Science.gov

Sample records for aliphatic isocyanate polyurethanes

  1. Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Curran, Jerome

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Headquarters chartered the Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objective of this effort is to demonstrate and validate alternatives to aliphatic isocyanate polyurethane coatings. Successful completion of this project will result in one or more isocyanate-free coating systems qualified for use at Air Force Space Command (AFSPC) and NASA centers participating in this study. The objective of this project is to qualify the candidates under the specifications for the standard system. This project will compare coating performance of the proposed alternatives to existing coating systems or standards.

  2. Cost-Benefit Analysis for Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    NASA and Air Force Space Command (AFSPC) have similar missions and therefore similar facilities and structures in similar environments. The standard practice for protecting metallic substrates in atmospheric environments is the application of an applied coating system. The most common topcoats used in coating systems are polyurethanes that contain isocyanates. Isocyanates are classified as potential human carcinogens and are known to cause cancer in animals. The primary objective of this effort was to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes resulting in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project. This Cost-Benefit Analysis (CBA) quantifies the estimated capital and process costs of coating alternatives and cost savings relative to the current coatings. The estimates in this CBA are to be used for assessing the relative merits of the selected alternatives. The actual economic effects at any specific facility will depend on the alternative material or technology implemented, the number of actual applications converted, future workloads, and other factors . The participants initially considered eighteen (18) alternative coatings as described in the Potential Alternatives Report entitled Potential Alternatives Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, prepared by ITB. Of those, 8 alternatives were selected for testing in accordance with the Joint Test Protocol entitled Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, and the Field Test Plan entitled Field Evaluations Test Plan for Validation of Alternatives 10 Aliphatic Isocyanate Polyurethanes, both of which were prepared by ITB. A joint Test Report entitled Joint Test Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, prepared by ITB, documents the results of the laboratory and field testing, as well as any

  3. Field Evaluations Test Plan for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    The objective of this project is to qualify candidate alternatives to Aliphatic Isocyanate Polyurethane coatings under the specifications for the standard system. This project will compare coating performance of the proposed alternatives to existing coating systems or standards.

  4. Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    The primary objective of this effort is to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes. Successful completion of this project will result in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project.

  5. Potential Alternatives Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, pattie

    2011-01-01

    Identifying and selecting alternative materials and technologies that have the potential to reduce the identified HazMats and hazardous air pollutants (HAPs), while incorporating sound corrosion prevention and control technologies, is a complicated task due to the fast pace at which new technologies emerge and rules change. The alternatives are identified through literature searches, electronic database and Internet searches, surveys, and/or personal and professional contacts. Available test data was then compiled on the proposed alternatives to determine if the materials meet the test objectives or if further)laboratory or field-testing will be required. After reviewing technical information documented in the PAR, government representatives, technical representatives from the affected facilities, and other stakeholders involved in the process will select the list of viable alternative coatings for consideration and testing under the project's Joint Test Protocol entitled Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes and Field Test Plan entitled Field Evaluations Test Plan for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, both prepared by ITB. Test results will be reported in a Joint Test Report upon completion oftesting. The selection rationale and conclusions are documented in this PAR. A cost benefit analysis will be prepared to quantify the estimated capital and process costs of coating alternatives and cost savings relative to the current coating processes, however, some initial cost data has been included in this PAR. For this coatings project, isocyanates, as found in aliphatic isocyanate polyurethanes, were identified as the target HazMat to be eliminated. Table 1-1 lists the target HazMats, the related process and application, current specifications, and affected programs.

  6. Joint Test Report For Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    National Aeronautics and Space Administration (NASA) and Air Force Space Command (AFSPC) have similar missions and therefore similar facilities and structures in similar environments. The standard practice for protecting metallic substrates in atmospheric environments is the application of an applied coating system. The most common topcoats used in coating systems are polyurethanes that contain isocyanates. Isocyanates are classified as potential human carcinogens and are known to cause cancer in animals. The primary objective of this effort was to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes resulting in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project. This joint Test Report (JTR) documents the results of the laboratory and field testing as well as any test modifications made during the execution of the testing. The technical stakeholders agreed upon test procedure modifications documented in this document. This JTR is made available as a reference for future pollution prevention endeavors by other NASA centers, the Department of Defense and commercial users to minimize duplication of effort. All coating system candidates were tested using approved NASA and AFSPC standard coating systems as experimental controls. This study looked at eight alternative coating systems and two control coating systems and was divided into Phase I Screening Tests, Phase II Tests, and Field Testing. The Phase I Screening Tests were preliminary tests performed on all the selected candidate coating systems. Candidate coating systems that did not meet the acceptance criteria of the screening tests were eliminated from further testing. Phase I Screening Tests included: Ease of Application, Surface Appearance, Dry-To-Touch (Sanding), Accelerated Storage Stability, Pot Life (Viscosity), Cure Time (Solvent Rubs), Cleanability, Knife Test, Tensile (pull-off) Adhesion, and X-Cut Adhesion by Wet

  7. Transferability of aliphatic isocyanates from recently applied paints to the skin of auto body shop workers.

    PubMed

    De Vries, Thomas T; Bello, Dhimiter; Stowe, Meredith H; Harari, Homero; Slade, Martin D; Redlich, Carrie A

    2012-01-01

    Isocyanates, the essential cross-linking chemicals used to make polyurethane, are potent sensitizers and a common cause of occupational asthma. In addition, isocyanate (NCO) skin contact may contribute to the development of isocyanate asthma. Prior work has shown that unbound NCO can persist on recently spray coated auto body parts after appearing dry. The purpose of this study was to assess whether isocyanate skin exposure can result from handling such surfaces. Quantitative surface and skin wipe sampling for total NCO was performed on test panels sprayed with aliphatic isocyanate coatings, and on paired skin samples obtained from participants who had rubbed the recently dried surfaces. Surface and skin samples, obtained from 18 workers in five auto body shops, were prepared following NIOSH method 5525 (modified for skin samples), and isocyanate species derived from hexamethylene diisocyanate and isophorone diisocyanate were analyzed using high-performance liquid chromatography with ultraviolet and fluorescence detectors. Quantifiable unbound NCO species were detected on 84.2% of all sprayed surfaces sampled after initially considered dry. Only 7 out of a total of 104 (6.7%) non-compounded skin samples obtained after contact with the recently dried coatings had detectable quantities of free NCO. The 7 positive samples, all obtained at the initial sampling time (t(0)), had a geometric mean of 0.016 μg NCO cm(-2) (range: 0.002-0.88 μg NCO cm(-2)). Only 1 of 12 (8.3%) of skin samples obtained after compounding contained detectable free NCO. The risk of substantial human isocyanate skin exposure from contact with the dry appearing (yet not fully cured) isocyanate coatings evaluated in this study appears to be low, although other isocyanate coatings and tasks may pose a greater risk of NCO skin exposure.

  8. Isocyanate emissions from pyrolysis of mattresses containing polyurethane foam.

    PubMed

    Garrido, María A; Gerecke, Andreas C; Heeb, Norbert; Font, Rafael; Conesa, Juan A

    2017-02-01

    This study examined the emissions of powerful asthmatic agents called isocyanates from small-scale pyrolysis experiments of two common foams employed in mattress production such as flexible polyurethane foam (FPUF) and viscoelastic memory foam (VMF). A nitrogen atmosphere and five different temperatures, 300, 350, 400, 450 and 850 °C, were selected to carry out the experiments in order to evaluate the worst possible conditions for thermal degradation. A similar trend for both materials was found. At lower temperatures, diisocyanates were the most important products whereas at 850 °C monoisocyanates, and mainly isocyanic acid released mainly from the thermal cracking of diisocyanates evolved directly from the polymer chains. The total yields of isocyanates were in the range of 1.43-11.95 mg/m(3) for FPUF at 300-850 °C and 0.05-6.13 mg/m(3) for VMF, 300-850 °C. This difference could be a consequence of the lower amount of isocyanates employed in the VMF production which was confirmed by the nitrogen content of the foams, 5.95% FPUF vs. 3.34% in VMF. Additionally, a qualitative search for so far unknown isocyanates was performed in samples from the pyrolysis of FPUF at 300, 400 and 850 °C. It was confirmed that six different aminoisocyanates at 300 °C were evolved, whereas at 400 and 850 °C only five of them were detected. The general trend observed was a decrease of the aminoisocyanate levels with increasing pyrolysis temperature.

  9. Dry sampling of gas-phase isocyanates and isocyanate aerosols from thermal degradation of polyurethane.

    PubMed

    Gylestam, Daniel; Riddar, Jakob B; Karlsson, Daniel; Dahlin, Jakob; Dalene, Marianne; Skarping, Gunnar

    2014-01-01

    The performance of a dry sampler, with an impregnated denuder in series with a glass fibre filter, using di-n-butylamine (DBA) for airborne isocyanates (200ml min(-1)) is investigated and compared with an impinger flask with a glass fibre filter in series (1 l min(-1)). An exposure chamber containing 1,6-hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and 2,4- and 2,6-toluene diisocyanate (TDI) in the concentration range of 5-205 μg m(-3) [0.7-33 p.p.b.; relative humidity (RH) 50%], generated by gas- and liquid-phase permeation, was used for the investigation. The precision for the dry sampling for five series with eight samplers were in the range of 2.0-6.1% with an average of 3.8%. During 120-min sampling (n = 4), no breakthrough was observed when analysing samplers in series. Sixty-four exposed samplers were analysed after storage for 0, 7, 14, and 21 days. No breakdown of isocyanate derivatives was observed. Twenty-eight samplers in groups of eight were collecting isocyanates during 0.5-32h. Virtually linear relationships were obtained with regard to sampling time and collected isocyanates with correlation coefficients in the range of 0.998-0.999 with the intercept close to the origin. Pre- or post-exposure to ambient air did not affect the result. Dry sampling (n = 48) with impinger-filter sampling (n = 48) of thermal decomposition product of polyurethane polymers, at RH 20, 40, 60, and 90%, was compared for 11 isocyanate compounds. The ratio between the different isocyanates collected with dry samplers and impinger-filter samplers was in the range of 0.80-1.14 for RH = 20%, 0.8-1.25 for RH = 40%, 0.76-1.4 for RH = 60%, and 0.72-3.7 for RH = 90%. Taking into account experimental errors, it seems clear that isocyanic acid DBA derivatives are found at higher levels in the dry samples compared with impinger-filter samplers at elevated humidity. The dry sampling using DBA as the reagent enables easy and robust sampling without the need of field

  10. Amines: possible causative agents in the development of bronchial hyperreactivity in workers manufacturing polyurethanes from isocyanates.

    PubMed Central

    Belin, L; Wass, U; Audunsson, G; Mathiasson, L

    1983-01-01

    Investigations of respiratory symptoms among workers in a factory producing polyurethane foam included measurement of air pollution with amines and isocyanates and a simultaneous health investigation of the exposed workers. An increased bronchial reactivity to inhaled methacholine was found in the study group compared with two unexposed control groups. This finding, together with visual disturbances in the exposed group, were assumed to be caused mainly by the volatile amines. The concentrations of isocyanates in air were well below 0.005 ppm. The amine concentration was 1000 to 10 000 times higher than the isocyanate concentration. The most volatile amine, N-methylmorpholine, occurred in the air in concentrations higher than 10 ppm. The results indicate that not only the isocyanates but also the amines might well be responsible for respiratory symptoms among exposed workers in polyurethane foam production. PMID:6307337

  11. Isocyanates.

    PubMed

    Wenk, Kurt S; Ehrlich, Alison

    2012-01-01

    Owing to the widespread use of isocyanate-derived products across multiple industries, it is important for physicians to be aware of their sensitizing potential. We first provide a general overview of isocyanates and the industries that may be associated with exposure to these compounds. This is followed by a description of the most commonly used isocyanate products in commercial patch test preparations. Finally, we discuss appropriate isocyanate patch testing methodology and optimal isocyanate patch test concentrations.

  12. Renewable non-isocyanate based thermoplastic polyurethanes via polycondensation of dimethyl carbamate monomers with diols.

    PubMed

    Unverferth, Maike; Kreye, Oliver; Prohammer, Alexander; Meier, Michael A R

    2013-10-01

    1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD)-catalyzed polycondensation reactions of fatty acid derived dimethyl dicarbamates and diols are introduced as a versatile, non-isocyanate route to renewable polyurethanes. The key step for the synthesis of dimethyl carbamate monomers from plant-oil-derived dicarboxylic acids is based on a sustainable base-catalyzed Lossen rearrangement. The formed polyurethanes with molecular weights up to 25 kDa are characterized by SEC, DSC, and NMR analysis.

  13. Assessing isocyanate exposures in polyurethane industry sectors using biological and air monitoring methods.

    PubMed

    Creely, K S; Hughson, G W; Cocker, J; Jones, K

    2006-08-01

    Isocyanates, as a chemical group, are considered to be the biggest cause of occupational asthma in the UK. Monitoring of airborne exposures to total isocyanate is costly, requiring considerable expertise, both in terms of sample collection and chemical analysis and cannot be used to assess the effectiveness of protection from wearing respiratory protective equipment (RPE). Biological monitoring by analysis of metabolites in urine can be a relatively simple and inexpensive way to assess exposure to isocyanates. It may also be a useful way to evaluate the effectiveness of control measures in place. In this study biological and inhalation monitoring were undertaken to assess exposure in a variety of workplaces in the non-motor vehicle repair sector. Companies selected to participate in the survey included only those judged to be using good working practices when using isocyanate formulations. This included companies that used isocyanates to produce moulded polyurethane products, insulation material and those involved in industrial painting. Air samples were collected by personal monitoring and were analysed for total isocyanate content. Urine samples were collected soon after exposure and analysed for the metabolites of different isocyanate species, allowing calculation of the total metabolite concentration. Details of the control measures used and observed contamination of exposed skin were also recorded. A total of 21 companies agreed to participate in the study, with exposure measurements being collected from 22 sites. The airborne isocyanate concentrations were generally very low (range 0.0005-0.066 mg m(-3)). A total of 50 of the 70 samples were <0.001 mg m(-3), the limit of quantification (LOQ), therefore samples below the LOQ were assigned a value of 1/2 LOQ (0.0005 mg m(-3)). Of the 70 samples, 67 were below the current workplace exposure limit of 0.02 mg m(-3). The highest inhalation exposures occurred during spray painting activities in a truck manufacturing

  14. Validation of a solvent-free sampler for the determination of low molecular weight aliphatic isocyanates under thermal degradation conditions.

    PubMed

    Boutin, M; Lesage, J; Ostiguy, C; Pauluhn, J

    2005-09-01

    During the thermal degradation of 1,6-hexamethylenediiso- cyanate-based (HDI) car paint, the eight most abundant isocyanates generated are isocyanic acid, methyl isocyanate, ethyl isocyanate, propyl isocyanate, butyl isocyanate, pentyl isocyanate, hexyl isocyanate, and 1,6-hexamethylenediisocyanate. For the first time, a method using solvent-free samplers is proposed and validated for the simultaneous sampling of all these isocyanates. The sampling efficiency during thermal degradation of car paint can be affected by the formation of dust and aerosols and by the emission of many chemicals, such as isocyanic acid, anhydrides, amines, and alcohols that consume the reagent or interfere in the derivatization procedure. Sampling was performed using cassettes containing two 1-(2-methoxyphenyl)piperazine (MOPIP)-coated glass fiber filters (MFs) (approximately 4.9 mg per filter) and compared with bubblers containing 15 mL of MOPIP solution in toluene (1.0 mg/mL(-1)) and with bubblers backed with MFs. A DIN 53436 laboratory scale furnace was used to generate the isocyanates under thermal degradation conditions. For an aliphatic isocyanate concentration of approximately 42 microg(NCO) m(-3), no significant difference in sampling efficiency was observed between the three techniques studied, thus confirming the sampling efficiency of the MFs. The samples were analyzed using high-performance liquid chromatography coupled with electrospray/tandem mass spectrometry. Quantification was performed in daughter mode monitoring (MOPIP+H)(+) fragments. For concentrations between 0.013 microg(NCO) mL(-1) and 0.52 microg(NCO) mL(-1) for the monoisocyanates, and between 0.026 microg(NCO) mL(-1) and 1.04 microg(NCO) mL(-1) for the HDI, the correlation coefficients were in the 0.9974-0.9996 range (n = 18). Analytical reproducibility and precision were better than 95.4% and 94.9%, respectively, for all the isocyanates. The instrumental detection limits, defined as three times the standard

  15. Non-Isocyanate Polyurethane Soft Nanoparticles Obtained by Surfactant-Assisted Interfacial Polymerization.

    PubMed

    Bossion, Amaury; Jones, Gavin O; Taton, Daniel; Mecerreyes, David; Hedrick, James L; Ong, Zhan Yuin; Yang, Yi Yan; Sardon, Haritz

    2017-02-28

    Polyurethanes (PUs) are considered ideal candidates for drug delivery applications due to their easy synthesis, excellent mechanical properties, and biodegradability. Unfortunately, methods for preparing well-defined PU nanoparticles required miniemulsion polymerization techniques with a nontrivial control of the polymerization conditions due to the inherent incompatibility of isocyanate-containing monomers and water. In this work, we report the preparation of soft PU nanoparticles in a one-pot process using interfacial polymerization that employs a non-isocyanate polymerization route that minimizes side reactions with water. Activated pentafluorophenyl dicarbonates were polymerized with diamines and/or triamines by interfacial polymerization in the presence of an anionic emulsifier, which afforded non-isocyanate polyurethane (NIPU) nanoparticles with sizes in the range of 200-300 nm. Notably, 5 wt % of emulsifier was required in combination with a trifunctional amine to achieve stable PU dispersions and avoid particle aggregation. The versatility of this polymerization process allows for incorporation of functional groups into the PU nanoparticles, such as carboxylic acids, which can encapsulate the chemotherapeutic doxorubicin through ionic interactions. Altogether, this waterborne synthetic method for functionalized NIPU soft nanoparticles holds great promise for the preparation of drug delivery nanocarriers.

  16. Synthesis and characterization of free-isocyanate polyurethane as renewable coating materials

    NASA Astrophysics Data System (ADS)

    Saputra, O. A.; Apriany, K.; Putri, F. R.; Firdaus, M.

    2016-02-01

    Green synthesis of diethyl ethane-1,2-diyldicarbamate (M1) as starting dimer of free-isocyanate polyurethane from an excess of diethyl carbonate and ethylene diamine catalyzed by TBD (1,5,7-triazabicyclo-[4,4,0]dec-5-ene) at 80 °C for 4 hours has been carried out. The product has high yield and purity up to 92% and 99,18%, respectively. The product was obtained in the form of rod-shaped white crystals and characterized with 1H-NMR, 13C-NMR and FTIR spectroscopy. Polyurethane (P1) has successfully synthesized via polycondensation methods by reacting of M1 with cis-2-butene-1,4-diol. This reaction also catalyzed by TBD organo catalyst. P1 chemical structure has been confirmed using 1H-NMR and FTIR techniques.

  17. The role of isocyanates in determining the viscoelastic properties of polyurethane

    NASA Astrophysics Data System (ADS)

    AqilahHamuzan, Hawa; Badri, Khairiah Haji

    2016-11-01

    Polyurethane (PU) has a unique structure that is dependent on the structure of the starting material used. This research focused on investigating the role of isocyanate groups (NCO) in the determination of the viscoelastic properties of the polymer. Monoester polyol was reacted with three different diisocyanates separately by prepolymerization method. The diisocyanates used were 2,4-diphenyl methane diisocyanate (MDI), toluene 2,4-diisocyanate (TDI) and isophoronediisocyanate (IPDI). Acetone was used as a solvent. IPDI, MDI and TDI were reacted with monoester polyol at ratios of 10:9, 10:10, 10:12 and 10:14 (polyol:diisocyanate). Then, the PU foams produced by the curing process were analyzed by Fourier Transform infrared spectroscopy (FTIR). The FTIR spectra showed the presence of the amide peak (-NH) and the absence of hydroxyl peak (-OH) indicated that the reaction between polyol and diisocyanate has occurred. However, the soxhlet extraction showed that only MDI-based PUs contain crosslinking bond. These cross-linking bond at the ratio of 10:10, 10:12 and 10:14 were 41.3 %,61.1 % and 74.1 % respectively. Thermal properties of the PU foams were determined by differential scanning calorimetry (DSC) and thermogravimetry (TGA) techniques. MDI-based PUs and TDI-based PUs show two values of Tg while IPDI-based PUs only show one Tg value. The tensile strains of PU foams decreased with increasing ratio of isocyanate. Meanwhile, PU foams with ratio of polyol to isocyanate at 10:12 showed the highest tensile stress and modulus compared to at 10:10 and 10:14.

  18. Structure-property-glass transition relationships in non-isocyanate polyurethanes investigated by dynamic nanoindentation

    NASA Astrophysics Data System (ADS)

    Weyand, Stephan; Blattmann, Hannes; Schimpf, Vitalij; Mülhaupt, Rolf; Schwaiger, Ruth

    2016-07-01

    Newly developed green-chemistry approaches towards the synthesis of non-isocyanate polyurethane (NIPU) systems represent a promising alternative to polyurethanes (PU) eliminating the need for harmful ingredients. A series of NIPU systems were studied using different nanoindentation techniques in order to understand the influence of molecular parameters on the mechanical behavior. Nanoindentation revealed a unique characteristic feature of those materials, i.e. stiffening with increasing deformation. It is argued that the origin of this observed stiffening is a consequence of the thermodynamic state of the polymer network, the molecular characteristics of the chemical building blocks and resulting anisotropic elastic response of the network structure. Flat-punch nanoindentation was applied in order to characterize the constitutive viscoelastic nature of the materials. The complex modulus shows distinct changes as a function of the NIPU network topology illustrating the influence of the chemical building blocks. The reproducibility of the data indicates that the materials are homogeneous over the volumes sampled by nanoindentation. Our study demonstrates that nanoindentation is very well-suited to investigate the molecular characteristics of NIPU materials that cannot be quantified in conventional experiments. Moreover, the technique provides insight into the functional significance of complex molecular architectures thereby supporting the development of NIPU materials with tailored properties.

  19. Isocyanate Exposure Below Analytical Detection When a Paint Brush and Roller Are Used to Apply Moisture-Cure Polyurethane Paint.

    PubMed

    Reeb-Whitaker, Carolyn K; Schoonover, Todd M

    2016-05-01

    Isocyanate exposure is known to be hazardous when polyurethane paints are applied with a spray gun, but less is known of exposure when paint is applied with a paint brush and roller. Concentrations of 1,6-hexamethylene diisocyanate (HDI) monomer and three HDI polymers were assessed when two moisture-cure polyurethane paints containing 31-35% isocyanates were applied with a paint roller and brush. Short-term 15-min samples were taken during paint application in an indoor test environment with no ventilation (n= 12); in an outdoor test environment (n= 11); and in an outdoor in-situ assessment (n= 22). The outdoor in-situ assessment involved the painting of a bus shelter and light poles at a public transit station over two night shifts. All isocyanate samples were below analytical detection. The analytical limits of detection for HDI monomer, HDI biuret, HDI isocyanurate, and HDI uretdione were 0.005, 0.84, 0.87, and 0.88 µg, respectively. The finding that isocyanate concentrations were below detection is attributed to the use of paint roller and brush which minimize paint aerosolization and the paint formulation itself which contained <1% of volatile HDI monomer.

  20. Quantification of isocyanates and amines in polyurethane foams and coated products by liquid chromatography–tandem mass spectrometry

    PubMed Central

    Mutsuga, Motoh; Yamaguchi, Miku; Kawamura, Yoko

    2014-01-01

    An analytical method for the identification and quantification of 10 different isocyanates and 11 different amines in polyurethane (PUR) foam and PUR-coated products was developed and optimized. Isocyanates were extracted and derivatized with di-n-butylamine, while amines were extracted with methanol. Quantification was subsequently performed by liquid chromatography–tandem mass spectrometry. Using this methodology, residual levels of isocyanates and amines in commercial PUR products were quantified. Although the recoveries of certain isocyanates and amines were low, the main compounds used as monomers in the production of PUR products, and their decomposition species, were clearly identified at quantifiable levels. 2,4-and 2,6-toluenediisocyanate were detected in most PUR foam samples and a pastry bag in the range of 0.02–0.92 mg/kg, with their decomposition compounds, 2,4-and 2,6-toluenediamine, detected in all PUR foam samples in the range of 9.5–59 mg/kg. PUR-coated gloves are manufactured using 4,4′-methylenebisphenyl diisocyanate as the main raw material, and a large amount of this compound, in addition to 4,4′-methylenedianiline and dicyclohexylmethane-4,4′-diamine were found in these samples. PMID:24804074

  1. Development of segmented polyurethane elastomers with low iodine content exhibiting radiopacity and blood compatibility.

    PubMed

    Dawlee, S; Jayabalan, Muthu

    2011-10-01

    Biofunctionally active and inherently radiopaque polymers are the emerging need for biomedical applications. Novel segmented polyurethane elastomer with inherent radiopacity was prepared using aliphatic chain extender 2,3-diiodo-2-butene-1,4-diol, polyol polytetramethylene glycol and 4,4'-methylenebis(phenyl isocyanate) (MDI) for blood compatible applications. Aliphatic polyurethane was also prepared using hexamethylene diisocyanate for comparison. X-ray analysis of the polyurethanes revealed good radiopacity even at a relatively low concentration of 3% iodine in aromatic polyurethane and 10% in aliphatic polyurethane. The polyurethanes also possessed excellent thermal stability. MDI-based polyurethane showed considerably higher tensile strength than the analogous HDI-based polyurethane. MDI-based aromatic polyurethane exhibited a dynamic surface morphology in aqueous medium, resulting in the segregation of hydrophilic domains which was more conducive to anti-thrombogenic properties. The polyurethane was cytocompatible with L929 fibroblast cells, non-hemolytic, and possessed good blood compatibility.

  2. Isocyanate- and phosgene-free routes to polyfunctional cyclic carbonates and green polyurethanes by fixation of carbon dioxide.

    PubMed

    Blattmann, Hannes; Fleischer, Maria; Bähr, Moritz; Mülhaupt, Rolf

    2014-07-01

    The catalytic chemical fixation of carbon dioxide by carbonation of oxiranes, oxetanes, and polyols represents a very versatile green chemistry route to environmentally benign di- and polyfunctional cyclic carbonates as intermediates for the formation of non-isocyanate poly-urethane (NIPU). Two synthetic pathways lead to NIPU thermoplastics and thermosets: i) polycondensation of diacarbamates or acyclic dicarbonates with diols or diamines, respectively, and ii) polyaddition by ring-opening polymerization of di- and polyfunctional cyclic carbonates with di- and polyamines. The absence of hazardous and highly moisture-sensitive isocyanates as intermediates eliminates the need for special safety precautions, drying and handling procedures. Incorporated into polymer backbones and side chains, carbonate groups enable facile tailoring of a great variety of urethane-functional polymers. As compared with conventional polyurethanes, ring-opening polymerization of polyfunctional cyclic carbonates affords polyhydroxyurethanes with unconventional architectures including NIPUs containing carbohydrate segments. NIPU/epoxy hybrid coatings can be applied on wet surfaces and exhibit improved adhesion, thermal stability and wear resistance. Combining chemical with biological carbon dioxide fixation affords 100% bio-based NIPUs derived from plant oils, terpenes, carbohydrates, and bio polyols. Biocompatible and biodegradable NIPU as well as NIPU biocomposites hold great promise for biomedical applications.

  3. Continuous Optical 3D Printing of Green Aliphatic Polyurethanes.

    PubMed

    Pyo, Sang-Hyun; Wang, Pengrui; Hwang, Henry H; Zhu, Wei; Warner, John; Chen, Shaochen

    2017-01-11

    Photosensitive diurethanes were prepared from a green chemistry synthesis pathway based on methacrylate-functionalized six-membered cyclic carbonate and biogenic amines. A continuous optical 3D printing method for the diurethanes was developed to create user-defined gradient stiffness and smooth complex surface microstructures in seconds. The green chemistry-derived polyurethane (gPU) showed high optical transparency, and we demonstrate the ability to tune the material stiffness of the printed structure along a gradient by controlling the exposure time and selecting various amine compounds. High-resolution 3D biomimetic structures with smooth curves and complex contours were printed using our gPU. High cell viability (over 95%) was demonstrated during cytocompatibility testing using C3H 10T1/2 cells seeded directly on the printed structures.

  4. New aliphatic glycerophosphoryl-containing polyurethanes: synthesis, platelet adhesion and elution cytotoxicity studies.

    PubMed

    Acetti, Daniela; D'Arrigo, Paola; Giordano, Carmen; Macchi, Piero; Servi, Stefano; Tessaro, Davide

    2009-04-01

    in this study new poly(ether)urethanes (PeUs) based on aliphatic diisocyanates were synthesized with phospholipid-like residues as chain extenders. The primary objective was to prepare new polyurethanes from diisocyanates that are less toxic than the aromatic ones widely used in medical-grade polyurethanes, in order to investigate the effect of the different aromatic or aliphatic hard segment content on the final properties of the materials. Some glycerophospho residues were simultaneously introduced to enhance the hemocompatibility of these materials. Polymers were prepared by a conventional two-step solution polymerization procedure using hexamethylene diisocyanate (HDi) and dodecametilendiisocyanate (DDi) and poly(1,4-butanediol) with molecular weight 1000 to form prepolymers, which were subsequently polymerized with 1-glycerophosphorylcholine (1-GPC) or glycerophosphorylserine (GPS) to act as chain extenders. The reference polymers bearing 1,4-butandiol (BD) were also synthesized. The polymers obtained were characterized by fourier transform infrared spectroscopy (fT-iR), nuclear magnetic resonance (1H nmR), and differential scanning calorimetry (DSC). The hemocompatibility of synthesized segmented polyurethanes was preliminarily investigated by platelet-rich plasma contact studies and related scanning electron microscopy (Sem) photographs as well as by cell viability assay after cell exposure to material elutions to assess the effect of any toxic leachables coming out from the samples. Two of the polymers gave interesting results, suggesting the desirability of further investigation into their possible use in biomedical devices.

  5. Evaluation of the NIOSH draft method 5525 for determination of the total reactive isocyanate group (TRIG) for aliphatic isocyanates in autobody repair shops. National Institute for Occupational Safety and Health.

    PubMed

    Bello, D; Streicher, R P; Woskie, S R

    2002-06-01

    This paper evaluates the performance of the NIOSH draft method 5525 for analysis of monomeric and TRIG aliphatic isocyanates in autobody repair shops. It was found that an optimized pH gradient enhanced noticeably the resolution and, therefore, identification of aliphatic isocyanates. Samples proved to be very stable for at least a year when stored at -13 degrees C in the freezer, and no major stability problems were found for the MAP reagent. The detector response factor RSD for selected MAP ureas was 40% in the fluorescence (FLD), 3% in the UV at 254 nm (UV254), and 1% in the UV at 370 nm (UV370). The mean FLD/UV254 and UV254/UV370 detector response ratios of standards were 31.7 (RSD = 37.8) and 17.1 (RSD = 5.4), respectively. The FLD/UV254 ratio in bulks varied from 0.41 to 1.97 times the HDI monomer ratio. The mean UV254/UV370 ratio in bulks was 16.1 (range 14.1 to 19.2, N = 38). Mean (range) recovery of 92 (91.2-93.2)% was found for the N3300 (isocyanurate) spiked on 25 mm quartz fiber filters in the range 0.07 to 2.2 microg NCO ml(-1). Mean (range) recovery for impingers was 100.7 (91.7-106.0)% for N3300 in the concentration range of 0.018 to 2.5 microg NCO ml(-1) and 81.0 (76.1-89.1)% for IPDI in the concentration range of 0.016 to 1.87 microg NCO ml(-1). Analytical method precision was 3.4% and mean bias 7.4% (range = 0-25%). The NIOSH draft method 5525 provides flexibility, enhanced sensitivity and specificity, powerful resolution, and very small compound-to-compound variability in the UV254, resulting in a more reliable identification and quantification of aliphatic isocyanates.

  6. Aliphatic polyurethane-silica nanocomposites prepared by the parallel synthesis: Morphology and mechanical characteristics

    NASA Astrophysics Data System (ADS)

    Gofman, I. V.; Sukhanova, T. E.; Vylegzhanina, M. É.; Abalov, I. V.; Stepanova, I. S.; Trofimov, A. E.; Ten'kovtsev, A. V.

    2010-03-01

    Films of aliphatic polyurethane-silica composites containing up to 27.3 mol % of SiO2 nanoparticles have been prepared by the parallel synthesis using the sol-gel technology. It has been revealed that the variations in the mechanical properties of these materials with increasing concentration of nanoparticles exhibit a nontrivial behavior: the ultimate strain gradually increases, whereas the elastic modulus and the yield stress decrease. A correlation of the changes observed in the mechanical characteristics with an increase in the free volume of the material with increasing silica concentration has been established. Atomic-force microscopy has confirmed the existence of a developed system of nanopores with characteristic sizes from 15 to 100 nm in the materials under investigation.

  7. Immunological evaluation of four arc welders exposed to fumes from ignited polyurethane (isocyanate) foam: antibodies and immune profiles

    SciTech Connect

    Broughton, A.; Thrasher, J.D.; Gard, Z.

    1988-01-01

    Four arc welders having a flu-like illness with multiple health complaints following an exposure to high concentrations of isocyanate fumes from ignited polyurethane foam underwent immunological tests as follows: ELISA antibody assays, activated lymphocyte profiles, and lymphocyte blastogenesis. ELISA procedures revealed the presence of antibodies to hexamethylene diisocyanate (HDI) and formaldehyde (F) conjugated to human serum albumin (HDI-SA and F-SA). The results from the activated lymphocyte profiles showed deviations from the norm as follows: three welders had elevated helper/suppressor (H/S) ratios; all four had elevated percentages of Tal positive cells; two had decreases in B cells; and one had low total white cell and lymphocyte counts. In contrast, the percentage and absolute numbers of ILS receptor cells were normal in the four subjects. T cell blastogenesis to PHA, Con A and PWM resulted in the following: T-cells from one subject responded normally; in another, a high response (212% of controls) to PHA occurred with normal mitogenesis to Con A and PWM. In the remaining two welders, the T cells responded abnormally low (50 to 75% of controls) to the three mitogens. In conclusion, the existence of IgG antibodies to HDI-SA and F-SA, the altered activated immune profiles, the elevated Tal cells, and the abnormal blastogenesis are interpreted as being linked with the episode of HDI and F exposure and the subsequent flu-like illness of the four welders.

  8. Residual Isocyanates in Medical Devices and Products: A Qualitative and Quantitative Assessment.

    PubMed

    Franklin, Gillian; Harari, Homero; Ahsan, Samavi; Bello, Dhimiter; Sterling, David A; Nedrelow, Jonathan; Raynaud, Scott; Biswas, Swati; Liu, Youcheng

    2016-01-01

    We conducted a pilot qualitative and quantitative assessment of residual isocyanates and their potential initial exposures in neonates, as little is known about their contact effect. After a neonatal intensive care unit (NICU) stockroom inventory, polyurethane (PU) and PU foam (PUF) devices and products were qualitatively evaluated for residual isocyanates using Surface SWYPE™. Those containing isocyanates were quantitatively tested for methylene diphenyl diisocyanate (MDI) species, using UPLC-UV-MS/MS method. Ten of 37 products and devices tested, indicated both free and bound residual surface isocyanates; PU/PUF pieces contained aromatic isocyanates; one product contained aliphatic isocyanates. Overall, quantified mean MDI concentrations were low (4,4'-MDI = 0.52 to 140.1 pg/mg) and (2,4'-MDI = 0.01 to 4.48 pg/mg). The 4,4'-MDI species had the highest measured concentration (280 pg/mg). Commonly used medical devices/products contain low, but measurable concentrations of residual isocyanates. Quantifying other isocyanate species and neonatal skin exposure to isocyanates from these devices and products requires further investigation.

  9. Residual Isocyanates in Medical Devices and Products: A Qualitative and Quantitative Assessment

    PubMed Central

    Franklin, Gillian; Harari, Homero; Ahsan, Samavi; Bello, Dhimiter; Sterling, David A.; Nedrelow, Jonathan; Raynaud, Scott; Biswas, Swati; Liu, Youcheng

    2016-01-01

    We conducted a pilot qualitative and quantitative assessment of residual isocyanates and their potential initial exposures in neonates, as little is known about their contact effect. After a neonatal intensive care unit (NICU) stockroom inventory, polyurethane (PU) and PU foam (PUF) devices and products were qualitatively evaluated for residual isocyanates using Surface SWYPE™. Those containing isocyanates were quantitatively tested for methylene diphenyl diisocyanate (MDI) species, using UPLC-UV-MS/MS method. Ten of 37 products and devices tested, indicated both free and bound residual surface isocyanates; PU/PUF pieces contained aromatic isocyanates; one product contained aliphatic isocyanates. Overall, quantified mean MDI concentrations were low (4,4′-MDI = 0.52 to 140.1 pg/mg) and (2,4′-MDI = 0.01 to 4.48 pg/mg). The 4,4′-MDI species had the highest measured concentration (280 pg/mg). Commonly used medical devices/products contain low, but measurable concentrations of residual isocyanates. Quantifying other isocyanate species and neonatal skin exposure to isocyanates from these devices and products requires further investigation. PMID:27773989

  10. Platelet adhesion and human umbilical vein endothelial cell cytocompatibility of biodegradable segmented polyurethanes prepared with 4,4'-methylene bis(cyclohexyl isocyanate), poly(caprolactone) diol and butanediol or dithioerythritol as chain extenders.

    PubMed

    Chan-Chan, L H; Vargas-Coronado, R F; Cervantes-Uc, J M; Cauich-Rodríguez, J V; Rath, R; Phelps, E A; García, A J; San Román Del Barrio, J; Parra, J; Merhi, Y; Tabrizian, M

    2013-08-01

    Biodegradable segmented polyurethanes were prepared with poly(caprolactone) diol as a soft segment, 4,4'-methylene bis(cyclohexyl isocyanate) (HMDI) and either butanediol or dithioerythritol as chain extenders. Platelet adhesion was similar in all segmented polyurethanes studied and not different from Tecoflex® although an early stage of activation was observed on biodegradable segmented polyurethane prepared with dithioerythritol. Relative viability was higher than 80% on human umbilical vein endothelial cells in contact with biodegradable segmented polyurethane extracts after 1, 2 and 7 days. Furthermore, both biodegradable segmented polyurethane materials supported human umbilical vein endothelial cell adhesion, spreading, and viability similar to Tecoflex® medical-grade polyurethane. These biodegradable segmented polyurethanes represent promising materials for cardiovascular applications.

  11. Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering.

    PubMed

    Yang, Wanxun; Both, Sanne K; Zuo, Yi; Birgani, Zeinab Tahmasebi; Habibovic, Pamela; Li, Yubao; Jansen, John A; Yang, Fang

    2015-07-01

    Biomaterial scaffolds meant to function as supporting structures to osteogenic cells play a pivotal role in bone tissue engineering. Recently, we synthesized an aliphatic polyurethane (PU) scaffold via a foaming method using non-toxic components. Through this procedure a uniform interconnected porous structure was created. Furthermore, hydroxyapatite (HA) particles were introduced into this process to increase the bioactivity of the PU matrix. To evaluate the biological performances of these PU-based scaffolds, their influence on in vitro cellular behavior and in vivo bone forming capacity of the engineered cell-scaffold constructs was investigated in this study. A simulated body fluid test demonstrated that the incorporation of 40 wt % HA particles significantly promoted the biomineralization ability of the PU scaffolds. Enhanced in vitro proliferation and osteogenic differentiation of the seeded mesenchymal stem cells were also observed on the PU/HA composite. Next, the cell-scaffold constructs were implanted subcutaneously in a nude mice model. After 8 weeks, a considerable amount of vascularized bone tissue with initial marrow stroma development was generated in both PU and PU/HA40 scaffold. In conclusion, the PU/HA composite is a potential scaffold for bone regeneration applications.

  12. Determination of airborne isocyanates generated during the thermal degradation of car paint in body repair shops.

    PubMed

    Boutin, Michel; Dufresne, André; Ostiguy, Claude; Lesage, Jacques

    2006-06-01

    Polyurethanes are widely used in car paint formulations. During thermal degradation, such polymeric systems can generate powerful asthmatic sensitizing agents named isocyanates. In body repair shops, the thermal degradation of car paint can occur during abrasive processes that generate enough heat to involve release of isocyanates in air. An environmental monitoring study was performed in two body repair training schools and in a body repair shop to evaluate the workers' exposure to isocyanates during cutting, grinding and orbital sanding operations. For sampling, cassettes containing two 1-(2-methoxyphenyl)piperazine (MOPIP)-coated glass fiber filters (MFs) ( approximately 5 mg of MOPIP per filter) and bubblers containing 15 ml of MOPIP solution in toluene (1.0 mg ml(-1)) backed at the outlet with cassettes containing two MFs were used. Tandem mass spectrometry was used to analyze the MOPIP derivatives of isocyanic acid (HNCO), all the linear aliphatic isocyanates ranging from methyl isocyanate (Me-i) to hexyl isocyanate, all the alkenyl isocyanates ranging from propylene isocyanate to hexylene isocyanate, 1,6-hexamethylene diisocyanate (HDI), trans- and cis-isophorone diisocyanate (IPDI), 2,4- and 2,6-toluene diisocyanate (TDI), 2,4'-; 2,2'- and 4,4'-methylenediphenyl diisocyanate (MDI), phenyl isocyanate (Ph-i) and p-toluene isocyanate (p-Tol-i). The instrumental detection limits (LOD) were in the 0.13-0.75 microg of NCO per m(3) range for 15 l air samples converted into 3 ml liquid samples. The isocyanate concentrations detected in the workers' breathing zone were in the 1.07-9.80 microg of NCO per m(3) range for cutting, 0.63-3.62 microg of NCO per m(3) range for grinding and 0-1.29 microg of NCO per m(3) range for sanding. However, a rapid decrease of the isocyanate concentration was observed while moving away from the emission source. Among the isocyanates detected the most abundant were the monomers (MDI, HDI, TDI and IPDI) and Me-i.

  13. Synthesis and characterization of aliphatic polyurethane fiber: a potential suture material.

    PubMed

    Ray, A R; Bhowmick, A

    1991-10-01

    Polyurethane fibers were synthesized and characterized by IR, 1H NMR, DSC, and GPC. Their properties as fiber were compared with commercially available sutures of polypropylene, polyamide, polyester, and silk.

  14. Damping, thermal, and mechanical properties of polyurethane based on poly(tetramethylene glycol)/epoxy interpenetrating polymer networks: effects of composition and isocyanate index

    NASA Astrophysics Data System (ADS)

    Wang, Qihua; Chen, Shoubing; Wang, Tingmei; Zhang, Xinrui

    2011-07-01

    A series of polyurethane (PU) samples based on poly(tetramethylene glycol)/epoxy resin (EP) graft interpenetrating polymer networks (IPNs) were prepared and their damping, thermal, and mechanical properties were systematically studied in terms of composition and the value of the PU isocyanate index ( R). The damping properties and thermal stability measurements revealed that the formation of PU/EP IPN could improve not only the damping capacity but also the thermal stability. Meanwhile, mechanical tests showed that the tensile strengths of the IPNs decreased while their impact strengths increased with increasing PU content. The value of R also had significant impacts on the properties of the IPNs when the PU and EP ratio was fixed, which could be an effective means for manipulating the fabrication of PU/EP IPNs. The morphologies of the PU/EP IPNs were observed by SEM and AFM characterization and the relationship between the morphologies and properties is discussed. With the results in hand, the PU/EP IPNs hold promise for use in structural damping materials.

  15. FTIR and molecular mechanics studies of H-bonds in aliphatic polyurethane and polyamide-66 model molecules.

    PubMed

    Wang, Guoqing; Zhang, Chunxia; Guo, Xiaohe; Ren, Zhiyong

    2008-02-01

    Model aliphatic polyurethane (APU) hard segment based on 1,6-hexamethylene diisocyanate (HDI) and 1,4-butanediol (BDO) were prepared. FTIR and molecular mechanics (MM) simulation were used to conduct the systematic studies on APU and polyamide-66 (PA-66) whose sole difference lies in the alkoxyl oxygen. It was found that the introduction of the alkoxyl not only increases the conformations in APU, makes it a possible H-bond acceptor, but also weakens the H-bond between NH and O=C in APU. There are two conformers stably existed in APU with lowest energy, leading to eight H-bond complexes based on NH as donor and (1) O=C as acceptor, and another two complexes based on (2) alkoxyl O and (3) urethane N as acceptors, whereas there is only one stable conformer in PA-66, leading to one H-bond complex. One predominant H-bond complex has been found in APU with probability of about 95%. The simulated results are consistent with the nuNH and nuC=O band shifting in FTIR.

  16. Skin Exposure to Isocyanates: Reasons for Concern

    PubMed Central

    Bello, Dhimiter; Herrick, Christina A.; Smith, Thomas J.; Woskie, Susan R.; Streicher, Robert P.; Cullen, Mark R.; Liu, Youcheng; Redlich, Carrie A.

    2007-01-01

    Objective Isocyanates (di- and poly-), important chemicals used worldwide to produce polyurethane products, are a leading cause of occupational asthma. Respiratory exposures have been reduced through improved hygiene controls and the use of less-volatile isocyanates. Yet isocyanate asthma continues to occur, not uncommonly in settings with minimal inhalation exposure but opportunity for skin exposure. In this review we evaluate the potential role of skin exposure in the development of isocyanate asthma. Data sources We reviewed the published animal and human literature on isocyanate skin-exposure methods, workplace skin exposure, skin absorption, and the role of skin exposure in isocyanate sensitization and asthma. Data extraction We selected relevant articles from computerized searches on Medline, U.S. Environmental Protection Agency, Occupational Safety and Health Administration, National Institute for Occupational Safety and Health, and Google databases using the keywords “isocyanate,” “asthma,” “skin,” “sensitization,” and other synonymous terms, and our own extensive collection of isocyanate publications. Data synthesis Isocyanate production and use continues to increase as the polyurethane industry expands. There is substantial opportunity for isocyanate skin exposure in many work settings, but such exposure is challenging to quantify and continues to be underappreciated. Isocyanate skin exposure can occur at work, even with the use of personal protective equipment, and may also occur with consumer use of certain isocyanate products. In animals, isocyanate skin exposure is an efficient route to induce sensitization, with subsequent inhalation challenge resulting in asthma-like responses. Several lines of evidence support a similar role for human isocyanate skin exposure, namely, that such exposure occurs and can contribute to the development of isocyanate asthma in certain settings, presumably by inducing systemic sensitization. Conclusions

  17. Dielectric properties of novel polyurethane/silica nanowire composites.

    PubMed

    Kim, Mu-Seong; Sekhar, Praveen K; Bhansali, Shekhar; Harmon, Julie P

    2009-10-01

    An aliphatic isocyanate, polyether, polyol thermoplastic polyurethane, Tecoflex SG-85A, was solution processed with the varying amounts of silica nanowire. The dielectric permittivity (epsilon') and loss factor (epsilon") were measured via Dielectric Analysis (DEA) in the frequency range 1 Hz to 100 kHz and between the temperature -150 to 150 degrees C. The electric modulus formalism was used to reveal alpha, beta and conductivity relaxations. The activation energies for the relaxations are presented. Nanocomposites were also characterized by differential scanning calorimetry (DSC) to determine glass transition temperatures. The onset of decomposition temperature was measured by thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) provided images of the polymer-nanocomposites.

  18. Polyurethane toilet seat contact dermatitis.

    PubMed

    Turan, Hakan; Saricaoğlu, Hayriye; Turan, Ayşegül; Tunali, Sükran

    2011-01-01

    Polyurethane chemicals are produced by the reaction of isocyanates and they may cause allergic contact dermatitis or precipitate asthma attacks. Contact dermatitis to polyurethane toilet seat has not been reported before. Herein we present a case of allergic contact dermatitis to polyurethane toilet seat.

  19. Methyl isocyanate

    Integrated Risk Information System (IRIS)

    Methyl isocyanate ; CASRN 624 - 83 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  20. Autoclavable highly cross-linked polyurethane networks in ophthalmology.

    PubMed

    Bruin, P; Meeuwsen, E A; van Andel, M V; Worst, J G; Pennings, A J

    1993-11-01

    Highly cross-linked aliphatic polyurethane networks have been prepared by the bulk step reaction of low molecular weight polyols and hexamethylenediisocyanate (HDI). These polyurethane networks are optically transparent, colourless and autoclavable amorphous glassy thermosets, which are suited for use in ophthalmic applications such as intraocular lenses and keratoprostheses. The properties of these glassy polyurethanes, obtained from the reaction of the low molecular weight polyols triisopropanolamine (TIPA) or tetrakis (2-hydroxypropyl)ethylenediamine (Quadrol) and HDI in stoichiometric proportions, have been investigated in more detail. The glassy Quadrol/HDI-based polyurethane exhibits a reduction in ultimate glass transition temperature from 85 to 48 degrees C by uptake of 1% of water, and good ultimate mechanical properties (tensile strength 80-85 MPa, elongation at break ca 15%, modulus ca 1.5 GPa). IR spectra of these hydrophobic polyurethane networks revealed the absence of an isocyanate absorption, indicating that all isocyanates, apparently, had reacted during the cross-linking reaction. The biocompatibility could be increased by grafting tethered polyacrylamide chains onto the surface during network formation. These transparent cross-linked polyurethanes did not transmit UV light up to 400 nm, by incorporation of a small amount of the UV absorbing chromophore Coumarin 102, and could be sterilized simply by autoclaving. They were implanted in rabbit eyes, either in the form of small circular disks or in the form of a keratoprosthesis (artificial cornea). It was shown that the material was well tolerated by the rabbit eyes. Serious opacification of the cornea, a direct result of an adverse reaction to the implant, was never seen. Even 1 yr after implantation of a polyurethane keratoprosthesis the eye was still 'quiet'.

  1. Diamine curing agents for polyurethanes

    NASA Technical Reports Server (NTRS)

    Bell, V. L.; St. Clair, T. L.

    1975-01-01

    Three aromatic diamines have properties that make them promising candidates as curing agents for converting isocyanates to polyurethanes with higher adhesive strengths, higher softening temperatures, better toughness, and improved abrasion resistance.

  2. Optimization of the structure of polyurethanes for bone tissue engineering applications.

    PubMed

    Bil, Monika; Ryszkowska, Joanna; Woźniak, Piotr; Kurzydłowski, Krzysztof J; Lewandowska-Szumieł, Małgorzata

    2010-07-01

    Polyurethanes containing 22-70 wt.% hard segments were developed and evaluated for bone tissue engineering applications. Aliphatic poly(ester-urethanes) were synthesised from poly(epsilon-caprolactone) diol with different molecular masses (M= approximately 530, 1250 and 2000 Da), cycloaliphatic diisocyanate 4,4'-methylenebis(cyclohexyl isocyanate) and ethylene glycol as a chain extender. Changes in macromolecule order with increasing hard segment content were observed via modulated differential scanning calorimetry. Depending on the hard segment content, a gradual variation in polyurethane surface properties was revealed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and static contact angle measurements. As the hard segments content increased the polyurethane surface exhibited more phase separation, a higher content of urethane moieties and higher hydrophilicity. The biocompatibility results indicated that proliferation of human bone-derived cells (HBDC) cultured in vitro improved with increasing hard segment content while the osteogenic potential of HBDC decreased with increasing hard segment content.

  3. Synthesis, physical properties and preliminary investigation of hemocompatibility of polyurethanes from aliphatic resources with castor oil participation.

    PubMed

    Szelest-Lewandowska, A; Masiulanis, B; Klocke, A; Glasmacher, B

    2003-01-01

    The synthesis of polyurethanes (PURs) from oligoetherdiol, two low molecular diols, castor oil and 4,4'-Methylenebis(cyclohexylisocyanate) is described. These polymers are characterized by measurements of the mechanical bulk and surface properties, preliminary investigation of compatibility with human blood and calcification in static conditions. The critical surface energy of synthesized PURs is similar to the critical surface energy of natural surfaces. Material-induced hemolysis and the changes of platelet counts in blood samples after contact with PURs are very low. Static seven-weeks-calcification testing in a synthetic calcification fluid did not indicate calcification by optical density measurements and by visual inspection and computer image processing of the X-ray films for PURs with and without castor oil.

  4. Polyurethane synthesis reactions in asphalts

    SciTech Connect

    Bukowski, A.; Gretkiewicz, J.

    1982-04-01

    A series of asphalt-polyurethane composites was prepared by means of polyurethane synthesis in asphalt and carried out in melt. The applied materials were asphalts of differentiated group components content, polyester polyols of chain structure from linear to strongly branched, 2,4-tolylene diisocyanate, 4,4-methylenebis(phenyl isocyanate), and tinorganic catalyst. The asphalt components react with isocyanates to a minimal degree. The influence of the applied substrates, temperature, and polyurethane content in the system on the basic kinetic relations characterizing the process is presented. Polyurethane synthesis in asphalts does not differ in a fundamental way from the obtaining of polyurethanes, especially when their content in the composition is significant, 20 wt% and more.

  5. [2+2+2] cyclotrimerization of alkynes and isocyanates/isothiocyanates catalyzed by ruthenium-alkylidene complexes.

    PubMed

    Alvarez, Silvia; Medina, Sandra; Domínguez, Gema; Pérez-Castells, Javier

    2013-10-04

    Ruthenium carbene catalysts are able to catalyze crossed [2+2+2] cyclotrimerizations of α,ω-diynes with isocyanates, isothiocyanates, and carbon disulfide. Both aliphatic and aromatic isocyanates can be used to produce fused 2-pyridones, although aliphatic isocyanates were more reactive. Aromatic isocyanates give better results when they bear electron-donating substituents. The reaction of unsymmetrical α,ω-diynes gave a product only with the substituent adjacent to the 2-pyridone nitrogen. Isothiocyanates gave thiopyranimines upon reaction with the C═S bond, whereas CS2 reacted efficiently to give a thioxothiopyrane.

  6. Liquid chromatographic determination of residual isocyanate monomers in plastics intended for food contact use.

    PubMed

    Damant, A P; Jickells, S M; Castle, L

    1995-01-01

    A liquid chromatographic (LC) method was developed for the analysis of 10 isocyanates in polyurethane articles and laminates intended for food use. Residual isocyanates are extracted by dichloromethane with concurrent derivatization by 9-(methylaminomethyl)anthracene. The resultant derivatives are analyzed by reversed-phase LC with fluorescence detection. Separation of the isocyanates was studied and optimized. Quantitation uses 1-naphthyl isocyanate as internal standard and standard addition to the food package. Validation demonstrated the method to have good precision (+/- 2-5%) and recovery (83-95%) for samples spiked with isocyanates at 0.1 mg/kg. The limit of detection was 0.03 mg/kg. Analysis of 19 commercial polyurethane or laminate food packages demonstrated that the method was not prone to interferences. Residues of diphenylmethane-4,4'-diisocyanate were detected in 5 packages and ranged from 0.14 to 1.08 mg/kg.

  7. Polyurethane Masks Large Areas in Electroplating

    NASA Technical Reports Server (NTRS)

    Beasley, J. L.

    1985-01-01

    Polyurethane foam provides effective mask in electroplating of copper or nickel. Thin layer of Turco maskant painted on area to be masked: Layer ensures polyurethane foam removed easily after served its purpose. Component A, isocyanate, and component B, polyol, mixed together and brushed or sprayed on mask area. Mixture reacts, yielding polyurethane foam. Foam prevents deposition of nickel or copper on covered area. New method saves time, increases productivity and uses less material than older procedures.

  8. Synthesis and properties of radiation modified thermally cured castor oil based polyurethanes

    NASA Astrophysics Data System (ADS)

    Mortley, Aba; Bonin, H. W.; Bui, V. T.

    2007-12-01

    Thermally cured polyurethanes were prepared from castor oil and hexamethylene diisocyanate (HMDI). Due to the long aliphatic chain of the castor oil component of polyurethane, thermal curing of castor oil based polyurethane (COPU) is limited by increasing polymer viscosity. To enhance further crosslinking, COPUs were exposed to doses up to 3.0 MGy produced by the mixed ionizing radiation field of a SLOWPOKE-2 research nuclear reactor. The physico-mechanical properties of castor oil based polyurethanes (COPU), unirradiated and irradiated, were characterized by mechanical tensile tests. A four-fold increase in modulus and tensile strength values from 0.930 to 4.365 MPa and 0.149 to 0.747 MPa, respectively, suggests improved physico-mechanical properties resulting from radiation. The changing areas of the carbonyl and the NH absorbance peaks and the disappearance of the isocyanate peak in the FTIR spectra as radiation progressed, indicates increased hydrogen bonding and intermolecular crosslinking, which is in agreement with the mechanical tests. Unchanging 13C solid state NMR spectra imply limited sample degradation with increasing radiation.

  9. An FTIR investigation of isocyanate skin absorption using in vitro guinea pig skin.

    PubMed

    Bello, Dhimiter; Smith, Thomas J; Woskie, Susan R; Streicher, Robert P; Boeniger, Mark F; Redlich, Carrie A; Liu, Youcheng

    2006-05-01

    Isocyanates may cause contact dermatitis, sensitization and asthma. Dermal exposure to aliphatic and aromatic isocyanates can occur in various exposure settings. The fate of isocyanates on skin is an important unanswered question. Do they react and bind to the outer layer of skin or do they penetrate through the epidermis as unreacted compounds? Knowing the kinetics of these processes is important in developing dermal exposure sampling or decontamination strategies, as well as understanding potential health implications such exposure may have. In this paper the residence time of model isocyanates on hairless guinea pig skin was investigated in vitro using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry. Model isocyanates tested were octyl isocyanate, polymeric hexamethylene diisocyanate isocyanurate (pHDI), polymeric isophorone diisocyanate isocyanurate (pIPDI) and methylenediphenyl diisocyanate (MDI). Isocyanates in ethyl acetate (30 microL) were spiked directly on the skin to give 0.2-1.8 micromol NCO cm(-2) (NCO = -N=C=O), and absorbance of the isocyanate group and other chemical groups of the molecule were monitored over time. The ATR-FTIR findings showed that polymeric isocyanates pHDI and pIPDI may remain on the skin as unreacted species for many hours, with only 15-20% of the total isocyanate group disappearing in one hour, while smaller compounds octyl isocyanate and MDI rapidly disappear from the skin surface (80+% in 30 min). Isocyanates most likely leave the skin surface by diffusion predominantly, with minimal reaction with surface proteins. The significance of these findings and their implications for dermal exposure sampling and isocyanate skin decontamination are discussed.

  10. Structural elucidation of isocyanate-peptide adducts using tandem mass spectrometry.

    PubMed

    Hettick, Justin M; Ruwona, Tinashe B; Siegel, Paul D

    2009-08-01

    Diisocyanates are highly reactive chemical compounds widely used in the manufacture of polyurethanes. Although diisocyanates have been identified as causative agents of allergic respiratory diseases, the specific mechanism by which these diseases occur is largely unknown. To better understand the chemical species produced when isocyanates are reacted with model peptides, tandem mass spectrometry was employed to unambiguously identify the binding site of four commercially-relevant isocyanates on model peptides. In each case, the isocyanates react preferentially with the N-terminus of the peptide. No evidence of side-chain/isocyanate adduct formation exclusive of the N-terminus was observed. However, significant intra-molecular diisocyanate crosslinking was observed between the N-terminal amine and a side-chain amine of arginine, when Arg was located within two residues of the N-terminus. Addition of multiple isocyanates to the peptide occurs via polymerization of the isocyanate at the N-terminus, rather than via addition of multiple isocyanate molecules to varied residues within the peptide. The direct observation of isocyanate binding to the N-terminus of peptides under these experimental conditions is in good agreement with previous studies on the relative reaction rate of isocyanate with amino acid functional groups.

  11. Automotive Refinishing Industry: Isocyanates Profile

    EPA Pesticide Factsheets

    The isocyanates profile document is part of the DfE Auto Refinishing Shop Project and is intended to provide information on refinishing, control technologies, and regulatory status regarding isocyanate compounds

  12. Biological monitoring for isocyanates.

    PubMed

    Cocker, John

    2011-03-01

    Isocyanates are reactive chemicals and thousands of workers may be exposed to them during their manufacture and use in a wide range of products. They are classed as sensitizers and are a major cause of occupational asthma in the UK. Workplace exposure limits are low and control of exposure often depends on personal respiratory protection. Biological monitoring is increasingly used to assess exposure and the efficacy of control measures, including the behavioural aspects of controls. Biological monitoring methods are available for the most common isocyanates hexamethylene diisocyanate, toluene diisocyanate, isophorone diisocyanate, and methylenediphenyl diisocyanate. They are based on the analysis of hexamethylene diamine, toluene diamine, isopherone diamine, and methylenediamine released after hydrolysis of isocyanate-protein adducts in urine or blood. Volunteer and occupational studies show good correlations between inhalation exposure to isocyanate monomers and isocyanate-derived diamines in urine or blood. However, occupational exposure to isocyanates is often to a mixture of monomers and oligomers so there is some uncertainty comparing biological monitoring results with airborne exposure to 'total NCO'. Nevertheless, there is a substantial body of work demonstrating the utility of biological monitoring as a tool to assess exposure and the efficacy of controls, including how they are used in practice. Non-health-based biological monitoring guidance values are available to help target when and where further action is required. Occupational hygienists will need to use their knowledge and experience to determine the relative contributions of different routes of exposure and how controls can be improved to reduced the risk of ill health.

  13. High Explosive Moulding Powders from RDX and Aqueous Polyurethane Dispersions,

    DTIC Science & Technology

    1987-05-01

    polybutadiene (17] type by reaction with low molecular weight diisocyanates in the absence of water. Explosive moulding powders incorporating...polyaddition reaction . The final polymers have predominantly hydrophobic long chain segments of the polyether or polyester type and also contain some...reacted with isocyanate groups in reaction sequences which ultimately yield either polyurethane or polyurethane-urea polymers. Three of the methods for

  14. Method of making thermally removable polyurethanes

    DOEpatents

    Loy, Douglas A.; Wheeler, David R.; McElhanon, James R.; Saunders, Randall S.; Durbin-Voss, Marvie Lou

    2002-01-01

    A method of making a thermally-removable polyurethane material by heating a mixture of a maleimide compound and a furan compound, and introducing alcohol and isocyanate functional groups, where the alcohol group and the isocyanate group reacts to form the urethane linkages and the furan compound and the maleimide compound react to form the thermally weak Diels-Alder adducts that are incorporated into the backbone of the urethane linkages during the formation of the polyurethane material at temperatures from above room temperature to less than approximately 90.degree. C. The polyurethane material can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The polyurethane material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

  15. Isocyanate exposures in autobody shop work: the SPRAY study.

    PubMed

    Sparer, Judy; Stowe, Meredith H; Bello, Dhimiter; Liu, Youcheng; Gore, Rebecca J; Youngs, Fred; Cullen, Mark R; Redlich, Carrie A; Woskie, Susan R

    2004-09-01

    Isocyanates, known to cause respiratory sensitization and asthma, are widely used in automotive refinishing where exposures to aliphatic polyisocyanates occur by both inhalation and skin contact. The work reported here, the characterization of isocyanate exposure in the autobody industry, was part of an epidemiologic study of workers in 37 autobody shops in Connecticut. This article describes workplaces, tasks, and controls, and outlines the frequency, duration, and intensity of isocyanate exposures. Personal air samples taken outside of respirators had median concentrations of 66.5 microg NCO/m3 for primer, 134.4 microg (NCO)/m3 for sealer, and 358.5 microg NCO/m3 for clearcoat. Forty-eight percent of primer, 66% of sealer, and 92% of clearcoat samples exceeded the United Kingdom Health and Safety Executive guideline for isocyanate, though none exceeded the National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit for monomer. Nonisocyanate-containing primers and sealers are used in more than half the shops, but nonisocyanate clearcoats are rare. Eighty-two percent of personal samples taken within a spray booth exceeded the U.K. guideline: 81% of those in downdraft spray booths, 74% in semidowndraft booths, and 92% in crossdraft booths. Only 8% of shops reported that spraying is done exclusively in spray booths. All painters wore some type of respirator. In 30% of shops, painters used supplied air respirators; the rest relied on half face organic vapor cartridge respirators with N95 overspray pads. All shops provided some type of gloves, usually latex, not recommended for isocyanate protection. Despite improvements in autobody shop materials, practices, and controls, there are still opportunities for substantial exposures to isocyanates.

  16. Analytical approaches to identify potential migrants in polyester-polyurethane can coatings.

    PubMed

    Louise Bradley, Emma; Driffield, Malcolm; Guthrie, James; Harmer, Nick; Thomas Oldring, Peter Kenneth; Castle, Laurence

    2009-12-01

    The safety of a polyester-polyurethane can coating has been assessed using a suite of complementary analytical methods to identify and estimate the concentrations of potential chemical migrants. The polyester was based on phthalic acids and aliphatic diols. The polyisocyanate cross-linking agent was 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl cyclohexane homopolymer (IPDI) blocked with methylethylketone oxime (MEKO) to make a one-part formulation. The overall migrate, obtained using solvent extraction of cured films, comprised almost completely of 12 cyclic and one linear polyester oligomer up to molecular weight 800 and containing up to six monomer units. These 13 oligomers covered a total of 28 isomeric forms. Other minor components detected were plasticisers and surfactants as well as impurities present in the starting materials. There was no detectable residue of either the blocked isocyanate (<0.01 microg/dm(2)) used as the starting substance or the unblocked isocyanate (<0.02 microg/dm(2)). The level of extractable IPDI was used as an indicator of the completeness of cure in experimental coatings. These studies revealed that there was an influence of time, temperature and catalyst content. Polymerisation was also influenced by the additives used and by the ageing of the wet coating formulation over several months. These studies allow parameters to be specified to ensure that commercial production coatings receive a full cure giving low migration characteristics.

  17. Influence of prepolymer composition on polyurethane morphology

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Jayaraman; Jeong, Young Gyu; Hashida, Tomoko; Hsu, Shaw Ling

    2004-03-01

    Polyurethane chemistry is one of the most studied subjects. Yet many aspects remain unexplained. Polyurethanes are synthesized by the reaction of diisocyanate with diol in the presence of nucleophilic catalysts. Polyurethane prepolymers are obtained by reacting the polyester diol / polyether diol with diisocyanate, with [NCO] / [OH] > 1, resulting in isocyanate-terminated polyester/polyether mixture. Prepolymers thus synthesized can be cured at a later stage to realize various morphologies and structures. Though the initial composition and the final morphology are known, little is known about the intermediate prepolymer mixture. Due to the different reactivity of primary and secondary hydroxyl groups in the polyester and polyether towards isocyanate, prepolymer has a non-random distribution in terms of composition as blends and copolymers. Our aim is to characterize the prepolymer by different techniques and study how the different prepolymer composition, with varying polyester and polyether ratio, affects the morphology and phase separation kinetics of the final product.

  18. Pro/Con debate: Is occupational asthma induced by isocyanates an immunoglobulin E-mediated disease?

    PubMed

    Wisnewski, A V; Jones, M

    2010-08-01

    Isocyanates, low-molecular weight chemicals essential to polyurethane production, are one of the most common causes of occupational asthma, yet the mechanisms by which exposure leads to disease remain unclear. While isocyanate asthma closely mirrors other Type I Immune Hypersensitivity (Allergic) disorders, one important characteristic of hypersensitivity ('allergen'-specific IgE) is reportedly absent in a large portion of affected individuals. This variation from common environmental asthma (which typically is induced by high-molecular weight allergens) is important for two reasons. (1) Allergen-specific IgE is an important mediator of many of the symptoms of bronchial hyper-reactivity in 'allergic asthma'. Lack of allergen-specific IgE in isocyanate hypersensitive individuals suggests differences in pathogenic mechanisms, with potentially unique targets for prevention and therapy. (2) Allergen-specific IgE forms the basis of the most commonly used diagnostic tests for hypersensitivity (skin prick and RAST). Without allergen-specific IgE, isocyanates may go unrecognized as the cause of asthma. In hypersensitive individuals, chronic exposure can lead to bronchial hyperreactivity that persists years after exposure ceases. Thus, the question of whether or not isocyanate asthma is an IgE-mediated disease, has important implications for disease screening/surveillance, diagnosis, treatment and prevention. The present Pro/Con Debate, addresses contemporary, controversial issues regarding IgE in isocyanate asthma.

  19. Macrocyclization of Unprotected Peptide Isocyanates.

    PubMed

    Vinogradov, Alexander A; Choo, Zi-Ning; Totaro, Kyle A; Pentelute, Bradley L

    2016-03-18

    A chemistry for the facile two-component macrocyclization of unprotected peptide isocyanates is described. Starting from peptides containing two glutamic acid γ-hydrazide residues, isocyanates can be readily accessed and cyclized with hydrazides of dicarboxylic acids. The choice of a nucleophilic linker allows for the facile modulation of biochemical properties of a macrocyclic peptide. Four cyclic NYAD-1 analogues were synthesized using the described method and displayed a range of biological activities.

  20. Giant Magnetoresistance Behavior of an Iron/Carbonized Polyurethane Nanocomposite

    DTIC Science & Technology

    2006-04-01

    SIP method, both the catalyst (a liquid containing aliphatic amine, parachlorobenzotrifluoride and methyl propyl ketone) and the accelerator...polyurethane STD-102, containing organo -titanate) are added into an iron-nanoparticle suspended tetrahydrofuran solution. The two-part monomers

  1. Rigid zeolite containing polyurethane foams

    DOEpatents

    Frost, C.B.

    1984-05-18

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 A. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  2. Rigid zeolite containing polyurethane foams

    DOEpatents

    Frost, Charles B.

    1985-01-01

    A closed cell rigid polyurethane foam has been prepared which contains up to about 60% by weight of molecular sieves capable of sorbing molecules with effective critical diameters of up to about 10 .ANG.. The molecular sieve component of the foam can be preloaded with catalysts or with reactive compounds that can be released upon activation of the foam to control and complete crosslinking after the foam is formed. The foam can also be loaded with water or other flame-retarding agents, after completion. Up to about 50% of the weight of the isocyanate component of the foam can be replaced by polyimide resin precursors for incorporation into the final polymeric network.

  3. Sampling of respirable isocyanate particles.

    PubMed

    Gylestam, Daniel; Gustavsson, Marcus; Karlsson, Daniel; Dalene, Marianne; Skarping, Gunnar

    2014-04-01

    An advanced design of a denuder impactor (DI) sampler has been developed for characterization of possible airborne isocyanate exposure in different particle size fractions. The sampler is equipped with 12 different parallel denuder tubes, 4 impaction stages with the cut-off values (d50) of: 9.5, 4, 2.5 and 1 µm, and an end filter that collects particles < 1 µm. All collecting parts were impregnated with di-n-butylamine DBA as the reagent in a mixture with acetic acid. The performance of the DI sampler was studied on a standard atmosphere containing gas and particulate isocyanates. The isocyanate atmosphere was generated by liquid permeation of 2,4-, 2,6-Toluene Diisocyanate (TDI), 1,6-Hexamethylene Diisocyanate (HDI) and Isophorone Diisocyanate (IPDI). 4,4'-Methylene Diphenyl Diisocyanate (MDI) particles were generated by heating of technical MDI and condensing the mixture of gas and particle-borne MDI in an atmosphere containing mixed salt particles. The study was performed in a 0.85 m3 environmental chamber with stainless steel walls. With the advancement of the DI sampler it is now possible to collect isocyanate particle samples for up to 320 min. The performance of the DI sampler is essentially unaffected by the humidity. The DI sampler and the ASSET EZ4-NCO sampler (Sigma-Aldrich/Supelco, Bellefonte, PA, USA) gave similar results. Sample losses within the DI sampler are low. In the environmental chamber it was observed that the particle distribution may be affected by the humidity and ageing. A scanning mobility particle sizer (SMPS) was used to separate a flow of selected fractions containing MDI particles from mixed MDI and salt particles. The particle-size distribution had a maximum at about 300 nm, but later in the environmental chamber 1 µm dominated. The distribution was very different as compared to with only NaCl or MDI present. The biological relevance for studying isocyanate nano particles is significant as these have the possibility to reach the

  4. Determination of isocyanate biomarkers in construction site workers.

    PubMed

    Sabbioni, Gabriele; Wesp, Hansjörg; Lewalter, Jürgen; Rumler, Richard

    2007-01-01

    4,4'-Methylenediphenyl diisocyanate (MDI) is the most important isocyanate in the manufacture of polyurethanes, dyes, pigments and adhesives. High concentrations of isocyanates are a potent respiratory irritant. Therefore, it is important to develop methods to monitor exposure to such compounds. We monitored biological samples from 40 non-exposed and 45 exposed construction site workers. 4,4'-Methylenedianiline (MDA) and N-acetyl-4,4'-MDA (AcMDA) were determined from untreated urine (U-MDA, U-AcMDA) and MDA was analysed from acid-treated urine (U-MDA-tot). Haemoglobin (Hb) adducts of MDA (Hb-MDA) were determined in all workers. The levels of biomarkers decreased in the following order: U-MDA-tot>U-AcMDA>U-MDA>Hb-MDA. The same order was found for the percentage of samples, which were found positive in exposed workers: 100%, 91%, 91%, 27%. The urine levels U-MDA-tot correlate with U-MDA, U-AcMDA and Hb-MDA with r=0.79, 0.86 and 0.39, respectively (Spearman rank order, p<0.01). U-AcMDA correlates with U-MDA and Hb-MDA with r=0.77 and 0.47, respectively (p<0.01). U-MDA correlates with Hb-MDA (r=0.38, p<0.05). The levels in the controls were significantly lower than in the exposed workers for all compounds (Mann-Whitney test, p<0.01). The median isocyanate-specific IgE-level was higher in the exposed workers, but the difference was statistically not significant. The change of the biomarker levels was compared in a group of workers (n=20), which were analysed prior to isocyanate exposure and after the exposure for approximately 4-7 months. All urine MDA metabolites and the Hb-adduct levels increased significantly (Wilcoxon sign test, p<0.01). Total IgE increased significantly after the exposure with isocyanate activity (p<0.01). With the present work it could be shown that outdoor workers are exposed to a similar extent as workers from a MDI factory.

  5. Size-separated sampling and analysis of isocyanates in workplace aerosols. Part I. Denuder--cascade impactor sampler.

    PubMed

    Dahlin, Jakob; Spanne, Mårten; Karlsson, Daniel; Dalene, Marianne; Skarping, Gunnar

    2008-07-01

    Isocyanates in the workplace atmosphere are typically present both in gas and particle phase. The health effects of exposure to isocyanates in gas phase and different particle size fractions are likely to be different due to their ability to reach different parts in the respiratory system. To reveal more details regarding the exposure to isocyanate aerosols, a denuder-impactor (DI) sampler for airborne isocyanates was designed. The sampler consists of a channel-plate denuder for collection of gaseous isocyanates, in series with three-cascade impactor stages with cut-off diameters (d(50)) of 2.5, 1.0 and 0.5 mum. An end filter was connected in series after the impactor for collection of particles smaller than 0.5 mum. The denuder, impactor plates and the end filter were impregnated with a mixture of di-n-butylamine (DBA) and acetic acid for derivatization of the isocyanates. During sampling, the reagent on the impactor plates and the end filter is continuously refreshed, due to the DBA release from the impregnated denuder plates. This secures efficient derivatization of all isocyanate particles. The airflow through the sampler was 5 l min(-1). After sampling, the samples containing the different size fractions were analyzed using liquid chromatography-mass spectrometry (LC-MS)/MS. The DBA impregnation was stable in the sampler for at least 1 week. After sampling, the DBA derivatives were stable for at least 3 weeks. Air sampling was performed in a test chamber (300 l). Isocyanate aerosols studied were thermal degradation products of different polyurethane polymers, spraying of isocyanate coating compounds and pure gas-phase isocyanates. Sampling with impinger flasks, containing DBA in toluene, with a glass fiber filter in series was used as a reference method. The DI sampler showed good compliance with the reference method, regarding total air levels. For the different aerosols studied, vast differences were revealed in the distribution of isocyanate in gas and

  6. A method of test for residual isophorone diisocyanate trimer in new polyester-polyurethane coatings on light metal packaging using liquid chromatography with tandem mass spectrometric detection.

    PubMed

    Driffield, Malcolm; Bradley, Emma L; Castle, Laurence

    2007-02-02

    A method of test for residual isophorone diisocyanate (IPDI) trimer in experimental formulation polyester-polyurethane (PEPU) thermoset coatings on metal food packaging is described. The method involves extraction of coated panels using acetonitrile containing dibutylamine for concurrent derivatisation, and then high performance liquid chromatography with electrospray ionisation tandem mass spectrometric detection (LC-MS/MS). Single laboratory validation was carried out using three different experimental PEPU-based coatings. The calibrations were linear, the analytical recovery was good, no interferences were seen, and substance identification criteria were met. The detection limit of the method is around 0.02 micro g/100 cm(2) of coating, which for a typical sized can and assuming complete migration of any residual IPDI trimer, corresponds to about 0.2 micro g/kg food or beverage. Separate studies indicated that, even if migration occurred at such low levels, the IPDI trimer would not be expected to persist in canned aqueous or fatty foodstuffs as it would hydrolyse to the corresponding aliphatic amine or react with food components to destroy the isocyanate moiety. The method of test developed here for residual IPDI trimer in thermoset polyester-polyurethane coatings should prove to be a valuable tool for investigating the cure kinetics of these novel coatings and help to guide the development of enhanced formulations.

  7. Isocyanate-Free Elastomers as Replacements for Isocyanate-Cured Polyurethanes (Briefing Charts)

    DTIC Science & Technology

    2015-08-20

    WORK UNIT NUMBER Q0BG 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NO. Air Force Research Laboratory...public release; distribution is unlimited.  . 2 Outline • Goal • Investigate polymeric cure systems with crosslinking chemistries that are unlikely...and mechanical properties • Demonstrate the use of new polymeric binders in binder formulation • Technical Challenges • Maintain energy content and

  8. Isocyanates induces DNA damage, apoptosis, oxidative stress, and inflammation in cultured human lymphocytes.

    PubMed

    Mishra, Pradyumna Kumar; Panwar, Hariom; Bhargava, Arpit; Gorantla, Venkata Raghuram; Jain, Subodh Kumar; Banerjee, Smita; Maudar, Kewal Krishan

    2008-01-01

    Isocyanates, a group of low molecular weight aromatic and aliphatic compounds containing the isocyanate group (-NCO), are important raw materials with diverse industrial applications; however, pathophysiological implications resulting from occupational and accidental exposures of these compounds are hitherto unknown. Although preliminary evidence available in the literature suggests that isocyanates and their derivatives may have deleterious health effects including immunotoxicity, but molecular mechanisms underlying such an effect have never been addressed. The present study was carried out to assess the immunotoxic response of methyl isocyanate (MIC) on cultured human lymphocytes isolated from healthy human volunteers. Studies were conducted to evaluate both dose-dependent and time-course response (n = 3), using N-succinimidyl N-methylcarbamate, a surrogate chemical substitute to MIC. Evaluation of DNA damage by ataxia telangiectasia mutated (ATM) and gamma H2AX protein phosphorylation states; measure of apoptotic index through annexin-V/PI assay, apoptotic DNA ladder assay, and mitochondrial depolarization; induction of oxidative stress by CM-H2DCFDA and formation of 8-hydroxy-2' deoxy guanosine; levels of antioxidant defense system enzyme glutathione reductase; and multiplex cytometric bead array analysis to quantify the secreted levels of inflammatory cytokines, interleukin-8, interleukin-1beta, interleukin-6, interleukin-10, tumor necrosis factor, and interleukin-12p70 parameters were carried out. The results of the study showed a dose- and time-dependent response, providing evidence to hitherto unknown molecular mechanisms of immunotoxic consequences of isocyanate exposure at a genomic level. We anticipate these data along with other studies reported in the literature would help to design better approaches in risk assessment of occupational and accidental exposure to isocyanates.

  9. [FTIR spectra study on the film of polyurethane coated urea controlled-release fertilizer].

    PubMed

    Wu, Shu; Li, Qing-shan; Ru, Tie-jun; Wang, Li-min; Xing, Guang-zhong; Wang, Jin-ming

    2011-03-01

    The polyurethane films were prepared to wrap the urea in order to achieve a desirable release rate by mixing isocyanate, polyols and wax. The effect of wax, urea and isocyanate on the structure and properties of the films was investigated by FTIR. The structural changes were monitored as the polyurethane films together with the wrapped urea were immersed into ammonia water for 28 days, which is used to model soil conditions. The FTIR results showed that the width and intensity of the NH-free band increased remarkably with time, and all kinds of carbonly bands shifted to high wavenumber and their intensity increased obviously. The results suggest that the structure of the polyurethane films was destroyed more heavily in soil than in water, and this explains the relatively fast release rate of urea in soil. It was observed that the increase in the chemical crosslinking density in the polyurethane films can effectively decrease the release rate of the urea nitrogen in soil.

  10. Composition for producing polyurethane resin at ambient temperature

    SciTech Connect

    Kamatani, Y.; Nishino, K.; Tanaka, M.; Yamazaki, K.

    1984-06-26

    Disclosed is a composition for polyurethane resins which is ordinarily of two-package type and curable at ambient temperature and which comprises an isocyanate component having oxadiazinetrione ring as a curing agent and a polyol component, having in the molecule, at least one of a tertiary amino group, a quaternary ammonium group and a salt-formed carboxyl group as a main component. The composition has excellent curability and provides cured products excellent in adhesiveness and physical properties.

  11. Magnetic and Electromagnetic Evaluation of the Iron Nanoparticle filled Polyurethane Nanocomposites

    DTIC Science & Technology

    2007-05-01

    particle loading of up to 65 wt.% in a polyurethane matrix while still maintaining the structural integrity.10 In the SIP method both the catalyst (a...liquid containing aliphatic amine, parachlorobenzotrifluoride and methyl propyl ketone) and the accelerator (polyurethane STD-102, containing organo

  12. Airfield Damage Repair (ADR); Polymer Repair of Airfields Summary of Research

    DTIC Science & Technology

    2007-12-01

    with aromatic isocyanates . One fundamental reaction for the formation of polyurethane foams, similar to Pliodeck®, is the reaction of isocyanates with...with unused isocyanate while the carbon dioxide acts as a blowing agent creating the macromolecular skeleton. The water- isocyanate reaction is...before collapse of the cell walls [3]. Aromatic isocyanates have higher reactivity over aliphatic isocyanates , and they turn yellow with time or when

  13. Theory analysis of mass spectra of long-chain isocyanates.

    PubMed

    Liu, Dongliang; Hao, Ce; Zhang, Hua; Qiao, Weihong; Li, Zongshi; Yu, Guanghui; Yan, Kelu; Guo, Yuliang; Cheng, Lvbo

    2008-07-01

    Electron impact mass spectra of four long-chain isocyanates, lauryl isocyanate, tetradecyl isocyanate, hexadecyl isocyanate and octadecyl isocyanate, were obtained with a GCT high-resolution time-of-flight mass spectrometer. The four isocyanates studied gave a common base peak of m/z 99, which suggested the formation of a stable six-membered ring structure to decentralize the positive charge. Quantum-mechanical energy calculation justified that the six-membered ring base peak had the lowest energy. The positive charge assigned during the fragmentation of the radical cation, and the relative intensity of the fragment ion peaks, were explained by quantum-mechanical calculations as well.

  14. NMR Investigation of Filler Effects of (Gamma) Irradiation in Polyurethane Adhesives

    SciTech Connect

    Chinn, S C; Gjersing, E L; Maxwell, R S; Cohenour, R

    2007-06-11

    Polyurethane and polyester elastomers have been used for decades in a wide variety of applications, from seat cushion foams to prosthetic materials to high performance adhesives. Adiprene LW-520 is a polyurethane-based adhesive used in a number of U. S. Department of Energy applications. Several investigations have been performed to determine aging properties of polyurethanes. For example, {sup 1}H nuclear magnetic resonance (NMR) relaxation times have been shown to be sensitive to thermal degradation in polyurethanes. Detailed information about the exact nature of the oxidative thermal degradation in related materials has also been obtained via {sup 17}O and {sup 13}C NMR, with additional insight into morphological changes being obtained using {sup 1}H spin diffusion experiments. Radiation has also been shown to change the physical and mechanical properties of the polymers; in fact many polyurethanes are cured using radiation to affect the isocyanate and free radical reactive groups, thus controlling the properties such as thermal or solvent resistance.

  15. Sample Collection, Analysis, and Respirator Use With Isocyanate Paints

    DTIC Science & Technology

    1990-02-01

    isocyanate toxic and sensitizing potential. If brought in contact with the lung, both acute toxic and sensitizing reactions may occur. Since the...remaining unreacted isocyanate, but that can’t be all of the problem because a sensitivity does develop to the isocyanate moiety. This reaction is worth...Specifically amines, alcohols and phenols, among other chemicals, are used to 2 mask the isocyanate to prevent the polymerization reaction until a

  16. Intrinsically radiopaque polyurethanes with chain extender 4,4'-isopropylidenebis [2-(2,6-diiodophenoxy)ethanol] for biomedical applications.

    PubMed

    Dawlee, S; Jayabalan, M

    2015-05-01

    Radiopaque polyurethanes are used for medical applications as it allows post-operative assessment of the biomaterial devices using X-ray. Inherently, radiopaque polyurethanes based on polytetramethylene glycol (PTMG), polypropylene glycol, 4,4'-methylenebis(phenyl isocyanate), and a new iodinated chain extender 4,4'-isopropylidenebis[2-(2,6-diiodophenoxy)ethanol] with flexible spacers were synthesized and characterized. The iodinated polyurethanes were clear, optically transparent, and had high molecular weights. The polyurethanes also possessed excellent radiopacity and high thermal stability. The biocompatibility of the most promising iodinated polyurethane was evaluated both in vitro (cytotoxicity evaluation by direct contact and MTT assay, using L929 mouse fibroblast cells) and in vivo (toxicology studies in rabbits and subcutaneous implantation in rats). The material was nontoxic and well tolerated by the animals. Thus, these radiopaque and transparent polyurethanes are expected to have potential for various biomedical applications.

  17. Vibration and DFT analysis of 2-methyl-3-nitrophenyl isocyanate and 4-methyl-2-nitrophenyl isocyanate.

    PubMed

    Tonannavar, J; Prasannakumar, Sushanti; Savanur, J; Yenagi, Jayashree

    2012-09-01

    Vibrational spectra of 2-methyl-3-nitrophenyl isocyanate and 4-methyl-2-nitrophenyl isocyanate, in the spectral region 4000-100 cm(-1), have been measured and assigned. Conformational and harmonic frequency analyses have been performed at B3LYP/6-311G(∗) level of calculations. The two stable conformers, cis and trans, have been computed for each of the molecules. It has been determined that the trans conformer has lower energy than the cis by 3.954 kJ/mol for 2-methyl-3-nitrophenyl isocyanate; whereas the cis conformer has lower energy than the trans by 10.230 kJ/mol for 4-methyl-2-nitrophenyl isocyanate. The vibration structure of 2-methyl-3-nitrophenyl isocyanate conforms to the combined behavior of its both conformers from which the deviation is shown by the structure of 4-methyl-2-nitrophenyl isocyanate which follows only the trans conformer. The occurrence of symmetric mode of the methyl group at higher frequency near 2944-20 cm(-1) is attributed to the phenyl ring strain caused by the substituents. As for the other stretching and bending modes, mutually exclusive pattern appears to work for the molecules: The nitro group's non-coplanarity with the phenyl ring is more evident in 4-methyl-2-nitrophenyl isocyanate where the asymmetric mode was assigned to the band at 1569cm(-1), whereas the symmetric mode at lower frequency 1339cm(-1). Occasional doublet appearance of the strong asymmetric absorption near 2282cm(-1) due to isocyanate moiety has been observed in the present study and is assumed to arise from the torsional vibration motion of the moiety rendered by the small energy gap between the conformers of 2-methyl-3-nitrophenyl isocyanate.

  18. Assessment of the biological pathways targeted by isocyanate using N-succinimidyl N-methylcarbamate in budding yeast Saccharomyces cerevisiae.

    PubMed

    Azad, Gajendra Kumar; Singh, Vikash; Tomar, Raghuvir S

    2014-01-01

    Isocyanates, a group of low molecular weight aromatic and aliphatic compounds possesses the functional isocyanate group. They are highly toxic in nature hence; we used N-succinimidyl N-methylcarbamate (NSNM), a surrogate chemical containing a functional isocyanate group to understand the mode of action of this class of compounds. We employed budding yeast Saccharomyces cerevisiae as a model organism to study the pathways targeted by NSNM. Our screening with yeast mutants revealed that it affects chromatin, DNA damage response, protein-ubiquitylation and chaperones, oxidative stress, TOR pathway and DNA repair processes. We also show that NSNM acts as an epigenetic modifier as its treatment causes reduction in global histone acetylation and formation of histone adducts. Cells treated with NSNM exhibited increase in mitochondrial membrane potential as well as intracellular ROS levels and the effects were rescued by addition of reduced glutathione to the medium. We also report that deletion of SOD1 and SOD2, the superoxide dismutase in Saccharomyces cerevisiae displayed hypersensitivity to NSNM. Furthermore, NSNM treatment causes rapid depletion of total glutathione and reduced glutathione. We also demonstrated that NSNM induces degradation of Sml1, a ribonucleotide reductase inhibitor involved in regulating dNTPs production. In summary, we define the various biological pathways targeted by isocyanates.

  19. Novel glutathione conjugates of phenyl isocyanate identified by ultra-performance liquid chromatography/electrospray ionization mass spectrometry and nuclear magnetic resonance.

    PubMed

    Johansson Mali'n, Tove; Lindberg, Sandra; Åstot, Crister

    2014-01-01

    Phenyl isocyanate is a highly reactive compound that is used as a reagent in organic synthesis and in the production of polyurethanes. The potential for extensive occupational exposure to this compound makes it important to elucidate its reactivity towards different nucleophiles and potential targets in the body. In vitro reactions between glutathione and phenyl isocyanate were studied. Three adducts of glutathione with phenyl isocyanate were identified using ultra-performance liquid chromatography/electrospray ionization mass spectrometry and nuclear magnetic resonance (NMR). Mass spectrometric data for these adducts have not previously been reported. Nucleophilic attack on phenyl isocyanate occurred via either the cysteinyl thiol group or the glutamic acid α-amino group of glutathione. In addition, a double adduct was formed by the reaction of both these moieties. NMR analysis confirmed the proposed structure of the double adduct, which has not previously been described. These results suggest that phenyl isocyanate may react with free cysteines, the α-amino group and also with lysine residues whose side chain contains a primary amine.

  20. Biological monitoring of aromatic diisocyanates in workers exposed to thermal degradation products of polyurethanes.

    PubMed

    Rosenberg, Christina; Nikkilä, Kirsi; Henriks-Eckerman, Maj-Len; Peltonen, Kimmo; Engströrm, Kerstin

    2002-10-01

    Exposure to diisocyanates was assessed by biological monitoring among workers exposed to the thermal degradation products of polyurethanes (PURs) in five PUR-processing environments. The processes included grinding and welding in car repair shops, milling and turning of PUR-coated metal cylinders, injection moulding of thermoplastic PUR, welding and cutting of PUR-insulated district heating pipes during installation and joint welding, and heat-flexing of PUR floor covering. Isocyanate-derived amines in acid-hydrolysed urine samples were analysed as perfluoroacylated derivatives by gas chromatography mass spectrometry in negative chemical ionisation mode. The limits of quantification (LOQs) for the aromatic diamines 2,4- and 2,6-toluenediamine (2,4- and 2,6-TDA) and 4,4'-methylenedianiline (4,4'-MDA) were 0.25 nmol l(-1), 0.25 nmol l(-1) and 0.15 nmol l(-1), respectively. The LOQ for the aliphatic diamines hexamethylenediamine (HDA), isophoronediamine (IpDA) and 4,4'-diaminodicyclohexyl methane (4,4'-DDHM) was 5 nmol l(-1). TDA and MDA were detected in urine samples from workers in car repair shops and MDA in samples from workers welding district heating pipes. The 2,4-TDA isomer accounted for about 80% of the total TDA detected. No 2.6-TDA was found in the urine of non-exposed workers. The highest measured urinary TDA and MDA concentrations were 0.79 nmol mmol(-1) creatinine and 3.1 nmol mmol(-1) creatinine, respectively. The concentrations found among non-exposed workers were 0.08 nmol mmol(-1) creatinine for TDA and 0.05 nmol mmol(-1) creatinine for MDA (arithmetic means). Exposure to diisocyanates originating from the thermal degradation of PURs are often intermittent and of short duration. Nevertheless, exposure to aromatic diisocyanates can be identified by monitoring diisocyanate-derived amines in acid-hydrolysed urine samples.

  1. Polyurethane Foam Roofing.

    DTIC Science & Technology

    1987-04-01

    use of asphaltic . bitumen , or coal tar based mastics and plastic type patching materials should be avoided. For purposes of this Guide, maintenance...Applicator Skills......................49 *Spray Foam Equipment and Material Problems. ........ 49 Excess Isocyanate or "A" Component. ............ 50 Excess...surface .. ......... ... 46 35. Isocyanate rich surface .... .............. . 50 36 Resin rich surface ...... ................. ... 51 37 UV

  2. Studies on polyurethane adhesives and surface modification of hydrophobic substrates

    NASA Astrophysics Data System (ADS)

    Krishnamoorthy, Jayaraman

    This thesis work deals with (a) Curing of reactive, hot-melt polyurethane adhesives and (b) Adsorption studies using different interactions. Research on polyurethanes involves characterization of polyurethane prepolymers and a novel mechanism to cure isocyanate-terminated polyurethane prepolymer by a "trigger" mechanism. Curing of isocyanate-terminated polyurethane prepolymers has been shown to be influenced by morphology and environmental conditions such as temperature and relative humidity. Although the initial composition, final morphology and curing kinetics are known, information regarding the intermediate prepolymer mixture is yet to be established. Polyurethane prepolymers prepared by the reaction of diisocyanates with the primary hydroxyls of polyester diol (PHMA) and secondary hydroxyls of polyether diol (PPG) were characterized. The morphology and crystallization kinetics of a polyurethane prepolymer was compared with a blend of PPG prepolymer (the product obtained by the reaction of PPG with diisocyanate) and a PHMA prepolymer (the product obtained by the reaction of PHMA with diisocyanate) to study the effect of copolymer formed in the polyurethane prepolymer on the above-mentioned properties. Although the morphology of the polyurethane prepolymer is determined in the first few minutes of application, the chemical curing of isocyanate-terminated prepolymer occurs over hours to days. In the literature, different techniques are described to follow the curing kinetics. But there is no established technique to control the curing of polyurethane prepolymer. To make the curing process independent of environmental factors, a novel approach using a trigger mechanism was designed and implemented by using ammonium salts as curing agents. Ammonium salts that are stable at room temperature but decompose on heating to yield active hydrogen-containing compounds, NH3 and H2O, were used as 'Trojan horses' to cure the prepolymer chemically. Research on adsorption

  3. Evaluating Dimethyldiethoxysilane for use in Polyurethane Crosslinked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Randall, Jason P.; Meador, Mary Ann B.; Jana, Sadhan C.

    2008-01-01

    Silica aerogels are highly porous materials which exhibit exceptionally low density and thermal conductivity. Their "pearl necklace" nanostructure, however, is inherently weak; most silica aerogels are brittle and fragile. The strength of aerogels can be improved by employing an additional crosslinking step using isocyanates. In this work, dimethyldiethoxysilane (DMDES) is evaluated for use in the silane backbone of polyurethane crosslinked aerogels. Approximately half of the resulting aerogels exhibited a core/shell morphology of hard crosslinked aerogel surrounding a softer, uncrosslinked center. Solid state NMR and scanning electron microscopy results indicate the DMDES incorporated itself as a conformal coating around the outside of the secondary silica particles, in much the same manner as isocyanate crosslinking. Response surface curves were generated from compression data, indicating levels of reinforcement comparable to that in previous literature, despite the core/shell morphology.

  4. Polyols and polyurethanes from the liquefaction of lignocellulosic biomass.

    PubMed

    Hu, Shengjun; Luo, Xiaolan; Li, Yebo

    2014-01-01

    Polyurethanes (PUs), produced from the condensation polymerizations between polyols and isocyanates, are one of the most versatile polymer families. Currently, both polyols and isocyanates are largely petroleum derived. Recently, there have been extensive research interests in developing bio-based polyols and PUs from renewable resources. As the world's most abundant renewable biomass, lignocellulosic biomass is rich in hydroxyl groups and has potential as a feedstock to produce bio-based polyols and PUs. Lignocellulosic biomass can be converted to liquid polyols for PU applications through acid- or base-catalyzed atmospheric liquefaction processes using polyhydric alcohols as liquefaction solvents. Biomass liquefaction-derived polyols can be used to prepare various PU products, such as foams, films and adhesives. The properties of biomass liquefaction-derived polyols and PUs depend on various factors, such as feedstock characteristics, liquefaction conditions, and PU formulations.

  5. Cellulose based hybrid hydroxylated adducts for polyurethane foams

    NASA Astrophysics Data System (ADS)

    De Pisapia, Laura; Verdolotti, Letizia; Di Mauro, Eduardo; Di Maio, Ernesto; Lavorgna, Marino; Iannace, Salvatore

    2012-07-01

    Hybrid flexible polyurethane foams (HPU) were synthesized by using a hybrid hydroxilated adduct (HHA) based on renewable resources. In particular the HHA was obtained by dispersing cellulose wastes in colloidal silica at room temperature, pressure and humidity. The colloidal silica was selected for its ability of modifying the cellulose structure, by inducing a certain "destructurization" of the crystalline phase, in order to allow cellulose to react with di-isocyanate for the final synthesis of the polyurethane foam. In fact, cellulose-polysilicate complexes are engaged in the reaction with the isocyanate groups. This study provides evidence of the effects of the colloidal silica on the cellulose structure, namely, a reduction of the microfiber cellulose diameter and the formation of hydrogen bonds between the polysilicate functional groups and the hydroxyl groups of the cellulose, as assessed by IR spectroscopy and solid state NMR. The HHA was added to a conventional polyol in different percentages (between 5 and 20%) to synthesize HPU in presence of catalysts, silicone surfactant and diphenylmethane diisocyanate (MDI). The mixture was expanded in a mold and cured for two hours at room temperature. Thermal analysis, optical microscopy and mechanical tests were performed on the foams. The results highlighted an improvement of thermal stability and a decrease of the cell size with respect neat polyurethane foam. Mechanical tests showed an improvement of the elastic modulus and of the damping properties with increasing HHA amount.

  6. Photochemical activation of extremely weak nucleophiles: highly fluorinated urethanes and polyurethanes from polyfluoro alcohols.

    PubMed

    Soto, Marc; Sebastián, Rosa María; Marquet, Jordi

    2014-06-06

    An efficient and environmentally friendly photoreaction between phenyl isocyanate or pentafluorophenyl isocyanate and polyfluorinated alcohols and diols is described for the first time. New highly fluorinated urethanes and diurethanes, derived from aromatic isocyanates, are produced in good yields in a photoreaction that is apparently governed by the acidic properties of the polyfluoro alcohols and diols. The wettability properties of the new polyfluorinated diurethanes have been tested, some of them showing significantly high values of hydrophobicity and oleophobicity. This new photoreaction has also been tested in the production of a model polyfluorinated polyurethane, establishing the influence of the irradiation power in the outcome of the process, and directly achieving a molecular weight distribution corresponding to a number-average DP(n) = 12 and a highest DP(n) = 20 after 4 h of irradiation (DP(n): "number-average degree of polymerization").

  7. Polyurethane thermoplastic elastomers with inherent radiopacity for biomedical applications.

    PubMed

    Kiran, S; James, Nirmala R; Jayakrishnan, A; Joseph, Roy

    2012-12-01

    Synthesis and characterization of three different radiopaque thermoplastic polyurethane elastomers are reported. Radiopacity was introduced to the polyurethanes by incorporating an iodinated chain extender, namely, 4,4'-isopropylidinedi-(2,6-diiodophenol) (IBPA), into the polymer chain during polyurethane synthesis. Radiopaque polyurethanes (RPUs) were synthesized by reacting 4,4'-methylenebis(phenyl isocyanate) (MDI), IBPA, and three different diols. The polyols used for the synthesis were polypropylene glycol, polycaprolactone diol, and poly(hexamethylene carbonate) diol. RPUs were characterized by infrared spectroscopy, contact angle measurements, thermogravimetry, dynamic mechanical analysis, energy dispersive X-ray analysis, gel permeation chromatography, X-ray fluorescence spectroscopy, and X-radiography. X-ray images showed that all RPUs prepared using IBPA as the chain extender are highly radiopaque compared with an Aluminum wedge of equivalent thickness. Elemental analysis revealed that the polyurethanes contained 18-19% iodine in the polymer matrix. The RPUs developed have radiopacity equivalent to that of a polymer filled with 20 wt % barium sulfate. Results revealed that RPUs of wide range of properties may be produced by incorporating different diols as the soft chain segment. Cell culture cytotoxicity studies conducted using L929 cells by direct contact test and MTT assay proved that these RPUs are noncytotoxic in nature.

  8. Investigation of thermostability of resistive coatings based on carbon-filled polyurethane

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Malinovskaya, T. D.; Melentyev, S. V.; Pavlov, S. V.

    2015-10-01

    The influence of thermal treatment and dispersed carbon fillers on the thermostability of polyurethane binder is established. The conditions of thermal treatment of thick film composite resistive coatings have been defined to be further used in structures of electric heaters. It was found that the thermostability of resistive coatings based on polyurethane varnish Kontracid D3010 is reached by means of thermal treatment at a temperature of 120°C during 2 hours and is characterized by the completion of a reaction between the hydroxyl and isocyanate groups.

  9. A new tool for sampling airborne isocyanates

    SciTech Connect

    Sesana, G.; Nano, G.; Baj, A. )

    1991-05-01

    A new sampling system is presented that uses solid sorbent media contained in a tube for the determination of airborne isocyanates (2.4-2.6 toluene diisocyanate, hexamethylene diisocyanate, and 4.4' diaminodiphenylmethane diisocyanate). The method is compared with the National Institute for Occupational Safety and Health (NIOSH) Method P CAM 5505 (Revision {number sign}1). Experimental tests yielded results that were highly concordant with the NIOSH method.

  10. Size selective isocyanate aerosols personal air sampling using porous plastic foams

    NASA Astrophysics Data System (ADS)

    Khanh Huynh, Cong; Duc, Trinh Vu

    2009-02-01

    As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.

  11. Method for providing a low density high strength polyurethane foam

    DOEpatents

    Whinnery, Jr., Leroy L.; Goods, Steven H.; Skala, Dawn M.; Henderson, Craig C.; Keifer, Patrick N.

    2013-06-18

    Disclosed is a method for making a polyurethane closed-cell foam material exhibiting a bulk density below 4 lbs/ft.sup.3 and high strength. The present embodiment uses the reaction product of a modified MDI and a sucrose/glycerine based polyether polyol resin wherein a small measured quantity of the polyol resin is "pre-reacted" with a larger quantity of the isocyanate in a defined ratio such that when the necessary remaining quantity of the polyol resin is added to the "pre-reacted" resin together with a tertiary amine catalyst and water as a blowing agent, the polymerization proceeds slowly enough to provide a stable foam body.

  12. Studies on nonlinear optical polyurethanes containing heterocyclic chromophores

    NASA Astrophysics Data System (ADS)

    Kariduraganavar, M. Y.; Tambe, S. M.; Tasaganva, R. G.; Kittur, A. A.; Kulkarni, S. S.; Inamdar, S. R.

    2011-02-01

    This paper presents the synthesis of highly stable nitro-substituted thiazole, benzothiazole and thiadiazole chromophores. With these, a series of second-order nonlinear optical (NLO) responsive polyurethanes were successfully synthesized from tolylene-2,4-diisocyanate (TDI) and 4,4'-methylenedi(phenyl isocyanate) (MDI). Molecular structural characterization of these polyurethanes was achieved by 1H NMR, FT-IR, GPC and analytical data. The weight-average molecular weights ( Mw) of the resulting polyurethanes were determined by GPC and ranged between 22,100 and 26,700. All the polyurethanes were highly soluble in aprotic solvents such as tetrahydrofuran, cyclohexanone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulphoxide, N-methyl-2-pyrolidinone, etc. The thermal behaviour of these polyurethanes was investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Their glass transition temperatures were in the range 140-165 °C and most of the polymers showed high thermal stability. With an in situ poling and temperature ramping technique, the optimal temperatures ( Topts) for corona poling were determined for the largest second-order NLO response. The second harmonic generation (SHG) coefficients ( d33) of the poled polyurethane films range from 62.21 to 103.11 pm/V at 1064 nm. All the poled films showed outstanding orientational stability up to 120 °C without any measurable decay in the SHG signal. Of these, the polyurethane with nitro-substituted benzothiazole moiety ( IIb) showed the best dynamical thermal stability of the poling-induced dipole alignment up to ˜150 °C.

  13. 40 CFR 721.7480 - Isocyanate terminated polyols.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.7480 Isocyanate terminated polyols. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as isocyanate terminated polyols...

  14. Carter-Wallace debuts new polyurethane condom in U.S.

    PubMed

    1999-07-01

    Condom users in the US will have a choice in male polyurethane condoms when Carter-Wallace of Cranbury, New Jersey, introduces its first polyurethane condom, the Trojan Supra Microsheer, in July 1999. The Trojan condom joins the Durex Avanti from the London International Group of London, England, as the only nonlatex synthetic male condoms available in the US. The sole female condom, Reality, from the Female Health Co. of Chicago, is also made of polyurethane. The condom is manufactured through a dipping process of an aliphatic polyurethane material, which results in a condom that has higher tensile strength and break force than a latex condom. Furthermore, condoms manufactured from polyurethane and other plastics enhance sensitivity, do not cause allergic reactions, and are compatible with oil-based lubricants. Sensicon Corporation and Mayer Laboratories are also planning to introduce nonlatex condoms in the country.

  15. Nuclear magnetic resonance studies on covalent modification of amino acids thiol and amino residues by monofunctional aryl 13C-isocyanates, models of skin and respiratory sensitizers: transformation of thiocarbamates into urea adducts.

    PubMed

    Fleischel, Olivier; Giménez-Arnau, Elena; Lepoittevin, Jean-Pierre

    2009-06-01

    Exposure to aryl isocyanates, intermediates in the manufacture of polyurethanes, provokes lung sensitization and asthma but also occupational allergic contact dermatitis, sensitization occurring from a single accidental exposure. The initial step in the sensitization process is believed to be the covalent binding of the -N triple bond C triple bond O group with nucleophilic residues on proteins. While a wide knowledge exists on the reactivity of skin sensitizers toward amino acids, little is known about respiratory sensitizers such as aryl isocyanates. (13)C-Labeled monofunctional aryl isocyanates were synthesized, and their reactivities toward nucleophilic amino acids, GSH, and a model peptide were studied by (13)C and [(1)H-(13)C] NMR spectroscopy. An acetonitrile/buffer solution was used as a solvent to avoid the hampering of the follow up of the reactivity by the isocyanate hydrolysis competing reaction. The compounds reacted with thiol groups, through the formation of thiocarbamate bonds and with amino groups to form urea derivatives. The reactivity was confirmed with GSH, containing both free amino and thiol groups, and with a model peptide, particularly in the case of the reaction with lysine. The use of (13)C NMR to follow the aryl isocyanates reversible conjugation with thiol groups is also reported. Particularly, it is shown that thiocarbamate adducts can be converted into adducts of the urea kind by reaction with amino groups. These results confirmed the hypothesis by which thiol-containing peptides/proteins may act as carriers of isocyanates for possible reaction at a later time and/or place with other nucleophiles and confirmed the role of lysine as a good competing nucleophilic amino acid. The reactivity of aryl isocyanates with thiol and amino groups needs thus to be considered in their assigned sensitization processes.

  16. Intramolecular Alkene Aminocarbonylation Using Concerted Cycloadditions of Amino-Isocyanates.

    PubMed

    Ivanovich, Ryan A; Clavette, Christian; Vincent-Rocan, Jean-François; Roveda, Jean-Grégoire; Gorelsky, Serge I; Beauchemin, André M

    2016-06-01

    The ubiquity of nitrogen heterocycles in biologically active molecules challenges synthetic chemists to develop a variety of tools for their construction. While developing metal-free hydroamination reactions of hydrazine derivatives, it was discovered that carbazates and semicarbazides can also lead to alkene aminocarbonylation products if nitrogen-substituted isocyanates (N-isocyanates) are formed in situ as reactive intermediates. At first this reaction required high temperatures (150-200 °C), and issues included competing hydroamination and N-isocyanate dimerization pathways. Herein, improved conditions for concerted intramolecular alkene aminocarbonylation with N-isocyanates are reported. The use of βN-benzyl carbazate precursors allows the effective minimization of N-isocyanate dimerization. Diminished dimerization leads to higher yields of alkene aminocarbonylation products, to reactivity at lower temperatures, and to an improved scope for a reaction sequence involving alkene aminocarbonylation followed by 1,2-migration of the benzyl group. Furthermore, fine-tuning of the blocking (masking) group on the N-isocyanate precursor, and reaction conditions relying on base catalysis for N-isocyanate formation from simpler precursors resulted in room temperature reactivity, consequently minimizing the competing hydroamination pathway. Collectively, this work highlights that controlled reactivity of aminoisocyanates is possible, and provides a broadly applicable alkene aminocarbonylation approach to heterocycles possessing the β-aminocarbonyl motif.

  17. The Synergize effect of Chain extender to Phosporic acid catalyst to the ultimate property of Soy-Polyurethane

    NASA Astrophysics Data System (ADS)

    Elvistia Firdaus, Flora

    2016-04-01

    The polyurethanes (PUs) foam were made from vegetable oil; a soybean based polyol. The foams were categorized into flexible and semi rigid. This research is manufacturally designed polyurethane foams by a process requiring the reaction of mixture of 2, 4- and 2, 6-Toluene di Isocyanate isomers, soy polyol in the presence of other ingredients. The objective of this work was to functionalized soy-polyol using phosporic acid catalyst and chain extender, study their collaborative reaction in producing ultimate property of PU foam. Correlates the foam morphology images in accordance to mechanical properties of foams.

  18. Highly fluorinated polyurethanes

    NASA Technical Reports Server (NTRS)

    Stump, E. C., Jr.; Rochow, S. E. (Inventor)

    1973-01-01

    The reaction perfluorinated hydroxyl terminated polyether with diisocyanate to form polyurethane is discussed. Data are given on the resin's oxidation stability, chemical resistance, and low temperature flexibility.

  19. Metal-free metathesis reaction of C-chiral allylic sulfilimines with aryl isocyanates: construction of chiral nonracemic allylic isocyanates.

    PubMed

    Grange, Rebecca L; Evans, P Andrew

    2014-08-27

    We report the facile and efficient metal-free metathesis reaction of C-chiral allylic sulfilimines with aryl isocyanates. This process facilitates the room temperature construction of an array of chiral nonracemic allylic isocyanates, which are versatile intermediates for the construction of unsymmetrical ureas, carbamates, thiocarbamates and amides. Furthermore, the sulfilimine/isocyanate metathesis reaction with 4,4'-methylene diphenyl diisocyanate (4,4'-MDI) circumvents harsh reaction conditions and/or hazardous reagents employed with more classical methods for the preparation of this important functional group.

  20. Methyl isocyanate and carcinogenesis: bridgeable gaps in scientific knowledge.

    PubMed

    Senthilkumar, Chinnu Sugavanam; Sah, Nand Kishore; Ganesh, Narayanan

    2012-01-01

    Methyl isocyanate may have a role in cancer etiology, although the link is unclear. There is evidence in the literature that it can induce cancer in animals but the carcinogenic potency is weak. Pheochromocytoma of adrenal medulla and acinar cell tumors of pancreas have been observed in methyl isocyanate exposed animals. Conversely, emerging data from population-based epidemiological studies are contradictory since there is no evidence of such cancers in methyl isocyanate exposed humans. Recently, we reported a high prevalence of breast and lung cancers in such a population in Bhopal. In vitro findings appearing in the latest scientific literature suggest that genomic instability is caused by methyl isocyanate analogs in lung, colon, kidney, ovary epithelial cells, and that hepatocytes may undergo oncogenic transformation, have obvious implications. The conflicting information prompted us to present this update over the last three decades on methyl isocyanate-induced cancers after an extensive literature search using PubMed. While the pertinent literature remains limited, with a scarcity of strong laboratory analyses and field-epidemiological investigations, our succinct review of animal and human epidemiological data including in vitro evidences, should hopefully provide more insight to researchers, toxicologists, and public health professionals concerned with validation of the carcinogenicity of methyl isocyanate in humans.

  1. Polyurethane Filler for Electroplating

    NASA Technical Reports Server (NTRS)

    Beasley, J. L.

    1984-01-01

    Polyurethane foam proves suitable as filler for slots in parts electroplated with copper or nickel. Polyurethane causes less contamination of plating bath and of cleaning and filtering tanks than wax fillers used previously. Direct cost of maintenance and indirect cost of reduced operating time during tank cleaning also reduced.

  2. Respiratory protection from isocyanate exposure in the autobody repair and refinishing industry.

    PubMed

    Liu, Youcheng; Stowe, Meredith H; Bello, Dhimiter; Woskie, Susan R; Sparer, Judy; Gore, Rebecca; Youngs, Fred; Cullen, Mark R; Redlich, Carrie A

    2006-05-01

    This study, part of the Survey of Painters and Repairers of Auto bodies by Yale (SPRAY), evaluated the effectiveness of respiratory protection against exposure to aliphatic polyisocyanates. A total of 36 shops were assessed for respiratory protection program completeness; 142 workers were measured for respirator fit factor (FF) using PortaCount Plus respirator fit tester. Twenty-two painters from 21 shops were sampled using NIOSH method 5525 to determine the workplace protection factor (WPF) of negative pressure, air-purifying half-facepiece respirators equipped with organic vapor cartridges and paint prefilters during spray-painting and priming activities. Only 11 shops (30%) had written respiratory protection programs. Eighty percent of all fit tested workers passed the test on the first try with FF >or= 100, and 92% passed the second test after respirator use training. Overall geometric mean (GM) FF was 1012 for all fit tested workers. Significant differences on pass rate (92% vs. 72%) and on FF (1990 vs. 736) were found between previously fit tested workers vs. nontested workers. Twenty-nine WPF samples were collected. The outside facepiece GM concentration of total isocyanate group (NCO) was 378.4 micro g NCO/m(3) with 96% concentrations exceeding the U.K. short-term exposure limit, 70 micro g NCO/m(3), but no in-facepiece concentrations exceeded the limit. The GM WPF of total NCO was 319 (GSD 4) and the 5th percentile was 54. WPF of total NCO was positively correlated with the duration of painting task. FF positively correlated with WPF when FF was 450. We conclude that negative pressure, air-purifying half-facepiece respirators equipped with organic vapor cartridges and paint prefilters provide effective protection against isocyanate exposure in spray and priming operations if workers are properly trained and fitted.

  3. The formation of high-purity isocyanurate through proazaphosphatrane-catalysed isocyanate cyclo-trimerisation: computational insights.

    PubMed

    Gibb, Jack N; Goodman, Jonathan M

    2013-01-07

    Polyurethane foams are widely used materials and control of their physical properties is a significant challenge. Management of cyclo-trimerisation during the polymerisation process is vital when tailoring the mechanical properties of the foam. Proazaphosphatranes are known to efficiently catalyse the cyclo-trimerisation of organic isocyanates, giving high purity isocyanurate with little uretdione by-product. The mechanism of this catalysis was previously unknown, although some zwitterionic intermediates have been identified spectroscopically. We have investigated a nucleophilic-catalysis reaction pathway involving sequential addition of methyl isocyanate to activated zwitterionic intermediates using density functional theory calculations. Evidence for significant transannulation by the proazaphosphatrane nitrogen was found for all intermediates, offering stabilisation of the phosphonium cation. Steric crowding at the proazaphosphatrane nucleophilic phosphorus gives rise to a preference for direct isocyanurate formation rather than via the uretdione, in sharp contrast to the uncatalysed system which has been found to preferentially proceed via the kinetic uretdione product. The investigations suggest the mechanism of proazaphosphatrane catalysed cyclo-oligomerisation does not proceed via the uretdione product, and hence why little of this impurity is observed experimentally.

  4. Ferrocenoyl piperazide as derivatizing agent for the analysis of isocyanates and related compounds using liquid chromatography/electrochemistry/mass spectrometry (LC/EC/MS).

    PubMed

    Seiwert, Bettina; Henneken, Hartmut; Karst, Uwe

    2004-12-01

    Ferrocenoyl piperazide is introduced as a new pre-column derivatizing agent for the analysis of various isocyanates in air samples using reversed-phase liquid chromatographic separation, electrochemical oxidation/ionization, and mass spectrometry. The nonpolar derivatives can be separated well using a phenyl-modified stationary phase and a formic acid/ammonium formate buffer of pH 3, which yields excellent separations, especially for one problematic group of isocyanates consisting of 2,4- and 2,6-toluylenediisocyanate (2,4- and 2,6-TDI) and hexamethylenediisocyanate (HDI). Electrochemical oxidation at low potentials (0.5 V versus Pd/H(2)) leads to formation of charged products, which are nebulized in a commercial atmospheric pressure chemical ionization (APCI) source, with the corona discharge operated only at low voltage. Limits of detection between 6 and 20 nmol/L are obtained for the isocyanate derivatives, and calibration is linear over at least two decades of concentration. The method is applied for the analysis of air after thermal degradation of a polyurethane foam, and it is demonstrated that it is suitable as well for the analysis of carboxylic acid chlorides and of isothiocyanates.

  5. Phosphonic Acid-Functionalized Polyurethane Dispersions with Improved Adhesion Properties.

    PubMed

    Breucker, Laura; Landfester, Katharina; Taden, Andreas

    2015-11-11

    A facile route to phosphorus-functionalized polyurethane dispersions (P-PUDs) with improved adhesion properties is presented. (Bis)phosphonic acid moieties serve as adhesion promoting sites that are covalently attached via an end-capping reaction to isocyanate-reactive polyurethane particles under aqueous conditions. The synthetic approach circumvents solubility issues, offers great flexibility in terms of polyurethane composition, and allows for the synthesis of semicrystalline systems with thermomechanical response due to reversible physical cross-linking. Differential scanning calorimetry (DSC) is used to investigate the effect of functionalization on the semicrystallinity. The end-capping conversion was determined via inductively-coupled plasma optical emission spectroscopy (ICP-OES) and was surprisingly found to be almost independent of the stoichiometry of reaction, suggesting an adsorption-dominated process. Particle charge detection (PCD) experiments reveal that a dense surface coverage of phosphonic acid groups can be attained and that, at high functionalization degrees, the phosphonic adhesion moieties are partially dragged inside the colloidal P-PUD particle. Quartz crystal microbalance with dissipation (QCMD) investigations conducted with hydroxyapatite (HAP) and stainless steel sensors as model surfaces show a greatly enhanced affinity of the aqueous P-PUDs and furthermore indicate polymer chain rearrangements and autonomous film formation under wet conditions. Due to their facile synthesis, significantly improved adhesion, and variable film properties, P-PUD systems such as the one described here are believed to be of great interest for multiple applications, e.g., adhesives, paints, anticorrosion, or dentistry.

  6. Historical occupational isocyanate exposure levels in two Canadian provinces.

    PubMed

    Hon, Chun-Yip; Peters, Cheryl E; Jardine, Katherine J; Arrandale, Victoria H

    2017-01-01

    Isocyanates such as toluene 2, 4-diisocyanate (TDI), methylene bisphenyl isocyanate (MDI), and hexamethylene diisocyanate (HDI) are known sensitizers and exposure to these chemicals can result in isocyanate-induced asthma-the leading cause of occupational asthma. A newly created exposure database was available containing occupational isocyanate measurements spanning 1981-1996 from Ontario and British Columbia (BC)-two of the largest provinces in Canada. The aim was to describe the historical measurements relative to exposure thresholds, ascertain differences in the data between provinces, and identify time trends. Descriptive statistics of the observations were summarized and stratified by isocyanate species and province. Chi-square tests and Student's t-test were performed to determine differences between provinces. To investigate time trends in the odds of a measurement exceeding the limit of detection (LOD) and time-weighted average (TWA), mixed effects logistic regression models were constructed. In total, 6,984 isocyanate measurements were analyzed, the majority of which were below the LOD (79%). Overall, 8.3% of samples were in excess of the 2014 TLV-TWA of 0.005 ppm. Comparing the two provinces, the proportion of samples exceeding the LOD and TLV-TWA was greater in BC for all isocyanate species. Differences in time trends were also observed between provinces-the odds of a sample exceeding the TLV-TWA decreased over time in the case of MDI (Ontario only), TDI (both Ontario and BC), and other isocyanates (BC only). Our finding that a majority of the exposure measurements was below the LOD is similar to that reported by others. Differences between provinces may be due the fact that isocyanates are classified as a designated substance in Ontario and must adhere to specific exposure control regulations. Limitations of the database, such as finite number of variables and measurements available until 1996 only, presents challenges for more in-depth analysis and

  7. DNA photoreacts by nucleobase ring cleavage to form labile isocyanates.

    PubMed

    Buschhaus, Laura; Rolf, Josefin; Kleinermanns, Karl

    2013-11-14

    Differential infrared absorption spectroscopy was used to study the formation of isocyanates and further photo-products in the oligonucleotides dG10, dC10 and dT10 and in their mononucleosides by ultraviolet light at 266 nm. We find that α-cleavage takes place in oligonucleotides and mononucleosides both in films and in solution. The very intense and spectrally isolated isocyanate (N=C=O) asymmetric stretch vibration at 2277 cm(-1) is used as a spectroscopic marker for detection of the photo-product. The band disappears upon reaction with small amounts of water vapour as expected for isocyanates. Quantum yields for isocyanate formation by nucleobase ring cleavage in the α-position to the carbonyl group are ∼5 × 10(-5) in the mononucleosides and up to 5 × 10(-4) in the oligonucleotides. In the mixed oligonucleotides dG10/dC10 and dA10/dT10 the quantum yield of α-cleavage drops by a factor of 10 compared to the single oligonucleotides. Implications for DNA repair and photo-induced DNA-protein cross-linking via isocyanate reaction with NH2 groups of amino acids are discussed.

  8. Isocyanate and VOC exposure analysis using Flexane®.

    PubMed

    Blake, Charles L; Johnson, Giffe T; Abritis, Alison J; Lieckfield, Robert; Harbison, Raymond D

    2012-08-01

    Flexane® 80 is a trowelable urethane product used in combination with cleaners and primers to effect rubber conveyor belt repairs. These products are of concern due to the potential for worker exposure to isocyanates and volatile organic compounds (VOCs). Small chamber experiments were used to identify chemicals liberated to the ambient air from each of the Flexane®-related products. A new sample collection method using treated cotton sleeves as a surrogate skin surface to assess potential dermal exposure to isocyanates during mixing and application of the Flexane® product was validated. Six simulations of a worst case scenario were performed by an experienced belt repair technician in a walk-in laboratory exposure chamber. Analysis of air samples from the large chamber simulations did not detect airborne isocyanates. The average airborne VOC concentrations were below established occupational exposure levels. Dermal sleeve samples detected intermittent and low levels of isocyanates from self-application while wearing gloves having surface residues of uncured Flexane®. The data strongly suggest that the normal and intended use of Flexane® putty, and its associated products under worst case or typical working conditions is not likely to result in worker VOC or isocyanate exposure levels sufficient to produce adverse health effects.

  9. Polyurethane-Foam Maskant

    NASA Technical Reports Server (NTRS)

    Bodemeijer, R.

    1985-01-01

    Brown wax previously used to mask hardware replaced with polyurethane foam in electroplating and electroforming operations. Foam easier to apply and remove than wax and does not contaminate electrolytes.

  10. 40 CFR 721.10029 - Isocyanate compound, modified with methoxysilane (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Isocyanate compound, modified with... Specific Chemical Substances § 721.10029 Isocyanate compound, modified with methoxysilane (generic). (a... generically as isocyanate compound, modified with methoxysilane (PMN P-01-918) is subject to reporting...

  11. 40 CFR 721.10029 - Isocyanate compound, modified with methoxysilane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Isocyanate compound, modified with... Specific Chemical Substances § 721.10029 Isocyanate compound, modified with methoxysilane (generic). (a... generically as isocyanate compound, modified with methoxysilane (PMN P-01-918) is subject to reporting...

  12. Synthesis and characterization of polyurethane ionomers, blends and urethane-urea aerogel hybrids

    NASA Astrophysics Data System (ADS)

    Wang, Mingzhe

    The chemical and physical properties of alkali, alkaline metal and selected transition metal polyurethane ionomers were investigated. A new synthesis was developed for carboxylated polyurethane anionomers, and it was employed to synthesize a range of ionomers. Thus, a series of polyurethane ionomers was prepared in which the molecular weight of a constituent diol, the concentration of carboxylic acid sites, and the nature of the cations was varied. The analogous materials with equivalent nominal stoichiometries were synthesized by the standard method of preparing the acid-form polymer and of replacing the protons for metal ions. The novel synthesis employs a multiphase reaction between isocyanate-terminated prepolymers and solid, anhydrous microcrystalline metal salts of a carboxylic acid diol. This required the development of new synthesis of these starting materials. The materials studied are based on polyether diols, acid-containing diols and a saturated diisocyanate. The novel synthesis is more than twenty times as fast as the standard method under the same conditions. The spectroscopic and mechanical properties of the polyurethane ionomers synthesized in both ways were studied and contrasted. Those prepared by the new method have greater spatial homogeneity, resulting in lower scattering loss in the ultraviolet-visible range. They also exhibited values of E ' (the real elastic modulus) that are as much as an order of magnitude greater than those made by the standard method. In addition, the temperature dependence of Fin the -25 ˜ +75°C range is remarkably low. Studies of the structural properties by infrared spectroscopy, small angle x-ray scattering, thermal analysis, gel permeation chromatography and scanning electron microscopy were used to elucidate their molecular structures and intermolecular interactions. The rates of key synthetic reactions and the thermal stability of the metal containing polyurethane ionomers were studied by thermal analysis. The

  13. Transition-metal-free synthesis of supramolecular ionic alginate-based polyurethanes.

    PubMed

    Daemi, Hamed; Barikani, Mehdi; Sardon, Haritz

    2017-02-10

    Novel high molecular weight alginate-based supramolecular ionic polyurethane (SPU) networks were prepared via the reaction of chemically modified polyanionic alginate and isocyanate-terminated cationic oligourethanes under transition-metal-free conditions. Alginate, a naturally occurring polyanionic carbohydrate diol possessing carboxylate groups, was considered as both chain extender and the anionic part of SPU network. The tailor-made, ionically crosslinked linear alginate-based SPUs illustrated superior thermal stability with a decomposition temperature around 500°C at 10% weight loss which specializes them as highly thermally stable, wonder materials compared to the today's high-tech products.

  14. Real-time monitoring of polyurethane production using near-infrared spectroscopy.

    PubMed

    Dethomas, F A; Hall, J W; Monfre, S L

    1994-03-01

    A process near-infrared (NIR) spectrophotometer was interfaced directly to a reactor by using a fiber optic bundle interactance immersion probe. This remote sensor configuration enables the production of polyurethanes to be monitored in real-time. A Beer's Law model was derived for the quantitative determination of isocyanate in the urethane polymerization reaction. Statistical process control was used to observe trends in the polymerization reaction. The integration of NIR process analytical instrumentation directly into the process provides real-time chemical information that yields improvements in product quality and consistency, while minimizing reaction time.

  15. Is Curing Behavior Dependent on Morphology in Reactive Polyurethanes

    NASA Astrophysics Data System (ADS)

    Jeong, Young Gyu; Hashida, Tomoko; Krishnamoothy, Jayaraman; Hsu, Shaw Ling

    2004-03-01

    Reactive polyurethanes usually are formulated as ternary polymer blends whose components are often crystalline polyester, amorphous polyether, and acrylate with high glass transition temperature. Therefore, the morphology developed is highly dependent on the composition and thermal history. Ambient water vapor reacts with the isocyanate-terminated prepolymers, which leads to increase in molecular weight and mechanical properties achievable. Previously, there have been limited studies describing this reaction process. We have investigated the morphological and compositional effects on curing kinetics and chemical reactions induced by water vapor diffusion into prepolymer using time-resolved reflection-absorption infrared spectroscopy, optical microscopy, and atomic force microscopy. It was found that the curing kinetics is strongly related to the prepolymer composition, which affects the molecular mobility, hydrophilicity, phase separation, and crystallization. In addition, we found that the curing rate decreased significantly with the development of liquid/liquid phase separation.

  16. Bio-based polyurethane foams from renewable resources

    NASA Astrophysics Data System (ADS)

    Stanzione, M.; Russo, V.; Sorrentino, A.; Tesser, R.; Lavorgna, M.; Oliviero, M.; Di Serio, M.; Iannace, S.; Verdolotti, L.

    2016-05-01

    In the last decades, bio-derived natural materials, such as vegetable oils, polysaccharides and biomass represent a rich source of hydroxyl precursors for the synthesis of polyols which can be potentially used to synthesize "greener" polyurethane foams. Herein a bio-based precursor (obtained from succinic acid) was used as a partial replacement of conventional polyol to synthesize PU foams. A mixture of conventional and bio-based polyol in presence of catalysts, silicone surfactant and diphenylmethane di-isocyanate (MDI) was expanded in a mold and cured for two hours at room temperature. Experimental results highlighted the suitability of this bio-precursor to be used in the production of flexible PU foams. Furthermore the chemo-physical characterization of the resulting foams show an interesting improvement in thermal stability and elastic modulus with respect to the PU foams produced with conventional polyol.

  17. Personnel Exposure to Airborne Isocyanates and Solvents During Shipboard Painting With 2-Pack Polyurethane Paints

    DTIC Science & Technology

    2008-12-01

    ketones and esters according to the Material Safety Data Sheet (Table 1) [26]. The exposure limits of two of the solvents ( cyclohexanone and light...Interthane 864 LSANSP TWA (NOHSC) [23] Part A Cyclohexanone 155.6 - 2.5-10% 25ppm(100 mg/m3) Light Aromatic Solvent Naphtha 100-213 10-25% 10-25...acetate and cyclohexanone , both of which emit strong odours. Although the exposure limits for these solvents were not exceeded during the CESSNOCK

  18. Composites prepared from the waterborne polyurethane cationomers-modified graphene. Part II. Electrical properties of the polyurethane films.

    PubMed

    Król, Piotr; Król, Bożena; Zenker, Marek; Subocz, Jan

    The research was planned to test electrical properties of polymer films made from polyurethane cationomers with 0-2 wt.% graphene admixture. The cationomers were synthetized in the reaction of 4,4'-methylenebis(phenyl isocyanate), polycaprolactone diol (M = 2000), N-methyldiethanolamine, and formic acid. It was found that addition of approx. 2 wt.% of graphene causes the loss of volume resistivity by three orders of magnitude and percolation threshold is already set at approx. 1 wt.%. The frequency characteristic of a real part of permittivity ε' and imaginary part of permittivity ε″ were measured for the tested films. On the base of Havriliak-Negami equation, parameters of relaxation functions in frequency domain were estimated for samples containing various contents of graphene. The influence of the cationomer phase structure on observed changes of dielectric losses coefficient tgδ in the full-measuring frequency spectrum was discussed.

  19. Composites prepared from the waterborne polyurethane cationomers-modified graphene. Part I. Synthesis, structure, and physicochemical properties.

    PubMed

    Król, Piotr; Król, Bożena; Pielichowska, Kinga; Špírková, Milena

    In the reaction of 4,4'-methylenebis(phenyl isocyanate), polycaprolactone diol, and N-methyldiethanolamine, they were synthesized aqueous dispersions of polyurethane cationomers, from which films were prepared after adding 0-2 wt% graphene. In order to obtain nanocomposites, graphene was previously noncovalent functionalized in tetrahydrofurane in the field of ultrasound. The chemical structure and the morphology of obtained nanocomposites were analyzed by IR spectroscopy, atomic force microscopy (AFM), and differential scanning calorimetry (DSC) microcalorimetry methods. It was found that the presence of graphene results in increased thermal and mechanical strength of received polymer films and contributes to the increase in hydrophobicity of generally hydrophilic coatings prepared from waterborne polyurethane cationomers. Based on received results, possible interactions between graphene and phase structure of polyurethane cationomers were discussed. Relating to the so far described applications of graphene for the modification of polyurethanes, the novelty of this work is the concept of incorporation of graphene particles to polyurethane cationomer chains exclusively through a simple noncovalent functionalization and to investigate the effect of graphene on the properties obtained in this way of thin polyurethane film.

  20. Microporous biodegradable polyurethane membranes for tissue engineering.

    PubMed

    Tsui, Yuen Kee; Gogolewski, Sylwester

    2009-08-01

    Microporous membranes with controlled pore size and structure were produced from biodegradable polyurethane based on aliphatic diisocyanate, poly(epsilon-caprolactone) diol and isosorbide chain extender using the modified phase-inversion technique. The following parameters affecting the process of membrane formation were investigated: the type of solvent, solvent-nonsolvent ratio, polymer concentration in solution, polymer solidification time, and the thickness of the polymer solution layer cast on a substrate. The experimental systems evaluated were polymer-N,N-dimethylformamide-water, polymer-N,N-dimethylacetamide-water and polymer-dimethylsulfoxide-water. From all three systems evaluated the best results were obtained for the system polymer-N,N-dimethylformamide-water. The optimal conditions for the preparation of microporous polyurethane membranes were: polymer concentration in solution 5% (w/v), the amount of nonsolvent 10% (v/v), the cast temperature 23 degrees C, and polymer solidification time in the range of 24-48 h depending on the thickness of the cast polymer solution layer. Membranes obtained under these conditions had interconnected pores, well defined pore size and structure, good water permeability and satisfactory mechanical properties to allow for suturing. Potential applications of these membranes are skin wound cover and, in combination with autogenous chondrocytes, as an "artificial periosteum" in the treatment of articular cartilage defects.

  1. Cell–material interactions on biphasic polyurethane matrix

    PubMed Central

    Dicesare, Patrick; Fox, Wade M.; Hill, Michael J.; Krishnan, G. Rajesh; Yang, Shuying; Sarkar, Debanjan

    2013-01-01

    Cell–matrix interaction is a key regulator for controlling stem cell fate in regenerative tissue engineering. These interactions are induced and controlled by the nanoscale features of extracellular matrix and are mimicked on synthetic matrices to control cell structure and functions. Recent studies have shown that nanostructured matrices can modulate stem cell behavior and exert specific role in tissue regeneration. In this study, we have demonstrated that nanostructured phase morphology of synthetic matrix can control adhesion, proliferation, organization and migration of human mesenchymal stem cells (MSCs). Nanostructured biodegradable polyurethanes (PU) with segmental composition exhibit biphasic morphology at nanoscale dimensions and can control cellular features of MSCs. Biodegradable PU with polyester soft segment and hard segment composed of aliphatic diisocyanates and dipeptide chain extender were designed to examine the effect polyurethane phase morphology. By altering the polyurethane composition, morphological architecture of PU was modulated and its effect was examined on MSC. Results show that MSCs can sense the nanoscale morphology of biphasic polyurethane matrix to exhibit distinct cellular features and, thus, signifies the relevance of matrix phase morphology. The role of nanostructured phases of a synthetic matrix in controlling cell–matrix interaction provides important insights for regulation of cell behavior on synthetic matrix and, therefore, is an important tool for engineering tissue regeneration. PMID:23255285

  2. Modelling the surface free energy parameters of polyurethane coats-part 1. Solvent-based coats obtained from linear polyurethane elastomers.

    PubMed

    Król, Piotr; Lechowicz, Jaromir B; Król, Bożena

    2013-04-01

    Polyurethane elastomers coating were synthesised by using typical diisocyanates, polyether and polyester polyols and HO-tertiary amines or diols as a chain extenders. Mole fractions of structural fragments (κexp) responsible for the polar interactions within polyurethane chains were calculated by (1)H NMR method. Obtained results were confronted with the analogous parameter values (κtheor) calculated on the basis of process stoichiometry, considering the stage of the production of isocyanate prepolymers and reaction of their extension for polyurethanes. Trials of linear correlation between the κexp parameters and surface free energy (SFE) values of investigated coatings were presented. SFE values were determined by Owens-Wendt method, using contact angles measured with the goniometric method. Based on achieved results, another empirical models, allowing for prediction the influence of the kind of polyurethane raw materials on SFE values of received coatings were determined. It was found that it is possible to regulate the SFE in the range millijoules per cubic metre by the selection of appropriate substrates. It has been found that use of 2,2,3,3-tetrafluoro-1,4-butanediol as a fluorinated extender of prepolymer chains is essential to obtain coatings with increased hydrophobicity, applied among others as biomaterials-next to diphenylmethane diisocyanate and polyoxyethylene glycol.

  3. Lewis acid-promoted reactions of zirconacyclopentadienes with isocyanates. A one-pot three-component synthesis of multiply-substituted iminocyclopentadienes from one isocyanate and two alkynes.

    PubMed

    Lu, Jiang; Mao, Guoliang; Zhang, Wenxiong; Xi, Zhenfeng

    2005-10-14

    Multiply-substituted iminocyclopentadienes were formed from Lewis acid-promoted reactions of zirconacyclopentadienes and isocyanates via a one-pot three-component coupling process; the C=O double bond of the RN=C=O moiety in the isocyanate was cleaved, and the isocyanates behaved formally as a one-carbon unit with Lewis acid-dependent and substituent-dependent reactions being realized.

  4. Biomarkers of exposure, antibodies, and respiratory symptoms in workers heating polyurethane glue.

    PubMed Central

    Skarping, G; Dalene, M; Svensson, B G; Littorin, M; Akesson, B; Welinder, H; Skerfving, S

    1996-01-01

    OBJECTIVES: The pathogenic basis of respiratory disorders associated with isocyanates are still obscure. One reason for this is the lack of good estimates of human exposure. In this study exposure was estimated by measurement of isocyanate metabolites in biological samples. METHODS: In a factory using isocyanate based polyurethane (PUR) glue, isocyanate concentrations in air were measured by liquid chromatography. Samples from 174 employees were analysed for metabolites of 4,4'-methylene diphenyl diisocyanate (MDI) in plasma (P-MDX) and urine (U-MDX). After hydrolysis, 4,4'-methylenedianiline was measured by gas chromatography-mass spectrometry (GC-MS). The employees were screened for work related respiratory symptoms and tested for specific immunoglobulin E (IgE) and IgG antibodies directed against isocyanate conjugated to human serum albumin. RESULTS: The time weighted isocyanate concentrations in air were low (MDI < 0.2-7; hexamethylene diisocyanate (HDI) < 0.1-0.7; 2,6-toluene diisocyanate (TDI) < 0.1 microgram/m3). All subjects had detectable P-MDX and U-MDX. There were significant associations between the estimates of exposure to thermal degradation products of an MDI based glue and P-MDX (range < or = 0.10-5.5 micrograms/l); and U-MDX (< or = 0.04-5.0 micrograms/g creatinine); in cases of heavy exposure. P-MDX and U-MDX were associated with each other (r = 0.64; P = 0.0001), work related symptoms (P-MDX: P = 0.03; Mann-Whitney U test), and serum concentrations of MDI specific IgG antibodies (r = 0.26; P = 0.0007). Unexpectedly, high P-MDX and U-MDX concentrations were also encountered in workers cutting textile (P-MDX 2.4-4.5 micrograms/l; U-MDX 0.81-3.8 micrograms/g creatinine); the reason is still unknown. Equally unexpected, there were significant negative associations between P-MDX and liver function tests. CONCLUSIONS: The results clearly show the value of biomarkers for isocyanate exposure; in particular, P-MDX is useful. Further, these results show

  5. Polyurethane networks from fatty-acid-based aromatic triols: synthesis and characterization.

    PubMed

    Lligadas, Gerard; Ronda, Joan C; Galià, Marina; Cadiz, Virginia

    2007-06-01

    Novel biobased aromatic triols (1,3,5-(9-hydroxynonyl)benzene and 1,3,5-(8-hydroxyoctyl)-2,4,6-octylbenzene) were synthesized through the transition-metal-catalyzed cyclotrimerization of two alkyne fatty acid methyl esters (methyl 10-undecynoate and methyl 9-octadecynoate) followed by the reduction of the ester groups to give terminal primary hydroxyl groups. A series of biobased segmented polyurethanes based on these triols, 1,4-butanediol as a chain extender and 4,4'-methylenebis(phenyl isocyanate) as a coupling agent, were synthesized. Samples were prepared with hard-segment contents up to 50%. The morphologies and thermal properties of these polyurethanes were studied by Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical thermal analysis. Partial crystallinity and phase separation were detected in samples with hard-segment content of 50%.

  6. Exposure to MDI during the process of insulating buildings with sprayed polyurethane foam.

    PubMed

    Crespo, J; Galán, J

    1999-08-01

    Buildings are often insulated with sprayed-in-place polyurethane foam in spite of the fact that few studies have been carried out on exposure levels to isocyanates during the spraying process. This paper is meant to provide new data on personal exposure to methylene-bis (4-phenylisocyanate) (MDI) while dwellings and office buildings are being insulated with polyurethane foam. An impinger using a 1-(2-methoxyphenyl)piperazine toluene solution as absorbent was used to take personal samples for the sprayer and helper during indoor and outdoor applications. The analytical results show that the levels of exposure were significant, especially for the sprayer, with values of up to 0.077 mg m-3 and 0.400 mg m-3 during outdoor and indoor applications, respectively. The helper's exposure was always lower.

  7. Base Level Guide for the Occupational Exposure to Isocyanates

    DTIC Science & Technology

    2012-03-01

    methylaminomethyl) anthracene (MAMA) for the vapor phase of isocyanates. The required flow rate is 1 L/min with a maximum volume of 15 liters. This... anthracene MDI methylene diphenyl diisocyanate OE Occupation and Environmental Health Department OSHA Occupational Safety and Health

  8. Thermoplastic biodegradable polyurethanes: the effect of chain extender structure on properties and in-vitro degradation.

    PubMed

    Tatai, Lisa; Moore, Tim G; Adhikari, Raju; Malherbe, François; Jayasekara, Ranjith; Griffiths, Ian; Gunatillake, Pathiraja A

    2007-12-01

    Biodegradable polyurethanes are typically prepared from polyester polyols, aliphatic diisocyanates and chain extenders. We have developed a degradable chain extender (DCE) based on dl-lactic acid and ethylene glycol to accelerate hard segment degradation. Three series of polyurethane elastomers were synthesised to investigate the effect of incorporating DCE on synthesis, mechanical and thermal properties and in-vitro degradation. Polyurethane soft segments were based on poly(epsilon-caprolactone) (PCL) polyol. The hard segment was based on either ethyl lysine diisocyanate or hexamethylene diisocyanate in combination with ethylene glycol or DCE. Polyurethanes were characterised by gel permeation chromatography, tensile testing (Instron) and differential scanning calorimetry. Polymer degradation in-vitro (phosphate buffered saline) was tested by measuring mass loss, change in molecular weight and amine concentration in degradation products at three different time points over a 1 year period. Incorporation of DCE did not affect thermal or mechanical properties but had an influence on the in-vitro degradation. All polyurethanes exhibited considerable molecular weight decrease over the test period, and DCE-based polyurethanes showed the highest mass loss. The presence of the DCE and the initial molecular weight of the polyurethane are the key factors responsible for high mass losses. Differential scanning calorimetry, amine group analysis and the observation that mass loss was directly proportional to hard segment weight percentage, strongly supported that the polyurethane hard segment is the most susceptible segment to degradation in these polyurethanes. The PCL-based soft segment appears to undergo little or no degradation under these test conditions.

  9. Guided desaturation of unactivated aliphatics

    NASA Astrophysics Data System (ADS)

    Voica, Ana-Florina; Mendoza, Abraham; Gutekunst, Will R.; Fraga, Jorge Otero; Baran, Phil S.

    2012-08-01

    The excision of hydrogen from an aliphatic carbon chain to produce an isolated olefin (desaturation) without overoxidation is one of the most impressive and powerful biosynthetic transformations for which there are no simple and mild laboratory substitutes. The versatility of olefins and the range of reactions they undergo are unsurpassed in functional group space. Thus, the conversion of a relatively inert aliphatic system into its unsaturated counterpart could open new possibilities in retrosynthesis. In this article, the invention of a directing group to achieve such a transformation under mild, operationally simple, metal-free conditions is outlined. This ‘portable desaturase’ (TzoCl) is a bench-stable, commercial entity (Aldrich, catalogue number L510092) that is facile to install on alcohol and amine functionalities to ultimately effect remote desaturation, while leaving behind a synthetically useful tosyl group.

  10. Adsorption efficiency of respirator filter cartridges for isocyanates.

    PubMed

    Gustavsson, Marcus; Meiby, Elinor; Gylestam, Daniel; Dahlin, Jakob; Spanne, Mårten; Karlsson, Daniel; Dalene, Marianne; Skarping, Gunnar; Tveterås, Björn Oscar; Pedersen, Age Engen

    2010-06-01

    In some industries, the temperature and the humidity will vary greatly between different work places, such as outdoor work in arctic or tropical climates. There is therefore a need to test respirator filters at conditions that simulate conditions that are relevant for the industries that they are used in. Filter cartridges were exposed to controlled atmospheres of varying isocyanate concentration, air humidity, and temperature in an exposure chamber. For isocyanic acid (ICA) and methyl isocyanate (MIC), the exposure concentrations were between 100 and 200 p.p.b., monitored using a proton transfer reaction mass spectrometer. ICA and MIC were generated by continuous thermal degradation of urea and dimethylurea. The breakthrough was studied by collecting air samples at the outlet of the filter cartridges using impinger flasks or dry samplers with di-n-butylamine as derivatization reagent for isocyanates followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. For hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI), the exposure concentrations were between 4 and 20 p.p.b. and were generated by wet membrane permeation. To reveal the profile of adsorption in different layers of the respirator filters, representative samples from each of the layers were hydrolyzed. The hydrolysis products hexamethylene diamine and isophorone diamine were determined after derivatization with pentafluoropropionic anhydride (PFPA) followed by LC-MS/MS analysis. The two filter types studied efficiently absorbed both ICA and MIC. There was no trend of impaired performance throughout 48-h exposure tests. Even when the filters were exposed to high concentrations (approximately 200 p.p.b.) of ICA and MIC for 96 h, the isocyanates were efficiently absorbed with only a limited breakthrough. The majority of the HDI and IPDI (>90%) were absorbed in the top layers of the absorbant, but HDI and IPDI penetrated farther down into the respirator filters during 120 h

  11. Aliphatic hydrocarbons of the fungi.

    NASA Technical Reports Server (NTRS)

    Weete, J. D.

    1972-01-01

    Review of studies of aliphatic hydrocarbons which have been recently detected in the spores of phytopathogenic fungi, and are found to be structurally very similar to the alkanes of higher plants. It appears that the hydrocarbon components of the few mycelial and yeast forms reported resemble the distribution found in bacteria. The occurence and distribution of these compounds in the fungi is discussed. Suggested functional roles of fungal spore alkanes are presented.

  12. Regulation of isocyanate-induced apoptosis, oxidative stress, and inflammation in cultured human neutrophils: isocyanate-induced neutrophils apoptosis.

    PubMed

    Mishra, P K; Khan, S; Bhargava, A; Panwar, H; Banerjee, S; Jain, S K; Maudar, K K

    2010-06-01

    Implications of environmental toxins on the regulation of neutrophil function are being significantly appraised. Such effects can be varied and markedly different depending on the type and extent of chemical exposure, which results in direct damage to the immune system. Isocyanates with functional group (-NCO), are considered as highly reactive molecules with diverse industrial applications. However, patho-physiological implications resulting from their occupational and accidental exposures have not been well delineated. The present study was carried out to assess the immunotoxic response of isocyanates and their mode of action at a molecular level on cultured human neutrophils isolated from healthy human volunteers. Studies were conducted to evaluate both dose- and time-dependent (n = 3) response using N-succinimidyl N-methylcarbamate, a chemical entity that mimics the effects of methyl isocyanate in vitro. Measure of apoptosis through annexin-V-FITC/PI assay, active caspase-3, apoptotic DNA ladder assay and mitochondrial depolarization; induction of oxidative stress by CM-H(2)DCFDA and formation of 8'-hydroxy-2'-deoxyguanosine; and levels of antioxidant defense system enzyme glutathione reductase, multiplex cytometric bead array analysis to quantify the secreted cytokine levels (interleukin-8, interleukin-1beta, interleukin-6, interleukin-10, interferon-gamma, tumor necrosis factor, and interleukin-12p70) parameters were evaluated. Our results demonstrate that isocyanates induce neutrophil apoptosis via activation of mitochondrial-mediated pathway along with reactive oxygen species production; depletion in antioxidant defense states; and elevated pro-inflammatory cytokine response.

  13. The role of nanocrystalline cellulose on the microstructure of foamed castor-oil polyurethane nanocomposites.

    PubMed

    Cordero, Andrés Ignacio; Amalvy, Javier Ignacio; Fortunati, Elena; Kenny, José María; Chiacchiarelli, Leonel Matías

    2015-12-10

    Nanocrystalline cellulose (CNC), obtained by sulphuric acid hydrolysis, was used to synthesize polyurethane foams (PUFs) based on a functionalized castor oil polyol and a Methylene diphenyl diisocyanate (MDI). Formulations with varying isocyanate index (FI) and NCO number were prepared. At 0.5 wt.%, SEM's of the fractured surface underlined that the CNC acted both as a nucleation agent and as a particulate surfactant with cell geometries and apparent density changing selectively. The chemical structure of the PUF (FTIR) changed after the incorporation of CNC by a relative change of the amount of urea, urethane and isocyanurate groups. A low NCO number and isocyanate index contributed to the migration of the CNC to the Hard Segment (HS), acting as reinforcement and improving substantially the compressive mechanical properties (Ec and σc improvements of 63 and 50%, respectively). For a high NCO number or isocyanate index, the CNC migrated to the Soft Segment (SS), without causing a reinforcement effect. The migration of the CNC was also detected with DSC, TGA and DMA, furtherly supporting the hypothesis that a low NCO number and index contributed both to the formation of a microstructure with a higher content of urethane groups.

  14. Degradability in vitro of polyurethanes based on synthetic atactic poly[(R,S)-3-hydroxybutyrate].

    PubMed

    Brzeska, J; Janeczek, H; Janik, H; Kowalczuk, M; Rutkowska, M

    2015-01-01

    The aim of the present study was to determine the degradability of aliphatic polyurethanes, based on a different amount of synthetic, atactic poly[(R,S)-3-hydroxybutyrate] (a-PHB), in hydrolytic (phosphate buffer) and oxidative (H2O2/CoCl2) solutions. The soft segments were built with atactic poly[(R,S)-3-hydroxybutyrate] and polycaprolactone or polyoxytetramethylenediols, whereas hard segments were the reaction product of 4,4'-methylenedicyclohexyl diisocyanate and 1,4-butanediol.The selected properties - density and morphology of polymer surfaces - which could influence the sensitivity of polymers to degradation processes - were analyzed.The analysis of molecular mass (GPC), thermal properties (DSC) and the sample weight changes were undertaken to estimate the degree of degradability of polymer samples after incubation in environments studied.Investigated polyurethanes were amorphous with the very low amount of crystalline phases of hard segments.The polyurethane synthesized with a poly[(R,S)-3-hydroxybutyrate] and polyoxytetramethylenediol at a molar ratio of NCO:OH=3.7:1 (prepolymer step) appeared as the most sensitive for both degradative solutions. Its weight and molecular mass losses were the highest in comparison to other investigated polyurethanes.It could be expected that playing with the amount of poly[(R,S)-3-hydroxybutyrate] in polyurethane synthesis the rate of polyurethane degradation after immersion in living body would be modeled.

  15. The use of flexible polyurethane foam in orthotics.

    PubMed

    Taylor, A G

    1984-08-01

    The casting of flexible polyurethane foam into a wide range of customised shapes has been found to offer a relatively straightforward solution to a number of problems associated with providing support for the physically handicapped. This note describes the techniques used for the production of such supports and reports on clinical experience of their use. A suitably prepared plaster cast of the patient, obtained in the usual way via vacuum consolidation of polystyrene beads, forms the lower surface of a wooden moulding box. Suitable quantities of the two chemicals, an isocyanate and a polyol, are then thoroughly and rapidly mixed together before being poured into the moulding box over which a weighted lid is placed to contain the foam and to improve its consistency. After removal, the finished product can then be trimmed and if necessary covered with fire-retardant leathercloth. To date polyurethane foam mouldings have been used with considerable success as seat cushions, seat backs and as spinal body supports which allow a patient to be nursed prone and supine following spinal fusion.

  16. Experiments to populate and validate a processing model for polyurethane foam. BKC 44306 PMDI-10

    SciTech Connect

    Mondy, Lisa Ann; Rao, Rekha Ranjana; Shelden, Bion; Soehnel, Melissa Marie; O'Hern, Timothy J.; Grillet, Anne; Celina, Mathias Christopher; Wyatt, Nicholas B.; Russick, Edward Mark; Bauer, Stephen J.; Hileman, Michael Bryan; Urquhart, Alexander; Thompson, Kyle Richard; Smith, David Michael

    2014-03-01

    We are developing computational models to elucidate the expansion and dynamic filling process of a polyurethane foam, PMDI. The polyurethane of interest is chemically blown, where carbon dioxide is produced via the reaction of water, the blowing agent, and isocyanate. The isocyanate also reacts with polyol in a competing reaction, which produces the polymer. Here we detail the experiments needed to populate a processing model and provide parameters for the model based on these experiments. The model entails solving the conservation equations, including the equations of motion, an energy balance, and two rate equations for the polymerization and foaming reactions, following a simplified mathematical formalism that decouples these two reactions. Parameters for the polymerization kinetics model are reported based on infrared spectrophotometry. Parameters describing the gas generating reaction are reported based on measurements of volume, temperature and pressure evolution with time. A foam rheology model is proposed and parameters determined through steady-shear and oscillatory tests. Heat of reaction and heat capacity are determined through differential scanning calorimetry. Thermal conductivity of the foam as a function of density is measured using a transient method based on the theory of the transient plane source technique. Finally, density variations of the resulting solid foam in several simple geometries are directly measured by sectioning and sampling mass, as well as through x-ray computed tomography. These density measurements will be useful for model validation once the complete model is implemented in an engineering code.

  17. Airway symptoms and lung function in pipelayers exposed to thermal degradation products from MDI-based polyurethane.

    PubMed Central

    Jakobsson, K; Kronholm-Diab, K; Rylander, L; Hagmar, L

    1997-01-01

    OBJECTIVES: To study the prevalence of symptoms from the eyes and the upper and lower respiratory tract, lung function, and immunological sensitisation towards isocyanates in pipelayers exposed to thermal degradation products from methylene diphenyl diisocyanate (MDI)-based polyurethane (PUR). MATERIAL AND METHODS: 50 presently active and 113 formerly active pipelayers were examined. Also, 65 unexposed workers were investigated for comparison. The one year prevalence of symptoms and smoking history (questionnaire data), lung function (vital capacity (VC) and forced expiratory volume in one second (FEV1), and atopy (positive skin prick tests towards standard allergens) were assessed among pipelayers and controls. For the pipelayers, the presence of work related symptoms and estimates of isocyanate and welding exposure were obtained from an interview. Skin prick tests towards specific isocyanate antigens and determinations of IgE-MDI and IgG-MDI in serum were also performed. RESULTS: The prevalence of episodes (more than once a month) of irritative eye symptoms, congestion of the nose, and soreness or dryness in the throat was much higher among the PUR pipelayers than among the controls. Most of the pipelayers with symptoms reported that these had started and occurred in relation to the PUR welding tasks. Presently active pipelayers with recent high PUR exposure showed a significant reduction of FEV1 compared with the controls. The estimated reduction, adjusted for smoking, was -0.3 l (P = 0.04). There was no confounding effect of ordinary welding. None of the pipelayers showed positive skin prick reactions against the specific isocyanate antigens used, or positive IgE-MDI, and only two had increased IgG-MDI. CONCLUSIONS: The findings indicate that exposure to thermal degradation products from MDI-based polyurethane has adverse effects on the mucous membranes and airways. PMID:9470895

  18. A chronic eosinophilic pneumonia case with long exposure to isocyanates.

    PubMed

    Yalcin, Funda; Sak, Zafer Hasan Ali; Boyaci, Nurefsan; Gencer, Mehmet

    2014-10-01

    Chronic eosinophilic pneumonia (CEP) is a disease with unknown etiology, characterized by peripheral blood eosinophilia and abnormal eosinophil accumulation in the lungs. A 43-year-old male with 30 years history of exposure to isocyanates was admitted with the complaint of sputum, cough, progressive dyspnoea, and weight loss. Physical examination revealed bilaterally decreased breath sounds and extensive rales. On laboratory analysis; leukocytosis (12.3 10(3)/proportional variant L), hypereosinophilia (30%), elevated CRP and RF (1000 IU/ml), and IgE levels (1160 IU/ml) in the serum were observed. Chest radiograph and computed tomography on admission showed reticulonodular pattern at both lung fields. Pulmonary function tests assumed a restrictive pattern and a low diffusing capacity. Bronchoalveolar lavage revealed a marked eosinophilia (50%). Transbronchial lung biopsy indicated eosinophilic pneumonia. In this case we aimed to describe a rare case of CEP probably caused by exposure to isocyanate.

  19. Surveillance for isocyanate asthma: a model based cost effectiveness analysis

    PubMed Central

    Wild, D; Redlich, C; Paltiel, A

    2005-01-01

    Aims: Because logistical and financial obstacles impede using large prospective cohort studies, surveillance decisions in occupational settings must often be made without evidence of relative benefits and costs. Using the example of isocyanate induced asthma, the most commonly reported immune mediated occupational asthma, the authors developed a model based approach to evaluate the costs and benefits of surveillance from both an employer and a societal perspective. Methods: The authors used a mathematical simulation model of isocyanate asthma to compare annual surveillance to passive case finding. Outcome measures included symptom free days (SFD), quality adjusted life years (QALY), direct costs, productivity losses, and incremental cost effectiveness ratio (CER), measured from the employer and the societal perspectives. Input data were obtained from a variety of published sources. Results: For 100 000 exposed workers, surveillance resulted in 683 fewer cases of disability over 10 years. Surveillance conferred benefits at an incremental cost of $24,000/QALY (employer perspective; $13.33/SFD) and was cost saving from the societal perspective. Results were sensitive to assumptions about sensitisation rate, removal rates, and time to diagnosis, but not to assumptions about therapy costs and disability rates. Conclusions: Baseline results placed the CER for surveillance for isocyanate asthma within the acceptable range. Costs from the societal and employer perspective differed substantially with a more attractive CER from the societal perspective, suggesting opportunities for employer/societal cost sharing. The analysis demonstrates the value of a model based approach to evaluate the cost effectiveness of surveillance programmes for isocyanate asthma, and to inform shared decision making among clinicians, patients, employers, and society. Such a modeling approach may be applicable to surveillance programmes for other work related conditions. PMID:16234399

  20. Divergent Reactivity of N-Isocyanates with Primary and Secondary Amines: Access to Pyridazinones and Triazinones.

    PubMed

    Derasp, Joshua S; Vincent-Rocan, Jean-François; Beauchemin, André M

    2016-02-19

    Cascade reactions for the synthesis of 1,2,4-triazinones and 5-aminopyridazinones are reported using α-ketocarbazones as N-isocyanate precursors and exploiting the divergent reactivity observed with primary and secondary amines. Triazinones were formed with primary amines, likely through addition of the amine on the N-isocyanate, followed by cyclization (condensation) on the ketone. In contrast, such cyclization is impossible for secondary amines; this allows in situ formation of enamines, which, upon cyclization, generate 5-amino pyridazinones. This sequence further illustrates the versatility of N-isocyanates in heterocyclic synthesis and provides a rare example of carbon nucleophiles reacting with N-isocyanates.

  1. Isocyanates and Work-Related Asthma: Findings From California, Massachusetts, Michigan, and New Jersey, 1993–2008

    PubMed Central

    Lefkowitz, Daniel; Pechter, Elise; Fitzsimmons, Kathleen; Lumia, Margaret; Stephens, Alicia C.; Davis, Letitia; Flattery, Jennifer; Weinberg, Justine; Harrison, Robert J.; Reilly, Mary Jo; Filios, Margaret S.; White, Gretchen E.; Rosenman, Kenneth D.

    2015-01-01

    Background Isocyanates remain a leading cause of work-related asthma (WRA). Methods Two independent data systems were analyzed for the period 1993–2008: (1) State-based WRA case surveillance data on persons with isocyanate-induced WRA from four states, and (2) Occupational Safety and Health Administration (OSHA) Integrated Management Information System (IMIS) isocyanate air sampling results. Results We identified 368 cases of isocyanate-induced WRA from 32 industries and 678 OSHA isocyanate air samples with detectable levels from 31 industries. Seventeen industries were unique to one or the other dataset. Conclusion Isocyanate-induced WRA continues to occur in a wide variety of industries. Two data systems uncovered industries with isocyanate exposures and/or illness. Improved control measures and standards, including medical surveillance, are needed. More emphasis is needed on task-specific guidance, spill clean-up procedures, skin and respiratory protection, and targeted medical monitoring to mitigate the hazards of isocyanate use. PMID:26351141

  2. Lymphocyte Gene Expression Characteristic of Immediate Airway Responses (IAR) and Methacholine (MCH) Hyperresponsiveness in Mice Sensitized and Challenged with Isocyanates

    EPA Science Inventory

    Exposure to isocyanates has been associated with occupational airway diseases, including asthma. Previously we reported on respiratory and immune responses following dermal sensitization and intranasal challenge of BALB/c mice with 6 different isocyanates. The purpose of this st...

  3. Improvement on wear resistance property of polyurethane film by compositing plasma-treated multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ogawa, Daisuke; Nakamura, Keiji

    2016-01-01

    We investigated the effect of plasma-treated multi-walled carbon nanotubes (CNTs) that are composited into a polyurethane (PU) film. In this journal article, we especially focused on one of mechanical properties of PU film, the wear resistance, to find how the plasma-treated CNTs give contributions to improve the resistance. Our experimental results showed that plasma-treated CNTs enhanced the wear resistance, in particular, when the CNTs treated with the plasma that was made of nitrogen-oxygen mixture gas. Then, we made measurements with infrared absorption spectroscopy to find the possible causes of the improvement. The measurement showed that the surface of the CNTs treated with nitrogen-oxygen plasma had an indication of isocyanate group, which generally hardens PU film. The plasma likely attached the functional group on CNTs, and then the CNTs added extra wear resistance of a polyurethane film.

  4. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, T.E.; Spieker, D.A.

    1983-12-08

    A rigid, moldable polyurethane foam comprises about 2 to 10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  5. Electrically conductive rigid polyurethane foam

    DOEpatents

    Neet, Thomas E.; Spieker, David A.

    1985-03-19

    A rigid, polyurethane foam comprises about 2-10 weight percent, based on the total foam weight, of a carbon black which is CONDUCTEX CC-40-220 or CONDUCTEX SC, whereby the rigid polyurethane foam is electrically conductive and has essentially the same mechanical properties as the same foam without carbon black added.

  6. Stable Polyurethane Coatings for Electronic Circuits

    NASA Technical Reports Server (NTRS)

    Morris, D. E.

    1983-01-01

    Alkane-based polyurethanes resist deterioration while maintaining good dielectric properties. Weight loss after prolonged immersion in hot water far less for alkane-based polyurethanes than for more common ether based polyurethanes, at any given oxygen content. Major uses of polyurethanes are as connector potting materials and conformal coatings for printed circuit boards.

  7. 21 CFR 177.1680 - Polyurethane resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyurethane resins. 177.1680 Section 177.1680... Components of Single and Repeated Use Food Contact Surfaces § 177.1680 Polyurethane resins. The polyurethane...) For the purpose of this section, polyurethane resins are those produced when one or more of...

  8. Cobalt(III)-Catalyzed C-H Bond Amidation with Isocyanates.

    PubMed

    Hummel, Joshua R; Ellman, Jonathan A

    2015-05-15

    The first examples of cobalt(III)-catalyzed C-H bond addition to isocyanates are described, providing a convergent strategy for arene and heteroarene amidation. Using a robust air- and moisture-stable catalyst, this transformation demonstrates a broad isocyanate scope and good functional-group compatibility and has been performed on gram scale.

  9. Cobalt(III)-Catalyzed C–H Bond Amidation with Isocyanates

    PubMed Central

    Hummel, Joshua R.; Ellman, Jonathan A.

    2015-01-01

    The first examples of cobalt(III)-catalyzed C–H bond addition to isocyanates are described, providing a convergent strategy for arene and heteroarene amidation. Using a robust air- and moisture-stable catalyst, this transformation demonstrates broad isocyanate scope, good functional-group compatibility and has been performed on gram scale. PMID:25945401

  10. A new general pathway for synthesis of reference compounds of N-terminal valine-isocyanate adducts.

    PubMed

    Davies, Ronnie; Rydberg, Per; Westberg, Emelie; Motwani, Hitesh V; Johnstone, Erik; Törnqvist, Margareta

    2010-03-15

    Adducts to Hb could be used as biomarkers to monitor exposure to isocyanates. Particularly useful is the measurement of carbamoylation of N-terminal valines in Hb, after detachment as hydantoins. The synthesis of references from the reactive isocyanates, especially diisocyanates, has been problematic due to side reactions and polymerization of the isocyanate starting material. A simpler, safer, and more general method for the synthesis of valine adducts of isocyanates has been developed using N-[(4-nitrophenyl)carbamate]valine methylamide (NPCVMA) as the key precursor to adducts of various mono- and diisocyanates of interest. By reacting NPCVMA with a range of isocyanate-related amines, carbamoylated valines are formed without the use of the reactive isocyanates. The carbamoylated products synthesized here were cyclized with good yields of the formed hydantoins. The carbamoylated derivative from phenyl isocyanate also showed quantitative yield in a test with cyclization under the conditions used in blood. This new pathway for the preparation of N-carbamoylated model compounds overcomes the above-mentioned problems in the synthesis and is a general and simplified approach, which could make such reference compounds of adducts to N-terminal valine from isocyanates accessible for biomonitoring purposes. The synthesized hydantoins corresponding to adducts from isocyanic acid, methyl isocyanate, phenyl isocyanate, and 2,6-toluene diisocyanate were characterized by LC-MS analysis. The background level of the hydantoin from isocyanic acid in human blood was analyzed with the LC-MS conditions developed.

  11. Isocyanate exposure and asthma in the UK vehicle repair industry

    PubMed Central

    Jones, K.; Piney, M.; Agius, R. M.

    2015-01-01

    Background Organic diisocyanates are a common cause of occupational asthma, particularly in motor vehicle repair (MVR) workers. The UK Health & Safety Laboratory provides screening for urinary hexamethylenediamine (UHDA), a biomarker of exposure to 1,6-hexamethylene diisocyanate (HDI). The UK Surveillance of Work-related and Occupational Respiratory Disease scheme (SWORD) has collected reports of occupational asthma since 1996. Aims To compare trends in HDI exposure with trends in the incidence of work-related asthma attributed to isocyanates or paint spraying in MVR workers reported to SWORD. Methods Two-level regression models were used to estimate trends in UHDA levels and work-related asthma in MVR workers reported to SWORD. The direction and magnitude of the trends were compared descriptively. Results From 2006 to 2014, there was a significant decline in the number of urine samples with detectable levels of UHDA (odds ratio = 0.96; 95% confidence intervals 0.94–0.98) and minimal change in those over the guidance value (1.03; 1.00–1.06). Over the same period, there was a significant decline in all asthma cases attributed to isocyanates or paint spraying reported to SWORD (0.90; 0.86–0.94) and a non-significant decline among MVR workers (0.94; 0.86–1.02). Conclusions The simultaneous decrease in HDI exposure and incident cases of asthma reported to SWORD is temporally consistent with a reduction in exposure to airborne isocyanate leading to a reduction in asthma. Although this is not direct evidence of a causal relationship between the two trends, it is suggestive. PMID:26209793

  12. Melt electrospinning of biodegradable polyurethane scaffolds

    PubMed Central

    Karchin, Ari; Simonovsky, Felix I.; Ratner, Buddy D.; Sanders, Joan E.

    2014-01-01

    Electrospinning from the melt, in contrast to from solution, is an attractive tissue engineering scaffold manufacturing process as it allows for the formation of small diameter fibers while eliminating potentially cytotoxic solvents. Despite this, there is a dearth of literature on scaffold formation via melt electrospinning. This is likely due to the technical challenges related to the need for a well-controlled high temperature setup and the difficulty in developing an appropriate polymer. In this paper, a biodegradable and thermally stable polyurethane (PU) is described specifically for use in melt electrospinning. Polymer formulations of aliphatic PUs based on (CH2)4-content diisocyanates, polycaprolactone (PCL), 1,4-butanediamine and 1,4-butanediol (BD) were evaluated for utility in the melt electrospinning process. The final polymer formulation, a catalyst-purified PU based on 1,4-butane diisocyanate, PCL and BD in a 4/1/3 molar ratio with a weight-average molecular weight of about 40 kDa, yielded a nontoxic polymer that could be readily electrospun from the melt. Scaffolds electrospun from this polymer contained point bonds between fibers and mechanical properties analogous to many in vivo soft tissues. PMID:21640853

  13. Micromorphology and phase behavior of cationic polyurethane segmented copolymer modified with hydroxysilane.

    PubMed

    Wang, Haihua; Shen, Yiding; Fei, Guiqiang; Li, Xiaorui; Liang, Yong

    2008-08-01

    A series of cationic waterborne polyurethane dispersions (SiPU) modified with hydroxysilane (HPMS) were successfully synthesized based on poly(oxytetramethylene) glycols (PTMG) and isophorone isocyanate (IPDI), and the films were obtained by casting the dispersions on tetrafluoroethylene (TFE) plates. Effects of HPMS content on micromorphology, particle size of the dispersions were studied, as well as thermal properties, phase behavior and surface structure of the films. The particles had the morphology of a solid sphere, with particle size varying from 17.1 nm to 114.4 nm corresponding to the increase of HPMS concentration, which can be attributed to the increase of interfacial tension. XPS spectra indicated the surface migration of Si element in the process of film forming, and the SiPU surface was mainly composed of soft segments. DSC analysis, together with TG-DTG-DTA results demonstrated the HPMS soft segment merged with the transition region of PU matrix, forming part of polyurethane backbone, but an improved microphase separation was observed when HPMS concentration greater than 15%. It was also found that incorporation of flexible HPMS prevented the degradation of polyurethane backbone, resulting in the increase of thermal stability in ultimate copolymer.

  14. Rigid polyurethane foam/cellulose whisker nanocomposites: preparation, characterization, and properties.

    PubMed

    Li, Yang; Ren, Hongfeng; Ragauskas, Arthur J

    2011-08-01

    Novel rigid polyurethane nanocomposite foams have been prepared by the polymerization of a sucrose-based polyol, a glycerol-based polyol and polymeric diphenylmethane diisocyanate in the presence of cellulose whiskers. Varying amounts of sulfuric acid hydrolyzed cellulose whiskers (0.25, 0.50, 0.75 and 1.00 wt%) prepared from a commercial fully bleached softwood kraft pulp were incorporated to investigate the effect of its dosage on the mechanical and thermal properties of polyurethane nanocomposites. Fourier transform infrared spectra of the nanocomposite foams suggested that additional hydrogen bonds were developed and crosslinking occurred between the hydroxyl groups of cellulose whiskers and isocyanate groups which increased the phase separation of soft and hard segments in the polyurethane. The closed cells of control foam and nanocomposite foams were homogeneously dispersed and the cell sizes were approximately 350 microm in diameter as observed by scanning electron microscope. A substantial improvement of mechanical properties at low whisker content (< or = 1.00 wt%) was obtained, especially the compressive strength and modulus at 1.00 wt% whiskers content which were increased by 269.7% and 210.0%, respectively. Thermal stability of the nanocomposites was also enhanced as determined by differential scanning calorimetry and thermogravimetric analysis.

  15. Design of Xylose-Based Semisynthetic Polyurethane Tissue Adhesives with Enhanced Bioactivity Properties.

    PubMed

    Balcioglu, Sevgi; Parlakpinar, Hakan; Vardi, Nigar; Denkbas, Emir Baki; Karaaslan, Merve Goksin; Gulgen, Selam; Taslidere, Elif; Koytepe, Suleyman; Ates, Burhan

    2016-02-01

    Developing biocompatible tissue adhesives with high adhesion properties is a highly desired goal of the tissue engineering due to adverse effects of the sutures. Therefore, our work involves synthesis, characterization, adhesion properties, protein adsorption, in vitro biodegradation, in vitro and in vivo biocompatibility properties of xylose-based semisynthetic polyurethane (NPU-PEG-X) bioadhesives. Xylose-based semisynthetic polyurethanes were developed by the reaction among 4,4'-methylenebis(cyclohexyl isocyanate) (MCI), xylose and polyethylene glycol 200 (PEG). Synthesized polyurethanes (PUs) showed good thermal stability and high adhesion strength. The highest values in adhesion strength were measured as 415.0 ± 48.8 and 94.0 ± 2.8 kPa for aluminum substrate and muscle tissue in 15% xylose containing PUs (NPU-PEG-X-15%), respectively. The biodegradation of NPU-PEG-X-15% was also determined as 19.96 ± 1.04% after 8 weeks of incubation. Relative cell viability of xylose containing PU was above 86%. Moreover, 10% xylose containing NPU-PEG-X (NPU-PEG-X-10%) sample has favorable tissue response, and inflammatory reaction between 1 and 6 weeks implantation period. With high adhesiveness and biocompatibility properties, NPU-PEG-X can be used in the medical field as supporting materials for preventing the fluid leakage after abdominal surgery or wound closure.

  16. Human Mesenchymal Stem Cell Behavior on Segmented Polyurethanes Prepared with Biologically Active Chain Extenders

    PubMed Central

    Kavanaugh, Taylor E.; Clark, Amy Y.; Chan-Chan, Lerma H.; Ramírez-Saldaña, Maricela; Vargas-Coronado, Rossana F.; Cervantes-Uc, José M.; Hernández-Sánchez, Fernando; García, Andrés J.; Cauich-Rodríguez, Juan V.

    2016-01-01

    The development of elastomeric, bioresorbable and biocompatible segmented polyurethanes (SPUs) for use in tissue-engineering applications has attracted considerable interest because of the existing need of mechanically tunable scaffolds for regeneration of different tissues, but the incorporation of osteoinductive molecules into SPUs has been limited. In this study, segmented polyurethanes were synthesized from poly (ε-caprolactone)diol, 4,4’-methylene bis(cyclohexyl isocyanate) (HMDI) using biologically active compounds such as ascorbic acid, L-glutamine, β-glycerol phosphate, and dexamethasone as chain extenders. Fourier Transform Infrared Spectroscopy (FTIR) revealed the formation of both urethanes and urea linkages while Differential Scanning Calorimetry, Dynamic Mechanical Analysis, X-ray Diffraction and mechanical testing showed that these polyurethanes were semi-crystalline polymers exhibiting high deformations. Cytocompatibility studies showed that only SPUs containing β-glycerol phosphate supported human mesenchymal stem cell (hMSC) adhesion, growth, and osteogenic differentiation, rendering them potentially suitable for bone tissue regeneration, whereas other SPUs failed to support either cell growth or osteogenic differentiation, or both. This study demonstrates that modification of SPUs with osteogenic compounds can lead to new cytocompatible polymers for regenerative medicine applications. PMID:26704555

  17. Prevalence of asthma among inhabitants in the vicinity of a polyurethane factory in Finland

    SciTech Connect

    Nuorteva, P.; Assmuth, T.; Haahtela, T.; Ahti, J.; Kurvonen, E.; Nieminen, T.; Saarainen, T.; Seppaelae, K.Ve.; Veide, P.; Viholainen, S.

    1987-08-01

    Because toluene diisocyanate (TDI) is a strong sensitizer for asthma among workers in polyurethane factories, it is mostly extracted from the factory premises. The influence of such emissions on the prevalence of asthma among the people living in the vicinity of a polyurethane factory in Kouvola, Southern Finland, was studied through a questionnaire survey sent to 6807 persons living around the factory and in a control area; of these 4182 (61%) responded. In the study area near the factory there were 68 cases of asthma out of 3153 respondents (2.2%). In the control area there were 25 cases out of 1029 respondents (2.4%). The difference is insignificant (chi 2 = 0.27). Among the middle-aged the prevalence was significantly higher in the control area (chi 2 = 6.8). There was some indication of a lower asthma prevalence in the zone nearest to the factory, possibly due to its psychologically repellent effect on asthmatics, causing them to move away. Serum samples from 62 asthma patients out of 68 contacted (91%) were received and analyzed for TDI, HDI, and MDI. A positive result for the isocyanates was observed in only one patient who had been exposed in his occupation outside the factory. It was concluded that the polyurethane factory did not have a noticeable influence upon the prevalence of asthma in its surroundings.

  18. Role of vitamin D-binding protein in isocyanate-induced occupational asthma.

    PubMed

    Kim, Sung-Ho; Choi, Gil-Soon; Nam, Young-Hee; Kim, Joo-Hee; Hur, Gyu-Young; Kim, Seung-Hyun; Park, Sang Myun; Park, Hae-Sim

    2012-05-31

    The development of a serological marker for early diagnosis of isocyanate-induced occupational asthma (isocyanate-OA) may improve clinical outcome. Our previous proteomic study found that expression of vitamin D-binding protein (VDBP) was upregulated in the patients with isocyanate-OA. In the present study, we evaluated the clinical relevance of VDBP as a serological marker in screening for isocyanate-OA among exposed workers and its role in the pathogenesis of isocyanate-OA. Three study groups including 61 patients with isocyanate-OA (group I), 180 asymptomatic exposed controls (AECs, group II), 58 unexposed healthy controls (NCs, group III) were enrolled in this study. The baseline serum VDBP level was significantly higher in group I compared with groups II and III. The sensitivity and specificity for predicting the phenotype of isocyanate-OA with VDBP were 69% and 81%, respectively. The group I subjects with high VDBP (≥311 μg/ml) had significantly lower PC(20) methacholine levels than did subjects with low VDBP. The in vitro studies showed that TDI suppressed the uptake of VDBP into RLE-6TN cells, which was mediated by the downregulation of megalin, an endocytic receptor of the 25-hydroxycholecalciferol-VDBP complex. Furthermore, toluene diisocyanate (TDI) increased VEGF production and secretion from this epithelial cells by suppression of 1,25-dihydroxycholecalciferol [1,25(OH)(2)D(3)] production. The findings of this study suggest that the serum VDBP level may be used as a serological marker for the detection of isocyanate-OA among workers exposed to isocyanate. The TDI-induced VEGF production/ secretion was reversed by 1,25(OH)(2)D(3) treatment, which may provide a potential therapeutic strategy for patients with isocyanate-OA.

  19. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology.

    PubMed

    Trinca, Rafael Bergamo; Abraham, Gustavo A; Felisberti, Maria Isabel

    2015-11-01

    Biocompatible polymeric scaffolds are crucial for successful tissue engineering. Biomedical segmented polyurethanes (SPUs) are an important and versatile class of polymers characterized by a broad spectrum of compositions, molecular architectures, properties and applications. Although SPUs are versatile materials that can be designed by different routes to cover a wide range of properties, they have been infrequently used for the preparation of electrospun nanofibrous scaffolds. This study reports the preparation of new electrospun polyurethane scaffolds. The segmented polyurethanes were synthesized using low molar masses macrodyols (poly(ethylene glycol), poly(l-lactide) and poly(trimethylene carbonate)) and 1,6-hexane diisocyanate and 1,4-butanodiol as isocyanate and chain extensor, respectively. Different electrospinning parameters such as solution properties and processing conditions were evaluated to achieve smooth, uniform bead-free fibers. Electrospun micro/nanofibrous structures with mean fiber diameters ranging from 600nm to 770nm were obtained by varying the processing conditions. They were characterized in terms of thermal and dynamical mechanical properties, swelling degree and morphology. The elastomeric polyurethane scaffolds exhibit interesting properties that could be appropriate as biomimetic matrices for soft tissue engineering applications.

  20. Process produces chlorinated aromatic isocyanate in high yield

    NASA Technical Reports Server (NTRS)

    Trischler, F.

    1966-01-01

    Tetrachloreterephthaloyl chloride reacts with sodium azide in an atmosphere of nitrogen to form a high yield of tetrachloro-p-phenylene diisocyanate. The chlorinated diisocyanate should have application as an intermediate in the preparation of polyurethane foams. The high halogen content would impart added flame resistance to these foams.

  1. Anaerobic digestion of aliphatic polyesters.

    PubMed

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry.

  2. Assessment of exposure to TDI and MDI during polyurethane foam production in Poland using integrated theoretical and experimental data.

    PubMed

    Kupczewska-Dobecka, Małgorzata; Czerczak, Sławomir; Brzeźnicki, Sławomir

    2012-09-01

    The aim of this study was to develop an optimal strategy for the assessment of inhalation exposure to isocyanates such as TDI and MDI in the production of polyurethane foam by integration of theoretical and experimental data. ECETOC TRA and EASE predictive models were used to determine the estimated levels of exposure to isocyanates. The results of our study suggest that both applications EASE and ECETOC TRA can be used as a screening 1st Tier tool in this case study. PROC12 ECETOC TRA category can be linked to exposure on TDI during polyurethane foam manufacturing because it is working properly and exceeds 90th percentile measured concentration with factor 3 and the maximum measured value with factor 1, 5. The value estimated by using category PROC2 is underestimated so this category should not be linked to this scenario. At the same time, the applications of EASE overstate the expected concentrations although the scenario "Use in closed process" seems to underestimate the exposure at the "lower end". For MDI the both models estimate exposure in a conservative manner.

  3. Cell cycle deregulation by methyl isocyanate: Implications in liver carcinogenesis.

    PubMed

    Panwar, Hariom; Raghuram, Gorantla V; Jain, Deepika; Ahirwar, Alok K; Khan, Saba; Jain, Subodh K; Pathak, Neelam; Banerjee, Smita; Maudar, Kewal K; Mishra, Pradyumna K

    2014-03-01

    Liver is often exposed to plethora of chemical toxins. Owing to its profound physiological role and central function in metabolism and homeostasis, pertinent succession of cell cycle in liver epithelial cells is of prime importance to maintain cellular proliferation. Although recent evidence has displayed a strong association between exposures to methyl isocyanate (MIC), one of the most toxic isocyanates, and neoplastic transformation, molecular characterization of the longitudinal effects of MIC on cell cycle regulation has never been performed. Here, we sequentially delineated the status of different proteins arbitrating the deregulation of cell cycle in liver epithelial cells treated with MIC. Our data reaffirms the oncogenic capability of MIC with elevated DNA damage response proteins pATM and γ-H2AX, deregulation of DNA damage check point genes CHK1 and CHK2, altered expression of p53 and p21 proteins involved in cell cycle arrest with perturbation in GADD-45 expression in the treated cells. Further, alterations in cyclin A, cyclin E, CDK2 levels along with overexpression of mitotic spindle checkpoints proteins Aurora A/B, centrosomal pericentrin protein, chromosomal aberrations, and loss of Pot1a was observed. Thus, MIC impacts key proteins involved in cell cycle regulation to trigger genomic instability as a possible mechanism of developmental basis of liver carcinogenesis.

  4. Experiments on the Multiphase Chemistry of Isocyanic Acid, HNCO.

    NASA Astrophysics Data System (ADS)

    Roberts, J. M.; Liu, Y.

    2015-12-01

    Isocyanic acid, HNCO, has emerged as a potentially important reduced nitrogen compound that is emitted in wildfires, and may have health effect implications. The extent of the health effects depends on the solubility of HNCO in aqueous and non-aqueous solutions and the relative rates of hydrolysis versus carbamylation reactions (for example: HNCO + ROH => H2NC(O)OR). We report here results of studies of HNCO solubility and its reaction in buffered aqueous solutions (pH3), tridecane, and n-octanol at temperatures over the range 5 to 37°C. From these data, the heats of solution and activation energy of hydrolysis are estimated, and a partition coefficient between n-octanol and water at 25°C is greater than 1 for low pH solutions, indicating appreciable portioning to a non-polar phase, but HNCO will be distributed mostly in the aqueous phase at neutral pH. In addition, it was found that the rate of reaction of HNCO with n-octanol was competitive with hydrolysis under physiologically relevant conditions (pH7.4, 37°C), indicating that carbamylation of ROH groups could be significant. Based on these results, research on the carbamylation of other functional groups, and solubility and reaction studies of other isocyanates (e.g. CH3NCO) are warranted. The implications of this multi-phase chemistry for global exposures to wildfire emissions will be discussed.

  5. Thermal and Mechanical Properties of Sequential and Simultaneous Thiol-Ene-Isocyanate Networks

    NASA Astrophysics Data System (ADS)

    McNair, Olivia; Brent, Davis; Savin, Daniel

    2011-03-01

    Ternary networks containing having stoichiometrically balanced thiol /(ene+isocyanate) ranging from 0 to 20 mol% isocyanate were synthesized via sequential or simultaneous thiol/ene and thiol/isocyanate click reactions. The effects of cross-link density were studied using three thiols, GDMP (difunctional), 3T (trifunctional) and 4T (tetrafunctional) respectively. TEA catalyzes the isocyanate-thiol coupling and chain extension, while the photoinitiator DMPA initiates a radical thiol-ene crosslinking process. Real-time FTIR was used to study kinetics of both light and dark reactions utilizing thiol, ene and isocyanate peaks which appear independently. It was found that difunctional thiols and isocyanates reacted initially, forming chain extended prepolymers end-capped with thiol functionalities. Upon UV irradiation, thiol functionalized prepolymers reacted with TTT, a trifunctional ene, forming networks containing incorporated thiourethane linkages. Initial DSC results indicated higher Tgs for higher cross-linked networks; however, isocyanate content has significant effects on each system. Films were also be thermally characterized via DMA and mechanical properties measured using MTS.

  6. Prevention Guidance for Isocyanate-Induced Asthma Using Occupational Surveillance Data

    PubMed Central

    Reeb-Whitaker, Carolyn; Anderson, Naomi J.; Bonauto, David K.

    2013-01-01

    Data from Washington State's work-related asthma surveillance system were used to characterize isocyanate-induced asthma cases occurring from 1999 through 2010. Injured worker interviews and medical records were used to describe the industry, job title, work process, workers’ compensation cost, and exposure trends associated with 27 cases of isocyanate-induced asthma. The majority (81%) of cases were classified within the surveillance system as new-onset asthma while 19% were classified as work-aggravated asthma. The workers’ compensation cost for isocyanate-induced asthma cases was $1.7 million; this was 14% of the total claims cost for all claims in the asthma surveillance system. The majority of cases (48%) occurred from paint processes, followed by foam application or foam manufacturing (22%). Nine of the asthma cases associated with spray application occurred during application to large or awkward-shaped objects. Six workers who did not directly handle isocyanates (indirect exposure) developed new-onset asthma. Two cases suggest that skin contact and processes secondary to the isocyanate spray application, such as cleanup, contributed to immune sensitization. Surveillance data provide insight for the prevention of isocyanate-induced respiratory disease. Key observations are made regarding the development of work-related asthma in association with a) paint application on large objects difficult to ventilate, b) indirect exposure to isocyanates, c) exposure during secondary or cleanup processes, and d) reports of dermal exposure. PMID:24116665

  7. Imbalance of mitochondrial-nuclear cross talk in isocyanate mediated pulmonary endothelial cell dysfunction.

    PubMed

    Panwar, Hariom; Jain, Deepika; Khan, Saba; Pathak, Neelam; Raghuram, Gorantla V; Bhargava, Arpit; Banerjee, Smita; Mishra, Pradyumna K

    2013-01-01

    Mechanistic investigations coupled with epidemiology, case-control, cohort and observational studies have increasingly linked isocyanate exposure (both chronic and acute) with pulmonary morbidity and mortality. Though ascribed for impairment in endothelial cell function, molecular mechanisms of these significant adverse pulmonary outcomes remains poorly understood. As preliminary studies conducted in past have failed to demonstrate a cause-effect relationship between isocyanate toxicity and compromised pulmonary endothelial cell function, we hypothesized that direct exposure to isocyanate may disrupt endothelial structural lining, resulting in cellular damage. Based on this premise, we comprehensively evaluated the molecular repercussions of methyl isocyanate (MIC) exposure on human pulmonary arterial endothelial cells (HPAE-26). We examined MIC-induced mitochondrial oxidative stress, pro-inflammatory cytokine response, oxidative DNA damage response and apoptotic index. Our results demonstrate that exposure to MIC, augment mitochondrial reactive oxygen species production, depletion in antioxidant defense enzymes, elevated pro-inflammatory cytokine response and induced endothelial cell apoptosis via affecting the balance of mitochondrial-nuclear cross talk. We herein delineate the first and direct molecular cascade of isocyanate-induced pulmonary endothelial cell dysfunction. The results of our study might portray a connective link between associated respiratory morbidities with isocyanate exposure, and indeed facilitate to discern the exposure-phenotype relationship in observed deficits of pulmonary endothelial cell function. Further, understanding of inter- and intra-cellular signaling pathways involved in isocyanate-induced endothelial damage would not only aid in biomarker identification but also provide potential new avenues to target specific therapeutic interventions.

  8. Prevention guidance for isocyanate-induced asthma using occupational surveillance data.

    PubMed

    Reeb-Whitaker, Carolyn; Anderson, Naomi J; Bonauto, David K

    2013-01-01

    Data from Washington State's work-related asthma surveillance system were used to characterize isocyanate-induced asthma cases occurring from 1999 through 2010. Injured worker interviews and medical records were used to describe the industry, job title, work process, workers' compensation cost, and exposure trends associated with 27 cases of isocyanate-induced asthma. The majority (81%) of cases were classified within the surveillance system as new-onset asthma while 19% were classified as work-aggravated asthma. The workers' compensation cost for isocyanate-induced asthma cases was $1.7 million; this was 14% of the total claims cost for all claims in the asthma surveillance system. The majority of cases (48%) occurred from paint processes, followed by foam application or foam manufacturing (22%). Nine of the asthma cases associated with spray application occurred during application to large or awkward-shaped objects. Six workers who did not directly handle isocyanates (indirect exposure) developed new-onset asthma. Two cases suggest that skin contact and processes secondary to the isocyanate spray application, such as cleanup, contributed to immune sensitization. Surveillance data provide insight for the prevention of isocyanate-induced respiratory disease. Key observations are made regarding the development of work-related asthma in association with a) paint application on large objects difficult to ventilate, b) indirect exposure to isocyanates, c) exposure during secondary or cleanup processes, and d) reports of dermal exposure.

  9. Different respiratory phenotypes are associated with isocyanate exposure in spray painters.

    PubMed

    Pronk, A; Preller, L; Doekes, G; Wouters, I M; Rooijackers, J; Lammers, J-W; Heederik, D

    2009-03-01

    Associations have been observed between exposure to isocyanates, consisting mainly of oligomers, and respiratory symptoms and isocyanate specific sensitisation in spray painters. The aim of the present study was to assess associations between isocyanate exposure and more objective respiratory effect measures such as bronchial hyperresponsiveness (BHR), baseline spirometry and exhaled nitric oxide (eNO) in a subset of spray painters. Methacholine challenge and eNO measurements were performed in 229 workers. Questionnaires and blood samples were obtained. Specific immunoglobulin (Ig)E and IgG to hexamethylene di-isocyanate were assessed in serum using various assays. Personal exposure was estimated by combining personal task-based inhalatory exposure measurements and time-activity information. Workers with higher isocyanate exposure were more often hyperresponsive (prevalence ratio comparing the 75th versus 25th percentile of exposure 1.8). In addition, significant exposure-related decreased forced expiratory volume in one second (FEV(1)), FEV(1)/forced vital capacity ratio and flow-volume parameters independent of BHR were found. BHR was more prevalent among sensitised workers. This was statistically significant for only IgG-ImmunoCAP (Phadia, Uppsala, Sweden) positive workers. eNO was not associated with exposure although slightly elevated eNO levels in specific IgG positive subjects were found. The current study provides evidence that exposure to isocyanate oligomers is related to asthma with bronchial hyperresponsiveness as a hallmark, but also shows independent chronic obstructive respiratory effects resulting from isocyanate exposure.

  10. Occupational allergic contact dermatitis in a company manufacturing boards coated with isocyanate lacquer.

    PubMed

    Frick, Malin; Isaksson, Marléne; Björkner, Bert; Hindsén, Monica; Pontén, Ann; Bruze, Magnus

    2003-05-01

    Over a short period of time, there was an outbreak of work-related skin lesions among workers at a company producing flooring laminate boards, after the introduction of a water-repellent lacquer based on diphenylmethane-4,4'-diisocyanate (MDI). In 5 workers, patch testing was performed with a standard series, an isocyanate series and work-environmental products when indicated. 3 of the workers were tested with the lacquer, and contact allergy was found with concurrent reactions to 4,4'-diaminodiphenylmethane (MDA). 1 of the 3 workers also showed a simultaneous reaction to MDI, whereas 1 showed a positive reaction to dicyclohexylmethane-4,4'-diisocyanate (HMDI). Of the 2 individuals not tested with the lacquer, 1 reacted to both MDI and MDA, whereas the other reacted to a soap used at work. In 3 of 4 cases, the isocyanate reactions appeared after D3. Occupational contact with isocyanates should not exclusively be focused upon respiratory hazards, as this report shows that skin contamination probably increases the risk of developing contact allergy to isocyanates and isocyanate-related substances. When aiming at diagnosing contact allergy to isocyanates, it is desirable to perform a late reading, as positive reactions appear late. MDA appears to be a good marker for isocyanate hypersensitivity.

  11. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system.

    PubMed

    Kucinska-Lipka, J; Gubanska, I; Janik, H; Sienkiewicz, M

    2015-01-01

    Electrospinning is a unique technique, which provides forming of polymeric scaffolds for soft tissue engineering, which include tissue scaffolds for soft tissues of the cardiovascular system. Such artificial soft tissues of the cardiovascular system may possess mechanical properties comparable to native vascular tissues. Electrospinning technique gives the opportunity to form fibres with nm- to μm-scale in diameter. The arrangement of obtained fibres and their surface determine the biocompatibility of the scaffolds. Polyurethanes (PUs) are being commonly used as a prosthesis of cardiovascular soft tissues due to their excellent biocompatibility, non-toxicity, elasticity and mechanical properties. PUs also possess fine spinning properties. The combination of a variety of PU properties with an electrospinning technique, conducted at the well tailored conditions, gives unlimited possibilities of forming novel polyurethane materials suitable for soft tissue scaffolds applied in cardiovascular tissue engineering. This paper can help researches to gain more widespread and deeper understanding of designing electrospinable PU materials, which may be used as cardiovascular soft tissue scaffolds. In this paper we focus on reagents used in PU synthesis designed to increase PU biocompatibility (polyols) and biodegradability (isocyanates). We also describe suggested surface modifications of electrospun PUs, and the direct influence of surface wettability on providing enhanced biocompatibility of scaffolds. We indicate a great influence of electrospinning parameters (voltage, flow rate, working distance) and used solvents (mostly DMF, THF and HFIP) on fibre alignment and diameter - what impacts the biocompatibility and hemocompatibility of such electrospun PU scaffolds. Moreover, we present PU modifications with natural polymers with novel approach applied in electrospinning of PU scaffolds. This work may contribute with further developing of novel electrospun PUs, which may be

  12. Light Stability of Polyurethane Coatings.

    DTIC Science & Technology

    1986-06-16

    photo-Fries rearrangement products obtained upon photolysis of MDI and 2,4-TDI based polyurethanes. Using a combination of fluorescence spectroscopy...conducted using a Xenon lamp/monochromator combination with 10 nm slits. Photolysis of ,4-TDI-dodecanediol polyurethane films were accomplished using a 100... polyrethane in which the rearrangement is apparently inhibited by the restrictive nature of the crystalline morphology. Similar photolysis of a semi

  13. Flame retardant spandex type polyurethanes

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Sidman, K. R.; Massucco, A. A. (Inventor)

    1978-01-01

    Flame retardant elastomeric compositions were developed, comprised of: (1) spandex type polyurethane having incorporated into the polymer chain, halogen containing polyols; (2) conventional spandex type polyurethanes in physical admixture flame retardant additives; and (3) fluoroelastomeric resins in physical admixture with flame retardant additives. Methods of preparing fibers of the flame retardant elastomeric materials are presented and articles of manufacture comprised of the elastomeric materials are mentioned.

  14. Reactive N-protonated isocyanate species stabilized by bis(μ-hydroxo)divanadium(IV)-substituted polyoxometalate.

    PubMed

    Uehara, Kazuhiro; Fukaya, Keisuke; Mizuno, Noritaka

    2012-07-27

    O- or N-protonated? The bis(μ-hydroxo)divanadium(IV)-substituted γ-Keggin-type polyoxometalate (see picture, left) (TBA)(4)[γ-SiV(IV)(2)W(10)O(36)(μ-OH)(4)] (TBA = tetra(n-butyl)ammonium) was synthesized and characterized by X-ray crystallography. Its reaction with phenyl isocyanate gave (TBA)(4)[γ-SiV(IV)(2)W(10)O(38)(μ-OH)(2)(PhNHCO)(2)], which contains two N-protonated phenyl isocyanate species and catalyzes the cyclotrimerization of phenyl isocyanate.

  15. Sustained-release microsphere formulation containing an agrochemical by polyurethane polymerization during an agitation granulation process.

    PubMed

    Terada, Takatoshi; Tagami, Manabu; Ohtsubo, Toshiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2016-07-25

    In this report, a new solventless microencapsulation method by synthesizing polyurethane (PU) from polyol and isocyanate during an agglomeration process in a high-speed mixing apparatus was developed. Clothianidin (CTD), which is a neonicotinoid insecticide and highly effective against a wide variety of insect pests, was used as the model compound. The microencapsulated samples covered with PU (CTD microspheres) had a median diameter of <75μm and sustained-release properties. The CTD microspheres were analyzed by synchrotron X-ray computed tomography measurements. Multiple cores of CTD and other solid excipient were dispersed in PU. Although voids appeared in the CTD microspheres after CTD release, the spherical shape of the microspheres remained stable and no change in its framework was observed. The experimental release data were highly consistent with the Baker-Lonsdale model derived from drug release of spherical monolithic dispersions and consistent with the computed tomography measurements.

  16. Comparison of Polyurethanes with Polyhydroxyurethanes: Effect of the Hydroxyl Group on Structure-Property Relationships

    NASA Astrophysics Data System (ADS)

    Leitsch, Emily K.; Lombardo, Vince M.; Scheidt, Karl A.; Torkelson, John M.

    2014-03-01

    Polyurethanes (PUs) are commonly synthesized by rapid step-growth polymerization through the reaction of a multifunctional alcohol with a polyisocyanate. PUs can be prepared at ambient conditions utilizing a variety of starting material molecular weights and backbones, resulting in highly tunable thermal and physical properties. The urethane linkages as well as the nanophase separated morphology attainable in PU materials lead to desirable properties including elastomeric character and adhesion. The isocyanate-based monomers used in the synthesis of traditional PUs have come under increasing regulatory pressure and thus inspired the investigation of alternative routes for the formation of PU materials. We examine an alternative route to synthesize PU- the reaction of five-membered cyclic carbonate with amines. This reaction results in the formation of a urethane linkage with an adjacent alcohol group. The effects of this hydroxyl group on the thermal and mechanical properties of the resulting polymer are investigated and compared with an analogous traditional PU system.

  17. Infrared light actuated shape memory effects in crystalline polyurethane/graphene chemical hybrids

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Kim, B. K.

    2014-02-01

    A series of crystalline shape memory polyurethanes (SMPUs) were synthesized from polycaprolactone diols and 4,4‧-methylenedicyclohexyl diisocyanate (H12MDI) with chemical incorporation of allyl isocyanate modified graphene oxide (iGO) into the PU. Actuation of hybrid SMPUs by infrared (IR) absorption of iGO as well as the direct heat actuated SMPUs has been studied in terms of the isothermal crystallization rate, near-IR absorption, and thermal, mechanical, and shape memory properties. It was found that iGO functions as a multifunctional cross-linker at low contents and a nucleating agent at high contents, and as a reinforcing filler, while light absorption by the iGO induced melting of the PU soft segment, giving rise to a shape recovery of over 90% at 1% iGO (G10).

  18. Synthesis of palm-based polyurethane-LiClO{sub 4} via prepolymerization

    SciTech Connect

    Sien, Jason Wong Chee; Badri, Khairiah Haji; Su’ait, Mohd Sukor; Hassan, Nurul Izzati

    2015-09-25

    Palm-based polyurethane (pPU) with varying lithium salt (LiClO{sub 4}) content was synthesized. Higher loading percentage of LiClO{sub 4} in the pPU led to the inhibition of prepolymerization process from taking place. Hydrogen bonded C=O was detected in the FTIR spectrum indicating the hydrogen bonding between the urethane bonds. Ordered complexed C=O was observed in the FTIR spectrum confirming the complex formation between urethane bond and Li{sup +} ion. DSC thermogram showed the increase in the LiClO{sub 4} content could increase the glass transition temperature. SEM micrographs exhibited that more bubbles were formed when the LiClO{sub 4} increased from 10 to 30wt% indicating the reaction between free isocyanate groups with moisture presence in the salt due to the hygroscopic properties of LiClO{sub 4}.

  19. Synthesis of palm-based polyurethane-LiClO4 via prepolymerization

    NASA Astrophysics Data System (ADS)

    Sien, Jason Wong Chee; Badri, Khairiah Haji; Su'ait, Mohd. Sukor; Hassan, Nurul Izzati

    2015-09-01

    Palm-based polyurethane (pPU) with varying lithium salt (LiClO4) content was synthesized. Higher loading percentage of LiClO4 in the pPU led to the inhibition of prepolymerization process from taking place. Hydrogen bonded C=O was detected in the FTIR spectrum indicating the hydrogen bonding between the urethane bonds. Ordered complexed C=O was observed in the FTIR spectrum confirming the complex formation between urethane bond and Li+ ion. DSC thermogram showed the increase in the LiClO4 content could increase the glass transition temperature. SEM micrographs exhibited that more bubbles were formed when the LiClO4 increased from 10 to 30wt% indicating the reaction between free isocyanate groups with moisture presence in the salt due to the hygroscopic properties of LiClO4.

  20. Palm kernel oil-based polyurethane film: Biocompatibility and antibacterial activity studies

    NASA Astrophysics Data System (ADS)

    Zulkifli, Nurul Nabilah bt; Badri, Khairiah bt Hj; Nor, Mohd Al Amin Muhamad; Amin, Khairul Anuar Mat

    2017-02-01

    In this study, polyurethane (PU) film was prepared from palm kernel oil-based polyester (PKO-p) via pre-polymerization with isocyanate/polyol group ([NCO/OH]). PU films were physically characterized to investigate the mechanical properties, thermal behavior, water uptake, water vapor transmission rates as well as biocompatibility and antibacterial activities against Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). Results showed that PU 2 film exhibited optimum mechanical performance and thermal properties with the water vapor transmission rates at 267 ± 17 g m-2 d-1, comparable to commercial dressing. Biocompatibility studies revealed that PU films were non-cytotoxic to the human skin fibroblast cells (CRL2522) and exhibited bactericidal effect against both bacteria.

  1. Polyurethane Self-Priming Topcoats

    DTIC Science & Technology

    1994-03-01

    acid , pdmi- 3>3 -d’^thoxy-4 4 -d.phenylene d.isocy tic acid , stearic acid , etc. lene-bis-(4- cyclohexyl isocyanate) The dicarboxylic acids ...diisocyanate, succinic acid , glutaric acid , adipic acid and pimelic acid . cyclohexylene-l,2-diisocyanate, useful acids are those in which R has 2 to 8...zinc phosphate, zinc salts of benzoic acids , and an alkaline earth metal phosphate such as zinc-barium phosphate. In addition, the coating

  2. Synthesis and characterisation of coating polyurethane cationomers containing fluorine built-in hard urethane segments.

    PubMed

    Król, Bożena; Król, Piotr; Pikus, Stanisław; Chmielarz, Paweł; Skrzypiec, Krzysztof

    2010-08-01

    Polyurethane cationomers were synthesised in the reaction of 4,4'-methylenebis(phenyl isocyanate) with polyoxyethylene glycol (M = 2,000) or poly(tetrafluoroethyleneoxide-co-difluoromethylene oxide) α,ω-diisocyanate and N-methyl diethanolamine. Amine segments were built-in to the urethane-isocyanate prepolymer in the reaction with 1-bromobutane or formic acid, and then they were converted to alkylammonium cations. The obtained isocyanate prepolymers were then extended in the aqueous medium that yielded stable aqueous dispersions which were applied on the surfaces of test poly(tetrafluoroethylene) plates. After evaporation of water, the dispersions formed thin polymer coatings. (1)H, (13)C NMR and IR spectral methods were employed to confirm chemical structures of synthesised cationomers. Based on (1)H NMR and IR spectra, the factors κ and α were calculated, which represented the polarity level of the obtained cationomers. The DSC, wide angle X-ray scattering and atom force microscopy methods were employed for the microstructural assessment of the obtained materials. Changes were discussed in the surface free energy and its components, as calculated independently according to the method suggested by van Oss-Good, in relation to chemical and physical structures of cationomers as well as morphology of coating surfaces obtained from those cationomers. Fluorine incorporated into cationomers (about 30%) contributed to lower surface free energy values, down to about 15 mJ/m(2). That was caused by gradual weakening of long-range interactions within which the highest share is taken by dispersion interactions.

  3. Flexible starch-polyurethane films: Physiochemical characteristics and hydrophobicity.

    PubMed

    Tai, N L; Adhikari, Raju; Shanks, Robert; Adhikari, Benu

    2017-05-01

    Starch-polyurethane (PU) composite films with improved mechanical and hydrophobic properties were developed in this work. A simple and effective microwave-aided starch gelatinisation instrument was used to prepare glycerol plasticized high amylose starch (HAGS) material. Polyethylene glycol-isocyanate (PEG-iso) linker was prepared by reacting PEG 1000 with hexamethylene diisocyanate (HMDI). PEG-iso linker was then grafted into HAGS forming three dimensional urethane networks (PEG-PU). HAGS-PEG-PU composite blends were prepared and dried at ambient temperature to obtain HAGS-PEG-PU films. The mechanical properties and hydrophobicity (as contact angle, CA) of the HAGS-PEG-PU films were measured and analysed. Fourier transform infrared spectroscopy showed good grafting of PEG-iso into starch structure. Increase of PEG-iso concentration up to 20% (w/w) improved the molecular mixing and interpenetration between the starch and PEG-PU. The HAGS-PEG-PU films had improved hydrophobicity as indicated by CA values ranging from 51 to 110°and very high flexibility as evidenced from elongation at break (εB) values from 17 to 1000%. The HAGS-PEG-PU film formulation containing 20% (w/w) PEG-iso provided the best flexibility (εB>1000%) and hydrophobicity (CA>110°).

  4. Synthesis and characterization of iodinated polyurethane with inherent radiopacity.

    PubMed

    Kiran, S; James, Nirmala R; Joseph, Roy; Jayakrishnan, A

    2009-10-01

    The synthesis and characterization of polyurethane (PU) with excellent radiopacity for medical and allied applications are reported. Bisphenol-A (BPA) was iodinated to obtain 4,4'-isopropylidinedi-(2,6-diiodophenol) (IBPA) which was used as a chain extender for the preparation of a radiopaque PU. The PU was prepared by reacting 4,4'-methylenebis(phenyl isocyanate) (MDI), poly(tetramethylene glycol) (PTMG) and IBPA in 2.2:1.2:1 molecular ratio and is characterized by infrared spectroscopy (IR), thermogravimetry (TGA), dynamic mechanical analysis (DMA), energy dispersive X-ray analysis (EDX), gel permeation chromatography (GPC) and X-radiography. X-ray images showed that the PU prepared using IBPA as the chain extender is highly radiopaque. An in vitro cytotoxicity test using L929 mouse fibroblast cells shows that the PU is non-cytotoxic. The outlined synthesis of a PU with radiocontrast properties opens up the possibility of synthesizing many different kinds of radiopaque PUs with desirable range of physical properties exploiting the versatility in their chemical synthesis.

  5. An N-halamine-based rechargeable antimicrobial and biofilm controlling polyurethane.

    PubMed

    Sun, Xinbo; Cao, Zhengbing; Porteous, Nuala; Sun, Yuyu

    2012-04-01

    An N-halamine precursor, 5,5-dimethylhydantoin (DMH), was covalently linked to the surface of polyurethane (PU) with 1,6-hexamethylene diisocyanate (HDI) as the coupling agent. The reaction pathways were investigated using propyl isocyanate (PI) as a model compound. The results suggested that the imide and amide groups of DMH have very similar reactivities toward the isocyanate groups on PU surfaces activated with HDI. After bleach treatment the covalently bound DMH moieties were transformed into N-halamines. The new N-halamine-based PU provided potent antimicrobial effects against Staphylococcus aureus (Gram-positive bacterium), Escherichia coli (Gram-negative bacterium), methicillin-resistant Staphylococcus aureus (MRSA, drug-resistant Gram-positive bacterium), vancomycin-resistant Enterococcus faecium (VRE, drug-resistant Gram-positive bacterium), and Candida albicans (fungus), and successfully prevented bacterial and fungal biofilm formation. The antimicrobial and biofilm controlling effects were stable for longer than 6 months under normal storage in open air. Furthermore, if the functions were lost due to prolonged use they could be recharged by another chlorination treatment. The recharging could be repeated as needed to achieve long-term protection against microbial contamination and biofilm formation.

  6. Bhopal tragedy's health effects: A review of methyl isocyanate toxicity

    SciTech Connect

    Mehta, P.S. ); Mehta, A.S. ); Mehta, S.J. ); Makhijani, A.B. )

    1990-12-05

    Six years ago, on December 3, 1984, a toxic gas leak at a Union Carbide pesticide plant in Bhopal, India, released methyl isocyanate (MIC) and its reaction products. The number of persons exposed and injured remains uncertain. Official estimates from the Indian government place the dead at around 1,800. Others estimate mortality to have been between 2,500 and 5,000 and the number of injured to have been up to 200,000. Until the Bhopal incident, neither deaths nor cases of toxic effects from MIC exposure had been recorded in Index Medicus. The authors have extensively surveyed the medical literature concerning effects of MIC exposure on the victims of the disaster and laboratory studies in animals. A great deal has been learned, but many questions still remain unanswered.

  7. Methyl isocyanate: reproductive and development toxicology studies in Swiss mice

    SciTech Connect

    Schwetz, B.A.; Adkins, B. Jr.; Harris, M.; Moorman, M.; Sloane, R.

    1987-06-01

    Studies were conducted in Swiss (CD-1) mice to evaluate the potential of inhaled vapors of methyl isocyanate (MIC) to affect reproduction and development. Inhaled MIC at concentrations of 0, 1, or 3 ppm, 6 hr per day during days 14 through 17 of gestation caused a significant increase in the number of dead fetuses at birth and caused a significant decrease in neonatal survival during lactation. In contrast, exposure of male and female mice to 1 or 3 ppm given 6 hr per day for 4 consecutive days had no effect on reproduction during mating trials conducted 1, 8, and 17 weeks after the exposure period. Similarly, there was no evidence of a dominant lethal effect in exposed male mice.

  8. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry.

    PubMed

    Zhu, Chenggang; Zhu, Xiangdong; Landry, James P; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan

    2016-03-16

    Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%.

  9. Developing an Efficient and General Strategy for Immobilization of Small Molecules onto Microarrays Using Isocyanate Chemistry

    PubMed Central

    Zhu, Chenggang; Zhu, Xiangdong; Landry, James P.; Cui, Zhaomeng; Li, Quanfu; Dang, Yongjun; Mi, Lan; Zheng, Fengyun; Fei, Yiyan

    2016-01-01

    Small-molecule microarray (SMM) is an effective platform for identifying lead compounds from large collections of small molecules in drug discovery, and efficient immobilization of molecular compounds is a pre-requisite for the success of such a platform. On an isocyanate functionalized surface, we studied the dependence of immobilization efficiency on chemical residues on molecular compounds, terminal residues on isocyanate functionalized surface, lengths of spacer molecules, and post-printing treatment conditions, and we identified a set of optimized conditions that enable us to immobilize small molecules with significantly improved efficiencies, particularly for those molecules with carboxylic acid residues that are known to have low isocyanate reactivity. We fabricated microarrays of 3375 bioactive compounds on isocyanate functionalized glass slides under these optimized conditions and confirmed that immobilization percentage is over 73%. PMID:26999137

  10. Aliphatic amines in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Jungclaus, G.; Cronin, J. R.; Moore, C. B.; Yuen, G. U.

    1976-01-01

    The paper reports on the determination of aliphatic amines in water extracts of the Murchison meteorite. The amines were analyzed by gas chromatography both as the free amines and as 2,4-dinitrophenyl (DNP) derivatives. The results give evidence for the presence of all of the possible primary aliphatic monoamines (eight) with fewer than five carbon atoms. Two of the seven possible secondary or tertiary aliphatic monoamines were identified. The identified primary amines total 80 nmol per g meteorite, and seem to be chemically or physically trapped in the meteorite. Similarities between the water-extractable amines and amino acids suggest that (1) a simple carbon compound, methane, for example, is the precursor of meteorite amines and amino acids, and (2) both amines and amino acids are extracted from the meteorite both as such and in the form of acid-hydrolyzable derivative or precursor species.

  11. Regioselective piperidine-catalyzed tandem imination-isocyanate annulation to fused tricyclic triazines.

    PubMed

    Barve, Indrajeet J; Chen, Chih-Hau; Kao, Chih-Hsien; Sun, Chung-Ming

    2014-05-12

    A novel tandem imination-isocyanate-mediated annulation was explored. Ionic liquid-immobilized 2-aminobenzimidazoles react sequentially with aldehydes and isocyanates to give highly functionalized benzimidazole-embedded triazines. The second-stage transformation revealed that the formation of triazinone functionality is entirely regioselective to allow rapid assembly of biologically interesting tricyclic skeletons. In conjunction with the application of microwave irradiation and IL support, this method provides an efficient route to access substituted benzoimidazotriazines.

  12. C-Terminal Modification of Fully Unprotected Peptide Hydrazides via in Situ Generation of Isocyanates.

    PubMed

    Vinogradov, Alexander A; Simon, Mark D; Pentelute, Bradley L

    2016-03-18

    A method for chemo- and regioselective conjugation of nucleophiles to fully unprotected peptides and proteins via in situ generation of C-terminal isocyanates is reported. Oxidation of C-terminal peptide hydrazides in aqueous media followed by Curtius rearrangement of acyl azides reliably generates isocyanates, which react with a variety of external nucleophiles, such as hydrazines, hydrazides, aromatic thiols, and hydroxylamines. Multiple peptides and a 53 kDa protein hydrazide were conjugated to different nucleophiles using this reaction.

  13. Health Concerns about Spray Polyurethane Foam

    EPA Pesticide Factsheets

    Exposures to SPF's key ingredient, isocyanates and other SPF chemicals in vapors, aerosols, and dust created during and after installation, can cause: asthma, sensitization, lung damage, other respiratory and breathing problems, skin and eye irritation.

  14. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.

    PubMed

    Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki

    2014-04-01

    Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.

  15. 40 CFR 721.8095 - Silylated polyurethane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Silylated polyurethane. 721.8095... Substances § 721.8095 Silylated polyurethane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a silylated polyurethane (PMN P-95-1356)...

  16. 40 CFR 721.8095 - Silylated polyurethane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Silylated polyurethane. 721.8095... Substances § 721.8095 Silylated polyurethane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a silylated polyurethane (PMN P-95-1356)...

  17. 40 CFR 721.8090 - Polyurethane polymer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is...

  18. 40 CFR 721.8090 - Polyurethane polymer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is...

  19. 40 CFR 721.8090 - Polyurethane polymer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is...

  20. 40 CFR 721.8090 - Polyurethane polymer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is...

  1. 40 CFR 721.8090 - Polyurethane polymer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyurethane polymer. 721.8090 Section... Substances § 721.8090 Polyurethane polymer. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (P-94-47) is...

  2. Organotitanium(IV) compounds as catalysts for the polymerization of isocyanates: The polymerization of isocyanates with functionalized side chains

    SciTech Connect

    Patten, T.E.; Novak, B.M. Lawrence Berkeley Lab., CA )

    1993-02-01

    Catalysts of the form CpTiCl[sub 2]X, where X = [minus]OCH[sub 2]CF[sub 3], [minus]N(CH[sub 3])[sub 2], or [minus]CH[sub 3] (2a, 2b, 2c; Cp = [eta][sup 5]-cyclopentadienyl), CP*TiCl[sub 2]OCH[sub 2]CF[sub 3](3; Cp* = [eta][sup 5]-pentamethylcyclopentadienyl), and Cp[sub 2]TiClOCH[sub 2]-CF[sub 3](4) were used to polymerize a variety of isocyanates. Titanium-alkoxide, -amide, and -alkyl bonds were all found to be active in initiating the insertion of isocyanate monomer. An advantageous consequence of the lesser Lewis acidity of 2a-c relative to TiCl[sub 3]OCH[sub 2]CF[sub 3](1) is that the polymerization of highly functionalized monomers is possible using 2a-c and not 1. 2-Isocyanotoethyl methacrylate (2IEM) was polymerized, using 2b, through the isocyanato group to a linear polymer; the resulting properties of this material were found to be quite different from what was reported by Graham et al. 2IEM trimer was synthesized and subsequently cross-linked using a free-radical initiator, and it was found that the properties of this material matched those of the earlier report. The Diels-Alder adduct of 2IEM with cyclopentadiene, 2-((2-isocyanatoethoxy)carbonyl)-2-methylbicyclo[2.2.1]hept-5-ene (2IECMBH) was prepared and also polymerized using 2b. The use of cyclopentadienyltitanium trichloride derivatives also provides a general route through which a wide variety of end groups may be incorporated onto the end of the polyisocyanate chain.

  3. 2-Methoxyphenyl isocyanate and 2-Methoxyphenyl isothiocyanate: conformers, vibration structure and multiplet Fermi resonance.

    PubMed

    Yenagi, Jayashree; Nandurkar, Anita R; Tonannavar, J

    2012-06-01

    IR and Raman spectral measurements in the region 3500-400/50 cm(-1) have been made for the liquid samples of 2-Methoxyphenyl isocyanate and 2-Methoxyphenyl isothiocyanate. A complete assignment of the measured bands has been proposed as aided by conformational and vibration analyses at B3LYP/6-311++G** level of calculations. Three conformers for 2-Methoxyphenyl isocyanate and two for 2-Methoxyphenyl isothiocyanate have been determined. The tilt of the isocyanate (NCO) and isothiocyanate (NCS) moieties with respect to phenyl ring are in broad agreement with their parents. Stretching mode frequencies of methyl group (-OCH(3)) in 2-Methoxyphenyl isocyanate have been lowered in the 2900-2800 cm(-1); deformation asymmetric modes are IR strong and symmetric one Raman strong. In 2-Methoxyphenyl isothiocyanate, a similar pattern is true for stretching modes but deformation asymmetric modes are IR strong and symmetric mode has not been observed. Multiplet absorption band system near 2200 cm(-1) in 2-Methoxyphenyl isocyanate has been interpreted to be caused by Fermi resonance. A similar pattern in absorption near 2100 cm(-1) in 2-Methoxyphenyl isothiocyanate but more complex Raman band pattern has also been explained through Fermi resonance from heuristic stand-point. Many Raman modes in 1300-1100 cm(-1) are intensified apparently owing to isothiocyanate than isocyanate moiety. Phenyl ring breathing mode is shifted to 1040 cm(-1) as strong Raman; the symmetric stretching mode of O-CH(3) near 1023 cm(-1) as strong absorption.

  4. Mass spectrometric identification of isocyanate-induced modifications of keratins in human skin.

    PubMed

    Hulst, Albert G; Verstappen, Daan R W; van der Riet-Van Oeveren, Debora; Vermeulen, Nico P E; Noort, Daan

    2015-07-25

    In the current paper we show that exposure of human callus to isocyanates leads to covalent modifications within keratin proteins. Mass spectrometric analyses of pronase digests of keratin isolated from exposed callus show that both mono- and di-adducts (for di-isocyanates) are predominantly formed on the ε-amino group of lysine. In addition, numerous modified tryptic keratin fragments were identified, demonstrating rather random lysine modification. Interestingly, preliminary experiments demonstrate that in case of MDI a similar lysine di-adduct was formed with lung elastin. Our data support the hypothesis that skin sensitization through antigenic modifications of skin proteins by isocyanates could play a role in occupational isocyanate-induced asthma. It is further envisaged that the elucidated adducts will also have great potential for use as biomarkers to assess skin exposure to isocyanates. Advantageously, the various lysine adducts display the presence of a characteristic daughter fragment at m/z 173.1 [lysine-NCO](+), enabling generic and rapid screening for exposure to isocyanates.

  5. CCN activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-01-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3), contains less volatile compounds than the primary aliphatic amine (BA) aerosol. TMA + N2O5 form semi-volatile organics in low RH conditions that have κ ~ 0.20, indicative of slightly soluble organic material. As RH increases, several inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. Higher CCN activity (κ > 0.3) was also observed for humid BA+N2O5 aerosols compared with dry aerosol (κ ~ 0.2), as a result of the formation of inorganic salts such as NH4NO3 and butylamine nitrate (C4H11N · HNO3). Compared with TMA, BA+N2O5 reactions produce more volatile aerosols. The BA+N2O5 aerosol products under humid experiments were found to be very sensitive to the temperature within the stream-wise continuous flow thermal gradient CCN counter. The CCN counter, when set above a 21 °C temperature difference, evaporates BA+N2O5 aerosol formed at RH ≥ 30%; κ ranges from 0.4 to 0.7 and is dependent on the instrument supersaturation (ss) settings. The aerosol behaves non-ideally, hence simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems κ ranges from 0.2 < κ < 0.7. This work indicates that

  6. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  7. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  8. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  9. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  10. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  11. 40 CFR 721.10534 - Brominated aliphatic alcohol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated aliphatic alcohol (generic... Specific Chemical Substances § 721.10534 Brominated aliphatic alcohol (generic). (a) Chemical substance and... aliphatic alcohol (PMN P-12-260) is subject to reporting under this section for the significant new...

  12. 40 CFR 721.10534 - Brominated aliphatic alcohol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated aliphatic alcohol (generic... Specific Chemical Substances § 721.10534 Brominated aliphatic alcohol (generic). (a) Chemical substance and... aliphatic alcohol (PMN P-12-260) is subject to reporting under this section for the significant new...

  13. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted aliphatic amine (generic... Specific Chemical Substances § 721.10199 Substituted aliphatic amine (generic). (a) Chemical substance and... aliphatic amine (PMN P-06-702) is subject to reporting under this section for the significant new...

  14. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  15. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  16. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  17. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  18. Polyurethane Dispersions with Peptide Corona: Facile Synthesis of Stimuli-Responsive Dispersions and Films.

    PubMed

    Breucker, Laura; Schöttler, Susanne; Landfester, Katharina; Taden, Andreas

    2015-08-10

    Peptide-polymer hybrid particles of submicron size yielding stimuli-responsive macroscopic films are presented. A thermoplastic polyurethane (PU) carrying polysiloxane and polyester soft segments serves as core material to obtain flexible, yet semicrystalline films with temperature-sensitivity. The synthesis is based on the high-sheer emulsification of isocyanate-terminated PU prepolymers, which in our model system purposefully lack any ability of colloidal self-stabilization. While emulsification in water leads to immediate coagulation, stable dispersions of polyurethane nanoparticles were formed in aqueous solutions of a hydrolyzed protein from wool. A comparison of dispersion and film properties to nonreactive, otherwise identical dispersions suggests covalent attachment of the peptide to the PU backbone. We show that the colloidal stability of the hybrid particles is completely governed by the peptide corona, and hence pH-triggered coagulation can be employed to induce particle deposition and film formation. Differential scanning calorimetry confirms partial crystallinity in the film and reveals strongly modified crystallization behavior due to the peptide.

  19. Enhanced biocompatibility and antibacterial property of polyurethane materials modified with citric acid and chitosan.

    PubMed

    Liu, Tian-Ming; Wu, Xing-Ze; Qiu, Yun-Ren

    2016-08-01

    Citric acid (CA) and chitosan (CS) were covalently immobilized on polyurethane (PU) materials to improve the biocompatibility and antibacterial property. The polyurethane pre-polymer with isocyanate group was synthesized by one pot method, and then grafted with citric acid, followed by blending with polyethersulfone (PES) to prepare the blend membrane by phase-inversion method so that chitosan can be grafted from the membrane via esterification and acylation reactions eventually. The native and modified membranes were characterized by attenuated total reflectance-Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, scanning electron microscopy, water contact angle measurement, and tensile strength test. Protein adsorption, platelet adhesion, hemolysis assay, activated partial thromboplastin time, prothrombin time, thrombin time, and adsorption of Ca(2+) were executed to evaluate the blood compatibility of the membranes decorated by CA and CS. Particularly, the antibacterial activities on the modified membranes were evaluated based on a vitro antibacterial test. It could be concluded that the modified membrane had good anticoagulant property and antibacterial property.

  20. Novel silicon-containing polyurethanes from vegetable oils as renewable resources. Synthesis and properties.

    PubMed

    Lligadas, Gerard; Ronda, Juan C; Galià, Marina; Cádiz, Virginia

    2006-08-01

    Hydrosilylation of methyl 10-undecenoate (UDM) with phenyl tris(dimethylsiloxy)silane (PTDS) followed by a reduction of carboxylate groups was used to obtain a silicon-containing polyol with terminal primary hydroxyl groups (PSi194). Biobased silicon-containing polyurethanes, with a silicon content between 1.7% and 9.0%, were prepared from epoxidized methyl oleate-based polyether polyol (P184), PSi194, and 4,4'-methylenebis(phenyl isocyanate) (MDI). The thermal, mechanical, and flame-retardant properties of these materials were examined. The most notable change resulting from the incorporation of PSi194 is the appearance of melting endotherms of variable enthalpy and position and a downward shift in the T(g). The incorporation of silicon does not change the thermal stability but enhances the stability of the char under air atmosphere. Polyurethanes with higher silicon content no longer burn in ambient air without complementary oxygen, which suggests that these biobased materials are very interesting for applications that require fire resistance.

  1. Immunological studies on mice exposed subacutely to methyl isocyanate

    SciTech Connect

    Tucker, A.N.; Bucher, J.R.; Germolec, D.R.; Silver, M.T.; Vore, S.J.; Luster, M.I.

    1987-06-01

    The immunotoxicity of methyl isocyanate (MIC) was evaluated in female B6C3F1 mice exposed via inhalation to 0, 1, or 3 ppm for 6 hr per day on 4 consecutive days. The antibody response to sheep erythrocytes and natural killer cell activity were found to be unaffected by MIC exposure. Although lymphoproliferative responses to mitogens were moderately suppressed by MIC, the differences were not statistically significant. The response of splenic lymphocytes to allogeneic leukocytes in a mixed leukocyte response (MLR) was suppressed in a dose-related fashion and was significantly different from the control response at the 3 ppm level. This effect was thought to be secondary and a result of general toxicity rather than a direct effect of MIC on the immune system. Furthermore, resistance to the infectious agents Listeria monocytogenes, mouse malaria parasite, and influenza virus, or to transplantable tumor cells was not compromised by MIC exposure. Thus, the immune system does not appear to be a primary target for MIC toxicity.

  2. Renaissance of Aliphatic Polycarbonates: New Techniques and Biomedical Applications

    PubMed Central

    Xu, Jianwen; Feng, Ellva; Song, Jie

    2014-01-01

    Aliphatic polycarbonates were discovered a long time ago, with their conventional applications mostly limited to low molecular weight oligomeric intermediates for copolymerization with other polymers. Recent developments in polymerization techniques have overcome the difficulty in preparing high molecular weight aliphatic polycarbonates. These in turn, along with new functional monomers, have enabled the preparation of a wide range of aliphatic polycarbonates with diverse chemical compositions and structures. This review summarizes the latest polymerization techniques for preparing well-defined functional aliphatic polycarbonates, as well as the new applications of those aliphatic polycarbonates, esecially in the biomedical field. PMID:24994939

  3. Preparation of highly fluorinated polyurethanes

    NASA Technical Reports Server (NTRS)

    Rochow, S. E.; Stump, E. C., Jr.

    1971-01-01

    New polyurethanes, formed from a reaction of a prepolymer diol and a perfluorinated diisocyanate, are nonflammable and possess high corrosion resistance and good low temperature flexibility. Polymer hardness increases rapidly with increasing ratio of diisocaynate to diol, but its glass transition temperature is not adversely affected.

  4. Washing Off Polyurethane Foam Insulation

    NASA Technical Reports Server (NTRS)

    Burley, Richard K.; Fogel, Irving

    1990-01-01

    Jet of hot water removes material quickly and safely. Simple, environmentally sound technique found to remove polyurethane foam insulation from metal parts. Developed for (but not limited to) use during rebuilding of fuel system of Space Shuttle main engine, during which insulation must be removed for penetrant inspection of metal parts.

  5. Open-celled polyurethane foam

    NASA Technical Reports Server (NTRS)

    Russell, L. W.

    1970-01-01

    Open-celled polyurethane foam has a density of 8.3 pounds per cubic foot and a compressive strength of 295 to 325 psi. It is useful as a porous spacer in layered insulation and as an insulation material in vacuum tight systems.

  6. Inflammatory response to isocyanates and onset of genomic instability in cultured human lung fibroblasts.

    PubMed

    Mishra, P K; Bhargava, A; Raghuram, G V; Gupta, S; Tiwari, S; Upadhyaya, R; Jain, S K; Maudar, K K

    2009-02-10

    Lungs comprise the primary organ exposed to environmental toxic chemicals, resulting in diverse respiratory ailments and other disorders, including carcinogenesis. Carcinogenesis is a multi-stage phenomenon, which involves a series of genetic alterations that begin with genomic instability provoked by certain factors such as inflammation and DNA damage and end with the development of cancer. Isocyanates such as methyl isocyanate are the chief metabolic intermediates in many industrial settings with diverse applications; exposure to them can lead to severe hypersensitive, mutagenic and genotoxic alterations. We examined the molecular mechanisms underlying isocyanate-mediated inflammatory responses and their probable role in the onset of genomic instability in cultured IMR-90 human lung fibroblasts. The isocyanates induced inflammation, resulting in extensive DNA damage, evidenced by increases in ATM, ATR, gammaH2AX, and p53 expression levels. The apoptotic index also increased. Chromosomal anomalies in treated cells included over-expression of centrosome protein and variable amplification of inter-simple sequence repeats, further demonstrating isocyanate-induced genomic instability. This information could be useful in the design of new approaches for risk assessment of potential industrial disasters.

  7. Effect of silica nanoparticles on polyurethane foaming process and foam properties

    NASA Astrophysics Data System (ADS)

    Francés, A. B.; Navarro Bañón, M. V.

    2014-08-01

    Flexible polyurethane foams (FPUF) are commonly used as cushioning material in upholstered products made on several industrial sectors: furniture, automotive seating, bedding, etc. Polyurethane is a high molecular weight polymer based on the reaction between a hydroxyl group (polyol) and isocyanate. The density, flowability, compressive, tensile or shearing strength, the thermal and dimensional stability, combustibility, and other properties can be adjusted by the addition of several additives. Nanomaterials offer a wide range of possibilities to obtain nanocomposites with specific properties. The combination of FPUF with silica nanoparticles could develop nanocomposite materials with unique properties: improved mechanical and thermal properties, gas permeability, and fire retardancy. However, as silica particles are at least partially surface-terminated with Si-OH groups, it was suspected that the silica could interfere in the reaction of poyurethane formation.The objective of this study was to investigate the enhancement of thermal and mechanical properties of FPUF by the incorporation of different types of silica and determining the influence thereof during the foaming process. Flexible polyurethane foams with different loading mass fraction of silica nanoparticles (0-1% wt) and different types of silica (non treated and modified silica) were synthesized. PU/SiO2 nanocomposites were characterized by FTIR spectroscopy, TGA, and measurements of apparent density, resilience and determination of compression set. Addition of silica nanoparticles influences negatively in the density and compression set of the foams. However, resilience and thermal stability of the foams are improved. Silica nanoparticles do not affect to the chemical structure of the foams although they interfere in the blowing reaction.

  8. Isocyanate-mediated covalent immobilization of Mucor miehei lipase onto SBA-15 for transesterification reaction.

    PubMed

    Canilho, N; Jacoby, J; Pasc, A; Carteret, C; Dupire, F; Stébé, M J; Blin, J L

    2013-12-01

    Mucor miehei lipase (Mm-L) covalently bind on a hexagonally ordered silica SBA-15 (Santa Barbara Amorphous), previously functionalized with isocyanate moieties, was examined as biocatalyst for transesterification of colza oil with methanol. The isocyanate-mesoporous silica (NCO-SBA-15) was obtained by condensation of silanol with triethoxysilane propyl isocyanate (TPI). The efficiency of the functionalization has been evidenced by infrared, (29)Si and (13)C NMR spectroscopies. The substrate provided a moderate hydrophobic microenvironment together with reactive sites for chemical immobilization of the enzyme. The biocatalyst containing 0.28 g of Mm-L per gram of support afforded a high level of transesterification activity (yield up to 80%) while using 1:1 molar ratio of methanol/colza oil and small amount of water. The biocatalyst showed higher operational stability than the corresponding physisorbed enzyme since it can be reused 6 times against 2 consecutive runs for the physisorbed enzyme.

  9. A study on the grafting reaction of isocyanates with hydroxyapatite particles.

    PubMed

    Liu, Q; de Wijn, J R; van Blitterswijk, C A

    1998-06-05

    The surface grafting reactions of a series of isocyanates with hydroxyapatite particles at different temperatures were studied by Infrared spectrophotometry (IR) and thermal gravimetric analysis (TGA). The study results show that both hexamethylene diisocyanate (HMDI) and isocyanatoethyl methacrylate (ICEM) react readily with HA while ethyl isocyanate acetate (EIA) and butyl isocyanate (BIC) have lower reactivity towards HA particles. It also has been found that the reaction of ICEM with HA follows a second-order reaction mechanism, despite the heterogeneous nature of the reaction, while the reaction of HMDI with HA does not due to the complexity of the reaction. Based on this study, it is concluded that ICEM and HMDI are suitable agents for the coupling of polymers due to their reactivity towards HA.

  10. Structures and Properties of Polyurethanes. Part II,

    DTIC Science & Technology

    1979-03-23

    small. Relaxatio" processes in polyurethane elastomers on three following LKeasons must differ from the same in other elastomeric systems the idLge... elastomeric polyurethane fibers is given also in work [22b]. The authors will examine the structure of the linear polyurethane elastomers , formed from rigid...properties of polyuretuane elastomers to a considerable degree depend on structure and aoiecular weight of basic component - polyether/polyester. Stuaied tne

  11. A cascade synthesis of aminohydantoins using in situ-generated N-substituted isocyanates.

    PubMed

    Vincent-Rocan, Jean-François; Clavette, Christian; Leckett, Kyle; Beauchemin, André M

    2015-03-02

    Nitrogen-substituted isocyanates are rarely utilized but powerful building blocks for the development of cascade reactions in heterocyclic synthesis. These reactive amphoteric intermediates can be accessed in situ via an equilibrium that allows controlled reactivity in the presence of bifunctional partners such as α-amino esters. A cascade reaction has been carried out that forms 3-aminohydantoin derivatives using simple phenoxycarbonyl derivatives of hydrazides and hydrazones as precursors of N-substituted-isocyanates. This method allows rapid assembly of complex aminohydantoin derivatives, including analogues of medicinally-relevant compounds, using simple reactants.

  12. Ruthenium(II)-Catalyzed Regioselective Ortho Amidation of Imidazo Heterocycles with Isocyanates.

    PubMed

    Shakoor, S M Abdul; Kumari, Santosh; Khullar, Sadhika; Mandal, Sanjay K; Kumar, Anil; Sakhuja, Rajeev

    2016-12-16

    Direct ortho amidation at the phenyl ring of 2-phenylimidazo heterocycles with aryl isocyanates has been achieved via a chelation-assisted cationic ruthenium(II) complex catalyzed mechanism. The methodology provides a straightforward, high-yielding regioselective approach toward the synthesis of an array of ortho-amidated phenylimidazo heterocycles without prior activation of C(sp(2))-H. This also reports the first method for coupling of aryl isocyanates with the imidazo[1,2-a]pyridine system via a pentacyclometalated intermediate. The methodology is found to be easily scalable and could be applied toward the selective ortho amidation of 2-heteroarylimidazo[1,2-a]pyridine frameworks.

  13. {Polycyclic aromatic hydrocarbons (PAHs) and aliphatic hydrocarbons in gas and particle phases in two sites of Mexico: MILAGRO project}

    NASA Astrophysics Data System (ADS)

    Amador-Muñoz, O.; Villalobos-Pietrini, R.; Castro, T.; Gaspariano-Larino, R.

    2009-04-01

    Aliphatic hydrocarbons are markers of anthropogenic and biogenic emission sources1; meanwhile PAHs are generated by incomplete combustion sources2. The last ones are important compounds due to their carcinogenic and mutagenic properties3,4. The aim of this study was to identify and quantify aliphatic hydrocarbons and PAHs in gas and particles phases of the atmospheric aerosol and to determine the day and night time behavior during the MILAGRO (Megacity Initiative: Local Global and Research Observations) campaign. The gas phase was collected on polyurethane foam, while particles less than 2.5 m (PM2.5) were collected on glass fiber filters covered with Teflon (TIGF, pallflex) of 8x10 in. Samplings were carried out with a high volume sampler (Tisch) with a flow of 1.13 m3 min-1 at two sites: Instituto Mexicano del Petróleo (T0) and Tecamac (T1) located at North and Northeast of Mexico City, respectively during day (7:00 am-7:00 pm) and night time (7:00 pm-7:00 am) from 1 to 29 of March, 2006. Ninteen PAHs and 23 aliphatic hydrocarbons from n-C13H28 to n-C35H72 were analyzed by gas chromatography coupled to mass spectrometry in impact mode. The samples were spiked with deuterads PAHs and aliphatics hydrocarbons before ultrasound extraction. Medians comparisons were made with Mann-Whitney U test. PAHs with molecular weight (MW) less than 228 g mol-1 were distributed in the gas phase, in both sites. Higher concentrations of PAHs ≥ 228 g mol-1 in PM2.5, were observed during night period (p

  14. Open-pore polyurethane product

    DOEpatents

    Jefferson, R.T.; Salyer, I.O.

    1974-02-17

    The method is described of producing an open-pore polyurethane foam having a porosity of at least 50% and a density of 0.1 to 0.5 g per cu cm, and which consists of coherent spherical particles of less than 10 mu diam separated by interconnected interstices. It is useful as a filter and oil absorbent. The product is admirably adapted to scavenging of crude oil from the surface of seawater by preferential wicking. The oil-soaked product may then be compressed to recover the oil or burned for disposal. The crosslinked polyurethane structures are remarkably solvent and heat-resistance as compared with known thermoplastic structures. Because of their relative inertness, they are useful filters for gasoline and other hydrocarbon compounds. (7 claims)

  15. Polyurethane retainers for ball bearings

    NASA Technical Reports Server (NTRS)

    Christy, R. I.

    1973-01-01

    Evaluation of a new ball bearing retainer material is reported. A special composite polyurethane foam ball retainer has been developed that has virtually zero wear, is chemically inert to hydrocarbon lubricants, and stores up to 60 times as much lubricant per unit volume as the most commonly used retainer material, cotton phenolic. This new retainer concept shows promise of years of ball bearing operation without reoiling, based on life testing in high vacuum.

  16. Polyurethanes from fluoroalkyl propyleneglycol polyethers

    NASA Technical Reports Server (NTRS)

    Trischler, F. D. (Inventor)

    1969-01-01

    A description is given of highly stable polyurethane polymers prepared by reacting a polyether with a diisocyanate. Compounded stocks of these polymers may be shaped and cured in conventional equipment used in the rubber industry. The solutions are dispersed gels prepared from the polymers and may be used for forming supported or unsupported films for coating fabrics or solid surfaces, and for forming adhesive bonds between a wide variety of plastics, elastomers, fabrics, metals, wood, leather, ceramics and the like.

  17. Improved Polyurethane Storage Tank Performance

    DTIC Science & Technology

    2010-12-15

    temperature using a color change temperature indicator tape and using an Infrared (IR) pyrometer . Based on the flow of compound during welding, it is...AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Seaman Corporation,1000 Venture...congressionally mandated research project was undertaken to study polyurethane coated fabric systems and fabrication processes that are or may be used, in

  18. Is the analysis of histamine and/or interleukin-4 release after isocyanate challenge useful in the identification of patients with IgE-mediated isocyanate asthma?

    PubMed

    Blindow, Silke; Preisser, Alexandra M; Baur, Xaver; Budnik, Lygia T

    2015-07-01

    Isocyanates are a well-known and frequent cause of occupational asthma. The implementation of specific inhalation challenges (SICs) is the gold standard in asthma diagnosis supporting occupational case history, lung function testing, specific skin prick tests and the detection of specific IgE. However, the diagnosis is not always definitive. An interesting new approach, analyses of individual genetic susceptibilities, requires discrimination between a positive SIC reaction arising from IgE-mediated immune responses and one from other pathophysiological mechanisms. Hence, additional refinement tools would be helpful in defining sub-classes of occupational asthma and diagnosis. We used total IgE levels, specific IgE and SIC results for sub-classification of 27 symptomatic isocyanate workers studied. Some mutations in glutathione S-transferases (GSTs) are suspected either to enhance or to decrease the individual risk in the development of isocyanate asthma. Our patient groups were assessed for the point mutations GSTP1*I105V and GSTP1*A114V as well as deletions (null mutations) of GSTM1 and GSTT1. There seems to be a higher risk in developing IgE-mediated reactions when GSTM1 is deleted, while GSTT1 deletions were found more frequently in the SIC positive group. Blood samples taken before SIC, 30-60 min and 24h after SIC, were analyzed for histamine and IL-4, classical markers for the IgE-mediated antigen-specific activation of basophils or mast cells. We suggest that the utility of histamine measurements might provide an additional useful marker reflecting isocyanate-induced cellular reactions (although the sampling times require optimization). The promising measurement of IL-4 is not feasible at present due to the lack of a reliable, validated assay.

  19. Spreading coefficients of aliphatic hydrocarbons on water

    SciTech Connect

    Takii, Taichi; Mori, Y.H. . Dept. of Mechanical Engineering)

    1993-11-01

    Experiments have been performed to determine the equilibrium spreading coefficients of some aliphatic hydrocarbons (C[sub 6]C[sub 10]) on water. The thickness of a discrete lens of each hydrocarbon sample floating on a stagnant water pool was measured interferometrically and used to calculate the spreading coefficient of the hydrocarbon with the aid of Langmuir's capillarity theory. The dependences of the spreading coefficient, thus observed, on temperature (0--50 C) and on the number of carbon atoms in the hydrocarbon molecule are in qualitative agreement with the predictions based on the Lifshitz theory of van der Waals forces.

  20. Aliphatic hydrocarbons of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cronin, John R.; Pizzarello, Sandra

    1990-01-01

    Hydrocarbon fractions from the Murchison meteorite were prepared using benzene-methanol as the extraction solvent, fractionated on silica gel columns, and analyzed using gas chromatography combined with mass spectrometry and IR and NMR techniques. Results indicate that the most abundant aliphatic hydrocarbon components of the Murchison meteorite are C15 to C30 branched-alkyl-substituted mono-, di-, and tricyclic alkanes. It is shown that the n-alkanes, methyl alkanes, and isoprenoid alkanes that are sometimes found in extracts of the Murchison meteorite are terrestrial contaminants.

  1. Polyurethane Self-Priming Topcoats.

    DTIC Science & Technology

    1993-05-14

    aliphatic or aromatic group. Preferred are succinic acid , glutaric acid , adipic acid and pimelic acid . Useful acids are those in which R has 2 to 8 carbon...protection from corrosion. Specifically, aircraft, e.g., Navy 25 aircraft, are exposed to seawater spray in addition to various acid -forming gases such as...consisting essentially of (1) an alkaline earth metal phosphate, e.g., zinc-barium phosphate, (2) zinc salts of benzoic acid or substituted benzoic acid

  2. Polyurethane Self-Priming Topcoats

    DTIC Science & Technology

    1992-09-29

    COOH 15 where R is aliphatic or aromatic group. Preferred are succinic acid , glutaric acid , adipic acid and pimelic acid . Useful acids are those in...aircraft, are exposed to seawater spray in addition to various acid -forming gases such as sulfur dioxide, carbon dioxide, etc. Moreover, in addition to...zinc-barium phosphate, (2) zinc salts of benzoic acid or substituted benzoic acids , and (3) an alkaline 20 earth metal metaborate. All three of these

  3. Polyurethane Self-Priming Topcoats

    DTIC Science & Technology

    1994-03-01

    polyester polyols have the general formula: HOOC—R—COOH where R is aliphatic or aromatic group. Preferred are succinic acid , glutaric acid , adipic...metal metaborate, zinc salts of benzoic acids , and an alkaline earth metal phosphate such as zinc-barium phosphate. In addition, the coating contains...consisting essentially of an alkaline earth metal metaborate, zinc salts of benzoic acids , and an alkaline earth metal phosphate such as zinc-barium

  4. Microwave-assisted synthesis of cyclodextrin polyurethanes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cyclodextrin (CD) has often been incorporated into polyurethanes in order to facilitate its use in encapsulation or removal of organic species for various applications. In this work a microwave-assisted method has been developed to produce polyurethanes consisting of alpha-, ß-, and gamma-CD and thr...

  5. Formulation, Preparation, and Characterization of Polyurethane Foams

    ERIC Educational Resources Information Center

    Pinto, Moises L.

    2010-01-01

    Preparation of laboratory-scale polyurethane foams is described with formulations that are easy to implement in experiments for undergraduate students. Particular attention is given to formulation aspects that are based on the main chemical reactions occurring in polyurethane production. This allows students to develop alternative formulations to…

  6. Validation of transferability of DBA derivatization and LC-MS/MS determination method for isocyanates via an interlaboratory comparison.

    PubMed

    Bobeldijk, Ivana; Karlsson, Daniel; Pronk, Anjoeka; Gonsalves, John; Hekman, Maarten; Van De Lagemaat, Dick; Preller, Liesbeth; Heederik, Dick; Skarping, Gunnar

    2008-11-01

    An adapted method for the quantitative determination of isocyanates in air was implemented and validated in-house. The method was based on air sampling using an impinger flask containing di-n-butylamine (DBA) in toluene and a glass fibre filter in series. The DBA derivatives were determined using liquid chromatography and tandem mass spectrometry. Studied isocyanates were isophorone diisocyanate, isocyanic acid (ICA), methyl isocyanate, ethyl isocyanate, propyl isocyanate, hexamethylene diisocyanate (HDI), 2,6- and 2,4-toluene diisocyanate, 4,4'-methylene diphenyl diisocyanate (MDI), phenyl isocyanate (PhI), MDI oligomers and different HDI adducts. Monitoring of selected reactions resulted in quantifications with correlation coefficients >0.995, within-batch relative standard deviation (RSD) of repeatability was <13% for all analytes. Between-batch RSD (reproducibility) was determined for all the compounds with the exception of the adducts and oligomers and was also <13%. As an additional validation procedure, the method was evaluated by exchanging field (air) and standard samples between two laboratories. The RSDs observed by the two laboratories were comparable. The concentrations determined were between 80 and 120% of each other, depending on the analyte and the individual concentrations. The method was applied in a large field study on exposure of workers in car repair shops and industrial painters with >500 samples.

  7. Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases

    PubMed Central

    Bessac, Bret F.; Sivula, Michael; von Hehn, Christian A.; Caceres, Ana I.; Escalera, Jasmine; Jordt, Sven-Eric

    2009-01-01

    The release of methyl isocyanate in Bhopal, India, caused the worst industrial accident in history. Exposures to industrial isocyanates induce lacrimation, pain, airway irritation, and edema. Similar responses are elicited by chemicals used as tear gases. Despite frequent exposures, the biological targets of isocyanates and tear gases in vivo have not been identified, precluding the development of effective countermeasures. We use Ca2+ imaging and electrophysiology to show that the noxious effects of isocyanates and those of all major tear gas agents are caused by activation of Ca2+ influx and membrane currents in mustard oil-sensitive sensory neurons. These responses are mediated by transient receptor potential ankyrin 1 (TRPA1), an ion channel serving as a detector for reactive chemicals. In mice, genetic ablation or pharmacological inhibition of TRPA1 dramatically reduces isocyanate- and tear gas-induced nocifensive behavior after both ocular and cutaneous exposures. We conclude that isocyanates and tear gas agents target the same neuronal receptor, TRPA1. Treatment with TRPA1 antagonists may prevent and alleviate chemical irritation of the eyes, skin, and airways and reduce the adverse health effects of exposures to a wide range of toxic noxious chemicals.—Bessac, B. F., Sivula, M., von Hehn, C. A., Caceres, A. I., Escalera, J., Jordt, S.-E. Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases. PMID:19036859

  8. Determination of isocyanates by capillary electrophoresis with tris(2,2'-bipyridine)ruthenium(II) electrochemiluminescence.

    PubMed

    Li, Haijuan; Shi, Lihong; Liu, Xiaoqing; Niu, Wenxin; Xu, Guobao

    2009-11-01

    CE with tris(2,2'-bipyridyl) ruthenium(II) (Ru(bpy)(3) (2+)) electrochemiluminescence (ECL) detection for the quantitative determination of isocyanates was first reported. Hexamethylene diisocyanate (HDI) and hexyl isocyanate (HI) were used as the model analytes. Commercially available N,N-diethyl-N'-methylethylenediamine was used as the derivatization reagent. It has both a secondary amine group and a tertiary amine group. The secondary amine group can quantitatively react with isocyanate group, and the tertiary amine group can react with Ru(bpy)(3) (2+) to produce strong ECL signal for sensitive detection. The derivatization reaction was almost instantaneous and is much faster than other reported derivative reactions using other derivative reagents. The urea formed was stable. Linear calibration curve was obtained in the range from 0.01 to 10 microM for HDI, and 0.02 to 20 microM for hexyl isocyanate (HI). The detection limit is 0.01 microM for HDI and 0.02 microM for HI. The method is more sensitive than UV-detection and electrochemical detection. For practical application, recovery higher than 90% for HDI and HI was obtained for foam sample.

  9. A New Synthesis of Tertiary Alkyl N-Arylcarbamates from Isocyanates.

    ERIC Educational Resources Information Center

    Bailey, William J.; Griffith, James R.

    1978-01-01

    The method involves the dissolution of a small piece of metallic lithium in a small quantity of tertiary alcohol followed by addition to a mixture of the isocyanate and the tertiary alcohol in ether. This should be useful in organic chemistry laboratory courses for the identification of tertiary alcohols. (Author/BB)

  10. 40 CFR 721.10029 - Isocyanate compound, modified with methoxysilane (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... generically as isocyanate compound, modified with methoxysilane (PMN P-01-918) is subject to reporting under... absent), R100, or P100 filters; powered air-purifying respirator equipped with a tight-fitting full facepiece and High Efficiency Particulate Air (HEPA) filters; supplied-air respirator operated in...

  11. 40 CFR 721.10029 - Isocyanate compound, modified with methoxysilane (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... generically as isocyanate compound, modified with methoxysilane (PMN P-01-918) is subject to reporting under... absent), R100, or P100 filters; powered air-purifying respirator equipped with a tight-fitting full facepiece and High Efficiency Particulate Air (HEPA) filters; supplied-air respirator operated in...

  12. 40 CFR 721.10029 - Isocyanate compound, modified with methoxysilane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... generically as isocyanate compound, modified with methoxysilane (PMN P-01-918) is subject to reporting under... absent), R100, or P100 filters; powered air-purifying respirator equipped with a tight-fitting full facepiece and High Efficiency Particulate Air (HEPA) filters; supplied-air respirator operated in...

  13. CYTOKINE MRNA PROFILES FOR ISOCYANATES WITH KNOWN AND UNKNOWN POTENTIAL TO INDUCE RESPIRATORY SENSITIZATION

    EPA Science Inventory

    Cytokine mRNA Profiles for Isocyanates with Known and Unknown Potential to Induce Respiratory Sensitization. Plitnick, L.M., Loveless, S.E., Ladics, G.S., Holsapple, M.P., Smialowicz, R.J., Woolhiser, M.R., Anderson, P.K., Smith, C., Sailstad, D.M. and Selgrade, M.J.K (2002) Tox...

  14. Rh(III)-catalyzed directed C–H bond amidation of ferrocenes with isocyanates

    PubMed Central

    Takebayashi, Satoshi; Shizuno, Tsubasa; Otani, Takashi

    2012-01-01

    Summary [RhCp*(OAc)2(H2O)] [Cp* = pentamethylcyclopentadienyl] catalyzed the C–H bond amidation of ferrocenes possessing directing groups with isocyanates in the presence of 2 equiv/Rh of HBF4·OEt2. A variety of disubstituted ferrocenes were prepared in high yields, or excellent diastereoselectivities. PMID:23209521

  15. Isothermal aging of three polyurethane elastomers

    SciTech Connect

    Guess, T.R.

    1996-05-01

    Two polyurethane systems, EN-7 and L-100, have a long history as encapsulants and coatings in Sandia programs. These materials contain significant amounts of toluene diisocyanate (TDI), a suspect human carcinogen. As part of efforts to reduce the use of hazardous materials in the workplace, PET-90A, a polyurethane with less than 0.1% free TDI, was identified as a candidate for new applications and as a replacement for the more hazardous polyurethanes in selected programs. This report documents the results of a two-year accelerated aging study of PET-90A, EN-7, and L-100 polyurethane elastomers to characterize the effect of 135{degrees}F isothermal aging on selected physical, electrical, mechanical and thermal properties. In general, there was very little change in properties over the two year period for the three elastomers. The largest changes occurred in EN-7, which is the polyurethane with the longest service history in Sandia applications.

  16. Airborne isocyanate exposures in the collision repair industry and a comparison to occupational exposure limits.

    PubMed

    Reeb-Whitaker, Carolyn; Whittaker, Stephen G; Ceballos, Diana M; Weiland, Elisa C; Flack, Sheila L; Fent, Kenneth W; Thomasen, Jennifer M; Trelles Gaines, Linda G; Nylander-French, Leena A

    2012-01-01

    Isocyanate exposure was evaluated in 33 spray painters from 25 Washington State autobody shops. Personal breathing zone samples (n = 228) were analyzed for isophorone diisocyanate (IPDI) monomer, 1,6-hexamethylene diisocyanate (HDI) monomer, IPDI polyisocyanate, and three polyisocyanate forms of HDI. The objective was to describe exposures to isocyanates while spray painting, compare them with short-term exposure limits (STELs), and describe the isocyanate composition in the samples. The composition of polyisocyanates (IPDI and HDI) in the samples varied greatly, with maximum amounts ranging from up to 58% for HDI biuret to 96% for HDI isocyanurate. There was a significant inverse relationship between the percentage composition of HDI isocyanurate to IPDI and to HDI uretdione. Two 15-min STELs were compared: (1) Oregon's Occupational Safety and Health Administration (OR-OSHA) STEL of 1000 μg/m(3) for HDI polyisocyanate, and (2) the United Kingdom's Health and Safety Executive (UK-HSE) STEL of 70 μg NCO/m(3) for all isocyanates. Eighty percent of samples containing HDI polyisocyanate exceeded the OR-OSHA STEL while 98% of samples exceeded the UK-HSE STEL. The majority of painters (67%) wore half-face air-purifying respirators while spray painting. Using the OR-OSHA and the UK-HSE STELs as benchmarks, 21% and 67% of painters, respectively, had at least one exposure that exceeded the respirator's OSHA-assigned protection factor. A critical review of the STELs revealed the following limitations: (1) the OR-OSHA STEL does not include all polyisocyanates, and (2) the UK-HSE STEL is derived from monomeric isocyanates, whereas the species present in typical spray coatings are polyisocyanates. In conclusion, the variable mixtures of isocyanates used by autobody painters suggest that an occupational exposure limit is required that includes all polyisocyanates. Despite the limitations of the STELs, we determined that a respirator with an assigned protection factor of 25 or

  17. Airborne Isocyanate Exposures in the Collision Repair Industry and a Comparison to Occupational Exposure Limits

    PubMed Central

    Reeb-Whitaker, Carolyn; Whittaker, Stephen G.; Ceballos, Diana M.; Weiland, Elisa C.; Flack, Sheila L.; Fent, Kenneth W.; Thomasen, Jennifer M.; Gaines, Linda G. Trelles; Nylander-French, Leena A.

    2014-01-01

    Isocyanate exposure was evaluated in 33 spray painters from 25 Washington State autobody shops. Personal breathing zone samples (n = 228) were analyzed for isophorone diisocyanate (IPDI) monomer, 1,6-hexamethylene diisocyanate (HDI) monomer, IPDI polyisocyanate, and three polyisocyanate forms of HDI. The objective was to describe exposures to isocyanates while spray painting, compare them with short-term exposure limits (STELs), and describe the isocyanate composition in the samples. The composition of polyisocyanates (IPDI and HDI) in the samples varied greatly, with maximum amounts ranging from up to 58% for HDI biuret to 96% for HDI isocyanurate. There was a significant inverse relationship between the percentage composition of HDI isocyanurate to IPDI and to HDI uretdione. Two 15-min STELs were compared: (1) Oregon's Occupational Safety and Health Administration (OR-OSHA) STEL of 1000 μg/m3 for HDI polyisocyanate, and (2) the United Kingdom's Health and Safety Executive (UK-HSE) STEL of 70 μg NCO/m3 for all isocyanates. Eighty percent of samples containing HDI polyisocyanate exceeded the OR-OSHA STEL while 98% of samples exceeded the UKHSE STEL. The majority of painters (67%) wore half-face air-purifying respirators while spray painting. Using the OROSHA and the UK-HSE STELs as benchmarks, 21% and 67% of painters, respectively, had at least one exposure that exceeded the respirator's OSHA-assigned protection factor. A critical review of the STELs revealed the following limitations: (1) the OR-OSHA STEL does not include all polyisocyanates, and (2) the UK-HSE STEL is derived from monomeric isocyanates, whereas the species present in typical spray coatings are polyisocyanates. In conclusion, the variable mixtures of isocyanates used by autobody painters suggest that an occupational exposure limit is required that includes all polyisocyanates. Despite the limitations of the STELs, we determined that a respirator with an assigned protection factor of 25 or

  18. Biofiltration of gasoline and diesel aliphatic hydrocarbons.

    PubMed

    Halecky, Martin; Rousova, Jana; Paca, Jan; Kozliak, Evguenii; Seames, Wayne; Jones, Kim

    2015-02-01

    The ability of a biofilm to switch between the mixtures of mostly aromatic and aliphatic hydrocarbons was investigated to assess biofiltration efficiency and potential substrate interactions. A switch from gasoline, which consisted of both aliphatic and aromatic hydrocarbons, to a mixture of volatile diesel n-alkanes resulted in a significant increase in biofiltration efficiency, despite the lack of readily biodegradable aromatic hydrocarbons in the diesel mixture. This improved biofilter performance was shown to be the result of the presence of larger size (C₉-C(12)) linear alkanes in diesel, which turned out to be more degradable than their shorter-chain (C₆-C₈) homologues in gasoline. The evidence obtained from both biofiltration-based and independent microbiological tests indicated that the rate was limited by biochemical reactions, with the inhibition of shorter chain alkane biodegradation by their larger size homologues as corroborated by a significant substrate specialization along the biofilter bed. These observations were explained by the lack of specific enzymes designed for the oxidation of short-chain alkanes as opposed to their longer carbon chain homologues.

  19. OLFACTORY RESPONSES OF BLOWFLIES TO ALIPHATIC ALDEHYDES

    PubMed Central

    Dethier, V. G.

    1954-01-01

    The response of the blowfly Phormia regina to stimulation by aldehydes in the vapor phase has been studied by means of a specially designed olfactometer. The median rejection threshold and the maximum acceptance threshold were selected as criteria of response. For both acceptance and rejection the distribution of thresholds in the population is normal with respect to the logarithm of concentration. When thresholds are expressed as molar concentrations, the values decrease progressively as chain length is increased. There is no attraction beyond decanal and no rejection beyond dodecanal. When thresholds are expressed as activities, most members of the aldehyde series are approximately equally stimulating at rejection and equally stimulating at acceptance. The relationship is most exact over the middle range of chain lengths. There is a tendency for the terminal members to stimulate at higher activities. These relationships are in close agreement with those which were found earlier to apply to the normal aliphatic alcohols. The similarity between the relative actions of the members of the two series suggests that the relation of equal olfactory stimulation at equal thermodynamic activities by homologous aliphatic compounds at least for homologues of intermediate chain length may be of rather general application in olfaction. PMID:13174780

  20. Reticulation of Aqueous Polyurethane Systems Controlled by DSC Method

    PubMed Central

    Cakic, Suzana; Lacnjevac, Caslav; Rajkovic, Milos B.; Raskovic, Ljiljana; Stamenkovic, Jakov

    2006-01-01

    The DSC method has been employed to monitor the kinetics of reticulation of aqueous polyurethane systems without catalysts, and with the commercial catalyst of zirconium (CAT®XC-6212) and the highly selective manganese catalyst, the complex Mn(III)-diacetylacetonemaleinate (MAM). Among the polyol components, the acrylic emulsions were used for reticulation in this research, and as suitable reticulation agents the water emulsible aliphatic polyisocyanates based on hexamethylendoisocyanate with the different contents of NCO-groups were employed. On the basis of DSC analysis, applying the methods of Kissinger, Freeman-Carroll and Crane-Ellerstein the pseudo kinetic parameters of the reticulation reaction of aqueous systems were determined. The temperature of the examination ranged from 50°C to 450°C with the heat rate of 0.5°C/min. The reduction of the activation energy and the increase of the standard deviation indicate the catalytic action of the selective catalysts of zirconium and manganese. The impact of the catalysts on the reduction of the activation energy is the strongest when using the catalysts of manganese and applying all the three afore-said methods. The least aberrations among the stated methods in defining the kinetic parameters were obtained by using the manganese catalyst.

  1. Post-Polymerization Crosslinked Polyurethane Shape-Memory Polymers.

    PubMed

    Hearon, K; Gall, K; Ware, T; Maitland, D J; Bearinger, J P; Wilson, T S

    2011-07-01

    Novel urethane shape-memory polymers (SMPs) of significant industrial relevance have been synthesized and characterized. Chemically crosslinked SMPs have traditionally been made in a one-step polymerization of monomers and crosslinking agents. However, these new post-polymerization crosslinked SMPs can be processed into complex shapes by thermoplastic manufacturing methods and later crosslinked by heat exposure or by electron beam irradiation. Several series of linear, olefinic urethane polymers were made from 2-butene-1,4-diol, other saturated diols, and various aliphatic diisocyanates. These thermoplastics were melt-processed into desired geometries and thermally crosslinked at 200°C or radiation crosslinked at 50 kGy. The SMPs were characterized by solvent swelling and extraction, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile testing, and qualitative shape-recovery analysis. Swelling and DMA results provided concrete evidence of chemical crosslinking, and further characterization revealed that the urethanes had outstanding mechanical properties. Key properties include tailorable transitions between 25 and 80°C, tailorable rubbery moduli between 0.2 and 4.2 MPa, recoverable strains approaching 100%, failure strains of over 500% at T(g), and qualitative shape-recovery times of less than 12 seconds at body temperature (37°C). Because of its outstanding thermo-mechanical properties, one polyurethane was selected for implementation in the design of a complex medical device. These post-polymerization crosslinked urethane SMPs are an industrially relevant class of highly processable shape-memory materials.

  2. Post-Polymerization Crosslinked Polyurethane Shape-Memory Polymers

    PubMed Central

    Hearon, K.; Gall, K.; Ware, T.; Maitland, D. J.; Bearinger, J. P.; Wilson, T. S.

    2011-01-01

    Novel urethane shape-memory polymers (SMPs) of significant industrial relevance have been synthesized and characterized. Chemically crosslinked SMPs have traditionally been made in a one-step polymerization of monomers and crosslinking agents. However, these new post-polymerization crosslinked SMPs can be processed into complex shapes by thermoplastic manufacturing methods and later crosslinked by heat exposure or by electron beam irradiation. Several series of linear, olefinic urethane polymers were made from 2-butene-1,4-diol, other saturated diols, and various aliphatic diisocyanates. These thermoplastics were melt-processed into desired geometries and thermally crosslinked at 200°C or radiation crosslinked at 50 kGy. The SMPs were characterized by solvent swelling and extraction, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile testing, and qualitative shape-recovery analysis. Swelling and DMA results provided concrete evidence of chemical crosslinking, and further characterization revealed that the urethanes had outstanding mechanical properties. Key properties include tailorable transitions between 25 and 80°C, tailorable rubbery moduli between 0.2 and 4.2 MPa, recoverable strains approaching 100%, failure strains of over 500% at Tg, and qualitative shape-recovery times of less than 12 seconds at body temperature (37°C). Because of its outstanding thermo-mechanical properties, one polyurethane was selected for implementation in the design of a complex medical device. These post-polymerization crosslinked urethane SMPs are an industrially relevant class of highly processable shape-memory materials. PMID:21572577

  3. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses... salt (PMN P-92-1352) is subject to reporting under this section for the significant new uses...

  4. Polyurethane membranes for surgical gown applications

    NASA Astrophysics Data System (ADS)

    Ukpabi, Pauline Ozoemena

    The Occupational Safety and Health Administration (OSHA) recently issued a directive requiring all employers to supply personnel protective equipment to employees who are at risk of exposure to blood or other potentially infectious body fluids. For the healthcare worker, a wide variety of surgical gowns is available commercially but there are concerns over their barrier effectiveness and/or wearer comfort. To successfully create a barrier fabric which combines resistance to fluid penetration with comfort, a complete understanding of the relationship between membrane structure and functional properties is required. In this study, we investigated the surface properties of hydrophilicity and hydrophobicity in polyurethane membranes intended for use in surgical gowns. The polyurethane membranes were grafted with side chains of varying lengths, polyethylene glycol (PEG) being used for the hydrophilic modifications and perfluoroalkyl compounds (a monofunctional acid and a difunctional amino alcohol) for the hydrophobic modifications. The hydrophilic treatment was intended to improve the comfort properties of monolithic membranes without adversely affecting their barrier properties. The hydrophobic treatment, on the other hand, was intended to improve the fluid repellency and hence barrier properties of microporous membranes without adversely affecting their comfort properties. Reflection infrared spectroscopy showed that fluorine was successfully grafted onto the polyurethane backbone during the hydrophobic modification, but was not sensitive enough to detect PEG grafting in leached polyethylene glycol-treated polyurethanes. X-ray photoelectron spectroscopy showed that the perfluoroalkylated polyurethanes contained up to 40% fluorine on their surfaces and the PEG-treated polyurethanes showed an increase in their C-O content over the unmodified polyurethane. Scanning electron microscopy not only showed that perfluoroalkylation yielded polyurethane membranes with very

  5. Isocyanate Cross-Linked Silica: Structurally Strong Aerogels

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Sotiriou-Leventis, Chariklia; Zhang, Guo-Hui; Rawashdeh, Abdel-Monem M.

    2002-01-01

    Molecular-level synergism between the silica nanoparticles of pre-formed monoliths and molecular cross-linkers inverts the relative host-guest roles in glass-polymer composites, leading to new strong low-density materials. Attempts to load gels with variable amounts of polyurethane precursors such as di-ISO and diol end-capped polybutylene adipate followed by heat treatment, washing, and supercritical drying led to opaque materials, somewhat stronger than silica but still quite brittle and much inferior to the materials described above. Direct mixing of a diisocyanate and an alcohol-free sol has been attempted recently by Yim et al. Reportedly, that procedure leads to week-long gelation times and requires an at least equally long aging period. In our attempt to add various amounts of di-ISO in a base-catalyzed sol in PC, we also noticed a week-long gelation time. The resulting aerogels were translucent but no less brittle than native silica. According to more recent studies, if propylene carbonate is replaced with acetone, it leads not only to shorter processing times, but also to much stronger gels that can tolerate loads in excess of 40 kg in the arrangement presented. We attribute that behavior to the lower viscosity of acetone, that allows faster diffusion of the di-ISO solution within the pores before di-ISO has time to react with the surface of silica. Further studies are underway to vary the chemical identity of the diisocyanate, as well as the composition and density of silica.

  6. Spectrophotometry of PRESAGETM polyurethane dosimeters

    NASA Astrophysics Data System (ADS)

    Krstajic, N.; Wai, P.; Adamovics, J.; Doran, S.

    2004-01-01

    Preliminary optical density results on irradiated PRESAGE dosimeter are outlined in this article. PRESAGE is a solid dosimeter, based on a clear polyurethane combined with the leuco-dye leuco-malachite green. The purpose of these measurements was a) to obtain spectra for optimizing the wavelength of a new light source for the equipment and b) to obtain a dose-response relation. 10 PRESAGE cuvettes were given uniform doses from 0.1 to 40 Gy and later read out by spectrophotometer. The instrument used was CAMSPEC M350 Double Beam Spectrophotometer.

  7. Polyurethane elastomers for facial prostheses.

    PubMed

    Gonzalez, J B

    1978-02-01

    A review of the polyurethane elastomers used for facial prostheses has been presented. A description of the casting technique was given. The materials require accuracy and care in handling to insure the successful casting of a prosthesis. They seem to simulate the characteristics of the facial tissues and are more durable and comfortable than previously used materials. Over 300 patients have been exposed to or treated with these materials without evidencing significant adverse tissue reaction. In spite of the improvements that these materials present over previous ones (PVC and silicones), much work is still required to understand their behavior and their physical and mechanical characteristics and to compensate for the metameric phenomenon.

  8. Laboratory development and field evaluation of a generic method for sampling and analysis of isocyanates. Revised final report

    SciTech Connect

    McGaughey, J.F.; Foster, S.C.; Merrill, R.G.

    1995-09-01

    The U.S. Environmental Protection Agency (EPA), under the authority of Title III of the Clean Air Act Amendments (CAAA) of 1990, requires the identification and validation of sampling and analytical methods for the isocyanate compounds which are listed among the 189 hazardous air pollutants identified in Title III. In all, three field tests were performed to accomplish the isocyanate field evaluation. The objective of this work was to develop and evaluate the isocyanate sampling and analytical test method through field testing at operating stationary sources. The method was evaluated by collecting flue gas samples for the analysis of the individual isocyanate and evaluating the data for bias and precision. EPA Method 301, Field Validation of Pollutant Measurement Methods from Various Waste Media, was used as the model for the experimental design of this method evaluation project.

  9. Shelf-Life Specifications for Mission Readiness

    DTIC Science & Technology

    1993-03-01

    TU 003d1002 ,ili:one Rubber Basic MATL 650 GL $3.960 5 gal/pail 002g1207 pct solid coumpound 50: Bitumen Base Aspthal 640 GL $1,564 Liquid 55 gaVpack...packaging only. Artlur D Little 4-3 NSN: 8010001818276 Name: Polyurethane Coating Description: Black, 2 component, oil free, aliphatic isocyanate coating...aliphatic isocyanate . Part B will change chemically if it comes into contact with moisture. Discussion of Shelf Life The polyester base material does

  10. Cyclic tetramers of a five-membered palladacycle based on a head-to-tail-linked isocyanate dimer and their reactivity in cyclotrimerization of isocyanates.

    PubMed

    Lee, Seon Gye; Choi, Keun-Young; Kim, Yong-Joo; Park, SuJin; Lee, Soon W

    2015-04-14

    Reactions of [Pd(styrene)(PR3)2], generated from trans-[PdEt2(PR3)2] and styrene, with 2 equiv. of benzyl isocyanate in THF at room-temperature afforded unusual cyclic Pd-tetramers of five-membered rings consisting of organic isocyanate dimers and palladium, [Pd(PR3){-C(O)N(R)C(O)N(R)-}]4 (PR3 = PMe3, ; PR3 = PMe2Ph, ). Additionally, a cyclic trimer, (RNCO)3, (R = benzyl) was produced as a catalytic product. Treatment of the cyclic tetramer () with 4 equiv. of chelated phosphine, such as (1,2-bis(diethylphosphino)ethane) (DEPE) or (1,2-bis(dimethylphosphino)ethane) (DMPE), readily caused conversion to a metallacyclic cis-form, [Pd{N(R)C(O)N(R)C(O)}(P ∼ P)] (P ∼ P = DEPE, ; P ∼ P = DMPE, ) in quantitative yields. In contrast, reactions of Pd(0)-PR3 with 2 equiv. of Ar-NCO (Ar = Ph, p-tolyl, p-ClC6H4) afforded metallacyclic complexes having a dimeric isocyanato moiety, cis-[Pd{C(O)N(Ar)-C(O)N(Ar)}(PR3)2] (PR3 = PMe3 Ar = C6H5, ; p-MeC6H4, ; p-Cl-C6H4, ; PR3 = PMe2Ph, Ar = p-Cl-C6H4, ). Treatment of the palladacyclic complex () with an equimolar amount of chelated phosphine such as DEPE readily caused conversion to a palladacyclic cis-form, [Pd{N(Ar)C(O)N(Ar)C(O)}(DEPE)], in quantitative yield. The catalytic cyclotrimerization of benzyl isocyanate to [Pd(styrene)(PMe3)2] was achieved by varying the molar ratio of R-NCO (R = benzyl). In addition, catalytic cyclotrimerization was performed from the five-membered palladacyclic complexes or the Pd(0)-PR3 complex with excess Ar-NCO.

  11. Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases.

    PubMed

    Bessac, Bret F; Sivula, Michael; von Hehn, Christian A; Caceres, Ana I; Escalera, Jasmine; Jordt, Sven-Eric

    2009-04-01

    The release of methyl isocyanate in Bhopal, India, caused the worst industrial accident in history. Exposures to industrial isocyanates induce lacrimation, pain, airway irritation, and edema. Similar responses are elicited by chemicals used as tear gases. Despite frequent exposures, the biological targets of isocyanates and tear gases in vivo have not been identified, precluding the development of effective countermeasures. We use Ca(2+) imaging and electrophysiology to show that the noxious effects of isocyanates and those of all major tear gas agents are caused by activation of Ca(2+) influx and membrane currents in mustard oil-sensitive sensory neurons. These responses are mediated by transient receptor potential ankyrin 1 (TRPA1), an ion channel serving as a detector for reactive chemicals. In mice, genetic ablation or pharmacological inhibition of TRPA1 dramatically reduces isocyanate- and tear gas-induced nocifensive behavior after both ocular and cutaneous exposures. We conclude that isocyanates and tear gas agents target the same neuronal receptor, TRPA1. Treatment with TRPA1 antagonists may prevent and alleviate chemical irritation of the eyes, skin, and airways and reduce the adverse health effects of exposures to a wide range of toxic noxious chemicals.

  12. Adsorption of halogenated aliphatic contaminants by graphene nanomaterials.

    PubMed

    Zhou, Yang; Apul, Onur Guven; Karanfil, Tanju

    2015-08-01

    In this study, adsorption of ten environmentally halogenated aliphatic synthetic organic compounds (SOCs) by a pristine graphene nanosheet (GNS) and a reduced graphene oxide (rGO) was examined, and their adsorption behaviors were compared with those of a single-walled carbon nanotube (SWCNT) and a granular activated carbon (GAC). In addition, the impacts of background water components (i.e., natural organic matter (NOM), ionic strength (IS) and pH) on the SOC adsorption behavior were investigated. The results indicated HD3000 and SWCNT with higher microporous volumes exhibited higher adsorption capacities for the selected aliphatic SOCs than graphenes, demonstrating microporosity of carbonaceous adsorbents played an important role in the adsorption. Analysis of adsorption isotherms demonstrated that hydrophobic interactions were the dominant contributor to the adsorption of aliphatic SOCs by graphenes. However, π-π electron donor-acceptor and van der Waals interactions are likely the additional mechanisms contributing to the adsorption of aliphatic SOCs on graphenes. Among the three background solution components examined, NOM showed the most influential effect on adsorption of the selected aliphatic SOCs, while pH and ionic strength had a negligible effects. The NOM competition on aliphatic adsorption was less pronounced on graphenes than SWCNT. Overall, in terms of adsorption capacities, graphenes tested in this study did not exhibit a major advantage over SWCNT and GAC for the adsorption of aliphatic SOCs.

  13. Flame Retardants Used in Flexible Polyurethane Foam

    EPA Pesticide Factsheets

    The partnership project on flame retardants in furniture seeks to update the health and environmental profiles of flame-retardant chemicals that meet fire safety standards for upholstered consumer products with polyurethane foam

  14. Thrombocytopenia associated with environmental exposure to polyurethane

    SciTech Connect

    Michelson, A.D. )

    1991-10-01

    Few chemicals in the environment have been implicated as causes of isolated thrombocytopenia, and the evidence is usually less than convincing because the patients were not rechallenged with the chemical in vivo. In the present paper, a child is reported with the onset of thrombocytopenia in temporal association with environmental exposure to polyurethane. Five years after the initial thrombocytopenia had resolved, an inadvertent in vivo rechallenge with environmental polyurethane resulted in recurrence of the thrombocytopenia. This recurrence, together with the fact that only 1-4% of cases of idiopathic thrombocytopenic purpura in children recur, provided strong evidence for a causal role for the polyurethane exposure in this patient's thrombocytopenia. In summary, environmental exposure to polyurethane should be considered in the differential diagnosis of acquired thrombocytopenia in childhood.

  15. Isocyanates and human health: Multi-stakeholder information needs and research priorities

    PubMed Central

    Lockey, JE; Redlich, CA; Streicher, R; Pfahles-Hutchens, A; Hakkinen, PJ; Ellison, GL; Harber, P; Utell, M; Holland, J; Comai, A; White, Marc

    2014-01-01

    Objective Outline the knowledge gaps and research priorities identified by a broad-base of stakeholders involved in the planning and participation of an international conference and research agenda workshop on isocyanates and human health held in Potomac, Maryland in April 2013. Methods A multi-modal iterative approach was employed for data collection including pre-conference surveys, review of a 2001 consensus conference on isocyanates, oral and poster presentations, focused break-out sessions, panel discussions and post-conference research agenda workshop. Results Participants included representatives of consumer and worker health, health professionals, regulatory agencies, academic and industry scientists, labor, and trade associations. Conclusions Recommendations were summarized regarding knowledge gaps and research priorities in the following areas: worker and consumer exposures; toxicology, animal models, and biomarkers; human cancer risk; environmental exposure and monitoring; and respiratory epidemiology and disease, and occupational health surveillance. PMID:25563538

  16. Synthesis of Industrially Relevant Carbamates towards Isocyanates using Carbon Dioxide and Organotin(IV) Alkoxides.

    PubMed

    Germain, Nicolas; Müller, Imke; Hanauer, Matthias; Paciello, Rocco A; Baumann, Robert; Trapp, Oliver; Schaub, Thomas

    2016-07-07

    A straightforward phosgene-free synthesis of aromatic isocyanates and diisocyanates is disclosed. Theoretical investigations suggested that the insertion of carbon dioxide (CO2 ) by dialkyltin(IV) dialkoxides could be used to convert aromatic amines into aromatic mono- and dicarbamates. Here we show, that methyl phenylcarbamate (MPC) from aniline using organotin(IV) dimethoxide and CO2 can be formed in high yield of up to 92 %, experimentally corroborating the predictions of density functional theory (DFT) calculations. MPC was then separated from the tin oxide residues and converted into phenyl isocyanate. Furthermore, organotin(IV) alkoxides could be regenerated from the tin oxide residues and reused, paving the way for a continuous industrial process. Extension of the scope to the synthesis of diurethanes from toluene 2,4-diamine and 4,4'-methylenedianiline could potentially allow the efficient production of industrially relevant diisocyanates.

  17. Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking

    NASA Technical Reports Server (NTRS)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda

    2008-01-01

    Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.

  18. Prevalence of occupational asthma in spray painters exposed to several types of isocyanates, including polymethylene polyphenylisocyanate.

    PubMed

    Séguin, P; Allard, A; Cartier, A; Malo, J L

    1987-04-01

    The prevalence of occupational asthma was assessed in four paint shops of a large assembly plant where 51 employees were exposed to several types of isocyanates, including polymethylene polyphenylisocyanate (PPI). Three employees were first referred by their physician for asthma symptoms. A questionnaire was administered to the other 48 employees. Seven of these were suspected of having work-related asthma. Airway hyperexcitability to inhaled histamine was demonstrated in these ten subjects (three referred and seven screened). The diagnosis of occupational asthma was confirmed in six subjects (three referred and three screened) through specific inhalation challenges in the laboratory to a paint system component containing PPI. Thus, the prevalence of occupational asthma was 11.8% in these paint shops using several types of isocyanates, including PPI.

  19. Composites of vinyl polystyrylpyridine/bismaleimide-aliphatic ether copolymers

    NASA Technical Reports Server (NTRS)

    Heimbuch, Alvin H.; Rosser, Robert W.; Hsu, Ming-Ta S.

    1989-01-01

    An aliphatic ether bismaleimide was prepared and coreacted with a polyvinylstyrylpyridine (VPSP) oligomer. Studies showed that a controlled ratio of aliphatic to aromatic units in the polymer backbone improved both processibility and interlaminar shear properties for the carbon-fiber composite system. This modified resin was readily soluble in tetrahydrofuran, allowing for better fiber impregnation and thus enhancing adhesive properties and reproducibility. DSC studies have shown a lower cure temperature for the copolymer than for the neat aliphatic bismaleimide, and a glass transition temperature of 260 C, which is more than adequate for most applications. Limited measurements indicated an improvement in toughness (impact resistance).

  20. Results of in vitro and in vivo genetic toxicity tests on methyl isocyanate

    PubMed Central

    Shelby, Michael D.; Allen, James W.; Caspary, William J.; Haworth, Steven; Ivett, James; Kligerman, Andrew; Luke, Carol A.; Mason, James M.; Myhr, Brian; Tice, Raymond R.; Valencia, Ruby; Zeiger, Errol

    1987-01-01

    Methyl isocyanate (MIC) was tested for genetic toxicity in a variety of in vitro and in vivo assays. Negative results were obtained in the Salmonella/mammalian microsome assay using five bacterial strains in a preincubation protocol. The Drosophila sex-linked recessive lethal test also gave negative results in studies that involved three routes of administration: inhalation, feeding, and injection. Positive results were obtained for three endpoints in cultured mammalian cells. Reproducible, dose-related increases in trifluorothymidine-resistant clones were induced in L5178Y mouse lymphoma cells, and the frequencies of both SCE and chromosomal aberrations increased in Chinese hamster ovary cells. These effects were independent of exogenous metabolism. In mice exposed to methyl isocyanate by inhalation, cytogenetic analyses were carried out on bone marrow, blood, and lung cells. A single, 2-hr exposure to concentrations of 0, 3, 10, and 30 ppm MIC produced no evidence of chromosomal effects in the bone marrow, although significant cell cycle delay was observed. In four experiments involving exposures on 4 consecutive days to 0, 1, 3, or 6 ppm, delays in bone marrow cell cycle were again observed. Increases in SCE and chromosomal aberrations were observed in bone marrow cells, and a dose-related increase in SCE occurred in lung cells but not in peripheral blood lymphocytes. A significant increase in micronucleated polychromatic erythrocytes in the peripheral blood was observed in male mice in one experiment. From these results, it appears that methyl isocyanate has the capacity to affect chromosome structure but not to induce gene mutations. Furthermore, in vitro tests show that the induction of chromosomal effects is not dependent on an exogenous source of metabolism. Based on these results and on what is known about the binding of carbamoylating agents to cellular macromolecules, methyl isocyanate may exert its genetic toxicity by binding to nuclear proteins rather

  1. Ruthenium(II)-catalyzed C-H activation with isocyanates: a versatile route to phthalimides.

    PubMed

    De Sarkar, Suman; Ackermann, Lutz

    2014-10-20

    A cationic ruthenium(II)-complex was utilized in the efficient synthesis of phthalimide derivatives by C-H activation with synthetically useful amides. The reaction proceeded through a mechanistically unique insertion of a cycloruthenated species into a C-Het multiple bond of isocyanate. The novel method also proved applicable for the synthesis of heteroaromatic unsymmetric diamides as well as a potent COX-2 enzyme inhibitor.

  2. Comprehensive mechanistic study of ion pair SN2 reactions of lithium isocyanate and methyl halides

    NASA Astrophysics Data System (ADS)

    Sun, Ying-Xin; Ren, Yi; Wong, Ning-Bew; Chu, San-Yan; Xue, Ying

    The anionic SN2 reactions NCO- + CH3X and ion pair SN2 reactions LiNCO + CH3X (X = F, Cl, Br, and I) at saturated carbon with inversion and retention mechanisms were investigated at the level of MP2/6-311+G(d,p). There are two possible reaction pathways in the anionic SN2 reactions, but eight in the ion pair SN2 reactions. Calculated results suggest that the previously reported T-shaped isomer of lithium isocyanate does not exist. All the retention pathways are not favorable based on the analysis of transition structures. Two possible competitive reaction pathways proceed via two six-member ring inversion transition structures. It is found that there are two steps in the most favorable pathway, in which less stable lithium cyanate should be formed through the isomerization of lithium isocyanate and nucleophilic site (N) subsequently attacks methyl halides from the backside. The thermodynamically and kinetically favorable methyl isocyanate is predicted as major product both in the gas phase anionic and the ion pair SN2 reactions. In addition, good correlations between the overall barriers relative to separated reactants, ?H?ovr , with geometrical looseness parameter %L? and the heterolytic cleavage energies of the C bond X and Li bond N (or Li bond O) bonds are observed for the anionic and ion pair SN2 reactions. The trend of variation of the overall barriers predicts the leaving ability of X increase in the order: F < Cl < Br < I. The polarized continuum model (PCM) has been used to evaluate the solvent effects on the two inversion pathways with six-member transition structures for the reactions of LiNCO + CH3X. The calculations in solution indicate that solvent effects will retard the rate of reactions and the predicted product, methyl isocyanate, is same as the one in the gas phase.

  3. Isocyanate-functional adhesives for biomedical applications. Biocompatibility and feasibility study for vascular closure applications.

    PubMed

    Hadba, Ahmad R; Belcheva, Nadya; Jones, Fatima; Abuzaina, Ferass; Calabrese, Allison; Kapiamba, Mbiya; Skalla, Walter; Taylor, Jack L; Rodeheaver, George; Kennedy, John

    2011-10-01

    Biodegradable isocyanate-functional adhesives based on poly(ethylene glycol)-adipic acid esters were synthesized, characterized, and evaluated in vitro and in vivo. Two types of formulations, P2TT and P2MT, were developed by functionalization with 2,4-tolylene diisocyanate (TDI) or 4,4'-methylene-bis(phenyl isocyanate) (MDI), respectively, and branching with 1,1,1-trimethylolpropane (TMP). The biocompatibility of the synthesized adhesive formulations was evaluated as per ISO 10993. Cytotoxicity, systemic toxicity, pyrogenicity, genotoxicity (reverse mutation of Salmonella typhimurium and Escherichia coli), hemolysis, intracutaneous reactivity, and delayed-type hypersensitivity were evaluated. All formulations met the requirements of the conducted standard tests. The biological behavior and ability of the adhesive formulations to close an arteriotomy and withstand arterial pressure following partial approximation with a single suture were evaluated in a rat abdominal aorta model. Animals were evaluated at 1, 2, 3, and 4 weeks after surgery. Macroscopic and histopathologic evaluation of explanted arteries suggested that the P2TT formulation had better in vivo performance than the P2MT formulation. Additionally, the P2TT formulation resulted in less tissue reaction than P2MT formulation. To our knowledge, this is the first study demonstrating the potential of this new class of isocyanate-functional degradable adhesives for vascular applications.

  4. Environmental isocyanate-induced asthma: morphologic and pathogenetic aspects of an increasing occupational disease.

    PubMed

    Fisseler-Eckhoff, Annette; Bartsch, Holger; Zinsky, Rica; Schirren, Joachim

    2011-09-01

    Occupational diseases affect more and more people every year. According to the International Labour Organization (ILO), in 2000 an estimated amount of at least 160 million people became ill as a result of occupational-related hazards or injuries. Globally, occupational deaths, diseases and injuries account for an estimated loss of 4% of the Gross Domestic Product. Important substances that are related to occupational diseases are isocyanates and their products. These substances, which are used in a lot of different industrial processes, are not only toxic and irritant, but also allergenic. Although the exposure to higher concentrations could be monitored and restricted by technical means, very low concentrations are difficult to monitor and may, over time, lead to allergic reactions in some workers, ending in an occupational disease. In order to prevent the people from sickening, the mechanisms underlying the disease, by patho-physiological and genetical means, have to be known and understood so that high risk groups and early signs in the development of an allergic reaction could be detected before the exposure to isocyanates leads to an occupational disease. Therefore, this paper reviews the so far known facts concerning the patho-physiologic appearance and mechanisms of isocyanate-associated toxic reactions and possible genetic involvement that might trigger the allergic reactions.

  5. Protein immobilization onto various surfaces using a polymer-bound isocyanate

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Jin; Cha, Eun Ji; Park, Hee-Deung

    2015-01-01

    Silane coupling agents have been widely used for immobilizing proteins onto inorganic surfaces. However, the immobilization method using silane coupling agents requires several treatment steps, and its application is limited to only surfaces containing hydroxyl groups. The aim of this study was to develop a novel method to overcome the limitations of the silane-based immobilization method using a polymer-bound isocyanate. Initially, polymer-bound isocyanate was dissolved in organic solvent and then was used to dip-coat inorganic surfaces. Proteins were then immobilized onto the dip-coated surfaces by the formation of urea bonds between the isocyanate groups of the polymer and the amine groups of the protein. The reaction was verified by FT-IR in which NCO stretching peaks disappeared, and CO and NH stretching peaks appeared after immobilization. The immobilization efficiency of the newly developed method was insensitive to reaction temperatures (4-50 °C), but the efficiency increased with reaction time and reached a maximum after 4 h. Furthermore, the method showed comparable immobilization efficiency to the silane-based immobilization method and was applicable to surfaces that cannot form hydroxyl groups. Taken together, the newly developed method provides a simple and efficient platform for immobilizing proteins onto surfaces.

  6. Gas chromatographic method for the determination of residual monomers, 2-(acryloyloxy)ethyl isocyanate and 2-(methacryloyloxy)ethyl isocyanate, as curing agents in an ultraviolet curable adhesive.

    PubMed

    Kim, Byoung-Hyoun; Kim, Nosun; Moon, Dong Cheul

    2014-02-01

    A gas chromatographic method is described for the determination of residual 2-(acryloyloxy)ethyl isocyanate (AOI) and 2-(methacryloyloxy)ethyl isocyanate (MOI) as curing agents in an ultraviolet curable adhesive. Pre-column derivatization was employed in the determination of AOI and MOI as a means of enhancing the response of the flame ionization detector. Urethane derivatives of AOI and MOI were derived using methanol for 30 min at room temperature. The accuracies (n = 5, three concentration levels) were in the range of 113.4 to 126.7%, and precisions (n = 5, three concentration levels) were in the range of 0.8 to 4.3% for AOI-OMe. Furthermore, the accuracies were in the range of 79.5 to 108.6% and the precisions were in the range of 1.0 to 2.4% for MOI-OMe. The correlation coefficients of six calibration standards were all greater than 0.9999 for AOI-OMe and greater than 0.9998 for MOI-OMe over the range from 10 to 100 µg/mL.

  7. Physicochemical and biological properties of a novel injectable polyurethane system for root canal filling

    PubMed Central

    Wang, Jian; Zuo, Yi; Zhao, Minghui; Jiang, Jiaxing; Man, Yi; Wu, Jun; Hu, Yunjiu; Liu, Changlei; Li, Yubao; Li, Jidong

    2015-01-01

    A root canal sealer with antibacterial activity can be efficacious in preventing reinfection that results from residual microorganisms and/or the leakage of microorganisms. In the present study, a series of injectable, self-curing polyurethane (PU)-based antibacterial sealers with different concentrations of silver phosphate (Ag3PO4) were fabricated. Subsequently, their physicochemical properties, antibacterial abilities, and preliminary cytocompatibilities were evaluated. The results indicated that the fabricated PU-based sealers can achieve a high conversion rate in a short amount of time. More than 95% of the isocyanate group of PU sealers with 3 wt% (PU3) and 5 wt% (PU5) concentrations of Ag3PO4 were included in the curing reaction after 7 hours. With the exception of those for film thickness for PU5, the results of setting time, film thickness, and solubility were able to meet the requirements of the International Organization for Standardization. The antibacterial tests showed that PU3 and PU5 exhibit stronger antimicrobial effects than that achieved with 1 wt% Ag3PO4 (PU1) and AH Plus (positive control) against Streptococcus mutans. The cytocompatibility evaluation revealed that the PU1 and PU3 sealers possess good cytocompatibility and low cytotoxicity. These results demonstrate that the PU3 sealer offers good physicochemical and antimicrobial properties along with cytocompatibility, which may hold great application potential in the field of root canal fillings. PMID:25653518

  8. Hydroxyalkylation and polyether polyol grafting of graphene tailored for graphene/polyurethane nanocomposites.

    PubMed

    Appel, Anna-Katharina; Thomann, Ralf; Mülhaupt, Rolf

    2013-08-01

    Graphene functionalization by hydroxyalkylation and grafting with polyether polyols enables polyurethane (PU) nanocomposites formation by in situ polymerization with isocyanates combined with effective covalent interfacial coupling. Functionalized graphene (FG) hydroxylation is achieved either by alkylation, transesterification, or grafting of thermally reduced graphite oxide. In the presence of K2 CO3 as catalyst the reaction of FG-OH with ethylene carbonate at 180 °C affords hydroxyethylated FG, whereas transesterification with castor oil produces riconoleiate-modified FG polyols. In the "grafting-from" process, FG-alkoholate macro initiators initiate the graft polymerization of propylene oxide to produce hybrid FG polyols containing 38 and 59 wt% oligopropylene oxide. In the "grafting-to" process 3-ethyl-3-hydroxymethyl-oxetane is cationically polymerized onto FG-OH, producing novel hyperbranched FG-based polyether polyols. Whereas hydroxylation and grafting of FG greatly improve FG dispersion in organic solvents, polyols and even PU, as confirmed by transmission electron microscopy, matrix reinforcement of FG/PU is impaired by increasing alkyl chain length and polyol graft copolymer content.

  9. Effect of chain extender on the phase behavior and morphology of high hard block content polyurethanes

    NASA Astrophysics Data System (ADS)

    Tsiotas, Achilleas; Lindsay, Chris; Saiani, Alberto

    2010-03-01

    Thermoplastic polyurethanes (TPUs) are linear block copolymers typically constructed of statistically alternating soft and hard segments, the hard segment itself being composed of an isocyanate and a short chain extender. In this project we focused on the effect that varying the chain extender used has on the phase behavior and morphology of high hard block content TPUs. Four different chain extenders were used. DSC, SAXS / WAXS, TEM / AFM, mechanical testing and FTIR were mainly used to characterize the morphology and properties of our materials. Through this work we were able to show that small changes in the chain extender chemical structure had dramatic effects on the properties of the TPUs. The use of 3-methyl-1,5-pentanediol resulted in a fully phase-mixed system with poor mechanical properties, while the use of 1,3-propanediol resulted in stiff materials with relatively high crystallinity and melting temperature. The use of 2-methyl-1,3-propanediol and 1,5-pentanediol resulted in similar materials, although 1,5-pentanediol was found to phase separate / crystallize on cooling while 2-methyl-1,3-propanediol was found to separate / crystallize on heating, suggesting a higher chain mobility in the latter materials.

  10. Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Zhang, Peipei; Zheng, Cheng; Wu, Xu; Mao, Taoyan; Zhu, Mingning; Wang, Huaquan; Feng, Danyan; Qian, Shuxuan; Cai, Xianfang

    2014-10-01

    This paper describes the synthesis of reduced silanized graphene oxide/epoxy-polyurethane (EPUAs/R-Si-GEO) composites with enhanced thermal and mechanical properties. Graphene oxide (GEO), prepared from natural graphite flakes, was modified with methacryloxypropyltrimethoxysilane to prepare silanized GEO (Si-GEO), and was then reduced by NaHSO3 to prepare R-Si-GEO (partially reduced Si-GEO). EPAc/R-Si-GEO (R-Si-GEO/epoxy acrylate copolymers) was synthesized via an in situ polymerization of R-Si-GEO and epoxy acrylic monomers. EPUAs/R-Si-GEO was obtained by curing reaction between EPAc/R-Si-GEO and an isocyanate curing agent. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were used to characterize the surface and crystal structure of the modified graphene and EPUAs/R-Si-GEO. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize their morphology. Thermal gravimetric analysis (TGA), tensile strength, elongation at break, and cross-linking density measurements showed that the thermal stability and mechanical properties of EPUAs/R-Si-GEO were greatly enhanced by the addition of R-Si-GEO.

  11. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  12. Silver-Catalyzed Decarboxylative Bromination of Aliphatic Carboxylic Acids.

    PubMed

    Tan, Xinqiang; Song, Tao; Wang, Zhentao; Chen, He; Cui, Lei; Li, Chaozhong

    2017-03-13

    The silver-catalyzed Hunsdiecker bromination of aliphatic carboxylic acids is described. With Ag(Phen)2OTf as the catalyst and dibromoisocyanuric acid as the brominating agent, various aliphatic carboxylic acids underwent decarboxylative bromination to provide the corresponding alkyl bromides under mild conditions. This method not only is efficient and general but also enjoys wide functional group compatibility. An oxidative radical mechanism involving Ag(II) intermediates is proposed.

  13. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, H.L.; Palasz, P.D.; Ratcliff, M.A.

    1984-12-20

    A process is described for producing peracids from lactic acid-containing solutions derived from biomass processing systems. It consists of adjusting the pH of the solution to about 8 to 9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids. The solution is oxidized to produce volatile lower aliphatic aldehydes. The aldehydes are removed as they are generated and converted to peracids.

  14. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, Helena L.; Ratcliff, Matthew A.; Palasz, Peter D.

    1986-01-01

    A process for producing peracids from lactic acid-containing solutions derived from biomass processing systems comprising: adjusting the pH of the solution to about 8-9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids; oxidizing the solution to produce volatile lower aliphatic aldehydes; removing said aldehydes as they are generated; and converting said aldehydes to peracids.

  15. New isocyanate-specific albumin adducts of 4,4'-methylenediphenyl diisocyanate (MDI) in rats.

    PubMed

    Kumar, Anoop; Dongari, Nagaraju; Sabbioni, Gabriele

    2009-12-01

    4,4'-Methylenediphenyl diisocyanate (MDI) is the most important of the isocyanates used as intermediates in the chemical industry. Among the main types of damage after exposure to low levels of MDI are lung sensitization and asthma. Albumin adducts of MDI might be involved in the etiology of sensitization reactions. It is, therefore, necessary to have sensitive and specific methods for monitoring the isocyanate exposure of workers. To date, urinary metabolites or protein adducts have been used as biomarkers in workers exposed to MDI. However, with these methods it is not possible to determine whether the biomarkers result from exposure to MDI or to the parent aromatic amine 4,4'-methylenedianiline (MDA). This work presents a procedure for the determination of isocyanate-specific albumin adducts. In a long-term experiment, designed to determine the carcinogenic and toxic effects of MDI, rats were exposed chronically for 3 months, to 0.0 (control), 0.26, 0.70, and 2.06 mg MDI/m(3) as aerosols. Albumin was isolated from plasma, digested with Pronase E, and analyzed by LC-MS/MS. MDI formed adducts with lysine: N(6)-[({4-[4-aminobenzyl]phenyl}amino)carbonyl]lysine (MDI-Lys) and N(6)-[({4-[4-(acetylamino)benzyl]phenyl}amino)carbonyl] lysine (AcMDI-Lys). For the quantitation of the adducts in vivo, isotope dilution mass spectrometry was used to measure the adducts in 2 mg of albumin. The adducts found in vivo (MDI-Lys and AcMDI-Lys) and the corresponding isotope labeled compounds (MDI-[(13)C(6)(15)N(2)]Lys and Ac[(2)H(4)]MDI-Lys) were synthesized and used for quantitation. The MDI-Lys levels increased from 0-24.8 pmol/mg albumin, and the AcMDI-Lys levels increased from 0-1.85 pmol/mg albumin. The mean ratio of MDI-Lys/AcMDI-Lys for each dose level was greater than >20. The albumin adducts correlate with other biomarkers measured in the same rats in the past: urinary metabolites and hemoglobin adducts released after mild base hydrolysis. This method will enable one to

  16. Inhalation exposure to isocyanates of car body repair shop workers and industrial spray painters.

    PubMed

    Pronk, Anjoeka; Tielemans, Erik; Skarping, Gunnar; Bobeldijk, Ivana; VAN Hemmen, Joop; Heederik, Dick; Preller, Liesbeth

    2006-01-01

    As part of a large-scale epidemiological study, occupational isocyanate exposure was assessed in spray-painting environments. The aim was to assess which compounds contribute to isocyanate exposure in car body repair shops and industrial painting companies, and to identify tasks with high risk of isocyanate exposure. Mainly personal task-based samples (n = 566) were collected from 24 car body repair shops and five industrial painting companies using impingers with DBA in toluene. Samples were analysed by LC-MS for isocyanate monomers, oligomers and products of thermal degradation. From the 23 analysed compounds, 20 were detected. Exploratory factor analysis resulted in a HDI, TDI and MDI factor with the thermal degradation products divided over the TDI and MDI factors. The HDI factor mainly consisted of HDI oligomers and was dominant in frequency and exposure levels in both industries. Spray painting of PU lacquers resulted in the highest exposures for the HDI factor (isocyanate exposure in both industries with highest exposures during PU spraying. However, since respiratory protection is less extensively used during other

  17. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  18. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  19. Coincidence doppler broadening study in electron-irradiated polyurethane

    NASA Astrophysics Data System (ADS)

    Yang, D. J.; Zhang, J. D.; Leung, J. K. C.; Beling, C. D.; Liu, L. B.

    2007-06-01

    Coincidence doppler broadening measurements on electron-irradiated polyurethanes were performed in the presence of air. It is shown that, after a certain electron irradiation, the momentum density distributions of annihilation electrons have obvious changes for the high crosslinking polyurethane, but no significant changes have been observed for the low crosslinking polyurethane. The results were performed to analyse by irradiation crosslinking and degradation principles.

  20. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN...

  1. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN...

  2. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN...

  3. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN...

  4. 40 CFR 721.9959 - Polyurethane polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyurethane polymer (generic). 721... Substances § 721.9959 Polyurethane polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyurethane polymer (PMN...

  5. XRD studies of chitin-based polyurethane elastomers.

    PubMed

    Zia, Khalid Mahmood; Bhatti, Ijaz Ahmad; Barikani, Mehdi; Zuber, Mohammad; Sheikh, Munir Ahmad

    2008-08-15

    Chitin-based polyurethane elastomers (PUEs) were synthesized by step growth polymerization techniques using poly(epsilon-caprolactone) (PCL) varying diisocyanate and chain extender structures. The viscosity average molecular weight (M(v)) of chitin was deduced from the intrinsic viscosity and found; M(v)=6.067 x 10(5). The conventional spectroscopic characterization of the samples with FTIR, (1)H NMR and (13)C NMR were in accordance with proposed PUEs structure. The crystalline behavior of the synthesized polymers were investigated by X-ray diffraction (XRD), differential scanning calorimetery (DSC) and loss tangent curves (tan delta peaks). The observed patterns of the crystalline peaks for the lower angle for chitin in the 2theta range were indexed as 9.39 degrees, 19.72 degrees, 20.73 degrees, 23.41 degrees and 26.39 degrees. Results showed that crystallinity of the synthesized PUEs samples was affected by varying the structure of the diisocyanate and chain extender. Crystallinity decreased from aliphatic to aromatic characters of the diisocyanates used in the final PU. The presence of chitin also favors the formation of more ordered structure, as higher peak intensities was obtained from the PU extended with chitin than 1,4-butane diol (BDO). The value of peak enthalpy (DeltaH) of chitin was found to be 47.13 J g(-1). The higher DeltaH value of 46.35 J g(-1) was found in the samples extended with chitin than BDO (39.73 J g(-1)).

  6. Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D. N.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-06-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ, ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3) contains less volatile compounds than the primary aliphatic amine (BA) aerosol. As relative humidity (RH) increases, inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. The humid BA + N2O5 aerosol products were found to be very sensitive to the temperature at which the measurements were made within the streamwise continuous-flow thermal gradient CCN counter; κ ranges from 0.4 to 0.7 dependent on the instrument supersaturation (ss) settings. The variance of the measured aerosol κ values indicates that simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems' κ ranges within 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol, whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. The contributions of semivolatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems.

  7. Efficient continuous dryer for flexible polyurethane foam and cleaning apparatus

    DOEpatents

    Jody, Bassam; Daniels, Edward; Libera, Joseph A.

    1999-01-01

    A method of cleaning polyurethane foams where the material is transported through a wash station while alternately soaking the polyurethane foam in an organic solvent and squeezing solvent from the polyurethane foam a number of times. Then the polyurethane foam is sent through a rinse or solvent transfer station for reducing the concentration of solvent in the foam. The rinsed polyurethane foam is sent to a drying station wherein the foam is repeatedly squeezed while being exposed to hot air to remove wet air from the foam.

  8. Efficient continuous dryer for flexible polyurethane foam and cleaning apparatus

    DOEpatents

    Jody, B.; Daniels, E.; Libera, J.A.

    1999-03-16

    A method of cleaning polyurethane foams where the material is transported through a wash station while alternately soaking the polyurethane foam in an organic solvent and squeezing solvent from the polyurethane foam a number of times. Then the polyurethane foam is sent through a rinse or solvent transfer station for reducing the concentration of solvent in the foam. The rinsed polyurethane foam is sent to a drying station wherein the foam is repeatedly squeezed while being exposed to hot air to remove wet air from the foam. 4 figs.

  9. Microwave-assisted synthesis of cyclodextrin polyurethanes.

    PubMed

    Biswas, Atanu; Appell, Michael; Liu, Zengshe; Cheng, H N

    2015-11-20

    Cyclodextrin (CD) has often been incorporated into polyurethanes in order to facilitate its use in encapsulation or removal of organic species for various applications. In this work a microwave-assisted method has been developed to produce polyurethanes consisting of α-, β-, and γ-CD and three common diisocyanates. As compared to conventional heating, this new synthetic method saves energy, significantly reduces reaction time, and gets similar or improved yield. The reaction products have been fully characterized with (13)C, (1)H, and two-dimensional NMR spectroscopy. With suitable stoichiometry of starting CD and diisocyanate, the resulting CD polyurethane is organic-soluble and water-insoluble and is shown to remove Nile red dye and phenol from water. Possible applications include the removal of undesirable materials from process streams, toxic compounds from the environment, and encapsulation of color or fragrance molecules.

  10. Molecular dynamics studies of polyurethane nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Strankowska, J.; Piszczyk, Ł.; Strankowski, M.; Danowska, M.; Szutkowski, K.; Jurga, S.; Kwela, J.

    2013-10-01

    Polyurethane PEO-based hydrogels have a broad range of biomedical applicability. They are attractive for drug-controlled delivery systems, surgical implants and wound healing dressings. In this study, a PEO based polyurethane hydrogels containing Cloisite® 30B, an organically modified clay mineral, was synthesized. Structure of nanocomposite hydrogels was determined using XRD technique. Its molecular dynamics was studied by means of NMR spectroscopy, DMA and DSC analysis. The mechanical properties and thermal stability of the systems were improved by incorporation of clay and controlled by varying the clay content in polymeric matrix. Molecular dynamics of polymer chains depends on interaction of Cloisite® 30B nanoparticles with soft segments of polyurethanes. The characteristic nanosize effect is observed.

  11. Exposure biomarkers and risk from gluing and heating of polyurethane: a cross sectional study of respiratory symptoms

    PubMed Central

    Littorin, M.; Rylander, L.; Skarping, G.; Dalene, M.; Welinder, H.; Stromberg, U.; Skerfving, S.

    2000-01-01

    OBJECTIVES—To define the relation between exposure to polyurethane (PUR) glue, biomarkers of exposure and effect, and work related symptoms that occur at least once a week.
METHODS—In a cross sectional study, 152 workers and 14 clerks in a factory with exposure to sprayed and heated PUR glue containing 4,4'-diphenylmethane (MDI) or 1,6-hexamethylene (HDI) di-isocyanate were examined with gas chromatography-mass spectrometry (GC-MS) for metabolites of MDI in plasma (P-MDX) and urine (U-MDX), 2,4- and 2,6-toluene di-isocyanate (TDI; P-TDX, U-TDX) and HDI in plasma and urine, specific serum IgG (S-IgG-MDI, S-IgG-HDI, and S-IgG-TDI, respectively) and IgE (S-IgE-MDI). Work related symptoms of the eyes and airways (nose or lower airways, or both), and lung function were also evaluated.
RESULTS—P-MDX was detected in 65% of the workers, U-TDX in 47%, HDX in none. Three per cent were positive for S-IgE-MDI, 33% for S-IgG-MDI, 32% for S-IgG-TDI, and 12% for S-IgG-HDI. A few clerks had metabolites, and some had antibodies. Most metabolites and immunoglobulins were slightly correlated—for example, P-MDX v S-IgG-MDI: rs=0.21. Workers who heated glue had increased P-MDX (odds ratio (OR)=12 for a value above the median) and S-IgG-MDI (OR=3.7), sprayers P-2,4-TDX (OR=6.2) and P-2,6-TDX (OR=16). Twenty six per cent of the workers had work related symptoms of the airways, 21% from the nose, 11% from the lower airways. Spraying of glue increased the risk of work related symptoms and slightly decreased lung function. U-MDX was associated with work related symptoms from the airways (OR=3.7) and P-2,6-TDX with work related symptoms from the lower airways (OR=6.6). S-IgG-MDI was related to work related symptoms from the airways (OR=2.6).
CONCLUSIONS—There were relations between exposures to sprayed and heated PUR glue based on MDI and HDI, concentrations of metabolites of MDI and TDI in plasma and urine, specific IgG serum antibodies against MDI, TDI, and HDI, and work

  12. Aliphatic alcohols in spirits inhibit phagocytosis by human monocytes.

    PubMed

    Pál, László; Árnyas, Ervin M; Bujdosó, Orsolya; Baranyi, Gergő; Rácz, Gábor; Ádány, Róza; McKee, Martin; Szűcs, Sándor

    2015-04-01

    A large volume of alcoholic beverages containing aliphatic alcohols is consumed worldwide. Previous studies have confirmed the presence of ethanol-induced immunosuppression in heavy drinkers, thereby increasing susceptibility to infectious diseases. However, the aliphatic alcohols contained in alcoholic beverages might also impair immune cell function, thereby contributing to a further decrease in microbicidal activity. Previous research has shown that aliphatic alcohols inhibit phagocytosis by granulocytes but their effect on human monocytes has not been studied. This is important as they play a crucial role in engulfment and killing of pathogenic microorganisms and a decrease in their phagocytic activity could lead to impaired antimicrobial defence in heavy drinkers. The aim of this study was to measure monocyte phagocytosis following their treatment with those aliphatic alcohols detected in alcoholic beverages. Monocytes were separated from human peripheral blood and phagocytosis of opsonized zymosan particles by monocytes treated with ethanol and aliphatic alcohols individually and in combination was determined. It was shown that these alcohols could suppress the phagocytic activity of monocytes in a concentration-dependent manner and when combined with ethanol, they caused a further decrease in phagocytosis. Due to their additive effects, it is possible that they may inhibit phagocytosis in a clinically meaningful way in alcoholics and episodic heavy drinkers thereby contribute to their increased susceptibility to infectious diseases. However, further research is needed to address this question.

  13. Submillimeter Wave Spectroscopy of Acetyl Isocyanate : CH_3C(O)NCO

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Motiyenko, R. A.; Guillemin, J.-C.; Tercero, Belén; Cernicharo, Jose; Jabri, Atef; Kleiner, Isabelle; Ilyushin, V.

    2014-06-01

    Except isocyanic acid detected in the ISM since 1972, the organo isocyanate derivatives are poorly studied in the millimeter wave domain. This lack of data could be the reason of their non detection in the ISM up to now. We decided to investigate the C_3H_3NO_2 isomer: acetyl isocyanate. Previously measured up to 40 GHz, the cis-conformer exhibits internal rotation motion with a medium barrier value of 360 wn. The trans conformer conformer is calculated to have an energy of 12.55 kJ.mol-1 (1060 wn) higher than the cis one and is not studied here. The measurements were performed in Lille with our solid state devices spectrometer up to 500 GHz. The sample was found to have a poor stability and reacts fastly with metal parts. We should repeat measurements using a flow and a pyrex cell in order to have satisfactory signal to noise ratio. The analysis was performed with RAM36 code which used the Rho Axis Method. The first results and its searche in ORION will be presented. Snyder, L. E.; and Buhl, D.Astrophys. J., 177, (1972) 619 Landsberg, B.M.; and Iqbal, K.J.C.S. Faraday II, 76, (1980) 1208 Uchida, Y.; Toyoda, M.; Kuze, N.; and Sakaizumi, T.J. Mol. Spectrosc., 256, (2009) 163 Ilyushin, V.V. et al;J. Mol. Spectrosc., 259, (2010) 26 This work was supported by the CNES and the Action sur Projets de l'INSU, PCMI. This work was also done under Ukrainian-French CNRS-PICS 6051 project and ANR-13-BS05-0008-02 IMOLABS

  14. Respiratory Symptoms, Sensitization, and Exposure–Response Relationships in Spray Painters Exposed to Isocyanates

    PubMed Central

    Pronk, Anjoeka; Preller, Liesbeth; Raulf-Heimsoth, Monika; Jonkers, Irene C. L.; Lammers, Jan-Willem; Wouters, Inge M.; Doekes, Gert; Wisnewski, Adam V.; Heederik, Dick

    2007-01-01

    Rationale: Associations between oligomeric isocyanate exposure, sensitization, and respiratory disease have received little attention, despite the extensive use of isocyanate oligomers. Objectives: To investigate exposure–response relationships of respiratory symptoms and sensitization in a large population occupationally exposed to isocyanate oligomers during spray painting. Methods: The prevalence of respiratory symptoms and sensitization was assessed in 581 workers in the spray-painting industry. Personal exposure was estimated by combining personal task-based inhalatory exposure measurements and time activity information. Specific IgE and IgG to hexamethylene diisocyanate (HDI) were assessed in serum by ImmunoCAP assay and enzyme immunoassays using vapor and liquid phase HDI–human serum albumin (HDI–HSA) and HSA conjugates prepared with oligomeric HDI. Measurements and Main Results: Respiratory symptoms were more prevalent in exposed workers than among comparison office workers. Log–linear exposure–response associations were found for asthmalike symptoms, chronic obstructive pulmonary disease–like symptoms, and work-related chest tightness (prevalence ratios for an interquartile range increase in exposure of 1.2, 1.3 and 2.0, respectively; P ⩽ 0.05). The prevalence of specific IgE sensitization was low (up to 4.2% in spray painters). Nevertheless, IgE to N100 (oligomeric HDI)–HSA was associated with exposure and work-related chest tightness. The prevalence of specific IgG was higher (2–50.4%) and strongly associated with exposure. Conclusions: The results provide evidence of exposure–response relationships for both work-related and non–work-related respiratory symptoms and specific sensitization in a population exposed to oligomers of HDI. Specific IgE was found in only a minority of symptomatic individuals. Specific IgG seems to be merely an indicator of exposure. PMID:17656675

  15. The Electrical Properties for Phenolic Isocyanate-Modified Bisphenol-Based Epoxy Resins Comprising Benzoate Group.

    PubMed

    Lee, Eun Yong; Chae, Il Seok; Park, Dongkyung; Suh, Hongsuk; Kang, Sang Wook

    2016-03-01

    Epoxy resin has been required to have a low dielectric constant (D(k)), low dissipation factor (Df), low coefficient of thermal expansion (CTE), low water absorption, high mechanical, and high adhesion properties for various applications. A series of novel phenolic isocyanate-modified bisphenol-based epoxy resins comprising benzoate group were prepared for practical electronic packaging applications. The developed epoxy resins showed highly reduced dielectric constants (D(k)-3.00 at 1 GHz) and low dissipation values (Df-0.014 at 1 GHz) as well as enhanced thermal properties.

  16. Preparation of bifunctional isocyanate hydroxamate linkers: Synthesis of carbamate and urea tethered polyhydroxamic acid chelators

    PubMed Central

    Fernando, Rasika; Shirley, Jonathan M.; Torres, Emilio; Jacobs, Hollie K.; Gopalan, Aravamudan S.

    2012-01-01

    Two novel bifunctional N-methylhydroxamate-isocyanate linkers 20 and 21 were prepared in good yield and high purity from the corresponding amine salts using a biphasic reaction with phosgene. The facile ring opening reaction of N-Boc lactams using the anion of O-benzylhydroxylamine gave the protected amino hydroxamates 6a and 6c in good yields. The selective methylation of the hydroxamate nitrogen in the presence of the N-Boc group in these intermediates could be readily accomplished. The utility of the linkers was clearly demonstrated by the synthesis of the carbamate-tethered trishydroxamic acid 27 and the urea-tethered 29 PMID:23162172

  17. Determination of rotary diffusivity of poly(n-propyl isocyanate) by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Laso, M.; Jimeno, N.; Muneta, L. M.; Müller, M.

    2006-12-01

    The rotational dynamics of a nondilute solution of the rodlike polymer poly(n-propyl isocyanate) (PPIC) has been studied on an atomistic model by means of a large-scale classical molecular dynamics investigation. The rotary diffusivity of PPIC in toluene solution has been determined from the Einsteinian diffusion regime of the end-to-end vector on the surface of the unit sphere and has been found to be Dr=10.5×105(±2.7)s-1, which falls in the range of the experimental data available. A comparison of molecular dynamics predictions with theoretical and perturbation expansion predictions has also been performed.

  18. Determination of rotary diffusivity of poly(n-propyl isocyanate) by molecular dynamics.

    PubMed

    Laso, M; Jimeno, N; Muneta, L M; Müller, M

    2006-12-28

    The rotational dynamics of a nondilute solution of the rodlike polymer poly(n-propyl isocyanate) (PPIC) has been studied on an atomistic model by means of a large-scale classical molecular dynamics investigation. The rotary diffusivity of PPIC in toluene solution has been determined from the Einsteinian diffusion regime of the end-to-end vector on the surface of the unit sphere and has been found to be Dr=10.5x10(5)(+/-2.7) s-1, which falls in the range of the experimental data available. A comparison of molecular dynamics predictions with theoretical and perturbation expansion predictions has also been performed.

  19. Genotoxicity studies of methyl isocyanate in Salmonella, Drosophila, and cultured Chinese hamster ovary cells

    SciTech Connect

    Mason, J.M.; Zeiger, E.; Haworth, S.; Ivett, J.; Valencia, R.

    1987-01-01

    The genotoxic effects of methyl isocyanate (MIC) were investigated using four short-term tests: the Salmonella reversion assay (Ames test), the Drosophila sex-linked recessive lethal assay, and the sister chromatic exchange (SCE) and chromosomal aberration assays in cultured Chinese hamster ovary (CHO) cells. No evidence was found for the induction of mutations in either Salmonella or Drosophila. MIC did, however, induce SCEs and chromosomal aberrations in CHO cells both in the presence and absence of Aroclor-induced rat liver S-9.

  20. Biobased polyurethanes prepared from different vegetable oils.

    PubMed

    Zhang, Chaoqun; Madbouly, Samy A; Kessler, Michael R

    2015-01-21

    In this study, a series of biobased polyols were prepared from olive, canola, grape seed, linseed, and castor oil using a novel, solvent/catalyst-free synthetic method. The biobased triglyceride oils were first oxidized into epoxidized vegetable oils with formic acid and hydrogen peroxide, followed by ring-opening reaction with castor oil fatty acid. The molecular structures of the polyols and the resulting polyurethane were characterized. The effects of cross-linking density and the structures of polyols on the thermal, mechanical, and shape memory properties of the polyurethanes were also investigated.

  1. Structure and Properties of Polyurethanes. Part 1,

    DTIC Science & Technology

    1979-03-23

    judged from a change in the partial specific enthropy of polymer TASz (Fig. 8). For polyurethane on the basis ot oligouiethyleneglycoladipate, a change...linking. i I DOC 79011102 PAGE *- 1 -20 2 3 ~ -10 0 0,3 g o Fig. 8. A change in the jart3.al specific enthropy it is pol~yurethane during the sorption...in the I." ’’ DOC 79011102 PAGE Q -0 entropy of polymer TAS2 (Fig. 11). Changes in the partial specific enthropy of polymer are more tor the filled

  2. Shape memory polyurethane nanocomposites with functionalized graphene

    NASA Astrophysics Data System (ADS)

    Choi, Jin Taek; Dung Dao, Trung; Oh, Kyung Min; Lee, Hyung-il; Jeong, Han Mo; Kim, Byung Kyu

    2012-07-01

    The roles of graphene in shape memory polyurethane nanocomposite (SMPUN) as a reinforcing filler, as a fixed structure for memorizing a specified original shape, and as a conductive filler to actuate shape recovery by resistive heating, were examined. The effectiveness of each role was modulated by functionalizing graphene with a hydroxyl group through oxidation with H2O2. The reinforcing effect of graphene and its role as a fixed structure were enhanced by the hydroxyl groups due to the increased grafting of polyurethane chains on graphene during the in situ preparation of SMPUN. However, the oxidation reduced the conductivity of SMPUN, resulting in deterioration of the resistive heating.

  3. Modeling of skeletal members using polyurethane foam

    SciTech Connect

    Sena, J.M.F.; Weaver, R.W.

    1983-11-01

    At the request of the University of New Mexico's Maxwell Museum of Anthropology, members of the Plastic Section in the Process Development Division at SNLA undertook the special project of the Chaco Lady. The project consisted of polyurethane foam casting of a disinterred female skull considered to be approximately 1000 years old. Rubber latex molds, supplied by the UNM Anthropology Department, were used to produce the polymeric skull requested. The authors developed for the project a modified foaming process which will be used in future polyurethane castings of archaeological artifacts and contemporary skeletal members at the University.

  4. Aromatic amines from polyurethane adhesives in food packaging: the challenge of identification and pattern recognition using Quadrupole-Time of Flight-Mass SpectrometryE.

    PubMed

    Pezo, Davinson; Fedeli, Mauro; Bosetti, Osvaldo; Nerín, Cristina

    2012-12-05

    Toxic primary aromatic amines (PAAs) are reaction products from residual isocyanates in polyurethane adhesives. The maximum migration level of the total sum of PAAs is 10 ng g(-1) of food. This paper reports on a method for quantification of 18 PAAs by UHPLC-MS/MS that was optimised and applied to a series of industrial laminates prepared from polyurethane adhesives. Non-intentionally added substances (NIAS), impurities and other migrants were identified by Q-TOF/MS(E). A comparison of the quantitative values obtained by the colorimetric method using NEDA and by UHPLC-MS/MS confirmed that the first method can overestimate the quantification of PAAs. This could be attributed to the impurities and other NIAS present in the plastic laminate. Values of R(2) in the analytical characteristics of UHPLC-MS/MS were obtained, the best value being 0.9964 and the most unfavourable 0.7626. The detection limit (LOD) and the quantification limit (LOQ) were 2 pg g(-1) and 7 pg g(-1), respectively. The stability of the PAAs over time in the acidic simulant in contact with the plastic laminate is also reported.

  5. System Description for the K-25/K-27 D&D Project Polyurethane Foam Delivery System, East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect

    Boris, G.

    2008-02-21

    The Foam Delivery System used in the decontamination and decommissioning (D&D) project for the K-25/K-27 Buildings at the East Tennessee Technology Park (ETTP) is comprised of a trailer-mounted Gusmer{reg_sign} H20/35 Pro-TEC Proportioning Unit and the associated equipment to convey electrical power, air, and foam component material to the unit. This high-pressure, plural-component polyurethane foam pouring system will be used to fill process gas and non-process equipment/piping (PGE/P) within the K-25/K-27 Buildings with polyurethane foam to immobilize contaminants prior to removal. The system creates foam by mixing isocyanate and polyol resin (Resin) component materials. Currently, the project plans to utilize up to six foaming units simultaneously during peak foaming activities. Also included in this system description are the foam component material storage containers that will be used for storage of the component material drums in a staging area outside of the K-25/K-27 Buildings. The Foam Delivery System and foam component material storage enclosures (i.e., Foaming Component Protective Enclosures) used to store polymeric methylene diphenyl diisocyanate (PMDI) component material are identified as Safety Significant (SS) Structures, Systems and Components (SSC) in the Documented Safety Analysis (DSA) for the project, Documented Safety Analysis for the K-25 and K-27 Facilities at the East Tennessee Technology Park, Oak Ridge, Tennessee, DSA-ET-K-25/K-27-0001.

  6. Catalytic Asymmetric Hydroamination of Unactivated Internal Olefins to Aliphatic Amines

    PubMed Central

    Yang, Yang; Shi, Shi-Liang; Niu, Dawen; Liu, Peng; Buchwald, Stephen L.

    2015-01-01

    Catalytic assembly of enantiopure aliphatic amines from abundant and readily available precursors has long been recognized as a paramount challenge in synthetic chemistry. Herein, we describe a mild and general copper-catalyzed hydroamination that effectively converts unactivated internal olefins, an important yet unexploited class of abundant feedstock chemicals, into highly enantioenriched α-branched amines (≥ 96% enantiomeric excess) featuring two minimally differentiated aliphatic substituents. This method provides a powerful means to access a broad range of advanced, highly functionalized enantioenriched amines of interest in pharmaceutical research and other areas. PMID:26138973

  7. Ultrathin coatings from isocyanate terminated star PEG prepolymers: patterning of proteins on the layers.

    PubMed

    Groll, Juergen; Haubensak, Wulf; Ameringer, Thomas; Moeller, Martin

    2005-03-29

    This study presents the easy and fast patterning of low molecular weight molecules that act as binding partners for proteins on Star PEG coatings. These coatings are prepared from isocyanate terminated star shaped prepolymers and form a highly cross-linked network on the substrate in which the stars are connected via urea groups and free amino groups are present. Streptavidin has been patterned on these layers by microcontact printing (muCP) of an amino reactive biotin derivative and consecutive binding of streptavidin to the biotin. Patterns of Ni(2+)-nitriltriacetic acid (NTA) receptors have been prepared by printing amino functional NTA molecules in freshly prepared Star PEG layers that still contain amino reactive isocyanate groups. Complexation of the NTA groups with Ni(II) ions enabled the binding of His-tag enhanced green fluorescent protein (EGFP) in the desired pattern on the substrates. Since the unmodified Star PEG layers prevent unspecific protein adsorption, His-EGFP could selectively be bound to the sample by immersion into crude, nonpurified His-tag EGFP containing cell lysate.

  8. Ultrathin coatings from isocyanate-terminated star PEG prepolymers: layer formation and characterization.

    PubMed

    Groll, Juergen; Ameringer, Thomas; Spatz, Joachim P; Moeller, Martin

    2005-03-01

    In this study we present the preparation of thin and ultrathin coatings from six-arm star-shaped isocyanate-terminated prepolymers on amino-functionalized silicon wafers. The backbone of the stars is a statistical copolymer of ethylene oxide and propylene oxide in the ratio 80:20 (Star PEG). Film preparation by spin coating from aqueous THF resulted in a variety of film morphologies that are determined by the water content of the solvent. Water is indispensable for activation of the isocyanate-terminated stars in solution and for proper cross-linking of the coatings on the substrate. This cross-linking results in a dense network of PEG chains on the substrate linked via urea groups with a mesh size of the network that corresponds to the arm length of the stars. Layer thickness variations between 3 and 500 nm revealed a strong dependence of the contact angle with water on the layer thickness which is explained by the chemical composition of the coatings. Due to the high functionality of the star-shaped prepolymers, free amino groups remain in the films that were detected by fluorescence microscopy after reaction with 4-chloro-7-nitrobenzofurazan (NBF). To test the system for the ability to prevent unspecific interaction with proteins, adsorption of fluorescence-labeled avidin was examined with fluorescence microscopy. For layer thicknesses between 3 and 50 nm, no protein adsorption could be detected.

  9. Revealing Stepwise Mechanisms in Dipolar Cycloaddition Reactions: Computational Study of the Reaction between Nitrones and Isocyanates.

    PubMed

    Darù, Andrea; Roca-López, David; Tejero, Tomás; Merino, Pedro

    2016-01-15

    The mechanism of cycloaddition reactions of nitrones with isocyanates has been studied using density functional theory (DFT) methods at the M06-2X/cc-pVTZ level of theory. The exploration of the potential energy surfaces associated with two reactive channels leading to 1,2,4-oxadiazolidin-5-ones and 1,4,2-dioxazolidines revealed that the cycloaddition reaction takes place through a concerted mechanism in gas phase and in apolar solvents but a stepwise mechanism in polar solvents. In stepwise mechanisms, the first step of the reaction is a rare case in which the nitrone oxygen acts as a nucleophile by attacking the central carbon atom of the isocyanate (interacting with the π-system of the C═O bond) to give an intermediate. The corresponding transition structure is stabilized by an attractive electrostatic interaction favored in a polar medium. The second step of the reaction is the rate-limiting one in which the formation of 1,2,4-oxadiazolidin-5-ones or 1,4,2-dioxazolidines is decided. Calculations indicate that formation of 1,2,4-oxadiazolidin-5-ones is favored both kinetically and thermodynamically independently of the solvent, in agreement with experimental observations. Noncovalent interactions (NCI) and topological analysis of the gradient field of electron localization function (ELF) bonding confirmed the observed interactions.

  10. Biological monitoring to assess exposure from use of isocyanates in motor vehicle repair

    PubMed Central

    Williams, N. R.; Jones, K.; Cocker, J.

    1999-01-01

    OBJECTIVES: To develop a method for the measurement of a metabolite of hexamethylene diisocyanate (HDI), an isocyanate, and use it to assess the exposure of sprayers employed in motor vehicle repair shops. METHODS: Urine samples were taken from sprayers wearing personal protective equipment and spraying in booths or with local exhaust ventilation, from bystanders, and from unexposed subjects. Samples were analyzed for a metabolite of HDI, hexamethylene diamine (HDA), by gas chromatography-mass spectrometry (GC-MS). RESULTS: HDA was detected in four sprayers and one bystander out of 22 workers. No HDA was detected in the urine of unexposed subjects. CONCLUSIONS: Exposure to isocyanates still occurs despite the use of personal protective equipment and the use of a booth or extracted space. Health surveillance is likely to be required to provide feedback on the adequacy of controls even if such precautions are used and to identify cases of early asthma. Biological monitoring can provide a useful additional tool to assess exposure and the adequacy of controls in this group of exposed workers.   PMID:10615291

  11. Well-defined biobased segmented polyureas synthesis via a TBD-catalyzed isocyanate-free route.

    PubMed

    Tang, Donglin; Mulder, Dirk-Jan; Noordover, Bart A J; Koning, Cor E

    2011-09-01

    Via an isocyanate-free route, a series of segmented polyureas (PUs) were synthesized from (potentially) renewable resources. To the best of our knowledge, the present work shows for the first time that the organic superbase guanidine 1,5,7-triazabicyclododecene (TBD) which was originally developed as a catalyst for the ring-opening polymerization of lactones, lactides or cyclic carbonates, is also a promising catalyst for the transurethanization between dicarbamates and diamino-terminated poly(propylene glycol) (PPGda) providing PUs via an isocyanate-free strategy. The renewable segmented PUs contain monodisperse hard segments (HSs). This well-defined structure was verified by the DMTA plots of the PUs, showing a sharp glass transition, a sharp flow transition and a flat rubbery plateau. The flow and maximum use temperature (Tfl ) of the PUs increases with the increasing number of urea groups in the corresponding dicarbamates. In addition, at constant HS length, the length of the soft-segment (SS) can be changed to adjust the properties of the PU materials, enabling their application as adhesives, soft elastomers, or rigid plastics.

  12. Isocyanic acid in the atmosphere and its possible link to smoke-related health effects

    PubMed Central

    Roberts, James M.; Veres, Patrick R.; Cochran, Anthony K.; Warneke, Carsten; Burling, Ian R.; Yokelson, Robert J.; Lerner, Brian; Gilman, Jessica B.; Kuster, William C.; Fall, Ray; de Gouw, Joost

    2011-01-01

    We measured isocyanic acid (HNCO) in laboratory biomass fires at levels up to 600 parts per billion by volume (ppbv), demonstrating that it has a significant source from pyrolysis/combustion of biomass. We also measured HNCO at mixing ratios up to 200 pptv (parts-per-trillion by volume) in ambient air in urban Los Angeles, CA, and in Boulder, CO, during the recent 2010 Fourmile Canyon fire. Further, our measurements of aqueous solubility show that HNCO is highly soluble, as it dissociates at physiological pH. Exposure levels > 1 ppbv provide a direct source of isocyanic acid and cyanate ion (NCO-) to humans at levels that have recognized health effects: atherosclerosis, cataracts, and rheumatoid arthritis, through the mechanism of protein carbamylation. In addition to the wildland fire and urban sources, we observed HNCO in tobacco smoke, HNCO has been reported from the low-temperature combustion of coal, and as a by-product of urea-selective catalytic reduction (SCR) systems that are being phased-in to control on-road diesel NOx emissions in the United States and the European Union. Given the current levels of exposure in populations that burn biomass or use tobacco, the expected growth in biomass burning emissions with warmer, drier regional climates, and planned increase in diesel SCR controls, it is imperative that we understand the extent and effects of this HNCO exposure. PMID:21576489

  13. Isocyanic acid in the atmosphere and its possible link to smoke-related health effects.

    PubMed

    Roberts, James M; Veres, Patrick R; Cochran, Anthony K; Warneke, Carsten; Burling, Ian R; Yokelson, Robert J; Lerner, Brian; Gilman, Jessica B; Kuster, William C; Fall, Ray; de Gouw, Joost

    2011-05-31

    We measured isocyanic acid (HNCO) in laboratory biomass fires at levels up to 600 parts per billion by volume (ppbv), demonstrating that it has a significant source from pyrolysis/combustion of biomass. We also measured HNCO at mixing ratios up to 200 pptv (parts-per-trillion by volume) in ambient air in urban Los Angeles, CA, and in Boulder, CO, during the recent 2010 Fourmile Canyon fire. Further, our measurements of aqueous solubility show that HNCO is highly soluble, as it dissociates at physiological pH. Exposure levels > 1 ppbv provide a direct source of isocyanic acid and cyanate ion (NCO(-)) to humans at levels that have recognized health effects: atherosclerosis, cataracts, and rheumatoid arthritis, through the mechanism of protein carbamylation. In addition to the wildland fire and urban sources, we observed HNCO in tobacco smoke, HNCO has been reported from the low-temperature combustion of coal, and as a by-product of urea-selective catalytic reduction (SCR) systems that are being phased-in to control on-road diesel NO(x) emissions in the United States and the European Union. Given the current levels of exposure in populations that burn biomass or use tobacco, the expected growth in biomass burning emissions with warmer, drier regional climates, and planned increase in diesel SCR controls, it is imperative that we understand the extent and effects of this HNCO exposure.

  14. Di-Isocyanate Crosslinked Aerogels with 1, 6-Bis (Trimethoxysilyl) Hexane Incorporated in Silica Backbone

    NASA Technical Reports Server (NTRS)

    Vivod, Stephanie L.; Meador, Mary Ann B.; Nguyen, Baochau N.; Quade, Derek; Randall, Jason; Perry, Renee

    2008-01-01

    Silica aerogels are desirable materials for many applications that take advantage of their light weight and low thermal conductivity. Addition of a conformal polymer coating which bonds with the amine decorated surface of the silica network improves the strength of the aerogels by as much as 200 times. Even with vast improvement in strength they still tend to undergo brittle failure due to the rigid silica backbone. We hope to increase the flexibility and elastic recovery of the silica based aerogel by altering the silica back-bone by incorporation of more flexible hexane links. To this end, we investigated the use of 1,6-bis(trimethoxysilyl)hexane (BTMSH), a polysilsesquioxane precursor3, as an additional co-reactant to prepare silica gels which were subsequently cross-linked with di-isocyanate. Previously, this approach of adding flexibility by BTMSH incorporation was demonstrated with styrene cross-linked aerogels. In our study, we varied silane concentration, mol % of silicon from BTMSH and di-isocyanate concentration by weight percent to attempt to optimize both the flexibility and the strength of the aerogels.

  15. 21 CFR 177.1680 - Polyurethane resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyurethane resins. 177.1680 Section 177.1680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use...

  16. 21 CFR 177.1680 - Polyurethane resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyurethane resins. 177.1680 Section 177.1680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as...

  17. 21 CFR 177.1680 - Polyurethane resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyurethane resins. 177.1680 Section 177.1680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as...

  18. Rigid polyurethane and kenaf core composite foams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rigid polyurethane foams are valuable in many construction applications. Kenaf is a bast fiber plant where the surface stem skin provides bast fibers whose strength-to-weight ratio competes with glass fiber. The higher volume product of the kenaf core is an under-investigated area in composite appli...

  19. Biodegradation Of thermoplastic polyurethanes from vegetable oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermoplastic urethanes based on polyricinoleic acid soft segments and MDI/BD hard segments with varied soft segment concentration were prepared. Soft segment concentration was varied fro, 40 to 70 wt %. Biodegradation was studied by respirometry. Segmented polyurethanes with soft segments based ...

  20. Nonwoven glass fiber mat reinforces polyurethane adhesive

    NASA Technical Reports Server (NTRS)

    Roseland, L. M.

    1967-01-01

    Nonwoven glass fiber mat reinforces the adhesive properties of a polyurethane adhesive that fastens hardware to exterior surfaces of aluminum tanks. The mat is embedded in the uncured adhesive. It ensures good control of the bond line and increases the peel strength.

  1. Polyurethane adhesive with improved high temperature properties

    NASA Technical Reports Server (NTRS)

    Stuckey, J. M.

    1977-01-01

    A polyurethane resin with paste activator, capable of providing useful bond strengths over the temperature range of -184 C to 149 C, is described. The adhesive system has a pot life of over one hour. Tensile shear strength ratings are given for various adhesive formulations.

  2. Measuring Rind Thickness on Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Johnson, C.; Miller, J.; Brown, H.

    1985-01-01

    Nondestructive test determines rind thickness of polyurethane foam. Surface harness of foam measured by Shore durometer method: hardness on Shore D scale correlates well with rind thickness. Shore D hardness of 20, for example, indicates rind thickness of 0.04 inch (1 millimeter). New hardness test makes it easy to determine rind thickness of sample nondestructively and to adjust fabrication variables accordingly.

  3. Polyurethanes from isosorbide-based diisocyanates.

    PubMed

    Zenner, Michael D; Xia, Ying; Chen, Jason S; Kessler, Michael R

    2013-07-01

    Benign building blocks: Stereochemically pure diisocyanates were prepared on a multigram scale from succinic anhydride and isosorbide or isomannide. Characterization of polyurethanes that were produced from these diisocyanates revealed low polydispersity, high thermal stability, and stereochemistry-dependent morphology. If biobased succinic anhydride is used, then no stoichiometric petroleum-derived reagents are required in the synthesis of these materials.

  4. Development of Lignin-Based Polyurethane Thermoplastics

    SciTech Connect

    Saito, Tomonori; Perkins, Joshua H; Jackson, Daniel C; Trammell, Neil E; Hunt, Marcus A; Naskar, Amit K

    2013-01-01

    In our continued effort to develop value-added thermoplastics from lignin, here we report utilizing a tailored feedstock to synthesize mechanically robust thermoplastic polyurethanes at very high lignin contents (75 65 wt %). The molecular weight and glass transition temperature (Tg) of lignin were altered through cross-linking with formaldehyde. The cross-linked lignin was coupled with diisocyanate-based telechelic polybutadiene as a network-forming soft segment. The appearance of two Tg s, around 35 and 154 C, for the polyurethanes indicates the existence of two-phase morphology, a characteristic of thermoplastic copolymers. A calculated Flory-Huggins interaction parameter of 7.71 also suggests phase immiscibility in the synthesized lignin polyurethanes. An increase in lignin loading increased the modulus, and an increase in crosslink-density increased the modulus in the rubbery plateau region of the thermoplastic. This path for synthesis of novel lignin-based polyurethane thermoplastics provides a design tool for high performance lignin-based biopolymers.

  5. The male polyurethane condom: a review of current knowledge.

    PubMed

    Rosenberg, M J; Waugh, M S; Solomon, H M; Lyszkowski, A D

    1996-03-01

    Condoms are one of the oldest form of contraceptive and the best recognized form of protection against sexually transmitted diseases. Their use, however, is limited by both behavioral factors and device-related factors, including complaints about decreased sensitivity and sexual enjoyment. To address these limitations, a male condom made of polyurethane was developed. Polyurethane is a strong impermeable material with good heat transfer characteristics that is less susceptible to deterioration during storage than latex. Because little information is available comparing polyurethane and latex condoms in terms of consumer preferences as well as breakage and slippage, we reviewed four pre-marketing studies of polyurethane condoms, one of which included comparison to latex. No significant differences in slippage and breakage rates between latex and polyurethane condoms were reported in the study that included a latex comparator, and other studies of polyurethane condoms alone resulted in rates in the same range as published for latex condoms. Subjectively, consumers expressed significantly greater preference for the polyurethane condom over latex in regard to appearance, lack of smell, likelihood of slippage, comfort, sensitivity, natural look, natural feel, and overall. While additional testing is needed, these preliminary results suggest that the male polyurethane condom reviewed performed at least as well as latex condoms and is preferred by consumers. If preference translates to greater use, the male polyurethane condom may address important barriers that have been linked with inadequate condom use in the past. These results, however, may not be generalizable to other brands of polyurethane condom currently under development.

  6. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  7. Thermal Expansion of Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Lerch, Bradley A.; Sullivan, Roy M.

    2006-01-01

    Closed cell foams are often used for thermal insulation. In the case of the Space Shuttle, the External Tank uses several thermal protection systems to maintain the temperature of the cryogenic fuels. A few of these systems are polyurethane, closed cell foams. In an attempt to better understand the foam behavior on the tank, we are in the process of developing and improving thermal-mechanical models for the foams. These models will start at the microstructural level and progress to the overall structural behavior of the foams on the tank. One of the key properties for model characterization and verification is thermal expansion. Since the foam is not a material, but a structure, the modeling of the expansion is complex. It is also exacerbated by the anisoptropy of the material. During the spraying and foaming process, the cells become elongated in the rise direction and this imparts different properties in the rise direction than in the transverse directions. Our approach is to treat the foam as a two part structure consisting of the polymeric cell structure and the gas inside the cells. The polymeric skeleton has a thermal expansion of its own which is derived from the basic polymer chemistry. However, a major contributor to the thermal expansion is the volume change associated with the gas inside of the closed cells. As this gas expands it exerts pressure on the cell walls and changes the shape and size of the cells. The amount that this occurs depends on the elastic and viscoplastic properties of the polymer skeleton. The more compliant the polymeric skeleton, the more influence the gas pressure has on the expansion. An additional influence on the expansion process is that the polymeric skeleton begins to breakdown at elevated temperatures and releases additional gas species into the cell interiors, adding to the gas pressure. The fact that this is such a complex process makes thermal expansion ideal for testing the models. This report focuses on the thermal

  8. Protonation switching to the least-basic heteroatom of carbamate through cationic hydrogen bonding promotes the formation of isocyanate cations.

    PubMed

    Kurouchi, Hiroaki; Sumita, Akinari; Otani, Yuko; Ohwada, Tomohiko

    2014-07-07

    We found that phenethylcarbamates that bear ortho-salicylate as an ether group (carbamoyl salicylates) dramatically accelerate OC bond dissociation in strong acid to facilitate generation of isocyanate cation (N-protonated isocyanates), which undergo subsequent intramolecular aromatic electrophilic cyclization to give dihydroisoquinolones. To generate isocyanate cations from carbamates in acidic media as electrophiles for aromatic substitution, protonation at the ether oxygen, the least basic heteroatom, is essential to promote CO bond cleavage. However, the carbonyl oxygen of carbamates, the most basic site, is protonated exclusively in strong acids. We found that the protonation site can be shifted to an alternative basic atom by linking methyl salicylate to the ether oxygen of carbamate. The methyl ester oxygen ortho to the phenolic (ether) oxygen of salicylate is as basic as the carbamate carbonyl oxygen, and we found that monoprotonation at the methyl ester oxygen in strong acid resulted in the formation of an intramolecular cationic hydrogen bond (>CO(+) H⋅⋅⋅O<) with the phenolic ether oxygen. This facilitates OC bond dissociation of phenethylcarbamates, thereby promoting isocyanate cation formation. In contrast, superacid-mediated diprotonation at the methyl ester oxygen of the salicylate and the carbonyl oxygen of the carbamate afforded a rather stable dication, which did not readily undergo CO bond dissociation. This is an unprecedented and unknown case in which the monocation has greater reactivity than the dication.

  9. Activation of dinitrogen-derived hafnium nitrides for nucleophilic N-C bond formation with a terminal isocyanate.

    PubMed

    Semproni, Scott P; Chirik, Paul J

    2013-12-02

    Better by Hf: Anion coordination to a bridging hafnocene nitride complex, prepared from CO-induced N2 cleavage, increases the nucleophilicity of the nitrogen atom, thus promoting additional NC bond formation with a typically inert terminal isocyanate ligand. This cascade sequence allows synthesis of otherwise challenging mono-substituted ureas using N2 , CO, and an appropriate electrophile.

  10. Interfacial thiol-isocyanate reactions for functional nanocarriers: a facile route towards tunable morphologies and hydrophilic payload encapsulation.

    PubMed

    Kuypers, Sören; Pramanik, Sumit Kumar; D'Olieslaeger, Lien; Reekmans, Gunter; Peters, Martijn; D'Haen, Jan; Vanderzande, Dirk; Junkers, Thomas; Adriaensens, Peter; Ethirajan, Anitha

    2015-11-11

    Functional nanocarriers were synthesized using an in situ inverse miniemulsion polymerization employing thiol-isocyanate reactions at the droplet interface to encapsulate hydrophilic payloads. The morphology of the nanocarriers is conveniently tunable by varying the reaction conditions and the dispersions are easily transferable to the aqueous phase.

  11. Synthesis of biobased polyurethane from oleic and ricinoleic acids as the renewable resources via the AB-type self-condensation approach.

    PubMed

    Palaskar, Dnyaneshwar V; Boyer, Aurélie; Cloutet, Eric; Alfos, Carine; Cramail, Henri

    2010-05-10

    Polyurethane (PU) from methyl oleate (derived from sunflower oil) and ricinoleic acid (derived from castor oil) was synthesized using the AB-type self-polycondensation approach for the first time. In the present work, three novel AB-type monomers, namely, a mixture of 10-hydroxy-9-methoxyoctadecanoyl azide/9-hydroxy-10-methoxyoctadecanoyl azide (HMODAz), 12-hydroxy-9-cis-octadecenoyl azide (HODEAz) and methyl-N-11-hydroxy-9-cis-heptadecen carbamate (MHHDC) were synthesized from methyl oleate and ricinoleic acid using simple reaction steps. Out of these, HMODAz and HODEAz monomers were polymerized by the acyl-azido and hydroxyl AB-type self-condensation approach, while MHHDC monomer was polymerized through AB-type self-condensation via transurethane reaction. The acyl-azido and hydroxyl self-condensations were carried out at various temperatures (50, 60, 80. and 110 degrees C) in bulk with and without catalyst. A FTIR study of the polymerization, using HMODAz at 80 degrees C without catalyst, indicates in situ formation of an intermediate isocyanate group in the first 15-30 min, and further onward, the molar mass increases as observed by SEC analysis. In the case of the MHHDC monomer, a transurethane reaction was used to obtain a similar PU (which was obtained by AB-type acyl-azido and hydroxyl self-condensation of HODEAz) in the presence of titanium tetrabutoxide as a catalyst at 130 degrees C. HMODAz, HODEAz, MHHDC, and corresponding polyurethanes were characterized by FTIR, (1)H NMR, (13)C NMR, and MALDI-TOF mass spectroscopy. Differential scanning calorimetric analysis of polyurethanes derived from HMODAz, HODEAz, and MHHDC showed two different glass transition temperatures for soft segments (at lower temperature) and hard segments (at higher temperature), indicating phase-separated morphology.

  12. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aliphatic amine (PMN P-06-702) is subject to reporting under this section for the significant new uses...-specific cartridge) and should include a particulate filter (N100 if oil aerosols are absent, R100, or P100... (HEPA) filters; supplied-air respirator operated in pressure demand or continuous flow mode and...

  13. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aliphatic amine (PMN P-06-702) is subject to reporting under this section for the significant new uses...-specific cartridge) and should include a particulate filter (N100 if oil aerosols are absent, R100, or P100... (HEPA) filters; supplied-air respirator operated in pressure demand or continuous flow mode and...

  14. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aliphatic amine (PMN P-06-702) is subject to reporting under this section for the significant new uses...-specific cartridge) and should include a particulate filter (N100 if oil aerosols are absent, R100, or P100... (HEPA) filters; supplied-air respirator operated in pressure demand or continuous flow mode and...

  15. Degradation Characterization of Aliphatic POLYESTERS—IN Vitro Study

    NASA Astrophysics Data System (ADS)

    Vieira, A. C.; Vieira, J. C.; Guedes, R. M.; Marques, A. T.

    2008-08-01

    The most popular and important biodegradable polymers are aliphatic polyesters, such as polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polyhydoxyalkanoates (PHA's) and polyethylene oxide (PEO). However, each of these has some shortcomings which restrict its applications. Blending techniques are an extremely promising approach which can improve or tune the original properties of the polymers[1]. Aliphatic polyesters are a central class of biodegradable polymers, because hydrolytic and/or enzymatic chain cleavage of these materials leads to α-hydroxyacids, which in most cases are ultimately metabolized in human body. This is particularly useful for controlled release devices and for other biomedical applications like suture fibers and ligaments. For aliphatic polyesters, hydrolysis rates are affected by the temperature, molecular structure, and ester group density as well as by the species of enzyme used. The degree of crystallinity may be a crucial factor, since enzymes attack mainly the amorphous domains of a polymer. Four different aliphatic polyesters were characterized in terms of degradation. Sutures fibers of PGA-PCL, PGA, PLA-PCL and PDO were used in this study. Weight loss, pH, molecular weight, crystallinity and strength were measured after six stages of incubation in distilled water, physiological saline and phosphate buffer solution (PBS). Degradation rate was determined, using a first order kinetic equation for all materials in the three incubation media. A relatively wide range of mechanical properties and degradation rates were observed among the materials studied. PBS was the most aggressive environment for the majority of cases.

  16. Introducing Aliphatic Substitution with a Discovery Experiment Using Competing Electrophiles

    ERIC Educational Resources Information Center

    Curran, Timothy P.; Mostovoy, Amelia J.; Curran, Margaret E.; Berger, Clara

    2016-01-01

    A facile, discovery-based experiment is described that introduces aliphatic substitution in an introductory undergraduate organic chemistry curriculum. Unlike other discovery-based experiments that examine substitution using two competing nucleophiles with a single electrophile, this experiment compares two isomeric, competing electrophiles…

  17. Suppression of the Ethanol Withdrawal Syndrome by Aliphatic Diols

    DTIC Science & Technology

    1979-06-07

    Two halogenated hydrocarbons , alcohols exert their intoxicating properties through an interac- which are amphiphiles like alcohols and diols, were both...induce a virtually identical spectrum of phatic hydrocarbons could not. The data suggest that short- intoxication signs. Because of their pharmacological...their ability to induce to determine if partitioning into membrasps is an important intoxication since 1) alcohols and aliphatic hydrocarbons with

  18. Cloud condensation nuclei activity of aliphatic amine secondary aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...

  19. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyaziridinyl ester of an aliphatic... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  20. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyaziridinyl ester of an aliphatic... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  1. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of... polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). (a) Chemical substance and... acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (PMN P-11-333) is subject...

  2. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of... polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). (a) Chemical substance and... acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (PMN P-11-333) is subject...

  3. 40 CFR 721.10608 - Aliphatic diisocyanate polymer with alkanediol and alkylglycol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aliphatic diisocyanate polymer with... Significant New Uses for Specific Chemical Substances § 721.10608 Aliphatic diisocyanate polymer with.... (1) The chemical substance identified generically as aliphatic diisocyanate polymer with...

  4. 40 CFR 721.10608 - Aliphatic diisocyanate polymer with alkanediol and alkylglycol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aliphatic diisocyanate polymer with... Significant New Uses for Specific Chemical Substances § 721.10608 Aliphatic diisocyanate polymer with.... (1) The chemical substance identified generically as aliphatic diisocyanate polymer with...

  5. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  6. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  7. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  8. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  9. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  10. Marine biofouling resistance of polyurethane with biodegradation and hydrolyzation.

    PubMed

    Xu, Wentao; Ma, Chunfeng; Ma, Jielin; Gan, Tiansheng; Zhang, Guangzhao

    2014-03-26

    We have prepared polyurethane with poly(ε-caprolactone) (PCL) as the segments of the main chain and poly(triisopropylsilyl acrylate) (PTIPSA) as the side chains by a combination of radical polymerization and a condensation reaction. Quartz crystal microbalance with dissipation studies show that polyurethane can degrade in the presence of enzyme and the degradation rate decreases with the PTIPSA content. Our studies also demonstrate that polyurethane is able to hydrolyze in artificial seawater and the hydrolysis rate increases as the PTIPSA content increases. Moreover, hydrolysis leads to a hydrophilic surface that is favorable to reduction of the frictional drag under dynamic conditions. Marine field tests reveal that polyurethane has good antifouling ability because polyurethane with a biodegradable PCL main chain and hydrolyzable PTIPSA side chains can form a self-renewal surface. Polyurethane was also used to carry and release a relatively environmentally friendly antifoulant, and the combined system exhibits a much higher antifouling performance even in a static marine environment.

  11. Sensory and pulmonary irritation of methyl isocyanate in mice and pulmonary irritation and possible cyanidelike effects of methyl isocyanate in guinea pigs.

    PubMed Central

    Alarie, Y; Ferguson, J S; Stock, M F; Weyel, D A; Schaper, M

    1987-01-01

    Methyl isocyanate (MIC) was evaluated for sensory and pulmonary irritation in mice. MIC was found to be both a potent sensory and pulmonary irritant in this species. From these results, a safe level of exposure for a period of 8 hr was estimated to be about 0.02 ppm for humans. Guinea pigs were also exposed to MIC for a single 3-hr exposure at a concentration of 37 ppm. During exposure to MIC, coughing was observed in all animals. Pulmonary function was evaluated immediately following exposure and intermittently on the next 35 days using CO2 challenges and flow-volume loops. Highly abnormal responses to CO2 were observed immediately after exposure in all animals. Six of the eight animals exposed to MIC died. In the two survivors, an apparent recovery was seen during the 5 days following exposure, but a worsening effect was observed at days 21 and 28, with a partial recovery at day 35. The data clearly demonstrated that the primary pulmonary effect of MIC was one of airways obstruction. Oxygen uptake and carbon dioxide output were also measured in the guinea pigs following exposure to MIC. No evidence of a cyanidelike effect was observed, in contrast to a severe depression of oxygen uptake following exposure to hydrogen cyanide. PMID:3622431

  12. Investigation of non-isocyanate urethane functional latexes and carbon nanofiller/epoxy coatings

    NASA Astrophysics Data System (ADS)

    Meng, Lei

    This dissertation consists of two parts. In the first part, a new class of non-isocyanate urethane methacrylates was synthesized and the effect of the new monomers on the urethane functional latex was investigated. The second part focused on a comparison of carbon nanofillers in inorganic/organic epoxy coating system for anticorrosive applications. A new class of non-isocyanate urethane methacrylates (UMAs) monomers was synthesized through an environmentally friendly non-isocyanate pathway. The kinetics of seeded semibatch emulsion polymerization of UMAs with methyl methacrylate (MMA) and butyl acrylate (BA) was monitored. The particle size and morphology were investigated by dynamic light scattering (DLS), ultrasound acoustic attenuation spectroscopy (UAAS) and transmission electron microscopy (TEM). The minimum film formation temperature (MFFT), mechanical and viscoelastic properties were studied. It was found that the emulsion polymerization processes all proceeded via Smith-Ewart control, leading to the uniform morphology and particle size. The glass transition temperature (Tg) and the mechanical properties of poly(MMA/BA/UMA) decreased with the increasing chain length of urethane methacrylate monomers due to the increasing flexibility of side chains. Without the effect of Tg, lower MFFT and improved mechanical properties were observed from urethane functional latexes. The improved mechanical properties were due to the increasing particle interaction by forming hydrogen bonding. Furthermore, the effect of urethane functionality in terms of the polymer composition, the location and the concentration was investigated by the batch, single-stage and two-stage semibatch polymerization of 2-[(butylcarbamoyl)oxy]ethyl methacrylate (BEM) with MMA and BA. The core-shell and homogeneous structures were evaluated by TEM, differential scanning calorimetry (DSC), and solid state nuclear magnetic resonance (SS-NMR). The compositional drift was observed from the batch

  13. Coatings based on polyurethane chemistry. Concept of hard clusters in the interpretation of properties of polyurethane and polyurethane acrylate networks

    NASA Astrophysics Data System (ADS)

    Nabeth, B.; Pascault, J. P.; Dušek, K.

    1996-01-01

    Polyurethane (PU) and polyurethane acrylate (PUA) networks based on hydroxyl-terminated poycaprolactone (PCL), m-tetramethylene diisocyanate (m-TMXDI), trimethylolpropane (TMP) for PU or hydroxyethyl methacrylate (HEMA) for PUA, have been synthesized with various molar masses of PCL, various molar ratios and consequently with various crosslink densities. PUA can be considered as one-component systems. Even when thermodynamics driven segregation does not occur, the distribution of crosslinks in networks is topologically non uniform. The concept of hard cluster crosslinks, which are represented by structures of chemically <> units: diisocyanate linked to TMP in the case of PU networks, and microgel-like polymerized polyacrylate chains in the case of PUA networks, is very useful to explain Tg and equilibrium modulus variations.

  14. Coatings based on polyurethane chemistry. Concept of hard clusters in the interpretation of properties of polyurethane and polyurethane acrylate networks

    SciTech Connect

    Nabeth, B.; Pascault, J.P.; Dusek, K.

    1996-01-01

    Polyurethane (PU) and polyurethane acrylate (PUA) networks based on hydroxyl-terminated poycaprolactone (PCL), m-tetramethylene diisocyanate (m-TMXDI), trimethylolpropane (TMP) for PU or hydroxyethyl methacrylate (HEMA) for PUA, have been synthesized with various molar masses of PCL, various molar ratios and consequently with various crosslink densities. PUA can be considered as one-component systems. Even when thermodynamics driven segregation does not occur, the distribution of crosslinks in networks is topologically non uniform. The concept of hard cluster crosslinks, which are represented by structures of chemically {l_angle}{l_angle}hard{r_angle}{r_angle} units: diisocyanate linked to TMP in the case of PU networks, and microgel-like polymerized polyacrylate chains in the case of PUA networks, is very useful to explain Tg and equilibrium modulus variations. {copyright} {ital 1996 American Institute of Physics.}

  15. Synthesis and characterization of shape memory poly (epsilon-caprolactone) polyurethane-ureas

    NASA Astrophysics Data System (ADS)

    Ren, Hongfeng

    content. The SANS results revealed phase separation of hard and soft segments into nano scale domains. The overall objectives of this dissertation were: ■ To improve the recovery stress of linear shape memory polymers. ■ To study the morphology and structure property relationships of shape memory polymers. Chapter 1 reviews the literature on SMAs and SMPs, especially on linear SMPs. Chapter 2 is devoted to SMPUUs with the aliphatic amine 1, 4-Butanediamine (BDA) as chain extender. Chapter 3 reports the effects of different aliphatic diamines as the chain extenders. Chapter 4 covers the results for shape memory polyurethane-ureas with aromatic diamine 4, 4’-Methylenedianiline (MDA) as the chain extender. The effect of different diisocyanates is covered in Chapter 5. Chapter 6-7 show some synthesized polymer systems with unimproved recovery stress or even no shape memory properties. The overall conclusions of this work are reported in Chapter 8.

  16. THE ROTATIONAL SPECTRUM OF THE UREA\\cdot\\cdot\\cdotISOCYANIC ACID COMPLEX

    NASA Astrophysics Data System (ADS)

    Mullaney, John C.; Medcraft, Chris; Walker, Nick; Legon, Anthony; Lewis-Borrell, Luke; Golding, Bernard T.

    2016-06-01

    A dimer of urea and isocyanic acid has been generated and observed in the gas phase. The complex was generated by laser vaporisation of a rod target containing urea and copper in a 1:1 ratio, then cooled in a supersonic expansion. Six isotopologues of the complex have been characterised using a chirped pulse Fourier-transform microwave spectrometer in the frequency range 6.5-18.5 GHz. The spectra have been fitted to the Hamiltonian for an asymmetric rotor using PGOPHER. Data obtained from the 13C and 15N isotopologues confirms that all nitrogen atoms are close to the a intertial axis while the carbon atoms are not. A tentative structure will be presented.

  17. Thermal characteristics of lysine tri-isocyanate and its mixture with water.

    PubMed

    Li, Xin-Rui; Koseki, Hiroshi; Iwata, Yusaku

    2007-04-11

    The thermal reactivity of lysine tri-isocyanate (LTI, 2-isocyanatoethyl-2,6-diisocyanato caproylate) and its mixture with 1% water was investigated after the occurrence of a runaway reaction at a plant. By using a sensitive thermal calorimeter, C80, and an adiabatic calorimeter, ARC, an onset reaction of LTI was observed at 70-100 degrees C and it became vigorous at 175-200 degrees C. The reaction is considered as co-polymerization at this stage, which causes a second decomposition reaction at 200 degrees C if the heat generation is accumulated in the vessel. On the other hand, the presence of water can catalyze LTI at much lower onset temperature and lead to a moderate reaction at 50 degrees C since carbamine is produced and in turn it induces decarbonization of the LTI molecule with significant release of CO2 gas which was detected by a gas chromatography and an FT-IR gas analyzer.

  18. Real-time emission factor measurements of isocyanic acid from light duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Brady, J.; Crisp, T. A.; Collier, S.; Kuwayama, T.; Zhang, Q.; Kleeman, M.; Bertram, T. H.

    2013-12-01

    Recent work has demonstrated the potential for vehicle based anthropogenic sources of the carcinogen isocyanic acid (HNCO) in urban environments. Although emission factors for HNCO have recently been measured for light duty diesel vehicles, light duty gasoline vehicles are not well characterized. Here we will present real-time emission factor measurements of HNCO for light duty gasoline vehicles measured at the California Air Resource Board's Haagen-Smit Laboratory in September of 2011 driven on a chassis dynamometer using the California Unified Driving Cycle. Emission factors for HNCO were determined for eight light duty gasoline vehicles utilizing a fast response chemical ionization time-of-flight mass spectrometer and simultaneous real-time measurements of CO, CO2, and NOx. We will discuss the potential production mechanism for HNCO by light duty gasoline vehicles as well as the potential drive cycle dependency of HNCO production.

  19. Phosphorus and silicon analogs of isocyanic acid: Microwave detection of HPCO and HNSiO

    NASA Astrophysics Data System (ADS)

    Thorwirth, S.; Lattanzi, V.; McCarthy, M. C.

    2015-04-01

    Phosphaketene, HPCO, and silaisocyanic acid, HNSiO, have been characterized in the gas phase for the first time, employing Fourier transform microwave spectroscopy. Besides the parent isotopic species, the rare isotopologs HP13CO, HN29SiO, and HN30SiO were also observed. The molecular parameters derived experimentally agree very well with results of new quantum-chemical calculations performed at the coupled-cluster level of theory. Other derivatives of HNCO, in which one atom is replaced with its third-row counterpart, or two atoms are replaced with their second-row counterparts, may be detectable using the same combined theoretical/experimental approach. Because both isocyanic acid, HNCO, and its sulfur variant HNCS are abundant in molecule-rich astronomical sources, HPCO and HNSiO are good candidates for future radio astronomical searches.

  20. Photochemical processing of diesel fuel emissions as a large secondary source of isocyanic acid (HNCO)

    NASA Astrophysics Data System (ADS)

    Link, M. F.; Friedman, B.; Fulgham, R.; Brophy, P.; Galang, A.; Jathar, S. H.; Veres, P.; Roberts, J. M.; Farmer, D. K.

    2016-04-01

    Isocyanic acid (HNCO) is a well-known air pollutant that affects human health. Biomass burning, smoking, and combustion engines are known HNCO sources, but recent studies suggest that secondary production in the atmosphere may also occur. We directly observed photochemical production of HNCO from the oxidative aging of diesel exhaust during the Diesel Exhaust Fuel and Control experiments at Colorado State University using acetate ionization time-of-flight mass spectrometry. Emission ratios of HNCO were enhanced, after 1.5 days of simulated atmospheric aging, from 50 to 230 mg HNCO/kg fuel at idle engine operating conditions. Engines operated at higher loads resulted in less primary and secondary HNCO formation, with emission ratios increasing from 20 to 40 mg HNCO/kg fuel under 50% load engine operating conditions. These results suggest that photochemical sources of HNCO could be more significant than primary sources in urban areas.

  1. Cloud partitioning of isocyanic acid (HNCO) and evidence of secondary source of HNCO in ambient air

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Lee, A. K. Y.; Wentzell, J. J. B.; Mcdonald, A. M.; Toom-Sauntry, D.; Leaitch, W. R.; Modini, R. L.; Corrigan, A. L.; Russell, L. M.; Noone, K. J.; Schroder, J. C.; Bertram, A. K.; Hawkins, L. N.; Abbatt, J. P. D.; Liggio, J.

    2014-10-01

    Although isocyanic acid (HNCO) may cause a variety of health issues via protein carbamylation and has been proposed as a key compound in smoke-related health issues, our understanding of the atmospheric sources and fate of this toxic compound is currently incomplete. To address these issues, a field study was conducted at Mount Soledad, La Jolla, CA, to investigate partitioning of HNCO to clouds and fogs using an Acetate Chemical Ionization Mass Spectrometer coupled to a ground-based counterflow virtual impactor. The first field evidence of cloud partitioning of HNCO is presented, demonstrating that HNCO is dissolved in cloudwater more efficiently than expected based on the effective Henry's law solubility. The measurements also indicate evidence for a secondary, photochemical source of HNCO in ambient air at this site.

  2. Inhalation exposure system used for acute and repeated-dose methyl isocyanate exposures of laboratory animals.

    PubMed

    Adkins, B; O'Connor, R W; Dement, J M

    1987-06-01

    Laboratory animals were exposed by inhalation for 2 hr/day (acute) or 6 hr/day (four consecutive days, repeated dose) to methyl isocyanate (MIC). Exposures were conducted in stainless steel and glass inhalation exposure chambers placed in stainless steel, wire mesh cages. MIC was delivered with nitrogen via stainless steel and Teflon supply lines. Chamber concentrations ranged from 0 to 60 ppm and were monitored continuously with infrared spectrophotometers to 1 ppm and at 2-hr intervals to 20 ppb with a high performance liquid chromatograph equipped with a fluorescence detector. Other operational parameters monitored on a continuous basis included chamber temperature (20-27 degrees C), relative humidity (31-64%), static (transmural) pressure (-0.3 in.), and flow (300-500 L/min). The computer-assistance system interfaced with the inhalation exposure laboratory is described in detail, including the analytical instrumentation calibration system used throughout this investigation.

  3. Formation of Pegylated polyurethane and Lysine-coated polyurea nanoparticles obtained from O/W nano-emulsions.

    PubMed

    Morral-Ruíz, Genoveva; Solans, Conxita; García, María Luisa; García-Celma, María José

    2012-04-17

    The present work describes the formation of Pegylated polyurethane and Lysine-coated polyurea nanoparticles obtained from O/W nano-emulsions via an interfacial polycondensation process in the aqueous solution/polysorbate 80/diisocyanate/medium chain triglyceride systems. The initial nano-emulsions were prepared using the phase inversion composition (PIC) method. Dynamic light scattering studies revealed the changes in the particle size occurring during the process of nanoparticle formation. Well-defined polymeric nanoparticles with a small particle diameter (below 80 nm) and low polydispersity index were obtained using a highly hydrophilic component (polyethylene glycol or lysine) and an aliphatic diisocyante monomer. FT-IR and AFM studies showed that the polymeric matrix of nanoparticles was built by copolymers derived from reaction between the diisocyanate and the hydroxyl groups of both nonionic surfactant and the highly hydrophilic component. Pegylated-polyurethane and lysine-coated polyurea nanoparticles designed in this study are promising tools for future applications in biomedical sciences.

  4. Highly stretchable nanoalginate based polyurethane elastomers.

    PubMed

    Daemi, Hamed; Barikani, Mehdi; Barmar, Mohammad

    2013-06-20

    Highly stretchable elastomeric samples based on cationic polyurethane dispersions-sodium alginate nanoparticles (CPUD/SA) were prepared by the solution blending of sodium alginate and aqueous polyurethane dispersions. CPUDs were synthesized by step growth polymerization technique using N-methyldiethanolamine (MDEA) as a source of cationic emulsifier. The chemical structure and thermal-mechanical properties of these systems were characterized using FTIR and DMTA, respectively. The presence of nanoalginate particles including nanobead and nanorod particles were proved by SEM and EDX. It was observed that thermal properties of composites increased with increasing SA content. All prepared samples were known as thermoplastic-elastomers with high percentages of elongation. Excellent compatibility of prepared nanocomposites was proved by the DMTA data.

  5. Investigation into reversion of polyurethane encapsulants

    NASA Technical Reports Server (NTRS)

    Lynch, C. R.

    1973-01-01

    The effect of high humidity (95% RH) at 60 C, 70 C, 85 C and 100 C on the solid-to-liquid reversion of polyurethane elastomers (used for potting electrical connectors and conformal coating printed circuit boards) was investigated. Hardness measurements were conducted on eleven elastomers to track reversion for a 101-day period. The primary purpose of the tests was to provide data to predict service life for the polyurethane elastomers. This was not accomplished as the hardness did not deteriorate rapidly enough at the lower test temperatures. The tests did determine that the potting and coating materials most widely used on the S-1C Program are susceptible to reversion but appear adequate for service in the S-1C environment.

  6. Effects of humidity and filter material on diffusive sampling of isocyanates using reagent-coated filters.

    PubMed

    Henneken, Hartmut; Vogel, Martin; Karst, Uwe

    2006-10-01

    Diffusive sampling of methyl isocyanate (MIC) on 4-nitro-7-piperazinobenzo-2-oxa-1,3-diazole (NBDPZ)-coated glass fibre (GF) filters is strongly affected by high relative humidity (RH) conditions. It is shown that the humidity interference is a physical phenomenon, based on displacement of reagent from the filter surface. In this paper, this drawback has been overcome by changing the filter material to the less polar polystyrene divinyl benzene (SDB). A series of experiments was performed to compare the analyte uptake on the two filter materials for different sampling periods and analyte concentrations at both low and high RH conditions. Additionally, the materials were investigated as well for passive sampling of ethyl (EIC) and phenyl isocyanate (PhIC) with NBDPZ and 1-(2-methoxyphenyl) piperazine (2-MP) as an alternative derivatising agent. Using 2-MP, the mean GF/SDB response ratios were determined to be 1.02 for MIC (RSD: 6.1%) and 1.03 for EIC (RSD: 6.8%), whereas PhIC could only be determined on SDB filters. Using NBDPZ as reagent, the negative influence of high humidity disappeared when SDB filters were used instead of GF filters. Even at low RH conditions, sampling with SDB material generally resulted in a higher analyte uptake than with GF filters. The GF/SDB response ratios were independent of sampling time or analyte concentration and were determined to be 0.70 (RSD: 4.7%) for MIC, 0.84 (RSD: 4.5%) for EIC and 0.95 (RSD 5.4%) for PhIC, meaning that the NBDPZ diffusive sampler based on SDB can be used at all humidity conditions without any restrictions.

  7. Real-time emission factor measurements of isocyanic acid from light duty gasoline vehicles.

    PubMed

    Brady, James M; Crisp, Timia A; Collier, Sonya; Kuwayama, Toshihiro; Forestieri, Sara D; Perraud, Véronique; Zhang, Qi; Kleeman, Michael J; Cappa, Christopher D; Bertram, Timothy H

    2014-10-07

    Exposure to gas-phase isocyanic acid (HNCO) has been previously shown to be associated with the development of atherosclerosis, cataracts and rheumatoid arthritis. As such, accurate emission inventories for HNCO are critical for modeling the spatial and temporal distribution of HNCO on a regional and global scale. To date, HNCO emission rates from light duty gasoline vehicles, operated under driving conditions, have not been determined. Here, we present the first measurements of real-time emission factors of isocyanic acid from a fleet of eight light duty gasoline-powered vehicles (LDGVs) tested on a chassis dynamometer using the Unified Driving Cycle (UC) at the California Air Resources Board (CARB) Haagen-Smit test facility, all of which were equipped with three-way catalytic converters. HNCO emissions were observed from all vehicles, in contrast to the idealized laboratory measurements. We report the tested fleet averaged HNCO emission factors, which depend strongly on the phase of the drive cycle; ranging from 0.46 ± 0.13 mg kg fuel(-1) during engine start to 1.70 ± 1.77 mg kg fuel(-1) during hard acceleration after the engine and catalytic converter were warm. The tested eight-car fleet average fuel based HNCO emission factor was 0.91 ± 0.58 mg kg fuel(-1), within the range previously estimated for light duty diesel-powered vehicles (0.21-3.96 mg kg fuel(-1)). Our results suggest that HNCO emissions from LDGVs represent a significant emission source in urban areas that should be accounted for in global and regional models.

  8. Thermal Conductivity of Weathered Polyurethane Foam Roofing.

    DTIC Science & Technology

    1982-09-01

    Experimental polyurethane foam roofing systems, by J. R. Keeton , R. L. Alumbaugh, Ph.D , and E. F. Humm. Port Hueneme, Calif., Aug 1976. 2. . Purchase...101. Pearl Harbor, HI; CODE 09P PEARL HARBOR HI: Code 2011 Pearl Harbor. HI; Code 402. RDT&E. Pearl Harbor HI; Commander. Pearl Harbor. HI: Library...Code 2011 San Bruno, CA NAVFACENGCOM CONTRACTS AROICC MCAS El Toro; AROICC, NAVSTA Brooklyn, NY; AROICC, Point Mugu CA; AROICC, Quantico, VA; Colts

  9. Thermoplastic Polyurethanes with Isosorbide Chain Extender

    SciTech Connect

    Javni, Ivan; Bilic, Olivera; Bilic, Nikola; Petrovic, Zoran; Eastwood, Eric; Zhang, Fan; Ilavsky, Jan

    2015-12-15

    Isosorbide, a renewable diol derived from starch, was used alone or in combination with butane diol (BD) as the chain extender in two series of thermoplastic polyurethanes (TPU) with 50 and 70% polytetramethylene ether glycol (PTMEG) soft segment concentration (SSC), respectively. In the synthesized TPUs, the hard segment composition was systematically varied in both series following BD/isosorbide molar ratios of 100 : 0; 75 : 25; 50 : 50; 25 : 75, and 0 : 100 to examine in detail the effect of chain extenders on properties of segmented polyurethane elastomers with different morphologies. We found that polyurethanes with 50% SSC were hard elastomers with Shore D hardness of around 50, which is consistent with assumed co-continuous morphology. Polymers with 70% SSC displayed lower Shore A hardness of 74–79 (Shore D around 25) as a result of globular hard domains dispersed in the soft matrix. Insertion of isosorbide increased rigidity, melting point and glass transition temperature of hard segments and tensile strength of elastomers with 50% SSC. These effects were weaker or non-existent in 70% SSC series due to the short hard segments and low content of isosorbide. We also found that the thermal stability was lowered by increasing isosorbide content in both series.

  10. Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds

    NASA Technical Reports Server (NTRS)

    Smith, G. B.

    1996-01-01

    The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.

  11. Lipstick dermatitis due to C18 aliphatic compounds.

    PubMed

    Hayakawa, R; Matsunaga, K; Suzuki, M; Arima, Y; Ohkido, Y

    1987-04-01

    An 18-year-old girl developed cheilitis. She had a past history of lip cream dermatitis, but the cause was not found. Patch tests with 2 lipsticks were strongly positive. Tests with the ingredients were positive to 2 aliphatic compounds, glyceryl diisostearate and diisostearyl malate. Impurities in the materials were suspected as the cause. Analysis by gas chromatography detected 3 chemicals in glyceryl diisostearate and 1 in diisostearyl malate as impurities. Patch testing with the impurities and glyceryl monoisostearate 0.01% pet in glyceryl diisostearate and isostearyl alcohol 0.25% pet in diisostearyl malate were strongly positive. The characteristics common to the 2 chemicals were liquidity at room temperature, branched C18 aliphatic compound and primary alcohol. Chemicals lacking any of the above 3 features did not react.

  12. Reaction of Chlorosulfonyl Isocyanate (CSI) with Fluorosubstituted Alkenes: Evidence of a Concerted Pathway for Reaction of CSI with Fluorosubstituted Alkenes (Preprint)

    DTIC Science & Technology

    2010-06-01

    ABSTRACT Concerted reactions are indicated for the electrophilic addition of chlorosulfonyl isocyanate with monofluoroalkenes. A vinyl fluorine atom on...SO2Cl R F O ‡ N SO2Cl F R O Abstract: Concerted reactions are indicated for the electrophilic addition of chlorosulfonyl isocyanate with...monofluoroalkenes. A vinyl fluorine atom on an alkene raises the energy of a step-wise transition state more than the energy of the competing concerted

  13. Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons

    DOEpatents

    Fliermans, Carl B.

    1989-01-01

    A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

  14. Manganese-Mediated Coupling Reaction of Vinylarenes and Aliphatic Alcohols

    PubMed Central

    Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Wang, Yan-Jing; Lan, Xing-Wang; Xing, Yalan; Li, Yi-He; Wen, Jia-Long

    2015-01-01

    Alcohols and alkenes are the most abundant and commonly used organic building blocks in the large-scale chemical synthesis. Herein, this is the first time to report a novel and operationally simple coupling reaction of vinylarenes and aliphatic alcohols catalyzed by manganese in the presence of TBHP (tert-butyl hydroperoxide). This coupling reaction provides the oxyalkylated products of vinylarenes with good regioselectivity and accomplishes with the principles of step-economies. A possible reaction mechanism has also been proposed. PMID:26470633

  15. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized arctic soils

    USGS Publications Warehouse

    Braddock, J.F.

    1999-01-01

    A study was carried out to test a simple bioremediation treatment strategy in the Arctic and analyze the influence of fertilization the degradation of aliphatic and aromatic hydrocarbons, e.g., pristine, n-tetradecane, n-pentadecane, 2-methylnaphthalene, naphthalene, and acenaphthalene. The site was a coarse sand pad that once supported fuel storage tanks. Diesel-range organics concentrations were 250-860 mg/kg soil at the beginning of the study. Replicate field plots treated with fertilizer yielded final concentrations of 0, 50, 100, or 200 mg N/kg soil. Soil pH and soil-water potentials decreased due to fertilizer application. The addition of fertilizer considerably increased soil respiration potentials, but not the populations of microorganisms measured. Fertilizer addition also led to ??? 50% loss of measured aliphatic and aromatic hydrocarbons in surface and subsurface soils. For fertilized plots, hydrocarbon loss was not associated with the quantity of fertilizer added. Losses of aliphatic hydrocarbons were ascribed to biotic processes, while losses of aromatic hydrocarbons were due to biotic and abiotic processes.

  16. Storage-stable foamable polyurethane is activated by heat

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Polyurethane foamable mixture remains inert in storage unit activated to produce a rapid foaming reaction. The storage-stable foamable composition is spread as a paste on the surface of an expandable structure and, when heated, yields a rigid open-cell polyurethane foam that is self-bondable to the substrate.

  17. Cryogenic line insulation made from prefabricated polyurethane shells

    NASA Technical Reports Server (NTRS)

    Lerma, G.

    1975-01-01

    Prefabricated polyurethane foam insulation is inexpensive and easily installed on cryogenic lines. Insulation sections are semicircular half shells. Pair of half shells is placed to surround cryogenic line. Cylindrically-shaped knit sock is pulled over insulation then covered with polyurethane resin to seal system.

  18. Molecular simulation of fibronectin adsorption onto polyurethane surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyethylene glycol-based polyurethanes have been widely used in biomedical applications, however are prone to swelling. A natural polyol, castor oil can be incorporated into these polyurethanes to control the degree of the swelling, which alters mechanical properties and protein adsorption characte...

  19. Tests Of Polyurethane And Dichromate Coats On Aluminum

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Report describes experiments to determine relative effectiveness of new polyurethane and more-conventional dichromate coat in helping to retard corrosion of anodized 6061-T6 aluminum. Concludes by suggesting greater protection against corrosion achieved by combining polyurethane-sealing method with hard-anodizing method and by increasing thickness of coat.

  20. 78 FR 55641 - Polyurethane-Type Polymers; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... AGENCY 40 CFR Part 180 Polyurethane-Type Polymers; Tolerance Exemption AGENCY: Environmental Protection... of a tolerance for residues of polymers produced by the reaction of either 1,6-hexanediisocyanate; 2..., octadecanol, and octadec-9-enol (also known as polyurethane-type polymers), when used as an inert...

  1. Polyurethanes: versatile materials and sustainable problem solvers for today's challenges.

    PubMed

    Engels, Hans-Wilhelm; Pirkl, Hans-Georg; Albers, Reinhard; Albach, Rolf W; Krause, Jens; Hoffmann, Andreas; Casselmann, Holger; Dormish, Jeff

    2013-09-02

    Polyurethanes are the only class of polymers that display thermoplastic, elastomeric, and thermoset behavior depending on their chemical and morphological makeup. In addition to compact polyurethanes, foamed variations in particular are very widespread, and they achieve their targeted properties at very low weights. The simple production of sandwich structures and material composites in a single processing step is a key advantage of polyurethane technology. The requirement of energy and resource efficiency increasingly demands lightweight structures. Polyurethanes can serve this requirement by acting as matrix materials or as flexible adhesives for composites. Polyurethanes are indispensable when it comes to high-quality decorative coatings or maintaining the value of numerous objects. They are extremely adaptable and sustainable problem solvers for today's challenges facing our society, all of which impose special demands on materials.

  2. Biodegradative Activities of Selected Environmental Fungi on a Polyester Polyurethane Varnish and Polyether Polyurethane Foams

    PubMed Central

    Álvarez-Barragán, Joyce; Domínguez-Malfavón, Lilianha; Vargas-Suárez, Martín; González-Hernández, Ricardo; Aguilar-Osorio, Guillermo

    2016-01-01

    ABSTRACT Polyurethane (PU) is widely used in many aspects of modern life because of its versatility and resistance. However, PU waste disposal generates large problems, since it is slowly degraded, there are limited recycling processes, and its destruction may generate toxic compounds. In this work, we isolated fungal strains able to grow in mineral medium with a polyester PU (PS-PU; Impranil DLN) or a polyether PU (PE-PU; Poly Lack) varnish as the only carbon source. Of the eight best Impranil-degrading strains, the six best degraders belonged to the Cladosporium cladosporioides complex, including the species C. pseudocladosporioides, C. tenuissimum, C. asperulatum, and C. montecillanum, and the two others were identified as Aspergillus fumigatus and Penicillium chrysogenum. The best Impranil degrader, C. pseudocladosporioides strain T1.PL.1, degraded up to 87% after 14 days of incubation. Fourier transform infrared (FTIR) spectroscopy analysis of Impranil degradation by this strain showed a loss of carbonyl groups (1,729 cm−1) and N—H bonds (1,540 and 1,261 cm−1), and gas chromatography-mass spectrometry (GC-MS) analysis showed a decrease in ester compounds and increase in alcohols and hexane diisocyanate, indicating the hydrolysis of ester and urethane bonds. Extracellular esterase and low urease, but not protease activities were detected at 7 and 14 days of culture in Impranil. The best eight Impranil-degrading fungi were also able to degrade solid foams of the highly recalcitrant PE-PU type to different extents, with the highest levels generating up to 65% of dry-weight losses not previously reported. Scanning electron microscopy (SEM) analysis of fungus-treated foams showed melted and thinner cell wall structures than the non-fungus-treated ones, demonstrating fungal biodegradative action on PE-PU. IMPORTANCE Polyurethane waste disposal has become a serious problem. In this work, fungal strains able to efficiently degrade different types of

  3. Evaluation of the OSHA 42 and NIOSH 5521 Methods in Determining the Free Isocyanate Concentration in Aerosols and Vapor Phases During Application of Two Component 1, 6 - Hexamethylene Diisocyanate Paints

    DTIC Science & Technology

    1994-05-01

    effective. Using a Fourier Transform Infrared Spectrometer reaction rates between isocyanates and the derivatizing agent for the OSHA method were studied...Although usually considered instantaneous, this study showed that these reactions took as long as several hours to go to completion. During this...time isocyanate evaporation into the air flow is occurring. In both methods, as much as five percent of the isocyanates are lost due to slow reactions

  4. The heat of formation of chlorine-isocyanate and the relative stability of isoelectronic molecules: an experimental and theoretical study.

    PubMed

    Ji, Yuanyuan; Bobadova-Parvanova, Petia; Larson, Chris; Samartzis, Peter C; Morokuma, Keiji; Lin, Jim Jr-Min; Ching, Tao-Tsung; Chaudhuri, Chanchal; Lee, Shih-Huang; Wodtke, Alec M

    2006-06-28

    Accurate thermochemical data of small molecules are invaluable to the progress of every aspect of chemistry, especially in the atmosphere, combustion and industry. In this work, photofragmentation translational spectroscopy and 1st principles electronic structure theory reveal the literature value of the heat of formation of chlorine-isocyanate to be in error by more than 40 kcalmol. We report a revised experimental value for D0(Cl-NCO) = 51+/-3 kcal/mol which leads to a Delta Hf (ClNCO) = 8.5+/-3 kcal/mol. High level ab initio (CCSD(T)) electronic structure calculations extrapolated to the complete basis set limit give D0(Cl-NCO) = 6.3 kcal/mol, in good agreement with experiment. In light of the present results, the destabilization of azides relative to isoelectronic isocyanates has been evaluated empirically for three pairs of related molecules. It is found to be 90-110 kcal/mol, and has been attributed mainly to the weakening of the N-NN bond relative to the N-CO bond. Electronic structure calculations employing decomposition analysis suggest that, compared to homopolar N2, the (+delta)CO(-delta) pi polarity provides better orbital interaction (charge transfer) and electrostatic attraction and results in a closer encounter and larger stabilization between the fragments and that this is the origin of isoelectronic destabilization of azides relative to the isocyanates.

  5. Acid-promoted chemoselective introduction of amide functionality onto aromatic compounds mediated by an isocyanate cation generated from carbamate.

    PubMed

    Sumita, Akinari; Kurouchi, Hiroaki; Otani, Yuko; Ohwada, Tomohiko

    2014-10-01

    Carbamates have been used as precursors of isocyanates, but heating in the presence of strong acids is required because cleavage of the C-O bond in carbamates is energy-demanding even in acid media. Direct amidation of aromatic compounds by isocyanate cations generated at room temperature from carbamoyl salicylates in trifluoromethanesulfonic acid (TfOH) was examined. Carbamates with ortho-salicylate as an ether group (carbamoyl salicylates) showed dramatically accelerated O-C bond dissociation in TfOH, which resulted in facile generation of the isocyanate cation. These chemoselective intermolecular aromatic amidation reactions proceeded even at room temperature and showed good compatibility with other electrophilic functionalities and high discrimination between N-monosubstituted carbamate and N,N-disubstituted carbamate. The reaction rates of secondary and tertiary amide formation were markedly different, and this difference was utilized to achieve successive (tandem) amidation reactions of molecules with an N-monosubstituted carbamate and an N,N-disubstituted carbamate with two kinds of aromatic compounds.

  6. New biobased high functionality polyols and their use in polyurethane coatings.

    PubMed

    Pan, Xiao; Webster, Dean C

    2012-02-13

    High-functionality polyols for application in polyurethanes (PUs) were prepared by epoxide ring-opening reactions from epoxidized sucrose esters of soybean oil-epoxidized sucrose soyates-in which secondary hydroxyl groups were generated from epoxides on fatty acid chains. Ester polyols were prepared by using a base-catalyzed acid-epoxy reaction with carboxylic acids (e.g., acetic acid); ether polyols were prepared by using an acid-catalyzed alcohol-epoxy reaction with monoalcohols (e.g., methanol). The polyols were characterized by using gel permeation chromatography, FTIR spectroscopy, (1)H NMR spectroscopy, differential scanning calorimetry (DSC), and viscosity measurements. PU thermosets were prepared by using aliphatic polyisocyanates based on isophorone diisocyanate and hexamethylene diisocyanate. The properties of the PUs were studied by performing tensile testing, dynamic mechanical analysis, DSC, and thermogravimetric analysis. The properties of PU coatings on steel substrates were evaluated by using ASTM methods to determine coating hardness, adhesion, solvent resistance, and ductility. Compared to a soy triglyceride polyol, sucrose soyate polyols provide greater hardness and range of cross-link density to PU thermosets because of the unique structure of these macromolecules: well-defined compact structures with a rigid sucrose core coupled with high hydroxyl group functionality.

  7. Mechanical Characterization of Rigid Polyurethane Foams

    SciTech Connect

    Lu, Wei-Yang

    2014-12-01

    Foam materials are used to protect sensitive components from impact loading. In order to predict and simulate the foam performance under various loading conditions, a validated foam model is needed and the mechanical properties of foams need to be characterized. Uniaxial compression and tension tests were conducted for different densities of foams under various temperatures and loading rates. Crush stress, tensile strength, and elastic modulus were obtained. A newly developed confined compression experiment provided data for investigating the foam flow direction. A biaxial tension experiment was also developed to explore the damage surface of a rigid polyurethane foam.

  8. Polyurethane Foam Impact Experiments and Simulations

    SciTech Connect

    Chhabildas, L.C.; Kipp, M.E.; Reinhart, W.D.; Wong, M.K.

    1999-06-17

    Uniaxial strain impact experiments have been performed to obtain shock compression and release response of a 0.22 g/cm{sup 3} polyurethane foam in a configuration where the foam impacts a thin target witness plate. Wave profiles from a suite of ten experiments have been obtained, where shock amplitudes range from 40 to 500 MPa. A traditional p-{alpha} porous material model generally captures the material response. A fully three-dimensional explicit representation of the heterogeneous foam structure modeled with numerical simulations recovers some of the high frequency aspects of the particle velocity records.

  9. Toxicity of inhaled isocyanate in F344/N rats and B6C3F1 mice. I. Acute exposure and recovery studies

    SciTech Connect

    Bucher, J.R.; Gupta, B.N.; Adkins, B. Jr.; Thompson, M.; Jameson, C.W.; Thigpen, J.E.; Schwetz, B.A.

    1987-06-01

    Male and female F344/N rats and B6C3F1 mice were exposed to lethal and sublethal concentrations of methyl isocyanate by inhalation. Mortality, clinical signs, body and organ weights, and changes in clinical pathology and hematology were monitored immediately after 2-hr exposures and during the ensuing 3 months. Additional studies investigated the possible involvement of cyanide in the toxicity of methyl isocyanate. Deaths of rats and mice exposed to lethal concentrations (20 to 30 ppm) began within 15-18 hr, with males more prone to early death than females. A second wave of deaths occurred after 8 to 10 days, affecting primarily female rats and mice exposed to 20 to 30 ppm of methyl isocyanate, and male and female rats exposed to 10 ppm. Most deaths occurred during the first month following the exposures and were preceded by periods of severe respiratory distress. Body weights decreased in proportion to dose early, but then weight gain resumed in survivors at control rates. The only organ with a consistent, dose-related weight change was the lung, which was heavier throughout the studies in animals exposed to high concentrations of methyl isocyanate. Blood and brain cholinesterase were not inhibited. Studies attempting to measure cyanide in the blood of methyl isocyanate-exposed rats, and attempting to affect lethality with a cyanide antidote (sodium nitrite and sodium thiosulfate) gave negative results. The findings indicate that at these doses, methyl isocyanate inhalation causes deaths and persistent pulmonary changes, but no evidence of extrapulmonary toxicity in rodents. Cyanide does not appear to be involved in methyl isocyanate toxicity.

  10. Structural studies of aliphatic substituted phthalocyanine-lipid multilayers.

    PubMed

    Zarbakhsh, Ali; Campana, Mario; Mills, David; Webster, John R P

    2010-10-05

    A Langmuir-Blodgett film of aliphatic substituted phthalocyanines on a C18 silane supporting layer coupled onto a silicon substrate has been investigated using neutron reflectometry. This multilayer structure is seen as a possible candidate for phthalocyanine-lipid biosensor devices. The results show the suitability of the C18 ligands as an anchoring layer for the phthalocyanines. The scattering length density profiles demonstrate the effectiveness of a lipid monolayer in partitioning the composition of phthalocyanine layers from that of the bulk liquid. The effectiveness of this barrier is a critical factor in the efficiency of such devices.

  11. A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria.

    PubMed

    Abbasian, Firouz; Lockington, Robin; Mallavarapu, Megharaj; Naidu, Ravi

    2015-06-01

    Hydrocarbons are relatively recalcitrant compounds and are classified as high-priority pollutants. However, these compounds are slowly degraded by a large variety of microorganisms. Bacteria are able to degrade aliphatic saturated and unsaturated hydrocarbons via both aerobic and anaerobic pathways. Branched hydrocarbons and cyclic hydrocarbons are also degraded by bacteria. The aerobic bacteria use different types of oxygenases, including monooxygenase, cytochrome-dependent oxygenase and dioxygenase, to insert one or two atoms of oxygen into their targets. Anaerobic bacteria, on the other hand, employ a variety of simple organic and inorganic molecules, including sulphate, nitrate, carbonate and metals, for hydrocarbon oxidation.

  12. Isocyanate exposure assessment combining industrial hygiene methods with biomonitoring for end users of orthopedic casting products.

    PubMed

    Pearson, Ronald L; Logan, Perry W; Kore, Anita M; Strom, Constance M; Brosseau, Lisa M; Kingston, Richard L

    2013-07-01

    Previous studies have suggested a potential risk to healthcare workers applying isocyanate-containing casts, but the authors reached their conclusions based on immunological or clinical pulmonology test results alone. We designed a study to assess potential exposure to methylene diphenyl diisocyanate (MDI) among medical personnel applying orthopedic casts using two different application methods. Air, dermal, surface, and glove permeation sampling methods were combined with urinary biomonitoring to assess the overall risk of occupational asthma to workers handling these materials. No MDI was detected in any of the personal and area air samples obtained. No glove permeation of MDI was detected. A small proportion of surface (3/45) and dermal wipe (1/60) samples were positive for MDI, but were all from inexperienced technicians. Urinary metabolites of MDI [methylenedianiline (MDA)] were detected in three of six study participants prior to both a 'dry' and 'wet' application method, five of six after the dry method, and three of six after the wet method. All MDA results were below levels noted in worker or general populations. Our conclusion is that the risk of MDI exposure is small, but unquantifiable. Because there is some potential risk of dermal exposure, medical personnel are instructed to wear a minimum of 5-mil-thick (5 mil = 0.005 inches) nitrile gloves and avoid contact to unprotected skin. This could include gauntlets, long sleeves, and/or a laboratory coat.

  13. Hydrogen versus fluorine: effects on molecular structure and intermolecular interactions in a platinum isocyanate complex.

    PubMed

    Raven, William; Joschko, Thomas; Kalf, Irmgard; Englert, Ulli

    2016-03-01

    At the molecular level, the enantiomerically pure square-planar organoplatinum complex (SP-4-4)-(R)-[2-(1-aminoethyl)-5-fluorophenyl-κ(2)C(1),N][(R)-1-(4-fluorophenyl)ethylamine-κN](isocyanato-κN)platinum(II), [Pt(C8H9FN)(NCO)(C8H10FN)], and its congener without fluorine substituents on the aryl rings adopt the same structure within error. The similarities between the compounds extend to the most relevant intermolecular interactions, i.e. N-H...O and N-H...N hydrogen bonds link neighbouring molecules into chains along the shortest lattice parameter in each structure. Differences between the crystal structures of the fluoro-substituted and parent complex become obvious with respect to secondary interactions perpendicular to the classical hydrogen bonds; the fluorinated compound features short C-H...F contacts with an F...H distance of ca 2.6 Å. The fluorine substitution is also reflected in reduced backbonding from the metal cation to the isocyanate ligand.

  14. Determination of methyl isocyanate in outdoor residential air near metam-sodium soil fumigations.

    PubMed

    Woodrow, James E; LePage, Jane T; Miller, Glenn C; Hebert, Vincent R

    2014-09-10

    The soil fumigant metam-sodium (CH3NHCS2Na) produces the bioactive respiratory irritant methyl isothiocyanate (MITC). Recent laboratory gas-phase oxidative studies indicate that MITC rapidly transforms to the more toxic methyl isocyanate (MIC) in the lower atmosphere. Inhalation exposure risks from MITC plus MIC may therefore be an occupational worker and/or bystander health concern. To address this concern, MIC was monitored, along with MITC, in outdoor residential air in Washington state during the peak fall metam fumigation season. XAD-7 cartridges, coated with 1-(2-pyridyl)piperazine, were developed to retain MIC as its stable substituted urea derivative. Of the 68 residential air measurements of MIC, 15 (22%) were observed to be above the California Environmental Protection Agency's chronic inhalation reference level of 1 μg/m(3), with an observed maximum MIC air concentration of 4.4 μg/m(3). This study indicates MIC air concentrations can be anticipated along with MITC in residential air where seasonal metam soil fumigant applications occur.

  15. Laboratory study of isocyanic acid ions: Rotational spectroscopy of NCO-, H2NCO+, and HNCOH+

    NASA Astrophysics Data System (ADS)

    Lattanzi, Valerio; Gottlieb, Carl A.; Thaddeus, Patrick; Thorwirth, Sven; McCarthy, Michael C.

    2015-01-01

    We report detection of protonated isocyanic acid in two isomeric forms, H2NCO+ and HNCOH+, by high-resolution spectroscopy. The two ions were first observed at centimeter wavelengths by Fourier Transform (FT) microwave spectroscopy, in a discharge through HNCO heavily diluted in hydrogen in the throat of a supersonic nozzle. Spectroscopic constants derived from the two lowest rotational transitions of both isomers agree very well with those derived from theoretical structures computed at the coupled cluster level of theory. In the same molecular beam, the fundamental rotational transition of NCO- was observed with well-resolved nitrogen quadrupole hyperfine structure. Detection of NCO- and H2NCO+ in our beam was subsequently confirmed by observation of several millimeter-wave transitions in a low pressure discharge through cyanogen and water. The spectroscopic constants of NCO- obtained earlier by infrared laser spectroscopy are in good agreement with the highly accurate constants derived here. Owing to the high abundance of HNCO in many galactic molecular sources, both ions are excellent candidates for astronomical detection in the radio band.

  16. Isocyanate-functionalized chitin and chitosan as gelling agents of castor oil.

    PubMed

    Gallego, Rocío; Arteaga, Jesús F; Valencia, Concepción; Franco, José M

    2013-06-03

    The main objective of this work was the incorporation of reactive isocyanate groups into chitin and chitosan in order to effectively use the products as reactive thickening agents in castor oil. The resulting gel-like dispersions could be potentially used as biodegradable lubricating greases. Three different NCO-functionalized polymers were obtained: two of them by promoting the reaction of chitosan with 1,6-hexamethylene diisocyanate (HMDI), and the other by using chitin instead of chitosan. These polymers were characterized through 1H-NMR, FTIR and thermogravimetric analysis (TGA). Thermal and rheological behaviours of the oleogels prepared by dispersing these polymers in castor oil were studied by means of TGA and small-amplitude oscillatory shear (SAOS) measurements. The evolution and values of the linear viscoelasticity functions with frequency for -NCO-functionalized chitosan- and chitin-based oleogels are quite similar to those found for standard lubricating greases. In relation to long-term stability of these oleogels, no phase separation was observed and the values of viscoelastic functions increase significantly during the first seven days of ageing, and then remain almost constant. TGA analysis showed that the degradation temperature of the resulting oleogels is higher than that found for traditional lubricating greases.

  17. Antimicrobial polyurethane thermosets based on undecylenic acid: synthesis and evaluation.

    PubMed

    Lluch, Cristina; Esteve-Zarzoso, Braulio; Bordons, Albert; Lligadas, Gerard; Ronda, Juan C; Galià, Marina; Cádiz, Virginia

    2014-08-01

    In the present study, plant oil-derived surface-modifiable polyurethane thermosets are presented. Polyol synthesis is carried out taking advantage of thiol-yne photopolymerization of undecylenic acid derivatives containing methyl ester or hydroxyl moieties. The prepared methyl ester-containing polyurethanes allow surface modification treatment to enhance their hydrophilicity and impart antimicrobial activity through the following two steps: i) grafting poly(propylene glycol) monoamine (Jeffamine M-600) via aminolysis and ii) Jeffamine M-600 layer complexation with iodine. The antimicrobial activity of the iodine-containing polyurethanes is demonstrated by its capacity to inhibit the growth of Staphylococcus aureus, and Candida albicans in agar media.

  18. Applicability of liquid radiopaque polyurethane for transcatheter embolization

    SciTech Connect

    Novak, D.; Wieners, H.; Rueckner, R.

    1983-08-01

    Polyurethane Bayer was tested as an occlusive agent for experimental embolization in postmortem and postnephrectomy kidneys which served as a tumor model. Coaxial and balloon catheters were used for the embolization. To make polyurethane radiopaque, the material was labeled with different water-soluble, oily and solid contrast agents. Best results were achieved with oily contrast materials, e.g., Pantopaque. We found that polyurethane can easily be injected during a predetermined working time of 8-10 min. The embolization results in a complete, permanent, and homogeneous occlusion of the proximal arterial branches and small peripheral vessels.

  19. Polyurethane-covered mammary implants: a 12-year experience.

    PubMed

    Gasperoni, C; Salgarello, M; Gargani, G

    1992-10-01

    Polyurethane-covered mammary implants are the implants of choice in aesthetic and reconstructive mammary surgery. These implants give very good results in regard to breast contour and consistency, and have a very low complication rate. We present our 12-year experience using polyurethane-covered prostheses. We place the implant mostly in the subglandular or subcutaneous site, and their capsular contracture rate is extremely low (3.3%). Based on our experience, we also review the other complications and side effects occurring with polyurethane prostheses and discuss them in detail.

  20. A review: fabrication of porous polyurethane scaffolds.

    PubMed

    Janik, H; Marzec, M

    2015-03-01

    The aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical properties, ability to control the rate of degradation and similarities to natural tissue structures. Polyurethanes (PUs) are attractive candidates for scaffold fabrication, since they are biocompatible, and have excellent mechanical properties and mechanical flexibility. PU can be applied to various methods of porous scaffold fabrication, among which are solvent casting/particulate leaching, thermally induced phase separation, gas foaming, emulsion freeze-drying and melt moulding. Scaffold properties obtained by these techniques, including pore size, interconnectivity and total porosity, all depend on the thermal processing parameters, and the porogen agent and solvents used. In this review, various polyurethane systems for scaffolds are discussed, as well as methods of fabrication, including the latest developments, and their advantages and disadvantages.

  1. Thermal Performance of Aircraft Polyurethane Seat Cushions

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1982-01-01

    Aircraft seat materials were evaluated in terms of their thermal performance. The materials were evaluated using (a) thermogravimetric analysis, (b) differential scanning calorimetry, (c) a modified NBS smoke chamber to determine the rate of mass loss and (d) the NASA T-3 apparatus to determine the thermal efficiency. In this paper, the modified NBS smoke chamber will be described in detail since it provided the most conclusive results. The NBS smoke chamber was modified to measure the weight loss of material when exposed to a radiant heat source over the range of 2.5 to 7.5 W/sq cm. This chamber has been utilized to evaluate the thermal performance of various heat blocking layers utilized to protect the polyurethane cushioning foam used in aircraft seats. Various kinds of heat blocking layers were evaluated by monitoring the weight loss of miniature seat cushions when exposed to the radiant heat. The effectiveness of aluminized heat blocking systems was demonstrated when compared to conventional heat blocking layers such as neoprene. All heat blocking systems showed good fire protection capabilities when compared to the state-of-the-art, i.e., wool-nylon over polyurethane foam.

  2. Biotransformation of chlorinated aliphatic compounds by mixed nitrifying cultures

    SciTech Connect

    Wilber, G.G.; Chakkamadathil, S.V.

    1995-12-31

    The ability of pure cultures of nitrifying bacteria, such as Nitrosomonas europaea, to oxidize chlorinated aliphatic compounds has been demonstrated previously in laboratory experiments. In the current study, mixed nitrifying cultures originating from a municipal wastewater plant were also tested for the ability to biotransform chlorinated aliphatic compounds, including trichloroethene (TCE). A number of variables were tested, including the effects of two different concentrations of TCE, the effect of culture density, and the influence of the primary substrate, ammonia, on the initial rate of TCE biotransformation. The primary conclusions of the research include the following. The mixed nitrifying cultures did exhibit the ability to transform TCE, and the initial rate of transformation (before oxygen limitations became significant) was directly proportional to the culture density. In general, the transformation rate of TCE was slightly faster at an initial concentration of 0.1 mg/L than at 1 mg/L. Lastly, high initial ammonia concentrations (300 mg/L) resulted in faster initial rates of TCE transformation than in cultures which started with lower ammonia concentrations.

  3. Short-chain aliphatic ester synthesis using Thermobifida fusca cutinase.

    PubMed

    Su, Lingqia; Hong, Ruoyu; Guo, Xiaojie; Wu, Jing; Xia, Yongmei

    2016-09-01

    Short-chain aliphatic esters are commonly used as fruit flavorings in the food industry. In this study, Thermobifida fusca (T. fusca) cutinase was used for the synthesis of aliphatic esters, and the maximum yield of ethyl caproate reached 99.2% at a cutinase concentration of 50U/ml, 40°C, and water content of 0.5%, representing the highest ester yield to date. The cutinase-catalyzed esterification displayed strong tolerance for water content (up to 8%) and acid concentration (up to 0.8M). At substrate concentrations ⩽0.8M, the ester yield remained above 80%. Moreover, ester yields of more than 98% and 95% were achieved for acids of C3-C8 and alcohols of C1-C6, respectively, indicating extensive chain length selectivity of the cutinase. These results demonstrate the superior ability of T. fusca cutinase to catalyze the synthesis of short-chain esters. This study provides the basis for industrial production of short-chain esters using T. fusca cutinase.

  4. Synthesis and properties of epoxy-polyurethane/silica nanocomposites by a novel sol method and in-situ solution polymerization route

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Wu, Xu; Zheng, Cheng; Zhang, Peipei; Huang, Bowei; Guo, Ninghai; Jin, LiYazi

    2014-06-01

    In this work, a novel nonaqueous sol method for preparing 3-methacryloxypropyltrimethoxysilane modified nano-SiO2 (MPS-SiO2) in N,N-dimethylformamide (DMF) substituting alcoholic solvents was developed, and epoxy acrylate resins (EA) based on novolac epoxy resin (EP) were prepared. Epoxy acrylate copolymers (EPAc/SiO2) with core/shell structure were prepared by one-step in-situ solution polymerization of EA, acrylic monomers and a certain amount of modified silica sol as core. Epoxy acrylate based polyurethane composites/SiO2 (EPUAs/SiO2) were finally obtained by curing action among as-prepared EPAc/SiO2, isocyanate and anhydride curing agent. The obtained EA and MPS-SiO2 were also characterized using Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance spectra (1H NMR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy(XPS), and surface contact angle analysis(CA). Microstructures of MPS-SiO2 and EPAc/SiO2 in DMF were observed by transmission electron microscope (TEM). Furthermore, the influence of MPS-SiO2 on the properties of EPUAs/SiO2 including fracture surface morphology, thermal stability, glass transition temperature (Tg), tensile strength, elongation at break, cross-linking density, shore hardness, water absorption, etc. were also investigated. The results demonstrate that colloidal MPS-SiO2 with DMF as solvent can be directly added into polyurethane system and has industrial application value, EPAc/SiO2 with core-shell morphologies have good individual dispersion in DMF, and incorporating MPS-SiO2 into EPUAs/SiO2 greatly enhances physico-chemical properties of EPUAs/SiO2 composites.

  5. Compatible compositions based on aqueous polyurethane dispersions and sodium alginate.

    PubMed

    Daemi, Hamed; Barikani, Mehdi; Barmar, Mohammad

    2013-01-30

    A series of aqueous polyurethane dispersions were synthesized by the reaction of polytetramethylene glycol and isophorone diisocyanate, extended with dimethylol propionic acid. Their chemical structures were characterized using FTIR, (1)H NMR, and (13)C NMR, and thermal properties were determined by DMTA. Then, a number of aqueous polyurethane dispersions-sodium alginate (PUD/SA) compositions were prepared by addition of sodium alginate solution with different concentrations into the aqueous polyurethane dispersion. Characterization of chemical structure and thermal properties of these blends were performed by FTIR, EDX and DMTA, respectively. The morphology of the alginate in polyurethane matrix was studied by SEM. The hydrophilicity of the prepared samples decreases by increasing the content of sodium alginate in blends. These observations were attributed to the increase of hydrophilicity of the blends as a consequence of addition of hydrophilic carboxylate, hydroxyl and ether functional groups of the alginate to them.

  6. Organically Modified Nanoclay-Reinforced Rigid Polyurethane Films

    NASA Astrophysics Data System (ADS)

    Park, Yong Tae; Qian, Yuqiang; Lindsay, Chris; Stein, Andreas; Macosko, Christopher

    2012-02-01

    The nanodispersion of vermiculite in polyurethanes was investigated to produce organoclay-reinforced rigid gas barrier films. Reducing gas transport can improve the insulation performance of closed cell polyurethane foam. In a previous study, the dispersion of vermiculite in polyurethanes without organic modification was not sufficient due to the non-uniform dispersion morphology. When vermiculite was modified by cation exchange with long-chain quaternary ammonium cations, the dispersion in methylene diphenyl diisocyanate (MDI) was significantly improved. Dispersion was improved by combining high intensity dispersive mixing with efficient distributive mixing. Polymerization conditions were also optimized in order to provide a high state of nanodispersion in the polyurethane nanocomposite. The dispersions were characterized using rheological, microscopic and scattering/diffraction techniques. The final nanocomposites showed enhancement of mechanical properties and reduction in permeability to carbon dioxide at low clay concentration (around 2 wt percent).

  7. Characterization of synthesized polyurethane/montmorillonite nanocomposites foams

    NASA Astrophysics Data System (ADS)

    Ansari, Farahnaz; Sachse, Sophia; Michalowski, S.; Kavosh, Masoud; Pielichowski, Krzysztof; Njuguna, James

    2014-08-01

    Nanophased hybrid composites based on polyurethane/montmorillonite (PU/MMT) have been fabricated. The nanocomposite which was formed by the addition of a polyol premix with 4,4'-diphenylmethane diisocyanate to obtain nanophased polyurethane foams which were then used for fabrication of nanocomposite panels has been shown to have raised strength, stiffness and thermal insulation properties. The nanophased polyurethane foam was characterized by means of scanning electron microscope (SEM), transmission electron microscope (TEM) measurements and X-ray diffraction (XRD). TEM and SEM analysis indicated that nanophased particles are dispersed homogeneously in the polyurethane matrix on the nanometer scale indicating that PU/MMT is an intercalated nanocomposite with a 2-3 nm nanolayer thickness.

  8. Rigid open-cell polyurethane foam for cryogenic insulation

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.; Lindquist, C. R.; Niendorf, L. R.; Nies, G. E.; Perkins, P. J., Jr.

    1971-01-01

    Lightweight polyurethane foam assembled in panels is effective spacer material for construction of self-evacuating multilayer insulation panels for cryogenic liquid tanks. Spacer material separates radiation shields with barrier that minimizes conductive and convective heat transfer between shields.

  9. Synthesis and properties of vermiculite-reinforced polyurethane nanocomposites.

    PubMed

    Qian, Yuqiang; Lindsay, Chris I; Macosko, Chris; Stein, Andreas

    2011-09-01

    Natural vermiculite was modified by cation exchange with long-chain quaternary alkylammonium salts and then dispersed in polyether-based polyols with different structures and ethylene oxide/propylene oxide ratios. The dispersions were evaluated by X-ray scattering and rheology. In all polyol dispersions tested, polyols were intercalated into the vermiculite interlayers. Also, significant shear thinning behavior was observed. A large interlayer spacing of ∼90 Å was achieved in one polyol suitable for polyurethane elastomer synthesis. In polyurethane made with this polyol, clay platelets were extensively intercalated or exfoliated. The composites showed a >270% increase in tensile modulus, >60% increase in tensile strength, and a 30% reduction in N(2) permeability with a loading of 5.3 wt % clay in polyurethane. Differential scanning calorimetry and dynamic mechanical analysis revealed that the nanoclay interacts with the polyurethane hard segments.

  10. Uncertainty Analysis of Decomposing Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Hobbs, Michael L.; Romero, Vicente J.

    2000-01-01

    Sensitivity/uncertainty analyses are necessary to determine where to allocate resources for improved predictions in support of our nation's nuclear safety mission. Yet, sensitivity/uncertainty analyses are not commonly performed on complex combustion models because the calculations are time consuming, CPU intensive, nontrivial exercises that can lead to deceptive results. To illustrate these ideas, a variety of sensitivity/uncertainty analyses were used to determine the uncertainty associated with thermal decomposition of polyurethane foam exposed to high radiative flux boundary conditions. The polyurethane used in this study is a rigid closed-cell foam used as an encapsulant. Related polyurethane binders such as Estane are used in many energetic materials of interest to the JANNAF community. The complex, finite element foam decomposition model used in this study has 25 input parameters that include chemistry, polymer structure, and thermophysical properties. The response variable was selected as the steady-state decomposition front velocity calculated as the derivative of the decomposition front location versus time. An analytical mean value sensitivity/uncertainty (MV) analysis was used to determine the standard deviation by taking numerical derivatives of the response variable with respect to each of the 25 input parameters. Since the response variable is also a derivative, the standard deviation was essentially determined from a second derivative that was extremely sensitive to numerical noise. To minimize the numerical noise, 50-micrometer element dimensions and approximately 1-msec time steps were required to obtain stable uncertainty results. As an alternative method to determine the uncertainty and sensitivity in the decomposition front velocity, surrogate response surfaces were generated for use with a constrained Latin Hypercube Sampling (LHS) technique. Two surrogate response surfaces were investigated: 1) a linear surrogate response surface (LIN) and 2

  11. Development of Castor-Oil-Resistant Polyurethane Sonar Encapsulants.

    DTIC Science & Technology

    2014-09-26

    7D-S? 576 DEVELOPMENT OF CASTOR- OIL -RESISTANT POLYURETHANE SONAR 1/1 ENCRPSULANTS(U) NRVAL RESEARCH LAB MASHINGTON DC UNCLSSIFED T MA3URICE ET AL. 30...ACCESSION NO. Washington, DC 23062 64503N I S0219AS (59)0584 i1 TITLE (Include Security Classification) Development of Castor- Oil -Resistant...identify by block number) FIELD GROUP SUB-GROUP Castor oil -- Sonar transducer encapsulants 11 07 - Polyurethane\\ K , 19. ABSTRACT (Continue on reverse if

  12. Isocyanate crosslinked reactive starch nanoparticles for thermo-responsive conducting applications.

    PubMed

    Valodkar, Mayur; Thakore, Sonal

    2010-11-02

    Hydrophobic nanoparticles and nanocomposite films of 1,4-hexamethylene diisocyanate (HMDI)-modified starch nanoparticles (SNPs) have been synthesized at ambient temperatures. The platelet-like starch nanocrystals become pseudospherical after modification with HMDI and the size increases or decreases depending on diisocyanate concentration compared to the ungrafted particles as revealed by transmission electron microscopy (TEM) results. The obtained nanocrystals were characterized by means of the FT-IR and X-ray diffraction (XRD) techniques. When compared with the hydrophobic performance of the unmodified starch nanocrystals, that of crosslinked starch nanocrystals significantly increased. X-ray diffraction reveals that the crystalline structure of modified starch nanocrystals was preserved. The resulting hydrophobic starch nanoparticles are versatile precursors to the development of nanocomposites. The polyether-polyurethane crosslinked with SNPs nanocomposite film exhibited thermo-responsive electrical conductivity.

  13. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  14. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  15. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  16. 40 CFR 721.10606 - Alkyl substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl substituted alkanediol polymer... alkanediol polymer with aliphatic and alicyclic diisocyanates (generic). (a) Chemical substance and... substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (PMN P-11-486) is subject...

  17. 40 CFR 721.10606 - Alkyl substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl substituted alkanediol polymer... alkanediol polymer with aliphatic and alicyclic diisocyanates (generic). (a) Chemical substance and... substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (PMN P-11-486) is subject...

  18. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hexanedioic acid polymer with... polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). (a) Chemical substance and... acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (PMN P-11-333) is subject...

  19. 40 CFR 721.10605 - Polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyoxyalkylene ether, polymer with..., polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic). (a) Chemical substance and... polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (PMN P-11-485) is...

  20. 40 CFR 721.10605 - Polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyoxyalkylene ether, polymer with..., polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic). (a) Chemical substance and... polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (PMN P-11-485) is...

  1. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.

    PubMed

    Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials.

  2. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells.

    PubMed

    Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A; Yang, Shuying; Sarkar, Debanjan

    2015-09-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration.

  3. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells☆

    PubMed Central

    Nalluri, Sandeep M.; Krishnan, G. Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A.; Yang, Shuying; Sarkar, Debanjan

    2016-01-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell–matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell–cell and cell–matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell–matrix interaction, and cell–cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. PMID:26046282

  4. Synthesis of formamide and isocyanic acid after ion irradiation of frozen gas mixtures

    NASA Astrophysics Data System (ADS)

    Kaňuchová, Z.; Urso, R. G.; Baratta, G. A.; Brucato, J. R.; Palumbo, M. E.; Strazzulla, G.

    2016-01-01

    Context. Formamide (NH2HCO) and isocyanic acid (HNCO) have been observed as gaseous species in several astronomical environments such as cometary comae and pre- and proto-stellar objects. A debate is open on the formation route of those molecules, in particular if they are formed by chemical reactions in the gas phase and/or on grains. In this latter case it is relevant to understand if the formation occurs through surface reactions or is induced by energetic processing. Aims: We present arguments that support the formation of formamide in the solid phase by cosmic-ion-induced energetic processing of ices present as mantles of interstellar grains and on comets. Formamides, along with other molecules, are expelled in the gas phase when the physical parameters are appropriate to induce the desorption of ices. Methods: We have performed several laboratory experiments in which ice mixtures (H2O:CH4:N2, H2O:CH4:NH3, and CH3OH:N2) were bombarded with energetic (30-200 keV) ions (H+ or He+). FTIR spectroscopy was performed before, during, and after ion bombardment. In particular, the formation of HNCO and NH2HCO was measured quantiatively. Results: Energetic processing of ice can quantitatively reproduce the amount of NH2HCO observed in cometary comae and in many circumstellar regions. HNCO is also formed, but additional formation mechanisms are requested to quantitatively account for the astronomical observations. Conclusions: We suggest that energetic processing of ices in the pre- and proto-stellar regions and in comets is the main mechanism to produce formamide, which, once it is released in the gas phase because of desorption of ices, is observed in the gas phase in these astrophysical environments.

  5. A statistical approach to the interpretation of aliphatic hydrocarbon distributions in marine sediments

    USGS Publications Warehouse

    Rapp, J.B.

    1991-01-01

    Q-mode factor analysis was used to quantitate the distribution of the major aliphatic hydrocarbon (n-alkanes, pristane, phytane) systems in sediments from a variety of marine environments. The compositions of the pure end members of the systems were obtained from factor scores and the distribution of the systems within each sample was obtained from factor loadings. All the data, from the diverse environments sampled (estuarine (San Francisco Bay), fresh-water (San Francisco Peninsula), polar-marine (Antarctica) and geothermal-marine (Gorda Ridge) sediments), were reduced to three major systems: a terrestrial system (mostly high molecular weight aliphatics with odd-numbered-carbon predominance), a mature system (mostly low molecular weight aliphatics without predominance) and a system containing mostly high molecular weight aliphatics with even-numbered-carbon predominance. With this statistical approach, it is possible to assign the percentage contribution from various sources to the observed distribution of aliphatic hydrocarbons in each sediment sample. ?? 1991.

  6. Toxicity studies of a polyurethane rigid foam

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Schneider, J. E.

    1977-01-01

    Relative toxicity tests were performed on a polyurethane foam containing a trimethylopropane-based polyol and an organophosphate flame retardant. The routine screening procedure involved the exposure of four Swiss albino male mice in a 4.2 liter hemispherical chamber to the products generated by pyrolyzing a 1.00 g sample at a heating rate of 40 deg C/min from 200 to 800 C in the absence of air flow. In addition to the routine screening, experiments were performed with a very rapid rise to 800 C, with nominal 16 and 48 ml/sec air flow and with varying sample rates. No unusual toxicity was observed with either gradual or rapid pyrolysis to 800 C. Convulsions and seizures similar to those previously reported were observed when the materials were essentially flash pyrolyzed at 800 C in the presence of air flow, and the toxicity appeared unusual because of low sample weights required to produce death.

  7. Evaluation of Sprayed Polyurethane Foam Roofing and Protective Coatings

    DTIC Science & Technology

    1981-11-01

    Blowholes in Foam Surface 16 9 Rippling in Foam Surface 16 10 Isocyanate -Rich Surface 18 I I Resin-Rich Surface 18 12 Foam Application Over Wet...residual oil or grease, or which contain rem- nants of old asphalt vapor retarders, may need to be The foam should have a uniform structure, of which...offer asparticula value and to prevent absorption of water. primer for use with their foamn. Cutback asphalt , such)as American Society for Testing and

  8. Low-Temperature Chemical Vapor Deposition of Silicon Dioxide Using Tetra-isocyanate-silane ( Si(NCO)4)

    NASA Astrophysics Data System (ADS)

    Taniguchi, Hitoshi; Sugiura, Osamu

    1994-10-01

    Deposition characteristics and step coverage of low-temperaturechemical vapor deposition silicon dioxide (CVD SiO2) using tetra-isocyanate-silane ( Si(NCO)4; TICS) and H2Ohave been investigated for application to interlayerdielectric films for advanced VLSI.The deposition rate was 13 nm/min at 100°C.The rate rapidly decreased with the increasing deposition temperature.It was determined by partial pressure rather than by flow rate of material gases.The step coverage showed a conformal profile.

  9. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis.

    PubMed

    Beekwilder, Jules; van Leeuwen, Wessel; van Dam, Nicole M; Bertossi, Monica; Grandi, Valentina; Mizzi, Luca; Soloviev, Mikhail; Szabados, Laszlo; Molthoff, Jos W; Schipper, Bert; Verbocht, Hans; de Vos, Ric C H; Morandini, Piero; Aarts, Mark G M; Bovy, Arnaud

    2008-04-30

    Aliphatic glucosinolates are compounds which occur in high concentrations in Arabidopsis thaliana and other Brassicaceae species. They are important for the resistance of the plant to pest insects. Previously, the biosynthesis of these compounds was shown to be regulated by transcription factors MYB28 and MYB29. We now show that MYB28 and MYB29 are partially redundant, but in the absence of both, the synthesis of all aliphatic glucosinolates is blocked. Untargeted and targeted biochemical analyses of leaf metabolites showed that differences between single and double knock-out mutants and wild type plants were restricted to glucosinolates. Biosynthesis of long-chain aliphatic glucosinolates was blocked by the myb28 mutation, while short-chain aliphatic glucosinolates were reduced by about 50% in both the myb28 and the myb29 single mutants. Most remarkably, all aliphatic glucosinolates were completely absent in the double mutant. Expression of glucosinolate biosynthetic genes was slightly but significantly reduced by the single myb mutations, while the double mutation resulted in a drastic decrease in expression of these genes. Since the myb28myb29 double mutant is the first Arabidopsis genotype without any aliphatic glucosinolates, we used it to establish the relevance of aliphatic glucosinolate biosynthesis to herbivory by larvae of the lepidopteran insect Mamestra brassicae. Plant damage correlated inversely to the levels of aliphatic glucosinolates observed in those plants: Larval weight gain was 2.6 fold higher on the double myb28myb29 mutant completely lacking aliphatic glucosinolates and 1.8 higher on the single mutants with intermediate levels of aliphatic glucosinolates compared to wild type plants.

  10. The Impact of the Absence of Aliphatic Glucosinolates on Insect Herbivory in Arabidopsis

    PubMed Central

    van Dam, Nicole M.; Bertossi, Monica; Grandi, Valentina; Mizzi, Luca; Soloviev, Mikhail; Szabados, Laszlo; Molthoff, Jos W.; Schipper, Bert; Verbocht, Hans; de Vos, Ric C. H.; Morandini, Piero; Aarts, Mark G. M.; Bovy, Arnaud

    2008-01-01

    Aliphatic glucosinolates are compounds which occur in high concentrations in Arabidopsis thaliana and other Brassicaceae species. They are important for the resistance of the plant to pest insects. Previously, the biosynthesis of these compounds was shown to be regulated by transcription factors MYB28 and MYB29. We now show that MYB28 and MYB29 are partially redundant, but in the absence of both, the synthesis of all aliphatic glucosinolates is blocked. Untargeted and targeted biochemical analyses of leaf metabolites showed that differences between single and double knock-out mutants and wild type plants were restricted to glucosinolates. Biosynthesis of long-chain aliphatic glucosinolates was blocked by the myb28 mutation, while short-chain aliphatic glucosinolates were reduced by about 50% in both the myb28 and the myb29 single mutants. Most remarkably, all aliphatic glucosinolates were completely absent in the double mutant. Expression of glucosinolate biosynthetic genes was slightly but significantly reduced by the single myb mutations, while the double mutation resulted in a drastic decrease in expression of these genes. Since the myb28myb29 double mutant is the first Arabidopsis genotype without any aliphatic glucosinolates, we used it to establish the relevance of aliphatic glucosinolate biosynthesis to herbivory by larvae of the lepidopteran insect Mamestra brassicae. Plant damage correlated inversely to the levels of aliphatic glucosinolates observed in those plants: Larval weight gain was 2.6 fold higher on the double myb28myb29 mutant completely lacking aliphatic glucosinolates and 1.8 higher on the single mutants with intermediate levels of aliphatic glucosinolates compared to wild type plants. PMID:18446225

  11. Photopatternable Biodegradable Aliphatic Polyester with Pendent Benzophenone Groups.

    PubMed

    Chen, Dayong; Chang, Chia-Chih; Cooper, Beth; Silvers, Angela; Emrick, Todd; Hayward, Ryan C

    2015-10-12

    Highly efficient photo-cross-linking reactions enable numerous applications in biomaterials. Here, a photopatternable biodegradable aliphatic polyester with benzophenone pendent groups was synthesized by copper-catalyzed alkyne-azide cycloaddition, affording polyesters that undergo UV-induced cross-linking to yield photopatterned films. Using this material, a self-folding multilayer structure containing polyester/hydrogel bilayer hinges was fabricated. Upon swelling of the hydrogel layer, the construct folds into a triangular tube, which subsequently unfolds due to lipase-catalyzed degradation of the polyester layer. The ability to precisely design such degradation-induced structural changes offers potential for biomaterials and medical applications, such as evolving and responsive 2D and 3D tissue engineering scaffolds.

  12. Anaerobic and aerobic treatment of chlorinated, aliphatic compounds

    SciTech Connect

    Long, J.L.; Stensel, H.D.; Ferguson, J.F.; Strand, S.E.; Ongerth, J.E.

    1993-01-01

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). The anaerobic culture degraded seven of the feed CACs. The specialized aerobic cultures degraded all but three of the highly chlorinated CACs. The sequential system outperformed either of the other systems alone by degrading 10 of the feed CACs: chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,1,1-trichloroethane, hexachloroethane, 1,1-dichloroethylene, trans-1,2-dichloroethylene, trichloroethylene, perchloroethylene, and 1,2,3-trichloropropane, plus the anaerobic metabolites: dichloromethane and cis-1,2-dichloroethylene.

  13. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  14. Surface Characterization of Aliphatic Polyester -g- Phosphorylcholine Copolymers

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongfei; Emrick, Todd; Hsu, Shaw L.

    2007-03-01

    In order to control biodegradation behavior of a class of polyesters, hydrophilic functional groups were grafted onto the main chains. Phosphorylcholine (PC) molecules with azide attached at the end were synthesized. Due to their excellent biocompatibility and hydrophilicity, they have been covalently coupled to biodegradable aliphatic polyesters via a ``click'' cycloaddition reaction to produce amphiphilic graft copolymers. A series of copolymers were prepared by varying the molar incorporation of PC groups. Surface properties of the copolymers were examined to further explore their applications in drug delivery systems. Grazing angle reflection infrared spectroscopy was employed to determine segmental orientation at the film surface. XPS was used to verify surface composition. A water adsorption experiment was carried out to determine the water permeation rate. The improvement in hydrophilicity was confirmed by a water contact experiment. Results indicate that the graft copolymers were promising in drug delivery systems.

  15. Localized aliphatic organic material on the surface of Ceres.

    PubMed

    De Sanctis, M C; Ammannito, E; McSween, H Y; Raponi, A; Marchi, S; Capaccioni, F; Capria, M T; Carrozzo, F G; Ciarniello, M; Fonte, S; Formisano, M; Frigeri, A; Giardino, M; Longobardo, A; Magni, G; McFadden, L A; Palomba, E; Pieters, C M; Tosi, F; Zambon, F; Raymond, C A; Russell, C T

    2017-02-17

    Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the Dawn spacecraft show a clear detection of an organic absorption feature at 3.4 micrometers on dwarf planet Ceres. This signature is characteristic of aliphatic organic matter and is mainly localized on a broad region of ~1000 square kilometers close to the ~50-kilometer Ernutet crater. The combined presence on Ceres of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic material indicates a very complex chemical environment, suggesting favorable environments to prebiotic chemistry.

  16. Localized aliphatic organic material on the surface of Ceres

    NASA Astrophysics Data System (ADS)

    De Sanctis, M. C.; Ammannito, E.; McSween, H. Y.; Raponi, A.; Marchi, S.; Capaccioni, F.; Capria, M. T.; Carrozzo, F. G.; Ciarniello, M.; Fonte, S.; Formisano, M.; Frigeri, A.; Giardino, M.; Longobardo, A.; Magni, G.; McFadden, L. A.; Palomba, E.; Pieters, C. M.; Tosi, F.; Zambon, F.; Raymond, C. A.; Russell, C. T.

    2017-02-01

    Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the Dawn spacecraft show a clear detection of an organic absorption feature at 3.4 micrometers on dwarf planet Ceres. This signature is characteristic of aliphatic organic matter and is mainly localized on a broad region of ~1000 square kilometers close to the ~50-kilometer Ernutet crater. The combined presence on Ceres of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic material indicates a very complex chemical environment, suggesting favorable environments to prebiotic chemistry.

  17. Sodium hypochlorite oxidation of petroleum aliphatic contaminants in calcareous soils.

    PubMed

    Picard, François; Chaouki, Jamal

    2016-02-01

    This research project investigated the sodium hypochlorite (NaClO) oxidation of aliphatic petroleum contaminants (C10-C50) in a calcareous soil (average 5473 ppm C10-C50, 15 wt% Ca), which had been excavated from a contaminated industrial site. The decontamination objective was to lower the C10-C50 concentration to 700 ppm. CO2 acidity was used in the project to boost the NaClO oxidation yield and seems to have played a role in desorbing the natural organic matter. The experimental conditions were a 2- to 16-h reaction time, at room temperature, with a 1 to 12.5 wt% NaClO oxidative solution and a fixed 2:1 solution-to-soil ratio. With a 3 wt% NaClO solution and with a CO2 overhead, the NaClO dosage requirement was maintained below 60 g NaClO/g of oxidized C10-C50 over the entire decontamination range. The strong chlorine smell remaining after the reaction was completed suggests that part of the NaClO requirement can be recycled. Except traces of chloroform, there were no regulation-listed organochloride contaminants detected on either the treated soil samples or leachates and the total count of chlorinated compounds in treated soil samples was below the detection limit of 250 mg/kg. The NaClO oxidation mechanism on aliphatic substrates might be triggered by transition metals, such as manganese, but no attempt has been made to investigate the oxidation mechanism. Further investigations would include a constant-fed NaClO system and other techniques to lower the required NaClO dosage.

  18. IDENTIFICATION OF CFC AND HCFC SUBSTITUTES FOR BLOWING POLYURETHANE FOAM INSULATION PRODUCTS

    EPA Science Inventory

    The report gives results of a cooperative effort to identiry chlorofluorocarbons and hydrochlorofluorocarbon substitutes for blowing polyurethane foam insulation products. The substantial ongoing effort is identifying third-generation blowing agets for polyurethane foams to repla...

  19. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  20. Fiber glass prevents cracking of polyurethane foam insulation on cryogenic vessels

    NASA Technical Reports Server (NTRS)

    Forge, D. A.

    1968-01-01

    Fiber glass material, placed between polyurethane foam insulation and the outer surfaces of cryogenic vessels, retains its resilience at cryogenic temperatures and provides an expansion layer between the metal surfaces and the polyurethane foam, preventing cracking of the latter.

  1. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with aliphatic... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  2. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, polymer with aliphatic... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  3. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymer with aliphatic... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  4. Measurement of plasma free choline by high performance liquid chromatography with fluorescence detection following derivatization with 1-naphthyl isocyanate.

    PubMed

    McEntyre, Christopher J; Slow, Sandy; Lever, Michael

    2009-06-30

    Choline is an essential nutrient which is difficult to measure because it has no native absorbance or fluorescence and only relatively unreactive functional groups. The method described here uses the reaction of the hydroxyl group on choline with 1-naphthyl isocyanate to form a stable cationic aromatic urethane that can be measured by high performance liquid chromatography (HPLC) on a cation exchange column, followed by fluorescence detection. The sample was directly added to acetonitrile and mixed with magnesium oxide and 1-naphthyl isocyanate. The 1-naphthylurethane choline derivative was separated by HPLC using a strong cation exchange column with a tetramethylammonium glycolate buffer in the mobile phase, and measured by fluorescence detection. The recoveries from blood plasma were over 94%. In this study an internal standard was not used, and quantification was achieved by calibration using standards containing known choline concentrations. The within batch and between batch coefficients of variation (CVs) were below 6%. The response was linear over the biological range investigated (8.9-58.9 micromol L(-1), r2=0.998). This is a technically simple method that can be carried out with an inexpensive HPLC system with fluorescence detection. It has sufficient sensitivity to measure choline in biological materials such as human plasma, and is suitable for processing batches of samples.

  5. Tris-[8]annulenyl Isocyanurate Trianion Triradical and Hexa-anion from the Alkali Metal Reduction of [8]Annulenyl Isocyanate.

    PubMed

    Peters, Steven J; Klen, Joseph R

    2015-06-05

    The solution phase alkali metal reduction of [8]annulenyl isocyanate (C8H7NCO) yields an EPR spectrum, which reveals electron couplings to seven protons and only one nitrogen. Although this strongly suggested that the C8H7NCO anion radical was generated, experiments on the oxidized product reveal the actual reduced species to be tris-[8]annulenyl isocyanurate. Unlike the previously studied phenyl isocyanurate anion radical, the unpaired electron(s) is now localized within an [8]annulenyl moiety. Further exposure to metal results in the formation of an equilibrium mixture of trianion triradical and trianion radical species. The cyclotrimerization to form the isocyanurate is proposed to be driven by a reactive C8H7NCO dianion, which is produced from the large equilibrium disproportionation of the anion radical. Exhaustive reduction of the tris-[8]annulenyl isocyanurate with potassium in THF generates the first-ever observed hexa-anion of an isocyanurate. NMR analysis reveals that the polarity of the carbonyl bonds within this hexa-anion is augmented and is caused by the close proximity of K(+) ions, which are tightly ion paired to the three [8]annulenyl dianion rings. These preliminary studies on the reduction of C8H7NCO suggest that polymeric materials (e.g., polyisocyanates) made from this isocyanate might exhibit unique properties.

  6. New insights into atmospheric sources and sinks of isocyanic acid, HNCO, from recent urban and regional observations

    NASA Astrophysics Data System (ADS)

    Roberts, James M.; Veres, Patrick R.; VandenBoer, Trevor C.; Warneke, Carsten; Graus, Martin; Williams, Eric J.; Lefer, Barry; Brock, Charles A.; Bahreini, Roya; Öztürk, Fatma; Middlebrook, Ann M.; Wagner, Nicholas L.; Dubé, William P.; Gouw, Joost A.

    2014-01-01

    Isocyanic acid (HNCO) has only recently been measured in the ambient atmosphere, and many aspects of its atmospheric chemistry are still uncertain. HNCO was measured during three diverse field campaigns: California Nexus—Research at the Nexus of Air Quality and Climate Change (CalNex 2010) at the Pasadena ground site, Nitrogen, Aerosol Composition, and Halogens on a Tall Tower (NACHTT 2011) at the Boulder Atmospheric Observatory (BAO) in Weld County, CO, and Biofuel Crops emission of Ozone precursors intensive (BioCORN 2011), in a cornfield NW of Fort Collins, CO. Mixing ratios varied from below detection limit (~0.003 ppbv) to over 1.2 ppbv during a period when agricultural burning impacted the BAO Tower site. Urban areas, such as the CalNex 2010 Pasadena site, appear to have both primary (combustion) and secondary (photochemical) sources of HNCO, 50 ± 9%, and 33 ± 12%, respectively, while primary sources were responsible for the large mixing ratios of HNCO observed during the wintertime NACHTT study in suburban Colorado. Isocyanic acid during the BioCORN study in rural NE Colorado was closely correlated to ozone and therefore likely photochemically produced as a secondary product from amines or formamide. The removal of HNCO from the lower atmosphere is thought to be due to deposition, as common gas phase loss processes of photolysis and reactions with hydroxyl radicals, are slow. These ambient measurements are consistent with some HNCO deposition, which was evident at night at these surface sites.

  7. 40 CFR 63.1293 - Standards for slabstock flexible polyurethane foam production.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production. 63.1293 Section 63.1293 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1293 Standards for slabstock flexible polyurethane foam production. Each owner or operator of...

  8. 40 CFR 63.1300 - Standards for molded flexible polyurethane foam production.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production. 63.1300 Section 63.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1300 Standards for molded flexible polyurethane foam production. Each owner or operator of a...

  9. 40 CFR 721.8079 - Isophorone diisocyanate neopentyl glycol adipate polyurethane prepolymer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... glycol adipate polyurethane prepolymer. 721.8079 Section 721.8079 Protection of Environment ENVIRONMENTAL... adipate polyurethane prepolymer. (a) Chemical substance and significant new uses subject to reporting. (1... polyurethane prepolymer (PMN P-94-1743) is subject to reporting under this section for the significant new...

  10. 40 CFR 721.8079 - Isophorone diisocyanate neopentyl glycol adipate polyurethane prepolymer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... glycol adipate polyurethane prepolymer. 721.8079 Section 721.8079 Protection of Environment ENVIRONMENTAL... adipate polyurethane prepolymer. (a) Chemical substance and significant new uses subject to reporting. (1... polyurethane prepolymer (PMN P-94-1743) is subject to reporting under this section for the significant new...

  11. 40 CFR 63.1300 - Standards for molded flexible polyurethane foam production.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production. 63.1300 Section 63.1300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1300 Standards for molded flexible polyurethane foam production. Each owner or operator of a...

  12. 40 CFR 63.1293 - Standards for slabstock flexible polyurethane foam production.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production. 63.1293 Section 63.1293 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emission Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1293 Standards for slabstock flexible polyurethane foam production. Each owner or operator of...

  13. 76 FR 19182 - Petition for Rulemaking-Classification of Polyurethane Foam and Certain Finished Products...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... in delivery of dairy products or frozen foods, and in refrigerated freight containers. COSTHA said to... Polyurethane Foam and Certain Finished Products Containing Polyurethane Foam as Hazardous Materials AGENCY... finished products containing polyurethane foam as hazardous material for purposes of transportation...

  14. The compressive behavior of isocyanate-crosslinked silica aerogel at high strain rates

    NASA Astrophysics Data System (ADS)

    Luo, H.; Lu, H.; Leventis, N.

    2006-06-01

    Aerogels are low-density, highly nano-porous materials. Their engineering applications are limited due to their brittleness and hydrophilicity. Recently, a strong lightweight crosslinked silica aerogel has been developed by encapsulating the skeletal framework of amine-modified silica aerogels with polyureas derived by isocyanate. The mesoporous structure of the underlying silica framework is preserved through conformal polymer coating, and the thermal conductivity remains low. Characterization has been conducted on the thermal, physical properties and the mechanical properties under quasi-static loading conditions. In this paper, we present results on the dynamic compressive behavior of the crosslinked silica aerogel (CSA) using a split Hopkinson pressure bar (SHPB). A new tubing pulse shaper was employed to help reach the dynamic stress equilibrium and constant strain rate. The stress-strain relationship was determined at high strain rates within 114-4386 s-1. The effects of strain rate, density, specimen thickness and water absorption on the dynamic behavior of the CSA were investigated through a series of dynamic experiments. The Young’s moduli (or 0.2% offset compressive yield strengths) at a strain rate ˜350 s-1 were determined as 10.96/2.08, 159.5/6.75, 192.2/7.68, 304.6/11.46, 407.0/20.91 and 640.5/30.47 MPa for CSA with densities 0.205, 0.454, 0.492, 0.551, 0.628 and 0.731 g cm-3, respectively. The deformation and failure behaviors of a native silica aerogel with density (0.472 g cm-3), approximately the same as a typical CSA sample were observed with a high speed digital camera. Digital image correlation technique was used to determine the surface strains through a series of images acquired using high speed photography. The relative uniform axial deformation indicated that localized compaction did not occur at a compressive strain level of ˜17%, suggesting most likely failure mechanism at high strain rate to be different from that under quasi

  15. The Compressive Behavior of Isocyanate-crosslinked Silica Aerogel at High Strain Rates

    NASA Technical Reports Server (NTRS)

    Luo, H.; Lu, H.; Leventis, N.

    2006-01-01

    Aerogels are low-density, highly nano-porous materials. Their engineering applications are limited due to their brittleness and hydrophilicity. Recently, a strong lightweight crosslinked silica aerogel has been developed by encapsulating the skeletal framework of amine-modified silica aerogels with polyureas derived by isocyanate. The mesoporous structure of the underlying silica framework is preserved through conformal polymer coating, and the thermal conductivity remains low. Characterization has been conducted on the thermal, physical properties and the mechanical properties under quasi-static loading conditions. In this paper, we present results on the dynamic compressive behavior of the crosslinked silica aerogel (CSA) using a split Hopkinson pressure bar (SHPB). A new tubing pulse shaper was employed to help reach the dynamic stress equilibrium and constant strain rate. The stress-strain relationship was determined at high strain rates within 114-4386/s. The effects of strain rate, density, specimen thickness and water absorption on the dynamic behavior of the CSA were investigated through a series of dynamic experiments. The Young's moduli (or 0.2% offset compressive yield strengths) at a strain rate approx.350/s were determined as 10.96/2.08, 159.5/6.75, 192.2/7.68, 304.6/11.46, 407.0/20.91 and 640.5/30.47 MPa for CSA with densities 0.205, 0.454, 0.492, 0.551,0.628 and 0.731 g/cu cm, respectively. The deformation and failure behaviors of a native silica aerogel with density (0.472 g/cu cm ), approximately the same as a typical CSA sample were observed with a high speed digital camera. Digital image correlation technique was used to determine the surface strains through a series of images acquired using high speed photography. The relative uniform axial deformation indicated that localized compaction did not occur at a compressive strain level of approx.17%, suggesting most likely failure mechanism at high strain rate to be different from that under quasi

  16. Hexavalent chromium and isocyanate exposures during military aircraft painting under crossflow ventilation.

    PubMed

    Bennett, James S; Marlow, David A; Nourian, Fariba; Breay, James; Hammond, Duane

    2016-01-01

    Exposure control systems performance was investigated in an aircraft painting hangar. The ability of the ventilation system and respiratory protection program to limit worker exposures was examined through air sampling during painting of F/A-18C/D strike fighter aircraft, in four field surveys. Air velocities were measured across the supply filter, exhaust filter, and hangar midplane under crossflow ventilation. Air sampling conducted during painting process phases (wipe-down, primer spraying, and topcoat spraying) encompassed volatile organic compounds, total particulate matter, Cr[VI], metals, nitroethane, and hexamethylene diisocyanate, for two worker groups: sprayers and sprayer helpers ("hosemen"). One of six methyl ethyl ketone and two of six methyl isobutyl ketone samples exceeded the short term exposure limits of 300 and 75 ppm, with means 57 ppm and 63 ppm, respectively. All 12 Cr[VI] 8-hr time-weighted averages exceeded the recommended exposure limit of 1 µg/m3, 11 out of 12 exceeded the permissible exposure limit of 5 µg/m3, and 7 out of 12 exceeded the threshold limit value of 10 µg/m3, with means 38 µg/m3 for sprayers and 8.3 µg/m3 for hosemen. Hexamethylene diisocyanate means were 5.95 µg/m3 for sprayers and 0.645 µg/m3 for hosemen. Total reactive isocyanate group--the total of monomer and oligomer as NCO group mass--showed 6 of 15 personal samples exceeded the United Kingdom Health and Safety Executive workplace exposure limit of 20 µg/m3, with means 50.9 µg/m3 for sprayers and 7.29 µg/m3 for hosemen. Several exposure limits were exceeded, reinforcing continued use of personal protective equipment. The supply rate, 94.4 m3/s (200,000 cfm), produced a velocity of 8.58 m/s (157 fpm) at the supply filter, while the exhaust rate, 68.7 m3/s (146,000 cfm), drew 1.34 m/s (264 fpm) at the exhaust filter. Midway between supply and exhaust locations, the velocity was 0.528 m/s (104 fpm). Supply rate exceeding exhaust rate created re

  17. Chlorodifluoroacetyl isocyanate, ClF2CC(O)NCO: preparation and structural and spectroscopic studies.

    PubMed

    Ramos, Luis A; Ulic, Sonia E; Romano, Rosana M; Vishnevskiy, Yury V; Berger, Raphael J F; Mitzel, Norbert W; Beckers, Helmut; Willner, Helge; Tong, Shengrui; Ge, Maofa; Della Védova, Carlos O

    2012-11-29

    Chlorodifluoroacetyl isocyanate, ClF2CC(O)NCO, was prepared by the reaction of ClF2CC(O)Cl with excess of AgNCO. The colorless compound melts at −83 °C and the vapor pressure follows the equation ln p = −3868.3 (1/T) + 10.89 (p [Atm], T [K]) in the range −38 to +22 °C, extrapolated bp ca. 82 °C. It has been characterized by IR (gas phase, Ar matrix), liquid Raman, 19F and 13C NMR, gas UV–vis spectrum, photoelectron spectroscopy (PES), photoionization mass spectrometry (PIMS), and gas electron diffraction (GED). The matrix photochemistry has been studied and the conformational properties of ClF2CC(O)NCO have been analyzed by joint application of vibrational spectroscopy, GED, and quantum chemical calculations. Two conformers were detected in gaseous and liquid phases, in which the C–Cl bond adopts a gauche orientation with respect to the C═O group, whereas this group can be in syn or anti orientation with respect to the N═C bond of the NCO group. An enthalpy difference ΔH(exp)° = 1.3 ± 0.2 kcal mol(–1) between the most stable syn–gauche and the less stable anti-gauche form was derived using the van’t Hoff equation, which is in reasonable agreement with the computed difference of ΔH° = 0.8 kcal mol(–1) (B3LYP/6-311+G(3df) approximation). The most significant gas phase structural parameters for gauche–syn ClF2CC(O)NCO are r(e)(NC═O) = 1.157(1) Å, r(e)(N═CO) = 1.218(1) Å, r(e)(N–C) = 1.378(9) Å, r(e)(C═O) = 1.195(1) Å, angle(e)(CNC) = 128.6(19)°. Photolysis of ClF2CC(O)NCO using an ArF excimer laser (193 nm) mainly yield ClF2CNCO along with some ClF2CC(O)N nitrene. The valence electronic properties of the title compound were studied using the PES and PIMS. The experimental first vertical ionization energy of 11.54 eV corresponds to the ejection of a carbonylic oxygen lone pair electron.

  18. Linear aliphatic dialkynes as alternative linkers for double-click stapling of p53-derived peptides.

    PubMed

    Lau, Yu Heng; de Andrade, Peterson; McKenzie, Grahame J; Venkitaraman, Ashok R; Spring, David R

    2014-12-15

    We investigated linear aliphatic dialkynes as a new structural class of i,i+7 linkers for the double-click stapling of p53-based peptides. The optimal combination of azido amino acids and dialkynyl linker length for MDM2 binding was determined. In a direct comparison between aliphatic and aromatic staple scaffolds, the aliphatic staples resulted in superior binding to MDM2 in vitro and superior p53-activating capability in cells when using a diazidopeptide derived from phage display. This work demonstrates that the nature of the staple scaffold is an important factor that can affect peptide bioactivity in cells.

  19. Molecular engineering of manipulated alginate-based polyurethanes.

    PubMed

    Daemi, Hamed; Barikani, Mehdi

    2014-11-04

    The novel soluble alginate-based polyurethanes in organic solvents were synthesized by the reaction of NCO-terminated prepolymers and tributylammonium alginate (TBA-Alg) for the first time. The chemical structures of synthesized polyurethanes were characterized using FTIR, (1)H NMR and TGA. The reaction completion was confirmed by disappearing of NCO band in FTIR spectra. Furthermore, a peak at 4.71 ppm and some small peaks at a range of 4.12-4.37 ppm in the (1)H NMR of alginate-based polyurethanes were assigned to the backbone of alginate. The results of both FTIR and (1)H NMR were remarkably confirmed by TGA data. The ionic nature of polyurethane backbone not only affects on thermal properties of samples, but it also changes the chemically-bonded alginate morphology. Both polyether and polyester based non-ionic polyurethanes extended by TBA-Alg illustrated the distinct alginate, whereas those ionomers extended by alginate were appeared as the continuous systems at nanoscale.

  20. Response of Polyurethane to Shock Waves: An Experimental Investigation

    NASA Astrophysics Data System (ADS)

    Jayaram, V.; Rao, Keshava Subba; Thanganayaki, N.; Kumara, H. K. T.; Reddy, K. P. J.

    Formation of polyurethane (PU) in vacuum environment and controlling density of polyurethane foams are the present day challenges. Polyurethane exists in numerous forms ranging from flexible to rigid and lightweight foams to tough, stiff elastomers [1]. PU can be used to produce lightweight foams for insulation or hard rubber used as wheels to transport heavy loads and it can be used in high pressure applications. The largest volumes of commercial PU elastomers are made from toluene diisocyanate (TDI) or diphenylmethane-4, 4'-diisocyanate (MDI) [2]. Linear polyurethanes can be processed into final products by any of the standard thermoplastic processes (injection molding, extrusion, thermoforming) as well as by low pressure cast processes in presence of catalysts. Tin, tetrabutyl titanate and zirconium chelates are few effective catalysts used to produce polyurethane for particular application [3]. Thermoset elastomers are formed due to irreversible cross-links, when polymers are chemically cured. Highly porous biodegradable PU was synthesized by thermally induced phase separation technique used in tissue engineering and also in bio-degradable based fluids [4]. Properties of PU like hardness, stress/strain modulus, tear strength etc, was determine using ASTM (American Society for Testing and Materials) standard methods. PU possesses extremely high mechanical properties, excellent abrasion, tear and extrusion resistance. It has outstanding low-temperature limit (-600C) and high temperature limit up to (1500C).

  1. Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams.

    SciTech Connect

    Neilsen, Michael K.; Lu, Wei-Yang; Scherzinger, William M.; Hinnerichs, Terry D.; Lo, Chi S.

    2015-06-01

    Numerous experiments were performed to characterize the mechanical response of several different rigid polyurethane foams (FR3712, PMDI10, PMDI20, and TufFoam35) to large deformation. In these experiments, the effects of load path, loading rate, and temperature were investigated. Results from these experiments indicated that rigid polyurethane foams exhibit significant volumetric and deviatoric plasticity when they are compressed. Rigid polyurethane foams were also found to be very strain-rate and temperature dependent. These foams are also rather brittle and crack when loaded to small strains in tension or to larger strains in compression. Thus, a new Unified Creep Plasticity Damage (UCPD) model was developed and implemented into SIERRA with the name Foam Damage to describe the mechanical response of these foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments and experimental findings. Next, development of a UCPD model for rigid, polyurethane foams is described. Selection of material parameters for a variety of rigid polyurethane foams is then discussed and finite element simulations with the new UCPD model are compared with experimental results to show behavior that can be captured with this model.

  2. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... Pollutants for Flexible Polyurethane Foam Production § 63.1297 Standards for slabstock flexible polyurethane... § 63.1293(a)(1) shall control HAP ABA emissions from the slabstock polyurethane foam production line...

  3. 40 CFR 63.1297 - Standards for slabstock flexible polyurethane foam production-HAP ABA emissions from the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyurethane foam production-HAP ABA emissions from the production line. 63.1297 Section 63.1297 Protection of... Pollutants for Flexible Polyurethane Foam Production § 63.1297 Standards for slabstock flexible polyurethane... § 63.1293(a)(1) shall control HAP ABA emissions from the slabstock polyurethane foam production line...

  4. Kinetic Data and Quantum Chemical Calculation Studies on the Stepwise vs. Concerted Pathways for Reaction of Chlorosulfonyl Isocyanate Reactions with Monofluoroalkenes

    DTIC Science & Technology

    2013-01-17

    synthetic utility of CSI reactions with unreactive hydrocarbon and monofluoroalkenes is enhanced by running the reactions at a lower temperature where...public release; distribution unlimited. Free Energy vs. Reaction Coordinate Diagram Solid line: Pathways available to hydrocarbon alkenes with CSI...stepwise vs. concerted pathways for reaction of chlorosulfonyl isocyanate reactions with monofluoroalkenes 5a. CONTRACT NUMBER In-House 5b. GRANT

  5. Decreased bacteria density on nanostructured polyurethane.

    PubMed

    Yao, Chang; Webster, Thomas J; Hedrick, Matthew

    2014-06-01

    As is well known, medical device infections are a growing clinical problem with no clear solution due to previous failed attempts of using antibiotics to decrease bacteria functions for which bacteria quickly develop a resistance toward. Because of their altered surface energetics, the objective of the present in vitro study was to create nanoscale surface features on polyurethane (PU) by soaking PU films in HNO3 and to determine bacteria (specifically, S. epidermidis, E. coli, and P. mirabilis) colony forming units after 1 h. Such bacteria frequently infect numerous medical devices. Results provided the first evidence that without using antibiotics, S. epidermidis density decreased by 5 and 13 times, E. coli density decreased by 6 and 20 times, and P. mirabilis density decreased by 8 and 35 times compared to conventional PU and a tissue engineering control small intestine submucosa (SIS), respectively. Material characterization studies revealed significantly greater nanoscale roughness and hydrophobicity for the HNO3-treated nanostructured PU compared to conventional PU (albeit, still hydrophilic) which may provide a rationale for the observed decreased bacteria responses. In addition, significantly greater amounts of fibronectin adsorption from serum were measured on nanorough compared conventional PU which may explain the decreased bacteria growth. In summary, this study provides significant promise for the use of nanostructured PU to decrease bacteria functions without the use of antibiotics, clearly addressing the wide spread problem of increased medical device infections observed today.

  6. Polyurethane biocompatible silver bionanocomposites for biomedical applications

    NASA Astrophysics Data System (ADS)

    Filip, D.; Macocinschi, D.; Paslaru, E.; Munteanu, B. S.; Dumitriu, R. P.; Lungu, M.; Vasile, C.

    2014-11-01

    Bionanocomposite membranes based on polyurethane (PU), extracellular matrix (EM), and silver nanoparticles (AgNPs) were prepared by applying both solvent casting method and electrospinning/electrospraying method. PU-EM-Ag compositions were electrospun/electrosprayed onto PU membrane to realize improved biocompatible biomaterials. Surface morphological characteristics and wettability properties were investigated by SEM and AFM techniques and water contact angle measurements. Water contact angle depends on surface chemistry and the two methods employed for preparation of biomembranes as well as roughness of the membrane surfaces. Rheological study brings information on electrospinability of the polymer solutions/dispersions. Silver nanoparticles greatly influence the electrospinability of the polymer dispersions because of the increase in dynamic viscosity with the increasing silver content. Native PU and PU incorporated with low contents of AgNPs less than 0.3 % show high cell proliferation and good biocompatibility. The electrospun PU-EM-Ag nanobiocomposite membranes bring the advantage of using of low amounts of bioactive and biocidal components. The obtained silver nanobiocomposite membranes possess good bioactivity and non-cytotoxicity necessary for biomedical device applications. The obtained nanobiocomposite membranes are expected to find application for medical devices such as urinary catheters, wound dressings, etc.

  7. Nano-Aramid Fiber Reinforced Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund B.; Frances, Arnold

    2008-01-01

    Closed cell polyurethane and, particularly, polyisocyanurate foams are a large family of flexible and rigid products the result of a reactive two part process wherein a urethane based polyol is combined with a foaming or "blowing" agent to create a cellular solid at room temperature. The ratio of reactive components, the constituency of the base materials, temperature, humidity, molding, pouring, spraying and many other processing techniques vary greatly. However, there is no known process for incorporating reinforcing fibers small enough to be integrally dispersed within the cell walls resulting in superior final products. The key differentiating aspect from the current state of art resides in the many processing technologies to be fully developed from the novel concept of milled nano pulp aramid fibers and their enabling entanglement capability fully enclosed within the cell walls of these closed cell urethane foams. The authors present the results of research and development of reinforced foam processing, equipment development, strength characteristics and the evolution of its many applications.

  8. Thermal performance of aircraft polyurethane seat cushions

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.

    1982-01-01

    Measurements were conducted on 7.6 x 7.6 cm samples of polyurethane seat cushion material in a modified National Bureau of Standards smoke density chamber to simulate real life conditions for an onboard aircraft fire or post-crash fire. In this study, a non-flaming heat radiation condition was simulated. Two aluminized polymeric fabrics (Norfab 11HT-26-A and Preox 1100-4) and one neoprene type material in two thicknesses (Vonar 2 and 3) were tested as heat blocking layers to protect the urethane foam from rapid heat degradation. Thermogravimetric analysis and differential scanning calorimetry were performed to characterize thermally the materials tested. It was found that Vonar 2 or 3 provided approximately equal thermal protection to F.R. urethane as the aluminized fabrics, but at a significant weight penalty. The efficiency of the foams to absorb heat per unit mass loss when protected with the heat blocking layer decreases in the heating range of 2.5-5.0 W/sq cm, but remains unchanged or slightly increases in the range of 5.0-7.5 W/sq cm. The results show that at all heat flux ranges tested the usage of a heat blocking layer in aircraft seats significantly improves their thermal performance.

  9. Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer.

    PubMed

    Zuber, Mohammad; Shah, Sayyed Asim Ali; Jamil, Tahir; Asghar, Muhammad Irfan

    2014-06-01

    The surface of the cellulosic fabrics was modified using self-prepared emulsions of polyurethane acrylate copolymers (PUACs). PUACs were prepared by varying the molecular weight of polycaprolactone diol (PCL). The PCL was reacted with isophorone diisocyanate (IPDI) and chain was extended with 2-hydroxy ethyl acrylate (HEA) to form vinyl terminated polyurethane (VTPU) preploymer. The VTPU was further co-polymerized through free radical polymerization with butyl acrylate in different proportions. The FT-IR spectra of monomers, prepolymers and copolymers assured the formation of proposed PUACs structure. The various concentrations of prepared PUACs were applied onto the different fabric samples using dip-padding techniques. The results revealed that the application of polyurethane butyl acrylate copolymer showed a pronounced effect on the tear strength and pilling resistance of the treated fabrics.

  10. Alginate based polyurethanes: A review of recent advances and perspective.

    PubMed

    Zia, Khalid Mahmood; Zia, Fatima; Zuber, Mohammad; Rehman, Saima; Ahmad, Mirza Nadeem

    2015-08-01

    The trend of using biopolymers in combination with synthetic polymers was increasing rapidly from last two or three decades. Polysaccharide based biopolymers especially starch, cellulose, chitin, chitosan, alginate, etc. found extensive applications for different industrial uses, as they are biocompatible, biodegradable, bio-renewable resources and chiefly environment friendly. Segment block copolymer character of polyurethanes that endows them a broad range of versatility in terms of tailoring their properties was employed in conjunction with various natural polymers resulted in modified biomaterials. Alginate is biodegradable, biocompatible, bioactive, less toxic and low cost anionic polysaccharide, as a part of structural component of bacteria and brown algae (sea weed) is quite abundant in nature. It is used in combination with polyurethanes to form elastomers, nano-composites, hydrogels, etc. that especially revolutionized the food and biomedical industries. The review summarized the development in alginate based polyurethanes with their potential applications.

  11. Starch based polyurethanes: A critical review updating recent literature.

    PubMed

    Zia, Fatima; Zia, Khalid Mahmood; Zuber, Mohammad; Kamal, Shagufta; Aslam, Nosheen

    2015-12-10

    Recent advancements in material science and technology made it obvious that use of renewable feed stock is the need of hour. Polymer industry steadily moved to get rid of its dependence on non-renewable resources. Starch, the second largest occurring biomass (renewable) on this planet provides a cheap and eco-friendly way to form huge variety of materials on blending with other biodegradable polymers. Specific structural versatility design for individual application and tailor-made properties have established the polyurethane (PU) as an important and popular class of synthetic biodegradable polymers. Blending of starch with polyurethane is relatively a developing area in PU chemistry but with lot of attraction for researchers. Herein, various starch based polyurethane materials including blends, grafts, copolymers, composites and nano-composites, as well as the prospects and latest developments are discussed. Additionally, an overview of starch based polymeric materials, including their potential applications are presented.

  12. Degradation of pentachlorophenol by polyurethane-immobilized Flavobacterium cells.

    PubMed Central

    O'Reilly, K T; Crawford, R L

    1989-01-01

    Polyurethane-immobilized Flavobacterium cells (ATCC 39723) degraded pentachlorophenol (PCP) at initial concentrations as high as 300 mg liter-1. The reversible binding of PCP to the polyurethane was shown to be important in the protection of the cells from inhibition of PCP degradation. The degradation activity of the bacteria was monitored for 150 days in semicontinuous batch reactors. The degradation rate dropped by about 0.6% per day. PCP was degraded in a continuous-culture bioreactor at a rate of 3.5 to 4 mg g of foam-1 day-1 for 25 days. Electron micrographs of the polyurethane suggested that the cells were entrapped within 50- to 500-microns-diameter pockets in the foam. PMID:2508552

  13. Electrical conductivity of rigid polyurethane foam at high temperature

    NASA Astrophysics Data System (ADS)

    Johnson, R. T., Jr.

    1982-08-01

    The electrical conductivity of rigid polyurethane foam, used for electronic encapsulation, was measured during thermal decomposition to 3400 C. At higher temperatures the conductance continues to increase. With pressure loaded electrical leads, sample softening results in eventual contact between electrodes which produces electrical shorting. Air and nitrogen environments show no significant dependence of the conductivity on the atmosphere over the temperature range. The insulating characteristics of polyurethane foam below approx. 2700 C are similar to those for silicone based materials used for electronic case housings and are better than those for phenolics. At higher temperatures (greater than or equal to 2700 C) the phenolics appear to be better insulators to approx. 5000 C and the silicones to approx. 6000 C. It is concluded that the Sylgard 184/GMB encapsulant is a significantly better insulator at high temperature than the rigid polyurethane foam.

  14. Shape memory polymers based on uniform aliphatic urethane networks

    SciTech Connect

    Wilson, T S; Bearinger, J P; Herberg, J L; Marion III, J E; Wright, W J; Evans, C L; Maitland, D J

    2007-01-19

    Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, in order to form amorphous networks with very uniform supermolecular structures which can be used as photo-thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,N{prime},N{prime}-tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3-butanediol (BD). The new polymers were characterized by solvent extraction, NMR, XPS, UV/VIS, DSC, DMTA, and tensile testing. The resulting polymers were found to be single phase amorphous networks with very high gel fraction, excellent optical clarity, and extremely sharp single glass transitions in the range of 34 to 153 C. Thermomechanical testing of these materials confirms their excellent shape memory behavior, high recovery force, and low mechanical hysteresis (especially on multiple cycles), effectively behaving as ideal elastomers above T{sub g}. We believe these materials represent a new and potentially important class of SMPs, and should be especially useful in applications such as biomedical microdevices.

  15. Aliphatic polyesters for medical imaging and theranostic applications.

    PubMed

    Nottelet, Benjamin; Darcos, Vincent; Coudane, Jean

    2015-11-01

    Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(ɛ-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given. Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more detail we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices.

  16. Aliphatic hydrocarbons in Great Barrier Reef organisms and environment

    NASA Astrophysics Data System (ADS)

    Coates, M.; Connell, D. W.; Bodero, J.; Miller, G. J.; Back, R.

    1986-07-01

    This investigation was undertaken to assess the chemical nature, occurrence, and possible origin of petroleum hydrocarbons in the Great Barrier Reef ecosystem. Aliphatic hydrocarbons in surface sediments, water, and a suite of seven species from widely separated coral reefs in the Great Barrier Reef area were analysed by gas chromatography, and by gas chromatography coupled with mass spectrometry. The hydrocarbons found were substantially of biogenic origin. The major components were n-pentadecane, n-heptadecane, pristane and mono-alkenes based on heptadecane, and were believed to originate from benthic algae and phytoplankton. There was no evidence to suggest that lipid content had any influence on hydrocarbon content. Hydrocarbons from the organisms and sediments have characteristic composition patterns which would be altered by the presence of petroleum hydrocarbons. An unresolved complex mixture, usually considered indicative of petroleum contamination, was found in greater than trace amounts only in Holothuria (sea cucumber) and Acropora (coral) from the Capricorn Group, and in some sediment samples from the Capricorn Group and Lizard Island area.

  17. Organochlorine compounds and aliphatic hydrocarbons in Pacific walrus blubber.

    PubMed

    Seagars, D J; Garlich-Miller, J

    2001-01-01

    Blubber samples were collected from 8 male and 19 female Pacific walrus (Odobenus rosmarus divergens) taken during a 1991 joint USA/USSR cruise traveling widely through the Bering Sea. Dieldrin was found at a level similar to that reported 10 years earlier; oxychlordane was found at a slightly higher concentration than reported previously (Taylor et aL, 1989). Heptachlor epoxide was detected for the first time and found at a low concentration. An initial testing for alpha-, beta- and gamma-HCH detected concentrations similar to those in other Bering Sea pinnipeds. Mean summation of PCB was 0.45 microg g(-1) wet weight in males and 0.16 microg g(-1) in females; only one sample was > 1 microg g(-1). Traces of aliphatic hydrocarbons were detected in all sampled animals, only pristane (x = 0.48 microg g(-1)) was found in concentrations > 1 microg g(-1). Small sample sizes, a lack of samples from immature animals, and uniformly low concentrations of contaminants precluded meaningful analysis of age-related effects and regional differences.

  18. Process for the synthesis of aliphatic alcohol-containing mixtures

    DOEpatents

    Greene, Marvin I.; Gelbein, Abraham P.

    1984-01-01

    A process for the synthesis of mixtures which include saturated aliphatic alcohols is disclosed. In the first step of the process, the first catalyst activation stage, a catalyst, which comprises the oxides of copper, zinc, aluminum, potassium and one or two additional metals selected from the group consisting of chromium, magnesium, cerium, cobalt, thorium and lanthanum, is partially activated. In this step, a reducing gas stream, which includes hydrogen and at least one inert gas, flows past the catalyst at a space velocity of up to 5,000 liters (STP) per hour, per kilogram of catalyst. The partially activated catalyst is then subjected to the second step of the process, second-stage catalyst activation. In this step, the catalyst is contacted by an activation gas stream comprising hydrogen and carbon monoxide present in a volume ratio of 0.5:1 and 4:1, respectively, at a temperature of 200.degree. to 450.degree. C. and a pressure of between 35 and 200 atmospheres. The activation gas flows at a space velocity of from 1,000 to 20,000 liters (STP) per hour, per kilogram of catalyst. Second-stage activation continues until the catalyst is contacted with at least 500,000 liters (STP) of activation gas per kilogram of catalyst. The fully activated catalyst, in the third step of the process, contacts a synthesis gas stream comprising hydrogen and carbon monoxide.

  19. Process for the synthesis of aliphatic alcohol-containing mixtures

    DOEpatents

    Greene, M.I.; Gelbein, A.P.

    1984-10-16

    A process for the synthesis of mixtures which include saturated aliphatic alcohols is disclosed. In the first step of the process, the first catalyst activation stage, a catalyst, which comprises the oxides of copper, zinc, aluminum, potassium and one or two additional metals selected from the group consisting of chromium, magnesium, cerium, cobalt, thorium and lanthanum, is partially activated. In this step, a reducing gas stream, which includes hydrogen and at least one inert gas, flows past the catalyst at a space velocity of up to 5,000 liters (STP) per hour, per kilogram of catalyst. The partially activated catalyst is then subjected to the second step of the process, second-stage catalyst activation. In this step, the catalyst is contacted by an activation gas stream comprising hydrogen and carbon monoxide present in a volume ratio of 0.5:1 and 4:1, respectively, at a temperature of 200 to 450 C and a pressure of between 35 and 200 atmospheres. The activation gas flows at a space velocity of from 1,000 to 20,000 liters (STP) per hour, per kilogram of catalyst. Second-stage activation continues until the catalyst is contacted with at least 500,000 liters (STP) of activation gas per kilogram of catalyst. The fully activated catalyst, in the third step of the process, contacts a synthesis gas stream comprising hydrogen and carbon monoxide.

  20. Project Summary. IN-SITU AQUIFER RESTORATION OF CHLORINATED ALIPHATICS BY METHANOTROPHIC BACTERIA

    EPA Science Inventory

    This project evaluated the potential of an innovative approach to aquifer restoration: enhanced in-situ biotransformation of chlorinated aliphatic solvents by a bacterial community grown on methane under aerobic conditions. The target chlorinated compounds were trichloroethene (...