Science.gov

Sample records for aliphatic polyester boltorn

  1. Anaerobic digestion of aliphatic polyesters.

    PubMed

    Šmejkalová, Pavla; Kužníková, Veronika; Merna, Jan; Hermanová, Soňa

    2016-01-01

    Anaerobic processes for the treatment of plastic materials waste represent versatile and effective approach in environmental protection and solid waste management. In this work, anaerobic biodegradability of model aliphatic polyesters, poly(L-lactic acid) (PLA), and poly(ɛ-caprolactone) (PCL), in the form of powder and melt-pressed films with varying molar mass, was studied. Biogas production was explored in batch laboratory trials at 55 ± 1°C under a nitrogen atmosphere. The inoculum used was thermophilic digested sludge (total solids concentration of 2.9%) from operating digesters at the Central Waste Water Treatment Plant in Prague, Czech Republic. Methanogenic biodegradation of PCLs typically yielded from 54 to 60% of the theoretical biogas yield. The biodegradability of PLAs achieved from 56 to 84% of the theoretical value. High biogas yield (up to 677 mL/g TS) with high methane content (more than 60%), comparable with conventionally processed materials, confirmed the potential of polyester samples for anaerobic treatment in the case of their exploitation in agriculture or as a packaging material in the food industry.

  2. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.

    PubMed

    Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki

    2014-04-01

    Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.

  3. Photopatternable Biodegradable Aliphatic Polyester with Pendent Benzophenone Groups.

    PubMed

    Chen, Dayong; Chang, Chia-Chih; Cooper, Beth; Silvers, Angela; Emrick, Todd; Hayward, Ryan C

    2015-10-12

    Highly efficient photo-cross-linking reactions enable numerous applications in biomaterials. Here, a photopatternable biodegradable aliphatic polyester with benzophenone pendent groups was synthesized by copper-catalyzed alkyne-azide cycloaddition, affording polyesters that undergo UV-induced cross-linking to yield photopatterned films. Using this material, a self-folding multilayer structure containing polyester/hydrogel bilayer hinges was fabricated. Upon swelling of the hydrogel layer, the construct folds into a triangular tube, which subsequently unfolds due to lipase-catalyzed degradation of the polyester layer. The ability to precisely design such degradation-induced structural changes offers potential for biomaterials and medical applications, such as evolving and responsive 2D and 3D tissue engineering scaffolds.

  4. Aliphatic polyesters for medical imaging and theranostic applications.

    PubMed

    Nottelet, Benjamin; Darcos, Vincent; Coudane, Jean

    2015-11-01

    Medical imaging is a cornerstone of modern medicine. In that context the development of innovative imaging systems combining biomaterials and contrast agents (CAs)/imaging probes (IPs) for improved diagnostic and theranostic applications focuses intense research efforts. In particular, the classical aliphatic (co)polyesters poly(lactide) (PLA), poly(lactide-co-glycolide) (PLGA) and poly(ɛ-caprolactone) (PCL), attract much attention due to their long track record in the medical field. This review aims therefore at providing a state-of-the-art of polyester-based imaging systems. In a first section a rapid description of the various imaging modalities, including magnetic resonance imaging (MRI), optical imaging, computed tomography (CT), ultrasound (US) and radionuclide imaging (SPECT, PET) will be given. Then, the two main strategies used to combine the CAs/IPs and the polyesters will be discussed. In more detail we will first present the strategies relying on CAs/IPs encapsulation in nanoparticles, micelles, dendrimers or capsules. We will then present chemical modifications of polyesters backbones and/or polyester surfaces to yield macromolecular imaging agents. Finally, opportunities offered by these innovative systems will be illustrated with some recent examples in the fields of cell labeling, diagnostic or theranostic applications and medical devices.

  5. Surface Characterization of Aliphatic Polyester -g- Phosphorylcholine Copolymers

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongfei; Emrick, Todd; Hsu, Shaw L.

    2007-03-01

    In order to control biodegradation behavior of a class of polyesters, hydrophilic functional groups were grafted onto the main chains. Phosphorylcholine (PC) molecules with azide attached at the end were synthesized. Due to their excellent biocompatibility and hydrophilicity, they have been covalently coupled to biodegradable aliphatic polyesters via a ``click'' cycloaddition reaction to produce amphiphilic graft copolymers. A series of copolymers were prepared by varying the molar incorporation of PC groups. Surface properties of the copolymers were examined to further explore their applications in drug delivery systems. Grazing angle reflection infrared spectroscopy was employed to determine segmental orientation at the film surface. XPS was used to verify surface composition. A water adsorption experiment was carried out to determine the water permeation rate. The improvement in hydrophilicity was confirmed by a water contact experiment. Results indicate that the graft copolymers were promising in drug delivery systems.

  6. Aliphatic polyester block polymers: renewable, degradable, and sustainable.

    PubMed

    Hillmyer, Marc A; Tolman, William B

    2014-08-19

    Nearly all polymers are derived from nonrenewable fossil resources, and their disposal at their end of use presents significant environmental problems. Nonetheless, polymers are ubiquitous, key components in myriad technologies and are simply indispensible for modern society. An important overarching goal in contemporary polymer research is to develop sustainable alternatives to "petro-polymers" that have competitive performance properties and price, are derived from renewable resources, and may be easily and safely recycled or degraded. Aliphatic polyesters are particularly attractive targets that may be prepared in highly controlled fashion by ring-opening polymerization of bioderived lactones. However, property profiles of polyesters derived from single monomers (homopolymers) can limit their applications, thus demanding alternative strategies. One such strategy is to link distinct polymeric segments in an A-B-A fashion, with A and B chosen to be thermodynamically incompatible so that they can self-organize on a nanometer-length scale and adopt morphologies that endow them with tunable properties. For example, such triblock copolymers can be useful as thermoplastic elastomers, in pressure sensitive adhesive formulations, and as toughening modifiers. Inspired by the tremendous utility of petroleum-derived styrenic triblock copolymers, we aimed to develop syntheses and understand the structure-property profiles of sustainable alternatives, focusing on all renewable and all readily degradable aliphatic polyester triblocks as targets. Building upon oxidation chemistry reported more than a century ago, a constituent of the peppermint plant, (-)-menthol, was converted to the ε-caprolactone derivative menthide. Using a diol initiator and controlled catalysis, menthide was polymerized to yield a low glass transition temperature telechelic polymer (PM) that was then further functionalized using the biomass-derived monomer lactide (LA) to yield fully renewable PLA

  7. Aliphatic polyester polymer stars: synthesis, properties and applications in biomedicine and nanotechnology.

    PubMed

    Cameron, Donald J A; Shaver, Michael P

    2011-03-01

    A critical review: the ring-opening polymerization of cyclic esters provides access to an array of biodegradable, bioassimilable and renewable polymeric materials. Building these aliphatic polyester polymers into larger macromolecular frameworks provides further control over polymer characteristics and opens up unique applications. Polymer stars, where multiple arms radiate from a single core molecule, have found particular utility in the areas of drug delivery and nanotechnology. A challenge in this field is in understanding the impact of altering synthetic variables on polymer properties. We review the synthesis and characterization of aliphatic polyester polymer stars, focusing on polymers originating from lactide, ε-caprolactone, glycolide, β-butyrolactone and trimethylene carbonate monomers and their copolymers including coverage of polyester miktoarm star copolymers. These macromolecular materials are further categorized by core molecules, catalysts employed, self-assembly and degradation properties and the resulting fields of application (262 references).

  8. Clickable degradable aliphatic polyesters via copolymerization with alkyne epoxy esters: synthesis and postfunctionalization with organic dyes.

    PubMed

    Teske, Nele S; Voigt, Julia; Shastri, V Prasad

    2014-07-23

    Degradable aliphatic polyesters are the cornerstones of nanoparticle (NP)-based therapeutics. In this paradigm, covalent modification of the NP with cell-targeting motifs and dyes can aid in guiding the NP to its destination and gaining visual confirmation. Therefore, strategies to impart chemistries along the polymer backbone that are amenable to easy modification, such as 1,3-dipolar cycloaddition of an azide to an alkyne (the "click reaction"), could be significant. Here we present a simple and efficient way to introduce alkyne groups at high density in aliphatic polyesters without compromising their crystallinity via the copolymerization of cyclic lactones with propargyl 3-methylpentenoate oxide (PMPO). Copolymers of lactic acid and ε-caprolactone with PMPO were synthesized with up to 9 mol % alkyne content, and accessibility of the alkyne groups to the click reaction was demonstrated using several dyes commonly employed in fluorescence microscopy and imaging (Cy3, ATTO-740, and coumarin 343). In order to establish the suitability of these copolymers as nanocarriers, copolymers were formulated into NPs, and cytocompatibility, cellular uptake, and visualization studies undertaken in HeLa cells. Dye-modified NPs exhibited no quenching, remained stable in solution for at least 10 days, showed no cytotoxicity, and were readily taken up by HeLa cells. Furthermore, in addition to enabling the incorporation of multiple fluorophores within the same NP through blending of individual dye-modified copolymers, dye-modified polyesters offer advantages over physical entrapment of dye, including improved signal to noise ratio and localization of the fluorescence signal within cells, and possess the necessary prerequisites for drug delivery and imaging.

  9. A fast degrading odd-odd aliphatic polyester-5,7 made by condensation polymerization for biomedical applications.

    PubMed

    Chen, Fei; Nölle, Jan Martin; Wietzke, Steffen; Reuter, Marco; Chatterjee, Sangam; Koch, Martin; Agarwal, Seema

    2012-01-01

    A fast enzymatic degradable aliphatic all-odd-polyester-5,7, based on 1,7-heptanedioic acid (pimelic acid) and 1,5-pentanediol, was synthesized by polycondensation. The structural characterization of the polyester was done using 1D- and 2D-NMR spectroscopic techniques. The properties of the resulting polyester-like crystallization behavior, enzymatic degradation, thermal stability, etc., were investigated using differential scanning calorimetry, wide-angle X-ray diffraction, scanning electron microscopy and gel-permeation chromatography. Terahertz time-domain spectroscopy was employed to determine the glass transition temperature, which could not be revealed reliably by conventional thermal analysis. The properties of all-odd-polyester-5,7 were compared with a well-known enzymatic degradable polyester (polycaprolactone). The results indicated that polyester-5,7 has a crystal structure similar to PCL, but a much faster degradation rate. The morphology of polyester-5,7 film during enzymatic degradation showed a fibrillar structure and degradation began by surface erosion.

  10. Structure and morphology of thin films of linear aliphatic polyesters prepared by spin-coating.

    PubMed

    Hernández, J J; Rueda, D R; García-Gutiérrez, M C; Nogales, A; Ezquerra, T A; Soccio, M; Lotti, N; Munari, A

    2010-07-06

    Thin films, with thicknesses from 10 to 400 nm of linear aliphatic polyesters (X, Y), based on propylenediol (X = 3) and on dicarboxylic acid of different chain length (Y = 2, 3, and 4 CH(2) units) were prepared by spin coating of CHCl(3) polymer solutions with different polymer concentrations. Morphology and structure of the spin coated thin films were investigated by atomic force microscopy (AFM) and by grazing incidence X-ray scattering techniques at small, (GISAXS) and wide angles (GIWAXS). AFM revealed a strong dewetting for all three polymers for coatings thinner than 100 nm. The polymer films are clearly semicrystalline for thicknesses higher than 50 nm. GIWAXS of the thicker films revealed their oriented crystalline nature. An edge-on-lamellae morphology is clearly shown by the AFM-phase images even for relatively thin films. SAXS with the beam parallel to the sample plane also support the presence of lamellae perpendicular to the substrate. The use of a mu-beam helped to interpret the GIWAXS patterns and allowed to obtain oriented WAXS patterns from melt solidified filaments. Thus, a crystal chain packing is proposed for the three polymers and consequently the indexing of the observed reflections. Accordingly, the polymer chains lie parallel to the substrate being the bc plane of the monoclinic crystal unit cell parallel to the substrate.

  11. Click synthesis of neutral, cationic, and zwitterionic poly(propargyl glycolide)-co-poly(ɛ-caprolactone)-based aliphatic polyesters as antifouling biomaterials.

    PubMed

    Tu, Qin; Wang, Jian-Chun; Liu, Rui; Chen, Yun; Zhang, Yanrong; Wang, Dong-En; Yuan, Mao-Sen; Xu, Juan; Wang, Jinyi

    2013-08-01

    With the development of polymer-based biomaterials, aliphatic polyesters have attracted considerable interest because of their non-toxicity, non-allergenic property, and good biocompatibility. However, the hydrophobic nature and the lack of side chain functionalities of aliphatic polyesters limit their biomedical applications. In this study, we prepared four new polyesters: poly(sulfobetaine methacrylate)-, poly(2-methacryloyloxyethyl phosphotidylcholine)-, poly(ethylene glycol)-, and quaternized poly[(2-dimethylamino)ethyl methacrylate]-grafted poly(propargyl glycolide)-co-poly(ɛ-caprolactone). Their synthesis was conducted through ring-opening polymerization of acetylene-functionalized lactones and subsequent graft of bioactive units using click chemistry. The chemical structures of the polyesters were characterized through nuclear magnetic resonance and Fourier-transform infrared spectroscopy, and their physical properties (including molecular weight, glass transition temperature, and melting point) were determined using gel permeation chromatography and differential scanning calorimetry. For studies on their hydrophilicity, stability, and anti-bioadhesive property, a series of polymeric surfaces of these polyesters was prepared by coating them onto glass substrates. The hydrophilicity and stability of these polyester surfaces were examined by contact angle measurements and attenuated total reflection Fourier-transform infrared spectroscopy. Their anti-bioadhesive property was investigated through protein adsorption, as well as cellular and bacterial adhesion assays. The prepared polyesters showed good hydrophilicity and long-lasting stability, as well as significant anti-fouling property. The newly prepared polyesters could be developed as promising anti-fouling materials with extensive biomedical applications.

  12. Preparation and characterization of protein loaded microspheres based on a hydroxylated aliphatic polyester, poly(lactic-co-hydroxymethyl glycolic acid).

    PubMed

    Ghassemi, A H; van Steenbergen, M J; Talsma, H; van Nostrum, C F; Jiskoot, W; Crommelin, D J A; Hennink, W E

    2009-08-19

    The purpose of this study was to investigate the suitability of a novel hydroxylated aliphatic polyester, poly(lactic-co-hydroxymethyl glycolic acid) (PLHMGA), as controlled release system for pharmaceutical proteins. Dextran Blue (as a macromolecular model compound) and lysozyme-loaded PLHMGA and PLGA (control formulation) microspheres were prepared by a solvent evaporation technique. The Dextran Blue and lysozyme loaded PLHMGA microspheres prepared with 10% polymer solution showed, because of a high porosity, a high burst release (35-75%) and the remaining content was released in a sustained manner for 15-20 days. The microspheres prepared with 15 and 20% polymer solution had a lower porosity and showed a pulsed release after day 8 and in 27 days they released more than 90% of Blue Dextran. The release of lysozyme was incomplete, likely due to aggregation of part of the encapsulated protein. Spectroscopic analysis of the released lysozyme indicated fully preserved secondary/tertiary structure and an enzyme activity assay showed that the specific activity of the released protein was maintained. An in vitro degradation study showed that the release of Blue Dextran and lysozyme is essentially controlled by the degradation of the microspheres. This study shows that microspheres made of the hydroxylated aliphatic polyester, poly(lactic-co-hydroxymethyl glycolic acid), are promising systems for the controlled release of pharmaceutical proteins.

  13. A Route to Aliphatic Poly(ester)s with Thiol Pendant Groups: From Monomer Design to Editable Porous Scaffolds.

    PubMed

    Fuoco, Tiziana; Finne-Wistrand, Anna; Pappalardo, Daniela

    2016-04-11

    Biodegradable aliphatic polyesters such as poly(lactide) and poly(ε-caprolactone), largely used in tissue engineering applications, lack suitable functional groups and biological cues to enable interactions with cells. Because of the ubiquity of thiol groups in the biological environment and the pliability of thiol chemistry, we aimed to design and synthesize poly(ester) chains bearing pendant thiol-protected groups. To achieve this, 3-methyl-6-(tritylthiomethyl)-1,4-dioxane-2,5-dione, a lactide-type monomer possessing a pendant thiol-protected group, was synthesized. This molecule, when used as a monomer in controlled ring-opening polymerization in combination with lactide and ε-caprolactone, appeared to be a convenient "building block" for the preparation of functionalized aliphatic copolyesters, which were easily modified further. A polymeric sample bearing pyridyl disulfide groups, able to bind a cysteine-containing peptide, was efficiently obtained from a two-step modification reaction. Porous scaffolds were then prepared by blending this latter copolymer sample with poly(L-lactide-co-ε-caprolactone) followed by salt leaching. A further disulfide exchange reaction performed in aqueous medium formed porous scaffolds with covalently linked arginine-glycine-aspartic acid sequences. The scaffolds were characterized by thermal and mechanical tests, and scanning electron microscopy surface images revealed a highly porous morphology. Moreover, a cytotoxicity test indicated good cell viability.

  14. Lipase-catalyzed synthesis of azido-functionalized aliphatic polyesters towards acid-degradable amphiphilic graft copolymers.

    PubMed

    Wu, Wan-Xia; Wang, Na; Liu, Bei-Yu; Deng, Qing-Feng; Yu, Xiao-Qi

    2014-02-28

    A series of novel aliphatic polyesters with azido functional groups were synthesized via the direct lipase-catalyzed polycondensation of dialkyl diester, diol and 2-azido-1,3-propanediol (azido glycerol) using immobilized lipase B from Candida antarctica (CALB). The effects of polymerization conditions including reaction time, temperature, enzyme amount, substrates and monomer feed ratio on the molecular weights of the products were studied. The polyesters with pendant azido groups were characterized by (1)H NMR, (13)C NMR, 2D NMR, FTIR, GPC and DSC. Alkyne end-functionalized poly(ethylene glycol) containing a cleavable acetal group was then grafted onto the polyester backbone by copper-catalyzed azide-alkyne cycloaddition (CuAAC, click chemistry). Using fluorescence spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM), these amphiphilic graft copolymers were found to readily self-assemble into nanosized micelles in aqueous solution with critical micelle concentrations between 0.70 and 1.97 mg L(-1), and micelle sizes from 20-70 nm. The degradation of these polymers under acidic conditions was investigated by GPC and (1)H NMR spectroscopy. Cell cytotoxicity tests indicated that the micelles had no apparent cytotoxicity to Bel-7402 cells, suggesting their potential as carriers for controlled drug delivery.

  15. In vitro studies of degradation and bioactivity of aliphatic polyester composites

    NASA Astrophysics Data System (ADS)

    Chouzouri, Georgia

    In spite of numerous publications on the potential use of combinations of aliphatic polyester composites containing bioactive fillers for bone regeneration, little information exists on the combined in vitro mechanisms involving simultaneously diffusion for polymer degradation and bioactivity through nucleation and growth of apatite in simulated body fluid (SBF) solution. The objective of this study is to contribute to the understanding of the fundamentals in designing non-porous, solid materials for bone regeneration, from experimental data along with their engineering interpretation. Bioactivity, in terms of apatite growth, was assessed through several experimental methods such as scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), X-ray-diffraction (XRD) and changes in ion concentration. In the case of the six neat fillers evaluated, the filler shape, form and chemical structure showed significant differences in bioactivity response. Bioglass and calcium silicate fillers showed faster nucleation and growth rates in the screening experiments. Composites at 30% by weight filler were prepared by solution and/or melt mixing. Polycaprolactone (PCL) composites containing five different fillers were evaluated. Solution processed PCL/calcium silicate (CS) samples showed faster bioactivity, as determined by apatite growth, compared to melt mixed samples. The onset time for bioactivity was different for all PCL composites. The limited bioactivity in the PCL composites over longer periods of time could be attributed to the PCL hydrophobicity leading to a slow polymer degradation rate, and also to the lack of SBF replenishment. For both polylactic acid (PLA) composites containing CS and bioglass, significant growth was observed after one week and in the case of CS was still evident after four weeks immersion. However, at prolonged time periods no further bioactivity was observed, although ion release results indicated a faster release rate that would

  16. An Esterase from Anaerobic Clostridium hathewayi Can Hydrolyze Aliphatic-Aromatic Polyesters.

    PubMed

    Perz, Veronika; Hromic, Altijana; Baumschlager, Armin; Steinkellner, Georg; Pavkov-Keller, Tea; Gruber, Karl; Bleymaier, Klaus; Zitzenbacher, Sabine; Zankel, Armin; Mayrhofer, Claudia; Sinkel, Carsten; Kueper, Ulf; Schlegel, Katharina; Ribitsch, Doris; Guebitz, Georg M

    2016-03-15

    Recently, a variety of biodegradable polymers have been developed as alternatives to recalcitrant materials. Although many studies on polyester biodegradability have focused on aerobic environments, there is much less known on biodegradation of polyesters in natural and artificial anaerobic habitats. Consequently, the potential of anaerobic biogas sludge to hydrolyze the synthetic compostable polyester PBAT (poly(butylene adipate-co-butylene terephthalate) was evaluated in this study. On the basis of reverse-phase high-performance liquid chromatography (RP-HPLC) analysis, accumulation of terephthalic acid (Ta) was observed in all anaerobic batches within the first 14 days. Thereafter, a decline of Ta was observed, which occurred presumably due to consumption by the microbial population. The esterase Chath_Est1 from the anaerobic risk 1 strain Clostridium hathewayi DSM-13479 was found to hydrolyze PBAT. Detailed characterization of this esterase including elucidation of the crystal structure was performed. The crystal structure indicates that Chath_Est1 belongs to the α/β-hydrolases family. This study gives a clear hint that also micro-organisms in anaerobic habitats can degrade manmade PBAT.

  17. Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates.

    PubMed

    Perz, Veronika; Bleymaier, Klaus; Sinkel, Carsten; Kueper, Ulf; Bonnekessel, Melanie; Ribitsch, Doris; Guebitz, Georg M

    2016-03-25

    The enzymatic hydrolysis of the biodegradable polyester ecoflex and of a variety of oligomeric and polymeric ecoflex model substrates was investigated. For this purpose, substrate specificities of two enzymes of typical compost inhabitants, namely a fungal cutinase from Humicola insolens (HiC) and a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) were compared. Model substrates were systematically designed with variations of the chain length of the alcohol and the acid as well as with varying content of the aromatic constituent terephthalic acid (Ta). HPLC/MS identification and quantification of the hydrolysis products terephthalic acid (Ta), benzoic acid (Ba), adipic acid (Ada), mono(4-hydroxybutyl) terephthalate (BTa), mono-(2-hydroxyethyl) terephthalate (ETa), mono-(6-hydroxyhexyl) terephthalate (HTa) and bis(4-hydroxybutyl) terephthalate (BTaB) indicated that these enzymes indeed hydrolyze the tested esters. Shorter terminal chain length acids but longer chain length alcohols in oligomeric model substrates were generally hydrolyzed more efficiently. Thc_Cut1 hydrolyzed aromatic ester bonds more efficiently than HiC resulting in up to 3-fold higher concentrations of the monomeric hydrolysis product Ta. Nevertheless, HiC exhibited a higher overall hydrolytic activity on the tested polyesters, resulting in 2-fold higher concentration of released molecules. Thermogravimetry and differential scanning calorimetry (TG-DSC) of the polymeric model substrates revealed a general trend that a lower difference between melting temperature (Tm) and the temperature at which the enzymatic degradation takes place resulted in higher susceptibility to enzymatic hydrolysis.

  18. Contribution of soil esterase to biodegradation of aliphatic polyester agricultural mulch film in cultivated soils.

    PubMed

    Yamamoto-Tamura, Kimiko; Hiradate, Syuntaro; Watanabe, Takashi; Koitabashi, Motoo; Sameshima-Yamashita, Yuka; Yarimizu, Tohru; Kitamoto, Hiroko

    2015-01-01

    The relationship between degradation speed of soil-buried biodegradable polyester film in a farmland and the characteristics of the predominant polyester-degrading soil microorganisms and enzymes were investigated to determine the BP-degrading ability of cultivated soils through characterization of the basal microbial activities and their transition in soils during BP film degradation. Degradation of poly(butylene succinate-co-adipate) (PBSA) film was evaluated in soil samples from different cultivated fields in Japan for 4 weeks. Both the degradation speed of the PBSA film and the esterase activity were found to be correlated with the ratio of colonies that produced clear zone on fungal minimum medium-agarose plate with emulsified PBSA to the total number colonies counted. Time-dependent change in viable counts of the PBSA-degrading fungi and esterase activities were monitored in soils where buried films showed the most and the least degree of degradation. During the degradation of PBSA film, the viable counts of the PBSA-degrading fungi and the esterase activities in soils, which adhered to the PBSA film, increased with time. The soil, where the film was degraded the fastest, recorded large PBSA-degrading fungal population and showed high esterase activity compared with the other soil samples throughout the incubation period. Meanwhile, esterase activity and viable counts of PBSA-degrading fungi were found to be stable in soils without PBSA film. These results suggest that the higher the distribution ratio of native PBSA-degrading fungi in the soil, the faster the film degradation is. This could be due to the rapid accumulation of secreted esterases in these soils.

  19. Enzyme-Catalyzed Synthesis of Unsaturated Aliphatic Polyesters Based on Green Monomers from Renewable Resources

    PubMed Central

    Jiang, Yi; Woortman, Albert J.J.; Alberda van Ekenstein, Gert O.R.; Loos, Katja

    2013-01-01

    Bio-based commercially available succinate, itaconate and 1,4-butanediol are enzymatically co-polymerized in solution via a two-stage method, using Candida antarctica Lipase B (CALB, in immobilized form as Novozyme® 435) as the biocatalyst. The chemical structures of the obtained products, poly(butylene succinate) (PBS) and poly(butylene succinate-co-itaconate) (PBSI), are confirmed by 1H- and 13C-NMR. The effects of the reaction conditions on the CALB-catalyzed synthesis of PBSI are fully investigated, and the optimal polymerization conditions are obtained. With the established method, PBSI with tunable compositions and satisfying reaction yields is produced. The 1H-NMR results confirm that carbon-carbon double bonds are well preserved in PBSI. The differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) results indicate that the amount of itaconate in the co-polyesters has no obvious effects on the glass-transition temperature and the thermal stability of PBS and PBSI, but has significant effects on the melting temperature. PMID:24970176

  20. Enzyme-catalyzed synthesis of unsaturated aliphatic polyesters based on green monomers from renewable resources.

    PubMed

    Jiang, Yi; Woortman, Albert J J; van Ekenstein, Gert O R Alberda; Loos, Katja

    2013-08-12

    Bio-based commercially available succinate, itaconate and 1,4-butanediol are enzymatically co-polymerized in solution via a two-stage method, using Candida antarctica Lipase B (CALB, in immobilized form as Novozyme® 435) as the biocatalyst. The chemical structures of the obtained products, poly(butylene succinate) (PBS) and poly(butylene succinate-co-itaconate) (PBSI), are confirmed by 1H- and 13C-NMR. The effects of the reaction conditions on the CALB-catalyzed synthesis of PBSI are fully investigated, and the optimal polymerization conditions are obtained. With the established method, PBSI with tunable compositions and satisfying reaction yields is produced. The 1H-NMR results confirm that carbon-carbon double bonds are well preserved in PBSI. The differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) results indicate that the amount of itaconate in the co-polyesters has no obvious effects on the glass-transition temperature and the thermal stability of PBS and PBSI, but has significant effects on the melting temperature.

  1. Electronic Effects of Aluminum Complexes in the Copolymerization of Propylene Oxide with Tricyclic Anhydrides: Access to Well-Defined, Functionalizable Aliphatic Polyesters.

    PubMed

    Van Zee, Nathan J; Sanford, Maria J; Coates, Geoffrey W

    2016-03-02

    The synthesis of well-defined and functionalizable aliphatic polyesters remains a key challenge in the advancement of emerging drug delivery and self-assembly technologies. Herein, we investigate the factors that influence the rates of undesirable transesterification and epimerization side reactions at high conversion in the copolymerization of tricyclic anhydrides with excess propylene oxide using aluminum salen catalysts. The structure of the tricyclic anhydride, the molar ratio of the aluminum catalyst to the nucleophilic cocatalyst, and the Lewis acidity of the aluminum catalyst all influence the rates of these side reactions. Optimal catalytic activity and selectivity against these side reactions requires a careful balance of all these factors. Effective suppression of undesirable transesterification and epimerization was achieved even with sterically unhindered monomers using a fluorinated aluminum salph complex with a substoichiometric amount of a nucleophilic cocatalyst. This process can be used to synthesize well-defined block copolymers via a sequential addition strategy.

  2. Hybrid membranes of metal-organic molecule nanocages for aromatic/aliphatic hydrocarbon separation by pervaporation.

    PubMed

    Zhao, Cui; Wang, Naixin; Wang, Lin; Huang, Hongliang; Zhang, Rong; Yang, Fan; Xie, Yabo; Ji, Shulan; Li, Jian-Rong

    2014-11-21

    Hybrid membranes composed of porous metal-organic molecule nanocages as fillers embedded in a hyperbranched polymer (Boltorn W3000) were fabricated, which exhibit excellent pervaporation separation performances towards aromatic/aliphatic hydrocarbons. The unique nature of the molecule-based fillers and their good dispersion and compatibility in/with the polymer are responsible for the good membrane properties.

  3. Amorphous linear aliphatic polyesters for the facile preparation of tunable rapidly degrading elastomeric devices and delivery vectors.

    PubMed

    Olson, David A; Gratton, Stephanie E A; DeSimone, Joseph M; Sheares, Valerie V

    2006-10-18

    A versatile method for preparing amorphous degradable elastomers with tunable properties that can be easily fabricated into a wide variety of shape-specific devices was investigated. Completely amorphous, liquid poly(ester ether) prepolymers with number-average molecular weights between 4 and 6 x 10(3) g/mol were prepared via condensation polymerization. These liquid prepolymers were then thermally cross-linked to form degradable elastomeric structures. The ability to vary the composition of these liquid prepolymers allows for easy control of the mechanical and degradation properties of the resulting elastomeric structures. Materials can be designed to completely degrade in vitro over a range of 30 days to 6 months, while the Young's modulus can be varied over 3 orders of magnitude (G = 0.02-20 MPa). Also, the liquid nature of these prepolymers makes them amenable to a wide variety of fabrication techniques. Using traditional and modified imprint lithography techniques, we have fabricated devices that demonstrate a wide variety of biologically applicable topologies, which could easily be extended to fabricate devices with more complex geometries. Until now, no method has combined this ease and speed of fabrication with the ability to control the mechanical and degradation properties of the resulting elastomers over such a broad range.

  4. Alternating copolymerization of propylene oxide with biorenewable terpene-based cyclic anhydrides: a sustainable route to aliphatic polyesters with high glass transition temperatures.

    PubMed

    Van Zee, Nathan J; Coates, Geoffrey W

    2015-02-23

    The alternating copolymerization of propylene oxide with terpene-based cyclic anhydrides catalyzed by chromium, cobalt, and aluminum salen complexes is reported. The use of the Diels-Alder adduct of α-terpinene and maleic anhydride as the cyclic anhydride comonomer results in amorphous polyesters that exhibit glass transition temperatures (Tg ) of up to 109 °C. The polymerization conditions and choice of catalyst have a dramatic impact on the molecular weight distribution, the relative stereochemistry of the diester units along the polymer chain, and ultimately the Tg of the resulting polymer. The aluminum salen complex exhibits exceptional selectivity for copolymerization without transesterification or epimerization side reactions. The resulting polyesters are highly alternating and have high molecular weights and narrow polydispersities.

  5. Glycodendritic structures based on Boltorn hyperbranched polymers and their interactions with Lens culinaris lectin.

    PubMed

    Arce, Eva; Nieto, Pedro M; Díaz, Vicente; Castro, Rossana García; Bernad, Antonio; Rojo, Javier

    2003-01-01

    Multivalent scaffolds bearing carbohydrates have been prepared to mediate biological processes where carbohydrates are involved. These systems consist of dendritic structures based on Boltorn H20 and H30 hyperbranched polymers to which carbohydrates are linked through a convenient spacer. Mannose has been chosen as a sugar unit to test the viability of this strategy. These glycodendritic compounds have been prepared in a few steps with good yields, showing a high solubility in physiological media and low toxicity. The binding of these dendritic polymers to the mannose-binding lectin Lens culinaris (LCA) was studied using STD-NMR experiments and quantitative precipitation assays. The results demonstrate the existence of a clear interaction between the mannose derivative systems and the Lens lectin where the dendritic scaffold does not have an important role in mannose binding but supplies the necessary multivalence for lectin cluster formation. These glycodendritic structures are able to interact with a receptor, and therefore they can be considered as promising tools for biological studies.

  6. Synthesis of functionalized CNTs/hyperbranched polyester nanocomposites

    NASA Astrophysics Data System (ADS)

    Pan, Yufeng; Cui, Xiaokun; Zhang, Yue

    2017-01-01

    Carbon nanotubes (CNTs) were unzipped using the modified Hummer method to prepare the CNTs-GO microstructure (see Fig. 1). A new type of CNTs-GO-H20 nanocomposite has been synthesized by grafting hyperbranched (HB) polyester (Boltorn H20) brushes on the CNTs-GO by coupling agent (KH560). The morphology of CNTs-GO-H20 was characterized by FTIR, TEM, XPS and TGA. The FT-IR data and XPS data evidenced that CNTs-GO-H20 nanocomposites were synthesized successfully. The addition of CNTs improved the thermal stability of the nanocomposites. The TEM data showed that the CNTs-GO microstructure was also prepared. These electrochemical measurements results indicated that coatings provided greater protection against corrosion behavior. Moreover, the nanocomposite material improved corrosion resistance of the coating.

  7. Degradation Characterization of Aliphatic POLYESTERS—IN Vitro Study

    NASA Astrophysics Data System (ADS)

    Vieira, A. C.; Vieira, J. C.; Guedes, R. M.; Marques, A. T.

    2008-08-01

    The most popular and important biodegradable polymers are aliphatic polyesters, such as polylactic acid (PLA), polyglycolic acid (PGA), polycaprolactone (PCL), polyhydoxyalkanoates (PHA's) and polyethylene oxide (PEO). However, each of these has some shortcomings which restrict its applications. Blending techniques are an extremely promising approach which can improve or tune the original properties of the polymers[1]. Aliphatic polyesters are a central class of biodegradable polymers, because hydrolytic and/or enzymatic chain cleavage of these materials leads to α-hydroxyacids, which in most cases are ultimately metabolized in human body. This is particularly useful for controlled release devices and for other biomedical applications like suture fibers and ligaments. For aliphatic polyesters, hydrolysis rates are affected by the temperature, molecular structure, and ester group density as well as by the species of enzyme used. The degree of crystallinity may be a crucial factor, since enzymes attack mainly the amorphous domains of a polymer. Four different aliphatic polyesters were characterized in terms of degradation. Sutures fibers of PGA-PCL, PGA, PLA-PCL and PDO were used in this study. Weight loss, pH, molecular weight, crystallinity and strength were measured after six stages of incubation in distilled water, physiological saline and phosphate buffer solution (PBS). Degradation rate was determined, using a first order kinetic equation for all materials in the three incubation media. A relatively wide range of mechanical properties and degradation rates were observed among the materials studied. PBS was the most aggressive environment for the majority of cases.

  8. Which polyesters can mimic polyethylene?

    PubMed

    Stempfle, Florian; Ortmann, Patrick; Mecking, Stefan

    2013-01-11

    Self-metathesis of erucic acid by [(PCy(3))(η-C-C(3)H(4)N(2)Mes(2))Cl(2)Ru = CHPh] (Grubbs second- generation catalyst) followed by catalytic hydrogenation and purification via the ester yields 1,26-hexacosanedioate (>99% purity). Polyesterification with 1,26-hexacosanediol, generated from the diester, affords polyester-26,26, which features a T(m) of 114 °C (T(c) = 92 °C, ΔH(m) = 160 J g(-1)). Ultralong-chain model polyesters-38,23 (T(m) = 109 °C) and -44,23 (T(m) = 111 °C), generated via multistep procedures including acyclic diene metathesis polymerization, underline that melting points of such aliphatic polyesters do not gradually increase with methylene sequence chain length. Available data suggest that to mimic linear polyethylenes thermal properties, even longer sequences, amounting to at least four times a fatty acid chain, fully incorporated in a linear fashion are required.

  9. High-Throughput Analysis of Enzymatic Hydrolysis of Biodegradable Polyesters by Monitoring Cohydrolysis of a Polyester-Embedded Fluorogenic Probe.

    PubMed

    Zumstein, Michael Thomas; Kohler, Hans-Peter E; McNeill, Kristopher; Sander, Michael

    2017-02-14

    Biodegradable polyesters have the potential to replace nondegradable, persistent polymers in numerous applications and thereby alleviate plastic accumulation in the environment. Herein, we present an analytical approach to study enzymatic hydrolysis of polyesters, the key step in their overall biodegradation process. The approach is based on embedding fluorescein dilaurate (FDL), a fluorogenic ester substrate, into the polyester matrix and on monitoring the enzymatic cohydrolysis of FDL to fluorescein during enzymatic hydrolysis of the polyester. We validated the approach against established techniques using FDL-containing poly(butylene adipate) films and Fusarium solani cutinase (FsC). Implemented on a microplate reader platform, the FDL-based approach enabled sensitive and high-throughput analysis of the enzymatic hydrolysis of eight aliphatic polyesters by two fungal esterases (FsC and Rhizopus oryzae lipase) at different temperatures. While hydrolysis rates for both enzymes increased with decreasing differences between the polyester melting temperatures and the experimental temperatures, this trend was more pronounced for the lipase than the cutinase. These trends in rates could be ascribed to a combination of temperature-dependent polyester chain flexibility and accessibility of the enzyme active site. The work highlights the capability of the FDL-based approach to be utilized in both screening and mechanistic studies of enzymatic polyester hydrolysis.

  10. Nanoencapsulation of a water soluble drug in biocompatible polyesters. Effect of polyesters melting point and glass transition temperature on drug release behavior.

    PubMed

    Karavelidis, Vassilios; Giliopoulos, Dimitrios; Karavas, Evangelos; Bikiaris, Dimitrios

    2010-12-23

    Five polyesters based on 1,3-propanediol or ethylene glycol and an aliphatic dicarboxylic acid were used for the preparation of Ropinirole HCl-loaded nanoparticles. The advantage of the present study is that the used polyesters - as well as poly(lactic acid) (PLA) - have similar degree of crystallinity but different melting points, varying from 46.7 to 166.4°C. Based on polymer toxicity on HUVEC, the biocompatibility of these aliphatic polyesters was found comparable to that of PLA and thus the studied polyesters could be used as drug carriers. Drug encapsulation in polyesters was performed via emulsification/solvent evaporation method. Particle size of drug-loaded nanoparticles was between 140 and 190 nm, as measured by light scattering. Drug loading content for all the polyesters varies between 10 and 16% and their entrapment efficiency is relatively high (32-48%). WAXD patterns of nanoparticles show that Ropinirole HCl lies in amorphous state within polymer matrices. Drug release diagrams reveal that the higher percentage of Ropinirole HCl is released during the first 6h after its insertion in the dissolution medium. Fast release rates of the drug are attributed to high hydrophilicity of Ropinirole HCl. Melting point (T(m)) and glass transition temperature (T(g)) of the host polymer matrices seem to be important parameters, since higher drug release rates are observed in polyesters with low T(m) and T(g).

  11. Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development.

    PubMed

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-12-29

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields.

  12. Polyester-Based (Bio)degradable Polymers as Environmentally Friendly Materials for Sustainable Development

    PubMed Central

    Rydz, Joanna; Sikorska, Wanda; Kyulavska, Mariya; Christova, Darinka

    2014-01-01

    This review focuses on the polyesters such as polylactide and polyhydroxyalkonoates, as well as polyamides produced from renewable resources, which are currently among the most promising (bio)degradable polymers. Synthetic pathways, favourable properties and utilisation (most important applications) of these attractive polymer families are outlined. Environmental impact and in particular (bio)degradation of aliphatic polyesters, polyamides and related copolymer structures are described in view of the potential applications in various fields. PMID:25551604

  13. POLYESTER GLASS PLASTICS FOR SHIPBUILDING,

    DTIC Science & Technology

    POLYESTER PLASTICS , SHIP HULLS), (*SHIP HULLS, POLYESTER PLASTICS ), GLASS TEXTILES, REINFORCING MATERIALS, SHIP STRUCTURAL COMPONENTS, COMPOSITE MATERIALS, PROCESSING, CHEMISTRY, HANDBOOKS, BINDERS, USSR

  14. Polyester Resin Hazards

    PubMed Central

    Bourne, L. B.; Milner, F. J. M.

    1963-01-01

    Polyester resins are being increasingly used in industry. These resins require the addition of catalysts and accelerators. The handling of polyester resin system materials may give rise to skin irritations, allergic reactions, and burns. The burns are probably due to styrene and organic peroxides. Atmospheric pollution from styrene and explosion and fire risks from organic peroxides must be prevented. Where dimethylaniline is used scrupulous cleanliness and no-touch technique must be enforced. Handling precautions are suggested. Images PMID:14014495

  15. The influence of paclitaxel on hydrolytic degradation in matrices obtained from aliphatic polyesters and polyester carbonates.

    PubMed

    Musiał-Kulik, Monika; Kasperczyk, Janusz; Jelonek, Katarzyna; Dobrzyński, Piotr; Gebarowska, Katarzyna; Janeczek, Henryk; Libera, Marcin

    2010-01-01

    Biodegradable polymers have become common materials used in pharmacy and medicine due to their properties such as mechanical strength, biocompatibility and non-toxic degradation products. Different compositions of copolymers and also their chain microstructure may have an effect on matrices degradation and thus on the drug release profile. In our study, we aimed at the influence of paclitaxel content on hydrolytic degradation process of terpolymeric matrices. Hydrolytic degradation of three kinds of matrices (with 5 or 10% of paclitaxel and drug free matrices) prepared from three types of terpolymers was performed in vitro at 37 degrees C in phosphate buffer solution (PBS, pH 7,4). The 1H and 13C NMR spectra of terpolymers were recorded. Thermal properties were monitored by differential scanning calorimetry (DSC). Molecular weight dispersity (D) and molecular weight were determined using gel permeation chromatography (GPC). The surface morphology was studied by means of the scanning electron microscopy (SEM). The most significant degradation was observed in case of poly(L-lactide-co-glycolide-co-epsilon-caprolactone) 44:32:24. Weight loss and water uptake were similar in the event of the same type of matrices obtained from the two poly(L-lactide-co-glycolide-co-TMC). Decelerated paclitaxel release in case of matrices with 51:26:23 molar ratio was noticed and it can be connected with higher content of carbonate units. Knowledge of paclitaxel influence on hydrolytic degradation process may contribute to receive valuable information about its release mechanisms from biodegradable terpolymers.

  16. Polyesters by Photochemical Cyclopolymerization

    NASA Technical Reports Server (NTRS)

    Meador, Michael A. (Inventor)

    2002-01-01

    The polyesters of this invention are derived from a Diels-Alder cyclopolymerization of a photochemically generated bisdiene with dienophiles, such as di(acrylates), tri (acrylates), di(methacrylates), tri(methacrylates) and mixtures thereof with mono(methacrylates) or mono(acrylate) end-caps. Irradiation of one or more diketones produces two distinct hydroxy o-quinodimethane (photoenol) intermediates. These intermediates are trapped via a Diels-Alder cycloaddition with appropriate dienophiles, e.g., di(acrylates) to give the corresponding in polyesters quantitative yields. When di(acrylates), tri(acrylates) and di and tri(methacrylates) or mixtures thereof with monoacrylate end-caps are used as the dienophile, the resulting polyesters have glass transition temperatures (Tg) as high as 200 C. Polyesters films can be prepared by ultraviolet irradiation of high solids content varnishes of the monomers in a small amount of solvent, e.g., cyclohexanone, dimethyl formamide, N-methylpyrollidone and the like. These polyesters, i.e. polyesters are characterized as having high glass transition temperatures, good mechanical properties and improved processing in the manufacture of composites, adhesives, electronic materials and films.

  17. Cyclic swelling as a phenomenon inherent to biodegradable polyesters.

    PubMed

    Dittrich, Milan; Snejdrova, Eva

    2014-11-01

    The aim of this study is to evaluate and describe the phenomenon and mechanism of the spontaneous cyclic swelling and deswelling of linear and branched aliphatic polyesters in the aqueous medium. The fluctuation of gel volume in one or several cycles as an inherent property of biodegradable and bioerodible materials has not yet been described. We have observed the process at linear and branched polyesters of aliphatic α-hydroxy acids. The period of duration of cycles was in order of hours to days, as influenced by the size of the bodies ranging from 25 to 1000 mg, the temperature in the range of 7°C-42°C, ionic strength, and pH value. The results demonstrated that swelling is accompanied by hydrolysis of ester bonds with the development of small water-soluble osmotically active molecules. After reaching a higher degree of swelling, the obstruction effect of the gel decreases and the diffusion of soluble degradation products from the body to the environment prevails. A decrease in osmotic pressure inside the body and a decrease in the hydrophilic character of the gel matrix result in deswelling by a collapse of the structure, probably due to hydrophobic interactions of nonpolar polyester chains.

  18. Antimicrobial hydantoin-containing polyesters.

    PubMed

    Tan, Licheng; Maji, Samarendra; Mattheis, Claudia; Zheng, Mengyao; Chen, Yiwang; Caballero-Díaz, E; Gil, Pilar Rivera; Parak, Wolfgang J; Greiner, Andreas; Agarwal, Seema

    2012-08-01

    A new N-hydantoin-containing biocompatible and enzymatically degradable polyester with antibacterial properties is presented. Different polyesters of dimethyl succinate, 1,4-butanediol, and 3-[N,N-di(β-hydroxyethyl)aminoethyl]-5,5-dimethylhydantoin in varying molar ratios are prepared via two-step melt polycondensation. The antibacterially active N-halamine form is obtained by subsequent chlorination of the polyesters with sodium hypochlorite. Chemical structures, thermal properties, and spherulitic morphologies of the copolymers are studied adopting FT-IR, NMR, TGA, DSC, WAXD, and POM. The polyesters exhibit antibacterial activity against Escherichia coli. The adopted synthetic approach can be transferred to other polyesters in a straightforward manner.

  19. Amino alcohol-based degradable poly(ester amide) elastomers

    PubMed Central

    Bettinger, Christopher J.; Bruggeman, Joost P.; Borenstein, Jeffrey T.; Langer, Robert S.

    2009-01-01

    Currently available synthetic biodegradable elastomers are primarily composed of crosslinked aliphatic polyesters, which suffer from deficiencies including (1) high crosslink densities, which results in exceedingly high stiffness, (2) rapid degradation upon implantation, or (3) limited chemical moieties for chemical modification. Herein, we have developed poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate)s, a new class of synthetic, biodegradable elastomeric poly(ester amide)s composed of crosslinked networks based on an amino alcohol. These crosslinked networks feature tensile Young’s modulus on the order of 1 MPa and reversable elongations up to 92%. These polymers exhibit in vitro and in vivo biocompatibility. These polymers have projected degradation half-lives up to 20 months in vivo. PMID:18295329

  20. Evaluating the effects of crystallinity in new biocompatible polyester nanocarriers on drug release behavior.

    PubMed

    Karavelidis, Vassilios; Karavas, Evangelos; Giliopoulos, Dimitrios; Papadimitriou, Sofia; Bikiaris, Dimitrios

    2011-01-01

    Four new polyesters based on 1,3-propanediol and different aliphatic dicarboxylic acids were used to prepare ropinirole HCl-loaded nanoparticles. The novelty of this study lies in the use of polyesters with similar melting points but different degrees of crystallinity, varying from 29.8% to 67.5%, as drug nanocarriers. Based on their toxicity to human umbilical vein endothelial cells, these aliphatic polyesters were found to have cytotoxicity similar to that of polylactic acid and so may be considered as prominent drug nanocarriers. Drug encapsulation in polyesters was performed via an emulsification/solvent evaporation method. The mean particle size of drug-loaded nanoparticles was 164-228 nm, and the drug loading content was 16%-23%. Wide angle X-ray diffraction patterns showed that ropinirole HCl existed in an amorphous state within the nanoparticle polymer matrices. Drug release diagrams revealed a burst effect for ropinirole HCl in the first 6 hours, probably due to release of drug located on the nanoparticle surface, followed by slower release. The degree of crystallinity of the host polymer matrix seemed to be an important parameter, because higher drug release rates were observed in polyesters with a low degree of crystallinity.

  1. Evaluating the effects of crystallinity in new biocompatible polyester nanocarriers on drug release behavior

    PubMed Central

    Karavelidis, Vassilios; Karavas, Evangelos; Giliopoulos, Dimitrios; Papadimitriou, Sofia; Bikiaris, Dimitrios

    2011-01-01

    Four new polyesters based on 1,3-propanediol and different aliphatic dicarboxylic acids were used to prepare ropinirole HCl-loaded nanoparticles. The novelty of this study lies in the use of polyesters with similar melting points but different degrees of crystallinity, varying from 29.8% to 67.5%, as drug nanocarriers. Based on their toxicity to human umbilical vein endothelial cells, these aliphatic polyesters were found to have cytotoxicity similar to that of polylactic acid and so may be considered as prominent drug nanocarriers. Drug encapsulation in polyesters was performed via an emulsification/solvent evaporation method. The mean particle size of drug-loaded nanoparticles was 164–228 nm, and the drug loading content was 16%–23%. Wide angle X-ray diffraction patterns showed that ropinirole HCl existed in an amorphous state within the nanoparticle polymer matrices. Drug release diagrams revealed a burst effect for ropinirole HCl in the first 6 hours, probably due to release of drug located on the nanoparticle surface, followed by slower release. The degree of crystallinity of the host polymer matrix seemed to be an important parameter, because higher drug release rates were observed in polyesters with a low degree of crystallinity. PMID:22162659

  2. Stabilized unsaturated polyesters

    NASA Technical Reports Server (NTRS)

    Vogl, O.; Borsig, E. (Inventor)

    1985-01-01

    An unsaturated polyester, such as propylene glycolmaleic acid phthalic acid prepolymer dissolved in styrene is interpolymerized with an ultraviolet absorber and/or an antioxidant. The unsaturated chain may be filled with H or lower alkyl such as methyl and tertiary alkyl such as tertiary butyl. A polymer stable to exposure to the outdoors without degradation by ultraviolet radiation, thermal and/or photooxidation is formed.

  3. Drug Delivery Nanocarriers from a Fully Degradable PEG-Conjugated Polyester with a Reduction-Responsive Backbone.

    PubMed

    Yameen, Basit; Vilos, Cristian; Choi, Won Il; Whyte, Andrew; Huang, Jining; Pollit, Lori; Farokhzad, Omid C

    2015-08-03

    The remarkably high intracellular concentration of reducing agents is an excellent endogenous stimulus for designing nanocarriers programmed for intracellular delivery of therapeutic agents. However, despite their excellent biodegradability profiles, aliphatic polyesters that are fully degradable in response to the intracellular reducing environment are rare. Herein, a reduction-responsive drug delivery nanocarrier derived from a linear polyester bearing disulfide bonds is reported. The reduction-responsive polyester is synthesized via a convenient polycondensation process. After conjugation of terminal carboxylic acid groups of polyester to polyethylene glycol (PEG), the resulting polymer self-assembles into nanoparticles that are capable of encapsulating dye and anticancer drug molecules. The reduction-responsive nanoparticles display a fast payload release rate in response to the intracellular reducing environment, which translates into superior anticancer activity towards PC-3 cells.

  4. A new arylesterase from Pseudomonas pseudoalcaligenes can hydrolyze ionic phthalic polyesters.

    PubMed

    Haernvall, Karolina; Zitzenbacher, Sabine; Yamamoto, Motonori; Schick, Michael Bernhard; Ribitsch, Doris; Guebitz, Georg M

    2017-02-22

    Extracellular enzymes are assumed to be responsible for the initial and rate limiting step in biodegradation of polymers. Mainly enzymes with aliphatic esters as their natural substrates (e.g. lipase, cutinases) have until now been evaluated for polyester hydrolysis studies. However, the potential of enzymes with aromatic esters as their natural substrates (e.g. arylesterases) have been neglected although many types of polyester today contain aromatic moieties. Consequently, in order to elucidate biodegradation of phthalic polyesters in aquatic systems, a novel arylesterase (PpEst) was investigated related to hydrolysis of ionic phthalic polyesters. The hydrolysis of various ionic phthalic polyesters by PpEst was mechanistically studied. The polyester building blocks (terephthalic acid (TA), 5-sulfoisophthalic acid (NaSIP) and alkyl or ether diols) were systematically varied to investigate the impact on hydrolysis. PpEst effectively hydrolyzed all 14 synthetized ionic phthalic polyesters as indicated by released TA. However, no NaSIP was detected indicating that PpEst has a limited capacity to cleave bonds in close vicinity to the ionic monomer NaSIP. The systematic study indicated that increasing water solubility and hydrophilicity significantly enhanced hydrolysis. A higher release of TA was seen with increasing NaSIP ratio while up to 20 times more TA was released when alkyl diols were replaced by ether diol analogues. In contrast, cyclic and branched diols had a negative effect on hydrolysis when compared to linear diols. PpEst also revealed a linear release of TA over seven days for ether containing polyesters, indicating a very stable enzyme.

  5. Isolation and Compositional Analysis of Plant Cuticle Lipid Polyester Monomers

    PubMed Central

    Jenkin, Seamus; Molina, Isabel

    2015-01-01

    Terrestrial plants produce extracellular aliphatic biopolyesters that modify cell walls of specific tissues. Epidermal cells synthesize cutin, a polyester of glycerol and modified fatty acids that constitutes the framework of the cuticle that covers aerial plant surfaces. Suberin is a related lipid polyester that is deposited on the cell walls of certain tissues, including the root endodermis and the periderm of tubers, tree bark and roots. These lipid polymers are highly variable in composition among plant species, and often differ among tissues within a single species. Here, we describe a detailed protocol to study the monomer composition of cutin in Arabidopsis thaliana leaves by sodium methoxide (NaOMe)-catalyzed depolymerisation, derivatization, and subsequent gas chromatography-mass spectrometry (GC/MS) analysis. This method can be used to investigate the monomers of insoluble polyesters isolated from whole delipidated plant tissues bearing either cutin or suberin. The method can by applied not only to characterize the composition of lipid polymers in species not previously analyzed, but also as an analytical tool in forward and reverse genetic approaches to assess candidate gene function. PMID:26650846

  6. Isolation and Compositional Analysis of Plant Cuticle Lipid Polyester Monomers.

    PubMed

    Jenkin, Seamus; Molina, Isabel

    2015-11-22

    Terrestrial plants produce extracellular aliphatic biopolyesters that modify cell walls of specific tissues. Epidermal cells synthesize cutin, a polyester of glycerol and modified fatty acids that constitutes the framework of the cuticle that covers aerial plant surfaces. Suberin is a related lipid polyester that is deposited on the cell walls of certain tissues, including the root endodermis and the periderm of tubers, tree bark and roots. These lipid polymers are highly variable in composition among plant species, and often differ among tissues within a single species. Here, we describe a detailed protocol to study the monomer composition of cutin in Arabidopsis thaliana leaves by sodium methoxide (NaOMe)-catalyzed depolymerisation, derivatization, and subsequent gas chromatography-mass spectrometry (GC/MS) analysis. This method can be used to investigate the monomers of insoluble polyesters isolated from whole delipidated plant tissues bearing either cutin or suberin. The method can by applied not only to characterize the composition of lipid polymers in species not previously analyzed, but also as an analytical tool in forward and reverse genetic approaches to assess candidate gene function.

  7. Liquid crystal polyester thermosets

    DOEpatents

    Benicewicz, Brian C.; Hoyt, Andrea E.

    1992-01-01

    The present invention provides (1) curable liquid crystalline polyester monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 where R.sup.1 and R.sup.2 are radicals selected from the group consisting of maleimide, substituted maleimide, nadimide, substituted naimide, ethynyl, and (C(R.sup.3).sub.2).sub.2 where R.sup.3 is hydrogen with the proviso that the two carbon atoms of (C(R.sup.3).sub.2).sub.2 are bound on the aromatic ring of A.sup.1 or A.sup.3 to adjacent carbon atoms, A.sup.1 and A.sup.3 are 1,4-phenylene and the same where said group contains one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro lower alkyl, e.g., methyl, ethyl, or propyl, alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl, e.g., trifluoromethyl, pentafluoroethyl and the like, A.sup.2 is selected from the group consisting of 1,4-phenylene, 4,4'-biphenyl, 2,6-naphthylene and the same where said groups contain one or more substituents selected from the group consisting of halo, e.g., fluoro, chloro, bromo, or iodo, nitro, lower alkyl, e.g., methyl, ethyl, and propyl, lower alkoxy, e.g., methoxy, ethoxy, or propoxy, and fluoroalkyl or fluoroalkoxy, e.g., trifluoromethyl, pentafluoroethyl and the like, and B.sup.1 and B.sup.2 are selected from the group consisting of --C(O)--O-- and --O--C(O)--, (2) thermoset liquid crystalline polyester compositions comprised of heat-cured segments derived from monomers represented by the formula: R.sup.1 --A.sup.1 --B.sup.1 --A.sup.2 --B.sup.2 --A.sup.3 --R.sup.2 as described above, (3) curable blends of at least two of the polyester monomers and (4) processes of preparing the curable liquid crystalline polyester monomers.

  8. Pressure polymerization of polyester

    DOEpatents

    Maurer, Charles J.; Shaw, Gordon; Smith, Vicky S.; Buelow, Steven J.; Tumas, William; Contreras, Veronica; Martinez, Ronald J.

    2000-08-29

    A process is disclosed for the preparation of a polyester polymer or polyester copolymer under superatmospheric pressure conditions in a pipe or tubular reaction under turbannular flow conditions. Reaction material having a glycol equivalents to carboxylic acid equivalents mole ratio of from 1.0:1 to 1.2:1, together with a superatmospheric dense gaseous medium are fed co-currently to the reactor. Dicarboxylic acid and/or diol raw materials may be injected into any of the reaction zones in the process during operation to achieve the overall desired mole ratio balance. The process operates at temperatures of from about 220.degree. C. to about 320.degree. C., with turbannular flow achieved before the polymer product and gas exit the reactor process. The pressure in the reaction zones can be in the range from 15 psia to 2500 psia. A polymer product having a DP of a greater than 40, more preferably at least about 70, is achieved by the transfer of water from the reacting material polymer melt to the gaseous medium in the reactor.

  9. Polyester based hybrid organic coatings

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojiang

    Polyesters are a class of polymers widely used in organic coatings applications. In this work, four types of organic coatings based on polyester polyols were prepared: UV-curable polyester/poly(meth)acrylate coatings, thermal curable polyester polyurethane-urea coatings, thermal curable non-isocyanate polyurethane coatings, and UV-curable non-isocyanate polyurethane coatings. Polyester/poly(meth)acrylate block copolymers are synthesized using a combination of polycondensation and Atom-Transfer Radical Polymerization (ATRP). All block copolymers are characterized by means of Nuclear Magnetic Resonance (NMR) and Gel Permeation Chromatography (GPC). In the case of unsaturated-polyester-based block copolymers the main chain double bond in the polyester backbone remains almost unaffected during ATRP. The unsaturated block copolymers are crosslinkable and can form networks upon photo-irradiation in the presence of a suitable photoinitiator. These copolymers might be interesting candidates for coatings with better overall properties than those based on neat polyesters. Thermal curable polyester polyol based Polyurethane-Urea (PUU) coatings were formulated using Partially Blocked HDI isocyanurate (PBH), Isophorone Diamine (IPDA), and polyester polyol. As a comparison, the polyurethane coatings (PU) without adding IPDA were also prepared. The mechanical and viscoelastic properties of the PUU and PU coating were investigated by using tensile test and Dynamic Mechanical Thermal Analyzer (DMTA). It was found that PUU coating exhibited higher crosslink density, Tg, tensile modulus and strength than the corresponding PU coating. Thermal curable non-isocyanate polyurethane coatings were prepared by using polyamine and cyclic carbonate terminated polyester. Cyclic carbonate terminated polyester was synthesized from the reaction of the carbon dioxide and epoxidized polyester which was prepared from the polyester polyol. The properties of the epoxidized and cyclic carbonate

  10. Tapered, tubular polyester fabric

    NASA Technical Reports Server (NTRS)

    Lapointe, Donat J. E. (Inventor); Wright, Lawrence T. (Inventor); Vincent, Laurence J. (Inventor)

    1987-01-01

    A tapered tubular polyester sleeve is described to serve as the flexible foundation for a spacesuit limb covering. The tube has a large end and a small end with a length to be determined. The ratio of taper is also determined by scale factors. All the warp yarns extend to the large end. A requisite number of warp yarns extend the full length of the sleeve. Other warp yarns extend from the large end but are terminated along the length of the sleeve. It is then woven with a filling yarn which extends in a full circle along the full length of the sleeve to thereby define the tapered sleeve. The sleeve after fabrication is then placed on a mandrel, heated in an oven, and then attached to the arm or other limb of the spacesuit.

  11. Tapered, tubular polyester fabric

    NASA Technical Reports Server (NTRS)

    LaPointe, Donat J. E. (Inventor); Vincent, Laurence J. (Inventor); Wright, Lawrence T. (Inventor)

    1988-01-01

    A tapered tubular polyester sleeve as set forth. It has a large end 12 and a small end 14 with a length to be determined. The ratio of taper is also determined by scale factors. All the warp yarns extend to the large end 12. A requisite number of warp yarns 16 extend the full length of the sleeve. Other warp yarns exemplified at 18, 22, 26, 28, 30 and 32 extend from the large end but are terminated along the length of the sleeve. It is then woven with a filling yarn 40 which extends in a full circle along the full length of the sleeve to thereby define the tapered sleeve. The sleeve after fabrication is then placed on a mandrel 42, heated in an oven 44 and is thereafter placed on the arm or other limb of a space suit exemplified at 50.

  12. One-step synthesis, biodegradation and biocompatibility of polyesters based on the metabolic synthon, dihydroxyacetone.

    PubMed

    Korley, Julius N; Yazdi, Sara; McHugh, Kevin; Kirk, James; Anderson, James; Putnam, David

    2016-08-01

    The one-step synthesis of a polyester family containing dihydroxyacetone is described along with a quantitative analysis of in vitro/in vivo degradation kinetics and initial biocompatibility. Polyesters were synthesized by combining dihydroxyacetone, which is a diol found in the eukaryotic glucose metabolic pathway, with even-carbon aliphatic diacids (adipic, suberic, sebacic) represented in the long-chain alpha carboxylic acid metabolic pathway, by Schӧtten-Baumann acylation. We show that by using a crystalline monomeric form of dihydroxyacetone, well-defined polyesters can be formed in one step without protection and deprotection strategies. Both diacid length and polyester molecular weight were varied to influence polymer physical and thermal properties. Polyesters were generated with number-averaged (Mn) molecular weights ranging from 2200-11,500. Polydispersities were consistent with step-growth polymerization and ranged from 2 to 2.6. The melting (Tm) and recrystallization (Tc) temperatures were impacted in an unpredictable manner. Thermal transitions for the polyesters were highest for the adipic acid followed by suberic acid and sebacic acid, respectively. It was shown that the thermal response of the DHA-based polyesters was influenced by both the diacid length and molecular weight. In vitro degradation studies revealed first-order weight loss kinetics, the molecular weight loss followed first order kinetics with 25%-40% of the original mass remaining after 8 weeks. In vivo testing over 16 weeks highlighted that mass loss ranged from ∼70% to ∼6% depending upon initial molecular weight and diacid length. Histological analysis revealed rapid resolution of both acute and chronic inflammatory responses, normal foreign body responses were observed and no inflammation was present after week 4. This one-step synthesis proved robust with unique copolymers warranting further study as potential biomaterials.

  13. Guided desaturation of unactivated aliphatics

    NASA Astrophysics Data System (ADS)

    Voica, Ana-Florina; Mendoza, Abraham; Gutekunst, Will R.; Fraga, Jorge Otero; Baran, Phil S.

    2012-08-01

    The excision of hydrogen from an aliphatic carbon chain to produce an isolated olefin (desaturation) without overoxidation is one of the most impressive and powerful biosynthetic transformations for which there are no simple and mild laboratory substitutes. The versatility of olefins and the range of reactions they undergo are unsurpassed in functional group space. Thus, the conversion of a relatively inert aliphatic system into its unsaturated counterpart could open new possibilities in retrosynthesis. In this article, the invention of a directing group to achieve such a transformation under mild, operationally simple, metal-free conditions is outlined. This ‘portable desaturase’ (TzoCl) is a bench-stable, commercial entity (Aldrich, catalogue number L510092) that is facile to install on alcohol and amine functionalities to ultimately effect remote desaturation, while leaving behind a synthetically useful tosyl group.

  14. Aliphatic hydrocarbons of the fungi.

    NASA Technical Reports Server (NTRS)

    Weete, J. D.

    1972-01-01

    Review of studies of aliphatic hydrocarbons which have been recently detected in the spores of phytopathogenic fungi, and are found to be structurally very similar to the alkanes of higher plants. It appears that the hydrocarbon components of the few mycelial and yeast forms reported resemble the distribution found in bacteria. The occurence and distribution of these compounds in the fungi is discussed. Suggested functional roles of fungal spore alkanes are presented.

  15. 40 CFR 721.9507 - Polyester silane.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester silane. 721.9507 Section 721... Polyester silane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a polyester silane (P-95-1022) is subject to reporting under this section for...

  16. 40 CFR 721.9507 - Polyester silane.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyester silane. 721.9507 Section 721... Polyester silane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as a polyester silane (P-95-1022) is subject to reporting under this section for...

  17. Toxicity and biodegradation of products from polyester hydrolysis.

    PubMed

    Kim, M N; Lee, B Y; Lee, I M; Lee, H S; Yoon, J S

    2001-01-01

    Toxicity of products from polyester hydrolysis such as succinic acid (SA), adipic acid (AA), mandelic acid (MA), terephthalic acid (TA), 1,4-butanediol (1,4-B), ethylene glycol (EG), styrene glycol (SG) and 1,4-cyclohexane dimethanol (1,4-C) was evaluated by phytotoxicity test on germination of young radish seeds and by cytotoxicity test on HeLa cells. The phytotoxicity test revealed SG > MA > 1,4-C > AA approximately SA > TA approximately EG > 1,4-B in order of decreasing toxicity taking into consideration the growth behavior after germination as well as the percentage of germination. Toxicity on HeLa cells decreased in slightly different order compared to that on young radish seeds, i.e. SG > 1,4-C > MA > TA > SA > AA > EG > 1,4-B. Tests for the phytotoxicity and for cytotoxicity indicated that the aromatic compounds were more harmful than the aliphatic ones. Each group of 4 strains which grew most rapidly on each agar plate containing SA, AA, MA, TA, 1,4-B, EG, SG and 1,4-C respectively as a sole carbon source was identified by the fatty acid methyl esters analysis. The modified Sturm test was carried out using the single isolated strain, an activated sludge or a mixed soil to measure the rate of mineralization of the compounds into carbon dioxide. The aliphatic compounds were mineralized more easily than the aromatic compounds. 1,4-C showed the most exceptionally slow degradation. A scrutiny of residual 1,4-C after degradation is required before polyesters containing 1,4-C could be classified into compostable because 1,4-C has detrimental effects on young radish seeds and HeLa cells and has a tendency to accumulate in the environment due to its slow degradability.

  18. PEGylated polyester-based nanoncologicals.

    PubMed

    Conte, Claudia; d'Angelo, Ivana; Miro, Agnese; Ungaro, Francesca; Quaglia, Fabiana

    2014-01-01

    Several PEGylated polyester-based nanoncologicals have been proposed in the literature, some of them nowadays being under preclinical/clinical trials or marketed. In this review, we describe the main features of PEGylated polyesters and their correspondent nanocarriers. A first part is devoted to intravenously injectable PEGylated nanocarriers, which represent the systems most investigated so far. After describing fundamental design rules dictated by the administration route, PEGylated nanocarriers currently under preclinical/clinical investigation or in the market will be described from a technological point of view and related therapeutic implications discussed. Finally, new perspective of use of PEGylated nanocarriers for oral and pulmonary delivery of anticancer drugs will be considered.

  19. Polyester synthases: natural catalysts for plastics.

    PubMed Central

    Rehm, Bernd H A

    2003-01-01

    Polyhydroxyalkanoates (PHAs) are biopolyesters composed of hydroxy fatty acids, which represent a complex class of storage polyesters. They are synthesized by a wide range of different Gram-positive and Gram-negative bacteria, as well as by some Archaea, and are deposited as insoluble cytoplasmic inclusions. Polyester synthases are the key enzymes of polyester biosynthesis and catalyse the conversion of (R)-hydroxyacyl-CoA thioesters to polyesters with the concomitant release of CoA. These soluble enzymes turn into amphipathic enzymes upon covalent catalysis of polyester-chain formation. A self-assembly process is initiated resulting in the formation of insoluble cytoplasmic inclusions with a phospholipid monolayer and covalently attached polyester synthases at the surface. Surface-attached polyester synthases show a marked increase in enzyme activity. These polyester synthases have only recently been biochemically characterized. An overview of these recent findings is provided. At present, 59 polyester synthase structural genes from 45 different bacteria have been cloned and the nucleotide sequences have been obtained. The multiple alignment of the primary structures of these polyester synthases show an overall identity of 8-96% with only eight strictly conserved amino acid residues. Polyester synthases can been assigned to four classes based on their substrate specificity and subunit composition. The current knowledge on the organization of the polyester synthase genes, and other genes encoding proteins related to PHA metabolism, is compiled. In addition, the primary structures of the 59 PHA synthases are aligned and analysed with respect to highly conserved amino acids, and biochemical features of polyester synthases are described. The proposed catalytic mechanism based on similarities to alpha/beta-hydrolases and mutational analysis is discussed. Different threading algorithms suggest that polyester synthases belong to the alpha/beta-hydrolase superfamily, with

  20. Synthesis of improved polyester resins

    NASA Technical Reports Server (NTRS)

    Mcleod, A. H.; Delano, C. B.

    1979-01-01

    Eighteen aromatic unsaturated polyester prepolymers prepared by a modified interfacial condensation technique were investigated for their solubility in vinyl monomers and ability to provide high char yield forming unsaturated polyester resins. The best resin system contained a polyester prepolymer of phthalic, fumaric and diphenic acids reacted with 2,7-naphthalene diol and 9,9-bis(4-hydroxyphenyl)fluorene. This prepolymer is very soluble in styrene, divinyl benzene, triallyl cyanurate, diallyl isophthalate and methylvinylpyridine. It provided anaerobic char yields as high as 41 percent at 800 C. The combination of good solubility and char yield represents a significant improvement over state-of-the-art unsaturated polyester resins. The majority of the other prepolymers had only low or no solubility in vinyl monomers. Graphite composites from this prepolymer with styrene were investigated. The cause for the observed low shear strengths of the composites was not determined, however 12-week aging of the composites at 82 C showed that essentially no changes in the composites had occurred.

  1. Bacterial contamination of nurses' white coats made from polyester and polyester cotton blend fabrics.

    PubMed

    Gupta, P; Bairagi, N; Priyadarshini, R; Singh, A; Chauhan, D; Gupta, D

    2016-09-01

    In India, nurses wear white coats over their uniform. In this small study, patches of polyester and polyester cotton blend fabrics were attached to the white coats of nurses and sampled for contamination after one shift. Results showed that microbial adhesion is influenced by fabric type, with the microbial load on the polyester cotton blend fabric being 60% higher than that on the polyester fabric. Further studies need to be conducted to establish the correlation between fabric properties and microbial contamination.

  2. Properties of honeycomb polyester knitted fabrics

    NASA Astrophysics Data System (ADS)

    Feng, A. F.

    2016-07-01

    The properties of honeycomb polyester weft-knitted fabrics were studied to understand their advantages. Seven honeycomb polyester weft-knitted fabrics and one common polyester weft-knitted fabric were selected for testing. Their bursting strengths, fuzzing and pilling, air permeability, abrasion resistance and moisture absorption and perspiration were studied. The results show that the honeycomb polyester weft-knitted fabrics have excellent moisture absorption and liberation. The smaller their thicknesses and area densities are, the better their moisture absorption and liberation will be. Their anti-fuzzing and anti-pilling is good, whereas their bursting strengths and abrasion resistance are poorer compared with common polyester fabric's. In order to improve the hygroscopic properties of the fabrics, the proportion of the honeycomb microporous structure modified polyester in the fabrics should not be less than 40%.

  3. Evaluation of Fluorene Polyester Film Capacitors (PREPRINT)

    DTIC Science & Technology

    2010-02-01

    AFRL-RZ-WP-TP-2010-2098 EVALUATION OF FLUORENE POLYESTER FILM CAPACITORS (PREPRINT) Jeffery Stricker, James Scofield, Navjot Brar, and...February 2010 4. TITLE AND SUBTITLE EVALUATION OF FLUORENE POLYESTER FILM CAPACITORS (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER...to include cycling from ambient to 200 °C. 15. SUBJECT TERMS Fluorene polyester , Capacitor , Packaging, High Temperature, DC/DC converter 16

  4. Synthesis of Improved Polyester Resins.

    DTIC Science & Technology

    1979-07-05

    peroxides as initiator. The peroxides used were benzoyl peroxide , cumene hydroperoxide, t-butyl peroxybenzoate and 2,5... benzoyl peroxide , while allyl type polyester resins require a higher temperature cure and use a peroxide such as dicumyl peroxide . Numerous other peroxides ...using MEKP (methylethylketone peroxide ) or BZP ( benzoyl peroxide ) catalysts. 47 01 "I 4 C C~ >~> .0 00 Q) . x> x (. C. a, 0 + 0) 0. 0 0 a,. E S- >0>

  5. Synthesis, Radiolabeling, and In Vivo Imaging of PEGylated High-Generation Polyester Dendrimers.

    PubMed

    McNelles, Stuart A; Knight, Spencer D; Janzen, Nancy; Valliant, John F; Adronov, Alex

    2015-09-14

    A fifth generation aliphatic polyester dendrimer was functionalized with vinyl groups at the periphery and a dipicolylamine Tc(I) chelate at the core. This structure was PEGylated with three different molecular weight mPEGs (mPEG160, mPEG350, and mPEG750) using thiol-ene click chemistry. The size of the resulting macromolecules was evaluated using dynamic light scattering, and it was found that the dendrimer functionalized with mPEG750 was molecularly dispersed in water, exhibiting a hydrodynamic diameter of 9.2 ± 2.1 nm. This PEGylated dendrimer was subsequently radiolabeled using [(99m)Tc(CO)3(H2O)3](+) and purified to high (>99%) radiochemical purity. Imaging studies were initially performed on healthy rats to allow comparison to previous Tc-labeled dendrimers and then on xenograft murine tumor models, which collectively showed that the dendrimers circulated in the blood for an extended period of time (up to 24 h). Furthermore, the radiolabeled dendrimer accumulated in H520 xenograft tumors, which could be visualized by single-photon emission computed tomography (SPECT). The reported PEGylated aliphatic polyester dendrimers represent a new platform for developing tumor-targeted molecular imaging probes and therapeutics.

  6. A reduction-sensitive carrier system using mesoporous silica nanospheres with biodegradable polyester as caps.

    PubMed

    He, Hongyan; Kuang, Huihui; Yan, Lesan; Meng, Fanbo; Xie, Zhigang; Jing, Xiabin; Huang, Yubin

    2013-09-14

    Mesoporous silica nanoparticles (MSN)-polymer hybrid combined with the aliphatic biodegradable polyester caps on the surface were first developed in order to manipulate the smart intracellular release of anticancer drugs. First, poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL) was successfully grafted on the surface of MSN via disulfide bonds which could cleave under a reduction environment in tumor cells. The anticancer drug doxorubicin (DOX) was encapsulated into the particle pores. The in vitro drug release profile showed that DOX release was significantly restricted by the polymer caps at pH 7.4, while it was greatly accelerated upon the addition of GSH. Cytotoxicity evaluation showed good biocompatibility with the hybrid particles. Fast endocytosis and intracellular DOX release were observed by confocal laser scanning microscopy (CLSM). The DOX-loaded particles exhibited comparable antitumor activity with free DOX towards HeLa cells and showed in a time-dependent manner. This work developed an extensive method of utilizing aliphatic biodegradable polyesters as polymer caps for MSN to control drug delivery. The paper might offer a potential option for cancer therapy.

  7. Controlled release formulations of risperidone antipsychotic drug in novel aliphatic polyester carriers: Data analysis and modelling.

    PubMed

    Siafaka, Panoraia I; Barmpalexis, Panagiotis; Lazaridou, Maria; Papageorgiou, George Z; Koutris, Efthimios; Karavas, Evangelos; Kostoglou, Margaritis; Bikiaris, Dimitrios N

    2015-08-01

    In the present study a series of biodegradable and biocompatible poly(ε-caprolactone)/poly(propylene glutarate) (PCL/PPGlu) polymer blends were investigated as controlled release carriers of Risperidone drug (RISP), appropriate for transdermal drug delivery. The PCL/PPGlu carriers were prepared in different weight ratios. Miscibility studies of blends were evaluated through differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). Hydrolysis studies were performed at 37°C using a phosphate buffered saline solution. The prepared blends have been used for the preparation of RISP patches via solvent evaporation method, containing 5, 10 and 15wt% RISP. These formulations were characterized using FT-IR spectroscopy, DSC and WAXD in order to evaluate interactions taking place between polymer matrix and drug, as well as the dispersion and the physical state of the drug inside the polymer matrix. In vitro drug release studies were performed using as dissolution medium phosphate buffered saline simulating body fluids. It was found that in all cases controlled release formulations were obtained, while the RISP release varies due to the properties of the used polymer blend and the different levels of drug loading. Artificial Neural Networks (ANNs) were used for dissolution behaviour modelling showing increased correlation efficacy compared to Multi-Linear-Regression (MLR).

  8. Melt spinning of bacterial aliphatic polyester using reactive extrusion for improvement of crystallization.

    PubMed

    Vogel, Roland; Tändler, Bernhard; Voigt, Dieter; Jehnichen, Dieter; Häussler, Liane; Peitzsch, Lutz; Brünig, Harald

    2007-06-07

    This paper reports on an attempt to use reactive extrusion with peroxide as a comfortable pathway for improvement of the crystallization of poly(3-hydroxybutyrate) in a melt spinning process. At first, rheological and thermal properties of the modified melts are determined in order to assess the effect of nucleation. Then spinning tests are carried out. Molecular weights and molecular weight distributions of the spun fibers are determined by chromatographic methods. Average crystallite size is measured by wide angle X-ray scattering. Thermal and textile properties of the spun PHB fibers are also determined. An estimation of the improvement of the crystallization in the spinline and of the inhibition of the secondary crystallization in the fibers from the use of the described way of reactive extrusion is given.

  9. Synthesis, characterisation and drug release properties of microspheres of polystyrene with aliphatic polyester side-chains.

    PubMed

    Kukut, Manolya; Karal-Yilmaz, Oksan; Yagci, Yusuf

    2014-01-01

    A series of graft copolymers consisting of polystyrene backbone with biocompatible side chains based on (co)polymers of l-lactic acid and glycolic acid were synthesised by combination two controlled polymerisations, namely, nitroxide mediated radical polymerisation (NMRP) and ring opening polymerisation (ROP) with "Click" chemistry. The main goal of this work was to design new biodegradable microspheres using obtained graft copolymers for long-term sustained release of imatinib mesylate (IMM) as a model drug. The IMM loaded microspheres of the graft copolymers, polystyrene-g-poly(lactide-co-glycolide) (PS-g-PLLGA), polystyrene-g-poly(lactic acid) (PS-g-PLLA) and poly(lactic-coglycolic acid) (PLLGA) were then prepared by a modified water-in-oil-in-water (w1/o/w2) double emulsion/solvent evaporation technique. The optimised microspheres were characterised by particle size, encapsulation efficiency, and surface morphology also; their degradation and release properties were studied in vitro. The degradation studies of three different types of microspheres showed that the PS backbone of the graft copolymers slows down the degradation rate compared to PLLGA.

  10. Fiber structure formation in melt spinning of bio-based aliphatic co-polyesters

    NASA Astrophysics Data System (ADS)

    Qin, Qing; Takarada, Wataru; Kikutani, Takeshi

    2015-05-01

    High-speed melt spinning of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) with the 3-hydroxyhexanoate composition of 5.4 mol% was carried out. Melting temperature of this polymer is 141.5°C. It has been reported that PHBH fibers of good appearance can be prepared through the melt spinning process only when extrusion temperature is lower than the melting temperature of pure PHB (176 °C). The high-speed melt spinning experiment in this study revealed that the crystallization of PHBH proceeded at high take-up velocities even when the extrusion temperature was higher than the melting temperature of PHB. This result is considered to be due to the enhancement of crystallization through the application of high tensile stress to the molten polymer in the spinning line. As-spun fibers showed sufficiently high mechanical properties. On the other hand, crystalline orientation of α-form crystal increased with an increase in the take-up velocity and the existence of a small amount of β-form crystals was detected at high take-up velocities. This is another indication for the occurrence of crystallization under high tensile stress.

  11. RHEOLOGY OF CONCENTRATED SOLUTIONS OF HYPERBRANCHED POLYESTERS

    EPA Science Inventory

    The solution rheology of different generations of hyperbranched polyesters in N-methyl-2- pyrrolidinone (NMP) solvent was examined in this study. The solutions exhibited Newtonian behavior over a wide range of polyester concentrations. Also, the relative viscosities of poly(amido...

  12. Analytical approaches to identify potential migrants in polyester-polyurethane can coatings.

    PubMed

    Louise Bradley, Emma; Driffield, Malcolm; Guthrie, James; Harmer, Nick; Thomas Oldring, Peter Kenneth; Castle, Laurence

    2009-12-01

    The safety of a polyester-polyurethane can coating has been assessed using a suite of complementary analytical methods to identify and estimate the concentrations of potential chemical migrants. The polyester was based on phthalic acids and aliphatic diols. The polyisocyanate cross-linking agent was 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl cyclohexane homopolymer (IPDI) blocked with methylethylketone oxime (MEKO) to make a one-part formulation. The overall migrate, obtained using solvent extraction of cured films, comprised almost completely of 12 cyclic and one linear polyester oligomer up to molecular weight 800 and containing up to six monomer units. These 13 oligomers covered a total of 28 isomeric forms. Other minor components detected were plasticisers and surfactants as well as impurities present in the starting materials. There was no detectable residue of either the blocked isocyanate (<0.01 microg/dm(2)) used as the starting substance or the unblocked isocyanate (<0.02 microg/dm(2)). The level of extractable IPDI was used as an indicator of the completeness of cure in experimental coatings. These studies revealed that there was an influence of time, temperature and catalyst content. Polymerisation was also influenced by the additives used and by the ageing of the wet coating formulation over several months. These studies allow parameters to be specified to ensure that commercial production coatings receive a full cure giving low migration characteristics.

  13. Biocatalytic synthesis of silicone polyesters.

    PubMed

    Frampton, Mark B; Subczynska, Izabela; Zelisko, Paul M

    2010-07-12

    The immobilized lipase B from Candida antarctica (CALB) was used to synthesize silicone polyesters. CALB routinely generated between 74-95% polytransesterification depending on the monomers that were used. Low molecular weight diols resulted in the highest rates of esterification. Rate constants were determined for the CALB catalyzed polytransesterifications at various reaction temperatures. The temperature dependence of the CALB-mediated polytransesterifications was examined. A lipase from C. rugosa was only successful in performing esterifications using carboxy-modified silicones that possessed alkyl chains greater than three methylene units between the carbonyl and the dimethylsiloxy groups. The proteases alpha-chymotrypsin and papain were not suitable enzymes for catalyzing any polytransesterification reactions.

  14. Characterization of a resorbable poly(ester urethane) with biodegradable hard segments.

    PubMed

    Dempsey, David K; Robinson, Jennifer L; Iyer, Ananth V; Parakka, James P; Bezwada, Rao S; Cosgriff-Hernandez, Elizabeth M

    2014-01-01

    The rapid growth of regenerative medicine and drug delivery fields has generated a strong need for improved polymeric materials that degrade at a controlled rate into safe, non-cytotoxic by-products. Polyurethane thermoplastic elastomers offer several advantages over other polymeric materials including tunable mechanical properties, excellent fatigue strength, and versatile processing. The variable segmental chemistry in developing resorbable polyurethanes also enables fine control over the degradation profile as well as the mechanical properties. Linear aliphatic isocyanates are most commonly used in biodegradable polyurethane formulations; however, these aliphatic polyurethanes do not match the mechanical properties of their aromatic counterparts. In this study, a novel poly(ester urethane) (PEsU) synthesized with biodegradable aromatic isocyanates based on glycolic acid was characterized for potential use as a new resorbable material in medical devices. Infrared spectral analysis confirmed the aromatic and phase-separated nature of the PEsU. Uniaxial tensile testing displayed stress-strain behavior typical of a semi-crystalline polymer above its Tg, in agreement with calorimetric findings. PEsU outperformed aliphatic PCL-based polyurethanes likely due to the enhanced cohesion of the aromatic hard domains. Accelerated degradation of the PEsU using 0.1 M sodium hydroxide resulted in hydrolysis of the polyester soft segment on the surface, reduced molecular weight, surface cracking, and a 30% mass loss after four weeks. Calorimetric studies indicated a disruption of the soft segment crystallinity after incubation which corresponded with a drop in initial modulus of the PEsU. Finally, cytocompatibility testing with 3T3 mouse fibroblasts exhibited cell viability on PEsU films comparable to a commercial poly(ether urethane urea) after 24 h followed by 85% cell viability at 72 h. Overall, this new resorbable polyurethane shows strong potential for use in wide

  15. Castor Oil-Based Biodegradable Polyesters.

    PubMed

    Kunduru, Konda Reddy; Basu, Arijit; Haim Zada, Moran; Domb, Abraham J

    2015-09-14

    This Review compiles the synthesis, physical properties, and biomedical applications for the polyesters based on castor oil and ricinoleic acid. Castor oil has been known for its medicinal value since ancient times. It contains ∼90% ricinoleic acid, which enables direct chemical transformation into polyesters without interference of other fatty acids. The presence of ricinoleic acid (hydroxyl containing fatty acid) enables synthesis of various polyester/anhydrides. In addition, castor oil contains a cis-double bond that can be hydrogenated, oxidized, halogenated, and polymerized. Castor oil is obtained pure in large quantities from natural sources; it is safe and biocompatible.

  16. Aliphatic amines in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Jungclaus, G.; Cronin, J. R.; Moore, C. B.; Yuen, G. U.

    1976-01-01

    The paper reports on the determination of aliphatic amines in water extracts of the Murchison meteorite. The amines were analyzed by gas chromatography both as the free amines and as 2,4-dinitrophenyl (DNP) derivatives. The results give evidence for the presence of all of the possible primary aliphatic monoamines (eight) with fewer than five carbon atoms. Two of the seven possible secondary or tertiary aliphatic monoamines were identified. The identified primary amines total 80 nmol per g meteorite, and seem to be chemically or physically trapped in the meteorite. Similarities between the water-extractable amines and amino acids suggest that (1) a simple carbon compound, methane, for example, is the precursor of meteorite amines and amino acids, and (2) both amines and amino acids are extracted from the meteorite both as such and in the form of acid-hydrolyzable derivative or precursor species.

  17. Lipase catalyzed synthesis of silicone polyesters.

    PubMed

    Poojari, Yadagiri; Clarson, Stephen J

    2009-11-28

    Immobilized Candida antarctica lipase B (CALB) was successfully employed as a catalyst to synthesize silicone aromatic polyesters by the transesterification of dimethyl terephthalate with alpha,omega-bis(hydroxyalkyl)-terminated poly(dimethylsiloxane) in toluene under mild reaction conditions.

  18. Biodegradable Polyester/Layered Silicate Nanocomposites

    DTIC Science & Technology

    2003-01-01

    compatible with the polymer [5-9]. In this paper we report the synthesis and properties of both PLA and PHB nanocomposites with different nanoclays...hydroxy polyester, polylactide (PLA) and fl-hydroxy polyester, polyhydroxybutyrate ( PHB ) with layered silicates have been successfully prepared by melt...extrusion of PLA and PHB with organically modified montmorillonite (MMT) and fluoromica. The mechanical properties of the nanocomposites are improved

  19. CCN activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-01-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3), contains less volatile compounds than the primary aliphatic amine (BA) aerosol. TMA + N2O5 form semi-volatile organics in low RH conditions that have κ ~ 0.20, indicative of slightly soluble organic material. As RH increases, several inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. Higher CCN activity (κ > 0.3) was also observed for humid BA+N2O5 aerosols compared with dry aerosol (κ ~ 0.2), as a result of the formation of inorganic salts such as NH4NO3 and butylamine nitrate (C4H11N · HNO3). Compared with TMA, BA+N2O5 reactions produce more volatile aerosols. The BA+N2O5 aerosol products under humid experiments were found to be very sensitive to the temperature within the stream-wise continuous flow thermal gradient CCN counter. The CCN counter, when set above a 21 °C temperature difference, evaporates BA+N2O5 aerosol formed at RH ≥ 30%; κ ranges from 0.4 to 0.7 and is dependent on the instrument supersaturation (ss) settings. The aerosol behaves non-ideally, hence simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems κ ranges from 0.2 < κ < 0.7. This work indicates that

  20. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  1. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  2. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  3. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  4. 40 CFR 721.6140 - Dialkyldithiophosphoric acid, aliphatic amine salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., aliphatic amine salt. 721.6140 Section 721.6140 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.6140 Dialkyldithiophosphoric acid, aliphatic amine salt. (a) Chemical... as a dialkyldithiophosphoric acid, aliphatic amine salt (P-90-1839) is subject to reporting...

  5. 40 CFR 721.10534 - Brominated aliphatic alcohol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Brominated aliphatic alcohol (generic... Specific Chemical Substances § 721.10534 Brominated aliphatic alcohol (generic). (a) Chemical substance and... aliphatic alcohol (PMN P-12-260) is subject to reporting under this section for the significant new...

  6. 40 CFR 721.10534 - Brominated aliphatic alcohol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Brominated aliphatic alcohol (generic... Specific Chemical Substances § 721.10534 Brominated aliphatic alcohol (generic). (a) Chemical substance and... aliphatic alcohol (PMN P-12-260) is subject to reporting under this section for the significant new...

  7. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted aliphatic amine (generic... Specific Chemical Substances § 721.10199 Substituted aliphatic amine (generic). (a) Chemical substance and... aliphatic amine (PMN P-06-702) is subject to reporting under this section for the significant new...

  8. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  9. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  10. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  11. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic...

  12. Renaissance of Aliphatic Polycarbonates: New Techniques and Biomedical Applications

    PubMed Central

    Xu, Jianwen; Feng, Ellva; Song, Jie

    2014-01-01

    Aliphatic polycarbonates were discovered a long time ago, with their conventional applications mostly limited to low molecular weight oligomeric intermediates for copolymerization with other polymers. Recent developments in polymerization techniques have overcome the difficulty in preparing high molecular weight aliphatic polycarbonates. These in turn, along with new functional monomers, have enabled the preparation of a wide range of aliphatic polycarbonates with diverse chemical compositions and structures. This review summarizes the latest polymerization techniques for preparing well-defined functional aliphatic polycarbonates, as well as the new applications of those aliphatic polycarbonates, esecially in the biomedical field. PMID:24994939

  13. Synthetic polyester from algae oil.

    PubMed

    Roesle, Philipp; Stempfle, Florian; Hess, Sandra K; Zimmerer, Julia; Río Bártulos, Carolina; Lepetit, Bernard; Eckert, Angelika; Kroth, Peter G; Mecking, Stefan

    2014-06-23

    Current efforts to technically use microalgae focus on the generation of fuels with a molecular structure identical to crude oil based products. Here we suggest a different approach for the utilization of algae by translating the unique molecular structures of algae oil fatty acids into higher value chemical intermediates and materials. A crude extract from a microalga, the diatom Phaeodactylum tricornutum, was obtained as a multicomponent mixture containing amongst others unsaturated fatty acid (16:1, 18:1, and 20:5) phosphocholine triglycerides. Exposure of this crude algae oil to CO and methanol with the known catalyst precursor [{1,2-(tBu2 PCH2)2C6H4}Pd(OTf)](OTf) resulted in isomerization/methoxycarbonylation of the unsaturated fatty acids into a mixture of linear 1,17- and 1,19-diesters in high purity (>99 %). Polycondensation with a mixture of the corresponding diols yielded a novel mixed polyester-17/19.17/19 with an advantageously high melting and crystallization temperature.

  14. Microbial production of lactate-containing polyesters

    PubMed Central

    Yang, Jung Eun; Choi, So Young; Shin, Jae Ho; Park, Si Jae; Lee, Sang Yup

    2013-01-01

    Due to our increasing concerns on environmental problems and limited fossil resources, biobased production of chemicals and materials through biorefinery has been attracting much attention. Optimization of the metabolic performance of microorganisms, the key biocatalysts for the efficient production of the desired target bioproducts, has been achieved by metabolic engineering. Metabolic engineering allowed more efficient production of polyhydroxyalkanoates, a family of microbial polyesters. More recently, non-natural polyesters containing lactate as a monomer have also been produced by one-step fermentation of engineered bacteria. Systems metabolic engineering integrating traditional metabolic engineering with systems biology, synthetic biology, protein/enzyme engineering through directed evolution and structural design, and evolutionary engineering, enabled microorganisms to efficiently produce natural and non-natural products. Here, we review the strategies for the metabolic engineering of microorganisms for the in vivo biosynthesis of lactate-containing polyesters and for the optimization of whole cell metabolism to efficiently produce lactate-containing polyesters. Also, major problems to be solved to further enhance the production of lactate-containing polyesters are discussed. PMID:23718266

  15. 77 FR 60720 - Certain Polyester Staple Fiber From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... COMMISSION Certain Polyester Staple Fiber From China Determination On the basis of the record \\1\\ developed... antidumping duty order on certain polyester staple fiber from China would be likely to lead to continuation or... USITC Publication 4351 (September 2012), entitled Certain Polyester Staple Fiber from...

  16. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  17. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  18. Partial depolymerization of genetically modified potato tuber periderm reveals intermolecular linkages in suberin polyester.

    PubMed

    Graça, José; Cabral, Vanessa; Santos, Sara; Lamosa, Pedro; Serra, Olga; Molinas, Marisa; Schreiber, Lukas; Kauder, Friedrich; Franke, Rochus

    2015-09-01

    Suberin is a biopolyester found in specialized plant tissues, both internal and external, with key frontier physiological functions. The information gathered so far from its monomer and oligomer composition, and in situ studies made by solid state techniques, haven't solved the enigma of how the suberin polyester is assembled as a macromolecule. To investigate how monomers are linked in suberin, we analyzed oligomer fragments solubilized by the partial depolymerization of suberin from potato (Solanum tuberosum) tuber periderms. The structure of the suberin oligomers, namely which monomers they included, and the type and frequency of the inter-monomer ester linkages, was assessed by ESI-MS/MS and high resolution NMR analysis. The analyzed potato periderms included the one from wild type (cv. Desirée) and from plants where suberin-biosynthesis genes were downregulated in chain elongation (StKCS6), ω-hydroxylation (CYP86A33) and feruloylation (FHT). Two building blocks were identified as possible key structures in the macromolecular development of the potato periderm suberin: glycerol - α,ω-diacid - glycerol, as the core of a continuous suberin aliphatic polyester; and glycerol - ω-hydroxyacid - ferulic acid, anchoring this polyaliphatic matrix at its periphery to the vicinal polyaromatics, through linking to ferulic acid. The silencing of the StKCS6 gene led to non-significant alterations in suberin structure, showing the relatively minor role of the very-long chain (>C28) fatty acids in potato suberin composition. The silencing of CYP86A33 gene impaired significantly suberin production and disrupted the biosynthesis of acylglycerol structures, proving the relevance of the latter and thus of the glycerol - α,ω-diacid - glycerol unit for the typical suberin lamellar organization. The silencing of the FHT gene led to a lower frequency of ferulate linkages in suberin polyester but to more polyphenolic guaiacyl units as seen by FTIR analyses in the intact polymer.

  19. Preparation of water-soluble hyperbranched polyester nanoparticles with sulfonic acid functional groups and their micelles behavior, anticoagulant effect and cytotoxicity.

    PubMed

    Han, Qiaorong; Chen, Xiaohan; Niu, Yanlian; Zhao, Bo; Wang, Bingxiang; Mao, Chun; Chen, Libin; Shen, Jian

    2013-07-02

    Biocompatibility of nanoparticles has been attracting great interest in the development of nanoscience and nanotechnology. Herein, the aliphatic water-soluble hyperbranched polyester nanoparticles with sulfonic acid functional groups (HBPE-SO3 NPs) were synthesized and characterized. They are amphiphilic polymeric nanoparticles with hydrophobic hyperbranched polyester (HBPE) core and hydrophilic sulfonic acid terminal groups. Based on our observations, we believe there are two forms of HBPE-SO3 NPs in water under different conditions: unimolecular micelles and large multimolecular micelles. The biocompatibility and anticoagulant effect of the HBPE-SO3 NPs were investigated using coagulation tests, hemolysis assay, morphological changes of red blood cells (RBCs), complement and platelet activation detection, and cytotoxicity (MTT). The results confirmed that the sulfonic acid terminal groups can substantially enhance the anticoagulant property of HBPE, and the HBPE-SO3 NPs have the potential to be used in nanomedicine due to their good bioproperties.

  20. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    PubMed Central

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-01

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach. PMID:26727881

  1. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    SciTech Connect

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-05

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. Increased branching and degree of polymerization, and thus molecular weight, were found to reduce the solubility of these systems in the base oil. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated improved viscosity index and reduced friction coefficient, validating the basic approach.

  2. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    NASA Astrophysics Data System (ADS)

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; Erck, Robert; Qu, Jun; Bays, J. Timothy; Cosimbescu, Lelia

    2016-01-01

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acids (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated an improved viscosity index and reduced friction coefficient, validating the basic approach.

  3. Probing the molecular design of hyper-branched aryl polyesters towards lubricant applications

    DOE PAGES

    Robinson, Joshua W.; Zhou, Yan; Bhattacharya, Priyanka; ...

    2016-01-05

    We report novel polymeric materials that may be used as viscosity index improvers (VII) for lubricant applications. Our efforts included probing the comb-burst hyper-branched aryl polyester architecture for beneficial viscosity and friction behavior when utilized as an additive in a group I oil. The monomer was designed as to undergo polymerization via polycondensation within the architectural construct (AB2), typical of hyperbranched polymers. The monomer design was comprised of aliphatic arms (12 or 16 methylenes) to provide the necessary lipophilicity to achieve solubility in a non-polar medium. Once polymerized, via catalyst and heat, the surface alcohols were functionalized with fatty acidsmore » (lauric and palmitic). Controlling the aliphatic nature of the internal arms and peripheral end-groups provided four unique flexible polymer designs. Changing the reaction time and concentration provided opportunities to investigate the influence of molecular weight and branching density on oil-solubility, viscosity, and friction. Oil-solubility was found to decrease with fewer internal carbons, but the number of internal carbons appears to have little influence on the bulk solution viscosity. Increased branching and degree of polymerization, and thus molecular weight, were found to reduce the solubility of these systems in the base oil. At concentrations of 2 wt % in a group I base oil, these polymer additives demonstrated improved viscosity index and reduced friction coefficient, validating the basic approach.« less

  4. Resisting protein adsorption on biodegradable polyester brushes.

    PubMed

    Hu, Xinfang; Gorman, Christopher B

    2014-08-01

    The protein adsorption and degradation behaviors of poly(lactic acid), poly(glycolic acid) (PGA) and poly(ε-caprolactone) (PCL) brushes and their co-polymer brushes with oligo(ethylene glycol) (OEG) were studied. Both brush structure and relative amount of OEG and polyester were found to be important to the protein resistance of the brushes. A protein-resisting surface can be fabricated either by using OEG as the top layer of a copolymer brush or by increasing the amount of OEG relative to polyester when using a hydroxyl terminated OEG (OEG-OH) and a methoxy terminated OEG (OEG-OMe) mixture as the substrate layer. The degradation of single polyester brushes and their co-polymer brushes using OEG-OH as a substrate layer or using OEG as a top layer was hindered. This phenomenon was rationalized by the inhibition of the proposed back-biting process as the hydroxy end groups of polyester were blocked by OEG molecules. Among these brushes tested, PGA co-polymer brushes using the methoxy/hydroxyl OEG mixture as the substrate layer proved to be both protein-resistant and degradable due to the relatively large amount of OEG moieties and the good biodegradability of PGA.

  5. Rheological Behavior of Bentonite-Polyester Dispersions

    NASA Astrophysics Data System (ADS)

    Abu-Jdayil, Basim; Al-Omari, Salah Addin

    2013-07-01

    The rheological behavior of a bentonite clay dispersed in unsaturated polyester was investigated. The effects of the solid content and particle size on the steady and transient rheological properties of the dispersions were studied. In addition, two types of bentonite with different Na+/Ca+2 ratio were used in this study. The Herschel-Bulkley and the Weltman models were used to describe the apparent viscosity of the bentonite-polyester composite in relation to the shear rate and shearing time. The bentonite-polyester dispersions were found to exhibit both Newtonian and non-Newtonian behavior. The transition from a Newtonian to a Bingham plastic and then to a shear-thinning material with a yield stress was found to depend on the solid concentration, the particle size, and the type of bentonite. At a low solid content, the apparent viscosity of the bentonite dispersion increased linearly with solid concentration. But a dramatic increase in the apparent viscosity beyond a solid content of 20 wt.% was observed. On the other hand, a thixotropic behavior was detected in bentonite-polyester dispersions with a high solid content and a low particle size. However, this behavior was more pronounced in dispersions with a high Na+/Ca+2 ratio.

  6. 21 CFR 177.1590 - Polyester elastomers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyester elastomers. 177.1590 Section 177.1590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as...

  7. 21 CFR 177.1590 - Polyester elastomers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyester elastomers. 177.1590 Section 177.1590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as...

  8. 21 CFR 177.1590 - Polyester elastomers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyester elastomers. 177.1590 Section 177.1590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as...

  9. 21 CFR 177.1590 - Polyester elastomers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyester elastomers. 177.1590 Section 177.1590 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use...

  10. Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites

    DTIC Science & Technology

    2001-11-01

    Montmorillonite Composites DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Nanophase and...Mechanical Properties of Unsaturated Polyester / Montmorillonite Composites A. Baran Inceoglu and Ulku Yilmazer Middle East Technical University, Chemical...analysed the nature of the curing agent on structure. Kornmann, Berglund and Giannelis [8] studied nanocomposites based on montmorillonite modified

  11. Thermal and physical characterization of glycerol polyesters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glycerol polyesters were prepared by the condensation of glycerol and adipic acid, azelaic acid, sebacic acid, or suberic acids. After 48 hours at 125 deg C the polymers were clear and flexible. Samples of the reaction mixtures were analyzed by modulated differential scanning calorimetry to identi...

  12. Spreading coefficients of aliphatic hydrocarbons on water

    SciTech Connect

    Takii, Taichi; Mori, Y.H. . Dept. of Mechanical Engineering)

    1993-11-01

    Experiments have been performed to determine the equilibrium spreading coefficients of some aliphatic hydrocarbons (C[sub 6]C[sub 10]) on water. The thickness of a discrete lens of each hydrocarbon sample floating on a stagnant water pool was measured interferometrically and used to calculate the spreading coefficient of the hydrocarbon with the aid of Langmuir's capillarity theory. The dependences of the spreading coefficient, thus observed, on temperature (0--50 C) and on the number of carbon atoms in the hydrocarbon molecule are in qualitative agreement with the predictions based on the Lifshitz theory of van der Waals forces.

  13. Aliphatic hydrocarbons of the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cronin, John R.; Pizzarello, Sandra

    1990-01-01

    Hydrocarbon fractions from the Murchison meteorite were prepared using benzene-methanol as the extraction solvent, fractionated on silica gel columns, and analyzed using gas chromatography combined with mass spectrometry and IR and NMR techniques. Results indicate that the most abundant aliphatic hydrocarbon components of the Murchison meteorite are C15 to C30 branched-alkyl-substituted mono-, di-, and tricyclic alkanes. It is shown that the n-alkanes, methyl alkanes, and isoprenoid alkanes that are sometimes found in extracts of the Murchison meteorite are terrestrial contaminants.

  14. Nanoprecipitation and Spectroscopic Characterization of Curcumin-Encapsulated Polyester Nanoparticles.

    PubMed

    Leung, Mandy H M; Harada, Takaaki; Dai, Sheng; Kee, Tak W

    2015-10-27

    Curcumin-encapsulated polyester nanoparticles (Cur-polyester NPs) of approximately 100 nm diameter with a negatively charged surface were prepared using a one-step nanoprecipitation method. The Cur-polyester NPs were prepared using polylactic acid, poly(D,L-lactic-co-glycolic acid) and poly(ϵ-caprolactone) without any emulsifier or surfactant. The encapsulation of curcumin in these polyester NPs greatly suppresses curcumin degradation in the aqueous environment due to its segregation from water. In addition, the fluorescence of curcumin in polyester NPs has a quantum yield of 4 to 5%, which is higher than that of curcumin in micellar systems and comparable to those in organic solvents, further supporting the idea that the polyester NPs are capable of excluding water from curcumin. Furthermore, the results from femtosecond fluorescence upconversion spectroscopy reveal that there is a decrease in the signal amplitude corresponding to solvent reorganization of excited state curcumin in the polyester NPs compared with curcumin in micellar systems. The Cur-polyester NPs also show a lack of deuterium isotope effect in the fluorescence lifetime. These results indicate that the interaction between curcumin and water in the polyester NPs is significantly weaker than that in micelles. Therefore, the aqueous stability of curcumin is greatly improved due to highly effective segregation from water. The overall outcome suggests that the polyester NPs prepared using the method reported herein are an attractive system for encapsulating and stabilizing curcumin in the aqueous environment.

  15. Synthesis and characterization of oleophobic fluorinated polyester films

    NASA Astrophysics Data System (ADS)

    Demir, Tugba

    The study presented in this dissertation is dedicated to the synthesis and characterization of oleophobic fluorinated polyester films. Specifically, the blending of oleophilic polyethylene terephthalate (PET) with low surface energy materials such as fluorinated polyesters has been used in order to fabricate oleophobic PET films. First, fluorinated polyesters (P(PF-oate-R)) possessing different end-groups (-COOH, -OH and -CF3) are synthesized via polycondensation reaction of isophthaloyl chloride with perfluoro ether alcohols. Then, they are solvent-blended with PET at various concentrations to obtain oleophobic polyester films of different compositions. In addition, the films are annealed to investigate the effect of annealing on surface properties of the films. The results show that the obtained PET/P(PF-oate-R) polyester films demonstrate low wettability that depended on the polyester end-groups, film compositions, and annealing. It is found that PET blended with fluorinated polyesters terminated with CF3 groups exhibit higher contact angle (CA) with water and oils than other polyesters. In addition, CA increases with increasing P(PF-oate-R) polyester content in blends. To facilitate the oleophobicity of PET films, the fluorinated polyesters terminated with -CF3 groups with two different Mw were synthesized and blended with PET. The results reveal that at low concentrations, low molecular weight polyesters migrate to the surface easily, resulting in higher surface coverage. Thus, it leads to higher water and oil repellency. On the other hand, when they are used at high concentrations, higher molecular weight polyesters in blends reduce the wettability of the surface to the higher level. It is found that the wettability of the PET film surface depends on not only the Mw of polyesters, but also on annealing protocol. To this end, the effects of the annealing temperature on surface wettability are also examined.

  16. Biofiltration of gasoline and diesel aliphatic hydrocarbons.

    PubMed

    Halecky, Martin; Rousova, Jana; Paca, Jan; Kozliak, Evguenii; Seames, Wayne; Jones, Kim

    2015-02-01

    The ability of a biofilm to switch between the mixtures of mostly aromatic and aliphatic hydrocarbons was investigated to assess biofiltration efficiency and potential substrate interactions. A switch from gasoline, which consisted of both aliphatic and aromatic hydrocarbons, to a mixture of volatile diesel n-alkanes resulted in a significant increase in biofiltration efficiency, despite the lack of readily biodegradable aromatic hydrocarbons in the diesel mixture. This improved biofilter performance was shown to be the result of the presence of larger size (C₉-C(12)) linear alkanes in diesel, which turned out to be more degradable than their shorter-chain (C₆-C₈) homologues in gasoline. The evidence obtained from both biofiltration-based and independent microbiological tests indicated that the rate was limited by biochemical reactions, with the inhibition of shorter chain alkane biodegradation by their larger size homologues as corroborated by a significant substrate specialization along the biofilter bed. These observations were explained by the lack of specific enzymes designed for the oxidation of short-chain alkanes as opposed to their longer carbon chain homologues.

  17. OLFACTORY RESPONSES OF BLOWFLIES TO ALIPHATIC ALDEHYDES

    PubMed Central

    Dethier, V. G.

    1954-01-01

    The response of the blowfly Phormia regina to stimulation by aldehydes in the vapor phase has been studied by means of a specially designed olfactometer. The median rejection threshold and the maximum acceptance threshold were selected as criteria of response. For both acceptance and rejection the distribution of thresholds in the population is normal with respect to the logarithm of concentration. When thresholds are expressed as molar concentrations, the values decrease progressively as chain length is increased. There is no attraction beyond decanal and no rejection beyond dodecanal. When thresholds are expressed as activities, most members of the aldehyde series are approximately equally stimulating at rejection and equally stimulating at acceptance. The relationship is most exact over the middle range of chain lengths. There is a tendency for the terminal members to stimulate at higher activities. These relationships are in close agreement with those which were found earlier to apply to the normal aliphatic alcohols. The similarity between the relative actions of the members of the two series suggests that the relation of equal olfactory stimulation at equal thermodynamic activities by homologous aliphatic compounds at least for homologues of intermediate chain length may be of rather general application in olfaction. PMID:13174780

  18. 40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses... salt (PMN P-92-1352) is subject to reporting under this section for the significant new uses...

  19. High performance polyester concrete using recycled PET

    SciTech Connect

    Rebeiz, K.S.

    1995-10-01

    Recycled polyethylene terephthalate (PET) plastic wastes could be used in production of unsaturated polyester resins. In turn, these resins could be mixed with inorganic aggregates to produce polymer concrete (PC). Unsaturated polyesters based on recycled PET might be a potentially lower source cost of resins for producing useful PC based-products. The advantage of recycling PET in PC is that the PET materials do not have to be purified, including removal of colors, to the same extent as other PET recycling applications, which should facilitate the recycling operation and minimize its cost. The recycling of PET in PC could also help save energy and allow the long term disposal of the PET waste, an important advantage in recycling applications.

  20. Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Curran, Jerome

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Headquarters chartered the Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objective of this effort is to demonstrate and validate alternatives to aliphatic isocyanate polyurethane coatings. Successful completion of this project will result in one or more isocyanate-free coating systems qualified for use at Air Force Space Command (AFSPC) and NASA centers participating in this study. The objective of this project is to qualify the candidates under the specifications for the standard system. This project will compare coating performance of the proposed alternatives to existing coating systems or standards.

  1. Adsorption of halogenated aliphatic contaminants by graphene nanomaterials.

    PubMed

    Zhou, Yang; Apul, Onur Guven; Karanfil, Tanju

    2015-08-01

    In this study, adsorption of ten environmentally halogenated aliphatic synthetic organic compounds (SOCs) by a pristine graphene nanosheet (GNS) and a reduced graphene oxide (rGO) was examined, and their adsorption behaviors were compared with those of a single-walled carbon nanotube (SWCNT) and a granular activated carbon (GAC). In addition, the impacts of background water components (i.e., natural organic matter (NOM), ionic strength (IS) and pH) on the SOC adsorption behavior were investigated. The results indicated HD3000 and SWCNT with higher microporous volumes exhibited higher adsorption capacities for the selected aliphatic SOCs than graphenes, demonstrating microporosity of carbonaceous adsorbents played an important role in the adsorption. Analysis of adsorption isotherms demonstrated that hydrophobic interactions were the dominant contributor to the adsorption of aliphatic SOCs by graphenes. However, π-π electron donor-acceptor and van der Waals interactions are likely the additional mechanisms contributing to the adsorption of aliphatic SOCs on graphenes. Among the three background solution components examined, NOM showed the most influential effect on adsorption of the selected aliphatic SOCs, while pH and ionic strength had a negligible effects. The NOM competition on aliphatic adsorption was less pronounced on graphenes than SWCNT. Overall, in terms of adsorption capacities, graphenes tested in this study did not exhibit a major advantage over SWCNT and GAC for the adsorption of aliphatic SOCs.

  2. 40 CFR 721.6485 - Hydroxy terminated polyester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydroxy terminated polyester. 721.6485... Substances § 721.6485 Hydroxy terminated polyester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydroxy terminated...

  3. 40 CFR 721.6485 - Hydroxy terminated polyester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydroxy terminated polyester. 721.6485... Substances § 721.6485 Hydroxy terminated polyester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydroxy terminated...

  4. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this...

  5. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this...

  6. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this...

  7. 40 CFR 721.10213 - Polyether polyester copolymer phosphate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phosphate (generic). 721.10213 Section 721.10213 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10213 Polyether polyester copolymer phosphate (generic). (a) Chemical... as polyether polyester copolymer phosphate (PMN P-09-253) is subject to reporting under this...

  8. 75 FR 23300 - Greige Polyester/Cotton Printcloth From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-03

    ... COMMISSION Greige Polyester/Cotton Printcloth From China AGENCY: United States International Trade Commission.../cotton printcloth from China. SUMMARY: The Commission hereby gives notice that it has instituted a review... revocation of the antidumping duty order on greige polyester/cotton printcloth from China would be likely...

  9. Composites of vinyl polystyrylpyridine/bismaleimide-aliphatic ether copolymers

    NASA Technical Reports Server (NTRS)

    Heimbuch, Alvin H.; Rosser, Robert W.; Hsu, Ming-Ta S.

    1989-01-01

    An aliphatic ether bismaleimide was prepared and coreacted with a polyvinylstyrylpyridine (VPSP) oligomer. Studies showed that a controlled ratio of aliphatic to aromatic units in the polymer backbone improved both processibility and interlaminar shear properties for the carbon-fiber composite system. This modified resin was readily soluble in tetrahydrofuran, allowing for better fiber impregnation and thus enhancing adhesive properties and reproducibility. DSC studies have shown a lower cure temperature for the copolymer than for the neat aliphatic bismaleimide, and a glass transition temperature of 260 C, which is more than adequate for most applications. Limited measurements indicated an improvement in toughness (impact resistance).

  10. Friction and wear performance of some thermoplastic polymers and polymer composites against unsaturated polyester

    NASA Astrophysics Data System (ADS)

    Unal, H.; Mimaroglu, A.; Arda, T.

    2006-09-01

    Wear experiments have been carried out with a range of unfilled and filled engineering thermoplastic polymers sliding against a 15% glass fibre reinforced unsaturated polyester polymer under 20, 40 and 60 N loads and 0.5 m/s sliding speed. Pin materials used in this experimental investigation are polyamide 66 (PA 66), poly-ether-ether-ketone (PEEK) and aliphatic polyketone (APK), glass fibre reinforced polyamide 46 (PA 46 + 30% GFR), glass fibre reinforced polytetrafluoroethylene (PTFE + 17% GFR), glass fibre reinforced poly-ether-ether-ketone (PEEK + 20% GFR), glass fibre reinforced poly-phylene-sulfide (PPS + 30% GFR), polytetrafluoroethylene filled polyamide 66 (PA 66 + 10% PTFE) and bronze filled pofytetrafluoroethylene (PTFE + 25% bronze) engineering polymers. The disc material is a 15% glass fibre reinforced unsaturated polyester thermoset polymer produced by Bulk Moulding Compound (BMC). Sliding wear tests were carried out on a pin-on-disc apparatus under 0.5 m/s sliding speed and load values of 20, 40 and 60 N. The results showed that the highest specific wear rate is for PPS + 30% GFR with a value of 1 × 10 -11 m 2/N and the lowest wear rate is for PTFE + 17% GFR with a value of 9.41 × 10 -15 m 2/N. For the materials and test conditions of this investigation, apart from polyamide 66 and PA 46 + 30% GFR polymers, the coefficient of friction and specific wear rates are not significantly affected by the change in load value. For polyamide 66 and PA 46 + 30% GFR polymers the coefficient of friction and specific wear rates vary linearly with the variation in load values.

  11. 76 FR 57955 - Certain Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... International Trade Administration Certain Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty... administrative review of the antidumping duty order on certain polyester staple fiber from Taiwan. The period of... certain polyester staple fiber from Taiwan. See Certain Polyester Staple Fiber From Taiwan:...

  12. 78 FR 51707 - Certain Polyester Staple Fiber From the Republic of Korea: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... International Trade Administration Certain Polyester Staple Fiber From the Republic of Korea: Rescission of... administrative review of the antidumping duty order on certain polyester staple fiber (polyester staple fiber... antidumping duty order on polyester staple fiber from Korea for the period May 1, 2012, through April 30,...

  13. Reactive modification of polyesters and their blends

    NASA Astrophysics Data System (ADS)

    Wan, Chen

    2004-12-01

    As part of a broader research effort to investigate the chemical modification of polyesters by reactive processing a low molecular weight (MW) unsaturated polyester (UP) and a higher MW saturated polyester, polyethylene terephthalate (PET), alone or blended with polypropylene (PP) were melt processed in a batch mixer and continuous twin screw extruders. Modification was monitored by on-line rheology and the products were characterized primarily by off-line rheology, morphology and thermal analysis. Efforts were made to establish processing/property relationships and provide an insight of the accompanying structural changes. The overall response of the reactively modified systems was found to be strongly dependent on the component characteristics, blend composition, type and concentrations of reactive additives and processing conditions. The work concluded that UP can be effectively modified through reactive melt processing. Its melt viscosity and MW can be increased through chemical reactions between organic peroxides (POX) and chain unsaturation or between MgO and carboxyl/hydroxyl end groups. Reactive blending of PP/UP blends through peroxide modification gave finer and more uniform morphology than unreacted blends and at a given PP/UP weight ratio more thermoplastic elastomers-like rheological behavior. This is due to the continuously decreasing viscosity ratio of PP/UP towards unity by the competing reactions between POX and the blend components and formation of PP-UP copolymers which serve as in-situ compatibilizers to promote better interfacial adhesion. Kinetics of the competing reactions were analyzed through a developed model. In addition to POX concentration and mixing efficiency, rheology and morphology of UP/PP bends were significantly affected by the addition of inorganic and organic coagents. Addition of coagents such as a difunctional maleimide, MgO and/or an anhydride functionalized PP during reactive blending offers effective means for tailoring

  14. ANAEROBIC AND AEROBIC TREATMENT OF CHLORINATED ALIPHATIC COMPOUNDS

    EPA Science Inventory

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). Glucose,...

  15. Silver-Catalyzed Decarboxylative Bromination of Aliphatic Carboxylic Acids.

    PubMed

    Tan, Xinqiang; Song, Tao; Wang, Zhentao; Chen, He; Cui, Lei; Li, Chaozhong

    2017-03-13

    The silver-catalyzed Hunsdiecker bromination of aliphatic carboxylic acids is described. With Ag(Phen)2OTf as the catalyst and dibromoisocyanuric acid as the brominating agent, various aliphatic carboxylic acids underwent decarboxylative bromination to provide the corresponding alkyl bromides under mild conditions. This method not only is efficient and general but also enjoys wide functional group compatibility. An oxidative radical mechanism involving Ag(II) intermediates is proposed.

  16. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, H.L.; Palasz, P.D.; Ratcliff, M.A.

    1984-12-20

    A process is described for producing peracids from lactic acid-containing solutions derived from biomass processing systems. It consists of adjusting the pH of the solution to about 8 to 9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids. The solution is oxidized to produce volatile lower aliphatic aldehydes. The aldehydes are removed as they are generated and converted to peracids.

  17. Process for producing peracids from aliphatic hydroxy carboxylic acids

    DOEpatents

    Chum, Helena L.; Ratcliff, Matthew A.; Palasz, Peter D.

    1986-01-01

    A process for producing peracids from lactic acid-containing solutions derived from biomass processing systems comprising: adjusting the pH of the solution to about 8-9 and removing alkaline residue fractions therefrom to form a solution comprised substantially of lower aliphatic hydroxy acids; oxidizing the solution to produce volatile lower aliphatic aldehydes; removing said aldehydes as they are generated; and converting said aldehydes to peracids.

  18. Hydrolytic kinetics of biodegradable polyester monolayers

    SciTech Connect

    Lee, W.K.; Gardella, J.A. Jr.

    2000-04-04

    The rate of hydrolysis of Langmuir monolayer films of a series of biodegradable polyesters was investigated at the air/water interface. The present study investigated parameters such as degradation medium, pH, and time. The hydrolysis of polyester monolayers strongly depended on both the degradation medium used to control subphase pH and the concentration of active ions. Under the conditions studied here, polymer monolayers showed faster hydrolysis when they were exposed to a basic subphase rather than that of acidic or neutral subphase. The basic (pH = 10) hydrolysis of [poly(l-lactide)/polycaprolactone](l-PLA/PCL 1/1 by mole) blend was faster than that of each homopolymer at the initial stage. This result is explained by increasing numbers of base attack sites per unit area owing to the very slow hydrolysis of PCL, a dilution effect on the concentration of l-PLA monolayers. Conversely the hydrolytic behavior of l-lactide-co-caprolactone (1/1 by mole) was similar to that of PCL even though the chemical compositions of the blend and the copolymer are very similar to each other. The resistance of the copolymer to hydrolysis might be attributed to the hydrophobicity and the steric hindrance of caprolactone unit in the copolymer.

  19. Polyester Based On Biodiesel Industry Residues

    NASA Astrophysics Data System (ADS)

    Carvalho, Ricardo F.; Jose, Nadia M.; Carvalho, Adriana L. S.; Miranda, Cleidiene S.; Thomas, Natasha I. R.

    2011-12-01

    Biodiesel production is growing exponentially offering the energy network an alternative fuel from renewable sources. However, large quantities of crude glycerol are generated as a bi-product (10-30%) wt during the transesterification process of biodiesel. Although glycerol in its purified form has a number of uses, crude glycerol obtained from the biodiesel industry contains many impurities and requires expensive purification processes resulting in vast amounts of glycerol without adequate destination which are causing rise to many environmental concerns. Large scale applications of glycerol are necessary to accompany its production. Polyesters obtained via the polycondensation of glycerol with aromatic acids were prepared in different ratios. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were used to investigate thermal stability. The composite structure was characterized by Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (DRX). These aromatic polyesters could offer a low cost environmentally compatible material for the production of components such as tiles, boards, sanitary vases and sinks for the construction industry.

  20. CYP86B1 Is Required for Very Long Chain ω-Hydroxyacid and α,ω-Dicarboxylic Acid Synthesis in Root and Seed Suberin Polyester1[W][OA

    PubMed Central

    Compagnon, Vincent; Diehl, Patrik; Benveniste, Irène; Meyer, Denise; Schaller, Hubert; Schreiber, Lukas; Franke, Rochus; Pinot, Franck

    2009-01-01

    Suberin composition of various plants including Arabidopsis (Arabidopsis thaliana) has shown the presence of very long chain fatty acid derivatives C20 in addition to the C16 and C18 series. Phylogenetic studies and plant genome mining have led to the identification of putative aliphatic hydroxylases belonging to the CYP86B subfamily of cytochrome P450 monooxygenases. In Arabidopsis, this subfamily is represented by CYP86B1 and CYP86B2, which share about 45% identity with CYP86A1, a fatty acid ω-hydroxylase implicated in root suberin monomer synthesis. Here, we show that CYP86B1 is located to the endoplasmic reticulum and is highly expressed in roots. Indeed, CYP86B1 promoter-driven β-glucuronidase expression indicated strong reporter activities at known sites of suberin production such as the endodermis. These observations, together with the fact that proteins of the CYP86B type are widespread among plant species, suggested a role of CYP86B1 in suberin biogenesis. To investigate the involvement of CYP86B1 in suberin biogenesis, we characterized an allelic series of cyp86B1 mutants of which two strong alleles were knockouts and two weak ones were RNA interference-silenced lines. These root aliphatic plant hydroxylase lines had a root and a seed coat aliphatic polyester composition in which C22- and C24-hydroxyacids and α,ω-dicarboxylic acids were strongly reduced. However, these changes did not affect seed coat permeability and ion content in leaves. The presumed precursors, C22 and C24 fatty acids, accumulated in the suberin polyester. These results demonstrate that CYP86B1 is a very long chain fatty acid hydroxylase specifically involved in polyester monomer biosynthesis during the course of plant development. PMID:19525321

  1. Phase separation during radiation crosslinking of unsaturated polyester resin

    NASA Astrophysics Data System (ADS)

    Pucić, Irina; Ranogajec, Franjo

    2003-06-01

    Phase separation during radiation-initiated crosslinking of unsaturated polyester resin was studied. Residual reactivity of liquid phases and gels of partially cured samples was determined by DSC. Uncured resin and liquid phases showed double reaction exotherm, gels had a single maximum that corresponded to higher-temperature maximum of liquid parts. The lower-temperature process was attributed to styrene-polyester copolymerization. At higher temperatures, polyester unsaturations that remained unreacted due to microgel formation homopolymerized. FTIR revealed different composition of phases. In thicker samples, reaction heat influenced microgel formation causing delayed appearance of gel and faster increase in conversion.

  2. Synthesis of polyester by means of genetic code reprogramming.

    PubMed

    Ohta, Atsushi; Murakami, Hiroshi; Higashimura, Eri; Suga, Hiroaki

    2007-12-01

    Here we report the ribosomal polymerization of alpha-hydroxy acids by means of genetic code reprogramming. The flexizyme system, a ribozyme-based tRNA acylation tool, was used to re-assign individual codons to seven types of alpha-hydroxy acids, and then polyesters were synthesized under controls of the reprogrammed genetic code using a reconstituted cell-free translation system. The sequence and length of the polyester segments were specified by the mRNA template, indicating that high-fidelity ribosome expression of polyesters was possible. This work opens a door for the mRNA-directed synthesis of backbone-altered biopolymers.

  3. Cloud condensation nuclei (CCN) activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D. N.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-06-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g., hydroxyl radical and nitrate radical). The particle can contain both secondary organic aerosol (SOA) and inorganic salts. The ratio of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ, ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3) contains less volatile compounds than the primary aliphatic amine (BA) aerosol. As relative humidity (RH) increases, inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. The humid BA + N2O5 aerosol products were found to be very sensitive to the temperature at which the measurements were made within the streamwise continuous-flow thermal gradient CCN counter; κ ranges from 0.4 to 0.7 dependent on the instrument supersaturation (ss) settings. The variance of the measured aerosol κ values indicates that simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems' κ ranges within 0.2 < κ < 0.7. This work indicates that aerosols formed via nighttime reactions with amines are likely to produce hygroscopic and volatile aerosol, whereas photochemical reactions with OH produce secondary organic aerosol of lower CCN activity. The contributions of semivolatile secondary organic and inorganic material from aliphatic amines must be considered for accurate hygroscopicity and CCN predictions from aliphatic amine systems.

  4. Modelling pH-Optimized Degradation of Microgel-Functionalized Polyesters

    PubMed Central

    Hermann, Marcus; Fehér, Katalin; Molano Lopez, Catalina; Pich, Andrij; Hannen, Julian

    2016-01-01

    We establish a novel mathematical model to describe and analyze pH levels in the vicinity of poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate-co-N-vinylimidazole) (VCL/AAEM/VIm) microgel-functionalized polymers during biodegradation. Biodegradable polymers, especially aliphatic polyesters (polylactide/polyglycolide/polycaprolactone homo- and copolymers), have a large range of medical applications including delivery systems, scaffolds, or stents for the treatment of cardiovascular diseases. Most of those applications are limited by the inherent drop of pH level during the degradation process. The combination of polymers with VCL/AAEM/VIm-microgels, which aims at stabilizing pH levels, is innovative and requires new mathematical models for the prediction of pH level evaluation. The mathematical model consists of a diffusion-reaction PDE system for the degradation including reaction rate equations and diffusion of acidic degradation products into the vicinity. A system of algebraic equations is coupled to the degradation model in order to describe the buffering action of the microgel. The model is validated against the experimental pH-monitored biodegradation of microgel-functionalized polymer foils and is available for the design of microgel-functionalized polymer components.

  5. Development of novel electrically conductive scaffold based on hyperbranched polyester and polythiophene for tissue engineering applications.

    PubMed

    Jaymand, Mehdi; Sarvari, Raana; Abbaszadeh, Parisa; Massoumi, Bakhshali; Eskandani, Morteza; Beygi-Khosrowshahi, Younes

    2016-11-01

    A novel electrically conductive scaffold containing hyperbranched aliphatic polyester (HAP), polythiophene (PTh), and poly(ε-caprolactone) (PCL) for regenerative medicine application was succesfully fabricated via electrospinning technique. For this purpose, the HAP (G4; fourth generation) was synthesized via melt polycondensation reaction from tris(methylol)propane and 2,2-bis(methylol)propionic acid (bis-MPA). Afterward, the synthesized HAP was functionalized with 2-thiopheneacetic acid in the presence of N,N-dicyclohexyl carbodiimide, and N-hydroxysuccinimide as coupling agent and catalyst, respectively, to afford a thiophene-functionalized G4 macromonomer. This macromonomer was subsequently used in chemical oxidation copolymerization with thiophene monomer to produce a star-shaped PTh with G4 core (G4-PTh). The solution of the G4-PTh, and PCL was electrospun to produce uniform, conductive, and biocompatible nanofibers. The conductivity, hydrophilicity, and mechanical properties of these nanofibers were investigated. The biocompatibility of the electrospun nanofibers were evaluated by assessing the adhesion and proliferation of mouse osteoblast MC3T3-E1 cell line and in vitro degradability to demonstrate their potential uses as a tissue engineering scaffold. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2673-2684, 2016.

  6. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.

    PubMed

    Wei, Ren; Oeser, Thorsten; Zimmermann, Wolfgang

    2014-01-01

    Thermophilic actinomycetes produce enzymes capable of hydrolyzing synthetic polyesters such as polyethylene terephthalate (PET). In addition to carboxylesterases, which have hydrolytic activity predominantly against PET oligomers, esterases related to cutinases also hydrolyze synthetic polymers. The production of these enzymes by actinomycetes as well as their recombinant expression in heterologous hosts is described and their catalytic activity against polyester substrates is compared. Assays to analyze the enzymatic hydrolysis of synthetic polyesters are evaluated, and a kinetic model describing the enzymatic heterogeneous hydrolysis process is discussed. Structure-function and structure-stability relationships of actinomycete polyester hydrolases are compared based on molecular dynamics simulations and recently solved protein structures. In addition, recent progress in enhancing their activity and thermal stability by random or site-directed mutagenesis is presented.

  7. Aliphatic alcohols in spirits inhibit phagocytosis by human monocytes.

    PubMed

    Pál, László; Árnyas, Ervin M; Bujdosó, Orsolya; Baranyi, Gergő; Rácz, Gábor; Ádány, Róza; McKee, Martin; Szűcs, Sándor

    2015-04-01

    A large volume of alcoholic beverages containing aliphatic alcohols is consumed worldwide. Previous studies have confirmed the presence of ethanol-induced immunosuppression in heavy drinkers, thereby increasing susceptibility to infectious diseases. However, the aliphatic alcohols contained in alcoholic beverages might also impair immune cell function, thereby contributing to a further decrease in microbicidal activity. Previous research has shown that aliphatic alcohols inhibit phagocytosis by granulocytes but their effect on human monocytes has not been studied. This is important as they play a crucial role in engulfment and killing of pathogenic microorganisms and a decrease in their phagocytic activity could lead to impaired antimicrobial defence in heavy drinkers. The aim of this study was to measure monocyte phagocytosis following their treatment with those aliphatic alcohols detected in alcoholic beverages. Monocytes were separated from human peripheral blood and phagocytosis of opsonized zymosan particles by monocytes treated with ethanol and aliphatic alcohols individually and in combination was determined. It was shown that these alcohols could suppress the phagocytic activity of monocytes in a concentration-dependent manner and when combined with ethanol, they caused a further decrease in phagocytosis. Due to their additive effects, it is possible that they may inhibit phagocytosis in a clinically meaningful way in alcoholics and episodic heavy drinkers thereby contribute to their increased susceptibility to infectious diseases. However, further research is needed to address this question.

  8. Hydrolyzable polyester resins, varnishes and coating compositions containing the same

    DOEpatents

    Yamamori, Naoki; Yokoi, Junji; Yoshikawa, Motoyoshi

    1984-01-01

    Preparation of hydrolyzable polyester resin comprising reacting polycarboxylic acid and polyhydric alcohol components, which is characterized by using, as at least part of said polyhydric alcohol component, a metallic salt of hydroxy carboxylic acid of the formula defined and effecting the polycondensation at a temperature which is no more than the decomposition temperature of said metallic salt. The polyester resins are useful as resinous vehicle of varnishes and antifouling paints.

  9. Renewable unsaturated polyesters from muconic acid

    DOE PAGES

    Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.; ...

    2016-09-27

    cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated intomore » poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as a

  10. Renewable unsaturated polyesters from muconic acid

    SciTech Connect

    Rorrer, Nicholas A.; Dorgan, John R.; Vardon, Derek R.; Martinez, Chelsea R.; Yang, Yuan; Beckham, Gregg T.

    2016-09-27

    cis,cis-Muconic acid is an unsaturated dicarboxylic acid that can be produced in high yields via biological conversion of sugars and lignin-derived aromatic compounds. Muconic acid is often targeted as an intermediate to direct replacement monomers such as adipic or terephthalic acid. However, the alkene groups in muconic acid provide incentive for its direct use in polymers, for example, in the synthesis of unsaturated polyester resins. Here, biologically derived muconic acid is incorporated into polyesters via condensation polymerization using the homologous series of poly(ethylene succinate), poly(propylene succinate), poly(butylene succinate), and poly(hexylene succinate). Additionally, dimethyl cis,cis-muconate is synthesized and subsequently incorporated into poly(butylene succinate). NMR measurements demonstrate that alkene bonds are present in the polymer backbones. In all cases, the glass transition temperatures are increased whereas the melting and degradation temperatures are decreased. In the case of poly(butylene succinate), utilization of neat muconic acid yields substoichiometric incorporation consistent with a tapered copolymer structure, whereas the muconate diester exhibits stoichiometric incorporation and a random copolymer structure based on thermal and mechanical properties. Prototypical fiberglass panels were produced by infusing a mixture of low molecular weight poly(butylene succinate-co-muconate) and styrene into a woven glass mat and thermally initiating polymerization resulting in thermoset composites with shear moduli in excess of 30 GPa, a value typical of commercial composites. The increased glass transition temperatures with increasing mucconic incorporation leads to improved composites properties. We find that the molecular tunability of poly(butylene succinate-co-muconate) as a tapered or random copolymer enables the tunability of composite properties. Altogether, this study demonstrates the utility of muconic acid as

  11. A Molecular Framework for Tunable Functional Response of Programmable Polyesters

    NASA Astrophysics Data System (ADS)

    Jha, Kshitij C.; Joy, Abraham; Tsige, Mesfin

    All-atom molecular dynamics (MD) simulations, using the OPLS force field, were carried out on a library of multifunctional polyesters with peptide-like functional pendant groups. The polyesters are structural peptidomimetics and can be utilized for applications in sensing, and separation, and as biomedical scaffolds. The modular design of the polyesters affords a range of hydrophilic and hydrophobic behavior. We used MD to quantify the hydrogen bond dynamics, end-to-end distance, and radii of gyration with changes in side group functionality, concentration, and temperature. We discerned trends for the physical behavior of polyesters with change in nature and ratio of the side groups. We also observed functional assembly for dissimilar polyesters, and correlated the assembly to the affinity of side groups. The trends in physical behavior and dissimilar assembly can be mined for iterative design towards programmatic assembly of the modular multifunctional polyesters under study. This work was made possible by funding from the ACS Petroleum Research Fund (ACS PRF 54801- ND5).

  12. Rheological behaviour of nanocellulose reinforced unsaturated polyester nanocomposites.

    PubMed

    Chirayil, Cintil Jose; Mathew, Lovely; Hassan, P A; Mozetic, Miran; Thomas, Sabu

    2014-08-01

    Nanocellulose (NC) reinforced unsaturated polyester (UPR) composites were prepared by mechanical mixing process. Effect of isora nanocellulose on the properties of polyester composites has been studied in detail. Rheological properties of unsaturated polyester resin suspensions containing various amounts (0.5, 1 and 3wt%) of nanocellulose were investigated by oscillatory rheometer with parallel plate geometry. Analysis of curing revealed that the time required for gelation in NC filled UPR is lower than neat resin, which describe the catalytic action of NC on cure reaction. NC reinforced polyester suspensions showed shear thinning behaviour initially and at higher shear rates they showed Newtonian behaviour. Tensile and impact properties showed superior behaviour revealing improved interfacial bonding between nanofiller and the polymer matrix. With respect to the neat polyester the percentage increase in tensile strength of 0.5wt% NC reinforced composite is 57%. Optical and atomic force microscopic studies confirmed that the dispersion state of NC within the polyester matrix was adequate. Maximum glass transition temperature is obtained for 0.5wt% NC reinforced composite, which showed an increase of 10°C than neat resin.

  13. Catalytic Asymmetric Hydroamination of Unactivated Internal Olefins to Aliphatic Amines

    PubMed Central

    Yang, Yang; Shi, Shi-Liang; Niu, Dawen; Liu, Peng; Buchwald, Stephen L.

    2015-01-01

    Catalytic assembly of enantiopure aliphatic amines from abundant and readily available precursors has long been recognized as a paramount challenge in synthetic chemistry. Herein, we describe a mild and general copper-catalyzed hydroamination that effectively converts unactivated internal olefins, an important yet unexploited class of abundant feedstock chemicals, into highly enantioenriched α-branched amines (≥ 96% enantiomeric excess) featuring two minimally differentiated aliphatic substituents. This method provides a powerful means to access a broad range of advanced, highly functionalized enantioenriched amines of interest in pharmaceutical research and other areas. PMID:26138973

  14. Applicability of the theory of thermodynamic similarity to predict the enthalpies of vaporization of aliphatic aldehydes

    NASA Astrophysics Data System (ADS)

    Esina, Z. N.; Korchuganova, M. R.

    2015-06-01

    The theory of thermodynamic similarity is used to predict the enthalpies of vaporization of aliphatic aldehydes. The predicted data allow us to calculate the phase diagrams of liquid-vapor equilibrium in a binary water-aliphatic aldehyde system.

  15. Photoresponsive polyesters by incorporation of alkoxyphenacyl or coumarin chromophores along the backbone.

    PubMed

    Chamsaz, Elaheh A; Sun, Shuangyi; Maddipatla, Murthy V S N; Joy, Abraham

    2014-02-01

    The synthesis and photochemical characterization of two classes of photoresponsive polyesters are described. These polyesters contain either alkoxyphenacyl or coumarin chromophores embedded along the polymer chain. The alkoxyphenacyl polyesters undergo efficient photoinduced chain scission upon irradiation at 300 nm in solution or as a nanoparticle suspension. At 254 nm the coumarin polyesters undergo polymer chain scission. Irradiation of the coumarin polyesters in solution at 350 nm results in both chain crosslinking and chain scission behavior, while irradiation of the coumarin polyesters as nanoparticles results in chain crosslinking. The properties of the alkoxyphenacyl and coumarin polyesters are influenced by the choice of diacid as seen from their thermal behavior. The use of glutamic acid enabled surface or bulk functionalization of the photoresponsive polymers. In addition, controlled release of Nile Red from coumarin polyester nanoparticles is demonstrated by modulation of the wavelength and intensity of irradiation.

  16. 77 FR 54562 - Certain Polyester Staple Fiber From the Republic of Korea: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ...] Certain Polyester Staple Fiber From the Republic of Korea: Rescission of Antidumping Duty Administrative...'') initiated an administrative review of the antidumping duty order on certain polyester staple fiber from...

  17. SOLUTION RHEOLOGY OF HYPERBRANCHED POLYESTERS AND THEIR BLENDS WITH LINEAR POLYMERS

    EPA Science Inventory

    In this study, the rheological properties of different generations of hyperbranched polyesters in 1-methyl-2-pyrrolidinone solvent and their blends with poly(2-hydroxyethyl methacrylate) have ben investigated. All the hyperbranched polyester solutions exhibited Newtonian behavior...

  18. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... aliphatic amine (PMN P-06-702) is subject to reporting under this section for the significant new uses...-specific cartridge) and should include a particulate filter (N100 if oil aerosols are absent, R100, or P100... (HEPA) filters; supplied-air respirator operated in pressure demand or continuous flow mode and...

  19. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aliphatic amine (PMN P-06-702) is subject to reporting under this section for the significant new uses...-specific cartridge) and should include a particulate filter (N100 if oil aerosols are absent, R100, or P100... (HEPA) filters; supplied-air respirator operated in pressure demand or continuous flow mode and...

  20. 40 CFR 721.10199 - Substituted aliphatic amine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aliphatic amine (PMN P-06-702) is subject to reporting under this section for the significant new uses...-specific cartridge) and should include a particulate filter (N100 if oil aerosols are absent, R100, or P100... (HEPA) filters; supplied-air respirator operated in pressure demand or continuous flow mode and...

  1. Introducing Aliphatic Substitution with a Discovery Experiment Using Competing Electrophiles

    ERIC Educational Resources Information Center

    Curran, Timothy P.; Mostovoy, Amelia J.; Curran, Margaret E.; Berger, Clara

    2016-01-01

    A facile, discovery-based experiment is described that introduces aliphatic substitution in an introductory undergraduate organic chemistry curriculum. Unlike other discovery-based experiments that examine substitution using two competing nucleophiles with a single electrophile, this experiment compares two isomeric, competing electrophiles…

  2. Suppression of the Ethanol Withdrawal Syndrome by Aliphatic Diols

    DTIC Science & Technology

    1979-06-07

    Two halogenated hydrocarbons , alcohols exert their intoxicating properties through an interac- which are amphiphiles like alcohols and diols, were both...induce a virtually identical spectrum of phatic hydrocarbons could not. The data suggest that short- intoxication signs. Because of their pharmacological...their ability to induce to determine if partitioning into membrasps is an important intoxication since 1) alcohols and aliphatic hydrocarbons with

  3. Cloud condensation nuclei activity of aliphatic amine secondary aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...

  4. Polyester textile functionalization through incorporation of pH/thermo-responsive microgels. Part II: polyester functionalization and characterization.

    PubMed

    Glampedaki, Pelagia; Calvimontes, Alfredo; Dutschk, Victoria; Warmoeskerken, Marijn M C G

    A new approach to functionalize the surface of polyester textiles is described in this study. Functionalization was achieved by incorporating pH/temperature-responsive polyelectrolyte microgels into the textile surface layer using UV irradiation. The aim of functionalization was to regulate polyester wettability according to ambient conditions by imparting stimuli-responsiveness from the microgel to the textile itself. Microgels consisted of pH/thermo-responsive microparticles of poly(N-isopropylacrylamide-co-acrylic acid) either alone or complexed with the pH-responsive natural polysaccharide chitosan. Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, ζ-potential measurements, and topographical analysis were used for surface characterization. Wettability of polyester textiles was assessed by dynamic wetting, water vapor transfer, and moisture regain measurements. One of the main findings showed that the polyester surface was rendered pH-responsive, both in acidic and alkaline pH region, owing to the microgel incorporation. With a marked relaxation in their structure and an increase in their microporosity, the functionalized textiles exhibited higher water vapor transfer rates both at 20 and 40 °C, and 65% relative humidity compared with the reference polyester. Also, at 40 °C, i.e., above the microgel Lower Critical Solution Temperature, the functionalized polyester textiles had lower moisture regains than the reference. Finally, the type of the incorporated microgel affected significantly the polyester total absorption times, with an up to 300% increase in one case and an up to 80% decrease in another case. These findings are promising for the development of functional textile materials with possible applications in biotechnology, technical, and protective clothing.

  5. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyaziridinyl ester of an aliphatic... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  6. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyaziridinyl ester of an aliphatic... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  7. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of... polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). (a) Chemical substance and... acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (PMN P-11-333) is subject...

  8. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of... polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). (a) Chemical substance and... acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (PMN P-11-333) is subject...

  9. 40 CFR 721.10608 - Aliphatic diisocyanate polymer with alkanediol and alkylglycol (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aliphatic diisocyanate polymer with... Significant New Uses for Specific Chemical Substances § 721.10608 Aliphatic diisocyanate polymer with.... (1) The chemical substance identified generically as aliphatic diisocyanate polymer with...

  10. 40 CFR 721.10608 - Aliphatic diisocyanate polymer with alkanediol and alkylglycol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aliphatic diisocyanate polymer with... Significant New Uses for Specific Chemical Substances § 721.10608 Aliphatic diisocyanate polymer with.... (1) The chemical substance identified generically as aliphatic diisocyanate polymer with...

  11. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  12. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  13. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  14. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  15. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under...

  16. An Undergraduate Experiment in Polyester (PET) Synthesis

    NASA Astrophysics Data System (ADS)

    Cammidge, Andrew N.

    1999-02-01

    The most important polyester manufactured industrially is PET (polyethyleneterephthalate). We describe an experiment that conveniently mimics the industrial synthesis in the undergraduate laboratory. The first step of the reaction is a base-catalyzed transesterification between ethane diol and dimethylterephthalate. Methanol is distilled off to drive the reaction to completion. Excess ethane diol is employed to suppress formation of higher oligomers. The intermediate (bis-(2-hydroxyethyl)terephthalate) is isolated by crystallization and filtration and characterized by 1H NMR spectroscopy. In the second step the monomer is heated (with and without acid catalyst) to form polymer. Samples are removed at intervals and their physical properties are recorded as they cool. These properties are used to qualitatively monitor polymerization. This experiment reinforces some fundamental chemical concepts and introduces the students to new laboratory procedures. The students perform a distillation and apply their knowledge of the reaction equilibrium to calculate the volume of distillate (methanol) expected. The reversible nature of esterification reactions is emphasized during the polymerization step (acid-catalyzed), where the process is driven towards polymer formation by the removal (evaporation) of ethane diol.

  17. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.

    PubMed

    Yang, Xiaoyi

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  18. Synthesis and hydrolysis behaviour of poly(ester anhydrides) from polylactone precursors containing alkenyl moieties.

    PubMed

    Korhonen, Harri; Hakala, Risto A; Helminen, Antti O; Seppälä, Jukka V

    2006-07-14

    Hydroxyl-group functional polylactones were prepared and converted to acid- terminated polyesters in a reaction with a series of alkenylsuccinic anhydrides containing 8, 12, or 18 carbons in their alkenyl chains. These polyester precursors were then linked into higher molecular weight poly(ester anhydrides) containing alkenyl moieties in their polyester blocks. The hydrolysis behaviour of the poly(ester anhydrides) was found to depend on the thermal properties of the polyester precursors. For poly(ester anhydrides) prepared from low molecular weight prepolymers with thermal transitions below 37 degrees C, the presence of hydrophobic alkenyl chains in the polyester precursors slowed the rate of weight loss. Poly(ester anhydrides) prepared from higher molecular weight prepolymers showed the opposite weight-loss behaviour; i.e., the crystallinity and thermal transitions of the alkenyl chain-containing poly(ester anhydrides) were low, and the weight loss was faster than for poly(ester anhydrides) without the alkenyl chains. The differences in length of the alkenyl chain, as such, had little effect on the hydrolysis behaviour and thermal properties of the poly(ester anhydrides).

  19. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Partial phosphoric acid esters of polyester resins... COMPONENTS OF COATINGS Substances for Use as Components of Coatings § 175.260 Partial phosphoric acid esters of polyester resins. Partial phosphoric acid esters of polyester resins identified in this...

  20. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Partial phosphoric acid esters of polyester resins... COMPONENTS OF COATINGS Substances for Use as Components of Coatings § 175.260 Partial phosphoric acid esters of polyester resins. Partial phosphoric acid esters of polyester resins identified in this...

  1. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Partial phosphoric acid esters of polyester resins... COMPONENTS OF COATINGS Substances for Use as Components of Coatings § 175.260 Partial phosphoric acid esters of polyester resins. Partial phosphoric acid esters of polyester resins identified in this...

  2. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Partial phosphoric acid esters of polyester resins... COMPONENTS OF COATINGS Substances for Use as Components of Coatings § 175.260 Partial phosphoric acid esters of polyester resins. Partial phosphoric acid esters of polyester resins identified in this...

  3. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Partial phosphoric acid esters of polyester resins... Components of Coatings § 175.260 Partial phosphoric acid esters of polyester resins. Partial phosphoric acid esters of polyester resins identified in this section and applied on aluminum may be safely used as...

  4. 75 FR 30373 - Certain Polyester Staple Fiber From the People's Republic of China: Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-01

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Extension... polyester staple fiber from the People's Republic of China (``PRC''). This review covers the period June 1... polyester staple fiber from the PRC. See Initiation of Antidumping and Countervailing Duty...

  5. 77 FR 19619 - Certain Polyester Staple Fiber from the People's Republic of China: Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... International Trade Administration Certain Polyester Staple Fiber from the People's Republic of China: Extension... polyester staple fiber from the People's Republic of China (``PRC''). This review covers the period June 1... administrative review of the antidumping duty order on certain polyester staple fiber from the PRC.\\1\\...

  6. 75 FR 51442 - Polyester Staple Fiber from Taiwan: Rescission of Antidumping Duty Administrative Review in Part

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... International Trade Administration Polyester Staple Fiber from Taiwan: Rescission of Antidumping Duty... Commerce initiated an administrative review of the antidumping duty order on polyester staple fiber from...) initiated an ] administrative review of the antidumping duty order on polyester staple fiber from...

  7. 78 FR 17637 - Polyester Staple Fiber From Taiwan: Preliminary Results of Antidumping Duty Administrative Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... International Trade Administration Polyester Staple Fiber From Taiwan: Preliminary Results of Antidumping Duty... the antidumping duty order on polyester staple fiber (PSF) from Taiwan. The period of review (POR) is... Antidumping Duty Administrative Review: Polyester Staple Fiber from Taiwan'' dated concurrently with...

  8. 75 FR 43921 - Certain Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... International Trade Administration Certain Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty... administrative review of the antidumping duty order on certain polyester staple fiber from Taiwan. The period of... review of the antidumping duty order on certain polyester staple fiber (PSF) from Taiwan. See...

  9. 75 FR 6352 - Certain Polyester Staple Fiber from the People's Republic of China: Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... International Trade Administration Certain Polyester Staple Fiber from the People's Republic of China: Extension... polyester staple fiber from the People's Republic of China (``PRC''). This review covers the period June 1... duty order on certain polyester staple fiber from the PRC. See Initiation of Antidumping...

  10. 76 FR 22366 - Certain Polyester Staple Fiber From Taiwan: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... International Trade Administration Certain Polyester Staple Fiber From Taiwan: Preliminary Results of... review of the antidumping duty order on certain polyester staple fiber (PSF) from Taiwan. The period of... 30, 2010). We have rescinded the review in part with respect to Nan Ya. See Polyester Staple...

  11. 76 FR 7532 - Certain Polyester Staple Fiber From the People's Republic of China: Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Extension... polyester staple fiber from the People's Republic of China (``PRC''). This review covers the period June 1... duty order on certain polyester staple fiber from the PRC. See Initiation of Antidumping...

  12. 78 FR 14512 - Certain Polyester Staple Fiber From the People's Republic of China: Preliminary Results and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China... order on certain polyester staple fiber from the People's Republic of China (``PRC''). The period of... Sichuan Chemical Fiber Corp. and Huvis Sichuan Polyester Fiber Ltd. (``Huvis Sichuan'') are part of...

  13. 77 FR 54561 - Certain Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ...] Certain Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty Administrative Review AGENCY... antidumping duty order on certain polyester staple fiber from Taiwan. The period of review is May 1, 2010... administrative review of the antidumping duty order on certain polyester staple fiber from Taiwan. See...

  14. 77 FR 6783 - Certain Polyester Staple Fiber From the People's Republic of China: Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Extension... polyester staple fiber from the People's Republic of China (``PRC''). This review covers the period June 1... administrative review of the antidumping duty order on certain polyester staple fiber from the PRC....

  15. 76 FR 58040 - Certain Polyester Staple Fiber From Korea and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ... COMMISSION Certain Polyester Staple Fiber From Korea and Taiwan Determination On the basis of the record \\1... antidumping duty orders on certain polyester staple fiber from Korea and Taiwan would be likely to lead to...), entitled Certain Polyester Staple Fiber From Korea and Taiwan: Investigation Nos. 731-TA-825 and...

  16. 75 FR 39208 - Polyester Staple Fiber from Taiwan: Final Results of Changed-Circumstances Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... International Trade Administration Polyester Staple Fiber from Taiwan: Final Results of Changed- Circumstances... antidumping duty order on polyester staple fiber from Taiwan. DATES: Effective Date: July 8, 2010. FOR FURTHER... changed-circumstances review of the antidumping duty order on polyester staple fiber from Taiwan...

  17. 77 FR 62217 - Certain Polyester Staple Fiber From the People's Republic of China: Continuation of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-12

    ... Polyester Staple Fiber From the People's Republic of China: Continuation of Antidumping Duty Order AGENCY... certain polyester staple fiber from the People's Republic of China (``PRC'') would likely lead to a... the sunset review of the antidumping duty order on certain polyester staple fiber from the...

  18. 78 FR 38938 - Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty Administrative Review; 2011...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... International Trade Administration Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty... results of the administrative review of the antidumping duty order on polyester staple fiber (PSF) from... Preliminary Results. None were received. \\1\\ See Polyester Staple Fiber From Taiwan: Preliminary Results...

  19. Probing the potential of polyester for CO₂ capture.

    PubMed

    Zulfiqar, Sonia; Sarwar, Muhammad Ilyas

    2014-07-01

    Global warming, the major environmental issue confronted by humanity today, is caused by rising level of green house gases. Carbon capture and storage technologies offer potential for tapering CO₂ emission in the atmosphere. Adsorption is believed to be a promising technology for CO₂ capture. For this purpose, a polyester was synthesized by polycondensation of 1,3,5-benzenetricarbonyl trichloride and cyanuric acid in pyridine and dichloromethane mixture. The polymer was then characterized using FT-IR, TGA, BET surface area and pore size analysis, FESEM and CO₂ adsorption measurements. The CO₂ adsorption capacities of the polyester were evaluated at a pressure of 1bar and two different temperatures (273 and 298K). The performance of these materials to adsorb CO₂ at atmospheric pressure was measured by optimum CO₂ uptake of 0.244 mmol/g at 273K. The synthesized polyester, therefore, has the potential to be exploited as CO₂ adsorbent in pre-combustion capture process.

  20. Functional polyester materials with tunable degradability: Investigations into the use of reductive amination, ketoxime ether, and hydrazone linkages for functionalization, covalent stabilization and crosslinking of poly(epsilon-caprolactone) materials

    NASA Astrophysics Data System (ADS)

    van Horn, Brooke Angela

    Aliphatic polyesters represent one class of degradable, polymeric materials that is receiving significant attention in the search for, and design of, biocompatible and bioresorbable synthetic substances. Functional and crosslinked polyesters, having potential biomedical value, are the target of many avenues of current research. This dissertation work expands the utility of a specific aliphatic polyester, poly(epsilon-caprolactone-co-2-oxepane-1,5-dione) (P(CL-co-OPD)), which contains backbone ketone units that can be reacted with various functional, nucleophilic agents. Results presented in this dissertation convey both the successes had and the challenges encountered in the employment of different "iminyl" chemistries for the synthesis of functional and crosslinked materials. Specifically, the ketone-functionalized polyester was investigated as a general substrate designed to undergo solution-state intramolecular crosslinking and functionalization upon reductive amination with 1,6-hexanediamine and hexylamine, respectively, in the presence of NaCNBH3. Through detailed analysis of the products from these reactions, and simpler systems including small molecule model compounds, the polymeric gamma-keto ester functionality was determined to be incompatible with the reductive amination chemistry, resulting in chain cleavage via intramolecular lactam formation. Subsequent investigation of ketoxime ether formation using synthetic model hydroxylamines, 1-aminooxydodecane and 1,6-bis(aminooxy)hexane, in solution and in the presence of an acid catalyst, resulted in the targeted graft and crosslinked particulate/gel materials, respectively. With the significant interest in the development of synthetic polymer materials of increasing degrees of complexity, attention has been focused on the efficient and high-yielding conversion of polyesters into multi-functional materials. Facile conjugation of aminooxy- and sulfonyl hydrazide model ligands with P(CL-co-OPD) were also

  1. A method of test for residual isophorone diisocyanate trimer in new polyester-polyurethane coatings on light metal packaging using liquid chromatography with tandem mass spectrometric detection.

    PubMed

    Driffield, Malcolm; Bradley, Emma L; Castle, Laurence

    2007-02-02

    A method of test for residual isophorone diisocyanate (IPDI) trimer in experimental formulation polyester-polyurethane (PEPU) thermoset coatings on metal food packaging is described. The method involves extraction of coated panels using acetonitrile containing dibutylamine for concurrent derivatisation, and then high performance liquid chromatography with electrospray ionisation tandem mass spectrometric detection (LC-MS/MS). Single laboratory validation was carried out using three different experimental PEPU-based coatings. The calibrations were linear, the analytical recovery was good, no interferences were seen, and substance identification criteria were met. The detection limit of the method is around 0.02 micro g/100 cm(2) of coating, which for a typical sized can and assuming complete migration of any residual IPDI trimer, corresponds to about 0.2 micro g/kg food or beverage. Separate studies indicated that, even if migration occurred at such low levels, the IPDI trimer would not be expected to persist in canned aqueous or fatty foodstuffs as it would hydrolyse to the corresponding aliphatic amine or react with food components to destroy the isocyanate moiety. The method of test developed here for residual IPDI trimer in thermoset polyester-polyurethane coatings should prove to be a valuable tool for investigating the cure kinetics of these novel coatings and help to guide the development of enhanced formulations.

  2. Tandem synthesis of alternating polyesters from renewable resources.

    PubMed

    Robert, Carine; de Montigny, Frédéric; Thomas, Christophe M

    2011-12-13

    The vast majority of commodity materials are obtained from petrochemical feedstocks. These resources will plausibly be depleted within the next 100 years, and the peak in global oil production is estimated to occur within the next few decades. In this regard, biomass represents an abundant carbon-neutral renewable resource for the production of polymers. Here we report a new strategy, based on tandem catalysis, to obtain renewable materials. Commercially available complexes are found to be efficient catalysts for alternating polyesters from the cyclization of dicarboxylic acids followed by alternating copolymerization of the resulting anhydrides with epoxides. This operationally simple method is an attractive strategy for the production of new biodegradable polyesters.

  3. Biodegradation of polyester polyurethane by Aspergillus tubingensis.

    PubMed

    Khan, Sehroon; Nadir, Sadia; Shah, Zia Ullah; Shah, Aamer Ali; Karunarathna, Samantha C; Xu, Jianchu; Khan, Afsar; Munir, Shahzad; Hasan, Fariha

    2017-03-15

    The xenobiotic nature and lack of degradability of polymeric materials has resulted in vast levels of environmental pollution and numerous health hazards. Different strategies have been developed and still more research is being in progress to reduce the impact of these polymeric materials. This work aimed to isolate and characterize polyester polyurethane (PU) degrading fungi from the soil of a general city waste disposal site in Islamabad, Pakistan. A novel PU degrading fungus was isolated from soil and identified as Aspergillus tubingensis on the basis of colony morphology, macro- and micro-morphology, molecular and phylogenetic analyses. The PU degrading ability of the fungus was tested in three different ways in the presence of 2% glucose: (a) on SDA agar plate, (b) in liquid MSM, and (c) after burial in soil. Our results indicated that this strain of A. tubingensis was capable of degrading PU. Using scanning electron microscopy (SEM), we were able to visually confirm that the mycelium of A. tubingensis colonized the PU material, causing surface degradation and scarring. The formation or breakage of chemical bonds during the biodegradation process of PU was confirmed using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy. The biodegradation of PU was higher when plate culture method was employed, followed by the liquid culture method and soil burial technique. Notably, after two months in liquid medium, the PU film was totally degraded into smaller pieces. Based on a comprehensive literature search, it can be stated that this is the first report showing A. tubingensis capable of degrading PU. This work provides insight into the role of A. tubingensis towards solving the dilemma of PU wastes through biodegradation.

  4. Biodegradation of Trihalomethanes and Other Halogenated Aliphatic Compounds

    NASA Technical Reports Server (NTRS)

    Smith, G. B.

    1996-01-01

    The biological dehalogenation of common water pollutants such as trichloromethane (chloroform) and other halogenated aliphatic compounds was the subject of this project. Samples from diverse water environments such as from groundwater contaminated with halogenated compounds and wastewaters from regional treatment plants were studied to identify conditions that favor certain dehalogenation reactions over others. Gene probe analyses of DNA extracted from the dichlormethane-degrading wastewater indicated the presence of the gene coding for dichloromethane dehalogenase, indicating the genetic basis for the dechlorination activity observed. These studies indicate that methanogenic bacteria are the organisms responsible for the chloroform dechlorination. Dechlorination of a common chlorofluorocarbon (CFC-11) was identified in samples taken from a regional aquifer contaminated with halogenated aliphatic compounds.

  5. Lipstick dermatitis due to C18 aliphatic compounds.

    PubMed

    Hayakawa, R; Matsunaga, K; Suzuki, M; Arima, Y; Ohkido, Y

    1987-04-01

    An 18-year-old girl developed cheilitis. She had a past history of lip cream dermatitis, but the cause was not found. Patch tests with 2 lipsticks were strongly positive. Tests with the ingredients were positive to 2 aliphatic compounds, glyceryl diisostearate and diisostearyl malate. Impurities in the materials were suspected as the cause. Analysis by gas chromatography detected 3 chemicals in glyceryl diisostearate and 1 in diisostearyl malate as impurities. Patch testing with the impurities and glyceryl monoisostearate 0.01% pet in glyceryl diisostearate and isostearyl alcohol 0.25% pet in diisostearyl malate were strongly positive. The characteristics common to the 2 chemicals were liquidity at room temperature, branched C18 aliphatic compound and primary alcohol. Chemicals lacking any of the above 3 features did not react.

  6. Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons

    DOEpatents

    Fliermans, Carl B.

    1989-01-01

    A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

  7. Manganese-Mediated Coupling Reaction of Vinylarenes and Aliphatic Alcohols

    PubMed Central

    Zhang, Wei; Wang, Nai-Xing; Bai, Cui-Bing; Wang, Yan-Jing; Lan, Xing-Wang; Xing, Yalan; Li, Yi-He; Wen, Jia-Long

    2015-01-01

    Alcohols and alkenes are the most abundant and commonly used organic building blocks in the large-scale chemical synthesis. Herein, this is the first time to report a novel and operationally simple coupling reaction of vinylarenes and aliphatic alcohols catalyzed by manganese in the presence of TBHP (tert-butyl hydroperoxide). This coupling reaction provides the oxyalkylated products of vinylarenes with good regioselectivity and accomplishes with the principles of step-economies. A possible reaction mechanism has also been proposed. PMID:26470633

  8. Laparoscopic-assisted Ventral Hernia Repair: Primary Fascial Repair with Polyester Mesh versus Polyester Mesh Alone.

    PubMed

    Karipineni, Farah; Joshi, Priya; Parsikia, Afshin; Dhir, Teena; Joshi, Amit R T

    2016-03-01

    Laparoscopic-assisted ventral hernia repair (LAVHR) with mesh is well established as the preferred technique for hernia repair. We sought to determine whether primary fascial closure and/or overlap of the mesh reduced recurrence and/or complications. We conducted a retrospective review on 57 LAVHR patients using polyester composite mesh between August 2010 and July 2013. They were divided into mesh-only (nonclosure) and primary fascial closure with mesh (closure) groups. Patient demographics, prior surgical history, mesh overlap, complications, and recurrence rates were compared. Thirty-nine (68%) of 57 patients were in the closure group and 18 (32%) in the nonclosure group. Mean defect sizes were 15.5 and 22.5 cm(2), respectively. Participants were followed for a mean of 1.3 years [standard deviation (SD) = 0.7]. Recurrence rates were 2/39 (5.1%) in the closure group and 1/18 (5.6%) in the nonclosure group (P = 0.947). There were no major postoperative complications in the nonclosure group. The closure group experienced four (10.3%) complications. This was not a statistically significant difference (P = 0.159). The median mesh-to-hernia ratio for all repairs was 15.2 (surface area) and 3.9 (diameter). Median length of stay was 14.5 hours (1.7-99.3) for patients with nonclosure and 11.9 hours (6.9-90.3 hours) for patients with closure (P = 0.625). In conclusion, this is one of the largest series of LAVHR exclusively using polyester dual-sided mesh. Our recurrence rate was about 5 per cent. Significant mesh overlap is needed to achieve such low recurrence rates. Primary closure of hernias seems less important than adequate mesh overlap in preventing recurrence after LAVHR.

  9. Biodegradation of aliphatic vs. aromatic hydrocarbons in fertilized arctic soils

    USGS Publications Warehouse

    Braddock, J.F.

    1999-01-01

    A study was carried out to test a simple bioremediation treatment strategy in the Arctic and analyze the influence of fertilization the degradation of aliphatic and aromatic hydrocarbons, e.g., pristine, n-tetradecane, n-pentadecane, 2-methylnaphthalene, naphthalene, and acenaphthalene. The site was a coarse sand pad that once supported fuel storage tanks. Diesel-range organics concentrations were 250-860 mg/kg soil at the beginning of the study. Replicate field plots treated with fertilizer yielded final concentrations of 0, 50, 100, or 200 mg N/kg soil. Soil pH and soil-water potentials decreased due to fertilizer application. The addition of fertilizer considerably increased soil respiration potentials, but not the populations of microorganisms measured. Fertilizer addition also led to ??? 50% loss of measured aliphatic and aromatic hydrocarbons in surface and subsurface soils. For fertilized plots, hydrocarbon loss was not associated with the quantity of fertilizer added. Losses of aliphatic hydrocarbons were ascribed to biotic processes, while losses of aromatic hydrocarbons were due to biotic and abiotic processes.

  10. Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s with functional carbonate building blocks. 1. Chemical synthesis and their structural and physical characterization.

    PubMed

    Yang, Jing; Hao, Qinghui; Liu, Xiaoyun; Ba, Chaoyi; Cao, Amin

    2004-01-01

    This study presents chemical synthesis, structural, and physical characterization of novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate)s P(BS-co-CC) bearing functional carbonate building blocks. First, five kinds of six-membered cyclic carbonate monomers, namely, trimethylene carbonate (TMC), 1-methyl-1,3-trimethylene carbonate (MTMC), 2,2-dimethyl-1,3-trimethylene carbonate (DMTMC), 5-benzyloxytrimethylene carbonate (BTMC), and 5-ethyl-5-benzyloxymethyl trimethylene carbonate (EBTMC), were well prepared from ethyl chloroformate and corresponding diols at 0 degrees C in THF solution with our modified synthetic strategies. Then, a series of new P(BS-co-CC)s were synthesized at 210 degrees C through a simple combination of poly-condensation and ring-opening-polymerization (ROP) of hydroxyl capped PBS macromers and the prepared carbonate monomers, and titanium tetra-isopropoxide Ti(i-OPr)4 was used as a more suitable catalyst of 5 candidate catalysts which could concurrently catalyze poly-condensation and ROP. By means of NMR, GPC, FTIR, and thermal analytical instruments, macromolecular structures and physical properties have been characterized for these aliphatic poly(ester carbonate)s. The experimental results indicated that novel biodegradable P(BS-co-CC)s were successfully synthesized with number average molecular weight Mn ranging from 24.3 to 99.6 KDa and various CC molar contents without any detectable decarboxylation and that the more bulky side group was attached to a cyclic carbonate monomer, the lower reactivity for its copolymerization would be observed. The occurrences of 13C NMR signal splitting of succinyl carbonyl attributed to the BS building blocks could be proposed due to the randomized sequences of BS and CC building blocks. FTIR characterization indicated two distinct absorption bands at 1716 and 1733 approximately 1735 cm(-1), respectively, stemming from carbonyl stretching modes for corresponding BS and CC units. With

  11. 75 FR 42784 - Greige Polyester/Cotton Printcloth From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Greige Polyester/Cotton Printcloth From China AGENCY: United States International Trade Commission... from China would be likely to lead to continuation or recurrence of material injury. On July 2,...

  12. Lipase-catalyzed polyester synthesis – A green polymer chemistry

    PubMed Central

    Kobayashi, Shiro

    2010-01-01

    This article is a short comprehensive review describing in vitro polyester synthesis catalyzed by a hydrolysis enzyme of lipase, most of which has been developed for these two decades. Polyesters are prepared by repeated ester bond-formation reactions; they include two major modes, ring-opening polymerization (ROP) of cyclic monomers such as cyclic esters (lactones) and condensation polymerization via the reaction between a carboxylic acid or its ester group and an alcohol group. Polyester synthesis is, therefore, a reaction in reverse way of in vivo lipase catalysis of ester bond-cleavage with hydrolysis. The lipase-catalyzed polymerizations show very high chemo-, regio-, and enantio-selectivities and involve various advantageous characteristics. Lipase is robust and compatible with other chemical catalysts, which allows novel chemo-enzymatic processes. New syntheses of a variety of functional polyesters and a plausible reaction mechanism of lipase catalysis are mentioned. The polymerization characteristics are of green nature currently demanded for sustainable society, and hence, desirable for conducting ‘green polymer chemistry’. PMID:20431260

  13. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1981-11-04

    Quick setting polymer concrete compositions which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  14. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, T.; Kukacka, L.E.; Horn, W.H.

    1983-05-13

    Quick setting polymer concrete compositions are described which are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate which may be wet and a source of bivalent metallic ions which will set to polymer concrete with excellent structural properties.

  15. Electropositive bivalent metallic ion unsaturated polyester complexed polymer concrete

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.; Horn, William H.

    1985-01-01

    Quick setting polymer concrete compositions with excellent structural properties are disclosed; these polymer concrete compositions are mixtures of unsaturated polyesters and crosslinking monomers together with appropriate initiators and promoters in association with aggregate, which may be wet, and with a source of bivalent metallic ions.

  16. 21 CFR 177.2420 - Polyester resins, cross-linked.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Limitations (limits of addition expressed as percent by weight of finished resin) 1. Inhibitors: Total not to... hydroperoxide Dibutyltin oxide (CAS Reg. No. 818-08-6) For use in the polycondensation reaction at levels not to...) For use in the polycondensation reaction at levels not to exceed 0.2 percent of the polyester...

  17. Degradation of natural and synthetic polyesters under anaerobic conditions.

    PubMed

    Abou-Zeid, D M; Müller, R J; Deckwer, W D

    2001-03-30

    Often, degradability under anaerobic conditions is desirable for plastics claimed to be biodegradable, e.g. in anaerobic biowaste treatment plants, landfills and in natural anaerobic sediments. The biodegradation of the natural polyesters poly(beta-hydroxybutyrate) (PHB), poly(beta-hydroxybutyrate-co-11.6%-beta-hydroxyvalerate) (PHBV) and the synthetic polyester poly(epsilon-caprolactone) (PCL) was studied in two anaerobic sludges and individual polyester degrading anaerobic strains were isolated, characterized and used for degradation experiments under controlled laboratory conditions. Incubation of PHB and PHBV films in two anaerobic sludges exhibited significant degradation in a time scale of 6-10 weeks monitored by weight loss and biogas formation. In contrast to aerobic conditions, PHB was degraded anaerobically more rapidly than the copolyester PHBV, when tested with either mixed cultures or a single strained isolate. PCL tends to degrade slower than the natural polyesters PHB and PHBV. Four PHB and PCL degrading isolates were taxonomically identified and are obviously new species belonging to the genus Clostridium group I. The depolymerizing enzyme systems of PHB and PCL degrading isolates are supposed to be different. Using one isolated strain in an optimized laboratory degradation test with PHB powder, the degradation time was drastically reduced compared to the degradation in sludges (2 days vs. 6-10 weeks).

  18. Microfabricated polyester conical microwells for cell culture applications.

    PubMed

    Selimović, Seila; Piraino, Francesco; Bae, Hojae; Rasponi, Marco; Redaelli, Alberto; Khademhosseini, Ali

    2011-07-21

    Over the past few years there has been a great deal of interest in reducing experimental systems to a lab-on-a-chip scale. There has been particular interest in conducting high-throughput screening studies using microscale devices, for example in stem cell research. Microwells have emerged as the structure of choice for such tests. Most manufacturing approaches for microwell fabrication are based on photolithography, soft lithography, and etching. However, some of these approaches require extensive equipment, lengthy fabrication process, and modifications to the existing microwell patterns are costly. Here we show a convenient, fast, and low-cost method for fabricating microwells for cell culture applications by laser ablation of a polyester film coated with silicone glue. Microwell diameter was controlled by adjusting the laser power and speed, and the well depth by stacking several layers of film. By using this setup, a device containing hundreds of microwells can be fabricated in a few minutes to analyze cell behavior. Murine embryonic stem cells and human hepatoblastoma cells were seeded in polyester microwells of different sizes and showed that after 9 days in culture cell aggregates were formed without a noticeable deleterious effect of the polyester film and glue. These results show that the polyester microwell platform may be useful for cell culture applications. The ease of fabrication adds to the appeal of this device as minimal technological skill and equipment is required.

  19. Cost-Benefit Analysis for Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2007-01-01

    NASA and Air Force Space Command (AFSPC) have similar missions and therefore similar facilities and structures in similar environments. The standard practice for protecting metallic substrates in atmospheric environments is the application of an applied coating system. The most common topcoats used in coating systems are polyurethanes that contain isocyanates. Isocyanates are classified as potential human carcinogens and are known to cause cancer in animals. The primary objective of this effort was to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes resulting in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project. This Cost-Benefit Analysis (CBA) quantifies the estimated capital and process costs of coating alternatives and cost savings relative to the current coatings. The estimates in this CBA are to be used for assessing the relative merits of the selected alternatives. The actual economic effects at any specific facility will depend on the alternative material or technology implemented, the number of actual applications converted, future workloads, and other factors . The participants initially considered eighteen (18) alternative coatings as described in the Potential Alternatives Report entitled Potential Alternatives Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, prepared by ITB. Of those, 8 alternatives were selected for testing in accordance with the Joint Test Protocol entitled Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, and the Field Test Plan entitled Field Evaluations Test Plan for Validation of Alternatives 10 Aliphatic Isocyanate Polyurethanes, both of which were prepared by ITB. A joint Test Report entitled Joint Test Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, prepared by ITB, documents the results of the laboratory and field testing, as well as any

  20. Contraceptive efficacy of polyester-induced azoospermia in normal men.

    PubMed

    Shafik, A

    1992-05-01

    The contraceptive effect of a polyester sling applied to the scrotum was studied in 14 men. The suspensor was worn for 12 months. Follow-up investigations comprised periodic check of semen character, testicular size, rectal-testicular temperature difference, serum reproductive hormones and testicular biopsy. The electrostatic potentials generated by friction between the polyester suspensor and the scrotal skin were determined. Female partners used contraceptives until the men became azoospermic. After 12 months, the suspensor was abandoned and the aforementioned investigations were performed again. In the suspensor-wearing period, all men became azoospermic after a mean of 139.6 +/- 20.8 sd days, with decrease in both testicular volume (P less than 0.05) and rectal-testicular temperature difference (P less than 0.001). Serum reproductive hormones showed no significant change (P greater than 0.05). Seminiferous tubules revealed degenerative changes. No pregnancy occurred during this period. The polyester suspensor generated electrostatic potentials (mean 366.4 +/- 30.5 sd volt/cm2 by day and 158.3 +/- 13.6 sd volt/cm2 by night). In the suspensor-release period, the sperm concentration returned to the pre-test level in a mean period of 156.6 +/- 14.8 sd days. Likewise, the testicular volume and rectal-testicular temperature difference were normalized. The 5 couples, who had planned to become pregnant, conceived. The azoospermic effect of the polyester sling seems to be due to two mechanisms: 1) the creation of an electrostatic field across the intrascrotal structures, and 2) disordered thermoregulation. To conclude, fertile men can be rendered azoospermic by wearing the polyester sling. It is a safe, reversible, acceptable and inexpensive method of contraception in men.

  1. Structural studies of aliphatic substituted phthalocyanine-lipid multilayers.

    PubMed

    Zarbakhsh, Ali; Campana, Mario; Mills, David; Webster, John R P

    2010-10-05

    A Langmuir-Blodgett film of aliphatic substituted phthalocyanines on a C18 silane supporting layer coupled onto a silicon substrate has been investigated using neutron reflectometry. This multilayer structure is seen as a possible candidate for phthalocyanine-lipid biosensor devices. The results show the suitability of the C18 ligands as an anchoring layer for the phthalocyanines. The scattering length density profiles demonstrate the effectiveness of a lipid monolayer in partitioning the composition of phthalocyanine layers from that of the bulk liquid. The effectiveness of this barrier is a critical factor in the efficiency of such devices.

  2. A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria.

    PubMed

    Abbasian, Firouz; Lockington, Robin; Mallavarapu, Megharaj; Naidu, Ravi

    2015-06-01

    Hydrocarbons are relatively recalcitrant compounds and are classified as high-priority pollutants. However, these compounds are slowly degraded by a large variety of microorganisms. Bacteria are able to degrade aliphatic saturated and unsaturated hydrocarbons via both aerobic and anaerobic pathways. Branched hydrocarbons and cyclic hydrocarbons are also degraded by bacteria. The aerobic bacteria use different types of oxygenases, including monooxygenase, cytochrome-dependent oxygenase and dioxygenase, to insert one or two atoms of oxygen into their targets. Anaerobic bacteria, on the other hand, employ a variety of simple organic and inorganic molecules, including sulphate, nitrate, carbonate and metals, for hydrocarbon oxidation.

  3. Study on moisture absorption and sweat discharge of honeycomb polyester fiber

    NASA Astrophysics Data System (ADS)

    Feng, Aifen; Zhang, Yongjiu

    2015-07-01

    The moisture absorption and liberation properties of honeycomb polyester fiber were studied in order to understand its moisture absorption and sweat discharge. Through testing moisture absorption and liberation regains of honeycomb polyester fiber and normal polyester fiber in standard atmospheric conditions, their moisture absorption and liberation curves were depicted, and the regression equations of moisture regains to time during their reaching the balance of moisture absorption and moisture liberation were obtained according to the curves. Their moisture absorption and liberation rate curves were analyzed and the regression equations of the rates to time were obtained. The results shows that the moisture regain of honeycomb polyester fiber is much bigger than the normal polyester fiber's, and the initial moisture absorption and moisture liberation rates of the former are much higher than the latter's, so that the moisture absorbance and sweat discharge of honeycomb polyester fiber are excellent.

  4. Experimental Evaluation of Woven Polylactic Acid, Polyester Tubes as Trachael Prostheses.

    DTIC Science & Technology

    Woven tubes of either polyester fibers or mixed polyester, polylactic acid fibers of appropriate sizes were prepared for substitution of the rabbit...woven tube prostheses was studied histologically after subcutaneous implantation in rabbits. Polylactic acid fibers were observed to increase in size...containing polylactic acid fibers as compared with those containing polyester fibers. It is concluded from these experiments that a mechanically suitable

  5. Transcaval access for TAVR across a polyester aortic graft.

    PubMed

    Lederman, Robert J; O'Neill, William W; Greenbaum, Adam B

    2015-06-01

    Transcaval access to the aorta allows transcatheter aortic valve replacement in patients without other good access options. The resulting aorto-caval fistula is closed with a nitinol cardiac occluder device. There is no experience traversing a synthetic aortic graft to perform transcaval access and closure. We describe a patient who underwent successful traversal of a polyester aortic graft using radiofrequency energy applied from the tip of a guidewire, to allow retrograde transcatheter aortic valve replacement from a femoral vein, along with details of our technique. The patient did well and was discharged home after 3 days. There was residual aorto-caval fistulous flow immediately after implantation of a polyester-seeded nitinol muscular ventricular septal defect occluder device, but this fistula spontaneously occluded within one month.

  6. Thermo-mechanical properties of polyester mortar using recycled PET

    SciTech Connect

    Rebeiz, K.S.; Craft, A.P.

    1997-07-01

    The thermo-mechanical properties of polyester mortar (PM) using unsaturated polyester resins based on recycled PET are investigated in this paper (the recycled PET waste is mainly obtained from used plastic beverage bottles). The use of recycled PET in PM formulation is important because it helps produce good quality PM at a relatively low cost, save energy and alleviate an environmental problem posed by plastic wastes. PM construction applications include the repair of dams, piers, runways, bridges and other structures. Test results show that the effective use of PM overlays on portland cement concrete slabs is best achieved by utilizing flexible resins with low modulus and high elongation capacity at failure. The use of flexible resins in PM production is especially important in situations involving large thermal movements.

  7. Synthesis of silver nanoparticles in melts of amphiphilic polyesters

    NASA Astrophysics Data System (ADS)

    Vasylyev, S.; Damm, C.; Segets, D.; Hanisch, M.; Taccardi, N.; Wasserscheid, P.; Peukert, W.

    2013-03-01

    The current work presents a one-step procedure for the synthesis of amphiphilic silver nanoparticles suitable for production of silver-filled polymeric materials. This solvent free synthesis via reduction of Tollens’ reagent as silver precursor in melts of amphiphilic polyesters consisting of hydrophilic poly(ethylene glycol) blocks and hydrophobic alkyl chains allows the production of silver nanoparticles without any by-product formation. This makes them especially interesting for the production of medical devices with antimicrobial properties. In this article the influences of the chain length of the hydrophobic block in the amphiphilic polyesters and the process temperature on the particle size distribution (PSD) and the stability of the particles against agglomeration are discussed. According to the results of spectroscopic and viscosimetric investigations the silver precursor is reduced to elemental silver nanoparticles by a single electron transfer process from the poly(ethylene glycol) chain to the silver ion.

  8. Tandem synthesis of alternating polyesters from renewable resources

    PubMed Central

    Robert, Carine; de Montigny, Frédéric; Thomas, Christophe M.

    2011-01-01

    The vast majority of commodity materials are obtained from petrochemical feedstocks. These resources will plausibly be depleted within the next 100 years, and the peak in global oil production is estimated to occur within the next few decades. In this regard, biomass represents an abundant carbon-neutral renewable resource for the production of polymers. Here we report a new strategy, based on tandem catalysis, to obtain renewable materials. Commercially available complexes are found to be efficient catalysts for alternating polyesters from the cyclization of dicarboxylic acids followed by alternating copolymerization of the resulting anhydrides with epoxides. This operationally simple method is an attractive strategy for the production of new biodegradable polyesters. PMID:22158441

  9. Biotransformation of chlorinated aliphatic compounds by mixed nitrifying cultures

    SciTech Connect

    Wilber, G.G.; Chakkamadathil, S.V.

    1995-12-31

    The ability of pure cultures of nitrifying bacteria, such as Nitrosomonas europaea, to oxidize chlorinated aliphatic compounds has been demonstrated previously in laboratory experiments. In the current study, mixed nitrifying cultures originating from a municipal wastewater plant were also tested for the ability to biotransform chlorinated aliphatic compounds, including trichloroethene (TCE). A number of variables were tested, including the effects of two different concentrations of TCE, the effect of culture density, and the influence of the primary substrate, ammonia, on the initial rate of TCE biotransformation. The primary conclusions of the research include the following. The mixed nitrifying cultures did exhibit the ability to transform TCE, and the initial rate of transformation (before oxygen limitations became significant) was directly proportional to the culture density. In general, the transformation rate of TCE was slightly faster at an initial concentration of 0.1 mg/L than at 1 mg/L. Lastly, high initial ammonia concentrations (300 mg/L) resulted in faster initial rates of TCE transformation than in cultures which started with lower ammonia concentrations.

  10. Short-chain aliphatic ester synthesis using Thermobifida fusca cutinase.

    PubMed

    Su, Lingqia; Hong, Ruoyu; Guo, Xiaojie; Wu, Jing; Xia, Yongmei

    2016-09-01

    Short-chain aliphatic esters are commonly used as fruit flavorings in the food industry. In this study, Thermobifida fusca (T. fusca) cutinase was used for the synthesis of aliphatic esters, and the maximum yield of ethyl caproate reached 99.2% at a cutinase concentration of 50U/ml, 40°C, and water content of 0.5%, representing the highest ester yield to date. The cutinase-catalyzed esterification displayed strong tolerance for water content (up to 8%) and acid concentration (up to 0.8M). At substrate concentrations ⩽0.8M, the ester yield remained above 80%. Moreover, ester yields of more than 98% and 95% were achieved for acids of C3-C8 and alcohols of C1-C6, respectively, indicating extensive chain length selectivity of the cutinase. These results demonstrate the superior ability of T. fusca cutinase to catalyze the synthesis of short-chain esters. This study provides the basis for industrial production of short-chain esters using T. fusca cutinase.

  11. Thermally-responsive poly(ester urethane)s

    NASA Astrophysics Data System (ADS)

    Pierce, Benjamin Franklin

    Thermally-responsive materials are quite useful in the biomedical field, but their full potential has yet to be realized. For example, polyurethanes are capable of exhibiting shape-memory properties, or the ability to change shape upon the application of a stimulus, but only a few practical thermally responsive polyurethanes have been reported due to the lack of novel starting materials and optimized systems. This work describes the synthesis of several degradable polymers and the characterization of their thermally responsive behavior. First, several amorphous polyester prepolymers are synthesized and incorporated in thermoplastic poly(ester urethane)s, which are highly elastic but display impractical thermal properties. Their potential as degradable implants is investigated, as well as their bulk and surface properties. These systems are then optimized and tailored for more practical purposes, resulting in the synthesis of thermoset elastomers based on poly(1,4-cyclohexanedimethanol 1,4-cyclohexanedicarboxylate) (PCCD) prepolymers that display a broad range of useful mechanical properties, thermal properties, and shape-memory properties. A novel method for controlling a microscopic and nanoscopic topographical shape-memory phenomenon is presented. Finally, the synthesis of amine-functionalized polyesters is presented. All materials are characterized by 1H and 13C NMR, GPC, DSC, TGA, and Instron.

  12. Corrosion inhibition property of polyester-groundnut shell biodegradable composite.

    PubMed

    Sounthari, P; Kiruthika, A; Saranya, J; Parameswari, K; Chitra, S

    2016-12-01

    The use of natural fibers as reinforcing materials in thermoplastics and thermoset matrix composites provide optimistic environmental profits with regard to ultimate disposability and better use of raw materials. The present work is focused on the corrosion inhibition property of a polymer matrix composite produced by the use of groundnut shell (GNS) waste. Polyester (PE) was synthesized by condensation polymerization of symmetrical 1,3,4-oxadiazole and pimelic acid using sodium lauryl sulfate as surfactant. The polyester-groundnut shell composite (PEGNS) was prepared by ultrasonication method. The synthesized polyester-groundnut shell composite was characterized by FT-IR, TGA and XRD analysis. The corrosion inhibitory effect of PEGNS on mild steel in 1M H2SO4 was investigated using gravimetric method, electrochemical impedance spectroscopy, potentiodynamic polarization, atomic absorption spectroscopy and scanning electron microscopy. The results showed that PEGNS inhibited mild steel corrosion in acid solution and indicated that the inhibition efficiency increased with increasing inhibitor concentration and decrease with increasing temperature. The composite inhibited the corrosion of mild steel through adsorption following the Langmuir adsorption isotherm. Changes in the impedance parameters Rt, Cdl, Icorr, Ecorr, ba and bc suggested the adsorption of PEGNS onto the mild steel surface, leading to the formation of protective film.

  13. The biostability of silicone rubbers, a polyamide, and a polyester.

    PubMed

    Roggendorf, E

    1976-01-01

    A biostability test program was designed after evaluation of the relevant literature on in vivo aging phenomena in plastics and elastomers. The program comprised macroscopic, microscopic, mechanical, and physicochemical investigations. Five silicone rubbers, one polyester, and one polyamid were tested as to their aging behavior and their suitability for long-term implantation in the human body was assessed. In order to be able to state the applicability of materials used for endotheses, the various aging phenomena had to be divided into three groups, viz. unspecific, relative, and absolute indications of aging or unserviceability. Changes due to aging were found in all types of implanted plastics and elastomers. Thus, the formation of layers on inlay surfaces occurred regularly and the same would apply to changes in mechanical characteristics during the tensile test. Aging processes resulting in total unserviceability were fragmentation and crazing in the polyester and polyamide sheetings. Other aging phenomena which will easily fit into the classification given above are changes in electrical test values, protein, and lipid depositions without stronger absorptive adhesion, crystallizations on the surface of silicone vulcanizates, and chemical changes in the polyester and polyamide sheetings. Following the assessment of the materials used for endotheses, the test methods used have been evaluated with regard to their suitability for the testing of biostability.

  14. Polyester: simulating RNA-seq datasets with differential transcript expression

    PubMed Central

    Frazee, Alyssa C.; Jaffe, Andrew E.; Langmead, Ben; Leek, Jeffrey T.

    2015-01-01

    Motivation: Statistical methods development for differential expression analysis of RNA sequencing (RNA-seq) requires software tools to assess accuracy and error rate control. Since true differential expression status is often unknown in experimental datasets, artificially constructed datasets must be utilized, either by generating costly spike-in experiments or by simulating RNA-seq data. Results: Polyester is an R package designed to simulate RNA-seq data, beginning with an experimental design and ending with collections of RNA-seq reads. Its main advantage is the ability to simulate reads indicating isoform-level differential expression across biological replicates for a variety of experimental designs. Data generated by Polyester is a reasonable approximation to real RNA-seq data and standard differential expression workflows can recover differential expression set in the simulation by the user. Availability and implementation: Polyester is freely available from Bioconductor (http://bioconductor.org/). Contact: jtleek@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25926345

  15. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  16. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  17. 40 CFR 721.7250 - Polyaziridinyl ester of an aliphatic alcohol (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alcohol (generic). 721.7250 Section 721.7250 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7250 Polyaziridinyl ester of an aliphatic alcohol (generic). (a... generically as a polyaziridinyl ester of an aliphatic alcohol (PMN P-01-97) is subject to reporting under...

  18. 40 CFR 721.10606 - Alkyl substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl substituted alkanediol polymer... alkanediol polymer with aliphatic and alicyclic diisocyanates (generic). (a) Chemical substance and... substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (PMN P-11-486) is subject...

  19. 40 CFR 721.10606 - Alkyl substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl substituted alkanediol polymer... alkanediol polymer with aliphatic and alicyclic diisocyanates (generic). (a) Chemical substance and... substituted alkanediol polymer with aliphatic and alicyclic diisocyanates (PMN P-11-486) is subject...

  20. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hexanedioic acid polymer with... polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). (a) Chemical substance and... acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (PMN P-11-333) is subject...

  1. 40 CFR 721.10605 - Polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyoxyalkylene ether, polymer with..., polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic). (a) Chemical substance and... polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (PMN P-11-485) is...

  2. 40 CFR 721.10605 - Polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyoxyalkylene ether, polymer with..., polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (generic). (a) Chemical substance and... polyoxyalkylene ether, polymer with aliphatic diisocyanate, homopolymer, alkanol-blocked (PMN P-11-485) is...

  3. Synthesis and characterization of aliphatic polyurethane fiber: a potential suture material.

    PubMed

    Ray, A R; Bhowmick, A

    1991-10-01

    Polyurethane fibers were synthesized and characterized by IR, 1H NMR, DSC, and GPC. Their properties as fiber were compared with commercially available sutures of polypropylene, polyamide, polyester, and silk.

  4. A statistical approach to the interpretation of aliphatic hydrocarbon distributions in marine sediments

    USGS Publications Warehouse

    Rapp, J.B.

    1991-01-01

    Q-mode factor analysis was used to quantitate the distribution of the major aliphatic hydrocarbon (n-alkanes, pristane, phytane) systems in sediments from a variety of marine environments. The compositions of the pure end members of the systems were obtained from factor scores and the distribution of the systems within each sample was obtained from factor loadings. All the data, from the diverse environments sampled (estuarine (San Francisco Bay), fresh-water (San Francisco Peninsula), polar-marine (Antarctica) and geothermal-marine (Gorda Ridge) sediments), were reduced to three major systems: a terrestrial system (mostly high molecular weight aliphatics with odd-numbered-carbon predominance), a mature system (mostly low molecular weight aliphatics without predominance) and a system containing mostly high molecular weight aliphatics with even-numbered-carbon predominance. With this statistical approach, it is possible to assign the percentage contribution from various sources to the observed distribution of aliphatic hydrocarbons in each sediment sample. ?? 1991.

  5. The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis.

    PubMed

    Beekwilder, Jules; van Leeuwen, Wessel; van Dam, Nicole M; Bertossi, Monica; Grandi, Valentina; Mizzi, Luca; Soloviev, Mikhail; Szabados, Laszlo; Molthoff, Jos W; Schipper, Bert; Verbocht, Hans; de Vos, Ric C H; Morandini, Piero; Aarts, Mark G M; Bovy, Arnaud

    2008-04-30

    Aliphatic glucosinolates are compounds which occur in high concentrations in Arabidopsis thaliana and other Brassicaceae species. They are important for the resistance of the plant to pest insects. Previously, the biosynthesis of these compounds was shown to be regulated by transcription factors MYB28 and MYB29. We now show that MYB28 and MYB29 are partially redundant, but in the absence of both, the synthesis of all aliphatic glucosinolates is blocked. Untargeted and targeted biochemical analyses of leaf metabolites showed that differences between single and double knock-out mutants and wild type plants were restricted to glucosinolates. Biosynthesis of long-chain aliphatic glucosinolates was blocked by the myb28 mutation, while short-chain aliphatic glucosinolates were reduced by about 50% in both the myb28 and the myb29 single mutants. Most remarkably, all aliphatic glucosinolates were completely absent in the double mutant. Expression of glucosinolate biosynthetic genes was slightly but significantly reduced by the single myb mutations, while the double mutation resulted in a drastic decrease in expression of these genes. Since the myb28myb29 double mutant is the first Arabidopsis genotype without any aliphatic glucosinolates, we used it to establish the relevance of aliphatic glucosinolate biosynthesis to herbivory by larvae of the lepidopteran insect Mamestra brassicae. Plant damage correlated inversely to the levels of aliphatic glucosinolates observed in those plants: Larval weight gain was 2.6 fold higher on the double myb28myb29 mutant completely lacking aliphatic glucosinolates and 1.8 higher on the single mutants with intermediate levels of aliphatic glucosinolates compared to wild type plants.

  6. The Impact of the Absence of Aliphatic Glucosinolates on Insect Herbivory in Arabidopsis

    PubMed Central

    van Dam, Nicole M.; Bertossi, Monica; Grandi, Valentina; Mizzi, Luca; Soloviev, Mikhail; Szabados, Laszlo; Molthoff, Jos W.; Schipper, Bert; Verbocht, Hans; de Vos, Ric C. H.; Morandini, Piero; Aarts, Mark G. M.; Bovy, Arnaud

    2008-01-01

    Aliphatic glucosinolates are compounds which occur in high concentrations in Arabidopsis thaliana and other Brassicaceae species. They are important for the resistance of the plant to pest insects. Previously, the biosynthesis of these compounds was shown to be regulated by transcription factors MYB28 and MYB29. We now show that MYB28 and MYB29 are partially redundant, but in the absence of both, the synthesis of all aliphatic glucosinolates is blocked. Untargeted and targeted biochemical analyses of leaf metabolites showed that differences between single and double knock-out mutants and wild type plants were restricted to glucosinolates. Biosynthesis of long-chain aliphatic glucosinolates was blocked by the myb28 mutation, while short-chain aliphatic glucosinolates were reduced by about 50% in both the myb28 and the myb29 single mutants. Most remarkably, all aliphatic glucosinolates were completely absent in the double mutant. Expression of glucosinolate biosynthetic genes was slightly but significantly reduced by the single myb mutations, while the double mutation resulted in a drastic decrease in expression of these genes. Since the myb28myb29 double mutant is the first Arabidopsis genotype without any aliphatic glucosinolates, we used it to establish the relevance of aliphatic glucosinolate biosynthesis to herbivory by larvae of the lepidopteran insect Mamestra brassicae. Plant damage correlated inversely to the levels of aliphatic glucosinolates observed in those plants: Larval weight gain was 2.6 fold higher on the double myb28myb29 mutant completely lacking aliphatic glucosinolates and 1.8 higher on the single mutants with intermediate levels of aliphatic glucosinolates compared to wild type plants. PMID:18446225

  7. Anaerobic and aerobic treatment of chlorinated, aliphatic compounds

    SciTech Connect

    Long, J.L.; Stensel, H.D.; Ferguson, J.F.; Strand, S.E.; Ongerth, J.E.

    1993-01-01

    Biological degradation of 12 chlorinated aliphatic compounds (CACs) was assessed in bench-top reactors and in serum bottle tests. Three continuously mixed daily batch-fed reactor systems were evaluated: anaerobic, aerobic, and sequential-anaerobic-aerobic (sequential). The anaerobic culture degraded seven of the feed CACs. The specialized aerobic cultures degraded all but three of the highly chlorinated CACs. The sequential system outperformed either of the other systems alone by degrading 10 of the feed CACs: chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,1,1-trichloroethane, hexachloroethane, 1,1-dichloroethylene, trans-1,2-dichloroethylene, trichloroethylene, perchloroethylene, and 1,2,3-trichloropropane, plus the anaerobic metabolites: dichloromethane and cis-1,2-dichloroethylene.

  8. Aqueous infrared carboxylate absorbances: Aliphatic di-acids

    USGS Publications Warehouse

    Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.

    1998-01-01

    Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.

  9. Localized aliphatic organic material on the surface of Ceres.

    PubMed

    De Sanctis, M C; Ammannito, E; McSween, H Y; Raponi, A; Marchi, S; Capaccioni, F; Capria, M T; Carrozzo, F G; Ciarniello, M; Fonte, S; Formisano, M; Frigeri, A; Giardino, M; Longobardo, A; Magni, G; McFadden, L A; Palomba, E; Pieters, C M; Tosi, F; Zambon, F; Raymond, C A; Russell, C T

    2017-02-17

    Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the Dawn spacecraft show a clear detection of an organic absorption feature at 3.4 micrometers on dwarf planet Ceres. This signature is characteristic of aliphatic organic matter and is mainly localized on a broad region of ~1000 square kilometers close to the ~50-kilometer Ernutet crater. The combined presence on Ceres of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic material indicates a very complex chemical environment, suggesting favorable environments to prebiotic chemistry.

  10. Localized aliphatic organic material on the surface of Ceres

    NASA Astrophysics Data System (ADS)

    De Sanctis, M. C.; Ammannito, E.; McSween, H. Y.; Raponi, A.; Marchi, S.; Capaccioni, F.; Capria, M. T.; Carrozzo, F. G.; Ciarniello, M.; Fonte, S.; Formisano, M.; Frigeri, A.; Giardino, M.; Longobardo, A.; Magni, G.; McFadden, L. A.; Palomba, E.; Pieters, C. M.; Tosi, F.; Zambon, F.; Raymond, C. A.; Russell, C. T.

    2017-02-01

    Organic compounds occur in some chondritic meteorites, and their signatures on solar system bodies have been sought for decades. Spectral signatures of organics have not been unambiguously identified on the surfaces of asteroids, whereas they have been detected on cometary nuclei. Data returned by the Visible and InfraRed Mapping Spectrometer on board the Dawn spacecraft show a clear detection of an organic absorption feature at 3.4 micrometers on dwarf planet Ceres. This signature is characteristic of aliphatic organic matter and is mainly localized on a broad region of ~1000 square kilometers close to the ~50-kilometer Ernutet crater. The combined presence on Ceres of ammonia-bearing hydrated minerals, water ice, carbonates, salts, and organic material indicates a very complex chemical environment, suggesting favorable environments to prebiotic chemistry.

  11. 77 FR 50530 - Polyester Staple Fiber From China; Scheduling of an Expedited Five-Year Review Concerning the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ... COMMISSION Polyester Staple Fiber From China; Scheduling of an Expedited Five-Year Review Concerning the Antidumping Duty Order on Polyester Staple Fiber From China AGENCY: United States International Trade... determine ] whether revocation of the antidumping duty order on polyester staple fiber from China would...

  12. 76 FR 28420 - Certain Polyester Staple Fiber From the People's Republic of China: Full Extension of Preliminary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-17

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Full... polyester staple fiber from the People's Republic of China (``PRC''). This review covers the period June 1... duty order on certain polyester staple fiber from the PRC. See Initiation of Antidumping...

  13. 78 FR 38939 - Certain Polyester Staple Fiber From the People's Republic of China: Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Final... antidumping duty order on certain polyester staple fiber (``PSF'') from the People's Republic of China (``PRC... below. \\1\\ See Certain Polyester Staple Fiber From the People's Republic of China: Preliminary...

  14. 75 FR 1336 - First Administrative Review of Certain Polyester Staple Fiber From the People's Republic of China...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... International Trade Administration First Administrative Review of Certain Polyester Staple Fiber From the People... first administrative review of the antidumping duty order on certain polyester staple fiber (``PSF'') from the People's Republic of China (``PRC''). See Certain Polyester Staple Fiber from the...

  15. 76 FR 2886 - Certain Polyester Staple Fiber From the People's Republic of China: Final Results and Partial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Final... second administrative review of the antidumping duty order on certain polyester staple fiber (``PSF'') from the People's Republic of China (``PRC''). See Certain Polyester Staple Fiber From the...

  16. 75 FR 64252 - Certain Polyester Staple Fiber From the Republic of Korea: Final Results of the 2008-2009...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-19

    ... International Trade Administration Certain Polyester Staple Fiber From the Republic of Korea: Final Results of... certain polyester staple fiber from the Republic of Korea and invited interested parties to comment. The... 15, 2010, the Department of Commerce (``the Department'') published Certain Polyester Staple...

  17. 75 FR 76954 - Certain Polyester Staple Fiber From the People's Republic of China: Extension of Time Limit for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-10

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Extension... Register the Preliminary Results of the second administrative review of certain polyester staple fiber.... See Certain Polyester Staple Fiber From the People's Republic of China: Notice of Preliminary...

  18. 76 FR 60802 - Certain Polyester Staple Fiber From the Republic of Korea and Taiwan: Continuation of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... International Trade Administration Certain Polyester Staple Fiber From the Republic of Korea and Taiwan... certain polyester staple fiber from the Republic of Korea (Korea) and Taiwan would likely lead to a... orders on polyester staple fiber from Korea and Taiwan \\1\\ pursuant to section 751(c) of the Tariff...

  19. 77 FR 71579 - Polyester Staple Fiber From Taiwan: Notice of Court Decision Not in Harmony With Final Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... International Trade Administration Polyester Staple Fiber From Taiwan: Notice of Court Decision Not in Harmony... order on polyester staple fiber from Taiwan covering the period of review (``POR'') May 1, 2009, through... Certain Polyester Staple Fiber From Taiwan: Final Results of Antidumping Duty Administrative Review, 76...

  20. 76 FR 37830 - Polyester Staple Fiber From Korea and Taiwan; Scheduling of Expedited Five-Year Reviews...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-28

    ... COMMISSION Polyester Staple Fiber From Korea and Taiwan; Scheduling of Expedited Five-Year Reviews Concerning the Antidumping Duty Orders on Polyester Staple Fiber From Korea and Taiwan AGENCY: United States...) to determine whether revocation of the antidumping duty orders on polyester staple fiber from...

  1. 75 FR 34097 - Certain Polyester Staple Fiber From Taiwan: Extension of the Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Polyester Staple Fiber From Taiwan: Extension of the Final Results of... certain polyester staple fiber from Taiwan. See Certain Polyester Staple Fiber from Taiwan:...

  2. Sodium hypochlorite oxidation of petroleum aliphatic contaminants in calcareous soils.

    PubMed

    Picard, François; Chaouki, Jamal

    2016-02-01

    This research project investigated the sodium hypochlorite (NaClO) oxidation of aliphatic petroleum contaminants (C10-C50) in a calcareous soil (average 5473 ppm C10-C50, 15 wt% Ca), which had been excavated from a contaminated industrial site. The decontamination objective was to lower the C10-C50 concentration to 700 ppm. CO2 acidity was used in the project to boost the NaClO oxidation yield and seems to have played a role in desorbing the natural organic matter. The experimental conditions were a 2- to 16-h reaction time, at room temperature, with a 1 to 12.5 wt% NaClO oxidative solution and a fixed 2:1 solution-to-soil ratio. With a 3 wt% NaClO solution and with a CO2 overhead, the NaClO dosage requirement was maintained below 60 g NaClO/g of oxidized C10-C50 over the entire decontamination range. The strong chlorine smell remaining after the reaction was completed suggests that part of the NaClO requirement can be recycled. Except traces of chloroform, there were no regulation-listed organochloride contaminants detected on either the treated soil samples or leachates and the total count of chlorinated compounds in treated soil samples was below the detection limit of 250 mg/kg. The NaClO oxidation mechanism on aliphatic substrates might be triggered by transition metals, such as manganese, but no attempt has been made to investigate the oxidation mechanism. Further investigations would include a constant-fed NaClO system and other techniques to lower the required NaClO dosage.

  3. Adhesive for polyester films cures at room temperature, has high initial tack

    NASA Technical Reports Server (NTRS)

    Christian, C. M.; Fust, G. W.; Welchel, C. J.

    1966-01-01

    Quick room-temperature-cure adhesive bonds polyester-insulated flat electrical cables to metal surfaces and various other substrates. The bond strength of the adhesive may be considerably increased by first applying a commercially available polyamide primer to the polyester film.

  4. 77 FR 25744 - Certain Polyester Staple Fiber From China; Institution of a Five-Year Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... COMMISSION Certain Polyester Staple Fiber From China; Institution of a Five- Year Review AGENCY: United... fiber from China would be likely to lead to continuation or recurrence of material injury. Pursuant to... order on imports of certain polyester staple fiber from China (72 FR 30545). The Commission...

  5. 76 FR 52935 - Certain Polyester Staple Fiber From Korea: Rescission of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... International Trade Administration Certain Polyester Staple Fiber From Korea: Rescission of Antidumping Duty... to request an administrative review of the antidumping order on polyester staple fiber from Korea... staple fiber covered by the scope of the order is defined as synthetic staple fibers, not carded,...

  6. 75 FR 5964 - Certain Polyester Staple Fiber From Taiwan: Preliminary Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... International Trade Administration Certain Polyester Staple Fiber From Taiwan: Preliminary Results of... review of the antidumping duty order on certain polyester staple fiber (PSF) from Taiwan. The period of... fiber from one producer/exporter. We have preliminarily found that sales of the subject merchandise...

  7. 75 FR 64694 - Second Antidumping Duty Administrative Review of Certain Polyester Staple Fiber From the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... Fiber From the People's Republic of China: Extension of Time Limit for the Final Results Agency: Import... the Preliminary Results of the second administrative review of certain polyester staple fiber (``PSF... Polyester Staple Fiber From the People's Republic of China: Notice of Preliminary Results and...

  8. 75 FR 47795 - Certain Polyester Staple Fiber from Korea: Rescission of Antidumping Duty Administrative Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-09

    ... International Trade Administration Certain Polyester Staple Fiber from Korea: Rescission of Antidumping Duty... (June 30, 2010). Scope of the Order Polyester staple fiber (``PSF'') covered by the scope of the order is defined as synthetic staple fibers, not carded, combed or otherwise processed for spinning,...

  9. 76 FR 11268 - Certain Polyester Staple Fiber From Korea and Taiwan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... COMMISSION Certain Polyester Staple Fiber From Korea and Taiwan AGENCY: United States International Trade... staple fiber from Korea and Taiwan. SUMMARY: The Commission hereby gives notice that it has instituted... whether revocation of the antidumping duty orders on certain polyester staple fiber from Korea and...

  10. 40 CFR 721.10298 - MDI terminated polyester polyurethane polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer (generic). 721.10298 Section 721.10298 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10298 MDI terminated polyester polyurethane polymer (generic). (a... generically as MDI terminated polyester polyurethane polymer (P-11-662) is subject to reporting under...

  11. 40 CFR 721.10298 - MDI terminated polyester polyurethane polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polymer (generic). 721.10298 Section 721.10298 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10298 MDI terminated polyester polyurethane polymer (generic). (a... generically as MDI terminated polyester polyurethane polymer (P-11-662) is subject to reporting under...

  12. 40 CFR 721.10298 - MDI terminated polyester polyurethane polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer (generic). 721.10298 Section 721.10298 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10298 MDI terminated polyester polyurethane polymer (generic). (a... generically as MDI terminated polyester polyurethane polymer (P-11-662) is subject to reporting under...

  13. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Formaldehyde, polymer with aliphatic... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  14. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Formaldehyde, polymer with aliphatic... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  15. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Formaldehyde, polymer with aliphatic... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  16. Enzymatic saccharification coupling with polyester recovery from cotton-based waste textiles by phosphoric acid pretreatment.

    PubMed

    Shen, Fei; Xiao, Wenxiong; Lin, Lili; Yang, Gang; Zhang, Yanzong; Deng, Shihuai

    2013-02-01

    In order to recycle the cotton-based waste textiles, a novel process was designed for pretreating waste textiles with phosphoric acid to recover polyester and fermentable sugar. The effects of pretreatment conditions including, phosphoric acid concentration, pretreatment temperature, time, and ratio of textiles and phosphoric acid were thoroughly investigated. Results indicated the mentioned four factors had significant influences on sugar and polyester recovery. Almost complete polyester recovery was achieved by enhancing phosphoric acid concentration, temperature and pretreatment time or reducing the ratio of textiles and phosphoric acid. However, these behaviors decreased the sugar recovery seriously. 100% polyester recovery with a maximum sugar recovery of 79.2% was achieved at the optimized conditions (85% phosphoric acid, 50°C, 7h, and the ratio of 1:15). According to the technical and cost-benefit analysis, it was technically feasible and potentially profitable to recover polyester and sugar from waste textiles by phosphoric acid pretreatment.

  17. Micropatterned coumarin polyester thin films direct neurite orientation.

    PubMed

    McCormick, Aleesha M; Maddipatla, Murthy V S N; Shi, Shuojia; Chamsaz, Elaheh A; Yokoyama, Hiroshi; Joy, Abraham; Leipzig, Nic D

    2014-11-26

    Guidance and migration of cells in the nervous system is imperative for proper development, maturation, and regeneration. In the peripheral nervous system (PNS), it is challenging for axons to bridge critical-sized injury defects to achieve repair and the central nervous system (CNS) has a very limited ability to regenerate after injury because of its innate injury response. The photoreactivity of the coumarin polyester used in this study enables efficient micropatterning using a custom digital micromirror device (DMD) and has been previously shown to be biodegradable, making these thin films ideal for cell guidance substrates with potential for future in vivo applications. With DMD, we fabricated coumarin polyester thin films into 10×20 μm and 15×50 μm micropatterns with depths ranging from 15 to 20 nm to enhance nervous system cell alignment. Adult primary neurons, oligodendrocytes, and astrocytes were isolated from rat brain tissue and seeded onto the polymer surfaces. After 24 h, cell type and neurite alignment were analyzed using phase contrast and fluorescence imaging. There was a significant difference (p<0.0001) in cell process distribution for both emergence angle (from the body of the cell) and orientation angle (at the tip of the growth cone) confirming alignment on patterned surfaces compared to control substrates (unpatterned polymer and glass surfaces). The expected frequency distribution for parallel alignment (≤15°) is 14% and the two micropatterned groups ranged from 42 to 49% alignment for emergence and orientation angle measurements, where the control groups range from 12 to 22% for parallel alignment. Despite depths being 15 to 20 nm, cell processes could sense these topographical changes and preferred to align to certain features of the micropatterns like the plateau/channel interface. As a result this initial study in utilizing these new DMD micropatterned coumarin polyester thin films has proven beneficial as an axon guidance platform

  18. Post-irradiation crosslinking of partially cured unsaturated polyester resin

    NASA Astrophysics Data System (ADS)

    Jurkin, Tanja; Pucić, Irina

    2006-09-01

    The post-irradiation crosslinking of unsaturated polyester (UP) resin samples irradiated to different doses was monitored during the 15-days period. The post-reaction sensitivity of three experimental techniques was evaluated. Significant changes were detected by extraction analysis that also included determination of the free styrene content. The most substantial changes were detected by differential scanning calorimetry, even up to 5 days after the irradiation. The sensitivity and reproducibility of FTIR was the lowest. The first two techniques detected the influence of particular reaction periods, at which the radiation crosslinking was terminated, on the post-reaction.

  19. Heat Transport in Liquid Polyester Resin with Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Vales-Pinzón, C.; Quiñones-Weiss, G.; Alvarado-Gil, J. J.; Medina-Esquivel, R. A.

    2015-11-01

    Carbon nanotubes represent one of the most important materials in nanoscience and nanotechnology, due to their outstanding structural, mechanical, electrical, and thermal properties. It has been shown that when incorporated in a polymeric matrix, carbon nanotubes can improve its physical properties. In this work, thermal-diffusivity measurements of composite materials, prepared by mixing carbon nanotubes in liquid polyester resin, were performed by means of the thermal-wave resonant cavity. The results show an increase of the thermal diffusivity when the volume fraction of carbon nanotubes grows. It is also shown that this increase depends strongly on the diameter of the nanotubes.

  20. Linear aliphatic dialkynes as alternative linkers for double-click stapling of p53-derived peptides.

    PubMed

    Lau, Yu Heng; de Andrade, Peterson; McKenzie, Grahame J; Venkitaraman, Ashok R; Spring, David R

    2014-12-15

    We investigated linear aliphatic dialkynes as a new structural class of i,i+7 linkers for the double-click stapling of p53-based peptides. The optimal combination of azido amino acids and dialkynyl linker length for MDM2 binding was determined. In a direct comparison between aliphatic and aromatic staple scaffolds, the aliphatic staples resulted in superior binding to MDM2 in vitro and superior p53-activating capability in cells when using a diazidopeptide derived from phage display. This work demonstrates that the nature of the staple scaffold is an important factor that can affect peptide bioactivity in cells.

  1. Development of biodegradable crosslinked urethane-doped polyester elastomers

    PubMed Central

    Dey, Jagannath; Xu, Hao; Shen, Jinhui; Thevenot, Paul; Gondi, Sudershan R.; Nguyen, Kytai T.; Sumerlin, Brent S.; Tang, Liping; Yang, Jian

    2009-01-01

    Traditional crosslinked polyester elastomers are inherently weak, and the strategy of increasing crosslink density to improve their mechanical properties makes them brittle materials. Biodegradable polyurethanes, although strong and elastic, do not fare well in dynamic environments due to the onset of permanent deformation. The design and development of a soft, strong and completely elastic (100% recovery from deformation) material for tissue engineering still remains a challenge. Herein, we report the synthesis and evaluation of a new class of biodegradable elastomers, crosslinked urethane-doped polyesters (CUPEs), which is able to satisfy the need for soft, strong, and elastic biomaterials. Tensile strength of CUPE was as high as 41.07 ± 6.85 MPa with corresponding elongation at break of 222.66 ± 27.84%. The initial modulus ranged from 4.14 ± 1.71 MPa to 38.35 ± 4.5 MPa. Mechanical properties and degradation rates of CUPE could be controlled by varying the choice of diol used for synthesis, the polymerization conditions, as well as the concentration of urethane bonds in the polymer. The polymers demonstrated good in vitro and in vivo biocompatibilities. Preliminary hemocompatibility evaluation indicated that CUPE adhered and activated lesser number of platelets compared to PLLA. Good mechanical properties and easy processability make these materials well suited for soft tissue engineering applications. The introduction of CUPEs provides new avenues to meet the versatile requirements of tissue engineering and other biomedical applications. PMID:18801566

  2. Functional finishing of aminated polyester using biopolymer-based polyelectrolyte microgels.

    PubMed

    Glampedaki, Pelagia; Dutschk, Victoria; Jocic, Dragan; Warmoeskerken, Marijn M C G

    2011-10-01

    This study focuses on a microgel-based functionalization method applicable to polyester textiles for improving their hydrophilicity and/or moisture-management properties, eventually enhancing wear comfort. The method proposed aims at achieving pH-/temperature-controlled wettability of polyester within a physiological pH/temperature range. First, primary amine groups are created on polyester surfaces using ethylenediamine; second, biopolymer-based polyelectrolyte microgels are incorporated using the natural cross-linker genipin. The microgels consist of the pH-responsive natural polysaccharide chitosan and pH/thermoresponsive poly(N-isopropylacrylamide-co-acrylic acid) microparticles. Scanning electron microscopy confirmed the microgel presence on polyester surfaces. X-ray photoelectron spectroscopy revealed nitrogen concentration, supporting increased microscopy results. Electrokinetic analysis showed that functionalized polyester surfaces have a zero-charge point at pH 6.5, close to the microgel isoelectric point. Dynamic wetting measurements revealed that functionalized polyester has shorter total water absorption time than the reference. This absorption time is also pH dependent, based on dynamic contact angle and micro-roughness measurements, which indicated microgel swelling at different pH values. Furthermore, at 40 °C functionalized polyester has higher vapor transmission rates than the reference, even at high relative humidity. This was attributed to the microgel thermoresponsiveness, which was confirmed through the almost 50% decrease in microparticle size between 20 and 40 °C, as determined by dynamic light scattering measurements.

  3. Shape memory polymers based on uniform aliphatic urethane networks

    SciTech Connect

    Wilson, T S; Bearinger, J P; Herberg, J L; Marion III, J E; Wright, W J; Evans, C L; Maitland, D J

    2007-01-19

    Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, in order to form amorphous networks with very uniform supermolecular structures which can be used as photo-thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,N{prime},N{prime}-tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3-butanediol (BD). The new polymers were characterized by solvent extraction, NMR, XPS, UV/VIS, DSC, DMTA, and tensile testing. The resulting polymers were found to be single phase amorphous networks with very high gel fraction, excellent optical clarity, and extremely sharp single glass transitions in the range of 34 to 153 C. Thermomechanical testing of these materials confirms their excellent shape memory behavior, high recovery force, and low mechanical hysteresis (especially on multiple cycles), effectively behaving as ideal elastomers above T{sub g}. We believe these materials represent a new and potentially important class of SMPs, and should be especially useful in applications such as biomedical microdevices.

  4. Aliphatic hydrocarbons in Great Barrier Reef organisms and environment

    NASA Astrophysics Data System (ADS)

    Coates, M.; Connell, D. W.; Bodero, J.; Miller, G. J.; Back, R.

    1986-07-01

    This investigation was undertaken to assess the chemical nature, occurrence, and possible origin of petroleum hydrocarbons in the Great Barrier Reef ecosystem. Aliphatic hydrocarbons in surface sediments, water, and a suite of seven species from widely separated coral reefs in the Great Barrier Reef area were analysed by gas chromatography, and by gas chromatography coupled with mass spectrometry. The hydrocarbons found were substantially of biogenic origin. The major components were n-pentadecane, n-heptadecane, pristane and mono-alkenes based on heptadecane, and were believed to originate from benthic algae and phytoplankton. There was no evidence to suggest that lipid content had any influence on hydrocarbon content. Hydrocarbons from the organisms and sediments have characteristic composition patterns which would be altered by the presence of petroleum hydrocarbons. An unresolved complex mixture, usually considered indicative of petroleum contamination, was found in greater than trace amounts only in Holothuria (sea cucumber) and Acropora (coral) from the Capricorn Group, and in some sediment samples from the Capricorn Group and Lizard Island area.

  5. Organochlorine compounds and aliphatic hydrocarbons in Pacific walrus blubber.

    PubMed

    Seagars, D J; Garlich-Miller, J

    2001-01-01

    Blubber samples were collected from 8 male and 19 female Pacific walrus (Odobenus rosmarus divergens) taken during a 1991 joint USA/USSR cruise traveling widely through the Bering Sea. Dieldrin was found at a level similar to that reported 10 years earlier; oxychlordane was found at a slightly higher concentration than reported previously (Taylor et aL, 1989). Heptachlor epoxide was detected for the first time and found at a low concentration. An initial testing for alpha-, beta- and gamma-HCH detected concentrations similar to those in other Bering Sea pinnipeds. Mean summation of PCB was 0.45 microg g(-1) wet weight in males and 0.16 microg g(-1) in females; only one sample was > 1 microg g(-1). Traces of aliphatic hydrocarbons were detected in all sampled animals, only pristane (x = 0.48 microg g(-1)) was found in concentrations > 1 microg g(-1). Small sample sizes, a lack of samples from immature animals, and uniformly low concentrations of contaminants precluded meaningful analysis of age-related effects and regional differences.

  6. Process for the synthesis of aliphatic alcohol-containing mixtures

    DOEpatents

    Greene, Marvin I.; Gelbein, Abraham P.

    1984-01-01

    A process for the synthesis of mixtures which include saturated aliphatic alcohols is disclosed. In the first step of the process, the first catalyst activation stage, a catalyst, which comprises the oxides of copper, zinc, aluminum, potassium and one or two additional metals selected from the group consisting of chromium, magnesium, cerium, cobalt, thorium and lanthanum, is partially activated. In this step, a reducing gas stream, which includes hydrogen and at least one inert gas, flows past the catalyst at a space velocity of up to 5,000 liters (STP) per hour, per kilogram of catalyst. The partially activated catalyst is then subjected to the second step of the process, second-stage catalyst activation. In this step, the catalyst is contacted by an activation gas stream comprising hydrogen and carbon monoxide present in a volume ratio of 0.5:1 and 4:1, respectively, at a temperature of 200.degree. to 450.degree. C. and a pressure of between 35 and 200 atmospheres. The activation gas flows at a space velocity of from 1,000 to 20,000 liters (STP) per hour, per kilogram of catalyst. Second-stage activation continues until the catalyst is contacted with at least 500,000 liters (STP) of activation gas per kilogram of catalyst. The fully activated catalyst, in the third step of the process, contacts a synthesis gas stream comprising hydrogen and carbon monoxide.

  7. Process for the synthesis of aliphatic alcohol-containing mixtures

    DOEpatents

    Greene, M.I.; Gelbein, A.P.

    1984-10-16

    A process for the synthesis of mixtures which include saturated aliphatic alcohols is disclosed. In the first step of the process, the first catalyst activation stage, a catalyst, which comprises the oxides of copper, zinc, aluminum, potassium and one or two additional metals selected from the group consisting of chromium, magnesium, cerium, cobalt, thorium and lanthanum, is partially activated. In this step, a reducing gas stream, which includes hydrogen and at least one inert gas, flows past the catalyst at a space velocity of up to 5,000 liters (STP) per hour, per kilogram of catalyst. The partially activated catalyst is then subjected to the second step of the process, second-stage catalyst activation. In this step, the catalyst is contacted by an activation gas stream comprising hydrogen and carbon monoxide present in a volume ratio of 0.5:1 and 4:1, respectively, at a temperature of 200 to 450 C and a pressure of between 35 and 200 atmospheres. The activation gas flows at a space velocity of from 1,000 to 20,000 liters (STP) per hour, per kilogram of catalyst. Second-stage activation continues until the catalyst is contacted with at least 500,000 liters (STP) of activation gas per kilogram of catalyst. The fully activated catalyst, in the third step of the process, contacts a synthesis gas stream comprising hydrogen and carbon monoxide.

  8. Project Summary. IN-SITU AQUIFER RESTORATION OF CHLORINATED ALIPHATICS BY METHANOTROPHIC BACTERIA

    EPA Science Inventory

    This project evaluated the potential of an innovative approach to aquifer restoration: enhanced in-situ biotransformation of chlorinated aliphatic solvents by a bacterial community grown on methane under aerobic conditions. The target chlorinated compounds were trichloroethene (...

  9. Field Evaluations Test Plan for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    The objective of this project is to qualify candidate alternatives to Aliphatic Isocyanate Polyurethane coatings under the specifications for the standard system. This project will compare coating performance of the proposed alternatives to existing coating systems or standards.

  10. Fluorocarbon nano-coating of polyester fabrics by atmospheric air plasma with aerosol

    NASA Astrophysics Data System (ADS)

    Leroux, F.; Campagne, C.; Perwuelz, A.; Gengembre, L.

    2008-04-01

    A fluorocarbon coating was deposited on polyester (PET) woven fabric using pulse discharge plasma treatment by injecting a fluoropolymer directly into the plasma dielectric barrier discharge. The objective of the treatment was to improve the hydrophobic properties as well as the repellent behaviour of the polyester fabric. Plasma treatment conditions were optimised to obtain optimal hydrophobic properties which were evaluated using water contact angle measurement as well as spray-test method at the polyester fabric surface. The study showed that adhesion of the fluoropolymer to the woven PET was greatly enhanced by the air plasma treatment. X-ray photoemission spectroscopy (XPS) analyses revealed chemical surface modifications occurring after the plasma treatments.

  11. Synthesis of novel naphthoquinone aliphatic amides and esters and their anticancer evaluation.

    PubMed

    Kongkathip, Boonsong; Akkarasamiyo, Sunisa; Hasitapan, Komkrit; Sittikul, Pichamon; Boonyalai, Nonlawat; Kongkathip, Ngampong

    2013-02-01

    Fourteen new naphthoquinone aliphatic amides and seventeen naphthoquinone aliphatic esters were synthesized in nine to ten steps from 1-hydroxy-2-naphthoic acid with 9-25% overall yield for the amides, and 16-21% overall yield for the esters. The key step of the amide synthesis is a coupling reaction between amine and various aliphatic acids using 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as a coupling agent while for the ester synthesis, DCC/DMAP or CDI was used as the coupling reagent between aliphatic acids and naphthoquinone alcohol. Both naphthoquinone amides and esters were evaluated for their anticancer activity against KB cells. It was found that naphthoquinone aliphatic amides showed stronger anticancer activity than those of the esters when the chains are longer than 7-carbon atoms. The optimum chain of amides is expected to be 16-carbon atoms. In addition, naphthoquinone aliphatic esters with α-methyl on the ester moiety possessed much stronger anticancer activity than the straight chains. Decatenation assay revealed that naphthoquinone amide with 16-carbon atoms chain at 15 μM and 20 μM can completely inhibit hTopoIIα activity while at 10 μM the enzyme activity was moderately inhibited. Molecular docking result also showed the same trend as the cytotoxicity and decatenation assay.

  12. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation.

    PubMed

    Stroud, J L; Paton, G I; Semple, K T

    2007-05-01

    Aliphatic hydrocarbons make up a substantial portion of organic contamination in the terrestrial environment. However, most studies have focussed on the fate and behaviour of aromatic contaminants in soil. Despite structural differences between aromatic and aliphatic hydrocarbons, both classes of contaminants are subject to physicochemical processes, which can affect the degree of loss, sequestration and interaction with soil microflora. Given the nature of hydrocarbon contamination of soils and the importance of bioremediation strategies, understanding the fate and behaviour of aliphatic hydrocarbons is imperative, particularly microbe-contaminant interactions. Biodegradation by microbes is the key removal process of hydrocarbons in soils, which is controlled by hydrocarbon physicochemistry, environmental conditions, bioavailability and the presence of catabolically active microbes. Therefore, the aims of this review are (i) to consider the physicochemical properties of aliphatic hydrocarbons and highlight mechanisms controlling their fate and behaviour in soil; (ii) to discuss the bioavailability and bioaccessibility of aliphatic hydrocarbons in soil, with particular attention being paid to biodegradation, and (iii) to briefly consider bioremediation techniques that may be applied to remove aliphatic hydrocarbons from soil.

  13. Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments from the Neuquen River, Argentine Patagonia.

    PubMed

    Monza, Liliana B; Loewy, Ruth M; Savini, Mónica C; Pechen de d'Angelo, Ana M

    2013-01-01

    Spatial distribution and probable sources of aliphatic and polyaromatic hydrocarbons (AHs, PAHs) were investigated in surface sediments collected along the bank of the Neuquen River, Argentina. Total concentrations of aliphatic hydrocarbons ranged between 0.41 and 125 μg/g dw. Six stations presented low values of resolved aliphatic hydrocarbons and the n-alkane distribution indexes applied suggested a clear biogenic source. These values can be considered the baseline levels of aliphatic hydrocarbons for the river sediments. This constitutes important information for the assessment of future impacts since a strong impulse in the exploitation of shale gas and shale oil in these zones is nowadays undergoing. For the other 11 stations, a mixture of aliphatic hydrocarbons of petrogenic and biogenic origin was observed. The spatial distribution reflects local inputs of these pollutants with a significant increase in concentrations in the lower course, where two major cities are located. The highest values of total aliphatic hydrocarbons were found in this sector which, in turn, was the only one where individual PAHs were detected.

  14. A THEORETICAL STUDY ON THE VIBRATIONAL SPECTRA OF POLYCYCLIC AROMATIC HYDROCARBON MOLECULES WITH ALIPHATIC SIDEGROUPS

    SciTech Connect

    Sadjadi, SeyedAbdolreza; Zhang, Yong; Kwok, Sun

    2015-03-01

    The role of aliphatic side groups in the formation of astronomical unidentified infrared emission (UIE) features is investigated by applying the density functional theory to a series of molecules with mixed aliphatic-aromatic structures. The effects of introducing various aliphatic groups to a fixed polycyclic aromatic hydrocarbon (PAH) core (ovalene) are studied. Simulated spectra for each molecule are produced by applying a Drude profile at T = 500 K while the molecule is kept at its electronic ground state. The vibrational normal modes are classified using a semi-quantitative method. This allows us to separate the aromatic and aliphatic vibrations, and therefore provides clues to what types of vibrations are responsible for the emissions bands at different wavelengths. We find that many of the UIE bands are not pure aromatic vibrational bands but may represent coupled vibrational modes. The effects of aliphatic groups on the formation of the 8 μm plateau are quantitatively determined. The vibrational motions of methyl (–CH{sub 3}) and methylene (–CH{sub 2} –) groups can cause the merging of the vibrational bands of the parent PAH and the forming of broad features. These results suggest that aliphatic structures can play an important role in the UIE phenomenon.

  15. THE CARRIERS OF THE INTERSTELLAR UNIDENTIFIED INFRARED EMISSION FEATURES: AROMATIC OR ALIPHATIC?

    SciTech Connect

    Li Aigen; Draine, B. T. E-mail: draine@astro.princeton.edu

    2012-12-01

    The unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 {mu}m, commonly attributed to polycyclic aromatic hydrocarbon (PAH) molecules, have been recently ascribed to coal- or kerogen-like organic nanoparticles with a mixed aromatic-aliphatic structure. However, we show in this Letter that this hypothesis is inconsistent with observations. We estimate the aliphatic fraction of the UIE carriers based on the observed intensities of the 3.4 {mu}m and 6.85 {mu}m emission features by attributing them exclusively to aliphatic C-H stretch and aliphatic C-H deformation vibrational modes, respectively. We derive the fraction of carbon atoms in aliphatic form to be <15%. We conclude that the UIE emitters are predominantly aromatic, with aliphatic material at most a minor part of the UIE carriers. The PAH model is consistent with astronomical observations and PAHs dominate the strong UIE bands.

  16. Comportement mecanique des joints boulonnes en composites verre-polyester

    NASA Astrophysics Data System (ADS)

    Vangrimde, Bart

    Glass fibre-reinforced polyester composite materials are being extensively used for general-purpose applications. For highly loaded structures, bolted joints are generally the preferred assembly method. However, bolted joints are usually the weakest link in a structure and they must therefore be designed with care. Specifically, the joint geometry, reinforcement type and lay-up should be chosen on a rational basis, otherwise the assembly may fail prematurely. The present study is concerned with the study of these material parameters. The mechanical response of bolted assemblies is studied for a range of six glass fibre-reinforced polyester laminates with reinforcements and lay-ups that are typical for general-purpose applications. In order to assess how changes in joint width or in joint end distance affect the behaviour of the joint, tests were carried out on three coupon geometries. In accordance with the standard test method ASTM D5961, a single-bolt double lap bolted joint configuration was used for the experimental characterisation. We investigated how the displacement measurement could best be made because currently there is a whole range of approaches in use and it is clear that the measured displacement quantity directly affects the stiffness values. A 3-D finite element model indicated that bolt deformation and fixture deformations affected the measured coupon displacement. The bearing stiffness was reduced by 26% on average when the width was reduced from six to two times the hole diameter. For the assemblies with a width of two times the hole diameter (w/D = 2) the bearing stiffness increased clearly with the tensile modulus of the tested materials. Both the experimental and numerical bearing stiffness values were much lower than those predicted by joint flexibility formulas. Hence, our results indicate that these joint flexibility formulas should be adapted if they are intended to be used for design of general-purpose glass fibre-reinforced polyester

  17. Acid-base thermochemistry of gaseous aliphatic α-aminoacids.

    PubMed

    Bouchoux, Guy; Huang, Sihua; Inda, Bhawani Singh

    2011-01-14

    Acid-base thermochemistry of isolated aliphatic amino acids (denoted AAA): glycine, alanine, valine, leucine, isoleucine and proline has been examined theoretically by quantum chemical computations at the G3MP2B3 level. Conformational analysis on neutral, protonated and deprotonated species has been used to identify the lowest energy conformers and to estimate the population of conformers expected to be present at thermal equilibrium at 298 K. Comparison of the G3MP2B3 theoretical proton affinities, PA, and ΔH(acid) with experimental results is shown to be correct if experimental thermochemistry is re-evaluated and adapted to the most recent acidity-basicity scales. From this point of view, a set of evaluated proton affinities of 887, 902, 915, 916, 919 and 941 kJ mol(-1), and a set of evaluated ΔH(acid) of 1433, 1430, 1423, 1423, 1422 and 1426 kJ mol(-1), is proposed for glycine, alanine, valine, leucine, isoleucine and proline, respectively. Correlations with structural parameters (Taft's σ(α) polarizability parameter and molecular size) suggest that polarizability of the side chain is the major origin of the increase in PA and decrease in ΔH(acid) along the homologous series glycine, alanine, valine and leucine/isoleucine. Heats of formation of gaseous species AAA, AAAH(+) and [AAA-H](-) were computed at the G3MP2B3 level. The present study provides previously unavailable Δ(f)H°(298) for the ionized species AAAH(+) and [AAA-H](-). Comparison with Benson's estimate, and correlation with molecular size, show that several experimental Δ(f)H°(298) values of neutral or gaseous AAA might be erroneous.

  18. Pharmacological activities of cilantro's aliphatic aldehydes against Leishmania donovani.

    PubMed

    Donega, Mateus A; Mello, Simone C; Moraes, Rita M; Jain, Surendra K; Tekwani, Babu L; Cantrell, Charles L

    2014-12-01

    Leishmaniasis is a chronic infectious disease caused by different Leishmania species. Global occurrences of this disease are primarily limited to tropical and subtropical regions. Treatments are available; however, patients complain of side effects. Different species of plants have been screened as a potential source of new drugs against leishmaniasis. In this study, we investigated the antileishmanial activity of cilantro (Coriandrum sativum) essential oil and its main components: (E)-2-undecenal, (E)-2-decenal, (E)-2-dodecenal, decanal, dodecanal, and tetradecanal. The essential oil of C. sativum leaves inhibits growth of Leishmani donovani promastigotes in culture with an IC50 of 26.58 ± 6.11 µg/mL. The aliphatic aldehydes (E)-2-decenal (7.85 ± 0.28 µg/mL), (E)-2-undecenal (2.81 ± 0.21 µg/mL), and (E)-2-dodecenal (4.35 ± 0.15 µg/mL), all isolated from C. sativum essential oil, are effective inhibitors of in vitro cultures of L. donovani promastigotes. Aldehydes (E)-2-decenal, (E)-2-undecenal, and (E)-2-dodecenal were also evaluated against axenic amastigotes and IC50 values were determined to be 2.47 ± 0.25 µg/mL, 1.25 ± 0.11 µg/mL, and 4.78 ± 1.12 µg/mL, respectively. (E)-2-Undecenal and (E)-2-dodecenal demonstrated IC50 values of 5.65 ± 0.19 µg/mL and 9.60 ± 0.89 µg/mL, respectively, against macrophage amastigotes. These cilantro compounds showed no cytotoxicity against THP-1 macrophages.

  19. Separation and conductimetric detection of C1-C7 aliphatic monocarboxylic acids and C1-C7 aliphatic monoamines on unfunctionized polymethacrylate resin columns.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi; Takeuchi, Toyohide

    2004-06-11

    The application of unfunctionized polymethacrylate resin (TSKgel G3000PWXL) as a stationary phase in liquid chromatography with conductimetric detection for C1-C7 aliphatic monocarboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, 3,3-dimethylbutyric acid, 4-methylvaleric acid, hexanoic acid, 2-methylhexanoic acid, 5-methylhexanoic acid and heptanoic acid) and C1-C7 aliphatic monoamines (methylamine, ethylamine, propylamine, isobutylamine, butylamine, isoamylamine, amylamine, 1,3-dimethylbutylamine, hexylamine, 2-heptylamine and heptylamine) was attempted with C8 aliphatic monocarboxylic acids (2-propylvaleric acid, 2-ethylhexanoic acid, 2-methylheptanoic acid and octanoic acid) and C8 aliphatic monoamines (1,5-dimethylhexylamine, 2-ethylhexylamine, 1-methylheptylamine and octylamine) as eluents, respectively. Using 1 mM 2-methylheptanoic acid at pH 4.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 carboxylic acids were achieved on a TSKgel G3000PWXL column (150 mm x 6 mm i.d.) in 60 min. Using 2 mM octylamine at pH 11.0 as the eluent, excellent separation and relatively high sensitive detection for these C1-C7 amines were also achieved on the TSKgel G3000PWXL column in 60 min.

  20. Morphological and biodegradability studies of Euphorbia latex modified polyester - Banana fiber composites

    NASA Astrophysics Data System (ADS)

    Rai, Bhuvneshwar; Kumar, Gulshan; Diwan, R. K.

    2016-05-01

    The composites of Banana fiber were prepared using polyester resin blended Euphorbia coagulum, morphology and the degree of rate of aerobic biodegradation of the prepared composites were studied. Polyester resin blended Euphorbia coagulum containing Banana fiber, Euphorbia coagulum and polyester resin taken in the ratio 40: 24: 36 was used for the study, which was the optimum composition of the composite reported in a previous study by the authors. In the biodegradability study cellulose has been used as positive reference material. Result shows that Euphorbia coagulum modified polyester - Banana fiber composites exhibited biodegradation to the extent of around 40%. The use of developed green composites may help in reducing the generation of non-biodegradable polymeric wastes.

  1. Optical properties of three-dimensional P(St-MAA) photonic crystals on polyester fabrics

    NASA Astrophysics Data System (ADS)

    Liu, Guojin; Zhou, Lan; Wu, Yujiang; Wang, Cuicui; Fan, Qinguo; Shao, Jianzhong

    2015-04-01

    The three-dimensional (3D) photonic crystals with face-centered cubic (fcc) structure was fabricated on polyester fabrics, a kind of soft textile materials quite different from the conventional solid substrates, by gravitational sedimentation self-assembly of monodisperse P(St-MAA) colloidal microspheres. The optical properties of structural colors on polyester fabrics were investigated and the position of photonic band gap was characterized. The results showed that the color-tuning ways of the structural colors from photonic crystals were in accordance with Bragg's law and could be modulated by the size of P(St-MAA) colloidal microspheres and the viewing angles. The L∗a∗b∗ values of the structural colors generated from the assembled polyester fabrics were in agreement with their reflectance spectra. The photonic band gap position of photonic crystals on polyester fabrics could be consistently confirmed by reflectance and transmittance spectra.

  2. A kinetic study of hydrolysis of polyester elastomer in magnetic tape

    NASA Technical Reports Server (NTRS)

    Yamamoto, K.; Watanabe, H.

    1994-01-01

    A useful method for kinetic study of the hydrolysis of polyester elastomer is established which uses the number-average molecular weight. The reasonableness of this method is confirmed and the effect of magnetic particles on hydrolysis is considered.

  3. Eco-friendly surface modification on polyester fabrics by esterase treatment

    NASA Astrophysics Data System (ADS)

    Wu, Jindan; Cai, Guoqiang; Liu, Jinqiang; Ge, Huayun; Wang, Jiping

    2014-03-01

    Currently, traditional alkali deweighting technology is widely used to improve the hydrophilicity of polyester fabrics. However, the wastewater and heavy chemicals in the effluent cause enormous damage to the environment. Esterase treatment, which is feasible in mild conditions with high selectivity, can provide a clean and efficient way for polyester modification. Under the optimum conditions, the polyester fabric hydrolysis process of esterase had a linear kinetics. X-ray photoelectron spectrometry (XPS) results showed that hydroxyl and carboxyl groups were produced only on the surface of modified fiber without changing the chemical composition of the bulk. These fibers exhibited much improved fabric wicking, as well as greatly improved oily stain removal performance. Compared to the harsh alkali hydrolysis, the enzyme treatment led to smaller weight loss and better fiber integrity. The esterase treatment technology is promising to produce higher-quality polyester textiles with an environmental friendly approach.

  4. Effect of Charge and Hydrophobicity on Adsorption of Modified Starches on Polyester.

    PubMed

    Samu; Moulee; Kumar

    1999-12-15

    Polyester fabric (poly(ethylene terephthalate)) is a hydrophobic polymer. Its hydrophobic nature can be a disadvantage for certain applications like dyeing, finishing, detergency, etc. Physical or chemical modification of the polyester to make it more hydrophilic is therefore desirable for certain performance characteristics. Surface modification of polyester to make it hydrophilic can be achieved by adsorbing polymers on the polyester surface. Starch is a commonly available, hydrophilic polymer used in many textile applications that can be used to modify polyester. However, it needs to be chemically modified so that it can adsorb on the polyester fabric and physically modify the fabric characteristics. The polymers used in this study are two different modified starches-cationic and anionic starches and mixtures of the two. The adsorption kinetics on a polyester substrate was studied. The effect of charge and hydrophobicity on adsorption was investigated. Cationic starches were shown to readily adsorb on polyester and this was attributed to electrostatic interactions. Hydrophobic substituents on the cationic moiety resulted in increased adsorption. This was attributed to the weak hydrophobic interaction between the polymer chains which could result in a more coiled polymer conformation. It is hypothesized that more starch molecules are required for surface coverage of the polyester, resulting in an increase in adsorption. Anionic starch was adsorbed on the substrate but at a slower rate than the cationic starches. It is likely that there is a H bonding between acid groups on the starch and the ester groups of the polyester. However, the anionic starch is desorbed when the polyester is placed in an aqueous medium. When a blend of cationic starch and anionic starch was used, a low concentration of anionic starch was seen to increase adsorption, indicating that the polyelectrolyte complex itself may be adsorbing on the substrate. Further increases cause a decrease in

  5. Tensile properties of bacterial cellulose nanofibers - polyester composites

    NASA Astrophysics Data System (ADS)

    Abral, H.; Mahardika, M.

    2016-07-01

    The paper shows tensile properties of bacterial cellulose (BC) nanofibers and polyester (PO) matrix composites. Tensile properties including tensile strength (TS), modulus elasticity (ME), and elongation (EL) were observed respectively. BC nanofibers exist in the form of a sheet that was then varied in matrix PO. The BC sheet was mounted by one, three, five and seven pieces respectively in the matrix PO. The tensile strength of the composites was conducted by using the tensile equipment. The results showed that the tensile strength of the composite with a single sheet of BC was lower than that of pure PO. The ST value achieved maximum level in the number of layers of BC three pieces, but then it decreased for the composites reinforced five and seven pieces of BC nanofiber, respectively. Scanning Electron Microscope (SEM) observation exhibits bad interface bonding between BC nanofibers and PO matrix.

  6. Fabrication improvements for thermoset polyester (TPE) microfluidic devices.

    PubMed

    Fiorini, Gina S; Yim, Moonbin; Jeffries, Gavin D M; Schiro, Perry G; Mutch, Sarah A; Lorenz, Robert M; Chiu, Daniel T

    2007-07-01

    Thermoset polyester (TPE) microfluidic devices were previously developed as an alternative to poly(dimethylsiloxane) (PDMS) devices, fabricated similarly by replica molding, yet offering stable surface properties and good chemical compatibility with some organics that are incompatible with PDMS. This paper describes a number of improvements in the fabrication of TPE chips. Specifically, we describe methods to form TPE devices with a thin bottom layer for use with high numerical aperture (NA) objectives for sensitive fluorescence detection and optical manipulation. We also describe plasma-bonding of TPE to glass to create hybrid TPE-glass devices. We further present a simple master-pretreatment method to replace our original technique that required the use of specialized equipment.

  7. Glass fibres reinforced polyester composites degradation monitoring by surface analysis

    NASA Astrophysics Data System (ADS)

    Croitoru, Catalin; Patachia, Silvia; Papancea, Adina; Baltes, Liana; Tierean, Mircea

    2015-12-01

    The paper presents a novel method for quantification of the modifications that occur on the surface of different types of gel-coated glass fibre-reinforced polyester composites under artificial UV-ageing at 254 nm. The method implies the adsorption of an ionic dye, namely methylene blue, on the UV-aged composite, and computing the CIELab colour space parameters from the photographic image of the coloured composite's surface. The method significantly enhances the colour differences between the irradiated composites and the reference, in contrast with the non-coloured ones. The colour modifications that occur represent a good indicative of the surface degradation, alteration of surface hydrophily and roughness of the composite and are in good correlation with the ATR-FTIR spectroscopy and optical microscopy results. The proposed method is easier, faster and cheaper than the traditional ones.

  8. The research of far infrared flame retardant polyester staple fiber

    NASA Astrophysics Data System (ADS)

    Li, Qingshan; Zhang, Kaijun; Luo, Jinqong; Li, Ji’an; Jiang, Jian; Liang, Qianqian; Jin, Yongxia; Liu, Bing

    2017-01-01

    Far infrared flame retardant slices was prepared, fiber with far infrared flame retardant composite function was also prepared by the method of melt spinning. Scanning electron microscopy (SEM) was used to observe the fibrous microscopic structure. In the SEM images, functional ultrafine powder particle size and distribution in the fiber were visible. The results show that the functional ultrafine powder is evenly distributed on the fibrous surface, which is closely combined with fiber, and the far infrared emissivity is F, which is more than (8 to 14 microns) 0.88. Far infrared flame retardant polyester fiber has not only good flame retardant, but also environmental health effect: releasing negative ions and launch far-infrared, which shows wide application prospect. The fiber was processed into far-infrared flame retardant electric blanket, whose functional indicators and flame retardant properties are not reduced.

  9. Study of the indoor decontamination using nanocoated woven polyester fabric

    NASA Astrophysics Data System (ADS)

    Memon, Hafeezullah; Kumari, Naveeta; Jatoi, Abdul Wahab; Khoso, Nazakat Ali

    2016-11-01

    This research primarily deals with the photocatalytic degradation of methanol in indoor air using nanocoated indoor textiles used for curtains as household textiles. The woven polyester was coated by titanium dioxide by sol gel method, using silicon-based binder. The characterization of the coating has been done using scanning electron microscopy (SEM) image analysis, energy dispersive analysis using X-ray (EDAX) and Fourier transform infrared spectroscopy (FTIR). The DIY instrument providing the similar environment as of indoor was designed to assess the performance of the degradation of formaldehyde under UV light. The photocatalytic degradation rate was measured using the absorption value of the solutions obtained in the result of liquid chromatography of test solution and reagent solution. Different amount of dosages (1-3 %) and different time period of coatings (half hour to 3 h) have been evaluated for optimization.

  10. Validation of the Target Protein of Insecticidal Dihydroagarofuran Sesquiterpene Polyesters

    PubMed Central

    Lu, Lina; Qi, Zhijun; Li, Qiuli; Wu, Wenjun

    2016-01-01

    A series of insecticidal dihydroagarofuran sesquiterpene polyesters were isolated from the root bark of Chinese bittersweet (Celastrus angulatus Max). A previous study indicated that these compounds affect the digestive system of insects, and aminopeptidase N3 and V-ATPase have been identified as the most putative target proteins by affinity chromatography. In this study, the correlation between the affinity of the compounds to subunit H and the insecticidal activity or inhibitory effect on the activity of V-ATPase was analyzed to validate the target protein. Results indicated that the subunit H of V-ATPase was the target protein of the insecticidal compounds. In addition, the possible mechanism of action of the compounds was discussed. The results provide new ideas for developing pesticides acting on V-ATPase of insects. PMID:26999207

  11. Biodegradable polyesters containing ibuprofen and naproxen as pendant groups

    PubMed Central

    Rosario-Meléndez, Roselin; Yu, Weiling; Uhrich, Kathryn E.

    2013-01-01

    Controlled release of non-steroidal anti-inflammatory drugs such as ibuprofen and naproxen could be beneficial for the treatment of inflammatory diseases while reducing the side effects resulting from their continuous use. Novel biodegradable polyesters solely comprised of biocompatible components (e.g., tartaric acid, 1,8-octanediol, and ibuprofen or naproxen as pendant groups) have been synthesized using tin (II) 2-ethylhexanoate as catalyst at 130 °C and subsequently characterized to determine their structures and physicochemical properties. The polymers release the free drug (ibuprofen or naproxen) in vitro in a controlled manner without burst release, unlike the release rates achieved when the drugs are encapsulated in other polymers. These new biomaterials are not cytotoxic towards mouse fibroblasts up to 0.10 mg/mL. The drugs retain their chemical structure following hydrolytic degradation of the polymer, suggesting that bioactivity is preserved. PMID:23957612

  12. The water absorption effect on the hardness of composites polyester

    NASA Astrophysics Data System (ADS)

    Mohammed, A. A.; Issa, T. T.

    2016-04-01

    Unsaturated polyester resin (UPE) was used as the matrix .The iron woven wire and E-glass fiber type (0 - 9°), were used as a reinforcements additives of weight percentage (5, 10, 15) respectively. Samples were prepared by the hand lay-up method for (UPE), (UPE -Fe) and (UPE- Glass). Chemical analysis was used to identify the composition of Fe wire. Water immersing at room temperature for all samples were done at (2, 5, 7, 9, 12) days. Hardness test (Brinell) showed decreasing with increasing in immersion time for (UPE) from (67) HB to (95) HP after adding the reinforcement Fe fibers, with increasing in the water absorbed content especially in the days (2, 5). The water content of absorption was found to be either decreasing or increasing depending on the number of reinforcing layers added.

  13. Biodegradable polyesters containing ibuprofen and naproxen as pendant groups.

    PubMed

    Rosario-Meléndez, Roselin; Yu, Weiling; Uhrich, Kathryn E

    2013-10-14

    Controlled release of nonsteroidal anti-inflammatory drugs such as ibuprofen and naproxen could be beneficial for the treatment of inflammatory diseases while reducing the side effects resulting from their continuous use. Novel biodegradable polyesters solely comprised of biocompatible components (e.g., tartaric acid, 1,8-octanediol, and ibuprofen or naproxen as pendant groups) have been synthesized using tin(II) 2-ethylhexanoate as catalyst at 130 °C and subsequently characterized to determine their structures and physicochemical properties. The polymers release the free drug (ibuprofen or naproxen) in vitro in a controlled manner without burst release, unlike the release rates achieved when the drugs are encapsulated in other polymers. These new biomaterials are not cytotoxic toward mouse fibroblasts up to 0.10 mg/mL. The drugs retain their chemical structure following hydrolytic degradation of the polymer, suggesting that bioactivity is preserved.

  14. The Plant Polyester Cutin: Biosynthesis, Structure, and Biological Roles.

    PubMed

    Fich, Eric A; Segerson, Nicholas A; Rose, Jocelyn K C

    2016-04-29

    Cutin, a polyester composed mostly of oxygenated fatty acids, serves as the framework of the plant cuticle. The same types of cutin monomers occur across most plant lineages, although some evolutionary trends are evident. Additionally, cutins from some species have monomer profiles that are characteristic of the related polymer suberin. Compositional differences likely have profound structural consequences, but little is known about cutin's molecular organization and architectural heterogeneity. Its biological importance is suggested by the wide variety of associated mutants and gene-silencing lines that show a disruption of cuticular integrity, giving rise to numerous physiological and developmental abnormalities. Mapping and characterization of these mutants, along with suppression of gene paralogs through RNA interference, have revealed much of the biosynthetic pathway and several regulatory factors; however, the mechanisms of cutin polymerization and its interactions with other cuticle and cell wall components are only now beginning to be resolved.

  15. The identification of cutin synthase: formation of the plant polyester cutin.

    PubMed

    Yeats, Trevor H; Martin, Laetitia B B; Viart, Hélène M-F; Isaacson, Tal; He, Yonghua; Zhao, Lingxia; Matas, Antonio J; Buda, Gregory J; Domozych, David S; Clausen, Mads H; Rose, Jocelyn K C

    2012-07-01

    A hydrophobic cuticle consisting of waxes and the polyester cutin covers the aerial epidermis of all land plants, providing essential protection from desiccation and other stresses. We have determined the enzymatic basis of cutin polymerization through characterization of a tomato extracellular acyltransferase, CD1, and its substrate, 2-mono(10,16-dihydroxyhexadecanoyl)glycerol. CD1 has in vitro polyester synthesis activity and is required for cutin accumulation in vivo, indicating that it is a cutin synthase.

  16. Polyester-based thin films with high photosensitivity

    SciTech Connect

    POTTER,KELLY SIMMONS; POTTER JR.,BARRETT G.; WHEELER,DAVID R.; JAMISON,GREGORY M.

    2000-02-29

    A great deal of research has been done to understand the photosensitive optical response of inorganic glasses, which exhibit a permanent, photo-induced refractive index change due to the presence of optically active point defects in the glass structure. In the present work, the authors have performed a preliminary study of the intrinsic photosensitivity of a polyester containing a cinnamylindene malonate group (CPE, a photo- and thermal-crosslinkable group) for use in photonic waveguide devices. Thin films of CPE (approximately 0.5 microns thick) were spun onto fused silica substrates. Optical absorption in the thin films was evaluated both before and after exposure to UV radiation sources. It was found that the polyester exhibits two dominant UV absorption bands centered about 240 nm and 330 nm. Under exposure to 337 nm radiation (nitrogen laser) a marked bleaching of the 330 nm band was observed. This band bleaching is a direct result of the photo-induced crosslinking in the cinnamylindene malonate group. Exposure to 248 nm radiation (excimer laser), conversely, resulted in similar bleaching of the 330 nm band but was accompanied by nearly complete bleaching of the higher energy 240 nm band. Based on a Kramers-Kronig analysis of the absorption changes, refractive index changes on the order of {minus}10{sup {minus}2} are estimated. Confirmation of this calculation has been provided via ellipsometry which estimates a refractive index change at 632 nm of {minus}0.061 {+-} 0.002. Thus, the results of this investigation confirm the photosensitive potential of this type of material.

  17. Spider monkeys (Ateles geoffroyi) are less sensitive to the odor of aliphatic ketones than to the odor of other classes of aliphatic compounds.

    PubMed

    Eliasson, Moa; Hernandez Salazar, Laura Teresa; Laska, Matthias

    2015-10-01

    Aliphatic ketones are widely present in body-borne and food odors of primates. Therefore, we used an operant conditioning paradigm and determined olfactory detection thresholds in four spider monkeys for a homologous series of aliphatic 2-ketones (2-butanone to 2-nonanone) and two of their isomers (3- and 4-heptanone). We found that, with the exception of the two shortest-chained ketones, all animals detected concentrations <1 ppm (parts per million), and with five odorants individual animals even reached threshold values <0.1 ppm. Further, we found a significant correlation between olfactory sensitivity of the spider monkeys and carbon chain length of the 2-ketones which can best be described as a U-shaped function. In contrast, no significant correlation was found between olfactory sensitivity and position of the functional carbonyl group. Across-odorant and across-species comparisons revealed the following: spider monkeys are significantly less sensitive to the odors of aliphatic ketones than to the odor of other classes of aliphatic compounds (1-alcohols, n-aldehydes, n-acetic esters, and n-carboxylic acids) sharing the same carbon length. Spider monkeys do not differ significantly in their olfactory sensitivity for aliphatic ketones from squirrel monkeys and pigtail macaques, but are significantly less sensitive to these odorants compared to human subjects and mice. These findings support the notion that neuroanatomical and genetic properties do not allow for reliable predictions with regard to a species' olfactory sensitivity. Further, we conclude that the frequency of occurrence of a class of odorants in a species' chemical environment does not allow for reliable predictions of the species' olfactory sensitivity.

  18. Fabrication of thermoset polyester microfluidic devices and embossing masters using rapid prototyped polydimethylsiloxane molds.

    PubMed

    Fiorini, Gina S; Jeffries, Gavin D M; Lim, David S W; Kuyper, Christopher L; Chiu, Daniel T

    2003-08-01

    Plastics are increasingly being used for the fabrication of Lab-on-a-Chip devices due to the variety of beneficial material properties, affordable cost, and straightforward fabrication methods available from a range of different types of plastics. Rapid prototyping of polydimethylsiloxane (PDMS) devices has become a well-known process for the quick and easy fabrication of microfluidic devices in the research laboratory; however, PDMS is not always an appropriate material for every application. This paper describes the fabrication of thermoset polyester microfluidic devices and masters for hot embossing using replica molding techniques. Rapid prototyped PDMS molds are convienently used for the production of non-PDMS polymeric devices. The recessed features in the cast polyester can be bonded to a second polyester piece to form an enclosed microchannel. Thermoset polyester can withstand moderate amounts of pressure and elevated temperature; therefore, the cast polyester piece also can be used as a master for embossing polymethylmethacrylate (PMMA) microfluidic systems. Examples of enclosed polyester and PMMA microchannels are presented, and we discuss the electroosmotic properties of both types of channels, which are important for analytical applications such as capillary electrophoresis.

  19. Indigenous aliphatic amines in the aqueously altered Orgueil meteorite

    NASA Astrophysics Data System (ADS)

    Aponte, José C.; Dworkin, Jason P.; Elsila, Jamie E.

    2015-10-01

    The CI1 Orgueil meteorite is a highly aqueously altered carbonaceous chondrite. It has been extensively studied, and despite its extensive degree of aqueous alteration and some documented instances of contamination, several indigenous organic compounds including amino acids, carboxylic acids, and nucleobases have been detected in its carbon-rich matrix. We recently developed a novel gas chromatographic method for the enantiomeric and compound-specific isotopic analyses of meteoritic aliphatic monoamines in extracts and have now applied this method to investigate the monoamine content in Orgueil. We detected 12 amines in Orgueil, with concentrations ranging from 1.1 to 332 nmol g-1 of meteorite and compared this amine content in Orgueil with that of the CM2 Murchison meteorite, which experienced less parent-body aqueous alteration. Methylamine is four times more abundant in Orgueil than in Murchison. As with other species, the amine content in Orgueil extracts shows less structural diversity than that in Murchison extracts. We measured the compound-specific stable carbon isotopic ratios (δ13C) for 5 of the 12 monoamines detected in Orgueil and found a range of δ13C values from -20 to +59‰. These δ13C values fall into the range of other meteoritic organic compounds, although they are 13C-depleted relative to their counterparts extracted from the Murchison meteorite. In addition, we measured the enantiomeric composition for the chiral monoamines (R)- and (S)-sec-butylamine in Orgueil, and found it was racemic within experimental error, in contrast with the L-enantiomeric excess found for its amino acid structural analog isovaline. The racemic nature of sec-butylamine in Orgueil was comparable to that previously observed in Murchison, and to other CM2 and CR2 carbonaceous chondrites measured in this work (ALH 83100 [CM1/2], LON 94101 [CM2], LEW 90500 [CM2], LAP 02342 [CR2], and GRA 95229 [CR2]). These results allow us to place some constraints on the effects of

  20. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1983-09-20

    A process is described for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 1 fig.

  1. Process for removing halogenated aliphatic and aromatic compounds from petroleum products

    DOEpatents

    Googin, John M.; Napier, John M.; Travaglini, Michael A.

    1983-01-01

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contacting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible compound, such as, water or a polyhydroxy compound, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of water or polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the water or polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds and the low polar or nonpolar solvent are separated by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered from recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced.

  2. Enzymatic synthesis of biobased polyesters using 2,5-bis(hydroxymethyl)furan as the building block.

    PubMed

    Jiang, Yi; Woortman, Albert J J; Alberda van Ekenstein, Gert O R; Petrović, Dejan M; Loos, Katja

    2014-07-14

    2,5-Bis(hydroxymethyl)furan is a highly valuable biobased rigid diol resembling aromatic monomers in polyester synthesis. In this work, it was enzymatically polymerized with various diacid ethyl esters by Candida antarctica Lipase B (CALB) via a three-stage method. A series of novel biobased furan polyesters with number-average molecular weights (M(n)) around 2000 g/mol were successfully obtained. The chemical structures and physical properties of 2,5-bis(hydroxymethyl)furan-based polyesters were fully characterized. Furthermore, we discussed the effects of the number of the methylene units in the dicarboxylic segments on the physical properties of the furan polyesters.

  3. Aliphatic amine responsive organogel system based on a simple naphthalimide derivative.

    PubMed

    Cao, Xinhua; Zhang, Tingting; Gao, Aiping; Li, Keli; Cheng, Qiuli; Song, Lijuan; Zhang, Min

    2014-09-07

    A new gelator 1 based on a simple naphthalimide derivative was synthesized and fully characterized. It was found that the organogel 1 was formed only in a mixed solvent of methanol and H2O (1/1, v/v). The organogel was thoroughly characterized by using various microscopic techniques including field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and UV-vis, fluorescence and Fourier transform infrared (FTIR) spectroscopy. Hydrogen bonds were the main driving force for the organogel formation. Interestingly, the organogel 1 exhibited the ability to distinguish aliphatic amines from aromatic amines. The gel state and fluorescence emission intensity were both changed after two minutes after the addition of aliphatic amines. This organogel system could be applied in the detection of aliphatic amine pollutants.

  4. Manganese-catalyzed late-stage aliphatic C-H azidation.

    PubMed

    Huang, Xiongyi; Bergsten, Tova M; Groves, John T

    2015-04-29

    We report a manganese-catalyzed aliphatic C-H azidation reaction that can efficiently convert secondary, tertiary, and benzylic C-H bonds to the corresponding azides. The method utilizes aqueous sodium azide solution as the azide source and can be performed under air. Besides its operational simplicity, the potential of this method for late-stage functionalization has been demonstrated by successful azidation of various bioactive molecules with yields up to 74%, including the important drugs pregabalin, memantine, and the antimalarial artemisinin. Azidation of celestolide with a chiral manganese salen catalyst afforded the azide product in 70% ee, representing a Mn-catalyzed enantioselective aliphatic C-H azidation reaction. Considering the versatile roles of organic azides in modern chemistry and the ubiquity of aliphatic C-H bonds in organic molecules, we envision that this Mn-azidation method will find wide application in organic synthesis, drug discovery, and chemical biology.

  5. Seasonal distribution of aliphatic hydrocarbons in the Vaza Barris Estuarine System, Sergipe, Brazil.

    PubMed

    Barbosa, José Carlos S; Santos, Lukas G G V; Sant'Anna, Mércia V S; Souza, Michel R R; Damasceno, Flaviana C; Alexandre, Marcelo R

    2016-03-15

    The seasonal assessment of anthropogenic activities in the Vaza Barris estuarine river system, located in the Sergipe state, northeastern Brazil, was performed using the aliphatic hydrocarbon distribution. The aliphatic hydrocarbon and isoprenoid (Pristane and Phytane) concentrations ranged between 0.19 μg g(-1) and 8.5 μg g(-1) of dry weight. Data were analyzed using Kruskal-Wallis test, with significance level set at p<0.05, and no seasonality distribution change was observed. The Carbon Preference Index (CPI), associated with n-alkanes/n-C16, Low Molecular Weight/High Molecular Weight ratio (LMW/HMW) and Terrigenous to Aquatic Ratio (TAR) suggested biogenic input of aliphatic hydrocarbons for most samples, with significant contribution of higher plants.

  6. The effect of aliphatic fuel constituents on the biodegradation of polycyclic aromatic hydrocarbons

    SciTech Connect

    Gamerdinger, A.P.

    1995-12-01

    In petroleum-derived waste, n-alkanes are often codeposited with polycyclic aromatic hydrocarbons (PAHs). The impact of aliphatic fuel constituents on the biodegradation of the more toxic PAHs is considered. Biodegradation of naphthalene by a Coryneform bacteria was examined in biphasic, slurry systems containing and aliphatic solvent in addition to the aqueous phase. The effect of solvent hydrophobicity was evaluated by varying the solvent treatment; a homologous series of n-alkanes was used. Relative to an aqueous system (no solvent), the extent of naphthalene degradation was enhanced in the presence of decane, dodecane, and hexadecane. Biodegradation was apparent, but decreased in the presence of octane, and was completely absent in the presence of hexane. The impact of aliphatic constituents on PAH biodegradation is a function of solvent hydrophobicity. The results indicate that the presence of multiple chemical constituents in complex systems modifies bioavailability and biodegradation.

  7. Bioengineering of bacteria to assemble custom-made polyester affinity resins.

    PubMed

    Hay, Iain D; Du, Jinping; Burr, Natalie; Rehm, Bernd H A

    2015-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced "target protein." Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains.

  8. Bioengineering of Bacteria To Assemble Custom-Made Polyester Affinity Resins

    PubMed Central

    Hay, Iain D.; Du, Jinping; Burr, Natalie

    2014-01-01

    Proof of concept for the in vivo bacterial production of a polyester resin displaying various customizable affinity protein binding domains is provided. This was achieved by engineering various protein binding domains into a bacterial polyester-synthesizing enzyme. Affinity binding domains based on various structural folds and derived from molecular libraries were used to demonstrate the potential of this technique. Designed ankyrin repeat proteins (DARPins), engineered OB-fold domains (OBodies), and VHH domains from camelid antibodies (nanobodies) were employed. The respective resins were produced in a single bacterial fermentation step, and a simple purification protocol was developed. Purified resins were suitable for most lab-scale affinity chromatography purposes. All of the affinity domains tested produced polyester beads with specific affinity for the target protein. The binding capacity of these affinity resins ranged from 90 to 600 nmol of protein per wet gram of polyester affinity resin, enabling purification of a recombinant protein target from a complex bacterial cell lysate up to a purity level of 96% in one step. The polyester resin was efficiently produced by conventional lab-scale shake flask fermentation, resulting in bacteria accumulating up to 55% of their cellular dry weight as polyester. A further proof of concept demonstrating the practicality of this technique was obtained through the intracellular coproduction of a specific affinity resin and its target. This enables in vivo binding and purification of the coproduced “target protein.” Overall, this study provides evidence for the use of molecular engineering of polyester synthases toward the microbial production of specific bioseparation resins implementing previously selected binding domains. PMID:25344238

  9. Folding and self-assembly of aromatic and aliphatic urea oligomers: towards connecting structure and function.

    PubMed

    Fischer, Lucile; Guichard, Gilles

    2010-07-21

    Folding and self-assembly of biomacromolecules has inspired the development of discrete, non-natural oligomers that fold and/or self-assemble in a controlled manner. Though aromatic and aliphatic oligoamides remain unmatched for structural diversity and synthetic versatility, oligomers based on amide bond surrogates, such as urea backbones, also demonstrated a propensity for folding and self-assembly. In this Perspective, we review the advances in the design of oligomeric aromatic and aliphatic urea sequences (essentially N,N'-linked) that fold and/or self-assemble. Whenever applicable, the relationship between structure and function will be highlighted.

  10. An Iminium Salt Organocatalyst for Selective Aliphatic C-H Hydroxylation.

    PubMed

    Wang, Daoyong; Shuler, William G; Pierce, Conor J; Hilinski, Michael K

    2016-08-05

    The first examples of catalysis of aliphatic C-H hydroxylation by an iminium salt are presented. The method allows the selective organocatalytic hydroxylation of unactivated 3° C-H bonds at room temperature using hydrogen peroxide as the terminal oxidant. Hydroxylation of an unactivated 2° C-H bond is also demonstrated. Furthermore, improved functional group compatibility over other catalytic methods is reported in the form of selectivity for aliphatic C-H hydroxylation over alcohol oxidation. On the basis of initial mechanistic studies, an oxaziridinium species is proposed as the active oxidant.

  11. On the aliphatic versus aromatic content of the carriers of the `unidentified' infrared emission features

    NASA Astrophysics Data System (ADS)

    Yang, X. J.; Glaser, R.; Li, Aigen; Zhong, J. X.

    2016-10-01

    Although it is generally accepted that the unidentified infrared emission (UIE) features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm are characteristic of the stretching and bending vibrations of aromatic hydrocarbon materials, the exact nature of their carriers remains unknown: whether they are free-flying, predominantly aromatic gas-phase molecules, or amorphous solids with a mixed aromatic/aliphatic composition are being debated. Recently, the 3.3 and 3.4 μm features which are commonly respectively attributed to aromatic and aliphatic C-H stretches have been used to place an upper limit of ˜2 per cent on the aliphatic fraction of the UIE carriers (i.e. the number of C atoms in aliphatic chains to that in aromatic rings). Here we further explore the aliphatic versus aromatic content of the UIE carriers by examining the ratio of the observed intensity of the 6.2 μm aromatic C-C feature (I6.2) to that of the 6.85 μm aliphatic C-H deformation feature (I6.85). To derive the intrinsic oscillator strengths of the 6.2 μm stretch (A6.2) and the 6.85 μm deformation (A6.85), we employ density functional theory to compute the vibrational spectra of seven methylated polycyclic aromatic hydrocarbon molecules and their cations. By comparing I6.85/I6.2 with A6.85/A6.2, we derive the fraction of C atoms in methyl(ene) aliphatic form to be at most ˜10 per cent, confirming the earlier finding that the UIE emitters are predominantly aromatic. We have also computed the intrinsic strength of the 7.25 μm feature (A7.25), another aliphatic C-H deformation band. We find that A6.85 appreciably exceeds A7.25. This explains why the 6.85 μm feature is more frequently detected in space than the 7.25 μm feature.

  12. Iron-Catalyzed Decarboxylative Alkyl Etherification of Vinylarenes with Aliphatic Acids as the Alkyl Source.

    PubMed

    Jian, Wujun; Ge, Liang; Jiao, Yihang; Qian, Bo; Bao, Hongli

    2017-03-20

    Because of the lack of effective alkylating reagents, alkyl etherification of olefins with general alkyl groups has not been previously reported. In this work, a variety of alkyl diacyl peroxides and peresters generated from aliphatic acids have been found to enable the first iron-catalyzed alkyl etherification of olefins with general alkyl groups. Primary, secondary and tertiary aliphatic acids are suitable for this reaction, delivering products with yields up to 97 %. Primary and secondary alcohols react well, affording products in up to 91 % yield.

  13. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  14. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  15. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diamine and phenol, reaction products with 4-methyl-2-pentanone (generic). 721.10190 Section 721.10190... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  16. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  17. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  18. 40 CFR 721.10188 - Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty acids, tall-oil, reaction... Fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine (generic). (a... generically as fatty acids, tall-oil, reaction products with 4-methyl-2-pentanone and aliphatic polyamine...

  19. 40 CFR 721.10190 - Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diamine and phenol, reaction products with 4-methyl-2-pentanone (generic). 721.10190 Section 721.10190... Formaldehyde, polymer with aliphatic diamine and phenol, reaction products with 4-methyl-2-pentanone (generic... identified generically as formaldehyde, polymer with aliphatic diamine and phenol, reaction products with...

  20. Polyester scaffolds with bimodal pore size distribution for tissue engineering.

    PubMed

    Sosnowski, Stanislaw; Woźniak, Piotr; Lewandowska-Szumieł, Małgorzata

    2006-06-16

    This paper presents a method for the preparation of porous poly(L-lactide)/poly[(L-lactide)-co-glycolide] scaffolds for tissue engineering. Scaffolds were prepared by a mold pressing-salt leaching technique from structured microparticles. The total porosity was in the range 70-85%. The pore size distribution was bimodal. Large pores, susceptible for osteoblasts growth and proliferation had the dimensions 50-400 microm. Small pores, dedicated to the diffusion of nutrients or/and metabolites of bone forming cells, as well as the products of hydrolysis of polyesters from the walls of the scaffold, had sizes in the range 2 nm-5 microm. The scaffolds had good mechanical strength (compressive modulus equal to 41 MPa and a strength of 1.64 MPa for 74% porosity). Scaffolds were tested in vitro with human osteoblast-like cells (MG-63). It was found that the viability of cells seeded within the scaffolds obtained using the mold pressing-salt leaching technique from structured microparticles was better when compared to cells cultured in scaffolds obtained by traditional methods. After 34 d of culture, cells within the tested scaffolds were organized in a tissue-like structure. Photos of section of macro- and mesoporous PLLA/PLGA scaffold containing 50 wt.-% of PLGA microspheres after 34 d of culture. Dark spots mark MG-63 cells, white areas belong to the scaffold. The specimen was stained with haematoxylin/eosin. Bar = 100 microm.

  1. Disposable polyester-toner electrophoresis microchips for DNA analysis.

    PubMed

    Duarte, Gabriela R M; Coltro, Wendell K T; Borba, Juliane C; Price, Carol W; Landers, James P; Carrilho, Emanuel

    2012-06-07

    Microchip electrophoresis has become a powerful tool for DNA separation, offering all of the advantages typically associated with miniaturized techniques: high speed, high resolution, ease of automation, and great versatility for both routine and research applications. Various substrate materials have been used to produce microchips for DNA separations, including conventional (glass, silicon, and quartz) and alternative (polymers) platforms. In this study, we perform DNA separation in a simple and low-cost polyester-toner (PeT)-based electrophoresis microchip. PeT devices were fabricated by a direct-printing process using a 600 dpi-resolution laser printer. DNA separations were performed on PeT chip with channels filled with polymer solutions (0.5% m/v hydroxyethylcellulose or hydroxypropylcellulose) at electric fields ranging from 100 to 300 V cm(-1). Separation of DNA fragments between 100 and 1000 bp, with good correlation of the size of DNA fragments and mobility, was achieved in this system. Although the mobility increased with increasing electric field, separations showed the same profile regardless of the electric field. The system provided good separation efficiency (215,000 plates per m for the 500 bp fragment) and the separation was completed in 4 min for 1000 bp fragment ladder. The cost of a given chip is approximately $0.15 and it takes less than 10 minutes to prepare a single device.

  2. Photocrosslinkable biodegradable elastomers based on cinnamate-functionalized polyesters.

    PubMed

    Zhu, Congcong; Kustra, Stephen R; Bettinger, Christopher J

    2013-07-01

    Synthetic biodegradable elastomers are an emerging class of materials that play a critical role in supporting innovations in bioabsorbable medical implants. This paper describes the synthesis and characterization of poly(glycerol-co-sebacate)-cinnamate (PGS-CinA), a biodegradable elastomer based on hyperbranched polyesters derivatized with pendant cinnamate groups. PGS-CinA can be prepared via photodimerization in the absence of photoinitiators using monomers that are found in common foods. The resulting network exhibits a Young's modulus of 50.5-152.1kPa and a projected in vitro degradation half-life time between 90 and 140days. PGS-CinA elastomers are intrinsically cell-adherent and support rapid proliferation of fibroblasts. Spreading and proliferation of fibroblasts are loosely governed by the substrate stiffness within the range of Young's moduli in PGS-CinA networks that were prepared. The thermo-mechanical properties, biodegradability and intrinsic support of cell attachment and proliferation suggest that PGS-CinA networks are broadly applicable for use in next generation bioabsorable materials including temporary medical devices and scaffolds for soft tissue engineering.

  3. Viscoelastic properties of kenaf reinforced unsaturated polyester composites

    NASA Astrophysics Data System (ADS)

    Osman, Ekhlas A.; Mutasher, Saad A.

    2014-03-01

    In order to quantify the effect of temperature on the mechanical and dynamic properties of kenaf fiber unsaturated polyester composites, formulations containing 10 wt.% to 40 wt.% kenaf fiber were produced and tested at two representative temperatures of 30°C and 50°C. Dynamic mechanical analysis was performed, to obtain the strain and creep compliance for kenaf composites at various styrene concentrations. It is possible to obtain creep curves at different temperature levels which can be shifted along the time axis to generate a single curve known as a master curve. This technique is known as the time-temperature superposition principle. Shift factors conformed to a William-Landel-Ferry (WLF) equation. However, more long term creep data was needed in order to further validate the applicability of time-temperature superposition principle (TTSP) to this material. The primary creep strain model was fitted to 60 min creep data. The resulting equation was then extrapolated to 5.5 days; the creep strain model of power-law was successfully used to predict the long-term creep behavior of natural fiber/thermoset composites.

  4. Hydrolysis of synthetic polyesters by Clostridium botulinum esterases.

    PubMed

    Perz, Veronika; Baumschlager, Armin; Bleymaier, Klaus; Zitzenbacher, Sabine; Hromic, Altijana; Steinkellner, Georg; Pairitsch, Andris; Łyskowski, Andrzej; Gruber, Karl; Sinkel, Carsten; Küper, Ulf; Ribitsch, Doris; Guebitz, Georg M

    2016-05-01

    Two novel esterases from the anaerobe Clostridium botulinum ATCC 3502 (Cbotu_EstA and Cbotu_EstB) were expressed in Escherichia coli BL21-Gold(DE3) and were found to hydrolyze the polyester poly(butylene adipate-co-butylene terephthalate) (PBAT). The active site residues (triad Ser, Asp, His) are present in both enzymes at the same location only with some amino acid variations near the active site at the surrounding of aspartate. Yet, Cbotu_EstA showed higher kcat values on para-nitrophenyl butyrate and para-nitrophenyl acetate and was considerably more active (sixfold) on PBAT. The entrance to the active site of the modeled Cbotu_EstB appears more narrowed compared to the crystal structure of Cbotu_EstA and the N-terminus is shorter which could explain its lower activity on PBAT. The Cbotu_EstA crystal structure consists of two regions that may act as movable cap domains and a zinc metal binding site.

  5. Adsorption of proteins from plasma at polyester non-wovens.

    PubMed

    Klomp, A J; Engbers, G H; Mol, J; Terlingen, J G; Feijen, J

    1999-07-01

    Polyester non-wovens in filters for the removal of leukocytes from platelet concentrates (PCs) must be platelet compatible. In PC filtration, the adsorption of proteins at the plasma-non-woven interface can be of great importance with respect to the yield of platelets. Unmodified and radio frequency glow discharge (RFGD) treated poly(ethylene terephthalate) non-woven (NW-PET) and two commercial surface-modified non-wovens were contacted with human plasma. Protein desorption by sodium dodecyl sulphate (SDS) was evaluated by X-ray photoelectron spectroscopy (XPS). The desorbed proteins were characterized by gel electrophoresis and immunoblotting. Compared to the commercial surface-modified non-wovens, unmodified and RFGD-treated NW-PETs adsorbed a relatively high amount of protein. Significantly more protein was removed from the hydrophobic NW-PET by SDS than from the hydrophilic RFGD-treated non-wovens. RFGD treatment of NW-PET reduces the reversibility of protein adsorption. Less albumin and fibrinogen were removed from the RFGD-treated non-wovens than from NW-PET. In addition, a large amount of histidine-rich glycoprotein was removed from RFGD-treated non-wovens, but not from NW-PET. The different behaviour of RFGFD-treated non-wovens towards protein adsorption is probably caused by differences in the chemical reactivity of the non-woven surfaces.

  6. An experimental study of shock wave propagation through a polyester film

    NASA Astrophysics Data System (ADS)

    Eliasson, Veronica; Jeon, Hongjoo

    2016-11-01

    A polyester film is available in a variety of uses such as packaging, protective overlay, barrier protection, and other industrial applications. In the current study, shock tube experiments are performed to study the influence of a polyester film on the propagation of a planar shock wave. A conventional shock tube is used to create incident shock Mach numbers of Ms = 1.34 and 1.46. A test section of the shock tube is designed to hold a 0.009 mm, 0.127 mm, 0.254 mm, or 0.508 mm thick polyester film (Dura-Lar). High-temporal resolution schlieren photography is used to visualize the shock wave mitigation caused by the polyester film. In addition, four pressure transducers are used to measure the elapsed time of arrival and overpressure of the shock wave both upstream and downstream of the test section. Results show that the transmitted shock wave in the polyester film is clearly observed and the transmitted shock Mach number is decreased by increasing film thickness. This study is supported by the National Science Foundation under Grant No. CBET-1437412.

  7. Synthesis of Water-Soluble Imidazolium Polyesters as Potential Nonviral Gene Delivery Vehicles.

    PubMed

    Nelson, Ashley M; Pekkanen, Allison M; Forsythe, Neil L; Herlihy, John H; Zhang, Musan; Long, Timothy E

    2017-01-09

    The inherent hydrolytic reactivity of polyesters renders them excellent candidates for a variety of biomedical applications. Incorporating ionic groups further expands their potential impact, encompassing charge-dependent function such as deoxyribonucleic acid (DNA) binding, antibacterial properties, and pH-responsiveness. Catalyst-free and solvent-free polycondensation of a bromomethyl imidazolium-containing (BrMeIm) diol with neopentylglycol (NPG) and adipic acid (AA) afforded novel charged copolyesters with pendant imidazolium sites. Varying ionic content influenced thermal properties and offered a wide-range, -41 to 40 °C, of composition-dependent glass transition temperatures (Tgs). In addition to desirable melt and thermal stability, polyesters with ionic concentrations ≥15 mol % readily dispersed in water, suggesting potential as nonviral gene delivery vectors. An electrophoretic gel shift assay confirmed the novel cationic copolyesters successfully bound DNA at an N/P ratio of 4 for 50 mol % and 75 mol % charged copolyesters (P(NA50-co-ImA50) and P(NA25-co-ImA75)), and an N/P ratio of 5 for 100 mol % Im (PImA). Polyplexes exhibited insignificant cytotoxicity even at high concentrations (200 μg/mL), and a Luciferase transfection assay revealed the ionic (co)polyesters transfected DNA significantly better than the untreated controls. The successful transfection of these novel (co)polyesters inspires future imidazolium-containing polyester design.

  8. Liquefaction of corn stover and preparation of polyester from the liquefied polyol.

    PubMed

    Yu, Fei; Liu, Yuhuan; Pan, Xuejun; Lin, Xiangyang; Liu, Chengmei; Chen, Paul; Ruan, Roger

    2006-01-01

    This research investigated a novel process to prepare polyester from corn stover through liquefaction and crosslinking processes. First, corn stover was liquefied in organic solvents (90 wt% ethylene glycol and 10 wt% ethylene carbonate) with catalysts at moderate temperature under atmospheric pressure. The effect of liquefaction temperature, biomass content, and type of catalyst, such as H2SO4, HCl, H3PO4, and ZnCl2, was evaluated. Higher liquefaction yield was achieved in 2 wt% sulfuric acid, 1/4 (w/w) stover to liquefying reagent ratio; 160 degrees C temperature, in 2 h. The liquefied corn stover was rich in polyols, which can be directly used as feedstock for making polymers without further separation or purification. Second, polyester was made from the liquefied corn stover by crosslinking with multifunctional carboxylic acids and/or cyclic acid anhydrides. The tensile strength of polyester is about 5 MPa and the elongation is around 35%. The polyester is stable in cold water and organic solvents and readily biodegradable as indicated by 82% weight loss when buried in damp soil for 10 mo. The results indicate that this novel polyester could be used for the biodegradable garden mulch film production.

  9. Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review.

    PubMed

    Zia, Khalid Mahmood; Noreen, Aqdas; Zuber, Mohammad; Tabasum, Shazia; Mujahid, Mohammad

    2016-01-01

    A significantly growing interest is to design a new strategy for development of bio-polyesters from renewable resources due to limited fossil fuel reserves, rise of petrochemicals price and emission of green house gasses. Therefore, this review aims to present an overview on synthesis of biocompatible, biodegradable and cost effective polyesters from biomass and their prospective in different fields including packaging, coating, tissue engineering, drug delivery system and many more. Isosorbide, 2,4:3,5-di-O-methylene-d-mannitol, bicyclic diacetalyzed galactaric acid, 2,5-furandicarboxylic acid, citric, 2,3-O-methylene l-threitol, dimethyl 2,3-O-methylene l-threarate, betulin, dihydrocarvone, decalactone, pimaric acid, ricinoleic acid and sebacic acid, are some important monomers derived from biomass which are used for bio-based polyester manufacturing, consequently, replacing the petrochemical based polyesters. The last part of this review highlights some recent advances in polyester blends and composites in order to improve their properties for exceptional biomedical applications i.e. skin tissue engineering, guided bone regeneration, bone healing process, wound healing and wound acceleration.

  10. Mechanical performance of hybrid polyester composites reinforced Cloisite 30B and kenaf fibre

    NASA Astrophysics Data System (ADS)

    Bonnia, N. N.; Surip, S. N.; Ratim, S.; Mahat, M. M.

    2012-06-01

    Hybridization of rubber toughened polyester-kenaf nanocomposite was prepared by adding various percentage of kenaf fiber with 4% Cloisite 30B in unsaturated polyester resin. Composite were prepared by adding filler to modified polyester resin subsequently cross-linked using methyl ethyl ketone peroxide and the accelerator cobalt octanoate 1%. Three per hundred rubbers (phr) of liquid natural rubber (LNR) were added in producing this composite. This composite expected to be applied in the interior of passenger cars and truck cabins. This is a quality local product from a combination of good properties polyester and high performance natural fiber, kenaf that is suitable for many applications such as in automotive sector and construction sector. The mechanical and thermal properties of composite were characterized using Durometer Shore-D hardness test, Izod impact test, Scanning electron microscopy, thermogravimetry (TGA) and differential scanning calorimetry (DSC). Result shows that addition of LNR give good properties on impact, flexural and hardness compare to without LNR composite. DSC curve shows that all composition of composites is fully cured and good in thermal properties. Addition of higher percentage of kenaf will lead the composite to elastic behavior and decrease the toughened properties of the composite. Hybrid system composite showed the flexural properties within the flexural properties of kenaf - polyester and Cloisite 30B.

  11. Synthesis of amphiphilic alternating polyesters with oligo(ethylene glycol) side chains and potential use for sustained release drug delivery.

    PubMed

    Wang, Wei; Ding, Jianxun; Xiao, Chunsheng; Tang, Zhaohui; Li, Di; Chen, Jie; Zhuang, Xiuli; Chen, Xuesi

    2011-07-11

    Novel amphiphilic alternating polyesters, poly((N-phthaloyl-l-glutamic anhydride)-co-(2-(2-(2-methoxyethoxy)ethoxy)methyl)oxirane) (P(PGA-co-ME(2)MO)), were synthesized by alternating copolymerization of PGA and ME(2)MO. The structures of the synthesized polyesters were characterized by (1)H NMR, (13)C NMR, FT-IR, and GPC analyses. Because of the presence of oligo(ethylene glycol) (OEG) side chains, the polyesters could self-assemble into thermosensitive micelles. Dynamic light scattering (DLS) showed that these micelles underwent thermoinduced size decrease without intermicellar aggregation. In vitro methyl thiazolyl tetrazolium (MTT) assay demonstrated that the polyesters were biocompatible to Henrietta Lacks (HeLa) cells, rendering their potential for drug delivery applications. Two hydrophobic drugs, rifampin and doxorubicin (DOX), were loaded into the polyester micelles and observed to be released in a zero-order sustained manner. The sustained release could be accelerated in lower pH or in the presence of proteinase K, due to the degradation of the polyester under these conditions. Remarkably, in vitro cell experiments showed that the polyester micelles accomplished fast release of DOX inside cells and higher anticancer efficacy as compared with the free DOX. With enhanced stability during circulation condition and accelerated drug release at the target sites (e.g., low pH or enzyme presence), these novel polyesters with amphiphilic structures are promising to be used in sustained release drug delivery systems.

  12. 75 FR 5763 - Notice of Correction to the First Administrative Review of Certain Polyester Staple Fiber From...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ... Staple Fiber From the People's Republic of China: Final Results of Antidumping Duty Administrative Review... antidumping duty order on certain polyester staple fiber from the People's Republic of China (``PRC''). See First Administrative Review of Certain Polyester Staple Fiber From the People's Republic of China:...

  13. 75 FR 70906 - Certain Polyester Staple Fiber From the People's Republic of China: Partial Rescission of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-19

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Partial... certain polyester staple fiber (``PSF'') from the People's Republic of China (``PRC'') for the period of... from Ningbo Dafa Chemical Fiber Co., Ltd. (``Ningbo Dafa'') and Cixi Santai Chemical Fiber Co.,...

  14. 77 FR 4543 - Certain Polyester Staple Fiber From Taiwan: Extension of Time Limit for Preliminary Results of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Certain Polyester Staple Fiber From Taiwan: Extension of Time Limit for... antidumping duty order on certain polyester staple fiber from Taiwan for the period May 1, 2010, through...

  15. 76 FR 69702 - Certain Polyester Staple Fiber From the People's Republic of China: Final Results of Antidumping...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... International Trade Administration Certain Polyester Staple Fiber From the People's Republic of China: Final...- 2010 administrative review of the antidumping duty order on certain polyester staple fiber from the... Results. We find that the mandatory respondents in this review, Ningbo Dafa Chemical Fiber Co.,...

  16. Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie

    2005-01-01

    The primary objective of this effort is to demonstrate and validate alternatives to aliphatic isocyanate polyurethanes. Successful completion of this project will result in one or more isocyanate-free coatings qualified for use at AFSPC and NASA installations participating in this project.

  17. Fingerprinting aliphatic hydrocarbon pollutants over agricultural lands surrounding Tehran oil refinery.

    PubMed

    Bayat, Javad; Hashemi, Seyed Hossein; Khoshbakht, Korros; Deihimfard, Reza

    2016-11-01

    The analysis of aliphatic hydrocarbons, which are composed of n-alkanes as well as branched and cyclic alkanes, can be used to distinguish between the sources of hydrocarbon contamination. In this study, the concentration of aliphatic hydrocarbons, soil pH, and organic matter in agricultural soils located south of Tehran were monitored. Eighty-three soil samples were taken from two depth ranges of 0-30 and 30-60 cm. The results showed that aliphatic compounds ranged from 0.22-68.11 mg kg(-1) at the top to 0.33-53.18 mg kg(-1) at subsoil. The amount of hydrocarbons increases from the northern parts toward the south, and hydrocarbon pollutants originated from both petroleum and non-petroleum sources. Higher concentrations of aliphatic compounds in the southern parts indicated that, aside from the practice of irrigating with untreated wastewater, leakage from oil refinery storage tanks possibly contributed to soil pollution. The results also showed that several sources have polluted the agricultural soils. It is necessary to develop a new local pollution criterion as a diagnostic index that includes not only hydrocarbons but also other parameters such as heavy metal content in both soil and untreated wastewater, surface runoff, and other irrigation water resources to determine the exact origin of pollution.

  18. SELECTIVE ENUMERATION OF AROMATIC AND ALIPHATIC HYDROCARBON DEGRADING BACTERIA BY A MOST-PROBABLE-NUMBER PROCEDURE

    EPA Science Inventory

    A most-portable-number (MPN) procedure was developed to separately enumerate aliphatic and aromatic hydrocarbon degrading bacteria, because most of the currently available methods are unable to distinguish between these two groups. Separate 96-well microtiter plates are used to ...

  19. A case study on the myth of emission from aliphatic amides

    NASA Astrophysics Data System (ADS)

    Singh, Avinash Kumar; Das, Sreyashi; Datta, Anindya

    2016-12-01

    For several decades, aliphatic amidic compounds have been believed to be emissive. We report that this contention is incorrect and that the anomalous emission from amides originates in fluorescent impurities generated during their synthesis. In order to make this point, we have synthesized fluorescent compounds and have compared the absorption spectra with excitation spectra.

  20. Decrease of aliphatic CHs from diatoms by in situ heating infrared microspectroscopy

    NASA Astrophysics Data System (ADS)

    Alipour, Leila; Nakashima, Satoru

    2016-04-01

    In situ heating IR microspectroscopy at 260-300°C under air and N2 conditions has been conducted on diatom frustules to examine aliphatic CH losses during heating, simulating their changes with burial-diagenesis. Assuming a reaction model made up of two first-order kinetic relations, reaction rate constants k1 and k2 and activation energies (Ea) were evaluated for aliphatic CHs. The rate constants for loss of aliphatic CHs of diatom frustules under air and N2 flow are much larger, with much smaller activation energies (57-109 kJ/mol: air; 14-44 kJ/mol: N2), than those for conventional hydrocarbon generation reactions from kerogens (170-370 kJ/mol) studied at higher temperatures (350-450°C). The CH decrease rates are somewhat different from the amide I decrease (protein degradation) rates. The obtained results suggest that organic transformation reactions including degradation of aliphatic CHs inside the diatom silica frustules might be quite different from those of kerogens separated from the biological structures.

  1. Catalytic conversion of aliphatic alcohols on carbon nanomaterials: The roles of structure and surface functional groups

    NASA Astrophysics Data System (ADS)

    Tveritinova, E. A.; Zhitnev, Yu. N.; Chernyak, S. A.; Arkhipova, E. A.; Savilov, S. V.; Lunin, V. V.

    2017-03-01

    Carbon nanomaterials with the structure of graphene and different compositions of the surface groups are used as catalysts for the conversion of C2-C4 aliphatic alcohols. The conversions of ethanol, propanol- 1, propanol-2, butanol-1, butanol-2, and tert-butanol on carbon nanotubes, nanoflakes, and nanoflakes doped with nitrogen are investigated. Oxidized and nonoxidized multiwalled carbon nanotubes, nanoflakes, and nanoflakes doped with nitrogen are synthesized. X-ray diffraction analysis, X-ray photoelectron spectroscopy, scanning and transmission electronic microscopies, Brunauer-Emmett-Teller method, derivatographic analyses, and the pulsed microcatalytic method are used to characterize comprehensively the prepared catalysts. It was established that all of the investigated carbon nanomaterials (with the exception of nondoped carbon nanoflakes) are bifunctional catalysts for the conversion of aliphatic alcohols, and promote dehydration reactions with the formation of olefins and dehydrogenation reactions with the formation of aldehydes or ketones. Nanoflakes doped with nitrogen are inert with respect to secondary alcohols and tert-butanol. The role of oxygen-containing and nitrogen-containing surface groups, and of the geometrical structure of the carbon matrix of graphene nanocarbon materials in the catalytic conversion of aliphatic alcohols, is revealed. Characteristics of the conversion of aliphatic alcohols that are associated with their structure are identified.

  2. 40 CFR 721.530 - Substituted aliphatic acid halide (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.530 Substituted aliphatic acid halide (generic name). Link to an amendment published at 79 FR 34636, June 18, 2014. (a) Chemical substance and significant new uses...

  3. PRECONCENTRATION OF ALIPHATIC AMINES FROM WATER DETERMINED BY CAPILLARY ELECTROPHORESIS WITH INDIRECT UV DETECTION

    EPA Science Inventory

    Preconcentration methodology based on adsorption chromatographies for enriching aliphatic amines (c1 to C4 substituted primary, secondary, and tertiary) and alkanolamines in water was studied by free zone capillary electrophoresis (CZE)with indirect UV detection. The solid-phase ...

  4. Modification of eucalyptus pulp fiber using silane coupling agents with aliphatic side chains of different length

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work was to evaluate the effect of three silane coupling agents with different aliphatic chain lengths on the hydrophobicity of eucalyptus pulp fiber. The three silanes coupling agents used (isobutyltrimethoxysilane, methyltrimethoxysilane, and n-octyltriethoxysilane [OTES]) we...

  5. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste specific prohibitions-chlorinated aliphatic wastes. 268.33 Section 268.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33...

  6. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste specific prohibitions-chlorinated aliphatic wastes. 268.33 Section 268.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33...

  7. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste specific prohibitions-chlorinated aliphatic wastes. 268.33 Section 268.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33...

  8. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste specific prohibitions-chlorinated aliphatic wastes. 268.33 Section 268.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33...

  9. 40 CFR 268.33 - Waste specific prohibitions-chlorinated aliphatic wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-chlorinated aliphatic wastes. 268.33 Section 268.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.33...

  10. A critical review of algal biomass: A versatile platform of bio-based polyesters from renewable resources.

    PubMed

    Noreen, Aqdas; Zia, Khalid Mahmood; Zuber, Mohammad; Ali, Muhammad; Mujahid, Mohammad

    2016-05-01

    Algal biomass is an excellent renewable resource for the production of polymers and other products due to their higher growth rate, high photosynthetic efficiency, great potential for carbon dioxide fixation, low percentage of lignin and high amount of carbohydrates. Algae contain unique metabolites which are transformed into monomers suitable for development of novel polyesters. This review article mainly focuses on algal bio-refinery concept for polyester synthesis and on exploitation of algae-based biodegradable polyester blends and composites in tissue engineering and controlled drug delivery system. Algae-derived hybrid polyester scaffolds are extensively used for bone, cartilage, cardiac and nerve tissue regeneration due to their biocompatibility and tunable biodegradability. Microcapsules and microspheres of algae-derived polyesters have been used for controlled and continuous release of several pharmaceutical agents and macromolecules to produce humoral and cellular immunity with efficient intracellular delivery.

  11. Study of Multifunctional Nanocoated Cold Plasma Treated Polyester Cotton Blended Curtains

    NASA Astrophysics Data System (ADS)

    Memon, Hafeezullah; Kumari, Naveeta

    2016-04-01

    Over the past decade, considerable progress has been made in the applications of TiO2nanoparticles to get the multifunctional textiles. This paper presents the consequences of pretreatment of polyester fabric using cold plasma in the presence of oxygen — which might be beneficial for bonding nanoparticles over the polyester cotton blended curtains. Moreover, this paper presents the primary technique for suspending titanium dioxide (TiO2) nanoparticles into nanosilica sol for nanocoating of polyester cotton blended curtains. In addition, the detailed characterization of nanocoating has been made using Field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD); and the consequences of nanocoating with and without plasma treatment for enhancing the different properties i.e. antistatic, anti UV and antibacterial property are discussed. Furthermore, the consequences of nanocoating with and without plasma treatment on the mechanical properties have also been discussed.

  12. Ammonium Y zeolite applied as a thermochemolysis reagent for identification of polyethers and polyesters.

    PubMed

    Blazsó, Marianne; Bozi, János

    2013-01-04

    A potential thermochemolysis reagent has been tested for the pyrolysis gas chromatographic identification of polyether, polyester and polyether- or polyester-based thermoplastic polyurethane. The main advantage of ammonium Y zeolite over liquid reagents is that it does not react prior to pyrolysis, and its reactions have no incomplete products. The procedure of the thermochemolysis is as simple as running a pyrolysis-GC/MS analysis sampling a powder mixture of roughly equal mass of polymer and ammonium Y zeolite. The GC/MS chromatograms obtained show that the products of thermochemolysis are specific to the diol and dicarboxylic units of the polymer. It was observed that ethanal or 1,4-dioxane forms from ethylene oxide components of polyethers and polyesters, tetrahydrofuran from butylene oxide units, hexanedinitrile from adipate groups, and benzodinitrile from terephthalate groups.

  13. Bio-Based Bisfuran: Synthesis, Crystal Structure and Low Molecular Weight Amorphous Polyester.

    PubMed

    Gaitonde, Vishwanath; Lee, Kyunghee; Kirschbaum, Kristin; Sucheck, Steven J

    2014-07-23

    Discovery of renewable monomer feedstocks for fabrication of polymeric demand is critical in achieving sustainable materials. In the present work we have synthesized bisfuran diol (BFD) monomer from furfural, over four steps. BFD was examined via X-ray crystallography to understand the molecular arrangement in space, hydrogen bonding and packing of the molecules. This data was further used to compare BFD with structurally related Bisphenol A (BPA), and its known derivatives to predict the potential estrogenic or anti-estrogenic activities in BFD. Further, BFD was reacted with succinic acid to generate polyester material, bisfuran polyester (BFPE-1). MALDI characterization of BFPE-1 indicates low molecular weight polyester and thermal analysis reveals amorphous nature of the material.

  14. (Citric acid-co-polycaprolactone triol) polyester: a biodegradable elastomer for soft tissue engineering.

    PubMed

    Thomas, Lynda V; Nair, Prabha D

    2011-01-01

    Tissue engineering holds enormous challenges for materials science, wherein the ideal scaffold to be used is expected to be biocompatible, biodegradable and possess mechanical and physical properties that are suitable for target application. In this context, we have prepared degradable polyesters in different ratios by a simple polycondensation technique with citric acid and polycaprolactone triol. Differential scanning calorimetry indicated that the materials were amorphous based the absence of a crystalline melting peak and the presence of a glass transition temperature below 37°C. These polyesters were found to be hydrophilic and could be tailor-made into tubes and films. Porosity could also be introduced by addition of porogens. All the materials were non-cytotoxic in an in vitro cytotoxicity assay and may degrade via hydrolysis to non-toxic degradation products. These polyesters have potential implications in the field of soft tissue engineering on account of their similarity of properties.

  15. Biodegradation of individual and multiple chlorinated aliphatic hydrocarbons by methane-oxidizing cultures.

    PubMed Central

    Chang, H L; Alvarez-Cohen, L

    1996-01-01

    The microbial degradation of chlorinated and nonchlorinated methanes, ethanes, and ethanes by a mixed methane-oxidizing culture grown under chemostat and batch conditions is evaluated and compared with that by two pure methanotrophic strains: CAC1 (isolated from the mixed culture) and Methylosinus trichosporium OB3b. With the exception of 1,1-dichloroethylene, the transformation capacity (Tc) for each chlorinated aliphatic hydrocarbon was generally found to be in inverse proportion to its chlorine content within each aliphatic group (i.e., methanes, ethanes, and ethenes), whereas similar trends were not observed for degradation rate constants. Tc trends were similar for all methane-oxidizing cultures tested. None of the cultures were able to degrade the fully chlorinated aliphatics such as perchloroethylene and carbon tetrachloride. Of the four cultures tested, the chemostat-grown mixed culture exhibited the highest Tc for trichloroethylene, cis-1,2-dichloroethylene, tetrachloroethane, 1,1,1-trichloroethane, and 1,2-dichloroethane, whereas the pure batch-grown OB3b culture exhibited the highest Tc for all other compounds tested. The product toxicity of chlorinated aliphatic hydrocarbons in a mixture containing multiple compounds was cumulative and predictable when using parameters measured from the degradation of individual compounds. The Tc for each chlorinated aliphatic hydrocarbon in a mixture (Tcmix) and the total Tc for the mixture (sigma Tcmix) are functions of the individual Tc, the initial substrate concentration (S0), and the first-order rate constant (k/Ks) of each compound in the mixture, indicating the importance of identifying the properties and compositions of all potentially degradable compounds in a contaminant mixture. PMID:8795228

  16. Synthesis of lipase-catalysed silicone-polyesters and silicone-polyamides at elevated temperatures.

    PubMed

    Frampton, Mark B; Zelisko, Paul M

    2013-10-18

    More and more enzymes are being explored as alternatives to conventional catalysts in chemical reactions. To utilize these biocatalysts to their fullest, it is incumbent on researchers to gain a complete understanding of the reaction conditions that particular enzymes will tolerate. To this end siloxane-containing polyesters and polyamides have been produced via N435-mediated catalysis at temperatures well above the normal denaturation temperature for free CalB. Low molecular weight disiloxane-based acceptors release the enzyme from its acylated state with equal proficiency while longer chain siloxanes favours polyester synthesis. The thermal tolerance of the enzyme catalyst is increased using longer chain diesters and generally more hydrophobic substrates.

  17. Dichroism measurements in forensic fibre examination Part 1--Dyed polyester fibres.

    PubMed

    De Wael, K; Vanden Driessche, T

    2011-06-01

    One hundred and twenty dyed polyester samples were examined with plane polarized light on their dichroic behaviour by optical light microscopy (OLM) and microspectrophotometry in the visible range (MSP Vis). It was found that most of these disperse dyed polyester fibres possess a strong dichroism, which fall into two broad categories. Either a decrease of intensity (hypochromic effect) or a change of hue (hypsochromic or bathochromic shift of absorption bands) is noted. These dichroic effects are related to the orientation of the dye structure with respect to the polymer chains.

  18. Flexible polyester cellulose paper supercapacitor with a gel electrolyte.

    PubMed

    Karthika, Prasannan; Rajalakshmi, Natarajan; Dhathathreyan, Kaveripatnam S

    2013-11-11

    A low-cost polyester cellulose paper has been used as a substrate for a flexible supercapacitor device that contains aqueous carbon nanotube ink as the electrodes and a polyvinyl alcohol (PVA)-based gel as the electrolyte. Gel electrolytes have attracted much interest due to their solvent-holding capacity and good film-forming capability. The electrodes are characterized for their conductivity and morphology. Because of its high conductivity, the conductive paper is studied in supercapacitor applications as active electrodes and as separators after coating with polyvinylidene fluoride. Carbon nanotubes deposited on porous paper are more accessible to ions in the electrolyte than those on flat substrates, which results in higher power density. A simple fabrication process is achieved and paper supercapacitors are tested for their performance in both aqueous and PVA gel electrolytes by using galvanostatic and cyclic voltammetry methods. A high specific capacitance of 270 F g(-1) and an energy density value of 37 W h kg(-1) are achieved for devices with PVA gel electrolytes. Furthermore, this device can maintain excellent specific capacitance even under high currents. This is also confirmed by another counter experiment with aqueous sulfuric acid as the electrolyte. The cycle life, one of the most critical parameters in supercapacitor operations, is found to be excellent (6000 cycles) and less than 0.5 % capacitance loss is observed. Moreover, the supercapacitor device is flexible and even after twisting does not show any cracks or evidence of breakage, and shows almost the same specific capacitance of 267 F g(-1) and energy density of 37 W h kg(-1) . This work suggests that a paper substrate can be a highly scalable and low-cost solution for high-performance supercapacitors.

  19. Antimicrobial wool, polyester and a wool/polyester blend created by silver particles embedded in a silica matrix.

    PubMed

    Klemenčič, Danijela; Tomšič, Brigita; Kovač, Franci; Žerjav, Metka; Simončič, Andrej; Simončič, Barbara

    2013-11-01

    A two-step antimicrobial finishing procedure was applied to wool (WO) and polyester (PES) fabrics and a WO/PES fabric blend, in which the pad-dry-cure method was performed to create a functional silica matrix through the application of an inorganic-organic hybrid sol-gel precursor (RB) followed by the in situ synthesis of AgCl particles on the RB-treated fibres using 0.10 and 0.50mM AgNO3 and NaCl. The bulk concentration of Ag on the cotton fibres was determined by inductively coupled plasma mass spectroscopy. The antimicrobial activity was determined for the bacteria Escherichia coli and Staphylococcus aureus, and the fungus Aspergillus niger. The results showed that the highest concentration of the adsorbed Ag compound particles was on the WO samples followed by the WO/PES and PES samples. The antimicrobial activity of the finished fabric samples strongly depended not only on the amount of adsorbed Ag but also on the properties of the fabric samples. Whereas Ag biocidal activity was generated for the finished PES samples at Ag particle concentrations of less than 10mg/kg, the 34-times higher Ag particle concentration on the WO samples was insufficient to impart satisfactory antimicrobial activity because Ag chemically binds to the thiol groups on wool. The presence of wool fibres in WO/PES samples decreased the antimicrobial protection of the fabric blend compared with that of the PES fabric. A lethal concentration of adsorbed Ag compound particles for bacteria and fungi was produced only through the treatment of the WO and WO/PES samples with 0.5mM AgNO3.

  20. Lipase catalyzed HEMA initiated ring-opening polymerization: in situ formation of mixed polyester methacrylates by transesterification.

    PubMed

    Takwa, Mohamad; Xiao, Yan; Simpson, Neil; Malmström, Eva; Hult, Karl; Koning, Cor E; Heise, Andreas; Martinelle, Mats

    2008-02-01

    2-Hydroxyethyl methacrylate (HEMA) was used as initiator for the enzymatic ring-opening polymerization (ROP) of omega-pentadecalactone (PDL) and epsilon-caprolactone (CL). The lipase B from Candida antarctica was found to catalyze the cleavage of the ester bond in the HEMA end group of the formed polyesters, resulting in two major transesterification processes, methacrylate transfer and polyester transfer. This resulted in a number of different polyester methacrylate structures, such as polymers without, with one, and with two methacrylate end groups. Furthermore, the 1,2-ethanediol moiety (from HEMA) was found in the polyester products as an integral part of HEMA, as an end group (with one hydroxyl group) and incorporated within the polyester (polyester chains acylated on both hydroxyl groups). After 72 h, as a result of the methacrylate transfer, 79% (48%) of the initial amount of the methacrylate moiety (from HEMA) was situated (acylated) on the end hydroxyl group of the PPDL (PCL) polyester. In order to prepare materials for polymer networks, fully dimethacrylated polymers were synthesized in a one-pot procedure by combining HEMA-initiated ROP with end-capping using vinyl methacrylate. The novel PPDL dimethacrylate (>95% incorporated methacrylate end groups) is currently in use for polymer network formation. Our results show that initiators with cleavable ester groups are of limited use to obtain well-defined monomethacrylated macromonomers due to the enzyme-based transesterification processes. On the other hand, when combined with end-capping, well-defined dimethacrylated polymers (PPDL, PCL) were prepared.

  1. TiO2 and polyvinyl alcohol (PVA) coated polyester filter in bioreactor for wastewater treatment.

    PubMed

    Liu, Lifen; Zhao, Chuanqi; Yang, Fenglin

    2012-04-15

    Prepared by coating TiO(2)/polyvinyl alcohol (PVA) on a low cost polyester filter cloth (22 μm), a composite membrane (10 μm pore size) was successfully used in an anoxic/oxic membrane bioreactor (A/O-MBR) for treating a simulate wastewater in removing nitrate/ammonium for water reuse in a polyester fiber production plant. Its permeate flux and the anti-fouling properties against extracellular polymeric substances (EPS) were studied. Comparing with a commercial (0.1 μm) PVDF (polyvinylidene fluoride) membrane, similar effluent qualities were achieved, meeting the basic COD requirements for reuse. Anti-EPS accumulation, the TiO(2)/PVA Polyester composite membrane had higher sustained permeability and required less frequent cleaning. Its filtration time was 4 times longer when operated at a higher flux than the PVDF membrane. The nano-TiO(2) enhances the interaction between PVA and polyester, forms a more hydrophilic surface, drastically reduces the contact angle with water and reduces EPS fouling. The slow (trans-membrane pressure) TMP rise, loose cake layer, the low filtration resistances, and the EPS, SEM analysis confirmed the advantage of the composite membrane. Potential in lowering the membrane cost, the operation and maintenance cost, and in enhancing MBR waste water treatment efficiency is expected by the use of this new composite membrane.

  2. Semi-aromatic polyesters based on a carbohydrate-derived rigid diol for engineering plastics.

    PubMed

    Wu, Jing; Eduard, Pieter; Thiyagarajan, Shanmugam; Noordover, Bart A J; van Es, Daan S; Koning, Cor E

    2015-01-01

    New carbohydrate-based polyesters were prepared from isoidide-2,5-dimethanol (extended isoidide, XII) through melt polymerization with dimethyl esters of terephthalic acid (TA) and furan-2,5-dicarboxylic acid (FDCA), yielding semi-crystalline prepolymers. Subsequent solid-state post-condensation (SSPC) gave high molecular weight (Mn =30 kg mol(-1) for FDCA) materials, the first examples of high Mn , semi-aromatic homopolyesters containing isohexide derivatives obtained via industrially relevant procedures. NMR spectroscopy showed that the stereo-configuration of XII was preserved under the applied conditions. The polyesters are thermally stable up to 380 °C. The TA- and FDCA-based polyesters have high Tg (105 °C and 94 °C, resp.) and Tm (284 °C and 250 °C, resp.) values. Its reactivity, stability, and ability to afford high Tg and Tm polyesters make XII a promising diol for the synthesis of engineering polymers.

  3. Enhancing the functionality of biobased polyester coating resins through modification with citric acid.

    PubMed

    Noordover, Bart A J; Duchateau, Robbert; van Benthem, Rolf A T M; Ming, Weihua; Koning, Cor E

    2007-12-01

    Citric acid (CA) was evaluated as a functionality-enhancing monomer in biobased polyesters suitable for coating applications. Model reactions of CA with several primary and secondary alcohols and diols, including the 1,4:3,6-dianhydrohexitols, revealed that titanium(IV) n-butoxide catalyzed esterification reactions involving these compounds proceed at relatively low temperatures, often via anhydride intermediates. Interestingly, the facile anhydride formation from CA at temperatures around CA's melting temperature ( T m = 153 degrees C) proved to be crucial in modifying sterically hindered secondary hydroxyl end groups. OH-functional polyesters were reacted with CA in the melt between 150 and 165 degrees C, yielding slightly branched carboxylic acid functional materials with strongly enhanced functionality. The acid/epoxy curing reaction of the acid-functional polymers was simulated with a monofunctional glycidyl ether. Finally, the CA-modified polyesters were applied as coatings, using conventional cross-linking agents. The formulations showed rapid curing, resulting in chemically and mechanically stable coatings. These results demonstrate that citric acid can be applied in a new way, making use of its anhydride formation to functionalize OH-functional polyesters, which is an important new step toward fully biobased coating systems.

  4. Dipeptide-based Polyphosphazene and Polyester Blends for Bone Tissue Engineering

    PubMed Central

    Deng, Meng; Nair, Lakshmi S.; Nukavarapu, Syam P.; Jiang, Tao; Kanner, William A.; Li, Xudong; Kumbar, Sangamesh G.; Weikel, Arlin L.; Krogman, Nicholas R.; Allcock, Harry R.; Laurencin, Cato T.

    2010-01-01

    Polyphosphazene-polyester blends are attractive materials for bone tissue engineering applications due to their controllable degradation pattern with non-toxic and neutral pH degradation products. In our ongoing quest for an ideal completely miscible polyphosphazene-polyester blend system, we report synthesis and characterization of a mixed-substituent biodegradable polyphosphazene poly[(glycine ethyl glycinato)1(phenyl phenoxy)1phosphazene] (PNGEG/PhPh) and its blends with a polyester. Two dipeptide-based blends namely 25:75 (Matrix1) and 50:50 (Matrix2) were produced at two different weight ratios of PNGEG/PhPh to poly(lactic acid-glycolic acid) (PLAGA). Blend miscibility was confirmed by differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy. Both blends resulted in higher tensile modulus and strength than the polyester. The blends showed a degradation rate in the order of Matrix2 < Matrix1 < PLAGA in phosphate buffered saline at 37°C over 12 weeks. Significantly higher pH values of degradation media were observed for blends compared to PLAGA confirming the neutralization of PLAGA acidic degradation by polyphosphazene hydrolysis products. The blend components PLAGA and polyphosphazene exhibited a similar degradation pattern as characterized by the molecular weight loss. Furthermore, blends demonstrated significantly higher osteoblast growth rates compared to PLAGA while maintaining osteoblast phenotype over a 21-day culture. Both blends demonstrated improved biocompatibility in a rat subcutaneous implantation model compared to PLAGA over 12 weeks. PMID:20334909

  5. Lipid-derived Thermoplastic Poly(ester urethane)s: Effect of Structure on Physical Properties

    NASA Astrophysics Data System (ADS)

    Shetranjiwalla, Shegufta

    Thermoplastic poly(ester urethane)s (TPEU)s derived from vegetable oils possess inferior physical properties compared to their entirely petroleum-based counterparts due to the structural limitations and lower reactivity of the precursor lipid-derived monomers. The present work shows that high molecular weight of TPEUs with enhanced performance can be obtained from lipid-derived monomers via (i) the synthesis of polyester diols with controlled molecular weights, (ii) the tuning of the functional group stoichiometry of the polyester diols and the diisocyanate during polymerization, (iii) the degree of polymerization (iv) the control of the hard segment hydrogen bond density and distribution via the use of a chain extender and (v) different polymerization protocols. Solvent-resistant TPEUs with high molecular weight displaying polyethylene-like behavior and controlled polyester and urethane segment phase separation were obtained. Structure-property investigations revealed that the thermal transition temperatures and tensile properties increased and eventually plateaued with increasing molecular weight. Novel segmented TPEUs possessed high phase separation and showed elastomeric properties such as low modulus and high elongation analogous to rubber. The response of the structurally optimized TPEUs to environmental degradation was also established by subjecting the TPEUs to hydrothermal ageing. TPEUs exhibited thermal and mechanical properties that were comparable to commercially available entirely petroleum-based counterparts, and that could be tuned in order to achieve enhanced physical properties and controlled degradability.

  6. Polyester composites reinforced with corona-treated fibers from pine, eucalyptus and sugarcane bagasse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aims to evaluate plant fibers that were surface activated with NaOH and corona discharge before incorporating in ortho unsaturated polyester-based fiber composites. It demonstrates the potential use of lignocellulosic particles, especially eucalyptus that presented the higher values for a...

  7. Polyester Fabric's Fluorescent Dyeing in Supercritical Carbon Dioxide and its Fluorescence Imaging.

    PubMed

    Xiong, Xiaoqing; Xu, Yanyan; Zheng, Laijiu; Yan, Jun; Zhao, Hongjuan; Zhang, Juan; Sun, Yanfeng

    2017-03-01

    As one of the most important coumarin-like dyes, disperse fluorescent Yellow 82 exhibits exceptionally large two-photon effects. Here, it was firstly introduced into the supercritical CO2 dyeing polyester fabrics in this work. Results of the present work showed that the dyeing parameters such as the dyeing time, pressure and temperature had remarkable influences on the color strength of fabrics. The optimized dyeing condition in supercritical CO2 dyeing has been proposed that the dyeing time was 60 min; the pressure was 25 MPa and the temperature was 120 °C. As a result, acceptable products were obtained with the wash and rub fastness rating at 5 or 4-5. The polyester fabrics dyed with fluorescent dyes can be satisfied for the requirement of manufacturing warning clothing. Importantly, the confocal microscopy imaging technology was successfully introduced into textile fields to observe the distribution and fluorescence intensity of disperse fluorescent Yellow 82 on polyester fabrics. As far as we know, this is the first report about supercritical CO2 dyeing polyester fabrics based on disperse fluorescent dyes. It will be very helpful for the further design of new fluorescent functional dyes suitable for supercritical CO2 dyeing technique.

  8. Application of polymethacrylate resin as stationary phase in liquid chromatography with UV detection for C1-C7 aliphatic monocarboxylic acids and C1-C7 aliphatic monoamines.

    PubMed

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi; Takeuchi, Toyohide

    2004-06-11

    The application of unfunctionized polymethacrylate resin (TSKgel G3000PWXL) as a stationary phase in liquid chromatography with UV detection for C1-C7 aliphatic monocarboxylic acids (formic acid, acetic acid, propionic acid, butyric acid, isovaleric acid, valeric acid, 3,3-dimethylbutyric acid, 4-methylvaleric acid, hexanoic acid, 2-methylhexanoic acid, 5-methylhexanoic acid and heptanoic acid) and C1-C7 aliphatic monoamines (methylamine, ethylamine, propylamine, isobutylamine, butylamine, isoamylamine, amylamine, 1,3-dimethylbutylamine, hexylamine, 2-heptylamine and heptylamine) was carried out. Using dilute sulfuric acid as the eluent, the TSKgel G3000PWXL, resin acted as an advanced stationary phase for these C1-C7 carboxylic acids. Excellent simultaneous separation and symmetrical peaks for these C1-C7 carboxylic acids were achieved on a TSKgel G3000PWXL column (150 mm x 6 mm i.d.) in 60 min with 0.25 mM sulfuric acid containing 1 mM 2-methylheptanoic acid at pH 3.3 as the eluent. Using dilute sodium hydroxide as the eluent, the TSKgel G3000PWXL resin also behaved as an advanced stationary phase for these C1-C7 amines. Excellent simultaneous separation and good peaks for these C1-C7 amines were achieved on the TSKgel G3000PWXL column in 60 min with 10 mM sodium hydroxide containing 0.5 mM 1-methylheptylamine at pH 11.9 as the eluent.

  9. Analysis of the failure of a polyester peripheral drive belt on the Mariner Mars 1971 flight tape recorder

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1972-01-01

    A peripheral drive belt on the Mariner Mars 1971 tape recorder failed when a thin longitudinal strip separated off one edge. Analysis showed that the most probable cause of failure occurred from flexural fatigue initiating in mechanically weak locations which are introduced into the belt during fabrication. Methyl ethyl ketone, which is employed as a cleaning solvent during fabrication, was found to cause permanent reduction in engineering properties of polyester and could have contributed to the reduction of the fatigue resistance. Fatigue properties of the polyester drive belt are reviewed for the operating condition, as well as the sensitivity of polyester to cleaning solvents and the origin of mechanically weak locations.

  10. Spacecraft Maximum Allowable Concentrations (SMACs) for C3 to C8 Aliphatic Saturated Aldehydes

    NASA Technical Reports Server (NTRS)

    Langford, Shannon D.

    2007-01-01

    Spacecraft maximum allowable concentrations (SMACs) for C3 to C8, straight-chain, aliphatic aldehydes have been previously assessed and have been documented in volume 4 of Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants (James, 2000). These aldehydes as well as associated physical properties are shown in Table 1. The C3 to C8 aliphatic aldehydes can enter the habitable compartments and contaminate breathing air of spacecraft by several routes including incomplete oxidation of alcohols in the Environmental Control and Life Support System (ECLSS) air revitalization subsystem, as a byproduct of human metabolism, through materials off-gassing, or during food preparation. These aldehydes have been detected in the atmosphere of manned space vehicles in the past. Analysis performed by NASA of crew cabin air samples from the Russian Mir Space Station revealed the presence of C3 to C8 aldehydes at concentrations peaking at approximately 0.1 mg/cu m.

  11. Quantification of sterols and aliphatic alcohols in Mediterranean stone pine (Pinus pinea L.) populations.

    PubMed

    Nasri, Nizar; Fady, Bruno; Triki, Saïda

    2007-03-21

    Individual components of Pinus pinea L. oil unsaponifiable matter isolated from seven Mediterranean populations were identified and quantified. P. pinea oil unsaponifiable matter contained very high levels of phytosterols (>or=4298 mg kg-1 of total extracted lipids), of which beta-sitosterol was the most abundant (74%). Aliphatic alcohol contents were 1365 mg kg-1 of total extracted lipids, of which octacosanol was the most abundant (41%). Two alcohols (hexacosanol and octacosanol), which are usually absent in common vegetable oils, were described for P. pinea oils. There were almost no differences in the total unsaponifiable matter of the seven Mediterranean populations studied. However, sterol and aliphatic alcohol contents showed some variability, with Tunisian and Moroccan populations showing very different and higher contents.

  12. Biodegradation of aliphatic hydrocarbons in the presence of hydroxy cucurbit[6]uril.

    PubMed

    Pasumarthi, Rajesh; Kumar, Vikash; Chandrasekharan, Sivaraman; Ganguly, Anasuya; Banerjee, Mainak; Mutnuri, Srikanth

    2014-11-15

    Aliphatic hydrocarbons are one of the major environmental pollutants with reduced bioavailability. The present study focuses on the effect of hydroxy cucurbit[6]uril on the bioavailability of hydrocarbons. A bacterial consortium was used for biodegradation studies under saline and non-saline conditions. Based on denaturing gradient gel electrophoresis results it was found that the consortium under saline conditions had two different strains. The experiment was conducted in microcosms with tetradecane, hexadecane, octadecane and mixture of the mentioned hydrocarbons as the sole carbon source. The residual hydrocarbon was quantified using gas chromatography every 24h. It was found that biodegradation of tetradecane and hexadecane, as individual carbon source increased in the presence of hydroxy CB[6], probably due to the increase in their bioavailability. In case of octadecane this did not happen. Bioavailability of all three aliphatic hydrocarbons was increased when provided as a mixture to the consortium under saline conditions.

  13. [Synthesis, characterization and fluorescent properties of copper phthalocyanine derivates substituted by aliphatic alcohol].

    PubMed

    Zhang, Liang; Xu, Qing-Feng; Lu, Jian-Mei; Yao, She-Chun

    2007-04-01

    A series of copper phthalocyanine derivatives substituted by aliphatic chain were obtained by the reaction of tetra-formyl chloride copper phthalocyanine and aliphatic alcohol such as n-butyl alcohol, n-amyl alcohol, n-hexyl alcohol, n-caprylic alcohol and lauryl alcohol. IR, UV-Vis, elemental analysis and 1H NMR verified the structures and substituting degree. The solubility and the relationship between fluorescence and concentration and substituting group were studied in organic solution. It was confirmed that the solubility in organic solution was improved greatly, the fluorescence did not change in linear according to the concentration and the fluorescence of copper phthalocyanine derivatives substituted by the long alkyl was stronger than that substituted by the relatively short alkyl.

  14. Aliphatic and alicyclic camphor imines as effective inhibitors of influenza virus H1N1.

    PubMed

    Sokolova, Anastasiya S; Yarovaya, Оlga I; Baev, Dmitry S; Shernyukov, Аndrey V; Shtro, Anna A; Zarubaev, Vladimir V; Salakhutdinov, Nariman F

    2017-02-15

    A series of camphor derived imines was synthesised and evaluated in vitro for antiviral activity. Theoretical evaluations of ADME properties were also carried out. Most of these compounds exhibited significant activity against the drug-resistant strains of influenza A virus. Especially, compounds 2 (SI = 632) and 3 (SI = 417) presented high inhibition against influenza subtypes A/Puerto Rico/8/34 and A/California/07/09 of H1N1pdm09. Analysis of the structure-activity relationship showed that the activity was strongly dependent on the length of the aliphatic chain: derivatives with a shorter chain possessed higher activity, while the suppressing action of compounds with long aliphatic chains was lower.

  15. Mild Aliphatic and Benzylic Hydrocarbon C-H Bond Chlorination Using Trichloroisocyanuric Acid.

    PubMed

    Combe, Sascha H; Hosseini, Abolfazl; Parra, Alejandro; Schreiner, Peter R

    2017-03-03

    We present the controlled monochlorination of aliphatic and benzylic hydrocarbons with only 1 equiv of substrate at 25-30 °C using N-hydroxyphthalimide (NHPI) as radical initiator and commercially available trichloroisocyanuric acid (TCCA) as the chlorine source. Catalytic amounts of CBr4 reduced the reaction times considerably due to the formation of chain-carrying ·CBr3 radicals. Benzylic C-H chlorination affords moderate to good yields for arenes carrying electron-withdrawing (50-85%) or weakly electron-donating groups (31-73%); cyclic aliphatic substrates provide low yields (24-38%). The products could be synthesized on a gram scale followed by simple purification via distillation. We report the first direct side-chain chlorination of 3-methylbenzoate affording methyl 3-(chloromethyl)benzoate, which is an important building block for the synthesis of vasodilator taprostene.

  16. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium nitrosomonas europaea

    SciTech Connect

    Vannelli, T.; Logan, M.; Arciero, D.M.; Hooper, A.B. )

    1990-04-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane. Tetrachloromethane (carbon tetrachloride), tetrachloroethylene (perchloroethylene), and trans-dibromoethylene were not degraded.

  17. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea

    SciTech Connect

    Vannelli, T.; Logan, M.; Arciero, D.M.; Hooper, A.B.

    1990-01-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane. Tetrachloromethane (carbon tetrachloride), tetrachloroethylene (perchloroethylene), and trans-dibromoethylene were not degraded.

  18. Coefficients of caffeine distribution in aliphatic alcohol-ammonium sulfate-water systems

    NASA Astrophysics Data System (ADS)

    Korenman, Ya. I.; Krivosheeva, O. A.; Mokshina, N. Ya.

    2012-11-01

    The extraction of caffeine with aliphatic alcohols C3-C9 from aqueous solutions in the presence of a salting-out agent (ammonium sulfate) is studied. Quantitative characteristics of extraction are calculated: the distribution coefficients ( D) and the degree of recovery ( R, %). Relations are found between log D of caffeine and the length of the hydrocarbon radical in the alcohol molecule, along with certain physicochemical properties of the extragents.

  19. Gas phase heterogeneous catalytic oxidation of alkanes to aliphatic ketones and/or other oxygenates

    SciTech Connect

    Lin, Manhua; Wang, Xiang; Yeom, Younghoon

    2015-03-17

    A catalyst, its method of preparation and its use for producing aliphatic ketones by subjecting alkanes C.sub.3 to C.sub.9 to a gas phase catalytic oxidation in the presence of air or oxygen, and, optionally, steam and/or one or more diluting gases. The catalyst comprises a catalytically active mixed metal oxide phase and a suitable support material onto and/or into which the active catalytic phase id dispersed.

  20. SPITZER'S VIEW ON AROMATIC AND ALIPHATIC HYDROCARBON EMISSION IN HERBIG Ae STARS

    SciTech Connect

    Acke, B.; Waters, L. B. F. M.; Bouwman, J.; Juhasz, A.; Henning, Th.; Van den Ancker, M. E.; Meeus, G.; Tielens, A. G. G. M.

    2010-07-20

    The chemistry of astronomical hydrocarbons, responsible for the well-known infrared emission features detected in a wide variety of targets, remains enigmatic. Here we focus on the group of young intermediate-mass Herbig Ae stars. We have analyzed the aliphatic and polycyclic aromatic hydrocarbon (PAH) emission features in the infrared spectra of a sample of 53 Herbig Ae stars, obtained with the Infrared Spectrograph aboard the Spitzer Space Telescope. We confirm that the PAH-to-stellar luminosity ratio is higher in targets with a flared dust disk. However, a few sources with a flattened dust disk still show relatively strong PAH emission. Since PAH molecules trace the gas disk, this indicates that gas disks may still be flared, while the dust disk has settled due to grain growth. There are indications that the strength of the 11.3 {mu}m feature also depends on dust disk structure, with flattened disks being less bright in this feature. We confirm that the CC bond features at 6.2 and 7.8 {mu}m shift to redder wavelengths with decreasing stellar effective temperature. Moreover, we show that this redshift is accompanied by a relative increase of aliphatic CH emission and a decrease of the aromatic 8.6 {mu}m CH feature strength. Cool stars in our sample are surrounded by hydrocarbons with a high aliphatic/aromatic CH ratio and a low aromatic CH/CC ratio, and vice versa for the hot stars. We conclude that, while the overall hydrocarbon emission strength depends on the dust disk's geometry, the relative differences seen in the IR emission features in disks around Herbig Ae stars are mainly due to chemical differences of the hydrocarbon molecules induced by the stellar UV field. Strong UV flux reduces the aliphatic component and emphasizes the spectral signature of the aromatic molecules in the IR spectra.

  1. [Comparative study of bacterial agmatinase inhibition by derivatives of putrescine and aliphatic monoamines].

    PubMed

    Khramov, V A

    1977-03-01

    Aliphatic monoamines and some putrescine derivatives (10(-3) M) are found to inhibit agmatinase from Proteus vulgaris. Constants and the type of inhibition are determined. Investigation of the temperature effect on the inhibition has revealed an exotermic character of this process. Some thermodinamic parameters of agmatinase-anylamine binding reaction are calculated. 1-Guanidobutane is obtained by means of 1-amidobutane guanidilation, and it is found to be more efficient inhibitor than monoamines.

  2. DETERMINATION OF ALIPHATIC AMINES IN WATER USING DERIVATIZATION WITH FLUORESCEIN ISOTHIOCYANATE AND CAPILLARY ELECTROPHORESIS/LASER-INDUCED FLUORESCENCE DETECTION.

    EPA Science Inventory

    Detection-oriented derivatization of aliphatic amines and amine functional groups in coumpounds of environmental interest was studied using fluorescein isothiocyanate (FITC) with separation/determination by capillary electrophoresis/laser-induced fluorescence. Determinative level...

  3. Use of textile dyeing technology to create an infection-resistant functionalized polyester biomaterial.

    PubMed

    Aggarwal, Puja; Sousa, Kerry A; Logerfo, Frank W; Bide, Martin J; Phaneuf, Matthew D

    2010-10-01

    Infection is a major complication when utilizing implantable devices. The purpose of this study was to create a functionalized polyethylene terephthalate (polyester) biomaterial with sustained antimicrobial properties using textile-dyeing technology. Polyester was hydrolyzed via exposure to sodium hydroxide (NaOH) to provide two functional sites within the polymeric backbone. A modified textile dyeing technique known as thermofixation or pad-heating (pad-heat) in conjunction with autoclaving was employed to directly incorporate the fluoroquinolone antibiotic Ciprofloxacin (Cipro) into polyester fibers. Woven polyester segments were placed into various concentrations of boiling NaOH solutions to create carboxylic acid and hydroxyl groups (HYD). The segments were then sprayed (padded) with a 5 mg mL(-1) Cipro solution and dried overnight, followed by exposure to intense heat and autoclaving. Untreated HYD, Cipro-dipped, and pad-heat-treated HYD segments were then washed under stringent conditions. The antimicrobial activity of the each material was determined via zone of inhibition. Untreated HYD controls had no antimicrobial activity at any of the time periods examined. Cipro-dipped HYD segments had no antimicrobial activity after 1 h. In contrast, antimicrobial activity for autoclaved, pad-heat-treated HYD segments persisted for 80 days (length of study). Autoclave usage prior to plating affected antimicrobial activity substantially. Additionally, varying hydrolysis concentrations did not significantly affect overall Cipro release. Thus, Cipro application to HYD polyester via thermofixation resulted in controlled, sustained antibiotic release over an extended period of time. The long-term infection resistance provided by this technique may address major problems of infection from which implantable devices suffer.

  4. Dynamic solid phase DNA extraction and PCR amplification in polyester-toner based microchip.

    PubMed

    Duarte, Gabriela R M; Price, Carol W; Augustine, Brian H; Carrilho, Emanuel; Landers, James P

    2011-07-01

    A variety of substrates have been used for fabrication of microchips for DNA extraction, PCR amplification, and DNA fragment separation, including the more conventional glass and silicon as well as alternative polymer-based materials. Polyester represents one such polymer, and the laser-printing of toner onto polyester films has been shown to be effective for generating polyester-toner (PeT) microfluidic devices with channel depths on the order of tens of micrometers. Here, we describe a novel and simple process that allows for the production of multilayer, high aspect-ratio PeT microdevices with substantially larger channel depths. This innovative process utilizes a CO(2) laser to create the microchannel in polyester sheets containing a uniform layer of printed toner, and multilayer devices can easily be constructed by sandwiching the channel layer between uncoated cover sheets of polyester containing precut access holes. The process allows the fabrication of deep channels, with ~270 μm, and we demonstrate the effectiveness of multilayer PeT microchips for dynamic solid phase extraction (dSPE) and PCR amplification. With the former, we found that (i) more than 65% of DNA from 0.6 μL of blood was recovered, (ii) the resultant DNA was concentrated to greater than 3 ng/μL (which was better than other chip-based extraction methods), and (iii) the DNA recovered was compatible with downstream microchip-based PCR amplification. Illustrative of the compatibility of PeT microchips with the PCR process, the successful amplification of a 520 bp fragment of λ-phage DNA in a conventional thermocycler is shown. The ability to handle the diverse chemistries associated with DNA purification and extraction is a testimony to the potential utility of PeT microchips beyond separations and presents a promising new disposable platform for genetic analysis that is low cost and easy to fabricate.

  5. A study of aliphatic amino acids using simulated vibrational circular dichroism and Raman optical activity spectra*

    NASA Astrophysics Data System (ADS)

    Ganesan, Aravindhan; Brunger, Michael J.; Wang, Feng

    2013-11-01

    Vibrational optical activity (VOA) spectra, such as vibrational circular dichroism (VCD) and Raman optical activity (ROA) spectra, of aliphatic amino acids are simulated using density functional theory (DFT) methods in both gas phase (neutral form) and solution (zwitterionic form), together with their respective infrared (IR) and Raman spectra of the amino acids. The DFT models, which are validated by excellent agreements with the available experimental Raman and ROA spectra of alanine in solution, are employed to study other aliphatic amino acids. The inferred (IR) intensive region (below 2000 cm-1) reveals the signature of alkyl side chains, whereas the Raman intensive region (above 3000 cm-1) contains the information of the functional groups in the amino acids. Furthermore, the chiral carbons of the amino acids (except for glycine) dominate the VCD and ROA spectra in the gas phase, but the methyl group vibrations produce stronger VCD and ROA signals in solution. The C-H related asymmetric vibrations dominate the VOA spectra (i.e., VCD and ROA) > 3000 cm-1 reflecting the side chain structures of the amino acids. Finally the carboxyl and the C(2)H modes of aliphatic amino acids, together with the side chain vibrations, are very active in the VCD/IR and ROA/Raman spectra, which makes such the vibrational spectroscopic methods a very attractive means to study biomolecules.

  6. Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

    PubMed Central

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  7. Novel synthetic method for the preparation of amphiphilic hyaluronan by means of aliphatic aromatic anhydrides.

    PubMed

    Huerta-Angeles, Gloria; Bobek, Martin; Příkopová, Eva; Šmejkalová, Daniela; Velebný, Vladimír

    2014-10-13

    The present work describes a novel and efficient method of synthesis of amphiphilic hyaluronan (HA) by esterification with alkyl fatty acids. These derivatives were synthesized under mild aqueous and well controlled conditions using mixed aliphatic aromatic anhydrides. These anhydrides characterized by the general formula RCOOCOC6H2Cl3 can be easily prepared by the reaction of the corresponding fatty acid (R) with 2,4,6-trichlorobenzoyl chloride (TCBC) in the presence of triethylamine. The aliphatic aromatic anhydrides RCOOCOC6H2Cl3 then react with the polysaccharide and enable the synthesis of aliphatic acid esters of HA in good yields. No hydrolytic degradation of hyaluronic acid could be observed. Parameters controlling the degree of esterification were systematically studied. Fatty acids with different chain lengths can be introduced applying this methodology. The degree of substitution was decreasing with increasing length of hydrophobic chain. The reaction products were fully characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), SEC-MALLS and chromatographic analyses. Although the esterified HA products exhibited aggregation in solution as demonstrated by NMR, microscopy and rheology, they were still water-soluble.

  8. Exploring mild enzymatic sustainable routes for the synthesis of bio-degradable aromatic-aliphatic oligoesters.

    PubMed

    Pellis, Alessandro; Guarneri, Alice; Brandauer, Martin; Acero, Enrique Herrero; Peerlings, Henricus; Gardossi, Lucia; Guebitz, Georg M

    2016-05-01

    The application of Candida antarctica lipase B in enzyme-catalyzed synthesis of aromatic-aliphatic oligoesters is here reported. The aim of the present study is to systematically investigate the most favorable conditions for the enzyme catalyzed synthesis of aromatic-aliphatic oligomers using commercially available monomers. Reaction conditions and enzyme selectivity for polymerization of various commercially available monomers were considered using different inactivated/activated aromatic monomers combined with linear polyols ranging from C2 to C12 . The effect of various reaction solvents in enzymatic polymerization was assessed and toluene allowed to achieve the highest conversions for the reaction of dimethyl isophthalate with 1,4-butanediol and with 1,10-decanediol (88 and 87% monomer conversion respectively). Mw as high as 1512 Da was obtained from the reaction of dimethyl isophthalate with 1,10-decanediol. The obtained oligomers have potential applications as raw materials in personal and home care formulations, for the production of aliphatic-aromatic block co-polymers or can be further functionalized with various moieties for a subsequent photo- or radical polymerization.

  9. The influence of chemical composition of aliphatic-aromatic copolyesters on their properties

    NASA Astrophysics Data System (ADS)

    Wojtczak, Malgorzata; Galeski, Andrzej; Dutkiewicz, Slawomir; Piorkowska, Ewa

    2014-05-01

    The chain microstructure and properties of a series of aliphatic-aromatic copolyesters in a range of compositions from 10 to 100% of aromatic components were studied by examining melting and crystallization behaviors, dynamic mechanical response, morphology, wide- (WAXS) and small-angle X-ray scattering (SAXS), and tensile deformation. Chain microstructure was analyzed by 1H NMR. The results indicate that most of copolyesters used in this study have essentially random distribution of comonomers. Copolyesters with more than 30 mol% of aromatic part crystallize with a crystal structure characteristic for homopolymer poly(butylene terephthalate) (PBT). However, some of the reflections from crystal planes are shifted towards lower diffraction angles as compared to butylene terephthalate homoplymer. The phase transition temperatures decrease with increasing aliphatic content. By means of polarized light microscopy (PLM), small-angle light scattering (SALS) and SAXS, crystallization behavior of a selected aliphatic-aromatic copolyester was further explored. Selected copolyester crystallizes in the form of thin fibrous crystals, few nanometers thick, which is the main factor influencing the depression of its melting temperature.

  10. The influence of chemical composition of aliphatic-aromatic copolyesters on their properties

    SciTech Connect

    Wojtczak, Malgorzata; Galeski, Andrzej; Piorkowska, Ewa; Dutkiewicz, Slawomir

    2014-05-15

    The chain microstructure and properties of a series of aliphatic-aromatic copolyesters in a range of compositions from 10 to 100% of aromatic components were studied by examining melting and crystallization behaviors, dynamic mechanical response, morphology, wide- (WAXS) and small-angle X-ray scattering (SAXS), and tensile deformation. Chain microstructure was analyzed by {sup 1}H NMR. The results indicate that most of copolyesters used in this study have essentially random distribution of comonomers. Copolyesters with more than 30 mol% of aromatic part crystallize with a crystal structure characteristic for homopolymer poly(butylene terephthalate) (PBT). However, some of the reflections from crystal planes are shifted towards lower diffraction angles as compared to butylene terephthalate homoplymer. The phase transition temperatures decrease with increasing aliphatic content. By means of polarized light microscopy (PLM), small-angle light scattering (SALS) and SAXS, crystallization behavior of a selected aliphatic-aromatic copolyester was further explored. Selected copolyester crystallizes in the form of thin fibrous crystals, few nanometers thick, which is the main factor influencing the depression of its melting temperature.

  11. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

    PubMed

    Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S

    2016-05-15

    This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided.

  12. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    PubMed

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-11-10

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.

  13. Haloacetic acid and trihalomethane formation from the chlorination and bromination of aliphatic beta-dicarbonyl acid model compounds.

    PubMed

    Dickenson, Eric R V; Summers, R Scott; Croué, Jean-Philippe; Gallard, Hervé

    2008-05-01

    While it is known that resorcinol- and phenol-type aromatic structures within natural organic matter (NOM) react during drinking water chlorination to form trihalomethanes (THMs), limited studies have examined aliphatic-type structures as THM and haloacetic acid (HAA) precursors. A suite of aliphatic acid model compounds were chlorinated and brominated separately in controlled laboratory-scale batch experiments. Four and two beta-dicarbonyl acid compounds were found to be important precursors for the formation of THMs (chloroform and bromoform (71-91% mol/mol)), and dihaloacetic acids (DXAAs) (dichloroacetic acid and dibromoacetic acid (5-68% mol/mol)), respectively, after 24 h at pH 8. Based upon adsorbable organic halide formation, THMs and DXAAs, and to a lesser extent mono and trihaloacetic acids, were the majority (> 80%) of the byproducts produced for most of the aliphatic beta-dicarbonyl acid compounds. Aliphatic beta-diketone-acid-type and beta-keto-acid-type structures could be possible fast- and slow-reacting THM precursors, respectively, and aliphatic beta-keto-acid-type structures are possible slow-reacting DXAA precursors. Aliphatic beta-dicarbonyl acid moieties in natural organic matter, particularly in the hydrophilic fraction, could contribute to the significant formation of THMs and DXAAs observed after chlorination of natural waters.

  14. [Experimental studies of using polyester-coated materials of Polish production in surgical treatment of retinal detachment].

    PubMed

    Kmera-Muszyńska, M; Kecik, T; Pratnicki, A; Zajkowska, G; Wael, I

    1991-01-01

    The authors evaluated the tolerance of the rabbit eye to a new generation of polyester bands coated by polymethane polyester or by silicone. Investigations consisted on the application of episcleral implants made from polyester coated bands and--for comparison--of already well known polyester non-coated bands The eyes were removed on the 4th, 10th, 30th, 60th and 90th day after operation, macroscopically evaluated and fixed in formaline. The specimen were prepared from the spot of the applied implant together with a margin of surrounding tissues. Clinical observations, macroscopic evaluations as well as histopathological examinations showed a good tolerance of the silicone coated bands; it was discovered instead that the polyurethane coated bands are causing a more pronounced inflammatory reaction in the early postoperative period.

  15. Improving the miscibility of biodegradable polyester/polyphosphazene blends using cross-linkable polyphosphazene.

    PubMed

    Shan, Dingying; Huang, Zhaohui; Zhao, Yuchen; Cai, Qing; Yang, Xiaoping

    2014-11-26

    Biodegradable polyesters and polyphosphazenes are both promising biomaterials for tissue regeneration. A combination of both materials would provide additional advantages over the individual components in aspects of biocompatibility and osteocompatibility. Applications of polyester/polyphosphazene composites, however, were limited due to the severe phase separation. In this study, cross-linkable poly(glycine ethyl ester-co-hydroxyethyl methacrylate)phosphazene (PGHP) was synthesized. It was blended with poly(L-lactide) (PLLA) or poly(L-lactide-co-glycolide) (PLGA), using chloroform as a mutual solvent, and photo-crosslinked before solvent removal. The resulting PLLA (or PLGA)/PGHP composites demonstrated no significant phase separation due to the restricting function of the crosslinked PGHP polymeric network. In comparison with uncrosslinked blends, the mechanical properties of crosslinked composites were remarkably improved, which indicated their strong potential in bone regeneration applications.

  16. Impact behaviour of Napier/polyester composites under different energy levels

    NASA Astrophysics Data System (ADS)

    Fahmi, I.; Majid, M. S. Abdul; Afendi, M.; Haslan, M.; Helmi E., A.; M. Haameem J., A.

    2016-07-01

    The effects of different energy levels on the impact behaviour of Napier fibre/polyester reinforced composites were investigated. Napier fibre was extracted using traditional water retting process to be utilized as reinforcing materials in polyester composite laminates. 25% fibre loading composite laminates were prepared and impacted at three different energy levels; 2.5,5 and 7.5 J using an instrumented drop weight impact testing machine (IMATEK IM10). The outcomes show that peak force and contact time increase with increased impact load. The energy absorption was then calculated from the force displacement curve. The results indicated that the energy absorption decreases with increasing energy levels of the impact. Impacted specimens were observed visually for fragmentation fracture using an optical camera to identify the failure mechanisms. Fracture fragmentation pattern from permanent dent to perforation with radial and circumferential was observed.

  17. Effects of zinc oxide nanoparticles on the performance characteristics of cotton, polyester and their blends

    NASA Astrophysics Data System (ADS)

    Shady, K. E.; Michael, M. N.; Shimaa, H. A.

    2012-07-01

    Nanotechnology is defined as utilization of structure with at least one dimension of nanometer size. These nano structures are capable of enhancing the physical and performance properties of conventional textiles. On this basis, this research work study and compare the effect of nano zinc oxide particles having particle size less than 100nm with different concentrations (0.25%, 0.5%, 1%, and 2%) on the properties of three different fabrics namely cotton, polyester and blend cotton/polyester (65/35).The effectiveness of the treatment was assessed through the following standard tests; X-ray diffraction (XRD), tensile strength and percentage elongation, crease recovery angle, air permeability, whiteness index and ultra violet protection factor (UPF). Generally, the improvement greatly depends on the size and concentration of nanoparticles.

  18. Mechanical and Physical Properties of Polyester Polymer Concrete Using Recycled Aggregates from Concrete Sleepers

    PubMed Central

    Carrión, Francisco; Montalbán, Laura; Real, Julia I.

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior. PMID:25243213

  19. Biodegradable microfluidic scaffolds for tissue engineering from amino alcohol-based poly(ester amide) elastomers.

    PubMed

    Wang, Jane; Bettinger, Christopher J; Langer, Robert S; Borenstein, Jeffrey T

    2010-01-01

    Biodegradable polymers with high mechanical strength, flexibility and optical transparency, optimal degradation properties and biocompatibility are critical to the success of tissue engineered devices and drug delivery systems. Most biodegradable polymers suffer from a short half life due to rapid degradation upon implantation, exceedingly high stiffness, and limited ability to functionalize the surface with chemical moieties. This work describes the fabrication of microfluidic networks from poly(ester amide), poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate) (APS), a recently developed biodegradable elastomeric poly(ester amide). Microfluidic scaffolds constructed from APS exhibit a much lower Young's Modulus and a significantly longer degradation half-life than those of previously reported systems. The device is fabricated using a modified replica-molding technique, which is rapid, inexpensive, reproducible, and scalable, making the approach ideal for both rapid prototyping and manufacturing of tissue engineering scaffolds.

  20. Correlation between network mechanical properties and physical properties in polyester-urethane coatings

    SciTech Connect

    Scanlan, J.C.; Webster, D.C.; Crain, A.L.

    1995-12-31

    An experimental design to study the effect of polyester formulation on properties of polyurethane coatings was conducted. The five design variables studied were number average molecular weight, average hydroxyl functionality, and the composition of the acid functional monomers (adipic acid, isophthalic acid, and 1,4-cyclohexanedicarboxylic acid). The polyesters were crosslinked with a multifunctional isocyanate to form polyurethane coating films. Coatings were analyzed by traditional physical methods as well as by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC). By comparing the crosslink density (XLD) of the coatings and the glass transition temperature (Tg) of the coatings with the coatings physical properties and the design variables, we can resolve the effect of Tg and XLD on the hardness and flexibility of the coatings.

  1. Facile synthesis of polyester dendrimers from sequential click coupling of asymmetrical monomers.

    PubMed

    Ma, Xinpeng; Tang, Jianbin; Shen, Youqing; Fan, Maohong; Tang, Huadong; Radosz, Maciej

    2009-10-21

    Polyester dendrimers are attractive for in vivo delivery of bioactive molecules due to their biodegradability, but their synthesis generally requires multistep reactions with intensive purifications. A highly efficient approach to the synthesis of dendrimers by simply "sticking" generation by generation together is achieved by combining kinetic or mechanistic chemoselectivity with click reactions between the monomers. In each generation, the targeted molecules are the major reaction product as detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). The only separation needed is to remove the little unreacted monomer by simple precipitation or washing. This simple clicklike process without complicated purification is particularly suitable for the synthesis of custom-made polyester dendrimers.

  2. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaohong; Xu, Wenzheng; Huang, Fenglin; Chen, Dongsheng; Wei, Qufu

    2016-12-01

    Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag2O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  3. Mechanical and physical properties of polyester polymer concrete using recycled aggregates from concrete sleepers.

    PubMed

    Carrión, Francisco; Montalbán, Laura; Real, Julia I; Real, Teresa

    2014-01-01

    Currently, reuse of solid waste from disused infrastructures is an important environmental issue to study. In this research, polymer concrete was developed by mixing orthophthalic unsaturated polyester resin, artificial microfillers (calcium carbonate), and waste aggregates (basalt and limestone) coming from the recycling process of concrete sleepers. The variation of the mechanical and physical properties of the polymer concrete (compressive strength, flexural strength, modulus of elasticity, density, and water absorption) was analyzed based on the modification of different variables: nature of the recycled aggregates, resin contents (11 wt%, 12 wt%, and 13 wt%), and particle-size distributions of microfillers used. The results show the influence of these variables on mechanical performance of polymer concrete. Compressive and flexural strength of recycled polymer concrete were improved by increasing amount of polyester resin and by optimizing the particle-size distribution of the microfillers. Besides, the results show the feasibility of developing a polymer concrete with excellent mechanical behavior.

  4. Optimization on Impact Strength of Woven Kenaf Reinforced Polyester Composites using Taguchi Method

    NASA Astrophysics Data System (ADS)

    Khalid, S. N. A.; Ismail, A. E.; Zainulabidin, M. H.

    2017-01-01

    This paper focuses on the effect of weaving patterns and orientations on the energy absorption of woven kenaf reinforced polyester composites. Kenaf fiber in the form of yarn is weaved to produce different weaving patterns such as plain, twill and basket. Three woven mats are stacked together and mixed with polyester resin before it is compressed to squeeze out any excessive resin. There is nine different orientations are used during stacking processes by following Taguchi orthogonal arrays method. The hardened composites are cured for 24 hours before it is shaped according to specific dimensions for impact tests. The composites are perforated with 1m/s blunted projectile. According to the experimental findings, weaving pattern and orientation have distinct potential effects on value of energy absorption. The optimization using Taguchi method reveals preferable orientation of each weaving pattern composites. Based on the fracture observation, the fragmentations after optimization indicating lower distance surface fracture perforated obtained.

  5. Methanogenic Activity and Structural Characteristics of the Microbial Biofilm On a Needle-Punched Polyester Support

    PubMed Central

    Harvey, Martin; Forsberg, Cecil W.; Beveridge, Terry J.; Pos, Jack; Ogilvie, John R.

    1984-01-01

    In a downflow stationary fixed-film anaerobic reactor receiving a swine waste influent, few bacteria were observed to be tightly adherent to the surfaces of the needle-punched polyester support material. However, there was a morphologically complex, dense population of bacteria trapped within the matrix. Frequently large microcolonies of a uniform morphological type of bacteria were observed. These were particularly evident for methanosarcina-like bacteria which grew forming large aggregates of unseparated cells. Leafy deposits of electron-dense, calcium- and phosphorus-enriched material coated the polyester matrix and some cells. As the biofilm matured there was more extensive mineral deposition which completely entrapped cells. The entrapped cells appeared to autolyze, and many were partially degraded. Further impregnation of the matrix with minerals and apparent cell death may eventually have a deleterious effect on the methanogenic activity of the biofilm. Images PMID:16346629

  6. Intrinsically microporous polyesters from betulin - toward renewable materials for gas separation made from birch bark.

    PubMed

    Jeromenok, Jekaterina; Böhlmann, Winfried; Antonietti, Markus; Weber, Jens

    2011-11-15

    Betulin, an abundant triterpene, can be extracted from birch bark and can be used as a renewable monomer in the synthesis of microporous polyesters. Cross-linked networks and hyperbranched polymers are accessible by an A(2) + B(3) reaction, with betulin being the A(2) monomer and B(3) being a trifunctional acid chloride. Reaction of betulin with a diacid dichloride results in linear, soluble polyesters. The present communication proves that the polyreaction follows the classic schemes of polycondensation reactions. The resulting polymers are analyzed with regard to their micro-porosity by gas sorption, NMR spectroscopy, and X-ray scattering methods. The polymers feature intrinsic microporosity, having ultrasmall pores, which makes them candidates for gas separation membranes, e.g., for the separation of CO(2) from N(2) .

  7. Mechanical characteristics of novel polyester/NiTi wires braided composite stent for the medical application

    NASA Astrophysics Data System (ADS)

    Zou, Qiuhua; Xue, Wen; Lin, Jing; Fu, Yijun; Guan, Guoping; Wang, Fujun; Wang, Lu

    Stents have been widely used in percutaneous surgery to treat stenosis diseases. The braided NiTi stent, as a promising prototype, still has limitations of low radial force and loose structure. In the present study, a newly integrated composite stent was designed and braided with NiTi wires and polyester multifilament yarns by textile technology. The mechanical properties of four composite stents and the control bare NiTi stent were evaluated by in vitro compression, bending and anti-torsion tests. The results showed that integrated polyester/NiTi composite stents were superior in radial support. The stents could keep patency even when highly curved and had lower stent straightening force. Composite stents with certain structure stayed stable under twisting. The configuration of NiTi wires in composite stents could significantly impact stent deformation under twisting.

  8. Abrasive wear: The efects of fibres size on oil palm empty fruit bunch polyester composite

    NASA Astrophysics Data System (ADS)

    Kasolang, S.; Kalam, A.; Ahmad, M. A.; Rahman, N. A.; Suhadah, W. N.

    2012-06-01

    This paper presents an experimental investigation carried out to determine the effect of palm oil empty fruit bunch (OPEFB) fibre size in dry sliding testing of polyester composite. These composite samples were produced by mixing raw OPEFB fibre with resin. The samples were prepared at different sizes of fibre (100, 125, 180 and 250μm). Abrasion Resistance Tester (TR-600) was used to carried out abrasive wear tests in dry sliding conditions. These tests were performed at room temperature for two different loads (10 and 30N) and at a constant sliding velocity of 1.4m/s. The specific wear rates of OPEFB polyester composites were obtained. The morphology of composite surface before and after tests was also examined using 3D microscope imaging. Preliminary work on thermal distribution at the abrasive wheel point was also conducted for selected samples.

  9. Graphene/polyester staple composite for the removal of oils and organic solvents

    NASA Astrophysics Data System (ADS)

    Wu, Ruihan; Yu, Baowei; Liu, Xiaoyang; Li, Hongliang; Bai, Yitong; Ming, Zhu; Chen, Lingyun; Yang, Sheng-Tao; Chang, Xue-Ling

    2016-06-01

    Spongy graphene has been widely applied in oil removal. However, spongy graphene is hardly applicable for crude oil removal, because the complexity and high viscosity of crude oil. Herein, we reported that graphene/polyester staple composite (GPSC) could be used for the removal of oils and organic solvents, in particular crude oil. Graphene oxide was in situ reduced in the presence of polyester staple by hydrazine hydrate to form GPSC. GPSC efficiently adsorbed oils and organic solvents with high adsorption capacities. Demonstrations of treating pure oils and those in simulated sea water by GPSC were successfully performed. Due to the loose structure, GPSC adsorbed crude oil quickly with an adsorption capacity of 52 g g-1. During the regeneration, the adsorption capacity of GPSC retained around 78% of the initial capacity up to 9 cycles. The implication to the applications of GPSC in water remediation is discussed.

  10. Comparison of the analytical performance of electrophoresis microchannels fabricated in PDMS, glass, and polyester-toner

    PubMed Central

    Coltro, Wendell Karlos Tomazelli; Lunte, Susan M.; Carrilho, Emanuel

    2008-01-01

    This paper compares the analytical performance of microchannels fabricated in PDMS, glass, and polyester-toner for electrophoretic separations. Glass and PDMS chips were fabricated using well-established photolithographic and replica-molding procedures, respectively. PDMS channels were sealed against three different types of materials: native PDMS, plasma-oxidized PDMS, and glass. Polyester-toner chips were micromachined by a direct-printing process using an office laser printer. All microchannels were fabricated with similar dimensions according to the limitations of the direct-printing process (width/depth 150 μm/12 μm). LIF was employed for detection to rule out any losses in separation efficiency due to the detector configuration. Two fluorescent dyes, coumarin and fluorescein, were used as model analytes. Devices were evaluated for the following parameters related to electrophoretic separations: EOF, heat dissipation, injection reproducibility, separation efficiency, and adsorption to channel wall. PMID:19025869

  11. Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea.

    PubMed

    Babot, Esteban D; del Río, José C; Kalum, Lisbeth; Martínez, Angel T; Gutiérrez, Ana

    2013-09-01

    The goal of this study is the selective oxyfunctionalization of aliphatic compounds under mild and environmentally friendly conditions using a low-cost enzymatic biocatalyst. This could be possible taking advantage from a new peroxidase type that catalyzes monooxygenase reactions with H2 O2 as the only cosubstrate (peroxygenase). With this purpose, recombinant peroxygenase, from gene mining in the sequenced genome of Coprinopsis cinerea and heterologous expression using an industrial fungal host, is tested for the first time on aliphatic substrates. The reaction on free and esterified fatty acids and alcohols, and long-chain alkanes was followed by gas chromatography, and the different reaction products were identified by mass spectrometry. Regioselective hydroxylation of saturated/unsaturated fatty acids was observed at the ω-1 and ω-2 positions (only at the ω-2 position in myristoleic acid). Alkyl esters of fatty acids and monoglycerides were also ω-1 or ω-2 hydroxylated, but di- and tri-glycerides were not modified. Fatty alcohols yielded hydroxy derivatives at the ω-1 or ω-2 positions (diols) but also fatty acids and their hydroxy derivatives. Interestingly, the peroxygenase was able to oxyfunctionalize alkanes giving, in addition to alcohols at positions 2 or 3, dihydroxylated derivatives at both sides of the molecule. The predominance of mono- or di-hydroxylated derivatives seems related to the higher or lower proportion of acetone, respectively, in the reaction medium. The recombinant C. cinerea peroxygenase appears as a promising biocatalyst for alkane activation and production of aliphatic oxygenated derivatives, with better properties than the previously reported peroxygenase from Agrocybe aegerita, and advantages related to its recombinant nature for enzyme engineering and industrial production.

  12. The galactic distribution of aliphatic hydrocarbons in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Pendleton, Yvonne J.; Allamandola, Louis J.

    1995-01-01

    The infrared absorption feature near 2950(exp -1) (3.4 micron), characteristic of dust in the diffuse interstellar medium (ISM), is attributed to C-H stretching vibrations of aliphatic hydrocarbons. We show here that the strength of the band does not scale linearly with visual extinction everywhere, but instead increases more rapidly for objects near the center of the Galaxy, a behavior that parallels that of the Si-O stretching band due to silicate materials in the diffuse ISM. This implies that the grains responsible for the diffuse medium aliphatic C-H and silicate Si-O stretching bands are different from those responsible for much of the observed visual extinction. It also suggests that the distribution of the carbonaceous component of the diffuse ISM is not uniform throughout the Galaxy, but instead may increase in density toward the center of the Galaxy. The similar behavior of the C-H and Si-O stretching bands suggests that these two components may be coupled, perhaps in the form of silicate-core, organic-mantle grains. Several possible models of the distribution of this material are presented and it is demonstrated that the inner parts of the Galaxy has a carrier density that is 5 to 35 times higher than in the local ISM. Depending on the model used, the density of aliphatic material in the local ISM is found to be about 1 to 2 -CH3 groups m(exp -3) and about 2 to 5 -CH2- groups m(exp -3). These densities are consistent with the strengths of the 2955 and 2925 cm(exp -1) (3.4 micron) band being described by the relations A(sub nu)/tau(sub 2955 cm(exp -1)) = 270 +/- 40 and A(sub nu)/tau(sub 2925 cm(exp -1)) = 250 +/- 40 in the local diffuse ISM.

  13. Increased mean aliphatic lipid chain length in left ventricular hypertrophy secondary to arterial hypertension

    PubMed Central

    Evaristi, Maria Francesca; Caubère, Céline; Harmancey, Romain; Desmoulin, Franck; Peacock, William Frank; Berry, Matthieu; Turkieh, Annie; Barutaut, Manon; Galinier, Michel; Dambrin, Camille; Polidori, Carlo; Miceli, Cristina; Chamontin, Bernard; Koukoui, François; Roncalli, Jerôme; Massabuau, Pierre; Smih, Fatima; Rouet, Philippe

    2016-01-01

    Abstract About 77.9 million (1 in 4) American adults have high blood pressure. High blood pressure is the primary cause of left ventricular hypertrophy (LVH), which represents a strong predictor of future heart failure and cardiovascular mortality. Previous studies have shown an altered metabolic profile in hypertensive patients with LVH. The goal of this study was to identify blood metabolomic LVH biomarkers by 1H NMR to provide novel diagnostic tools for rapid LVH detection in populations of hypertensive individuals. This cross-sectional study included 48 hypertensive patients with LVH matched with 48 hypertensive patients with normal LV size, and 24 healthy controls. Two-dimensional targeted M-mode echocardiography was performed to measure left ventricular mass index. Partial least squares discriminant analysis was used for the multivariate analysis of the 1H NMR spectral data. From the 1H NMR-based metabolomic profiling, signals coming from methylene (–CH2–) and methyl (–CH3) moieties of aliphatic chains from plasma lipids were identified as discriminant variables. The –CH2–/–CH3 ratio, an indicator of the mean length of the aliphatic lipid chains, was significantly higher (P < 0.001) in the LVH group than in the hypertensive group without LVH and controls. Receiver operating characteristic curve showed that a cutoff of 2.34 provided a 52.08% sensitivity and 85.42% specificity for discriminating LVH (AUC = 0.703, P-value < 0.001). We propose the –CH2–/–CH3 ratio from plasma aliphatic lipid chains as a biomarker for the diagnosis of left ventricular remodeling in hypertension. PMID:27861330

  14. Potential Alternatives Report for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes

    NASA Technical Reports Server (NTRS)

    Lewis, pattie

    2011-01-01

    Identifying and selecting alternative materials and technologies that have the potential to reduce the identified HazMats and hazardous air pollutants (HAPs), while incorporating sound corrosion prevention and control technologies, is a complicated task due to the fast pace at which new technologies emerge and rules change. The alternatives are identified through literature searches, electronic database and Internet searches, surveys, and/or personal and professional contacts. Available test data was then compiled on the proposed alternatives to determine if the materials meet the test objectives or if further)laboratory or field-testing will be required. After reviewing technical information documented in the PAR, government representatives, technical representatives from the affected facilities, and other stakeholders involved in the process will select the list of viable alternative coatings for consideration and testing under the project's Joint Test Protocol entitled Joint Test Protocol for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes and Field Test Plan entitled Field Evaluations Test Plan for Validation of Alternatives to Aliphatic Isocyanate Polyurethanes, both prepared by ITB. Test results will be reported in a Joint Test Report upon completion oftesting. The selection rationale and conclusions are documented in this PAR. A cost benefit analysis will be prepared to quantify the estimated capital and process costs of coating alternatives and cost savings relative to the current coating processes, however, some initial cost data has been included in this PAR. For this coatings project, isocyanates, as found in aliphatic isocyanate polyurethanes, were identified as the target HazMat to be eliminated. Table 1-1 lists the target HazMats, the related process and application, current specifications, and affected programs.

  15. Aliphatic and polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbour and Adjacent Coast, Taiwan.

    PubMed

    Lee, Chon-Lin; Hsieh, Ming-Tsuen; Fang, Meng-Der

    2005-01-01

    Surficial sediment samples collected from Kaohsiung Harbour and its nearby coast were analyzed for aliphatic hydrocarbons and parent polycyclic aromatic hydrocarbons (PAHs). According to our results, the average total concentrations of n-alkanes (n-C12 to C35) and aromatics (15 PAHs) were 4.33 microg g(-1) dry weight (ranged 0.46-22.60) and 0.59 microg g(-1) dry weight (ranged 0.09-1.75), respectively. The highest concentrations of aliphatic and aromatic hydrocarbons were recorded in stations near the estuaries of Qianzhen River and Love River, respectively. Aliphatic hydrocarbons in the samples indicate that there has been significant non-petrogenic, possibly terrestrial, contribution in the sediment of the open coast of Kaohsiung Harbour and that there has been dominant contribution from petrogenic sources in the sediment of the inner harbour. PAHs, detected in the samples, however, indicated a higher pyrolytic contribution in open-coast samples and a higher petrogenic contribution in the inner harbour. Overall, sediment concentrations of total alkanes in this study were comparable to those found in Victoria Harbour, Hong Kong and are higher than those found in Xiamen Harbour, China. Concentrations of total PAHs in inner Kaohsiung Harbour sediments were relatively lower than those found in Victoria Harbour, Hong Kong and Xiamen Harbour, China, but comparable to those found in Hsin-ta Harbour, Taiwan and Incheon Harbour, Korea. In comparison with several effect-based sediment quality guidelines, most PAH concentrations found in samples taken from inner harbour stations exceeded the Threshold Effect Level of Florida indicating a slight possibility of adverse effects.

  16. Hygrothermomechanical evaluation of transverse filament tape epoxy/polyester fiberglass composites

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Chamis, C. C.

    1984-01-01

    Transverse filament tape (TFT) fiberglass/epoxy and TFT polyester composites intended for low cost wind turbine blade fabrication have been subjected to static and cyclic load behavior tests whose results are presently evaluated on the basis of an integrated hygrothermomechanical response theory. Laminate testing employed simulated filament winding procedures. The results obtained show that the predicted hygrothermomechanical environmental effects on TFT composites are in good agreement with measured data for various properties, including fatigue at different R-ratio values.

  17. Biochemical and Structural Insights into Enzymatic Depolymerization of Polylactic Acid and Other Polyesters by Microbial Carboxylesterases.

    PubMed

    Hajighasemi, Mahbod; Nocek, Boguslaw P; Tchigvintsev, Anatoli; Brown, Greg; Flick, Robert; Xu, Xiaohui; Cui, Hong; Hai, Tran; Joachimiak, Andrzej; Golyshin, Peter N; Savchenko, Alexei; Edwards, Elizabeth A; Yakunin, Alexander F

    2016-06-13

    Polylactic acid (PLA) is a biodegradable polyester derived from renewable resources, which is a leading candidate for the replacement of traditional petroleum-based polymers. Since the global production of PLA is quickly growing, there is an urgent need for the development of efficient recycling technologies, which will produce lactic acid instead of CO2 as the final product. After screening 90 purified microbial α/β-hydrolases, we identified hydrolytic activity against emulsified PLA in two uncharacterized proteins, ABO2449 from Alcanivorax borkumensis and RPA1511 from Rhodopseudomonas palustris. Both enzymes were also active against emulsified polycaprolactone and other polyesters as well as against soluble α-naphthyl and p-nitrophenyl monoesters. In addition, both ABO2449 and RPA1511 catalyzed complete or extensive hydrolysis of solid PLA with the production of lactic acid monomers, dimers, and larger oligomers as products. The crystal structure of RPA1511 was determined at 2.2 Å resolution and revealed a classical α/β-hydrolase fold with a wide-open active site containing a molecule of polyethylene glycol bound near the catalytic triad Ser114-His270-Asp242. Site-directed mutagenesis of both proteins demonstrated that the catalytic triad residues are important for the hydrolysis of both monoester and polyester substrates. We also identified several residues in RPA1511 (Gln172, Leu212, Met215, Trp218, and Leu220) and ABO2449 (Phe38 and Leu152), which were not essential for activity against soluble monoesters but were found to be critical for the hydrolysis of PLA. Our results indicate that microbial carboxyl esterases can efficiently hydrolyze various polyesters making them attractive biocatalysts for plastics depolymerization and recycling.

  18. Evaluation of Polyester Resin, Epoxy, and Cement Grouts for Embedding Reinforcing Steel Bars in Hardened Concrete

    DTIC Science & Technology

    1990-01-01

    Ultg IFILE COPY REPAIR, EVALUATION, MAINTENANCE, AND REHABILITATION RESEARCH PROGRAM ofEn in s TECHNICAL REPORT REMR-CS-23 EVALUATION OF POLYESTER...WESSC-85-01/TV-66369A Civil Works Research Work Unit 32303 The following two letters used a5 part of the number designating technical reports of... research publisher? under the Repair, Evaluation, Maintenance, and Rehabilitation (REMR) Research Progr-m identify the problem area under which the report

  19. Sonochemical coating of cotton and polyester fabrics with "antibacterial" BSA and casein spheres.

    PubMed

    Shimanovich, Ulyana; Cavaco-Paulo, Artur; Nitzan, Yeshayahu; Gedanken, Aharon

    2012-01-02

    A novel antibacterial coating for cotton and polyester fabrics has been developed by using drug-loaded proteinaceous microspheres made of bovine serum albumin and casein proteins. The microbubbles were created and anchored onto the fabrics (see figure) in a one-step reaction that lasts 3 min. The sonochemically produced "antibacterial fabrics" have been characterized. The efficiency of the sonochemical process in converting the native proteins into microspheres, encapsulating the drug, and coating the fabric has also been studied.

  20. Preparation and characterization of a novel ionizing electromagnetic radiation shielding material: Hematite filled polyester based composites

    NASA Astrophysics Data System (ADS)

    Eren Belgin, E.; Aycik, G. A.; Kalemtas, A.; Pelit, A.; Dilek, D. A.; Kavak, M. T.

    2015-10-01

    Isophthalic polyester (PES) based and natural mineral (hematite) filled composites were prepared and characterized for ionizing electromagnetic radiation shielding applications. Density evaluation and microscopic studies of the composites were carried out. Shielding performances of the composites were investigated for three different IEMR energy regions as low, intermediate and high. The mass attenuation coefficient of the prepared composites reached 98% of the elemental lead. In addition, the studied composites were superior to lead by virtue of their non-toxic nature.

  1. Dielectric Properties of Lead Monoxide Filled Unsaturated Polyester Based Polymer Composites

    NASA Astrophysics Data System (ADS)

    Harish, V.; Kumar, H. G. Harish; Nagaiah, N.

    2011-07-01

    Lead monoxide filled isophthalate resin particulate polymer composites were prepared with different filler concentrations and investigated for physical, thermal, mechanical and gamma radiation shielding characteristics. This paper discusses about the dielectric properties of the composites. The present study showed that the dielectric constant (ɛ'), dielectric loss (ɛ″) and ac conductivity (σac) of isopthalate based unsaturated polyester resin increases with the increase in wt% PbO filler in polymer matrix.

  2. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    NASA Astrophysics Data System (ADS)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  3. Biomimetic polyesters and their role in ion transport across cell membranes.

    PubMed

    Jedliński, Z; Kurcok, P; Adamus, G; Juzwa, M

    2000-01-01

    Syntheses of biomimetic low-molecular weight poly-(R)-3-hydroxybutanoate mediated by three types of supramolecular catalysts are presented. The utility of these synthetic polyesters for preparation of artificial channels in phospholipid bilayers capable of sodium and calcium ion transport across cell membranes, is discussed. Further studies on possible applications of these bio-polymers for manufacturing drugs of prolonged activity are under way.

  4. Iron-Catalyzed Oxyfunctionalization of Aliphatic Amines at Remote Benzylic C-H Sites.

    PubMed

    Mbofana, Curren T; Chong, Eugene; Lawniczak, James; Sanford, Melanie S

    2016-09-02

    We report the development of an iron-catalyzed method for the selective oxyfunctionalization of benzylic C(sp(3))-H bonds in aliphatic amine substrates. This transformation is selective for benzylic C-H bonds that are remote (i.e., at least three carbons) from the amine functional group. High site selectivity is achieved by in situ protonation of the amine with trifluoroacetic acid, which deactivates more traditionally reactive C-H sites that are α to nitrogen. The scope and synthetic utility of this method are demonstrated via the synthesis and derivatization of a variety of amine-containing, biologically active molecules.

  5. Electrooxidation of aliphatic alcohols on electrodes consisting of hydrophobicized supports coated with nickel oxides

    SciTech Connect

    Chaenko, N.V.; Kornienko, V.L.; Avrutskaya, I.A.; Fioshin, M.Ya.

    1987-12-01

    Two methods are presented to intensify the electrooxidation of aliphatic alcohols with low water solubility and to simplify end-product separation. One method comprised direct addition of higher nickel oxides to the active material of the electrode to be fabricated; the other involved depositing a layer of higher nickel oxides on a hydrophobicized support consisting of a mixture of a conducting material and the FP-4D hydrophobicizer. Electrolysis was carried out in a diaphragm-free two-compartment cell, one reagent and the other the electrolyte. Results are shown of hexyl alcohol oxidation on various composition supports coated with higher nickel oxides.

  6. Conceptual design and comparison of aramid and polyester taut leg spread moorings for deepwater applications

    SciTech Connect

    Wilde, B.; Kelly, P.; Librino, F.; Whitehill, A.S.

    1996-12-31

    As the offshore industry looks beyond water depths of 3,000 ft for future oil and gas production, the industry standard steel catenary spread mooring (CSM) system used on all floating production systems installed to date becomes increasingly inefficient and costly. An alternative to the CSM is the Taut Leg Spread Mooring (TLSM) system with its characteristic short scope legs and vertically loaded anchors. In water depths greater than 3,000 ft, it has been shown that TLSMs comprised of synthetic mooring lines have performance advantages over systems utilizing steel wire rope and demonstrated potential for significant cost reductions. Early studies investigated the use of aramid fiber rope due to its high strength, lower in-water weight and lower axial stiffness as compared to ropes made from steel. Later studies indicated that the material properties of polyester fiber, primarily its lower Young`s modulus, made polyester mooring lines more suitable for use in TLSMs. As the TLSM knowledge base expanded, aramid rope construction evolved. Earlier efforts to match the characteristics of steel wire rope have given way to new generation soft aramid constructions. This paper compares the mooring performance and total installed cost of a soft aramid TLSM to a typical polyester configuration. Both systems were designed for use in the Gulf of Mexico (GOM) with an FPS based on the Aker P45.

  7. Hydrolytically degradable hyperbranched PEG-polyester adhesive with low swelling and robust mechanical properties.

    PubMed

    Zhang, Hong; Zhao, Tianyu; Duffy, Patrick; Dong, Yixiao; Annaidh, Aisling Ní; O'Cearbhaill, Eoin; Wang, Wenxin

    2015-10-28

    Photocrosslinkable and water soluble hyperbranched PEG-polyester polymers (HPEGDA) have been developed as robust degradable adhesives. The HPEGDA polymers have been synthesized from controlled homopolymerization of poly(ethylene glycol) diacrylate (PEGDA700 ) via in situ deactivation enhanced atom transfer radical polymerization (DE-ATRP). By introducing a high initiator-to-monomer ratio, the obtained HPEGDA polymer is composed of extremely short carbon-carbon backbones interconnected together by the long PEG chains as well as pendent photocrosslinkable acrylate moieties. Due to the extremely short C-C backbone, the long PEG chains can therefore be seen as the main chain, thus, HPEGDA polymers behave more like polyester which is a category of polymers that contain the ester functional group in their main chain. Photo-cured HPEGDA can be readily adhered to tissue forming a patch with robust mechanical and adhesive strengths. The degradation profile by hydrolysis of polyester blocks as well as a significantly low swelling ratio of HPEGDA gels in an aqueous environment allow them to have great potential for sealing and repair of internal tissue. Furthermore, HPEGDA gels appear to have minor significant cytotoxicity in vitro. These unique properties indicate that the reported HPEGDA polymers are well poised for the development of adhesive tissue engineering matrixes, wound dressings, and sealants.

  8. Combinatorial approach to develop tailored biodegradable poly(xylitol dicarboxylate) polyesters.

    PubMed

    Dasgupta, Queeny; Chatterjee, Kaushik; Madras, Giridhar

    2014-11-10

    The objective of this work was to develop a versatile strategy for preparing biodegradable polymers with tunable properties for biomedical applications. A family of xylitol-based cross-linked polyesters was synthesized by melt condensation. The effect of systematic variation of chain length of the diacid, stoichiometric ratio, and postpolymerization curing time on the physicochemical properties was characterized. The degradation rate decreased as the chain length of the diacid increased. The polyesters synthesized by this approach possess a diverse spectrum of degradation (ranging from ∼4 to 100% degradation in 7 days), mechanical strength (from 0.5 to ∼15 MPa) and controlled release properties. The degradation was a first-order process and the rate constant of degradation decreased linearly as the hydrophobicity of the polyester increased. In controlled release studies, the order of diffusion increased with chain length and curing time. The polymers were found to be cytocompatible and are thus suitable for possible use as biodegradable polymers. This work demonstrates that this particular combinatorial approach to polymer synthesis can be used to prepare biomaterials with independently tunable properties.

  9. Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata

    PubMed Central

    2014-01-01

    Thermomonospora curvata is a thermophilic actinomycete phylogenetically related to Thermobifida fusca that produces extracellular hydrolases capable of degrading synthetic polyesters. Analysis of the genome of T. curvata DSM43183 revealed two genes coding for putative polyester hydrolases Tcur1278 and Tcur0390 sharing 61% sequence identity with the T. fusca enzymes. Mature proteins of Tcur1278 and Tcur0390 were cloned and expressed in Escherichia coli TOP10. Tcur1278 and Tcur0390 exhibited an optimal reaction temperature against p-nitrophenyl butyrate at 60°C and 55°C, respectively. The optimal pH for both enzymes was determined at pH 8.5. Tcur1278 retained more than 80% and Tcur0390 less than 10% of their initial activity following incubation for 60 min at 55°C. Tcur0390 showed a higher hydrolytic activity against poly(ε-caprolactone) and polyethylene terephthalate (PET) nanoparticles compared to Tcur1278 at reaction temperatures up to 50°C. At 55°C and 60°C, hydrolytic activity against PET nanoparticles was only detected with Tcur1278. In silico modeling of the polyester hydrolases and docking with a model substrate composed of two repeating units of PET revealed the typical fold of α/β serine hydrolases with an exposed catalytic triad. Molecular dynamics simulations confirmed the superior thermal stability of Tcur1278 considered as the main reason for its higher hydrolytic activity on PET. PMID:25405080

  10. Synthesis of Cu-Ag@Ag particles using hyperbranched polyester as template

    NASA Astrophysics Data System (ADS)

    Han, Wen-Song

    2015-07-01

    In this manuscript, the third-generation hyperbranched polyester was synthesized with 2, 2-dimethylol propionic acid as AB2 monomer and pentaerythrite as core molecule by using step by step polymerization process at first. Then, the Cu-Ag particles were prepared by co-reduction of silver nitrate and copper nitrate with ascorbic acid in the aqueous solution using hyperbranched polyester as template. Finally, the Cu-Ag@Ag particles were prepared by coating silver on the surface of Cu-Ag particles by reduction of silver nitrate. The synthesized hyperbranched polyester and Cu-Ag@Ag particles were characterized by Fourier transform infrared (FT-IR) spectroscopy, UV-vis spectra, x-ray diffraction, Laser light scattering, thermogravimetric analysis (TGA) and SEM. UV-vis spectra results showed that the Cu-Ag@Ag particles had a strong absorption band at around 420 nm. Laser light scattering and SEM studies confirmed that the most frequent particle sizes of Cu-Ag@Ag particles were 1.2 um. TGA results indicated that the Cu-Ag@Ag particles had good thermal stability. [Figure not available: see fulltext.

  11. Development and performance optimization of knitted antibacterial materials using polyester-silver nanocomposite fibres.

    PubMed

    Majumdar, Abhijit; Butola, Bhupendra Singh; Thakur, Sandip

    2015-09-01

    The development and performance optimization of knitted antibacterial materials made from polyester-silver nanocomposite fibres have been attempted in this research. Inherently antibacterial polyester-silver nanocomposite fibres were blended with normal polyester fibres in different weight proportions to prepare yarns. Three parameters, namely blend percentage (wt.%) of nanocomposite fibres, yarn count and knitting machine gauge were varied for producing a large number of knitted samples. The knitted materials were tested for antibacterial activity against Gram-positive bacteria Staphylococcus aureus. Statistical analysis revealed that all the three parameters were significant and the blend percentage of nanocomposite fibre was the most dominant factor influencing the antibacterial activity of knitted materials. The antibacterial activity of the developed materials was found to be extremely durable as there was only about 1% loss even after 25 washes. Linear programming approach was used to optimize the parameters, namely antibacterial activity, air permeability and areal density of knitted materials considering cost minimization as the objective. The properties of validation samples were found to be very close to the targeted values.

  12. A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties

    PubMed Central

    You, Zhengwei; Cao, Haiping; Gao, Jin; Shin, Paul H.; Day, Billy W.; Wang, Yadong

    2010-01-01

    Polyesters with free functional groups allow facile modifications with biomolecules, which can lead to versatile biomaterials that afford controlled interactions with cells and tissues. Efficient synthesis of functionalizable polyesters is still a challenge that greatly limits the availability and widespread applications of biofunctionalized synthetic polymers. Here we report a simple route to prepare a functionalizable polyester, poly(sebacoyl diglyceride) (PSeD) bearing free hydroxyl groups. The key synthetic step is an epoxide ring-opening polymerization, instead of the traditional polycondensation, that produces poly(glycerol sebacate) (PGS) [1]. PSeD has a more defined structure with mostly linear backbone, more free hydroxyl groups, higher molecular weight, and lower polydispersity than PGS. Crosslinking PSeD with sebacic acid yields a polymer five times tougher and more elastic than cured PGS. PSeD exhibits good cytocompatibility in vitro. Furthermore, functionalization by glycine proceeds with high efficiency. This versatile synthetic platform can offer a large family of biodegradable, functionalized polymers with tunable physiochemical and biological properties useful for a wide range of biomedical applications. PMID:20149441

  13. Synthesis and modification of defined plurifunctional chiral and racemic polyethers and polyesters

    SciTech Connect

    Le Borgne, A.; Taton, D.; Sepulchre, M.; Spassky, N.

    1993-12-31

    Chiral and racemic polyethers and polyesters with reactive groups in the side-chain were synthesized by ring-opening polymerization and polycondensation. Plurifunctional polyethers are obtained by polymerizing the corresponding oxiranes bearing (-CH{sub 2}-){sub n}X, as side chain group with X = Cl, Br, OH. From these polymers liquid crystal materials are obtained by chemical modification reaction with 4-cyano-4`-hydroxy-biphenyl mesogenic group. The thermal properties are depending on the degree of substitution. Modified crystalline cyclic tetramer of epichlorohydrin developed also liquid crystalline properties close to that of the linear polymer. Cholesteric materials were obtained by polymerization of the chiral oxirane bearing the same mesogenic group in the substituent. Other structural materials can be obtained by copolymerization reactions. Polyesters with chirality in the main chain and bearing hydroxyl functional groups were prepared by polycondensation of potassium salts of (S)-malic and (R,R) tartaric acids with dibromo derivatives. These polyesters are used as carriers of biologically active agents.

  14. Microbial Odor Profile of Polyester and Cotton Clothes after a Fitness Session

    PubMed Central

    Callewaert, Chris; De Maeseneire, Evelyn; Kerckhof, Frederiek-Maarten; Verliefde, Arne; Van de Wiele, Tom

    2014-01-01

    Clothing textiles protect our human body against external factors. These textiles are not sterile and can harbor high bacterial counts as sweat and bacteria are transmitted from the skin. We investigated the microbial growth and odor development in cotton and synthetic clothing fabrics. T-shirts were collected from 26 healthy individuals after an intensive bicycle spinning session and incubated for 28 h before analysis. A trained odor panel determined significant differences between polyester versus cotton fabrics for the hedonic value, the intensity, and five qualitative odor characteristics. The polyester T-shirts smelled significantly less pleasant and more intense, compared to the cotton T-shirts. A dissimilar bacterial growth was found in cotton versus synthetic clothing textiles. Micrococci were isolated in almost all synthetic shirts and were detected almost solely on synthetic shirts by means of denaturing gradient gel electrophoresis fingerprinting. A selective enrichment of micrococci in an in vitro growth experiment confirmed the presence of these species on polyester. Staphylococci were abundant on both cotton and synthetic fabrics. Corynebacteria were not enriched on any textile type. This research found that the composition of clothing fibers promotes differential growth of textile microbes and, as such, determines possible malodor generation. PMID:25128346

  15. Mechanical behavior of polyester-based woven jute/glass hybrid composites

    NASA Astrophysics Data System (ADS)

    Ahsan, Q.; Tanju, S.

    2012-06-01

    In polymer composite fabrication system, hybridization of jute fibers with synthetic fibers is one of the techniques adopted to overcome some of the limitations (poor mechanical properties and moisture resistance) that have been identified for jute fiber reinforced composites. In the present study, the effect of hybridization on mechanical properties of jute and glass mat reinforced polyester composites has been evaluated experimentally. The composites were made of glass mat, jute mat and varying layers of jute and glass mat in the polyester matrix by applying hand lay-up technique at room temperature (250C). The values of mechanical properties obtained from tensile, flexural and interlaminar shear strength (ILSS) tests show significant improvement with the increase of glass fiber content in hybrid composites. But the positive contribution from glass mat in increasing of ILSS of composite is limited to some extent and the optimum ILSS is achieved when glass-jute incorporated in composite as 50-50 weight basis. SEM images were used to study the modes of fracture, fiber-matrix adhesion, and jute-glass layer adhesion. The fracture surfaces resulted from different tests clearly show that cracks propagate throughout the polyester matrix by tearing the jute mat and delaminating the glass mat.

  16. Sublaminar devices for the correction of scoliosis: metal wire versus polyester tape.

    PubMed

    Caekebeke, Pieter; Moke, Lieven; Moens, Pierre

    2013-04-01

    The authors conducted a retrospective study comparing the corrective effect of two sublaminar techniques on scoliosis: the classical one, based on metal wire, and a more recent one, based on polyester tape (thoracic Universal Clamp), known to be safer (less risk of neurological damage, less laminar breakthrough) and compatible with MRI. Lumbar screws were used in both groups. The authors composed two groups of 25 scoliosis patients, matched for gender, age, aetiology, anterior release, number of levels fused, number of infections, major curve and flexibility: there was no significant difference. Only the follow-up period was different: 55 months in the metal wire group, versus 17 months in the polyester tape group (p < 0.001), but this was immaterial because the curves were compared one year after surgery. After one year there was no significant difference between both groups, as to correction in the coronal or in the sagittal plane. This means that the polyester tape technique offers an interesting alternative, given that it yields supplementary advantages, as mentioned above.

  17. Synthesis of PVDF ultrafiltration membranes supported on polyester fabrics for separation of organic matter from water

    NASA Astrophysics Data System (ADS)

    Mhlanga, Sabelo D.; Tshabalala, Tumelo G.; Nxumalo, Edward N.; Mamba, Bhekie B.

    2014-08-01

    Polyvinylidene flouride (PVDF) membranes supported on non-woven fabrics (NWF) of polyester are reported. The PVDF membranes were fabricated using the phase inversion method followed by modification of the active top layer of the PVDF thin film by adding polyvinylpyrolidone (PVP) into the cast solution. A PVDF resin was used with N- methyl-2-pyrrolidone (NMP) as a solvent. Sessile drop contact angle measurements and scanning electron microscopy (SEM) were used to study the physical properties of the membranes. Membrane rejection of humic acid was studied using a cross-flow membrane testing unit. The contact angle results revealed that the hydrophilicity of PVDF membranes increased as the PVP concentration was increased from 3 to 10 wt%. SEM analysis of the membranes revealed that the membrane pore sizes increased when PVP was added. AFM analysis also showed that membrane roughness changed when PVP was added. Total organic carbon (TOC) analysis of water samples spiked with humic acid was performed to test the rejection capacity of the membranes. Rejections of up to 97% were achieved for PVDF membranes supported on polyester NWF1, which had smaller thickness and higher permeability compared to polyester NWF2. The NWFs provided the high strength required for the membranes despite the modifications done on the PDVF surface and microstructure.

  18. Microbial odor profile of polyester and cotton clothes after a fitness session.

    PubMed

    Callewaert, Chris; De Maeseneire, Evelyn; Kerckhof, Frederiek-Maarten; Verliefde, Arne; Van de Wiele, Tom; Boon, Nico

    2014-11-01

    Clothing textiles protect our human body against external factors. These textiles are not sterile and can harbor high bacterial counts as sweat and bacteria are transmitted from the skin. We investigated the microbial growth and odor development in cotton and synthetic clothing fabrics. T-shirts were collected from 26 healthy individuals after an intensive bicycle spinning session and incubated for 28 h before analysis. A trained odor panel determined significant differences between polyester versus cotton fabrics for the hedonic value, the intensity, and five qualitative odor characteristics. The polyester T-shirts smelled significantly less pleasant and more intense, compared to the cotton T-shirts. A dissimilar bacterial growth was found in cotton versus synthetic clothing textiles. Micrococci were isolated in almost all synthetic shirts and were detected almost solely on synthetic shirts by means of denaturing gradient gel electrophoresis fingerprinting. A selective enrichment of micrococci in an in vitro growth experiment confirmed the presence of these species on polyester. Staphylococci were abundant on both cotton and synthetic fabrics. Corynebacteria were not enriched on any textile type. This research found that the composition of clothing fibers promotes differential growth of textile microbes and, as such, determines possible malodor generation.

  19. Process for removing halogenated aliphatic and aromatic compounds from petroleum products. [Polychlorinated biphenyls; methylene chloride; perchloroethylene; trichlorofluoroethane; trichloroethylene; chlorobenzene

    DOEpatents

    Googin, J.M.; Napier, J.M.; Travaglini, M.A.

    1982-03-31

    A process for removing halogenated aliphatic and aromatic compounds, e.g., polychlorinated biphenyls, from petroleum products by solvent extraction. The halogenated aliphatic and aromatic compounds are extracted from a petroleum product into a polar solvent by contracting the petroleum product with the polar solvent. The polar solvent is characterized by a high solubility for the extracted halogenated aliphatic and aromatic compounds, a low solubility for the petroleum product and considerable solvent power for polyhydroxy compound. The preferred polar solvent is dimethylformamide. A miscible polyhydroxy compound, such as, water, is added to the polar extraction solvent to increase the polarity of the polar extraction solvent. The halogenated aliphatic and aromatic compounds are extracted from the highly-polarized mixture of polyhydroxy compound and polar extraction solvent into a low polar or nonpolar solvent by contacting the polyhydroxy compound-polar solvent mixture with the low polar or nonpolar solvent. The halogenated aliphatic and aromatic compounds in the low polar or nonpolar solvent by physical means, e.g., vacuum evaporation. The polar and nonpolar solvents are recovered for recycling. The process can easily be designed for continuous operation. Advantages of the process include that the polar solvent and a major portion of the nonpolar solvent can be recycled, the petroleum products are reclaimable and the cost for disposing of waste containing polychlorinated biphenyls is significantly reduced. 2 tables.

  20. New aliphatic glycerophosphoryl-containing polyurethanes: synthesis, platelet adhesion and elution cytotoxicity studies.

    PubMed

    Acetti, Daniela; D'Arrigo, Paola; Giordano, Carmen; Macchi, Piero; Servi, Stefano; Tessaro, Davide

    2009-04-01

    in this study new poly(ether)urethanes (PeUs) based on aliphatic diisocyanates were synthesized with phospholipid-like residues as chain extenders. The primary objective was to prepare new polyurethanes from diisocyanates that are less toxic than the aromatic ones widely used in medical-grade polyurethanes, in order to investigate the effect of the different aromatic or aliphatic hard segment content on the final properties of the materials. Some glycerophospho residues were simultaneously introduced to enhance the hemocompatibility of these materials. Polymers were prepared by a conventional two-step solution polymerization procedure using hexamethylene diisocyanate (HDi) and dodecametilendiisocyanate (DDi) and poly(1,4-butanediol) with molecular weight 1000 to form prepolymers, which were subsequently polymerized with 1-glycerophosphorylcholine (1-GPC) or glycerophosphorylserine (GPS) to act as chain extenders. The reference polymers bearing 1,4-butandiol (BD) were also synthesized. The polymers obtained were characterized by fourier transform infrared spectroscopy (fT-iR), nuclear magnetic resonance (1H nmR), and differential scanning calorimetry (DSC). The hemocompatibility of synthesized segmented polyurethanes was preliminarily investigated by platelet-rich plasma contact studies and related scanning electron microscopy (Sem) photographs as well as by cell viability assay after cell exposure to material elutions to assess the effect of any toxic leachables coming out from the samples. Two of the polymers gave interesting results, suggesting the desirability of further investigation into their possible use in biomedical devices.

  1. Halides with Fifteen Aliphatic C–H···Anion Interaction Sites

    NASA Astrophysics Data System (ADS)

    Shi, Genggongwo; Aliakbar Tehrani, Zahra; Kim, Dongwook; Cho, Woo Jong; Youn, Il-Seung; Lee, Han Myoung; Yousuf, Muhammad; Ahmed, Nisar; Shirinfar, Bahareh; Teator, Aaron J.; Lastovickova, Dominika N.; Rasheed, Lubna; Lah, Myoung Soo; Bielawski, Christopher W.; Kim, Kwang S.

    2016-07-01

    Since the aliphatic C–H···anion interaction is relatively weak, anion binding using hydrophobic aliphatic C–H (Cali–H) groups has generally been considered not possible without the presence of additional binding sites that contain stronger interactions to the anion. Herein, we report X-ray structures of organic crystals that feature a chloride anion bound exclusively by hydrophobic Cali–H groups. An X-ray structure of imidazolium-based scaffolds using Cali–H···A‑ interactions (A‑ = anion) shows that a halide anion is directly interacting with fifteen Cali–H groups (involving eleven hydrogen bonds, two bidentate hydrogen-bond-type binding interactions and two weakly hydrogen-bonding-like binding interactions). Additional supporting interactions and/or other binding sites are not observed. We note that such types of complexes may not be rare since such high numbers of binding sites for an anion are also found in analogous tetraalkylammonium complexes. The Cali–H···A‑ interactions are driven by the formation of a near-spherical dipole layer shell structure around the anion. The alternating layers of electrostatic charge around the anion arise because the repulsions between weakly positively charged H atoms are reduced by the presence of the weakly negatively charged C atoms connected to H atoms.

  2. A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation

    PubMed Central

    Allen, Jeffrey R.; Clark, Daniel D.; Krum, Jonathan G.; Ensign, Scott A.

    1999-01-01

    The bacterial metabolism of short-chain aliphatic alkenes occurs via oxidation to epoxyalkanes followed by carboxylation to β-ketoacids. Epoxyalkane carboxylation requires four enzymes (components I–IV), NADPH, NAD+, and a previously unidentified nucleophilic thiol. In the present work, coenzyme M (2-mercaptoethanesulfonic acid), a compound previously found only in the methanogenic Archaea where it serves as a methyl group carrier and activator, has been identified as the thiol and central cofactor of aliphatic epoxide carboxylation in the Gram-negative bacterium Xanthobacter strain Py2. Component I catalyzed the addition of coenzyme M to epoxypropane to form a β-hydroxythioether, 2-(2-hydroxypropylthio)ethanesulfonate. Components III and IV catalyzed the NAD+-dependent stereoselective dehydrogenation of R- and S-enantiomers of 2-(2-hydroxypropylthio)ethanesulfonate to form 2-(2-ketopropylthio)ethanesulfonate. Component II catalyzed the NADPH-dependent cleavage and carboxylation of the β-ketothioether to form acetoacetate and coenzyme M. These findings evince a newfound versatility for coenzyme M as a carrier and activator of alkyl groups longer in chain-length than methane, a function for coenzyme M in a catabolic pathway of hydrocarbon oxidation, and the presence of coenzyme M in the bacterial domain of the phylogenetic tree. These results serve to unify bacterial and Archaeal metabolism further and showcase diverse biological functions for an elegantly simple organic molecule. PMID:10411892

  3. Trapping by amylose of the aliphatic chain grafted onto chlorogenic acid: importance of the graft position.

    PubMed

    Le-Bail, P; Lorentz, C; Pencreac'h, G; Soultani-Vigneron, S; Pontoire, B; López Giraldo, L J; Villeneuve, P; Hendrickx, J; Tran, V

    2015-03-06

    5-Caffeoylquinic acid (chlorogenic acid), is classified in acid-phenols family and as polyphenolic compounds it possesses antioxidant activity. The oxydative modification of chlorogenic acid in foods may lead to alteration of their qualities; to counteract these degradation effects, molecular encapsulation was used to protect chlorogenic acid. Amylose can interact strongly with a number of small molecules, including lipids. In order to enable chlorogenic acid complexation by amylose, a C16 aliphatic chain was previously grafted onto the cycle of quinic acid. This work showed that for the two lipophilic derivatives of chlorogenic acid: hexadecyl chlorogenate obtained by alkylation and 3-O-palmitoyl chlorogenic acid obtained by acylation; only the 3-O-palmitoyl chlorogenic acid complexed amylose. The chlorogenic acid derivatives were studied by X-ray diffraction, differential scanning calorimetry and NMR to elucidate the interaction. By comparing the results with previous work on the complexation of amylose by 4-O-palmitoyl chlorogenic acid, the importance of the aliphatic chain position on the cycle of the quinic acid is clearly highlighted. A study in molecular modeling helped to understand the difference in behavior relative to amylose of these three derivatives of chlorogenic acid.

  4. Far infrared spectra of solid state aliphatic amino acids in different protonation states.

    PubMed

    Trivella, Aurélien; Gaillard, Thomas; Stote, Roland H; Hellwig, Petra

    2010-03-21

    Far infrared spectra of zwitterionic, cationic, and anionic forms of aliphatic amino acids in solid state have been studied experimentally. Measurements were done on glycine, L-alanine, L-valine, L-leucine, and L-isoleucine powder samples and film samples obtained from dried solutions prepared at pH ranging from 1 to 13. Solid state density functional theory calculations were also performed, and detailed potential energy distributions were obtained from normal mode results. A good correspondence between experimental and simulated spectra was achieved and this allowed us to propose an almost complete band assignment for the far infrared spectra of zwitterionic forms. In the 700-50 cm(-1) range, three regions were identified, each corresponding to a characteristic set of normal modes. A first region between 700 and 450 cm(-1) mainly contained the carboxylate bending, rocking, and wagging modes as well as the ammonium torsional mode. The 450-250 cm(-1) region was representative of backbone and sidechain skeletal bending modes. At last, the low wavenumber zone, below 250 cm(-1), was characteristic of carboxylate and skeletal torsional modes and of lattice modes. Assignments are also proposed for glycine cationic and anionic forms, but could not be obtained for all aliphatic amino acids due to the lack of structural data. This work is intended to provide fundamental information for the understanding of peptides vibrational properties.

  5. Exploring 3D structural influences of aliphatic and aromatic chemicals on α-cyclodextrin binding.

    PubMed

    Linden, Lukas; Goss, Kai-Uwe; Endo, Satoshi

    2016-04-15

    Binding of solutes to macromolecules is often influenced by steric effects caused by the 3D structures of both binding partners. In this study, the 1:1 α-cyclodextrin (αCD) binding constants (Ka1) for 70 organic chemicals were determined to explore the solute-structural effects on the αCD binding. Ka1 was measured using a three-part partitioning system with either a headspace or a passive sampler serving as the reference phase. The Ka1 values ranged from 1.08 to 4.97 log units. The results show that longer linear aliphatic chemicals form more stable complexes than shorter ones, and that the position of the functional group has a strong influence on Ka1, even stronger than the type of the functional group. Comparison of linear and variously branched aliphatic chemicals indicates that having a sterically unhindered alkyl chain is favorable for binding. These results suggest that only one alkyl chain can enter the binding cavity. Relatively small aromatic chemicals such as 1,3-dichlorobenzene bind to αCD well, while larger ones like tetrachlorobenzene and 3-ring aromatic chemicals show only a weak interaction with αCD, which can be explained by cavity exclusion. The findings of this study help interpret cyclodextrin binding data and facilitate the understanding of binding processes to macromolecules.

  6. Drude polarizable force field for aliphatic ketones and aldehydes, and their associated acyclic carbohydrates

    NASA Astrophysics Data System (ADS)

    Small, Meagan C.; Aytenfisu, Asaminew H.; Lin, Fang-Yu; He, Xibing; MacKerell, Alexander D.

    2017-02-01

    The majority of computer simulations exploring biomolecular function employ Class I additive force fields (FF), which do not treat polarization explicitly. Accordingly, much effort has been made into developing models that go beyond the additive approximation. Development and optimization of the Drude polarizable FF has yielded parameters for selected lipids, proteins, DNA and a limited number of carbohydrates. The work presented here details parametrization of aliphatic aldehydes and ketones (viz. acetaldehyde, propionaldehyde, butaryaldehyde, isobutaryaldehyde, acetone, and butanone) as well as their associated acyclic sugars (uc(d)-allose and uc(d)-psicose). LJ parameters are optimized targeting experimental heats of vaporization and molecular volumes, while the electrostatic parameters are optimized targeting QM water interactions, dipole moments, and molecular polarizabilities. Bonded parameters are targeted to both QM and crystal survey values, with the models for ketones and aldehydes shown to be in good agreement with QM and experimental target data. The reported heats of vaporization and molecular volumes represent a compromise between the studied model compounds. Simulations of the model compounds show an increase in the magnitude and the fluctuations of the dipole moments in moving from gas phase to condensed phases, which is a phenomenon that the additive FF is intrinsically unable to reproduce. The result is a polarizable model for aliphatic ketones and aldehydes including the acyclic sugars uc(d)-allose and uc(d)-psicose, thereby extending the available biomolecules in the Drude polarizable FF.

  7. Effect of testosterone and its aliphatic and aromatic dimers on DNA morphology.

    PubMed

    Chanphai, P; Agudelo, D; Vesper, A R; Bérubé, G; Tajmir-Riahi, H A

    2017-02-01

    Conjugation of DNA with testosterone and it aliphatic dimer (alip) and aromatic dimer (arom) was investigated in aqueous solution at pH 7.4. Multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were used to characterize steroid-DNA binding and DNA morphology. Spectroscopic analysis showed that testosterone binds DNA via A7, A16, A17, T8, T15 and T18 nucleobases with overall binding constants Ktest-DNA=1.8 (±0.4)×10(4)M(-1), Ktest-dimeralip-DNA=5.7 (±0.7)×10(4)M(-1) and Ktest-dimer-arom-DNA=7.3 (±0.9)×10(4)M(-1). The binding affinity increases in this order: testosterone dimer-aromatic>testosterone dimer-aliphatic>testosterone. The steroid loading efficacy was 40-50%. Transmission electron microscopy showed major changes in DNA morphology as testosterone-DNA interaction occurred with increase in the diameter of the DNA aggregate, indicating encapsulation of testosterone by DNA. Modeling showed the presence of several nucleobases attached to testosterone with the free binding energy of -4.93Kcal/mol.

  8. The FEMA GRAS assessment of aliphatic and aromatic terpene hydrocarbons used as flavor ingredients.

    PubMed

    Adams, T B; Gavin, C Lucas; McGowen, M M; Waddell, W J; Cohen, S M; Feron, V J; Marnett, L J; Munro, I C; Portoghese, P S; Rietjens, I M C M; Smith, R L

    2011-10-01

    This publication is the thirteenth in a series of safety evaluations performed by the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA). In 1993, the Panel initiated a comprehensive program to re-evaluate the safety of more than 1700 GRAS flavoring substances under conditions of intended use. Since then, the number of flavoring substances has grown to more than 2600 substances. Elements that are fundamental to the safety evaluation of flavor ingredients include exposure, structural analogy, metabolism, pharmacokinetics and toxicology. Flavor ingredients are evaluated individually and in the context of the available scientific information on the group of structurally related substances. Scientific data relevant to the safety evaluation of the use of aliphatic and aromatic terpene hydrocarbons as flavoring ingredients are evaluated. The group of aliphatic and aromatic terpene hydrocarbons was reaffirmed as GRAS (GRASr) based, in part, on their self-limiting properties as flavoring substances in food; their rapid absorption, metabolic detoxication, and excretion in humans and other animals; their low level of flavor use; the wide margins of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from subchronic and chronic studies and the lack of significant genotoxic potential.

  9. Halides with Fifteen Aliphatic C–H···Anion Interaction Sites

    PubMed Central

    Shi, Genggongwo; Aliakbar Tehrani, Zahra; Kim, Dongwook; Cho, Woo Jong; Youn, Il-Seung; Lee, Han Myoung; Yousuf, Muhammad; Ahmed, Nisar; Shirinfar, Bahareh; Teator, Aaron J.; Lastovickova, Dominika N.; Rasheed, Lubna; Lah, Myoung Soo; Bielawski, Christopher W.; Kim, Kwang S.

    2016-01-01

    Since the aliphatic C–H···anion interaction is relatively weak, anion binding using hydrophobic aliphatic C–H (Cali–H) groups has generally been considered not possible without the presence of additional binding sites that contain stronger interactions to the anion. Herein, we report X-ray structures of organic crystals that feature a chloride anion bound exclusively by hydrophobic Cali–H groups. An X-ray structure of imidazolium-based scaffolds using Cali–H···A− interactions (A− = anion) shows that a halide anion is directly interacting with fifteen Cali–H groups (involving eleven hydrogen bonds, two bidentate hydrogen-bond-type binding interactions and two weakly hydrogen-bonding-like binding interactions). Additional supporting interactions and/or other binding sites are not observed. We note that such types of complexes may not be rare since such high numbers of binding sites for an anion are also found in analogous tetraalkylammonium complexes. The Cali–H···A− interactions are driven by the formation of a near-spherical dipole layer shell structure around the anion. The alternating layers of electrostatic charge around the anion arise because the repulsions between weakly positively charged H atoms are reduced by the presence of the weakly negatively charged C atoms connected to H atoms. PMID:27444513

  10. [Cloning and analysis of a new aliphatic amidase gene from Rhodococcus erythropolis TA37].

    PubMed

    Lavrov, K V; Karpova, I Yu; Epremyan, A S; Yanenko, A S

    2014-10-01

    A new aliphatic amidase gene (ami), having a level of similarity with the nearest homologs of no more than 77%, was identified in the Rhodococcus erythropolis TA37 strain, which is able to hydrolyze a wide range of amides. The amidase gene was cloned within a 3.7 kb chromosomal locus, which also contains putative acetyl-CoA ligase and ABC-type transportergenes. The structure of this locus in the R. erythropolis TA37 strain differs from the structure of loci in other Rhodococcus strains. The amidase gene is expressed in Escherichia coli cells. It was demonstrated that amidase (generated in the recombinant strain) efficiently hydrolyzes acetamide (aliphatic anmide) and does not use 4'-nitroacetanilide (N-substituted amide) as a substrate. Insertional inactivation of the amidase gene in the R. erythropolis TA37 strain results in a considerable decrease (by at least 6-7 times) in basal amidase activity, indicating functional amidase activity in the R. erythropolis TA37 strain.

  11. [Analysis of aliphatic carboxylic acids in anaerobic digestion process waters by ion-exclusion chromatography].

    PubMed

    Ito, Kazuaki; Sakamoto, Jun; Nagaoka, Kazuya; Takayama, Yohichi; Kanahori, Takashi; Sunahara, Hiroshi; Hayashi, Tsuneo; Sato, Shinji; Hirokawa, Takeshi; Tanaka, Kazuhiko

    2012-04-01

    The analysis of seven aliphatic carboxylic acids (formic, acetic, propionic, iso-butyric, n-butyric, iso-valeric and n-valeric acid) in anaerobic digestion process waters for biogas production was examined by ion-exclusion chromatography with dilute acidic eluents (benzoic acid, perfluorobutyric acid (PFBA) and sulfuric acid) and non-suppressed conductivity/ultraviolet (UV) detection. The columns used were a styrene/divinylbenzene-based strongly acidic cation-exchange resin column (TSKgel SCX) and a polymethacrylate-based weakly acidic cation-exchange resin column (TSKgel Super IC-A/C). Good separation was performed on the TSKgel SCX in shorter retention times. For the TSKgel Super IC-A/C, peak shape of the acids was sharp and symmetrical in spite of longer retention times. In addition, the mutual separation of the acids was good except for iso- and n-butyric acids. The better separation and good detection was achieved by using the two columns (TSKgel SCX and TSKgel Super IC-A/C connected in series), lower concentrations of PFBA and sulfuric acid as eluents, non-suppressed conductivity detection and UV detection at 210 nm. This analysis was applied to anaerobic digestion process waters. The chromatograms with conductivity detection were relatively simpler compared with those of UV detection. The use of two columns with different selectivities for the aliphatic carboxylic acids and the two detection modes was effective for the determination and identification of the analytes in anaerobic digestion process waters containing complex matrices.

  12. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin

    NASA Astrophysics Data System (ADS)

    Sicre, M. A.; Marty, J. C.; Saliot, A.; Aparicio, X.; Grimalt, J.; Albaiges, J.

    Marine aerosols were collected using a five-stage cascade impactor during the PHYCEMED II cruise in the Western Mediterranean Sea (October 1983). Their composition in aliphatic and aromatic hydrocarbons (HCs) was analyzed, representing the first time that concentrations of polynuclear aromatic HCs (PAH) are reported in relation to particle size for aerosols of remote marine areas. The HC concentrations were found to be dependent on the origin of the air masses. They were higher for air coming from North European countries than for air originating in the Atlantic and the South of Spain. The concentrations range between 7 and 14 ng m -3for n-alkanes and between 0.2 and 0.4 ng m -3for total PAH. Based on molecular criteria, several sources for these HCs have been identified: continental higher plant waxes, petroleum and pyrolysis (namely coal combustion and vehicular exhausts). Mass medium equivalent diameters (MMED) for the naturally derived n-alkanes are in the 1.79-2.53 μm range, indicating an origin related with the emission of large particles from higher plant waxes or from soil dusts. In contrast, MMED for the anthropogenic HCs, both aliphatic and aromatic, are smaller than the micron, suggesting initial emission of PAH through pyrolytic processes in the vapor phase followed by condensation onto larger sub-μm particles.

  13. Encapsulation of testosterone and its aliphatic and aromatic dimers by milk beta-lactoglobulin.

    PubMed

    Chanphai, P; Vesper, A R; Bekale, L; Bérubé, G; Tajmir-Riahi, H A

    2015-05-01

    The encapsulation of testosterone and it aliphatic dimer (alip) and aromatic dimer (arom) with milk β-lactoglobulin (β-LG) was studied in aqueous solution at pH 7.4. Multiple spectroscopic methods, transmission electron microscopy (TEM) and molecular modeling were used to characterize testosterone-β-LG binding and protein aggregation process. Spectroscopic analysis showed that steroids bind β-LG via hydrophobic and H-bonding interactions with overall binding constants K test-β-LG = 5.6 (± 0.6) × 10(4)M(-1), K test-dimeralip-β-LG = 4.8 (± 0.5) × 10(3)M(-1) and K test-dimer-arom-β-LG = 2.9 (± 0.4) × 10(4)M(-1). The binding affinity was testosterone > testosterone dimer-aromatic > testosterone dimer-aliphatic. Transmission electron microscopy showed major changes in protein morphology as testosterone-protein complexation occurred with increase in the diameter of the protein aggregate indicating encapsulation of steroids by β-LG. Modeling showed the presence of H-bonding stabilized testosterone-β-LG complexes with the free binding energy of -9.82 Kcal/mol indicating that the interaction process is spontaneous at room temperature.

  14. A cometabolic biotransformation model for halogenated aliphatic compounds exhibiting product toxicity

    SciTech Connect

    Alvarez-Cohen, L. ); McCarty, P.L. )

    1991-08-01

    A model is proposed to describe the rate and extent of cometabolic transformation of halogenated aliphatic compounds by resting microbial cells. The finite transformation capacity ({Tc}) of resting cells, which appears to be associated with cometabolic oxidation of many halogenated aliphatic compounds, is used to incorporate the effects of product toxicity and reductant supply into a modified expression of Monod kinetics. Applicability of the model of trichloroethylene transformation by resting cells from a mixed methanotrophic culture is evaluated by comparison with experimental data from batch transformation studies conducted over a range of conditions. A visually good and statistically reasonable fit was obtained between the experimental data and model predictions both with cells alone and with formate added as an exogenous reductant source. A comparison of parameter estimates (k and K{sub s}) derived by use of the cometabolic transformation model and those derived by use of conventional linearized Monod techniques (Lineweaver-Burk and concentration-normalized equations) indicates that, for reactions involving a finite transformation capacity, the linearized Monod equations yield artificially elevated parameters estimates.

  15. A Bioinspired Catalytic Aerobic Oxidative C–H Functionalization of Primary Aliphatic Amines: Synthesis of 1,2-Disubstituted Benzimidazoles

    PubMed Central

    Nguyen, Khac Minh Huy; Largeron, Martine

    2015-01-01

    Aerobic oxidative C–H functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. PMID:26206475

  16. Water-based chitosan/melamine polyphosphate multilayer nanocoating that extinguishes fire on polyester-cotton fabric.

    PubMed

    Leistner, Marcus; Abu-Odeh, Anas A; Rohmer, Sarah C; Grunlan, Jaime C

    2015-10-05

    Polyester-cotton (PECO) blends are widely used in the textile industry because they combine the softness of cotton and the strength and durability of polyester. Unfortunately, both fiber types share the disadvantage of being flammable. The layer-by-layer coating technique was used to deposit a highly effective flame retardant (melamine polyphosphate) from water onto polyester-cotton fabric. Soluble melamine and sodium hexametaphosphate form this water-insoluble flame retardant during the coating procedure. This unique nanocoating imparts self-extinguishing properties to PECO with only 12% relative coating weight. Vertical flame testing, pyrolysis combustion flow calorimetry (PCFC), thermogravimetric analysis (TGA), and scanning electron microscopy were used to evaluate the quality of the coating as well as its flame retardant performance. A combination of both condensed and gas-phase activity appears to be the reason for this effective flame retardancy. Degradation pathways of both cotton and polyester are affected by the applied coating, as shown by PCFC and TGA. Use of environmentally benign and non-toxic chemicals, and the ease of layer-by-layer deposition, making this coating an industrially feasible alternative to render polyester-cotton fabric self-extinguishing.

  17. A high-performance dielectric elastomer consisting of bio-based polyester elastomer and titanium dioxide powder

    NASA Astrophysics Data System (ADS)

    Yang, Dan; Tian, Ming; Dong, Yingchao; Kang, Hailan; Gong, Daolin; Zhang, Liqun

    2013-10-01

    A bio-based polyester elastomer containing many polar groups was combined with high-dielectric-constant titanium dioxide (TiO2) powder to form a dielectric elastomer composite for the first time. The effects of the titanium dioxide filler on the elastic modulus, dielectric properties, and electromechanical responses of the polyester dielectric elastomer were studied. We found that the dielectric constant of composites increased with increasing content of TiO2. Nevertheless, the elastic modulus of the composites did not increase with increasing content of TiO2, and the polyester elastomer filled with 6 vol. % of TiO2 exhibited the lowest elastic modulus, which led to a high prestrain-free actuated strain of 11.8% at a low electric field of just 9.8 kV/mm. The actuated strain is better than other dielectric elastomers reported in the literature. The high electromechanical performance was attributed to the increase in dielectric constant and decrease in elastic modulus of the composite from those of the pure polyester elastomer. The decrease in elastic modulus was explained in detail by the competing effects of crosslink density and filler network. In addition, a dramatic increase in dielectric constant of the composite was observed and discussed through several dielectric mixing rules. Finally, the polyester elastomer and titanium dioxide are both environment-friendly, making possible the composite to be used in biological and medical devices.

  18. Preparation and properties of high storage stability polyester polyol dispersion for two-component waterborne polyurethane coating

    NASA Astrophysics Data System (ADS)

    Hao, H.; Hu, J. Q.; Wang, F.; Tu, W. P.

    2017-01-01

    A new type of polyester polyol dispersion with good storage stability was prepared based on a hydrophilic monomer 5-sodium sulfodimethyl isophthalate (5-SIPM), and frequently-used monomers such as neopentyl glycol (NPG), dimethyl terephthalate (DMT), dimethyl phthalate (DMP) and trimethylolpropane (TMP) by the transpolycondensation and polycondensation method. The polyester polyol dispersion was characterized by FTIR and GPC. The proper content of these monomers were determined by the performance of polyester dispersion: the content of TMP was 15wt%, the content of NPG was 7.5wt% and the hydrophilic monomer 5-SIPM content was 5wt%. Two-component waterborne polyurethane (2K-WPU) coatings were prepared by Bayhydur® XP2487/1 and polyester polyol dispersions, which were stored before and after at 40 ° for 6 weeks, the prepared films have no differences in drying time, adhesion, pencil hardness, gloss and chemical resistance, the result also reveals that the polyester polyol dispersion have excellent storage stability resistance.

  19. Aromatic and aliphatic CH hydrogen bonds fight for chloride while competing alongside ion pairing within triazolophanes.

    PubMed

    Hua, Yuran; Ramabhadran, Raghunath O; Uduehi, Esther O; Karty, Jonathan A; Raghavachari, Krishnan; Flood, Amar H

    2011-01-03

    Triazolophanes are used as the venue to compete an aliphatic propylene CH hydrogen-bond donor against an aromatic phenylene one. Longer aliphatic C-H...Cl(-) hydrogen bonds were calculated from the location of the chloride within the propylene-based triazolophane. The gas-phase energetics of chloride binding (ΔG(bind) , ΔH(bind) , ΔS(bind) ) and the configurational entropy (ΔS(config) ) were computed by taking all low-energy conformations into account. Comparison between the phenylene- and propylene-based triazolophanes shows the computed gas-phase free energy of binding decreased from ΔG(bind) =-194 to -182 kJ mol(-1) , respectively, with a modest enthalpy-entropy compensation. These differences were investigated experimentally. An (1) H NMR spectroscopy study on the structure of the propylene triazolophane's 1:1 chloride complex is consistent with a weaker propylene CH hydrogen bond. To quantify the affinity differences between the two triazolophanes in dichloromethane, it was critical to obtain an accurate binding model. Four equilibria were identified. In addition to 1:1 complexation and 2:1 sandwich formation, ion pairing of the tetrabutylammonium chloride salt (TBA(+) ⋅Cl(-) ) and cation pairing of TBA(+) with the 1:1 triazolophane-chloride complex were observed and quantified. Each complex was independently verified by ESI-MS or diffusion NMR spectroscopy. With ion pairing deconvoluted from the chloride-receptor binding, equilibrium constants were determined by using (1) H NMR (500 μM) and UV/Vis (50 μM) spectroscopy titrations. The stabilities of the 1:1 complexes for the phenylene and propylene triazolophanes did not differ within experimental error, ΔG=(-38±2) and (-39±1) kJ mol(-1) , respectively, as verified by an NMR spectroscopy competition experiment. Thus, the aliphatic CH donor only revealed its weaker character when competing with aromatic CH donors within the propylene-based triazolophane.

  20. Aliphatic and polycyclic aromatic hydrocarbons characterisation of Coimbra and Oporto PM2.5 urban aerosol

    NASA Astrophysics Data System (ADS)

    Rocha, A. C.; Mirante, F.; Gonçalves, C.; Nunes, T.; Alves, C.; Evtyugina, M.; Kowacz, M.; Pio, C.; Rocha, C.; Vasconcelos, T.

    2009-04-01

    The concentration of organic pollutants in urban areas is mostly due to incomplete combustion from vehicles, industries and domestic heating. Some of these compounds, principally the aliphatic (ALIPH) and polycyclic aromatic hydrocarbons (PAHs) promote harmful effects in human health. The determination of the ALIPH and PAHs concentration levels and their possible emission sources are useful for air quality management and source apportionment studies. In order to estimate and compare the ambient concentrations and establish the main sources of these compounds, the fine fraction of the atmospheric particulate matter (PM2.5) was collected simultaneously in Oporto and Coimbra during summer and winter seasons using a high volume sampler. The organic compounds were extracted from the particulate matter, under reflux with dichloromethane and the total organic extract (TOE) was fractionated by flash chromatography using five different eluents with increasing polarity. The hydrocarbon fractions were analysed by gas chromatography/mass spectrometry (GC/MS). Here we present and discuss the qualitative and quantitative composition of the aliphatic and aromatic fractions present in PM2.5 samples from both cities. The homologous series of C14 to C34 n-alkanes, isoprenoid hydrocarbons (pristane and phytane), PAHs and some petroleum markers have been identified and quantified. With the purpose of identifying the possible sources, various molecular diagnostic ratios were calculated. The global carbon preference index (CPI) closer to the unity, the large concentration of the unresolved complex mixture (UCM) and the presence of PAHs indicate that motor vehicle exhaust was the main emission source of the aliphatic and polycyclic aromatic fractions of Oporto and Coimbra aerosol, especially in the first city. Also, the remarkable presence of petroleum biomarkers such, as hopanes, confirms the previous results. Concentration ratios between PAHs were calculated and used to assign emission

  1. Synthesis, properties and applications of biodegradable polymers derived from diols and dicarboxylic acids: from polyesters to poly(ester amide)s.

    PubMed

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-04-25

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed.

  2. Synthesis, Properties and Applications of Biodegradable Polymers Derived from Diols and Dicarboxylic Acids: From Polyesters to Poly(ester amide)s

    PubMed Central

    Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi

    2014-01-01

    Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed. PMID:24776758

  3. The polyester rope taut leg mooring concept: A feasible means for reducing deepwater mooring cost and improving stationkeeping performance

    SciTech Connect

    Winkler, M.M.; McKenna, H.A.

    1995-12-01

    The polyester rope taut leg mooring system offers a unique opportunity to reduce deepwater mooring system cost, while simultaneously improving stationkeeping performance. These gains are over catenary or taut leg systems designed using all steel components. This paper builds upon work presented at prior OTC conferences and focuses on concept feasibility and implementation. Feasibility is addressed from a systems basis including fiber and rope selection, definition of mechanical properties, mooring system integration, and effects of long-term usage. Implementation is believed practical based on current technology and in-place manufacturing capability. Available cyclic tension test results for polyester rope suggest a comparable fatigue performance to wire rope. The most significant challenge facing application of the polyester taut leg mooring concept is the lack of in-service experience compared to conventional steel catenary mooring systems.

  4. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes

    SciTech Connect

    Webb, Michael A.; Jung, Yukyung; Pesko, Danielle M.; Savoie, Brett M.; Yamamoto, Umi; Coates, Geoffrey W.; Balsara, Nitash P.; Wang, Zhen -Gang; Miller, III, Thomas F.

    2015-07-10

    Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.

  5. Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass.

    PubMed

    Zhang, Junhua; Li, Junke; Tang, Yanjun; Lin, Lu; Long, Minnan

    2015-10-05

    Recently, the production and utilization of 2,5-furandicarboxylic acid (FDCA) have become a hot research topic in catalyst field and polyester industry for its special chemical structure and a wide range of raw material source. FDCA is a potential replacement for the terephthalic acid monomer used in the production of poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), which opens up a new pathway for obtaining biomass-based polyester to replace or partially replace petroleum based polyester. Here, we mainly reviewed the catalytic pathway for the synthesis of FDCA derived from lignocellulosic biomass or from the related downstream products, such as glucose, 5-hydroxymethylfurfural (HMF). Moreover, the utilization of oxidation catalysts, the reaction mechanism, the existing limitations and unsolved challenges were also elaborated in detail. Therefore, we hope this mini review provides a helpful overview and insight to readers in this exciting research area.

  6. Structural and Functional Studies of A. oryzae Cutinase: Enhanced Thermostability and Hydrolytic Activity of Synthetic Ester and Polyester Degradation

    PubMed Central

    Liu, Zhiqiang; Gosser, Yuying; Baker, Peter James; Ravee, Yaniv; Lu, Ziying; Alemu, Girum; Li, Huiguang; Butterfoss, Glenn L.; Kong, Xiang-Peng; Gross, Richard; Montclare, Jin Kim

    2009-01-01

    Cutinases are responsible for hydrolysis of the protective cutin lipid polyester matrix in plants and thus have been exploited for hydrolysis of small molecule esters and polyesters. Here we explore the reactivity, stability, and structure of Aspergillus oryzae cutinase and compare it to the well-studied enzyme from Fusarium solani. Two critical differences are highlighted in the crystallographic analysis of the A. oryzae structure: (i) an additional disulfide bond and (ii) a topologically favored catalytic triad with a continuous and deep groove. These structural features of A. oryzae cutinase are proposed to result in improved hydrolytic activity and altered substrate specificity profile, enhanced thermostability and remarkable reactivity towards the degradation of the synthetic polyester, polycaprolactone. The results presented here provide insight into engineering new cutinase-inspired biocatalysts with tailor-made properties. PMID:19810726

  7. Structural and Functional Studies of Aspergillus oryzae Cutinase: Enhanced Thermostability and Hydrolytic Activity of Synthetic Ester and Polyester Degradation

    SciTech Connect

    Liu, Z.; Gosser, Y; Baker, P; Ravee, Y; Li, H; Butterfoss, G; Kong, X; Gross, R; Montclare, J; et al.

    2009-01-01

    Cutinases are responsible for hydrolysis of the protective cutin lipid polyester matrix in plants and thus have been exploited for hydrolysis of small molecule esters and polyesters. Here we explore the reactivity, stability, and structure of Aspergillus oryzae cutinase and compare it to the well-studied enzyme from Fusarium solani. Two critical differences are highlighted in the crystallographic analysis of the A. oryzae structure: (i) an additional disulfide bond and (ii) a topologically favored catalytic triad with a continuous and deep groove. These structural features of A. oryzae cutinase are proposed to result in an improved hydrolytic activity and altered substrate specificity profile, enhanced thermostability, and remarkable reactivity toward the degradation of the synthetic polyester polycaprolactone. The results presented here provide insight into engineering new cutinase-inspired biocatalysts with tailor-made properties.

  8. Cross-linked, biodegradable, cytocompatible salicylic acid based polyesters for localized, sustained delivery of salicylic acid: an in vitro study.

    PubMed

    Chandorkar, Yashoda; Bhagat, Rajesh K; Madras, Giridhar; Basu, Bikramjit

    2014-03-10

    In order to suppress chronic inflammation while supporting cell proliferation, there has been a continuous surge toward development of polymers with the intention of delivering anti-inflammatory molecules in a sustained manner. In the above backdrop, we report the synthesis of a novel, stable, cross-linked polyester with salicylic acid (SA) incorporated in the polymeric backbone and propose a simple synthesis route by melt condensation. The as-synthesized polymer was hydrophobic with a glass transition temperature of 1 °C, which increases to 17 °C upon curing. The combination of NMR and FT-IR spectral techniques established the ester linkages in the as-synthesized SA-based polyester. The pH-dependent degradation rate and the rate of release of salicylic acid from the as-synthesized SA-based polymer were studied at physiological conditions in vitro. The polyester underwent surface erosion and exhibited linear degradation kinetics in which a change in degradation rate is observed after 4-10 days and 24% mass loss was recorded after 4 months at 37 °C and pH 7.4. The delivery of salicylic acid also showed a similar change in slopes, with a sustained release rate of 3.5% in 4 months. The cytocompatibility studies of these polyesters were carried out with C2C12 murine myoblast cells using techniques like MTT assay and flow cytometry. Our results strongly suggest that SA-based polyester supports cell proliferation for 3 days in culture and do not cause cell death (<7%), as quantified by propidium iodide (PI) stained cells. Hence, these polyesters can be used as implant materials for localized, sustained delivery of salicylic acid and have applications in adjuvant cancer therapy, chronic wound healing, and as an alternative to commercially available polymers like poly(lactic acid) and poly(glycolic acid) or their copolymers.

  9. Curing study of orthophtalic polyester resin: Effect on the degradation in saline environment

    NASA Astrophysics Data System (ADS)

    Sanchez Nacher, Lourdes

    Nowadays, composite materials based on a polymeric matrix are widely used in structural applications as engineering materials which offer high performances in advanced industrial sectors such as aerospace, aeronautical, transport, construction, etc. They can provide excellent mechanical and chemical properties, good chemical and weather resistance and low cost. Unsaturated polyester is one of the most used thermoset as a matrix for glass fibre reinforcements because of its good relationship properties/cost/quality, since it allows a more competitive cost. Due to the importance that this type of materials reach in some industrial sectors, it is important the mechanical behaviour evaluation as one of the priorities in practically any of their applications; also, it is important to keep in mind that most of industrial sectors that use this resin are subjected to extreme environmental conditions that can produce degradation in the material and therefore, chemical resistance of composites becomes a critical characteristic in those applications that require a contact with environmental agents that can induce some degradation processes and, consequently, a substantial change on general performance. The present study is focussed in the analysis of the effect of curing reaction of the thermosetting matrix of unsaturated orthophtalic polyester in the long term behaviour of materials made up of this type of matrix and glass fibre reinforcement. This is to determine the optimum processing conditions and its behaviour in an aggressive environment, concretely, marine environment. Considering this, crosslinking level of the resin is a decisive parameter, since we can expect lower saline water absorption for high crosslinking levels. The optimum processing conditions are those that permit to obtain the highest crosslinking level in the unsaturated polyester internal structure. Since the degradation effect is related to the crosslinking level of the internal structure, with the

  10. Effect of polyester fiber reinforcement on the mechanical properties of interim fixed partial dentures

    PubMed Central

    Gopichander, N.; Halini Kumarai, K.V.; Vasanthakumar, M.

    2015-01-01

    Background Different reinforcements currently available for interim fixed partial denture (FPD) materials do not provide the ideal strength for long-term use. Therefore, the aim of this investigation was to develop a more ideal provisional material for long-term use with better mechanical properties. This study evaluated the effectiveness of polyester fiber reinforcement on different interim FPD materials. Methods Thirty resin-bonded FPDs were constructed from three provisional interim FPD materials. Specimens were tested with a universal testing machine (UTM). The modulus of elasticity and flexural strength were recorded in MPa. The compressive strength and degree of deflection were calculated from the obtained values, and a two-way analysis of variance (ANOVA) was used to determine the significance. Results The polyester fiber reinforcement increased the mechanical properties. The modulus of elasticity for heat-polymerized polymethyl methacrylate (PMMA) was 624 MPa, compared to 700.2 MPa for the reinforced heat-cured sample. The flexural strengths of the bis-acrylic and cold-polymerized reinforced samples increased significantly to 2807 MPa and 979.86 MPa, respectively, compared to the nonreinforced samples. The mean compressive strength of the reinforced cold-polymerized PMMA samples was 439.17 MPa; and for the reinforced heat-polymerized PMMA samples, it was 1117.41 MPa. The degree of deflection was significantly greater (P < 0.05) in the reinforced bis-acrylic sample (5.03 MPa), compared with the nonreinforced bis-acrylic sample (2.95 MPa). Conclusion Within the limitations of this study, polyester fiber reinforcements improved the mechanical properties of heat-polymerized PMMA, cold-polymerized PMMA, and bis-acrylic provisional FPD materials. PMID:26644754

  11. Heart Valves from Polyester Fibers vs. Biological Tissue: Comparative Study In Vitro.

    PubMed

    Yousefi, Atieh; Vaesken, Antoine; Amri, Amna; Dasi, Lakshmi Prasad; Heim, Frederic

    2017-02-01

    Transcatheter aortic valve implantation (TAVI) has become a popular alternative technique to surgical valve replacement for critical patients. Biological valve tissue has been used in TAVI procedures for over a decade, with over 100,000 implantations to date. However, with only 6 years follow up, little is known about the long-term durability of biological tissue. Moreover, the high cost of tissue harvesting and chemical treatment procedures favor the development of alternative synthetic valve leaflet materials. Textile polyester is one such material which provides outstanding folding and strength properties combined with proven biocompatibility, and could therefore be considered as a candidate to replace the biological valve leaflets in TAVI procedures. For that purpose, in addition to the mechanical properties, the hemodynamic properties of the synthetic material should be comparable to the properties of biological tissue. An ideal replacement heart valve would provide low static and dynamic regurgitation, ensure laminar flow across the valve, and limit the turbidity of flow downstream of the valve. The purpose of the present work is to compare in vitro the mechanical and hemodynamic performances of textile woven polyester valves with biological ones. Testing results indicate that textile valves trade elasticity for superior mechanical strength, relative to biological tissue. Despite this, the dynamic flexibility of textile valve leaflets strongly resembled what was seen with biological leaflets. Regurgitation, as well as slightly modified turbulent patterns, in textile valves was higher than biological valves due to the increased porosity, but, rapid tissue ingrowth post-implantation would likely mitigate this effect. Together these findings provide additional evidence favoring the use of textile polyester as a synthetic heart valve leaflet material.

  12. Patten recognition analysis of a set of mutagenic aliphatic N-nitrosamines

    SciTech Connect

    Nesnow, S.; Langenbach, R.; Mass, M.J.

    1985-09-01

    A set of 21 mutagenic aliphatic N-nitrosamines were subjected to a pattern recognition analysis using ADAPT software. Four descriptors based on molecular connectivity, geometry and sigma charge on nitrogen were capable of achieving a 100% classification using the linear learning machine or iterative least squares algorithms. Three descriptors were capable of a 90.5% and two descriptors of a 85.7% overall correct classification. Three of the four descriptors were each capable of classifying 15 of the 16 active chemicals while it required three of the four descriptors to classify correctly two of the five inactive chemicals. These results are in concert with previous observations that molecular connectivity, geometry, and sigma charge on nitrogen are powerful descriptors for separating active from inactive mutagenic and carcinogenic N-nitrosamines. 17 references, 1 figure, 5 tables.

  13. Investigation of Aromatic/Aliphatic Polyimides as Dispersants for Single Wall Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Delozier, Donavon M.; Watson, Kent A.; Smith, Joseph G., Jr.; Clancy, Thomas C.; Connell, John W.

    2006-01-01

    Novel aromatic/aliphatic polyimides were prepared from 2,7-diamino-9,9'- dioctylfluorene (AFDA) and aromatic dianhydrides. Upon investigating the effectiveness of these polyimides for dispersing single wall carbon nanotubes (SWNTs) in solution, three were discovered to disperse SWNTs in N,N-dimethylacetamide (DMAc). Two of these polyimides, one from 3,3',4,4'-oxydiphthalic anhydride (ODPA) and one from symmetric 3,3',4,4'-biphenyltetracarboxylic dianhydride (s-BPDA), were used to prepare nanocomposites. Homogeneous polyimide/SWNT suspensions from both polymers were used in the preparation of films and fibers containing up to 1 wt% SWNTs. The samples were thermally treated to remove residual solvent and the films were characterized for SWNT dispersion by optical and high resolution scanning electron microscopy (HRSEM). Electrical and mechanical properties of the films were also determined. Electrospun fibers were examined by HRSEM to characterize SWNT alignment and orientation.

  14. Temporary protection of metals against atmospheric corrosion by saturated straight chain aliphatic monocarboxylates. Mechanisms of inhibition

    SciTech Connect

    Kapin, C.; Steinmetz, P.; Steinmetz, J.

    1998-12-31

    This work was devoted to the investigations of the ability of saturated straight chain aliphatic monocarboxylates to inhibit corrosion of mild steel and zinc in aerated aqueous solutions. Performances of inhibitors were shown to be dependent on their chain length, their concentration and the immersion duration. Both crystallographic parameters and solubilities of iron and zinc carboxylates were determined. Then potential-pH diagrams of iron and zinc in water were built taking the presence of metallic soaps into account. According to these diagrams, the passivation of metals was attributed to the growth of films containing metallic soaps. This model confirms that previously proposed for inhibition of copper and magnesium by the same carboxylates.

  15. A nitrilase from a metagenomic library acts regioselectively on aliphatic dinitriles.

    PubMed

    Bayer, Sally; Birkemeyer, Claudia; Ballschmiter, Meike

    2011-01-01

    Several novel nitrilases were selected from metagenomic libraries using cinnamonitrile and a mixture of six different nitriles as substrates. The nitrilase gene nit1 was expressed in Escherichia coli and the resulting protein was further examined concerning its biochemical properties. Nit1 turned out to be an aliphatic nitrilase favoring dinitriles over mononitriles. Stereochemical analysis revealed that Nit1 converted the dinitrile 2-methylglutaronitrile regioselectively. Hydrolysis at the ω-nitrile group of a dinitrile, such as catalyzed by Nit1, leads to ω-cyanocarboxylic acids, which are important precursors for chemical and pharmaceutical products. Nit1 metabolized 2-methylglutaronitrile to the corresponding ω-cyanocarboxylic acid 4-cyanopentanoic acid can be used for the production of the fine chemical 1,5-dimethyl-2-piperidone.

  16. Branched aliphatic alkanes with quaternary substituted carbon atoms in modern and ancient geologic samples.

    SciTech Connect

    Kenig, F.; Simons, D.-J. H.; Crich, D.; Cowen, J. P.; Ventura, G. T.; Rehbein-Khalily, T.; Brown, T. C.; Anderson, K. B.; Chemistry; Univ. of Illinois at Chicago; Univ. of Hawaii

    2003-01-01

    A pseudohomologous series of branched aliphatic alkanes with a quaternary substituted carbon atom (BAQCs, specifically 2,2-di-methylalkanes and 3,3- and 5,5-diethylalkanes) were identified in warm (65{sup o}C) deep-sea hydrothermal waters and Late Cretaceous black shales. 5,5-Diethylalkanes were also observed in modern and Holocene marine shelf sediments and in shales spanning the last 800 million years of the geological record. The carbon number distribution of BAQCs indicates a biological origin. These compounds were observed but not identified in previous studies of 2.0 billion- to 2.2 billion-year-old metasediments and were commonly misidentified in other sediment samples, indicating that BAQCs are widespread in the geological record. The source organisms of BAQCs are unknown, but their paleobiogeographic distribution suggests that they have an affinity for sulfides and might be nonphotosynthetic sulfide oxidizers.

  17. Catalytic activity of carbon nanotubes in the conversion of aliphatic alcohols

    NASA Astrophysics Data System (ADS)

    Zhitnev, Yu. N.; Tveritinova, E. A.; Chernyak, S. A.; Savilov, S. V.; Lunin, V. V.

    2016-06-01

    Carbon nanotubes (CNTs) obtained via the catalytic pyrolysis of hexane at 750°C were studied as the catalysts in conversion of C2-C4 alcohols. The efficiency of CNTs as catalysts in dehydration and dehydrogenation of ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and tert-butanol was studied by means of pulse microcatalysis. The surface and structural characteristics of CNTs are investigated via SEM, TEM, DTA, BET, and XPS. CNTs are shown to be effective catalysts in the conversion of alcohols and do not require additional oxidative treatment. The regularities of the conversion of aliphatic alcohols, related to the properties of the CNTs surface and the structure of the alcohols are identified.

  18. Oxidative aliphatic C-H fluorination with fluoride ion catalyzed by a manganese porphyrin.

    PubMed

    Liu, Wei; Huang, Xiongyi; Cheng, Mu-Jeng; Nielsen, Robert J; Goddard, William A; Groves, John T

    2012-09-14

    Despite the growing importance of fluorinated organic compounds in drug development, there are no direct protocols for the fluorination of aliphatic C-H bonds using conveniently handled fluoride salts. We have discovered that a manganese porphyrin complex catalyzes alkyl fluorination by fluoride ion under mild conditions in conjunction with stoichiometric oxidation by iodosylbenzene. Simple alkanes, terpenoids, and even steroids were selectively fluorinated at otherwise inaccessible sites in 50 to 60% yield. Decalin was fluorinated predominantly at the C2 and C3 methylene positions. Bornyl acetate was converted to exo-5-fluoro-bornyl acetate, and 5α-androstan-17-one was fluorinated selectively in the A ring. Mechanistic analysis suggests that the regioselectivity for C-H bond cleavage is directed by an oxomanganese(V) catalytic intermediate followed by F delivery via an unusual manganese(IV) fluoride that has been isolated and structurally characterized.

  19. Boiling points of halogenated aliphatic compounds: a quantitative structure-property relationship for prediction and validation.

    PubMed

    Oberg, Tomas

    2004-01-01

    Halogenated aliphatic compounds have many technical uses, but substances within this group are also ubiquitous environmental pollutants that can affect the ozone layer and contribute to global warming. The establishment of quantitative structure-property relationships is of interest not only to fill in gaps in the available database but also to validate experimental data already acquired. The three-dimensional structures of 240 compounds were modeled with molecular mechanics prior to the generation of empirical descriptors. Two bilinear projection methods, principal component analysis (PCA) and partial-least-squares regression (PLSR), were used to identify outliers. PLSR was subsequently used to build a multivariate calibration model by extracting the latent variables that describe most of the covariation between the molecular structure and the boiling point. Boiling points were also estimated with an extension of the group contribution method of Stein and Brown.

  20. Design, synthesis and cytotoxic activities of novel aliphatic amino-substituted flavonoids.

    PubMed

    Liu, Guannan; Ge, Zhen; Zhao, Mengdan; Zhou, Yifeng

    2013-11-13

    A series of flavonoids 9a-f, 13b, 13d, 13e and 14a-f bearing diverse aliphatic amino moieties were designed, synthesized and evaluated for their cytotoxic activities against the ECA-109, A-549, HL-60, and PC-3 cancer cell lines. Most of the compounds exhibited moderate to good activities. The structure-activity relationships were studied, revealing that the chalcone skeleton is the most preferable for cytotoxic activities. Chalcone 9d was the most promising compound due to its high potency against the examined cancer cell lines (its IC₅₀ values against ECA-109, A549, HL-60 and PC-3 cells were 1.0, 1.5, 0.96 and 3.9 μM, respectively).