for the simultaneous analysis of aliphatic and polar molecules containing free carboxyl groups in plant extracts by LC-MS/MS

    PubMed Central

    2009-01-01

    Background Aliphatic molecules containing free carboxyl groups are important intermediates in many metabolic and signalling reactions, however, they accumulate to low levels in tissues and are not efficiently ionized by electrospray ionization (ESI) compared to more polar substances. Quantification of aliphatic molecules becomes therefore difficult when small amounts of tissue are available for analysis. Traditional methods for analysis of these molecules require purification or enrichment steps, which are onerous when multiple samples need to be analyzed. In contrast to aliphatic molecules, more polar substances containing free carboxyl groups such as some phytohormones are efficiently ionized by ESI and suitable for analysis by LC-MS/MS. Thus, the development of a method with which aliphatic and polar molecules -which their unmodified forms differ dramatically in their efficiencies of ionization by ESI- can be simultaneously detected with similar sensitivities would substantially simplify the analysis of complex biological matrices. Results A simple, rapid, specific and sensitive method for the simultaneous detection and quantification of free aliphatic molecules (e.g., free fatty acids (FFA)) and small polar molecules (e.g., jasmonic acid (JA), salicylic acid (SA)) containing free carboxyl groups by direct derivatization of leaf extracts with Picolinyl reagent followed by LC-MS/MS analysis is presented. The presence of the N atom in the esterified pyridine moiety allowed the efficient ionization of 25 compounds tested irrespective of their chemical structure. The method was validated by comparing the results obtained after analysis of Nicotiana attenuata leaf material with previously described analytical methods. Conclusion The method presented was used to detect 16 compounds in leaf extracts of N. attenuata plants. Importantly, the method can be adapted based on the specific analytes of interest with the only consideration that the molecules must contain at

  19. Localized aliphatic organic material on the surface of Ceres

    NASA Astrophysics Data System (ADS)

    De Sanctis, M. C.; Ammannito, E.; McSween, H. Y.; Raponi, A.; Marchi, S.; Capaccioni, F.; Capria, M. T.; Carrozzo, F. G.; Ciarniello, M.; Fonte, S.; Formisano, M.; Frigeri, A.; Giardino, M.; Longobardo, A.; Magni, G.; McFadden, L. A.; Palomba, E.; Pieters, C. M.; Tosi, F.; Zambon, F.; Raymond, C. A.; Russell, C. T.

    2017-02-01

    Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the Dawn spacecraft show a clear detection of an organic absorption feature at 3.4 micrometers on dwarf planet Ceres. This signature is characteristic of aliphatic organic matter and is mainly localized on a broad region of ~1000 square kilometers close to the ~50-kilometer Ernutet crater. The combined presence on Ceres of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic material indicates a very complex chemical environment, suggesting favorable environments to prebiotic chemistry.

  20. Combinations of Aromatic and Aliphatic Radiolysis.

    PubMed

    LaVerne, Jay A; Dowling-Medley, Jennifer

    2015-10-08

    The production of H(2) in the radiolysis of benzene, methylbenzene (toluene), ethylbenzene, butylbenzene, and hexylbenzene with γ-rays, 2-10 MeV protons, 5-20 MeV helium ions, and 10-30 MeV carbon ions is used as a probe of the overall radiation sensitivity and to determine the relative contributions of aromatic and aliphatic entities in mixed hydrocarbons. The addition of an aliphatic side chain with progressively from one to six carbon lengths to benzene increases the H(2) yield with γ-rays, but the yield seems to reach a plateau far below that found from a simple aliphatic such as cyclohexane. There is a large increase in H(2) with LET (linear energy transfer) for all of the substituted benzenes, which indicates that the main process for H(2) formation is a second-order process and dominated by the aromatic entity. The addition of a small amount of benzene to cyclohexane can lower the H(2) yield from the value expected from a simple mixture law. A 50:50% volume mixture of benzene-cyclohexane has essentially the same H(2) yield as cyclohexylbenzene at a wide variation in LET, suggesting that intermolecular energy transfer is as efficient as intramolecular energy transfer.

  1. Drude Polarizable Force Field for Aliphatic Ketones and Aldehydes, and their Associated Acyclic Carbohydrates

    PubMed Central

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-01-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (D-allose and D-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars D-allose and D-psicose, thereby extending the available biomolecules in the Drude polarizable FF. PMID:28190218

  2. 40 CFR 721.530 - Substituted aliphatic acid halide (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted aliphatic acid halide... Specific Chemical Substances § 721.530 Substituted aliphatic acid halide (generic name). (a) Chemical... acid halide (PMN P-84-491) is subject to reporting under this section for the significant new uses...

  3. 40 CFR 721.530 - Substituted aliphatic acid halide (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted aliphatic acid halide... Specific Chemical Substances § 721.530 Substituted aliphatic acid halide (generic name). (a) Chemical... acid halide (PMN P-84-491) is subject to reporting under this section for the significant new uses...

  4. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, Helena L.; Ratcliff, Matthew A.; Palasz, Peter D.

    1986-01-01

    A process for producing peracids from lactic acid-containing solutions derived from biomass processing systems comprising: adjusting the pH of the solution to about 8-9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids; oxidizing the solution to produce volatile lower aliphatic aldehydes; removing said aldehydes as they are generated; and converting said aldehydes to peracids.

  5. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, H.L.; Palasz, P.D.; Ratcliff, M.A.

    1984-12-20

    A process is described for producing peracids from lactic acid-containing solutions derived from biomass processing systems. It consists of adjusting the pH of the solution to about 8 to 9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids. The solution is oxidized to produce volatile lower aliphatic aldehydes. The aldehydes are removed as they are generated and converted to peracids.

  6. Degradation Characterization of Aliphatic POLYESTERS—IN Vitro Study

    NASA Astrophysics Data System (ADS)

    Vieira, A. C.; Vieira, J. C.; Guedes, R. M.; Marques, A. T.

    2008-08-01

    The most popular and important biodegradable polymers are aliphatic polyesters, such as polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polyhydoxyalkanoates (PHA's) and polyethylene oxide (PEO). However, each of these has some shortcomings which restrict its applications. Blending techniques are an extremely promising approach which can improve or tune the original properties of the polymers[1]. Aliphatic polyesters are a central class of biodegradable polymers, because hydrolytic and/or enzymatic chain cleavage of these materials leads to α-hydroxyacids, which in most cases are ultimately metabolized in human body. This is particularly useful for controlled release devices and for other biomedical applications like suture fibers and ligaments. For aliphatic polyesters, hydrolysis rates are affected by the temperature, molecular structure, and ester group density as well as by the species of enzyme used. The degree of crystallinity may be a crucial factor, since enzymes attack mainly the amorphous domains of a polymer. Four different aliphatic polyesters were characterized in terms of degradation. Sutures fibers of PGA-PCL, PGA, PLA-PCL and PDO were used in this study. Weight loss, pH, molecular weight, crystallinity and strength were measured after six stages of incubation in distilled water, physiological saline and phosphate buffer solution (PBS). Degradation rate was determined, using a first order kinetic equation for all materials in the three incubation media. A relatively wide range of mechanical properties and degradation rates were observed among the materials studied. PBS was the most aggressive environment for the majority of cases.

  7. Synthesis of Scutellarein Derivatives with a Long Aliphatic Chain and Their Biological Evaluation against Human Cancer Cells.

    PubMed

    Ni, Guanghui; Tang, Yanling; Li, Minxin; He, Yuefeng; Rao, Gaoxiong

    2018-02-01

    Scutellarin is the major active flavonoid extracted from the traditional Chinese herbal medicine Erigeron breviscapus (Vant.) Hand-Mazz., which is widely used in China. Recently, accumulating evidence has highlighted the potential role of scutellarin and its main metabolite scutellarein in the treatment of cancer. To explore novel anticancer agents with high efficiency, a series of new scutellarein derivatives with a long aliphatic chain were synthesized, and the antiproliferative activities against Jurkat, HCT-116 and MDA-MB-231 cancer cell lines were assessed. Among them, compound 6a exhibited the strongest antiproliferative effects on Jurkat (IC 50 = 1.80 μM), HCT-116 (IC 50 = 11.50 μM) and MDA-MB-231 (IC 50 = 53.91 μM). In particular, 6a even showed stronger antiproliferative effects than the positive control NaAsO₂ on Jurkat and HCT-116 cell lines. The results showed that a proper long aliphatic chain enhanced the antiproliferative activity of scutellarein.

  8. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    PubMed

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  9. Lipophilic extracts of Cynara cardunculus L. var. altilis (DC): a source of valuable bioactive terpenic compounds.

    PubMed

    Ramos, Patrícia A B; Guerra, Ângela R; Guerreiro, Olinda; Freire, Carmen S R; Silva, Artur M S; Duarte, Maria F; Silvestre, Armando J D

    2013-09-04

    Lipophilic extracts of Cynara cardunculus L. var. altilis (DC) from the south of Portugal (Baixo Alentejo) were studied by gas chromatography-mass spectrometry. One sesquiterpene lactone, four pentacyclic triterpenes, and four sterols were reported for the first time as cultivated cardoon components, namely, deacylcynaropicrin, β- and α-amyrin, lupenyl and ψ-taraxasteryl acetates, stigmasterol, 24-methylenecholesterol, campesterol, and Δ(5)-avenasterol. In addition, other new compounds were identified: ten fatty acids, eight long-chain aliphatic alcohols, and six aromatic compounds. Four triterpenyl fatty acid esters were also detected. Sesquiterpene lactones and pentacyclic triterpenes were the major lipophilic families, representing respectively 2-46% and 10-89% of the detected compounds. Cynaropicrin was the most abundant sesquiterpene lactone, while taraxasteryl acetate was the main pentacyclic triterpene. Fatty acids and sterols, mainly hexadecanoic acid and β-sitosterol, were present at lower amounts (1-20% and 1-11% of the detected compounds). Long-chain aliphatic alcohols and aromatic compounds were detected at reduced abundances (1-6% of the detected compounds).

  10. Sulfur compounds in coal

    NASA Technical Reports Server (NTRS)

    Attar, A.; Corcoran, W. H.

    1977-01-01

    The literature on the chemical structure of the organic sulfur compounds (or functional groups) in coal is reviewed. Four methods were applied in the literature to study the sulfur compounds in coal: direct spectrometric and chemical analysis, depolymerization in drastic conditions, depolymerization in mild conditions, and studies on simulated coal. The data suggest that most of the organic sulfur in coal is in the form of thiophenic structures and aromatic and aliphatic sulfides. The relative abundance of the sulfur groups in bituminous coal is estimated as 50:30:20%, respectively. The ratio changes during processing and during the chemical analysis. The main effects are the transformation during processing of sulfides to the more stable thiophenic compounds and the elimination of hydrogen sulfide.

  11. A statistical approach to the interpretation of aliphatic hydrocarbon distributions in marine sediments

    USGS Publications Warehouse

    Rapp, J.B.

    1991-01-01

    Q-mode factor analysis was used to quantitate the distribution of the major aliphatic hydrocarbon (n-alkanes, pristane, phytane) systems in sediments from a variety of marine environments. The compositions of the pure end members of the systems were obtained from factor scores and the distribution of the systems within each sample was obtained from factor loadings. All the data, from the diverse environments sampled (estuarine (San Francisco Bay), fresh-water (San Francisco Peninsula), polar-marine (Antarctica) and geothermal-marine (Gorda Ridge) sediments), were reduced to three major systems: a terrestrial system (mostly high molecular weight aliphatics with odd-numbered-carbon predominance), a mature system (mostly low molecular weight aliphatics without predominance) and a system containing mostly high molecular weight aliphatics with even-numbered-carbon predominance. With this statistical approach, it is possible to assign the percentage contribution from various sources to the observed distribution of aliphatic hydrocarbons in each sediment sample. ?? 1991.

  12. UPLC-ESI-MS/MS method for the quantitative measurement of aliphatic diamines, trimethylamine N-oxide, and β-methylamino-l-alanine in human urine.

    PubMed

    Bhandari, Deepak; Bowman, Brett A; Patel, Anish B; Chambers, David M; De Jesús, Víctor R; Blount, Benjamin C

    2018-04-15

    This work describes a quantitative high-throughput analytical method for the simultaneous measurement of small aliphatic nitrogenous biomarkers, i.e., 1,6-hexamethylenediamine (HDA), isophoronediamine (IPDA), β-methylamino-l-alanine (BMAA), and trimethylamine N-oxide (TMAO), in human urine. Urinary aliphatic diamines, HDA and IPDA, are potential biomarkers of environmental exposure to their corresponding diisocyanates. Urinary BMAA forms as a result of human exposure to blue-green algae contaminated food. And, TMAO is excreted in urine due to the consumption of carnitine- and choline-rich diets. These urinary biomarkers represent classes of small aliphatic nitrogen-containing compounds (N-compounds) that have a high aqueous solubility, low logP, and/or high basic pK a . Because of the highly polar characteristics, analysis of these compounds in complex sample matrices is often challenging. We report on the development of ion-pairing chemistry based ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method for the simultaneous measurement of these biomarkers in human urine. Chromatographic separation was optimized using heptafluorobutyric acid-(HFBA-) based mobile phase and a reversed-phase C18 column. All four analytes were baseline separated within 2.6 min with an overall run time of 5 min per sample injection. Sample preparation involved 4 h of acid hydrolysis followed by automated solid phase extraction (SPE) performed using strong cation exchange sorbent bed with 7 N ammonia solution in methanol as eluent. Limits of detection ranged from 0.05 ng/mL to 1.60 ng/mL. The inter-day and intra-day accuracy were within 10%, and reproducibility within 15%. The method is accurate, fast, and well-suited for biomonitoring studies within targeted groups, as well as larger population-based studies such as the U. S. National Health and Nutrition Examination Survey (NHANES). Published by Elsevier B.V.

  13. One-Step Synthesis of Aliphatic Potassium Acyltrifluoroborates (KATs) from Organocuprates.

    PubMed

    Liu, Sizhou M; Wu, Dino; Bode, Jeffrey W

    2018-04-20

    A one-step synthesis of aliphatic KATs from organocuprates is reported. Organolithium and organomagnesium reagents were readily transmetalated onto Cu(I) and coupled with a KAT-forming reagent to yield the respective aliphatic KAT. The protocol is suitable for primary, secondary and-for the first time-tertiary alkyl substrates. These protocols considerably expand the range of KATs that can be readily accessed in one step from commercially available starting materials.

  14. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    PubMed Central

    D’Ambrosio, Steven M.; Han, Chunhua; Pan, Li; Kinghorn, A. Douglas; Ding, Haiming

    2011-01-01

    Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003), was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compound 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF-induced activation of EGFR (Tyr1173). When compounds 1 and 2 were combined they synergistically inhibited c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation, and human oral cancer cell proliferation. The present data suggest that the potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins that target two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. PMID:21596018

  15. Segregation and Alteration of Phenolic and Aliphatic Components of Root and Leaf Litter by Detritivores and Microbes

    NASA Astrophysics Data System (ADS)

    Filley, T. R.; Altmann, J.; Szlavecz, K. A.; Kalbitz, K.; Gamblin, D.; Nierop, K.

    2012-12-01

    The physical and microbial transformation of plant detritus in the litter layer and soil is accompanied by chemical separation of progressively soluble fractions and their movement into the rhizosphere driving subsequent soil processes. We investigated the combined action of specific detritivores, microbial decay, and leaching on the chemical separation of plant aromatic and aliphatic components from root, wood, and leaf tissue using 13C-TMAH thermochemolysis. This method enabled the simultaneous analysis of hydrolyzable tannin and lignin fragments, substituted fatty acids, and condensed tannin composition and revealed process-specific chemical transformations to plant secondary compounds. Long-term incubation and field sampling demonstrated how plant residues are progressively leached of the water soluble, oxidized fragments generated through decay. The residues appeared only slightly altered, in the case of brown rot wood, or enriched in aliphatic fragments, in the case of leaf and root tissue. Water extractable fractions were always selectively dominated by polyphenolics, either as demethylated lignin or tannins, and nearly devoid of aliphatic materials, despite high concentrations in the starting materials. Additionally, for plant materials with high tannin contents, such as pine needles, consumption and passage through some arthropod guts revealed what appeared to be microbially-mediated methylation of phenols, and a loss of tannins in leachates. These findings are indications for an in-situ phenol detoxification mechanism. This research provides important information regarding the links between biochemical decay and the chemical nature of organic matter removed and remaining in the soil profile.

  16. {Polycyclic aromatic hydrocarbons (PAHs) and aliphatic hydrocarbons in gas and particle phases in two sites of Mexico: MILAGRO project}

    NASA Astrophysics Data System (ADS)

    Amador-Muñoz, O.; Villalobos-Pietrini, R.; Castro, T.; Gaspariano-Larino, R.

    2009-04-01

    Aliphatic hydrocarbons are markers of anthropogenic and biogenic emission sources1; meanwhile PAHs are generated by incomplete combustion sources2. The last ones are important compounds due to their carcinogenic and mutagenic properties3,4. The aim of this study was to identify and quantify aliphatic hydrocarbons and PAHs in gas and particles phases of the atmospheric aerosol and to determine the day and night time behavior during the MILAGRO (Megacity Initiative: Local Global and Research Observations) campaign. The gas phase was collected on polyurethane foam, while particles less than 2.5 m (PM2.5) were collected on glass fiber filters covered with Teflon (TIGF, pallflex) of 8x10 in. Samplings were carried out with a high volume sampler (Tisch) with a flow of 1.13 m3 min-1 at two sites: Instituto Mexicano del Petróleo (T0) and Tecamac (T1) located at North and Northeast of Mexico City, respectively during day (7:00 am-7:00 pm) and night time (7:00 pm-7:00 am) from 1 to 29 of March, 2006. Ninteen PAHs and 23 aliphatic hydrocarbons from n-C13H28 to n-C35H72 were analyzed by gas chromatography coupled to mass spectrometry in impact mode. The samples were spiked with deuterads PAHs and aliphatics hydrocarbons before ultrasound extraction. Medians comparisons were made with Mann-Whitney U test. PAHs with molecular weight (MW) less than 228 g mol-1 were distributed in the gas phase, in both sites. Higher concentrations of PAHs ≥ 228 g mol-1 in PM2.5, were observed during night period (p

  17. Halogen, Hydroxy, Mercapto and Amino-Compounds: A Mechanistic Study--2

    ERIC Educational Resources Information Center

    Hanson, R. W.

    1976-01-01

    Compare reactions in which the functional groups of title compounds are displaced. The overall order of activity observed for alkyl halides, alcohols, thiels, and aliphatic amines acting as bases or nucleophiles is reversed when reactions involve displacement of the functional group. (MLH)

  18. Synthesis, characterization and antimicrobial studies of new bispyrazolines linked via 3-aryl ring with aliphatic chains

    NASA Astrophysics Data System (ADS)

    Yusuf, Mohamad; Jain, Payal

    2012-10-01

    The bispyrazolines 4a(a'-f') and 4b(a'-f') built around the aliphatic chains of varying lengths have been prepared by refluxing bischalcones 3a(a'-f') and 3b(a'-f') with phenyl hydrazine in alcoholic medium. The reactions of chalcones 2a and 2b with suitable 1,ω-dibromoalkanes in the presence of anhydrous K2CO3/dry acetone and Bu4N+I- (PTC) provided 3a(a'-f') and 3b(a'-f'), respectively. The antibacterial and antifungal activities of the synthesized compounds were evaluated against five bacterial and four fungal strains. The compounds 3ba', 3bc', 3bd', 3be', 3af', 4aa' and 4ba' showed better MIC (μg/mL) against the tested microorganisms.

  19. Delivery of complex organic compounds from evolved stars to the solar system.

    PubMed

    Kwok, Sun

    2011-12-01

    Stars in the late stages of evolution are able to synthesize complex organic compounds with aromatic and aliphatic structures over very short time scales. These compounds are ejected into the interstellar medium and distributed throughout the Galaxy. The structures of these compounds are similar to the insoluble organic matter found in meteorites. In this paper, we discuss to what extent stellar organics has enriched the primordial Solar System and possibly the early Earth.

  20. Tuning different kinds of entangled metal-organic frameworks by modifying the spacer group of aliphatic dicarboxylate ligands and the reactant ratio.

    PubMed

    Yang, Jin-Xia; Zhai, Ji-Quan; Zhang, Xin; Qin, Ye-Yan; Yao, Yuan-Gen

    2016-01-14

    Taking advantage of the conformational flexibility of the bpp ligand and aliphatic dicarboxylic acids, six interesting entangled coordination polymers, {[Cd(fum)(bpp)(H2O)]·(H2O)}n (), {[Cd(fum)(bpp)2]·(H2O)5}n (), {[Cd2(suc)1.5(bpp)2(NO3)(H2O)2]·6H2O}n (), {[Cd(suc)(bpp)2]·(H2O)1.5}n (), {[Cd2(glu)2(bpp)3]·10H2O}n (), and {Cd(adp)(bpp)(H2O)}n () have been prepared and structurally characterized (bpp = 1,3-bi(4-pyridyl)propane, fum = fumaric, suc = succinate, glu = glutaric, adp = adipic). Compounds and are comprised of undulated 2D 4(4)-sql networks. In the structure of compound , two identical undulated layers are parallelly interpenetrated with each other to give a 2D → 2D interpenetrating framework. For , the dangling arms projected from 2D layers are intercalated into the neighboring sheets, producing a 2D → 3D polythreading framework. Compound shows a rare example of a 2D self-penetrating framework with a (3,4)-connected (4(2)·6(3)·8)(4(2)·6) topology. Compound presents an unusual 2D self-threading network with a novel 4-connected {4(2)·6(3)·8} topology. Compound displays a 3D self-penetrating system based on a 2D → 3D parallel polycatenation array. Compound exhibits an unprecedented 3D self-penetrating structure having both 1D + 1D → 1D polycatenation and 3D + 3D → 3D interpenetration characteristics. A comparison of these six compounds demonstrates that both the different spacer lengths of the aliphatic dicarboxylates and reactant ratios appear to play a significant role in the assembly of entangled frameworks. In addition, thermal stabilities and photoluminescence properties of have been examined in the solid state at room temperature.

  1. Long-chain aliphatic beta-diketones from epicuticular wax of Vanilla bean species. Synthesis of nervonoylacetone.

    PubMed

    Ramaroson-Raonizafinimanana, B; Gaydou, E M; Bombarda, I

    2000-10-01

    Analysis of the neutral lipids from Vanilla fragrans and Vanilla tahitensis (Orchidaceae) without saponification resulted in the isolation and identification of a new product family in this plant: beta-dicarbonyl compounds. The compound structures are composed of a long aliphatic chain with 2,4-dicarbonyl carbons and a cis double bond at the n-9 position. They represent approximately 28% of the neutral lipids, that is, 1.5%, in immature beans, and approximately 10% of the neutral lipids, that is, 0.9%, in mature beans. Using retention indices, gas chromatography-mass spectrometry, derivatization reactions, and chemical degradation, five beta-dicarbonyl compounds have been identified including 16-pentacosene-2,4-dione, 18-heptacosene-2,4-dione, 20-nonacosene-2, 4-dione, 22-hentriacontene-2,4-dione, and 24-tritriacontene-2, 4-dione. Among them (Z)-18-heptacosene-2,4-dione, or nervonoylacetone, has been synthesized in two steps starting from nervonic acid. The major constituent, nervonoylacetone, represented 74.5% of the beta-dicarbonyl fraction. The range of these compounds has been studied in relation with bean maturity for V. fragrans and V. tahitensis species. This compound family has not been found in the leaves or stems of any of the three vanilla species studied and is markedly absent in the beans of V. madagascariensis.

  2. Probing the human estrogen receptor-α binding requirements for phenolic mono- and di-hydroxyl compounds: A combined synthesis, binding and docking study

    PubMed Central

    McCullough, Christopher; Neumann, Terrence S.; Gone, Jayapal Reddy; He, Zhengjie; Herrild, Christian; Wondergem, Julie; Pandey, Rajesh K.; Donaldson, William A.; Sem, Daniel S.

    2014-01-01

    Various estrogen analogs were synthesized and tested for binding to human ERα using a fluorescence polarization displacement assay. Binding affinity and orientation were also predicted using docking calculations. Docking was able to accurately predict relative binding affinity and orientation for estradiol, but only if a tightly bound water molecule bridging Arg394/Glu353 is present. Di-hydroxyl compounds sometimes bind in two orientations, which are flipped in terms of relative positioning of their hydroxyl groups. Di-hydroxyl compounds were predicted to bind with their aliphatic hydroxyl group interacting with His524 in ERα. One nonsteroid-based dihdroxyl compound was 1000-fold specific for ERβ over ERα, and was also 25-fold specific for agonist ERβ versus antagonist activity. Docking predictions suggest this specificity may be due to interaction of the aliphatic hydroxyl with His475 in the agonist form of ERβ, versus with Thr299 in the antagonist form. But, the presence of this aliphatic hydroxyl is not required in all compounds, since mono-hydroxyl (phenolic) compounds bind ERα with high affinity, via hydroxyl hydrogen bonding interactions with the ERα Arg394/Glu353/water triad, and van der Waals interactions with the rest of the molecule. PMID:24315190

  3. Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10.

    PubMed Central

    Janssen, D B; Scheper, A; Dijkhuizen, L; Witholt, B

    1985-01-01

    A bacterium that is able to utilize a number of halogenated short-chain hydrocarbons and halogenated carboxylic acids as sole carbon source for growth was identified as a strain of Xanthobacter autotrophicus. The organism constitutively produces two different dehalogenases. One enzyme is specific for halogenated alkanes, whereas the other, which is more heat stable and has a higher pH optimum, is specific for halogenated carboxylic acids. Haloalkanes were hydrolyzed in cell extracts to produce alcohols and halide ions, and a route for the metabolism of 1,2-dichlorethane is proposed. Both dehalogenases show a broad substrate specificity, allowing the degradation of bromine- and chlorine-substituted organic compounds. The results show that X. autotrophicus may play a role in the degradation of organochlorine compounds and that hydrolytic dehalogenases may be involved in the microbial metabolism of short-chain halogenated hydrocarbons in microorganisms. Images PMID:3994371

  4. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway.

    PubMed

    D'Ambrosio, Steven M; Han, Chunhua; Pan, Li; Kinghorn, A Douglas; Ding, Haiming

    2011-06-10

    Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but not compound 1, prevented EGF-induced activation of the EGFR (Tyr1173). When compounds 1 and 2 were combined they synergistically inhibited c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation, and human oral cancer cell proliferation. The present data suggest that the potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins that target two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Decrease of aliphatic CHs from diatoms by in situ heating infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Alipour, Leila; Nakashima, Satoru

    2016-04-01

    In situ heating IR microspectroscopy at 260-300°C under air and N2 conditions has been conducted on diatom frustules to examine aliphatic CH losses during heating, simulating their changes with burial-diagenesis. Assuming a reaction model made up of two first-order kinetic relations, reaction rate constants k1 and k2 and activation energies (Ea) were evaluated for aliphatic CHs. The rate constants for loss of aliphatic CHs of diatom frustules under air and N2 flow are much larger, with much smaller activation energies (57-109 kJ/mol: air; 14-44 kJ/mol: N2), than those for conventional hydrocarbon generation reactions from kerogens (170-370 kJ/mol) studied at higher temperatures (350-450°C). The CH decrease rates are somewhat different from the amide I decrease (protein degradation) rates. The obtained results suggest that organic transformation reactions including degradation of aliphatic CHs inside the diatom silica frustules might be quite different from those of kerogens separated from the biological structures.

  6. Assimilation of Unusual Carbon Compounds

    NASA Astrophysics Data System (ADS)

    Middelhoven, Wouter J.

    Yeast taxa traditionally are distinguished by growth tests on several sugars and organic acids. During the last decades it became apparent that many yeast species assimilate a much greater variety of naturally occurring carbon compounds as sole source of carbon and energy. These abilities are indicative of a greater role of yeasts in the carbon cycle than previously assumed. Especially in acidic soils and other habitats, yeasts may play a role in the degradation of carbon compounds. Such compounds include purines like uric acid and adenine, aliphatic amines, diamines and hydroxyamines, phenolics and other benzene compounds and polysaccharides. Assimilation of purines and amines is a feature of many ascomycetes and basidiomycetes. However, benzene compounds are degraded by only a few ascomycetous yeasts (e.g. the Stephanoascus/ Blastobotrys clade and black yeastlike fungi) but by many basidiomycetes, e.g. Filobasidiales, Trichosporonales, red yeasts producing ballistoconidia and related species, but not by Tremellales. Assimilation of polysaccharides is wide-spread among basidiomycetes

  7. Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments from the Neuquen River, Argentine Patagonia.

    PubMed

    Monza, Liliana B; Loewy, Ruth M; Savini, Mónica C; Pechen de d'Angelo, Ana M

    2013-01-01

    Spatial distribution and probable sources of aliphatic and polyaromatic hydrocarbons (AHs, PAHs) were investigated in surface sediments collected along the bank of the Neuquen River, Argentina. Total concentrations of aliphatic hydrocarbons ranged between 0.41 and 125 μg/g dw. Six stations presented low values of resolved aliphatic hydrocarbons and the n-alkane distribution indexes applied suggested a clear biogenic source. These values can be considered the baseline levels of aliphatic hydrocarbons for the river sediments. This constitutes important information for the assessment of future impacts since a strong impulse in the exploitation of shale gas and shale oil in these zones is nowadays undergoing. For the other 11 stations, a mixture of aliphatic hydrocarbons of petrogenic and biogenic origin was observed. The spatial distribution reflects local inputs of these pollutants with a significant increase in concentrations in the lower course, where two major cities are located. The highest values of total aliphatic hydrocarbons were found in this sector which, in turn, was the only one where individual PAHs were detected.

  8. Cost-Benefit Analysis for Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    NASA and Air Force Space Command (AFSPC) have similar missions and therefore similar facilities and structures in similar environments. The standard practice for protecting metallic substrates in atmospheric environments is the application of an applied coating system. The most common topcoats used in coating systems are polyurethanes that contain isocyanates. Isocyanates are classified as potential human carcinogens and are known to cause cancer in animals. The primary objective of this effort was to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes resulting in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project. This Cost-Benefit Analysis (CBA) quantifies the estimated capital and process costs of coating alternatives and cost savings relative to the current coatings. The estimates in this CBA are to be used for assessing the relative merits of the selected alternatives. The actual economic effects at any specific facility will depend on the alternative material or technology implemented, the number of actual applications converted, future workloads, and other factors . The participants initially considered eighteen (18) alternative coatings as described in the Potential Alternatives Report entitled Potential Alternatives Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, prepared by ITB. Of those, 8 alternatives were selected for testing in accordance with the Joint Test Protocol entitled Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, and the Field Test Plan entitled Field Evaluations Test Plan for Validation of Alternatives 10 Aliphatic Isocyanate Polyurethanes, both of which were prepared by ITB. A joint Test Report entitled Joint Test Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, prepared by ITB, documents the results of the laboratory and field testing, as well as any

  9. Biotransformation in Double-Phase Systems: Physiological Responses of Pseudomonas putida DOT-T1E to a Double Phase Made of Aliphatic Alcohols and Biosynthesis of Substituted Catechols

    PubMed Central

    Rojas, Antonia; Duque, Estrella; Schmid, Andreas; Hurtado, Ana; Ramos, Juan-Luis; Segura, Ana

    2004-01-01

    Pseudomonas putida strain DOT-T1E is highly tolerant to organic solvents, with a logPow (the logarithm of the partition coefficient of a solvent in a two-phase water-octanol system of ≥2.5. Solvent tolerant microorganisms can be exploited to develop double-phase (organic solvent and water) biotransformation systems in which toxic substrates or products are kept in the organic phase. We tested P. putida DOT-T1E tolerance to different aliphatic alcohols with a logPow value between 2 and 4, such as decanol, nonanol, and octanol, which are potentially useful in biotransformations in double-phase systems in which compounds with a logPow around 1.5 are produced. P. putida DOT-T1E responds to aliphatic alcohols as the second phase through cis-to-trans isomerization of unsaturated cis fatty acids and through efflux of these aliphatic alcohols via a series of pumps that also extrude aromatic hydrocarbons. These defense mechanisms allow P. putida DOT-T1E to survive well in the presence of high concentrations of the aliphatic alcohols, and growth with nonanol or decanol occurred at a high rate, whereas in the presence of an octanol double-phase growth was compromised. Our results support that the logPow of aliphatic alcohols correlates with their toxic effects, as octanol (logPow = 2.9) has more negative effects in P. putida cells than 1-nonanol (logPow = 3.4) or 1-decanol (logPow = 4). A P. putida DOT-T1E derivative bearing plasmid pWW0-xylE::Km transforms m-xylene (logPow = 3.2) into 3-methylcatechol (logPow = 1.8). The amount of 3-methylcatechol produced in an aliphatic alcohol/water bioreactor was 10- to 20-fold higher than in an aqueous medium, demonstrating the usefulness of double-phase systems for this particular biotransformation. PMID:15184168

  10. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with aliphatic... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4...

  11. Sodium hypochlorite oxidation of petroleum aliphatic contaminants in calcareous soils.

    PubMed

    Picard, François; Chaouki, Jamal

    2016-02-01

    This research project investigated the sodium hypochlorite (NaClO) oxidation of aliphatic petroleum contaminants (C10-C50) in a calcareous soil (average 5473 ppm C10-C50, 15 wt% Ca), which had been excavated from a contaminated industrial site. The decontamination objective was to lower the C10-C50 concentration to 700 ppm. CO2 acidity was used in the project to boost the NaClO oxidation yield and seems to have played a role in desorbing the natural organic matter. The experimental conditions were a 2- to 16-h reaction time, at room temperature, with a 1 to 12.5 wt% NaClO oxidative solution and a fixed 2:1 solution-to-soil ratio. With a 3 wt% NaClO solution and with a CO2 overhead, the NaClO dosage requirement was maintained below 60 g NaClO/g of oxidized C10-C50 over the entire decontamination range. The strong chlorine smell remaining after the reaction was completed suggests that part of the NaClO requirement can be recycled. Except traces of chloroform, there were no regulation-listed organochloride contaminants detected on either the treated soil samples or leachates and the total count of chlorinated compounds in treated soil samples was below the detection limit of 250 mg/kg. The NaClO oxidation mechanism on aliphatic substrates might be triggered by transition metals, such as manganese, but no attempt has been made to investigate the oxidation mechanism. Further investigations would include a constant-fed NaClO system and other techniques to lower the required NaClO dosage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized arctic soils

    USGS Publications Warehouse

    Braddock, J.F.

    1999-01-01

    A study was carried out to test a simple bioremediation treatment strategy in the Arctic and analyze the influence of fertilization the degradation of aliphatic and aromatic hydrocarbons, e.g., pristine, n-tetradecane, n-pentadecane, 2-methylnaphthalene, naphthalene, and acenaphthalene. The site was a coarse sand pad that once supported fuel storage tanks. Diesel-range organics concentrations were 250-860 mg/kg soil at the beginning of the study. Replicate field plots treated with fertilizer yielded final concentrations of 0, 50, 100, or 200 mg N/kg soil. Soil pH and soil-water potentials decreased due to fertilizer application. The addition of fertilizer considerably increased soil respiration potentials, but not the populations of microorganisms measured. Fertilizer addition also led to ??? 50% loss of measured aliphatic and aromatic hydrocarbons in surface and subsurface soils. For fertilized plots, hydrocarbon loss was not associated with the quantity of fertilizer added. Losses of aliphatic hydrocarbons were ascribed to biotic processes, while losses of aromatic hydrocarbons were due to biotic and abiotic processes.

  13. 40 CFR 721.10606 - Alkyl substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl substituted alkanediol polymer... alkanediol polymer with aliphatic and alicyclic diisocyanates (generic). (a) Chemical substance and... substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (PMN P-11-486) is subject to...

  14. 40 CFR 721.10606 - Alkyl substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl substituted alkanediol polymer... alkanediol polymer with aliphatic and alicyclic diisocyanates (generic). (a) Chemical substance and... substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (PMN P-11-486) is subject to...

  15. 40 CFR 721.10605 - Polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyoxyalkylene ether, polymer with..., polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic). (a) Chemical substance and... polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (PMN P-11-485) is subject...

  16. 40 CFR 721.10605 - Polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyoxyalkylene ether, polymer with..., polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic). (a) Chemical substance and... polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (PMN P-11-485) is subject...

  17. Biodegradation and detoxification of aliphatic and aromatic hydrocarbons by new yeast strains.

    PubMed

    Hashem, Mohamed; Alamri, Saad A; Al-Zomyh, Sharefah S A A; Alrumman, Sulaiman A

    2018-04-30

    Seeking new efficient hydrocarbon-degrading yeast stains was the main goal of this study. Because microorganisms are greatly affected by the environmental factors, the biodegradation potentiality of the microorganisms varies from climatic area to another. This induces research to develop and optimize the endemic organisms in bioremediation technology. In this study, 67 yeast strains were tested for their growth potentiality on both aliphatic and aromatic hydrocarbons. The most efficient six strains were identified using sequence analysis of the variable D1/D2 domain of the large subunit 26S ribosomal DNA. The identity of these strains was confirmed as Yamadazyma mexicana KKUY-0160, Rhodotorula taiwanensis KKUY-0162, Pichia kluyveri KKUY-0163, Rhodotorula ingeniosa KKUY-0170, Candida pseudointermedia KKUY-0192 and Meyerozyma guilliermondii KKUY-0214. These species are approved for their ability to degrade both aliphatic and aromatic hydrocarbons for the first time in this study. Although, all of them were able to utilize and grow on both hydrocarbons, Rhodotorula taiwanensis KKUY-0162 emerged as the best degrader of octane, and Rhodotorula ingeniosa KKUY-170 was the best degrader of pyrene. GC-MS analysis approved the presence of many chemical compounds that could be transitional or secondary metabolites during the utilization of the hydrocarbons. Our results recommend the application of these yeast species on large scale to approve their efficiency in bioremediation of oil-contamination of the environment. Using these yeasts, either individually or in consortia, could offer a practical solution for aquatic or soil contamination with the crude oil and its derivatives in situ. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Determination of sulfur compounds in hydrotreated transformer base oil by potentiometric titration.

    PubMed

    Chao, Qiu; Sheng, Han; Cheng, Xingguo; Ren, Tianhui

    2005-06-01

    A method was developed to analyze the distribution of sulfur compounds in model sulfur compounds by potentiometric titration, and applied to analyze hydrotreated transformer base oil. Model thioethers were oxidized to corresponding sulfoxides by tetrabutylammonium periodate and sodium metaperiodate, respectively, and the sulfoxides were titrated by perchloric acid titrant in acetic anhydride. The contents of aliphatic thioethers and total thioethers were then determined from that of sulfoxides in solution. The method was applied to determine the organic sulfur compounds in hydrotreated transformer base oil.

  19. Trapping by amylose of the aliphatic chain grafted onto chlorogenic acid: importance of the graft position.

    PubMed

    Le-Bail, P; Lorentz, C; Pencreac'h, G; Soultani-Vigneron, S; Pontoire, B; López Giraldo, L J; Villeneuve, P; Hendrickx, J; Tran, V

    2015-03-06

    5-Caffeoylquinic acid (chlorogenic acid), is classified in acid-phenols family and as polyphenolic compounds it possesses antioxidant activity. The oxydative modification of chlorogenic acid in foods may lead to alteration of their qualities; to counteract these degradation effects, molecular encapsulation was used to protect chlorogenic acid. Amylose can interact strongly with a number of small molecules, including lipids. In order to enable chlorogenic acid complexation by amylose, a C16 aliphatic chain was previously grafted onto the cycle of quinic acid. This work showed that for the two lipophilic derivatives of chlorogenic acid: hexadecyl chlorogenate obtained by alkylation and 3-O-palmitoyl chlorogenic acid obtained by acylation; only the 3-O-palmitoyl chlorogenic acid complexed amylose. The chlorogenic acid derivatives were studied by X-ray diffraction, differential scanning calorimetry and NMR to elucidate the interaction. By comparing the results with previous work on the complexation of amylose by 4-O-palmitoyl chlorogenic acid, the importance of the aliphatic chain position on the cycle of the quinic acid is clearly highlighted. A study in molecular modeling helped to understand the difference in behavior relative to amylose of these three derivatives of chlorogenic acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Ligand- and base-free copper(II)-catalyzed C-N bond formation: cross-coupling reactions of organoboron compounds with aliphatic amines and anilines.

    PubMed

    Quach, Tan D; Batey, Robert A

    2003-11-13

    [reaction: see text] A ligandless and base-free Cu-catalyzed protocol for the cross-coupling of arylboronic acids and potassium aryltrifluoroborate salts with primary and secondary aliphatic amines and anilines is described. The process utilizes catalytic copper(II) acetate monohydrate and 4 A molecular sieves in dichloromethane at slightly elevated temperatures under an atmosphere of oxygen. A broad range of functional groups are tolerated on both of the cross-coupling partners.

  1. Identification of genotoxic compounds in crude oil using fractionation according to distillation, polarity and Kow.

    PubMed

    Park, Shin Yeong; Lee, Hyo Jin; Khim, Jong Seong; Kim, Gi Beum

    2017-01-30

    We examined the degree of DNA damage caused by fractions of crude oil in accordance with the boiling points, polarity and log K ow . Relatively high DNA damage was observed in the aromatic fraction (290-330°C) and resin and polar fraction (350-400°C). The resin and polar fraction showed relatively high genotoxicity compared with the aliphatic and aromatic fraction at the 1-4 log K ow range. At the 6-7 log K ow range, the aromatic fraction showed relatively high DNA damage compared with the aliphatic and resin and polar fraction. In particular, every detailed fraction in accordance with the log K ow values (aliphatic and aromatic (310-320°C) and resins and polar fractions (370-380°C)) showed one or less than one DNA damage. However, the fractions before separation in accordance with log K ow values (aliphatic and aromatic (310-320°C) and resin and polar (370-380°C) fractions) showed high DNA damage. Thus, we confirm the synergistic action between the detailed compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Seasonal distribution of aliphatic hydrocarbons in the Vaza Barris Estuarine System, Sergipe, Brazil.

    PubMed

    Barbosa, José Carlos S; Santos, Lukas G G V; Sant'Anna, Mércia V S; Souza, Michel R R; Damasceno, Flaviana C; Alexandre, Marcelo R

    2016-03-15

    The seasonal assessment of anthropogenic activities in the Vaza Barris estuarine river system, located in the Sergipe state, northeastern Brazil, was performed using the aliphatic hydrocarbon distribution. The aliphatic hydrocarbon and isoprenoid (Pristane and Phytane) concentrations ranged between 0.19 μg g(-1) and 8.5 μg g(-1) of dry weight. Data were analyzed using Kruskal-Wallis test, with significance level set at p<0.05, and no seasonality distribution change was observed. The Carbon Preference Index (CPI), associated with n-alkanes/n-C16, Low Molecular Weight/High Molecular Weight ratio (LMW/HMW) and Terrigenous to Aquatic Ratio (TAR) suggested biogenic input of aliphatic hydrocarbons for most samples, with significant contribution of higher plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The floral scent of Taccarum ulei (Araceae): attraction of scarab beetle pollinators to an unusual aliphatic acyloin.

    PubMed

    Maia, Artur Campos Dália; Gibernau, Marc; Dötterl, Stefan; Navarro, Daniela Maria do Amaral Ferraz; Seifert, Karlheinz; Müller, Tobias; Schlindwein, Clemens

    2013-09-01

    The strongly fragrant thermogenic inflorescences of Taccarum ulei (Araceae) are highly attractive to night-active scarab beetles of Cyclocephala celata and C. cearae (Scarabaeidae, Cyclocephalini), which are effective pollinators of plants in the wild in northeastern Brazil. GC-MS analysis of headspace floral scent samples of T. ulei established that two constituents, (S)-2-hydroxy-5-methyl-3-hexanone (an aliphatic acyloin rarely detected in flowers) and dihydro-β-ionone (an irregular terpene) accounted for over 96% of the total scent discharge. Behavioral tests (in both field and cages) showed that male and female C. celata and C. cearae were attracted to traps baited with a synthetic mixture of both compounds; however, they were also responsive to (S)-2-hydroxy-5-methyl-3-hexanone alone, which thus functions as a specific attractive cue. These findings support other recent research in suggesting that angiosperms pollinated by cyclocephaline scarab beetles release floral odors of limited complexity in terms of numbers of compounds, but often dominated by unusual compounds that may ensure attraction of specific pollinator species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Chemoselective Aliphatic C-H Bond Oxidation Enabled by Polarity Reversal.

    PubMed

    Dantignana, Valeria; Milan, Michela; Cussó, Olaf; Company, Anna; Bietti, Massimo; Costas, Miquel

    2017-12-27

    Methods for selective oxidation of aliphatic C-H bonds are called on to revolutionize organic synthesis by providing novel and more efficient paths. Realization of this goal requires the discovery of mechanisms that can alter in a predictable manner the innate reactivity of these bonds. Ideally, these mechanisms need to make oxidation of aliphatic C-H bonds, which are recognized as relatively inert, compatible with the presence of electron rich functional groups that are highly susceptible to oxidation. Furthermore, predictable modification of the relative reactivity of different C-H bonds within a molecule would enable rapid diversification of the resulting oxidation products. Herein we show that by engaging in hydrogen bonding, fluorinated alcohols exert a polarity reversal on electron rich functional groups, directing iron and manganese catalyzed oxidation toward a priori stronger and unactivated C-H bonds. As a result, selective hydroxylation of methylenic sites in hydrocarbons and remote aliphatic C-H oxidation of otherwise sensitive alcohol, ether, amide, and amine substrates is achieved employing aqueous hydrogen peroxide as oxidant. Oxidations occur in a predictable manner, with outstanding levels of product chemoselectivity, preserving the first-formed hydroxylation product, thus representing an extremely valuable tool for synthetic planning and development.

  5. Oxidative aliphatic C-H fluorination with manganese catalysts and fluoride ion

    PubMed Central

    Liu, Wei; Huang, Xiongyi; Groves, John T

    2014-01-01

    Fluorination is a reaction that is useful in improving the chemical stability and changing the binding affinity of biologically active compounds. The protocol described here can be used to replace aliphatic, C(sp3)-H hydrogen in small molecules with fluorine. Notably, isolated methylene groups and unactivated benzylic sites are accessible. The method uses readily available manganese porphyrin and manganese salen catalysts and various fluoride ion reagents, including silver fluoride (AgF), tetrabutylammonium fluoride and triethylamine trihydrofluoride (TREAT·HF), as the source of fluorine. Typically, the reactions afford 50–70% yield of mono-fluorinated products in one step. Two representative examples, the fragrance component celestolide and the nonsteroidal anti-inflammatory drug ibuprofen, are described; they produced useful isolated quantities (250–300 mg, ~50% yield) of fluorinated material over periods of 1–8 h. The procedures are performed in a typical fume hood using ordinary laboratory glassware. No special precautions to rigorously exclude water are required. PMID:24177292

  6. Compounds formed by treatment of corn (Zea mays) with nitrous acid.

    PubMed

    Archer, M C; Hansen, T J; Tannenbaum, S R

    1980-01-01

    Nitrohexane has been identified as a major product formed following treatment of corn (Zea mays) with nitrous acid. Preliminary evidence suggests that another compound isolated from the nitrosated corn is an unsaturated nitrolic acid. As an aid to the analysis of N-nitro compounds, we have characterized the response of a chemiluminescence detector (Thermal Energy Analyzer) as a function of pyrolysis chamber temperature for several nitrosamines and for an aliphatic C-nitroso compound, an aromatic C-nitro compound, a nitramine and an alkyl nitrite. The response-temperature profiles are valuable in distinguishing among the various compounds and in optimizing the sensitivity of the detector for use in chromatography. Other tests, including photolysis and stability toward nitrite-scavenging reagents, further aid in distinguishing among the various compounds.

  7. Biofiltration of gasoline and diesel aliphatic hydrocarbons.

    PubMed

    Halecky, Martin; Rousova, Jana; Paca, Jan; Kozliak, Evguenii; Seames, Wayne; Jones, Kim

    2015-02-01

    The ability of a biofilm to switch between the mixtures of mostly aromatic and aliphatic hydrocarbons was investigated to assess biofiltration efficiency and potential substrate interactions. A switch from gasoline, which consisted of both aliphatic and aromatic hydrocarbons, to a mixture of volatile diesel n-alkanes resulted in a significant increase in biofiltration efficiency, despite the lack of readily biodegradable aromatic hydrocarbons in the diesel mixture. This improved biofilter performance was shown to be the result of the presence of larger size (C₉-C(12)) linear alkanes in diesel, which turned out to be more degradable than their shorter-chain (C₆-C₈) homologues in gasoline. The evidence obtained from both biofiltration-based and independent microbiological tests indicated that the rate was limited by biochemical reactions, with the inhibition of shorter chain alkane biodegradation by their larger size homologues as corroborated by a significant substrate specialization along the biofilter bed. These observations were explained by the lack of specific enzymes designed for the oxidation of short-chain alkanes as opposed to their longer carbon chain homologues.

  8. Copper-catalyzed α-amination of aliphatic aldehydes.

    PubMed

    Tian, Jie-Sheng; Loh, Teck-Peng

    2011-05-21

    A highly efficient copper-catalyzed α-amination of aliphatic aldehydes for the synthesis of α-amino acetals using secondary amines with readily removable protecting groups as a nitrogen source was developed. This reaction can be operated under very mild conditions, affording the desired products in moderate to good yields. © The Royal Society of Chemistry 2011

  9. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hexanedioic acid polymer with... polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). (a) Chemical substance and... acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (PMN P-11-333) is subject to...

  10. Access to aliphatic protons as reporters in non-deuterated proteins by solid-state NMR.

    PubMed

    Vasa, Suresh Kumar; Rovó, Petra; Giller, Karin; Becker, Stefan; Linser, Rasmus

    2016-03-28

    Interactions within proteins, with their surrounding, and with other molecules are mediated mostly by hydrogen atoms. In fully protonated, inhomogeneous, or larger proteins, however, aliphatic proton shifts tend to show little dispersion despite fast Magic-Angle Spinning. 3D correlations dispersing aliphatic proton shifts by their better resolved amide N/H shifts can alleviate this problem. Using inverse second-order cross-polarization (iSOCP), we here introduce dedicated and improved means to sensitively link site-specific chemical shift information from aliphatic protons with a backbone amide resolution. Thus, even in cases where protein deuteration is impossible, this approach may enable access to various aspects of protein functions that are reported on by protons.

  11. Quantum descriptors for predictive toxicology of halogenated aliphatic hydrocarbons.

    PubMed

    Trohalaki, S; Pachter, R

    2003-04-01

    In order to improve Quantitative Structure-Activity Relationships (QSARs) for halogenated aliphatics (HA) and to better understand the biophysical mechanism of toxic response to these ubiquitous chemicals, we employ improved quantum-mechanical descriptors to account for HA electrophilicity. We demonstrate that, unlike the lowest unoccupied molecular orbital energy, ELUMO, which was previously used as a descriptor, the electron affinity can be systematically improved by application of higher levels of theory. We also show that employing the reciprocal of ELUMO, which is more consistent with frontier molecular orbital (FMO) theory, improves the correlations with in vitro toxicity data. We offer explanations based on FMO theory for a result from our previous work, in which the LUMO energies of HA anions correlated surprisingly well with in vitro toxicity data. Additional descriptors are also suggested and interpreted in terms of the accepted biophysical mechanism of toxic response to HAs and new QSARs are derived for various chemical categories that compose the data set employed. These alternate descriptors provide important insight and could benefit other classes of compounds where the biophysical mechanism of toxic response involves dissociative attachment.

  12. Chemoselective Aliphatic C–H Bond Oxidation Enabled by Polarity Reversal

    PubMed Central

    2017-01-01

    Methods for selective oxidation of aliphatic C–H bonds are called on to revolutionize organic synthesis by providing novel and more efficient paths. Realization of this goal requires the discovery of mechanisms that can alter in a predictable manner the innate reactivity of these bonds. Ideally, these mechanisms need to make oxidation of aliphatic C–H bonds, which are recognized as relatively inert, compatible with the presence of electron rich functional groups that are highly susceptible to oxidation. Furthermore, predictable modification of the relative reactivity of different C–H bonds within a molecule would enable rapid diversification of the resulting oxidation products. Herein we show that by engaging in hydrogen bonding, fluorinated alcohols exert a polarity reversal on electron rich functional groups, directing iron and manganese catalyzed oxidation toward a priori stronger and unactivated C–H bonds. As a result, selective hydroxylation of methylenic sites in hydrocarbons and remote aliphatic C–H oxidation of otherwise sensitive alcohol, ether, amide, and amine substrates is achieved employing aqueous hydrogen peroxide as oxidant. Oxidations occur in a predictable manner, with outstanding levels of product chemoselectivity, preserving the first-formed hydroxylation product, thus representing an extremely valuable tool for synthetic planning and development. PMID:29296677

  13. 40 CFR 721.4490 - Capped aliphatic isocyanate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...(h). (iv) Disposal. Requirements as specified in § 721.90 (a)(1), (a)(2), (b)(1), (b)(2), (c)(1), and... reporting. (1) The chemical substance identified generically as a capped aliphatic isocyanate (PMN P-86-1146... specified in § 721.63 (a)(1), (a)(3), (a)(4), (a)(5)(xi), (a)(6)(v), (b) (concentration set at 0.1 percent...

  14. 40 CFR 721.4490 - Capped aliphatic isocyanate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...(h). (iv) Disposal. Requirements as specified in § 721.90 (a)(1), (a)(2), (b)(1), (b)(2), (c)(1), and... reporting. (1) The chemical substance identified generically as a capped aliphatic isocyanate (PMN P-86-1146... specified in § 721.63 (a)(1), (a)(3), (a)(4), (a)(5)(xi), (a)(6)(v), (b) (concentration set at 0.1 percent...

  15. Linear solvation energy relationships (LSER) for adsorption of organic compounds by carbon nanotubes.

    PubMed

    Ersan, Gamze; Apul, Onur G; Karanfil, Tanju

    2016-07-01

    The objective of this paper was to create a comprehensive database for the adsorption of organic compounds by carbon nanotubes (CNTs) and to use the Linear Solvation Energy Relationship (LSER) technique for developing predictive adsorption models of organic compounds (OCs) by multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs). Adsorption data for 123 OCs by MWCNTs and 48 OCs by SWCNTs were compiled from the literature, including some experimental results obtained in our laboratory. The roles of selected OCs properties and CNT types were examined with LSER models. The results showed that the r(2) values of the LSER models displayed small variability for aromatic compounds smaller than 220 g/mol, after which a decreasing trend was observed. The data available for aliphatics was mainly for molecular weights smaller than 250 g/mol, which showed a similar trend to that of aromatics. The r(2) values for the LSER model on the adsorption of aromatic and aliphatic OCs by SWCNTs and MWCNTs were relatively similar indicating the linearity of LSER models did not depend on the CNT types. Among all LSER model descriptors, V term (molecular volume) for aromatic OCs and B term (basicity) for aliphatic OCs were the most predominant descriptors on both type of CNTs. The presence of R term (excess molar refractivity) in LSER model equations resulted in decreases for both V and P (polarizability) parameters without affecting the r(2) values. Overall, the results demonstrate that successful predictive models can be developed for the adsorption of OCs by MWCNTs and SWCNTs with LSER techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with a tight-fitting face piece (full-face). As an alternative to the respiratory requirements listed... significant new uses subject to reporting. (1) The chemical substance identified generically as substituted aliphatic amine (PMN P-06-702) is subject to reporting under this section for the significant new uses...

  17. Kinetics of Bacterial Growth on Chlorinated Aliphatic Compounds

    PubMed Central

    van den Wijngaard, Arjan J.; Wind, Richèle D.; Janssen, Dick B.

    1993-01-01

    With the pure bacterial cultures Ancylobacter aquaticus AD20 and AD25, Xanthobacter autotrophicus GJ10, and Pseudomonas sp. strain AD1, Monod kinetics was observed during growth in chemostat cultures on 1,2-dichloroethane (AD20, AD25, and GJ10), 2-chloroethanol (AD20 and GJ10), and 1,3-dichloro-2-propanol (AD1). Both the Michaelis-Menten constants (Km) of the first catabolic (dehalogenating) enzyme and the Monod half-saturation constants (Ks) followed the order 2-chloroethanol, 1,3-dichloro-2-propanol, epichlorohydrin, and 1,2-dichloroethane. The Ks values of strains GJ10, AD20, and AD25 for 1,2-dichloroethane were 260, 222, and 24 μM, respectively. The low Ks value of strain AD25 was correlated with a higher haloalkane dehalogenase content of this bacterium. The growth rates of strains AD20 and GJ10 in continuous cultures on 1,2-dichloroethane were higher than the rates predicted from the kinetics of the haloalkane dehalogenase and the concentration of the enzyme in the cells. The results indicate that the efficiency of chlorinated compound removal is indeed influenced by the kinetic properties and cellular content of the first catabolic enzyme. The cell envelope did not seem to act as a barrier for permeation of 1,2-dichloroethane. PMID:16348981

  18. Secondary organic aerosol formation from primary aliphatic amines with NO3 radical

    NASA Astrophysics Data System (ADS)

    Malloy, Q. G. J.; Qi, Li; Warren, B.; Cocker, D. R., III; Erupe, M. E.; Silva, P. J.

    2009-03-01

    Primary aliphatic amines are an important class of nitrogen containing compounds emitted from automobiles, waste treatment facilities and agricultural animal operations. A series of experiments conducted at the UC-Riverside/CE-CERT Environmental Chamber is presented in which oxidation of methylamine, ethylamine, propylamine, and butylamine with O3 and NO3 have been investigated. Very little aerosol formation is observed in the presence of O3 only. However, after addition of NO, and by extension NO3, large aerosol mass yields (~44% for butylamine) are seen. Aerosol generated was determined to be organic in nature due to the small fraction of NO and NO2 in the total signal (<1% for all amines tested) as detected by an aerosol mass spectrometer (AMS). We propose a reaction mechanism between carbonyl containing species and the parent amine leading to formation of particulate imine products. These findings can have significant impacts on rural communities with elevated nighttime PM loadings, when significant levels of NO3 exist.

  19. Secondary organic aerosol formation from primary aliphatic amines with NO3 radical

    NASA Astrophysics Data System (ADS)

    Malloy, Q. G. J.; Qi, Li; Warren, B.; Cocker, D. R., III; Erupe, M. E.; Silva, P. J.

    2008-07-01

    Primary aliphatic amines are an important class of nitrogen containing compounds found to be emitted from automobiles, waste treatment facilities and agricultural animal operations. A series of experiments conducted at the UC-Riverside/CE-CERT Environmental Chamber is presented in which oxidation of methylamine, ethylamine, propylamine, and butylamine with NO3 has been investigated. Very little aerosol formation is observed in the presence of O3 only. However, after addition of NO, and by extension NO3, large yields of aerosol mass loadings (~44% for butylamine) are seen. Aerosol generated was determined to be organic in nature due to the small fraction of NO and NO2 in the total signal (<17% for all amines tested) as detected by an aerosol mass spectrometer (AMS). We propose a reaction mechanism between carbonyl containing species and the parent amine leading to formation of particulate imine products. These findings can have significant impacts on rural communities and lead to elevated nighttime PM loadings, when significant levels on NO3 exist.

  20. Oxidative enantioselective α-fluorination of aliphatic aldehydes enabled by N-heterocyclic carbene catalysis.

    PubMed

    Li, Fangyi; Wu, Zijun; Wang, Jian

    2015-01-07

    Described is the first study on oxidative enantioselective α-fluorination of simple aliphatic aldehydes enabled by N-heterocyclic carbene catalysis. N-fluorobis(phenyl)sulfonimide serves as a an oxidant and as an "F" source. The C-F bond formation occurs directly at the α position of simple aliphatic aldehydes, thus overcoming nontrivial challenges, such as competitive difluorination and nonfluorination, and proceeds with high to excellent enantioselectivities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. 40 CFR 721.4490 - Capped aliphatic isocyanate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) (concentration set at 0.1 percent), (f), (h)(1)(ii)(G), (h)(1)(iii)(A), (h)(1)(iii)(B), (h)(1)(iii)(D), and (h)(1... reporting. (1) The chemical substance identified generically as a capped aliphatic isocyanate (PMN P-86-1146... specified in § 721.63 (a)(1), (a)(3), (a)(4), (a)(5)(xi), (a)(6)(v), (b) (concentration set at 0.1 percent...

  2. 40 CFR 721.4490 - Capped aliphatic isocyanate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) (concentration set at 0.1 percent), (f), (h)(1)(ii)(G), (h)(1)(iii)(A), (h)(1)(iii)(B), (h)(1)(iii)(D), and (h)(1... reporting. (1) The chemical substance identified generically as a capped aliphatic isocyanate (PMN P-86-1146... specified in § 721.63 (a)(1), (a)(3), (a)(4), (a)(5)(xi), (a)(6)(v), (b) (concentration set at 0.1 percent...

  3. 40 CFR 721.4490 - Capped aliphatic isocyanate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) (concentration set at 0.1 percent), (f), (h)(1)(ii)(G), (h)(1)(iii)(A), (h)(1)(iii)(B), (h)(1)(iii)(D), and (h)(1... reporting. (1) The chemical substance identified generically as a capped aliphatic isocyanate (PMN P-86-1146... specified in § 721.63 (a)(1), (a)(3), (a)(4), (a)(5)(xi), (a)(6)(v), (b) (concentration set at 0.1 percent...

  4. Cloud condensation nuclei activity of aliphatic amine secondary aerosol

    USDA-ARS?s Scientific Manuscript database

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...

  5. Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey).

    PubMed

    Yin, Ling; Chen, Hancai; Cao, Bihao; Lei, Jianjun; Chen, Guoju

    2017-01-01

    Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28 , the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology ( BoaMYB28 ) was identified in Chinese kale ( Brassica oleracea var. alboglabra Bailey). Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes in

  6. Molecular Characterization of MYB28 Involved in Aliphatic Glucosinolate Biosynthesis in Chinese Kale (Brassica oleracea var. alboglabra Bailey)

    PubMed Central

    Yin, Ling; Chen, Hancai; Cao, Bihao; Lei, Jianjun; Chen, Guoju

    2017-01-01

    Glucosinolates are Brassicaceae-specific secondary metabolites that act as crop protectants, flavor precursors, and cancer-prevention agents, which shows strong evidences of anticarcinogentic, antioxidant, and antimicrobial activities. MYB28, the R2R3-MYB28 transcription factor, directly activates genes involved in aliphatic glucosinolate biosynthesis. In this study, the MYB28 homology (BoaMYB28) was identified in Chinese kale (Brassica oleracea var. alboglabra Bailey). Analysis of the nucleotide sequence indicated that the cDNA of BoaMYB28 was 1257 bp with an ORF of 1020 bp. The deduced BoaMYB28 protein was a polypeptide of 339 amino acid with a putative molecular mass of 38 kDa and a pI of 6.87. Sequence homology and phylogenetic analysis showed that BoaMYB28 was most closely related to MYB28 homologs from the Brassicaceae family. The expression levels of BoaMYB28 varies across the tissues and developmental stages. BoaMYB28 transcript levels were higher in leaves and stems compared with those in cotyledons, flowers, and siliques. BoaMYB28 was expressed across all developmental leaf stages, with higher transcript accumulation in mature and inflorescence leaves. Over-expression and RNAi studies showed that BoaMYB28 retains the basic MYB28 gene function as a major transcriptional regulator of aliphatic glucosinolate pathway. The results indicated that over-expression and RNAi lines showed no visible difference on plant morphology. The contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes increased in over-expression lines and decreased in RNAi lines. In over-expression lines, aliphatic glucosinolate contents were 1.5- to 3-fold higher than those in the wild-type, while expression levels of aliphatic glucosinolate biosynthesis genes were 1.5- to 4-fold higher than those in the wild-type. In contrast, the contents of aliphatic glucosinolates and transcript levels of aliphatic glucosinolate biosynthesis genes in RNAi

  7. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... diamine and phenol, reaction products with 4-methyl-2-pentanone (generic). 721.10190 Section 721.10190... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4...

  8. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... diamine and phenol, reaction products with 4-methyl-2-pentanone (generic). 721.10190 Section 721.10190... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4...

  9. Influence of type of muscle on volatile compounds throughout the manufacture of Celta dry-cured ham.

    PubMed

    Bermúdez, Roberto; Franco, Daniel; Carballo, Javier; Lorenzo, José M

    2015-12-01

    The effect of muscle type on volatile compounds throughout the manufacture of Celta dry-cured ham was studied. Thirty Celta ham were taken from the fresh pieces, after the end of the salting stage, after 120 days of post-salting, after the end of drying-ripening stage, and after 165 and 330 days of "bodega" step. The volatile compounds from semimembranosus (SM) and biceps femoris (BF) muscles were extracted by using headspace-solid phase microextraction (SPME) and analysed by gas chromatographic/mass spectrometry (GC/MS). Fifty-five volatile compounds were identified and quantified. The number of volatile compounds increased during the different steps of the process, reaching at 550 days of process 39 and 40 volatile compounds in SM and BF muscles, respectively. Results indicated that the most abundant chemical family in flavour at the end of the manufacturing process were esters in the two muscles studied, followed by aliphatic hydrocarbons and aldehydes. During the manufacturing process, an increase in the total amount of volatile compounds was observed, being this increase more marked in samples from BF muscle (from 550.7 to 1118.9 × 10(6) area units) than in samples from SM muscle (from 459.3 to 760.4 × 10(6) area units). Finally, muscle type displayed significant (P < 0.05) differences for four esters, two alcohols, one aldehyde, one ketone and four aliphatic hydrocarbons. © The Author(s) 2014.

  10. pH-Independent Recognition of Polyhydroxy Compounds by Niobium(V) Porphyrin Complex with Unique Sugar Selectivity.

    PubMed

    Doi, Takuya; Kachikawa, Norihide; Yasui, Takashi; Yuchi, Akio

    2017-01-01

    The niobium(V) complex with tetraphenylporphin having OH - as an auxilliay ligand exists as a dimeric complex, [Nb 2 (tpp) 2 O 3 ] at a total concentration >10 -4.5 mol dm -3 , and reacts with an aliphatic or aromatic polyhydroxy compound to form a monomeric complex containing chelate rings by coordination of the deprotonated species, and to cause an appreciable UV-Vis spectral change. In contrast to phenylboronic acid (PBA), the reactivity of [Nb 2 (tpp) 2 O 3 ] is independent of pH at least between 4 and 8. Aliphatic comounds are more reactive than aromatic compounds in dioxane-water, while the reactivity order is reversed in the two-phase reaction. The sugar selectivity order of [Nb 2 (tpp) 2 O 3 ] in dioxane-water (10:1) (sorbose > fructose > mannose > arabinose, galactose > glucose) is appreciably different from that of PBA (fructose > sorbose > arabinose > galactose > mannose > glucose). This may be related to the difference in size of the Lewis acidic center.

  11. 40 CFR Table 2b to Subpart E of... - Reactivity Factors for Aliphatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Reactivity Factors for Aliphatic Hydrocarbon Solvent Mixtures 2B Table 2B to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Coatings Pt. 59, Subpt. E, Table 2B Table 2B to Subpart E of Part 59—Reactivity Factors for Aliphatic...

  12. 40 CFR Table 2b to Subpart E of... - Reactivity Factors for Aliphatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Reactivity Factors for Aliphatic Hydrocarbon Solvent Mixtures 2B Table 2B to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Coatings Pt. 59, Subpt. E, Table 2B Table 2B to Subpart E of Part 59—Reactivity Factors for Aliphatic...

  13. 40 CFR Table 2b to Subpart E of... - Reactivity Factors for Aliphatic Hydrocarbon Solvent Mixtures

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Reactivity Factors for Aliphatic Hydrocarbon Solvent Mixtures 2B Table 2B to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Coatings Pt. 59, Subpt. E, Table 2B Table 2B to Subpart E of Part 59—Reactivity Factors for Aliphatic...

  14. Extraterrestrial Organic Compounds in Meteorites

    NASA Technical Reports Server (NTRS)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

    2003-01-01

    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  15. The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes

    PubMed Central

    Schneider, Lizette M; Adamski, Nikolai M; Christensen, Caspar Elo; Stuart, David B; Vautrin, Sonia; Hansson, Mats; Uauy, Cristobal; von Wettstein-Knowles, Penny

    2016-01-01

    Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley – Cer-c, Cer-q and Cer-u – known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes. PMID:26962211

  16. Organic compounds in aerosols from selected European sites - Biogenic versus anthropogenic sources

    NASA Astrophysics Data System (ADS)

    Alves, Célia; Vicente, Ana; Pio, Casimiro; Kiss, Gyula; Hoffer, Andras; Decesari, Stefano; Prevôt, André S. H.; Minguillón, María Cruz; Querol, Xavier; Hillamo, Risto; Spindler, Gerald; Swietlicki, Erik

    2012-11-01

    Atmospheric aerosol samples from a boreal forest (Hyytiälä, April 2007), a rural site in Hungary (K-puszta, summer 2008), a polluted rural area in Italy (San Pietro Capofiume, Po Valley, April 2008), a moderately polluted rural site in Germany located on a meadow (Melpitz, May 2008), a natural park in Spain (Montseny, March 2009) and two urban background locations (Zurich, December 2008, and Barcelona, February/March 2009) were collected. Aliphatics, polycyclic aromatic hydrocarbons, carbonyls, sterols, n-alkanols, acids, phenolic compounds and anhydrosugars in aerosols were chemically characterised by gas chromatography-mass spectrometry, along with source attribution based on the carbon preference index (CPI), the ratios between the unresolved and the chromatographically resolved aliphatics, the contribution of wax n-alkanes, n-alkanols and n-alkanoic acids from plants, diagnostic ratios of individual target compounds and source-specific markers to organic carbon ratios. In spite of transboundary pollution episodes, Hyytiälä registered the lowest levels among all locations. CPI values close to 1 for the aliphatic fraction of the Montseny aerosol suggest that the anthropogenic input may be associated with the transport of aged air masses from the surrounding industrial/urban areas, which superimpose the locally originated hydrocarbons with biogenic origin. Aliphatic and aromatic hydrocarbons in samples from San Pietro Capofiume reveal that fossil fuel combustion is a major source influencing the diel pattern of concentrations. This source contributed to 25-45% of the ambient organic carbon (OC) at the Po Valley site. Aerosols from the German meadow presented variable contributions from both biogenic and anthropogenic sources. The highest levels of vegetation wax components and biogenic secondary organic aerosol (SOA) products were observed at K-puszta, while anthropogenic SOA compounds predominated in Barcelona. The primary vehicular emissions in the Spanish

  17. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... methods for protecting against such risk, into an MSDS as described in § 721.72(c) within 90 days from the..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... manner or method of manufacture, import, or processing associated with any use of this substance without...

  18. Direct electrochemical imidation of aliphatic amines via anodic oxidation.

    PubMed

    Zhang, Li; Su, Ji-Hu; Wang, Sujing; Wan, Changfeng; Zha, Zhenggen; Du, Jiangfeng; Wang, Zhiyong

    2011-05-21

    Direct electrochemical synthesis of sulfonyl amidines from aliphatic amines and sulfonyl azides was realized with good to excellent yields. Traditional tertiary amine substrates were broadened to secondary and primary amines. The reaction intermediates were observed and a reaction mechanism was proposed and discussed. © The Royal Society of Chemistry 2011

  19. Introducing Aliphatic Substitution with a Discovery Experiment Using Competing Electrophiles

    ERIC Educational Resources Information Center

    Curran, Timothy P.; Mostovoy, Amelia J.; Curran, Margaret E.; Berger, Clara

    2016-01-01

    A facile, discovery-based experiment is described that introduces aliphatic substitution in an introductory undergraduate organic chemistry curriculum. Unlike other discovery-based experiments that examine substitution using two competing nucleophiles with a single electrophile, this experiment compares two isomeric, competing electrophiles…

  20. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  1. Volatile anesthetic binding to proteins is influenced by solvent and aliphatic residues.

    PubMed

    Streiff, John H; Jones, Keith A

    2008-10-01

    The main objective of this work was to characterize VA binding sites in multiple anesthetic target proteins. A computational algorithm was used to quantify the solvent exclusion and aliphatic character of amphiphilic pockets in the structures of VA binding proteins. VA binding sites in the protein structures were defined as the pockets with solvent exclusion and aliphatic character that exceeded minimum values observed in the VA binding sites of serum albumin, firefly luciferase, and apoferritin. We found that the structures of VA binding proteins are enriched in these pockets and that the predicted binding sites were consistent with experimental determined binding locations in several proteins. Autodock3 was used to dock the simulated molecules of 1,1,1,2,2-pentafluoroethane, difluoromethyl 1,1,1,2-tetrafluoroethyl ether, and sevoflurane and the isomers of halothane and isoflurane into these potential binding sites. We found that the binding of the various VA molecules to the amphiphilic pockets is driven primarily by VDW interactions and to a lesser extent by weak hydrogen bonding and electrostatic interactions. In addition, the trend in Delta G binding values follows the Meyer-Overton rule. These results suggest that VA potencies are related to the VDW interactions between the VA ligand and protein target. It is likely that VA bind to sites with a high degree of solvent exclusion and aliphatic character because aliphatic residues provide favorable VDW contacts and weak hydrogen bond donors. Water molecules occupying these sites maintain pocket integrity, associate with the VA ligand, and diminish the unfavorable solvation enthalpy of the VA. Water molecules displaced into the bulk by the VA ligand may provide an additional favorable enthalpic contribution to VA binding. Anesthesia is a component of many health related procedures, the outcomes of which could be improved with a better understanding of the molecular targets and mechanisms of anesthetic action.

  2. The effect of mechanical loads on the degradation of aliphatic biodegradable polyesters.

    PubMed

    Li, Ying; Chu, Zhaowei; Li, Xiaoming; Ding, Xili; Guo, Meng; Zhao, Haoran; Yao, Jie; Wang, Lizhen; Cai, Qiang; Fan, Yubo

    2017-06-01

    Aliphatic biodegradable polyesters have been the most widely used synthetic polymers for developing biodegradable devices as alternatives for the currently used permanent medical devices. The performances during biodegradation process play crucial roles for final realization of their functions. Because physiological and biochemical environment in vivo significantly affects biodegradation process, large numbers of studies on effects of mechanical loads on the degradation of aliphatic biodegradable polyesters have been launched during last decades. In this review article, we discussed the mechanism of biodegradation and several different mechanical loads that have been reported to affect the biodegradation process. Other physiological and biochemical factors related to mechanical loads were also discussed. The mechanical load could change the conformational strain energy and morphology to weaken the stability of the polymer. Besides, the load and pattern could accelerate the loss of intrinsic mechanical properties of polymers. This indicated that investigations into effects of mechanical loads on the degradation should be indispensable. More combination condition of mechanical loads and multiple factors should be considered in order to keep the degradation rate controllable and evaluate the degradation process in vivo accurately. Only then can the degradable devise achieve the desired effects and further expand the special applications of aliphatic biodegradable polyesters.

  3. Hollow multilayer microcapsules for pH-/thermally responsive drug delivery using aliphatic poly(urethane-amine) as smart component.

    PubMed

    Shi, Jun; Du, Chao; Shi, Jin; Wang, Yaming; Cao, Shaokui

    2013-04-01

    Hollow multilayer microcapsules made of aliphatic poly(urethane-amine) (PUA) and sodium poly(styrene sulfonate) (PSS), templated on PSS-doped CaCO3 particles, are prepared for pH-/thermally responsive drug delivery. The electrostatic interaction and hydrogen bonding under weak-acid conditions between aliphatic PUA and PSS contribute to the formation of multilayer microcapsules. Scanning electron microscopy (SEM) results demonstrate an obvious variation of the hollow multilayer microcapsules in response to changes in temperature and pH value. Drug-release behaviors using DOX as a model drug demonstrate that the drug release increases on decreasing the pH value because of the interaction weakness between aliphatic PUA and PSS in acidic conditions. Moreover, the drug release is higher at 55 °C than that at 37 °C for the sake of the shrinkage of aliphatic PUA above its lower critical solution temperature (LCST). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Characterization of High Explosives and Other Energetic Compounds by Computational Chemistry and Molecular Modeling: Experiments for Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Bumpus, John A.; Lewis, Anne; Stotts, Corey; Cramer, Christopher J.

    2007-01-01

    Experiments suited for the undergraduate instructional laboratory in which the heats of formation of several aliphatic and aromatic compounds are calculated, are described. The experiments could be used to introduce students to commercially available computational chemistry and its thermodynamics, while assess and compare the energy content of…

  5. The Cer-cqu gene cluster determines three key players in a β-diketone synthase polyketide pathway synthesizing aliphatics in epicuticular waxes.

    PubMed

    Schneider, Lizette M; Adamski, Nikolai M; Christensen, Caspar Elo; Stuart, David B; Vautrin, Sonia; Hansson, Mats; Uauy, Cristobal; von Wettstein-Knowles, Penny

    2016-03-09

    Aliphatic compounds on plant surfaces, called epicuticular waxes, are the first line of defense against pathogens and pests, contribute to reducing water loss and determine other important phenotypes. Aliphatics can form crystals affecting light refraction, resulting in a color change and allowing identification of mutants in their synthesis or transport. The present study discloses three such Eceriferum (cer) genes in barley - Cer-c, Cer-q and Cer-u - known to be tightly linked and functioning in a biochemical pathway forming dominating amounts of β-diketone and hydroxy-β-diketones plus some esterified alkan-2-ols. These aliphatics are present in many Triticeae as well as dicotyledons such as Eucalyptus and Dianthus. Recently developed genomic resources and mapping populations in barley defined these genes to a small region on chromosome arm 2HS. Exploiting Cer-c and -u potential functions pinpointed five candidates, of which three were missing in apparent cer-cqu triple mutants. Sequencing more than 50 independent mutants for each gene confirmed their identification. Cer-c is a chalcone synthase-like polyketide synthase, designated diketone synthase (DKS), Cer-q is a lipase/carboxyl transferase and Cer-u is a P450 enzyme. All were highly expressed in pertinent leaf sheath tissue of wild type. A physical map revealed the order Cer-c, Cer-u, Cer-q with the flanking genes 101kb apart, confirming they are a gene cluster, Cer-cqu. Homology-based modeling suggests that many of the mutant alleles affect overall protein structure or specific active site residues. The rich diversity of identified mutations will facilitate future studies of three key enzymes involved in synthesis of plant apoplast waxes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Selective Aliphatic Carbon-Carbon Bond Activation by Rhodium Porphyrin Complexes.

    PubMed

    To, Ching Tat; Chan, Kin Shing

    2017-07-18

    The carbon-carbon bond activation of organic molecules with transition metal complexes is an attractive transformation. These reactions form transition metal-carbon bonded intermediates, which contribute to fundamental understanding in organometallic chemistry. Alternatively, the metal-carbon bond in these intermediates can be further functionalized to construct new carbon-(hetero)atom bonds. This methodology promotes the concept that the carbon-carbon bond acts as a functional group, although carbon-carbon bonds are kinetically inert. In the past few decades, numerous efforts have been made to overcome the chemo-, regio- and, more recently, stereoselectivity obstacles. The synthetic usefulness of the selective carbon-carbon bond activation has been significantly expanded and is becoming increasingly practical: this technique covers a wide range of substrate scopes and transition metals. In the past 16 years, our laboratory has shown that rhodium porphyrin complexes effectively mediate the intermolecular stoichiometric and catalytic activation of both strained and nonstrained aliphatic carbon-carbon bonds. Rhodium(II) porphyrin metalloradicals readily activate the aliphatic carbon(sp 3 )-carbon(sp 3 ) bond in TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) and its derivatives, nitriles, nonenolizable ketones, esters, and amides to produce rhodium(III) porphyrin alkyls. Recently, the cleavage of carbon-carbon σ-bonds in unfunctionalized and noncoordinating hydrocarbons with rhodium(II) porphyrin metalloradicals has been developed. The absence of carbon-hydrogen bond activation in these systems makes the reaction unique. Furthermore, rhodium(III) porphyrin hydroxide complexes can be generated in situ to selectively activate the carbon(α)-carbon(β) bond in ethers and the carbon(CO)-carbon(α) bond in ketones under mild conditions. The addition of PPh 3 promotes the reaction rate and yield of the carbon-carbon bond activation product. Thus, both rhodium

  7. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (PMN...

  8. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (PMN...

  9. Catalytic conversion of aliphatic alcohols on carbon nanomaterials: The roles of structure and surface functional groups

    NASA Astrophysics Data System (ADS)

    Tveritinova, E. A.; Zhitnev, Yu. N.; Chernyak, S. A.; Arkhipova, E. A.; Savilov, S. V.; Lunin, V. V.

    2017-03-01

    Carbon nanomaterials with the structure of graphene and different compositions of the surface groups are used as catalysts for the conversion of C2-C4 aliphatic alcohols. The conversions of ethanol, propanol- 1, propanol-2, butanol-1, butanol-2, and tert-butanol on carbon nanotubes, nanoflakes, and nanoflakes doped with nitrogen are investigated. Oxidized and nonoxidized multiwalled carbon nanotubes, nanoflakes, and nanoflakes doped with nitrogen are synthesized. X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning and transmission electronic microscopies, Brunauer-Emmett-Teller method, derivatographic analyses, and the pulsed microcatalytic method are used to characterize comprehensively the prepared catalysts. It was established that all of the investigated carbon nanomaterials (with the exception of nondoped carbon nanoflakes) are bifunctional catalysts for the conversion of aliphatic alcohols, and promote dehydration reactions with the formation of olefins and dehydrogenation reactions with the formation of aldehydes or ketones. Nanoflakes doped with nitrogen are inert with respect to secondary alcohols and tert-butanol. The role of oxygen-containing and nitrogen-containing surface groups, and of the geometrical structure of the carbon matrix of graphene nanocarbon materials in the catalytic conversion of aliphatic alcohols, is revealed. Characteristics of the conversion of aliphatic alcohols that are associated with their structure are identified.

  10. Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons

    DOEpatents

    Fliermans, Carl B.

    1989-01-01

    A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

  11. A Search for CD36 Ligands from Flavor Volatiles in Foods with an Aldehyde Moiety: Identification of Saturated Aliphatic Aldehydes with 9-16 Carbon Atoms as Potential Ligands of the Receptor.

    PubMed

    Tsuzuki, Satoshi; Amitsuka, Takahiko; Okahashi, Tatsuya; Kimoto, Yusaku; Inoue, Kazuo

    2017-08-09

    Volatile compounds with an aldehyde moiety such as (Z)-9-octadecenal are potential ligands for cluster of differentiation 36 (CD36), a transmembrane receptor that has recently been shown to play a role in mammalian olfaction. In this study, by performing an assay using a peptide mimic of human CD36, we aimed to discover additional ligands for the receptor from volatiles containing a single aldehyde group commonly found in human foods. Straight-chain, saturated aliphatic aldehydes with 9-16 carbons exhibited CD36 ligand activities, albeit to varying degrees. Notably, the activities of tridecanal and tetradecanal were higher than that of oleic acid, the most potent ligand among the fatty acids tested. Among the aldehydes other than aliphatic aldehydes, only phenylacetaldehyde showed a weak activity. These findings make a contribution to our knowledge of recognition mechanisms for flavor volatiles in foods with an aldehyde group.

  12. Documents Related to the Hazardous Waste Listing of Chlorinated Aliphatics Production Wastes

    EPA Pesticide Factsheets

    Rulemaking information about the two waste streams from chlorinated aliphatics production that are listed as hazardous including links to the proposed and final rules and a fact sheet about the final rule.

  13. β-Functionalization of Indolin-2-one-Derived Aliphatic Acids for the Divergent Synthesis of Spirooxindole γ-Butyrolactones.

    PubMed

    Cao, Jing; Dong, Shuding; Jiang, Delu; Zhu, Peiyu; Zhang, Han; Li, Rui; Li, Zhanyi; Wang, Xuanyu; Tang, Weifang; Du, Ding

    2017-04-21

    β-Functionalization of indolin-2-one-derived aliphatic acids has been applied in formal [3 + 2] annualtions for catalyst-free and divergent synthesis of two series of structurally interesting 3,3'-spirooxindole γ-butyrolactones that may be attractive for potential drug discovery. These findings also pave the way for further diversity-oriented synthesis of spirooxindoles starting from indolin-2-one-derived aliphatic acids or their derivatives.

  14. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified...

  15. Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    The primary objective of this effort is to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes. Successful completion of this project will result in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project.

  16. [Synthesis, characterization and fluorescent properties of copper phthalocyanine derivates substituted by aliphatic alcohol].

    PubMed

    Zhang, Liang; Xu, Qing-Feng; Lu, Jian-Mei; Yao, She-Chun

    2007-04-01

    A series of copper phthalocyanine derivatives substituted by aliphatic chain were obtained by the reaction of tetra-formyl chloride copper phthalocyanine and aliphatic alcohol such as n-butyl alcohol, n-amyl alcohol, n-hexyl alcohol, n-caprylic alcohol and lauryl alcohol. IR, UV-Vis, elemental analysis and 1H NMR verified the structures and substituting degree. The solubility and the relationship between fluorescence and concentration and substituting group were studied in organic solution. It was confirmed that the solubility in organic solution was improved greatly, the fluorescence did not change in linear according to the concentration and the fluorescence of copper phthalocyanine derivatives substituted by the long alkyl was stronger than that substituted by the relatively short alkyl.

  17. Oxyfunctionalization of the Remote C-H Bonds of Aliphatic Amines by Decatungstate Photocatalysis.

    PubMed

    Schultz, Danielle M; Lévesque, François; DiRocco, Daniel A; Reibarkh, Mikhail; Ji, Yining; Joyce, Leo A; Dropinski, James F; Sheng, Huaming; Sherry, Benjamin D; Davies, Ian W

    2017-11-27

    Aliphatic amines, oxygenated at remote positions within the molecule, represent an important class of synthetic building blocks to which there are currently no direct means of access. Reported herein is an efficient and scalable solution that relies upon decatungstate photocatalysis under acidic conditions using either H 2 O 2 or O 2 as the terminal oxidant. By using these reaction conditions a series of simple and unbiased aliphatic amine starting materials can be oxidized to value-added ketone products. Lastly, NMR spectroscopy using in situ LED-irradiated samples was utilized to monitor the kinetics of the reaction, thus enabling direct translation of the reaction into flow. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

    PubMed

    Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S

    2016-05-15

    This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Molecular receptive range variation among mouse odorant receptors for aliphatic carboxylic acids

    PubMed Central

    Repicky, Sarah E.; Luetje, Charles W.

    2009-01-01

    The ability of mammals to identify and distinguish among many thousands of different odorants suggests a combinatorial use of odorant receptors, with each receptor detecting multiple odorants and each odorant interacting with multiple receptors. Numerous receptors may be devoted to the sampling of particularly important regions of odor space. Here we explore the similarities and differences in the molecular receptive ranges of four mouse odorant receptors (MOR23-1, MOR31-4, MOR32-11 and MOR40-4), which have previously been identified as receptors for aliphatic carboxylic acids. Each receptor was expressed in Xenopus oocytes, along with Gαolf and the cystic fibrosis transmembrane regulator to allow electrophysiological assay of receptor responses. We find that even though these receptors are relatively unrelated, there is extensive overlap among their receptive ranges. That is, these receptors sample a similar region of odor space. However, the receptive range of each receptor is unique. Thus, these receptors contribute to the depth of coverage of this small region of odor space. Such a group of receptors with overlapping, but distinct receptive ranges, may participate in making fine distinctions among complex mixtures of closely related odorant compounds. PMID:19166503

  20. Plant observation report and evaluation, Pennwalt Corporation, secondary and tertiary aliphatic monoamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-08-27

    A site visit was made to the amine manufacturing facility of the Pennwalt Corporation, Wyandotte, Michigan, to evaluate the facility in regard to the Secondary and Tertiary Aliphatic Monoamines Criteria Document. A total of 21 people were directly in contact with the amine production process. Two to four of the maintenance personnel may also come in contact with the process. Maintenance workers ran the risk of exposure not only to primary, secondary and tertiary amine compounds, but also to several other chemicals being used in the process. The processes used to unload raw materials are described, along with reactor operations,more » decanter and recycling operations, distillation operations, product storage and shipping. Medical monitoring at the facility included chest x-ray, respiratory function tests, sight screening, urinalysis, and back x-rays. Restricted and potentially hazardous area signs were clearly posted. Employees wore hard hats and safety glasses on the job as well as gloves, rubber boots, face shields, goggles, and respirators as necessary. Emergency procedures are described, including fire protection. Sanitation and personal hygiene are discussed, along with monitoring of the workplace conditions.« less

  1. Spatial and temporal distribution of aliphatic hydrocarbons and linear alkylbenzenes in the particulate phase from a subtropical estuary (Guaratuba Bay, SW Atlantic) under seasonal population fluctuation.

    PubMed

    Dauner, Ana Lúcia L; Martins, César C

    2015-12-01

    Guaratuba Bay, a subtropical estuary located in the SW Atlantic, is under variable anthropogenic pressure throughout the year. Samples of surficial suspended particulate matter (SPM) were collected at 22 sites during three different periods to evaluate the temporal and spatial variability of aliphatic hydrocarbons (AHs) and linear alkylbenzenes (LABs). These compounds were determined by gas chromatography with flame ionization detection (GC-FID) and mass spectrometry (GC/MS). The spatial distributions of both compound classes were similar and varied among the sampling campaigns. Generally, the highest concentrations were observed during the austral summer, highlighting the importance of the increased human influence during this season. The compound distributions were also affected by the natural geochemical processes of organic matter accumulation. AHs were associated with petroleum, derived from boat and vehicle traffic, and biogenic sources, related to mangrove forests and autochthonous production. The LAB composition evidenced preferential degradation processes during the austral summer. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Frog volatile compounds: application of in vivo SPME for the characterization of the odorous secretions from two species of Hypsiboas treefrogs.

    PubMed

    Brunetti, Andrés E; Merib, Josias; Carasek, Eduardo; Caramão, Elina B; Barbará, Janaina; Zini, Claudia A; Faivovich, Julián

    2015-04-01

    A novel in vivo design was used in combination with solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) to characterize the volatile compounds from the skin secretion of two species of tree frogs. Conventional SPME-GC/MS also was used for the analysis of volatiles present in skin samples and for the analysis of volatiles present in the diet and terraria. In total, 40 and 37 compounds were identified in the secretion of Hypsiboas pulchellus and H. riojanus, respectively, of which, 35 were common to both species. Aliphatic aldehydes, a low molecular weight alkadiene, an aromatic alcohol, and other aromatics, ketones, a methoxy pyrazine, sulfur containing compounds, and hemiterpenes are reported here for the first time in anurans. Most of the aliphatic compounds seem to be biosynthesized by the frogs following different metabolic pathways, whereas aromatics and monoterpenes are most likely sequestered from environmental sources. The characteristic smell of the secretion of H. pulchellus described by herpetologists as skunk-like or herbaceous is explained by a complex blend of different odoriferous components. The possible role of the volatiles found in H. pulchellus and H. riojanus is discussed in the context of previous hypotheses about the biological function of volatile secretions in frogs (e.g., sex pheromones, defense secretions against predators, mosquito repellents).

  3. Two new aliphatic lactones from the fruits of Coriandrum sativum L.

    PubMed Central

    2012-01-01

    Background The present paper describes the isolation and characterization of two new aliphatic δ-lactones along with three glycerides and n-nonadecanyl cetoleate from the fruits of Coriandrum sativum L. (Apiaceae). The structures of all the isolated phytoconstituents have been established on the basis of spectral data analysis and chemical reactions. Results Phytochemical investigation of the methanolic extract of C. sativum L. (Apiaceae) fruits resulted in the isolation of two new aliphatic δ-lactones characterized as 2α-n-heptatriacont-(Z)-3-en-1,5-olide (1) (coriander lactone) and 2α-n-tetracont-(Z,Z)-3,26-dien-18α-ol-1,5-olide (2) (hydroxy coriander lactone) together with glyceryl-1,2-dioctadec-9,12-dienoate-3-octadec-9-enoate (3); glyceryl-1,2,3-trioctadecanoate (4); n-nonadecanyl-n-docos-11-enoate (5) and oleiyl glucoside (6). Conclusions Phytochemical investigation of the methanolic extract of C. sativum gave coriander lactone and hydroxy coriander lactone as the new phytoconstituents. PMID:22800677

  4. Field Evaluations Test Plan for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    The objective of this project is to qualify candidate alternatives to Aliphatic Isocyanate Polyurethane coatings under the specifications for the standard system. This project will compare coating performance of the proposed alternatives to existing coating systems or standards.

  5. A general catalytic β-C-H carbonylation of aliphatic amines to β-lactams.

    PubMed

    Willcox, Darren; Chappell, Ben G N; Hogg, Kirsten F; Calleja, Jonas; Smalley, Adam P; Gaunt, Matthew J

    2016-11-18

    Methods for the synthesis and functionalization of amines are intrinsically important to a variety of chemical applications. We present a general carbon-hydrogen bond activation process that combines readily available aliphatic amines and the feedstock gas carbon monoxide to form synthetically versatile value-added amide products. The operationally straightforward palladium-catalyzed process exploits a distinct reaction pathway, wherein a sterically hindered carboxylate ligand orchestrates an amine attack on a palladium anhydride to transform aliphatic amines into β-lactams. The reaction is successful with a wide range of secondary amines and can be used as a late-stage functionalization tactic to deliver advanced, highly functionalized amine products of utility for pharmaceutical research and other areas. Copyright © 2016, American Association for the Advancement of Science.

  6. Colorless triphenylamine-based aliphatic thermoset epoxy for multicolored and near-infrared electrochromic applications.

    PubMed

    Chuang, Ya-Wen; Yen, Hung-Ju; Wu, Jia-Hao; Liou, Guey-Sheng

    2014-03-12

    In this study, two novel colorless thermoset epoxy resins with anodically electrochromism were prepared from the thermal curing of two triphenylamine-based diamine monomers, 4,4'-diamino-4″-methoxytriphenylamine (1) and N,N'-bis(4-aminophenyl)-N,N'-di(4-methoxylphenyl)-1,4-phenylenediamine (2) with aliphatic epoxy triglycidyl isocyanurate, respectively. The resulting thermoset epoxy resins showed excellent softening temperature (Ts, 270 and 280 °C) due to the rigid structure and highly crosslinking density. In addition, novel colorless epoxy resin films revealed good reversible electrochemical oxidation and interesting multi-electrochromic behavior with high contrast ratio both in visible and near-infrared regions. The aliphatic thermoset epoxy resins also exhibited high transparency in visible region as colorless and great potential for practical electrochromic applications.

  7. Individual organic compounds in water extracts from podzolic soils of the Komi Republic

    NASA Astrophysics Data System (ADS)

    Shamrikova, E. V.; Punegov, V. V.; Gruzdev, I. V.; Vanchikova, E. V.; Vetoshkina, A. A.

    2012-10-01

    The contents of organic compounds in water extracts from organic horizons of loamy soils with different water contents from the medium taiga zone of the Komi Republic were determined by gas-liquid chromatography and chromatography-mass spectrometry. The mass concentration of organic carbon in the extracts was in the range of 290-330 mg/dm3; the mass fraction of the carbon from the identified compounds was 0.5-1.9%. Hydrocarbons made up about 60% of the total identified compounds; acids and their derivatives composed less than 40%. Most of the acids (40-70%) were aliphatic hydroxy acids. The tendencies in the formation of different classes of organic compounds were revealed depending on the degree of the soil hydromorphism. The acid properties of the water-soluble compounds were studied by pK spectroscopy. Five groups of compounds containing acid groups with similar pKa values were revealed. The compounds containing groups with pKa < 4.0 were predominant. The increase in the surface wetting favored the formation of compounds with pKa 3.2-4.0 and 7.4-8.4.

  8. Potential Alternatives Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, pattie

    2011-01-01

    Identifying and selecting alternative materials and technologies that have the potential to reduce the identified HazMats and hazardous air pollutants (HAPs), while incorporating sound corrosion prevention and control technologies, is a complicated task due to the fast pace at which new technologies emerge and rules change. The alternatives are identified through literature searches, electronic database and Internet searches, surveys, and/or personal and professional contacts. Available test data was then compiled on the proposed alternatives to determine if the materials meet the test objectives or if further)laboratory or field-testing will be required. After reviewing technical information documented in the PAR, government representatives, technical representatives from the affected facilities, and other stakeholders involved in the process will select the list of viable alternative coatings for consideration and testing under the project's Joint Test Protocol entitled Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes and Field Test Plan entitled Field Evaluations Test Plan for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, both prepared by ITB. Test results will be reported in a Joint Test Report upon completion oftesting. The selection rationale and conclusions are documented in this PAR. A cost benefit analysis will be prepared to quantify the estimated capital and process costs of coating alternatives and cost savings relative to the current coating processes, however, some initial cost data has been included in this PAR. For this coatings project, isocyanates, as found in aliphatic isocyanate polyurethanes, were identified as the target HazMat to be eliminated. Table 1-1 lists the target HazMats, the related process and application, current specifications, and affected programs.

  9. Thermoreversible gelation of poly(vinylidene fluoride) in phthalates: the influence of aliphatic chain length of solvents.

    PubMed

    Yadav, P Jaya Prakash; Ghosh, Goutam; Maiti, Biswajit; Aswal, Vinod K; Goyal, P S; Maiti, Pralay

    2008-04-17

    Thermoreversible gelation of poly(vinylidene fluoride) (PVDF) has been studied in a new series of solvents (phthalates), for example, dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), and dihexyl phthalate (DHP) as a function of temperature and polymer concentration, both by test tube tilting and dynamic light scattering (DLS) method. The effect of aliphatic chain length (n) of diesters on the gelation kinetics, structure/microstructure and morphology of PVDF gels has been examined. Gelation rate was found to increase with increasing aliphatic chain length of diester. DLS results indicate that the sol-gel transformation proceeds via two-steps: first, microgel domains were formed, and then the infinite three-dimensional (3D) network is established by connecting microgels through polymer chains. The crystallites are responsible for 3D network for gelation in phthalates, and alpha-polymorph is formed during gelation producing higher amount of crystallinity with increasing aliphatic chain length of diester. Morphology of the networks of dried gels in different phthalates showed that fibril thickness and lateral dimensions decrease with higher homologues of phthalates. The scattering intensity is fitted with Debye-Bueche model in small-angle neutron scattering and suggested that both the correlation length and interlamellar spacing increases with n. A model has been proposed, based on electronic structure calculations, to explain the conformation of PVDF chain in presence of various phthalates and their complexes, which offer the cause of higher gelation rate for longer aliphatic chain length.

  10. Aliphatic C-C Bond Cleavage in α-Hydroxy Ketones by a Dioxygen-Derived Nucleophilic Iron-Oxygen Oxidant.

    PubMed

    Bhattacharya, Shrabanti; Rahaman, Rubina; Chatterjee, Sayanti; Paine, Tapan K

    2017-03-17

    A nucleophilic iron-oxygen oxidant, formed in situ in the reaction between an iron(II)-benzilate complex and O 2 , oxidatively cleaves the aliphatic C-C bonds of α-hydroxy ketones. In the cleavage reaction, α-hydroxy ketones without any α-C-H bond afford a 1:1 mixture of carboxylic acid and ketone. Isotope labeling studies established that one of the oxygen atoms from dioxygen is incorporated into the carboxylic acid product. Furthermore, the iron(II) complex cleaves an aliphatic C-C bond of 17-α-hydroxyprogesterone affording androstenedione and acetic acid. The O 2 -dependent aliphatic C-C bond cleavage of α-hydroxy ketones containing no α-C-H bond bears similarity to the lyase activity of the heme enzyme, cytochrome P450 17A1 (CYP17A1). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Transition-metal-free visible-light photoredox catalysis at room-temperature for decarboxylative fluorination of aliphatic carboxylic acids by organic dyes.

    PubMed

    Wu, Xinxin; Meng, Chunna; Yuan, Xiaoqian; Jia, Xiaotong; Qian, Xuhong; Ye, Jinxing

    2015-07-28

    We report herein an efficient, general and green method for decarboxylative fluorination of aliphatic carboxylic acids. By using a transition-metal-free, organocatalytic photoredox system, the reaction of various aliphatic carboxylic acids with the Selectfluor reagent afforded the corresponding alkyl fluorides in satisfactory yields under visible light irradiation at room temperature.

  12. Biodegradable compounds: Rheological, mechanical and thermal properties

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  13. Aromatic as well as aliphatic hydrocarbon solvent axonopathy.

    PubMed

    Spencer, Peter S; Kim, Min Sun; Sabri, Mohammad I

    2002-03-01

    Superfund sites that contain mixtures of aromatic and aliphatic solvents represent an undefined health hazard. After prolonged exposure to relatively high levels of certain aliphatic solvents (e.g. n-hexane, 2-hexanone), humans and animals develop a dose-dependent neurodegeneration that occurs clinically as a symmetrical peripheral neuropathy. This is triggered by the action of 2,5-hexanedione (1,2-diacetylethane), a 1,4-diketone (gamma-diketone) metabolite that targets proteins required for the maintenance of neuronal (and testicular Sertoli cell) integrity. Certain aromatic solvents (1,2-diethylbenzene, 1,2,4-triethylbenzene) cause electrophysiological changes consistent with sensorimotor neuropathy in rodents, but the underlying mechanisms and pathogenesis are unclear. Our recent studies show that the o-diacetyl derivative and likely metabolite of 1,2-diethylbenzene, 1,2-diacetylbenzene, behaves as a neurotoxic (aromatic) gamma-diketone of high neurotoxic potency. Rats treated with 1,2-diacetylbenzene develop limb weakness associated with proximal, neurofilament-filled giant axonal swellings comparable to those seen in animals treated with the potent 3,4-dimethyl derivative of 2,5-hexanedione. The blue chromogen induced by treatment with 1,2-diacetylbenzene is under study as a possible urinary biomarker of exposure to aromatic solvents (e.g. 1,2-diethylbenzene, tetralin) with neurotoxic potential. Development and validation of sensitive new biomarkers, especially for non-cancer endpoints, will aid in assessing the health risk associated with exposure to hazardous substances at Superfund sites.

  14. REFINING FLUORINATED COMPOUNDS

    DOEpatents

    Linch, A.L.

    1963-01-01

    This invention relates to the method of refining a liquid perfluorinated hydrocarbon oil containing fluorocarbons from 12 to 28 carbon atoms per molecule by distilling between 150 deg C and 300 deg C at 10 mm Hg absolute pressure. The perfluorinated oil is washed with a chlorinated lower aliphatic hydrocarbon, which mairtains a separate liquid phase when mixed with the oil. Impurities detrimental to the stability of the oil are extracted by the chlorinated lower aliphatic hydrocarbon. (AEC)

  15. Identification of male-specific chiral compound from the sugarcane weevil Sphenophorus levis.

    PubMed

    Zarbin, Paulo H G; Arrigoni, Enrico de Beni; Reckziegel, Aurélia; Moreira, Jardel A; Baraldi, Patrícia T; Vieira, Paulo C

    2003-02-01

    Comparative gas chromatographic analyses of airborne volatiles produced by males and females of the sugarcane weevil Sphenophorus levis, showed one male-specific compound. Gas chromatography-mass spectrometry data indicated an aliphatic alcohol that was identified as 2-methyl-4-octanol. Both optical isomers were synthesized in five steps by employing commercially available (R)- and (S)-2.2-dimethyl-1,3-dioxolane-4-methanol as starting material. Enantiomeric resolution by gas chromatography with a chiral column demonstrated that the natural alcohol possessed the S configuration. Preliminary indoor observations suggested that the alcohol elicited aggregation behavior among adults. The same compound has been previously described as an aggregation pheromone in several other curculionid species.

  16. Organic pollutants in the coastal environment off San Diego, California. 2: Petrogenic and biogenic sources of aliphatic hydrocarbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, K.; Yu, C.C.; Zeng, E.Y.

    1997-02-01

    The results from the measurements of aliphatic hydrocarbons suggest that hydrocarbons suggest that hydrocarbons in the Point Loma Wastewater Treatment Plant (PLWTP) effluents are mainly petroleum derived; those in the Tijuana River runoff have largely originated from terrestrial plants with visible petroleum contamination; and those in the sea surface microlayer, sediment traps, and sediments at various coastal locations off San Diego have mostly resulted from biogenic contributions with enhanced microbial products in the summer season. Rainfall in the winter season appeared to amplify the inputs from terrestrial higher plants to the coastal areas. The PLWTP discharged approximately 3.85 metric tonsmore » of n-alkanes (C{sub 10}-C{sub 35}) in 1994, well below the level (136 metric tons) estimated in 1979. The input of aliphatic hydrocarbons from the Tijuana River was about 0.101 metric tons in 1994. Diffusion, solubilization, evaporation, and microbial degradation seemed partially responsible for the difference in the concentrations and compositions of aliphatic hydrocarbons in different sample media, although the relative importance of each mechanism cannot be readily discerned from the available data. The results from analyses of aliphatic hydrocarbon compositional indices are generally consistent with those of polycyclic aromatic hydrocarbons.« less

  17. Probing the Reactivity of Dimethylsulfoxonium Methylide with Conjugated and Nonconjugated Carbonyl Compounds: An Undergraduate Experiment Combining Synthesis, Spectral Analysis, and Mechanistic Discovery

    ERIC Educational Resources Information Center

    Ciaccio, James A.; Guevara, Elena L.; Alam, Rabeka; D'agrosa, Christina D.

    2010-01-01

    We introduce students to dimethylsulfoxonium methylide (DMSY) epoxidation of aryl and nonconjugated aliphatic aldehydes and ketones without revealing that DMSY cyclopropanates enones by Michael-initiated ring closure (MIRC). Each student performs the reaction of DMSY with one of nine carbonyl compounds, including four enones, and then analyzes the…

  18. Hollow-fiber liquid-phase microextraction coupled with miniature capillary electrophoresis for the trace analysis of four aliphatic aldehydes in water samples.

    PubMed

    Li, Ying; Yi, Fan; Zheng, Yiliang; Wang, Yu; Ye, Jiannong; Chu, Qingcui

    2015-08-01

    An environmentally friendly method for the trace analysis of four aliphatic aldehydes as water disinfection byproducts has been developed based on hollow-fiber liquid-phase microextraction followed by miniature capillary electrophoresis with amperometric detection. After derivatization with 2-thiobarbituric acid, four aliphatic aldehydes (formaldehyde, acetaldehyde, propylaldehyde, and butyraldehyde) became detectable by the amperometric detector. Under the optimum conditions, four aliphatic aldehydes can be well separated from the coexisting interferents as well as their homologs (pentanal, glyoxal, and methyl-glyoxal), and the limits of detection (S/N = 3) could reach sub-nanogram-per-milliliter level based on hollow-fiber liquid-phase microextraction. The proposed method has been applied for the analyses of above four aliphatic aldehydes in different water samples such as drinking water, tap water, and river water, and the average recoveries were in the range of 90-113%, providing an alternative to conventional and microchip capillary electrophoresis approaches. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The galactic distribution of aliphatic hydrocarbons in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Pendleton, Yvonne J.; Allamandola, Louis J.

    1995-01-01

    The infrared absorption feature near 2950(exp -1) (3.4 micron), characteristic of dust in the diffuse interstellar medium (ISM), is attributed to C-H stretching vibrations of aliphatic hydrocarbons. We show here that the strength of the band does not scale linearly with visual extinction everywhere, but instead increases more rapidly for objects near the center of the Galaxy, a behavior that parallels that of the Si-O stretching band due to silicate materials in the diffuse ISM. This implies that the grains responsible for the diffuse medium aliphatic C-H and silicate Si-O stretching bands are different from those responsible for much of the observed visual extinction. It also suggests that the distribution of the carbonaceous component of the diffuse ISM is not uniform throughout the Galaxy, but instead may increase in density toward the center of the Galaxy. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of silicate-core, organic-mantle grains. Several possible models of the distribution of this material are presented and it is demonstrated that the inner parts of the Galaxy has a carrier density that is 5 to 35 times higher than in the local ISM. Depending on the model used, the density of aliphatic material in the local ISM is found to be about 1 to 2 -CH3 groups m(exp -3) and about 2 to 5 -CH2- groups m(exp -3). These densities are consistent with the strengths of the 2955 and 2925 cm(exp -1) (3.4 micron) band being described by the relations A(sub nu)/tau(sub 2955 cm(exp -1)) = 270 +/- 40 and A(sub nu)/tau(sub 2925 cm(exp -1)) = 250 +/- 40 in the local diffuse ISM.

  20. Regio- and Stereoselective Aliphatic-Aromatic Cross-Benzoin Reaction: Enzymatic Divergent Catalysis.

    PubMed

    Beigi, Maryam; Gauchenova, Ekaterina; Walter, Lydia; Waltzer, Simon; Bonina, Fabrizio; Stillger, Thomas; Rother, Dörte; Pohl, Martina; Müller, Michael

    2016-09-19

    The catalytic asymmetric synthesis of chiral 2-hydroxy ketones by using different thiamine diphosphate dependent enzymes, namely benzaldehyde lyase from Pseudomonas fluorescens (PfBAL), a variant of benzoylformate decarboxylase from Pseudomonas putida (PpBFD-L461A), branched-chain 2-keto acid decarboxylase from Lactococcus lactis (LlKdcA) and a variant of pyruvate decarboxylase from Acetobacter pasteurianus (ApPDC-E469G), was studied. Starting with the same set of substrates, substituted benzaldehydes in combination with different aliphatic aldehydes, PfBAL and PpBFD-L461A selectively deliver the (R)- and (S)-2-hydroxy-propiophenone derivatives, respectively. The (R)- and (S)-phenylacetylcarbinol (1-hydroxy-1-phenylacetone) derivatives are accessible in a similar way using LlKdcA and ApPDC-E469G, respectively. In many cases excellent stereochemical purities (>98 % enantiomeric excess) could be achieved. Hence, the regio- and stereochemistry of the product in the asymmetric aliphatic-aromatic cross-benzoin reaction can be controlled solely by choice of the appropriate enzyme or enzyme variant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Ceria promoted deoxygenation and denitrogenation of Thalassiosira weissflogii and its model compounds by catalytic in-situ pyrolysis.

    PubMed

    Aysu, Tevfik; Maroto-Valer, M Mercedes; Sanna, Aimaro

    2016-05-01

    Pyrolysis of microcrystalline cellulose, egg white powder, palm-jojoba oils mixtures Thalassiosira weissflogii model compounds was performed with CeO2 at 500°C, to evaluate its catalytic upgrading mechanism. Light organics, aromatics and aliphatics were originated from carbohydrates, proteins and lipids, respectively. Dehydration and decarboxylation were the main reactions involved in the algae and model compounds deoxygenation, while nitrogen was removed as NH3 and HCN. CeO2 increased decarbonylation reactions compared to in absence of catalyst, with production of ketones. The results showed that the catalysts had a significant effect on the pyrolysis products composition of T. weissflogii. CeO2, NiCeAl2O3 and MgCe/Al2O3 catalysts increased the aliphatics and decreased the oxygen content in bio-oils to 6-7 wt% of the algae starting O2 content. Ceria catalysts were also able to consistently reduce the N-content in the bio-oil to 20-38% of that in the parent material, with NiCe/Al2O3 being the most effective. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Direct nitration and azidation of aliphatic carbons by an iron-dependent halogenase

    PubMed Central

    Chang, Wei-chen; Layne, Andrew P; Miles, Linde A; Krebs, Carsten

    2014-01-01

    Iron-dependent halogenases employ cis-halo-Fe(IV)-oxo (haloferryl) complexes to functionalize unactivated aliphatic carbon centers, a capability elusive to synthetic chemists. Halogenation requires (1) coordination of a halide anion (Cl− or Br−) to the enzyme's Fe(II) cofactor; (2) coupled activation of O2 and decarboxylation of α-ketoglutarate to generate the haloferryl intermediate; (3) abstraction of hydrogen (H•) from the substrate by the ferryl oxo group; and (4) transfer of the cis halogen as Cl• or Br• to the substrate radical. This enzymatic solution to an unsolved chemical challenge is potentially generalizable to installation of other functional groups, provided that the corresponding anions can support the four requisite steps. We show here that the wild-type halogenase SyrB2 can indeed direct aliphatic nitration and azidation reactions by the same chemical logic. The discovery and enhancement by mutagenesis of these previously unknown reaction types suggests unrecognized or untapped versatility in ferryl-mediated enzymatic C–H-bond activation. PMID:24463698

  3. A Bioinspired Catalytic Aerobic Oxidative C–H Functionalization of Primary Aliphatic Amines: Synthesis of 1,2-Disubstituted Benzimidazoles

    PubMed Central

    Nguyen, Khac Minh Huy; Largeron, Martine

    2015-01-01

    Aerobic oxidative C–H functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. PMID:26206475

  4. Distribution of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and organochlorinated pollutants in deep-sea sediments of the Southern Cretan margin, Eastern Mediterranean Sea: a baseline assessment.

    PubMed

    Mandalakis, Manolis; Polymenakou, Paraskevi N; Tselepides, Anastasios; Lampadariou, Nikolaos

    2014-07-01

    Deep sediments from the southern Cretan margin were analyzed to establish baseline levels for various types of organic pollutants before the anticipated intensification of anthropogenic activities. The total concentration of aliphatic hydrocarbons (ΣAH:326-3758ngg(-1), dry weight) was similar to those reported for deep sediments of the western Mediterranean Sea, while considerably lower levels were measured for polycyclic aromatic hydrocarbons (ΣPAH:9-60ngg(-1)). Source-diagnostic ratios suggested that the aliphatic hydrocarbons in sediments were mainly of terrestrial biogenic origin, while polycyclic aromatic hydrocarbons stemmed from the deposition of long-range transported combustion aerosols. Among the organochlorinated compounds analyzed, β-hexachlorocyclohexane (β-HCH:222-7052pgg(-1)), 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT:37-2236pgg(-1)) and polychlorinated biphenyls (ΣPCB:38-1182pgg(-1)) showed the highest abundance in sediments. The presence of HCHs and PCBs was attributed to historical inputs that have undergone extensive weathering, whereas an ongoing fresh input was suggested for p,p'-DDT. Multiple linear regression analysis revealed that the levels of the various pollutants in sediments were controlled by different factors, but with organic carbon content playing a prominent role in most cases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Manganese-Mediated Coupling Reaction of Vinylarenes and Aliphatic Alcohols

    PubMed Central

    Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Wang, Yan-Jing; Lan, Xing-Wang; Xing, Yalan; Li, Yi-He; Wen, Jia-Long

    2015-01-01

    Alcohols and alkenes are the most abundant and commonly used organic building blocks in the large-scale chemical synthesis. Herein, this is the first time to report a novel and operationally simple coupling reaction of vinylarenes and aliphatic alcohols catalyzed by manganese in the presence of TBHP (tert-butyl hydroperoxide). This coupling reaction provides the oxyalkylated products of vinylarenes with good regioselectivity and accomplishes with the principles of step-economies. A possible reaction mechanism has also been proposed. PMID:26470633

  6. Investigation of test methods, material properties, and processes for solar cell encapsulants. Fourteenth quarterly progress report, August 12, 1978-November 12, 1979. [EVA, EPDM, aliphatic urethane, PVC plastisol, and butyl acrylate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willis, P. B.; Baum, B.; Schnitzer, H. S.

    1979-12-01

    Springborn Laboratories is engaged in a study of evaluating potentially useful encapsulating materials for Task 3 of the Low-Cost Silicon Solar Array project (LSA) funded by DOE. The goal of this program is to identify, evaluate, and recommend encapsulant materials and processes for the production of cost-effective, long-life solar cell modules. This report presents the results of a cost analysis of candidate potting compounds for long life solar module encapsulation. Additionally, the two major encapsulation processes, sheet lamination and liquid casting, are costed on the basis of a large scale production facility. Potting compounds studied include EVA, sheet, clear; EVA,more » sheet, pigmented; EPDM, sheet, clear; Aliphatic urethane, syrup; PVC Plastisol; Butyl acrylate, syrup; and Butyl acrylate, sheet.« less

  7. Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Curran, Jerome

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Headquarters chartered the Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objective of this effort is to demonstrate and validate alternatives to aliphatic isocyanate polyurethane coatings. Successful completion of this project will result in one or more isocyanate-free coating systems qualified for use at Air Force Space Command (AFSPC) and NASA centers participating in this study. The objective of this project is to qualify the candidates under the specifications for the standard system. This project will compare coating performance of the proposed alternatives to existing coating systems or standards.

  8. DETECTION AND QUANTIFICATION OF THIO-ARSENOSUGAR IN MARINE MOLLUSKS BY IC-ICP-MS WITH AN EMPHASIS ON THE INTERACTION OF ARSENOSUGARS WITH SULFIDE AS A FUNCTION OF PH

    EPA Science Inventory

    The sulfar analog of As(328)(2,3-dihydroxypropyl-5-deoxy-5-dimethylarsinoyl-ß-D-riboside), abbreviated (As(328-S), was detected and quantified in five species of marine shellfish using IC-ICP-MS with structural verification via IC-ESI-MS/MS. The CAD spectra produced from the par...

  9. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis

    PubMed Central

    Ventre, Sandrine; Petronijevic, Filip R.; MacMillan, David W. C.

    2016-01-01

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F• transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol. PMID:25881929

  10. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis.

    PubMed

    Ventre, Sandrine; Petronijevic, Filip R; MacMillan, David W C

    2015-05-06

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F(•) transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol.

  11. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.

    PubMed

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2005-12-01

    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  12. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis

    Treesearch

    Jun Fan; Casey Crooks; Gary Creissen; Lionel Hill; Shirley Fairhurst; Peter Doerner; Chris Lamb

    2011-01-01

    Most plant-microbe interactions do not result in disease; natural products restrict non-host pathogens. We found that sulforaphane (4-methylsulfinylbutyl isothiocyanate), a natural product derived from aliphatic glucosinolates, inhibits growth in Arabidopsis of non-host Pseudomonas bacteria in planta. Multiple sax genes (saxCAB/F/D/G) were identified in Pseudomonas...

  13. Evaluation of Efficient and Practical Methods for the Preparation of Functionalized Aliphatic Trifluoromethyl Ethers.

    PubMed

    Sokolenko, Taras M; Dronkina, Maya I; Magnier, Emmanuel; Yagupolskii, Lev M; Yagupolskii, Yurii L

    2017-05-14

    The "chlorination/fluorination" technique for aliphatic trifluoromethyl ether synthesis was investigated and a range of products with various functional groups was prepared. The results were compared with oxidative desulfurization-fluorination of xanthates with the same structure.

  14. Compounds in airborne particulates - Salts and hydrocarbons. [at Cleveland, OH

    NASA Technical Reports Server (NTRS)

    King, R. B.; Antoine, A. C.; Fordyce, J. S.; Neustadter, H. E.; Leibecki, H. F.

    1977-01-01

    Concentrations of 10 polycyclic aromatic hydrocarbons (PAH), the aliphatics as a group, sulfate, nitrate, fluoride, acidity, and carbon in the airborne particulate matter were measured at 16 sites in Cleveland, OH over a 1-year period during 1971 and 1972. Analytical methods used included gas chromatography, colorimetry, and combustion techniques. Uncertainties in the concentrations associated with the sampling procedures, and the analytical methods are evaluated. The data are discussed relative to other studies and source origins. High concentrations downwind of coke ovens for 3,4 benzopyrene are discussed. Hydrocarbon correlation studies indicated no significant relations among compounds studied.

  15. The C-H Stretching Features at 3.2--3.5 μm of Polycyclic Aromatic Hydrocarbons with Aliphatic Sidegroups

    NASA Astrophysics Data System (ADS)

    Yang, X. J.; Li, Aigen; Glaser, R.; Zhong, J. X.

    2016-07-01

    The so-called “unidentified” infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm are ubiquitously seen in a wide variety of astrophysical regions. The UIE features are characteristic of the stretching and bending vibrations of aromatic hydrocarbon materials, e.g., polycyclic aromatic hydrocarbon (PAH) molecules. The 3.3 μm aromatic C-H stretching feature is often accompanied by a weaker feature at 3.4 μm. The latter is generally thought to result from the C-H stretch of aliphatic groups attached to the aromatic systems. The ratio of the observed intensity of the 3.3 μm aromatic C-H feature to that of the 3.4 μm aliphatic C-H feature allows one to estimate the aliphatic fraction of the UIE carriers, provided that the intrinsic oscillator strengths of the 3.3 μm aromatic C-H stretch ({A}3.3) and the 3.4 μm aliphatic C-H stretch ({A}3.4) are known. While previous studies on the aliphatic fraction of the UIE carriers were mostly based on the {A}3.4/{A}3.3 ratios derived from the mono-methyl derivatives of small PAH molecules, in this work we employ density functional theory to compute the infrared vibrational spectra of PAH molecules with a wide range of sidegroups including ethyl, propyl, butyl, and several unsaturated alkyl chains, as well as all the isomers of dimethyl-substituted pyrene. We find that, except for PAHs with unsaturated alkyl chains, the corresponding {A}3.4/{A}3.3 ratios are close to that of mono-methyl PAHs. This confirms the predominantly aromatic nature of the UIE carriers previously inferred from the {A}3.4/{A}3.3 ratio derived from mono-methyl PAHs.

  16. Polycyclic Aromatic Hydrocarbons with Aliphatic Sidegroups: Intensity Scaling for the C-H Stretching Modes and Astrophysical Implications

    NASA Astrophysics Data System (ADS)

    Yang, X. J.; Li, Aigen; Glaser, R.; Zhong, J. X.

    2017-03-01

    The so-called unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μ {{m}} ubiquitously seen in a wide variety of astrophysical regions are generally attributed to polycyclic aromatic hydrocarbon (PAH) molecules. Astronomical PAHs may have an aliphatic component, as revealed by the detection in many UIE sources of the aliphatic C-H stretching feature at 3.4 μ {{m}}. The ratio of the observed intensity of the 3.4 μ {{m}} feature to that of the 3.3 μ {{m}} aromatic C-H feature allows one to estimate the aliphatic fraction of the UIE carriers. This requires knowledge of the intrinsic oscillator strengths of the 3.3 μ {{m}} aromatic C-H stretch ({A}3.3) and the 3.4 μ {{m}} aliphatic C-H stretch ({A}3.4). Lacking experimental data on {A}3.3 and {A}3.4 for the UIE candidate materials, one often has to rely on quantum-chemical computations. Although the second-order Møller-Plesset (MP2) perturbation theory with a large basis set is more accurate than the B3LYP density functional theory, MP2 is computationally very demanding and impractical for large molecules. Based on methylated PAHs, we show here that, by scaling the band strengths computed at an inexpensive level (e.g., B3LYP/6-31G*), we are able to obtain band strengths as accurate as those computed at far more expensive levels (e.g., MP2/6-311+G(3df,3pd)). We calculate the model spectra of methylated PAHs and their cations excited by starlight of different spectral shapes and intensities. We find that {({I}3.4/{I}3.3)}{mod}, the ratio of the model intensity of the 3.4 μ {{m}} feature to that of the 3.3 μ {{m}} feature, is insensitive to the spectral shape and intensity of the exciting starlight. We derive a straightforward relation for determining the aliphatic fraction of the UIE carriers (I.e., the ratio of the number of C atoms in aliphatic units {N}{{C},{ali}} to that in aromatic rings {N}{{C},{aro}}) from the observed band ratios {({I}3.4/{I}3.3)}{obs}: {N

  17. Chromatographic determination of aliphatic aldehydes in human serum after pre-column derivatization using 2,2'-furil, a novel fluorogenic reagent.

    PubMed

    Fathy Bakr Ali, Marwa; Kishikawa, Naoya; Ohyama, Kaname; Abdel-Mageed Mohamed, Horria; Mohamed Abdel-Wadood, Hanaa; Mohamed Mohamed, Ashraf; Kuroda, Naotaka

    2013-07-26

    A novel, highly sensitive and selective fluorimetric liquid chromatographic method for simultaneous determination of medium chain aliphatic aldehydes was developed. The method was based on the derivatization of aliphatic aldehydes with 1,2-di(2-furyl)-1,2-ethanedione (2,2'-furil), a novel fluorogenic reagent, to form highly fluorescent difurylimidazole derivatives. The fluorescence derivatives were separated in less than 20min on a reversed-phase ODS column using an isocratic elution with a mixture of methanol-water (80:20, v/v%). The detection limits were from 0.19 to 0.50nM (1-10fmol/injection) at a signal-to-noise ratio (S/N) of 3. This method was successfully applied for monitoring of aliphatic aldehydes in healthy human sera by a simple pretreatment procedure without interferences from serum constituents. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A laboratory investigation of the effectiveness of various skin and surface decontaminants for aliphatic polyisocyanates.

    PubMed

    Bello, Dhimiter; Woskie, Susan R; Streicher, Robert P; Stowe, Meredith H; Sparer, Judy; Redlich, Carrie A; Cullen, Mark R; Liu, Youcheng

    2005-07-01

    Isocyanates may cause contact dermatitis and respiratory sensitization leading to asthma. Dermal exposure to aliphatic isocyanates in auto body shops is very common. However, little is known about the effectiveness of available commercial products used for decontaminating aliphatic polyisocyanates. This experimental study evaluated the decontamination effectiveness of aliphatic polyisocyanates for several skin and surface decontaminants available for use in the auto body industry. The efficiency of two major decontamination mechanisms, namely (i) consumption of free isocyanate groups via chemical reactions with active hydrogen components of the decontaminant and (ii) physical removal processes such as dissolution were studied separately for each decontaminant. Considerable differences were observed among surface decontaminants in their rate of isocyanate consumption, of which those containing free amine groups performed the best. Overall, Pine-Sol(R) MEA containing monoethanolamine was the most efficient surface decontaminant, operating primarily via chemical reaction with the isocyanate group. Polypropylene glycol (PPG) had the highest physical removal efficiency and the lowest reaction rate with isocyanates. All tested skin decontaminants performed similarly, accomplishing decontamination primarily via physical processes and removing 70-80% of isocyanates in one wiping. Limitations of these skin decontaminants are discussed and alternatives presented. In vitro testing using animal skins and in vivo testing with field workers are being conducted to further assess the efficiency and identify related determinants.

  19. Quantitative analysis of aliphatic amines in urbanaerosols based on online derivatization and highperformance liquid chromatography

    NASA Astrophysics Data System (ADS)

    Huang, X.; Zhuang, G.; Zhao, J.; Deng, C.

    2016-12-01

    A method combining online derivatization with high performance liquid chromatography/fluorescence detection was developed for the determination of seven aliphatic amines (ethanolamine, methylamine, ethylamine, propylamine, butylamine, pentylamine and hexylamine) in urban aerosols. The collected amines were online derivatized with o-phthalaldehyde to form highly fluorescent sulfonatoisoindole derivatives. The derivatives were completely separated in 13 min through gradient elution and detected by fluorescent detection at an excitation wavelength of 334 nm and an emission wavelength of 443 nm. Under the optimized conditions, the relative standard derivations (RSDs) of all detected amines were 0.02-2.03% and 1.04-1.52% for retention time and peak area, respectively. Excellent linearity was achieved for each analyte, ranging from 5 g/L to 1000 g/L (R20.99). Detection limits for all analytes were below 1.1 g/L. The proposed method was used to analyze aliphatic amines in 35 samples of urban PM2.5 collected in Shanghai and was found to be suitable for the determination of particulate aliphatic amines at the level of ng/m3 in ambient air. Based on our measurements, ethanolamine and methylamine were the most abundant species on average in Shanghai during dry and wet seasons. The highest concentration was 15.3 ng/m3 for ethanolamine and 13.2 ng/m3 for methylamine.

  20. Deuterium separation by infrared-induced addition reaction

    DOEpatents

    Marling, John B.

    1977-01-01

    A method for deuterium enrichment by the infrared-induced addition reaction of a deuterium halide with an unsaturated aliphatic compound. A gaseous mixture of a hydrogen halide feedstock and an unsaturated aliphatic compound, particularly an olefin, is irradiated to selectively vibrationally excite the deuterium halide contained therein. The excited deuterium halide preferentially reacts with the unsaturated aliphatic compound to produce a deuterated addition product which is removed from the reaction mixture.

  1. Volatile compound profile of sous-vide cooked lamb loins at different temperature-time combinations.

    PubMed

    Roldán, Mar; Ruiz, Jorge; Del Pulgar, José Sánchez; Pérez-Palacios, Trinidad; Antequera, Teresa

    2015-02-01

    Lamb loins were subjected to sous-vide cooking at different combinations of temperature (60 and 80°C) and time (6 and 24h) to assess the effect on the volatile compound profile. Major chemical families in cooked samples were aliphatic hydrocarbons and aldehydes. The volatile compound profile in sous-vide cooked lamb loin was affected by the cooking temperature and time. Volatile compounds arising from lipid oxidation presented a high abundance in samples cooked at low or moderate cooking conditions (60°C for 6 and 24h, 80°C for 6h), while a more intense time and temperature combination (80°C for 24h) resulted on a higher concentration of volatile compounds arising from Strecker degradations of amino acids, as 2-methylpropanal and 3-methylbutanal. Therefore, sous-vide cooking at moderately high temperatures for long times would result in the formation of a stronger meaty flavor and roast notes in lamb meat. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Aromatic and aliphatic organic materials on Iapetus: Analysis of Cassini VIMS data

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Dalle Ore, Cristina M.; Clark, Roger N.; Pendleton, Yvonne J.

    2014-05-01

    , D.P., Clark, R.N. [2012], op. cit.) and Phoebe (Dalle Ore, C.M., Cruikshank, D.P., Clark, R.N. [2012], op. cit.). Our Gaussian decomposition of the organic band region suggests the presence of molecular bands in addition to those noted above, specifically bands attributable to cycloalkanes, olefinic compounds, CH3OH, and N-substituted PAHs, as well as possible Hn-PAHs (PAHs with excess peripheral H atoms). In a minimalist interpretation of the Gaussian band fitting, we find the ratio of aromatic CH to aliphatic CH2 + CH3 functional groups for both the leading and trailing hemispheres of Iapetus is ∼10, with no clear difference between them. In the aliphatic component of the surface material, the ratio CH2/CH3 is 4.0 on the leading hemisphere and 3.0 on the trailing; both values are higher than those found in interstellar dust and other Solar System materials and the difference between the two hemispheres may be statistically significant. The superficial layer of low-albedo material on Iapetus originated in the interior of Phoebe and is being transported to and deposited on Iapetus (and Hyperion) in the current epoch via the Phoebe dust ring (Tosi, F., Turrini, D., Coradini, A., Filacchione, G., and the VIMS Team [2010]. Mon. Not. R. Astron. Soc. 403, 1113-1130; Tamayo, D., Burns, J.A., Hamilton, D.P., Hedman, M.M. [2011]. Icarus 215, 260-278). The PAHs on Iapetus exist in a H2O-rich environment, and consequently are subject to UV destruction by hydrogenation on short time-scales. The occurrence of this material is therefore consistent with the assertion that the deposition of the PAH-bearing dust is occurring at the present time. If the organic inventory we observe represents the interior composition of Phoebe, we may be sampling the original material from a region of the solar nebula beyond Neptune where Phoebe formed prior to its capture by Saturn (Johnson, T.V., Lunine, J.I. [2005]. Nature 435, 69-71).

  3. Potential Precursor Compounds for Chlorohydrocarbons Detected in Gale Crater, Mars, by the SAM Instrument Suite on the Curiosity Rover

    NASA Technical Reports Server (NTRS)

    Miller, Kristen E.; Eigenbrode, Jennifer L.; Freissinet, Caroline; Glavin, Daniel P.; Kotrc, Benjamin; Francois, Pascaline; Summons, Roger E.

    2016-01-01

    The detection of chlorinated organic compounds in near-surface sedimentary rocks by the Sample Analysis at Mars (SAM) instrument suite aboard the Mars Science Laboratory Curiosity rover represents an important step toward characterizing habitable environments on Mars. However, this discovery also raises questions about the identity and source of their precursor compounds and the processes by which they become chlorinated. Here we present the results of analog experiments, conducted under conditions similar to SAM gas chromatography-mass spectrometry analyses, in which we pyrolyzed potential precursor compounds in the presence of various Cl salts and Fe oxides that have been identified in Martian sediments. While chloromethanes could not be unambiguously identified, 1,2-dichloropropane (1,2-DCP), which is one of the chlorinated compounds identified in SAM data, is formed from the chlorination of aliphatic precursors. Additionally, propanol produced more 1,2-DCP than nonfunctionalized aliphatics such as propane or hexanes. Chlorinated benzenes ranging from chlorobenzene to hexachlorobenzene were identified in experiments with benzene carboxylic acids but not with benzene or toluene. Lastly, the distribution of chlorinated benzenes depended on both the substrate species and the nature and concentration of the Cl salt. Ca and Mg perchlorate, both of which release O2 in addition to Cl2 and HCl upon pyrolysis, formed less chlorobenzene relative to the sum of all chlorinated benzenes than in experiments with ferric chloride. FeCl3, a Lewis acid, catalyzes chlorination but does not aid combustion. Accordingly, both the precursor chemistry and sample mineralogy exert important controls on the distribution of chlorinated organics.

  4. Mass spectral analysis of C3 and C4 aliphatic amino acid derivatives.

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Chadha, M. S.

    1971-01-01

    Diagnostic criteria are obtained for the distinction of alpha, beta, gamma, and N-methyl isomers of the C3 and C4 aliphatic amino acids, using mass spectral analysis of the derivatives of these acids. The use of deuterium labeling has helped in the understanding of certain fragmentation pathways.

  5. Coefficients of caffeine distribution in aliphatic alcohol-ammonium sulfate-water systems

    NASA Astrophysics Data System (ADS)

    Korenman, Ya. I.; Krivosheeva, O. A.; Mokshina, N. Ya.

    2012-11-01

    The extraction of caffeine with aliphatic alcohols C3-C9 from aqueous solutions in the presence of a salting-out agent (ammonium sulfate) is studied. Quantitative characteristics of extraction are calculated: the distribution coefficients ( D) and the degree of recovery ( R, %). Relations are found between log D of caffeine and the length of the hydrocarbon radical in the alcohol molecule, along with certain physicochemical properties of the extragents.

  6. Distribution and sources of aliphatic hydrocarbons in surface sediments of Sergipe River estuarine system.

    PubMed

    Lima, Manoel B; Feitosa, Elaine A; Emídio, Elissandro S; Dórea, Haroldo S; Alexandre, Marcelo R

    2012-08-01

    The assessment of aliphatic hydrocarbons was performed in the Sergipe River estuarine system, northeastern Brazil. Aliphatic hydrocarbons concentration ranged from 9.9 ug g⁻¹ up to 30.8 ug g⁻¹ of dry sediment. The carbon preference index (CPI, based on nC₂₄ to nC₃₄ range), indicated predominance of petrogenic input in two of the sites analyzed (P4 and P5). The unresolved complex mixture (UCM) was found to be present in seven of the nine sites sampled (except for P4 and P5). Overall, the results of this work suggest that there is a mix of organic matter sources to the sediment. Although the coast of Sergipe has an intense off shore petroleum exploration and the Sergipe River crosses the entire city of Aracaju, the capital city of Sergipe, non-significant anthropogenic fingerprint was assessed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Estimating the physicochemical properties of polyhalogenated aromatic and aliphatic compounds using UPPER: part 1. Boiling point and melting point.

    PubMed

    Admire, Brittany; Lian, Bo; Yalkowsky, Samuel H

    2015-01-01

    The UPPER (Unified Physicochemical Property Estimation Relationships) model uses enthalpic and entropic parameters to estimate 20 biologically relevant properties of organic compounds. The model has been validated by Lian and Yalkowsky on a data set of 700 hydrocarbons. The aim of this work is to expand the UPPER model to estimate the boiling and melting points of polyhalogenated compounds. In this work, 19 new group descriptors are defined and used to predict the transition temperatures of an additional 1288 compounds. The boiling points of 808 and the melting points of 742 polyhalogenated compounds are predicted with average absolute errors of 13.56 K and 25.85 K, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. [Cloning and analysis of a new aliphatic amidase gene from Rhodococcus erythropolis TA37].

    PubMed

    Lavrov, K V; Karpova, I Yu; Epremyan, A S; Yanenko, A S

    2014-10-01

    A new aliphatic amidase gene (ami), having a level of similarity with the nearest homologs of no more than 77%, was identified in the Rhodococcus erythropolis TA37 strain, which is able to hydrolyze a wide range of amides. The amidase gene was cloned within a 3.7 kb chromosomal locus, which also contains putative acetyl-CoA ligase and ABC-type transportergenes. The structure of this locus in the R. erythropolis TA37 strain differs from the structure of loci in other Rhodococcus strains. The amidase gene is expressed in Escherichia coli cells. It was demonstrated that amidase (generated in the recombinant strain) efficiently hydrolyzes acetamide (aliphatic anmide) and does not use 4'-nitroacetanilide (N-substituted amide) as a substrate. Insertional inactivation of the amidase gene in the R. erythropolis TA37 strain results in a considerable decrease (by at least 6-7 times) in basal amidase activity, indicating functional amidase activity in the R. erythropolis TA37 strain.

  9. Spacecraft Maximum Allowable Concentrations (SMACs) for C3 to C8 Aliphatic Saturated Aldehydes

    NASA Technical Reports Server (NTRS)

    Langford, Shannon D.

    2007-01-01

    Spacecraft maximum allowable concentrations (SMACs) for C3 to C8, straight-chain, aliphatic aldehydes have been previously assessed and have been documented in volume 4 of Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants (James, 2000). These aldehydes as well as associated physical properties are shown in Table 1. The C3 to C8 aliphatic aldehydes can enter the habitable compartments and contaminate breathing air of spacecraft by several routes including incomplete oxidation of alcohols in the Environmental Control and Life Support System (ECLSS) air revitalization subsystem, as a byproduct of human metabolism, through materials off-gassing, or during food preparation. These aldehydes have been detected in the atmosphere of manned space vehicles in the past. Analysis performed by NASA of crew cabin air samples from the Russian Mir Space Station revealed the presence of C3 to C8 aldehydes at concentrations peaking at approximately 0.1 mg/cu m.

  10. SELECTIVE ENUMERATION OF AROMATIC AND ALIPHATIC HYDROCARBON DEGRADING BACTERIA BY A MOST-PROBABLE-NUMBER PROCEDURE

    EPA Science Inventory

    A most-portable-number (MPN) procedure was developed to separately enumerate aliphatic and aromatic hydrocarbon degrading bacteria, because most of the currently available methods are unable to distinguish between these two groups. Separate 96-well microtiter plates are used to ...

  11. Thermally induced degradation of sulfur-containing aliphatic glucosinolates in broccoli sprouts (Brassica oleracea var. italica) and model systems.

    PubMed

    Hanschen, Franziska S; Platz, Stefanie; Mewis, Inga; Schreiner, Monika; Rohn, Sascha; Kroh, Lothar W

    2012-03-07

    Processing reduces the glucosinolate (GSL) content of plant food, among other aspects due to thermally induced degradation. Since there is little information about the thermal stability of GSL and formation of corresponding breakdown products, the thermally induced degradation of sulfur-containing aliphatic GSL was studied in broccoli sprouts and with isolated GSL in dry medium at different temperatures as well as in aqueous medium at different pH values. Desulfo-GSL have been analyzed with HPLC-DAD, while breakdown products were estimated using GC-FID. Whereas in the broccoli sprouts structural differences of the GSL with regard to thermal stability exist, the various isolated sulfur-containing aliphatic GSL degraded nearly equally and were in general more stable. In broccoli sprouts, methylsulfanylalkyl GSL were more susceptible to degradation at high temperatures, whereas methylsulfinylalkyl GSL were revealed to be more affected in aqueous medium under alkaline conditions. Besides small amounts of isothiocyanates, the main thermally induced breakdown products of sulfur-containing aliphatic GSL were nitriles. Although they were most rapidly formed at comparatively high temperatures under dry heat conditions, their highest concentrations were found after cooking in acidic medium, conditions being typical for domestic processing.

  12. Quantum chemical analysis of thermodynamics of 2D cluster formation of alkanes at the water/vapor interface in the presence of aliphatic alcohols.

    PubMed

    Vysotsky, Yu B; Kartashynska, E S; Belyaeva, E A; Fainerman, V B; Vollhardt, D; Miller, R

    2015-11-21

    Using the quantum chemical semi-empirical PM3 method it is shown that aliphatic alcohols favor the spontaneous clusterization of vaporous alkanes at the water surface due to the change of adsorption from the barrier to non-barrier mechanism. A theoretical model of the non-barrier mechanism for monolayer formation is developed. In the framework of this model alcohols (or any other surfactants) act as 'floats', which interact with alkane molecules of the vapor phase using their hydrophobic part, whereas the hydrophilic part is immersed into the water phase. This results in a significant increase of contact effectiveness of alkanes with the interface during the adsorption and film formation. The obtained results are in good agreement with the existing experimental data. To test the model the thermodynamic and structural parameters of formation and clusterization are calculated for vaporous alkanes C(n)H(2n+2) (n(CH3) = 6-16) at the water surface in the presence of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K. It is shown that the values of clusterization enthalpy, entropy and Gibbs' energy per one monomer of the cluster depend on the chain lengths of corresponding alcohols and alkanes, the alcohol molar fraction in the monolayers formed, and the shift of the alkane molecules with respect to the alcohol molecules Δn. Two possible competitive structures of mixed 2D film alkane-alcohol are considered: 2D films 1 with single alcohol molecules enclosed by alkane molecules (the alcohols do not form domains) and 2D films 2 that contain alcohol domains enclosed by alkane molecules. The formation of the alkane films of the first type is nearly independent of the surfactant type present at the interface, but depends on their molar fraction in the monolayer formed and the chain length of the compounds participating in the clusterization, whereas for the formation of the films of the second type the interaction between the hydrophilic parts of the surfactant is

  13. Biochemical characterization and structural insight into aliphatic β-amino acid adenylation enzymes IdnL1 and CmiS6.

    PubMed

    Cieślak, Jolanta; Miyanaga, Akimasa; Takaku, Ryoma; Takaishi, Makoto; Amagai, Keita; Kudo, Fumitaka; Eguchi, Tadashi

    2017-07-01

    Macrolactam antibiotics such as incednine and cremimycin possess an aliphatic β-amino acid as a starter unit of their polyketide chain. In the biosynthesis of incednine and cremimycin, unique stand-alone adenylation enzymes IdnL1 and CmiS6 select and activate the proper aliphatic β-amino acid as a starter unit. In this study, we describe the enzymatic characterization and the structural basis of substrate specificity of IdnL1 and CmiS6. Functional analysis revealed that IdnL1 and CmiS6 recognize 3-aminobutanoic acid and 3-aminononanoic acid, respectively. We solved the X-ray crystal structures of IdnL1 and CmiS6 to understand the recognition mechanism of these aliphatic β-amino acids. These structures revealed that IdnL1 and CmiS6 share a common recognition motif that interacts with the β-amino group of the substrates. However, the hydrophobic side-chains of the substrates are accommodated differently in the two enzymes. IdnL1 has a bulky Leu220 located close to the terminal methyl group of 3-aminobutanoate of the trapped acyl-adenylate intermediate to construct a shallow substrate-binding pocket. In contrast, CmiS6 possesses Gly220 at the corresponding position to accommodate 3-aminononanoic acid. This structural observation was supported by a mutational study. Thus, the size of amino acid residue at the 220 position is critical for the selection of an aliphatic β-amino acid substrate in these adenylation enzymes. Proteins 2017; 85:1238-1247. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Adhesive retention of experimental fiber-reinforced composite, orthodontic acrylic resin, and aliphatic urethane acrylate to silicone elastomer for maxillofacial prostheses.

    PubMed

    Kosor, Begüm Yerci; Artunç, Celal; Şahan, Heval

    2015-07-01

    A key factor of an implant-retained facial prosthesis is the success of the bonding between the substructure and the silicone elastomer. Little has been reported on the bonding of fiber reinforced composite (FRC) to silicone elastomers. Experimental FRC could be a solution for facial prostheses supported by light-activated aliphatic urethane acrylate, orthodontic acrylic resin, or commercially available FRCs. The purpose of this study was to evaluate the bonding of the experimental FRC, orthodontic acrylic resin, and light-activated aliphatic urethane acrylate to a commercially available high-temperature vulcanizing silicone elastomer. Shear and 180-degree peel bond strengths of 3 different substructures (experimental FRC, orthodontic acrylic resin, light-activated aliphatic urethane acrylate) (n=15) to a high-temperature vulcanizing maxillofacial silicone elastomer (M511) with a primer (G611) were assessed after 200 hours of accelerated artificial light-aging. The specimens were tested in a universal testing machine at a cross-head speed of 10 mm/min. Data were collected and statistically analyzed by 1-way ANOVA, followed by the Bonferroni correction and the Dunnett post hoc test (α=.05). Modes of failure were visually determined and categorized as adhesive, cohesive, or mixed and were statistically analyzed with the chi-squared goodness-of-fit test (α=.05). As the mean shear bond strength values were evaluated statistically, no difference was found among the experimental FRC, aliphatic urethane acrylate, and orthodontic acrylic resin subgroups (P>.05). The mean peel bond strengths of experimental fiber reinforced composite and aliphatic urethane acrylate were not found to be statistically different (P>.05). The mean value of the orthodontic acrylic resin subgroup peel bond strength was found to be statistically lower (P<.05). Shear test failure types were found to be statistically different (P<.05), whereas 180-degree peel test failure types were not found to

  15. Methyl oleate deoxygenation for production of diesel fuel aliphatic hydrocarbons over Pd/SBA-15 catalysts

    PubMed Central

    2013-01-01

    Background Catalytic deoxygenation is a prominent process for production of renewable fuels from vegetable oil. In this work, deoxygenation of technical grade methyl oleate to diesel fuel aliphatic hydrocarbons (C15 – C18) is evaluated with several parameters including temperature, hydrogen pressure and reaction time in a stirred batch reactor over Pd/SBA-15 catalysts. Results Two different SBA-15 morphologies i.e. spherelike and necklacelike structures have been synthesize as supports for Pd active metal. It is found that Pd dispersion on necklacelike SBA-15 is higher than that of spherelike SBA-15. Notably, higher Pd dispersion on necklacelike SBA-15 provides significant deoxygenation efficiency as compared to Pd/SBA-15-spherelike. Results show that H2 pressures greatly determine the total ester conversion and selectivity to C15 – C18 aliphatic hydrocarbons. Total ester conversions with 55< selectivity to n-heptadecane are achieved using Pd/SBA-15-necklacelike at 270°C and 60 bar H2 pressure within 6 h reaction time. Gas phase study reveals that formation of C17 is generated via indirect decarbonylation when the reaction time is prolonged. Conclusions Pd/SBA-15-necklacelike catalyst exhibits good catalytic performance with high selectivity to diesellike aliphatic hydrocarbons (C15 – C18). The physicochemical properties of the Pd supported on different SBA-15 morphologies influence the deoxygenation activity of the catalysts. Furthermore, the reaction pathways are governed by the H2 pressure as well as reaction duration. PMID:24011181

  16. Matrix effect on the performance of headspace solid phase microextraction method for the analysis of target volatile organic compounds (VOCs) in environmental samples.

    PubMed

    Higashikawa, Fábio S; Cayuela, Maria Luz; Roig, Asunción; Silva, Carlos A; Sánchez-Monedero, Miguel A

    2013-11-01

    Solid phase microextraction (SPME) is a fast, cheap and solvent free methodology widely used for environmental analysis. A SPME methodology has been optimized for the analysis of VOCs in a range of matrices covering different soils of varying textures, organic matrices from manures and composts from different origins, and biochars. The performance of the technique was compared for the different matrices spiked with a multicomponent VOC mixture, selected to cover different VOC groups of environmental relevance (ketone, terpene, alcohol, aliphatic hydrocarbons and alkylbenzenes). VOC recovery was dependent on the nature itself of the VOC and the matrix characteristics. The SPME analysis of non-polar compounds, such as alkylbenzenes, terpenes and aliphatic hydrocarbons, was markedly affected by the type of matrix as a consequence of the competition for the adsorption sites in the SPME fiber. These non-polar compounds were strongly retained in the biochar surfaces limiting the use of SPME for this type of matrices. However, this adsorption capacity was not evident when biochar had undergone a weathering/aging process through composting. Polar compounds (alcohol and ketone) showed a similar behavior in all matrices, as a consequence of the hydrophilic characteristics, affected by water content in the matrix. SPME showed a good performance for soils and organic matrices especially for non-polar compounds, achieving a limit of detection (LD) and limit of quantification (LQ) of 0.02 and 0.03 ng g(-1) for non-polar compounds and poor extraction for more hydrophilic and polar compounds (LD and LQ higher 310 and 490 ng g(-1)). The characteristics of the matrix, especially pH and organic matter, had a marked impact on SPME, due to the competition of the analytes for active sites in the fiber, but VOC biodegradation should not be discarded in matrices with active microbial biomass. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  18. One- and two-dimensional divalent copper coordination polymers based on kinked organodiimine and long flexible aliphatic dicarboxylate ligands

    NASA Astrophysics Data System (ADS)

    Mallika Krishnan, Subhashree; Supkowski, Ronald M.; LaDuca, Robert L.

    2008-11-01

    Hydrothermal synthesis under acidic conditions has afforded a pair of divalent copper coordination polymers containing the kinked dipodal tethering organodiimine 4,4'-dipyridylamine (dpa) and flexible long-chain aliphatic dicarboxylate ligands. The new materials were characterized by single crystal X-ray structure determination, infrared spectroscopy, and thermogravimetric analysis. [CuCl(suberate) 0.5(dpa)] ( 1) manifests 1-D ladder-like motifs aggregated into 3-D through hydrogen bonding and copper-mediated supramolecular interactions. Extension of the aliphatic chain within the dicarboxylate ligand by one methylene unit resulted in {[Cu(azelate)(dpa)(H 2O)] · 3H 2O} ( 2), a (4,4) rhomboid grid 2-D coordination polymer encapsulating acyclic water molecule trimers.

  19. Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length

    USDA-ARS?s Scientific Manuscript database

    The objective of this work was to evaluate the effect of three silane coupling agents with different aliphatic chain lengths on the hydrophobicity of eucalyptus pulp fiber. The three silanes coupling agents used (isobutyltrimethoxysilane, methyltrimethoxysilane, and n-octyltriethoxysilane [OTES]) we...

  20. Fluorescent aliphatic hyperbranched polyether: chromophore-free and without any N and P atoms.

    PubMed

    Miao, Xuepei; Liu, Tuan; Zhang, Chen; Geng, Xinxin; Meng, Yan; Li, Xiaoyu

    2016-02-14

    The strong fluorescence, in both the solution and the bulk state, of a chromophore-free aliphatic hyperbranched polyether which does not contain N and P atoms was reported for the first time. Effects of concentration and solvent solubility were measured. Its ethanol solution shows a strong blue-green fluorescence (Yu = 0.11-0.39), and its fluorescence shows a strong selective quenching with respect to Fe(3+).

  1. Formation of nitrogen-containing compounds during microwave pyrolysis of microalgae: Product distribution and reaction pathways.

    PubMed

    Huang, Feng; Tahmasebi, Arash; Maliutina, Kristina; Yu, Jianglong

    2017-12-01

    The formation of nitrogen-containing compounds in bio-oil during microwave pyrolysis of Chlorella and Spirulina microalgae has been investigated in this study. Activated carbon (AC) and magnetite (Fe 3 O 4 ) were used as microwave receptors during microwave pyrolysis experiments. It has been found that the use of Fe 3 O 4 increased the total yield of bio-oil. The use of different microwave receptors did not seem to have affected the total yield of nitrogen-containing compounds in the bio-oil. However, Fe 3 O 4 promoted the formation of nitrogen-containing aliphatics, thereby reducing the formation of nitrogen-containing aromatics. The use of AC promoted the dehydration reactions during amino acid decomposition, thereby enhancing the formation of nitrogen-containing aromatics during pyrolysis. From the gas chromatography-mass spectrometry (GC-MS) analysis results, the major high-value nitrogen-containing compounds in the pyrolysis bio-oil of Chlorella and Spirulina were identified as indole and dodecamide. The formation mechanisms of nitrogen-containing compounds were proposed and discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A Bio-Catalytic Approach to Aliphatic Ketones

    PubMed Central

    Xiong, Mingyong; Deng, Jin; Woodruff, Adam P.; Zhu, Minshan; Zhou, Jun; Park, Sun Wook; Li, Hui; Fu, Yao; Zhang, Kechun

    2012-01-01

    Depleting oil reserves and growing environmental concerns have necessitated the development of sustainable processes to fuels and chemicals. Here we have developed a general metabolic platform in E. coli to biosynthesize carboxylic acids. By engineering selectivity of 2-ketoacid decarboxylases and screening for promiscuous aldehyde dehydrogenases, synthetic pathways were constructed to produce both C5 and C6 acids. In particular, the production of isovaleric acid reached 32 g/L (0.22 g/g glucose yield), which is 58% of the theoretical yield. Furthermore, we have developed solid base catalysts to efficiently ketonize the bio-derived carboxylic acids such as isovaleric acid and isocaproic acid into high volume industrial ketones: methyl isobutyl ketone (MIBK, yield 84%), diisobutyl ketone (DIBK, yield 66%) and methyl isoamyl ketone (MIAK, yield 81%). This hybrid “Bio-Catalytic conversion” approach provides a general strategy to manufacture aliphatic ketones, and represents an alternate route to expanding the repertoire of renewable chemicals. PMID:22416247

  3. A bio-catalytic approach to aliphatic ketones.

    PubMed

    Xiong, Mingyong; Deng, Jin; Woodruff, Adam P; Zhu, Minshan; Zhou, Jun; Park, Sun Wook; Li, Hui; Fu, Yao; Zhang, Kechun

    2012-01-01

    Depleting oil reserves and growing environmental concerns have necessitated the development of sustainable processes to fuels and chemicals. Here we have developed a general metabolic platform in E. coli to biosynthesize carboxylic acids. By engineering selectivity of 2-ketoacid decarboxylases and screening for promiscuous aldehyde dehydrogenases, synthetic pathways were constructed to produce both C5 and C6 acids. In particular, the production of isovaleric acid reached 32 g/L (0.22 g/g glucose yield), which is 58% of the theoretical yield. Furthermore, we have developed solid base catalysts to efficiently ketonize the bio-derived carboxylic acids such as isovaleric acid and isocaproic acid into high volume industrial ketones: methyl isobutyl ketone (MIBK, yield 84%), diisobutyl ketone (DIBK, yield 66%) and methyl isoamyl ketone (MIAK, yield 81%). This hybrid "Bio-Catalytic conversion" approach provides a general strategy to manufacture aliphatic ketones, and represents an alternate route to expanding the repertoire of renewable chemicals.

  4. Preparation of SRN1-type coupling adducts from aliphatic gem-dinitro compounds in ionic liquids.

    PubMed

    Kamimura, Akio; Toyoshima, Seiichi

    2012-04-25

    S(RN)1-type coupling adducts are readily prepared by the reaction between a-sulfonylesters or a-cyanosulfones and gem-dinitro compounds in ionic liquids. The reactions progress smoothly and recovered ionic liquids can be used for several iterations, as long as they are washed with water to remove alkali metallic salts. The reaction rate is slower than the corresponding S(RN)1 reaction in DMSO, but no acceleration on irradiation or no inhibition in the presence of m-DNB are observed.

  5. Suberin-derived aliphatic monomers as biomarkers for SOM affected by root litter contribution

    NASA Astrophysics Data System (ADS)

    Kogel-Knabner, I.; Spielvogel, S.-; Prietzel, J.-

    2012-12-01

    The patchy distribution of trees and ground vegetation may have major impact on SOC variability and stability at the small scale. Knowledge about correlations between the pattern of tree and ground vegetation, SOC stocks in different soil depths and the contribution of root- vs. shoot-derived carbon to different SOC fractions is scarce. We have tested analysis of hydrolysable aliphatic monomers derived from the biopolyesters cutin- and suberin to investigate whether their composition can be traced back after decay and transformation into soil organic matter (SOM) to study SOM source, degradation, and stand history. The main objective of this study was to elucidate the relative abundance of cutin and suberin in different particle size and density fractions of a Norway spruce and a European beech site with increasing distance to stems. Soil samples, root, bark and needle/leave samples were analyzed for their cutin and/or suberin signature. Previous to isolation of bound lipids, sequential solvent extraction was used to remove free lipids and other solvent extractable compounds. Cutin- and suberin-derived monomers were extracted from the samples using base hydrolysis. Before analysis by Gas Chromatography/Mass Spectrometry (GC/MS), extracts were derivatized to convert compounds to trimethylsilyl derivatives. Statistical analysis identified four variables which as combined factors discriminated significantly between cutin and suberin based on their structural units. We found a relative enrichment of cutin and suberin contents in the occluded fraction at both sites that decreased with increasing distance to the trees. We conclude from our results that (i) patchy above- and belowground carbon input caused by heterogeneous distribution of trees and ground vegetation has major impact on SOC variability and stability at the small scale, (ii) tree species is an important factor influencing SOC heterogeneity at the stand scale due to pronounced differences in above- and

  6. DETERMINATION OF ALIPHATIC AMINES IN WATER USING DERIVATIZATION WITH FLUORESCEIN ISOTHIOCYANATE AND CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION.

    EPA Science Inventory

    Detection-oriented derivatization of aliphatic amines and amine functional groups in coumpounds of environmental interest was studied using fluorescein isothiocyanate (FITC) with separation/determination by capillary electrophoresis/laser-induced fluorescence. Determinative level...

  7. Isotopic analyses of nitrogenous compounds from the Murchison meteorite: ammonia, amines, amino acids, and polar hydrocarbons

    NASA Technical Reports Server (NTRS)

    Pizzarello, S.; Feng, X.; Epstein, S.; Cronin, J. R.

    1994-01-01

    The combined volatile bases (ammonia, aliphatic amines, and possibly other bases), ammonia, amino acids, and polar hydrocarbons were prepared from the Murchison meteorite for isotopic analyses. The volatile bases were obtained by cryogenic transfer after acid-hydrolysis of a hot-water extract and analyzed by combined gas chromatography-mass spectrometry of pentafluoropropionyl derivatives. The aliphatic amines present in this preparation comprise a mixture that includes both primary and secondary isomers through C5 at a total concentration of > or = 100 nmoles g-1. As commonly observed for meteoritic organic compounds, almost all isomers through C5 are present, and the concentrations within homologous series decrease with increasing chain length. Ammonia was chromatographically separated from the other volatile bases and found at a concentration of 1.1-1.3 micromoles g-1 meteorite. The ammonia analyzed includes contributions from ammonium salts and the hydrolysis of extractable organic compounds, e.g., carboxamides. Stable isotope analyses showed the volatile bases to be substantially enriched in the heavier isotopes, relative to comparable terrestrial compounds delta D < or = +1221%; delta 13C = +22%; delta 15N = +93%). Ammonia, per se, was found to have a somewhat lower delta 15N value (+69%) than the total volatile bases; consequently, a higher delta 15N (>93%) can be inferred for the other bases, which include the amines. Solvent-extractable polar hydrocarbons obtained separately were found to be enriched in 15N (delta 15N = +104%). Total amino acids, prepared from a hydrolyzed hot-water extract by cation exchange chromatography, gave a delta 15N of +94%, a value in good agreement with that obtained previously. Nitrogen isotopic data are also given for amino acid fractions separated chromatographically. The delta 15N values of the Murchison soluble organic compounds analyzed to date fall within a rather narrow range (delta 15N = +94 +/- 8%), an observation

  8. Aliphatic and polycyclic aromatic hydrocarbons in Gulf of Trieste sediments (northern Adriatic): potential impacts of maritime traffic.

    PubMed

    Bajt, Oliver

    2014-09-01

    The Gulf of Trieste (northern Adriatic) is one of the most urbanized and industrialized areas in the northern Adriatic, with intense maritime traffic experienced at multiple ports. The impact of maritime traffic on contamination by hydrocarbons in this area was assessed. Concentrations of hydrocarbons were higher near the expected contamination sources and still elevated in the adjacent offshore areas. Aliphatic hydrocarbons were mainly of petrogenic origin, with some contribution of biogenic origin. A continuous contamination by aliphatic hydrocarbons and degradation processes were hypothesized. Concentrations of total polycyclic aromatic hydrocarbons (PAH) were generally greater near the contamination sources. Compared to the prevailing pyrolytic origin, the petrogenic PAH origin seemed to be less important, but not negligible. Results revealed that intensive maritime traffic is a probable source of contamination by hydrocarbons in the investigated area, which is largely limited to areas near the contamination sources.

  9. A sol-gel based solid phase microextraction fiber for the analysis of aliphatic alcohols in apple juices.

    PubMed

    Farhadi, Khalil; Maleki, Ramin; Tahmasebi, Raheleh

    2010-01-01

    A new fiber based on titania-chitin sol-gel coated on a silver wire for the headspace solid phase microextraction of aliphatic alcohols from apple juice samples was developed. The influences of fiber coating composition and microextraction conditions (extraction temperature, extraction time, and ionic strength of the sample matrix) on the fiber performance were investigated. Also, the influence of temperature and time on desorption of analytes from fiber were studied. Under the optimized conditions, a porous fiber with a high extraction capacity and good thermal stability (up to 250 degrees C) was obtained. The proposed headspace solid-phase microextraction-GC method was successfully used for the analysis of aliphatic alcohols in apple juice and concentrate samples. The recovery values were from 92.8 to 98.6%. The RSD (n=5) for all analytes were below 7.8%.

  10. Manmade organic compounds in the surface waters of the United States: a review of current understanding

    USGS Publications Warehouse

    Smith, James A.; Witkowski, Patrick J.; Fusillo, Thomas V.

    1987-01-01

    This report reviews the occurrence and distribution of manmade organic compounds in the surface waters of the United States. On the basis of their aqueous solubilities, nonionic organic compounds partition themselves between water, dissolved organic matter, particulate organic matter, and the lipid reservoirs of aquatic organisms. Ionized organic compounds can be absorbed to sediments, thereby reducing their aqueous concentrations. Transformation processes of photolysis, hydrolysis, biodegradation, and volatilization can attenuate organic compounds, and attenuation rate commonly follow a first-order kinetic process. Eight groups of manmade organic compounds are discussed: 1. Polychlorinated biphenyls and organochlorine insecticides, 2. Carbamate and organophosphorus insecticides, 3. Herbicides, 4. Phenols, 5. Halogenated aliphatic and monocyclic aromatic hydrocarbons, 6. Phthalate esters, 7. Polychlorinated dibenzo-p-dioxins, and 8. Polycyclic aromatic hydrocarbons. For each compound group, data pertaining to use, production, and properties are presented and discussed. Processes that influence that the environmental fate of each group, as determined primarily through laboratory studies, are reviewed, and important fate processes are identified. Environmental concentrations of compounds from each group in water, biota, and sediment are given to demonstrate representative values for comparison to concentrations determined during ongoing research. Finally, where sufficient data exist, regional and temporal contamination trends in the United States are discussed.

  11. Manmade organic compounds in the surface waters of the United States; a review of current understanding

    USGS Publications Warehouse

    Smith, James A.; Witkowski, P.J.; Fusillo, Thomas V.

    1988-01-01

    This report reviews the occurrence and distribution of manmade organic compounds in the surface waters of the United States. On the basis of their aqueous solubilities, nonionic organic compounds partition themselves among water, dissolved organic matter, particulate organic matter, and the lipid reservoirs of aquatic organisms. Ionized organic compounds can be adsorbed to sediments, thereby reducing their aqueous concentrations. Transformation processes of photolysis, hydrolysis, biodegradation, and volatilization can attenuate organic compounds, and attenuation rates commonly follow a first-order kinetic process. Eight groups of manmade organic compounds are discussed: 1. Polychlorinated biphenyls and organochlorine insecticides, 2. Carbamate and organophosphorus insecticides, 3. Herbicides, 4. Phenols, 5. Halogenated aliphatic and monocyclic aromatic hydrocarbons, 6. Phthalate esters, 7. Polychlorinated dibenzo-p-dioxins, and 8. Polycyclic aromatic hydrocarbons. For each compound group, data pertaining to use, production, and properties are presented and discussed. Processes that influence the environmental fate of each group, as determined primarily through laboratory studies, are reviewed, and important fate processes are identified. Environmental concentrations of compounds from each group in water, biota, and sediment are given to demonstrate representative values for comparison with concentrations determined during ongoing research. Finally, where data are sufficient, regional and temporal contamination trends in the United States are discussed.

  12. A series of silver(I) coordination polymers with saccarinate and flexible aliphatic diamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr; Karamahmut, Bingül; Semerci, Fatih

    analysis (TG/DTA) of the complexes were investigated. - Graphical abstract: In this study, six new silver coordination compounds were synthesized by using saccharinate and flexible aliphatic diamine derivatives. All the compounds were characterized by elemental analysis, IR and single-crystal X-ray analysis. TG/DTA. Furthermore, biological activities, luminescence properties and thermal analysis (TG/DTA) of the complexes have been investigated. Complexes 1–5a and 6 were synthesized with the same reactant ratio and room temperature by using a mixture of AgNO{sub 3}, sac and different length diamine derivatives. The complex 5b is also synthesized was similar to that of 1 at 80 °C. In the complexes, the diamine derivatives ligands show bis(bridging) coordination mode. The sac ligand exhibits a µ-bridging coordination mode in 1 and N-donor monodentate coordination mode in 2–6. Complexes 1–5 exhibit 1D chain structure while complex 6 are tetranuclear structure. In the crystal packing of complexes, 3D supramolecular frameworks are formed via C-H···Ag, Ag···π and Ag···Ag interactions.« less

  13. 40 CFR 721.3830 - Formaldehyde, reaction products with an alkylated phenol and an aliphatic amine (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, reaction products with... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3830 Formaldehyde, reaction..., reaction products with an alkylated phenol and an aliphatic amine (PMN P-99-0531) is subject to reporting...

  14. 40 CFR 721.3830 - Formaldehyde, reaction products with an alkylated phenol and an aliphatic amine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, reaction products with... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.3830 Formaldehyde, reaction..., reaction products with an alkylated phenol and an aliphatic amine (PMN P-99-0531) is subject to reporting...

  15. Laboratory Study of Aliphatic Organic Spectral Signatures and Applications to Ceres and Primitive Asteroids

    NASA Astrophysics Data System (ADS)

    Kaplan, H. H.; Milliken, R.

    2017-12-01

    Aliphatic organics were recently discovered on the surface of Ceres with Dawn's Visible and InfraRed (VIR) mapping spectrometer, which has implications for prebiotic chemistry of Ceres and other asteroids. An absorption in the spectrum at 3.4 µm was used to identify and provide initial estimates of the amount of organic material. We have studied the 3.4 µm absorption in reflectance spectra of bulk rock and meteorite powders and isolated organic materials in the NASA RELAB facility at Brown University to determine how organic composition and abundance affects absorption strength. Reflectance spectra of insoluble organic matter (IOM) extracted from carbonaceous chondrites were measured from 0.35 - 25 µm. These IOM have known elemental (H, C, N, O) and isotopic compositions that were compared with spectral properties. Bulk meteorites were measured as chips and particulates over the same wavelength range. Despite overall low reflectance values (albedo <0.01), the 3.4 µm absorption is observed for some IOM samples, specifically those with a H/C ratio greater than 0.4. The absorption strength (band depth) increases with increasing H/C ratio, which corroborates similar findings in our previous study of sedimentary rocks and isolated kerogens. The absorption strength in the bulk meteorites reflects both H/C of the IOM and the concentration of IOM in the inorganic (mineral) matrix. Overlapping absorptions from carbonates and phyllosilicates (OH/H2O) can also influence the aliphatic organic bands in bulk rocks and meteorites. This laboratory work provides a foundation that can be used to constrain the composition of Ceres' aliphatic organic matter using band depth as a proxy for H/C. Reflectance spectra collected for this work will also be used to model the Dawn VIR data and obtain abundance and H/C estimates assuming that the organic material on Ceres' surface is similar to carbonaceous chondrite IOM. These spectra and findings can aid interpretation of reflectance data

  16. Hofmeister effect on the interfacial free energy of aliphatic and aromatic surfaces studied by chemical force microscopy.

    PubMed

    Patete, Jonathan; Petrofsky, John M; Stepan, Jeffery; Waheed, Abdul; Serafin, Joseph M

    2009-01-15

    This work describes chemical force microscopy (CFM) studies of specific-ion effects on the aqueous interfacial free energy of hydrophobic monolayers. CFM measurements allow for the characterization of interfacial properties on length scales below 100 nm. The ions chosen span the range of the Hofmeister series, from the kosmotropic Na(2)SO(4) to the chaotropic NaSCN. The salt concentrations used are typical of many laboratory processes such as protein crystallization, 2-3 M. Both aliphatic (terminal methyl) and aromatic (terminal phenyl) monolayers were examined, and rather pronounced differences were observed between the two cases. The specific-ion dependence of the aliphatic monolayer closely follows the Hofmeister series, namely the chaotropic ions lowered the interfacial free energy and the kosmotropic ions increased the interfacial free energy. However, the aromatic monolayer had significant deviations from the Hofmeister series. Possible origins for this difference are discussed.

  17. Cloning of genes related to aliphatic glucosinolate metabolism and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment.

    PubMed

    Guo, Liping; Yang, Runqiang; Gu, Zhenxin

    2016-10-01

    Cytochrome P450 79F1 (CYP79F1), cytochrome P450 83A1 (CYP83A1), UDP-glucosyltransferase 74B1 (UGT74B1), sulfotransferase 18 (ST5b) and flavin-containing monooxygenase GS-OX1 (FMOGS - OX1 ) are important enzymes in aliphatic glucosinolate biosynthesis. In this study, their full-length cDNA in broccoli was firstly cloned, then the mechanism of sulforaphane accumulation under jasmonic acid (JA) treatment was investigated. The full-length cDNA of CYP79F1, CYP83A1, UGT74B1, ST5b and FMOGS - OX1 comprised 1980, 1652, 1592, 1378 and 1623 bp respectively. The increase in aliphatic glucosinolate accumulation in broccoli sprouts treated with JA was associated with elevated expression of genes in the aliphatic glucosinolate biosynthetic pathway. Application of 100 µmol L(-1) JA increased myrosinase (MYR) activity but did not affect epithiospecifier protein (ESP) activity in broccoli sprouts, which was supported by the expression of MYR and ESP. Sulforaphane formation in 7-day-old sprouts treated with 100 µmol L(-1) JA was 3.36 and 1.30 times that in the control and 300 µmol L(-1) JA treatment respectively. JA enhanced the accumulation of aliphatic glucosinolates in broccoli sprouts via up-regulation of related gene expression. Broccoli sprouts treated with 100 µmol L(-1) JA showed higher sulforphane formation than those treated with 300 µmol L(-1) JA owing to the higher glucoraphanin content and myrosinase activity under 100 µmol L(-1) JA treatment. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. A bioinspired catalytic aerobic oxidative C-H functionalization of primary aliphatic amines: synthesis of 1,2-disubstituted benzimidazoles.

    PubMed

    Nguyen, Khac Minh Huy; Largeron, Martine

    2015-09-01

    Aerobic oxidative CH functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of Creative Commons Attribution NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  19. Tannin structural elucidation and quantitative ³¹P NMR analysis. 1. Model compounds.

    PubMed

    Melone, Federica; Saladino, Raffaele; Lange, Heiko; Crestini, Claudia

    2013-10-02

    Tannins and flavonoids are secondary metabolites of plants that display a wide array of biological activities. This peculiarity is related to the inhibition of extracellular enzymes that occurs through the complexation of peptides by tannins. Not only the nature of these interactions, but more fundamentally also the structure of these heterogeneous polyphenolic molecules are not completely clear. This first paper describes the development of a new analytical method for the structural characterization of tannins on the basis of tannin model compounds employing an in situ labeling of all labile H groups (aliphatic OH, phenolic OH, and carboxylic acids) with a phosphorus reagent. The ³¹P NMR analysis of ³¹P-labeled samples allowed the unprecedented quantitative and qualitative structural characterization of hydrolyzable tannins, proanthocyanidins, and catechin tannin model compounds, forming the foundations for the quantitative structural elucidation of a variety of actual tannin samples described in part 2 of this series.

  20. Floral scent compounds of Amazonian Annonaceae species pollinated by small beetles and thrips.

    PubMed

    Jürgens, A; Webber, A C; Gottsberger, G

    2000-11-01

    Chemical analysis (GC-MS) yielded a total of 58 volatile compounds in the floral scents of six species of Annonaceae distributed in four genera (Xylopia, Anaxagorea, Duguetia, and Rollinia), Xylopia aromatica is pollinated principally by Thysanoptera and secondarily by small beetles (Nitidulidae and Staphylinidae), whereas the five other species were pollinated by Nitidulidae and Staphylinidae only. Although the six Annonaceae species attract a similar array of pollinator groups, the major constituents of their floral scents are of different biochemical origin. The fragrances of flowers of Anaxagorea brevipes and Anaxagorea dolichocarpa were dominated by esters of aliphatic acids (ethyl 2-methylbutanoate, ethyl 3-methylbutanoate), which were not detected in the other species. Monoterpenes (limonene, p-cymene, alpha-pinene) were the main scent compounds of Duguetia asterotricha, and naphthalene prevailed in the scent of Rollinia insignis flowers. The odors of X. aromatica and Xylopia benthamii flowers were dominated by high amounts of benzenoids (methylbenzoate, 2-phenylethyl alcohol).

  1. Far infrared spectra of solid state aliphatic amino acids in different protonation states

    NASA Astrophysics Data System (ADS)

    Trivella, Aurélien; Gaillard, Thomas; Stote, Roland H.; Hellwig, Petra

    2010-03-01

    Far infrared spectra of zwitterionic, cationic, and anionic forms of aliphatic amino acids in solid state have been studied experimentally. Measurements were done on glycine, L-alanine, L-valine, L-leucine, and L-isoleucine powder samples and film samples obtained from dried solutions prepared at pH ranging from 1 to 13. Solid state density functional theory calculations were also performed, and detailed potential energy distributions were obtained from normal mode results. A good correspondence between experimental and simulated spectra was achieved and this allowed us to propose an almost complete band assignment for the far infrared spectra of zwitterionic forms. In the 700-50 cm-1 range, three regions were identified, each corresponding to a characteristic set of normal modes. A first region between 700 and 450 cm-1 mainly contained the carboxylate bending, rocking, and wagging modes as well as the ammonium torsional mode. The 450-250 cm-1 region was representative of backbone and sidechain skeletal bending modes. At last, the low wavenumber zone, below 250 cm-1, was characteristic of carboxylate and skeletal torsional modes and of lattice modes. Assignments are also proposed for glycine cationic and anionic forms, but could not be obtained for all aliphatic amino acids due to the lack of structural data. This work is intended to provide fundamental information for the understanding of peptides vibrational properties.

  2. The kinetics of photocatalytic degradation of aliphatic carboxylic acids in an UV/TiO2 suspension system.

    PubMed

    Chen, Q; Song, J M; Pan, F; Xia, F L; Yuan, J Y

    2009-10-01

    Kinetic studies on the photocatalytic degradation of aliphatic carboxylic acids were carried out in a slurry photoreactor with in-situ monitoring, employing artificial UV light as the source of energy and nano-TiO2 powder as the catalyst. The influences on the photocatalytic degradation such as the initial concentration of reactant (C0), catalyst dosage (CTiO2), UV intensity (Ia) and pH value have been investigated. Good agreement has been obtained between the value calculated by Langmuir-Freundlich-Hinshelwood (L-F-H) model and experimental data, with coefficient of multiple determination (R2) varying from 0.880 to 0.999. The L-F-H model has been proven to be feasible in describing the kinetic characteristic of the photocatalytic degradation of aliphatic carboxylic acids. Moreover, the apparent reaction rate constant (k) of the photocatalytic degradation of dicarboxylic acids is higher than that of monocarboxylic acids with the same carbon atoms. This shows that the photocatalytic degradation rate is favoured by different chemical structure.

  3. Spectral characterization and antibacterial activity of an isolated compound from Memecylon edule leaves.

    PubMed

    Srinivasan, R; Natarajan, D; Shivakumar, M S

    2017-03-01

    Memecylon edule Roxb. (Melastamataceae family) is a small evergreen tree reported as having ethnobotanical and pharmacological properties. The present study was aimed to investigate the spectral characterization and antibacterial activity of isolated pure compound (3β-hydroxyurs-12-en-28-oic acid (ursolic acid)) from Memecylon edule leaves by performing bioassay guided isolation method. The structure derivation of isolated compound was done by different spectral studies like UV, FT-IR, LC-MS, CHNS analysis, 1D ( 1 H, 13 C and DEPT-135) and 2D-NMR (HSQC and HMBC), respectively. About 99.29% purity of the compound was found in LC analysis. 1 H NMR spectrum results of compound shown 48 protons appear at different shielded region and most of the protons were present in aliphatic region. Whereas, 13 C NMR spectral data resulted seven methyl carbons (CH3), nine methylene carbons (CH2), seven methine carbons (CH) and six non-hydrogenated carbons (C) which are characteristic of pentacyclic triterpene. The isolated pure compound was tested for its antibacterial properties against targeted human pathogens by performing agar well diffusion, MIC and MBC assays and the result exhibits better growth inhibitory effects against S. epidermidis and S. pneumoniae, with the MIC values of 1.56 and 3.15μg/ml. The outcome of this study suggests that the bioactive compound is used for development of plant based drugs in pharmaceutical industry for combating microbial mediated diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A concentration-dependent multi-term linear free energy relationship for sorption of organic compounds to soils based on the hexadecane dilute-solution reference state.

    PubMed

    Zhu, Dongqiang; Pignatello, Joseph J

    2005-11-15

    A LFER of the type in the title is applied to sorption of numerous compounds to polyethylene and three soils for which sorption to natural organic matter (NOM) is presumed dominant. It provides fractional contributions to the Gibbs free energy of sorption corresponding to hydrophobic effects, dipolar/polarizability (D/P) effects in excess of the reference state, and the sum of possible specific forces such as H-bonding and pi-pi electron donor-acceptor (pi-pi EDA) interactions in excess of the reference state. Minimal inputs are the isotherm, the n-hexadecane-water partition coefficient and the Abraham pi parameter representing D/P effects. Sorption of all compounds to polyethylene can be described by considering only hydrophobic effects. Sorption of a calibration set of apolar compounds (aromatic and aliphatic hydrocarbons and chlorinated hydrocarbons) to the natural sorbents is well-described by a combination of hydrophobic and D/P effects. For the apolar set, D/P contributes approximately 15-40% (2-8% for cyclohexane) of sorption free energy. D/P effects increase with the degree of chlorination for aliphatic compounds. For aromatic compounds D/P effects increase with fused ring size but do not vary with degree of chlorination and chlorine substitution pattern. H-bonding contributes substantially to sorption of alcohols, and similarly for 2-nonanol and 2,4-dichlorophenol (33-44%). pi-pi EDA forces contribute to phenanthrene sorption in one case. The effects of concentration, sorbent aromaticity (literature NMR), and sorbent polarity [(O + N)/C] on hydrophobic and D/P contributions for all compounds indicate that (a) molecules fill sites of progressively greater hydrophilic character; (b) the energy penalty for cavity formation in the solid decreases with concentration due to plasticization and greater intermolecular contact; (c) sorbent aromatic content more than sorbent polarity controls D/P interactions. Basing free energy on an inert electrostatic chemical

  5. Diamond, aromatic, aliphatic components of interstellar dust grains: Random covalent networks in carbonaceous grains

    NASA Astrophysics Data System (ADS)

    Duley, W. W.

    1995-05-01

    A formalism based on the theory of random covalent networks (RCNs) in amorphous solids is developed for carbonaceous dust grains. RCN solutions provide optimized structures and relative compositions for amorphous materials. By inclusion of aliphatic, aromatic, and diamond clusters, solutions specific to interstellar materials can be obtained and compared with infrared spectral data. It is found that distinct RCN solutions corresponding to diffuse cloud and molecular cloud materials are possible. Specific solutions are derived for three representative objects: VI Cyg No. 12, NGC 7538 (IRS 9), and GC IRS 7. While diffuse cloud conditions with a preponderance of sp2 and sp3 bonded aliphatic CH species can be reproduced under a variety of RCN conditions, the presence of an abundant tertiary CH or diamond component is highly constrained. These solutions are related quantitatively to carbon depletions and can be used to provide a quantitative estimate of carbon in these various dust components. Despite the abundance of C6 aromatic rings in many RCN solutions, the infrared absorption due to the aromatic stretch at approximately 3.3 micrometers is weak under all conditions. The RCN formalism is shown to provide a useful method for tracing the evolutionary properties of interstellar carbonaceous grains.

  6. Fast detection of toxic industrial compounds by laser ion mobility spectrometry

    NASA Astrophysics Data System (ADS)

    Oberhuettinger, Carola; Langmeier, Andreas; Oberpriller, Helmut; Kessler, Matthias; Goebel, Johann; Mueller, Gerhard

    2009-05-01

    Trace detection of toxic industrial compounds has been investigated with the help of a laser ion mobility spectrometer (LIMS). The LIMS was equipped with a tuneable UV laser source for enabling two-photon ionization of the analyte gases and an ion drift tube for the measurement of the ion mobility. Different aromatic and aliphatic hydrocarbons as well as amines were investigated. We find that the first class of molecules can be well ionized due to the delocalization of their valence electron shells and the second due to the presence of non-bonding electrons in lone-pair orbitals. Selectivity of detection is attained on the basis of molecule-specific photo-ionization and drift time spectra. Ion currents were found to scale linearly with the substance concentration over several orders of magnitude down to the detection limits in the ppt range. As besides toxic industrial compounds, similar electron configurations also occur in illicit drugs, toxins and pharmaceutical substances, LIMS can be applied in a variety of fields ranging from environmental analysis, air pollution monitoring, drug detection and chemical process monitoring.

  7. Ion Pair Formation between Tertiary Aliphatic Amines and Perchlorate in the Biphasic Water/Dichloromethane System.

    PubMed

    Badocco, Denis; Di Marco, Valerio; Venzo, Alfonso; Frasconi, Marco; Frezzato, Diego; Pastore, Paolo

    2017-10-12

    The ability of aliphatic amines (AAs), namely, tripropylamine (TPrA), trisobutylamine (TisoBuA), and tributylamine (TBuA), to form ion pairs with perchlorate anion (ClO 4 - ) in biphasic aqueous/dichloromethane (CH 2 Cl 2 ) mixtures containing ClO 4 - 0.1 M has been demonstrated by GC with flame ionization (FID) and mass detectors (MS) and by NMR measurements. The extraction efficiency of the AAs to the organic phase was modeled by equations that were used to fit the experimental GC data, allowing us to determine values for K P (partition constant of the free AA), K IP (formation constant of the ion pair), and K P IP (partition constant of the ion pair) for TPrA, TisoBuA, and TBuA at 25 °C. Ion pairs were shown to form in CH 2 Cl 2 also when ClO 4 - is replaced by other inorganic anions, like NO 3 - , ClO 3 - , Cl - , H 2 PO 4 - , and IO 3 - . No ion pairs formed when CH 2 Cl 2 was replaced by n-hexane, suggesting that aliphatic amine ion pairs can form in polar organic solvents but not in nonpolar ones.

  8. Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Manhua; Wang, Xiang; Yeom, Younghoon

    A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase id dispersed.

  9. Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Manhua; Wang, Xiang; Yeom, Younghoon

    A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase is dispersed.

  10. Increased mean aliphatic lipid chain length in left ventricular hypertrophy secondary to arterial hypertension: A cross-sectional study.

    PubMed

    Evaristi, Maria Francesca; Caubère, Céline; Harmancey, Romain; Desmoulin, Franck; Peacock, William Frank; Berry, Matthieu; Turkieh, Annie; Barutaut, Manon; Galinier, Michel; Dambrin, Camille; Polidori, Carlo; Miceli, Cristina; Chamontin, Bernard; Koukoui, François; Roncalli, Jerôme; Massabuau, Pierre; Smih, Fatima; Rouet, Philippe

    2016-11-01

    About 77.9 million (1 in 4) American adults have high blood pressure. High blood pressure is the primary cause of left ventricular hypertrophy (LVH), which represents a strong predictor of future heart failure and cardiovascular mortality. Previous studies have shown an altered metabolic profile in hypertensive patients with LVH. The goal of this study was to identify blood metabolomic LVH biomarkers by H NMR to provide novel diagnostic tools for rapid LVH detection in populations of hypertensive individuals. This cross-sectional study included 48 hypertensive patients with LVH matched with 48 hypertensive patients with normal LV size, and 24 healthy controls. Two-dimensional targeted M-mode echocardiography was performed to measure left ventricular mass index. Partial least squares discriminant analysis was used for the multivariate analysis of the H NMR spectral data. From the H NMR-based metabolomic profiling, signals coming from methylene (-CH2-) and methyl (-CH3) moieties of aliphatic chains from plasma lipids were identified as discriminant variables. The -CH2-/-CH3 ratio, an indicator of the mean length of the aliphatic lipid chains, was significantly higher (P < 0.001) in the LVH group than in the hypertensive group without LVH and controls. Receiver operating characteristic curve showed that a cutoff of 2.34 provided a 52.08% sensitivity and 85.42% specificity for discriminating LVH (AUC = 0.703, P-value < 0.001). We propose the -CH2-/-CH3 ratio from plasma aliphatic lipid chains as a biomarker for the diagnosis of left ventricular remodeling in hypertension.

  11. Identification of quaternary ammonium compounds as potent inhibitors of hERG potassium channels

    PubMed Central

    Xia, Menghang; Shahane, Sampada; Huang, Ruili; Titus, Steven A.; Shum, Enoch; Zhao, Yong; Southall, Noel; Zheng, Wei; Witt, Kristine L.; Tice, Raymond R.; Austin, Christopher P.

    2011-01-01

    The human ether-a-go-go-related gene (hERG) channel, a member of a family of voltage-gated potassium (K+) channels, plays a critical role in the repolarization of the cardiac action potential. The reduction of hERG channel activity as a result of adverse drug effects or genetic mutations may cause QT interval prolongation and potentially lead to acquired long QT syndrome. Thus, screening for hERG channel activity is important in drug development. Cardiotoxicity associated with the inhibition of hERG channels by environmental chemicals is also a public health concern. To assess the inhibitory effects of environmental chemicals on hERG channel function, we screened the National Toxicology Program (NTP) collection of 1408 compounds by measuring thallium influx into cells through hERG channels. Seventeen compounds with hERG channel inhibition were identified with IC50 potencies ranging from 0.26 to 22 μM. Twelve of these compounds were confirmed as hERG channel blockers in an automated whole cell patch clamp experiment. In addition, we investigated the structure-activity relationship of seven compounds belonging to the quaternary ammonium compound (QAC) series on hERG channel inhibition. Among four active QAC compounds, tetra-n-octylammonium bromide was the most potent with an IC50 value of 260 nM in the thallium influx assay and 80 nM in the patch clamp assay. The potency of this class of hERG channel inhibitors appears to depend on the number and length of their aliphatic side-chains surrounding the charged nitrogen. Profiling environmental compound libraries for hERG channel inhibition provides information useful in prioritizing these compounds for cardiotoxicity assessment in vivo. PMID:21362439

  12. Aliphatic Imines in Titanium-Mediated Reductive Cross-Coupling: Unique Reactivity of Ti(Oi-Pr)4/n-BuLi

    PubMed Central

    Tarselli, Michael A.; Micalizio, Glenn C.

    2009-01-01

    A procedure for the coupling of aliphatic imines with allylic and allenic alkoxides is described. The success of these studies was enabled by a unique reactivity profile of Ti(IV) isopropoxide/n-BuLi compared to well-known Ti(IV) isopropoxide/R-MgX systems. PMID:19810765

  13. NO3 and OH initiated secondary aerosol formation from aliphatic amines - salt formation and effect of water vapor

    USDA-ARS?s Scientific Manuscript database

    Aliphatic amines enter the atmosphere from a variety of sources, and have been detected existing in gas and particle phases in the atmosphere. Similar to ammonia, amines can form inorganic salt through acid-base reactions. However, the atmospheric behavior of amines with atmospheric oxidants (e.g. n...

  14. Composition of the black crusts from the Saint Denis Basilica, France, as revealed by gas chromatography-mass spectrometry.

    PubMed

    Gaviño, Maria; Hermosin, Bernardo; Vergès-Belmin, Véronique; Nowik, Witold; Saiz-Jimenez, Cesareo

    2004-05-01

    The organic fraction of black crusts from Saint Denis Basilica, France, is composed of a complex mixture of aliphatic and aromatic compounds. These compounds were studied by two different analytical approaches: tetramethyl ammonium hydroxide (TMAH) thermochemolysis in combination with gas chromatography-mass spectrometry (GC-MS), and solvent extraction, fractionation by silica column, and identification of the fraction components by GC-MS. The first approach, feasible at the microscale level, is able to supply fairly general information on a wide range of compounds. Using the second approach, we were able to separate the complex mixture of compounds into four fractions, enabling a better identification of the extractable compounds. These compounds belong to different classes: aliphatic hydrocarbons (nalkanes, n-alkenes), aliphatic and aromatic carboxylic acids (n-fatty acids, alpha,omega-dicarboxylic acids, and benzenecarboxylic acids), polycyclic aromatic hydrocarbons (PAH), and molecular biomarkers (isoprenoid hydrocarbons, diterpenoids, and triterpenoids). With each approach, similar classes of compounds were identified, although TMAH thermochemolysis failed to identify compounds present at low concentrations in black crusts. The two proposed methodological approaches are complementary, particularly in the study of polar fractions.

  15. Sensitive indoor air monitoring of formaldehyde and other carbonyl compounds using the 2,4-dinitrophenylhydrazine method.

    PubMed

    Sandner, F; Dott, W; Hollender, J

    2001-03-01

    The toxic potential of formaldehyde and other aliphatic/aromatic carbonyl compounds requires the determination of even low amounts of these compounds in indoor air. The existing DFG-method for workplace monitoring using adsorption at 2,4-dinitrophenylhydrazine (DNPH)-coated sorbents followed by HPLC-UV/DAD analysis of the extract was modified in order to decrease detection limits. The improvement included an increase in volume and rate of the air sampling, testing applicability of different adsorption materials and a decrease of the extraction volume of the hydrazones. 13 DNPH-derivatives could be separated well on a RP18-column followed by UV/DAD-detection at 365 nm. Recovery rates of 70-100% were determined (apart from acetone with 19%) using dynamically produced artifical carbonyl atmospheres. Detection limits of 0.05-0.4 microgram/m3 were reached by this method which are sufficient for indoor air monitoring.

  16. Catalytic activity of carbon nanotubes in the conversion of aliphatic alcohols

    NASA Astrophysics Data System (ADS)

    Zhitnev, Yu. N.; Tveritinova, E. A.; Chernyak, S. A.; Savilov, S. V.; Lunin, V. V.

    2016-06-01

    Carbon nanotubes (CNTs) obtained via the catalytic pyrolysis of hexane at 750°C were studied as the catalysts in conversion of C2-C4 alcohols. The efficiency of CNTs as catalysts in dehydration and dehydrogenation of ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and tert-butanol was studied by means of pulse microcatalysis. The surface and structural characteristics of CNTs are investigated via SEM, TEM, DTA, BET, and XPS. CNTs are shown to be effective catalysts in the conversion of alcohols and do not require additional oxidative treatment. The regularities of the conversion of aliphatic alcohols, related to the properties of the CNTs surface and the structure of the alcohols are identified.

  17. Exploring 3D structural influences of aliphatic and aromatic chemicals on α-cyclodextrin binding.

    PubMed

    Linden, Lukas; Goss, Kai-Uwe; Endo, Satoshi

    2016-04-15

    Binding of solutes to macromolecules is often influenced by steric effects caused by the 3D structures of both binding partners. In this study, the 1:1 α-cyclodextrin (αCD) binding constants (Ka1) for 70 organic chemicals were determined to explore the solute-structural effects on the αCD binding. Ka1 was measured using a three-part partitioning system with either a headspace or a passive sampler serving as the reference phase. The Ka1 values ranged from 1.08 to 4.97 log units. The results show that longer linear aliphatic chemicals form more stable complexes than shorter ones, and that the position of the functional group has a strong influence on Ka1, even stronger than the type of the functional group. Comparison of linear and variously branched aliphatic chemicals indicates that having a sterically unhindered alkyl chain is favorable for binding. These results suggest that only one alkyl chain can enter the binding cavity. Relatively small aromatic chemicals such as 1,3-dichlorobenzene bind to αCD well, while larger ones like tetrachlorobenzene and 3-ring aromatic chemicals show only a weak interaction with αCD, which can be explained by cavity exclusion. The findings of this study help interpret cyclodextrin binding data and facilitate the understanding of binding processes to macromolecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Determination of polar organic solutes in oil-shale retort water

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Stuber, H.A.

    1982-01-01

    A variety of analytical methods were used to quantitatively determine polar organic solutes in process retort water and a gas-condensate retort water produced in a modified in situ oil-shale retort. Specific compounds accounting for 50% of the dissolved organic carbon were identified in both retort waters. In the process water, 42% of the dissolved organic carbon consisted of a homologous series of fatty acids from C2 to C10. Dissolved organic carbon percentages for other identified compound classes were as follows: aliphatic dicarboxylic acids, 1.4%; phenols, 2.2%; hydroxypyridines, 1.1%; aliphatic amides, 1.2%. In the gas-condensate retort water, aromatic amines were most abundant at 19.3% of the dissolved organic carbon, followed by phenols (17.8%), nitriles (4.3%), aliphatic alcohols (3.5%), aliphatic ketones (2.4%), and lactones (1.3%). Steam-volatile organic solutes were enriched in the gas-condensate retort water, whereas nonvolatile acids and polyfunctional neutral compounds were predominant organic constituents of the process retort water.

  19. Extensive 1-year survey of trace elements and compounds in the airborne suspended particulate matter in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    King, R. B.; Fordyce, J. S.; Antoine, A. C.; Leibecki, H. F.; Neustadter, H. E.; Sidik, S. M.

    1976-01-01

    Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio, during 1971 and 1972. Values covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented for 60 elements. A lesser number of values is given for sulfate, nitrate, fluoride, acidity, 10 polynuclear aromatic hydrocarbon compounds, and the aliphatic hydrocarbon compounds as a group. Methods used included instrumental neutron activation, emission spectroscopy, gas chromatography, combustion techniques, and colorimetry. Uncertainties in the concentrations associated with the sampling procedures, the analysis methods, the use of several analytical facilities, and samples with concentrations below the detection limits are evaluated in detail. The data is discussed in relation to other studies and source origins. The trace constituent concentrations as a function of wind direction are used to suggest a practical method for air pollution source identification.

  20. Aliphatic imines in titanium-mediated reductive cross-coupling: unique reactivity of Ti(O-i-Pr)4/n-BuLi.

    PubMed

    Tarselli, Michael A; Micalizio, Glenn C

    2009-10-15

    A procedure for the coupling of aliphatic imines with allylic and allenic alkoxides is described. The success of these studies was enabled by a unique reactivity profile of Ti(IV) isopropoxide/n-BuLi compared to well-known Ti(IV) isopropoxide/RMgX systems.

  1. Design and Comparative Evaluation of the Anticonvulsant Profile, Carbonic-Anhydrate Inhibition and Teratogenicity of Novel Carbamate Derivatives of Branched Aliphatic Carboxylic Acids with 4-Aminobenzensulfonamide.

    PubMed

    Bibi, David; Mawasi, Hafiz; Nocentini, Alessio; Supuran, Claudiu T; Wlodarczyk, Bogdan; Finnell, Richard H; Bialer, Meir

    2017-07-01

    Epilepsy is one of the most common neurological diseases, with between 34 and 76 per 100,000 people developing epilepsy annually. Epilepsy therapy for the past 100 + years is based on the use of antiepileptic drugs (AEDs). Despite the availability of more than twenty old and new AEDs, approximately 30% of patients with epilepsy are not seizure-free with the existing medications. In addition, the clinical use of the existing AEDs is restricted by their side-effects, including the teratogenicity associated with valproic acid that restricts its use in women of child-bearing age. Thus, there is an unmet clinical need to develop new, effective AEDs. In the present study, a novel class of carbamates incorporating phenethyl or branched aliphatic chains with 6-9 carbons in their side-chain, and 4-benzenesulfonamide-carbamate moieties were synthesized and evaluated for their anticonvulsant activity, teratogenicity and carbonic anhydrase (CA) inhibition. Three of the ten newly synthesized carbamates showed anticonvulsant activity in the maximal-electroshock (MES) and 6 Hz tests in rodents. In mice, 3-methyl-2-propylpentyl(4-sulfamoylphenyl)carbamate(1), 3-methyl-pentan-2-yl-(4-sulfamoylphenyl)carbamate (9) and 3-methylpentyl, (4-sulfamoylphenyl)carbamate (10) had ED 50 values of 136, 31 and 14 mg/kg (MES) and 74, 53, and 80 mg/kg (6 Hz), respectively. Compound (10) had rat-MES-ED 50  = 13 mg/kg and ED 50 of 59 mg/kg at the mouse-corneal-kindling test. These potent carbamates (1,9,10) induced neural tube defects only at doses markedly exceeding their anticonvuslnat-ED 50 values. None of these compounds were potent inhibitors of CA IV, but inhibited CA isoforms I, II and VII. The anticonvulsant properties of these compounds and particularly compound 10 make them potential candidates for further evaluation and development as new AEDs.

  2. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    PubMed

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion.

  3. Environmental Forensics: Using Compound-Specific Stable Carbon Isotope Analysis to Track Petroleum Contamination

    NASA Astrophysics Data System (ADS)

    Imfeld, A.; Ouellet, A.; Gelinas, Y.

    2016-12-01

    Crude oil and petroleum products are continually being introduced into the environment during transportation, production, consumption and storage. Source identification of these organic contaminants proves challenging due to a variety of factors; samples tend to be convoluted, compounds need to be separated from an unresolved complex mixtures of highly altered aliphatic and aromatic compounds, and chemical composition and biomarker distributions can be altered by weathering, aging, and degradation processes. The aim of our research is to optimize a molecular and isotopic (δ13C, δ2H) method to fingerprint and identify petroleum contaminants in soil and sediment matrices, and to trace the temporal and spatial extent of the contamination event. This method includes the extraction, separation and analysis of the petroleum derived hydrocarbons. Sample extraction and separation is achieved using sonication, column chromatography and urea adduction. Compound identification and molecular/isotopic fingerprinting is obtained by gas chromatography with flame ionization (GC-FID) and mass spectrometer (GC-MS) detection, as well as gas chromatography coupled to an isotope ratio mass spectrometer (GC-IRMS). This method will be used to assist the Centre d'Expertise en Analyse Environnementale du Québec to determine the nature, sources and timing of contamination events as well as for investigating the residual contamination involving petroleum products.

  4. Composition of sulla (Hedysarum coronarium L.) honey solvent extractives determined by GC/MS: norisoprenoids and other volatile organic compounds.

    PubMed

    Jerković, Igor; Tuberoso, Carlo I G; Tuberso, Carlo I G; Gugić, Mirko; Bubalo, Dragan

    2010-09-09

    Samples of unifloral sulla (Hedysarum coronarum L.) honey from Sardinia (Italy) were analysed. To investigate the chemical composition of the honey volatiles two solvent systems were used for ultrasonic solvent extraction (USE): 1) a 1:2 (v/v) pentane and diethyl ether mixture and 2) dichloromethane. All the extracts were analysed by GC and GC/MS. These procedures have permitted the identification of 56 compounds that include norisoprenoids, benzene derivatives, aliphatic compounds and Maillard reaction products. Norisoprenoids were the major compounds in both extracts, dominated by vomifoliol (5.3-11.2%; 9.6-14.0%) followed by minor percentages of other norisoprenoids such as α-isophorone, 4-ketoisophorone, 3-oxo-α-ionol or 3-oxo-α-ionone. Other abundant single compounds in the extracts were 3-hydroxy-4-phenylbutan-2-one (0.8-5.4%; 0.6-5.7%) and methyl syringate (3.0-5.7%; 2.2-4.1%). The composition of the volatiles and semi-volatiles in the obtained extracts suggests that sulla honey is quite distinctive relative to the other honeys that have been chemically studied by GC/MS, but no specific markers of the honey botanical origin were found.

  5. Inhibition of jet fuel aliphatic hydrocarbon induced toxicity in human epidermal keratinocytes.

    PubMed

    Inman, A O; Monteiro-Riviere, N A; Riviere, J E

    2008-05-01

    Jet propellant (JP)-8, the primary jet fuel used by the U.S. military, consists of hydrocarbon-rich kerosene base commercial jet fuel (Jet-A) plus additives DC1-4A, Stadis 450 and diethylene glycol monomethyl ether. Human epidermal keratinocytes (HEK) were exposed to JP-8, aliphatic hydrocarbon (HC) fuel S-8 and aliphatic HC pentadecane (penta), tetradecane (tetra), tridecane (tri) and undecane (un) for 5 min. Additional studies were conducted with signal transduction pathway blockers parthenolide (P; 3.0 microm), isohelenin (I; 3.0 microm), SB 203580 (SB; 13.3 microm), substance P (SP; 3.0 microm) and recombinant human IL-10 (rHIL-10; 10 ng ml(-1)). In the absence of inhibitors, JP-8 and to a lesser extent un and S-8, had the greatest toxic effect on cell viability and inflammation suggesting, as least in vitro, that synthetic S-8 fuel is less irritating than the currently used JP-8. Each inhibitor significantly (P < 0.05) decreased HEK viability. DMSO, the vehicle for P, I and SB, had a minimal effect on viability. Overall, IL-8 production was suppressed at least 30% after treatment with each inhibitor. Normalizing data relative to control indicate which inhibitors suppress HC-mediated IL-8 to control levels. P was the most effective inhibitor of IL-8 release; IL-8 was significantly decreased after exposure to un, tri, tetra and penta but significantly increased after JP-8 exposure compared with controls. Inhibitors were not effective in suppressing IL-8 release in JP-8 exposures to control levels. This study shows that inhibiting NF-kappa B, which appears to play a role in cytokine production in HC-exposed HEK in vitro, may reduce the inflammatory effect of HC in vivo. Copyright (c) 2007 John Wiley & Sons, Ltd.

  6. SIMPLE estimate of the free energy change due to aliphatic mutations: superior predictions based on first principles.

    PubMed

    Bueno, Marta; Camacho, Carlos J; Sancho, Javier

    2007-09-01

    The bioinformatics revolution of the last decade has been instrumental in the development of empirical potentials to quantitatively estimate protein interactions for modeling and design. Although computationally efficient, these potentials hide most of the relevant thermodynamics in 5-to-40 parameters that are fitted against a large experimental database. Here, we revisit this longstanding problem and show that a careful consideration of the change in hydrophobicity, electrostatics, and configurational entropy between the folded and unfolded state of aliphatic point mutations predicts 20-30% less false positives and yields more accurate predictions than any published empirical energy function. This significant improvement is achieved with essentially no free parameters, validating past theoretical and experimental efforts to understand the thermodynamics of protein folding. Our first principle analysis strongly suggests that both the solute-solute van der Waals interactions in the folded state and the electrostatics free energy change of exposed aliphatic mutations are almost completely compensated by similar interactions operating in the unfolded ensemble. Not surprisingly, the problem of properly accounting for the solvent contribution to the free energy of polar and charged group mutations, as well as of mutations that disrupt the protein backbone remains open. 2007 Wiley-Liss, Inc.

  7. Combined dispersive solid-phase extraction-dispersive liquid-liquid microextraction-derivatization for gas chromatography-mass spectrometric determination of aliphatic amines on atmospheric fine particles.

    PubMed

    Majedi, Seyed Mohammad; Lee, Hian Kee

    2017-02-24

    Short-chain aliphatic amines are ubiquitous in the atmospheric environment. They play an important role in the formation and growth of atmospheric particles. As such, there is a pressing need to monitor these particle-bound compounds present at trace quantities. The present work describes an efficient, one-step microextraction technique for the preconcentration and detection of trace levels of 10 aliphatic amines on fine particles (particulate matter of 2.5μm or less (PM 2.5 )) in the atmosphere. After extraction of amines from particles in acidified water samples, carbon-based sorbents (in dispersive solid-phase extraction mode), and vortex agitation were utilized for simultaneous derivatization-extraction and dispersive liquid-liquid microextraction. The approach significantly increased the recoveries and enrichment of the amine derivatives. This one-step, combined technique is proposed for the first time. Several influential factors including type and concentration of derivatization reagent (for gas chromatographic separation), type of buffer, sample pH, types and volumes of extraction and disperser solvents, type and amount of sorbent, vortex time and temperature, desorption solvent type and volume, and salt content were investigated and optimized. Under the optimum conditions, high enrichment factors (in the range of between 307 and 382) and good reproducibility (relative standard deviations, below 7.0%, n=5) were achieved. The linearity ranged from 0.1μg/L-100μg/L, and from 0.5μg/L-100μg/L, depending on the analytes. The limits of detection were between 0.02μg/L (corresponding to ∼0.01ng/m 3 in air) and 0.09μg/L (corresponding to ∼0.04ng/m 3 in air). The developed method was successfully applied to the analysis of PM 2.5 samples collected by air sampling through polytetrafluoroethylene filters. The concentration levels of amines ranged from 1.04 to 4.16ng/m 3 in the air sampled. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Mixed aliphatic and aromatic composition of evaporating very small grains in NGC 7023 revealed by the 3.4/3.3 μm ratio

    PubMed Central

    Pilleri, P.; Joblin, C.; Boulanger, F.; Onaka, T.

    2015-01-01

    Context A chemical scenario was proposed for photon-dominated regions (PDRs) according to which UV photons from nearby stars lead to the evaporation of very small grains (VSGs) and the production of gas-phase polycyclic aromatic hydrocarbons (PAHs). Aims Our goal is to achieve better insight into the composition and evolution of evaporating very small grains (eVSGs) and PAHs through analyzing the infrared (IR) aliphatic and aromatic emission bands. Methods We combined spectro-imagery in the near- and mid-IR to study the spatial evolution of the emission bands in the prototypical PDR NGC 7023. We used near-IR spectra obtained with the IRC instrument onboard AKARI to trace the evolution of the 3.3 μm and 3.4 μm bands, which are associated with aromatic and aliphatic C–H bonds on PAHs. The spectral fitting involved an additional broad feature centered at 3.45 μm that is often referred to as the plateau. Mid-IR observations obtained with the IRS instrument onboard the Spitzer Space Telescope were used to distinguish the signatures of eVSGs and neutral and cationic PAHs. We correlated the spatial evolution of all these bands with the intensity of the UV field given in units of the Habing field G0 to explore how their carriers are processed. Results The intensity of the 3.45 μm plateau shows an excellent correlation with that of the 3.3 μm aromatic band (correlation coefficient R = 0.95) and a relatively poor correlation with the aliphatic 3.4 μm band (R=0.77). This indicates that the 3.45 μm feature is dominated by the emission from aromatic bonds. We show that the ratio of the 3.4 μm and 3.3 μm band intensity (I3.4/I3.3) decreases by a factor of 4 at the PDR interface from the more UV-shielded layers (G0 ~ 150, I3.4/I3.3 = 0.13) to the more exposed layers (G0 > 1 × 104, I3.4/I3.3 = 0.03). The intensity of the 3.3 μm band relative to the total neutral PAH intensity shows an overall increase with G0, associated with an increase of both the hardness of the UV

  9. Mixed aliphatic and aromatic composition of evaporating very small grains in NGC 7023 revealed by the 3.4/3.3 μm ratio

    NASA Astrophysics Data System (ADS)

    Pilleri, P.; Joblin, C.; Boulanger, F.; Onaka, T.

    2015-05-01

    Context. A chemical scenario was proposed for photon-dominated regions (PDRs) according to which UV photons from nearby stars lead to the evaporation of very small grains (VSGs) and the production of gas-phase polycyclic aromatic hydrocarbons (PAHs). Aims: Our goal is to achieve better insight into the composition and evolution of evaporating very small grains (eVSGs) and PAHs through analyzing the infrared (IR) aliphatic and aromatic emission bands. Methods: We combined spectro-imagery in the near- and mid-IR to study the spatial evolution of the emission bands in the prototypical PDR NGC 7023. We used near-IR spectra obtained with the IRC instrument onboard AKARI to trace the evolution of the 3.3 μm and 3.4 μm bands, which are associated with aromatic and aliphatic C-H bonds on PAHs. The spectral fitting involved an additional broad feature centered at 3.45 μm that is often referred to as the plateau. Mid-IR observations obtained with the IRS instrument onboard the Spitzer Space Telescope were used to distinguish the signatures of eVSGs and neutral and cationic PAHs. We correlated the spatial evolution of all these bands with the intensity of the UV field given in units of the Habing field G0 to explore how their carriers are processed. Results: The intensity of the 3.45 μm plateau shows an excellent correlation with that of the 3.3 μm aromatic band (correlation coefficient R = 0.95) and a relatively poor correlation with the aliphatic 3.4 μm band (R = 0.77). This indicates that the 3.45 μm feature is dominated by the emission from aromatic bonds. We show that the ratio of the 3.4 μm and 3.3 μm band intensity (I3.4/I3.3) decreases by a factor of 4 at the PDR interface from the more UV-shielded layers (G0 ~ 150,I3.4/I3.3 = 0.13) to the more exposed layers (G0> 1 × 104,I3.4/I3.3 = 0.03). The intensity of the 3.3 μm band relative to the total neutral PAH intensity shows an overall increase with G0, associated with an increase of both the hardness of the

  10. Mixed aliphatic and aromatic composition of evaporating very small grains in NGC 7023 revealed by the 3.4/3.3 μm ratio.

    PubMed

    Pilleri, P; Joblin, C; Boulanger, F; Onaka, T

    2015-05-01

    A chemical scenario was proposed for photon-dominated regions (PDRs) according to which UV photons from nearby stars lead to the evaporation of very small grains (VSGs) and the production of gas-phase polycyclic aromatic hydrocarbons (PAHs). Our goal is to achieve better insight into the composition and evolution of evaporating very small grains (eVSGs) and PAHs through analyzing the infrared (IR) aliphatic and aromatic emission bands. We combined spectro-imagery in the near- and mid-IR to study the spatial evolution of the emission bands in the prototypical PDR NGC 7023. We used near-IR spectra obtained with the IRC instrument onboard AKARI to trace the evolution of the 3.3 μ m and 3.4 μ m bands, which are associated with aromatic and aliphatic C-H bonds on PAHs. The spectral fitting involved an additional broad feature centered at 3.45 μ m that is often referred to as the plateau. Mid-IR observations obtained with the IRS instrument onboard the Spitzer Space Telescope were used to distinguish the signatures of eVSGs and neutral and cationic PAHs. We correlated the spatial evolution of all these bands with the intensity of the UV field given in units of the Habing field G 0 to explore how their carriers are processed. The intensity of the 3.45 μ m plateau shows an excellent correlation with that of the 3.3 μ m aromatic band (correlation coefficient R = 0.95) and a relatively poor correlation with the aliphatic 3.4 μ m band (R=0.77). This indicates that the 3.45 μ m feature is dominated by the emission from aromatic bonds. We show that the ratio of the 3.4 μ m and 3.3 μ m band intensity ( I 3.4 / I 3.3 ) decreases by a factor of 4 at the PDR interface from the more UV-shielded layers ( G 0 ~ 150, I 3.4 / I 3.3 = 0.13) to the more exposed layers ( G 0 > 1 × 10 4 , I 3.4 / I 3.3 = 0.03). The intensity of the 3.3 μ m band relative to the total neutral PAH intensity shows an overall increase with G 0 , associated with an increase of both the hardness of the

  11. Personal exposure to volatile organic compounds. I. Direct measurements in breathing-zone air, drinking water, food, and exhaled breath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, L.A.; Pellizzari, E.; Hartwell, T.

    A pilot study to test methods of estimating personal exposures to toxic substances and corresponding body burdens was carried out between July and December 1980. Individual exposures to about a dozen volatile organic compounds in air and drinking water were measured for volunteers in New Jersey and North Carolina. Breath samples were also collected from all subjects. About 230 personal air samples, 170 drinking water samples, 66 breath samples, and 4 food samples (16 composites) were analyzed for the target chemicals. Ten compounds were present in air and eight were transmitted mainly through that medium. Chloroform and bromodichloromethane were predominantlymore » transmitted through water and beverages. Food appeared to be a miner route of exposure, except possibly for trichloroethylene in margarine. Seven compounds were present in more than half of the breath samples. Diurnal and seasonal variations were noted in air and water concentrations of some compounds. Some, but not all, of the potentially occupationally exposed individuals had significantly higher workplace exposures to several chemicals. Distributions of air exposures were closer to log normal than normal for most chemicals. Several chemicals were highly correlated with each other in personal air samples, indicating possible common sources of exposures. Compounds detected included benzene, chlorinated aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, halogens and vinyl chloride.« less

  12. Quantum chemical determination of Young's modulus of lignin. Calculations on a beta-O-4' model compound.

    PubMed

    Elder, Thomas

    2007-11-01

    The calculation of Young's modulus of lignin has been examined by subjecting a dimeric model compound to strain, coupled with the determination of energy and stress. The computational results, derived from quantum chemical calculations, are in agreement with available experimental results. Changes in geometry indicate that modifications in dihedral angles occur in response to linear strain. At larger levels of strain, bond rupture is evidenced by abrupt changes in energy, structure, and charge. Based on the current calculations, the bond scission may be occurring through a homolytic reaction between aliphatic carbon atoms. These results may have implications in the reactivity of lignin especially when subjected to processing methods that place large mechanical forces on the structure.

  13. Studies of the physical, yield and failure behavior of aliphatic polyketones

    NASA Astrophysics Data System (ADS)

    Karttunen, Nicole Renee

    This thesis describes an investigation into the multiaxial yield and failure behavior of an aliphatic polyketone terpolymer. The behavior is studied as a function of: stress state, strain rate, temperature, and sample processing conditions. Results of this work include: elucidation of the behavior of a recently commercialized polymer, increased understanding of the effects listed above, insight into the effects of processing conditions on the morphology of the polyketone, and a description of yield strength of this material as a function of stress state, temperature, and strain rate. The first portion of work focuses on the behavior of a set of samples that are extruded under "common" processing conditions. Following this reference set of tests, the effect of testing this material at different temperatures is studied. A total of four different temperatures are examined. In addition, the effect of altering strain rate is examined. Testing is performed under pseudo-strain rate control at constant nominal octahedral shear strain rate for each failure envelope. A total of three different rates are studied. An extension of the first portion of work involves modeling the yield envelope. This is done by combining two approaches: continuum level and molecular level. The use of both methods allows the description of the yield envelope as a function of stress state, strain rate and temperature. The second portion of work involves the effects of processing conditions. For this work, additional samples are extruded with different shear and thermal histories than the "standard" material. One set of samples is processed with shear rates higher and lower than the standard. A second set is processed at higher and lower cooling rates than the standard. In order to understand the structural cause for changes in behavior with processing conditions, morphological characterization is performed on these samples. In particular, the effect on spherulitic structure is important. Residual

  14. Evidence that Additions of Grignard Reagents to Aliphatic Aldehydes Do Not Involve Single-Electron-Transfer Processes.

    PubMed

    Otte, Douglas A L; Woerpel, K A

    2015-08-07

    Addition of allylmagnesium reagents to an aliphatic aldehyde bearing a radical clock gave only addition products and no evidence of ring-opened products that would suggest single-electron-transfer reactions. The analogous Barbier reaction also did not provide evidence for a single-electron-transfer mechanism in the addition step. Other Grignard reagents (methyl-, vinyl-, t-Bu-, and triphenylmethylmagnesium halides) also do not appear to add to an alkyl aldehyde by a single-electron-transfer mechanism.

  15. User’s guide to the collection and analysis of tree cores to assess the distribution of subsurface volatile organic compounds

    USGS Publications Warehouse

    Vroblesky, Don A.

    2008-01-01

    Analysis of the volatile organic compound content of tree cores is an inexpensive, rapid, simple approach to examining the distribution of subsurface volatile organic compound contaminants. The method has been shown to detect several volatile petroleum hydrocarbons and chlorinated aliphatic compounds associated with vapor intrusion and ground-water contamination. Tree cores, which are approximately 3 inches long, are obtained by using an increment borer. The cores are placed in vials and sealed. After a period of equilibration, the cores can be analyzed by headspace analysis gas chromatography. Because the roots are exposed to volatile organic compound contamination in the unsaturated zone or shallow ground water, the volatile organic compound concentrations in the tree cores are an indication of the presence of subsurface volatile organic compound contamination. Thus, tree coring can be used to detect and map subsurface volatile organic compound contamination. For comparison of tree-core data at a particular site, it is important to maintain consistent methods for all aspects of tree-core collection, handling, and analysis. Factors affecting the volatile organic compound concentrations in tree cores include the type of volatile organic compound, the tree species, the rooting depth, ground-water chemistry, the depth to the contaminated horizon, concentration differences around the trunk related to variations in the distribution of subsurface volatile organic compounds, concentration differences with depth of coring related to volatilization loss through the bark and possibly other unknown factors, dilution by rain, seasonal influences, sorption, vapor-exchange rates, and within-tree volatile organic compound degradation.

  16. 9,10-Phenanthrenequinone as a mass-tagging reagent for ultra-sensitive liquid chromatography-tandem mass spectrometry assay of aliphatic aldehydes in human serum.

    PubMed

    El-Maghrabey, Mahmoud; Kishikawa, Naoya; Kuroda, Naotaka

    2016-09-02

    9,10-Phenanthrenequinone (PQ) was successfully used as a new mass-tagging reagent for sensitive labeling of aliphatic aldehydes (C3-C10) prior liquid chromatography-electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS). This reagent could overcome the drawbacks of previous amine or hydrazine-based reagents, such as lower sensitivity, formation of two stereoisomeric reaction products for each single analyte, need for longer derivatization time, and poor reactivity with aliphatic aldehydes. The PQ-aldehyde derivatives exhibited intense [M+H](+) and a common product ion with ESI in the positive-ion mode. The derivatives were monitored at the transition of [M+H](+)→m/z 231.9 with detection limits from 4.0 to 100 pM (signal to noise ratio=3). 3-Phenylpropanal was used as an internal standard (IS) and the separation of the eight aldehydes and IS was achieved in less than 10min employing gradient elution with methanol and ammonium formate buffer (20mM, pH 4.0). The method employed salting out liquid-liquid extraction for aliphatic aldehydes form serum for the first time with excellent recoveries (92.6-110.8%). The developed method was validated and applied for quantification of the target aldehydes in serum of healthy volunteers (n=14). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Liquid-crystalline aromatic-aliphatic copolyester bioresorbable polymers.

    PubMed

    de Oca, Horacio Montes; Wilson, Joanne E; Penrose, Andrew; Langton, David M; Dagger, Anthony C; Anderson, Melissa; Farrar, David F; Lovell, Christopher S; Ries, Michael E; Ward, Ian M; Wilson, Andrew D; Cowling, Stephen J; Saez, Isabel M; Goodby, John W

    2010-10-01

    The synthesis and characterisation of a series of liquid-crystalline aromatic-aliphatic copolyesters are presented. Differential scanning calorimetry showed these polymers have a glass transition temperature in the range 72 degrees C-116 degrees C. Polarised optical microscopy showed each polymer exhibits a nematic mesophase on heating to the molten state at temperatures below 165 degrees C. Melt processing is demonstrated by the production of injection moulded and compression moulded specimens with Young's modulus of 5.7 +/- 0.3 GPa and 2.3 +/- 0.3 GPa, respectively. Wide-angle X-ray scattering data showed molecular orientation is responsible for the increase of mechanical properties along the injection direction. Degradation studies in the temperature range 37 degrees C-80 degrees C are presented for one polymer of this series and a kinetic constant of 0.002 days(-1) is obtained at 37 degrees C assuming a first order reaction. The activation energy (83.4 kJ mol(-1)) is obtained following the Arrhenius analysis of degradation, showing degradation of this material is less temperature sensitive compared with other commercially available biodegradable polyesters. In vitro and in vivo biocompatibility data are presented and it is shown the unique combination of degradative, mechanical and biological properties of these polymers may represent in the future an alternative for medical device manufacturers. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Stereoselective oxidation of aliphatic diols and reduction of hydroxy-ketones with galactitol dehydrogenase from Rhodobacter sphaeroides D.

    PubMed

    Kohring, G W; Wiehr, P; Jeworski, M; Giffhorn, F

    2003-01-01

    From the Rhodobacter sphaeroides mutant D a galactitol dehydrogenase (GDH) was isolated and characterized in an earlier investigation (1). The enzyme expressed activity with a wide spread substrate spectrum, like sugars, sugar alcohols, secondary alcohols or the corresponding ketones and it can be used for the production of the rare sugar L-tagatose by regioselective oxidation of galactitol (2). This study focuses on the preparation of optically pure aliphatic diols by oxidation of one enantiomer or stereospecific reduction of keto-alcohols and diketones. The oxidation of 1,2-propanediol, 1,2-butanediol, 1,2-pentanediol and 1,2-hexanediol occurred highly specific with the S-enantiomer leaving the R-enantiomer of the diols in the reaction vessel. Also (S)-1,2,6-hexanetriol was oxidized by GDH to 1,6-dihydroxy-2-hexanone. The Km values of these reactions decreased with increasing length of the carbon chain. Reduction of hydroxyacetone or 1-hydroxy-2-butanone resulted in an excess of 93% (S)-1,2-propanediol and more than 98% of (S)-1,2-butanediol, respectively. The diketone 2,3-hexanedione was only reduced to (2R,3S)-2,3-hexanediol, one of the possible four configurations. The wide substrate spectrum on one hand and the selectivity in the reaction on the other hand make GDH a very interesting enzyme for the production of optically pure building blocks in the chemical synthesis of bioactive compounds.

  19. Forensic investigation of aliphatic hydrocarbons in the sediments from selected mangrove ecosystems in the west coast of Peninsular Malaysia.

    PubMed

    Vaezzadeh, Vahab; Zakaria, Mohamad Pauzi; Shau-Hwai, Aileen Tan; Ibrahim, Zelina Zaiton; Mustafa, Shuhaimi; Abootalebi-Jahromi, Fatemeh; Masood, Najat; Magam, Sami Mohsen; Alkhadher, Sadeq Abdullah Abdo

    2015-11-15

    Peninsular Malaysia has gone through fast development during recent decades resulting in the release of large amounts of petroleum and its products into the environment. Aliphatic hydrocarbons are one of the major components of petroleum. Surface sediment samples were collected from five rivers along the west coast of Peninsular Malaysia and analyzed for aliphatic hydrocarbons. The total concentrations of C10 to C36 n-alkanes ranged from 27,945 to 254,463ng·g(-1)dry weight (dw). Evaluation of various n-alkane indices such as carbon preference index (CPI; 0.35 to 3.10) and average chain length (ACL; 26.74 to 29.23) of C25 to C33 n-alkanes indicated a predominance of petrogenic source n-alkanes in the lower parts of the Rivers, while biogenic origin n-alkanes from vascular plants are more predominant in the upper parts, especially in less polluted areas. Petrogenic sources of n-alkanes are predominantly heavy and degraded oil versus fresh oil inputs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Recent Advances in 3D Printing of Aliphatic Polyesters

    PubMed Central

    Frone, Adriana Nicoleta; Brandabur, Călin

    2017-01-01

    3D printing represents a valuable alternative to traditional processing methods, clearly demonstrated by the promising results obtained in the manufacture of various products, such as scaffolds for regenerative medicine, artificial tissues and organs, electronics, components for the automotive industry, art objects and so on. This revolutionary technique showed unique capabilities for fabricating complex structures, with precisely controlled physical characteristics, facile tunable mechanical properties, biological functionality and easily customizable architecture. In this paper, we provide an overview of the main 3D-printing technologies currently employed in the case of poly (lactic acid) (PLA) and polyhydroxyalkanoates (PHA), two of the most important classes of thermoplastic aliphatic polyesters. Moreover, a short presentation of the main 3D-printing methods is briefly discussed. Both PLA and PHA, in the form of filaments or powder, proved to be suitable for the fabrication of artificial tissue or scaffolds for bone regeneration. The processability of PLA and PHB blends and composites fabricated through different 3D-printing techniques, their final characteristics and targeted applications in bioengineering are thoroughly reviewed. PMID:29295559

  1. Recent Advances in 3D Printing of Aliphatic Polyesters.

    PubMed

    Chiulan, Ioana; Frone, Adriana Nicoleta; Brandabur, Călin; Panaitescu, Denis Mihaela

    2017-12-24

    3D printing represents a valuable alternative to traditional processing methods, clearly demonstrated by the promising results obtained in the manufacture of various products, such as scaffolds for regenerative medicine, artificial tissues and organs, electronics, components for the automotive industry, art objects and so on. This revolutionary technique showed unique capabilities for fabricating complex structures, with precisely controlled physical characteristics, facile tunable mechanical properties, biological functionality and easily customizable architecture. In this paper, we provide an overview of the main 3D-printing technologies currently employed in the case of poly (lactic acid) (PLA) and polyhydroxyalkanoates (PHA), two of the most important classes of thermoplastic aliphatic polyesters. Moreover, a short presentation of the main 3D-printing methods is briefly discussed. Both PLA and PHA, in the form of filaments or powder, proved to be suitable for the fabrication of artificial tissue or scaffolds for bone regeneration. The processability of PLA and PHB blends and composites fabricated through different 3D-printing techniques, their final characteristics and targeted applications in bioengineering are thoroughly reviewed.

  2. Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide

    NASA Astrophysics Data System (ADS)

    Juliá-Hernández, Francisco; Moragas, Toni; Cornella, Josep; Martin, Ruben

    2017-05-01

    Catalytic carbon-carbon bond formation has enabled the streamlining of synthetic routes when assembling complex molecules. It is particularly important when incorporating saturated hydrocarbons, which are common motifs in petrochemicals and biologically relevant molecules. However, cross-coupling methods that involve alkyl electrophiles result in catalytic bond formation only at specific and previously functionalized sites. Here we describe a catalytic method that is capable of promoting carboxylation reactions at remote and unfunctionalized aliphatic sites with carbon dioxide at atmospheric pressure. The reaction occurs via selective migration of the catalyst along the hydrocarbon side-chain with excellent regio- and chemoselectivity, representing a remarkable reactivity relay when compared with classical cross-coupling reactions. Our results demonstrate that site-selectivity can be switched and controlled, enabling the functionalization of less-reactive positions in the presence of a priori more reactive ones. Furthermore, we show that raw materials obtained in bulk from petroleum processing, such as alkanes and unrefined mixtures of olefins, can be used as substrates. This offers an opportunity to integrate a catalytic platform en route to valuable fatty acids by transforming petroleum-derived feedstocks directly.

  3. Soil Organic Chemistry.

    ERIC Educational Resources Information Center

    Anderson, G.

    1979-01-01

    A brief review is presented of some of the organic compounds and reactions that occur in soil. Included are nitrogenous compounds, compounds of phosphorus and sulfur, carbohydrates, phenolic compounds, and aliphatic acids. (BB)

  4. Volatile chemicals identified in extracts from leaves of Japanese mugwort (Artemisia princeps pamp.).

    PubMed

    Umano, K; Hagi, Y; Nakahara, K; Shoji, A; Shibamoto, T

    2000-08-01

    Extracts from leaves of Japanese mugwort (Artemisia princeps Pamp.) were obtained using two methods: steam distillation under reduced pressure followed by dichloromethane extraction (DRP) and simultaneous purging and extraction (SPSE). A total of 192 volatile chemicals were identified in the extracts obtained by both methods using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). They included 47 monoterpenoids (oxygenated monoterpenes), 26 aromatic compounds, 19 aliphatic esters, 18 aliphatic alcohols, 17 monoterpenes (hydrocarbon monoterpenes), 17 sesquiterpenes (hydrocarbon sesquiterpenes), 13 sesquiterpenoids (oxygenated sesquiterpenes), 12 aliphatic aldehydes, 8 aliphatic hydrocarbons, 7 aliphatic ketones, and 9 miscellaneous compounds. The major volatile constituents of the extract by DRP were borneol (10.27 ppm), alpha-thujone (3.49 ppm), artemisia alcohol (2.17 ppm), verbenone (1.85 ppm), yomogi alcohol (1.50 ppm), and germacren-4-ol (1.43 ppm). The major volatile constituents of the extract by SPSE were 1,8-cineole (8.12 ppm), artemisia acetate (4.22 ppm), alpha-thujone (3.20 ppm), beta-caryophyllene (2.39 ppm), bornyl acetate (2.05 ppm), borneol (1.80 ppm), and trans-beta-farnesene (1. 78 ppm).

  5. Comparison of Carbon XANES Spectra from an Iron Sulfide from Comet Wild 2 with an Iron Sulfide Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Wirick, S.; Flynn, G. J.; Keller, L. P.; Sanford, S. A.; Zolensky, M. E.; Messenger, Nakamura K.; Jacobsen, C.

    2008-01-01

    Among one of the first particles removed from the aerogel collector from the Stardust sample return mission was an approx. 5 micron sized iron sulfide. The majority of the spectra from 5 different sections of this particle suggests the presence of aliphatic compounds. Due to the heat of capture in the aerogel we initially assumed these aliphatic compounds were not cometary but after comparing these results to a heated iron sulfide interplanetary dust particle (IDP) we believe our initial interpretation of these spectra was not correct. It has been suggested that ice coating on iron sulfides leads to aqueous alteration in IDP clusters which can then lead to the formation of complex organic compounds from unprocessed organics in the IDPs similar to unprocessed organics found in comets [1]. Iron sulfides have been demonstrated to not only transform halogenated aliphatic hydrocarbons but also enhance the bonding of rubber to steel [2,3]. Bromfield and Coville (1997) demonstrated using Xray photoelectron spectroscopy that "the surface enhancement of segregated sulfur to the surface of sulfided precipitated iron catalysts facilitates the formation of a low-dimensional structure of extraordinary properties" [4]. It may be that the iron sulfide acts in some way to protect aliphatic compounds from alteration due to heat.

  6. Effects of different cooking methods on health-promoting compounds of broccoli*

    PubMed Central

    Yuan, Gao-feng; Sun, Bo; Yuan, Jing; Wang, Qiao-mei

    2009-01-01

    The effects of five domestic cooking methods, including steaming, microwaving, boiling, stir-frying, and stir-frying followed by boiling (stir-frying/boiling), on the nutrients and health-promoting compounds of broccoli were investigated. The results show that all cooking treatments, except steaming, caused significant losses of chlorophyll and vitamin C and significant decreases of total soluble proteins and soluble sugars. Total aliphatic and indole glucosinolates were significantly modified by all cooking treatments but not by steaming. In general, the steaming led to the lowest loss of total glucosinolates, while stir-frying and stir-frying/boiling presented the highest loss. Stir-frying and stir-frying/boiling, the two most popular methods for most homemade dishes in China, cause great losses of chlorophyll, soluble protein, soluble sugar, vitamin C, and glucosinolates, but the steaming method appears the best in retention of the nutrients in cooking broccoli. PMID:19650196

  7. Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Carboxylic Acids in CD-1 Mice

    PubMed Central

    Can Güven, Selçuk; Laska, Matthias

    2012-01-01

    Using a conditioning paradigm, the olfactory sensitivity of CD-1 mice for a homologous series of aliphatic n-carboxylic acids (ethanoic acid to n-octanoic acid) and several of their isomeric forms was investigated. With all 14 odorants, the animals significantly discriminated concentrations as low as 0.03 ppm (parts per million) from the solvent, and with four odorants the best-scoring animals even detected concentrations as low as 3 ppt (parts per trillion). Analysis of odor structure-activity relationships showed that the correlation between olfactory detection thresholds of the mice for the unbranched carboxylic acids and carbon chain length can best be described as a U-shaped function with the lowest threshold values at n-butanoic acid. A significant positive correlation between olfactory detection thresholds and carbon chain length of the carboxylic acids with their branching next to the functional carboxyl group was found. In contrast, no such correlation was found for carboxylic acids with their branching at the distal end of the carbon chain relative to the functional carboxyl group. Finally, a significant correlation was found between olfactory detection thresholds and the position of the branching of the carboxylic acids. Across-species comparisons suggest that mice are more sensitive for short-chained (C2 to C4) aliphatic n-carboxylic acids than other mammalian species, but not for longer-chained ones (C5 to C8). Further comparisons suggest that odor structure-activity relationships are both substance class- and species-specific. PMID:22479594

  8. Volatile compounds in cryptic species of the Aneura pinguis complex and Aneura maxima (Marchantiophyta, Metzgeriidae).

    PubMed

    Wawrzyniak, Rafał; Wasiak, Wiesław; Bączkiewicz, Alina; Buczkowska, Katarzyna

    2014-09-01

    Aneura pinguis is one of the liverwort species complexes that consist of several cryptic species. Ten samples collected from different regions in Poland are in the focus of our research. Eight of the A. pinguis complex belonging to four cryptic species (A, B, C, E) and two samples of closely related species Aneura maxima were tested for the composition of volatile compounds. The HS-SPME technique coupled to GC/FID and GC/MS analysis has been applied. The fiber coated with DVB/CAR/PDMS has been used. The results of the present study, revealed the qualitative and quantitative differences in the composition of the volatile compounds between the studied species. Mainly they are from the group of sesquiterpenoids, oxygenated sesquiterpenoids and aliphatic hydrocarbons. The statistical methods (CA and PCA) showed that detected volatile compounds allow to distinguish cryptic species of A. pinguis. All examined cryptic species of the A. pinguis complex differ from A. maxima. Species A and E of A. pinguis, in CA and PCA, form separate clusters remote from two remaining cryptic species of A. pinguis (B and C) and A. maxima. Relationship between the cryptic species appeared from the chemical studies are in accordance with that revealed on the basis of DNA sequences. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds

    PubMed Central

    Mutti, Francesco G.

    2017-01-01

    Amines constitute the major targets for the production of a plethora of chemical compounds that have applications in the pharmaceutical, agrochemical and bulk chemical industries. However, the asymmetric synthesis of α-chiral amines with elevated catalytic efficiency and atom economy is still a very challenging synthetic problem. Here, we investigated the biocatalytic reductive amination of carbonyl compounds employing a rising class of enzymes for amine synthesis: amine dehydrogenases (AmDHs). The three AmDHs from this study – operating in tandem with a formate dehydrogenase from Candida boidinii (Cb-FDH) for the recycling of the nicotinamide coenzyme – performed the efficient amination of a range of diverse aromatic and aliphatic ketones and aldehydes with up to quantitative conversion and elevated turnover numbers (TONs). Moreover, the reductive amination of prochiral ketones proceeded with perfect stereoselectivity, always affording the (R)-configured amines with more than 99% enantiomeric excess. The most suitable amine dehydrogenase, the optimised catalyst loading and the required reaction time were determined for each substrate. The biocatalytic reductive amination with this dual-enzyme system (AmDH–Cb-FDH) possesses elevated atom efficiency as it utilizes the ammonium formate buffer as the source of both nitrogen and reducing equivalents. Inorganic carbonate is the sole by-product. PMID:28663713

  10. Amine dehydrogenases: efficient biocatalysts for the reductive amination of carbonyl compounds.

    PubMed

    Knaus, Tanja; Böhmer, Wesley; Mutti, Francesco G

    2017-01-21

    Amines constitute the major targets for the production of a plethora of chemical compounds that have applications in the pharmaceutical, agrochemical and bulk chemical industries. However, the asymmetric synthesis of α-chiral amines with elevated catalytic efficiency and atom economy is still a very challenging synthetic problem. Here, we investigated the biocatalytic reductive amination of carbonyl compounds employing a rising class of enzymes for amine synthesis: amine dehydrogenases (AmDHs). The three AmDHs from this study - operating in tandem with a formate dehydrogenase from Candida boidinii (Cb-FDH) for the recycling of the nicotinamide coenzyme - performed the efficient amination of a range of diverse aromatic and aliphatic ketones and aldehydes with up to quantitative conversion and elevated turnover numbers (TONs). Moreover, the reductive amination of prochiral ketones proceeded with perfect stereoselectivity, always affording the ( R )-configured amines with more than 99% enantiomeric excess. The most suitable amine dehydrogenase, the optimised catalyst loading and the required reaction time were determined for each substrate. The biocatalytic reductive amination with this dual-enzyme system (AmDH-Cb-FDH) possesses elevated atom efficiency as it utilizes the ammonium formate buffer as the source of both nitrogen and reducing equivalents. Inorganic carbonate is the sole by-product.

  11. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    PubMed

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Headspace, volatile and semi-volatile organic compounds diversity and radical scavenging activity of ultrasonic solvent extracts from Amorpha fruticosa honey samples.

    PubMed

    Jerković, Igor; Marijanović, Zvonimir; Kezić, Janja; Gugić, Mirko

    2009-07-27

    Volatile organic compounds of Amorpha fruticosa honey samples were isolated by headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE), followed by gas chromatography and mass spectrometry analyses (GC, GC-MS), in order to obtain complementary data for overall characterization of the honey aroma. The headspace of the honey was dominated by 2-phenylethanol (38.3-58.4%), while other major compounds were trans- and cis-linalool oxides, benzaldehyde and benzyl alcohol. 2-Phenylethanol (10.5-16.8%) and methyl syringate (5.8-8.2%) were the major compounds of ultrasonic solvent extracts, with an array of small percentages of linalool, benzene and benzoic acid derivatives, aliphatic hydrocarbons and alcohols, furan derivatives and others. The scavenging ability of the series of concentrations of the honey ultrasonic solvent extracts and the corresponding honey samples was tested by a DPPH (1,1-diphenyl-2-picrylhydrazyl) assay. Approximately 25 times lower concentration ranges (up to 2 g/L) of the extracts exhibited significantly higher free radical scavenging potential with respect to the honey samples.

  13. The origin of aliphatic hydrocarbons in olive oil.

    PubMed

    Pineda, Manuel; Rojas, María; Gálvez-Valdivieso, Gregorio; Aguilar, Miguel

    2017-11-01

    There are many substances that can interfere with olive oil quality. Some of them are well characterized, but many others have an unknown origin. Saturated hydrocarbons make an extraordinary complex family of numerous molecules, some of them present naturally in vegetable oils. When major natural saturated hydrocarbons are analyzed by standard chromatographic methods, this complex mixture of saturated hydrocarbons appears as a hump in the chromatogram and is commonly named as unresolved complex mixture (UCM), whose origin remains unknown. In this work we studied the occurrence and the origin of aliphatic saturated hydrocarbons in olive oil. Hydrocarbons were analyzed in olive oil and along the industrial process of oil extraction. We also analyzed n-alkanes and the UCM fraction of hydrocarbons in leaf, fruit and oil from different varieties and different locations, and we also analyzed the soils at these locations. We conclude that the hydrocarbons present in olive oil do not necessarily have their origin in a contamination during olive oil elaboration; they seem to have a natural origin, as a result of olive tree metabolism and/or as the result of an intake and accumulation by the olive tree directly from the environment during its entire life cycle. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Biodegradation of Aliphatic-Aromatic Copolyesters by Thermomonospora fusca and Other Thermophilic Compost Isolates

    PubMed Central

    Kleeberg, Ilona; Hetz, Claudia; Kroppenstedt, Reiner Michael; Müller, Rolf-Joachim; Deckwer, Wolf-Dieter

    1998-01-01

    Random aliphatic-aromatic copolyesters synthesized from 1,4-butanediol, adipic acid, and terephthalic acid (BTA) have excellent thermal and mechanical properties and are biodegradable by mixed cultures (e.g., in compost). Over 20 BTA-degrading strains were isolated by using compost as a microbial source. Among these microorganisms, thermophilic actinomycetes obviously play an outstanding role and appear to dominate the initial degradation step. Two actinomycete strains exhibited about 20-fold higher BTA degradation rates than usually observed in a common compost test. These isolates were identified as Thermomonospora fusca strains. They appeared to be particularly suitable for establishment of rapid degradation tests and were used in comparative studies on the biodegradation of various polyesters. PMID:9572944

  15. Aliphatic side chains of proteins as potential geomarkers of NOM liberated from the melting permafrost and discharged to the Arctic Ocean by the Kolyma River run off

    NASA Astrophysics Data System (ADS)

    Dubinenkov, I. V.; Perminova, I.; Kononikhin, A.; Nikolaev, E.; Hertkorn, N.; Bulygina, E. B.; Holmes, R. M.

    2011-12-01

    The Arctic ecosystem is highly sensitive to climate change. Global warming might have considerable effects on regional carbon cycling due to permafrost melting. Permafrost in the Arctic region represents an extremely large organic carbon reservoir mostly stored in the permafrost. Mobilization of just a small portion of carbon stored in Arctic soils will have considerable impacts on the flux of organic carbon from land to the Arctic Ocean, which can affect the Arctic environment. The Kolyma River watershed is one of the Arctic Ocean's largest. It is dominated by continuous permafrost which is underlain with rich organic soils susceptible to increased fluvial transport. The goal of the work was to analyze the structure of isolated natural organic matter from different fresh water environments of the Kolyma river basin. NOM was isolated from the Kolyma River main stream, its tributaries, a thermokarst lake, a floodplain stream and the permafrost. Solid phase extraction technique was used with Bond Elute PPL cartridges. Nuclear magnetic resonance spectroscopy (NMR) and Fourier Transform Ion Cyclotron Resonance Mass Spectroscopy (FTICRMS) was used for structural studies because of unsurpassed molecular level structural information provided by these high resolution magnetic resonance techniques. The NOM samples from the Kolyma River showed high contents of non-substituted aliphatic structures with a low content of aromatics and carbohydrates. Aliphatic nature may indicate a microbial source of NOM in the form of degraded terpenoids and hopanols. It was shown that almost all NOM samples from the rivers had similar molecular composition enriched with aliphatic units. The samples from permafrost mud streams were significantly different and contained sharp peptide signatures. In general, permafrost NOM contained much less degraded peptide residuest as compared to riverine samples. Identification of these residues showed the presence of branched amino acids (valine, alanine

  16. Impact of tree cutting on water-soluble organic compounds in podzolic soils of the European North-East

    NASA Astrophysics Data System (ADS)

    Lapteva, Elena; Bondarenko, Natalia; Shamrikova, Elena; Kubik, Olesya; Punegov, Vasili

    2016-04-01

    soils was dominated by carbohydrates with ratio from 49% (SP1) to 63-66% (SP2, SP3) of total content of all identified compounds. The increase in relative content in carbohydrates observed for soils under cuts was possibly affected by vegetation cover change after clear-cutting and presence of birch and aspen leaves in plant waste composition (due to tree species change). At SP2 and SP3 cuts, content of alcohols and low-molecular carboxylic acids fell by almost twice as compared with SP1. Tree cuts changed not only in total content of water-soluble compounds but also in ratio of individual low-molecular compounds in water extracts composition. Totally, we identified 26 various compounds, including 12 low-molecular organic (carboxylic) acids, 10 carbohydrates, and 4 alcohols. Composition of carboxylic acids was dominated by aliphatic substituted acids (mainly 2-oxyacetic acid, 2-oxypropane, and 2,3-dioxypropane acids). Total number of aliphatic substituted acids, as well as aliphatic non-substituted and aromatic carboxylic acids, decreased in soils under cuts at initial reforestation stages (SP2). Content of all mentioned acids gradually rose with time (SP3). Soils under cut forests were observed for a decrease of erythrite ratio in composition of water-soluble alcohols (from 52 to 40% of total alcohols) and an increase of glycerin ratio (from 46 to 72%). 10 of identified mono- and disaccharides were dominated by mannose, galactopyranose, and D-ribose. Disturbed soils were identified for increased ratio of galactopyranose and D-ribose and for by almost twice as decreased ratio of mannose. References 1. Dymov, A. A. Changes in the organic matter of taiga soils during the natural reaforestation after cutting in the middle taigaof the Komi Republic / A. A. Dymov, E. Yu. Milanovskii // Eurasian Soil Science, 2013. Vol. 46. № 12. P. 1164-1171. 2. Shamrikova E.V., Punegov V.V., Gruzdev I.V., Vanchikova E.V., Vetoshkina A.A. Individual organic compounds in water extracts from

  17. Rendering plant emissions of volatile organic compounds during sterilization and cooking processes.

    PubMed

    Bhatti, Z A; Maqbool, F; Langenhove, H V

    2014-01-01

    The rendering process emits odorous volatile compounds in the atmosphere; if these volatile organic compounds (VOCs) are not handled properly they can cause a serious environmental problem. During this process not all emitted compounds are odorous and hazardous but some of them have been found associated with health problems. Samples were collected in the plastic bags from the Arnout rendering plant. In this study, VOCs emission from two different processes (cooking and sterilization) was compared. For the analysis of various emitted compounds, gas chromatograph and mass spectrophotometer were used. A sterilization process was added in the rendering plant to inactivate the prion protein from meat bone meal prepared during the rendering process. The identification of mass spectrum was performed by using a mass spectral database system. The most odorous classes of compounds identified were aliphatic hydrocarbons (HCs) (29.24%), furans (28.74%), aromatic HCs (18.32%), most important sulphur-containing compounds (12.15%), aldehyde (10.91%) and ketones (0.60%). Emissions released during cooking and sterilization were 32.73 x 10(2) and 36.85 x 10(2) mg m(-3), respectively. In this study, it was observed that after the addition of the sterilization process VOCs' emissions were increased. A total of 87 mg m(-3) dimethyl disulphide (DMS) was detected only during the cooking process, whereas dimethly trisulphide (DMTS) was detected in both cooking (300 mg m(-3)) and sterilization (301 mg m(-3)) processes. About 11 mg m3 of DMS was detected during the cooking process, which was a small concentration compared with 299 mg m(-3) found during the sterilization process. At high temperature and pressure, DMTS and DMS were released more than any other sulphur-containing compounds. A condenser was applied to control the combined emission and it was successful in the reduction of VOCs to 22.83 x 10(2) mg m(-3) (67% reduction).

  18. Amphiphilic and Hydrophilic Block Copolymers from Aliphatic N-Substituted 8-Membered Cyclic Carbonates: A Versatile Macromolecular Platform for Biomedical Applications.

    PubMed

    Venkataraman, Shrinivas; Tan, Jeremy P K; Ng, Victor W L; Tan, Eddy W P; Hedrick, James L; Yang, Yi Yan

    2017-01-09

    Introduction of hydrophilic components, particularly amines and zwitterions, onto a degradable polymer platform, while maintaining precise control over the polymer composition, has been a challenge. Recognizing the importance of these hydrophilic residues in multiple aspects of the nanobiomedicine field, herein, a straightforward synthetic route to access well-defined amphiphilic and hydrophilic degradable block copolymers from diethanolamine-derived functional eight-membered N-substituted aliphatic cyclic carbonates is reported. By this route, tertiary amine, secondary amine, and zwitterion residues can be incorporated across the polymer backbone. Demonstration of pH-responsiveness of these hydrophilic residues and their utility in the development of drug-delivery vehicles, catered for the specific requirements of respective model drugs (doxorubicin and diclofenac sodium salt) are shown. As hydrophilic components in degradable polymers play crucial roles in the biological interactions, these materials offers opportunities to expand the scope and applicability of aliphatic cyclic carbonates. Our approach to these functional polycarbonates will expand the range of biocompatible and biodegradable synthetic materials available for nanobiomedicine, including drug and gene delivery, antimicrobials, and hydrophilic polymers as poly(ethylene glycol) (PEG) alternatives.

  19. Unique distributions of hydrocarbons and sulphur compounds released by flash pyrolysis from the fossilised alga Gloeocapsomorpha prisca , a major constituent in one of four Ordovician kerogens

    NASA Astrophysics Data System (ADS)

    Douglas, A. G.; Damsté, J. S. Sinninghe; Fowler, M. G.; Eglinton, T. I.; de Leeuw, J. W.

    1991-01-01

    Kerogens isolated from four rocks of Ordovician age from North America have been analysed by combined pyrolysis-gas chromatography-mass spectrometry to compare and contrast the type and distribution of sulphur-containing compounds and aromatic and aliphatic hydrocarbons present in the pyrolysates. When pyrolysed, all of the kerogens released several series of heterocyclic sulphur compounds including alkylthiophenes, alkylthiolanes, alkylthianes and alkylbenzothiophenes together with n-alkanes, n-alklenes and alkylcyclohexanes as well as alkyl-substituted benzenes and naphthalenes. One of the kerogens, isolated from the Guttenberg oil rock, consisted predominantly of the alga Gloeocapsomorpha prisca, which produced sulphur compounds and hydrocarbons with fingerprint pyrograms that were different from those of the other three kerogens. The data provide prima facie evidence that these distributions may act as pseudo "biological markers" for this species of alga, namely that unsaturated kerogen moieties available for the uptake of sulphur, or which can cyclise to form hydrocarbons, distinguish Gloeocapsomorpha prisca from the contributing organisms of the other kerogens analysed.

  20. Introduction of an Aliphatic Ketone into Recombinant Proteins in a Bacterial Strain that Overexpresses an Editing-Impaired Leucyl-tRNA Synthetase

    PubMed Central

    Tang, Yi; Wang, Pin; Van Deventer, James A.; Link, A. James; Tirrell, David A.

    2011-01-01

    A leucine analog containing a ketone has been incorporated into proteins in E. coli. Only E. coli strains overexpressing an editing-deficient leucyl-tRNA synthetase were capable of synthesizing proteins with the aliphatic ketone amino acid. Modification of ketone-containing proteins under mild conditions has been demonstrated. PMID:19670197

  1. Nickel-Catalyzed Addition-Type Alkenylation of Unactivated, Aliphatic C-H Bonds with Alkynes: A Concise Route to Polysubstituted γ-Butyrolactones.

    PubMed

    Li, Mingliang; Yang, Yudong; Zhou, Danni; Wan, Danyang; You, Jingsong

    2015-05-15

    Through the nickel-catalyzed chelation-assisted C-H bond activation strategy, the addition-type alkenylation of unreactive β-C(sp(3))-H bonds of aliphatic amides with internal alkynes is developed for the first time to produce γ,δ-unsaturated carboxylic amide derivatives. The resulting alkenylated products can further be transformed into polysubstituted γ-butyrolactones with pyridinium chlorochromate (PCC).

  2. The tip and hidden part of the iceberg: Proteinogenic and non-proteinogenic aliphatic amino acids.

    PubMed

    Fichtner, Maximilian; Voigt, Kerstin; Schuster, Stefan

    2017-01-01

    Amino acids are the essential building blocks of proteins and, therefore, living organisms. While the focus often lies on the canonical or proteinogenic amino acids, there is also a large number of non-canonical amino acids to explore. Some of them are part of toxins or antibiotics in fungi, bacteria or animals (e.g. sponges). Some others operate at the translational level like an "undercover agent". Here we give an overview of natural aliphatic amino acids, up to a side chain length of five carbons, without rings and with an unmodified backbone, and have a closer look on each of them. Some of them are dehydro amino acids with double or even triple bonds. Moreover, we outline mathematical methods for enumerating the complete list of all potential aliphatic amino acids of a given chain length. This should be of interest for synthetic biology. Most non-proteinogenic amino acids are found within fungi, with particularly many produced by Amanita species as defence chemicals. Several are incorporated into peptide antibiotics. Some of the amino acids occur due to broad substrate specificity of the branched-chain amino acid synthesis pathways. A large variety of amino acids were also found in the Murchison meteorite. Non-proteinogenic amino acids are of interest for numerous medical applications: discovery of new antibiotics, support in designing synthetic antibiotics, improvement of protein and peptide pharmaceuticals by avoiding incorporation of non-canonical amino acids, study of toxic cyanobacteria and other applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Identification, synthesis, and characterization of novel sulfur-containing volatile compounds from the in-depth analysis of Lisbon lemon peels (Citrus limon L. Burm. f. cv. Lisbon).

    PubMed

    Cannon, Robert J; Kazimierski, Arkadiusz; Curto, Nicole L; Li, Jing; Trinnaman, Laurence; Jańczuk, Adam J; Agyemang, David; Da Costa, Neil C; Chen, Michael Z

    2015-02-25

    Lemons (Citrus limon) are a desirable citrus fruit grown and used globally in a wide range of applications. The main constituents of this sour-tasting fruit have been well quantitated and characterized. However, additional research is still necessary to better understand the trace volatile compounds that may contribute to the overall aroma of the fruit. In this study, Lisbon lemons (C. limon L. Burm. f. cv. Lisbon) were purchased from a grove in California, USA, and extracted by liquid-liquid extraction. Fractionation and multidimensional gas chromatography-mass spectrometry were utilized to separate, focus, and enhance unidentified compounds. In addition, these methods were employed to more accurately assign flavor dilution factors by aroma extract dilution analysis. Numerous compounds were identified for the first time in lemons, including a series of branched aliphatic aldehydes and several novel sulfur-containing structures. Rarely reported in citrus peels, sulfur compounds are known to contribute significantly to the aroma profile of the fruit and were found to be aroma-active in this particular study on lemons. This paper discusses the identification, synthesis, and organoleptic properties of these novel volatile sulfur compounds.

  4. Concentrations of trace elements and compounds in the airborne suspended particulate matter in Cleveland, Ohio, from August 1971 to August 1972 and their dependence on wind direction: Complete data listing and concentration roses

    NASA Technical Reports Server (NTRS)

    King, R. B.; Neustadter, H. E.

    1976-01-01

    Concentrations of 75 chemical constituents in the airborne particulate matter were measured in Cleveland, Ohio during 1971 and 1972. Daily values, maxima, geometric means and their standard deviations covering a 1-year period (45 to 50 sampling days) at each of 16 sites are presented on microfiche for 60 elements, and for a lesser number of days for 10 polycyclic aromatic hydrocarbon compounds (PAH), the aliphatic hydrocarbon compounds (AH) as a group and carbon. In addition, concentration roses showing directional properties are presented for 39 elements, 10 PAH and the AH as a group. The elements (except carbon) are shown both in terms of concentration and percentage of the suspended particulate matter.

  5. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution.

    PubMed

    Hüffer, Thorsten; Hofmann, Thilo

    2016-07-01

    The presence of microscale polymer particles (i.e., microplastics) in the environment has become a major concern in recent years. Sorption of organic compounds by microplastics may affect the phase distribution within both sediments and aqueous phases. To investigate this process, isotherms were determined for the sorption of seven aliphatic and aromatic organic probe sorbates by four polymers with different physico-chemical properties. Sorption increased in the order polyamide < polyethylene < polyvinylchloride < polystyrene. This order does not reflect the particle sizes of the investigated microplastics within the aqueous dispersions, indicating the influence of additional factors (e.g., π-π-interactions) on the sorption of aromatic compounds by polystyrene. Linear isotherms by polyethylene suggested that sorbate uptake was due to absorption into the bulk polymer. In contrast, non-linear isotherms for sorption by PS, PA, and PVC suggest a predominance of adsorption onto the polymer surface, which is supported by the best fit of these isotherms using the Polanyi-Manes model. A strong relationship between the sorption coefficients of the microplastics and the hydrophobicity of the sorbates suggests that hydrophobic interactions are of major importance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Engineering a Promiscuous Tautomerase into a More Efficient Aldolase for Self-Condensations of Linear Aliphatic Aldehydes.

    PubMed

    Rahimi, Mehran; van der Meer, Jan-Ytzen; Geertsema, Edzard M; Poelarends, Gerrit J

    2017-07-18

    The enzyme 4-oxalocrotonate tautomerase (4-OT) from Pseudomonas putida mt-2 takes part in a catabolic pathway for aromatic hydrocarbons, where it catalyzes the conversion of 2hydroxyhexa-2,4-dienedioate into 2-oxohexa-3-enedioate. This tautomerase can also promiscuously catalyze carbon-carbon bond-forming reactions, including various types of aldol reactions, by using its amino-terminal proline as a key catalytic residue. Here, we used systematic mutagenesis to identify two hotspots in 4-OT (Met45 and Phe50) at which single mutations give marked improvements in aldolase activity for the self-condensation of propanal. Activity screening of a focused library in which these two hotspots were varied led to the discovery of a 4-OT variant (M45Y/F50V) with strongly enhanced aldolase activity in the self-condensation of linear aliphatic aldehydes, such as acetaldehyde, propanal, and butanal, to yield α,β-unsaturated aldehydes. With both propanal and benzaldehyde, this double mutant, unlike the previously constructed single mutant F50A, mainly catalyzes the self-condensation of propanal rather than the cross-condensation of propanal and benzaldehyde, thus indicating that it indeed has altered substrate specificity. This variant could serve as a template to create new biocatalysts that lack dehydration activity and possess further enhanced aldolase activity, thus enabling the efficient enzymatic self-coupling of aliphatic aldehydes. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Influence of day length and temperature on the content of health-related compounds in broccoli (Brassica oleracea L. var. italica).

    PubMed

    Steindal, Anne Linn Hykkerud; Mølmann, Jørgen; Bengtsson, Gunnar B; Johansen, Tor J

    2013-11-13

    Vegetables grown at different latitudes are exposed to various temperatures and day lengths, which can affect the content of health- and sensory-related compounds in broccoli florets. A 2 × 2 factorial experiment was conducted under controlled growth conditions, with contrasting temperatures (15/9 and 21/15 °C) and day lengths (12 and 24 h), to investigate the effect on glucosinolates, vitamin C, flavonols, and soluble sugars. Aliphatic glucosinolates, quercetin, and kaempferol were at their highest levels at high temperatures combined with a 12 h day. Levels of total glucosinolates, d-glucose, and d-fructose were elevated by high temperatures. Conversely, the content of vitamin C was highest with a 12 h day length combined with 15/9 °C. Our results indicate that temperature and day length influence the contents of health-related compounds in broccoli florets in a complex way, suggesting no general superiority of any of the contrasting growth conditions.

  8. 40 CFR 442.2 - General definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., organic chemicals including: alcohols, aldehydes, formaldehydes, phenols, peroxides, organic salts, amines, amides, other nitrogen compounds, other aromatic compounds, aliphatic organic chemicals, glycols, glycerines, and organic polymers; refractory organic compounds including: ketones, nitriles, organo-metallic...

  9. A Hydrazone-Based exo-Directing-Group Strategy for β C-H Oxidation of Aliphatic Amines.

    PubMed

    Huang, Zhongxing; Wang, Chengpeng; Dong, Guangbin

    2016-04-18

    Described is a new hydrazone-based exo-directing group (DG) strategy developed for the functionalization of unactivated primary β C-H bonds of aliphatic amines. Conveniently synthesized from protected primary amines, the hydrazone DGs are shown to site-selectively promote the β-acetoxylation and tosyloxylation via five-membered exo-palladacycles. Amines with a wide scope of skeletons and functional groups are tolerated. Moreover, the hydrazone DG can be readily removed, and a one-pot C-H acetoxylation/DG removal protocol was also discovered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Diastereoselective oxidative α-amination of aliphatic aldehydes catalyzed by iodine: synthesis of syn-γ-hydroxy-α-amino acetals.

    PubMed

    Zhang, Yun-Xiao; Zhang, An-Qi; Tian, Jie-Sheng; Loh, Teck-Peng

    2013-12-28

    Aldehydes can react with secondary amines to give α-amino acetals via the α-amination of aliphatic aldehydes catalyzed by iodine. The presence of an asymmetric hydroxylated center at the γ-position of the aldehyde was found to induce the stereoselective amino group. This method represents a stereoselective α-amination of γ-hydroxyaldehydes for the synthesis of syn-γ-hydroxy-α-amino acetals in good yields and reasonable diastereoselectivities under very mild conditions.

  11. Effect of mineral surface properties (alumina, kaolinite) on the sorptive fractionation mechanisms of soil fulvic acids: Molecular-scale ESI-MS studies

    NASA Astrophysics Data System (ADS)

    Fleury, Guillaume; Del Nero, Mirella; Barillon, Rémi

    2017-01-01

    We addressed the effects of mineral surface properties (kaolinite versus Al-oxide) on the sorption-driven fractionation of a soil fulvic acid (FA) at acidic pH, mainly by means of ESI(-)-FTMS analysis of initial and supernatant solutions of FA sorption batch experiments. The MS data provided clear molecular-scale evidence of distinct mechanisms and molecular parameters controlling the FA fractionation upon its sorption on clay and oxide surfaces, respectively. Identification of sorbing and not-sorbing FA compounds in kaolinite-solution systems revealed a weak fractionation among members of sbnd CO2 series of aliphatics or not-condensed aromatics (NCAs) at pH 3.8, and almost no sorption of poorly-oxygenated polycyclic aromatic compounds (PACs) and NCAs. This first molecular-scale description of a FA fractionation in a clay-solution system suggests that H-bonding with low affinity sites (aluminol/silanol) on the basal planes of the clay particles is the main mechanism of sorption. Due to the predominance of such weak and poorly-selective mechanism, the sorption of aliphatic and NCA molecules bearing oxygenated functionalities was prevented at pH 5, due to dissolved Al competing successfully for their coordination. In contrast, a strong FA fractionation was observed onto alumina, with a preferential retention of PACs and highly-oxygenated aliphatics and NCAs. The major part of the poorly oxygenated aliphatics was left in solution. The sorption degree of NCAs and aliphatics was strongly correlated with molecular acidity. For PACs and poorly-oxygenated NCAs, the sorption was driven by reactions of surface ligand exchange (for the most oxygenated compounds) or by hydrophobic interactions (for the least oxygenated compounds).

  12. Comprehensive analytical methodology to determine hydrocarbons in marine waters using extraction disks coupled to glass fiber filters and compound-specific isotope analyses.

    PubMed

    Ternon, Eva; Tolosa, Imma

    2015-07-24

    Solid-phase extraction of both aliphatic (AHs) and aromatic polycyclic hydrocarbons (PAHs) from seawater samples was evaluated using a GFF filter stacked upon an octadecyl bonded silica (C18) disk. Stable-isotope measurements were developed on hydrocarbons extracted from both GFF and C18-disks in order to characterize the source of hydrocarbons. A clear partition of hydrocarbon compounds between the dissolved and the particulate phase was highlighted. PAHs showed a higher affinity with the dissolved phase (recoveries efficiency of 48-71%) whereas AHs presented strong affinity with the particulate phase (up to 76% of extraction efficiency). Medium volumes of seawater samples were tested and no breakthrough was observed for a 5L sample. Isotopic fractionation was investigated within all analytical steps but none was evidenced. This method has been applied to harbor seawater samples and very low AH and PAH concentrations were achieved. Due to the low concentration levels of hydrocarbons in the samples, the source of hydrocarbons was determined by molecular indices rather than isotopic measurements and a pyrolytic origin was evidenced. The aliphatic profile also revealed the presence of long-chain linear alkylbenzenes (LABs). The methodology presented here would better fit to polluted coastal environments affected by recent oil spills. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The aliphatic hydrocarbon distributions of terrestrial plants around an alpine lake: a pilot study from Lake Ximencuo, Eastern Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Jia, Jihong; Cao, Jicheng

    2017-12-01

    As part of an investigation of the sources of aliphatic hydrocarbons to the sediments of alpine Lake Ximencuo, leaves of the eight dominant vascular plants were collected and their hydrocarbon contents were analyzed. A series of unsaturated aliphatic hydrocarbons were identified in the plant leaves; in particular, Festuca sp. contain a series of n-alkadienes that have rarely been reported in previous studies. The comparison of n-alkane proxies (ACL 27-33, ACL T, P aq, and CPI) and δ13Corg among plant leaves, surface soils, and lake sediments suggests that organic proxies have been altered to varying degrees during the transport and burial process of organic materials. It is believed that microbial reworking and source changes have great impacts on organic proxies in the alpine lake system. In addition, the cluster analysis for plant leaves depending on n-alkane compositions and the ACL T proxy generates similar results. Accordingly, we postulate that the average chain length of plant waxes might be a potential indicator of plant classification in regions such as the Qinghai-Tibet Plateau.

  14. Platinum-Catalyzed, Terminal-Selective C(sp(3))-H Oxidation of Aliphatic Amines.

    PubMed

    Lee, Melissa; Sanford, Melanie S

    2015-10-14

    This Communication describes the terminal-selective, Pt-catalyzed C(sp(3))-H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol%. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (iii) it electronically deactivates the C-H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp(3))-H oxidation of a variety of primary, secondary, and tertiary amines.

  15. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    NASA Astrophysics Data System (ADS)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  16. Catalytic cracking of model compounds of bio-oil over HZSM-5 and the catalyst deactivation.

    PubMed

    Chen, Guanyi; Zhang, Ruixue; Ma, Wenchao; Liu, Bin; Li, Xiangping; Yan, Beibei; Cheng, Zhanjun; Wang, Tiejun

    2018-08-01

    The catalytic cracking upgrading reactions over HZSM-5 of different model compounds of bio-oil have been studied with a self-designed fluid catalytic cracking (FCC) equipment. Typical bio-oil model compounds, such as acetic acid, guaiacol, n-heptane, acetol and ethyl acetate, were chosen to study the products distribution, reaction pathway and deactivation of catalysts. The results showed: C 6 -C 8 aromatic hydrocarbons, C 2 -C 4 olefins, C 1 -C 5 alkanes, CO and CO 2 were the main products, and the selectivity of olefins was: ethylene>propylene>butylene. Catalyst characterization methods, such as FI-IR, TG-TPO and Raman, were used to study the deactivation mechanism of catalysts. According to the catalyst characterization results, a catalyst deactivation mechanism was proposed as follows: Firstly, the precursor which consisted of a large number of long chain saturated aliphatic hydrocarbons and a small amount CC of aromatics formed on the catalyst surface. Then the active sites of catalysts had been covered, the coke type changed from thermal coke to catalytic coke and gradually blocked the channels of the molecular sieve, which accelerated the deactivation of catalyst. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Woody Plant Invasion of Grassland: Lignin and Aliphatic Biopolymer Chemistry and Carbon Isotope Composition in Physical Fractions

    NASA Astrophysics Data System (ADS)

    Gamblin, D.; Boutton, T.; Liao, J.; Jastrow, J.; Filley, T.

    2003-12-01

    Significant changes in the apportionment of organic carbon in grassland and savanna soils have been document as a result of woody plant encroachment. In the Rio Grande Plains of Texas, C4 grasslands (d13C = -14 0/00) have undergone succession to trees and shrubs of a subtropical thorn woodland (d13C = -27 0/00) over the past 150 y which has resulted in increased soil organic carbon storage. Large differences in the turnover times of physical fractions in this system indicate selective preservation mechanisms which may include physical protection or inherent biochemical recalcitrance. To elucidate mechanisms of SOC sequestration during woody plant succession in this system, we are investigating the chemistry and compound-specific stable carbon isotope composition of lignin and aliphatic biopolymers in specific physical (size, density) soil fractions within a chronosequence that includes remnant grasslands (Time 0) and woody plant stands ranging in age from 10-130 y. The soil fraction data is being compared to biopolymer and isotope chemistry of the root, stem and/or leaf tissue of 20 of the dominant genus of plants in the system. Lignin phenols and suberin and cutin-derived hydroxyfatty acids are being isolated using alkaline CuO oxidation and tetramethylammonium hydroxide thermochemolysis. A comparison of the macroaggregate (greater than 250 um), microaggregate (53-250 um), and free silt and clay fractions in the oldest stand indicates that lignin is the most concentrated (organic carbon normalized values) in macroaggregates and is significantly less degraded, as determined by relative yields of oxidized and reduced lignin phenols. Additionally, the intra-aggregate silt and clay fraction from the macroaggregates contains less than half of the organic carbon normalized lignin phenols and is relatively more oxidized than what is found in the total macroaggregate pool. From these preliminary results it appears that the bulk macroaggregate pool contains the least

  18. Understanding interactions in the adsorption of gaseous organic compounds to indoor materials.

    PubMed

    Ongwandee, Maneerat; Chatsuvan, Thabtim; Suksawas Na Ayudhya, Wichitsawat; Morris, John

    2017-02-01

    We studied adsorption of organic compounds to a wide range of indoor materials, including plastics, gypsum board, carpet, and many others, under various relative humidity conditions by applying a conceptual model of the free energy of interfacial interactions of both van der Waals and Lewis acid-base (e-donor/acceptor) types. Data used for the analyses were partitioning coefficients of adsorbates between surface and gas phase obtained from three sources: our sorption experiments and two other published studies. Target organic compounds included apolars, monopolars, and bipolars. We established correlations of partitioning coefficients of adsorbates for a considered surface with the corresponding hexadecane/air partitioning coefficients of the adsorbates which are used as representative of a van der Waals descriptor instead of vapor pressure. The logarithmic adsorption coefficients of the apolars and weak bases, e.g., aliphatics and aromatics, to indoor materials linearly correlates well with the logarithmic hexadecane/air partitioning coefficients regardless of the surface polarity. The surface polarity in terms of e-donor/acceptor interactions becomes important for adsorption of the strong bases and bipolars, e.g., amines, phenols, and alcohols, to unpainted gypsum board. Under dry or humid conditions, the adsorption to flat plastic materials still linearly correlates well with the van der Waals interactions of the adsorbates, but no correlations were observed for the adsorption to fleecy or plush materials, e.g., carpet. Adsorption of highly bipolar compounds, e.g., phenol and isopropanol, is strongly affected by humidity, attributed to Lewis acid-base interactions with modified surfaces.

  19. Recent advances in aliphatic polyesters for drug delivery applications.

    PubMed

    Washington, Katherine E; Kularatne, Ruvanthi N; Karmegam, Vasanthy; Biewer, Michael C; Stefan, Mihaela C

    2017-07-01

    The use of aliphatic polyesters in drug delivery applications has been a field of significant interest spanning decades. Drug delivery strategies have made abundant use of polyesters in their structures owing to their biocompatibility and biodegradability. The properties afforded from these materials provide many avenues for the tunability of drug delivery systems to suit individual needs of diverse applications. Polyesters can be formed in several different ways, but the most prevalent is the ring-opening polymerization of cyclic esters. When used to form amphiphilic block copolymers, these materials can be utilized to form various drug carriers such as nanoparticles, micelles, and polymersomes. These drug delivery systems can be tailored through the addition of targeting moieties and the addition of stimuli-responsive groups into the polymer chains. There are also different types of polyesters that can be used to modify the degradation rates or mechanical properties. Here, we discuss the reasons that polyesters have become so popular, the current research focuses, and what the future holds for these materials in drug delivery applications. WIREs Nanomed Nanobiotechnol 2017, 9:e1446. doi: 10.1002/wnan.1446 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  20. Polymers for the stabilization and delivery of proteins topically and per os to the insect hemocoel through conjugation with aliphatic polyethylene glycol.

    PubMed

    Jeffers, Laura A; Shen, Hongyan; Bissinger, Brooke W; Khalil, Sayed; Gunnoe, T Brent; Roe, R Michael

    2014-10-01

    Co-feeding of aliphatic polyethylene glycol (PEG), phospholipase A2, anionic and ionic detergents, and amphipathic glycoside with bovine serum albumin (BSA) as a model protein to fourth stadium tobacco budworms, Heliothis virescens, did not affect the levels of BSA in the hemolymph. Covalent conjugation of small proteins like the decapeptide trypsin modulating oostatic factor (TMOF) to polyethylene glycol was previously shown to protect the peptide from protease attack and enhance its accumulation in the insect hemocoel. Whether this polymer chemistry could do the same for larger proteins was examined. The chemistry for the synthesis of polydispersed aliphatic PEG350-insulin and monodispersed aliphatic PEG333-insulin are described herein. Insulin was used for this synthesis and not BSA to better control conjugation among the available free amine groups. When PEGylated insulin or free insulin were fed in artificial diet to fifth stadium budworms, greater concentrations of insulin using the PEGylated variants were found in the hemolymph than when free insulin was used (a 6.7 and 7.3-fold increase for the PEG350 and PEG333 conjugates, respectively). When insulin is topically applied to the dorsum of H. virescens, no insulin is found in the hemolymph. However, after topical application of the PEGylated insulins, PEG350-insulin and PEG333-insulin were detected in the hemolymph. After injections of insulin into the hemocoel of fourth stadium H. virescens, insulin is completely cleared from the hemolymph in 120min. In comparison, PEG350-insulin and PEG333-insulin were present in the hemolymph for 300 and 240min after injection, respectively, translating to a 3.3 and 2.7-fold increase in the length of time insulin remains in the hemolymph after injection. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Investigation of Aromatic/Aliphatic Polyimides as Dispersants for Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delozier, Donavon M.; Watson, Kent A.; Smith, Joseph G., Jr.; Clancy, Thomas C.; Connell, John W.

    2006-01-01

    Novel aromatic/aliphatic polyimides were prepared from 2,7-diamino-9,9'- dioctylfluorene (AFDA) and aromatic dianhydrides. Upon investigating the effectiveness of these polyimides for dispersing single wall carbon nanotubes (SWNTs) in solution, three were discovered to disperse SWNTs in N,N-dimethylacetamide (DMAc). Two of these polyimides, one from 3,3',4,4'-oxydiphthalic anhydride (ODPA) and one from symmetric 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA), were used to prepare nanocomposites. Homogeneous polyimide/SWNT suspensions from both polymers were used in the preparation of films and fibers containing up to 1 wt% SWNTs. The samples were thermally treated to remove residual solvent and the films were characterized for SWNT dispersion by optical and high resolution scanning electron microscopy (HRSEM). Electrical and mechanical properties of the films were also determined. Electrospun fibers were examined by HRSEM to characterize SWNT alignment and orientation.

  2. Ru (III) Catalyzed Oxidation of Aliphatic Ketones by N-Bromosuccinimide in Aqueous Acetic Acid: A Kinetic Study

    PubMed Central

    Giridhar Reddy, P.; Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Kandlikar, S.

    2012-01-01

    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated. PMID:22654610

  3. Formation of combustible hydrocarbons and H2 during photocatalytic decomposition of various organic compounds under aerated and deaerated conditions.

    PubMed

    Mozia, Sylwia; Kułagowska, Aleksandra; Morawski, Antoni W

    2014-11-26

    A possibility of photocatalytic production of useful aliphatic hydrocarbons and H2 from various organic compounds, including acetic acid, methanol, ethanol and glucose, over Fe-modified TiO2 is discussed. In particular, the influence of the reaction atmosphere (N2, air) was investigated. Different gases were identified in the headspace volume of the reactor depending on the substrate. In general, the evolution of the gases was more effective in air compared to a N2 atmosphere. In the presence of air, the gaseous phase contained CO2, CH4 and H2, regardless of the substrate used. Moreover, formation of C2H6 and C3H8 in the case of acetic acid and C2H6 in the case of ethanol was observed. In case of acetic acid and methanol an increase in H2 evolution under aerated conditions was observed. It was concluded that the photocatalytic decomposition of organic compounds with simultaneous generation of combustible hydrocarbons and hydrogen could be a promising method of "green energy" production.

  4. Environmentally friendly chemoselective oxidation of primary aliphatic amines by using a biomimetic electrocatalytic system.

    PubMed

    Largeron, Martine; Chiaroni, Angèle; Fleury, Maurice-Bernard

    2008-01-01

    Environmentally friendly oxidation of primary aliphatic amines to imines has been successfully achieved, under metal-free conditions, by the use of diverse electrogenerated o-azaquinone mediators. High catalytic performance, together with high chemoselectivity, were observed with electron-poor o-azaquinone catalysts generated from 2-aminoresorcinol derivatives. Similar to copper amine oxidase enzymes, these mediators exhibited lower reactivity toward alpha-branched primary amines and no reactivity toward secondary amines. In the case of 3,4-aminophenol derivatives lacking a 2-hydroxy group, the generated o-azaquinone species failed to catalyze the oxidation of the amine to the corresponding imine. Further mechanistic considerations allowed a rationalization of the crucial role of the 2-hydroxy group in converting a catalytically inert species into a highly effective biomimetic catalyst.

  5. Indoor air quality in hair salons: Screening of volatile organic compounds and indicators based on health risk assessment

    NASA Astrophysics Data System (ADS)

    de Gennaro, Gianluigi; de Gennaro, Lucrezia; Mazzone, Antonio; Porcelli, Francesca; Tutino, Maria

    2014-02-01

    Volatile organic compounds (VOCs) are common ingredients in cosmetic products which can impact human health. This study monitored 12 hairdressing salons in order to assess the individual exposure of the people working in or frequenting these environments as well as identify the main products or activities responsible for the presence of these compounds. In each site halogenated, oxygenated, aliphatic and aromatic compounds were monitored during the work week with diffusive samplers suitable for thermal desorption and analysed using GC-MS. The study of indoor-outdoor concentration ratios and a knowledge of the composition of most of the products, whether ecological or traditional, used in the hair salons verified the presence of compounds linked to hairdressing activities. In particular, compounds widely used in products for hair care as spray lacquer and foam (butane), shampoo, balms, hair masks and oils (camphene, camphor, limonene, eucalyptol, alpha pinene, 1-methoxy-2-propanol, n-butanol and menthol), and hair dye (benzyl alcohol, isopropanol, limonene, hexane and methyl ethyl ketone) were found at much higher levels inside rather than outside the salons (mean I/O > 10). The importance of this finding is linked to the potential health hazards of some of the VOCs detected. Integrated indicators of health risk were proposed in this study to assess the criticality level and rank the investigated environments accordingly. The results of this study indicate that the level of VOC concentrations was most affected by the type of products used while the size of the environment, the efficiency of air exchange and the number of customers had less impact on those levels.

  6. Teratology study of amide derivatives of branched aliphatic carboxylic acids with 4-aminobenzensulfonamide in NMRI mice.

    PubMed

    Onishi, Yuko; Okada, Akinobu; Noyori, Hiroko; Okamura, Ai; Hen, Naama; Yagen, Boris; Bialer, Meir; Fujiwara, Michio

    2013-08-01

    Valproic acid (VPA), widely used to treat epilepsy, bipolar disorders, and migraine prophylaxis, is known to cause neural tube and skeletal defects in humans and animals. Aminobenzensulfonamide derivatives of VPA with branched aliphatic carboxylic acids, namely 2-methyl-N-(4-sulfamoyl-phenyl)-pentanamide (MSP), 2-ethyl-N-(4-sulfamoyl-phenyl)-butyramide (ESB), 2-ethyl-4-methyl-N-(4-sulfamoyl-phenyl)-pentanamide (EMSP), and 2-ethyl-N-(4-sulfamoyl-benzyl)-butyramide (ESBB), have shown more potent anticonvulsant activity than VPA in preclinical testing. Here, we investigated the teratogenic effects of these analogous compounds of VPA in NMRI mice. Pregnant NMRI mice were given a single subcutaneous injection of either VPA at 1.8 or 3.6 mmol/kg, or MSP, ESB, EMSP, or ESBB at 1.8, 3.6, or 4.8 mmol/kg on gestation day (GD) 8. Cesarean section was performed on GD 18, and the live fetuses were examined for external and skeletal malformations. Compared with VPA, which induced neural tube defects (NTDs) in fetuses at 1.8 and 3.6 mmol/kg, the analog derivatives induced no NTDs at dose levels up to 4.8 mmol/kg (except for a single case of exencephaly at 4.8 mmol/kg MSP). Skeletal examination showed several abnormalities mainly at the axial skeletal level with VPA at 1.8 mmol/kg. Fused vertebrae and/or fused ribs were also observed with MSP, ESB, EMSP, and ESBB, they were less severe and seen at a lower incidence that those induced by VPA at the same dose level. In addition to exerting more potent preclinical antiepileptic activity, teratology comparison indicates that aminobenzensulfonamide analogs are generally more weakly teratogenic than VPA. © 2013 Wiley Periodicals, Inc.

  7. Metabolism of the aliphatic nitramine 4-nitro-2,4-diazabutanal by Methylobacterium sp. strain JS178.

    PubMed

    Fournier, Diane; Trott, Sandra; Hawari, Jalal; Spain, Jim

    2005-08-01

    The aliphatic nitramine 4-nitro-2,4-diazabutanal (NDAB; C2H5N3O3) is a ring cleavage metabolite that accumulates during the aerobic degradation of the energetic compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by various Rhodococcus spp. NDAB is also produced during the alkaline hydrolysis of either RDX or octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and during the photolysis of RDX. Traces of NDAB were observed in a soil sampled from an ammunition-manufacturing facility contaminated with both HMX and RDX, suggesting natural attenuation. In this study, we report the isolation of a soil bacterium that is able to degrade NDAB under aerobic conditions. The isolate is a pink-pigmented facultative methylotroph affiliated with the genus Methylobacterium. The strain, named Methylobacterium sp. strain JS178, degrades NDAB as a sole nitrogen source, with concomitant growth and formation of 1 molar equivalent of nitrous oxide (N2O). Comparison of the growth yield of strain JS178 grown on NDAB, nitrite (NO2-), or ammonium (NH4+) as a nitrogen source revealed that 1 N equivalent is assimilated from each mole of NDAB, which completes the nitrogen mass balance. In radiotracer experiments, strain JS178 mineralized 1 C of the [14C]NDAB produced in situ from [14C]RDX by Rhodococcus sp. strain DN22. Studies on the regulation of NDAB degradation indicated that allantoin, an intermediate in the purine catabolic pathway and a central molecule in the storage and transport of nitrogen in plants, up-regulated the enzyme(s) involved in the degradation of the nitramine. The results reveal the potential for the sequential participation of rhodococci and methylobacteria to effect the complete degradation of RDX.

  8. Metabolism of the Aliphatic Nitramine 4-Nitro-2,4-Diazabutanal by Methylobacterium sp. Strain JS178

    PubMed Central

    Fournier, Diane; Trott, Sandra; Hawari, Jalal; Spain, Jim

    2005-01-01

    The aliphatic nitramine 4-nitro-2,4-diazabutanal (NDAB; C2H5N3O3) is a ring cleavage metabolite that accumulates during the aerobic degradation of the energetic compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by various Rhodococcus spp. NDAB is also produced during the alkaline hydrolysis of either RDX or octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and during the photolysis of RDX. Traces of NDAB were observed in a soil sampled from an ammunition-manufacturing facility contaminated with both HMX and RDX, suggesting natural attenuation. In this study, we report the isolation of a soil bacterium that is able to degrade NDAB under aerobic conditions. The isolate is a pink-pigmented facultative methylotroph affiliated with the genus Methylobacterium. The strain, named Methylobacterium sp. strain JS178, degrades NDAB as a sole nitrogen source, with concomitant growth and formation of 1 molar equivalent of nitrous oxide (N2O). Comparison of the growth yield of strain JS178 grown on NDAB, nitrite (NO2−), or ammonium (NH4+) as a nitrogen source revealed that 1 N equivalent is assimilated from each mole of NDAB, which completes the nitrogen mass balance. In radiotracer experiments, strain JS178 mineralized 1 C of the [14C]NDAB produced in situ from [14C]RDX by Rhodococcus sp. strain DN22. Studies on the regulation of NDAB degradation indicated that allantoin, an intermediate in the purine catabolic pathway and a central molecule in the storage and transport of nitrogen in plants, up-regulated the enzyme(s) involved in the degradation of the nitramine. The results reveal the potential for the sequential participation of rhodococci and methylobacteria to effect the complete degradation of RDX. PMID:16085803

  9. Long-Chain Alkyl Cyanides: Unprecedented Volatile Compounds Released by Pseudomonas and Micromonospora Bacteria.

    PubMed

    Montes Vidal, Diogo; von Rymon-Lipinski, Anna-Lena; Ravella, Srinivasa; Groenhagen, Ulrike; Herrmann, Jennifer; Zaburannyi, Nestor; Zarbin, Paulo H G; Varadarajan, Adithi R; Ahrens, Christian H; Weisskopf, Laure; Müller, Rolf; Schulz, Stefan

    2017-04-03

    The analysis of volatiles from bacterial cultures revealed long-chain aliphatic nitriles, a new class of natural products. Such nitriles are produced by both Gram-positive Micromonospora echinospora and Gram-negative Pseudomonas veronii bacteria, although the structures differ. A variable sequence of chain elongation and dehydration in the fatty acid biosynthesis leads to either unbranched saturated or unsaturated nitriles with an ω-7 double bond, such as (Z)-11-octadecenenitrile, or methyl-branched unsaturated nitriles with the double bond located at C-3, such as (Z)-13-methyltetradec-3-enenitrile. The nitrile biosynthesis starts from fatty acids, which are converted into their amides and finally dehydrated. The structures and biosyntheses of the 19 naturally occurring compounds were elucidated by mass spectrometry, synthesis, and feeding experiments with deuterium-labeled precursors. Some of the nitriles showed antimicrobial activity, for example, against multiresistant Staphylococcus aureus strains. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Likelihood of atom-atom contacts in crystal structures of halogenated organic compounds.

    PubMed

    Jelsch, Christian; Soudani, Sarra; Ben Nasr, Cherif

    2015-05-01

    The likelihood of occurrence of intermolecular contacts in crystals of halogenated organic compounds has been analysed statistically using tools based on the Hirshfeld surface. Several families of small halogenated molecules (containing organic F, Cl, Br or I atoms) were analysed, based on chemical composition and aromatic or aliphatic character. The behaviour of crystal contacts was also probed for molecules containing O or N. So-called halogen bonding (a halogen making short interactions with O or N, or a π interaction with C) is generally disfavoured, except when H is scarce on the molecular surface. Similarly, halogen⋯halogen contacts are more rare than expected, except for molecules that are poor in H. In general, the H atom is found to be the preferred partner of organic halogen atoms in crystal structures. On the other hand, C⋯C interactions in parallel π-stacking have a high propensity to occur in halogenated aromatic molecules. The behaviour of the four different halogen species (F, Cl, Br, I) is compared in several chemical composition contexts. The analysis tool can be refined by distinguishing several types for a given chemical species, such as H atoms bound to O or C. Such distinction shows, for instance, that C-H⋯Cl and O-H⋯O are the preferred interactions in compounds containing both O and Cl.

  11. Surface modification of metallic cardiovascular stents by strongly adhering aliphatic polyester coatings.

    PubMed

    Jérôme, Christine; Aqil, Abdelhafid; Voccia, Samuël; Labaye, David-Emmanuel; Maquet, Véronique; Gautier, Sandrine; Bertrand, Olivier F; Jérôme, Robert

    2006-03-01

    This article reports on a novel two-step strategy for the coating of cardiovascular stents by strongly adhering biocompatible and biodegradable aliphatic polyesters. First, a precoating of poly(ethylacrylate) (PEA) was electrografted onto the metallic substrate by cathodic reduction of the parent monomer in dimethylformamide (DMF). The electrodeposition of PEA, in a good solvent of it, was confirmed by both Infra-red and Raman spectroscopies. The pendant ester groups of PEA were then chemically reduced into aluminum alkoxides, able to initiate the ring-opening polymerization (ROP) of either D,L-lactide (LA) or epsilon-caprolactone (CL). Growth of biodegradable PLA or PCL coatings from the adhering precoating was confirmed by both Infra-red and Raman spectroscopies, and directly observed by scanning electron microscopy (SEM). This type of coating can act as an anchoring layer for the subsequent casting of drug-loaded polyester films allowing the controlled release of antiproliferative agents for the treatment of in-stent restenosis. (c) 2005 Wiley Periodicals, Inc.

  12. Changes on physico-chemical, textural, lipolysis and volatile compounds during the manufacture of dry-cured foal "cecina".

    PubMed

    Lorenzo, José M

    2014-01-01

    The changes in the physico-chemical and textural properties, lipolysis and volatile compounds during the manufacture of dry-cured foal "cecina" were studied. The pH increased during the last stages of processing but gradually declined over the curing period. TBARS values, hardness and chewiness increased with processing time from 0.14, 2.74 and 0.83 to 3.49 mg malonaldehyde/kg, 20.33 kg and 5.05 kg∗mm, respectively. Ripening time also affected the colour parameters: lightness (L*), redness (a*) and yellowness (b*) (P<0.001). The total average content of free fatty acid (FFA) increased significantly from 433.7 mg/100 g of fat in the raw pieces to 2655.5 mg/100 g of fat at the end of the drying-ripening stage. The main FFA at the end of the manufacturing process was palmitic acid (C16:0), followed by oleic (C18:1cis9), stearic (C18:0) and linoleic (C18:2n-6). A total of fifty five volatile compounds were identified during the manufacture of dry-cured foal "cecina", including esters, aldehydes, aliphatic hydrocarbons, branched hydrocarbons, alcohols, aromatic hydrocarbons, furans, ketones. Aldehydes reached their maximum level at the end of the post-salting stage. In the final product, esters became the dominant chemical compounds. © 2013.

  13. Multivariate analysis of volatile compounds detected by headspace solid-phase microextraction/gas chromatography: A tool for sensory classification of cork stoppers.

    PubMed

    Prat, Chantal; Besalú, Emili; Bañeras, Lluís; Anticó, Enriqueta

    2011-06-15

    The volatile fraction of aqueous cork macerates of tainted and non-tainted agglomerate cork stoppers was analysed by headspace solid-phase microextraction (HS-SPME)/gas chromatography. Twenty compounds containing terpenoids, aliphatic alcohols, lignin-related compounds and others were selected and analysed in individual corks. Cork stoppers were previously classified in six different classes according to sensory descriptions including, 2,4,6-trichloroanisole taint and other frequent, non-characteristic odours found in cork. A multivariate analysis of the chromatographic data of 20 selected chemical compounds using linear discriminant analysis models helped in the differentiation of the a priori made groups. The discriminant model selected five compounds as the best combination. Selected compounds appear in the model in the following order; 2,4,6 TCA, fenchyl alcohol, 1-octen-3-ol, benzyl alcohol and benzothiazole. Unfortunately, not all six a priori differentiated sensory classes were clearly discriminated in the model, probably indicating that no measurable differences exist in the chromatographic data for some categories. The predictive analyses of a refined model in which two sensory classes were fused together resulted in a good classification. Prediction rates of control (non-tainted), TCA, musty-earthy-vegetative, vegetative and chemical descriptions were 100%, 100%, 85%, 67.3% and 100%, respectively, when the modified model was used. The multivariate analysis of chromatographic data will help in the classification of stoppers and provide a perfect complement to sensory analyses. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. SOA formation by biogenic and carbonyl compounds: data evaluation and application.

    PubMed

    Ervens, Barbara; Kreidenweis, Sonia M

    2007-06-01

    The organic fraction of atmospheric aerosols affects the physical and chemical properties of the particles and their role in the climate system. Current models greatly underpredict secondary organic aerosol (SOA) mass. Based on a compilation of literature studies that address SOA formation, we discuss different parameters that affect the SOA formation efficiency of biogenic compounds (alpha-pinene, isoprene) and aliphatic aldehydes (glyoxal, hexanal, octanal, hexadienal). Applying a simple model, we find that the estimated SOA mass after one week of aerosol processing under typical atmospheric conditions is increased by a few microg m(-3) (low NO(x) conditions). Acid-catalyzed reactions can create > 50% more SOA mass than processes under neutral conditions; however, other parameters such as the concentration ratio of organics/NO(x), relative humidity, and absorbing mass are more significant. The assumption of irreversible SOA formation not limited by equilibrium in the particle phase or by depletion of the precursor leads to unrealistically high SOA masses for some of the assumptions we made (surface vs volume controlled processes).

  15. Aliphatic and aromatic plant biopolymer dynamics in soil particles isolated from sequential density fractionation

    NASA Astrophysics Data System (ADS)

    Caldwell, B.; Filley, T.; Sollins, P.; Lajtha, K.; Swanston, C.; Kleber, M.; Kramer, M.

    2007-12-01

    A recent multi-layer-based soil organic matter-mineral interaction mechanistic model to describe the nature of soil organic matter-mineral surface mechanism for soil organic matter stabilization predicts that proteinaceous and aliphatic materials establish the core of strong binding-interactions upon which other organic matter is layered. A key methodology providing data underpinning this hypothesis is sequential density fractionation where soil is partitioned into particles of increasing density with the assumption that a partial control on organic matter distribution through density series is the thickness of its layering. Four soils of varying mineralogy and texture were investigated for their biopolymer, isotopic, and mineralogical properties. Light fractions (<1.8 g/cm3), although dominanted by organic detritus, did not always contain the highest concentration of lignin and substituted fatty acids from cutin and suberin while heavier fractions, 1.8-2.6 g/cm3, exhibited a progressive decrease in concentration in plant derived biopolymers with density. Extractable lignin phenols exhibited a progressive oxidation state with density. The concentration of biopolymers roughly mirrored the C:N ratio of soil particles which dropped consistently with increasing particle density. Although, in all soils, both lignin phenols and SFA concentration generally decreased with increasing density the ratio SFA/lignin varied with density and depending upon the soil. All soils, except the oxisol, exhibited an increase in SFA with respect to lignin suggesting a selective stabilization of those material with respect to lignin. In the oxisol, which showed little variation in its hematite dominated mineralogy across density, SFA/lignin remained constant, potentially indicating a greater capacity to stabilize lignin in that system. Interestingly, the lignin oxidation state increased with density in the oxisol. Given the variation in soil character, the consistency in these trends it

  16. Process for the synthesis of aliphatic alcohol-containing mixtures

    DOEpatents

    Greene, Marvin I.; Gelbein, Abraham P.

    1984-01-01

    A process for the synthesis of mixtures which include saturated aliphatic alcohols is disclosed. In the first step of the process, the first catalyst activation stage, a catalyst, which comprises the oxides of copper, zinc, aluminum, potassium and one or two additional metals selected from the group consisting of chromium, magnesium, cerium, cobalt, thorium and lanthanum, is partially activated. In this step, a reducing gas stream, which includes hydrogen and at least one inert gas, flows past the catalyst at a space velocity of up to 5,000 liters (STP) per hour, per kilogram of catalyst. The partially activated catalyst is then subjected to the second step of the process, second-stage catalyst activation. In this step, the catalyst is contacted by an activation gas stream comprising hydrogen and carbon monoxide present in a volume ratio of 0.5:1 and 4:1, respectively, at a temperature of 200.degree. to 450.degree. C. and a pressure of between 35 and 200 atmospheres. The activation gas flows at a space velocity of from 1,000 to 20,000 liters (STP) per hour, per kilogram of catalyst. Second-stage activation continues until the catalyst is contacted with at least 500,000 liters (STP) of activation gas per kilogram of catalyst. The fully activated catalyst, in the third step of the process, contacts a synthesis gas stream comprising hydrogen and carbon monoxide.

  17. Process for the synthesis of aliphatic alcohol-containing mixtures

    DOEpatents

    Greene, M.I.; Gelbein, A.P.

    1984-10-16

    A process for the synthesis of mixtures which include saturated aliphatic alcohols is disclosed. In the first step of the process, the first catalyst activation stage, a catalyst, which comprises the oxides of copper, zinc, aluminum, potassium and one or two additional metals selected from the group consisting of chromium, magnesium, cerium, cobalt, thorium and lanthanum, is partially activated. In this step, a reducing gas stream, which includes hydrogen and at least one inert gas, flows past the catalyst at a space velocity of up to 5,000 liters (STP) per hour, per kilogram of catalyst. The partially activated catalyst is then subjected to the second step of the process, second-stage catalyst activation. In this step, the catalyst is contacted by an activation gas stream comprising hydrogen and carbon monoxide present in a volume ratio of 0.5:1 and 4:1, respectively, at a temperature of 200 to 450 C and a pressure of between 35 and 200 atmospheres. The activation gas flows at a space velocity of from 1,000 to 20,000 liters (STP) per hour, per kilogram of catalyst. Second-stage activation continues until the catalyst is contacted with at least 500,000 liters (STP) of activation gas per kilogram of catalyst. The fully activated catalyst, in the third step of the process, contacts a synthesis gas stream comprising hydrogen and carbon monoxide.

  18. Manganese-catalyzed selective oxidation of aliphatic C-H groups and secondary alcohols to ketones with hydrogen peroxide.

    PubMed

    Dong, Jia Jia; Unjaroen, Duenpen; Mecozzi, Francesco; Harvey, Emma C; Saisaha, Pattama; Pijper, Dirk; de Boer, Johannes W; Alsters, Paul; Feringa, Ben L; Browne, Wesley R

    2013-09-01

    An efficient and simple method for selective oxidation of secondary alcohols and oxidation of alkanes to ketones is reported. An in situ prepared catalyst is employed based on manganese(II) salts, pyridine-2-carboxylic acid, and butanedione, which provides good-to-excellent conversions and yields with high turnover numbers (up to 10 000) with H2 O2 as oxidant at ambient temperatures. In substrates bearing multiple alcohol groups, secondary alcohols are converted to ketones selectively and, in general, benzyl C-H oxidation proceeds in preference to aliphatic C-H oxidation. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Palladium-catalyzed hydroaminocarbonylation of alkenes with amines: a strategy to overcome the basicity barrier imparted by aliphatic amines.

    PubMed

    Zhang, Guoying; Gao, Bao; Huang, Hanmin

    2015-06-22

    A novel and efficient palladium-catalyzed hydroaminocarbonylation of alkenes with aminals has been developed under mild reaction conditions, and allows the synthesis of a wide range of N-alkyl linear amides in good yields with high regioselectivity. On the basis of this method, a cooperative catalytic system operating by the synergistic combination of palladium, paraformaldehyde, and acid was established for promoting the hydroaminocarbonylation of alkenes with both aromatic and aliphatic amines, which do not react well under conventional palladium-catalyzed hydroaminocarbonylation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. NNP-Type Pincer Imidazolylphosphine Ruthenium Complexes: Efficient Base-Free Hydrogenation of Aromatic and Aliphatic Nitriles under Mild Conditions.

    PubMed

    Adam, Rosa; Alberico, Elisabetta; Baumann, Wolfgang; Drexler, Hans-Joachim; Jackstell, Ralf; Junge, Henrik; Beller, Matthias

    2016-03-24

    A series of seven novel N(Im)N(H)P-type pincer imidazolylphosphine ruthenium complexes has been synthesized and fully characterized. The use of hydrogenation of benzonitrile as a benchmark test identified [RuHCl(CO)(N(Im)N(H) P(tBu))] as the most active catalyst. With its stable Ru-BH4 analogue, in which chloride is replaced by BH4, a broad range of (hetero)aromatic and aliphatic nitriles, including industrially interesting adiponitrile, has been hydrogenated under mild and base-free conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Low-temperature microchip nonaqueous capillary electrophoresis of aliphatic primary amines: applications to Titan chemistry.

    PubMed

    Cable, Morgan L; Stockton, Amanda M; Mora, Maria F; Willis, Peter A

    2013-01-15

    We demonstrate microchip nonaqueous capillary electrophoresis (μNACE) analysis of primary aliphatic amines (C1-C18) in ethanol down to -20 °C as a first step in adapting microfluidic protocols for in situ analysis on Titan. To our knowledge, this is the first report of a nonaqueous separation at -20 °C on-chip. Limits of detection (LODs) ranged from 1.0 nM to 2.6 nM, and we identified several primary amines ranging in length from C2 to C16 in Titan aerosol analogue (tholin) samples; new amines were also detected in a tholin sample exposed to oxygen and liquid water. This preliminary work validates the sensitivity and efficacy of microfluidic chemical analysis of complex organics with relevance to Titan aerosols and surface deposits.

  2. Effect of the type of frying culinary fat on volatile compounds isolated in fried pork loin chops by using SPME-GC-MS.

    PubMed

    Ramírez, María Rosario; Estévez, Mario; Morcuende, David; Cava, Ramón

    2004-12-15

    The effect of the type of frying culinary fat (olive oil, sunflower oil, butter, and pig lard) on volatile compounds isolated from fried pork loin chops (m. Longissimus dorsi) was measured by SPME-GC-MS. Frying modified the fatty acid composition of lipids from pork loin chops, which tended to be similar to that of the culinary fat used to fry. Volatile compounds formed from the oxidation of fatty acids increased, such as aldehydes, ketones, alcohols, and hydrocarbons. Besides, each culinary fat used modified the volatile profiles in fried meat differently. Sunflower oil-fried pork loin chops presented the highest aldehyde aliphatic content, probably due to their highest content of polyunsaturated acids. Hexanal, the most abundant aldehyde in fried samples, presented the most elevated content in sunflower oil-fried pork loin chops. In addition, these samples presented more heterocyclic compounds from the Maillard reaction than other fried samples. Volatiles detected in olive oil-fried pork loin chops were mainly lipid-derived compounds such as pentan-1-ol, hexanal, hept-2-enal, nonanal, decanal, benzaldehyde, and nonan-2-one. Butter-fried pork loins were abundant in ketones with a high number of carbons (heptan-2-one, nonan-2-one, undecan-2-one, tridecanone, and heptadecan-2-one). Pig lard-fried pork loin chops presented some Strecker aldehydes isolated in only these samples, such as 2-methylbutanal and 3-(methylthio)propanal, and a sulfur compound (dimethyl disulfide) related to Strecker aldehydes.

  3. Oxidation of aliphatic, branched chain, and aromatic hydrocarbons by Nocardia cyriacigeorgica isolated from oil-polluted sand samples collected in the Saudi Arabian Desert.

    PubMed

    Le, Thi Nhi-Cong; Mikolasch, Annett; Awe, Susanne; Sheikhany, Halah; Klenk, Hans-Peter; Schauer, Frieder

    2010-06-01

    A soil bacterium isolated from oil-polluted sand samples collected in the Saudi Arabian Desert has been determined as Nocardia cyriacigeorgica, which has a high capacity of degrading and utilizing a broad range of hydrocarbons. The metabolic pathways of three classes of hydrocarbons were elucidated by identifying metabolites in cell-free extracts analyzed by GC/MS and HPLC/UV-Vis in comparison with standard compounds. During tetradecane oxidation, tetradecanol; tetradecanoic acid; dodecanoic acid; decanoic acid could be found as metabolites, indicating a monoterminal degradation pathway of n -alkanes. The oxidation of pristane resulted in the presence of pristanoic acid; 2-methylglutaric acid; 4,8-dimethylnonanoic acid; and 2,6-dimethylheptanoic acid, which give rise to a possible mono- and di-terminal oxidation. In case of sec -octylbenzene, eight metabolites were detected including 5-phenylhexanoic acid; 3-phenylbutyric acid; 2-phenylpropionic acid; beta -methylcinnamic acid; acetophenone; beta -hydroxy acetophenone; 2,3-dihydroxy benzoic acid and succinic acid. From these intermediates a new degradation pathway for sec -octylbenzene was investigated. Our results indicate that N. cyriacigeorgica has the ability to degrade aliphatic and branched chain alkanes as well as alkylbenzene effectively and, therefore, N. cyriacigeorgica is probably a suitable bacterium for biodegradation of oil or petroleum products in contaminated soils. ((c) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  4. In situ and laboratory studies on the fate of specific organic compounds in an anaerobic landfill leachate plume, 1. Experimental conditions and fate of phenolic compounds

    NASA Astrophysics Data System (ADS)

    Nielsen, Per H.; Albrechtsen, Hans-Jørgen; Heron, Gorm; Christensen, Thomas H.

    1995-11-01

    The transformation of specific organic compounds was investigated by in situ and laboratory experiments in an anaerobic landfill leachate pollution plume at four different distances from the landfill. This paper presents the experimental conditions in the in situ microcosm and laboratory batch microcosm experiments performed and the results on the fate of 7 phenolic compounds. Part 2 of this series of papers, also published in this issue, presents the results on the fate of 8 aromatic compounds and 4 chlorinated aliphatic compounds. The redox conditions in the plume were characterized as methanogenic, Fe(III)-reducing and NO 3--reducing by the redox sensitive species present in groundwater and sediment and by bioassays. With a few exceptions the aquifer redox conditions were maintained throughout the experiments as monitored by redox sensitive species present in groundwater during the experiments, by redox sensitive species present in the sediment after the experiments and by bioassays performed after the experiments. Transformation of nitrophenol was very fast close to the landfill in strongly reducing conditions, while transformation was slower in the more oxidized part of the plume. Lag phases for the nitrophenols were short (maximum 10 days). Phenol was only transformed in the more distant part of the plume in experiments where NO 3-, Fe(III) and Mn(IV) reduction was dominant. Lag phases for phenol were either absent or lasted up to 2 months. Dichlorophenols were only transformed in experiments representing strongly reducing, presumably methanogenic, redox conditions close to the landfill after lag phases of up to 3 months. Transformation of o-cresol was not observed in any of the experiments throughout the plume. Generally, there was good accordance between the results obtained by in situ and laboratory experiments, both concerning redox conditions and the fate of the phenolic compounds. However, for phenol and 2,4-dichlorophenol, transformation was observed

  5. Platinum-Catalyzed Terminal-Selective C(sp3)–H Oxidation of Aliphatic Amines

    PubMed Central

    Lee, Melissa; Sanford, Melanie S.

    2016-01-01

    This paper describes the terminal-selective Pt-catalyzed C(sp3)–H oxidation of aliphatic amines without the requirement for directing groups. CuCl2 is employed as a stoichiometric oxidant, and the reactions proceed in high yield at Pt loadings as low as 1 mol %. These transformations are conducted in the presence of sulfuric acid, which reacts with the amine substrates in situ to form ammonium salts. We propose that protonation of the amine serves at least three important roles: (i) it renders the substrates soluble in the aqueous reaction medium; (ii) it limits binding of the amine nitrogen to Pt or Cu; and (ii) it electronically deactivates the C–H bonds proximal to the nitrogen center. We demonstrate that this strategy is effective for the terminal-selective C(sp3)–H oxidation of a variety of primary, secondary and tertiary amines. PMID:26439251

  6. Organic compounds in produced waters from shale gas wells.

    PubMed

    Maguire-Boyle, Samuel J; Barron, Andrew R

    2014-01-01

    A detailed analysis is reported of the organic composition of produced water samples from typical shale gas wells in the Marcellus (PA), Eagle Ford (TX), and Barnett (NM) formations. The quality of shale gas produced (and frac flowback) waters is a current environmental concern and disposal problem for producers. Re-use of produced water for hydraulic fracturing is being encouraged; however, knowledge of the organic impurities is important in determining the method of treatment. The metal content was determined by inductively coupled plasma optical emission spectrometry (ICP-OES). Mineral elements are expected depending on the reservoir geology and salts used in hydraulic fracturing; however, significant levels of other transition metals and heavier main group elements are observed. The presence of scaling elements (Ca and Ba) is related to the pH of the water rather than total dissolved solids (TDS). Using gas chromatography mass spectrometry (GC/MS) analysis of the chloroform extracts of the produced water samples, a plethora of organic compounds were identified. In each water sample, the majority of organics are saturated (aliphatic), and only a small fraction comes under aromatic, resin, and asphaltene categories. Unlike coalbed methane produced water it appears that shale oil/gas produced water does not contain significant quantities of polyaromatic hydrocarbons reducing the potential health hazard. Marcellus and Barnett produced waters contain predominantly C6-C16 hydrocarbons, while the Eagle Ford produced water shows the highest concentration in the C17-C30 range. The structures of the saturated hydrocarbons identified generally follows the trend of linear > branched > cyclic. Heterocyclic compounds are identified with the largest fraction being fatty alcohols, esters, and ethers. However, the presence of various fatty acid phthalate esters in the Barnett and Marcellus produced waters can be related to their use in drilling fluids and breaker additives

  7. Generation of standard gas mixtures of halogenated, aliphatic, and aromatic compounds and prediction of the individual output rates based on molecular formula and boiling point.

    PubMed

    Thorenz, Ute R; Kundel, Michael; Müller, Lars; Hoffmann, Thorsten

    2012-11-01

    In this work, we describe a simple diffusion capillary device for the generation of various organic test gases. Using a set of basic equations the output rate of the test gas devices can easily be predicted only based on the molecular formula and the boiling point of the compounds of interest. Since these parameters are easily accessible for a large number of potential analytes, even for those compounds which are typically not listed in physico-chemical handbooks or internet databases, the adjustment of the test gas source to the concentration range required for the individual analytical application is straightforward. The agreement of the predicted and measured values is shown to be valid for different groups of chemicals, such as halocarbons, alkanes, alkenes, and aromatic compounds and for different dimensions of the diffusion capillaries. The limits of the predictability of the output rates are explored and observed to result in an underprediction of the output rates when very thin capillaries are used. It is demonstrated that pressure variations are responsible for the observed deviation of the output rates. To overcome the influence of pressure variations and at the same time to establish a suitable test gas source for highly volatile compounds, also the usability of permeation sources is explored, for example for the generation of molecular bromine test gases.

  8. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots.

    PubMed

    Powell, C L; Goltz, M N; Agrawal, A

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~1.9mgL(-1), and initial aqueous [CAH] ~150μgL(-1); cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12±0.01 and 0.59±0.07d(-1), respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Enzymatic Degradation of Aromatic and Aliphatic Polyesters by P. pastoris Expressed Cutinase 1 from Thermobifida cellulosilytica

    PubMed Central

    Gamerith, Caroline; Vastano, Marco; Ghorbanpour, Sahar M.; Zitzenbacher, Sabine; Ribitsch, Doris; Zumstein, Michael T.; Sander, Michael; Herrero Acero, Enrique; Pellis, Alessandro; Guebitz, Georg M.

    2017-01-01

    To study hydrolysis of aromatic and aliphatic polyesters cutinase 1 from Thermobifida cellulosilytica (Thc_Cut1) was expressed in P. pastoris. No significant differences between the expression of native Thc_Cut1 and of two glycosylation site knock out mutants (Thc_Cut1_koAsn and Thc_Cut1_koST) concerning the total extracellular protein concentration and volumetric activity were observed. Hydrolysis of poly(ethylene terephthalate) (PET) was shown for all three enzymes based on quantification of released products by HPLC and similar concentrations of released terephthalic acid (TPA) and mono(2-hydroxyethyl) terephthalate (MHET) were detected for all enzymes. Both tested aliphatic polyesters poly(butylene succinate) (PBS) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were hydrolyzed by Thc_Cut1 and Thc_Cut1_koST, although PBS was hydrolyzed to significantly higher extent than PHBV. These findings were also confirmed via quartz crystal microbalance (QCM) analysis; for PHBV only a small mass change was observed while the mass of PBS thin films decreased by 93% upon enzymatic hydrolysis with Thc_Cut1. Although both enzymes led to similar concentrations of released products upon hydrolysis of PET and PHBV, Thc_Cut1_koST was found to be significantly more active on PBS than the native Thc_Cut1. Hydrolysis of PBS films by Thc_Cut1 and Thc_Cut1_koST was followed by weight loss and scanning electron microscopy (SEM). Within 96 h of hydrolysis up to 92 and 41% of weight loss were detected with Thc_Cut1_koST and Thc_Cut1, respectively. Furthermore, SEM characterization of PBS films clearly showed that enzyme tretment resulted in morphological changes of the film surface. PMID:28596765

  10. The formation of quasi-alicyclic rings in alkyl-aromatic compounds

    NASA Astrophysics Data System (ADS)

    Straka, Pavel; Buryan, Petr; Bičáková, Olga

    2018-02-01

    The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.

  11. Process and catalyst for carbonylating olefins

    DOEpatents

    Zoeller, Joseph Robert

    1998-06-02

    Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

  12. Temporary protection of metals against atmospheric corrosion by saturated straight chain aliphatic monocarboxylates. Mechanisms of inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapin, C.; Steinmetz, P.; Steinmetz, J.

    1998-12-31

    This work was devoted to the investigations of the ability of saturated straight chain aliphatic monocarboxylates to inhibit corrosion of mild steel and zinc in aerated aqueous solutions. Performances of inhibitors were shown to be dependent on their chain length, their concentration and the immersion duration. Both crystallographic parameters and solubilities of iron and zinc carboxylates were determined. Then potential-pH diagrams of iron and zinc in water were built taking the presence of metallic soaps into account. According to these diagrams, the passivation of metals was attributed to the growth of films containing metallic soaps. This model confirms that previouslymore » proposed for inhibition of copper and magnesium by the same carboxylates.« less

  13. Contribution of species-specific chemical signatures to soil organic matter in Kohala, HI.

    NASA Astrophysics Data System (ADS)

    Stewart, C. E.; Amatangelo, K.; Neff, J. C.

    2008-12-01

    Soil organic matter (SOM) inherits much of its chemical structure from the dominant vegetation, including phenolic (lignin-derived), aromatic, and aliphatic (cutin and wax-derived) compounds. The Hawaiian fern species Dicranopteris decomposes more slowly than the angiosperm, Cheirodendron due to high concentrations of recalcitrant C compounds. These aliphatic fern leaf waxes are well-preserved and may comprise a large portion of the recalcitrant organic matter in these soils. Our objective was to determine the chemical signature of fern and angiosperm vegetation types and trace the preservation or loss of those compounds into the soil. We collected live tissue, litter, roots, and soil (<53 μm) from five dominant vegetation types including two angiosperms Cheirodendron and Metrosideros, two basal ferns Dicranopteris and Cibotium and a polypod fern Diplazium in Kohala, HI. We characterized them via TMAH-pyrolysis-gas chromatography-mass spectrometry. We found distinct chemical differences between angiosperm and fern vegetation; angiosperm contained more G- and S-derived lignin structures and the fern species contained greater relative abundances of P-derived lignin and tannin-derivatives. There was a general decrease of lignin-derived phenolic compounds from live to litter to soils and an increase in more recalcitrant, aromatic and aliphatic C. Recalcitrant fern-derived cutin and leaf waxes (alkene and alkanes structures) were evident in the soils, but clear species differences were not observed. Although ferns contain distinct lipid and wax-derived compounds, soils developed under fern do not appear to accumulate these compounds in SOM.

  14. Aliphatic peptides show similar self-assembly to amyloid core sequences, challenging the importance of aromatic interactions in amyloidosis.

    PubMed

    Lakshmanan, Anupama; Cheong, Daniel W; Accardo, Angelo; Di Fabrizio, Enzo; Riekel, Christian; Hauser, Charlotte A E

    2013-01-08

    The self-assembly of abnormally folded proteins into amyloid fibrils is a hallmark of many debilitating diseases, from Alzheimer's and Parkinson diseases to prion-related disorders and diabetes type II. However, the fundamental mechanism of amyloid aggregation remains poorly understood. Core sequences of four to seven amino acids within natural amyloid proteins that form toxic fibrils have been used to study amyloidogenesis. We recently reported a class of systematically designed ultrasmall peptides that self-assemble in water into cross-β-type fibers. Here we compare the self-assembly of these peptides with natural core sequences. These include core segments from Alzheimer's amyloid-β, human amylin, and calcitonin. We analyzed the self-assembly process using circular dichroism, electron microscopy, X-ray diffraction, rheology, and molecular dynamics simulations. We found that the designed aliphatic peptides exhibited a similar self-assembly mechanism to several natural sequences, with formation of α-helical intermediates being a common feature. Interestingly, the self-assembly of a second core sequence from amyloid-β, containing the diphenylalanine motif, was distinctly different from all other examined sequences. The diphenylalanine-containing sequence formed β-sheet aggregates without going through the α-helical intermediate step, giving a unique fiber-diffraction pattern and simulation structure. Based on these results, we propose a simplified aliphatic model system to study amyloidosis. Our results provide vital insight into the nature of early intermediates formed and suggest that aromatic interactions are not as important in amyloid formation as previously postulated. This information is necessary for developing therapeutic drugs that inhibit and control amyloid formation.

  15. Atmospheric reactivity studies of aliphatic amines

    USDA-ARS?s Scientific Manuscript database

    Ambient studies of particulate matter have shown that alkyl amines are often present in particles in areas impacted by agricultural emissions. These locations include California’s Central Valley and Inland Empire and Utah’s Cache Valley. These compounds are not typically observed in airsheds that so...

  16. Simultaneous Solid Phase Extraction and Derivatization of Aliphatic Primary Amines Prior to Separation and UV-Absorbance Detection

    PubMed Central

    Felhofer, Jessica L.; Scida, Karen; Penick, Mark; Willis, Peter A.; Garcia, Carlos D.

    2013-01-01

    To overcome the problem of poor sensitivity of capillary electrophoresis-UV absorbance for the detection of aliphatic amines, a solid phase extraction and derivatization scheme was developed. This work demonstrates successful coupling of amines to a chromophore immobilized on a solid phase and subsequent cleavage and analysis. Although the analysis of many types of amines is relevant for myriad applications, this paper focuses on the derivatization and separation of amines with environmental relevance. This work aims to provide the foundations for future developments of an integrated sample preparation microreactor capable of performing simultaneous derivatization, preconcentration, and sample cleanup for sensitive analysis of primary amines. PMID:24054648

  17. Physico-chemical properties of binary mixtures of aliphatic and aromatic solvents at 313 K on acoustical data

    NASA Astrophysics Data System (ADS)

    Dahire, S. L.; Morey, Y. C.; Agrawal, P. S.

    2015-12-01

    Density (ρ), viscosity (η), and ultrasonic velocity ( U) of binary mixtures of aliphatic solvents like dimethylformamide (DMF) and dimethylsulfoxide (DMSO) with aromatic solvents viz. chlorobenzene (CB), bromobenzene (BB), and nitrobenzene (NB) have been determined at 313 K. These parameters were used to calculate the adiabatic compressibility (β), intermolecular free length ( L f), molar volume ( V m), and acoustic impedance ( Z). From the experimental data excess molar volume ( V m E ), excess intermolecular free length ( L f E )), excess adiabatic compressibility (βE), and excess acoustic impedance ( Z E) have been computed. The excess values were correlated using Redlich-Kister polynomial equation to obtain their coefficients and standard deviations (σ).

  18. Strongly enhanced Fenton degradation of organic pollutants by cysteine: An aliphatic amino acid accelerator outweighs hydroquinone analogues.

    PubMed

    Li, Tuo; Zhao, Zhenwen; Wang, Quan; Xie, Pengfei; Ma, Jiahai

    2016-11-15

    Quinone-hydroquinone analogues have been proven to be efficient promoters of Fenton reactions by accelerating the Fe(III)/Fe(II) redox cycle along with self-destruction. However, so far there is little information on non-quinone-hydroquinone cocatalyst for Fenton reactions. This study found that cysteine, a common aliphatic amino acid, can strongly enhance Fenton degradation of organic pollutants by accelerating Fe(III)/Fe(II) redox cycle, as quinone-hydroquinone analogues do. Further, cysteine is superior to quinone-hydroquinone analogues in catalytic activity, H 2 O 2 utilization and atmospheric limits. The cocatalysis mechanism based on the cycle of cysteine/cystine was proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. One-year dog toxicity study of D-002, a mixture of aliphatic alcohols.

    PubMed

    Alemán, C; Rodeiro, I; Noa, M; Menéndez, R; Gaméz, R; Hernandez, C; Más, R

    2001-01-01

    D-002 is a mixture of high-molecular-weight aliphatic alcohols, obtained from bees wax (Apis mellifera), with mild anti-inflammatory properties and effective anti-ulcer activities demonstrated in experimental models. This study investigated the oral toxicity of D-002 administered for 1 year to beagle dogs. Twenty-four beagle dogs (12 males and 12 females) were distributed randomly in three experimental groups (four animals per group): a control and two treated groups received D-002 at 50 and 250 mg kg(-1) (7 days/week) by gastric gavage. Overall, D-002 was well tolerated throughout the study. No signs or symptoms of toxicity were observed, and no mortality occurred during the study. All groups showed similar weight gain and food consumption. No hematological, blood biochemical or histopathological disturbances attributable to treatment were observed. This study shows no drug-related toxicity induced by long-term administration of up to 250 mg kg(-1) D-002 to beagle dogs. Copyright 2001 John Wiley & Sons, Ltd.

  20. Radiolysis of N-acetyl amino acids as model compounds for radiation degradation of polypeptides

    NASA Astrophysics Data System (ADS)

    Wayne Garrett, R.; Hill, David J. T.; Ho, Sook-Ying; O'Donnell, James H.; O'Sullivan, Paul W.; Pomery, Peter J.

    Radiation chemical yields of (i) the volatile radiolysis products and (ii) the trapped free radicals from the y-radiolysis of the N-acetyl derivatives of glycine, L-valine, L-phenylalanine and L-tyrosine in the polycrystalline state have been determined at room temperature (303 K). Carbon dioxide was found to be the major molecular product for all these compounds with G(CO 2) varying from 0.36 for N-acetyl-L-tyrosine to 8 for N-acetyl-L-valine. There was evidence for some scission of the N-C α bond, indicated by the production of acetamide and the corresponding aliphatic acid, but the determination reaction was found to be of much lesser importance than the decarboxylation reaction. A protective effect of the aromatic ring in N-acetyl-L-phenylalanine and in N-acetyl-L-tyrosine was indicated by the lower yields of volatile products for these compounds. The yields of trapped free radicals were found to vary with the nature of the amino acid side chain, increasing with chain length and chain branching. The radical yields were decreased by incorporation of an aromatic moiety in the side chain, this effect being greater for the tyrosyl side chain than for the phenyl side chain. The G(R·) values showed a good correlation with G(CO 2) indicating that a common reaction may be involved in radical production and carbon dioxide formation.

  1. Gas-Phase Reactions of Dimethyl Disulfide with Aliphatic Carbanions - A Mass Spectrometry and Computational Study

    NASA Astrophysics Data System (ADS)

    Franczuk, Barbara; Danikiewicz, Witold

    2018-03-01

    Ion-molecule reactions of Me2S2 with a wide range of aliphatic carbanions differing by structure and proton affinity values have been studied in the gas phase using mass spectrometry techniques and DFT calculations. The analysis of the spectra shows a variety of product ions formed via different reaction mechanisms, depending on the structure and proton affinity of the carbanion. Product ions of thiophilic reaction ( m/z 47), SN2 ( m/z 79), and E2 elimination - addition sequence of reactions ( m/z 93) can be observed. Primary products of thiophilic reaction can undergo subsequent SN2 and proton transfer reactions. Gibbs free energy profiles calculated for experimentally observed reactions using PBE0/6-311+G(2d,p) method show good agreement with experimental results. [Figure not available: see fulltext.

  2. Comparison of different methodologies for detailed screening of Taraxacum officinale honey volatiles.

    PubMed

    Jerković, Igor; Marijanović, Zvonimir; Kranjac, Marina; Radonić, Ani

    2015-02-01

    Headspace solid-phase microextraction (HS-SPME), ultrasonic solvent extraction (USE) and solid phase extraction (SPE), followed by GC-FID/MS were used for screening of dandelion (Taraxacum officinale Weber) honey headspace, volatiles and semi-volatiles. The obtained results constitute a breakthrough towards screening of dandelion honey since dominant compounds identified in the extracts were not previously reported for this honey type. Nitriles dominated in the headspace, particularly 3-methylpentanenitrile (up to 29.9%) and phenylacetonitrile (up to 20.9%). Lower methyl branched aliphatic acids and norisoprenoids were relevant minor constituents of the headspace. The extracts contained phenylacetic acid (up to 24.0%) and dehydrovomifoliol (up to 19.3%) as predominant compounds, while 3-methylpentanenitrile and phenylacetonitrile were detected in the extracts in minor abundance. Dehydrovomifoliol can be considered more characteristic for dandelion honey in distinction from phenylacetic acid. Low molecular aliphatic acids, benzene derivatives and an array of higher aliphatic compounds were also found in the extracts. The results of SPE/GC-FID/MS were very similar to USE/GC-FID/MS with the solvent dichloromethane. The use of all applied methodologies was relevant for the comprehensive chemical fingerprinting of dandelion honey volatiles.

  3. Fungal succession in relation to volatile organic compounds emissions from Scots pine and Norway spruce leaf litter-decomposing fungi

    NASA Astrophysics Data System (ADS)

    Isidorov, Valery; Tyszkiewicz, Zofia; Pirożnikow, Ewa

    2016-04-01

    Leaf litter fungi are partly responsible for decomposition of dead material, nutrient mobilization and gas fluxes in forest ecosystems. It can be assumed that microbial destruction of dead plant materials is an important source of volatile organic compounds (VOCs) emitted into the atmosphere from terrestrial ecosystems. However, little information is available on both the composition of fungal VOCs and their producers whose community can be changed at different stages of litter decomposition. The fungal community succession was investigated in a litter bag experiment with Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) needle litter. The succession process can be divided into a several stages controlled mostly by changes in litter quality. At the very first stages of decomposition the needle litter was colonized by ascomycetes which can use readily available carbohydrates. At the later stages, the predominance of Trichoderma sp., the known producers of cellulolytic enzymes, was documented. To investigate the fungi-derived VOCs, eight fungi species were isolated. As a result of gas chromatographic analyses, as many as 75C2sbnd C15 fungal volatile compounds were identified. Most components detected in emissions were very reactive substances: the principal groups of VOCs were formed by monoterpenes, carbonyl compounds and aliphatic alcohols. It was found that production of VOCs by fungi is species specific: only 10 metabolites were emitted into the gas phase by all eight species. The reported data confirm that the leave litter decomposition is important source of reactive organic compounds under the forest canopy.

  4. Nitrogen split dose fertilization, plant age and frost effects on phytochemical content and sensory properties of curly kale (Brassica oleracea L. var. sabellica).

    PubMed

    Groenbaek, Marie; Jensen, Sidsel; Neugart, Susanne; Schreiner, Monika; Kidmose, Ulla; Kristensen, Hanne L

    2016-04-15

    We investigated how concentrations of sensory relevant compounds: glucosinolates (GLSs), flavonoid glycosides, hydroxycinnamic acid derivatives and sugars in kale responded to split dose and reduced nitrogen (N) fertilization, plant age and controlled frost exposure. In addition, frost effects on sensory properties combined with N supply were assessed. Seventeen week old kale plants showed decreased aliphatic GLSs at split dose N fertilization; whereas reduced N increased aliphatic and total GLSs. Ontogenetic effects were demonstrated for all compounds: sugars, aliphatic and total GLSs increased throughout plant development, whereas kaempferol and total flavonoid glycosides showed higher concentrations in 13 week old plants. Controlled frost exposure altered sugar composition slightly, but not GLSs or flavonoid glycosides. Reduced N supply resulted in less bitterness, astringency and pungent aroma, whereas frost exposure mainly influenced aroma and texture. N treatment explained most of the sensory variation. Producers should not rely on frost only to obtain altered sensory properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Comparative studies of cutins from lime (Citrus aurantifolia) and grapefruit (Citrus paradisi) after TFA hydrolysis.

    PubMed

    Hernández Velasco, Brenda Liliana; Arrieta-Baez, Daniel; Cortez Sotelo, Pedro Iván; Méndez-Méndez, Juan Vicente; Berdeja Martínez, Blanca Margarita; Gómez-Patiño, Mayra Beatriz

    2017-12-01

    Grapefruit and lime cutins were analyzed and compared in order to obtain information about their cutin architecture. This was performed using a sequential hydrolysis, first with trifluoroacetic acid to remove most of the polysaccharides present in the cutins, followed by an alkaline hydrolysis in order to obtain the main aliphatic compounds. Analysis by CPMAS 13 C NMR and ATR FT-IR of the cutins after 2.0 M TFA revealed that grapefruit cutin has independent aliphatic and polysaccharide domains while in the lime cutin these components could be homogeneously distributed. These observations were in agreement with an AFM analysis of the cutins obtained in the hydrolysis reactions. The main aliphatic compounds were detected and characterized as 16-hydroxy-10-oxo-hexadecanoic acid and 10,16-dihydroxyhexadecanoic acid. These were present in grapefruit cutin at 35.80% and 21.86% and in lime cutin at 20.44% and 40.36% respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Avocado fruit maturation and ripening: dynamics of aliphatic acetogenins and lipidomic profiles from mesocarp, idioblasts and seed.

    PubMed

    Rodríguez-López, Carlos Eduardo; Hernández-Brenes, Carmen; Treviño, Víctor; Díaz de la Garza, Rocío I

    2017-09-29

    Avocado fruit contains aliphatic acetogenins (oft-acetylated, odd-chain fatty alcohols) with promising bioactivities for both medical and food industries. However, we have scarce knowledge about their metabolism. The present work aimed to study changes in acetogenin profiles from mesocarp, lipid-containing idioblasts, and seeds from 'Hass' cultivar during fruit development, germination, and three harvesting years. An untargeted LC-MS based lipidomic analysis was also conducted to profile the lipidome of avocado fruit in each tissue. The targeted analysis showed that acetogenin profiles and contents remained unchanged in avocado mesocarp during maturation and postharvest ripening, germination, and different harvesting years. However, a shift in the acetogenin profile distribution, accompanied with a sharp increase in concentration, was observed in seed during early maturation. Untargeted lipidomics showed that this shift was accompanied with remodeling of glycerolipids: TAGs and DAGs decreased during fruit growing in seed. Remarkably, the majority of the lipidome in mature seed was composed by acetogenins; we suggest that this tissue is able to synthesize them independently from mesocarp. On the other hand, lipid-containing idioblasts accumulated almost the entire acetogenin pool measured in the whole mesocarp, while only having 4% of the total fatty acids. The lipidome of this cell type changed the most when the fruit was ripening after harvesting, TAGs decreased while odd-chain DAGs increased. Notably, idioblast lipidome was more diverse than that from mesocarp. Evidence shown here suggests that idioblasts are the main site of acetogenin biosynthesis in avocado mesocarp. This work unveiled the prevalence of aliphatic acetogenins in the avocado fruit lipidome and evidenced TAGs as initial donors of the acetogenin backbones in its biosynthesis. It also sets evidence for acetogenins being included in future works aimed at characterizing the avocado seed, as they are

  7. The Influence of a Presence of a Heavy Atom on (13)C Shielding Constants in Organomercury Compounds and Halogen Derivatives.

    PubMed

    Wodyński, Artur; Gryff-Keller, Adam; Pecul, Magdalena

    2013-04-09

    (13)C nuclear magnetic resonance shielding constants have been calculated by means of density functional theory (DFT) for several organomercury compounds and halogen derivatives of aliphatic and aromatic compounds. Relativistic effects have been included through the four-component Dirac-Kohn-Sham (DKS) method, two-component Zeroth Order Regular Approximation (ZORA) DFT, and DFT with scalar effective core potentials (ECPs). The relative shieldings have been analyzed in terms of the position of carbon atoms with respect to the heavy atom and their hybridization. The results have been compared with the experimental values, some newly measured and some found in the literature. The main aim of the calculations has been to evaluate the magnitude of heavy atom effects on the (13)C shielding constants and to check what are the relative contributions of scalar relativistic effects and spin-orbit coupling. Another object has been to compare the DKS and ZORA results and to check how the approximate method of accounting for the heavy-atom-on-light-atom (HALA) relativistic effect by means of scalar effective core potentials on heavy atoms performs in comparison with the more rigorous two- and four-component treatment.

  8. Thin-film microextraction coupled to LC-ESI-MS/MS for determination of quaternary ammonium compounds in water samples.

    PubMed

    Boyacı, Ezel; Sparham, Chris; Pawliszyn, Janusz

    2014-01-01

    The dual nature of the quaternary ammonium compounds, having permanently charged hydrophilic quaternary ammonium heads and long-chain hydrophobic tails, makes the sample preparation step and analysis of these compounds challenging. A high-throughput method based on thin-film solid-phase microextraction (SPME) and liquid chromatography mass spectrometry was developed for simultaneous quantitative analysis of nine benzylic and aliphatic quaternary ammonium compounds. Chromatographic separation and detection of analytes were obtained in reverse-phase mode in 8 min using a triple quadrupole mass spectrometer. Hydrophilic lipophilic balance particle-coated blades were found to be the most suitable among the different coatings tested in terms of recoveries and carryover on the blades. For desorption solvents, 70/30, v/v (A/B) with 0.1 % formic acid (where A is 10 mM ammonium acetate in acetonitrile/water (95/5 , v/v) and B is 0.1 %  (v/v) formic acid in isopropyl alcohol) was shown to be the most efficient solvent for the desorption of the analytes from the SPME sorbent. The SPME method was optimised in terms of extraction, pH, and preconditioning, as well as extraction and desorption times. Optimum conditions were 45 min of extraction time and 15 min of desorption time, all with agitation. The extraction was found to be optimum in a range of pH 6.0 to 8.0, which is consistent with the natural pH of water samples. Wide linear dynamic ranges with the developed method were obtained for each compound, enabling the application of the method for a wide range of concentrations. The developed method was validated according to the Food and Drug Administration criteria. The proposed method is the first SPME-based approach describing the applicability of the high-throughput thin-film SPME in a 96-well system for analysis of such challenging compounds.

  9. Synthesis and antimalarial activity study of some new Mannich bases of 7-chloro-4-aminoquinoline.

    PubMed

    Roy, Susanta; Chetia, Dipak; Rudrapal, Mithun; Prakash, Anil

    2013-05-01

    New derivatives of 7-chloro-4-aminoquinoline Mannich base were prepared by selectively modifying the aliphatic diethyl amino function of isoquine with different aliphatic/aromatic heterocyclic primary amino moieties at Mannich side chain. The synthesized compounds were characterized by their analytical and spectral data, and screened for in-vitro antimalarial activity against a chloroquine-sensitive 3D7 strain of Plasmodium falciparum. All the compounds showed in-vitro antimalarial activity at the tested dose; which, however, was considerably less than that of the standard reference drug, chloroquine. Among synthesized compounds, compounds with cyclohexyl (2f), methyl (2c) substitutions showed better activity than compounds substituted with n-octyl (2a), propyl (2b), 3-aminopropyl (2d) and furan-2- ylmethyl (2e) moieties at aminomethyl side chain. The results clearly demonstrate that the compound substituted with saturated cycloalkyl moiety (cyclohexyl) exhibited to some extent increased activity as compared to the compound containing heterocyclic moiety (furan-2-ylmethyl), and compounds with short chain alkyl substitutions (methyl, propyl) were found to be more active than that of compounds with long chain alkyl substitution (n-octyl).

  10. Bioorganometallic chemistry. 8. The molecular recognition of aromatic and aliphatic amino acids and substituted aromatic and aliphatic carboxylic acid guests with supramolecular ({eta}{sup 5}-pentamethylcyclopentadienyl)rhodium - nucleobase, nucleoside, and nucleotide cyclic trimer hosts via non-covalent {pi}-{pi} and hydrophobic interactions in water: Steric, electronic, and conformational parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H.; Ogo, Seiji; Fish, R.H.

    Molecular recognition, via non-covalent processes such as hydrogen bonding, {pi}-{pi}, and hydrophobic interactions, is an important biological phenomenon for guests, such as drugs, proteins, and other important biological molecules with, for example, host DNA/RNA. We have studied a novel molecular recognition process using guests that encompass aromatic and aliphatic amino acids [L-alanine, L-glutamine (L-Gln), L-histidine, L-isoleucine(L-Ile), L-leucine(L-Leu), L-phenylalanine(L-Phe), L-proline, L-tryptophan(L-Trp), L-valine(L-Val)], substituted aromatic carboxylic acids o-, m-, p-aminobenzoic acids (G1-3), benzoic acid (G4), phenylacetic acid (G5), p-methoxyphenylacetic acid (G6), o-methyoxybenozoic acid (G9), o-nitrobenzoic acid (G10), and aliphatic carboxylic acids [cyclohexylacetic acid (G7), 1-adamantanecarboxylic acid (G8)] with supramolecular, bioorganometallic hosts, ({eta}{supmore » 5}-pentamethylcyclopentadienyl)rhodium (Cp{sup *}Rh)-nucleobase, nucleoside, and nucleotide cyclic trimer complexes in aqueous solution at pH 7, utilizing {sup 1}H NMR, NOE, and molecular modeling techniques, and, as well, determining association constants (K{sub a}) and free energies of complexation ({Delta}{degree}G). The host-guest complexation occurs predominantly via non-covalent {pi}-{pi}, hydrophobic, and possible subtle H-bonding interactions, with steric, electronic, and molecular conformational parameters as important criteria. 8 refs., 6 figs., 3 tabs.« less

  11. Effects of large volume injection of aliphatic alcohols as sample diluents on the retention of low hydrophobic solutes in reversed-phase liquid chromatography.

    PubMed

    David, Victor; Galaon, Toma; Aboul-Enein, Hassan Y

    2014-01-03

    Recent studies showed that injection of large volume of hydrophobic solvents used as sample diluents could be applied in reversed-phase liquid chromatography (RP-LC). This study reports a systematic research focused on the influence of a series of aliphatic alcohols (from methanol to 1-octanol) on the retention process in RP-LC, when large volumes of sample are injected on the column. Several model analytes with low hydrophobic character were studied by RP-LC process, for mobile phases containing methanol or acetonitrile as organic modifiers in different proportions with aqueous component. It was found that starting with 1-butanol, the aliphatic alcohols can be used as sample solvents and they can be injected in high volumes, but they may influence the retention factor and peak shape of the dissolved solutes. The dependence of the retention factor of the studied analytes on the injection volume of these alcohols is linear, with a decrease of its value as the sample volume is increased. The retention process in case of injecting up to 200μL of upper alcohols is dependent also on the content of the organic modifier (methanol or acetonitrile) in mobile phase. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Integration of Biosynthesis and Long-Distance Transport Establish Organ-Specific Glucosinolate Profiles in Vegetative Arabidopsis[W

    PubMed Central

    Andersen, Tonni Grube; Nour-Eldin, Hussam Hassan; Fuller, Victoria Louise; Olsen, Carl Erik; Burow, Meike; Halkier, Barbara Ann

    2013-01-01

    Although it is essential for plant survival to synthesize and transport defense compounds, little is known about the coordination of these processes. Here, we investigate the above- and belowground source-sink relationship of the defense compounds glucosinolates in vegetative Arabidopsis thaliana. In vivo feeding experiments demonstrate that the glucosinolate transporters1 and 2 (GTR1 and GTR2), which are essential for accumulation of glucosinolates in seeds, are likely to also be involved in bidirectional distribution of glucosinolates between the roots and rosettes, indicating phloem and xylem as their transport pathways. Grafting of wild-type, biosynthetic, and transport mutants show that both the rosette and roots are able to synthesize aliphatic and indole glucosinolates. While rosettes constitute the major source and storage site for short-chained aliphatic glucosinolates, long-chained aliphatic glucosinolates are synthesized both in roots and rosettes with roots as the major storage site. Our grafting experiments thus indicate that in vegetative Arabidopsis, GTR1 and GTR2 are involved in bidirectional long-distance transport of aliphatic but not indole glucosinolates. Our data further suggest that the distinct rosette and root glucosinolate profiles in Arabidopsis are shaped by long-distance transport and spatially separated biosynthesis, suggesting that integration of these processes is critical for plant fitness in complex natural environments. PMID:23995084

  13. New Water Vapor Barrier Film Based on Lamellar Aliphatic-Monoamine-Bridged Polysilsesquioxane.

    PubMed

    Zhang, Cong; Zhang, Ce; Ding, Ruimin; Cui, Xinmin; Wang, Jing; Zhang, Qinghua; Xu, Yao

    2016-06-15

    Siloxane-based hybrid lamellar materials with ordered nanostructure units paralleling to the substrate have been widely used for water vapor barrier. However, it is very difficult to control the orientation of the lamellar units at molecular level. In this Research Article, a new lamellar bridged polysilsesquioxane (BPSQ) film, whose voids between lamellae were filled by pendant alkyl chains in the organic bridge, was prepared via the stoichiometric reaction between 3-glycidoxypropyltrimethoxysilane and aliphatic monoamine at 60 °C without catalyst. Experimental evidence obtained from FT-IR, MS, NMR, and GIXRD techniques suggested that the as-prepared BPSQ films were constructed by lamellar units with disordered orientation. Nonetheless, they possessed satisfactory water vapor barrier performance for potassium dihydrogen phosphate (KDP) and deuterated potassium dihydrogen phosphate (DKDP) optical crystals, and the water vapor transmission rate through BPSQ film with thickness of 25 μm was as low as 20.3 g·m(-2)·d(-1). Those results proved that filling the voids between molecular lamellae with alkyl chains greatly weakened the effect of lamellar unit orientation on the vapor barrier property of BPSQ film.

  14. Chemistry of anti-AIDS and anticancer compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, S.

    1992-01-01

    Several types of prodrugs of 2[prime], 3[prime]-dideoxynucleosides were designed and synthesized for evaluation as anti-AIDS drugs. These prodrugs include 5[prime]-O-acyl-2[prime], 3[prime]-dideoxynucleosides, in which the acyl groups are derived from both aromatic and aliphatic acids, [alpha]-amino acids, diacylglycerol carbonic acids, and diacylglycerol carbamic acids. By applying the pyridium-dihydropyridine redox delivery system to deliver 2[prime], 3[prime]-dideoxynucleosides to the central nervous system, 1,4-dihydropyridine-2[prime], 3[prime]-dideoxy-inosine and -adenosine compounds were synthesized. 5[prime]-Esters of 2[prime], 3[prime]-dideoxyinosine and 2[prime], 3[prime]-dideoxyadenosine were evaluated for their activity against the HIV-1 virus and for delivery to the central nervous system (CNS). The isomerization, hydrolysis, and oxidation of alkyl 1,4-dihydro-N-methylpyridine-3-carboxylates weremore » studied by [sup 1]H and [sup 13]C NMR spectroscopy. Three intermediates, 1,4-dihydro-N-methylpyridine-3-carboxylic acid, alkyl (methyl or isopropyl) 1,6-dihydro-N-methylpyridine-3-carboxylate, and 1,6-dihydro-N-methylpyridine-3-carboxylic acid, were observed by [sup 1]H and [sup 13]C NMR spectroscopy, and their percentages in solution were determined. The structures of the 1,6-dihydropyridine intermediates were confirmed by comparison of the NMR spectra with those of an authentic model compound, methyl N-(4-chlorobenzyl)-1,6-dihydropyridine-3-carboxylate. The rate of hydrolysis of alkyl 1,4-dihydro-N-methylpyridine-3-carboxylates depends on the steric bulk of the O-alkyl group. A new type of 1,4-dihydropyridine drug delivery system with a three-carbon spacer group, 9-[2,3-di-O-acetyl-5-O-[3-(1,4-dihydro-N-methylpyridine-3-carboxamido)propionyl]-[beta]-D-arabinofuranosyl]adenine was designed, synthesized, and evaluated to deliver ara-ADA to the CNS for treatment of herpes encephalitis.« less

  15. Microbiota associated with the migration and transformation of chlorinated aliphatic hydrocarbons in groundwater.

    PubMed

    Guan, Xiangyu; Liu, Fei; Xie, Yuxuan; Zhu, Lingling; Han, Bin

    2013-08-01

    Pollution of groundwater with chlorinated aliphatic hydrocarbons (CAHs) is a serious environmental problem which is threatening human health. Microorganisms are the major participants in degrading these contaminants. Here, groundwater contaminated for a decade with CAHs was investigated. Numerical simulation and field measurements were used to track and forecast the migration and transformation of the pollutants. The diversity, abundance, and possible activity of groundwater microbial communities at CAH-polluted sites were characterized by molecular approaches. The number of microorganisms was between 5.65E+05 and 1.49E+08 16S rRNA gene clone numbers per liter according to quantitative real-time PCR analysis. In 16S rRNA gene clone libraries constructed from samples along the groundwater flow, eight phyla were detected, and Proteobacteria were dominant (72.8 %). The microbial communities varied with the composition and concentration of pollutants. Meanwhile, toluene monooxygenases and methane monooxygenases capable of degradation of PCE and TCE were detected, demonstrating the major mechanism for PCE and TCE degradation and possibility for in situ remediation by addition of oxygen in this study.

  16. Aliphatic and polycyclic aromatic hydrocarbons (PAHs) in soils of the northwest Qinling Mountains: Patterns, potential risk and an appraisal of the PAH ratios to infer their source.

    PubMed

    Liu, Yanhong; Wu, Yingqin; Xia, Yanqing; Lei, Tianzhu; Tian, Chuntao; Hou, Xiaohuan

    2017-03-21

    Surface soils from the tourist areas of the northwest Qinling Mountains were analyzed to determine the concentrations, probable sources and potential risks of hydrocarbons. Concentrations of aliphatic and aromatic hydrocarbons ranged from 4.18 to 3240 ng g -1 and 0.0462 to 101 ng g -1 dry weight, respectively. The extent of soil contamination by hydrocarbons was generally typified by unpolluted to slightly polluted levels. The incremental lifetime cancer risks (ILCRs) for exposure to soil-borne PAHs indicated complete safety for tourists. Early diagenesis of natural products, bacteria activities and petroleum were the three main sources of aliphatic hydrocarbons, while the transport of air pollutants from pyrolytic processes was the main origin of PAHs. Because the photochemical reaction of PAHs in the atmosphere would produce lower ratios for Ant/(Ant + Phe), BaA/(BaA + Chr) and IcdP/(IcdP + BghiP), but a higher ratio for Fla/(Fla + Pyr), the source classification highly depended on the diagnostic ratios chosen. The plot of ΣCOM/Σ 13 PAH vs. ΣLMW/ΣHMW PAH provide additional information to distinguish the origins of PAHs, and it showed a cluster of pyrogenic sources except for sample JFS-8. Four sources were resolved by principal component analysis: (1) a low temperature pyrogenic process related to the use of fossil fuel and biomass, such as charcoal, straw and wood, which contributes 63.1% of the measured PAHs; (2) the potential contribution of diagenetic processes, contributing 18.4%; (3) traffic emissions, contributing 9.27%; and (4) bioconversion/bacterial action, contributing 5.82%. Additionally, there was a good exponential relationship (r 2 = 0.969) between the natural n-alkanes ratio (NAR) and carbon preference index for C 23 -C 35 (CPI 23-35 ) for all samples, which is of great use for the determination of the origins of aliphatic hydrocarbon.

  17. Sensitive, accurate and rapid detection of trace aliphatic amines in environmental samples with ultrasonic-assisted derivatization microextraction using a new fluorescent reagent for high performance liquid chromatography.

    PubMed

    Chen, Guang; Liu, Jianjun; Liu, Mengge; Li, Guoliang; Sun, Zhiwei; Zhang, Shijuan; Song, Cuihua; Wang, Hua; Suo, Yourui; You, Jinmao

    2014-07-25

    A new fluorescent reagent, 1-(1H-imidazol-1-yl)-2-(2-phenyl-1H-phenanthro[9,10-d]imidazol-1-yl)ethanone (IPPIE), is synthesized, and a simple pretreatment based on ultrasonic-assisted derivatization microextraction (UDME) with IPPIE is proposed for the selective derivatization of 12 aliphatic amines (C1: methylamine-C12: dodecylamine) in complex matrix samples (irrigation water, river water, waste water, cultivated soil, riverbank soil and riverbed soil). Under the optimal experimental conditions (solvent: ACN-HCl, catalyst: none, molar ratio: 4.3, time: 8 min and temperature: 80°C), micro amount of sample (40 μL; 5mg) can be pretreated in only 10 min, with no preconcentration, evaporation or other additional manual operations required. The interfering substances (aromatic amines, aliphatic alcohols and phenols) get the derivatization yields of <5%, causing insignificant matrix effects (<4%). IPPIE-analyte derivatives are separated by high performance liquid chromatography (HPLC) and quantified by fluorescence detection (FD). The very low instrumental detection limits (IDL: 0.66-4.02 ng/L) and method detection limits (MDL: 0.04-0.33 ng/g; 5.96-45.61 ng/L) are achieved. Analytes are further identified from adjacent peaks by on-line ion trap mass spectrometry (MS), thereby avoiding additional operations for impurities. With this UDME-HPLC-FD-MS method, the accuracy (-0.73-2.12%), precision (intra-day: 0.87-3.39%; inter-day: 0.16-4.12%), recovery (97.01-104.10%) and sensitivity were significantly improved. Successful applications in environmental samples demonstrate the superiority of this method in the sensitive, accurate and rapid determination of trace aliphatic amines in micro amount of complex samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Development of four-component synthesis of tetra- and pentasubstituted polyfunctional dihydropyrroles: free permutation and combination of aromatic and aliphatic amines.

    PubMed

    Lv, Longyun; Zheng, Sichao; Cai, Xiaotie; Chen, Zhipeng; Zhu, Qiuhua; Liu, Shuwen

    2013-04-08

    We previously reported the novel efficient proton/heat-promoted four-component reactions (4CRs) of but-2-ynedioates, two same/different primary amines, and aldehydes for the synthesis of tetra- and pentasubstituted polyfunctional dihydropyrroles. If aromatic and aliphatic amines were used as reagents, four different series of products should be obtained via the permutation and combination of aromatic and aliphatic primary amines. However, only three/two rather four different series of tetra-/pentasubstisuted dihydropyrroles could be prepared via the proton/heat-promoted 4CRs. Herein, Cu(OAc)2·H2O, a Lewis acid being stable in air and water, was found to be an efficient catalyst for the 4CR synthesis of all the four different series of tetra-/pentasubstisuted dihydropyrroles. The copper-catalyzed 4CR could produce target products at room temperature in good to excellent yields. Interestingly, benzaldehyde, in addition to being used as a useful reactant for the synthesis of pentasubstituted dihydropyrroles, was found to be an excellent additive for preventing the oxidation of aromatic amines with copper(II) and ensuring the sooth conduct of the 4CRs for the synthesis of tetrasubstituted dihydropyrroles with aryl R(3). In addition, salicylic acid was found to be needed to increase the activities and yields of the copper-catalyzed 4CRs for the synthesis of petasubstituted diyhydropyrroles. On the basis of experimental results, the enamination/amidation/intramolecular cyclization mechanism was proposed and amidation is expected to be the rate-limited step in the copper-catalyzed 4CRs.

  19. Novel Potent Metallocenes against Liver Stage Malaria

    PubMed Central

    Matos, Joana; da Cruz, Filipa P.; Cabrita, Élia; Gut, Jiri; Nogueira, Fátima; do Rosário, Virgílio E.; Moreira, Rui; Rosenthal, Philip J.; Prudêncio, Miguel

    2012-01-01

    Novel conjugates of the antimalarial drug primaquine (compound 1) with ferrocene, named primacenes, have been synthesized and screened for their activities against blood stage and liver stage malaria in vitro and host-vector transmission in vivo. Both transmission-blocking and blood-schizontocidal activities of the parent drug were conserved only in primacenes bearing a basic aliphatic amine group. Liver stage activity did not require this structural feature, and all metallocenes tested were comparable to or better than primaquine in this regard. Remarkably, the replacement of primaquine's aliphatic chain by hexylferrocene, as in compound 7, led to a ∼45-fold-higher level activity against liver stage parasitemia than that of primaquine. PMID:22155838

  20. Biodegradation studies of selected hydrocarbons from diesel oil.

    PubMed

    Sepic, E; Trier, C; Leskovsek, H

    1996-10-01

    In-vitro biodegradation of aliphatic and aromatic hydrocarbons present in diesel oil by Pseudomonas fluorescens, Texaco was studied in an aqueous medium. Small aliquots of diesel oil and its aromatic fraction were incubated aerobically for periods of up to seven months and analysed by GC-MS. Biotic losses proved to be greater for aliphatic than aromatic compounds. Most biodegradation occurred within the first 20 d of incubation. The most rapid biodegradation, up to 65% in 8 d, was observed for n-alkanes (C14-C18). The same compounds were also shown to be less affected by abiotic losses. Biodegradation of n-alkanes from diesel oil and diesel oil itself showed first order kinetics for the initial incubation period. Aromatic compounds proved to be resistant to biodegradation and only phenanthrene had been degraded (30%) within 6 months.

  1. Remediation of aged diesel contaminated soil by alkaline activated persulfate.

    PubMed

    Lominchar, M A; Santos, A; de Miguel, E; Romero, A

    2018-05-01

    The present work studies the efficiency of alkaline activated persulfate (PS) to remediate an aged diesel fuel contaminated soil from a train maintenance facility. The Total Petroleum Hydrocarbon (TPH) concentration in soil was approximately 5000mgkg -1 with a ratio of aliphatic:aromatic compounds of 70:30. Aromatic compounds were mainly naphtalenes and phenanthrenes. The experiments were performed in batch mode where different initial concentrations of persulfate (105mM, 210mM and 420mM) and activator:persulfate ratios (2 and 4) were evaluated, with NaOH used as activator. Runs were carried out during 56days. Complete TPH conversion was obtained with the highest concentration of PS and activator, whereas in the other runs the elimination of fuel ranged between 60 and 77%. Besides, the abatement of napthalenes and phenantrenes was faster than aliphatic reduction (i. e. after 4days of treatment, the conversions of the aromatic compounds were around 0.8 meanwhile the aliphatic abatements were 0.55) and no aromatic oxidation intermediates from naphtalenes or phenantrenes were detected. These results show that this technology is effective for the remediation of aged diesel in soil with alkaline pH. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. New tetradentate Schiff bases of 2-amino-3,5-dibromobenzaldehyde with aliphatic diamines and their metal complexes: synthesis, characterization and thermal stability.

    PubMed

    Mohammadi, Khosro; Azad, Seyyedeh Sedigheh; Amoozegar, Ameneh

    2015-07-05

    The tetradentate Schiff base ligands (L(1)-L(4)), were synthesized by reaction between 2-amino-3,5-dibromobenzaldehyde and aliphatic diamines. Then, nickel and oxovanadium(IV) complexes of these ligands were synthesized and characterized by (1)H NMR, Mass, IR, UV-Vis spectroscopy and thermogravimetry. The kinetic parameters of oxovanadium(IV) complexes were calculated from thermal studies. According to the results of thermogravimetric data, the thermal stability of oxovanadium(IV) complexes is as follow: [Formula: see text]. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Metal-sulfur type cell having improved positive electrode

    DOEpatents

    Dejonghe, Lutgard C.; Visco, Steven J.; Mailhe, Catherine C.; Armand, Michel B.

    1989-01-01

    An novel metal-sulfur type cell operable at a temperature of 200.degree. C. or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S).sub.y).sub.n wherein y=1 to 6; n=2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprisises one of more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associtated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon.

  4. Metal-sulfur type cell having improved positive electrode

    DOEpatents

    DeJonghe, L.C.; Visco, S.J.; Mailhe, C.C.; Armand, M.B.

    1988-03-31

    A novel metal-sulfur type cell operable at a temperature of 200/degree/C or less with an energy density of 150 Whrs/Kg or better is disclosed characterized by an organo-sulfur cathode formed from an organic-sulfur compound having the general formula, in its charged state, of (R(S)/sub y/)n wherein y = 1 to 6; n = 2 to 20; and R is one or more different aliphatic or aromatic organic moieties having 1 to 20 carbon atoms, which may include one or more oxygen, sulfur, or nitrogen heteroatoms when R comprises one or more aromatic rings, or one or more oxygen, sulfur, nitrogen, or fluorine atoms associated with the chain when R comprises an aliphatic chain, wherein the aliphatic group may be linear or branched, saturated or unsaturated, and wherein either the aliphatic chain or the aromatic ring may have substituted groups thereon. 4 figs.

  5. Occupational hygiene in terms of volatile organic compounds (VOCs) and bioaerosols at two solid waste management plants in Finland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehtinen, Jenni, E-mail: jenni.k.lehtinen@jyu.fi; Tolvanen, Outi; Nivukoski, Ulla

    Highlights: ► Odorous VOCs: acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene. ► VOC concentrations did not exceed occupational exposure limit concentrations. ► 2,3-Butanedione as the health effecting compound is discussed. ► Endotoxin concentrations may cause health problems in waste treatment. - Abstract: Factors affecting occupational hygiene were measured at the solid waste transferring plant at Hyvinkää and at the optic separation plant in Hämeenlinna. Measurements consisted of volatile organic compounds (VOCs) and bioaerosols including microbes, dust and endotoxins. The most abundant compounds in both of the plants were aliphatic and aromatic hydrocarbons, esters of carboxylic acids, ketones and terpenes.more » In terms of odour generation, the most important emissions were acetic acid, 2,3-butanedione, ethyl acetate, alpha-pinene and limonene due to their low threshold odour concentrations. At the optic waste separation plant, limonene occurred at the highest concentration of all single compounds of identified VOCs. The concentration of any single volatile organic compound did not exceed the occupational exposure limit (OEL) concentration. However, 2,3-butanedione as a health risk compound is discussed based on recent scientific findings linking it to lung disease. Microbe and dust concentrations were low at the waste transferring plant. Only endotoxin concentrations may cause health problems; the average concentration inside the plant was 425 EU/m{sup 3} which clearly exceeded the threshold value of 90 EU/m{sup 3}. In the wheel loader cabin the endotoxin concentrations were below 1 EU/m{sup 3}. High microbial and endotoxin concentrations were measured in the processing hall at the optic waste separation plant. The average concentration of endotoxins was found to be 10,980 EU/m{sup 3}, a concentration which may cause health risks. Concentrations of viable fungi were quite high in few measurements in the control room. The

  6. Cu-catalyzed cross-coupling reactions of epoxides with organoboron compounds.

    PubMed

    Lu, Xiao-Yu; Yang, Chu-Ting; Liu, Jing-Hui; Zhang, Zheng-Qi; Lu, Xi; Lou, Xin; Xiao, Bin; Fu, Yao

    2015-02-11

    A copper-catalyzed cross-coupling reaction of epoxides with arylboronates is described. This reaction is not limited to aromatic epoxides, because aliphatic epoxides are also suitable substrates. In addition, N-sulfonyl aziridines can be successfully converted into the products. This reaction provides convenient access to β-phenethyl alcohols, which are valuable synthetic intermediates.

  7. Anomalous regioselective four-member multicomponent Biginelli reaction II: one-pot parallel synthesis of spiro heterobicyclic aliphatic rings.

    PubMed

    Byk, Gerardo; Kabha, Eihab

    2004-01-01

    In a previous preliminary study, we found that a cyclic five-member ring beta-keto ester (lactone) reacts with one molecule of urea and two of aldehyde to give a new family of spiro heterobicyclic aliphatic rings in good yields with no traces of the expected dihydropyrimidine (Biginelli) products. The reaction is driven by a regiospecific condensation of two molecules of aldehyde with urea and beta-keto-gamma-lactone to afford only products harboring substitutions exclusively in a syn configuration (Byk, G.; Gottlieb, H. E.; Herscovici, J.; Mirkin, F. J. Comb. Chem. 2000, 2, 732-735). In the present work ((a) Presented in part at ISCT Combitech, October 15, 2002, Israel, and Eurocombi-2, Copenhagen 2003 (oral and poster presentation). (b) Also in American Peptide Society Symposium, Boston, 2003 (poster presentation). (c) Abstract in Biopolymers 2003, 71 (3), 354-355), we report a large and exciting extension of this new reaction utilizing parallel organic synthesis arrays, as demonstrated by the use of chiral beta-keto-gamma-lactams, derived from natural amino acids, instead of tetronic acid (beta-keto-gamma-lactone) and the potential of the spirobicyclic products for generating "libraries from libraries". Interestingly, we note an unusual and important anisotropy effect induced by perpendicular interactions between rigid pi systems and different groups placed at the alpha position of the obtained spirobicyclic system. Stereo/regioselectivity of the aldehyde condensation is driven by the nature of the substitutions on the starting beta-keto-gamma-lactam. Aromatic aldehydes can be used as starting reagents with good yields; however, when aliphatic aldehydes are used, the desired products are obtained in poor yields, as observed in the classical Biginelli reaction. The possible reasons for these poor yields are addressed and clarify, to some extent, the complexity of the Biginelli multicomponent reaction mechanism and, in particular, the mechanism of the present

  8. Is the incidence of aliphatic amine-induced occupational rhinitis and asthma underestimated?

    PubMed

    Laborde-Castérot, Hervé; Rosenberg, Nicole; Dupont, Patricia; Garnier, Robert

    2014-12-01

    Amines, some of which are known to cause asthma, are frequently present in the work environment, but are rarely identified as being responsible for occupational rhinitis (OR) or asthma (OA). However, amine-induced OR/OA may be underreported. To discuss this hypothesis, we report a series of patients with positive amine-specific nasal provocation test (NPT). Review of the medical charts of 37 patients with OR (alone or associated with asthma), submitted to a NPT with an aliphatic or alicyclic amine (except for EDTA) present in a product used at work. Most patients worked in the healthcare sector or for a cleaning company. Amines were mostly present in cleaning products. Seven patients had a positive NPT. NPTs were positive for the following amines: bis(aminopropyl)laurylamine, C12-C18 alkyldimethylamine oxides, bis(2-hydroxyethyl)tallowamine oxides, 3-dimethylaminopropylamine, 2,2'-dimethyl-4,4'-methylene-bis(cyclohexylamine), lauryldimethylamine oxide. NPTs were negative for the following amines: monoethanolamine, diethanolamine, triethanolamine, isopropanolamine, triethylamine, triethylenetetramine, aminopropyltriethoxysilane, alkylpropylenediamineguanidine acetate. The frequency of amine-induced OR/OA may be underestimated, particularly when cleaning products are incriminated. Comprehensive investigation of all cases is mandatory to ensure an efficient prevention policy and consequently a good clinical and socio-occupational prognosis of occupational respiratory disease. © 2014 Wiley Periodicals, Inc.

  9. Spatial and temporal patterns of floral scent emission in Dianthus inoxianus and electroantennographic responses of its hawkmoth pollinator.

    PubMed

    Balao, Francisco; Herrera, Javier; Talavera, Salvador; Dötterl, Stefan

    2011-05-01

    Scent emission is important in nocturnal pollination systems, and plant species pollinated by nocturnal insects often present characteristic odor compositions and temporal patterns of emission. We investigated the temporal (day/night; flower lifetime) and spatial (different flower parts, nectar) pattern of flower scent emission in nocturnally pollinated Dianthusinoxianus, and determined which compounds elicit physiological responses on the antennae of the sphingid pollinator Hyles livornica. The scent of D.inoxianus comprises 68 volatile compounds, but is dominated by aliphatic 2-ketones and sesquiterpenoids, which altogether make up 82% of collected volatiles. Several major and minor compounds elicit electrophysiological responses in the antennae of H. livornica. Total odor emission does not vary along day and night hours, and neither does along the life of the flower. However, the proportion of compounds eliciting physiological responses varies between day and night. All flower parts as well as nectar release volatiles. The scent of isolated flower parts is dominated by fatty acid derivatives, whereas nectar is dominated by benzenoids. Dissection (= damage) of flowers induced a ca. 20-fold increase in the rate of emission of EAD-active volatiles, especially aliphatic 2-ketones. We suggest that aliphatic 2-ketones might contribute to pollinator attraction in D. inoxianus, even though they have been attributed an insect repellent function in other plant species. We also hypothesize that the benzenoids in nectar may act as an honest signal ('nectar guide') for pollinators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Aliphatic and chlorinated alkenes and epoxides as inducers of alkene monooxygenase and epoxidase activities in Xanthobacter strain Py2.

    PubMed Central

    Ensign, S A

    1996-01-01

    The inducible nature of the alkene oxidation system of Xanthobacter strain Py2 has been investigated. Cultures grown with glucose as the carbon source did not contain detectable levels of alkene monooxygenase or epoxidase, two key enzymes of alkene and epoxide metabolism. Upon addition of propylene to glucose-grown cultures, alkene monooxygenase and epoxidase activities increased and after an 11-h induction period reached levels of specific activity comparable to those in propylene-grown cells. Addition of chloramphenicol or rifampin prevented the increase in the enzyme activities. Comparison of the banding patterns of proteins present in cell extracts revealed that polypeptides with molecular masses of 43, 53, and 57 kDa accumulate in propylene-grown but not glucose-grown cells. Pulse-labeling of glucose-grown cells with [35S]methionine and [35S]cysteine revealed that the 43-, 53-, and 57-kDa proteins, as well as two additional polypeptides with molecular masses of 12 and 21 kDa, were newly synthesized upon exposure of cells to propylene or propylene oxide. The addition to glucose-grown cells of a variety of other aliphatic and chlorinated alkenes and epoxides, including ethylene, vinyl chloride (1-chloroethylene), cis- and trans-1,2-dichloroethylene, 1-chloropropylene, 1,3-dichloropropylene, 1-butylene, trans-2-butylene, isobutylene, ethylene oxide, epichlorohydrin (3-chloro-1,2-epoxypropane), 1,2-epoxybutane, cis- and trans-2,3-epoxybutane, and isobutylene oxide stimulated the synthesis of the five propylene-inducible polypeptides as well as increases in alkene monooxygenase and epoxidase activities. In contrast, acetylene, and a range of aliphatic and chlorinated alkanes, did not stimulate the synthesis of the propylene-inducible polypeptides or the increase in alkene monooxygenase and epoxidase activities. PMID:8572713

  11. Distribution of Aliphatic Amines in CO, CV, and CK Carbonaceous Chondrites and Relation to Mineralogy and Processing History

    NASA Technical Reports Server (NTRS)

    Aponte, Jose C.; Abreu, Neyda M.; Glavin, Daniel P.; Dworkin, Jason P.; Elsila, Jamie E.

    2017-01-01

    The analysis of water-soluble organic compounds in meteorites provides valuable insights into the prebiotic synthesis of organic matter and the processes that occurred during the formation of the solar system. We investigated the concentration of aliphatic monoamines present in hot acid water extracts of the unaltered Antarctic carbonaceous chondrites, Dominion Range (DOM) 08006 (CO3) and Miller Range (MIL) 05013 (CO3), and the thermally altered meteorites, Allende (CV3), LAP 02206 (CV3), GRA 06101 (CV3), Allan Hills (ALH) 85002 (CK4), and EET 92002 (CK5). We have also reviewed and assessed the petrologic characteristics of the meteorites studied here to evaluate the effects of asteroidal processing on the abundance and molecular distributions of monoamines. The CO3, CV3, CK4, and CK5 meteorites studied here contain total concentrations of amines ranging from 1.2 to 4.0 nmol/g of meteorite; these amounts are 1-3 orders of magnitude below those observed in carbonaceous chondrites from the CI, CM, and CR groups. The low-amine abundances for CV and CK chondrites may be related to their extensive degree of thermal metamorphism and/or to their low original amine content. Although the CO3 meteorites, DOM 08006 and MIL 05013, do not show signs of thermal and aqueous alteration, their monoamine contents are comparable to those observed in moderately/extensively thermally altered CV3, CK4, and CK5 carbonaceous chondrites. The low content of monoamines in pristine CO carbonaceous chondrites suggests that the initial amounts, and not asteroidal processes, play a dominant role in the content of monoamines in carbonaceous chondrites. The primary monoamines, methylamine, ethylamine, and n-propylamine constitute the most abundant amines in the CO3, CV3, CK4, and CK5 meteorites studied here. Contrary to the predominance of n-x-amino acid isomers in CO3 and thermally altered meteorites, there appears to be no preference for the larger n-amines.

  12. Distribution and evolution of sterols and aliphatic hydrocarbons in dated marine sediment cores from the Cabo Frio upwelling region, SW Atlantic, Brazil.

    PubMed

    Lourenço, Rafael André; Martins, César C; Taniguchi, Satie; Mahiques, Michel Michaelovitch; Montone, Rosalinda Carmela; Magalhães, Caio Augusto; Bícego, Márcia Caruso

    2017-08-01

    We report the distribution of selected lipid biomarkers specifically sterols and aliphatic hydrocarbons in sediment cores from Cabo Frio, SW Atlantic continental shelf, Brazil, corresponding approximately to the last 700 years. In the Cabo Frio region, a costal upwelling occurs as a quasi-seasonal phenomenon characterized by nutrient-rich bottom waters that intrude on the continental shelf and promote relatively high biological productivity compared to other Brazilian continental shelf areas. The results for sterols indicate the predominance of organic matter (OM) inputs related to marine organisms, mainly plankton, in all of the cores along the time scale studied. Principal component analyses show three different groups of variables, which may be associated with (i) the more effective intrusion of the nutrient-rich South Atlantic Central Water, resulting in the increase of marine lipid biomarkers such as sterols and short-chain n-alkanes; (ii) the influence of the Coastal Water with higher surface water temperature and subsequently lower primary productivity; and (iii) OM characterized by high total organic carbon and long-chain n-alkanes related to an allochthonous source. Relatively high concentrations of sterols and n-alkanes between 1450 and 1700 AD, chronologically associated with the Little Ice Age, suggest a period associated with changes in the local input of specific sources of these compounds. The concentrations of lipid biomarkers vary over core depth, but this does not suggest a notably high or low intensity of upwelling processes. It is possible that the climatic and sea surface temperature changes reported in previous studies did not affect the input of the sedimentary lipid biomarkers analyzed here.

  13. NSP-Dependent Simple Nitrile Formation Dominates upon Breakdown of Major Aliphatic Glucosinolates in Roots, Seeds, and Seedlings of Arabidopsis thaliana Columbia-0.

    PubMed

    Wittstock, Ute; Meier, Kathrin; Dörr, Friederike; Ravindran, Beena M

    2016-01-01

    One of the best-studied plant defense systems, the glucosinolate-myrosinase system of the Brassicales, is composed of thioglucosides known as glucosinolates and their hydrolytic enzymes, the myrosinases. Tissue disruption brings these components together, and bioactive products are formed as a consequence of myrosinase-catalyzed glucosinolate hydrolysis. Among these products, isothiocyanates have attracted most interest as chemical plant defenses against herbivores and pathogens and health-promoting compounds in the human diet. Previous research has identified specifier proteins whose presence results in the formation of alternative product types, e.g., nitriles, at the expense of isothiocyanates. The biological roles of specifier proteins and alternative breakdown products are poorly understood. Here, we assessed glucosinolate breakdown product profiles obtained upon maceration of roots, seedlings and seeds of Arabidopsis thaliana Columbia-0. We identified simple nitriles as the predominant breakdown products of the major endogenous aliphatic glucosinolates in root, seed, and seedling homogenates. In agreement with this finding, genes encoding nitrile-specifier proteins (NSPs) are expressed in roots, seeds, and seedlings. Analysis of glucosinolate breakdown in mutants with T-DNA insertions in any of the five NSP genes demonstrated, that simple nitrile formation upon tissue disruption depended almost entirely on NSP2 in seeds and mainly on NSP1 in seedlings. In roots, about 70-80% of the nitrile-forming activity was due to NSP1 and NSP3 . Thus, glucosinolate breakdown product profiles are organ-specifically regulated in A. thaliana Col-0, and high proportions of simple nitriles are formed in some parts of the plant. This should be considered in future studies on biological roles of the glucosinolate-myrosinase system.

  14. NSP-Dependent Simple Nitrile Formation Dominates upon Breakdown of Major Aliphatic Glucosinolates in Roots, Seeds, and Seedlings of Arabidopsis thaliana Columbia-0

    PubMed Central

    Wittstock, Ute; Meier, Kathrin; Dörr, Friederike; Ravindran, Beena M.

    2016-01-01

    One of the best-studied plant defense systems, the glucosinolate-myrosinase system of the Brassicales, is composed of thioglucosides known as glucosinolates and their hydrolytic enzymes, the myrosinases. Tissue disruption brings these components together, and bioactive products are formed as a consequence of myrosinase-catalyzed glucosinolate hydrolysis. Among these products, isothiocyanates have attracted most interest as chemical plant defenses against herbivores and pathogens and health-promoting compounds in the human diet. Previous research has identified specifier proteins whose presence results in the formation of alternative product types, e.g., nitriles, at the expense of isothiocyanates. The biological roles of specifier proteins and alternative breakdown products are poorly understood. Here, we assessed glucosinolate breakdown product profiles obtained upon maceration of roots, seedlings and seeds of Arabidopsis thaliana Columbia-0. We identified simple nitriles as the predominant breakdown products of the major endogenous aliphatic glucosinolates in root, seed, and seedling homogenates. In agreement with this finding, genes encoding nitrile-specifier proteins (NSPs) are expressed in roots, seeds, and seedlings. Analysis of glucosinolate breakdown in mutants with T-DNA insertions in any of the five NSP genes demonstrated, that simple nitrile formation upon tissue disruption depended almost entirely on NSP2 in seeds and mainly on NSP1 in seedlings. In roots, about 70–80% of the nitrile-forming activity was due to NSP1 and NSP3. Thus, glucosinolate breakdown product profiles are organ-specifically regulated in A. thaliana Col-0, and high proportions of simple nitriles are formed in some parts of the plant. This should be considered in future studies on biological roles of the glucosinolate-myrosinase system. PMID:27990154

  15. Structural Peculiarities of Ion-Conductive Organic-Inorganic Polymer Composites Based on Aliphatic Epoxy Resin and Salt of Lithium Perchlorate.

    PubMed

    Matkovska, Liubov; Iurzhenko, Maksym; Mamunya, Yevgen; Tkachenko, Igor; Demchenko, Valeriy; Synyuk, Volodymyr; Shadrin, Andriy; Boiteux, Gisele

    2017-12-01

    The article is concerned with hybrid amorphous polymers synthesized basing on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol that was cured by polyethylene polyamine and lithium perchlorate salt. Structural peculiarities of organic-inorganic polymer composites were studied by differential scanning calorimetry, wide-angle X-ray spectra, infrared spectroscopic, scanning electron microscopy, elemental analysis, and transmission and reflective optical microscopy. On the one hand, the results showed that the introduction of LiClO 4 salt into epoxy polymer leads to formation of the coordinative metal-polymer complexes of donor-acceptor type between central Li + ion and ligand. On the other hand, the appearance of amorphous microinclusions, probably of inorganic nature, was also found.

  16. [The composition of volatile components of cepe (Boletus edulis) and oyster mushrooms (Pleurotus ostreatus)].

    PubMed

    Misharina, T A; Mukhutdinova, S M; Zharikova, G G; Terenina, M B; Krikunova, N I

    2009-01-01

    The composition of aroma compounds in cooked and canned cepe (Boletus edulis) and in cooked oyster mushrooms (Pleurotus ostreatus) is studied using capillary gas chromatography and chromatography-mass spectrometry. It is found that unsaturated alcohols and ketones containing eight atoms of carbon determine the aroma of raw mushrooms and take part in the formation of the aroma of cooked mushrooms as well. The content of these compounds was the highest in canned cepes. In oyster mushrooms, the concentration of these alcohols and ketones was lower in comparison with cepes. The content of aliphatic and aromatic aldehydes was much higher in oyster mushrooms. Volatile aliphatic and heterocyclic Maillard reaction products and isomeric octenols and octenones formed the aroma of cooked and canned mushrooms.

  17. Chemical Constituents of Plants from the Genus Psychotria.

    PubMed

    Yang, Hongmei; Zhang, Hongmei; Yang, Caiqiong; Chen, Yegao

    2016-07-01

    Psychotria is a genus of ca. 1500 species in the family Rubiaceae. Up to now, 41 species of the Psychotria genus have been chemically investigated, and 159 compounds, including alkaloids of indole, quinoline and benzoquinolizidine type, terpenoids, steroids, phenolics and aliphatic compounds have been isolated. These compounds show potent bioactivities, such as antimicrobial, antiviral, and antiparasitic activities. © 2016 Wiley-VHCA AG, Zürich.

  18. Synthetic Chemicals with Potential for Natural Attenuation (Postprint)

    DTIC Science & Technology

    2012-07-01

    The purpose of this paper is to describe examples of other synthetic organic compounds that are known to be biodegradable ...chlorophenols are unusual among the synthetic compounds discussed here in that they can be very toxic to microorganisms . They are often used as biocides...widely distributed. In contract, bacteria able to grow at the expense of chlorinated aliphatic compounds are less common and the

  19. Emulsifier of Arthrobacter RAG-1: specificity of hydrocarbon substrate.

    PubMed Central

    Rosenberg, E; Perry, A; Gibson, D T; Gutnick, D L

    1979-01-01

    The purified extracellular emulsifying factor produced by Arthrobacter RAG-1 (EF-RAG) emulsified light petroleum oil, diesel oil, and a variety of crude oils and gas oils. Although kerosine and gasoline were emulsified poorly by EF-RAG, they were converted into good substrates for emulsification by addition of aromatic compounds, such as 2-methylnaphthalene. Neither aromatic nor aliphatic fractions of crude oil were emulsified by EF-RAG; however, mixtures containing both fractions were emulsified. Pure aliphatic or aromatic hydrocarbons were emulsified poorly by EF-RAG. Binary mixtures containing an aliphatic and an aromatic hydrocarbon, however, were excellent substrates for EF-RAG-induced emulsification. Of a variety of alkylcyclohexane and alkylbenzene derivatives tested, only hexyl- or heptylbenzene and octyl- or decylcyclohexane were effectively emulsified by EF-RAG. These data indicate that for EF-RAG to induce emulsification of hydrocarbons in water, the hydrocarbon substrate must contain both aliphatic and cyclic components. With binary mixtures of methylnaphthalene and hexadecane, maximum emulsion was obtained with 25% hexadecane. PMID:453821

  20. The Venus flytrap attracts insects by the release of volatile organic compounds.

    PubMed

    Kreuzwieser, Jürgen; Scheerer, Ursel; Kruse, Jörg; Burzlaff, Tim; Honsel, Anne; Alfarraj, Saleh; Georgiev, Plamen; Schnitzler, Jörg-Peter; Ghirardo, Andrea; Kreuzer, Ines; Hedrich, Rainer; Rennenberg, Heinz

    2014-02-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.

  1. A platinized stainless steel fiber with in-situ coated polyaniline/polypyrrole/graphene oxide nanocomposite sorbent for headspace solid-phase microextraction of aliphatic aldehydes in rice samples.

    PubMed

    Ghiasvand, Alireza; Nasirian, Afagh; Koonani, Samira; Nouriasl, Kolsoum

    2017-12-01

    The surface of a stainless steel fiber was made larger, porous and cohesive by platinizing for tight attachment of its coating. Then it was coated by a polyaniline/polypyrrole/graphene oxide (PANI/PP/GO) nanocomposite film using electrochemical polymerization. The prepared PANI/PP/GO fiber was used for headspace solid-phase microextraction (HS-SPME) of linear aliphatic aldehydes in rice samples followed by GC-FID determination. To achieve the highest extraction efficiency, various experimental parameters including extraction time and temperature, matrix modifier and desorption condition were studied. The linear calibration curves were obtained over the range of 0.05-20 μg g -1 (R 2  > 0.99) for C 4 -C 11 aldehydes. The limits of detection were found to be in the range of 0.01-0.04 μg g -1 . RSD values were calculated to be <7.4 and 10.7% for intra- and inter-day, respectively. The superiority of the prepared nanocomposite SPME fiber was established by comparison of its results with those obtained by polydimethylsiloxane, carbowax-divinylbenzene, divinylbenzene-carboxen-polydimethylsiloxane and polyacrylate commercial ones. Finally, the nanocomposite fiber was used to extract and determine linear aliphatic aldehydes in 18 rice samples. Copyright © 2017 John Wiley & Sons, Ltd.

  2. 2,4,5-trihydroxy-3-methylacetophenone: A cellulosic chromophore as a case study of aromaticity

    Treesearch

    Nele Sophie Zwirchmayr; Thomas Elder; Markus Bacher; Andreas Hofinger-Horvath; Paul Kosma; Thomas Rosenau

    2017-01-01

    The title compound (2,4,5-trihydroxy-3-methylacetophenone, 1) was isolated as chromophore from aged cellulosic pulps. The peculiar feature of the compound is its weak aromatic system that can be converted into nonaromatic (quinoid or cyclic aliphatic) tautomers, depending on the conditions and reaction partners. In alkaline media, the participation of quinoid canonic...

  3. A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site

    NASA Astrophysics Data System (ADS)

    Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro

    2013-10-01

    The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50 years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in 13C (<-60‰) suggesting production lines which have used depleted methane for synthesis. The other source had typical carbon isotope compositions of >-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, 13C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas.

  4. A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site.

    PubMed

    Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro

    2013-10-01

    The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in ¹³C (<-60‰) suggesting production lines which have used depleted methane for synthesis. The other source had typical carbon isotope compositions of >-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, ¹³C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas. © 2013 Elsevier B.V. All rights reserved.

  5. Identification of volatiles from the secretions and excretions of African wild dogs (Lycaon pictus).

    PubMed

    Apps, Peter; Mmualefe, Lesego; McNutt, J Weldon

    2012-11-01

    Gas chromatography/mass spectrometry was used to identify 103 organic compounds from urine, feces, anal glands, and preputial glands of free-ranging African wild dogs, Lycaon pictus. Aliphatic acids were the dominant class of compound in all materials. In addition to aliphatic acids, urine contained dimethyl sulfone, 1,3-propanediol, benzoic acid, 1-methyl-2,4-imidazolidinedione, and squalene as major components: feces contained indole and cholesterol; and both contained 2-piperidone, phenol, 4-methyl phenol, benzeneacetic acid, and benzenepropanoic acid and other compounds. Anal gland secretion was particularly rich in cholesterol and fatty acids, and preputial gland secretion rich in squalene. A large majority of the identified compounds have been reported from other mammals, including species sympatric with African wild dogs. Eleven of the African wild dog components have not been reported previously from mammals and have not been found in sympatric species; one component, 1-methylimidazole-5-carboxaldehyde has not been reported previously as a natural product. In the chemical profiles of their urine, feces, and anal gland secretion African wild dogs differ markedly from other canids.

  6. Water interaction with laboratory-simulated fossil fuel combustion particles.

    PubMed

    Popovicheva, O B; Kireeva, E D; Shonija, N K; Khokhlova, T D

    2009-10-01

    To clarify the impact of fossil fuel combustion particles' composition on their capacity to take up water, we apply a laboratory approach in which the method of deposition of compounds, identified in the particulate coverage of diesel and aircraft engine soot particles, is developed. It is found that near-monolayer organic/inorganic coverage of the soot particles may be represented by three groups of fossil fuel combustion-derived particulate matter with respect to their Hansh's coefficients related to hydrophilic properties. Water adsorption measurements show that nonpolar organics (aliphatic and aromatic hydrocarbons) lead to hydrophobization of the soot surface. Acidic properties of organic compounds such as those of oxidized PAHs, ethers, ketones, aromatic, and aliphatic acids are related to higher water uptake, whereas inorganic acids and ionic compounds such as salts of organic acids are shown to be responsible for soot hydrophilization. This finding allows us to quantify the role of the chemical identity of soot surface compounds in water uptake and the water interaction with fossil fuel combustion particles in the humid atmosphere.

  7. A case study on identification of airborne organic compounds and time courses of their concentrations in the cabin of a new car for private use.

    PubMed

    Yoshida, Toshiaki; Matsunaga, Ichiro

    2006-01-01

    The cabin of an automobile can be considered to be a part of the living environment because many people spend long periods of time during business, shopping, recreation or travel activities. However, little is known about the interior air contamination due to organic compounds diffusing from the interior materials used in the interior of automobiles. In the present study, the compounds in the interior air of a new car were identified, and the time courses of their concentrations were examined for over 3 years after the delivery (July, 1999). A total of 162 organic compounds, involving many aliphatic hydrocarbons and aromatic hydrocarbons, were identified. High concentrations of n-nonane (458 microg/m(3) on the day following delivery), n-decane (1301 microg/m(3)), n-undecane (1616 microg/m(3)), n-dodecane (716 microg/m(3)), n-tridecane (320 microg/m(3)), 1-hexadecene (768 microg/m(3)), ethylbenzene (361 microg/m(3)), xylene (4003 microg/m(3)) and 2,2'-azobis(isobutyronitrile) (429 microg/m(3)) were detected, and the sum of the concentrations determined for all compounds excluding formaldehyde (TVOC) was approximately 14 mg/m(3) on the day after the delivery. The concentrations of most compounds decreased with time, but increased with a rise of the interior temperature. The TVOC concentration in the next summer (July, 2000) was approximately one-tenth of the initial concentration. During the 3-year study period, the TVOC concentrations in summer exceeded the indoor guideline value (300 mug/m(3)) proposed by [Seifert B. Volatile organic compounds. In: Maroni M, Seifert B, Lindvall T, editors. Indoor air quality. A comprehensive reference book. Air quality monographs, vol. 3. Netherlands: Elsevier Science; 1995. p. 819-21]. The interior temperature and days lapsed after delivery were the main factors affecting the interior concentrations of most compounds according to multiple linear regression analysis. The results of this study offer useful fundamental data for

  8. Highly stereoselective three-component reactions of phenylselenomagnesium bromide, acetylenic sulfones, and saturated aldehydes/ketones or alpha,beta-unsaturated enals or enones.

    PubMed

    Huang, Xian; Xie, Meihua

    2002-12-13

    beta-Phenylseleno-alpha-tolylsulfonyl-substituted alkenes were synthesized via the three-component conjugate-nucleophilic addition of acetylenic sulfones, phenylselenomagnesium bromide, and carbonyl compounds, such as aldehydes, aliphatic ketones, or alpha,beta-unsaturated enals or enones. The reaction is highly regio- and stereoselective with moderate to good yields. Functionalized allylic alcohols were obtained in the case of aldehydes and aliphatic ketones. In the case of alpha,beta-unsaturated enones, functionalized allylic alcohols or functionalized gamma,delta-unsaturated ketones were obtained, depending on the structures of the ketones.

  9. Synthesis of α-MoO{sub 3} nanoplates using organic aliphatic acids and investigation of sunlight enhanced photodegradation of organic dyes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, V. Vinod; Gayathri, K.; Anthony, Savarimuthu Philip, E-mail: philip@biotech.sastra.edu

    Graphical abstract: Thermodynamically stable α-MoO{sub 3} nanoplates and nanorods were synthesized using organic structure controlling agents and demonstrated sun light enhanced photocatalytic degradation of methylene blue (MB) and rhodamine blue (Rh-B) dyes in aqueous solution. - Highlights: • α-MoO{sub 3} hexagonal nanoplates using organic structure controlling agents. • Tunable optical band gap of MoO{sub 3}. • Demonstrated strong sun light mediated enhanced photodegradation of methylene blue and rhodamine blue. • Photodegradation did not use any other external oxidizing agents. - Abstract: Thermodynamically stable α-MoO{sub 3} nanoplates were synthesized using organic aliphatic acids as structure controlling agents and investigated photocatalytic degradationmore » of methylene blue (MB) and rhodamine blue (Rh-B) in presence of sun light. Three different organic aliphatic acids, citric acid (CA), tartaric acid (TA) and ethylene diamine tetra-acetic acid (EDTA), were employed to control morphologies. CA and TA predominantly produced extended hexagonal plates where EDTA gave nanorods as well as nanoplates. PXRD studies confirmed the formation of α-MoO{sub 3} nanoparticles. HR-TEM and FE-SEM reveal the formation of plate morphologies with 20–40 nm thickness, 50–100 nm diameter and 600 nm lengths. The different morphologies of α-MoO{sub 3} nanoparticles lead to the tunable optical band gap between 2.80 and 2.98 eV which was obtained from diffused reflectance spectra (DRS). Interestingly, the synthesized α-MoO{sub 3} nanoplates exhibited strong photocatalytic degradation of MB and Rh-B up to 99% in presence of sun light without using any oxidizing agents.« less

  10. Betula pendula: A Promising Candidate for Phytoremediation of TCE in Northern Climates.

    PubMed

    Lewis, Jeffrey; Qvarfort, Ulf; Sjöström, Jan

    2015-01-01

    Betula pendula (Silver birch) trees growing on two contaminated sites were evaluated to assess their capacity to phytoscreen and phytoremediate chlorinated aliphatic compounds and heavy metals. Both locations are industrially-contaminated properties in central Sweden. The first was the site of a trichloroethylene (TCE) spill in the 1980s while the second was polluted with heavy metals by burning industrial wastes. In both cases, sap and sapwood from Silver birch trees were collected and analyzed for either chlorinated aliphatic compounds or heavy metals. These results were compared to analyses of the surface soil, vadose zone pore air and groundwater. Silver birch demonstrated the potential to phytoscreen and possibly phytoremediate TCE and related compounds, but it did not demonstrate the ability to effectively phytoextract heavy metals when compared with hyperaccumulator plants. The capacity of Silver birch to phytoremediate TCE appears comparable to tree species that have been employed in field-scale TCE phytoremediation efforts, such as Populus spp. and Eucalyptus sideroxylon rosea.

  11. Rh-Catalyzed Intermolecular Reactions of α-Alkyl-α-Diazo Carbonyl Compounds with Selectivity over β-Hydride Migration.

    PubMed

    DeAngelis, Andrew; Panish, Robert; Fox, Joseph M

    2016-01-19

    -hydride migration. Enantioselective reactions of α-alkyl-α-diazocarbonyl compounds have been developed using bimetallic N-imido-tert-leucinate-derived complexes. The most effective complexes were found by computation and X-ray crystallography to adopt a "chiral crown" conformation in which all of the imido groups are presented on one face of the paddlewheel complex in a chiral arrangement. Insight from computational studies guided the design and synthesis of a mixed ligand paddlewheel complex, Rh2(S-PTTL)3TPA, the structure of which bears similarity to the chiral crown complex Rh2(S-PTTL)4. Rh2(S-PTTL)3TPA engages substrate classes (aliphatic alkynes, silylacetylenes, α-olefins) that are especially challenging in intermolecular reactions of α-alkyl-α-diazoesters and catalyzes enantioselective cyclopropanation, cyclopropenation, and indole C-H functionalization with yields and enantioselectivities that are comparable or superior to Rh2(S-PTTL)4. The work detailed in this Account describes progress toward enabling a more general utility for α-alkyl-α-diazo compounds in Rh-catalyzed carbene reactions. Further studies on ligand design and synthesis will continue to broaden the scope of their selective reactions.

  12. Sugar-based bicyclic monomers for aliphatic polyesters: a comparative appraisal of acetalized alditols and isosorbide

    PubMed Central

    Zakharova, Elena; Martínez de Ilarduya, Antxon; León, Salvador; Muñoz-Guerra, Sebastián

    2017-01-01

    Abstract Three series of polyalkanoates (adipates, suberates and sebacates) were synthesized using as monomers three sugar-based bicyclic diols derived from D-glucose (Glux-diol and isosorbide) and D-mannose (Manx-diol). Polycondensations were conducted in the melt applying similar reaction conditions for all cases. The aim was to compare the three bicyclic diols regarding their suitability to render aliphatic polyesters with enhanced thermal and mechanical properties. The ensuing polyesters had molecular weights (M w) in the 25,000–50,000 g mol−1 range with highest values being attained for Glux-diol. All the polyesters started to decompose above 300 °C and most of them did not display perceivable crystallinity. On the contrary, they had glass transition temperatures much higher than usually found in homologous polyesters made of alkanediols, and showed a stress–strain behavior consistent with their T g values. Glux-diol was particularly effective in increasing the T g and to render therefore polyesters with high elastic modulus and considerable mechanical strength. PMID:29491789

  13. Aliphatic hyperbranched polyester: A new building block in the construction of multifunctional nanoparticles and nanocomposites**

    PubMed Central

    Santra, Santimukul; Kaittanis, Charalambos; Perez, J. Manuel

    2009-01-01

    Herein we report the design and synthesis of multifunctional hyperbranched polyester-based nanoparticles and nanocomposites with properties ranging from magnetic, fluorescence, antioxidant and X-ray contrast. The fabrication of these nanostructures was achieved using a novel aliphatic and biodegradable hyperbranched polyester (HBPE) synthesized from readily available diethylmalonate. The polymer’s globular structure with functional surface carboxylic groups and hydrophobic cavities residing in the polymer’s interior allows for the formation of multifunctional polymeric nanoparticles, which are able to encapsulate a diversity of hydrophobic cargos. Via simple surface chemistry modifications, the surface carboxylic acid groups were modified to yield nanoparticles with a variety of surface functionalizations, such as amino, azide and propargyl groups, which mediated the conjugation of small molecules. This capability achieved the engineering of the HBPE nanoparticle surface for specific cell internalization studies and the formation of nanoparticle assemblies for the creation of novel nanocomposites that retained, and in some cases enhanced, the properties of the parental nanoparticle building blocks. Considering these results, the HBPE polymer, nanoparticles and composites should be ideal for biomedical, pharmaceutical, nanophotonics and material applications. PMID:19957939

  14. Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA

    NASA Astrophysics Data System (ADS)

    Chakraborty, Jayeeta; Varonka, Matthew; Orem, William; Finkelman, Robert B.; Manton, William

    2017-06-01

    The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.

  15. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site characterization study; Progress report, April 1, 1993--June 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dombrowski, T.; Stetzenbach, K.

    1993-08-01

    This report is in two parts one for the fluorinated benzoic acids and one for the fluorinated aliphatic acids. The assumptions made in the report regarding the amount of tracer that will be used, dilution of the tracer during the test and the length of exposure (if any) to individuals drinking the water were made by the authors. These assumptions must really come from the USGS hydrologists in charge of the c-well tracer testing program. Accurate estimates of dilution of the tracer during the test are also important because of solubility limitations of some of the tracers. Three of themore » difluorobenzoic acids have relatively low solubilities and may not be usable if the dilution estimates are large. The toxicologist that reviewed the document agreed with our conclusion that the fluorinated benzoic and toluic acids do not represent a health hazard if used under the conditions as outlined in the report. We are currently testing 15 of these compounds, and if even if three difluorobenzoic acids cannot be used because of solubility limitations we will still have 12 tracers. The toxicologist felt that the aliphatic fluorinated acids potentially present more of a health risk than the aromatic. This assessment was based on the fact of a known allergic response to halothane anesthetic. This risk, although minimal, is known and he felt that was enough reason to recommend against their use. The authors feel that the toxicologists interpretation of this risk was overly conservative, however, we will not go against his recommendation at this time for the following reasons. First, without the aliphatic compounds we still have 12 to 15 fluorinated aromatic acids which, should be enough for the c-well tests. Second, to get a permit to use aliphatic compounds would undoubtedly require a hearing which could be quite lengthy.« less

  16. Estimating the physicochemical properties of polyhalogenated aromatic and aliphatic compounds using UPPER: part 2. Aqueous solubility, octanol solubility and octanol-water partition coefficient.

    PubMed

    Admire, Brittany; Lian, Bo; Yalkowsky, Samuel H

    2015-01-01

    The UPPER (Unified Physicochemical Property Estimation Relationships) model uses additive and non-additive parameters to estimate 20 biologically relevant properties of organic compounds. The model has been validated by Lian and Yalkowsky (2014) on a data set of 700 hydrocarbons. Recently, Admire et al. (2014) expanded the model to predict the boiling and melting points of 1288 polyhalogenated benzenes, biphenyls, dibenzo-p-dioxins, diphenyl ethers, anisoles and alkanes. In this work, 19 new group descriptors are determined and used to predict the aqueous solubilities, octanol solubilities and the octanol-water coefficients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. TCE Removal From Contaminated Soil and Ground Water

    EPA Pesticide Factsheets

    Trichloroethylene (TCE) is a halogenated aliphatic organic compound which, due to its unique properties and solvent effects, has been widely used as an ingredient in industrial cleaning solutions and as a “universal” degreasing agent.

  18. Dermal microdialysis of inflammatory markers induced by aliphatic hydrocarbons in rats

    PubMed Central

    Patlolla, Ram R.; Mallampati, Ramya; Fulzele, Suniket V.; Babu, R. Jayachandra; Singh, Mandip

    2010-01-01

    In the present study we made an attempt to understand the skin irritation cascade of selected aliphatic hydrocarbons using microdialysis technique. Microdialysis probes were inserted into dermis in the dorsal skin of hairless rats. After 2 h of probes insertion, occlusive dermal exposure (2 h) was carried out with 230 μl of nonane, dodecane and tetradecane, using Hill top chambers®. Inflammatory biomarkers such as substance P (SP), α-melanocyte stimulating hormone (α-MSH) Interleukin 6 (IL-6) and prostaglandin E2 (PGE2) were analyzed in the dialysis samples by enzyme immunoassay (EIA). SP, α-MSH and IL6 were released in significant amounts following the dermal exposure of nonane and dodecane, whereas tetradecane did not induce any of these markers in significant amounts compared to control. Nonane increased the PGE2 levels in significant amounts within 2 h of chemical exposure compared to dodecane and tetradecane. IL-6 response was found to be slow and 2–3-fold increase in IL-6 levels was observed after 5 h following nonane and dodecane application. The magnitude of skin irritation exerted by all three chemicals was in the order of nonane ≥ dodecane ≥ tetradecane. The results demonstrate that microdialysis can be used to measure the inflammatory biomarkers in the skin irritation studies and irritation response of chemicals was quantifiable by this method. In conclusion, microdialysis was found to be an excellent tool to measure several inflammatory biomarkers as a function of time after dermal exposures with irritant chemicals. PMID:19152832

  19. Volatile organic compound emissions from green waste composting: Characterization and ozone formation

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Alaimo, Christopher P.; Horowitz, Robert; Mitloehner, Frank M.; Kleeman, Michael J.; Green, Peter G.

    2011-04-01

    Composting of green waste separated from the disposed solid waste stream reduces biodegradable inputs into landfills, and contributes valuable soil amendments to agriculture. Agencies in regions with severe air quality challenges, such as California's San Joaquin Valley (SJV), have raised concerns about gases emitted during the composting process, which are suspected to contribute to persistent high levels of ground-level ozone formation. The goal of the current study is to thoroughly characterize volatile organic compound (VOC) emissions from green waste compost piles of different ages (fresh tipped piles, 3-6 day old windrows, and 2-3 week old windrows). Multiple sampling and analytical approaches were applied to ensure the detection of most gaseous organic components emitted. More than 100 VOCs were detected and quantified in this study, including aliphatic alkanes, alkenes, aromatic hydrocarbons, biogenic organics, aldehydes, ketones, alcohols, furans, acids, esters, ether, halogenated hydrocarbons and dimethyl disulfide (DMDS). Alcohols were found to be the dominating VOC in the emissions from a compost pile regardless of age, with fluxes ranging from 2.6 to 13.0 mg m -2 min -1 with the highest emissions coming from the younger composting windrows (3-6 days). Average VOC emissions other than alcohols were determined to be 2.3 mg m -2 min -1 from younger windows, which was roughly two times higher than either the fresh tipping pile (1.2 mg m -2 min -1) or the older windrows (1.4 mg m -2 min -1). It was also observed that the older windrows emit a slightly larger proportion of more reactive compounds. Approximately 90% of the total VOCs were found to have maximum incremental reactivity of less than 2. Net ozone formation potential of the emissions was also assessed.

  20. Separation of aliphatic carboxylic acids and benzenecarboxylic acids by ion-exclusion chromatography with various cation-exchange resin columns and sulfuric acid as eluent.

    PubMed

    Ohta, Kazutoku; Ohashi, Masayoshi; Jin, Ji-Ye; Takeuchi, Toyohide; Fujimoto, Chuzo; Choi, Seong-Ho; Ryoo, Jae-Jeong; Lee, Kwang-Pill

    2003-05-16

    The application of various hydrophilic cation-exchange resins for high-performance liquid chromatography (sulfonated silica gel: TSKgel SP-2SW, carboxylated silica gel: TSKgel CM-2SW, sulfonated polymethacrylate resin: TSKgel SP-5PW, carboxylated polymethacrylate resins: TSKgel CM-5PW and TSKgel OA-Pak A) as stationary phases in ion-exclusion chromatography for C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, butyric, isovaleric, valeric, isocaproic, caproic, 2-methylhexanoic and heptanoic acids) and benzenecarboxylic acids (pyromellitic, trimellitic, hemimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic, salicylic acids and phenol) was carried out using diluted sulfuric acid as the eluent. Silica-based cation-exchange resins (TSKgel SP-2SW and TSKgel CM-2SW) were very suitable for the ion-exclusion chromatographic separation of these benzenecarboxylic acids. Excellent simultaneous separation of these benzenecarboxylic acids was achieved on a TSKgel SP-2SW column (150 x 6 mm I.D.) in 17 min using a 2.5 mM sulfuric acid at pH 2.4 as the eluent. Polymethacrylate-based cation-exchange resins (TSKgel SP-5PW, TSKgel CM-5PW and TSKgel OA-Pak A) acted as advanced stationary phases for the ion-exclusion chromatographic separation of these C1-C7 aliphatic carboxylic acids. Excellent simultaneous separation of these C1-C7 acids was achieved on a TSKgel CM-5PW column (150 x 6 mm I.D.) in 32 min using a 0.05 mM sulfuric acid at pH 4.0 as the eluent.

  1. Novel bioresources for studies of Brassica oleracea: identification of a kale MYB transcription factor responsible for glucosinolate production.

    PubMed

    Araki, Ryoichi; Hasumi, Akiko; Nishizawa, Osamu Ishizaki; Sasaki, Katsunori; Kuwahara, Ayuko; Sawada, Yuji; Totoki, Yasushi; Toyoda, Atsushi; Sakaki, Yoshiyuki; Li, Yimeng; Saito, Kazuki; Ogawa, Toshiya; Hirai, Masami Yokota

    2013-10-01

    Plants belonging to the Brassicaceae family exhibit species-specific profiles of glucosinolates (GSLs), a class of defence compounds against pathogens and insects. GSLs also exhibit various human health-promoting properties. Among them, glucoraphanin (aliphatic 4-methylsulphinylbutyl GSL) has attracted the most attention because it hydrolyses to form a potent anticancer compound. Increased interest in developing commercial varieties of Brassicaceae crops with desirable GSL profiles has led to attempts to identify genes that are potentially valuable for controlling GSL biosynthesis. However, little attention has been focused on genes of kale (Brassica oleracea var. acephala). In this study, we established full-length kale cDNA libraries containing 59 904 clones, which were used to generate an expressed sequence tag (EST) data set with 119 204 entries. The EST data set clarified genes related to the GSL biosynthesis pathway in kale. We specifically focused on BoMYB29, a homolog of Arabidopsis MYB29/PMG2/HAG3, not only to characterize its function but also to demonstrate its usability as a biological resource. BoMYB29 overexpression in wild-type Arabidopsis enhanced the expression of aliphatic GSL biosynthetic genes and the accumulation of aliphatic GSLs. When expressed in the myb28myb29 mutant, which exhibited no detectable aliphatic GSLs, BoMYB29 restored the expression of biosynthetic genes and aliphatic GSL accumulation. Interestingly, the ratio of methylsulphinyl GSL content, including glucoraphanin, to that of methylthio GSLs was greatly increased, indicating the suitability of BoMYB29 as a regulator for increasing methylsulphinyl GSL content. Our results indicate that these biological resources can facilitate further identification of genes useful for modifications of GSL profiles and accumulation in kale. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Synthesis of fuels and feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Andrew D.; Brooks, Ty; Jenkins, Rhodri

    Disclosed herein are embodiments of a method for making fuels and feedstocks from readily available alcohol starting materials. In some embodiments, the method concerns converting alcohols to carbonyl-containing compounds and then condensing such carbonyl-containing compounds together to form oligomerized species. These oligomerized species can then be reduced using by-products from the conversion of the alcohol. In some embodiments, the method further comprises converting saturated, oligomerized, carbonyl-containing compounds to aliphatic fuels.

  3. Polycyclic aromatic and aliphatic hydrocarbons in Chukchi Sea biota and sediments and their toxicological response in the Arctic cod, Boreogadus saida

    NASA Astrophysics Data System (ADS)

    Harvey, H. Rodger; Taylor, Karen A.; Pie, Hannah V.; Mitchelmore, Carys L.

    2014-04-01

    As part of the Chukchi Sea Offshore Monitoring in Drilling Area-Chemical and Benthos (COMIDA CAB) project, we determined the distribution and concentrations of aliphatic n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in surface sediments (0-1 cm) among 52 sites across the Chukchi Sea and in muscle tissues of the benthic Northern whelk, Neptunea heros, collected opportunistically. In addition, downcore profiles of contaminants were determined at three targeted sites to establish historic patterns. Baseline responses of PAH exposure and its potential toxicological effects were examined in the common Arctic cod, Boreogadus saida, through measures of cytochrome P4501A/ ethoxyresorufin O-deethylase (CYP1A/EROD), glutathione-S-transferase (GST), and Cu/Zn superoxide dismutase (SOD) activity in liver tissue. The total concentration of PAHs in surface sediments throughout the study area, including parent and alkyl-homologs, were very low (<1600 ng g-1 dry wt) except for a single station, where values were 2-20-fold greater than at other baseline sites (2956 ng g-1 dry wt). Alkyl-substituted PAHs were the dominant form in all surface (54-93%) and subsurface sediments (50-81% of the total), with a general decrease in total PAH concentrations observed downcore. In biota, larger Neptunea showed lower total concentrations of PAHs in foot muscles (4.5-10.7 ng g-1 wet wt) compared to smaller animals; yet aliphatic n-alkane (C19-C33) concentrations (0.655-5.20 μg g-1 wet wt) increased in larger organisms with distributions dominated by long-chain (C23-C33) hydrocarbons. In B. saida, CYP1A1, GST, and SOD enzyme levels were comparable to baseline levels previously reported in other pristine systems. Of the three assays, only SOD had a significant correlation between gene expression and enzyme activity.

  4. On the inclusion of alkanes into the monolayer of aliphatic alcohols at the water/alkane vapor interface: a quantum chemical approach.

    PubMed

    Vysotsky, Yuri B; Fomina, Elena S; Belyaeva, Elena A; Fainerman, Valentin B; Vollhardt, Dieter

    2013-02-14

    In the framework of the quantum chemical semiempirical PM3 method thermodynamic and structural parameters of the formation and clusterization of aliphatic alcohols C(n)H(2n+1)OH (n(OH) = 8-16) at 298 K at the water/alkane vapor C(n)H(2n+2), (n(CH(3)) = 6-16) interface were calculated. The dependencies of enthalpy, entropy and Gibbs' energy of clusterization per one monomer molecule of 2D films on the alkyl chain length of corresponding alcohols and alkanes, the molar fraction of alkanes in the monolayers and the immersion degree of alcohol molecules into the water phase were shown to be linear or stepwise. The threshold of spontaneous clusterization of aliphatic alcohols at the water/alkane vapor interface was 10-11 carbon atoms at 298 K which is in line with experimental data at the air/water interface. It is shown that the presence of alkane vapor does not influence the process of alcohol monolayer formation. The structure of these monolayers is analogous to those obtained at the air/water interface in agreement with experimental data. The inclusion of alkane molecules into the amphiphilic monolayer at the water/alkane vapor interface is possible for amphiphiles with the spontaneous clusterization threshold at the air/water interface (n(s)(0)) of at least 16 methylene units in the alkyl chain, and it does not depend on the molar fraction of alkanes in the corresponding monolayer. The inclusion of alkanes from the vapor phase into the amphiphilic monolayer also requires that the difference between the alkyl chain lengths of alcohols and alkanes is not larger than n(s)(0) - 15 and n(s)(0) - 14 for the 2D film 1 and 2D film 2, respectively.

  5. Mathematical models of solute retention in gas chromatography as sources of thermodynamic data. Part IV. Aliphatic alcohols as the test analytes.

    PubMed

    Ciazyńska-Halarewicz, Katarzyna; Helbin, Monika; Korzenecki, Paweł; Kowalska, Teresa

    2007-09-01

    This study is the fourth consecutive part belonging to the cycle devoted to an alternative approach to deriving certain thermodynamic magnitudes. The previous three papers were dedicated, respectively, to ketones, aldehydes, and alkylbenzenes. In our present study (similar to the previous ones) the following working procedure is adopted. With the aid of capillary gas chromatography, the retention times are obtained for a wide variety of the aliphatic alcohols. The analyses are carried out isothermally on stationary phases of different polarity and at five different measuring temperatures. These data constitute an experimental basis for further processing with the aid of the specially devised mathematical equations. The fitting parameters of these equations, due to their physicochemical meaning, enable determination of certain thermodynamic data. Nine equations used in this study are the relationships coupling the selected retention data [relative retention (r), non-reduced relative retention (rG), the retention factor (k), or the Kováts retention index (I)] and a variety of the physical magnitudes [the boiling point of the analyte (T(B)), its molar volume (Vm), or its molar refraction (Rm)]. These relationships are tested with respect to their performance to predict the molar enthalpy of vaporization (deltaHvap) of the analytes of interest (i.e., of aliphatic alcohols). Evaluation of the equations' performance is carried out through a comparison of the numerical values generated from this approach with those originating from the other methods, and a very good agreement was found between these two series of the data. The best molar enthalpy vaporization values (deltaHvap) are obtained from the retention data originating from the most polar of the three investigated stationary phases (i.e., DB-Wax). Models V and VIII proved the best performing ones among the nine models tested in this study.

  6. Occupational exposure to gases, polycyclic aromatic hydrocarbons and volatile organic compounds in biomass-fired power plants.

    PubMed

    Jumpponen, M; Rönkkömäki, H; Pasanen, P; Laitinen, J

    2013-01-01

    The combustion of fuels produces air pollutants in the form of gases, organic compounds, and particulate matter. However, although the environmental aspect of these agents has been examined, workers' exposure to them is still a neglected issue. The purpose of this study was to measure maintenance and ash removal workers' multiple exposures to gases, volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) during their work tasks in biomass-fired power plants. Our hygienic measurements revealed that carbon monoxide, nitric oxide, ammonia and sulfur dioxide were the most common gases that the workers were exposed to during their tasks. Their average concentrations were 0.45 ppm, 0.06 ppm, 0.11 ppm and 0.42 ppm, respectively. Phenanthrene and naphthalene were the most prominent PAHs. At the same sampling points, the most commonly found VOCs were aromatic and aliphatic hydrocarbons and turpentines. The calculated total PAH concentrations were less than 7% of benzo[a]pyrene's eight-hour occupational exposure limit, and the total VOC concentrations were below the Finnish reference value for the normal industrial level in all measured work tasks. The most evident health effect caused by multiple exposures to gases was upper respiratory track irritation, followed by the disruption of oxygen transport, and finally central nervous system disorders. We recommend powered air respirators with ABEK+P3 cartridges and carbon monoxide gas detectors as the minimum requirement for those working inside biomass-fired power plant boilers, and compressed air breathing apparatus as the best form of protection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Implementation of GPC characterization of asphalt binders at Louisiana materials laboratory : tech summary.

    DOT National Transportation Integrated Search

    2013-10-01

    Asphalt is a mixture of a wide variety of chemical compounds that include aliphatic hydrocarbons and highly fused : aromatic ring systems. They are classi ed as asphaltenes (medium molecular weight) and maltenes (low molecular : weight). To improv...

  8. Inhibition of glycine receptor function of native neurons by aliphatic n-alcohols

    PubMed Central

    Tao, Liang; Ye, Jiang Hong

    2002-01-01

    The inhibitory effects of n-alcohols (methanol to dodecanol) on glycine-activated currents were studied in neurons freshly dissociated from the ventral tegmental area of neonatal rats using whole-cell patch-clamp recording technique.Ethanol enhanced and depressed glycine-activated currents in 35% and 45%, respectively, of neurons of ventral tegmental area of neonatal rats. In this report, we extended our focus of ethanol-induced inhibition of glycine currents to other straight-chain alcohols.Aliphatic n-alcohols, which have carbon numbers less than nine, suppressed glycine currents in 45% (71/158) of the neurons. All results from this study are obtained from the 45% of cells displaying inhibition; the other 55% of the neurons were not studied.Alcohol potency increased as the number of carbon atoms increased from one to five, and was at a maximal plateau from five to nine; alcohols with 10 or more carbons did not inhibit glycine-activated currents. Thus, a ‘cutoff' point in their potency for inhibition of glycine receptor function occurred at about decanol.A coapplication of dodecanol with ethanol eliminated the inhibition resulting from ethanol. Thus, dodecanol may bind to the receptor silently and compete with ethanol.These observations indicate that straight-chain n-alcohols exhibit a ‘cutoff' point in their potency for inhibition of the glycine receptor function between nine and 10 carbon atoms. The inability of longer alcohols to change the activation properties of the receptors may contribute to the cutoff effect. PMID:12055142

  9. Chemical Composition of Soil Horizons and Aggregate Size Fractions Under the Hawaiian Fern Dicranopteris and Angiosperm Cheirodendrom

    NASA Astrophysics Data System (ADS)

    Stewart, C. E.; Amatangelo, K.; Neff, J.

    2007-12-01

    Soil organic matter (SOM) inherits much of its chemical nature from the dominant vegetation, including phenolic (lignin-derived), aromatic, and aliphatic (cutin and wax-derived) compounds. However, relatively stable recalcitrant compounds may also be formed as a result of condensation and complexation reactions through decomposition and protected with association with mineral particles. The Hawaiian fern species Dicranopteris decomposes more slowly than the angiosperm, Cheirodendrom due to high concentrations of recalcitrant C compounds. These aliphatic fern leaf waxes are well-preserved and may comprise a large portion of the recalcitrant organic matter in these soils. Our objective was to determine the chemical composition of the SOM under the O- (litter-dominated) and the A- (mineral) horizons formed under fern and angiosperm vegetation. To determine the effect of mineral-association, we fractioned the soil into four size classes; 850-590 μm, 590-180 μm, 180-53 μm and <53 μm and characterized the SOM via pyrolysis-gas chromatography-mass spectrometry (py-GC/MS). As the soils developed from the O- to the A-horizon, there was a decrease of lignin-derived phenolic compounds and an increase in more recalcitrant, aromatic and aliphatic C. Soils under ferns had greater relative concentrations of phenolic compounds, while the angiosperms had greater concentrations of fatty-acid methyl esters and furans (some polysaccharide-derived). Differences between size fractions were most evident in the O-horizon of both species. Recalcitrant fern-derived cutin and leaf waxes (alkene and alkanes structures) occurred in the 180-53 μm fraction, which has been shown to be the most stable of the aggregate-size fractions. Soils developed under fern versus angiosperm vegetation have distinct chemical signatures, which likely determine the recalcitrance of the SOM.

  10. KINETICS OF THE TRANSFORMATION OF TRICHLOROETHYLENE AND TETRACHLOROETHYLENE BY IRON SULFIDE. (R825958)

    EPA Science Inventory

    The transformation of nine halogenated aliphatic compounds
    by 10 g/L (0.5 m2/L) FeS at pH 8.3 was studied in batch
    experiments. These compounds were as follows:
    pentachloroethane (PCA), 1,1,2,2- and 1,1,1,2-tetrachloroethanes (1122-TeCA and 1112-TeCA), 1,1,...

  11. Biodegradation of Nitriles in Shale Oil

    PubMed Central

    Aislabie, Jackie; Atlas, Ronald M.

    1988-01-01

    Enrichment cultures were obtained, after prolonged incubation on a shale oil as the sole source of nitrogen, that selectively degraded nitriles. Capillary gas chromatographic analyses showed that the mixed microbial populations in the enrichments degraded the homologous series of aliphatic nitriles but not the aliphatic hydrocarbons, aromatic hydrocarbons, or heterocyclic-nitrogen compounds found in this oil. Time course studies showed that lighter nitriles were removed more rapidly than higher-molecular-weight nitriles. A Pseudomonas fluorescens strain isolated from an enrichment, which was able to completely utilize the individual nitriles undecyl cyanide and undecanenitrile as sole sources of carbon and nitrogen, was unable to attack stearonitrile when provided alone as the growth substrate. A P. aeruginosa strain, also isolated from one of the enrichments, used nitriles but not aliphatic or aromatic hydrocarbons when the oil was used as a sole nitrogen source. However, when the shale oil was used as the sole source of carbon, aliphatic hydrocarbons in addition to nitriles were degraded but aromatic hydrocarbons were still not attacked by this P. aeruginosa strain. PMID:16347731

  12. Formation of organobromine and organoiodine compounds by engineered TiO2 nanoparticle-induced photohalogenation of dissolved organic matter in environmental waters.

    PubMed

    Hao, Zhineng; Yin, Yongguang; Wang, Juan; Cao, Dong; Liu, Jingfu

    2018-08-01

    There are increasing concerns about the adverse effects of released engineered nanoparticles and photochemically formed organohalogen compounds (OHCs) on human health and the environment. Herein, we report that titanium dioxide nanoparticles (TiO 2 NPs) can photocatalytically halogenate dissolved organic matter (DOM) to form a large number of organobromine compounds (OBCs) and organoiodine compounds (OICs), as characterized by negative ion electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry. Compared with no OHCs produced in control samples in darkness and/or without TiO 2 NPs under sunlight irradiation, various OBCs and OICs were detected in freshwater and seawater under sunlight irradiation for 12h and 24h even in the presence of 1mgL -1 TiO 2 NPs, indicating the photocatalytic roles TiO 2 NPs played in DOM halogenation. Furthermore, TiO 2 NPs could result in the photodegradation of newly formed OHCs, as evidenced by the intensity and the number of some OHCs decreased with reaction time. In addition, many TiO 2 NP-induced OBCs contained two or three bromine atoms, and/or nitrogen and sulfur elements, belonging to lignin-like, tannin-like, unsaturated hydrocarbon and aliphatic compounds. While the OICs were primarily contained one iodine, and very few consisted of nitrogen and sulfur elements, most were lignin-like and tannin-like compounds. Finally, the OBCs in freshwater were found to be formed mainly via a substitution reaction or addition reaction and were accompanied by other reactions such as photooxidation, while the OBCs in seawater and OICs were formed primarily via substitution reactions. Given the abundance of produced OHCs and their toxicity, our findings call for further studies on the exact structure and toxicity of the formed OHCs, taking account the TiO 2 NP-induced DOM photohalogenation in aquatic environments during the evaluation of the environmental effects of engineered TiO 2 NPs. Copyright © 2018

  13. Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study

    NASA Astrophysics Data System (ADS)

    Rogge, Wolfgang F.; Medeiros, Patricia M.; Simoneit, Bernd R. T.

    Fugitive dust from the erosion of arid and fallow land, after harvest and during agricultural activities, can at times be the dominant source of airborne particulate matter. In order to assess the source contributions to a given site, chemical mass balance (CMB) modeling is typically used together with source-specific profiles for organic and inorganic constituents. Yet, the mass balance closure can be achieved only if emission profiles for all major sources are considered. While a higher degree of mass balance closure has been achieved by adding individual organic marker compounds to elements, ions, EC, and organic carbon (OC), major source profiles for fugitive dust are not available. Consequently, neither the exposure of the population living near fugitive dust sources from farm land, nor its chemical composition is known. Surface soils from crop fields are enriched in plant detritus from both above and below ground plant parts; therefore, surface soil dust contains natural organic compounds from the crops and soil microbiota. Here, surface soils derived from fields growing cotton, safflower, tomato, almonds, and grapes have been analyzed for more than 180 organic compounds, including natural lipids, saccharides, pesticides, herbicides, and polycyclic aromatic hydrocarbon (PAH). The major result of this study is that selective biogenically derived organic compounds are suitable markers of fugitive dust from major agricultural crop fields in the San Joaquin Valley. Aliphatic homologs exhibit the typical biogenic signatures of epicuticular plant waxes and are therefore indicative of fugitive dust emissions and mechanical abrasion of wax protrusions from leaf surfaces. Saccharides, among which α- and β-glucose, sucrose, and mycose show the highest concentrations in surface soils, have been proposed to be generic markers for fugitive dust from cultivated land. Similarly, steroids are strongly indicative of fugitive dust. Yet, triterpenoids reveal the most

  14. Simultaneous detection of low and high molecular weight carbonylated compounds derived from lipid peroxidation by electrospray ionization-tandem mass spectrometry.

    PubMed

    Milic, Ivana; Hoffmann, Ralf; Fedorova, Maria

    2013-01-02

    Reactive oxygen species (ROS) and other oxidative agents such as free radicals can oxidize polyunsaturated fatty acids (PUFA) as well as PUFA in lipids. The oxidation products can undergo consecutive reactions including oxidative cleavages to yield a chemically diverse group of products, such as lipid peroxidation products (LPP). Among them are aldehydes and ketones ("reactive carbonyls") that are strong electrophiles and thus can readily react with nucleophilic side chains of proteins, which can alter the protein structure, function, cellular distribution, and antigenicity. Here, we report a novel technique to specifically derivatize both low molecular and high molecular weight carbonylated LPP with 7-(diethylamino)coumarin-3-carbohydrazide (CHH) and analyze all compounds by electrospray ionization-mass spectrometry (ESI-MS) in positive ion mode. CHH-derivatized compounds were identified by specific neutral losses or fragment ions. The fragment ion spectra displayed additional signals that allowed unambiguous identification of the lipid, fatty acids, cleavage sites, and oxidative modifications. Oxidation of docosahexaenoic (DHA, 22:6), arachidonic (AA, 20:4), linoleic (LA, 18:2), and oleic acids (OA, 18:1) yielded 69 aliphatic carbonyls, whose structures were all deduced from the tandem mass spectra. When four phosphatidylcholine (PC) vesicles containing the aforementioned unsaturated fatty acids were oxidized, we were able to deduce the structures of 122 carbonylated compounds from the tandem mass spectra of a single shotgun analysis acquired within 15 min. The high sensitivity (LOD ∼ 1 nmol/L for 4-hydroxy-2-nonenal, HNE) and a linear range of more than 3 orders of magnitude (10 nmol/L to 10 μmol/L for HNE) will allow further studies on complex biological samples including plasma.

  15. Organic compounds in circumstellar and interstellar environments.

    PubMed

    Kwok, Sun

    2015-06-01

    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth.

  16. The Preparation of Lucigenin.

    ERIC Educational Resources Information Center

    Amiet, R. G.

    1982-01-01

    Outlines and discusses procedures for the preparation of lucigenin, a powerfully chemiluminescent compound. Major techniques (requiring three 4-hour sessions) involving nucleophilic and electrophilic aromatic substitution, nucleophilic aliphatic substitution, reductive coupling, and oxidation reactions include steam distillation, decolorization…

  17. Mono- and polynuclear Co(II) silanethiolates with aliphatic diamines

    NASA Astrophysics Data System (ADS)

    Pladzyk, Agnieszka; Baranowska, Katarzyna

    2014-01-01

    Four Co(II) complexes, [Co{SSi(OtBu)3}2(dmpda)] 1, [Co{SSi(OtBu)3}2(bda)2]n2 [Co{SSi(OtBu)3}2(pda)2]n3 and [Co{SSi(OtBu)3}2(hda)2]n4 [dmpda = 3-(dimethylamino)-1-propylamine; bda = 1.4-butanediamine; pda = 1.5-pentanediamine; had = 1.6-hexanediamine] have been synthesized and characterized using X-ray diffraction. Complex 1 is mononuclear and contains Co(II) coordinated by dmpda molecule in chelating mode, whereas compounds 3 and 4 are one-dimensional polymers with pda and hda diamines as bridges between the metallic centers respectively. In all complexes tri-tert-butoxysilanethiolate residue acts as terminal S-donor ligand. Full characterization of obtained compounds 1-4 was additionally carried out with the use of IR and UV-vis spectroscopy, elemental and thermal analysis.

  18. Chemical oxidation of a malodorous compound, indole, using iron entrapped in calcium alginate beads.

    PubMed

    Ben Hammouda, Samia; Adhoum, Nafaâ; Monser, Lotfi

    2016-01-15

    Iron-alginate beads (Fe-ABs) were successfully prepared by the ion-gelation method, and applied as heterogeneous Fenton catalysts for the removal of a malodorous compound 'indole'. Similarly, copper-enriched alginate beads (Cu-ABs) were synthesized and tested as like-Fenton catalyst, however, their application proved not to be effective for this purpose. Fe-ABs catalysts were characterized by FTIR, SEM, EDS and AAS spectroscopy. Results pointed out that the parameters affecting Fenton catalysis must be carefully chosen to avoid excessive iron release. Under optimal conditions, complete indole removal and considerably high reduction of TOC, without significant leaching was achieved. Indole decay followed a pseudo-first-order kinetics. The absolute rate constant for indole hydroxylation was 3.59×10(9) M(-1) s(-1), as determined by the competition kinetics method. Four reaction intermediates (Isatin, Dioxindole, Oxindole and Anthralinic acid) were identified by ULC/MS/MS analysis. Short-chain aliphatic carboxylic acids like formic, acetic, oxalic, maleic, oxamic and pyruvic acids were identified by ion exclusion chromatography and as end-products. Based on the identified by-products, a plausible mineralization pathway was proposed. Moreover, the catalyst was recovered quantitatively by simple filtration and reused for several times without significant loss of activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The Venus flytrap attracts insects by the release of volatile organic compounds

    PubMed Central

    Kreuzwieser, Jürgen; Honsel, Anne

    2014-01-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap. PMID:24420576

  20. Selective Sorbents For Purification Of Hydrocarbons

    DOEpatents

    Yang, Ralph T.; Yang, Frances H.; Takahashi, Akira; Hernandez-Maldonado, Arturo J.

    2006-04-18

    A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal ion that is adapted to form p-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by p-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.

  1. Selective sorbents for purification of hydrocarbons

    DOEpatents

    Yang, Ralph T.; Hernandez-Maldonado, Arturo J.; Yang, Frances H.; Takahashi, Akira

    2006-08-22

    A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal cation that is adapted to form .pi.-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by .pi.-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.

  2. Selective sorbents for purification of hydrocarbons

    DOEpatents

    Yang, Ralph T.; Yang, Frances H.; Takahashi, Akira; Hernandez-Maldonado, Arturo J.

    2006-05-30

    A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal cation that is adapted to form .pi.-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by .pi.-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.

  3. Selective sorbents for purification of hydrocartons

    DOEpatents

    Yang, Ralph T.; Yang, Frances H.; Takahashi, Akira; Hermandez-Maldonado, Arturo J.

    2006-12-12

    A method for removing thiophene and thiophene compounds from liquid fuel includes contacting the liquid fuel with an adsorbent which preferentially adsorbs the thiophene and thiophene compounds. The adsorption takes place at a selected temperature and pressure, thereby producing a non-adsorbed component and a thiophene/thiophene compound-rich adsorbed component. The adsorbent includes either a metal or a metal ion that is adapted to form .pi.-complexation bonds with the thiophene and/or thiophene compounds, and the preferential adsorption occurs by .pi.-complexation. A further method includes selective removal of aromatic compounds from a mixture of aromatic and aliphatic compounds.

  4. Amino Acid Insertion Frequencies Arising from Photoproducts Generated Using Aliphatic Diazirines

    NASA Astrophysics Data System (ADS)

    Ziemianowicz, Daniel S.; Bomgarden, Ryan; Etienne, Chris; Schriemer, David C.

    2017-10-01

    Mapping proteins with chemical reagents and mass spectrometry can generate a measure of accessible surface area, which in turn can be used to support the modeling and refinement of protein structures. Photolytically generated carbenes are a promising class of reagent for this purpose. Substituent effects appear to influence surface mapping properties, allowing for a useful measure of design control. However, to use carbene labeling data in a quantitative manner for modeling activities, we require a better understanding of their inherent amino acid reactivity, so that incorporation data can be normalized. The current study presents an analysis of the amino acid insertion frequency of aliphatic carbenes generated by the photolysis of three different diazirines: 3,3'-azibutyl-1-ammonium, 3,3'-azibutan-1-ol, and 4,4'-azipentan-1-oate. Leveraging an improved photolysis system for single-shot labeling of sub-microliter frozen samples, we used EThCD to localize insertion products in a large population of labeled peptides. Counting statistics were drawn from data-dependent LC-MS2 experiments and used to estimate the frequencies of insertion as a function of amino acid. We observed labeling of all 20 amino acids over a remarkably narrow range of insertion frequencies. However, the nature of the substituent could influence relative insertion frequencies, within a general preference for larger polar amino acids. We confirm a large (6-fold) increase in labeling yield when carbenes were photogenerated in the solid phase (77 K) relative to the liquid phase (293 K), and we suggest that carbene labeling should always be conducted in the frozen state to avoid information loss in surface mapping experiments. [Figure not available: see fulltext.

  5. Toxicity of organic compounds from unresolved complex mixtures (UCMs) to primary fish hepatocytes.

    PubMed

    Petersen, Karina; Hultman, Maria T; Rowland, Steven J; Tollefsen, Knut Erik

    2017-09-01

    Many environmental matrices contaminated with organic pollutants derived from crude oil or degraded petroleum contain mixtures so complex that they are typically unresolved by conventional analytical techniques such as gas chromatography. The resulting chromatographic features have become known as 'humps' or unresolved complex mixtures (UCMs). These UCMs often dominate the organic contaminants of polluted environmental samples: for example, in oil sands produced water up to 150mgL -1 of 'naphthenic acids' appear as UCMs when examined by gas chromatography as the esters. In oil-contaminated mussels, aromatic hydrocarbon UCMs may comprise almost all of the total toxic hydrocarbons, with over 7000μgg -1 dry weight reported in some samples. Over the last 25 years, efforts to resolve and thus identify, or at least to produce average structures, for some UCM components, have proved fruitful. Numerous non-polar UCM hydrocarbons and more polar UCM acids have been identified, then synthesised or purchased from commercial suppliers. As UCMs have been proposed to represent a risk to aquatic organisms, the need for assessment of the ecotoxicological effects and characterisation of the mode of action (MoA) of these environmental pollutants has arisen. In the present study, several chemicals with structures typical of those found in some UCMs, were assessed for their potential to disrupt membrane integrity, inhibit metabolic activity, activate the aryl hydrocarbon receptor (AhR), and activate the estrogen receptor (ER) in primary rainbow trout hepatocytes (Oncorhynchus mykiss). These endpoints were determined in order to screen for common toxic modes of action (MoA) in this diverse group of chemicals. The results from the in vitro screening indicated that of the endpoints tested, the predominant toxic MoA was cytotoxicity. EC 50 values for cytotoxicity were obtained for 16 compounds and ranged from 77μM-24mM, whereof aliphatic monocyclic acids, monoaromatic acids, polycyclic

  6. FTIR and molecular mechanics studies of H-bonds in aliphatic polyurethane and polyamide-66 model molecules.

    PubMed

    Wang, Guoqing; Zhang, Chunxia; Guo, Xiaohe; Ren, Zhiyong

    2008-02-01

    Model aliphatic polyurethane (APU) hard segment based on 1,6-hexamethylene diisocyanate (HDI) and 1,4-butanediol (BDO) were prepared. FTIR and molecular mechanics (MM) simulation were used to conduct the systematic studies on APU and polyamide-66 (PA-66) whose sole difference lies in the alkoxyl oxygen. It was found that the introduction of the alkoxyl not only increases the conformations in APU, makes it a possible H-bond acceptor, but also weakens the H-bond between NH and O=C in APU. There are two conformers stably existed in APU with lowest energy, leading to eight H-bond complexes based on NH as donor and (1) O=C as acceptor, and another two complexes based on (2) alkoxyl O and (3) urethane N as acceptors, whereas there is only one stable conformer in PA-66, leading to one H-bond complex. One predominant H-bond complex has been found in APU with probability of about 95%. The simulated results are consistent with the nuNH and nuC=O band shifting in FTIR.

  7. FTIR and molecular mechanics studies of H-bonds in aliphatic polyurethane and polyamide-66 model molecules

    NASA Astrophysics Data System (ADS)

    Wang, Guoqing; Zhang, Chunxia; Guo, Xiaohe; Ren, Zhiyong

    2008-02-01

    Model aliphatic polyurethane (APU) hard segment based on 1,6-hexamethylene diisocyanate (HDI) and 1,4-butanediol (BDO) were prepared. FTIR and molecular mechanics (MM) simulation were used to conduct the systematic studies on APU and polyamide-66 (PA-66) whose sole difference lies in the alkoxyl oxygen. It was found that the introduction of the alkoxyl not only increases the conformations in APU, makes it a possible H-bond acceptor, but also weakens the H-bond between NH and O dbnd C in APU. There are two conformers stably existed in APU with lowest energy, leading to eight H-bond complexes based on NH as donor and (1) O dbnd C as acceptor, and another two complexes based on (2) alkoxyl O and (3) urethane N as acceptors, whereas there is only one stable conformer in PA-66, leading to one H-bond complex. One predominant H-bond complex has been found in APU with probability of about 95%. The simulated results are consistent with the νNH and νC dbnd O band shifting in FTIR.

  8. Synthesis and characterization of self-assembled monolayers on gold generated from partially fluorinated alkanethiols and aliphatic dithiocarboxylic acids

    NASA Astrophysics Data System (ADS)

    Colorado, Ramon, Jr.

    The formation of novel self-assembled monolayers (SAMs) on gold from the adsorption of four distinct series of partially fluorinated alkanethiols (PFAs) and one series of chelating aliphatic dithiocarboxylic acids (ADTCAs) is reported. The SAMs were characterized by optical ellipsometry, contact angle goniometry, polarization modulation infrared absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). The results for the PFA SAMs provided evidence for both the importance of oriented surface dipoles in influencing interfacial wettabilities and the significance of the degree of fluorination of the PFAs in determining the dispersive interfacial energies of the films. In addition, a series of PFA SAMs was used to demonstrate that the attenuation lengths of photoelectrons in fluorocarbon films are indistinguishable from those in hydrocarbon films. The results for the ADTCA SAMs demonstrated that the use of a chelating headgroup induces structural changes within the monolayers that influence the interfacial properties of the films.

  9. ELECTROCHEMICAL DEGRADATION OF POLYCHLOROBIPHENYLS

    EPA Science Inventory

    Granular graphite is an ideal conductive material for electrochemical reduction technology applications in the field. Granular graphite was used to enhance the transfer of chlorinated aliphatic compounds in saturated, low permeability soils by electroosmosis. It was also used to ...

  10. Geogenic organic contaminants in the low-rank coal-bearing Carrizo-Wilcox aquifer of East Texas, USA

    USGS Publications Warehouse

    Chakraborty, Jayeeta; Varonka, Matthew S.; Orem, William H.; Finkelman, Robert B.; Manton, William

    2017-01-01

    The organic composition of groundwater along the Carrizo-Wilcox aquifer in East Texas (USA), sampled from rural wells in May and September 2015, was examined as part of a larger study of the potential health and environmental effects of organic compounds derived from low-rank coals. The quality of water from the low-rank coal-bearing Carrizo-Wilcox aquifer is a potential environmental concern and no detailed studies of the organic compounds in this aquifer have been published. Organic compounds identified in the water samples included: aliphatics and their fatty acid derivatives, phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, and phthalates. Many of the identified organic compounds (aliphatics, phenols, heterocyclic compounds, PAHs) are geogenic and originated from groundwater leaching of young and unmetamorphosed low-rank coals. Estimated concentrations of individual compounds ranged from about 3.9 to 0.01 μg/L. In many rural areas in East Texas, coal strata provide aquifers for drinking water wells. Organic compounds observed in groundwater are likely to be present in drinking water supplied from wells that penetrate the coal. Some of the organic compounds identified in the water samples are potentially toxic to humans, but at the estimated levels in these samples, the compounds are unlikely to cause acute health problems. The human health effects of low-level chronic exposure to coal-derived organic compounds in drinking water in East Texas are currently unknown, and continuing studies will evaluate possible toxicity.

  11. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  12. Inhibitors of calling behavior of Plodia interpunctella.

    PubMed

    Hirashima, Akinori; Shigeta, Yoko; Eiraku, Tomohiko; Kuwano, Eiichi

    2003-01-01

    Some octopamine agonists were found to suppress the calling behavior of the stored product Indian meal moth, Plodia interpunctella. Compounds were screened using a calling behavior bioassay using female P. interpunctella. Four active derivatives, with inhibitory activity at the nanomolar range, were identified in order of decreasing activity: 2-(1-phenylethylamino)-2-oxazoline > 2-(2-ethyl,6-methylanilino)oxazolidine > 2-(2-methyl benzylamino)-2-thiazoline > 2-(2,6-diethylanilino)thiazolidine. Three-dimensional pharmacophore hypotheses were built from a set of 15 compounds. Among the ten common-featured models generated by the program Catalyst/HipHop, a hypothesis including a hydrogen-bond acceptor lipid, a hydrophobic aromatic and two hydrophobic aliphatic features was considered to be essential for inhibitory activity in the calling behavior. Active compounds mapped well onto all the hydrogen-bond acceptor lipid, hydrophobic aromatic and hydrophobic aliphatic features of the hypothesis. On the other hand, less active compounds were shown not to achieve the energetically favorable conformation that is found in the active molecules in order to fit the 3D common-feature pharmacophore models. The present studies demonstrate that inhibition of calling behavior is via an octopamine receptor.

  13. Aliphatic peptidyl hydroperoxides as a source of secondary oxidation in hydroxyl radical protein footprinting

    PubMed Central

    Saladino, Jessica; Liu, Mian; Live, David; Sharp, Joshua S.

    2009-01-01

    Hydroxyl radical footprinting is a technique for studying protein structure and binding that entails oxidizing a protein system of interest with diffusing hydroxyl radicals, and then measuring the amount of oxidation of each amino acid. One important issue in hydroxyl radical footprinting is limiting amino acid oxidation by secondary oxidants to prevent uncontrolled oxidation which can cause amino acids to appear more solvent accessible than they really are. Previous work suggested that hydrogen peroxide was the major secondary oxidant of concern in hydroxyl radical footprinting experiments; however, even after elimination of all hydrogen peroxide, some secondary oxidation was still detected. Evidence is presented for the formation of peptidyl hydroperoxides as the most abundant product upon oxidation of aliphatic amino acids. Both reverse phase liquid chromatography and catalase treatment were shown to be ineffective at eliminating peptidyl hydroperoxides. The ability of these peptidyl hydroperoxides to directly oxidize methionine is demonstrated, suggesting the value of methionine amide as an in situ protectant. Hydroxyl radical footprinting protocols require the use of an organic sulfide or similar peroxide scavenger in addition to removal of hydrogen peroxide in order to successfully eradicate all secondary oxidizing species and prevent uncontrolled oxidation of sulfur-containing residues. PMID:19278868

  14. Relations between aliphatics and silicate components in 12 stratospheric particles deduced from vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merouane, S.; Djouadi, Z.; Le Sergeant d'Hendecourt, L., E-mail: sihane.merouane@ias.u-psud.fr

    2014-01-10

    Interplanetary dust particles (IDPs) are among the most pristine extraterrestrial samples available in the laboratory for analyses with moderate to high spatial- and spectral-resolution spectroscopic techniques. Their composition can provide precious information on the early stages of the solar nebula as well as on the processes on the surfaces of different small bodies in the solar system from which IDPs originate. In this work, we have analyzed six anhydrous IDPs and six stratospheric particles possibly of cosmic origin through infrared (IR) and Raman micro-spectroscopy to study and investigate their silicate and organic components. We find that the length/ramification of themore » aliphatic organics given by the CH{sub 2}/CH{sub 3} ratios in the IDPs is closely linked to the silicate family (pyroxene or olivine) present in the samples. Both IR and Raman data suggest that this relation is not correlated with either aqueous (as evidenced by the absence of aqueous related minerals) or thermal processes (as deduced from Raman measurements). Therefore, this observation might be related to the initial path of formation of the organics on the silicate surfaces, thus tracing a possible catalytic role that silicates would play in the formation and/or ramification of organic matter in the primitive nebula.« less

  15. Anaerobic Transformation of Chlorinated Aliphatic Hydrocarbons in a Sand Aquifer Based on Spatial Chemical Distributions

    NASA Astrophysics Data System (ADS)

    Semprini, Lewis; Kitanidis, Peter K.; Kampbell, Don H.; Wilson, John T.

    1995-04-01

    We estimated the distribution of chlorinated aliphatic hydrocarbons (CAHs) from groundwater samples collected along three transects in a sand aquifer. Trichloroethylene (TCE) leaked and contaminated the aquifer probably more than a decade before we collected the measurements. The data show significant concentrations of TCE, cis-l,2-dichloroethylene (c-DCE), vinyl chloride (VC), and ethene. We attributed DCE, VC, and ethene to the reductive dehalogenation of TCE. The CAH concentrations varied significantly with depth and correlate with sulfate and methane concentrations. Anoxic aquifer conditions exist with methane present at relatively high concentrations at depth. High concentrations of TCE correspond with the absence of methane or low methane concentrations, whereas products of TCE dehalogenation are associated with higher methane concentrations and low sulfate concentrations. Indications are that the dechlorination of TCE and DCE to VC and ethene is associated with sulfate reduction and active methanogenesis. TCE dechlorination to DCE is likely occurring under the less reducing conditions of sulfate reduction, with further reductions to VC and ethene occurring under methanogenic conditions. We estimated that about 20% of TCE has dechlorinated to ethene. The analysis of the data enhanced our knowledge of natural in situ transformation and transport processes of CAHs.

  16. Precision Aliphatic Polyesters with Alternating Microstructures via Cross-Metathesis Polymerization: An Event of Sequence Control.

    PubMed

    Li, Zi-Long; Zeng, Fu-Rong; Ma, Ji-Mei; Sun, Lin-Hao; Zeng, Zhen; Jiang, Hong

    2017-06-01

    Sequence-regulated polymerization is realized upon sequential cross-metathesis polymerization (CMP) and exhaustive hydrogenation to afford precision aliphatic polyesters with alternating sequences. This strategy is particularly suitable for the arrangement of well-known monomer units including glycolic acid, lactic acid, and caprolactic acid on polymer chain in a predetermined sequence. First of all, structurally asymmetric monomers bearing acrylate and α-olefin terminuses are generated in an efficient and straightforward fashion. Subsequently, cross-metathesis (co)polymerization of M1 and M2 using the Hoveyda-Grubbs second-generation catalyst (HG-II) furnishes P1-P3, respectively. Finally, hydrogenation yields the desired saturated polyesters HP1-HP3. It is noteworthy that the ε-caprolactone-derived unit is generated in situ rather than introduced to tailor-made monomers prior to CMP. NMR and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) results verify the microstructural periodicity of these precision polyesters. Differential scanning calorimetry (DSC) results reflect that polyesters without methyl side groups exhibit crystallinity, and unsaturated polyester samples show higher glass transition temperatures than their hydrogenated counterparts owing to structural rigidity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Studies on the effect of virtual crosslinking on the hydrolytic stability of novel aliphatic polyurethane ureas for blood contact applications.

    PubMed

    Thomas, V; Jayabalan, M

    2001-07-01

    The effect of virtual crosslinking on the hydrolytic stability of completely aliphatic novel poly(urethane ureas), HFL9-PU1 (hard-segment content 57.5%) and HFL13-PU2 (hard-segment content 67.9%) based on 4,4'-methylene bis(cyclohexyl isocyanate) (H(12)MDI)-hydroxy-terminated polybutadiene-1,6-hexamethylene diamine, was studied. Fourier transform infrared-attenuated total reflectance and wide-angle X-ray diffraction studies revealed hydrogen-bonding interaction and microphase separation and formation of crystallites by short- and long-range ordering in hard-segment domains. Three-dimensional networks from hydrogen bonding in the present polymers lead to virtually crosslinking and insolubility. These polymers were noncytotoxic to L929 fibroblast cells. The hemolytic potential is below the accepted limit. The studies on in vitro biostability in Ringer's solution, phosphate buffered saline, and papain enzyme revealed no weight loss. The infrared spectral studies revealed changes in the surface, especially on HFL9-PU1 aged in Ringer's solution and phosphate buffered saline, and no changes when aged in papain. The marginal changes noticed in tensile properties were attributed to the changes in degree of hydrogen bonding and associated rearrangement of molecular structure in the bulk. The results revealed that the lesser the crosslinking in virgin polymer, the higher the crosslinking in aged polymer and vice versa. Increased crosslinking during aging provided increased tensile properties in the aged polymer over the virgin polymer and vice versa. For comparison, an aliphatic polyetherurethane urea (HFL16-PU3) was also synthesized using poly(oxy tetra methylene glycol) in addition to the above reactants. Though both HFL9-PU1 and HFL16-PU3 contained the same hard-segment content, the aged sample of the latter showed decreased tensile properties with increased crosslinking during aging in contrast to the former. This was attributed to less microphase separation in the

  18. Assessment of Multiple Solvents for Extraction and Direct GC-MS Determination of the Phytochemical Inventory of Sansevieria Extrafoliar Nectar Droplets.

    PubMed

    Gaylor, Michael O; Juntunen, Hope L; Hazelwood, Donna; Videau, Patrick

    2018-04-01

    Considerable effort has been devoted to analytical determinations of sugar and amino acid constituents of plant nectars, with the primary aim of understanding their ecological roles, yet few studies have reported more exhaustive organic compound inventories of plant nectars or extrafoliar nectars. This work evaluated the efficacy of four solvents (ethyl acetate, dichloromethane, toluene and hexane) to extract the greatest number of organic compound classes and unique compounds from extrafoliar nectar drops produced by Sansevieria spp. Aggregation of the results from each solvent revealed that 240 unique compounds were extracted in total, with 42.5% of those detected in multiple extracts. Aliphatic hydrocarbons dominated in all but the ethyl acetate extracts, with 44 unique aliphatic hydrocarbons detected in dichloromethane (DCM) extracts, followed by 41, 19 and 8 in hexane, toluene and ethyl acetate extracts, respectively. Hexane extracted the most unique compounds (79), followed by DCM (73), ethyl acetate (56) and toluene (32). Integrated total ion chromatographic peak areas of extracted compound classes were positively correlated with numbers of unique compounds detected within those classes. In addition to demonstrating that multi-solvent extraction with direct GC-MS detection is a suitable analytical approach for determining secondary nectar constituents, to the best of our knowledge, this study also represents: (i) the first attempt to inventory the secondary phytochemical constituents of Sansevieria spp. extrafoliar nectar secretions and (ii) the largest organic solvent extractable compound inventory reported for any plant matrix to date.

  19. LEVOGLUCOSAN, A TRACER FOR CELLULOSE IN BIOMASS BURNING AND ATMOSPHERIC PARTICLES. (R823990)

    EPA Science Inventory

    Abstract

    The major organic components of smoke particles from biomass burning are monosaccharide derivatives from the breakdown of cellulose, accompanied by generally lesser amounts of straight-chain, aliphatic and oxygenated compounds and terpenoids from vegetation wa...

  20. Bi-functional effects of lengthening aliphatic chain of phthalimide-based negative redox couple and its non-aqueous flow battery performance at stack cell

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-seung; Hwang, Seunghae; Kim, Youngjin; Ryu, Ji Heon; Oh, Seung M.; Kim, Ki Jae

    2018-04-01

    Effects of lengthening an aliphatic chain of a phthalimide-based negative redox couple for non-aqueous flow batteries are examined. The working voltage and solubility of N-butylphthalimide are 0.1 V lower and four times greater (2.0 M) than those of methyl-substituted phthalimide. These enhanced properties are attributed to a lower packing density. Consequently, the energy density of the proposed redox couple is greatly enhanced from butyl substitution. Furthermore, the results of the stack flow cell test with N,N,N',N'-tetramethyl-p-phenylenediamine positive redox couple show advantageous features of this non-aqueous flow battery system: a stable Coulombic efficiency and high working voltage.

  1. Chemical composition of Tipuana tipu, a source for tropical honey bee products.

    PubMed

    dos Santos Pereira, Alberto; de Aquino Neto, Francisco Radler

    2003-01-01

    Tipuana tipu (Benth.) Kuntze is a tree from the leguminosae family (Papilionoideae) indigenous in Argentina and extensively used in urbanism, mainly in Southern Brazil. The epicuticular waxes of leaves and branch, and flower surface were studied by high temperature high resolution gas chromatography. Several compounds were characterized, among which the aliphatic alcohols were predominant in branch, leaves and receptacle. Alkanes were predominant only in the petals and the aliphatic acids were predominant in stamen. In branches and leaf epicuticular surfaces, six long chain wax esters series were characterized, as well as lupeol and b-amyrin hexadecanoates.

  2. Anti-conjunctivitis effect of fresh juice of xGraptoveria (Crassulaceae): A phytochemical and ethnobotanical study.

    PubMed

    Markova, Nadezhda V; Batovska, Daniela I; Kozuharova, Ekaterina K; Enchev, Venelin G

    2015-01-01

    The parent of xGraptoveria, Graptopetalum paraguayense, is used in Chinese folk medicine for alleviating hepatic disorders, detumescence and detoxication, lowering of blood pressure, inhibition of cancer cells, exerting diuretic effects, relieving pain and infections. No data are available regarding its anti-conjunctivitis effect. The aim of this preliminary study is to test the anti-conjunctivitis properties of xGraptoveria (Crassulaceae) and to identify its bioactive constituents. Fresh watery juice of leaves of xGraptoveria was extracted with n-butanol and the extract was analyzed using gas chromatography-mass spectrometry (GC/MS). The ethnobotanical appraisal of the anti-conjunctivitis properties of xGraptoveria was based on 11 interviews about the symptoms against which this plant demonstrated positive effect. Fresh juice of xGraptoveria leaves applied directly to the irritated eye 2 times per day cured conjunctivitis in all reported cases. The main groups of organic compounds identified by GC/MS analysis in the fresh extracted leaf juice of xGraptoveria were: Alkylamines, hydroxycarboxylic acids, aliphatic and aromatic carboxylic acids, amino acids, alcohols, aromatic and aliphatic hydrocarbons. In this preliminary study, it is suggested that xGraptoveria exerts anti-conjunctivitis activity, through synergistic effect of different chemical compounds, most probably alkylamines and mainly hydroxycarboxylic, aliphatic, and aromatic carboxylic acids.

  3. How to examine soil sorption of ionizable organic compounds and avoid varying pH?

    NASA Astrophysics Data System (ADS)

    Borisover, Mikhail

    2017-04-01

    describing the transfer of the sorbing compound from its initial molecular (non-ionized) state (in a solution or in the gas phase) to the final hydrated sorbed state equilibrated with the actual aqueous solution of this ionizable compound. In this way, any contributions from the bulk solvent-organic ion interactions into the sorption transfer may be excluded; in addition, further any solute-solvent interactions may be taken out of the consideration. Therefore, compound's sorption characteristics "cleared" of solute-solvent interactions may be obtained, and a better understanding of relations between interactions in a sorbed phase and a molecular structure of organic sorbates can be reached. The approach is illustrated by examining sorption of variously ionized organic compounds, i.e., those belonging to the pharmaceuticals and personal care products (triclosan, gemfibrozil, galaxolide), and aliphatic organic acids on natural and organic amendment-enriched soils. Specifically, it is demonstrated how the greater H-donating ability of trifluoroacetic acid, as compared with acetic acid, strengthens the acid interactions in the soil phase. In another series of examples, it is shown how hydrophobic and non-ionizing galaxolide interacts weakly with soils, as compared with partially ionized triclosan and almost fully ionized gemfibrozil, i.e., leading to the conclusions not reachable based only on the direct comparison of experimentally measured distribution coefficients.

  4. Decomposition of PCBs in transformer oil using an electron beam accelerator

    NASA Astrophysics Data System (ADS)

    Jung, In-Ha; Lee, Myun-Joo; Mah, Yoon-Jung

    2012-07-01

    Decomposition of PCBs in commercially used transformer oil used for more than 30 years has been carried out at normal temperature and pressure without any additives using an electron beam accelerator. The experiments were carried out in two ways: batch and continuous pilot plant with 1.5 MeV of energy, a 50 mA current, and 75 kW of power in a commercial scale accelerator. The electron beam irradiation seemed to transform large molecular weight compounds into lower ones, but the impact was considered too small on the physical properties of oil. Residual concentrations of PCBs after irradiation depend on the absorption dose of the electron beam energy, but aliphatic chloride compounds were produced at higher doses of irradiation. As the results from FT-NMR, chloride ions decomposed from the PCBs are likely to react with aliphatic hydro carbon compounds rather than existing as free radical ions in the transformer oil. Since this is a dry process, treated oil can be used as cutting oil or machine oil for heavy equipment without any additional treatments.

  5. Microbial reductive dehalogenation.

    PubMed Central

    Mohn, W W; Tiedje, J M

    1992-01-01

    A wide variety of compounds can be biodegraded via reductive removal of halogen substituents. This process can degrade toxic pollutants, some of which are not known to be biodegraded by any other means. Reductive dehalogenation of aromatic compounds has been found primarily in undefined, syntrophic anaerobic communities. We discuss ecological and physiological principles which appear to be important in these communities and evaluate how widely applicable these principles are. Anaerobic communities that catalyze reductive dehalogenation appear to differ in many respects. A large number of pure cultures which catalyze reductive dehalogenation of aliphatic compounds are known, in contrast to only a few organisms which catalyze reductive dehalogenation of aromatic compounds. Desulfomonile tiedjei DCB-1 is an anaerobe which dehalogenates aromatic compounds and is physiologically and morphologically unusual in a number of respects, including the ability to exploit reductive dehalogenation for energy metabolism. When possible, we use D. tiedjei as a model to understand dehalogenating organisms in the above-mentioned undefined systems. Aerobes use reductive dehalogenation for substrates which are resistant to known mechanisms of oxidative attack. Reductive dehalogenation, especially of aliphatic compounds, has recently been found in cell-free systems. These systems give us an insight into how and why microorganisms catalyze this activity. In some cases transition metal complexes serve as catalysts, whereas in other cases, particularly with aromatic substrates, the catalysts appear to be enzymes. Images PMID:1406492

  6. A Novel Hydroxamate-Based Compound WMJ-J-09 Causes Head and Neck Squamous Cell Carcinoma Cell Death via LKB1-AMPK-p38MAPK-p63-Survivin Cascade.

    PubMed

    Yen, Chia-Sheng; Choy, Cheuk-Sing; Huang, Wei-Jan; Huang, Shiu-Wen; Lai, Pin-Ye; Yu, Meng-Chieh; Shiue, Ching; Hsu, Ya-Fen; Hsu, Ming-Jen

    2018-01-01

    Growing evidence shows that hydroxamate-based compounds exhibit broad-spectrum pharmacological properties including anti-tumor activity. However, the precise mechanisms underlying hydroxamate derivative-induced cancer cell death remain incomplete understood. In this study, we explored the anti-tumor mechanisms of a novel aliphatic hydroxamate-based compound, WMJ-J-09, in FaDu head and neck squamous cell carcinoma (HNSCC) cells. WMJ-J-09 induced G2/M cell cycle arrest and apoptosis in FaDu cells. These actions were associated with liver kinase B1 (LKB1), AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (p38MAPK) activation, transcription factor p63 phosphorylation, as well as modulation of p21 and survivin. LKB1-AMPK-p38MAPK signaling blockade reduced WMJ-J-09's enhancing effects in p63 phosphorylation, p21 elevation and survivin reduction. Moreover, WMJ-J-09 caused an increase in α-tubulin acetylation and interfered with microtubule assembly. Furthermore, WMJ-J-09 suppressed the growth of subcutaneous FaDu xenografts in vivo . Taken together, WMJ-J-09-induced FaDu cell death may involve LKB1-AMPK-p38MAPK-p63-survivin signaling cascade. HDACs inhibition and disruption of microtubule assembly may also contribute to WMJ-J-09's actions in FaDu cells. This study suggests that WMJ-J-09 may be a potential lead compound and warrant the clinical development in the treatment of HNSCC.

  7. Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil.

    PubMed

    Silva, Elias J; Rocha e Silva, Nathália Maria P; Rufino, Raquel D; Luna, Juliana M; Silva, Ricardo O; Sarubbo, Leonie A

    2014-05-01

    The bacterium Pseudomonas cepacia CCT6659 cultivated with 2% soybean waste frying oil and 2% corn steep liquor as substrates produced a biosurfactant with potential application in the bioremediation of soils. The biosurfactant was classified as an anionic biomolecule composed of 75% lipids and 25% carbohydrates. Characterization by proton nuclear magnetic resonance ((1)H and (13)C NMR) revealed the presence of carbonyl, olefinic and aliphatic groups, with typical spectra of lipids. Four sets of biodegradation experiments were carried out with soil contaminated by hydrophobic organic compounds amended with molasses in the presence of an indigenous consortium, as follows: Set 1-soil+bacterial cells; Set 2-soil+biosurfactant; Set 3-soil+bacterial cells+biosurfactant; and Set 4-soil without bacterial cells or biosurfactant (control). Significant oil biodegradation activity (83%) occurred in the first 10 days of the experiments when the biosurfactant and bacterial cells were used together (Set 3), while maximum degradation of the organic compounds (above 95%) was found in Sets 1-3 between 35 and 60 days. It is evident from the results that the biosurfactant alone and its producer species are both capable of promoting biodegradation to a large extent. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Diatomite-supported Pd-M (M=Cu, Co, Ni) bimetal nanocatalysts for selective hydrogenation of long-chain aliphatic esters.

    PubMed

    Huang, Changliang; Zhang, Hongye; Zhao, Yanfei; Chen, Sha; Liu, Zhimin

    2012-11-15

    Diatomite supported Pd-M (M=Cu, Co, Ni) bimetal nanocatalysts with various metal compositions were prepared and characterized by means of X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was demonstrated that the metal nanoparticles were uniformly distributed on the support, and their size was centered around 8 nm with a relatively narrow size distribution. The catalysts were used to catalyze hydrogenation of long-chain aliphatic esters, including methyl palmitate, methyl stearate, and methyl laurate. It was indicated that the all diatomite-supported Pd-based bimetal catalysts were active to the selective hydrogenation of long-chain esters to corresponding alcohols at 270°C, originated from the synergistic effect between the metal particles and the diatomite support. For the selective hydrogenation of methyl palmitate, Pd-Cu/diatomite with metal loading of 1% and Pd/Cu=3 displayed the highest performance, giving a 1-hexadecanol yield of 82.9% at the substrate conversion of 98.8%. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. A microanalytical method for ammonium and short-chain primary aliphatic amines using precolumn derivatization and capillary liquid chromatography.

    PubMed

    Moliner-Martínez, Y; Herráez-Hernández, R; Campíns-Falcó, P

    2007-09-14

    A new microscale method is presented for the determination of ammonium and primary short-chain aliphatic amines (methylamine, ethylamine, propylamine, n-butylamine and n-pentylamine) in water. The assay uses precolumn derivatization with the reagent o-phthaldialdehyde (OPA) in combination with the thiol N-acetyl-L-cysteine (NAC), and capillary liquid chromatography with UV detection at 330 nm. The described method is very simple and rapid as no preconcentration of the analytes is necessary, and the volume of sample required is only 0.1 mL. Under the proposed conditions good linearity has been obtained up to a concentration of the analytes of 10.0 mgL(-1), the limits of detection being of 8-50 microgL(-1). No matrix effect was found, and recoveries between 97 and 110% were obtained. The precision of the method was good, and the achieved variation coefficients were below 12%. The reliability of the proposed approach has been tested by analyzing a microsample of fogwater collected from leaf surfaces.

  10. Novel fluorohydrocarbons

    NASA Technical Reports Server (NTRS)

    Scherer, Kirby V. (Inventor)

    1979-01-01

    Novel fluorohydrocarbons include a fluoroalkyl unit terminating in a tertiary carbon atom which is directly linked to an aliphatic moiety of the compound. The compounds contain at least 9 carbon atoms and usually no more than 13 carbon atoms. The compounds are synthesized by addition of a fluoride atom to the tertiary carbon atom of a fluorocarbon material to form a carbanion followed by alkylation of the carbanion. The fluorohydrocarbons will find use as blood substitutes or as electronic fluids.

  11. Oxidations of N-(3-indoleethyl) cyclic aliphatic amines by horseradish peroxidase: the indole ring binds to the enzyme and mediates electron-transfer amine oxidation.

    PubMed

    Ling, Ke-Qing; Li, Wen-Shan; Sayre, Lawrence M

    2008-01-23

    Although oxidations of aromatic amines by horseradish peroxidase (HRP) are well-known, typical aliphatic amines are not substrates of HRP. In this study, the reactions of N-benzyl and N-methyl cyclic amines with HRP were found to be slow, but reactions of N-(3-indoleethyl) cyclic amines were 2-3 orders of magnitude faster. Analyses of pH-rate profiles revealed a dominant contribution to reaction by the amine-free base forms, the only species found to bind to the enzyme. A metabolic study on a family of congeneric N-(3-indoleethyl) cyclic amines indicated competition between amine and indole oxidation pathways. Amine oxidation dominated for the seven- and eight-membered azacycles, where ring size supports the change in hybridization from sp3 to sp2 that occurs upon one-electron amine nitrogen oxidation, whereas only indole oxidation was observed for the six-membered ring congener. Optical difference spectroscopic binding data and computational docking simulations suggest that all the arylalkylamine substrates bind to the enzyme through their aromatic termini with similar binding modes and binding affinities. Kinetic saturation was observed for a particularly soluble substrate, consistent with an obligatory role of an enzyme-substrate complexation preceding electron transfer. The significant rate enhancements seen for the indoleethylamine substrates suggest the ability of the bound indole ring to mediate what amounts to medium long-range electron-transfer oxidation of the tertiary amine center by the HRP oxidants. This is the first systematic investigation to document aliphatic amine oxidation by HRP at rates consistent with normal metabolic turnover, and the demonstration that this is facilitated by an auxiliary electron-rich aromatic ring.

  12. Fast Fourier Transform IR Characterization of Epoxy GY Systems Crosslinked with Aliphatic and Cycloaliphatic EH Polyamine Adducts

    PubMed Central

    Nikolic, Goran; Zlatkovic, Sasa; Cakic, Milorad; Cakic, Suzana; Lacnjevac, Caslav; Rajic, Zoran

    2010-01-01

    The use of fast FT-IR spectroscopy as a sensitive method to estimate a change of the crosslinking kinetics of epoxy resin with polyamine adducts is described in this study. A new epoxy formulation based on the use of polyamine adducts as the hardeners was analyzed. Crosslinking reactions of the different stoichiometric mixtures of the unmodified GY250 epoxy resin with the aliphatic EH606 and the cycloaliphatic EH637 polyamine adducts were studied using mid FT-IR spectroscopic techniques. As the crosslinking proceeded, the primary amine groups in polyamine adduct are converted to secondary and the tertiary amines. The decrease in the IR band intensity of epoxy groups at about 915 cm−1, as well as at about 3,056 cm−1, was observed due to process. Mid IR spectral analysis was used to calculate the content of the epoxy groups as a function of crosslinking time and the crosslinking degree of resin. The amount of all the epoxy species was estimated from IR spectra to changes during the crosslinking kinetics of epichlorhydrin. PMID:22315562

  13. Transmission Fourier transform infrared microspectroscopy allows simultaneous assessment of cutin and cell-wall polysaccharides of Arabidopsis petals.

    PubMed

    Mazurek, Sylwester; Mucciolo, Antonio; Humbel, Bruno M; Nawrath, Christiane

    2013-06-01

    A procedure for the simultaneous analysis of cell-wall polysaccharides, amides and aliphatic polyesters by transmission Fourier transform infrared microspectroscopy (FTIR) has been established for Arabidopsis petals. The combination of FTIR imaging with spectra derivatization revealed that petals, in contrast to other organs, have a characteristic chemical zoning with high amount of aliphatic compounds and esters in the lamina and of polysaccharides in the stalk of the petal. The hinge region of petals was particular rich in amides as well as in vibrations potentially associated with hemicellulose. In addition, a number of other distribution patterns have been identified. Analyses of mutants in cutin deposition confirmed that vibrations of aliphatic compounds and esters present in the lamina were largely associated with the cuticular polyester. Calculation of spectrotypes, including the standard deviation of intensities, allowed detailed comparison of the spectral features of various mutants. The spectrotypes not only revealed differences in the amount of polyesters in cutin mutants, but also changes in other compound classes. For example, in addition to the expected strong deficiencies in polyester content, the long-chain acyl CoA synthase 2 mutant showed increased intensities of vibrations in a wavelength range that is typical for polysaccharides. Identical spectral features were observed in quasimodo2, a cell-wall mutant of Arabidopsis with a defect in pectin formation that exhibits increased cellulose synthase activity. FTIR thus proved to be a convenient method for the identification and characterization of mutants affected in the deposition of cutin in petals. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  14. A geochemical study of macerals from a Miocene lignite and an Eocene bituminous coal, Indonesia

    USGS Publications Warehouse

    Stankiewicz, B.A.; Kruge, M.A.; Mastalerz, Maria

    1996-01-01

    Optical and chemical studies of maceral concentrates from a Miocene lignite and an Eocene high-volatile bituminous C coal from southeastern Kalimantan, Indonesia were undertaken using pyro-Lysis, optical, electron microprobe and FTIR techniques Pyrolysis products of vitrinite from bituminous coal were dominated by straight-chain aliphatics and phenols. The huminite of the Miocene lignite produced mostly phenolic compounds upon pyrolysis. Differences in the pyrolysis products between the huminite and vitrinite samples reflect both maturation related and paleobotanical differences. An undefined aliphatic source and/or bacterial biomass were the likely contributors of n-alkyl moieties to the vitrinite. The resinite fraction in the lignite yielded dammar-derived pyrolysis products, as well as aliphatics and phenols as the products of admixed huminite and other liptinites. The optically defined resinite-rich fraction of the bituminous coal from Kalimantan produced abundant n-aliphatic moieties upon pyrolysis, but only two major resin markers (cadalene and 1,6-dimethylnaphthalene). This phenomenon is likely due to the fact that Eocene resins were not dammar-related. Data from the electron microprobe and Fourier transform infrared spectrometry strongly support the results obtained by Py GC MS and microscopy.

  15. [How aliphatic alcohols and ph affect reactional capability of the horse blood serum cholinesterase at its interaction with organophosphorus inhibitors].

    PubMed

    Basova, N E; Kormilitsin, B N; Perchenok, A Iu; Rozengart, E V; Saakov, V S; Suvorov, A A

    2013-01-01

    There was studied action of aliphatic alcohols (ethanol, propanol, isopropanol, n-butanol, isobutanol, secbutanol, tretbetanol) and pH on various kinds of reactional capability the serum cholinesterase. At the alcohols-affected inhibition of the cholinesterase hydrolytic activity, the determining role was played not the total number carbon atoms in the alcohol molecule, but by the "effective length" of the carbohydrate chain. The fact that the presence of alcohols did not affect parameters of the reverse cholinesterase inhibition with onium ions tetramethylammonium and choline allows suggesting the absence of effect solvents on specific acetylcholine sorption in the enzyme active center. With aid of two rows of hydrophobic organophosphorus inhibitors (OPI), we have managed to estimate both the degree and the character itself of the modifying action of alcohols and pH on the process of irreversible inhibition of serum cholinesterase.

  16. Direct one-pot reductive amination of aldehydes with nitroarenes in a domino fashion: catalysis by gum-acacia-stabilized palladium nanoparticles.

    PubMed

    Sreedhar, B; Reddy, P Surendra; Devi, D Keerthi

    2009-11-20

    This note describes the direct reductive amination of carbonyl compounds with nitroarenes using gum acacia-palladium nanoparticles, employing molecular hydrogen as the reductant. This methodology is found to be applicable to both aliphatic and aromatic aldehydes and a wide range of nitroarenes. The operational simplicity and the mild reaction conditions add to the value of this method as a practical alternative to the reductive amination of carbonyl compounds.

  17. Evaluation of certain food additives.

    PubMed

    2012-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, including flavouring agents, with a view to concluding as to safety concerns and to preparing specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation of and assessment of dietary exposure to food additives, including flavouring agents. A summary follows of the Committee's evaluations of technical, toxicological and dietary exposure data for five food additives (magnesium dihydrogen diphosphate; mineral oil (medium and low viscosity) classes II and III; 3-phytase from Aspergillus niger expressed in Aspergillus niger; serine protease (chymotrypsin) from Nocardiopsis prasina expressed in Bacillus licheniformis; and serine protease (trypsin) from Fusarium oxysporum expressed in Fusarium venenatum) and 16 groups of flavouring agents (aliphatic and aromatic amines and amides; aliphatic and aromatic ethers; aliphatic hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids and related esters, sulfides, disulfides and ethers containing furan substitution; aliphatic linear alpha,beta-unsaturated aldehydes, acids and related alcohols, acetals and esters; amino acids and related substances; epoxides; furfuryl alcohol and related substances; linear and branched-chain aliphatic, unsaturated, unconjugated alcohols, aldehydes, acids and related esters; miscellaneous nitrogen-containing substances; phenol and phenol derivatives; pyrazine derivatives; pyridine, pyrrole and quinoline derivatives; saturated aliphatic acyclic branched-chain primary alcohols, aldehydes and acids; simple aliphatic and aromatic sulfides and thiols; sulfur-containing heterocyclic compounds; and sulfur-substituted furan derivatives). Specifications for the following food additives were revised: ethyl cellulose, mineral oil (medium viscosity), modified starches and titanium

  18. DECHLORINATION OF PCBS, CAHS, HERBICIDES AND PESTICIDES NEAT AND IN SOILS AT 25&DEG;C USING NA/NH3. (R829421E01)

    EPA Science Inventory

    Na/NH3 reductions have been used to dehalogenate polychlorinated biphenyls (PCBs), chlorinated aliphatic hydrocarbons (CAHs) and pesticides at diffusion controlled rates at room temperature in model compound studies in both dry NH3 and when water was adde...

  19. Design of new disulfide-based organic compounds for the improvement of self-healing materials.

    PubMed

    Matxain, Jon M; Asua, José M; Ruipérez, Fernando

    2016-01-21

    Self-healing materials are a very promising kind of materials due to their capacity to repair themselves. Among others, diphenyl disulfide-based compounds (Ph2S2) appear to be among the best candidates to develop materials with optimum self-healing properties. However, few is known regarding both the reaction mechanism and the electronic structure that make possible such properties. In this vein, theoretical approaches are of great interest. In this work, we have carried out theoretical calculations on a wide set of different disulfide compounds, both aromatic and aliphatic, in order to elucidate the prevalent reaction mechanism and the necessary electronic conditions needed for improved self-healing properties. Two competitive mechanisms were considered, namely, the metathesis and the radical-mediated mechanism. According to our calculations, the radical-mediated mechanism is the responsible for this process. The formation of sulfenyl radicals strongly depends on the S-S bond strength, which can be modulated chemically by the use of proper derivatives. At this point, amino derivatives appear to be the most promising ones. In addition to the S-S bond strength, hydrogen bonding between disulfide chains seems to be relevant to favour the contact among disulfide units. This is crucial for the reaction to take place. The calculated hydrogen bonding energies are of the same order of magnitude as the S-S bond energies. Finally, reaction barriers have been analysed for some promising candidates. Two reaction mechanisms were compared, namely, the [2+2] metathesis reaction mechanism and the [2+1] radical-mediated mechanism. No computational evidence for the existence of any transition state for the metathesis mechanism was found, which indicates that the radical-mediated mechanism is the one responsible in the self-healing process of these materials. Interestingly, the calculated reaction barriers are around 10 kcal mol(-1) regardless the substituent employed. All these

  20. Compound matrices

    NASA Astrophysics Data System (ADS)

    Kravvaritis, Christos; Mitrouli, Marilena

    2009-02-01

    This paper studies the possibility to calculate efficiently compounds of real matrices which have a special form or structure. The usefulness of such an effort lies in the fact that the computation of compound matrices, which is generally noneffective due to its high complexity, is encountered in several applications. A new approach for computing the Singular Value Decompositions (SVD's) of the compounds of a matrix is proposed by establishing the equality (up to a permutation) between the compounds of the SVD of a matrix and the SVD's of the compounds of the matrix. The superiority of the new idea over the standard method is demonstrated. Similar approaches with some limitations can be adopted for other matrix factorizations, too. Furthermore, formulas for the n - 1 compounds of Hadamard matrices are derived, which dodge the strenuous computations of the respective numerous large determinants. Finally, a combinatorial counting technique for finding the compounds of diagonal matrices is illustrated.

  1. Organic matter compounds as source indicators and tracers for marine pollution in a western Mediterranean coastal zone.

    PubMed

    Amorri, Jalila; Geffroy-Rodier, Claude; Boufahja, Fehmi; Mahmoudi, Ezzeddine; Aïssa, Patricia; Ksibi, Mohamed; Amblès, André

    2011-11-01

    Complex organic compounds found in oil and sediments linked with a particular source (such as algae, bacteria or vascular plants) are defined as biomarkers and are useful dating indicators in organic geochemistry. This paper presents the composition of the organic matter (OM) on marine surface sediments from a degraded Tunisian coast analysed by pyrolysis and gas chromatography-mass spectrometry (GC-MS). High total OM contents (0.3-4.2%) were detected with high levels of saturated linear hydrocarbons. The aliphatic lipids had contributed with up to 11.7% of the total OM, and their distribution had consisted of resolved compounds (n-alkanes and fatty acid (FAs)) and an unresolved complex mixture. Hydrocarbons, primarily n-alkanes, were ranged from 368 to 3,886 μg g(-1). The FAs (674-2,568 μg g(-1)) were dominated by derived primary production, and the short chain FAs (C16 and C18) were the most abundant throughout. The ubiquitous presence of petroleum contamination, mainly from offshore oil exploration, discharge of pollutants from rivers, shipping activities and atmospheric deposition was found in all samples. The Gabès littoral seems to be quite to very polluted near the industrial zone of Ghannouch. The C/H ratio (generally around 5.9), the thermal analysis and GC-MS of n-alkanes and FAs showed that the OM in the studied area was composed of anthropogenic/petrogenic, marine and continental sources. Our study represents an innovative approach to assessing environmental pollution. The evaluation of organic matter by examination of sterols, alkanes and fatty acids allows the identification of source, both anthropogenic and natural.

  2. Hydrocarbons in particulate samples from wildfire events in central Portugal in summer 2010.

    PubMed

    Vicente, Ana; Calvo, Ana; Fernandes, Ana P; Nunes, Teresa; Monteiro, Cristina; Pio, Casimiro; Alves, Célia

    2017-03-01

    In summer 2010, twenty eight (14 PM 2.5 samples plus 14 samples PM 2.5-10 ) smoke samples were collected during wildfires that occurred in central Portugal. A portable high-volume sampler was used to perform the sampling, on quartz fibre filters of coarse (PM 2.5-10 ) and fine (PM 2.5 ) smoke samples. The carbonaceous content (elemental and organic carbon) of particulate matter was analysed by a thermal-optical technique. Subsequently, the particulate samples were solvent extracted and fractionated by vacuum flash chromatography into three different classes of organic compounds (aliphatics, polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds). The organic speciation was performed by gas chromatography-mass spectrometry (GC-MS). Emissions were dominated by the fine particles, which represented around 92% of the PM 10 . A clear predominance of carbonaceous constituents was observed, with organic to elemental carbon (OC/EC) ratios ranging between 1.69 and 245 in both size fractions. The isoprenoid ketone 6,10,14-trimethyl-2-pentadecanone, a tracer for secondary organic aerosol formation, was one of the dominant constituents in both fine and coarse particles. Retene was the most abundant compound in all samples. Good correlations were obtained between OC and both aliphatic and PAH compounds. Pyrogenic processes, thermal release of biogenic compounds and secondary processing accounted for 97% of the apportioned PM 2.5 levels. Copyright © 2016. Published by Elsevier B.V.

  3. Potential of bisbenzimidazole-analogs toward metronidazole-resistant Trichomonas vaginalis isolates.

    PubMed

    Korosh, Travis; Bujans, Emmanuel; Morada, Mary; Karaalioglu, Canan; Vanden Eynde, Jean Jacques; Mayence, Annie; Huang, Tien L; Yarlett, Nigel

    2017-10-01

    A bisoxyphenylene-bisbenzimidazole series with increasing aliphatic chain length (CH 2 to C 10 H 20 ) containing a meta- (m) or para (p)-benzimidazole linkage to the phenylene ring was tested for ability to inhibit the growth of metronidazole-susceptible (C1) and metronidazole-refractory (085) Trichomonas vaginalis isolates under aerobic and anaerobic conditions. Compound 3m, 2,2'-[α,ω-propanediylbis(oxy-1,3-phenylene)]bis-1H-benzimidazole, displayed a 5.5-fold lower minimum inhibitory concentration (MIC) toward T. vaginalis isolate 085 than metronidazole under aerobic growth conditions, (26 μm compared to 145 μm). A dose of 25 mg/kg per day for four days of compound 3m cured a subcutaneous mouse model infection using T. vaginalis isolates 286 (metronidazole susceptible) and 085 (metronidazole refractory). Compound 3m was weakly reduced by pyruvate:ferredoxin oxidoreductase, but unlike metronidazole was not dependent upon added ferredoxin. It is concluded from structure-activity relationships that there was no obvious trend based on the length of the central aliphatic chain, or the steric position of the bisbenzimidazole enabling prediction of biological activity. The compounds generally fulfill Lipinski's rile of five, indicating their potential as drug leads. © 2017 John Wiley & Sons A/S.

  4. Identification of Fatty Acids and Aliphatic Hydrocarbons in Sarcina lutea by Gas Chromatography and Combined Gas Chromatography-Mass Spectrometry

    PubMed Central

    Tornabene, T. G.; Gelpi, E.; Oró, J.

    1967-01-01

    The composition and nature of the fatty acids and hydrocarbons of Sarcina lutea were elucidated by gas chromatography and by combined gas chromatography-mass spectrometry. The distribution of fatty acids found in S. lutea showed two families of pairs, or dyads, of saturated monocarboxylic acids (C12–C18) with and without methyl branching. These pairs of fatty acids showed a pattern of iso and anteiso structures for C13, C15, and C17, and iso and normal structures for C12, C14, and C16. Only the C18 showed unsaturation. The distribution of hydrocarbons in the range C22–C29 showed two families of tetrads of unsaturated aliphatic hydrocarbons all showing methyl branching. Each tetrad was composed of four isomers identified as two iso olefins and two anteiso olefins. The only difference between the tetrads pertaining to different families was found in the relative gas chromatographic retention times of the last two components of each group. PMID:6039356

  5. Ecological Evaluation of Proposed Discharge of Dredged Material into Ocean Waters.

    DTIC Science & Technology

    1977-07-01

    Methyl mercury Ref. 6 Oil and grease p. 229 - 5 5 Step 7.3 Petroleum hydrocarbons p. 226 Step 6.3 Phenol p. 241 Method SlO Method )I 78 p. 514 p. 4...and its compounds c. Cadmium and its compounds d. Petroleum hydrocarbons e. Known or suspected carcinogens, mutagens, or teratogens. 6 (This is a...its compounds 12 Cadmium and its compounds 12 6 0 Petroleum hydrocarbons : Aliphat ic 13 Aromatic 13 G8 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Table

  6. Surface chemistry control for selective fossil resin flotation

    DOEpatents

    Miller, Jan D.; Yi, Ye; Yu, Qiang

    1994-01-01

    A froth flotation method is disclosed for separating fine particles of fossil resin from by use of frothing reagents which include an aliphatic organic compound having a polar group and containing not more than four carbon atoms. Butanol is an effective frothing reagent in this method.

  7. Surface chemistry control for selective fossil resin flotation

    DOEpatents

    Miller, J.D.; Yi, Y.; Yu, Q.

    1994-06-07

    A froth flotation method is disclosed for separating fine particles of fossil resin by use of frothing reagents which include an aliphatic organic compound having a polar group and containing not more than four carbon atoms. Butanol is an effective frothing reagent in this method. 12 figs.

  8. Functional lipids based on [12]aneN3 and naphthalimide as efficient non-viral gene vectors.

    PubMed

    Gao, Yong-Guang; Alam, Uzair; Tang, Quan; Shi, You-Di; Zhang, Ying; Wang, Ruibing; Lu, Zhong-Lin

    2016-07-14

    Small organic non-viral gene vectors with the structural combinations of (aliphatic chain)-naphthalimide-[12]aneN3 (11a, b) and naphthalimide-(aliphatic chain)-[12]aneN3 (12a-c) were synthesized and fully characterized. Agarose gel electrophoresis experiments indicated that the first type of compounds, 11a and 11b, could completely retard DNA at the concentration of 5 μM in the presence of DOPE. Within the second type of compounds, 12c with the decane chain showed a complete retardation of DNA at the concentration of 20 μM, whereas 12a and 12b with the ethyl and hexyl chains could not retard DNA effectively. Dynamic light scattering measurements indicated that compounds 11a, 11b and 12b, 12c condensed DNA into nanoparticles with the size in the range of 60-160 nm. Due to the strong fluorescence of 11a and 11b, the distribution of lipids/DNA complexes and the process of DNA release from the lipids were clearly observed via cellular uptake experiments. On the other hand, the non-fluorescent 12a-c enabled the EB exclusion assay to afford the binding constants of 4.88 × 10(6) M(-1) (12a), 4.18 × 10(6) M(-1) (12b) and 3.39 × 10(6) M(-1) (12c), respectively. The MTT assay revealed that both types of compounds have low cytotoxicity. Non-fluorescent 12c was successfully applied in the eGFP expression experiments in A549 cells and showed stronger green fluorescence emission than that of lipofectamine 2000. Quantitative transfection experiments through the luciferase assay further revealed that compounds 11a, 11b and 12c can act as non-viral gene vectors in different cell lines. Among them, 12c gave the highest transfection efficiency in HeLa cells, which was about 2 times that offered by lipofectamine 2000. This work clearly demonstrated that the right combination of different functional units and long aliphatic linkers will likely promote gene delivery and transfection efficiency.

  9. Analysis of volatile organic compounds released from the decay of surrogate human models simulating victims of collapsed buildings by thermal desorption-comprehensive two-dimensional gas chromatography-time of flight mass spectrometry.

    PubMed

    Agapiou, A; Zorba, E; Mikedi, K; McGregor, L; Spiliopoulou, C; Statheropoulos, M

    2015-07-09

    Field experiments were devised to mimic the entrapment conditions under the rubble of collapsed buildings aiming to investigate the evolution of volatile organic compounds (VOCs) during the early dead body decomposition stage. Three pig carcasses were placed inside concrete tunnels of a search and rescue (SAR) operational field terrain for simulating the entrapment environment after a building collapse. The experimental campaign employed both laboratory and on-site analytical methods running in parallel. The current work focuses only on the results of the laboratory method using thermal desorption coupled to comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (TD-GC×GC-TOF MS). The flow-modulated TD-GC×GC-TOF MS provided enhanced separation of the VOC profile and served as a reference method for the evaluation of the on-site analytical methods in the current experimental campaign. Bespoke software was used to deconvolve the VOC profile to extract as much information as possible into peak lists. In total, 288 unique VOCs were identified (i.e., not found in blank samples). The majority were aliphatics (172), aromatics (25) and nitrogen compounds (19), followed by ketones (17), esters (13), alcohols (12), aldehydes (11), sulfur (9), miscellaneous (8) and acid compounds (2). The TD-GC×GC-TOF MS proved to be a sensitive and powerful system for resolving the chemical puzzle of above-ground "scent of death". Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Sulfur Transformation during Microwave and Conventional Pyrolysis of Sewage Sludge.

    PubMed

    Zhang, Jun; Zuo, Wei; Tian, Yu; Chen, Lin; Yin, Linlin; Zhang, Jie

    2017-01-03

    The sulfur distributions and evolution of sulfur-containing compounds in the char, tar and gas fractions were investigated during the microwave and conventional pyrolysis of sewage sludge. Increased accumulation of sulfur in the char and less production of H 2 S were obtained from microwave pyrolysis at higher temperatures (500-800 °C). Three similar conversion pathways were identified for the formation of H 2 S during microwave and conventional pyrolysis. The cracking of unstable mercaptan structure in the sludge contributed to the release of H 2 S below 300 °C. The decomposition of aliphatic-S compounds in the tars led to the formation of H 2 S (300-500 °C). The thermal decomposition of aromatic-S compounds in the tars generated H 2 S from 500 to 800 °C. However, the secondary decomposition of thiophene-S compounds took place only in conventional pyrolysis above 700 °C. Comparing the H 2 S contributions from microwave and conventional pyrolysis, the significant increase of H 2 S yields in conventional pyrolysis was mainly attributed to the decomposition of aromatic-S (increasing by 10.4%) and thiophene-S compounds (11.3%). Further investigation on the inhibition mechanism of H 2 S formation during microwave pyrolysis confirmed that, with the special heating characteristics and relative shorter residence time, microwave pyrolysis promoted the retention of H 2 S on CaO and inhibited the secondary cracking of thiophene-S compounds at higher temperatures.

  11. gem-Difluoroolefination of diaryl ketones and enolizable aldehydes with difluoromethyl 2-pyridyl sulfone: new insights into the Julia-Kocienski reaction.

    PubMed

    Gao, Bing; Zhao, Yanchuan; Hu, Mingyou; Ni, Chuanfa; Hu, Jinbo

    2014-06-16

    The direct conversion of diaryl ketones and enolizable aliphatic aldehydes into gem-difluoroalkenes has been a long-standing challenge in organofluorine chemistry. Herein, we report efficient strategies to tackle this problem by using difluoromethyl 2-pyridyl sulfone as a general gem-difluoroolefination reagent. The gem-difluoroolefination of diaryl ketones proceeds by acid-promoted Smiles rearrangement of the carbinol intermediate; the gem-difluoroolefination is otherwise difficult to achieve through a conventional Julia-Kocienski olefination protocol under basic conditions due to the retro-aldol type decomposition of the key intermediate. Efficient gem-difluoroolefination of aliphatic aldehydes was achieved by the use of an amide base generated in situ (from CsF and tris(trimethylsilyl)amine), which diminishes the undesired enolization of aliphatic aldehydes and provides a powerful synthetic method for chemoselective gem-difluoroolefination of multi-carbonyl compounds. Our results provide new insights into the mechanistic understanding of the classical Julia-Kocienski reaction. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X. J.; Zhong, J. X.; Glaser, R.

    The unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm, commonly attributed to polycyclic aromatic hydrocarbon (PAH) molecules, have recently been ascribed to mixed aromatic/aliphatic organic nanoparticles. More recently, an upper limit of <9% was placed on the aliphatic fraction (i.e., the fraction of carbon atoms in aliphatic form) of the UIE carriers based on the observed intensities of the 3.4 μm and 3.3 μm emission features by attributing them to aliphatic and aromatic C-H stretching modes, respectively, and assuming A{sub 3.4}/A{sub 3.3} ≈ 0.68 derived from a small set of aliphatic and aromatic compounds, wheremore » A{sub 3.4} and A{sub 3.3} are, respectively, the band strengths of the 3.4 μm aliphatic and 3.3 μm aromatic C-H bonds. To improve the estimate of the aliphatic fraction of the UIE carriers, here we analyze 35 UIE sources exhibiting both the 3.3 μm and 3.4 μm C-H features and determine I{sub 3.4}/I{sub 3.3}, the ratio of the power emitted from the 3.4 μm feature to that from the 3.3 μm feature. We derive the median ratio to be (I{sub 3.4}/I{sub 3.3}) ≈ 0.12. We employ density functional theory to compute A{sub 3.4}/A{sub 3.3} for a range of methyl-substituted PAHs. The resulting A{sub 3.4}/A{sub 3.3} ratio well exceeds ∼1.4, with an average ratio of A{sub 3.4}/A{sub 3.3} ≈ 1.76. By attributing the 3.4 μm feature exclusively to aliphatic C-H stretch (i.e., neglecting anharmonicity and superhydrogenation), we derive the fraction of C atoms in aliphatic form from I{sub 3.4}/I{sub 3.3} ≈ 0.12 and A{sub 3.4}/A{sub 3.3} ≈ 1.76 to be ∼2%. We therefore conclude that the UIE emitters are predominantly aromatic.« less

  13. Comparision of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: product yields, gas and pyrolysis oil properties.

    PubMed

    Ateş, Funda; Miskolczi, Norbert; Borsodi, Nikolett

    2013-04-01

    Pyrolysis of municipal solid waste (MSW) and municipal plastic waste (MPW) have been investigated in batch reactor at 500, 550 and 600°C both in absence and presence of catalysts (Y-zeolite, β-zeolite, equilibrium FCC, MoO3, Ni-Mo-catalyst, HZSM-5 and Al(OH)3). The effect of the parameters on the product properties was investigated. Products were characterized using gas-chromatography, GC/MS, (13)C NMR. Yields of volatile fractions increased, while reaction time necessity for the total cracking decreased in the presence of catalysts. Catalysts have productivity and selectivity in converting aliphatic hydrocarbons to aromatic and cyclic compounds in oil products. Gases from MSW consisted of hydrogen CO, CO2, while exclusively hydrogen and hydrocarbons were detected from MPW. Catalyst efficiency was higher using MPW than MSW. Pyrolysis oils contained aliphatic hydrocarbons, aromatics, cyclic compounds and less ketones, alcohols, acids or esters depending on the raw materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Anti-conjunctivitis effect of fresh juice of xGraptoveria (Crassulaceae): A phytochemical and ethnobotanical study

    PubMed Central

    Markova, Nadezhda V.; Batovska, Daniela I.; Kozuharova, Ekaterina K.; Enchev, Venelin G.

    2015-01-01

    Aim: The parent of xGraptoveria, Graptopetalum paraguayense, is used in Chinese folk medicine for alleviating hepatic disorders, detumescence and detoxication, lowering of blood pressure, inhibition of cancer cells, exerting diuretic effects, relieving pain and infections. No data are available regarding its anti-conjunctivitis effect. The aim of this preliminary study is to test the anti-conjunctivitis properties of xGraptoveria (Crassulaceae) and to identify its bioactive constituents. Materials and Methods: Fresh watery juice of leaves of xGraptoveria was extracted with n-butanol and the extract was analyzed using gas chromatography-mass spectrometry (GC/MS). The ethnobotanical appraisal of the anti-conjunctivitis properties of xGraptoveria was based on 11 interviews about the symptoms against which this plant demonstrated positive effect. Results: Fresh juice of xGraptoveria leaves applied directly to the irritated eye 2 times per day cured conjunctivitis in all reported cases. The main groups of organic compounds identified by GC/MS analysis in the fresh extracted leaf juice of xGraptoveria were: Alkylamines, hydroxycarboxylic acids, aliphatic and aromatic carboxylic acids, amino acids, alcohols, aromatic and aliphatic hydrocarbons. Conclusion: In this preliminary study, it is suggested that xGraptoveria exerts anti-conjunctivitis activity, through synergistic effect of different chemical compounds, most probably alkylamines and mainly hydroxycarboxylic, aliphatic, and aromatic carboxylic acids. PMID:26401380

  15. O2-dependent Aliphatic Carbon-carbon Bond Cleavage Reactivity in a Ni(II) Enolate Complex Having a Hydrogen Bond Donor Microenvironment; Comparison with a Hydrophobic Analog

    PubMed Central

    Grubel, Katarzyna; Fuller, Amy L.; Chambers, Bonnie M.; Arif, Atta M.; Berreau, Lisa M.

    2010-01-01

    A mononuclear Ni(II) complex having an acireductone type ligand, and supported by the bnpapa (N,N-bis((6-neopentylamino-2-pyridyl)methyl-N-((2-pyridyl)methyl)amine ligand, [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14), has been prepared and characterized by elemental analysis, 1H NMR, FTIR, and UV-vis. To gain insight into the 1H NMR features of 14, the air stable analog complexes [(bnpapa)Ni(CH3C(O)CHC(O)CH3)]ClO4 (16) and [(bnpapa)Ni(ONHC(O)CH3)]ClO4 (17) were prepared and characterized by X-ray crystallography, 1H NMR, FTIR, UV-vis, mass spectrometry, and solution conductivity measurements. Compounds 16 and 17 are 1:1 electrolyte species in CH3CN. 1H and 2H NMR studies of 14, 16, and 17 and deuterated analogs revealed that the complexes having six-membered chelate rings for the exogenous ligand (14 and 16) do not have a plane of symmetry within the solvated cation and thus exhibit more complicated 1H NMR spectra. Compound 17, as well as other simple Ni(II) complexes of the bnpapa ligand (e.g. [(bnpapa)Ni(ClO4)(CH3CN)]ClO4 (18) and [(bnpapaNi)2(μ-Cl)2](ClO4)2 (19)), exhibit 1H NMR spectra consistent with the presence of a plane of symmetry within the cation. Treatment of [(bnpapa)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (14) with O2 results in aliphatic carbon-carbon bond cleavage within the acireductone-type ligand and the formation of [(bnpapa)Ni(O2CPh)]ClO4 (9), benzoic acid, benzil, and CO. Use of 18O2 in the reaction gives high levels of incorporation (>80%) of one labeled oxygen atom into 9 and benzoic acid. The product mixture and level of 18O incorporation in this reaction is different than that exhibited by the analog supported the hydrophobic 6-Ph2TPA ligand, [(6-Ph2TPA)Ni(PhC(O)C(OH)C(O)Ph)]ClO4 (2). We propose that this difference is due to variations in the reactivity of bnpapa- and 6-Ph2TPA-ligated Ni(II) complexes with triketone and/or peroxide species produced in the reaction pathway. PMID:20039645

  16. Surface coverage and corrosion inhibition effect of Rosmarinus officinalis and zinc oxide on the electrochemical performance of low carbon steel in dilute acid solutions

    NASA Astrophysics Data System (ADS)

    Loto, Roland Tolulope

    2018-03-01

    Electrochemical analysis of the corrosion inhibition and surface protection properties of the combined admixture of Rosmarinus officinalis and zinc oxide on low carbon steel in 1 M HCl and H2SO4 solution was studied by potentiodynamic polarization, open circuit potential measurement, optical microscopy and ATR-FTIR spectroscopy. Results obtained confirmed the compound to be more effective in HCl solution, with optimal inhibition efficiencies of 93.26% in HCl and 87.7% in H2SO4 acid solutions with mixed type inhibition behavior in both acids. The compound shifts the corrosion potential values of the steel cathodically in HCl and anodically in H2SO4 signifying specific corrosion inhibition behavior without applied potential. Identified functional groups of alcohols, phenols, 1°, 2° amines, amides, carbonyls (general), esters, saturated aliphatic, carboxylic acids, ethers, aliphatic amines, alkenes, aromatics, alkyl halides and alkynes within the compound completely adsorbed onto the steel forming a protective covering. Thermodynamic calculations showed physisorption molecular interaction with the steel's surface according to Langmuir and Frumkin adsorption isotherms. Optical microscopy images of the inhibited and uninhibited steels contrast each other with steel specimens from HCl solution showing a better morphology.

  17. IRAS 08572+3915: constraining the aromatic versus aliphatic content of interstellar HACs

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Geballe, T. R.; Pino, T.; Cao, A.-T.; Jones, A.; Deboffle, D.; Guerrini, V.; Bréchignac, Ph.; D'Hendecourt, L.

    2007-02-01

    We analyze dust features present in the mid-infrared (Spitzer) and recently published L-band (UKIRT) spectra of the infrared galaxy IRAS 08572+3915. The line of sight toward the AGN nucleus crosses a high column density of carbonaceous dust whose characteristic absorption features appear clearly. They provide a real insight into the chemical environment of the diffuse interstellar medium. Thanks to the moderate redshift of IRAS 08572+3915, the wavelength of the aromatic CH stretching mode is free of major telluric lines, and a strong observational constraint of Hsp2 /Hsp3 ≤ 0.08 has been determined. This limit clearly shows that the bonding of hydrogen atoms in interstellar hydrogenated amorphous carbon is highly aliphatic. The presence of a broad absorption feature centered at 6.2 μm, probably arising from olefinic/aromatic structures, corresponds to the backbone of this carbonaceous material, which is the major carbon-containing component of the interstellar medium along this line of sight. Based on observations made with the Spitzer Space Telescope (GO-3336 program), which is operated by the Jet Propulsion Laboratory, California Institute of Technology under NASA contract 1407. Based on data obtained at the United Kingdom Infrared Telescope, which is operated by the Joint Astronomy Center on behalf of the UK Particle Physics and Astronomy Research Council. Part of this work has been financed by the french CNRS program "Physique et Chimie du Milieu Interstellaire" (PCMI-CNRS). TRG's esearch is supported by the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., on behalf of the international Gemini partnership of Argentina, Australia, Brazil, Canada, Chile, the United Kingdom, and the United States of America.

  18. Antiviral Activity of a Small-Molecule Inhibitor of Filovirus Infection

    DTIC Science & Technology

    2010-05-01

    one or two heterocyclic aromatic struc- tures (i.e., indole, benzofuran, benzimidazole , or benzothiophene) connected via an aliphatic linker or...tion of compound hits by high-throughput analysis. Using a ZEBOV-GFP assay, 2-(2-(5-(amino(imino)methyl)-1-benzofu- ran-2-yl)vinyl)-1H- benzimidazole -5

  19. [Synthesis and cytotoxicity of novel phosphorusless analogues of edelfosine].

    PubMed

    Romanova, S G; Shtil', A A; Serebrennikova, G A

    2008-01-01

    Modified series of phosphorusless edelfosine analogues bearing the polar heads of aliphatic bases, N,N-dimethylethanolamine and N,N,N(1),N(1)-tetramethylethylenediamine, were synthesized, with the length of the spacer varying from three to four methylene units. The cytotoxic characteristics of the compounds synthesized were studied.

  20. Effect of aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing amino acids on Leishmania spp. chemotaxis.

    PubMed

    Diaz, E; Zacarias, A K; Pérez, S; Vanegas, O; Köhidai, L; Padrón-Nieves, M; Ponte-Sucre, A

    2015-11-01

    In the sand-fly mid gut, Leishmania promastigotes are exposed to acute changes in nutrients, e.g. amino acids (AAs). These metabolites are the main energy sources for the parasite, crucial for its differentiation and motility. We analysed the migratory behaviour and morphological changes produced by aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing AAs in Leishmania amazonensis and Leishmania braziliensis and demonstrated that L-methionine (10-12 m), L-tryptophan (10-11 m), L-glutamine and L-glutamic acid (10-6 m), induced positive chemotactic responses, while L-alanine (10-7 m), L-methionine (10-11 and 10-7 m), L-tryptophan (10-11 m), L-glutamine (10-12 m) and L-glutamic acid (10-9 m) induced negative chemotactic responses. L-proline and L-cysteine did not change the migratory potential of Leishmania. The flagellum length of L. braziliensis, but not of L. amazonensis, decreased when incubated in hyperosmotic conditions. However, chemo-repellent concentrations of L-alanine (Hypo-/hyper-osmotic conditions) and L-glutamic acid (hypo-osmotic conditions) decreased L. braziliensis flagellum length and L-methionine (10-11 m, hypo-/hyper-osmotic conditions) decreased L. amazonensis flagellum length. This chemotactic responsiveness suggests that Leishmania discriminate between slight concentration differences of small and structurally closely related molecules and indicates that besides their metabolic effects, AAs play key roles linked to sensory mechanisms that might determine the parasite's behaviour.