Science.gov

Sample records for alk fusion gene

  1. EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer

    PubMed Central

    Koivunen, Jussi P.; Mermel, Craig; Zejnullahu, Kreshnik; Murphy, Carly; Lifshits, Eugene; Holmes, Alison J.; Choi, Hwan Geun; Kim, Jhingook; Chiang, Derek; Thomas, Roman; Lee, Jinseon; Richards, William G.; Sugarbaker, David J.; Ducko, Christopher; Lindeman, Neal; Marcoux, J. Paul; Engelman, Jeffrey A.; Gray, Nathanael S.; Lee, Charles; Meyerson, Matthew; Jänne, Pasi A.

    2011-01-01

    Purpose The EML4-ALK fusion gene has been detected in ~7% of Japanese non-small cell lung cancers (NSCLC). We determined the frequency of EML4-ALK in Caucasian NSCLCs and in NSCLC cell lines. We also determined whether TAE684, a specific ALK kinase inhibitor, would inhibit the growth of EML4-ALK containing cell lines in vitro and in vivo. Experimental Design We screened 305 primary NSCLCs (both US (n=138) and Korean (n=167) patients) and 83 NSCLC cell lines using RT-PCR and by exon array analyses. We evaluated the efficacy of TAE684 against NSCLC cell lines in vitro and in vivo. Results We detected 4 different variants, including two novel variants, of EML4-ALK using RT-PCR in 8/305 tumors (3%) and in 3/83 (3.6%) NSCLC cell lines. All EML4-ALK containing tumors and cell lines were adenocarcinomas. EML4-ALK was detected more frequently in NSCLC patients who were never or light (< 10 pack years) cigarette smokers compared to current/former smokers (6% vs. 1%; p=0.049). TAE684 inhibited the growth of 1 of 3 (H3122) EML4-ALK containing cell lines in vitro and in vivo, inhibited Akt phosphorylation and caused apoptosis. In another EML4-ALK cell line, DFCI032, TAE684 was ineffective due to co-activation of EGFR and ERBB2. The combination of TAE684 and CL-387,785 (EGFR/ERBB2 kinase inhibitor), inhibited growth and Akt phosphorylation and led to apoptosis in the DFCI032 cell line. Conclusions EML4-ALK is found in the minority of NSCLCs. ALK kinase inhibitors alone or in combination may nevertheless be clinically effective treatments for NSCLC patients whose tumors contain EML4-ALK. PMID:18594010

  2. ALK oncoproteins in atypical inflammatory myofibroblastic tumours: novel RRBP1-ALK fusions in epithelioid inflammatory myofibroblastic sarcoma.

    PubMed

    Lee, Jen-Chieh; Li, Chien-Feng; Huang, Hsuan-Ying; Zhu, Mei-Jun; Mariño-Enríquez, Adrián; Lee, Chung-Ta; Ou, Wen-Bin; Hornick, Jason L; Fletcher, Jonathan A

    2017-02-01

    ALK oncogenic activation mechanisms were characterized in four conventional spindle-cell inflammatory myofibroblastic tumours (IMT) and five atypical IMT, each of which had ALK genomic perturbations. Constitutively activated ALK oncoproteins were purified by ALK immunoprecipitation and electrophoresis, and were characterized by mass spectrometry. The four conventional IMT had TPM3/4-ALK fusions (two cases) or DCTN1-ALK fusions (two cases), whereas two atypical spindle-cell IMT had TFG-ALK and TPM3-ALK fusion in one case each, and three epithelioid inflammatory myofibroblastic sarcomas had RANBP2-ALK fusions in two cases, and a novel RRBP1-ALK fusion in one case. The epithelioid inflammatory myofibroblastic sarcoma with RRBP1-ALK fusion had cytoplasmic ALK expression with perinuclear accentuation, different from the nuclear membranous ALK localization in epithelioid inflammatory myofibroblastic sarcomas with RANBP2-ALK fusions. Evaluation of three additional uncharacterized epithelioid inflammatory myofibroblastic sarcomas with ALK cytoplasmic/perinuclear- accentuation expression demonstrated RRBP1-ALK fusion in two cases. These studies show that atypical spindle-cell IMT can utilize the same ALK fusion mechanisms described previously in conventional IMT, whereas in clinically aggressive epithelioid inflammatory myofibroblastic sarcoma we identify a novel recurrent ALK oncogenic mechanism, resulting from fusion with the RRBP1 gene. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  3. A malignant inflammatory myofibroblastic tumor of the hypopharynx harboring the 3a/b variants of the EML4-ALK fusion gene

    PubMed Central

    Muscarella, Lucia Anna; Rossi, Giulio; Trombetta, Domenico; La Torre, Annamaria; Di Candia, Leonarda; Mengoli, Maria Cecilia; Sparaneo, Angelo; Fazio, Vito Michele; Graziano, Paolo

    2017-01-01

    Inflammatory myofibroblastic tumors (IMT) in the head and neck region are rare neoplasms that generally mimic benign/low-grade neoplasms. Overexpression of anaplastic lymphoma kinase (ALK) has been reported in 50% of IMT cases, secondary to ALK activation by structural rearrangements in the ALK gene, which results in a fusion protein with echinoderm microtubule associated protein like 4 (EML4) in ~20% of cases. The present study describes a case of a 74-year-old woman with a malignant IMT in the right posterior hypopharynx harboring a previously unreported chromosomal rearrangement resulting in EML4 and ALK gene fusion. Strong ALK immunoreactivity was observed in neoplastic cells, while fluorescent in situ hybridization combined with fluorescent fragment analysis and direct sequencing identified the first case of the 3a/b variants of the EML4-ALK fusion gene in IMT. The results of the current study highlight the uncommon occurrence of ALK-positive IMT in the head/neck region and demonstrate the importance of integrating different molecular methodologies to identify unequivocal gene fusion characterization. PMID:28356934

  4. Novel ALK fusion partners in lung cancer.

    PubMed

    Iyevleva, Aglaya G; Raskin, Grigory A; Tiurin, Vladislav I; Sokolenko, Anna P; Mitiushkina, Natalia V; Aleksakhina, Svetlana N; Garifullina, Aigul R; Strelkova, Tatiana N; Merkulov, Valery O; Ivantsov, Alexandr O; Kuligina, Ekatherina Sh; Pozharisski, Kazimir M; Togo, Alexandr V; Imyanitov, Evgeny N

    2015-06-28

    Detection of ALK rearrangements in patients with non-small cell lung cancer (NSCLC) presents a significant technical challenge due to the existence of multiple translocation partners and break-points. To improve the performance of PCR-based tests, we utilized the combination of 2 assays, i.e. the variant-specific PCR for the 5 most common ALK rearrangements and the test for unbalanced 5'/3'-end ALK expression. Overall, convincing evidence for the presence of ALK translocation was obtained for 34/400 (8.5%) cases, including 14 EML4ex13/ALKex20, 12 EML4ex6/ALKex20, 3 EML4ex18/ALKex20, 2 EML4ex20/ALKex20 variants and 3 tumors with novel translocation partners. 386 (96.5%) out of 400 EGFR mutation-negative NSCLCs were concordant for both tests, being either positive (n = 26) or negative (n = 360) for ALK translocation; 49 of these samples (6 ALK+, 43 ALK-) were further evaluated by FISH, and there were no instances of disagreement. Among the 14 (3.5%) "discordant" tumors, 5 demonstrated ALK translocation by the first but not by the second PCR assay, and 9 had unbalanced ALK expression in the absence of known ALK fusion variants. 5 samples from the latter group were subjected to FISH, and the presence of translocation was confirmed in 2 cases. Next generation sequencing analysis of these 2 samples identified novel translocation partners, DCTN1 and SQSTM1; furthermore, the DCTN1/ALK fusion was also found in another NSCLC sample with unbalanced 5'/3'-end ALK expression, indicating a recurrent nature of this translocation. We conclude that the combination of 2 different PCR tests is a viable approach for the diagnostics of ALK rearrangements. Systematic typing of ALK fusions is likely to reveal new NSCLC-specific ALK partners.

  5. RANBP2-ALK fusion combined with monosomy 7 in acute myelomonocytic leukemia.

    PubMed

    Lim, Ji-Hun; Jang, Seongsoo; Park, Chan-Jeoung; Cho, Young-Uk; Lee, Je-Hwan; Lee, Kyoo-Hyung; Lee, Jin-Ok; Shin, Jong-Yeon; Kim, Jong-Il; Huh, Jooryung; Seo, Eul-Ju

    2014-01-01

    Anaplastic lymphoma receptor tyrosine kinase (ALK) is located on chromosome 2p23; the chromosomal rearrangements of this gene are common genetic alterations, resulting in the creation of multiple fusion genes involved in tumorigenesis. However, the presence of an ALK fusion in myeloid malignancies is extremely rare. We report a case of acute myelomonocytic leukemia in a 31-year-old woman with an unusual rearrangement between RAN-binding protein 2 (RANBP2) and ALK and a karyotype of 45,XX,inv(2)(p23q21),-7[20]. We detected an ALK rearrangement using fluorescence in situ hybridization, identified the ALK fusion partner by using RNA transcriptome sequencing, and demonstrated the RANBP2-ALK fusion transcript by reverse transcriptase--PCR and Sanger sequencing. Immunohistochemistry for ALK showed strong staining of the nuclear membrane in leukemic cells. The patient had an unfavorable clinical course. Our results, together with a literature review, suggest the RANBP2-ALK fusion combined with monosomy 7 may be related to a unique clonal hematologic disorder of childhood and adolescence, characterized by myelomonocytic leukemia and a poor prognosis.

  6. Novel CAD-ALK gene rearrangement is drugable by entrectinib in colorectal cancer

    PubMed Central

    Amatu, Alessio; Somaschini, Alessio; Cerea, Giulio; Bosotti, Roberta; Valtorta, Emanuele; Buonandi, Pasquale; Marrapese, Giovanna; Veronese, Silvio; Luo, David; Hornby, Zachary; Multani, Pratik; Murphy, Danielle; Shoemaker, Robert; Lauricella, Calogero; Giannetta, Laura; Maiolani, Martina; Vanzulli, Angelo; Ardini, Elena; Galvani, Arturo; Isacchi, Antonella; Sartore-Bianchi, Andrea; Siena, Salvatore

    2015-01-01

    Background: Activated anaplastic lymphoma kinase (ALK) gene fusions are recurrent events in a small fraction of colorectal cancers (CRCs), although these events have not yet been exploited as in other malignancies. Methods: We detected ALK protein expression by immunohistochemistry and gene rearrangements by fluorescence in situ hybridisation in the ALKA-372-001 phase I study of the pan-Trk, ROS1, and ALK inhibitor entrectinib. One out of 487 CRCs showed ALK positivity with a peculiar pattern that prompted further characterisation by targeted sequencing using anchored multiplex PCR. Results: A novel ALK fusion with the carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) gene (CAD-ALK fusion gene) was identified. It resulted from inversion within chromosome 2 and the fusion of exons 1–35 of CAD with exons 20–29 of ALK. After failure of previous standard therapies, treatment of this patient with the ALK inhibitor entrectinib resulted in a durable objective tumour response. Conclusions: We describe the novel CAD-ALK rearrangement as an oncogene and provide the first evidence of its drugability as a new molecular target in CRC. PMID:26633560

  7. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer

    PubMed Central

    Kelly, Lindsey M.; Barila, Guillermo; Liu, Pengyuan; Evdokimova, Viktoria N.; Trivedi, Sumita; Panebianco, Federica; Gandhi, Manoj; Carty, Sally E.; Hodak, Steven P.; Luo, Jianhua; Dacic, Sanja; Yu, Yan P.; Nikiforova, Marina N.; Ferris, Robert L.; Altschuler, Daniel L.; Nikiforov, Yuri E.

    2014-01-01

    Thyroid cancer is a common endocrine malignancy that encompasses well-differentiated as well as dedifferentiated cancer types. The latter tumors have high mortality and lack effective therapies. Using a paired-end RNA-sequencing approach, we report the discovery of rearrangements involving the anaplastic lymphoma kinase (ALK) gene in thyroid cancer. The most common of these involves a fusion between ALK and the striatin (STRN) gene, which is the result of a complex rearrangement involving the short arm of chromosome 2. STRN-ALK leads to constitutive activation of ALK kinase via dimerization mediated by the coiled-coil domain of STRN and to a kinase-dependent, thyroid-stimulating hormone–independent proliferation of thyroid cells. Moreover, expression of STRN-ALK transforms cells in vitro and induces tumor formation in nude mice. The kinase activity of STRN-ALK and the ALK-induced cell growth can be blocked by the ALK inhibitors crizotinib and TAE684. In addition to well-differentiated papillary cancer, STRN-ALK was found with a higher prevalence in poorly differentiated and anaplastic thyroid cancers, and it did not overlap with other known driver mutations in these tumors. Our data demonstrate that STRN-ALK fusion occurs in a subset of patients with highly aggressive types of thyroid cancer and provide initial evidence suggesting that it may represent a therapeutic target for these patients. PMID:24613930

  8. Evaluation of EML4-ALK Fusion Proteins in Non-Small Cell Lung Cancer Using Small Molecule Inhibitors12

    PubMed Central

    Li, Yongjun; Ye, Xiaofen; Liu, Jinfeng; Zha, Jiping; Pei, Lin

    2011-01-01

    The echinoderm microtubule-associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion gene resulting from an inversion within chromosome 2p occurs in approximately 5% of non-small cell lung cancer and is mutually exclusive with Ras and EGFR mutations. In this study, we have used a potent and selective ALK small molecule inhibitor, NPV-TAE684, to assess the oncogenic role of EML4-ALK in non-small cell lung cancer (NSCLC). We show here that TAE684 inhibits proliferation and induces cell cycle arrest, apoptosis, and tumor regression in two NSCLC models that harbor EML4-ALK fusions. TAE684 inhibits EML4-ALK activation and its downstream signaling including ERK, AKT, and STAT3. We used microarray analysis to carry out targeted pathway studies of gene expression changes in H2228 NSCLC xenograft model after TAE684 treatment and identified a gene signature of EML4-ALK inhibition. The gene signature represents 1210 known human genes, and the top biologic processes represented by these genes are cell cycle, DNA synthesis, cell proliferation, and cell death. We also compared the effect of TAE684 with PF2341066, a c-Met and ALK small molecule inhibitor currently in clinical trial in cancers harboring ALK fusions, and demonstrated that TAE684 is a much more potent inhibitor of EML4-ALK. Our data demonstrate that EML4-ALK plays an important role in the pathogenesis of a subset of NSCLC and provides insight into the mechanism of EML4-ALK inhibition by a small molecule inhibitor. PMID:21245935

  9. Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK

    PubMed Central

    Katayama, Ryohei; Khan, Tahsin M.; Benes, Cyril; Lifshits, Eugene; Ebi, Hiromichi; Rivera, Victor M.; Shakespeare, William C.; Iafrate, A. John; Engelman, Jeffrey A.; Shaw, Alice T.

    2011-01-01

    The echinoderm microtubule-associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion oncogene represents a molecular target in a small subset of non-small cell lung cancers (NSCLCs). This fusion leads to constitutive ALK activation with potent transforming activity. In a pivotal phase 1 clinical trial, the ALK tyrosine kinase inhibitor (TKI) crizotinib (PF-02341066) demonstrated impressive antitumor activity in the majority of patients with NSCLC harboring ALK fusions. However, despite these remarkable initial responses, cancers eventually develop resistance to crizotinib, usually within 1 y, thereby limiting the potential clinical benefit. To determine how cancers acquire resistance to ALK inhibitors, we established a model of acquired resistance to crizotinib by exposing a highly sensitive EML4-ALK–positive NSCLC cell line to increasing doses of crizotinib until resistance emerged. We found that cells resistant to intermediate doses of crizotinib developed amplification of the EML4-ALK gene. Cells resistant to higher doses (1 μM) also developed a gatekeeper mutation, L1196M, within the kinase domain, rendering EML4-ALK insensitive to crizotinib. This gatekeeper mutation was readily detected using a unique and highly sensitive allele-specific PCR assay. Although crizotinib was ineffectual against EML4-ALK harboring the gatekeeper mutation, we observed that two structurally different ALK inhibitors, NVP-TAE684 and AP26113, were highly active against the resistant cancer cells in vitro and in vivo. Furthermore, these resistant cells remained highly sensitive to the Hsp90 inhibitor 17-AAG. Thus, we have developed a model of acquired resistance to ALK inhibitors and have shown that second-generation ALK TKIs or Hsp90 inhibitors are effective in treating crizotinib-resistant tumors harboring secondary gatekeeper mutations. PMID:21502504

  10. Upregulation of PD-L1 by EML4-ALK fusion protein mediates the immune escape in ALK positive NSCLC: Implication for optional anti-PD-1/PD-L1 immune therapy for ALK-TKIs sensitive and resistant NSCLC patients.

    PubMed

    Hong, Shaodong; Chen, Nan; Fang, Wenfeng; Zhan, Jianhua; Liu, Qing; Kang, Shiyang; He, Xiaobo; Liu, Lin; Zhou, Ting; Huang, Jiaxing; Chen, Ying; Qin, Tao; Zhang, Yaxiong; Ma, Yuxiang; Yang, Yunpeng; Zhao, Yuanyuan; Huang, Yan; Zhang, Li

    2016-03-01

    Driver mutations were reported to upregulate programmed death-ligand 1 (PD-L1) expression. However, how PD-L1 expression and immune function was affected by ALK-TKIs and anti-PD-1/PD-L1 treatment in ALK positive non-small-cell lung cancer (NSCLC) remains poorly understood. In the present study, western-blot, real-time PCR, flow cytometry and immunofluorescence were employed to explore how PD-L1 was regulated by ALK fusion protein. ALK-TKIs and relevant inhibitors were used to identify the downstream signaling pathways involved in PD-L1 regulation. Cell apoptosis, viability and Elisa test were used to study the immune suppression by ALK activation and immune reactivation by ALK-TKIs and/or PD-1 blocking in tumor cells and DC-CIK cells co-culture system. We found that PD-L1 expression was associated with EGFR mutations and ALK fusion genes in NSCLC cell lines. Over-expression of ALK fusion protein increased PD-L1 expression. PD-L1 mediated by ALK fusion protein increased the apoptosis of T cells in tumor cells and DC-CIK cells co-culture system. Inhibiting ALK by sensitive TKIs could enhance the production of IFNγ. Anti-PD-1 antibody was effective in both crizotinib sensitive and resistant NSCLC cells. Synergistic tumor killing effects were not observed with ALK-TKIs and anti-PD-1 antibody combination in co-culture system. ALK-TKIs not only directly inhibited tumor viability but also indirectly enhanced the antitumor immunity via the downregulation of PD-L1. Anti-PD-1/PD-L1 antibodies could be an optional therapy for crizotinib sensitive, especially crizotinib resistant NSCLC patients with ALK fusion gene. Combination of ALK-TKIs and anti-PD-1/PD-L1 antibodies treatment for ALK positive NSCLC warrants more data before moving into clinical practice.

  11. Variant translocation partners of the anaplastic lymphoma kinase (ALK) gene in two cases of anaplastic large cell lymphoma, identified by inverse cDNA polymerase chain reaction.

    PubMed

    Takeoka, Kayo; Okumura, Atsuko; Honjo, Gen; Ohno, Hitoshi

    2014-01-01

    In anaplastic large cell lymphoma (ALCL), the anaplastic lymphoma kinase (ALK) gene is rearranged with diverse partners due to variant translocations/inversions. Case 1 was a 39-year-old man who developed multiple tumors in the mediastinum, psoas muscle, lung, and lymph nodes. A biopsy specimen of the inguinal node was effaced by large tumor cells expressing CD30, epithelial membrane antigen, and cytoplasmic ALK, which led to a diagnosis of ALK(+) ALCL. Case 2 was a 51-year-old man who was initially diagnosed with undifferentiated carcinoma. He developed multiple skin tumors eight years after his initial presentation, and was finally diagnosed with ALK(+) ALCL. He died of therapy-related acute myeloid leukemia. G-banding and fluorescence in situ hybridization using an ALK break-apart probe revealed the rearrangement of ALK and suggested variant translocation in both cases. We applied an inverse cDNA polymerase chain reaction (PCR) strategy to identify the partner of ALK. Nucleotide sequencing of the PCR products and a database search revealed that the sequences of ATIC in case 1 and TRAF1 in case 2 appeared to follow those of ALK. We subsequently confirmed ATIC-ALK and TRAF1-ALK fusions by reverse transcriptase PCR and nucleotide sequencing. We successfully determined the partner gene of ALK in two cases of ALK(+) ALCL. ATIC is the second most common partner of variant ALK rearrangements, while the TRAF1-ALK fusion gene was first reported in 2013, and this is the second reported case of ALK(+) ALCL carrying TRAF1-ALK.

  12. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer

    PubMed Central

    Nakaoku, Takashi; Tsuta, Koji; Tsuchihara, Katsuya; Matsumoto, Shingo; Yoh, Kiyotaka; Goto, Koichi

    2015-01-01

    Fusions of the RET and ROS1 protein tyrosine kinase oncogenes with several partner genes were recently identified as new targetable genetic aberrations in cases of non-small cell lung cancer (NSCLC) lacking activating EGFR, KRAS, ALK, BRAF, or HER2 oncogene aberrations. RET and ROS1 fusion-positive tumors are mainly observed in young, female, and/or never smoking patients. Studies based on in vitro and in vivo (i.e., mouse) models and studies of several fusion-positive patients indicate that inhibiting the kinase activity of the RET and ROS1 fusion proteins is a promising therapeutic strategy. Accordingly, there are several ongoing clinical trials aimed at examining the efficacy of tyrosine kinase inhibitors (TKIs) against RET and ROS1 proteins in patients with fusion-positive lung cancer. Other gene fusions (NTRK1, NRG1, and FGFR1/2/3) that are targetable by existing TKIs have also been identified in NSCLCs. Options for personalized lung cancer therapy will be increased with the help of multiplex diagnosis systems able to detect multiple druggable gene fusions. PMID:25870798

  13. Detection of anaplastic lymphoma kinase (ALK) gene rearrangement in non-small cell lung cancer and related issues in ALK inhibitor therapy: a literature review.

    PubMed

    Yi, Eunhee S; Chung, Jin-Haeng; Kulig, Kimary; Kerr, Keith M

    2012-06-01

    Anaplastic lymphoma kinase (ALK) encodes a receptor tyrosine kinase, and ALK gene rearrangement (ALK+) is implicated in the oncogenesis of non-small cell lung carcinomas (NSCLCs), especially adenocarcinomas. The ALK inhibitor crizotinib was approved in August 2011 by the US Food and Drug Administration (FDA) for treating late-stage NSCLCs that are ALK+, with a companion fluorescent in situ hybridization (FISH) test using the Vysis ALK Break Apart FISH Probe Kit. This review covers pertinent issues in ALK testing, including approaches to select target patients for the test, pros and cons of different detection methods, and mechanisms as well as monitoring of acquired crizotinib resistance in ALK+ NSCLCs.

  14. ALK: a tyrosine kinase target for cancer therapy

    PubMed Central

    Holla, Vijaykumar R.; Elamin, Yasir Y.; Bailey, Ann Marie; Johnson, Amber M.; Litzenburger, Beate C.; Khotskaya, Yekaterina B.; Sanchez, Nora S.; Zeng, Jia; Shufean, Md Abu; Shaw, Kenna R.; Mendelsohn, John; Mills, Gordon B.; Meric-Bernstam, Funda; Simon, George R.

    2017-01-01

    The anaplastic lymphoma kinase (ALK) gene plays an important physiologic role in the development of the brain and can be oncogenically altered in several malignancies, including non-small-cell lung cancer (NSCLC) and anaplastic large cell lymphomas (ALCL). Most prevalent ALK alterations are chromosomal rearrangements resulting in fusion genes, as seen in ALCL and NSCLC. In other tumors, ALK copy-number gains and activating ALK mutations have been described. Dramatic and often prolonged responses are seen in patients with ALK alterations when treated with ALK inhibitors. Three of these—crizotinib, ceritinib, and alectinib—are now FDA approved for the treatment of metastatic NSCLC positive for ALK fusions. However, the emergence of resistance is universal. Newer ALK inhibitors and other targeting strategies are being developed to counteract the newly emergent mechanism(s) of ALK inhibitor resistance. This review outlines the recent developments in our understanding and treatment of tumors with ALK alterations. PMID:28050598

  15. ALK Gene Copy Number Gain and Immunohistochemical Expression Status Using Three Antibodies in Neuroblastoma.

    PubMed

    Kim, Eun Kyung; Kim, Sewha

    2017-01-01

    Anaplastic lymphoma kinase ( ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC-positive rate in ALK1 and 5A4 antibodies ( P < 0.001 and P = 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.

  16. Therapeutic strategies and mechanisms of drug resistance in Anaplastic Lymphoma Kinase (ALK)-rearranged lung cancer.

    PubMed

    Katayama, Ryohei

    2017-02-06

    Anaplastic lymphoma kinase (ALK) gene encoding the receptor tyrosine kinase ALK is expressed as a fusion gene in a variety of carcinomas. The expression of ALK is nearly undetectable in adults, and its activation is normally regulated by its ligands, FAM150A/B. However, ALK gene rearrangements result in different ALK fusion proteins that are constitutively expressed via the active promoter of fusion partner genes. ALK fusion proteins dimerize in a ligand-independent manner and lead to the dysregulation of cell proliferation via abnormal constitutive activation of ALK tyrosine kinase. Many ALK tyrosine kinase inhibitors (TKIs) have been developed to date, are three of which are currently in clinical use for the treatment of ALK-rearranged non-small cell lung cancer (NSCLC). ALK TKIs often achieve marked tumor regression in NSCLC patients with ALK rearrangements; however, ALK TKI-resistant tumors inevitably emerge within a few years in most cases. In this review, we summarize diverse ALK TKI resistance mechanisms identified in NSCLC with ALK rearrangements, and review potential therapeutic strategies to overcome ALK TKI resistance in these patients.

  17. Decoding Tumor Phenotypes for ALK, ROS1, and RET Fusions in Lung Adenocarcinoma Using a Radiomics Approach.

    PubMed

    Yoon, Hyun Jung; Sohn, Insuk; Cho, Jong Ho; Lee, Ho Yun; Kim, Jae-Hun; Choi, Yoon-La; Kim, Hyeseung; Lee, Genehee; Lee, Kyung Soo; Kim, Jhingook

    2015-10-01

    Quantitative imaging using radiomics can capture distinct phenotypic differences between tumors and may have predictive power for certain phenotypes according to specific genetic mutations. We aimed to identify the clinicoradiologic predictors of tumors with ALK (anaplastic lymphoma kinase), ROS1 (c-ros oncogene 1), or RET (rearranged during transfection) fusions in patients with lung adenocarcinoma.A total of 539 pathologically confirmed lung adenocarcinomas were included in this retrospective study. The baseline clinicopathologic characteristics were retrieved from the patients' medical records and the ALK/ROS1/RET fusion status was reviewed. Quantitative computed tomography (CT) and positron emission tomography imaging characteristics were evaluated using a radiomics approach. Significant features for the fusion-positive tumor prediction model were extracted from all of the clinicoradiologic features, and were used to calculate diagnostic performance for predicting 3 fusions' positivity. The clinicoradiologic features were compared between ALK versus ROS1/RET fusion-positive tumors to identify the clinicoradiologic similarity between the 2 groups.The fusion-positive tumor prediction model was a combination of younger age, advanced tumor stage, solid tumor on CT, higher values for SUV(max) and tumor mass, lower values for kurtosis and inverse variance on 3-voxel distance than those of fusion-negative tumors (sensitivity and specificity, 0.73 and 0.70, respectively). ALK fusion-positive tumors were significantly different in tumor stage, central location, SUV(max), homogeneity on 1-, 2-, and 3-voxel distances, and sum mean on 2-voxel distance compared with ROS1/RET fusion-positive tumors.ALK/ROS1/RET fusion-positive lung adenocarcinomas possess certain clinical and imaging features that enable good discrimination of fusion-positive from fusion-negative lung adenocarcinomas.

  18. Decoding Tumor Phenotypes for ALK, ROS1, and RET Fusions in Lung Adenocarcinoma Using a Radiomics Approach

    PubMed Central

    Yoon, Hyun Jung; Sohn, Insuk; Cho, Jong Ho; Lee, Ho Yun; Kim, Jae-Hun; Choi, Yoon-La; Kim, Hyeseung; Lee, Genehee; Lee, Kyung Soo; Kim, Jhingook

    2015-01-01

    Abstract Quantitative imaging using radiomics can capture distinct phenotypic differences between tumors and may have predictive power for certain phenotypes according to specific genetic mutations. We aimed to identify the clinicoradiologic predictors of tumors with ALK (anaplastic lymphoma kinase), ROS1 (c-ros oncogene 1), or RET (rearranged during transfection) fusions in patients with lung adenocarcinoma. A total of 539 pathologically confirmed lung adenocarcinomas were included in this retrospective study. The baseline clinicopathologic characteristics were retrieved from the patients’ medical records and the ALK/ROS1/RET fusion status was reviewed. Quantitative computed tomography (CT) and positron emission tomography imaging characteristics were evaluated using a radiomics approach. Significant features for the fusion-positive tumor prediction model were extracted from all of the clinicoradiologic features, and were used to calculate diagnostic performance for predicting 3 fusions’ positivity. The clinicoradiologic features were compared between ALK versus ROS1/RET fusion-positive tumors to identify the clinicoradiologic similarity between the 2 groups. The fusion-positive tumor prediction model was a combination of younger age, advanced tumor stage, solid tumor on CT, higher values for SUVmax and tumor mass, lower values for kurtosis and inverse variance on 3-voxel distance than those of fusion-negative tumors (sensitivity and specificity, 0.73 and 0.70, respectively). ALK fusion-positive tumors were significantly different in tumor stage, central location, SUVmax, homogeneity on 1-, 2-, and 3-voxel distances, and sum mean on 2-voxel distance compared with ROS1/RET fusion-positive tumors. ALK/ROS1/RET fusion-positive lung adenocarcinomas possess certain clinical and imaging features that enable good discrimination of fusion-positive from fusion-negative lung adenocarcinomas. PMID:26469915

  19. ALK gene expression status in pleural effusion predicts tumor responsiveness to crizotinib in Chinese patients with lung adenocarcinoma

    PubMed Central

    Wang, Zheng; Wu, Xiaonan; Han, Xiaohong; Cheng, Gang; Mu, Xinlin; Zhang, Yuhui; Cui, Di; Liu, Chang; Liu, Dongge; Shi, Yuankai

    2016-01-01

    Objective The relationship between anaplastic lymphoma kinase (ALK) expression in malignant pleural effusion (MPE) samples detected only by Ventana immunohistochemistry (IHC) ALK (D5F3) and the efficacy of ALK-tyrosine kinase inhibitor therapy is uncertain. Methods Ventana anti-ALK (D5F3) rabbit monoclonal primary antibody testing was performed on 313 cell blocks of MPE samples from Chinese patients with advanced lung adenocarcinoma, and fluorescence in situ hybridization (FISH) was used to verify the ALK gene status in Ventana IHC ALK (D5F3)-positive samples. The follow-up clinical data on patients who received crizotinib treatment were recorded. Results Of the 313 MPE samples, 27 (8.6%) were confirmed as ALK expression-positive, and the Ventana IHC ALK (D5F3)-positive rate was 17.3% (27/156) in wild-type epidermal growth factor receptor (EGFR) MPE samples. Twenty-three of the 27 IHC ALK (D5F3)-positive samples were positive by FISH. Of the 11 Ventana IHC ALK (D5F3)-positive patients who received crizotinib therapy, 2 patients had complete response (CR), 5 had partial response (PR) and 3 had stable disease (SD). Conclusions The ALK gene expression status detected by the Ventana IHC ALK (D5F3) platform in MPE samples may predict tumor responsiveness to crizotinib in Chinese patients with advanced lung adenocarcinoma. PMID:28174489

  20. The analysis of ALK gene rearrangement by fluorescence in situ hybridization in non-small cell lung cancer patients

    PubMed Central

    Krawczyk, Paweł Adam; Ramlau, Rodryg Adam; Szumiło, Justyna; Kozielski, Jerzy; Kalinka-Warzocha, Ewa; Bryl, Maciej; Knopik-Dąbrowicz, Alina; Spychalski, Łukasz; Szczęsna, Aleksandra; Rydzik, Ewelina; Milanowski, Janusz

    2013-01-01

    Introduction ALK gene rearrangement is observed in a small subset (3–7%) of non-small cell lung cancer (NSCLC) patients. The efficacy of crizotinib was shown in lung cancer patients harbouring ALK rearrangement. Nowadays, the analysis of ALK gene rearrangement is added to molecular examination of predictive factors. Aim of the study The frequency of ALK gene rearrangement as well as the type of its irregularity was analysed by fluorescence in situ hybridisation (FISH) in tissue samples from NSCLC patients. Material and methods The ALK gene rearrangement was analysed in 71 samples including 53 histological and 18 cytological samples. The analysis could be performed in 56 cases (78.87%), significantly more frequently in histological than in cytological materials. The encountered problem with ALK rearrangement diagnosis resulted from the scarcity of tumour cells in cytological samples, high background fluorescence noises and fragmentation of cell nuclei. Results The normal ALK copy number without gene rearrangement was observed in 26 (36.62%) patients ALK gene polysomy without gene rearrangement was observed in 25 (35.21%) samples while in 3 (4.23%) samples ALK gene amplification was found. ALK gene rearrangement was observed in 2 (2.82%) samples from males, while in the first case the rearrangement coexisted with ALK amplification. In the second case, signet-ring tumour cells were found during histopathological examination and this patient was successfully treated with crizotinib with partial remission lasting 16 months. Conclusions FISH is a useful technique for ALK gene rearrangement analysis which allows us to specify the type of gene irregularities. ALK gene examination could be performed in histological as well as cytological (cellblocks) samples, but obtaining a reliable result in cytological samples depends on the cellularity of examined materials. PMID:24592134

  1. Distribution of alkB genes within n-alkane-degrading bacteria.

    PubMed

    Vomberg, A; Klinner, U

    2000-08-01

    Fifty-four bacterial strains belonging to 37 species were tested for their ability to assimilate short chain and/or medium chain liquid n-alkanes. A gene probe derived from the alkB gene of Pseudomonas oleovorans ATCC 29347 was utilized in hybridization experiments. Results of Southern hybridization of PCR-amplificates were compared with those of colony hybridization and dot blot hybridization. Strongest signals were received only from Gram-negative bacteria growing solely with short n-alkanes (C10). Hybridization results with soil isolates growing with n-alkanes of different chain lengths suggested as well that alkB genes seem to be widespread only in solely short-chain n-alkane-degrading pseudomonads. PCR products of Rhodococcus sp., Nocardioides sp., Gordona sp. and Sphingomonas sp. growing additionally or solely with medium-chain n-alkane as hexadecane had only few sequence identity with alkB though hybridizing with the gene probe. The derived amino acid sequence of the alkB-amplificate of Pseudomonas aureofaciens showed high homology (95%) with AlkB from Ps. oleovorans. alkB gene disruptants were not able to grow with decane.

  2. Automation of ALK gene rearrangement testing with fluorescence in situ hybridization (FISH): a feasibility study.

    PubMed

    Zwaenepoel, Karen; Merkle, Dennis; Cabillic, Florian; Berg, Erica; Belaud-Rotureau, Marc-Antoine; Grazioli, Vittorio; Herelle, Olga; Hummel, Michael; Le Calve, Michele; Lenze, Dido; Mende, Stefanie; Pauwels, Patrick; Quilichini, Benoit; Repetti, Elena

    2015-02-01

    In the past several years we have observed a significant increase in our understanding of molecular mechanisms that drive lung cancer. Specifically in the non-small cell lung cancer sub-types, ALK gene rearrangements represent a sub-group of tumors that are targetable by the tyrosine kinase inhibitor Crizotinib, resulting in significant reductions in tumor burden. Phase II and III clinical trials were performed using an ALK break-apart FISH probe kit, making FISH the gold standard for identifying ALK rearrangements in patients. FISH is often considered a labor and cost intensive molecular technique, and in this study we aimed to demonstrate feasibility for automation of ALK FISH testing, to improve laboratory workflow and ease of testing. This involved automation of the pre-treatment steps of the ALK assay using various protocols on the VP 2000 instrument, and facilitating automated scanning of the fluorescent FISH specimens for simplified enumeration on various backend scanning and analysis systems. The results indicated that ALK FISH can be automated. Significantly, both the Ikoniscope and BioView system of automated FISH scanning and analysis systems provided a robust analysis algorithm to define ALK rearrangements. In addition, the BioView system facilitated consultation of difficult cases via the internet.

  3. ALK1 signalling analysis identifies angiogenesis related genes and reveals disparity between TGF-β and constitutively active receptor induced gene expression

    PubMed Central

    Lux, Andreas; Salway, Fiona; Dressman, Holly K; Kröner-Lux, Gabriele; Hafner, Mathias; Day, Philip JR; Marchuk, Douglas A; Garland, John

    2006-01-01

    Background TGF-β1 is an important angiogenic factor involved in the different aspects of angiogenesis and vessel maintenance. TGF-β signalling is mediated by the TβRII/ALK5 receptor complex activating the Smad2/Smad3 pathway. In endothelial cells TGF-β utilizes a second type I receptor, ALK1, activating the Smad1/Smad5 pathway. Consequently, a perturbance of ALK1, ALK5 or TβRII activity leads to vascular defects. Mutations in ALK1 cause the vascular disorder hereditary hemorrhagic telangiectasia (HHT). Methods The identification of ALK1 and not ALK5 regulated genes in endothelial cells, might help to better understand the development of HHT. Therefore, the human microvascular endothelial cell line HMEC-1 was infected with a recombinant constitutively active ALK1 adenovirus, and gene expression was studied by using gene arrays and quantitative real-time PCR analysis. Results After 24 hours, 34 genes were identified to be up-regulated by ALK1 signalling. Analysing ALK1 regulated gene expression after 4 hours revealed 13 genes to be up- and 2 to be down-regulated. Several of these genes, including IL-8, ET-1, ID1, HPTPη and TEAD4 are reported to be involved in angiogenesis. Evaluation of ALK1 regulated gene expression in different human endothelial cell types was not in complete agreement. Further on, disparity between constitutively active ALK1 and TGF-β1 induced gene expression in HMEC-1 cells and primary HUVECs was observed. Conclusion Gene array analysis identified 49 genes to be regulated by ALK1 signalling and at least 14 genes are reported to be involved in angiogenesis. There was substantial agreement between the gene array and quantitative real-time PCR data. The angiogenesis related genes might be potential HHT modifier genes. In addition, the results suggest endothelial cell type specific ALK1 and TGF-β signalling. PMID:16594992

  4. The type I BMP receptor Alk3 is required for the induction of hepatic hepcidin gene expression by interleukin-6.

    PubMed

    Mayeur, Claire; Lohmeyer, Lisa K; Leyton, Patricio; Kao, Sonya M; Pappas, Alexandra E; Kolodziej, Starsha A; Spagnolli, Ester; Yu, Binglan; Galdos, Rita L; Yu, Paul B; Peterson, Randall T; Bloch, Donald B; Bloch, Kenneth D; Steinbicker, Andrea U

    2014-04-03

    Increased IL-6 production induces, via STAT3 phosphorylation, hepatic transcription of the gene encoding the iron-regulatory hormone, hepcidin, leading to development of anemia of chronic disease (ACD). Inhibition of bone morphogenetic protein (BMP) signaling prevents the induction of hepcidin gene expression by IL-6 and ameliorates ACD. Using mice with hepatocyte-specific deficiency of Alk2 or Alk3, we sought to identify the BMP type I receptor that participates in IL-6-mediated induction of hepcidin gene expression. Mice were injected with adenovirus specifying IL-6 (Ad.IL-6) or control adenovirus. Seventy-two hours later, serum iron concentrations and hepatic levels of STAT3 phosphorylation and hepcidin messenger RNA were measured. Additional mice were injected with recombinant murine IL-6 (mIL-6) or vehicle, and hepatic hepcidin gene expression was measured 4 hours later. Deficiency of Alk2 or Alk3 did not alter the ability of Ad.IL-6 injection to induce hepatic STAT3 phosphorylation. Ad.IL-6 increased hepatic hepcidin messenger RNA levels and decreased serum iron concentrations in Alk2- but not Alk3-deficient mice. Similarly, administration of mIL-6 induced hepatic hepcidin gene expression in Alk2- but not Alk3-deficient mice. These results demonstrate that the ability of IL-6 to induce hepatic hepcidin gene expression and reduce serum iron concentrations is dependent on the BMP type I receptor Alk3.

  5. ALK gene rearranged lung adenocarcinomas: molecular genetics and morphology in cohort of patients from North India.

    PubMed

    Bal, Amanjit; Singh, Navneet; Agarwal, Parimal; Das, Ashim; Behera, Digambar

    2016-10-01

    ALK gene rearrangement in the lung adenocarcinomas is the second most common (1.6-11.7% of NSCLC) targetable genomic change after EGFR mutations. However, the prevalence and clinicopathological features of ALK-rearranged lung adenocarcinomas from North India are lacking. A total of 240 cases of lung adenocarcinoma were screened for EGFR mutations and for ALK expression. Smoking status, TNM stage, and treatment response were recorded in all cases. Out of 240 cases screened, 37 cases were positive for EGFR mutations and 17 cases (7.08%) showed ALK positivity with immunohistochemistry and break-apart FISH. On excluding 37 EGFR mutation-positive cases, the incidence of ALK-positive adenocarcinoma appears to be higher (17/203 cases, 8.03%). Eight were men and nine were women with mean age of 51.7 years. Majority (62.5%) were non-smokers and had unresectable disease (70.6% stage IV, 17.6% IIIB). The morphological patterns noted were solid (12 cases), papillary (four cases), and micropapillary (one case). Signet ring (two cases) and clear cell change (one cases) were noted. Out of five patients who received crizotinib, three had partial response and two had stable disease. ALK-rearranged lung adenocarcinomas account for a minor proportion of NSCLC with prevalence similar to that reported in literature. However, as contrast to published data in our series, patients were in older age group and had solid and papillary pattern on morphology with an aggressive course.

  6. Occurrence of diverse alkane hydroxylase alkB genes in indigenous oil-degrading bacteria of Baltic Sea surface water.

    PubMed

    Viggor, Signe; Jõesaar, Merike; Vedler, Eve; Kiiker, Riinu; Pärnpuu, Liis; Heinaru, Ain

    2015-12-30

    Formation of specific oil degrading bacterial communities in diesel fuel, crude oil, heptane and hexadecane supplemented microcosms of the Baltic Sea surface water samples was revealed. The 475 sequences from constructed alkane hydroxylase alkB gene clone libraries were grouped into 30 OPFs. The two largest groups were most similar to Pedobacter sp. (245 from 475) and Limnobacter sp. (112 from 475) alkB gene sequences. From 56 alkane-degrading bacterial strains 41 belonged to the Pseudomonas spp. and 8 to the Rhodococcus spp. having redundant alkB genes. Together 68 alkB gene sequences were identified. These genes grouped into 20 OPFs, half of them being specific only to the isolated strains. Altogether 543 diverse alkB genes were characterized in the brackish Baltic Sea water; some of them representing novel lineages having very low sequence identities with corresponding genes of the reference strains.

  7. Two novel alkane hydroxylase-rubredoxin fusion genes isolated from a Dietzia bacterium and the functions of fused rubredoxin domains in long-chain n-alkane degradation.

    PubMed

    Nie, Yong; Liang, Jieliang; Fang, Hui; Tang, Yue-Qin; Wu, Xiao-Lei

    2011-10-01

    Two alkane hydroxylase-rubredoxin fusion gene homologs (alkW1 and alkW2) were cloned from a Dietzia strain, designated DQ12-45-1b, which can grow on crude oil and n-alkanes ranging in length from 6 to 40 carbon atoms as sole carbon sources. Both AlkW1 and AlkW2 have an integral-membrane alkane monooxygenase (AlkB) conserved domain and a rubredoxin (Rd) conserved domain which are fused together. Phylogenetic analysis showed that these two AlkB-fused Rd domains formed a novel third cluster with all the Rds from the alkane hydroxylase-rubredoxin fusion gene clusters in Gram-positive bacteria and that this third cluster was distant from the known AlkG1- and AlkG2-type Rds. Expression of the alkW1 gene in DQ12-45-1b was induced when cells were grown on C(8) to C(32) n-alkanes as sole carbon sources, but expression of the alkW2 gene was not detected. Functional heterologous expression in an alkB deletion mutant of Pseudomonas fluorescens KOB2Δ1 suggested the alkW1 could restore the growth of KOB2Δ1 on C(14) and C(16) n-alkanes and induce faster growth on C(18) to C(32) n-alkanes than alkW1ΔRd, the Rd domain deletion mutant gene of alkW1, which also caused faster growth than KOB2Δ1 itself. In addition, the artificial fusion of AlkB from the Gram-negative P. fluorescens CHA0 and the Rds from both Gram-negative P. fluorescens CHA0 and Gram-positive Dietzia sp. DQ12-45-1b significantly increased the degradation of C(32) alkane compared to that seen with AlkB itself. In conclusion, the alkW1 gene cloned from Dietzia species encoded an alkane hydroxylase which increased growth on and degradation of n-alkanes up to C(32) in length, with its fused rubredoxin domain being necessary to maintain the functions. In addition, the fusion of alkane hydroxylase and rubredoxin genes from both Gram-positive and -negative bacteria can increase the degradation of long-chain n-alkanes (such as C(32)) in the Gram-negative bacterium.

  8. Spectrum of EGFR gene mutations and ALK rearrangements in lung cancer patients in Turkey.

    PubMed

    Sag, Sebnem Ozemri; Gorukmez, Ozlem; Ture, Mehmet; Gorukmez, Orhan; Deligonul, Adem; Sahinturk, Serdar; Topak, Ali; Gulten, Tuna; Kurt, Ender; Yakut, Tahsin

    2016-01-01

    The EGFR gene and ALK rearrangements are two genetic drivers of non-small cell lung cancer (NSCLC). The frequency of EGFR mutations and ALK rearrangement varies according to not only ethnicity but also gender, smoking status and the histological type of NSCLC. In the present study, we demonstrated the distribution of EGFR mutations in 132 NSCLC patients by using a pyrosequencing technique and the distribution of ALK rearrangements in 51 NSCLC patients by using fluorescent in situ hybridization technique in Turkey. Additionally, we compared the clinicopathological data of NSCLC patients with the mutation status of EGFR in their cancerous tissues. Both EGFR mutations and ALK rearrangements were identified in 19 (14.39 %) and 1 (1.96 %) patients, respectively. We found EGFR mutations in codon 861, 719 and 858 with the ratios of 10.52 % (2/19), 10.52 % (2/19) and 31.58 % (6/19), respectively, and deletion of exon 19 in 47.37 % (9/19) of the patients. We found the frequency of EGFR mutations to be significantly higher in female patients and nonsmokers (p = 0.043, p = 0.027, respectively). Consequently, we found EGFR mutations to be more frequent in female patients and nonsmokers. Future studies on larger patient groups would provide more accurate data to exhibit the relationship between EGFR mutations and ALK rearrangements and the clinicopathological status.

  9. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    SciTech Connect

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio; Ichinose, Junji; Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori; Nakajima, Jun; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2015-02-13

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization.

  10. Alkane hydroxylase gene (alkB) phylotype composition and diversity in northern Gulf of Mexico bacterioplankton

    PubMed Central

    Smith, Conor B.; Tolar, Bradley B.; Hollibaugh, James T.; King, Gary M.

    2013-01-01

    Natural and anthropogenic activities introduce alkanes into marine systems where they are degraded by alkane hydroxylases expressed by phylogenetically diverse bacteria. Partial sequences for alkB, one of the structural genes of alkane hydroxylase, have been used to assess the composition of alkane-degrading communities, and to determine their responses to hydrocarbon inputs. We present here the first spatially extensive analysis of alkB in bacterioplankton of the northern Gulf of Mexico (nGoM), a region that experiences numerous hydrocarbon inputs. We have analyzed 401 partial alkB gene sequences amplified from genomic extracts collected during March 2010 from 17 water column samples that included surface waters and bathypelagic depths. Previous analyses of 16S rRNA gene sequences for these and related samples have shown that nGoM bacterial community composition and structure stratify strongly with depth, with distinctly different communities above and below 100 m. Although we hypothesized that alkB gene sequences would exhibit a similar pattern, PCA analyses of operational protein units (OPU) indicated that community composition did not vary consistently with depth or other major physical-chemical variables. We observed 22 distinct OPUs, one of which was ubiquitous and accounted for 57% of all sequences. This OPU clustered with AlkB sequences from known hydrocarbon oxidizers (e.g., Alcanivorax and Marinobacter). Some OPUs could not be associated with known alkane degraders, however, and perhaps represent novel hydrocarbon-oxidizing populations or genes. These results indicate that the capacity for alkane hydrolysis occurs widely in the nGoM, but that alkane degrader diversity varies substantially among sites and responds differently than bulk communities to physical-chemical variables. PMID:24376439

  11. Detection of Echinoderm Microtubule Associated Protein Like 4-Anaplastic Lymphoma Kinase Fusion Genes in Non-small Cell Lung Cancer Clinical Samples by a Real-time Quantitative Reverse Transcription Polymerase Chain Reaction Method.

    PubMed

    Zhao, Jing; Zhao, Jin-Yin; Chen, Zhi-Xia; Zhong, Wei; Li, Long-Yun; Liu, Li-Cheng; Hu, Xiao-Xu; Chen, Wei-Jun; Wang, Meng-Zhao

    2016-12-20

    Objective To establish a real-time quantitative reverse transcription polymerase chain reaction assay (qRT-PCR) for the rapid, sensitive, and specific detection of echinoderm microtubule associated protein like 4-anaplastic lymphoma kinase (EML4-ALK) fusion genes in non-small cell lung cancer. Methods The specific primers for the four variants of EML4-ALK fusion genes (V1, V2, V3a, and V3b) and Taqman fluorescence probes for the detection of the target sequences were carefully designed by the Primer Premier 5.0 software. Then, using pseudovirus containing EML4-ALK fusion genes variants (V1, V2, V3a, and V3b) as the study objects, we further analyzed the lower limit, sensitivity, and specificity of this method. Finally, 50 clinical samples, including 3 ALK-fluorescence in situ hybridization (FISH) positive specimens, were collected and used to detect EML4-ALK fusion genes using this method. Results The lower limit of this method for the detection of EML4-ALK fusion genes was 10 copies/μl if no interference of background RNA existed. Regarding the method's sensitivity, the detection resolution was as high as 1% and 0.5% in the background of 500 and 5000 copies/μl wild-type ALK gene, respectively. Regarding the method's specificity, no non-specific amplification was found when it was used to detect EML4-ALK fusion genes in leukocyte and plasma RNA samples from healthy volunteers. Among the 50 clinical samples, 47 ALK-FISH negative samples were also negative. Among 3 ALK-FISH positive samples, 2 cases were detected positive using this method, but another was not detected because of the failure of RNA extraction. Conclusion The proposed qRT-PCR assay for the detection of EML4-ALK fusion genes is rapid, simple, sensitive, and specific, which is deserved to be validated and widely used in clinical settings.

  12. A causal link from ALK to hexokinase II overexpression and hyperactive glycolysis in EML4-ALK-positive lung cancer

    PubMed Central

    Ma, Yibao; Yu, Chunrong; Mohamed, Esraa M.; Shao, Huanjie; Wang, Li; Sundaresan, Gobalakrishnan; Zweit, Jamal; Idowu, Michael; Fang, Xianjun

    2016-01-01

    A high rate of aerobic glycolysis is a hallmark of malignant transformation. Accumulating evidence suggests that diverse regulatory mechanisms mediate this cancer-associated metabolic change seen in a wide spectrum of cancer. The echinoderm microtubule associated protein-like 4-anaplastic lymphoma kinase (EML4-ALK) fusion protein is found in approximately 3-7% of non-small cell lung carcinomas (NSCLC). Molecular evidence and therapeutic effectiveness of FDA-approved ALK inhibitors indicated that EML4-ALK is a driving factor of lung tumorigenesis. A recent clinical study showed that NSCLC harboring EML4-ALK rearrangements displayed higher glucose metabolism compared to EML4-ALK-negative NSCLC. In the current work, we presented evidence that EML4-ALK is coupled to overexpression of hexokinase II (HK2), one of the rate-limiting enzymes of the glycolytic pathway. The link from EML4-ALK to HK2 upregulation is essential for a high rate of glycolysis and proliferation of EML4-ALK-rearranged NSCLC cells. We identified hypoxia-inducible factor 1α (HIF1α) as a key transcription factor to drive HK2 gene expression in normoxia in these cells. EML4-ALK induced hypoxia-independent but glucose-dependent accumulation of HIF1α protein via both transcriptional activation of HIF1α mRNA and the PI3K-AKT pathway to enhance HIF1α protein synthesis. The EML4-ALK-mediated upregulation of HIF1α, HK2 and glycolytic metabolism was also highly active in vivo as demonstrated by FDG-PET imaging of xenografts grown from EML4-ALK-positive NSCLC cells. Our data reveal a novel EML4-ALK-HIF1α-HK2 cascade to enhance glucose metabolism in EML4-ALK-positive NSCLC. PMID:27132509

  13. Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth

    PubMed Central

    Hoareau-Aveilla, Coralie; Valentin, Thibaud; Daugrois, Camille; Quelen, Cathy; Mitou, Géraldine; Quentin, Samuel; Jia, Jinsong; Spicuglia, Salvatore; Ferrier, Pierre; Ceccon, Monica; Giuriato, Sylvie; Gambacorti-Passerini, Carlo; Brousset, Pierre; Lamant, Laurence; Meggetto, Fabienne

    2015-01-01

    The regulatory microRNA miR-150 is involved in the development of hemopathies and is downregulated in T-lymphomas, such as anaplastic large-cell lymphoma (ALCL) tumors. ALCL is defined by the presence or absence of translocations that activate the anaplastic lymphoma kinase (ALK), with nucleophosmin-ALK (NPM-ALK) fusions being the most common. Here, we compared samples of primary NPM-ALK(+) and NPM-ALK(–) ALCL to investigate the role of miR-150 downstream of NPM-ALK. Methylation of the MIR150 gene was substantially elevated in NPM-ALK(+) biopsies and correlated with reduced miR-150 expression. In NPM-ALK(+) cell lines, DNA hypermethylation–mediated miR-150 repression required ALK-dependent pathways, as ALK inhibition restored miR-150 expression. Moreover, epigenetic silencing of miR-150 was due to the activation of STAT3, a major downstream substrate of NPM-ALK, in cooperation with DNA methyltransferase 1 (DNMT1). Accordingly, miR-150 repression was turned off following treatment with the DNMT inhibitor, decitabine. In murine NPM-ALK(+) xenograft models, miR-150 upregulation induced antineoplastic activity. Treatment of crizotinib-resistant NPM-ALK(+) KARPAS-299-CR06 cells with decitabine or ectopic miR-150 expression reduced viability and growth. Altogether, our results suggest that hypomethylating drugs, alone or in combination with other agents, may benefit ALK(+) patients harboring tumors resistant to crizotinib and other anti-ALK tyrosine kinase inhibitors (TKIs). Moreover, these results support further work on miR-150 in these and other ALK(+) malignancies. PMID:26258416

  14. Novel alkane hydroxylase gene (alkB) diversity in sediments associated with hydrocarbon seeps in the Timor Sea, Australia.

    PubMed

    Wasmund, Kenneth; Burns, Kathryn A; Kurtböke, D Ipek; Bourne, David G

    2009-12-01

    Hydrocarbon seeps provide inputs of petroleum hydrocarbons to widespread areas of the Timor Sea. Alkanes constitute the largest proportion of chemical components found in crude oils, and therefore genes involved in the biodegradation of these compounds may act as bioindicators for this ecosystem's response to seepage. To assess alkane biodegradation potential, the diversity and distribution of alkane hydroxylase (alkB) genes in sediments of the Timor Sea were studied. Deduced AlkB protein sequences derived from clone libraries identified sequences only distantly related to previously identified AlkB sequences, suggesting that the Timor Sea maybe a rich reservoir for novel alkane hydroxylase enzymes. Most sequences clustered with AlkB sequences previously identified from marine Gammaproteobacteria though protein sequence identities averaged only 73% (with a range of 60% to 94% sequence identities). AlkB sequence diversity was lower in deep water (>400 m) samples off the continental slope than in shallow water (<100 m) samples on the continental shelf but not significantly different in response to levels of alkanes. Real-time PCR assays targeting Timor Sea alkB genes were designed and used to quantify alkB gene targets. No correlation was found between gene copy numbers and levels of hydrocarbons measured in sediments using sensitive gas chromatography-mass spectrometry techniques, probably due to the very low levels of hydrocarbons found in most sediment samples. Interestingly, however, copy numbers of alkB genes increased substantially in sediments exposed directly to active seepage even though only low or undetectable concentrations of hydrocarbons were measured in these sediments in complementary geochemical analyses due to efficient biodegradation.

  15. Concurrent progress of reprogramming and gene correction to overcome therapeutic limitation of mutant ALK2-iPSC

    PubMed Central

    Kim, Bu-Yeo; Jeong, SangKyun; Lee, Seo-Young; Lee, So Min; Gweon, Eun Jeong; Ahn, Hyunjun; Kim, Janghwan; Chung, Sun-Ku

    2016-01-01

    Fibrodysplasia ossificans progressiva (FOP) syndrome is caused by mutation of the gene ACVR1, encoding a constitutive active bone morphogenetic protein type I receptor (also called ALK2) to induce heterotopic ossification in the patient. To genetically correct it, we attempted to generate the mutant ALK2-iPSCs (mALK2-iPSCs) from FOP-human dermal fibroblasts. However, the mALK2 leads to inhibitory pluripotency maintenance, or impaired clonogenic potential after single-cell dissociation as an inevitable step, which applies gene-correction tools to induced pluripotent stem cells (iPSCs). Thus, current iPSC-based gene therapy approach reveals a limitation that is not readily applicable to iPSCs with ALK2 mutation. Here we developed a simplified one-step procedure by simultaneously introducing reprogramming and gene-editing components into human fibroblasts derived from patient with FOP syndrome, and genetically treated it. The mixtures of reprogramming and gene-editing components are composed of reprogramming episomal vectors, CRISPR/Cas9-expressing vectors and single-stranded oligodeoxynucleotide harboring normal base to correct ALK2 c.617G>A. The one-step-mediated ALK2 gene-corrected iPSCs restored global gene expression pattern, as well as mineralization to the extent of normal iPSCs. This procedure not only helps save time, labor and costs but also opens up a new paradigm that is beyond the current application of gene-editing methodologies, which is hampered by inhibitory pluripotency-maintenance requirements, or vulnerability of single-cell-dissociated iPSCs. PMID:27256111

  16. Diversity of crude oil-degrading bacteria and alkane hydroxylase (alkB) genes from the Qinghai-Tibet Plateau.

    PubMed

    Long, Haozhi; Wang, Yilin; Chang, Sijing; Liu, Guangxiu; Chen, Tuo; Huo, Guanghua; Zhang, Wei; Wu, Xiukun; Tai, Xisheng; Sun, Likun; Zhang, Baogui

    2017-03-01

    The aim of this study was to survey the response of the microbial community to crude oil and the diversity of alkane hydroxylase (alkB) genes in soil samples from the Qinghai-Tibet Plateau (QTP). The enrichment cultures and clone libraries were used. Finally, 53 isolates and 94 alkB sequences were obtained from 10 pristine soil samples after enrichment at 10 °C with crude oil as sole carbon source. The isolates fell into the phyla Proteobacteria, Actinobacteria, and Bacteroidetes, with the dominance of Pseudomonas and Acinetobacter. The composition of degraders was different from polar habitats where Acinetobacter sp. is not a predominant responder of alkane degradative microbial communities. Phylogenetic analysis showed that the alkB genes from isolates and enrichment communities formed eight clusters and mainly related with alkB genes of Pseudomonas, Rhodococcus, and Acinetobacter. The alkB gene diversity in the QTP was lower than marine environments and polar soil samples. In particular, a total of 10 isolates exhibiting vigorous growth with crude oil could detect no crude oil degradation-related gene sequences, such as alkB, P450, almA, ndoB, and xylE genes. The Shannon-Wiener index of the alkB clone libraries from the QTP ranged from 1.00 to 2.24 which is similar with polar pristine soil samples but lower than that of contaminated soils. These results indicated that the Pseudomonas, Acinetobacter, and Rhodococcus genera are the candidate for in situ bioremediation, and the environment of QTP may be still relatively uncontaminated by crude oil.

  17. Achievements and future developments of ALK-TKIs in the management of CNS metastases from ALK-positive NSCLC

    PubMed Central

    Cappuzzo, Federico

    2016-01-01

    Non-small cell lung cancer (NSCLC) represents the paradigm of personalized treatment of human cancer. Several oncogenic druggable alterations have been so far identified, with anaplastic lymphoma kinase (ALK) gene rearrangements being one of the newest and most appealing. Presence of ALK fusions is associated with some particular clinical and pathological features, including a preferential seeding into the central nervous system (CNS). In addition, ALK rearrangements are recognized as the strongest predictor for benefit of anti-ALK therapy. Crizotinib, the first ALK inhibitor (ALK-I) licensed in clinical practice, is the standard of care for newly diagnosed patients. Unfortunately, within the first year of treatment the majority of patients become insensitive to crizotinib, with approximately one third of them developing brain metastases (BMs). Optimal management of BMs is one of the major challenges in treating ALK positive NSCLC. Several novel and highly CNS penetrant ALK-Is are currently under investigation and available data clearly indicated their ability in controlling intracranial disease. PMID:28149753

  18. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    EPA Science Inventory

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  19. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    EPA Science Inventory

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  20. Rearranged Anaplastic Lymphoma Kinase (ALK) Gene in Adult-Onset Papillary Thyroid Cancer Amongst Atomic Bomb Survivors

    PubMed Central

    Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro

    2012-01-01

    Background We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAFV600E) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. Methods The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription–polymerase chain reaction and 5′ rapid amplification of cDNA ends (5′ RACE). Results We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK

  1. GPo1 alkB gene expression for improvement of the degradation of diesel oil by a bacterial consortium

    PubMed Central

    Luo, Qun; He, Ying; Hou, Deng-Yong; Zhang, Jian-Guo; Shen, Xian-Rong

    2015-01-01

    To facilitate the biodegradation of diesel oil, an oil biodegradation bacterial consortium was constructed. The alkane hydroxylase (alkB) gene of Pseudomonas putida GPo1 was constructed in a pCom8 expression vector, and the pCom8-GPo1 alkB plasmid was transformed into Escherichia coli DH5α. The AlkB protein was expressed by diesel oil induction and detected through SDS-polyacrylamide gel electrophoresis. The culture of the recombinant (pCom8-GPo1 alkB/E. coli DH5α) with the oil biodegradation bacterial consortium increased the degradation ratio of diesel oil at 24 h from 31% to 50%, and the facilitation rates were increased as the proportion of pCom8-GPo1 alkB/E. coli DH5α to the consortium increased. The results suggested that the expression of the GPo1 gene in E. coli DH5α could enhance the function of diesel oil degradation by the bacterial consortium. PMID:26413044

  2. Biofortification of oilseed Brassica juncea with the anti-cancer compound glucoraphanin by suppressing GSL-ALK gene family

    PubMed Central

    Augustine, Rehna; Bisht, Naveen C.

    2015-01-01

    Glucosinolates are amino acids derived secondary metabolites, invariably present in Brassicales, which have huge health and agricultural benefits. Sulphoraphane, the breakdown product of glucosinolate glucoraphanin is known to posses anti-cancer properties. AOP (2-oxoglutarate-dependent dioxygenases) or GSL-ALK enzyme catalyzes the conversion of desirable glucoraphanin to deleterious gluconapin and progoitrin, which are present in very high amounts in most of the cultivable Brassica species including Brassica juncea. In this study we showed that B. juncea encodes four functional homologs of GSL-ALK gene and constitutive silencing of GSL-ALK homologs resulted in accumulation of glucoraphanin up to 43.11 μmoles g−1 DW in the seeds with a concomitant reduction in the anti-nutritional glucosinolates. Glucoraphanin content was found remarkably high in leaves as well as sprouts of the transgenic lines. Transcript quantification of high glucoraphanin lines confirmed significant down-regulation of GSL-ALK homologs. Growth and other seed quality parameters of the transgenic lines did not show drastic difference, compared to the untransformed control. High glucoraphanin lines also showed higher resistance towards stem rot pathogen Sclerotinia sclerotiorum. Our results suggest that metabolic engineering of GSL-ALK has huge potential for enriching glucoraphanin content, and improve the oil quality and vegetable value of Brassica crops. PMID:26657321

  3. Biofortification of oilseed Brassica juncea with the anti-cancer compound glucoraphanin by suppressing GSL-ALK gene family.

    PubMed

    Augustine, Rehna; Bisht, Naveen C

    2015-12-10

    Glucosinolates are amino acids derived secondary metabolites, invariably present in Brassicales, which have huge health and agricultural benefits. Sulphoraphane, the breakdown product of glucosinolate glucoraphanin is known to posses anti-cancer properties. AOP (2-oxoglutarate-dependent dioxygenases) or GSL-ALK enzyme catalyzes the conversion of desirable glucoraphanin to deleterious gluconapin and progoitrin, which are present in very high amounts in most of the cultivable Brassica species including Brassica juncea. In this study we showed that B. juncea encodes four functional homologs of GSL-ALK gene and constitutive silencing of GSL-ALK homologs resulted in accumulation of glucoraphanin up to 43.11 μmoles g(-1) DW in the seeds with a concomitant reduction in the anti-nutritional glucosinolates. Glucoraphanin content was found remarkably high in leaves as well as sprouts of the transgenic lines. Transcript quantification of high glucoraphanin lines confirmed significant down-regulation of GSL-ALK homologs. Growth and other seed quality parameters of the transgenic lines did not show drastic difference, compared to the untransformed control. High glucoraphanin lines also showed higher resistance towards stem rot pathogen Sclerotinia sclerotiorum. Our results suggest that metabolic engineering of GSL-ALK has huge potential for enriching glucoraphanin content, and improve the oil quality and vegetable value of Brassica crops.

  4. In vivo imaging models of bone and brain metastases and pleural carcinomatosis with a novel human EML4-ALK lung cancer cell line.

    PubMed

    Nanjo, Shigeki; Nakagawa, Takayuki; Takeuchi, Shinji; Kita, Kenji; Fukuda, Koji; Nakada, Mitsutoshi; Uehara, Hisanori; Nishihara, Hiroshi; Hara, Eiji; Uramoto, Hidetaka; Tanaka, Fumihiro; Yano, Seiji

    2015-03-01

    EML4-ALK lung cancer accounts for approximately 3-7% of non-small-cell lung cancer cases. To investigate the molecular mechanism underlying tumor progression and targeted drug sensitivity/resistance in EML4-ALK lung cancer, clinically relevant animal models are indispensable. In this study, we found that the lung adenocarcinoma cell line A925L expresses an EML4-ALK gene fusion (variant 5a, E2:A20) and is sensitive to the ALK inhibitors crizotinib and alectinib. We further established highly tumorigenic A925LPE3 cells, which also have the EML4-ALK gene fusion (variant 5a) and are sensitive to ALK inhibitors. By using A925LPE3 cells with luciferase gene transfection, we established in vivo imaging models for pleural carcinomatosis, bone metastasis, and brain metastasis, all of which are significant clinical concerns of advanced EML4-ALK lung cancer. Interestingly, crizotinib caused tumors to shrink in the pleural carcinomatosis model, but not in bone and brain metastasis models, whereas alectinib showed remarkable efficacy in all three models, indicative of the clinical efficacy of these ALK inhibitors. Our in vivo imaging models of multiple organ sites may provide useful resources to analyze further the pathogenesis of EML4-ALK lung cancer and its response and resistance to ALK inhibitors in various organ microenvironments.

  5. In situ detection of alkB2 gene involved in Alcanivorax borkumensis SK2(T) hydrocarbon biodegradation.

    PubMed

    Matturro, Bruna; Frascadore, Emanuela; Cappello, Simone; Genovese, Mariella; Rossetti, Simona

    2016-09-15

    This study aimed to develop a new assay based on the whole cell hybridization in order to monitor alkane hydroxylase genes (alkB system) of the marine bacterium Alcanivorax borkumensis SK2(T) commonly reported as the predominant microorganism responsible for the biodegradation of n-alkanes which are the major fraction of petroleum hydrocarbons. The assay based on the whole cell hybridization targeting alkB2 gene was successfully developed and calibrated on a pure culture of Alcanivorax borkumensis SK2(T) with a detection efficiency up to 80%. The approach was further successfully validated on hydrocarbon-contaminated seawater and provided cells abundance (6.74E+04alkB2-carryingcellsmL(-1)) higher of about one order of magnitude than those obtained by qPCR (4.96E+03alkB2genecopiesmL(-1)). This study highlights the validity of the assay for the detection at single cell level of key-functional genes involved in the biodegradation of n-alkanes.

  6. Expression of an alkane monooxygenase (alkB) gene and methyl tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis.

    PubMed

    Bravo, Ana Luisa; Sigala, Juan Carlos; Le Borgne, Sylvie; Morales, Marcia

    2015-04-01

    Pseudomonas citronellolis UAM-Ps1 co-metabolically transforms methyl tert-butyl ether (MTBE) to tert-butyl alcohol with n-pentane (2.6 mM), n-octane (1.5 mM) or dicyclopropylketone (DCPK) (4.4 mM), a gratuitous inducer of alkane hydroxylase (AlkB) activity. The reverse transcription quantitative real-time PCR was used to quantify the alkane monooxygenase (alkB) gene expression. The alkB gene was expressed in the presence of n-alkanes and DCPK and MTBE oxidation occurred only in cultures when alkB was transcribed. A correlation between the number of alkB transcripts and MTBE consumption was found (ΜΤΒΕ consumption in μmol = 1.44e(-13) x DNA copies, R(2) = 0.99) when MTBE (0.84 mM) was added. Furthermore, alkB was cloned and expressed into Escherichia coli and the recombinant AlkB had a molecular weight of 42 kDa. This is the first report where the expression of alkB is related to the co-metabolic oxidation of MTBE.

  7. Precision medicine in NSCLC and pathology: how does ALK fit in the pathway?

    PubMed

    Kerr, K M; López-Ríos, F

    2016-09-01

    The evolution of personalised medicine in lung cancer has dramatically impacted diagnostic pathology. Current challenges centre on the growing demands placed on small tissue samples by molecular diagnostic techniques. In this review, expert recommendations are provided regarding successful identification of anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC). Steps to correctly process and conserve tumour tissue during diagnostic testing are essential to ensure tissue availability. For example, storing extra tissue sections ready for molecular diagnostic steps allows faster testing and preserves tissue. Fluorescence in situ hybridisation (FISH) is commonly used to detect ALK rearrangements, with most laboratories favouring screening by immunohistochemistry followed by a confirmatory FISH assay. Reverse transcription-polymerase chain reaction can also identify ALK fusion gene mRNA transcripts but can be limited by the quality of RNA and the risk that rare fusion variants may not be captured. Next-generation sequencing (NGS) technology has recently provided an alternative method for detecting ALK rearrangements. While current experience is limited, NGS is set to become the most efficient approach as an increasing number of genetic abnormalities is required to be tested. Upfront, reflex testing for ALK gene rearrangement should become routine as ALK tyrosine kinase inhibitor therapy moves into the first-line setting. Guidelines recommend that EGFR and ALK tests are carried out in parallel on all confirmed and potential adenocarcinomas, and this is more efficient in terms of tissue usage and testing turnaround time for both of these actionable gene alterations. The practice of sequential testing is not recommended. Identification of ALK rearrangements is now essential for the diagnosis of NSCLC, underpinned by the benefits of ALK inhibitors. As scientific understanding and diagnostic technology develops, ALK testing will continue to be an

  8. For staining of ALK protein, the novel D5F3 antibody demonstrates superior overall performance in terms of intensity and extent of staining in comparison to the currently used ALK1 antibody.

    PubMed

    Taheri, Diana; Zahavi, David J; Del Carmen Rodriguez, Maria; Meliti, Abdelrazak; Rezaee, Neda; Yonescu, Raluca; Ricardo, Bernardo F P; Dolatkhah, Shahaboddin; Ning, Yi; Bishop, Justin A; Netto, George J; Sharma, Rajni

    2016-09-01

    Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm. Approximately 50 % of IMTs show an anaplastic lymphoma kinase (ALK) gene fusion resulting in ALK overexpression on immunohistochemistry (IHC). A novel anti-ALK monoclonal antibody (D5F3) has been suggested to be of superior sensitivity to the ALK1 antibody which is currently used. We compared the performance of D5F3 in detecting ALK protein expression in IMTs from various anatomic sites compared to the currently utilized ALK1. We selected 25 IMTs from our surgical pathology files (2005-2015). The novel rabbit monoclonal anti-human CD246 (clone D5F3) and the currently used mouse monoclonal anti-human CD246 (clone ALK1) were used for immunohistochemical staining (IHC) in an automated slide stainer. The percentage of immunoreactive tumor cells (0, <5 %, 5-50 %, >50 %) and cytoplasmic staining intensity (graded 0-3) were assessed and compared between the two antibodies. Fluorescence in situ hybridization (FISH) studies for ALK gene rearrangement were performed on 11 tumors. D5F3 antibody stained 76 % and ALK1 antibody stained 72 % of IMTs (p = 0.747). Compared to staining with ALK1, D5F3 stained a higher proportion of cases extensively (>50 % cells) (76 vs. 28 %, p < 0.001) and with high intensity (grade 3 76 % vs 0; p < 0.001). FISH and IHC findings (for both antibodies) were concordant in 9/10 (90 %) IMTs, in which results were informative. The novel anti-ALK rabbit monoclonal antibody (D5F3 clone) demonstrates superior overall performance in term of intensity and extent of staining of ALK protein in IMT. We found IHC staining with both antibody clones to correlate equally well with FISH results for detection of ALK rearrangement.

  9. EML4-ALK induces epithelial–mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells

    SciTech Connect

    Guo, Fuchun; Liu, Xiaoke Qing, Qin Sang, Yaxiong Feng, Chengjun Li, Xiaoyu Jiang, Li Su, Pei Wang, Yongsheng

    2015-04-10

    The echinoderm microtubule-associated protein-like 4(EML4) – anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells. Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation. - Highlights: • EML4-ALK induced epithelial–mesenchymal transition in H1299 cells. • Expression of EML4-ALK promotes invasion and migration in vitro. • EML4-ALK enhanced sphere formation and stem cell-like properties in H1299 cells. • Blockage of ERK1/2 reverse Epithelial–Mesenchymal transition induced by EML4-ALK.

  10. Genotype-driven therapies for non-small cell lung cancer: focus on EGFR, KRAS and ALK gene abnormalities.

    PubMed

    Gaughan, Elizabeth M; Costa, Daniel B

    2011-05-01

    Non-small cell lung cancers (NSCLCs) are heterogeneous cancers. In 2004, the identification of epidermal growth factor receptor (EGFR) somatic mutations provided the first glimpse of a clinically relevant NSCLC oncogene. Approximately 70% of NSCLCs with EGFR mutations (exon 19 deletions or the exon 21 L858R) attain responses to EGFR tyrosine kinase inhibitors (TKIs) gefitinib and erlotinib, with improved response rate (RR), progression-free survival (PFS) and in some reports overall survival (OS) when compared with EGFR wildtype (WT) cases. Three randomized trials of gefitinib versus chemotherapy (IPASS, WJTOG3405, NEJ002) in stage IV NSCLC have consistently demonstrated better RR and PFS (hazard ratios of 0.48 [IPASS], 0.49 [WJTOG3405] and 0.30 [NEJ002]) for EGFR-mutated NSCLCs treated with gefitinib. Novel irreversible EGFR TKIs (afatinib, XL647, PF00299804) show similar activity in EGFR-mutated patients. A translocation involving the anaplastic lymphoma kinase (ALK) gene with EML4, identified in 2007, is the most recent oncogene found in NSCLC. Crizotinib (PF02341066), an ALK TKI, has shown impressive activity against ALK translocated NSCLC in an expanded cohort of a phase I trial (NCT00585195). Over 80 patients have been treated and the RR is ∼60% with the 6-month PFS rate exceeding 70%. A registration phase III trial of crizotinib versus second-line chemotherapy (pemetrexed/docetaxel) is underway (PROFILE 1007, NCT00932893). KRAS, EGFR mutations and ALK translocations are mutually exclusive and few EGFR WT NSCLCs respond to EGFR TKIs. The promising results of EGFR and ALK TKIs in molecular subgroups of NSCLCs herald a new age of drug and clinical trial development for patients with NSCLC.

  11. Reducing progoitrin and enriching glucoraphanin in Brassica napus seeds through silencing of the GSL-ALK gene family.

    PubMed

    Liu, Zheng; Hirani, Arvind H; McVetty, Peter B E; Daayf, Fouad; Quiros, Carlos F; Li, Genyi

    2012-05-01

    The hydrolytic products of glucosinolates in brassica crops are bioactive compounds. Some glucosinolate derivatives such as oxazolidine-2-thione from progoitrin in brassica oilseed meal are toxic and detrimental to animals, but some isothiocyanates such as sulforaphane are potent anti-carcinogens that have preventive effects on several human cancers. In most B. rapa, B. napus and B. juncea vegetables and oilseeds, there is no or only trace amount of glucoraphanin that is the precursor to sulforaphane. In this paper, RNA interference (RNAi) of the GSL-ALK gene family was used to down-regulate the expression of GSL-ALK genes in B. napus. The detrimental glucosinolate progoitrin was reduced by 65 %, and the beneficial glucosinolate glucoraphanin was increased to a relatively high concentration (42.6 μmol g(-1) seed) in seeds of B. napus transgenic plants through silencing of the GSL-ALK gene family. Therefore, there is potential application of the new germplasm with reduced detrimental glucosinolates and increased beneficial glucosinolates for producing improved brassica vegetables.

  12. A novel Patient Derived Tumorgraft model with TRAF1-ALK Anaplastic Large Cell Lymphoma translocation

    PubMed Central

    Abate, Francesco; Todaro, Maria; van der Krogt, Jo-Anne; Boi, Michela; Landra, Indira; Machiorlatti, Rodolfo; Tabbo’, Fabrizio; Messana, Katia; Barreca, Antonella; Novero, Domenico; Gaudiano, Marcello; Aliberti, Sabrina; Di Giacomo, Filomena; Tousseyn, Thomas; Lasorsa, Elena; Crescenzo, Ramona; Bessone, Luca; Ficarra, Elisa; Acquaviva, Andrea; Rinaldi, Andrea; Ponzoni, Maurilio; Longo, Dario Livio; Aime, Silvio; Cheng, Mangeng; Ruggeri, Bruce; Piccaluga, Pier Paolo; Pileri, Stefano; Tiacci, Enrico; Falini, Brunangelo; Pera-Gresely, Benet; Cerchietti, Leandro; Iqbal, Javeed; Chan, Wing C; Shultz, Leonard D.; Kwee, Ivo; Piva, Roberto; Wlodarska, Iwona; Rabadan, Raul; Bertoni, Francesco; Inghirami, Giorgio

    2016-01-01

    Although Anaplastic Large Cell Lymphomas (ALCL) carrying Anaplastic Lymphoma Kinase (ALK) have a relatively good prognosis, aggressive forms exist. We have identified a novel translocation, causing the fusion of the TRAF1 and ALK genes, in one patient who presented with a leukemic ALK+ ALCL (ALCL-11). To uncover the mechanisms leading to high-grade ALCL, we developed a human Patient Derived Tumorgraft (hPDT) line. Molecular characterization of primary and PDT cells demonstrated the activation of ALK and of NFkB pathways. Genomic studies of ALCL-11 showed the TP53 loss and the in vivo subclonal expansion of lymphoma cells lacking PRDM1/Blimp-1 and with c-MYC gene amplification. The treatment with proteasome inhibitors of TRAF1-ALK cells led to down-regulation of p50/p52 and lymphoma growth inhibition. Moreover a NFkB gene set classifier stratified ALCL in distinct subsets with different clinical outcome. Moreover, a selective ALK inhibitor (CEP28122) resulted in a significant clinical response of hPDT mice, but the disease could not be eradicated. These data indicate that the activation of NFkB signaling contributes to the neoplastic phenotype of TRAF1-ALK ALCL. ALCL hPDTs are invaluable to validate the role of druggable molecules, predict therapeutic responses and are helpful tools for the implementation of patient specific therapies. PMID:25533804

  13. Epidermal Growth Factor Receptor Mutation and Anaplastic Lymphoma Kinase Gene Fusion: Detection in Malignant Pleural Effusion by RNA or PNA Analysis

    PubMed Central

    Chen, Yi-Lin; Lee, Chung-Ta; Lu, Cheng-Chan; Yang, Shu-Ching; Chen, Wan-Li; Lee, Yang-Cheng; Yang, Chung-Hsien; Peng, Shu-Ling; Su, Wu-Chou; Chow, Nan-Haw; Ho, Chung-Liang

    2016-01-01

    Analyzing EGFR mutations and detecting ALK gene fusion are indispensable when planning to treat pulmonary adenocarcinoma. Malignant pleural effusion (MPE) is a devastating complication of lung cancer and sometimes the only source for mutation analysis. The percentage of tumor cells in the pleural effusion may be low; therefore, mutant enrichment is required for a successful analysis. The EGFR mutation status in MPE was determined using three methods: (1) PCR sequencing of genomic DNA (direct sequencing), (2) mutant-enriched PCR sequencing of genomic DNA using peptide nucleic acid (PNA-sequencing), and (3) PCR sequencing of cDNA after reverse transcription for cellular RNA (RNA-sequencing). RT-PCR was also used to test cases for ALK gene fusion. PNA-sequencing and RNA-sequencing had similar analytical sensitivities (< 1%), which indicates similar enrichment capabilities. The clinical sensitivity in 133 cases when detecting the common EGFR exon 19 and exon 21 mutations was 56.4% (75/133) for direct sequencing, 63.2% (84/133) for PNA-sequencing, and 65.4% (87/133) for RNA-sequencing. RT-PCR and sequencing showed 5 cases (3.8%) with ALK gene fusion. All had wild-type EGFR. For EGFR analysis of MPE, RNA-sequencing is at least as sensitive as PNA-sequencing but not limited to specific mutations. Detecting ALK fusion can be incorporated in the same RNA workflow. Therefore, RNA is a better source for comprehensive molecular diagnoses in MPE. PMID:27352172

  14. Fluorescence in situ hybridization analysis of the ALK gene in 2,045 non-small cell lung cancer patients from North-Western Spain (Galicia).

    PubMed

    Sánchez-Ares, María; Cameselle-Teijeiro, José M; Vázquez-Estévez, Sergio; Lázaro-Quintela, Martín; Vázquez-Boquete, Ángel; Afonso-Afonso, Francisco J; Casal-Rubio, Joaquín; González-Piñeiro, Ana L; Rico-Rodríguez, Yolanda; Fírvida-Pérez, José L; Ruíz-Bañobre, Juan; Couso, Elena; Santomé, Lucía; Pérez-Becerra, Raquel; García-Campelo, Rosario; Amenedo, Margarita; Azpitarte-Raposeiras, Cristina; Antúnez, José; Abdulkader, Ihab

    2016-08-01

    Identification of anaplastic lymphoma receptor tyrosine kinase (ALK) gene rearrangements is a standard diagnostic test in patients with advanced non-small cell lung cancer (NSCLC). The current study describes the experience of ALK rearrangement detection of a referral center in the public health care system of Galicia in North-Western Spain. The fluorescence in situ hybridization (FISH) patterns of the ALK gene and the clinical and pathological features of these patients are reported. This study is also of interest for comparative purposes due to the relative geographical isolation of the area, which could have contributed to particular genetic features. A total of 2,045 tissue samples from NSCLC patients were collected between October 2010 and July 2015 and tested for ALK rearrangements by FISH. Examination of 1,686 paraffin-embedded tissue specimens and 395 cytological samples (306 cell block preparations and 53 cytological smears) was conducted, and any associations between the FISH results and clinicopathological features were assessed. The rate of successful evaluation was marginally higher in tissue samples than in cytological samples (92.9% vs. 84.1%); this difference was not significant. ALK rearrangements were identified in 82 patients(4%): 65 (79.3%) in tissue specimens, 15 (18.3%) in cell block samples and 2 (2.4%) in cytological smears. This genetic translocation appeared to be associated with a non-smoking history, younger age, female gender, stage IV and adenocarcinoma histological type. The findings demonstrate that ALK evaluation by FISH is feasible in tissue and cytological samples. The clinical and pathological features of the ALK-positive series of patients are similar to those previously reported in the literature.

  15. Diversity of alkane degrading bacteria associated with plants in a petroleum oil-contaminated environment and expression of alkane monooxygenase (alkB) genes

    NASA Astrophysics Data System (ADS)

    Andria, V.; Yousaf, S.; Reichenauer, T. G.; Smalla, K.; Sessitsch, A.

    2009-04-01

    Among twenty-six different plant species, Italian ryegrass (Lolium multiflorum var. Taurus), Birdsfoot trefoil (Lotus corniculatus var. Leo), and the combination of both plants performed well in a petroleum oil contaminated soil. Hydrocarbon degrading bacteria were isolated from the rhizosphere, root interior and shoot interior and subjected to the analysis of 16S rRNA, the 16S and 23S rRNA intergenic spacer region and alkane hydroxylase genes. Higher numbers of culturable, degrading bacteria were associated with Italian ryegrass, which were also characterized by a higher diversity, particularly in the plant interior. Only half of the isolated bacteria hosted known alkane hydroxylase genes (alkB and cytochrome P153-like). Our results indicated that alkB genes have spread through horizontal gene transfer, particularly in the Italian ryegrass rhizosphere, and suggested mobility of catabolic genes between Gram-negative and Gram-positive bacteria. We furthermore studied the colonization behaviour of selected hydrocarbon-degrading strains (comprising an endopyhte and a rhizosphere strain) as well as the expression of their alkane monooxygenase genes in association with Italian ryegrass. Results showed that the endophyte strain better colonized the plant, particularly the plant interior, and also showed higher expression of alkB genes suggesting a more efficient degradation of the pollutant. Furthermore, plants inoculated with the endophyte were better able to grow in the presence of diesel. The rhizosphere strain colonized primarily the rhizosphere and showed low alkB gene expression in the plant interior.

  16. MPN- and Real-Time-Based PCR Methods for the Quantification of Alkane Monooxygenase Homologous Genes (alkB) in Environmental Samples

    NASA Astrophysics Data System (ADS)

    Pérez-de-Mora, Alfredo; Schulz, Stephan; Schloter, Michael

    Hydrocarbons are major contaminants of soil ecosystems as a result of uncontrolled oil spills and wastes disposal into the environment. Ecological risk assessment and remediation of affected sites is often constrained due to lack of suitable prognostic and diagnostic tools that provide information of abiotic-biotic interactions occurring between contaminants and biological targets. Therefore, the identification and quantification of genes involved in the degradation of hydrocarbons may play a crucial role for evaluating the natural attenuation potential of contaminated sites and the development of successful bioremediation strategies. Besides other gene clusters, the alk operon has been identified as a major player for alkane degradation in different soils. An oxygenase gene (alkB) codes for the initial step of the degradation of aliphatic alkanes under aerobic conditions. In this work, we present an MPN- and a real-time PCR method for the quantification of the bacterial gene alkB (coding for rubredoxin-dependent alkane monooxygenase) in environmental samples. Both approaches enable a rapid culture-independent screening of the alkB gene in the environment, which can be used to assess the intrinsic natural attenuation potential of a site or to follow up the on-going progress of bioremediation assays.

  17. Anaplastic lymphoma kinase (ALK) inhibitors in the treatment of ALK-driven lung cancers.

    PubMed

    Roskoski, Robert

    2017-03-01

    Anaplastic lymphoma kinase is expressed in two-thirds of the anaplastic large-cell lymphomas as an NPM-ALK fusion protein. Physiological ALK is a receptor protein-tyrosine kinase within the insulin receptor superfamily of proteins that participates in nervous system development. The EML4-ALK fusion protein and four other ALK-fusion proteins play a fundamental role in the development in about 5% of non-small cell lung cancers. The amino-terminal portions of the ALK fusion proteins result in dimerization and subsequent activation of the ALK protein kinase domain that plays a key role in the pathogenesis of various tumors. Downstream signaling from the ALK fusion protein leads to the activation of the Ras/Raf/MEK/ERK1/2 cell proliferation module and the JAK/STAT cell survival pathways. Moreover, nearly two dozen ALK activating mutations are involved in the pathogenesis of childhood neuroblastomas. The occurrence of oncogenic ALK-fusion proteins, particularly in non-small cell lung cancer, has fostered considerable interest in the development of ALK inhibitors. Crizotinib was the first such inhibitor approved by the US Food and Drug Administration for the treatment of ALK-positive non-small cell lung cancer in 2011. The median time for the emergence of crizotinib drug resistance is 10.5 months after the initiation of therapy. Such resistance prompted the development of second-generation drugs including ceritinib and alectinib, which are approved for the treatment of non-small cell lung cancer. Unlike the single gatekeeper mutation that occurs in drug-resistant epidermal growth factor receptor in lung cancer, nearly a dozen different mutations in the catalytic domain of ALK fusion proteins have been discovered that result in crizotinib resistance. Crizotinib, ceritinib, and alectinib form a complex within the front cleft between the small and large lobes of an inactive ALK protein-kinase domain with a compact activation segment. These drugs are classified as type I½ B

  18. Insertion element analysis and mapping of the Pseudomonas plasmid alk regulon.

    PubMed Central

    Fennewald, M; Benson, S; Oppici, M; Shapiro, J

    1979-01-01

    We characterized and mapped new mutations of the alk (alkane utilization) genes found on Pseudomonas plasmids of the Inc P-2 group. These mutations were isolated after (i) nitrosoguanidine mutagenesis, (ii) transposition of the Tn7 trimethoprim and streptomycin resistance determinant, and (iii) reversion of polarity effects of alk::Tn7 insertion mutations. Our results indicate the existence of two alk loci not previously described--alkD, whose product is required for synthesis of membrane alkane-oxidizing activities, and alkE, whose product is required for synthesis of inducible membrane alcohol dehydrogenase activity. Polarity of alk::Tn7 insertion mutations indicates the existence of an alkBAE operon. Mapping of alk loci by transduction in P. aeruginosa shows that there are at least three alk clusters in the CAM-OCT plasmid--alkRD, containing regulatory genes; alkBAE, containing genes for specific biochemical activities; and alkC, containing one or more genes needed for normal synthesis of membrane alcohol dehydrogenase. The alkRD and alkBAE clusters are linked but separated by about 42 kilobases. The alkC cluster is not linked to either of the other two alk regions. Altogether, these results indicate a complex genetic control of the alkane utilization phenotype in P. putida and P. aeruginosa involving at least six separate genes. Images PMID:479111

  19. CRKL mediates EML4-ALK signaling and is a potential therapeutic target for ALK-rearranged lung adenocarcinoma

    PubMed Central

    Voeller, Donna; Gower, Arjan; Kim, In-Kyu; Zhang, Yu-Wen; Giaccone, Giuseppe

    2016-01-01

    Anaplastic lymphoma kinase (ALK) gene rearrangements are oncogenic drivers in a small subset of patients with non-small-cell lung cancer (NSCLC). The ALK inhibitors are highly effective in NSCLC patients harboring ALK rearrangements; however, most patients acquire resistance to the therapy following an initial response. Mechanisms of acquired resistance are complex. We used LC-MS/MS-based phosphotyrosine-peptide profiling in the EML4-ALK rearranged H3122 and H2228 cells treated with ALK inhibitors, to identify downstream effectors of ALK. We then used Western blot, siRNA experiments, cell proliferation, viability and migration assays to validate our findings. We identified CRKL as a novel downstream effector of ALK signaling. We demonstrated that CRKL tyrosine phosphorylation was repressed by pharmacological inhibition or small interfering RNA (siRNA) knockdown of ALK in the ALK-rearranged cells. More importantly, CRKL knockdown attenuated their cell proliferation, viability, and migration, but it had no effect on ALK phosphorylation and expression in these cells. Furthermore, CRKL tyrosine phosphorylation was inhibited by dasatinib (an inhibitor of ABL and SRC kinases), which in combination with the ALK inhibitor crizotinib displayed a synergistic inhibitory effect in vitro. In conclusion, our study suggests that CRKL is a key downstream effector of ALK, and combined inhibition of ALK and CRKL may represent an effective strategy for treating ALK-rearranged NSCLC patients. PMID:27078848

  20. Activity of second-generation ALK inhibitors against crizotinib-resistant mutants in an NPM-ALK model compared to EML4-ALK

    PubMed Central

    Fontana, Diletta; Ceccon, Monica; Gambacorti-Passerini, Carlo; Mologni, Luca

    2015-01-01

    Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor involved in both solid and hematological tumors. About 80% of ALK-positive anaplastic large-cell lymphoma (ALCL) cases are characterized by the t(2;5)(p23;q35) translocation, encoding for the aberrant fusion protein nucleophosmin (NPM)-ALK, whereas 5% of non-small-cell lung cancer (NSCLC) patients carry the inv(2)(p21;p23) rearrangement, encoding for the echinoderm microtubule-associated protein-like 4 (EML4)-ALK fusion. The ALK/c-MET/ROS inhibitor crizotinib successfully improved the treatment of ALK-driven diseases. However, several cases of resistance appeared in NSCLC patients, and ALK amino acid substitutions were identified as a leading cause of resistance to crizotinib. Second-generation ALK inhibitors have been developed in order to overcome crizotinib resistance. In this work, we profiled in vitro the activity of crizotinib, AP26113, ASP3026, alectinib, and ceritinib against six mutated forms of ALK associated with clinical resistance to crizotinib (C1156Y, L1196M, L1152R, G1202R, G1269A, and S1206Y) and provide a classification of mutants according to their level of sensitivity/resistance to the drugs. Since the biological activity of ALK mutations extends beyond the specific type of fusion, both NPM-ALK- and EML4-ALK-positive cellular models were used. Our data revealed that most mutants may be targeted by using different inhibitors. One relevant exception is represented by the G1202R substitution, which was highly resistant to all drugs (>10-fold increased IC50 compared to wild type) and may represent the most challenging mutation to overcome. These results provide a prediction of cross-resistance of known crizotinib-resistant mutations against all second-generation tyrosine kinase inhibitors (TKIs) clinically available, and therefore could be a useful tool to help clinicians in the management of crizotinib-resistance cases. PMID:25727400

  1. Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer

    PubMed Central

    Rogers, Toni-Maree; Arnau, Gisela Mir; Ryland, Georgina L.; Huang, Stephen; Lira, Maruja E.; Emmanuel, Yvette; Perez, Omar D.; Irwin, Darryl; Fellowes, Andrew P.; Wong, Stephen Q.; Fox, Stephen B.

    2017-01-01

    ALK, ROS1 and RET gene fusions are important predictive biomarkers for tyrosine kinase inhibitors in lung cancer. Currently, the gold standard method for gene fusion detection is Fluorescence In Situ Hybridization (FISH) and while highly sensitive and specific, it is also labour intensive, subjective in analysis, and unable to screen a large numbers of gene fusions. Recent developments in high-throughput transcriptome-based methods may provide a suitable alternative to FISH as they are compatible with multiplexing and diagnostic workflows. However, the concordance between these different methods compared with FISH has not been evaluated. In this study we compared the results from three transcriptome-based platforms (Nanostring Elements, Agena LungFusion panel and ThermoFisher NGS fusion panel) to those obtained from ALK, ROS1 and RET FISH on 51 clinical specimens. Overall agreement of results ranged from 86–96% depending on the platform used. While all platforms were highly sensitive, both the Agena panel and Thermo Fisher NGS fusion panel reported minor fusions that were not detectable by FISH. Our proof–of–principle study illustrates that transcriptome-based analyses are sensitive and robust methods for detecting actionable gene fusions in lung cancer and could provide a robust alternative to FISH testing in the diagnostic setting. PMID:28181564

  2. Multiplexed transcriptome analysis to detect ALK, ROS1 and RET rearrangements in lung cancer.

    PubMed

    Rogers, Toni-Maree; Arnau, Gisela Mir; Ryland, Georgina L; Huang, Stephen; Lira, Maruja E; Emmanuel, Yvette; Perez, Omar D; Irwin, Darryl; Fellowes, Andrew P; Wong, Stephen Q; Fox, Stephen B

    2017-02-09

    ALK, ROS1 and RET gene fusions are important predictive biomarkers for tyrosine kinase inhibitors in lung cancer. Currently, the gold standard method for gene fusion detection is Fluorescence In Situ Hybridization (FISH) and while highly sensitive and specific, it is also labour intensive, subjective in analysis, and unable to screen a large numbers of gene fusions. Recent developments in high-throughput transcriptome-based methods may provide a suitable alternative to FISH as they are compatible with multiplexing and diagnostic workflows. However, the concordance between these different methods compared with FISH has not been evaluated. In this study we compared the results from three transcriptome-based platforms (Nanostring Elements, Agena LungFusion panel and ThermoFisher NGS fusion panel) to those obtained from ALK, ROS1 and RET FISH on 51 clinical specimens. Overall agreement of results ranged from 86-96% depending on the platform used. While all platforms were highly sensitive, both the Agena panel and Thermo Fisher NGS fusion panel reported minor fusions that were not detectable by FISH. Our proof-of-principle study illustrates that transcriptome-based analyses are sensitive and robust methods for detecting actionable gene fusions in lung cancer and could provide a robust alternative to FISH testing in the diagnostic setting.

  3. Comparison of small biopsy specimens and surgical specimens for the detection of EGFR mutations and EML4-ALK in non-small-cell lung cancer

    PubMed Central

    Xiao, DeSheng; Lu, Can; Zhu, Wei; He, QiuYan; Li, Yong; Fu, ChunYan; Zhou, JianHua; Liu, Shuang; Tao, YongGuang

    2016-01-01

    Epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) fusion genes represent novel oncogenes that are associated with non–small-cell lung cancers (NSCLC). The feasibility of detecting EGFR mutations and ALK fusion genes in small biopsy specimens or surgical specimens was determined. Of the 721 NSCLC patients, a total of 305 cases were positive for EGFR mutations (42.3%). The rate of EGFR mutations in women was significantly higher than that in men. Histologically, the EGFR mutation rate in adenocarcinomas was significantly higher than that in squamous cell carcinomas. No difference in the EGFR mutation rate was observed between surgical specimens (42.1%) and small biopsy specimens (42.4%), which indicated that the EGFR mutation ratios in surgical specimens and small biopsy specimens were not different. In 385 NSCLC patients, 26 cases were positive for EML4-ALK (6.8%). However, 11.7% of the surgical specimens were EML4-ALK-positive, whereas the positive proportion in the small biopsy specimens was only 4.7%, which indicated that EML4-ALK-positive rate in the surgical specimens was significantly higher than that in the small biopsy specimens. Detection of EGFR gene mutations was feasible in small biopsy specimens, and screening for EML4-ALK expression in small biopsy specimens can be used to guide clinical treatments. PMID:27322143

  4. Characterization of a CYP153 alkane hydroxylase gene in a Gram-positive Dietzia sp. DQ12-45-1b and its "team role" with alkW1 in alkane degradation.

    PubMed

    Nie, Yong; Liang, Jie-Liang; Fang, Hui; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-01-01

    CYP153 and AlkB-like hydroxylases were recently discovered in Gram-positive alkane-degrading bacteria. However, it is unclear whether they cooperate with each other in alkane degradation as they do in Gram-negative bacteria. In this paper, we cloned the CYP153 gene from a representative Gram-positive alkane-degrading bacterium, Dietzia sp. DQ12-45-1b. The CYP153 gene transcription in Dietzia sp. DQ12-45-1b and heterologous expression in alkB gene knockout mutant strain Pseudomonas fluorescens KOB2∆1 both confirmed the functions of CYP153 on C6-C10 n-alkanes degradation, but not on longer chain-length n-alkanes. In addition, substrate-binding analysis of the purified CYP153 protein revealed different substrate affinities to C6-C16 n-alkanes, confirming n-alkanes binding to CYP153 protein. Along with AlkW1, an AlkB-like alkane hydroxylase in Dietzia sp. DQ12-45-1b, a teamwork pattern was found in n-alkane degradation, i.e. CYP153 was responsible for hydroxylating n-alkanes shorter than C10 while AlkW1 was responsible for those longer than C14. Further sequence analysis suggested that the high horizontal gene transfer (HGT) potential of CYP153 genes may be universal in Gram-positive alkane-degrading actinomycetes that contain both alkB and CYP153 genes.

  5. Fusion gene and splice variant analyses in liquid biopsies of lung cancer patients

    PubMed Central

    Giménez-Capitán, Ana; Karachaliou, Niki; Pérez-Rosado, Ana; Viteri, Santiago; Morales-Espinosa, Daniela; Rosell, Rafael

    2016-01-01

    Obtaining a biopsy of solid tumors requires invasive procedures that strongly limit patient compliance. In contrast, a blood extraction is safe, can be performed at many time points during the course disease and encourages appropriate therapy modifications, potentially improving the patient’s clinical outcome and quality of life. Fusion of the tyrosine kinase genes anaplastic lymphoma kinase (ALK), C-ROS oncogen 1 (ROS 1), rearranged during transfection (RET) and neurotrophic tyrosine kinase 1 (NTRK1) occur in 1–5% of lung adenocarcinomas and constitute therapeutic targets for tyrosine kinase inhibitors. In addition, a MET splicing variant of exon 14, has been reported in 2–4% of lung adenocarcinoma and recent studies suggests that targeted therapies inhibiting MET signaling would be beneficial for patients with this alteration. In this review, we will summarize the new techniques recently developed to detect ALK, RET, ROS and NTRK1 fusions and MET exon 14 splicing variant in liquid biopsy using plasma, serum, circulating tumor cells (CTCs), platelets and exosomes as starting material. PMID:27826534

  6. Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing.

    PubMed

    Weirather, Jason L; Afshar, Pegah Tootoonchi; Clark, Tyson A; Tseng, Elizabeth; Powers, Linda S; Underwood, Jason G; Zabner, Joseph; Korlach, Jonas; Wong, Wing Hung; Au, Kin Fai

    2015-10-15

    We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion genes.

  7. ETS fusion genes in prostate cancer.

    PubMed

    Gasi Tandefelt, Delila; Boormans, Joost; Hermans, Karin; Trapman, Jan

    2014-06-01

    Prostate cancer is very common in elderly men in developed countries. Unravelling the molecular and biological processes that contribute to tumor development and progressive growth, including its heterogeneity, is a challenging task. The fusion of the genes ERG and TMPRSS2 is the most frequent genomic alteration in prostate cancer. ERG is an oncogene that encodes a member of the family of ETS transcription factors. At lower frequency, other members of this gene family are also rearranged and overexpressed in prostate cancer. TMPRSS2 is an androgen-regulated gene that is preferentially expressed in the prostate. Most of the less frequent ETS fusion partners are also androgen-regulated and prostate-specific. During the last few years, novel concepts of the process of gene fusion have emerged, and initial experimental results explaining the function of the ETS genes ERG and ETV1 in prostate cancer have been published. In this review, we focus on the most relevant ETS gene fusions and summarize the current knowledge of the role of ETS transcription factors in prostate cancer. Finally, we discuss the clinical relevance of TMRPSS2-ERG and other ETS gene fusions in prostate cancer.

  8. ALK-positive anaplastic large cell lymphoma limited to the skin: clinical, histopathological and molecular analysis of 6 pediatric cases. A report from the ALCL99 study.

    PubMed

    Oschlies, Ilske; Lisfeld, Jasmin; Lamant, Laurence; Nakazawa, Atsuko; d'Amore, Emanuele S G; Hansson, Ulrika; Hebeda, Konnie; Simonitsch-Klupp, Ingrid; Maldyk, Jadwiga; Müllauer, Leonhard; Tinguely, Marianne; Stücker, Markus; Ledeley, Marie-Cecile; Siebert, Reiner; Reiter, Alfred; Brugières, Laurence; Klapper, Wolfram; Woessmann, Wilhelm

    2013-01-01

    Anaplastic large cell lymphomas are peripheral T-cell lymphomas that are characterized by a proliferation of large anaplastic blasts expressing CD30. In children, systemic anaplastic large cell lymphomas often present at advanced clinical stage and harbor translocations involving the anaplastic lymphoma kinase (ALK) gene leading to the expression of chimeric anaplastic lymphoma kinase (ALK)-fusion proteins. Primary cutaneous anaplastic large cell lymphoma is regarded as an ALK-negative variant confined to the skin and is part of the spectrum of primary cutaneous CD30-positive T-cell lymphoproliferative disorders. Thirty-three of 487 pediatric patients registered within the Anaplastic Large Cell Lymphoma-99 trial (1999 to 2006) presented with a skin limited CD30-positive lympho-proliferative disorder. In 23 of the 33 patients, material for international histopathological review was available, and the cases were studied for histopathological, immunophenotypical and clinical features as well as for breaks within the ALK gene. Five of 23 cases and one additional case (identified after closure of the trial) expressed ALK-protein. Complete staging excluded any other organ involvement in all children. Expression of ALK proteins was demonstrated by immunohistochemistry in all cases and the presence of breaks of the ALK gene was genetically confirmed in 5 evaluable cases. The histopathological and clinical picture of these skin-restricted ALK-positive lymphomas was indistinguishable from that of cutaneous anaplastic large cell lymphoma. Five children presented with a single skin lesion that was completely resected in 4 and incompletely resected in one. Three of these patients received no further therapy, 2 additional local radiotherapy, and one chemotherapy. All children remain in complete remission with a median follow up of seven years (range 1-8 years). We present 6 pediatric cases of ALK-positive primary cutaneous anaplastic large cell lymphomas. After thorough

  9. ALK F1174V mutation confers sensitivity while ALK I1171 mutation confers resistance to alectinib. The importance of serial biopsy post progression.

    PubMed

    Ou, Sai-Hong; Milliken, Jeffrey C; Azada, Michele C; Miller, Vincent A; Ali, Siraj M; Klempner, Samuel J

    2016-01-01

    Many acquired resistant mutations to the anaplastic lymphoma kinase (ALK) gene have been identified during treatment of ALK-rearranged non-small cell lung cancer (NSCLC) patients with crizotinib, ceritinib, and alectinib. These various acquired resistant ALK mutations confer differential sensitivities to various ALK inhibitors and may provide guidance on how to sequence the use of many of the second generation ALK inhibitors. We described a patient who developed an acquired ALK F1174V resistant mutation on progression from crizotinib that responded to alectinib for 18 months but then developed an acquired ALK I1171S mutation to alectinib. Both tumor samples had essentially the same genomic profile by comprehensive genomic profiling otherwise. This is the first patient report that demonstrates ALK F1174V mutation is sensitive to alectinib and further confirms missense acquired ALK I1171 mutation is resistant to alectinib. Sequential tumor re-biopsy for comprehensive genomic profiling (CGP) is important to appreciate the selective pressure during treatment with various ALK inhibitors underpinning the evolution of the disease course of ALK+NSCLC patients while on treatment with the various ALK inhibitors. This approach will likely help inform the optimal sequencing strategy as more ALK inhibitors become available. This case report also validates the importance of developing structurally distinct ALK inhibitors for clinical use to overcome non-cross resistant ALK mutations.

  10. EML4-ALK induces epithelial-mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells.

    PubMed

    Guo, Fuchun; Liu, Xiaoke; Qing, Qin; Sang, Yaxiong; Feng, Chengjun; Li, Xiaoyu; Jiang, Li; Su, Pei; Wang, Yongsheng

    2015-04-10

    The echinoderm microtubule-associated protein-like 4(EML4)--anaplastic lymphoma kinase (ALK) fusion gene has been identified as a driver mutation in non-small-cell lung cancer (NSCLC). However, the role of EML4-ALK in malignant transformation is not entirely clear. Here, for the first time, we showed that H1299 NSCLC cells stably expressing EML4-ALK acquire EMT phenotype, associated with enhanced invasive migration and increased expression of EMT-inducing transcription factors. H1299-EML4-ALK cells also displayed cancer stem cell-like properties with a concomitant up-regulation of CD133 and enhanced ability of mammospheres formation. Moreover, we found that inhibition of ERK1/2 reversed EMT induced by EML4-ALK in H1299 cells. Taken together, these results suggested that EML4-ALK induced ERK activation is mechanistically associated with EMT phenotype. Thus, inhibition of ERK signaling pathway could be a potential strategy in treatment of NSCLC patients with EML4-ALK translocation.

  11. Gene Fusion: A Genome Wide Survey

    NASA Technical Reports Server (NTRS)

    Liang, Ping; Riley, Monica

    2001-01-01

    As a well known fact, organisms form larger and complex multimodular (composite or chimeric) and mostly multi-functional proteins through gene fusion of two or more individual genes which have independent evolution histories and functions. We call each of these components a module. The existence of multimodular proteins may improves the efficiency in gene regulation and in cellular functions, and thus may give the host organism advantages in adaptation to environments. Analysis of all gene fusions in present-day organisms should allow us to examine the patterns of gene fusion in context with cellular functions, to trace back the evolution processes from the ancient smaller and uni-functional proteins to the present-day larger and complex multi-functional proteins, and to estimate the minimal number of ancestor proteins that existed in the last common ancestor for all life on earth. Although many multimodular proteins have been experimentally known, identification of gene fusion events systematically at genome scale had not been possible until recently when large number of completed genome sequences have been becoming available. In addition, technical difficulties for such analysis also exist due to the complexity of this biological and evolutionary process. We report from this study a new strategy to computationally identify multimodular proteins using completed genome sequences and the results surveyed from 22 organisms with the data from over 40 organisms to be presented during the meeting. Additional information is contained in the original extended abstract.

  12. Responses to crizotinib in patients with ALK-positive lung adenocarcinoma who tested immunohistochemistry (IHC)-positive and fluorescence in situ hybridization (FISH)-negative

    PubMed Central

    Yang, Lin; Mu, Xinlin; Wang, Yan; Zhao, Xinming; Li, Junling; Lin, Dongmei

    2016-01-01

    Although the Ventana immunohistochemistry (IHC) platform for detecting anaplastic lymphoma kinase gene (ALK) (D5F3) expression was recently approved by the US Food and Drugs Administration (FDA), fluorescence in situ hybridization (FISH) is still the “gold-standard” method recommended by the US National Comprehensive Cancer Network (NCCN) guideline for NSCLC. We evaluated 6 ALK-positive lung adenocarcinoma patients who tested Ventana IHC-positive and FISH-negative and assessed their clinical responses to the ALK tyrosine kinase inhibitor (TKI) crizotinib. Histologic and cytologic specimens from the 6 patients were stained with Ventana anti-ALK(D5F3) rabbit monoclonal primary antibody using the OptiView™ DAB IHC detection kit and OptiView™ amplification kit on a Ventana BenchMark XT processor. In addition, they were also tested by FISH, qRT-PCR, next-generation sequencing (NGS), and RNAscope ISH analysis. All patients received crizotinib treatment and their follow-up clinical data were recorded. The objective response rate achieved with crizotinib therapy was 66.7% (4/6 partial responses and 2/6 stable disease). One patient in whom a new fusion type (EML4->EXOC6B->ALK fusion) was identified obtained a partial response. These findings indicate that patients with ALK-positive lung adenocarcinoma who test Ventana IHC-positive and FISH-negative may still respond to crizotinib therapy. PMID:27418132

  13. Kinase impact assessment in the landscape of fusion genes that retain kinase domains: a pan-cancer study.

    PubMed

    Kim, Pora; Jia, Peilin; Zhao, Zhongming

    2016-12-24

    Assessing the impact of kinase in gene fusion is essential for both identifying driver fusion genes (FGs) and developing molecular targeted therapies. Kinase domain retention is a crucial factor in kinase fusion genes (KFGs), but such a systematic investigation has not been done yet. To this end, we analyzed kinase domain retention (KDR) status in chimeric protein sequences of 914 KFGs covering 312 kinases across 13 major cancer types. Based on 171 kinase domain-retained KFGs including 101 kinases, we studied their recurrence, kinase groups, fusion partners, exon-based expression depth, short DNA motifs around the break points and networks. Our results, such as more KDR than 5'-kinase fusion genes, combinatorial effects between 3'-KDR kinases and their 5'-partners and a signal transduction-specific DNA sequence motif in the break point intronic sequences, supported positive selection on 3'-kinase fusion genes in cancer. We introduced a degree-of-frequency (DoF) score to measure the possible number of KFGs of a kinase. Interestingly, kinases with high DoF scores tended to undergo strong gene expression alteration at the break points. Furthermore, our KDR gene fusion network analysis revealed six of the seven kinases with the highest DoF scores (ALK, BRAF, MET, NTRK1, NTRK3 and RET) were all observed in thyroid carcinoma. Finally, we summarized common features of 'effective' (highly recurrent) kinases in gene fusions such as expression alteration at break point, redundant usage in multiple cancer types and 3'-location tendency. Collectively, our findings are useful for prioritizing driver kinases and FGs and provided insights into KFGs' clinical implications.

  14. Alk1 and Alk2 are two new cell cycle-regulated haspin-like proteins in budding yeast.

    PubMed

    Nespoli, Alessandro; Vercillo, Raffaella; di Nola, Lisa; Diani, Laura; Giannattasio, Michele; Plevani, Paolo; Muzi-Falconi, Marco

    2006-07-01

    Haspin is a protein kinase identified in mouse and human cells, and genes coding for haspin-like proteins are present in virtually all eukaryotic genomes sequenced so far. Two haspin homologues, called Alk1 and Alk2, are present in the yeast Saccharomyces cerevisiae. Both Alk1 and Alk2 exhibit a weak auto-kinase activity in vitro, are phosphoproteins in vivo and are hyperphosphorylated in response to DNA damage. The amount and modification of the two proteins is greatly regulated during the cell cycle. In fact, Alk1 and Alk2 levels peak in mitosis and late-S/G2, respectively, and phosphorylation of both proteins is maximal in mitosis. Control of protein stability plays a major role in Alk2 regulation. The half-life of Alk2 is particularly short in G1; mutagenesis and genetic analysis indicate that its degradation is controlled by the APC pathway. Overexpression of ALK2, but not of ALK1, causes a mitotic arrest, which is correlated to the kinase activity of the protein. This finding, together with its cell cycle regulation, suggests a role for Alk2 in the control of mitosis.

  15. Development of potent ALK inhibitor and its molecular inhibitory mechanism against NSCLC harboring EML4-ALK proteins

    SciTech Connect

    Kang, Chung Hyo; Yun, Jeong In; Lee, Kwangho; Lee, Chong Ock; Lee, Heung Kyoung; Yun, Chang-Soo; Hwang, Jong Yeon; Cho, Sung Yun; Jung, Heejung; Kim, Pilho; Ha, Jae Du; Jeon, Jeong Hee; Choi, Sang Un; Jeong, Hye Gwang; Kim, Hyoung Rae; Park, Chi Hoon

    2015-08-28

    Here, we show the newly synthesized and potent ALK inhibitor having similar scaffold to KRCA-0008, which was reported previously, and its molecular mechanism against cancer cells harboring EML4-ALK fusion protein. Through ALK wild type enzyme assay, we selected two compounds, KRCA-0080 and KRCA-0087, which have trifluoromethyl instead of chloride in R2 position. We characterized these newly synthesized compounds by in vitro and in vivo assays. Enzyme assay shows that KRCA-0080 is more potent against various ALK mutants, including L1196M, G1202R, T1151-L1152insT, and C1156Y, which are seen in crizotinib-resistant patients, than KRCA-0008 is. Cell based assays demonstrate our compounds downregulate the cellular signaling, such as Akt and Erk, by suppressing ALK activity to inhibit the proliferation of the cells harboring EML4-ALK. Interestingly, our compounds induced strong G1/S arrest in H3122 cells leading to the apoptosis, which is proved by PARP-1 cleavage. In vivo H3122 xenograft assay, we found that KRCA-0080 shows significant reduction in tumor size compared to crizotinib and KRCA-0008 by 15–20%. Conclusively, we report a potent ALK inhibitor which shows significant in vivo efficacy as well as excellent inhibitory activity against various ALK mutants. - Highlights: • We synthesized KRCA-0008 derivatives having trifluoromethyl instead of chloride. • KRCA-0080 shows superior activity against several ALK mutants to KRCA-0008. • Cellular assays show our ALK inhibitors suppress only EML4-ALK positive cells. • Our ALK inhibitors induce G1/S arrest to lead apoptosis in H3122 cells. • KRCA-0080 has superior in vivo efficacy to crizotinib and KRCA-0008 by 15–20%.

  16. Gene Fusion Markup Language: a prototype for exchanging gene fusion data

    PubMed Central

    2012-01-01

    Background An avalanche of next generation sequencing (NGS) studies has generated an unprecedented amount of genomic structural variation data. These studies have also identified many novel gene fusion candidates with more detailed resolution than previously achieved. However, in the excitement and necessity of publishing the observations from this recently developed cutting-edge technology, no community standardization approach has arisen to organize and represent the data with the essential attributes in an interchangeable manner. As transcriptome studies have been widely used for gene fusion discoveries, the current non-standard mode of data representation could potentially impede data accessibility, critical analyses, and further discoveries in the near future. Results Here we propose a prototype, Gene Fusion Markup Language (GFML) as an initiative to provide a standard format for organizing and representing the significant features of gene fusion data. GFML will offer the advantage of representing the data in a machine-readable format to enable data exchange, automated analysis interpretation, and independent verification. As this database-independent exchange initiative evolves it will further facilitate the formation of related databases, repositories, and analysis tools. The GFML prototype is made available at http://code.google.com/p/gfml-prototype/. Conclusion The Gene Fusion Markup Language (GFML) presented here could facilitate the development of a standard format for organizing, integrating and representing the significant features of gene fusion data in an inter-operable and query-able fashion that will enable biologically intuitive access to gene fusion findings and expedite functional characterization. A similar model is envisaged for other NGS data analyses. PMID:23072312

  17. Atypical Carcinoid Tumor with Anaplastic Lymphoma Kinase (ALK) Rearrangement Successfully Treated by an ALK Inhibitor.

    PubMed

    Nakajima, Masayuki; Uchiyama, Naoki; Shigemasa, Rie; Matsumura, Takeshi; Matsuoka, Ryota; Nomura, Akihiro

    This is the first report in which crizotinib, an anaplastic lymphoma kinase (ALK) inhibitor, reduced an atypical carcinoid tumor with ALK rearrangement. A 70-year-old man developed a tumor in the left lung and multiple metastases to the lung and brain. The pathology of transbronchial biopsied specimens demonstrated an atypical carcinoid pattern. Combined with immunohistochemical findings, we diagnosed the tumor as atypical carcinoid. ALK gene rearrangement was observed by both immunohistochemical (IHC) and fluorescence in situ hybridization. He was treated with chemotherapy as first-line therapy, however, the tumor did not respond to chemotherapy. Thereafter, he was treated with crizotinib, which successfully reduced the tumors.

  18. Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency

    PubMed Central

    Mologni, Luca; Poggio, Teresa; Varesio, Lydia M.; Menotti, Matteo; Bombelli, Silvia; Rigolio, Roberta; Manazza, Andrea D.; Di Giacomo, Filomena; Ambrogio, Chiara; Giudici, Giovanni; Casati, Cesare; Mastini, Cristina; Compagno, Mara; Turner, Suzanne D.; Gambacorti-Passerini, Carlo; Chiarle, Roberto; Voena, Claudia

    2016-01-01

    Most of Anaplastic Large Cell Lymphoma (ALCL) cases carry the t(2;5; p23;q35) that produces the fusion protein NPM-ALK. NPM-ALK deregulated kinase activity drives several pathways that support malignant transformation of lymphoma cells. We found that in ALK-rearranged ALCL cell lines NPM-ALK was distributed in equal amounts between the cytoplasm and the nucleus. Only the cytoplasmic portion was catalytically active in both cell lines and primary ALCL, whereas the nuclear portion was inactive due to heterodimerization with NPM1. Thus, about 50% of the NPM-ALK is not active and sequestered as NPM-ALK/NPM1 heterodimers in the nucleus. Overexpression or re-localization of NPM-ALK to the cytoplasm by NPM genetic knock-out or knock-down caused ERK1/2 increased phosphorylation and cell death through the engagement of an ATM/Chk2 and γH2AX mediated DNA damage response. Remarkably, human NPM-ALK amplified cell lines resistant to ALK tyrosine kinase inhibitors (TKIs) underwent apoptosis upon drug withdrawal as a consequence of ERK1/2 hyperactivation. Altogether, these findings indicate that an excess of NPM-ALK activation and signaling induces apoptosis via oncogenic stress responses. A “drug holiday” where the ALK TKI treatment is suspended could represent a therapeutic option in cells that become resistant by NPM-ALK amplification. PMID:26657151

  19. Molecular pathways: targeting ETS gene fusions in cancer.

    PubMed

    Feng, Felix Y; Brenner, J Chad; Hussain, Maha; Chinnaiyan, Arul M

    2014-09-01

    Rearrangements, or gene fusions, involving the ETS family of transcription factors are common driving events in both prostate cancer and Ewing sarcoma. These rearrangements result in pathogenic expression of the ETS genes and trigger activation of transcriptional programs enriched for invasion and other oncogenic features. Although ETS gene fusions represent intriguing therapeutic targets, transcription factors, such as those comprising the ETS family, have been notoriously difficult to target. Recently, preclinical studies have demonstrated an association between ETS gene fusions and components of the DNA damage response pathway, such as PARP1, the catalytic subunit of DNA protein kinase (DNAPK), and histone deactylase 1 (HDAC1), and have suggested that ETS fusions may confer sensitivity to inhibitors of these DNA repair proteins. In this review, we discuss the role of ETS fusions in cancer, the preclinical rationale for targeting ETS fusions with inhibitors of PARP1, DNAPK, and HDAC1, as well as ongoing clinical trials targeting ETS gene fusions.

  20. Prospective and clinical validation of ALK immunohistochemistry: results from the phase I/II study of alectinib for ALK-positive lung cancer (AF-001JP study)

    PubMed Central

    Takeuchi, K.; Togashi, Y.; Kamihara, Y.; Fukuyama, T.; Yoshioka, H.; Inoue, A.; Katsuki, H.; Kiura, K.; Nakagawa, K.; Seto, T.; Maemondo, M.; Hida, T.; Harada, M.; Ohe, Y.; Nogami, N.; Yamamoto, N.; Nishio, M.; Tamura, T.

    2016-01-01

    Background Anaplastic lymphoma kinase (ALK) fusions need to be accurately and efficiently detected for ALK inhibitor therapy. Fluorescence in situ hybridization (FISH) remains the reference test. Although increasing data are supporting that ALK immunohistochemistry (IHC) is highly concordant with FISH, IHC screening needed to be clinically and prospectively validated. Patients and methods In the AF-001JP trial for alectinib, 436 patients were screened for ALK fusions through IHC (n = 384) confirmed with FISH (n = 181), multiplex RT-PCR (n = 68), or both (n = 16). IHC results were scored with iScore. Result ALK fusion was positive in 137 patients and negative in 250 patients. Since the presence of cancer cells in the samples for RT-PCR was not confirmed, ALK fusion negativity could not be ascertained in 49 patients. IHC interpreted with iScore showed a 99.4% (173/174) concordance with FISH. All 41 patients who had iScore 3 and were enrolled in phase II showed at least 30% tumor reduction with 92.7% overall response rate. Two IHC-positive patients with an atypical FISH pattern responded to ALK inhibitor therapy. The reduction rate was not correlated with IHC staining intensity. Conclusions Our study showed (i) that when sufficiently sensitive and appropriately interpreted, IHC can be a stand-alone diagnostic for ALK inhibitor therapies; (ii) that when atypical FISH patterns are accompanied by IHC positivity, the patients should be considered as candidates for ALK inhibitor therapies, and (iii) that the expression level of ALK fusion is not related to the level of response to ALK inhibitors and is thus not required for patient selection. Registration number JapicCTI-101264 (This study is registered with the Japan Pharmaceutical Information Center). PMID:26487585

  1. Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma

    PubMed Central

    Cazes, Alex; Lopez-Delisle, Lucille; Tsarovina, Konstantina; Pierre-Eugène, Cécile; De Preter, Katleen; Peuchmaur, Michel; Nicolas, André; Provost, Claire; Louis-Brennetot, Caroline; Daveau, Romain; Kumps, Candy; Cascone, Ilaria; Schleiermacher, Gudrun; Prignon, Aurélie; Speleman, Frank; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2014-01-01

    Activating mutations of the ALK (Anaplastic lymphoma Kinase) gene have been identified in sporadic and familial cases of neuroblastoma, a cancer of early childhood arising from the sympathetic nervous system (SNS). To decipher ALK function in neuroblastoma predisposition and oncogenesis, we have characterized knock-in (KI) mice bearing the two most frequent mutations observed in neuroblastoma patients. A dramatic enlargement of sympathetic ganglia is observed in AlkF1178L mice from embryonic to adult stages associated with an increased proliferation of sympathetic neuroblasts from E14.5 to birth. In a MYCN transgenic context, the F1178L mutation displays a higher oncogenic potential than the R1279Q mutation as evident from a shorter latency of tumor onset. We show that tumors expressing the R1279Q mutation are sensitive to ALK inhibition upon crizotinib treatment. Furthermore, our data provide evidence that activated ALK triggers RET upregulation in mouse sympathetic ganglia at birth as well as in murine and human neuroblastoma. Using vandetanib, we show that RET inhibition strongly impairs tumor growth in vivo in both MYCN/KI AlkR1279Q and MYCN/KI AlkF1178L mice. Altogether, our findings demonstrate the critical role of activated ALK in SNS development and pathogenesis and identify RET as a therapeutic target in ALK mutated neuroblastoma. PMID:24811913

  2. Identification of Targetable FGFR Gene Fusions in Diverse Cancers

    PubMed Central

    Wu, Yi-Mi; Su, Fengyun; Kalyana-Sundaram, Shanker; Khazanov, Nick; Ateeq, Bushra; Cao, Xuhong; Lonigro, Robert J.; Vats, Pankaj; Wang, Rui; Lin, Su-Fang; Cheng, Ann-Joy; Kunju, Lakshmi P.; Siddiqui, Javed; Tomlins, Scott A.; Wyngaard, Peter; Sadis, Seth; Roychowdhury, Sameek; Hussain, Maha H.; Feng, Felix Y.; Zalupski, Mark M.; Talpaz, Moshe; Pienta, Kenneth J.; Rhodes, Daniel R.; Robinson, Dan R.; Chinnaiyan, Arul M.

    2013-01-01

    Through a prospective clinical sequencing program for advanced cancers, four index cases were identified which harbor gene rearrangements of FGFR2 including patients with cholangiocarcinoma, breast cancer, and prostate cancer. After extending our assessment of FGFR rearrangements across multiple tumor cohorts, we identified additional FGFR gene fusions with intact kinase domains in lung squamous cell cancer, bladder cancer, thyroid cancer, oral cancer, glioblastoma, and head and neck squamous cell cancer. All FGFR fusion partners tested exhibit oligomerization capability, suggesting a shared mode of kinase activation. Overexpression of FGFR fusion proteins induced cell proliferation. Two bladder cancer cell lines that harbor FGFR3 fusion proteins exhibited enhanced susceptibility to pharmacologic inhibition in vitro and in vivo. Due to the combinatorial possibilities of FGFR family fusion to a variety of oligomerization partners, clinical sequencing efforts which incorporate transcriptome analysis for gene fusions are poised to identify rare, targetable FGFR fusions across diverse cancer types. PMID:23558953

  3. Abundance and diversity of n-alkane-degrading bacteria in a forest soil co-contaminated with hydrocarbons and metals: a molecular study on alkB homologous genes.

    PubMed

    Pérez-de-Mora, Alfredo; Engel, Marion; Schloter, Michael

    2011-11-01

    Unraveling functional genes related to biodegradation of organic compounds has profoundly improved our understanding of biological remediation processes, yet the ecology of such genes is only poorly understood. We used a culture-independent approach to assess the abundance and diversity of bacteria catalyzing the degradation of n-alkanes with a chain length between C(5) and C(16) at a forest site co-contaminated with mineral oil hydrocarbons and metals for nearly 60 years. The alkB gene coding for a rubredoxin-dependent alkane monooxygenase enzyme involved in the initial activation step of aerobic aliphatic hydrocarbon metabolism was used as biomarker. Within the area of study, four different zones were evaluated: one highly contaminated, two intermediately contaminated, and a noncontaminated zone. Contaminant concentrations, hydrocarbon profiles, and soil microbial respiration and biomass were studied. Abundance of n-alkane-degrading bacteria was quantified via real-time PCR of alkB, whereas genetic diversity was examined using molecular fingerprints (T-RFLP) and clone libraries. Along the contamination plume, hydrocarbon profiles and increased respiration rates suggested on-going natural attenuation at the site. Gene copy numbers of alkB were similar in contaminated and control areas. However, T-RFLP-based fingerprints suggested lower diversity and evenness of the n-alkane-degrading bacterial community in the highly contaminated zone compared to the other areas; both diversity and evenness were negatively correlated with metal and hydrocarbon concentrations. Phylogenetic analysis of alkB denoted a shift of the hydrocarbon-degrading bacterial community from Gram-positive bacteria in the control zone (most similar to Mycobacterium and Nocardia types) to Gram-negative genotypes in the contaminated zones (Acinetobacter and alkB sequences with little similarity to those of known bacteria). Our results underscore a qualitative rather than a quantitative response of

  4. Identification of targetable FGFR gene fusions in diverse cancers.

    PubMed

    Wu, Yi-Mi; Su, Fengyun; Kalyana-Sundaram, Shanker; Khazanov, Nickolay; Ateeq, Bushra; Cao, Xuhong; Lonigro, Robert J; Vats, Pankaj; Wang, Rui; Lin, Su-Fang; Cheng, Ann-Joy; Kunju, Lakshmi P; Siddiqui, Javed; Tomlins, Scott A; Wyngaard, Peter; Sadis, Seth; Roychowdhury, Sameek; Hussain, Maha H; Feng, Felix Y; Zalupski, Mark M; Talpaz, Moshe; Pienta, Kenneth J; Rhodes, Daniel R; Robinson, Dan R; Chinnaiyan, Arul M

    2013-06-01

    Through a prospective clinical sequencing program for advanced cancers, four index cases were identified which harbor gene rearrangements of FGFR2, including patients with cholangiocarcinoma, breast cancer, and prostate cancer. After extending our assessment of FGFR rearrangements across multiple tumor cohorts, we identified additional FGFR fusions with intact kinase domains in lung squamous cell cancer, bladder cancer, thyroid cancer, oral cancer, glioblastoma, and head and neck squamous cell cancer. All FGFR fusion partners tested exhibit oligomerization capability, suggesting a shared mode of kinase activation. Overexpression of FGFR fusion proteins induced cell proliferation. Two bladder cancer cell lines that harbor FGFR3 fusion proteins exhibited enhanced susceptibility to pharmacologic inhibition in vitro and in vivo. Because of the combinatorial possibilities of FGFR family fusion to a variety of oligomerization partners, clinical sequencing efforts, which incorporate transcriptome analysis for gene fusions, are poised to identify rare, targetable FGFR fusions across diverse cancer types.

  5. Activin Receptor-Like Kinase Receptors ALK5 and ALK1 Are Both Required for TGFβ-Induced Chondrogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells

    PubMed Central

    de Kroon, Laurie M. G.; Narcisi, Roberto; Blaney Davidson, Esmeralda N.; Cleary, Mairéad A.; van Beuningen, Henk M.; Koevoet, Wendy J. L. M.; van Osch, Gerjo J. V. M.; van der Kraan, Peter M.

    2015-01-01

    Introduction Bone marrow-derived mesenchymal stem cells (BMSCs) are promising for cartilage regeneration because BMSCs can differentiate into cartilage tissue-producing chondrocytes. Transforming Growth Factor β (TGFβ) is crucial for inducing chondrogenic differentiation of BMSCs and is known to signal via Activin receptor-Like Kinase (ALK) receptors ALK5 and ALK1. Since the specific role of these two TGFβ receptors in chondrogenesis is unknown, we investigated whether ALK5 and ALK1 are expressed in BMSCs and whether both receptors are required for chondrogenic differentiation of BMSCs. Materials & Methods ALK5 and ALK1 gene expression in human BMSCs was determined with RT-qPCR. To induce chondrogenesis, human BMSCs were pellet-cultured in serum-free chondrogenic medium containing TGFβ1. Chondrogenesis was evaluated by aggrecan and collagen type IIα1 RT-qPCR analysis, and histological stainings of proteoglycans and collagen type II. To overexpress constitutively active (ca) receptors, BMSCs were transduced either with caALK5 or caALK1. Expression of ALK5 and ALK1 was downregulated by transducing BMSCs with shRNA against ALK5 or ALK1. Results ALK5 and ALK1 were expressed in in vitro-expanded as well as in pellet-cultured BMSCs from five donors, but mRNA levels of both TGFβ receptors did not clearly associate with chondrogenic induction. TGFβ increased ALK5 and decreased ALK1 gene expression in chondrogenically differentiating BMSC pellets. Neither caALK5 nor caALK1 overexpression induced cartilage matrix formation as efficient as that induced by TGFβ. Moreover, short hairpin-mediated downregulation of either ALK5 or ALK1 resulted in a strong inhibition of TGFβ-induced chondrogenesis. Conclusion ALK5 as well as ALK1 are required for TGFβ-induced chondrogenic differentiation of BMSCs, and TGFβ not only directly induces chondrogenesis, but also modulates ALK5 and ALK1 receptor signaling in BMSCs. These results imply that optimizing cartilage formation by

  6. Gene status and clinicopathologic characteristics of lung adenocarcinomas with mediastinal lymph node metastasis

    PubMed Central

    Zhang, Shumeng; Yan, Bing; Zheng, Jing; Zhao, Jing; Zhou, Jianying

    2016-01-01

    Lung cancer with mediastinal lymph node metastasis is more likely to develop recurrence and metastasis after complete resection and targeted therapy is a promising treatment strategy. We performed amplification refractory mutation system (ARMS) fluorescence quantitative PCR to detect the gene status of EGFR, ALK, ROS1 and RET in resected samples from 280 patients who were confirmed to have primary lung adenocarcinomas with N1-N2 lymph node metastasis. Of the 280 patients enrolled, the frequency of EGFR mutations, ALK fusions, ROS1 fusions, RET fusions and no mutations was 42.9%, 10.7%, 1.8%, 3.6% and 42.9%, respectively. Five patients exhibited the coexistence of the EGFR and ALK alterations. ALK, ROS1 and RET fusions were mutually exclusive. The frequency of EGFR mutation was significantly lower among patients with poor differentiation, while the rates of ALK and ROS1 fusions were the opposite. RET fusions also tended to be more prevalent in poorly differentiated patients. EGFR and ALK double positive tumors were characterized by significantly smaller size compared with those had single gene alteration. Our study comprehensively analyzed the distinct and common clinicopathologic characteristics according to genotypes of the cohort, which should help in categorizing patients for efficient screening. PMID:27563816

  7. The Use of a Combination of alkB Primers to Better Characterize the Distribution of Alkane-Degrading Bacteria.

    PubMed

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Peixoto, Raquel; Rosado, Alexandre S; Seldin, Lucy

    2013-01-01

    The alkane monooxygenase AlkB, which is encoded by the alkB gene, is a key enzyme involved in bacterial alkane degradation. To study the alkB gene within bacterial communities, researchers need to be aware of the variations in alkB nucleotide sequences; a failure to consider the sequence variations results in the low representation of the diversity and richness of alkane-degrading bacteria. To minimize this shortcoming, the use of a combination of three alkB-targeting primers to enhance the detection of the alkB gene in previously isolated alkane-degrading bacteria was proposed. Using this approach, alkB-related PCR products were detected in 79% of the strains tested. Furthermore, the chosen set of primers was used to study alkB richness and diversity in different soils sampled in Carmópolis, Brazil and King George Island, Antarctica. The DNA extracted from the different soils was PCR amplified with each set of alkB-targeting primers, and clone libraries were constructed, sequenced and analyzed. A total of 255 alkB phylotypes were detected. Venn diagram analyses revealed that only low numbers of alkB phylotypes were shared among the different libraries derived from each primer pair. Therefore, the combination of three alkB-targeting primers enhanced the richness of alkB phylotypes detected in the different soils by 45% to 139%, when compared to the use of a single alkB-targeting primer. In addition, a dendrogram analysis and beta diversity comparison of the alkB composition showed that each of the sampling sites studied had a particular set of alkane-degrading bacteria. The use of a combination of alkB primers was an efficient strategy for enhancing the detection of the alkB gene in cultivable bacteria and for better characterizing the distribution of alkane-degrading bacteria in different soil environments.

  8. The Use of a Combination of alkB Primers to Better Characterize the Distribution of Alkane-Degrading Bacteria

    PubMed Central

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Peixoto, Raquel; Rosado, Alexandre S.; Seldin, Lucy

    2013-01-01

    The alkane monooxygenase AlkB, which is encoded by the alkB gene, is a key enzyme involved in bacterial alkane degradation. To study the alkB gene within bacterial communities, researchers need to be aware of the variations in alkB nucleotide sequences; a failure to consider the sequence variations results in the low representation of the diversity and richness of alkane-degrading bacteria. To minimize this shortcoming, the use of a combination of three alkB-targeting primers to enhance the detection of the alkB gene in previously isolated alkane-degrading bacteria was proposed. Using this approach, alkB-related PCR products were detected in 79% of the strains tested. Furthermore, the chosen set of primers was used to study alkB richness and diversity in different soils sampled in Carmópolis, Brazil and King George Island, Antarctica. The DNA extracted from the different soils was PCR amplified with each set of alkB-targeting primers, and clone libraries were constructed, sequenced and analyzed. A total of 255 alkB phylotypes were detected. Venn diagram analyses revealed that only low numbers of alkB phylotypes were shared among the different libraries derived from each primer pair. Therefore, the combination of three alkB-targeting primers enhanced the richness of alkB phylotypes detected in the different soils by 45% to 139%, when compared to the use of a single alkB-targeting primer. In addition, a dendrogram analysis and beta diversity comparison of the alkB composition showed that each of the sampling sites studied had a particular set of alkane-degrading bacteria. The use of a combination of alkB primers was an efficient strategy for enhancing the detection of the alkB gene in cultivable bacteria and for better characterizing the distribution of alkane-degrading bacteria in different soil environments. PMID:23825163

  9. INTEGRATE: gene fusion discovery using whole genome and transcriptome data

    PubMed Central

    Zhang, Jin; White, Nicole M.; Schmidt, Heather K.; Fulton, Robert S.; Tomlinson, Chad; Warren, Wesley C.; Wilson, Richard K.; Maher, Christopher A.

    2016-01-01

    While next-generation sequencing (NGS) has become the primary technology for discovering gene fusions, we are still faced with the challenge of ensuring that causative mutations are not missed while minimizing false positives. Currently, there are many computational tools that predict structural variations (SV) and gene fusions using whole genome (WGS) and transcriptome sequencing (RNA-seq) data separately. However, as both WGS and RNA-seq have their limitations when used independently, we hypothesize that the orthogonal validation from integrating both data could generate a sensitive and specific approach for detecting high-confidence gene fusion predictions. Fortunately, decreasing NGS costs have resulted in a growing quantity of patients with both data available. Therefore, we developed a gene fusion discovery tool, INTEGRATE, that leverages both RNA-seq and WGS data to reconstruct gene fusion junctions and genomic breakpoints by split-read mapping. To evaluate INTEGRATE, we compared it with eight additional gene fusion discovery tools using the well-characterized breast cell line HCC1395 and peripheral blood lymphocytes derived from the same patient (HCC1395BL). The predictions subsequently underwent a targeted validation leading to the discovery of 131 novel fusions in addition to the seven previously reported fusions. Overall, INTEGRATE only missed six out of the 138 validated fusions and had the highest accuracy of the nine tools evaluated. Additionally, we applied INTEGRATE to 62 breast cancer patients from The Cancer Genome Atlas (TCGA) and found multiple recurrent gene fusions including a subset involving estrogen receptor. Taken together, INTEGRATE is a highly sensitive and accurate tool that is freely available for academic use. PMID:26556708

  10. INTEGRATE: gene fusion discovery using whole genome and transcriptome data.

    PubMed

    Zhang, Jin; White, Nicole M; Schmidt, Heather K; Fulton, Robert S; Tomlinson, Chad; Warren, Wesley C; Wilson, Richard K; Maher, Christopher A

    2016-01-01

    While next-generation sequencing (NGS) has become the primary technology for discovering gene fusions, we are still faced with the challenge of ensuring that causative mutations are not missed while minimizing false positives. Currently, there are many computational tools that predict structural variations (SV) and gene fusions using whole genome (WGS) and transcriptome sequencing (RNA-seq) data separately. However, as both WGS and RNA-seq have their limitations when used independently, we hypothesize that the orthogonal validation from integrating both data could generate a sensitive and specific approach for detecting high-confidence gene fusion predictions. Fortunately, decreasing NGS costs have resulted in a growing quantity of patients with both data available. Therefore, we developed a gene fusion discovery tool, INTEGRATE, that leverages both RNA-seq and WGS data to reconstruct gene fusion junctions and genomic breakpoints by split-read mapping. To evaluate INTEGRATE, we compared it with eight additional gene fusion discovery tools using the well-characterized breast cell line HCC1395 and peripheral blood lymphocytes derived from the same patient (HCC1395BL). The predictions subsequently underwent a targeted validation leading to the discovery of 131 novel fusions in addition to the seven previously reported fusions. Overall, INTEGRATE only missed six out of the 138 validated fusions and had the highest accuracy of the nine tools evaluated. Additionally, we applied INTEGRATE to 62 breast cancer patients from The Cancer Genome Atlas (TCGA) and found multiple recurrent gene fusions including a subset involving estrogen receptor. Taken together, INTEGRATE is a highly sensitive and accurate tool that is freely available for academic use.

  11. Analysis of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK)-reactive CD8(+) T cell responses in children with NPM-ALK(+) anaplastic large cell lymphoma.

    PubMed

    K Singh, V; Werner, S; Hackstein, H; Lennerz, V; Reiter, A; Wölfel, T; Damm-Welk, C; Woessmann, W

    2016-10-01

    Cellular immune responses against the oncoantigen anaplastic lymphoma kinase (ALK) in patients with ALK-positive anaplastic large cell lymphoma (ALCL) have been detected using peptide-based approaches in individuals preselected for human leucocyte antigen (HLA)-A*02:01. In this study, we aimed to evaluate nucleophosmin (NPM)-ALK-specific CD8(+) T cell responses in ALCL patients ensuring endogenous peptide processing of ALK antigens and avoiding HLA preselection. We also examined the HLA class I restriction of ALK-specific CD8(+) T cells. Autologous dendritic cells (DCs) transfected with in-vitro-transcribed RNA (IVT-RNA) encoding NPM-ALK were used as antigen-presenting cells for T cell stimulation. Responder T lymphocytes were tested in interferon-gamma enzyme-linked immunospot (ELISPOT) assays with NPM-ALK-transfected autologous DCs as well as CV-1 in Origin with SV40 genes (COS-7) cells co-transfected with genes encoding the patients' HLA class I alleles and with NPM-ALK encoding cDNA to verify responses and define the HLA restrictions of specific T cell responses. NPM-ALK-specific CD8(+) T cell responses were detected in three of five ALK-positive ALCL patients tested between 1 and 13 years after diagnosis. The three patients had also maintained anti-ALK antibody responses. No reactivity was detected in samples from five healthy donors. The NPM-ALK-specific CD8(+) T cell responses were restricted by HLA-C-alleles (C*06:02 and C*12:02) in all three cases. This approach allowed for the detection of NPM-ALK-reactive T cells, irrespective of the individual HLA status, up to 9 years after ALCL diagnosis.

  12. The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut

    SciTech Connect

    Varshney, Gaurav K.; Palmer, Ruth H. . E-mail: Ruth.Palmer@ucmp.umu.se

    2006-12-29

    During embryonic development the midgut visceral muscle is formed by fusion of cells within the visceral mesoderm, a process initiated by the specification of a specialised cell type, the founder cell, within this tissue. Activation of the receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) in the developing visceral muscle of Drosophila melanogaster initiates a signal transduction pathway required for muscle fusion. In this paper, we have investigated downstream components which are regulated by this novel signalling pathway. Here we show that Alk-mediated signal transduction drives the expression of the bHLH transcription factor Hand in vivo. Loss of Alk function results in a complete lack of Hand expression in this tissue, whereas Alk gain of function results in an expansion of Hand expression. Finally, we have investigated the process of muscle fusion in the gut of Hand mutant animals and can find no obvious defects in this process, suggesting that Hand is not critical for visceral muscle fusion per se.

  13. Canadian consensus: inhibition of ALK-positive tumours in advanced non-small-cell lung cancer

    PubMed Central

    Melosky, B.; Agulnik, J.; Albadine, R.; Banerji, S.; Bebb, D.G.; Bethune, D.; Blais, N.; Butts, C.; Cheema, P.; Cheung, P.; Cohen, V.; Deschenes, J.; Ionescu, D.N.; Juergens, R.; Kamel-Reid, S.; Laurie, S.A.; Liu, G.; Morzycki, W.; Tsao, M.S.; Xu, Z.; Hirsh, V.

    2016-01-01

    Anaplastic lymphoma kinase (alk) is an oncogenic driver in non-small-cell lung cancer (nsclc). Chromosomal rearrangements involving the ALK gene occur in up to 4% of nonsquamous nsclc patients and lead to constitutive activation of the alk signalling pathway. ALK-positive nsclc is found in relatively young patients, with a median age of 50 years. Patients frequently have brain metastasis. Targeted inhibition of the alk pathway prolongs progression-free survival in patients with ALK-positive advanced nsclc. The results of several recent clinical trials confirm the efficacy and safety benefit of crizotinib and ceritinib in this population. Canadian oncologists support the following consensus statement: All patients with advanced nonsquamous nsclc (excluding pure neuroendocrine carcinoma) should be tested for the presence of an ALK rearrangement. If an ALK rearrangement is present, treatment with a targeted alk inhibitor in the first-line setting is recommended. As patients become resistant to first-generation alk inhibitors, other treatments, including second-generation alk inhibitors can be considered. PMID:27330348

  14. Uncommon features of surgically resected ALK-positive cavitary lung adenocarcinoma: a case report.

    PubMed

    Takamori, Shinkichi; Yamaguchi, Masafumi; Taguchi, Kenichi; Edagawa, Makoto; Shimamatsu, Shinichiro; Toyozawa, Ryo; Nosaki, Kaname; Hirai, Fumihiko; Seto, Takashi; Takenoyama, Mitsuhiro; Ichinose, Yukito

    2017-12-01

    Some features found on chest computed tomography (CT), such as central tumor location, large pleural effusion, and the absence of a pleural tail, and a patient age of less than 60 years, have been suggested to be useful in predicting anaplastic lymphoma kinase (ALK) rearrangement in patients with non-small cell lung cancer (NSCLC).A 68-year-old female patient with a history of gynecological treatment was found to have a cavitary mass in the right lower lobe on an annual chest roentgenogram. The tumor was located in the peripheral area with a pleural tail showing no pleural effusion. In addition, two pure ground-glass-opacity nodules (p-GGNs) in the right upper lobe of the lung were detected on consecutive chest CT scans. The patient underwent right lower lobectomy, partial resection of the right upper lobe, and hilar mediastinal lymph node dissection for complete resection of each tumor. The pathological diagnosis was invasive mucinous adenocarcinoma with signet-ring cells for the cavitary mass in the right lower lobe and invasive adenocarcinoma for the rest of the p-GGNs; subcarinal lymph node metastasis was also detected. The ALK rearrangement was detected by fluorescence in situ hybridization from the cavitary mass. The patient underwent four cycles of cisplatin and vinorelbine chemotherapy as standard adjuvant chemotherapy for pStage III NSCLC. The ALK fusion gene status of NSCLC with atypical CT features should also be investigated.

  15. Screening for ALK abnormalities in central nervous system metastases of non-small-cell lung cancer: ALK abnormalities in CNS metastases of NSCLC.

    PubMed

    Nicoś, Marcin; Jarosz, Bożena; Krawczyk, Paweł; Wojas-Krawczyk, Kamila; Kucharczyk, Tomasz; Sawicki, Marek; Pankowski, Juliusz; Trojanowski, Tomasz; Milanowski, Janusz

    2016-11-23

    Anaplastic lymphoma kinase (ALK) gene rearrangement was reported in 3-7% of primary non-small-cell lung cancer (NSCLC) and its presence is commonly associated with adenocarcinoma (AD) type and non-smoking history. ALK tyrosine kinase inhibitors (TKIs) such as crizotinib, alectinib and ceritinib showed efficiency in patients with primary NSCLC harboring ALK gene rearrangement. Moreover, response to ALK TKIs was observed in central nervous system (CNS) metastatic lesions of NSCLC. However, there are no reports concerning the frequency of ALK rearrangement in CNS metastases. We assessed the frequency of ALK abnormalities in 145 formalin fixed paraffin embedded (FFPE) tissue samples from CNS metastases of NSCLC using immunohistochemical (IHC) automated staining (BenchMark GX, Ventana, USA) and fluorescence in situ hybridization (FISH) technique (Abbot Molecular, USA). The studied group was heterogeneous in terms of histopathology and smoking status. ALK abnormalities were detected in 4.8% (7/145) of CNS metastases. ALK abnormalities were observed in six AD (7.5%; 6/80) and in single patients with adenosuqamous lung carcinoma. Analysis of clinical and demographic factors indicated that expression of abnormal ALK was significantly more frequently observed (p=0.0002; χ(2) =16.783) in former-smokers. Comparison of IHC and FISH results showed some discrepancies, which were caused by unspecific staining of macrophages and glial/nerve cells, which constitute the background of CNS tissues. Our results indicate high frequency of ALK gene rearrangement in CNS metastatic sites of NSCLC that are in line with prior studies concerning evaluation of the presence of ALK abnormalities in such patients. However, we showed that assessment of ALK by IHC and FISH methods in CNS tissues require additional standardizations. This article is protected by copyright. All rights reserved.

  16. A Search for Gene Fusions/Translocations in Breast Cancer

    DTIC Science & Technology

    2013-11-01

    specific expression patterns, including pseudogenes derived from AURKA (kidney samples), RHOB (colon samples), and HMGB1 ( myeloproliferative neoplasms ...the scale indicated at the bottom). The key clusters are labeled with their corresponding parental gene symbols. MPN, myeloproliferative neoplasms . See...gene fusions of FGFR1 in myeloproliferative disorder ( 35 ) and 3′ FGFR3 fusions in peripheral T-cell lymphoma ( 36 ) and multiple myeloma ( 35

  17. Efficiency of Crizotinib on an ALK-Positive Inflammatory Myofibroblastic Tumor of the Central Nervous System: A Case Report

    PubMed Central

    Chennouf, Anas; Arslanian, Elizabeth; Roberge, David; Berthelet, France; Bojanowski, Michel; Bahary, Jean-Paul; Masucci, Laura; Belanger, Karl; Florescu, Marie

    2017-01-01

    Inflammatory myofibroblastic tumors (IMT) of the central nervous system (CNS) are rare entities that have a predilection for local recurrences. Approximately half of the inflammatory myofibroblastic tumors contain translocations that result in the over-expression of the anaplastic lymphoma kinase (ALK) gene. We hereby present the case of a patient diagnosed with a left parieto-occipital IMT that recurred after multiple surgeries and radiotherapy. Immuno-histochemical examination of the tumor demonstrated ALK overexpression and the presence of an ALK rearrangement observed in lung cancers. The patient was subsequently started on an ALK inhibitor. A response evaluation criteria in solid tumors (RECIST) partial response was observed by the seventh month of ALK inhibition and the tumor remained in control for 14 months. The current case reiterates the activity of ALK inhibitors within the CNS and suggests that radiotherapy may potentiate the permeability of ALK inhibitors in CNS tumors addicted to ALK signalling.

  18. The enzymatic activity of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase is enhanced by NPM-ALK: new insights in ALK-mediated pathogenesis and the treatment of ALCL.

    PubMed

    Boccalatte, Francesco E; Voena, Claudia; Riganti, Chiara; Bosia, Amalia; D'Amico, Lucia; Riera, Ludovica; Cheng, Mangeng; Ruggeri, Bruce; Jensen, Ole N; Goss, Valerie L; Lee, Kimberly; Nardone, Julie; Rush, John; Polakiewicz, Roberto D; Comb, Michael J; Chiarle, Roberto; Inghirami, Giorgio

    2009-03-19

    Anaplastic large cell lymphoma represents a subset of neoplasms caused by translocations that juxtapose the anaplastic lymphoma kinase (ALK) to dimerization partners. The constitutive activation of ALK fusion proteins leads to cellular transformation through a complex signaling network. To elucidate the ALK pathways sustaining lymphomagenesis and tumor maintenance, we analyzed the tyrosine-kinase protein profiles of ALK-positive cell lines using 2 complementary proteomic-based approaches, taking advantage of a specific ALK RNA interference (RNAi) or cell-permeable inhibitors. A well-defined set of ALK-associated tyrosine phosphopeptides, including metabolic enzymes, kinases, ribosomal and cytoskeletal proteins, was identified. Validation studies confirmed that vasodilator-stimulated phosphoprotein and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC) associated with nucleophosmin (NPM)-ALK, and their phosphorylation required ALK activity. ATIC phosphorylation was documented in cell lines and primary tumors carrying ALK proteins and other tyrosine kinases, including TPR-Met and wild type c-Met. Functional analyses revealed that ALK-mediated ATIC phosphorylation enhanced its enzymatic activity, dampening the methotrexate-mediated transformylase activity inhibition. These findings demonstrate that proteomic approaches in well-controlled experimental settings allow the definition of informative proteomic profiles and the discovery of novel ALK downstream players that contribute to the maintenance of the neoplastic phenotype. Prediction of tumor responses to methotrexate may justify specific molecular-based chemotherapy.

  19. Targeting stemness is an effective strategy to control EML4-ALK+ non-small cell lung cancer cells.

    PubMed

    Oh, Se Jin; Noh, Kyung Hee; Lee, Young-Ho; Hong, Soon-Oh; Song, Kwon-Ho; Lee, Hyo-Jung; Kim, Soyeon; Kim, Tae Min; Jeon, Ju-Hong; Seo, Jae Hong; Kim, Dong-Wan; Kim, Tae Woo

    2015-11-24

    The fusion between anaplastic lymphoma kinase (ALK) and echinoderm microtubule-associated protein-like 4 (EML4) is a causative factor in a unique subset of patients with non-small cell lung carcinoma (NSCLC). Although the inhibitor crizotinib, as it blocks the kinase activity of the resulting EML4-ALK fusion protein, displays remarkable initial responses, a fraction of NSCLC cases eventually become resistant to crizotinib by acquiring mutations in the ALK domain or activating bypass pathways via EGFR, KIT, or KRAS. Cancer stem cell (CSC) theory provides a plausible explanation for acquisition of tumorigenesis and resistance. However, the question as to whether EML4-ALK-driven tumorigenesis is linked with the stem-like property and whether the stemness is an effective target in controlling EML4-ALK+ NSCLC including crizotinib-resistant NSCLC cells has not been addressed. Here, we report that stem-like properties stem from ALK activity in EML4-ALK+ NSCLC cells. Notably, treatment with rapamycin, a CSC targeting agent, attenuates stem-like phenotypes of the EML4-ALK+ cells, which increased capability of tumor formation and higher expression of stemness-associated molecules such as ALDH, NANOG, and OCT4. Importantly, combinational treatment with rapamycin and crizotinib leads to synergistic anti-tumor effects on EML4-ALK+ NSCLC cells as well as on those resistant to crizotinib. Thus, we provide a proof of principle that targeting stemness would be a novel strategy to control intractable EML4-ALK+ NSCLC.

  20. ALK and ROS1 as a joint target for the treatment of lung cancer: a review.

    PubMed

    Puig de la Bellacasa, Raimon; Karachaliou, Niki; Estrada-Tejedor, Roger; Teixidó, Jordi; Costa, Carlota; Borrell, José I

    2013-04-01

    Rearrangements of the anaplastic lymphoma kinase (ALK) have been described in multiple malignancies, including non-small cell lung cancer (NSCLC). ALK fusions have gain of function properties while activating mutations in wild-type ALK can also occur within the tyrosine kinase domain. ALK rearrangements define a new molecular subtype of NSCLC that is exquisitely sensitive to ALK inhibition. Crizotinib, an orally available small molecule ATP-mimetic compound which was originally designed as a MET inhibitor, was recognized to have "off-target" anti-ALK activity and has been approved in the USA for the treatment of patients with ALK-positive NSCLC. Chromosomal rearrangements involving the ROS1 receptor tyrosine kinase have also been recently described in NSCLC, while crizotinib is currently under clinical trial in this molecular subset of NSCLC patients. The basic approaches of any computer aided drug design work in terms of structure and ligand based drug design. Details of each of these approaches should be covered with an emphasis on utilizing both in order to develop multi-targeted small-molecule kinase inhibitors. Such multi-targeted tyrosine kinase inhibitors can have antiproliferative activity against both ROS1and ALK rearranged NSCLC. Herein, we highlight the importance of targeting these proteins and the advances in optimizing more potent and selective ALK and ROS1 kinase inhibitors.

  1. ALK and ROS1 as a joint target for the treatment of lung cancer: a review

    PubMed Central

    Puig de la Bellacasa, Raimon; Karachaliou, Niki; Estrada-Tejedor, Roger; Teixidó, Jordi; Costa, Carlota

    2013-01-01

    Rearrangements of the anaplastic lymphoma kinase (ALK) have been described in multiple malignancies, including non-small cell lung cancer (NSCLC). ALK fusions have gain of function properties while activating mutations in wild-type ALK can also occur within the tyrosine kinase domain. ALK rearrangements define a new molecular subtype of NSCLC that is exquisitely sensitive to ALK inhibition. Crizotinib, an orally available small molecule ATP-mimetic compound which was originally designed as a MET inhibitor, was recognized to have “off-target” anti-ALK activity and has been approved in the USA for the treatment of patients with ALK-positive NSCLC. Chromosomal rearrangements involving the ROS1 receptor tyrosine kinase have also been recently described in NSCLC, while crizotinib is currently under clinical trial in this molecular subset of NSCLC patients. The basic approaches of any computer aided drug design work in terms of structure and ligand based drug design. Details of each of these approaches should be covered with an emphasis on utilizing both in order to develop multi-targeted small-molecule kinase inhibitors. Such multi-targeted tyrosine kinase inhibitors can have antiproliferative activity against both ROS1and ALK rearranged NSCLC. Herein, we highlight the importance of targeting these proteins and the advances in optimizing more potent and selective ALK and ROS1 kinase inhibitors. PMID:25806218

  2. FGFR-TACC gene fusions in human glioma.

    PubMed

    Lasorella, Anna; Sanson, Marc; Iavarone, Antonio

    2016-11-16

    Chromosomal translocations joining in-frame members of the fibroblast growth factor receptor-transforming acidic coiled-coil gene families (the FGFR-TACC gene fusions) were first discovered in human glioblastoma multiforme (GBM) and later in many other cancer types. Here, we review this rapidly expanding field of research and discuss the unique biological and clinical features conferred to isocitrate dehydrogenase wild-type glioma cells by FGFR-TACC fusions. FGFR-TACC fusions generate powerful oncogenes that combine growth-promoting effects with aneuploidy through the activation of as yet unclear intracellular signaling mechanisms. FGFR-TACC fusions appear to be clonal tumor-initiating events that confer strong sensitivity to FGFR tyrosine kinase inhibitors. Screening assays have recently been reported for the accurate identification of FGFR-TACC fusion variants in human cancer, and early clinical data have shown promising effects in cancer patients harboring FGFR-TACC fusions and treated with FGFR inhibitors. Thus, FGFR-TACC gene fusions provide a "low-hanging fruit" model for the validation of precision medicine paradigms in human GBM.

  3. New therapeutic strategies in neuroblastoma: combined targeting of a novel tyrosine kinase inhibitor and liposomal siRNAs against ALK

    PubMed Central

    Di Paolo, Daniela; Yang, D.; Pastorino, Fabio; Emionite, Laura; Cilli, Michele; Daga, Antonio; Destefanis, Elisa; Di Fiore, Annarita; Piaggio, Francesca; Brignole, Chiara; Xu, Xiaobao; Liang, Chris; Gibbons, James

    2015-01-01

    Many different aberrations in the Anaplastic Lymphoma Kinase (ALK) were found to be oncogenic drivers in several cancers including neuroblastoma (NB), therefore ALK is now considered a critical player in NB oncogenesis and a promising therapeutic target. The ALK-inhibitor crizotinib has a limited activity against the various ALK mutations identified in NB patients. We tested: the activity of the novel ALK-inhibitor X-396 administered alone or in combination with Targeted Liposomes carrying ALK-siRNAs (TL[ALK-siRNA]) that are active irrespective of ALK gene mutational status; the pharmacokinetic profiles and the biodistribution of X-396; the efficacy of X-396 versus crizotinib treatment in NB xenografts; whether the combination of X-396 with the TL[ALK-siRNA] could promote long-term survival in NB mouse models. X-396 revealed good bioavailability, moderate half-life, high mean plasma and tumor concentrations. X-396 was more effective than crizotinib in inhibiting in vitro cell proliferation of NB cells and in reducing tumor volume in subcutaneous NB models in a dose-dependent manner. In orthotopic NB xenografts, X-396 significantly increased life span independently of the ALK mutation status. In combination studies, all effects were significantly improved in the mice treated with TL[ALK-siRNA] and X-396 compared to mice receiving the single agents. Our findings provide a rational basis to design innovative molecular-based treatment combinations for clinical application in ALK-driven NB tumors. PMID:26299615

  4. New therapeutic strategies in neuroblastoma: combined targeting of a novel tyrosine kinase inhibitor and liposomal siRNAs against ALK.

    PubMed

    Di Paolo, Daniela; Yang, D; Pastorino, Fabio; Emionite, Laura; Cilli, Michele; Daga, Antonio; Destafanis, Elisa; Di Fiore, Annarita; Piaggio, Francesca; Brignole, Chiara; Xu, Xiaobao; Liang, Chris; Gibbons, James; Ponzoni, Mirco; Perri, Patrizia

    2015-10-06

    Many different aberrations in the Anaplastic Lymphoma Kinase (ALK) were found to be oncogenic drivers in several cancers including neuroblastoma (NB), therefore ALK is now considered a critical player in NB oncogenesis and a promising therapeutic target. The ALK-inhibitor crizotinib has a limited activity against the various ALK mutations identified in NB patients. We tested: the activity of the novel ALK-inhibitor X-396 administered alone or in combination with Targeted Liposomes carrying ALK-siRNAs (TL[ALK-siRNA]) that are active irrespective of ALK gene mutational status; the pharmacokinetic profiles and the biodistribution of X-396; the efficacy of X-396 versus crizotinib treatment in NB xenografts; whether the combination of X-396 with the TL[ALK-siRNA] could promote long-term survival in NB mouse models. X-396 revealed good bioavailability, moderate half-life, high mean plasma and tumor concentrations. X-396 was more effective than crizotinib in inhibiting in vitro cell proliferation of NB cells and in reducing tumor volume in subcutaneous NB models in a dose-dependent manner. In orthotopic NB xenografts, X-396 significantly increased life span independently of the ALK mutation status. In combination studies, all effects were significantly improved in the mice treated with TL[ALK-siRNA] and X-396 compared to mice receiving the single agents. Our findings provide a rational basis to design innovative molecular-based treatment combinations for clinical application in ALK-driven NB tumors.

  5. Identification of ALK germline mutation (3605delG) in pediatric anaplastic medulloblastoma.

    PubMed

    Coco, Simona; De Mariano, Marilena; Valdora, Francesca; Servidei, Tiziana; Ridola, Vita; Andolfo, Immacolata; Oberthuer, André; Tonini, Gian Paolo; Longo, Luca

    2012-10-01

    The anaplastic lymphoma kinase (ALK) gene has been found either rearranged or mutated in several neoplasms such as anaplastic large-cell lymphoma, non-small-cell lung cancer, neuroblastoma and anaplastic thyroid cancer. Medulloblastoma (MB) is an embryonic pediatric cancer arising from nervous system, a tissue in which ALK is expressed during embryonic development. We performed an ALK mutation screening in 52 MBs and we found a novel heterozygous germline deletion of a single base in exon 23 (3605delG) in a case with marked anaplasia. This G deletion results in a frameshift mutation producing a premature stop codon in exon 25 of ALK tyrosine kinase domain. We also screened three human MB cell lines without finding any mutation of ALK gene. Quantitative expression analysis of 16 out of 52 samples showed overexpression of ALK mRNA in three MBs. In the present study, we report the first mutation of ALK found in MB. Moreover, a deletion of ALK gene producing a stop codon has not been detected in human tumors up to now. Further investigations are now required to elucidate whether the truncated form of ALK may have a role in signal transduction.

  6. Treatment modalities for advanced ALK-rearranged non-small-cell lung cancer.

    PubMed

    Sullivan, Ivana; Planchard, David

    2016-04-01

    The ALK gene plays a key role in the pathogenesis of non-small-cell lung cancer (NSCLC). Patients with NSCLC harboring an ALK-rearrangement represent the second oncogene addiction to be identified in this disease. Crizotinib was the first ALK inhibitor showing pronounced clinical activity, and is now a reference treatment for ALK-positive NSCLC disease. However, despite initial impressive responses to crizotinib, acquired resistance almost invariably develops within 12 months. The pressing need for effective second-line agents has prompted the rapid development of next-generation ALK inhibitors. These agents, notably ceritinib and alectinib as the most developed, have a higher potency against ALK than crizotinib, along with activity against tumors harboring crizotinib-resistant mutations and potentially improved CNS penetration.

  7. Targeting brain metastases in ALK-rearranged non-small-cell lung cancer.

    PubMed

    Zhang, Isabella; Zaorsky, Nicholas G; Palmer, Joshua D; Mehra, Ranee; Lu, Bo

    2015-10-01

    The incidence of brain metastases has increased as a result of improved systemic control and advances in imaging. However, development of novel therapeutics with CNS activity has not advanced at the same rate. Research on molecular markers has revealed many potential targets for antineoplastic agents, and a particularly important aberration is translocation in the ALK gene, identified in non-small-cell lung cancer (NSCLC). ALK inhibitors have shown systemic efficacy against ALK-rearranged NSCLC in many clinical trials, but the effectiveness of crizotinib in CNS disease is limited by poor blood-brain barrier penetration and acquired drug resistance. In this Review, we discuss potential pathways to target ALK-rearranged brain metastases, including next generation ALK inhibitors with greater CNS penetration and mechanisms to overcome resistance. Other important mechanisms to control CNS disease include targeting pathways downstream of ALK phosphorylation, increasing the permeability of the blood-brain barrier, modifying the tumour microenvironment, and adding concurrent radiotherapy.

  8. Pinpointing disease genes through phenomic and genomic data fusion

    PubMed Central

    2015-01-01

    Background Pinpointing genes involved in inherited human diseases remains a great challenge in the post-genomics era. Although approaches have been proposed either based on the guilt-by-association principle or making use of disease phenotype similarities, the low coverage of both diseases and genes in existing methods has been preventing the scan of causative genes for a significant proportion of diseases at the whole-genome level. Results To overcome this limitation, we proposed a rigorous statistical method called pgFusion to prioritize candidate genes by integrating one type of disease phenotype similarity derived from the Unified Medical Language System (UMLS) and seven types of gene functional similarities calculated from gene expression, gene ontology, pathway membership, protein sequence, protein domain, protein-protein interaction and regulation pattern, respectively. Our method covered a total of 7,719 diseases and 20,327 genes, achieving the highest coverage thus far for both diseases and genes. We performed leave-one-out cross-validation experiments to demonstrate the superior performance of our method and applied it to a real exome sequencing dataset of epileptic encephalopathies, showing the capability of this approach in finding causative genes for complex diseases. We further provided the standalone software and online services of pgFusion at http://bioinfo.au.tsinghua.edu.cn/jianglab/pgfusion. Conclusions pgFusion not only provided an effective way for prioritizing candidate genes, but also demonstrated feasible solutions to two fundamental questions in the analysis of big genomic data: the comparability of heterogeneous data and the integration of multiple types of data. Applications of this method in exome or whole genome sequencing studies would accelerate the finding of causative genes for human diseases. Other research fields in genomics could also benefit from the incorporation of our data fusion methodology. PMID:25708473

  9. Tackling ALK in non-small cell lung cancer: the role of novel inhibitors

    PubMed Central

    Facchinetti, Francesco; Di Maio, Massimo; Graziano, Paolo; Bria, Emilio; Rossi, Giulio; Novello, Silvia

    2016-01-01

    Crizotinib is an oral inhibitor of anaplastic lymphoma kinase (ALK) with remarkable clinical activity in patients suffering from ALK-rearranged non-small cell lung cancer (NSCLC), accounting to its superiority compared to chemotherapy. Unfortunately, virtually all ALK-rearranged tumors acquire resistance to crizotinib, frequently within one year since the treatment initiation. To date, therapeutic strategies to overcome crizotinib resistance have focused on the use of more potent and structurally different compounds. Second-generation ALK inhibitors such as ceritinib (LDK378), alectinib (CH5424802/RO5424802) and brigatinib (AP26113) have shown relevant clinical activity, consequently fostering their rapid clinical development and their approval by health agencies. The third-generation inhibitor lorlatinib (PF-06463922), selectively active against ALK and ROS1, harbors impressive biological potency; its efficacy in reversing resistance to crizotinib and to other ALK inhibitors is being proven by early clinical trials. The NTRK1-3 and ROS1 inhibitor entrectinib (RXDX-101) has been reported to act against NSCLC harboring ALK fusion proteins too. Despite the quick development of these novel agents, several issues remain to be discussed in the treatment of patients suffering from ALK-rearranged NSCLC. This position paper will discuss the development, the current evidence and approvals, as long as the future perspectives of new ALK inhibitors beyond crizotinib. Clinical behaviors of ALK-rearranged NSCLC vary significantly among patients and differential molecular events responsible of crizotinib resistance account for the most important quote of this heterogeneity. The precious availability of a wide range of active anti-ALK compounds should be approached in a critical and careful perspective, in order to develop treatment strategies tailored on the disease evolution of every single patient. PMID:27413712

  10. Activity of c-Met/ALK Inhibitor Crizotinib and Multi-Kinase VEGF Inhibitor Pazopanib in Metastatic Gastrointestinal Neuroectodermal Tumor Harboring EWSR1-CREB1 Fusion.

    PubMed

    Subbiah, Vivek; Holmes, Oliver; Gowen, Kyle; Spritz, Daniel; Amini, Behrang; Wang, Wei-Lien; Schrock, Alexa B; Meric-Bernstam, Funda; Zinner, Ralph; Piha-Paul, Sarina; Zarzour, Maria; Elvin, Julia A; Erlich, Rachel L; Stockman, David L; Vergilio, Jo-Anne; Suh, James H; Stephens, Philip J; Miller, Vincent; Ross, Jeffrey S; Ali, Siraj M

    2016-01-01

    Malignant gastrointestinal neuroectodermal tumor (GNET) is an aggressive rare tumor, primarily occurring in young adults with frequent local-regional metastases and recurrence after local control. The tumor is characterized by the presence of EWSR1-ATF1 or EWSR1-CREB1 and immunohistochemical positivity for S-100 protein without melanocytic marker positivity. Due to poor responses to standard sarcoma regimens, GNET has a poor prognosis, and development of effective systemic therapy is desperately needed to treat these patients. Herein, we present a patient with a small bowel GNET who experienced recurrent hepatic and skeletal metastases after a primary resection. Comprehensive genomic profiling (CGP) in the course of clinical care with DNA and RNA sequencing demonstrated the presence of an exon 7 to exon 6 EWSR1-CREB1 fusion in the context of a diploid genome with no other genomic alterations. In a clinical trial, the patient received a combination of 250 mg crizotinib with 600 mg pazopanib quaque die and achieved partial response and durable clinical benefit for over 2.8 years, and with minimal toxicity from therapy. Using a CGP database of over 50,000 samples, we identified 11 additional cases that harbor EWSR1-CREB1 and report clinicopathologic characteristics, as these patients may also benefit from such a regimen.

  11. Personalized treatment in advanced ALK-positive non-small cell lung cancer: from bench to clinical practice

    PubMed Central

    Passaro, Antonio; Lazzari, Chiara; Karachaliou, Niki; Spitaleri, Gianluca; Pochesci, Alessia; Catania, Chiara; Rosell, Rafael; de Marinis, Filippo

    2016-01-01

    The discovery of anaplastic lymphoma kinase (ALK) gene rearrangements and the development of tyrosine kinase inhibitors (TKI) that target them have achieved unprecedented success in the management of patients with ALK-positive non-small cell lung cancer (NSCLC). Despite the high efficacy of crizotinib, the first oral ALK TKI approved for the treatment of ALK-positive NSCLC, almost all patients inevitably develop acquired resistance, showing disease progression in the brain or in other parenchymal sites. Second- or third-generation ALK TKIs have shown to be active in crizotinib-pretreated or crizotinib-naïve ALK-positive patients, even in those with brain metastases. In this review, the current knowledge regarding ALK-positive NSCLC, focusing on the biology of the disease and the available therapeutic options are discussed. PMID:27799783

  12. The Escherichia coli AlkB protein protects human cells against alkylation-induced toxicity.

    PubMed Central

    Chen, B J; Carroll, P; Samson, L

    1994-01-01

    Escherichia coli can ameliorate the toxic effects of alkylating agents either by preventing DNA alkylation or by repairing DNA alkylation damage. The alkylation-sensitive phenotype of E. coli alkB mutants marks the alkB pathway as an extremely effective defense mechanism against the cytotoxic effects of the SN2, but not the SN1, alkylating agents. Although it is clear that AlkB helps cells to better handle alkylated DNA, no DNA alkylation repair function could be assigned to the purified AlkB protein, suggesting that AlkB either acts as part of a complex or acts to regulate the expression of other genes whose products are directly responsible for alkylation resistance. However, here we present evidence that the provision of alkylation resistance is an intrinsic function of the AlkB protein per se. We expressed the E. coli AlkB protein in two human cell lines and found that it confers the same characteristic alkylation-resistant phenotype in this foreign environment as it does in E. coli. AlkB expression rendered human cells extremely resistant to cell killing by the SN2 but not the SN1 alkylating agents but did not affect the ability of dimethyl sulfate (an SN2 agent) to alkylate the genome. We infer that SN2 agents produce a class of DNA damage that is not efficiently produced by SN1 agents and that AlkB somehow prevents this damage from killing the cell. Images PMID:7928996

  13. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOEpatents

    Gambhir; Sanjiv , Pritha; Ray

    2009-04-28

    Novel double and triple fusion reporter gene constructs harboring distinct imageable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  14. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    DOEpatents

    Gambhir, Sanjiv; Pritha, Ray

    2011-06-07

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  15. Multimodality imaging of reporter gene expression using a novel fusion vector in living cells and animals

    SciTech Connect

    Gambhir, Sanjiv; Pritha, Ray

    2015-07-14

    Novel double and triple fusion reporter gene constructs harboring distinct imagable reporter genes are provided, as well as applications for the use of such double and triple fusion constructs in living cells and in living animals using distinct imaging technologies.

  16. Molecular Process Producing Oncogene Fusion in Lung Cancer Cells by Illegitimate Repair of DNA Double-Strand Breaks

    PubMed Central

    Seki, Yoshitaka; Mizukami, Tatsuji; Kohno, Takashi

    2015-01-01

    Constitutive activation of oncogenes by fusion to partner genes, caused by chromosome translocation and inversion, is a critical genetic event driving lung carcinogenesis. Fusions of the tyrosine kinase genes ALK (anaplastic lymphoma kinase), ROS1 (c-ros oncogene 1), or RET (rearranged during transfection) occur in 1%–5% of lung adenocarcinomas (LADCs) and their products constitute therapeutic targets for kinase inhibitory drugs. Interestingly, ALK, RET, and ROS1 fusions occur preferentially in LADCs of never- and light-smokers, suggesting that the molecular mechanisms that cause these rearrangements are smoking-independent. In this study, using previously reported next generation LADC genome sequencing data of the breakpoint junction structures of chromosome rearrangements that cause oncogenic fusions in human cancer cells, we employed the structures of breakpoint junctions of ALK, RET, and ROS1 fusions in 41 LADC cases as “traces” to deduce the molecular processes of chromosome rearrangements caused by DNA double-strand breaks (DSBs) and illegitimate joining. We found that gene fusion was produced by illegitimate repair of DSBs at unspecified sites in genomic regions of a few kb through DNA synthesis-dependent or -independent end-joining pathways, according to DSB type. This information will assist in the understanding of how oncogene fusions are generated and which etiological factors trigger them. PMID:26437441

  17. Inference of gene function based on gene fusion events: the rosetta-stone method.

    PubMed

    Suhre, Karsten

    2007-01-01

    The method described in this chapter can be used to infer putative functional links between two proteins. The basic idea is based on the principle of "guilt by association." It is assumed that two proteins, which are found to be transcribed by a single transcript in one (or several) genomes are likely to be functionally linked, for example by acting in a same metabolic pathway or by forming a multiprotein complex. This method is of particular interest for studying genes that exhibit no, or only remote, homologies with already well-characterized proteins. Combined with other non-homology based methods, gene fusion events may yield valuable information for hypothesis building on protein function, and may guide experimental characterization of the target protein, for example by suggesting potential ligands or binding partners. This chapter uses the FusionDB database (http://www.igs.cnrs-mrs.fr/FusionDB/) as source of information. FusionDB provides a characterization of a large number of gene fusion events at hand of multiple sequence alignments. Orthologous genes are included to yield a comprehensive view of the structure of a gene fusion event. Phylogenetic tree reconstruction is provided to evaluate the history of a gene fusion event, and three-dimensional protein structure information is used, where available, to further characterize the nature of the gene fusion. For genes that are not comprised in FusionDB, some instructions are given as how to generate a similar type of information, based solely on publicly available web tools that are listed here.

  18. InFusion: Advancing Discovery of Fusion Genes and Chimeric Transcripts from Deep RNA-Sequencing Data

    PubMed Central

    Okonechnikov, Konstantin; Imai-Matsushima, Aki; Seitz, Alexander; Meyer, Thomas F.; Garcia-Alcalde, Fernando

    2016-01-01

    Analysis of fusion transcripts has become increasingly important due to their link with cancer development. Since high-throughput sequencing approaches survey fusion events exhaustively, several computational methods for the detection of gene fusions from RNA-seq data have been developed. This kind of analysis, however, is complicated by native trans-splicing events, the splicing-induced complexity of the transcriptome and biases and artefacts introduced in experiments and data analysis. There are a number of tools available for the detection of fusions from RNA-seq data; however, certain differences in specificity and sensitivity between commonly used approaches have been found. The ability to detect gene fusions of different types, including isoform fusions and fusions involving non-coding regions, has not been thoroughly studied yet. Here, we propose a novel computational toolkit called InFusion for fusion gene detection from RNA-seq data. InFusion introduces several unique features, such as discovery of fusions involving intergenic regions, and detection of anti-sense transcription in chimeric RNAs based on strand-specificity. Our approach demonstrates superior detection accuracy on simulated data and several public RNA-seq datasets. This improved performance was also evident when evaluating data from RNA deep-sequencing of two well-established prostate cancer cell lines. InFusion identified 26 novel fusion events that were validated in vitro, including alternatively spliced gene fusion isoforms and chimeric transcripts that include intergenic regions. The toolkit is freely available to download from http:/bitbucket.org/kokonech/infusion. PMID:27907167

  19. Gene Prioritization by Compressive Data Fusion and Chaining

    PubMed Central

    Žitnik, Marinka; Nam, Edward A.; Dinh, Christopher; Kuspa, Adam; Shaulsky, Gad; Zupan, Blaž

    2015-01-01

    Data integration procedures combine heterogeneous data sets into predictive models, but they are limited to data explicitly related to the target object type, such as genes. Collage is a new data fusion approach to gene prioritization. It considers data sets of various association levels with the prediction task, utilizes collective matrix factorization to compress the data, and chaining to relate different object types contained in a data compendium. Collage prioritizes genes based on their similarity to several seed genes. We tested Collage by prioritizing bacterial response genes in Dictyostelium as a novel model system for prokaryote-eukaryote interactions. Using 4 seed genes and 14 data sets, only one of which was directly related to the bacterial response, Collage proposed 8 candidate genes that were readily validated as necessary for the response of Dictyostelium to Gram-negative bacteria. These findings establish Collage as a method for inferring biological knowledge from the integration of heterogeneous and coarsely related data sets. PMID:26465776

  20. ALK and ROS1 as targeted therapy paradigms and clinical implications to overcome crizotinib resistance.

    PubMed

    Ye, Mingxiang; Zhang, Xinxin; Li, Nan; Zhang, Yong; Jing, Pengyu; Chang, Ning; Wu, Jianxiong; Ren, Xinling; Zhang, Jian

    2016-03-15

    During the past decade, more than 10 targetable oncogenic driver genes have been validated in non-small cell lung cancer (NSCLC). Anaplastic lymphoma kinase (ALK) and ROS1 kinase are two new driver genes implicated in ALK- and ROS1-rearranged NSCLC. Inhibition of ALK and ROS1 by crizotinib has been reported to be highly effective and well tolerated in these patients. However, resistance to crizotinib emerges years after treatment, and increasing efforts have been made to overcome this issue. Here, we review the biology of ALK and ROS1 and their roles in cancer progression. We also summarize the ongoing and completed clinical trials validating ALK and ROS1 as targets for cancer treatment. In the last section of the review, we will discuss the molecular mechanisms of crizotinib resistance and focus approaches to overcome it. This review describes an exciting new area of research and may provide new insights for targeted cancer therapies.

  1. Lumican Peptides: Rational Design Targeting ALK5/TGFBRI

    NASA Astrophysics Data System (ADS)

    Gesteira, Tarsis Ferreira; Coulson-Thomas, Vivien J.; Yuan, Yong; Zhang, Jianhua; Nader, Helena B.; Kao, Winston W.-Y.

    2017-02-01

    Lumican, a small leucine rich proteoglycan (SLRP), is a component of extracellular matrix which also functions as a matrikine regulating multiple cell activities. In the cornea, lumican maintains corneal transparency by regulating collagen fibrillogenesis, promoting corneal epithelial wound healing, regulating gene expression and maintaining corneal homeostasis. We have recently shown that a peptide designed from the 13 C-terminal amino acids of lumican (LumC13) binds to ALK5/TGFBR1 (type1 receptor of TGFβ) to promote wound healing. Herein we evaluate the mechanism by which this synthetic C-terminal amphiphilic peptide (LumC13), binds to ALK5. These studies clearly reveal that LumC13-ALK5 form a stable complex. In order to determine the minimal amino acids required for the formation of a stable lumican/ALK5 complex derivatives of LumC13 were designed and their binding to ALK5 investigated in silico. These LumC13 derivatives were tested both in vitro and in vivo to evaluate their ability to promote corneal epithelial cell migration and corneal wound healing, respectively. These validations add to the therapeutic value of LumC13 (Lumikine) and aid its clinical relevance of promoting the healing of corneal epithelium debridement. Moreover, our data validates the efficacy of our computational approach to design active peptides based on interactions of receptor and chemokine/ligand.

  2. Lumican Peptides: Rational Design Targeting ALK5/TGFBRI

    PubMed Central

    Gesteira, Tarsis Ferreira; Coulson-Thomas, Vivien J.; Yuan, Yong; Zhang, Jianhua; Nader, Helena B.; Kao, Winston W.-Y.

    2017-01-01

    Lumican, a small leucine rich proteoglycan (SLRP), is a component of extracellular matrix which also functions as a matrikine regulating multiple cell activities. In the cornea, lumican maintains corneal transparency by regulating collagen fibrillogenesis, promoting corneal epithelial wound healing, regulating gene expression and maintaining corneal homeostasis. We have recently shown that a peptide designed from the 13 C-terminal amino acids of lumican (LumC13) binds to ALK5/TGFBR1 (type1 receptor of TGFβ) to promote wound healing. Herein we evaluate the mechanism by which this synthetic C-terminal amphiphilic peptide (LumC13), binds to ALK5. These studies clearly reveal that LumC13-ALK5 form a stable complex. In order to determine the minimal amino acids required for the formation of a stable lumican/ALK5 complex derivatives of LumC13 were designed and their binding to ALK5 investigated in silico. These LumC13 derivatives were tested both in vitro and in vivo to evaluate their ability to promote corneal epithelial cell migration and corneal wound healing, respectively. These validations add to the therapeutic value of LumC13 (Lumikine) and aid its clinical relevance of promoting the healing of corneal epithelium debridement. Moreover, our data validates the efficacy of our computational approach to design active peptides based on interactions of receptor and chemokine/ligand. PMID:28181591

  3. Crizotinib-Resistant Mutants of EML4-ALK Identified Through an Accelerated Mutagenesis Screen

    PubMed Central

    Zhang, Sen; Wang, Frank; Keats, Jeffrey; Zhu, Xiaotian; Ning, Yaoyu; Wardwell, Scott D; Moran, Lauren; Mohemmad, Qurish K; Anjum, Rana; Wang, Yihan; Narasimhan, Narayana I; Dalgarno, David; Shakespeare, William C; Miret, Juan J; Clackson, Tim; Rivera, Victor M

    2011-01-01

    Activating gene rearrangements of anaplastic lymphoma kinase (ALK) have been identified as driver mutations in non-small-cell lung cancer, inflammatory myofibroblastic tumors, and other cancers. Crizotinib, a dual MET/ALK inhibitor, has demonstrated promising clinical activity in patients with non-small-cell lung cancer and inflammatory myofibroblastic tumors harboring ALK translocations. Inhibitors of driver kinases often elicit kinase domain mutations that confer resistance, and such mutations have been successfully predicted using in vitro mutagenesis screens. Here, this approach was used to discover an extensive set of ALK mutations that can confer resistance to crizotinib. Mutations at 16 residues were identified, structurally clustered into five regions around the kinase active site, which conferred varying degrees of resistance. The screen successfully predicted the L1196M, C1156Y, and F1174L mutations, recently identified in crizotinib-resistant patients. In separate studies, we demonstrated that crizotinib has relatively modest potency in ALK-positive non-small-cell lung cancer cell lines. A more potent ALK inhibitor, TAE684, maintained substantial activity against mutations that conferred resistance to crizotinib. Our study identifies multiple novel mutations in ALK that may confer clinical resistance to crizotinib, suggests that crizotinib's narrow selectivity window may underlie its susceptibility to such resistance and demonstrates that a more potent ALK inhibitor may be effective at overcoming resistance. PMID:22034911

  4. RWCFusion: identifying phenotype-specific cancer driver gene fusions based on fusion pair random walk scoring method

    PubMed Central

    Zhao, Jianmei; Li, Xuecang; Yao, Qianlan; Li, Meng; Zhang, Jian; Ai, Bo; Liu, Wei; Wang, Qiuyu; Feng, Chenchen; Liu, Yuejuan; Bai, Xuefeng; Song, Chao; Li, Shang; Li, Enmin; Xu, Liyan; Li, Chunquan

    2016-01-01

    While gene fusions have been increasingly detected by next-generation sequencing (NGS) technologies based methods in human cancers, these methods have limitations in identifying driver fusions. In addition, the existing methods to identify driver gene fusions ignored the specificity among different cancers or only considered their local rather than global topology features in networks. Here, we proposed a novel network-based method, called RWCFusion, to identify phenotype-specific cancer driver gene fusions. To evaluate its performance, we used leave-one-out cross-validation in 35 cancers and achieved a high AUC value 0.925 for overall cancers and an average 0.929 for signal cancer. Furthermore, we classified 35 cancers into two classes: haematological and solid, of which the haematological got a highly AUC which is up to 0.968. Finally, we applied RWCFusion to breast cancer and found that top 13 gene fusions, such as BCAS3-BCAS4, NOTCH-NUP214, MED13-BCAS3 and CARM-SMARCA4, have been previously proved to be drivers for breast cancer. Additionally, 8 among the top 10 of the remaining candidate gene fusions, such as SULF2-ZNF217, MED1-ACSF2, and ACACA-STAC2, were inferred to be potential driver gene fusions of breast cancer by us. PMID:27506935

  5. RWCFusion: identifying phenotype-specific cancer driver gene fusions based on fusion pair random walk scoring method.

    PubMed

    Zhao, Jianmei; Li, Xuecang; Yao, Qianlan; Li, Meng; Zhang, Jian; Ai, Bo; Liu, Wei; Wang, Qiuyu; Feng, Chenchen; Liu, Yuejuan; Bai, Xuefeng; Song, Chao; Li, Shang; Li, Enmin; Xu, Liyan; Li, Chunquan

    2016-09-20

    While gene fusions have been increasingly detected by next-generation sequencing (NGS) technologies based methods in human cancers, these methods have limitations in identifying driver fusions. In addition, the existing methods to identify driver gene fusions ignored the specificity among different cancers or only considered their local rather than global topology features in networks. Here, we proposed a novel network-based method, called RWCFusion, to identify phenotype-specific cancer driver gene fusions. To evaluate its performance, we used leave-one-out cross-validation in 35 cancers and achieved a high AUC value 0.925 for overall cancers and an average 0.929 for signal cancer. Furthermore, we classified 35 cancers into two classes: haematological and solid, of which the haematological got a highly AUC which is up to 0.968. Finally, we applied RWCFusion to breast cancer and found that top 13 gene fusions, such as BCAS3-BCAS4, NOTCH-NUP214, MED13-BCAS3 and CARM-SMARCA4, have been previously proved to be drivers for breast cancer. Additionally, 8 among the top 10 of the remaining candidate gene fusions, such as SULF2-ZNF217, MED1-ACSF2, and ACACA-STAC2, were inferred to be potential driver gene fusions of breast cancer by us.

  6. Rooting the eukaryote tree by using a derived gene fusion.

    PubMed

    Stechmann, Alexandra; Cavalier-Smith, Thomas

    2002-07-05

    Single-gene trees have failed to locate the root of the eukaryote tree because of systematic biases in sequence evolution. Structural genetic data should yield more reliable insights into deep phylogenetic relationships. We searched major protist groups for the presence or absence of a gene fusion in order to locate the root of the eukaryote tree. In striking contrast to previous molecular studies, we show that all eukaryote groups ancestrally with two cilia (bikonts) are evolutionarily derived. The root lies between bikonts and opisthokonts (animals, Fungi, Choanozoa). Amoebozoa either diverged even earlier or are sister of bikonts or (less likely) opisthokonts.

  7. Mutation-associated fusion cancer genes in solid tumors.

    PubMed

    Kaye, Frederic J

    2009-06-01

    Chromosomal translocations and fusion oncogenes serve as the ultimate biomarker for clinicians as they show specificity for distinct histopathologic malignancies while simultaneously encoding an etiologic mutation and a therapeutic target. Previously considered a minor mutational event in epithelial solid tumors, new methodologies that do not rely on the detection of macroscopic cytogenetic alterations, as well as access to large series of annotated clinical material, are expanding the inventory of recurrent fusion oncogenes in both common and rare solid epithelial tumors. Unexpectedly, related assays are also revealing a high number of tandem or chimeric transcripts in normal tissues including, in one provocative case, a template for a known fusion oncogene. These observations may force us to reassess long-held views on the definition of a gene. They also raise the possibility that some rearrangements might represent constitutive forms of a physiological chimeric transcript. Defining the chimeric transcriptome in both health (transcription-induced chimerism and intergenic splicing) and disease (mutation-associated fusion oncogenes) will play an increasingly important role in the diagnosis, prognosis, and therapy of patients with cancer.

  8. Alterations in genes other than EGFR/ALK/ROS1 in non-small cell lung cancer: trials and treatment options

    PubMed Central

    Desai, Arpita; Menon, Smitha P.; Dy, Grace K.

    2016-01-01

    During the last decade, we have seen tremendous progress in the therapy of lung cancer. Discovery of actionable mutations in EGFR and translocations in ALK and ROS1 have identified subsets of patients with excellent tumor response to oral targeted agents with manageable side effects. In this review, we highlight treatment options including corresponding clinical trials for oncogenic alterations affecting the receptor tyrosine kinases MET, FGFR, NTRK, RET, HER2, HER3, and HER4 as well as components of the RAS-RAF-MEK signaling pathway. PMID:27144064

  9. Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD-L1, B7-H1)

    PubMed Central

    Marzec, Michal; Zhang, Qian; Goradia, Ami; Raghunath, Puthiyaveettil N.; Liu, Xiaobin; Paessler, Michele; Wang, Hong Yi; Wysocka, Maria; Cheng, Mangeng; Ruggeri, Bruce A.; Wasik, Mariusz A.

    2008-01-01

    The mechanisms of malignant cell transformation caused by the oncogenic, chimeric nucleophosmin (NPM)/anaplastic lymphoma kinase (ALK) remain only partially understood, with most of the previous studies focusing mainly on the impact of NPM/ALK on cell survival and proliferation. Here we report that the NPM/ALK-carrying T cell lymphoma (ALK+TCL) cells strongly express the immunosuppressive cell-surface protein CD274 (PD-L1, B7-H1), as determined on the mRNA and protein level. The CD274 expression is strictly dependent on the expression and enzymatic activity of NPM/ALK, as demonstrated by inhibition of the NPM/ALK function in ALK+TCL cells by the small molecule ALK inhibitor CEP-14083 and by documenting CD274 expression in IL-3-depleted BaF3 cells transfected with the wild-type NPM/ALK, but not the kinase-inactive NPM/ALK K210R mutant or empty vector alone. NPM/ALK induces CD274 expression by activating its key signal transmitter, transcription factor STAT3. STAT3 binds to the CD274 gene promoter in vitro and in vivo, as shown in the gel electromobility shift and chromatin immunoprecipitation assays, and is required for the PD-L1 gene expression, as demonstrated by siRNA-mediated STAT3 depletion. These findings identify an additional cell-transforming property of NPM/ALK and describe a direct link between an oncoprotein and an immunosuppressive cell-surface protein. These results also provide an additional rationale to therapeutically target NPM/ALK and STAT3 in ALK+TCL. Finally, they suggest that future immunotherapeutic protocols for this type of lymphoma may need to include the inhibition of NPM/ALK and STAT3 to achieve optimal clinical efficacy. PMID:19088198

  10. Anaerobically expressed Escherichia coli genes identified by operon fusion techniques.

    PubMed Central

    Choe, M; Reznikoff, W S

    1991-01-01

    Genes that are expressed under anaerobic conditions were identified by operon fusion techniques with a hybrid bacteriophage of lambda and Mu, lambda placMu53, which creates transcriptional fusions to lacZY. Cells were screened for anaerobic expression on XG medium. Nine strains were selected, and the insertion point of the hybrid phage in each strain was mapped on the Escherichia coli chromosome linkage map. The anaerobic and aerobic expression levels of these genes were measured by beta-galactosidase assays in different medium conditions and in the presence of three regulatory mutations (fnr, narL, and rpoN). The anaerobically expressed genes (aeg) located at minute 99 (aeg-99) and 75 (aeg-75) appeared to be partially regulated by fnr, and aeg-93 is tightly regulated by fnr. aeg-60 requires a functional rpoN gene for its anaerobic expression. aeg-46.5 is repressed by narL. aeg-65A and aeg-65C are partially controlled by fnr but only in media containing nitrate or fumarate. aeg-47.5 and aeg-48.5 were found to be anaerobically induced only in rich media. The effects of a narL mutation on aeg-46.5 expression were observed in all medium conditions regardless of the presence or absence of nitrate. This suggests that narL has a regulatory function in the absence of exogenously added nitrate. PMID:1917846

  11. Oncogenic ALK regulates EMT in non-small cell lung carcinoma through repression of the epithelial splicing regulatory protein 1

    PubMed Central

    Menotti, Matteo; Poggio, Teresa; Panizza, Elena; Wang, Qi; Minero, Valerio G.; Fagoonee, Sharmila; Compagno, Mara; Altruda, Fiorella; Monti, Stefano; Chiarle, Roberto

    2016-01-01

    A subset of Non-Small Cell Lung Carcinoma (NSCLC) carries chromosomal rearrangements involving the Anaplastic Lymphoma Kinase (ALK) gene. ALK-rearranged NSCLC are typically adenocarcinoma characterized by a solid signet-ring cell pattern that is frequently associated with a metastatic phenotype. Recent reports linked the presence of ALK rearrangement to an epithelial-mesenchymal transition (EMT) phenotype in NSCLC, but the extent and the mechanisms of an ALK-mediated EMT in ALK-rearranged NSCLC are largely unknown. We found that the ALK-rearranged H2228 and DFCI032, but not the H3122, cell lines displayed a mesenchymal phenotype. In these cell lines, oncogenic ALK activity dictated an EMT phenotype by directly suppressing E-cadherin and up-regulating vimentin expression, as well as expression of other genes involved in EMT. We found that the epithelial splicing regulatory protein 1 (ESRP1), a key regulator of the splicing switch during EMT, was repressed by EML4-ALK activity. The treatment of NSCLC cells with ALK tyrosine kinase inhibitors (TKIs) led to up-regulation of ESRP1 and E-cadherin, thus reverting the phenotype from mesenchymal to epithelial (MET). Consistently, ESRP1 knock-down impaired E-cadherin up-regulation upon ALK inhibition, whereas enforced expression of ESRP1 was sufficient to increase E-cadherin expression. These findings demonstrate an ALK oncogenic activity in the regulation of an EMT phenotype in a subset of NSCLC with potential implications for the biology of ALK-rearranged NSCLC in terms of metastatic propensity and resistance to therapy. PMID:27119231

  12. Repeated evolution of chimeric fusion genes in the β-globin gene family of laurasiatherian mammals.

    PubMed

    Gaudry, Michael J; Storz, Jay F; Butts, Gary Tyler; Campbell, Kevin L; Hoffmann, Federico G

    2014-05-09

    The evolutionary fate of chimeric fusion genes may be strongly influenced by their recombinational mode of origin and the nature of functional divergence between the parental genes. In the β-globin gene family of placental mammals, the two postnatally expressed δ- and β-globin genes (HBD and HBB, respectively) have a propensity for recombinational exchange via gene conversion and unequal crossing-over. In the latter case, there are good reasons to expect differences in retention rates for the reciprocal HBB/HBD and HBD/HBB fusion genes due to thalassemia pathologies associated with the HBD/HBB "Lepore" deletion mutant in humans. Here, we report a comparative genomic analysis of the mammalian β-globin gene cluster, which revealed that chimeric HBB/HBD fusion genes originated independently in four separate lineages of laurasiatherian mammals: Eulipotyphlans (shrews, moles, and hedgehogs), carnivores, microchiropteran bats, and cetaceans. In cases where an independently derived "anti-Lepore" duplication mutant has become fixed, the parental HBD and/or HBB genes have typically been inactivated or deleted, so that the newly created HBB/HBD fusion gene is primarily responsible for synthesizing the β-type subunits of adult and fetal hemoglobin (Hb). Contrary to conventional wisdom that the HBD gene is a vestigial relict that is typically inactivated or expressed at negligible levels, we show that HBD-like genes often encode a substantial fraction (20-100%) of β-chain Hbs in laurasiatherian taxa. Our results indicate that the ascendancy or resuscitation of genes with HBD-like coding sequence requires the secondary acquisition of HBB-like promoter sequence via unequal crossing-over or interparalog gene conversion.

  13. The expression of SALL4 is significantly associated with EGFR, but not KRAS or EML4-ALK mutations in lung cancer

    PubMed Central

    Jia, Xiangbo; Qian, Rulin; Zhang, Binbin

    2016-01-01

    Background Lung cancer is the leading cause of cancer-related deaths worldwide; unfortunately, its prognosis is still very poor. Therefore, developing the target molecular is very important for lung cancer diagnosis and treatment, especially in the early stage. With this in view, spalt-like transcription factor 4 (SALL4) is considered a potential biomarker for diagnosis and prognosis in cancers, including lung cancer. Methods In order to better investigate the association between the expression of SALL4 and driver genes mutation, 450 histopathologically diagnosed patients with lung cancer and 11 non-cancer patients were enrolled to test the expression of SALL4 and the status of driver genes mutation. This investigation included epidermal growth factor receptor (EGFR), kirsten rat sarcoma viral oncogene homolog (KRAS), and a fusion gene of the echinoderm microtubule-associated protein-like 4 (EML4) and the anaplastic lymphoma kinase (ALK). Results The results of the study showed that females harbored more EGFR mutation in adenocarcinoma (ADC). The mutation rate of KRAS and EML4-ALK was about 5%, and the double mutations of EGFR/EML4-ALK were higher than EGFR/KRAS. In the expression analysis, the expression of SALL4 was much higher in cancer tissues than normally expected, especially in tissues that carried EGFR mutation (P<0.05), however, there were no significant differences between different mutation types. Likewise, there were no significant differences between expression of SALL4 and KRAS and EML4-ALK mutations. Conclusions SALL4 is up regulated in lung cancer specimens and harbors EGFR mutation; this finding indicates that SALL4 expression may be relevant with EGFR, which could provide a new insight to lung cancer therapy. The mechanism needs further investigation and analysis. PMID:27867542

  14. NeuroD1 promotes neuroblastoma cell growth by inducing the expression of ALK.

    PubMed

    Lu, Fangjin; Kishida, Satoshi; Mu, Ping; Huang, Peng; Cao, Dongliang; Tsubota, Shoma; Kadomatsu, Kenji

    2015-04-01

    Neuroblastoma is derived from the sympathetic neuronal lineage of neural crest cells, and is the most frequently observed of the extracranial pediatric solid tumors. The neuronal differentiation factor, NeuroD1, has previously been shown to promote cell motility in neuroblastoma by suppressing the expression of Slit2. Here we report that NeuroD1 is also involved in the proliferation of neuroblastoma cells, including human cell lines and primary tumorspheres cultured from the tumor tissues of model mice. Interestingly, the growth inhibition of neuroblastoma cells induced by knockdown of NeuroD1 was accompanied by a reduction of ALK expression. ALK is known to be one of the important predisposition genes for neuroblastoma. The phenotype resulting from knockdown of NeuroD1 was suppressed by forced expression of ALK and, therefore, NeuroD1 appears to act mainly through ALK to promote the proliferation of neuroblastoma cells. Furthermore, we showed that NeuroD1 directly bound to the promoter region of ALK gene. In addition, the particular E-box in the promoter was responsible for NeuroD1-mediated ALK expression. These results indicate that ALK should be a direct target gene of NeuroD1. Finally, the expressions of NeuroD1 and ALK in the early tumor lesions of neuroblastoma model mice coincided in vivo. We conclude that the novel mechanism would regulate the expression of ALK in neuroblastoma and that NeuroD1 should be significantly involved in neuroblastoma tumorigenesis.

  15. Transforming fusions of FGFR and TACC genes in human glioblastoma.

    PubMed

    Singh, Devendra; Chan, Joseph Minhow; Zoppoli, Pietro; Niola, Francesco; Sullivan, Ryan; Castano, Angelica; Liu, Eric Minwei; Reichel, Jonathan; Porrati, Paola; Pellegatta, Serena; Qiu, Kunlong; Gao, Zhibo; Ceccarelli, Michele; Riccardi, Riccardo; Brat, Daniel J; Guha, Abhijit; Aldape, Ken; Golfinos, John G; Zagzag, David; Mikkelsen, Tom; Finocchiaro, Gaetano; Lasorella, Anna; Rabadan, Raul; Iavarone, Antonio

    2012-09-07

    The brain tumor glioblastoma multiforme (GBM) is among the most lethal forms of human cancer. Here, we report that a small subset of GBMs (3.1%; 3 of 97 tumors examined) harbors oncogenic chromosomal translocations that fuse in-frame the tyrosine kinase coding domains of fibroblast growth factor receptor (FGFR) genes (FGFR1 or FGFR3) to the transforming acidic coiled-coil (TACC) coding domains of TACC1 or TACC3, respectively. The FGFR-TACC fusion protein displays oncogenic activity when introduced into astrocytes or stereotactically transduced in the mouse brain. The fusion protein, which localizes to mitotic spindle poles, has constitutive kinase activity and induces mitotic and chromosomal segregation defects and triggers aneuploidy. Inhibition of FGFR kinase corrects the aneuploidy, and oral administration of an FGFR inhibitor prolongs survival of mice harboring intracranial FGFR3-TACC3-initiated glioma. FGFR-TACC fusions could potentially identify a subset of GBM patients who would benefit from targeted FGFR kinase inhibition.

  16. Characterization of nif regulatory genes in Rhodopseudomonas capsulata using lac gene fusions.

    PubMed

    Kranz, R G; Haselkorn, R

    1985-01-01

    Translational fusions of the Escherichia coli lacZYA operon to Rhodopseudomonas capsulata nif genes were obtained by using mini-MudII1734 [Castilho et al., J. Bacteriol. 158 (1984) 488-495] inserts into cloned fragments of R. capsulata DNA. A lac fusion to the nifH gene, which encodes dinitrogenase reductase, was used to classify Nif- mutations occurring in regulatory genes. Nine mutations were unable to activate nifHDK transcription. The nine mutations define four nif regulatory genes. Three of these genes are located on the same R. capsulata 8.4-kb EcoRI fragment. Each is transcribed independently. One of these (complementing mutant J61) is partially homologous with the ntrC gene of Escherichia coli, based on Southern hybridization. The fourth nif regulatory gene (complementing mutants LJ1, AH1 and AH3) is unlinked to the others. Lac fusions to all four regulatory genes were constructed. Each regulatory gene is weakly expressed compared to derepressed nifH and partially repressed in the presence of ammonia.

  17. Protein functional links in Trypanosoma brucei, identified by gene fusion analysis

    PubMed Central

    2011-01-01

    Background Domain or gene fusion analysis is a bioinformatics method for detecting gene fusions in one organism by comparing its genome to that of other organisms. The occurrence of gene fusions suggests that the two original genes that participated in the fusion are functionally linked, i.e. their gene products interact either as part of a multi-subunit protein complex, or in a metabolic pathway. Gene fusion analysis has been used to identify protein functional links in prokaryotes as well as in eukaryotic model organisms, such as yeast and Drosophila. Results In this study we have extended this approach to include a number of recently sequenced protists, four of which are pathogenic, to identify fusion linked proteins in Trypanosoma brucei, the causative agent of African sleeping sickness. We have also examined the evolution of the gene fusion events identified, to determine whether they can be attributed to fusion or fission, by looking at the conservation of the fused genes and of the individual component genes across the major eukaryotic and prokaryotic lineages. We find relatively limited occurrence of gene fusions/fissions within the protist lineages examined. Our results point to two trypanosome-specific gene fissions, which have recently been experimentally confirmed, one fusion involving proteins involved in the same metabolic pathway, as well as two novel putative functional links between fusion-linked protein pairs. Conclusions This is the first study of protein functional links in T. brucei identified by gene fusion analysis. We have used strict thresholds and only discuss results which are highly likely to be genuine and which either have already been or can be experimentally verified. We discuss the possible impact of the identification of these novel putative protein-protein interactions, to the development of new trypanosome therapeutic drugs. PMID:21729286

  18. TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate.

    PubMed

    Guo, Charles C; Dancer, Jane Y; Wang, Yan; Aparicio, Ana; Navone, Nora M; Troncoso, Patricia; Czerniak, Bogdan A

    2011-01-01

    Recent studies have shown that most prostate cancers carry the TMPRSS2-ERG gene fusion. Here we evaluated the TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate (n = 12) in comparison with small cell carcinoma of the urinary bladder (n = 12) and lung (n = 11). Fluorescence in situ hybridization demonstrated rearrangement of the ERG gene in 8 cases of prostatic small cell carcinoma (67%), and the rearrangement was associated with deletion of the 5' ERG gene in 7 cases, but rearrangement of the ERG gene was not present in any small cell carcinoma of the urinary bladder or lung. Next we evaluated the TMPRSS2-ERG gene fusion in nude mouse xenografts that were derived from 2 prostatic small cell carcinomas carrying the TMPRSS2-ERG gene fusion. Two transcripts encoded by the TMPRSS2-ERG gene fusion were detected by reverse transcriptase polymerase chain reaction, and DNA sequencing demonstrated that the 2 transcripts were composed of fusions of exon 1 of the TMPRSS2 gene to exon 4 or 5 of the ERG gene. Our study demonstrates the specific presence of TMPRSS2-ERG gene fusion in prostatic small cell carcinoma, which may be helpful in distinguishing small cell carcinoma of prostatic origin from nonprostatic origins. The high prevalence of the TMPRSS2-ERG gene fusion in prostatic small cell carcinoma as well as adenocarcinoma implies that small cell carcinoma may share a common pathogenic pathway with adenocarcinoma in the prostate.

  19. The yeast ubiquitin genes: a family of natural gene fusions.

    PubMed Central

    Ozkaynak, E; Finley, D; Solomon, M J; Varshavsky, A

    1987-01-01

    Ubiquitin is a 76-residue protein highly conserved among eukaryotes. Conjugation of ubiquitin to intracellular proteins mediates their selective degradation in vivo. We describe a family of four ubiquitin-coding loci in the yeast Saccharomyces cerevisiae. UB11, UB12 and UB13 encode hybrid proteins in which ubiquitin is fused to unrelated ('tail') amino acid sequences. The ubiquitin coding elements of UB11 and UB12 are interrupted at identical positions by non-homologous introns. UB11 and UB12 encode identical 52-residue tails, whereas UB13 encodes a different 76-residue tail. The tail amino acid sequences are highly conserved between yeast and mammals. Each tail contains a putative metal-binding, nucleic acid-binding domain of the form Cys-X2-4-Cys-X2-15-Cys-X2-4-Cys, suggesting that these proteins may function by binding to DNA. The fourth gene, UB14, encodes a polyubiquitin precursor protein containing five ubiquitin repeats in a head-to-tail, spacerless arrangement. All four ubiquitin genes are expressed in exponentially growing cells, while in stationary-phase cells the expression of UB11 and UB12 is repressed. The UB14 gene, which is strongly inducible by starvation, high temperatures and other stresses, contains in its upstream region strong homologies to the consensus 'heat shock box' nucleotide sequence. Elsewhere we show that the essential function of the UB14 gene is to provide ubiquitin to cells under stress. Images Fig. 1. Fig. 7. PMID:3038523

  20. French multicentric validation of ALK rearrangement diagnostic in 547 lung adenocarcinomas.

    PubMed

    Lantuejoul, Sylvie; Rouquette, Isabelle; Blons, Hélène; Le Stang, Nolwenn; Ilie, Marius; Begueret, Hugues; Grégoire, Valerie; Hofman, Paul; Gros, Audrey; Garcia, Stephane; Monhoven, Nathalie; Devouassoux-Shisheboran, Mojgan; Mansuet-Lupo, Audrey; Thivolet, Françoise; Antoine, Martine; Vignaud, Jean-Michel; Penault-Llorca, Frederique; Galateau-Sallé, Françoise; McLeer-Florin, Anne

    2015-07-01

    Anaplastic lymphoma kinase (ALK) gene rearrangements in lung adenocarcinoma result in kinase activity targetable by crizotinib. Although fluorescence in situ hybridisation (FISH) is the reference diagnostic technique, immunohistochemistry (IHC) could be useful for pre-screening. Diagnostic yields of ALK IHC, FISH and quantitative reverse transcriptase PCR performed in 14 French pathology/molecular genetics platforms were compared. 547 lung adenocarcinoma specimens were analysed using 5A4 and D5F3 antibodies, two break-apart FISH probes and TaqMan kits. Clinicopathological data were recorded. 140 tumours were ALK rearranged (FISH with ≥15% of rearranged cells) and 400 were ALK FISH negative (<15%). FISH was not interpretable for seven cases. ALK patients were young (p=0.003), mostly females (p=0.007) and light/nonsmokers (p<0.0001). 13 cases were IHC negative but FISH ≥15%, including six cases with FISH between 15% and 20%; eight were IHC positive with FISH between 10% and 14%. Sensitivity and specificity for 5A4 and D5F3 were 87% and 92%, and 89% and 76%, respectively. False-negative IHC, observed in 2.4% of cases, dropped to 1.3% for FISH >20%. Variants were undetected in 36% of ALK tumours. Discordances predominated with FISH ranging from 10% to 20% of rearranged cells and were centre dependent. IHC remains a reliable pre-screening method for ALK rearrangement detection.

  1. Effects of Pharmacologic and Genetic Inhibition of Alk on Cognitive Impairments in NF1 Mutant Mice

    DTIC Science & Technology

    2014-06-01

    neuroblastoma 12-15. Orally active small molecule inhibitors have shown notable effectiveness in the treatment of lung cancer and are actively being...tested for the treatment of neuroblastoma 16-18. The normal function of Alk in humans is less clear though its expression in both the developing and...Y. P. et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455, 930-935 (2008). 13 Janoueix-Lerosey, I. et

  2. Recurrent and pathological gene fusions in breast cancer: current advances in genomic discovery and clinical implications.

    PubMed

    Veeraraghavan, Jamunarani; Ma, Jiacheng; Hu, Yiheng; Wang, Xiao-Song

    2016-07-01

    Gene fusions have long been considered principally as the oncogenic events of hematologic malignancies, but have recently gained wide attention in solid tumors due to several milestone discoveries and the advancement of deep sequencing technologies. With the progress in deep sequencing studies of breast cancer transcriptomes and genomes, the discovery of recurrent and pathological gene fusions in breast cancer is on the focus. Recently, driven by new deep sequencing studies, several recurrent or pathological gene fusions have been identified in breast cancer, including ESR1-CCDC170, SEC16A-NOTCH1, SEC22B-NOTCH2, and ESR1-YAP1 etc. More important, most of these gene fusions are preferentially identified in the more aggressive breast cancers, such as luminal B, basal-like, or endocrine-resistant breast cancer, suggesting recurrent gene fusions as additional key driver events in these tumors other than the known drivers such as the estrogen receptor. In this paper, we have comprehensively summarized the newly identified recurrent or pathological gene fusion events in breast cancer, reviewed the contributions of new genomic and deep sequencing technologies to new fusion discovery and the integrative bioinformatics tools to analyze these data, highlighted the biological relevance and clinical implications of these fusion discoveries, and discussed future directions of gene fusion research in breast cancer.

  3. Adenoid cystic carcinoma: emerging role of translocations and gene fusions

    PubMed Central

    Wysocki, Piotr T.; Izumchenko, Evgeny; Meir, Juliet; Ha, Patrick K.; Sidransky, David; Brait, Mariana

    2016-01-01

    Adenoid cystic carcinoma (ACC), the second most common salivary gland malignancy, is notorious for poor prognosis, which reflects the propensity of ACC to progress to clinically advanced metastatic disease. Due to high long-term mortality and lack of effective systemic treatment, the slow-growing but aggressive ACC poses a particular challenge in head and neck oncology. Despite the advancements in cancer genomics, up until recently relatively few genetic alterations critical to the ACC development have been recognized. Although the specific chromosomal translocations resulting in MYB-NFIB fusions provide insight into the ACC pathogenesis and represent attractive diagnostic and therapeutic targets, their clinical significance is unclear, and a substantial subset of ACCs do not harbor the MYB-NFIB translocation. Strategies based on detection of newly described genetic events (such as MYB activating super-enhancer translocations and alterations affecting another member of MYB transcription factor family-MYBL1) offer new hope for improved risk assessment, therapeutic intervention and tumor surveillance. However, the impact of these approaches is still limited by an incomplete understanding of the ACC biology, and the manner by which these alterations initiate and drive ACC remains to be delineated. This manuscript summarizes the current status of gene fusions and other driver genetic alterations in ACC pathogenesis and discusses new therapeutic strategies stemming from the current research. PMID:27533466

  4. Isolation of gene fusions (soi::lacZ) inducible by oxidative stress in Escherichia coli.

    PubMed Central

    Kogoma, T; Farr, S B; Joyce, K M; Natvig, D O

    1988-01-01

    Mu dX phage was used to isolate three gene fusions to the lacZ gene (soi::lacZ; soi for superoxide radical inducible) that were induced by treatment with superoxide radical anion generators such as paraquat and plumbagin. The induction of beta-galactosidase in these fusion strains with the superoxide radical generating agents required aerobic metabolism. Hyperoxygenation (i.e., bubbling of cultures with oxygen gas) also induced the fusions. On the other hand, hydrogen peroxide did not induce the fusions at concentrations that are known to invoke an adaptive response. Introduction of oxyR, htpR, or recA mutations did not affect the induction. Two of the fusion strains exhibited increased sensitivity to paraquat but not to hydrogen peroxide. The third fusion strain showed no increased sensitivity to either agent. All three fusions were located in the 45- to 61-min region of the Escherichia coli chromosome. PMID:2838846

  5. Identification of novel fusion genes with 28S ribosomal DNA in hematologic malignancies.

    PubMed

    Kobayashi, Satoru; Taki, Tomohiko; Nagoshi, Hisao; Chinen, Yoshiaki; Yokokawa, Yuichi; Kanegane, Hirokazu; Matsumoto, Yosuke; Kuroda, Junya; Horiike, Shigeo; Nishida, Kazuhiro; Taniwaki, Masafumi

    2014-04-01

    Fusion genes are frequently observed in hematologic malignancies and soft tissue sarcomas, and are usually associated with chromosome abnormalities. Many of these fusion genes create in-frame fusion transcripts that result in the production of fusion proteins, and some of which aid tumorigenesis. These fusion proteins are often associated with disease phenotype and clinical outcome, and act as markers for minimal residual disease and indicators of therapeutic targets. Here, we identified the 28S ribosomal DNA (RN28S1) gene as a novel fusion partner of the B-cell leukemia/lymphoma 11B gene (BCL11B), the immunoglobulin κ variable 3-20 gene (IGKV3-20) and the component of oligomeric Golgi complex 1 gene (COG1) in hematologic malignancies. The RN28S1-BCL11B fusion transcript was identified in a case with mixed-lineage (T/myeloid) acute leukemia having t(6;14)(q25;q32) by cDNA bubble PCR using BCL11B primers; however, the gene fused to BCL11B on 14q32 was not on 6q25. IGKV3-20-RN28S1 and COG1-RN28S1 fusion transcripts were identified in the Burkitt lymphoma cell line HBL-5, and the multiple myeloma cell line KMS-18. RN28S1 would not translate, and the breakpoints in partner genes of RN28S1 were within the coding exons, suggesting that disruption of fusion partners by fusion to RN28S1 is the possible mechanism of tumorigenesis. Although further analysis is needed to elucidate the mechanism(s) through which these RN28S1-related fusions play roles in tumorigenesis, our findings provide important insights into the role of rDNA function in human genomic architecture and tumorigenesis.

  6. An Efficient Method for Identifying Gene Fusions by Targeted RNA Sequencing from Fresh Frozen and FFPE Samples.

    PubMed

    Scolnick, Jonathan A; Dimon, Michelle; Wang, I-Ching; Huelga, Stephanie C; Amorese, Douglas A

    2015-01-01

    Fusion genes are known to be key drivers of tumor growth in several types of cancer. Traditionally, detecting fusion genes has been a difficult task based on fluorescent in situ hybridization to detect chromosomal abnormalities. More recently, RNA sequencing has enabled an increased pace of fusion gene identification. However, RNA-Seq is inefficient for the identification of fusion genes due to the high number of sequencing reads needed to detect the small number of fusion transcripts present in cells of interest. Here we describe a method, Single Primer Enrichment Technology (SPET), for targeted RNA sequencing that is customizable to any target genes, is simple to use, and efficiently detects gene fusions. Using SPET to target 5701 exons of 401 known cancer fusion genes for sequencing, we were able to identify known and previously unreported gene fusions from both fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissue RNA in both normal tissue and cancer cells.

  7. An Efficient Method for Identifying Gene Fusions by Targeted RNA Sequencing from Fresh Frozen and FFPE Samples

    PubMed Central

    Scolnick, Jonathan A.; Dimon, Michelle; Wang, I-Ching; Huelga, Stephanie C.; Amorese, Douglas A.

    2015-01-01

    Fusion genes are known to be key drivers of tumor growth in several types of cancer. Traditionally, detecting fusion genes has been a difficult task based on fluorescent in situ hybridization to detect chromosomal abnormalities. More recently, RNA sequencing has enabled an increased pace of fusion gene identification. However, RNA-Seq is inefficient for the identification of fusion genes due to the high number of sequencing reads needed to detect the small number of fusion transcripts present in cells of interest. Here we describe a method, Single Primer Enrichment Technology (SPET), for targeted RNA sequencing that is customizable to any target genes, is simple to use, and efficiently detects gene fusions. Using SPET to target 5701 exons of 401 known cancer fusion genes for sequencing, we were able to identify known and previously unreported gene fusions from both fresh-frozen and formalin-fixed paraffin-embedded (FFPE) tissue RNA in both normal tissue and cancer cells. PMID:26132974

  8. Identification of the merR gene of R100 by using mer-lac gene and operon fusions.

    PubMed Central

    Foster, T J; Brown, N L

    1985-01-01

    Transcriptional (operon) and translational (gene) fusions between the R100 merR gene and lacZ were constructed in vitro in a pBR322 plasmid carrying the mer genes derived from plasmid R100. The translational fusions were oriented in the opposite direction to and divergently from the merTCAD genes. This shows that the reading frame previously thought to be merR was incorrect. Expression of the gene fusion was repressed in trans by a compatible plasmid carrying the R100 merR+ gene, as was a similarly oriented transcriptional fusion. In contrast, expression of beta-galactosidase by the lac fragment located at the same site but in the opposite orientation was at a lower level and was not repressed by merR+. Images PMID:2993235

  9. Fusion

    NASA Astrophysics Data System (ADS)

    Herman, Robin

    1990-10-01

    The book abounds with fascinating anecdotes about fusion's rocky path: the spurious claim by Argentine dictator Juan Peron in 1951 that his country had built a working fusion reactor, the rush by the United States to drop secrecy and publicize its fusion work as a propaganda offensive after the Russian success with Sputnik; the fortune Penthouse magazine publisher Bob Guccione sank into an unconventional fusion device, the skepticism that met an assertion by two University of Utah chemists in 1989 that they had created "cold fusion" in a bottle. Aimed at a general audience, the book describes the scientific basis of controlled fusion--the fusing of atomic nuclei, under conditions hotter than the sun, to release energy. Using personal recollections of scientists involved, it traces the history of this little-known international race that began during the Cold War in secret laboratories in the United States, Great Britain and the Soviet Union, and evolved into an astonishingly open collaboration between East and West.

  10. Gene fusions with lacZ by duplication insertion in the radioresistant bacterium Deinococcus radiodurans

    SciTech Connect

    Lennon, E.; Minton, K.W. )

    1990-06-01

    Deinococcus radiodurans is the most-studied species of a eubacterial family characterized by extreme resistance to DNA damage. We have focused on developing molecular biological techniques to investigate the genetics of this organism. We report construction of lacZ gene fusions by a method involving both in vitro splicing and the natural transformation of D. radiodurans. Numerous fusion strains were identified by expression of beta-galactosidase. Among these fusion strains, several were inducible by exposure to the DNA-damaging agent mitomycin C, and four of the inducible fusion constructs were cloned in Escherichia coli. Hybridization studies indicate that one of the damage-inducible genes contains a sequence reiterated throughout the D. radiodurans chromosome. Survival measurements show that two of the fusion strains have increased sensitivity to mitomycin C, suggesting that the fusions within these strains inactivate repair functions.

  11. Three Years Sustained Complete Remission Achieved in a Primary Refractory ALK-Positive Anaplastic T Large Cell Lymphoma Treated with Crizotinib

    PubMed Central

    Mahuad, Carolina Valeria; Repáraz, María de los Ángeles Vicente; Zerga, Marta E.; Aizpurua, María Florencia; Casali, Claudia; Garate, Gonzalo

    2016-01-01

    The prognosis of the primary refractory anaplastic lymphoma kinase (ALK+) anaplastic T large cell lymphoma is ominous. The identification of molecular targets with potential to drive oncogenesis remains a cornerstone for the designing of new selective cancer therapies. Crizotinib is a selective ATP-competitive inhibitor for ALK, approved for its use in lung cancer with rearrangements on ALK gene. The reported cases describe the use of crizotinib as a bridging strategy prior to allotransplantation; there are no reported prolonged survivals under monotherapy with Crizotinib. We report a case of a primary refractory ALK+ anaplastic large-cell lymphoma that sustains complete response after 3 years of crizotinib monotherapy. PMID:27441079

  12. ALK Signaling and Target Therapy in Anaplastic Large Cell Lymphoma

    PubMed Central

    Tabbó, Fabrizio; Barreca, Antonella; Piva, Roberto; Inghirami, Giorgio

    2012-01-01

    The discovery by Morris et al. (1994) of the genes contributing to the t(2;5)(p23;q35) translocation has laid the foundation for a molecular based recognition of anaplastic large cell lymphoma and highlighted the need for a further stratification of T-cell neoplasia. Likewise the detection of anaplastic lymphoma kinase (ALK) genetic lesions among many human cancers has defined unique subsets of cancer patients, providing new opportunities for innovative therapeutic interventions. The objective of this review is to appraise the molecular mechanisms driving ALK-mediated transformation, and to maintain the neoplastic phenotype. The understanding of these events will allow the design and implementation of novel tailored strategies for a well-defined subset of cancer patients. PMID:22649787

  13. Origin and Ascendancy of a Chimeric Fusion Gene: The β/δ-Globin Gene of Paenungulate Mammals

    PubMed Central

    Opazo, Juan C.; Sloan, Angela M.; Campbell, Kevin L.

    2009-01-01

    The δ-globin gene (HBD) of eutherian mammals exhibits a propensity for recombinational exchange with the closely linked β-globin gene (HBB) and has been independently converted by the HBB gene in multiple lineages. Here we report the presence of a chimeric β/δ fusion gene in the African elephant (Loxodonta africana) that was created by unequal crossing-over between misaligned HBD and HBB paralogs. The recombinant chromosome that harbors the β/δ fusion gene in elephants is structurally similar to the “anti-Lepore” duplication mutant of humans (the reciprocal exchange product of the hemoglobin Lepore deletion mutant). However, the situation in the African elephant is unique in that the chimeric β/δ fusion gene supplanted the parental HBB gene and is therefore solely responsible for synthesizing the β-chain subunits of adult hemoglobin. A phylogenetic survey of β-like globin genes in afrotherian and xenarthran mammals revealed that the origin of the chimeric β/δ fusion gene and the concomitant inactivation of the HBB gene predated the radiation of “Paenungulata,” a clade of afrotherian mammals that includes three orders: Proboscidea (elephants), Sirenia (dugongs and manatees), and Hyracoidea (hyraxes). The reduced fitness of the human Hb Lepore deletion mutant helps to explain why independently derived β/δ fusion genes (which occur on an anti-Lepore chromosome) have been fixed in a number of mammalian lineages, whereas the reciprocal δ/β fusion gene (which occurs on a Lepore chromosome) has yet to be documented in any nonhuman mammal. This illustrates how the evolutionary fates of chimeric fusion genes can be strongly influenced by their recombinational mode of origin. PMID:19332641

  14. Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: the role of two AlkB-type alkane hydroxylases.

    PubMed

    Throne-Holst, Mimmi; Markussen, Sidsel; Winnberg, Asgeir; Ellingsen, Trond E; Kotlar, Hans-Kristian; Zotchev, Sergey B

    2006-09-01

    A bacterial strain capable of utilizing n-alkanes with chain lengths ranging from decane (C10H22) to tetracontane (C40H82) as a sole carbon source was isolated using a system for screening microorganisms able to grow on paraffin (mixed long-chain n-alkanes). The isolate, identified according to its 16S rRNA sequence as Acinetobacter venetianus, was designated A. venetianus 6A2. Two DNA fragments encoding parts of AlkB-type alkane hydroxylase homologues, designated alkMa and alkMb, were polymerase chain reaction-amplified from the genome of A. venetianus 6A2. To study the roles of these two alkM paralogues in n-alkane utilization in A. venetianus 6A2, we constructed alkMa, alkMb, and alkMa/alkMb disruption mutants. Studies on the growth patterns of the disruption mutants using n-alkanes with different chain lengths as sole carbon source demonstrated central roles for the alkMa and alkMb genes in utilization of C10 to C18 n-alkanes. Comparative analysis of these patterns also suggested different substrate preferences for AlkMa and AlkMb in n-alkane utilization. Because both single and double mutants were able to grow on n-alkanes with chain lengths of C20 and longer, we concluded that yet another enzyme(s) for the utilization of these n-alkanes must exist in A. venetianus 6A2.

  15. Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid tumours.

    PubMed

    Parker, Brittany C; Engels, Manon; Annala, Matti; Zhang, Wei

    2014-01-01

    The emergence of fibroblast growth factor receptor (FGFR) family fusions across diverse cancers has brought attention to FGFR-derived cancer therapies. The discovery of the first recurrent FGFR fusion in glioblastoma was followed by discoveries of FGFR fusions in bladder, lung, breast, thyroid, oral, and prostate cancers. Drug targeting of FGFR fusions has shown promising results and should soon be translating into clinical trials. FGFR fusions form as a result of various mechanisms – predominantly deletion for FGFR1, translocation for FGFR2, and tandem duplication for FGFR3. The ability to exploit the unique targetability of FGFR fusions proves that FGFR-derived therapies could have a promising future in cancer therapeutics. Drug targeting of fusion genes has proven to be an extremely effective therapeutic approach for cancers such as the recurrent BCR–ABL1 fusion in chronic myeloid leukaemia. The recent discovery of recurrent FGFR family fusions in several cancer types has brought to attention the unique therapeutic potential for FGFR-positive patients. Understanding the diverse mechanisms of FGFR fusion formation and their oncogenic potential will shed light on the impact of FGFR-derived therapy in the future.

  16. Highly Specific Targeting of the TMPRSS2/ERG Fusion Gene in Prostate Cancer Using Liposomal Nanotechnology

    DTIC Science & Technology

    2012-06-01

    time due to elimination by reticuloendothelial system. To increase stability and blood circulation half- life coating nanoparticles with polymers such...ERG fusion gene in prostate cancer using liposomal nanotechnology PRINCIPAL INVESTIGATOR: Bulent Ozpolat, M.D., Ph.D...fusion gene in prostate cancer using liposomal nanotechnology 5b. GRANT NUMBER W81XWH-09-1-0385 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d

  17. Gene flow despite complex Robertsonian fusions among rock-wallaby (Petrogale) species

    PubMed Central

    Potter, Sally; Moritz, Craig; Eldridge, Mark D. B.

    2015-01-01

    Complex Robertsonian rearrangements, with shared arms in different fusions, are expected to prevent gene flow between hybrids through missegregation during meiosis. Here, we estimate gene flow between recently diverged and chromosomally diverse rock-wallabies (Petrogale) to test for this form of chromosomal speciation. Contrary to expectations, we observe relatively high admixture among species with complex fusions. Our results reinforce the need to consider alternative roles of chromosome change, together with genic divergence, in driving speciation. PMID:26445985

  18. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair

    PubMed Central

    Alcalay, Myriam; Meani, Natalia; Gelmetti, Vania; Fantozzi, Anna; Fagioli, Marta; Orleth, Annette; Riganelli, Daniela; Sebastiani, Carla; Cappelli, Enrico; Casciari, Cristina; Sciurpi, Maria Teresa; Mariano, Angela Rosa; Minardi, Simone Paolo; Luzi, Lucilla; Muller, Heiko; Di Fiore, Pier Paolo; Frosina, Guido; Pelicci, Pier Giuseppe

    2003-01-01

    Acute myelogenous leukemias (AMLs) are genetically heterogeneous and characterized by chromosomal rearrangements that produce fusion proteins with aberrant transcriptional regulatory activities. Expression of AML fusion proteins in transgenic mice increases the risk of myeloid leukemias, suggesting that they induce a preleukemic state. The underlying molecular and biological mechanisms are, however, unknown. To address this issue, we performed a systematic analysis of fusion protein transcriptional targets. We expressed AML1/ETO, PML/RAR, and PLZF/RAR in U937 hemopoietic precursor cells and measured global gene expression using oligonucleotide chips. We identified 1,555 genes regulated concordantly by at least two fusion proteins that were further validated in patient samples and finally classified according to available functional information. Strikingly, we found that AML fusion proteins induce genes involved in the maintenance of the stem cell phenotype and repress DNA repair genes, mainly of the base excision repair pathway. Functional studies confirmed that ectopic expression of fusion proteins constitutively activates pathways leading to increased stem cell renewal (e.g., the Jagged1/Notch pathway) and provokes accumulation of DNA damage. We propose that expansion of the stem cell compartment and induction of a mutator phenotype are relevant features underlying the leukemic potential of AML-associated fusion proteins. PMID:14660751

  19. The fusion Vibrio campbellii luciferase as a eukaryotic gene reporter.

    PubMed

    Tinikul, Ruchanok; Thotsaporn, Kittisak; Thaveekarn, Wichit; Jitrapakdee, Sarawut; Chaiyen, Pimchai

    2012-12-31

    Bacterial luciferase from Vibrio campbellii is a thermostable enzyme with an in vitro thermal inactivation half-life of ~1020 min at 37°C. The enzyme also binds tightly to reduced FMN. In this study, a V. campbellii fusion luciferase construct in which the α and β subunits are linked with a decapeptide was made and characterized. In general, the overall enzymatic properties of the two enzymes are similar. Expression of the enzymes in Escherichia coli demonstrated that the V. campbellii fusion luciferase emits less light than the native luciferase, but still emits a much greater amount of light than native luciferase from Vibrio harveyi and Photobacterium leiognathi TH1. The intensity of light emitted by the V. campbellii fusion luciferase was more than 80-fold greater than that from the V. harveyi native luciferase when expressed at 37°C. Biochemical characterization has shown that the V. campbellii fusion luciferase also retains a high binding affinity for reduced flavin mononucleotide and high thermostability. The levels of bioluminescence emitted by the V. campbellii fusion luciferase expressed in HEK293T cells reached ~1×10(6) Relative Light Units/mg total protein. These findings suggest that the V. campbellii fusion luciferase is a promising candidate for further development as a luciferase-based reporter for eukaryotic systems.

  20. NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights

    PubMed Central

    Gough, Sheryl M.; Slape, Christopher I.

    2011-01-01

    Structural chromosomal rearrangements of the Nucleoporin 98 gene (NUP98), primarily balanced translocations and inversions, are associated with a wide array of hematopoietic malignancies. NUP98 is known to be fused to at least 28 different partner genes in patients with hematopoietic malignancies, including acute myeloid leukemia, chronic myeloid leukemia in blast crisis, myelodysplastic syndrome, acute lymphoblastic leukemia, and bilineage/biphenotypic leukemia. NUP98 gene fusions typically encode a fusion protein that retains the amino terminus of NUP98; in this context, it is important to note that several recent studies have demonstrated that the amino-terminal portion of NUP98 exhibits transcription activation potential. Approximately half of the NUP98 fusion partners encode homeodomain proteins, and at least 5 NUP98 fusions involve known histone-modifying genes. Several of the NUP98 fusions, including NUP98-homeobox (HOX)A9, NUP98-HOXD13, and NUP98-JARID1A, have been used to generate animal models of both lymphoid and myeloid malignancy; these models typically up-regulate HOXA cluster genes, including HOXA5, HOXA7, HOXA9, and HOXA10. In addition, several of the NUP98 fusion proteins have been shown to inhibit differentiation of hematopoietic precursors and to increase self-renewal of hematopoietic stem or progenitor cells, providing a potential mechanism for malignant transformation. PMID:21948299

  1. A large, single-center, real-world study of clinicopathological characteristics and treatment in advanced ALK-positive non-small-cell lung cancer.

    PubMed

    Chen, Gang; Chen, Xi; Zhang, Yaxiong; Yan, Fang; Fang, Wenfeng; Yang, Yunpeng; Hong, Shaodong; Miao, Siyu; Wu, Manli; Huang, Xiaodan; Luo, Youli; Zhou, Cong; Gong, Run; Huang, Yan; Zhou, Ningning; Zhao, Hongyun; Zhang, Li

    2017-04-04

    Crizotinib has achieved astonishing success in advanced non-small-cell lung cancer (NSCLC) patients harboring anaplastic lymphoma kinase (ALK) rearrangement. However, no real-world studies described the clinicopathological characteristics and treatment of such patients in China. Patients were consecutively collected from Sun Yat-sen University Cancer Center. Chi-square test was applied to explore the relationship between ALK fusion status and metastasis sites. Kaplan-Meier methods and multivariable analyses were used to estimate progression-free survival (PFS). A total of 291 advanced NSCLC patients (ALK (+), N = 97; both ALK & epidermal growth factor receptor (EGFR) (-), N = 194) were enrolled. The occurrence of brain metastasis in ALK-positive patients was significantly higher than double-negative ones both at baseline (26.5% vs. 16.5%, P = 0.038) and during treatment (25.8% vs. 11.9%, P = 0.003), but opposite for pleural effusion (6.2% vs. 26.9%, P < 0.001 at baseline; 3.1% vs. 10.3%, P = 0.031 during treatment). ALK-positive patients of 53.6% used crizotinib, whereas others only received chemotherapy (37.1%) or supportive care (9.3%). Usage of crizotinib prolonged PFS compared with chemotherapy in ALK-positive patients (median PFS 17.6 m vs. 4.8 m, P < 0.001). ALK-positive NSCLC had more brain metastasis and less pleural effusion than double-negative ones. Crizotinib showed better PFS than chemotherapy in advanced ALK-positive NSCLC at any line. However, half advanced ALK-positive patients never received crizotinib, which was grim and need improving.

  2. Recurrent Fusion Genes in Gastric Cancer: CLDN18-ARHGAP26 Induces Loss of Epithelial Integrity.

    PubMed

    Yao, Fei; Kausalya, Jaya P; Sia, Yee Yen; Teo, Audrey S M; Lee, Wah Heng; Ong, Alicia G M; Zhang, Zhenshui; Tan, Joanna H J; Li, Guoliang; Bertrand, Denis; Liu, Xingliang; Poh, Huay Mei; Guan, Peiyong; Zhu, Feng; Pathiraja, Thushangi Nadeera; Ariyaratne, Pramila N; Rao, Jaideepraj; Woo, Xing Yi; Cai, Shaojiang; Mulawadi, Fabianus H; Poh, Wan Ting; Veeravalli, Lavanya; Chan, Chee Seng; Lim, Seong Soo; Leong, See Ting; Neo, Say Chuan; Choi, Poh Sum D; Chew, Elaine G Y; Nagarajan, Niranjan; Jacques, Pierre-Étienne; So, Jimmy B Y; Ruan, Xiaoan; Yeoh, Khay Guan; Tan, Patrick; Sung, Wing-Kin; Hunziker, Walter; Ruan, Yijun; Hillmer, Axel M

    2015-07-14

    Genome rearrangements, a hallmark of cancer, can result in gene fusions with oncogenic properties. Using DNA paired-end-tag (DNA-PET) whole-genome sequencing, we analyzed 15 gastric cancers (GCs) from Southeast Asians. Rearrangements were enriched in open chromatin and shaped by chromatin structure. We identified seven rearrangement hot spots and 136 gene fusions. In three out of 100 GC cases, we found recurrent fusions between CLDN18, a tight junction gene, and ARHGAP26, a gene encoding a RHOA inhibitor. Epithelial cell lines expressing CLDN18-ARHGAP26 displayed a dramatic loss of epithelial phenotype and long protrusions indicative of epithelial-mesenchymal transition (EMT). Fusion-positive cell lines showed impaired barrier properties, reduced cell-cell and cell-extracellular matrix adhesion, retarded wound healing, and inhibition of RHOA. Gain of invasion was seen in cancer cell lines expressing the fusion. Thus, CLDN18-ARHGAP26 mediates epithelial disintegration, possibly leading to stomach H(+) leakage, and the fusion might contribute to invasiveness once a cell is transformed.

  3. A protein disulfide isomerase gene fusion expression system that increases the extracellular productivity of Bacillus brevis.

    PubMed

    Kajino, T; Ohto, C; Muramatsu, M; Obata, S; Udaka, S; Yamada, Y; Takahashi, H

    2000-02-01

    We have developed a versatile Bacillus brevis expression and secretion system based on the use of fungal protein disulfide isomerase (PDI) as a gene fusion partner. Fusion with PDI increased the extracellular production of heterologous proteins (light chain of immunoglobulin G, 8-fold; geranylgeranyl pyrophosphate synthase, 12-fold). Linkage to PDI prevented the aggregation of the secreted proteins, resulting in high-level accumulation of fusion proteins in soluble and biologically active forms. We also show that the disulfide isomerase activity of PDI in a fusion protein is responsible for the suppression of the aggregation of the protein with intradisulfide, whereas aggregation of the protein without intradisulfide was prevented even when the protein was fused to a mutant PDI whose two active sites were disrupted, suggesting that another PDI function, such as chaperone-like activity, synergistically prevented the aggregation of heterologous proteins in the PDI fusion expression system.

  4. Use of gene fusions to determine the orientation of gene phoA on the Escherichia coli chromosome.

    PubMed Central

    Sarthy, A; Michaelis, S; Beckwith, J

    1981-01-01

    We present genetic evidence which demonstrates that the phoA gene is transcribed in the clockwise direction on the Escherichia coli chromosome, in contrast to an earlier proposal. Our conclusion is based on analysis of various genetic fusions between the lac operon and the phoA gene. PMID:7007316

  5. RNA-Seq mapping and detection of gene fusions with a suffix array algorithm.

    PubMed

    Sakarya, Onur; Breu, Heinz; Radovich, Milan; Chen, Yongzhi; Wang, Yulei N; Barbacioru, Catalin; Utiramerur, Sowmi; Whitley, Penn P; Brockman, Joel P; Vatta, Paolo; Zhang, Zheng; Popescu, Liviu; Muller, Matthew W; Kudlingar, Vidya; Garg, Nriti; Li, Chieh-Yuan; Kong, Benjamin S; Bodeau, John P; Nutter, Robert C; Gu, Jian; Bramlett, Kelli S; Ichikawa, Jeffrey K; Hyland, Fiona C; Siddiqui, Asim S

    2012-01-01

    High-throughput RNA sequencing enables quantification of transcripts (both known and novel), exon/exon junctions and fusions of exons from different genes. Discovery of gene fusions-particularly those expressed with low abundance- is a challenge with short- and medium-length sequencing reads. To address this challenge, we implemented an RNA-Seq mapping pipeline within the LifeScope software. We introduced new features including filter and junction mapping, annotation-aided pairing rescue and accurate mapping quality values. We combined this pipeline with a Suffix Array Spliced Read (SASR) aligner to detect chimeric transcripts. Performing paired-end RNA-Seq of the breast cancer cell line MCF-7 using the SOLiD system, we called 40 gene fusions among over 120,000 splicing junctions. We validated 36 of these 40 fusions with TaqMan assays, of which 25 were expressed in MCF-7 but not the Human Brain Reference. An intra-chromosomal gene fusion involving the estrogen receptor alpha gene ESR1, and another involving the RPS6KB1 (Ribosomal protein S6 kinase beta-1) were recurrently expressed in a number of breast tumor cell lines and a clinical tumor sample.

  6. ESRRA-C11orf20 Is a Recurrent Gene Fusion in Serous Ovarian Carcinoma

    PubMed Central

    Green, Ann E.; Nielsen, Julie S.; Nelson, Brad H.; Drescher, Charles W.; Brown, Patrick O.

    2011-01-01

    Every year, ovarian cancer kills approximately 14,000 women in the United States and more than 140,000 women worldwide. Most of these deaths are caused by tumors of the serous histological type, which is rarely diagnosed before it has disseminated. By deep paired-end sequencing of mRNA from serous ovarian cancers, followed by deep sequencing of the corresponding genomic region, we identified a recurrent fusion transcript. The fusion transcript joins the 5′ exons of ESRRA, encoding a ligand-independent member of the nuclear-hormone receptor superfamily, to the 3′ exons of C11orf20, a conserved but uncharacterized gene located immediately upstream of ESRRA in the reference genome. To estimate the prevalence of the fusion, we tested 67 cases of serous ovarian cancer by RT-PCR and sequencing and confirmed its presence in 10 of these. Targeted resequencing of the corresponding genomic region from two fusion-positive tumor samples identified a nearly clonal chromosomal rearrangement positioning ESRRA upstream of C11orf20 in one tumor, and evidence of local copy number variation in the ESRRA locus in the second tumor. We hypothesize that the recurrent novel fusion transcript may play a role in pathogenesis of a substantial fraction of serous ovarian cancers and could provide a molecular marker for detection of the cancer. Gene fusions involving adjacent or nearby genes can readily escape detection but may play important roles in the development and progression of cancer. PMID:21949640

  7. Xp11 neoplasm with melanocytic differentiation of the prostate harbouring the novel NONO-TFE3 gene fusion: report of a unique case expanding the gene fusion spectrum.

    PubMed

    Wang, Xiao-Tong; Xia, Qiu-Yuan; Ni, Hao; Wang, Zi-Yu; Ye, Sheng-Bing; Li, Rui; Wang, Xuan; Lv, Jing-Huan; Shi, Shan-Shan; Ma, Heng-Hui; Lu, Zhen-Feng; Shen, Qin; Zhou, Xiao-Jun; Rao, Qiu

    2016-09-01

    Recently, an increasing number of TFE3 rearrangement-associated tumours have been reported, such as TFE3 rearrangement-associated perivascular epithelioid cell tumours (PEComas), melanotic Xp11 translocation renal cancers and melanotic Xp11 neoplasms. We have suggested that these tumours belong to a single clinicopathological spectrum. 'Xp11 neoplasm with melanocytic differentiation' or 'melanotic Xp11 neoplasm' have been proposed to designate this unique neoplasm. Herein, we describe the first case of an Xp11 neoplasm with melanocytic differentiation to be described in the prostate, bearing the novel NONO-TFE3 gene fusion. This study both adds to the spectrum regarding melanotic Xp11 neoplasms and expands its gene fusion spectrum. Moreover, we discuss the relationship of these rare tumours to neoplasms such as conventional PEComas, alveolar soft part sarcomas, malignant melanomas, clear cell sarcomas and Xp11 translocation renal cancers.

  8. Dual-therapeutic reporter genes fusion for enhanced cancer gene therapy and imaging.

    PubMed

    Sekar, T V; Foygel, K; Willmann, J K; Paulmurugan, R

    2013-05-01

    Two of the successful gene-directed enzyme prodrug therapies include herpes simplex virus-thymidine kinase (HSV1-TK) enzyme-ganciclovir prodrug and the Escherichia coli nitroreductase (NTR) enzyme-CB1954 prodrug strategies; these enzyme-prodrug combinations produce activated cytotoxic metabolites of the prodrugs capable of tumor cell death by inhibiting DNA synthesis and killing quiescent cells, respectively. Both these strategies also affect significant bystander cell killing of neighboring tumor cells that do not express these enzymes. We have developed a dual-combination gene strategy, where we identified HSV1-TK and NTR fused in a particular orientation can effectively kill tumor cells when the tumor cells are treated with a fusion HSV1-TK-NTR gene- along with a prodrug combination of GCV and CB1954. In order to determine whether the dual-system demonstrate superior therapeutic efficacy than either HSV1-TK or NTR systems alone, we conducted both in vitro and in vivo tumor xenograft studies using triple negative SUM159 breast cancer cells, by evaluating the efficacy of cell death by apoptosis and necrosis upon treatment with the dual HSV1-TK genes-GCV-CB1954 prodrugs system, and compared the efficiency to HSV1-TK-GCV and NTR-CB1954. Our cell-based studies, tumor regression studies in xenograft mice, histological analyses of treated tumors and bystander studies indicate that the dual HSV1-TK-NTR-prodrug system is two times more efficient even with half the doses of both prodrugs than the respective single gene-prodrug system, as evidenced by enhanced apoptosis and necrosis of tumor cells in vitro in culture and xenograft of tumor tissues in animals.

  9. Nuclear fusion occurs during mating in Candida albicans and is dependent on the KAR3 gene.

    PubMed

    Bennett, Richard J; Miller, Mathew G; Chua, Penelope R; Maxon, Mary E; Johnson, Alexander D

    2005-02-01

    It is now well established that mating can occur between diploid a and alpha cells of Candida albicans. There is, however, controversy over when, and with what efficiency, nuclear fusion follows cell fusion to create stable tetraploid a/alpha cells. In this study, we have analysed the mating process between C. albicans strains using both cytological and genetic approaches. Using strains derived from SC5314, we used a number of techniques, including time-lapse microscopy, to demonstrate that efficient nuclear fusion occurs in the zygote before formation of the first daughter cell. Consistent with these observations, zygotes micromanipulated from mating mixes gave rise to mononuclear tetraploid cells, even when no selection for successful mating was applied to them. Mating between different clinical isolates of C. albicans revealed that while all isolates could undergo nuclear fusion, the efficiency of nuclear fusion varied in different crosses. We also show that nuclear fusion in C. albicans requires the Kar3 microtubule motor protein. Deletion of the CaKAR3 gene from both mating partners had little or no effect on zygote formation but reduced the formation of stable tetraploids more than 600-fold, as determined by quantitative mating assays. These findings demonstrate that nuclear fusion is an active process that can occur in C. albicans at high frequency to produce stable, mononucleate mating products.

  10. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy.

    PubMed

    Ross, Jeffrey S; Wang, Kai; Chmielecki, Juliann; Gay, Laurie; Johnson, Adrienne; Chudnovsky, Jacob; Yelensky, Roman; Lipson, Doron; Ali, Siraj M; Elvin, Julia A; Vergilio, Jo-Anne; Roels, Steven; Miller, Vincent A; Nakamura, Brooke N; Gray, Adam; Wong, Michael K; Stephens, Philip J

    2016-02-15

    Although the BRAF V600E base substitution is an approved target for the BRAF inhibitors in melanoma, BRAF gene fusions have not been investigated as anticancer drug targets. In our study, a wide variety of tumors underwent comprehensive genomic profiling for hundreds of known cancer genes using the FoundationOne™ or FoundationOne Heme™ comprehensive genomic profiling assays. BRAF fusions involving the intact in-frame BRAF kinase domain were observed in 55 (0.3%) of 20,573 tumors, across 12 distinct tumor types, including 20 novel BRAF fusions. These comprised 29 unique 5' fusion partners, of which 31% (9) were known and 69% (20) were novel. BRAF fusions included 3% (14/531) of melanomas; 2% (15/701) of gliomas; 1.0% (3/294) of thyroid cancers; 0.3% (3/1,062) pancreatic carcinomas; 0.2% (8/4,013) nonsmall-cell lung cancers and 0.2% (4/2,154) of colorectal cancers, and were enriched in pilocytic (30%) vs. nonpilocytic gliomas (1%; p < 0.0001), Spitzoid (75%) vs. nonSpitzoid melanomas (1%; p = 0.0001), acinar (67%) vs. nonacinar pancreatic cancers (<1%; p < 0.0001) and papillary (3%) vs. nonpapillary thyroid cancers (0%; p < 0.03). Clinical responses to trametinib and sorafenib are presented. In conclusion, BRAF fusions are rare driver alterations in a wide variety of malignant neoplasms, but enriched in Spitzoid melanoma, pilocytic astrocytomas, pancreatic acinar and papillary thyroid cancers.

  11. Spatiotemporal Changes of Calcitonin Gene-Related Peptide Innervation in Spinal Fusion

    PubMed Central

    Zhou, Xiao-Yi; Xu, Xi-Ming; Wu, Sui-Yi; Wang, Fei; Yang, Yi-Lin; Li, Ming

    2016-01-01

    Few studies have investigated the role calcitonin gene-related peptide (CGRP) plays in the process of spinal fusion. The aim of the present study is to observe the temporal and spatial changes of CGRP induced by experimental fusion surgery in rats and elucidate the role of CGRP in spinal fusion. Male Sprague-Dawley rats were used in the study and the specimens were collected on the 7th, 14th, 21st, and 28th day, respectively. Then, histological and immunohistochemical analysis were applied to evaluate the fusion mass and spatiotemporal changes of CGRP chronologically. The results demonstrated that density of CGRP reached peak on the 21st day after surgery and most of the CGRP expression located surrounding the interface of allograft and fibrous tissue where the cells differentiate into osteoblasts, indicating that CGRP might be involved in the process of bone formation and absorption. PMID:27990431

  12. Stimulation of the midkine/ALK axis renders glioma cells resistant to cannabinoid antitumoral action

    PubMed Central

    Lorente, M; Torres, S; Salazar, M; Carracedo, A; Hernández-Tiedra, S; Rodríguez-Fornés, F; García-Taboada, E; Meléndez, B; Mollejo, M; Campos-Martín, Y; Lakatosh, S A; Barcia, J; Guzmán, M; Velasco, G

    2011-01-01

    Identifying the molecular mechanisms responsible for the resistance of gliomas to anticancer treatments is an issue of great therapeutic interest. Δ9-Tetrahydrocannabinol (THC), the major active ingredient of marijuana, and other cannabinoids inhibit tumor growth in animal models of cancer, including glioma, an effect that relies, at least in part, on the stimulation of autophagy-mediated apoptosis in tumor cells. Here, by analyzing the gene expression profile of a large series of human glioma cells with different sensitivity to cannabinoid action, we have identified a subset of genes specifically associated to THC resistance. One of these genes, namely that encoding the growth factor midkine (Mdk), is directly involved in the resistance of glioma cells to cannabinoid treatment. We also show that Mdk mediates its protective effect via the anaplastic lymphoma kinase (ALK) receptor and that Mdk signaling through ALK interferes with cannabinoid-induced autophagic cell death. Furthermore, in vivo Mdk silencing or ALK pharmacological inhibition sensitizes cannabinod-resistant tumors to THC antitumoral action. Altogether, our findings identify Mdk as a pivotal factor involved in the resistance of glioma cells to THC pro-autophagic and antitumoral action, and suggest that selective targeting of the Mdk/ALK axis could help to improve the efficacy of antitumoral therapies for gliomas. PMID:21233844

  13. Sensitivity Analysis of the NPM-ALK Signalling Network Reveals Important Pathways for Anaplastic Large Cell Lymphoma Combination Therapy

    PubMed Central

    Buetti-Dinh, Antoine; O’Hare, Thomas

    2016-01-01

    A large subset of anaplastic large cell lymphoma (ALCL) patients harbour a somatic aberration in which anaplastic lymphoma kinase (ALK) is fused to nucleophosmin (NPM) resulting in a constitutively active signalling fusion protein, NPM-ALK. We computationally simulated the signalling network which mediates pathological cell survival and proliferation through NPM-ALK to identify therapeutically targetable nodes through which it may be possible to regain control of the tumourigenic process. The simulations reveal the predominant role of the VAV1-CDC42 (cell division control protein 42) pathway in NPM-ALK-driven cellular proliferation and of the Ras / mitogen-activated ERK kinase (MEK) / extracellular signal-regulated kinase (ERK) cascade in controlling cell survival. Our results also highlight the importance of a group of interleukins together with the Janus kinase 3 (JAK3) / signal transducer and activator of transcription 3 (STAT3) signalling in the development of NPM-ALK derived ALCL. Depending on the activity of JAK3 and STAT3, the system may also be sensitive to activation of protein tyrosine phosphatase-1 (SHP1), which has an inhibitory effect on cell survival and proliferation. The identification of signalling pathways active in tumourigenic processes is of fundamental importance for effective therapies. The prediction of alternative pathways that circumvent classical therapeutic targets opens the way to preventive approaches for countering the emergence of cancer resistance. PMID:27669408

  14. Effects of different compost amendments on the abundance and composition of alkB harboring bacterial communities in a soil under industrial use contaminated with hydrocarbons

    PubMed Central

    Wallisch, Stefanie; Gril, Tjasa; Dong, Xia; Welzl, Gerd; Bruns, Christian; Heath, Ester; Engel, Marion; Suhadolc, Marjetka; Schloter, Michael

    2014-01-01

    Alkane degrading microorganisms play an important role for the bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the abundance and diversity of bacteria harboring the alkane monooxygenase gene (alkB) in an oil-contaminated soil originated from an industrial zone in Celje, Slovenia (Technosol). Soil without any amendments (control soil) and soil amended with two composts differing in their maturation stage and nutrient availability, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12, and 36 weeks of incubation. As expected the addition of compost stimulated the degradation of alkanes in the investigated soil shortly after the addition. By using quantitative real-time PCR higher number of alkB genes were detected in soil samples amended with compost compared to the control soils. To get an insight into the composition of alkB harboring microbial communities, we performed next generation sequencing of amplicons of alkB gene fragment. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soils with stronger effects of the less maturated, nutrient poor compost. The phylogenetic analysis of communities suggested that the addition of compost stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost. AlkB harboring γ-proteobacteria like Shewanella or Hydrocarboniphaga as well as α-proteobacteria of the genus Agrobacterium responded also positively to the addition of compost to soil. The amendment of the less maturated, nutrient poor compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla) mainly at the early sampling time points. Our data indicates that compost amendments significantly change abundance and diversity pattern of alkB harboring microbes in Technosol and

  15. Effects of different compost amendments on the abundance and composition of alkB harboring bacterial communities in a soil under industrial use contaminated with hydrocarbons.

    PubMed

    Wallisch, Stefanie; Gril, Tjasa; Dong, Xia; Welzl, Gerd; Bruns, Christian; Heath, Ester; Engel, Marion; Suhadolc, Marjetka; Schloter, Michael

    2014-01-01

    Alkane degrading microorganisms play an important role for the bioremediation of petrogenic contaminated environments. In this study, we investigated the effects of compost addition on the abundance and diversity of bacteria harboring the alkane monooxygenase gene (alkB) in an oil-contaminated soil originated from an industrial zone in Celje, Slovenia (Technosol). Soil without any amendments (control soil) and soil amended with two composts differing in their maturation stage and nutrient availability, were incubated under controlled conditions in a microcosm experiment and sampled after 0, 6, 12, and 36 weeks of incubation. As expected the addition of compost stimulated the degradation of alkanes in the investigated soil shortly after the addition. By using quantitative real-time PCR higher number of alkB genes were detected in soil samples amended with compost compared to the control soils. To get an insight into the composition of alkB harboring microbial communities, we performed next generation sequencing of amplicons of alkB gene fragment. Richness and diversity of alkB gene harboring prokaryotes was higher in soil mixed with compost compared to control soils with stronger effects of the less maturated, nutrient poor compost. The phylogenetic analysis of communities suggested that the addition of compost stimulated the abundance of alkB harboring Actinobacteria during the experiment independent from the maturation stage of the compost. AlkB harboring γ-proteobacteria like Shewanella or Hydrocarboniphaga as well as α-proteobacteria of the genus Agrobacterium responded also positively to the addition of compost to soil. The amendment of the less maturated, nutrient poor compost resulted in addition in a large increase of alkB harboring bacteria of the Cytophaga group (Microscilla) mainly at the early sampling time points. Our data indicates that compost amendments significantly change abundance and diversity pattern of alkB harboring microbes in Technosol and

  16. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    SciTech Connect

    Robinson, Claire; Kolb, Andreas F.

    2009-02-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A {beta}-galactosidase reporter gene was inserted in place of the {beta}-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the {beta}-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal {beta}-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the {beta}-casein gene.

  17. RELATIVE EXPRESSION AND STABILITY OF A CHROMOSOMALLY INTEGRATED AND PLASMID-BORNE MARKER GENE FUSION IN ENVIRONMENTALLY COMPETENT BACTERIA

    EPA Science Inventory

    A xyIE-iceC transcriptional fusion was created by ligating a DNA fragment harboring the cloned xyIE structural gene from the TOL plasmid of Pseudomonas putida mt-2 into the cloned iceC gene of Pseudomonas syringae Cit7. This fusion construct was integrated into chromosome of Pseu...

  18. ChimerDB 3.0: an enhanced database for fusion genes from cancer transcriptome and literature data mining.

    PubMed

    Lee, Myunggyo; Lee, Kyubum; Yu, Namhee; Jang, Insu; Choi, Ikjung; Kim, Pora; Jang, Ye Eun; Kim, Byounggun; Kim, Sunkyu; Lee, Byungwook; Kang, Jaewoo; Lee, Sanghyuk

    2017-01-04

    Fusion gene is an important class of therapeutic targets and prognostic markers in cancer. ChimerDB is a comprehensive database of fusion genes encompassing analysis of deep sequencing data and manual curations. In this update, the database coverage was enhanced considerably by adding two new modules of The Cancer Genome Atlas (TCGA) RNA-Seq analysis and PubMed abstract mining. ChimerDB 3.0 is composed of three modules of ChimerKB, ChimerPub and ChimerSeq. ChimerKB represents a knowledgebase including 1066 fusion genes with manual curation that were compiled from public resources of fusion genes with experimental evidences. ChimerPub includes 2767 fusion genes obtained from text mining of PubMed abstracts. ChimerSeq module is designed to archive the fusion candidates from deep sequencing data. Importantly, we have analyzed RNA-Seq data of the TCGA project covering 4569 patients in 23 cancer types using two reliable programs of FusionScan and TopHat-Fusion. The new user interface supports diverse search options and graphic representation of fusion gene structure. ChimerDB 3.0 is available at http://ercsb.ewha.ac.kr/fusiongene/.

  19. ChimerDB 3.0: an enhanced database for fusion genes from cancer transcriptome and literature data mining

    PubMed Central

    Lee, Myunggyo; Lee, Kyubum; Yu, Namhee; Jang, Insu; Choi, Ikjung; Kim, Pora; Jang, Ye Eun; Kim, Byounggun; Kim, Sunkyu; Lee, Byungwook; Kang, Jaewoo; Lee, Sanghyuk

    2017-01-01

    Fusion gene is an important class of therapeutic targets and prognostic markers in cancer. ChimerDB is a comprehensive database of fusion genes encompassing analysis of deep sequencing data and manual curations. In this update, the database coverage was enhanced considerably by adding two new modules of The Cancer Genome Atlas (TCGA) RNA-Seq analysis and PubMed abstract mining. ChimerDB 3.0 is composed of three modules of ChimerKB, ChimerPub and ChimerSeq. ChimerKB represents a knowledgebase including 1066 fusion genes with manual curation that were compiled from public resources of fusion genes with experimental evidences. ChimerPub includes 2767 fusion genes obtained from text mining of PubMed abstracts. ChimerSeq module is designed to archive the fusion candidates from deep sequencing data. Importantly, we have analyzed RNA-Seq data of the TCGA project covering 4569 patients in 23 cancer types using two reliable programs of FusionScan and TopHat-Fusion. The new user interface supports diverse search options and graphic representation of fusion gene structure. ChimerDB 3.0 is available at http://ercsb.ewha.ac.kr/fusiongene/. PMID:27899563

  20. Gene fusion vehicles for the analysis of gene expression in Rhizobium meliloti.

    PubMed Central

    Kahn, M L; Timblin, C R

    1984-01-01

    A set of plasmid cloning vehicles was developed to facilitate the construction of gene or operon fusions in Rhizobium meliloti. The vehicles also contain a broad-host-range replicon and could be introduced into bacteria either by transformation or by transduction, using bacteriophage P2. Insertion of foreign DNA into a unique restriction endonuclease cleavage site promotes the synthesis of either the Escherichia coli lactose operon or the kanamycin phosphotransferase gene from transposon Tn5. Expression of the lactose operon could be detected by observing the color of Rhizobium colonies on medium that contained a chromogenic indicator. We also determined the growth conditions that make it possible to select either for or against the expression of the E. coli lactose operon in R. meliloti. Recombinant plasmids were constructed by inserting MboI restriction fragments of R. meliloti DNA into one of the vehicles, pMK353 . Expression of beta-galactosidase by a number of these recombinants was measured in both R. meliloti and E. coli. PMID:6327625

  1. Prostate cancer of transition zone origin lacks TMPRSS2-ERG gene fusion.

    PubMed

    Guo, Charles C; Zuo, Geyan; Cao, Dongdong; Troncoso, Patricia; Czerniak, Bogdan A

    2009-07-01

    Recent studies have shown a unique chromosomal rearrangement that leads to the fusion of 5'-transmembrane protein serine proteinase-2 (TMPRSS2) with the EST-related gene (ERG) in prostate cancer. In this study, we used fluorescence in situ hybridization to evaluate TMPRSS2-ERG gene fusion in prostate cancer of different zonal origins. Radical prostatectomy specimens with multifocal prostate cancer were obtained from 30 patients who were treated at our institution. Two separate tumor foci in each specimen, one in the peripheral zone and the other in the transition zone, were selected for gene fusion analysis. The selected peripheral zone tumor foci had a mean Gleason score of 6.8 (range, 6-7) and a mean tumor volume of 1.2 cm(3) (range, 0.1-4.6 cm(3)). The selected transition zone tumor foci had a mean Gleason score of 6.7 (range, 5-8) and a mean tumor volume of 4.0 cm(3) (range, 0.5-9.0 cm(3)). ERG gene rearrangement was not observed in any transition zone tumors; however, it was found in the peripheral zone tumors in 13 cases (43%). In 10 cases, the rearrangement was associated with the deletion of the 5'-end of ERG. In conclusion, we found that TMPRSS2-ERG gene fusion is associated with the zonal origin of prostate cancer. This gene fusion is prevalent in prostate cancer arising from the peripheral zone, but is lacking in prostate cancer arising from the transition zone.

  2. TEL/AML-1 fusion gene. its frequency and prognostic significance in childhood acute lymphoblastic leukemia.

    PubMed

    Jamil, A; Theil, K S; Kahwash, S; Ruymann, F B; Klopfenstein, K J

    2000-10-15

    TEL gene rearrangement due to the 12;21 chromosome translocation is believed to be the most common molecular genetic abnormality in childhood acute lymphoblastic leukemia (ALL). A study was conducted to investigate the frequency and prognostic significance of TEL/AML-1 fusion gene resulting from a cryptic t(12;21)(p13;q22). Bone marrow samples from 86 patients diagnosed over the past 5 years at Columbus Children's Hospital were analyzed by fluorescence in situ hybridization (FISH) technique for TEL/AML-1 fusion gene, using LSI((R)) DNA probes. The positive cases were analyzed for clinical outcome. Patients in this study received treatment according to Children's Cancer Group (CCG) protocols. Fifteen of the 86 cases (17%) were positive for the fusion gene. All were B-cell lineage and except for one, all were CD10 positive. TEL/AML-1 was not found in any T-cell ALL. The mean overall survival (OS) following diagnosis for the TEL/AML-1-positive group was significantly longer than for the TEL/AML-1-negative group by log-rank = 7.84, P = 0.005. Similarly, the event-free survival (EFS) after remission for the positive group (median 94.5 months) was longer than the negative group (median 57 months) by log-rank = 7.19, P = 0.007. This study confirms that the TEL/AML-1 fusion gene may be the most common genetic event in childhood ALL, occurring in 17% of the patients. It appears restricted to the B-cell lineage. In this study, the presence of a TEL/AML-1 fusion gene was statistically significant in predicting both OS and EFS, indicating a favorable clinical outcome for these patients. Screening for TEL/AML-1 should become routine at diagnosis and a useful biological variable for risk stratification in future clinical trials.

  3. Design and Characterization of Novel Recombinant Listeriolysin O–Protamine Fusion Proteins for Enhanced Gene Delivery

    PubMed Central

    2015-01-01

    To improve the efficiency of gene delivery for effective gene therapy, it is essential that the vector carries functional components that can promote overcoming barriers in various steps leading to the transport of DNA from extracellular to ultimately nuclear compartment. In this study, we designed genetically engineered fusion proteins as a platform to incorporate multiple functionalities in one chimeric protein. Prototypes of such a chimera tested here contain two domains: one that binds to DNA; the other that can facilitate endosomal escape of DNA. The fusion proteins are composed of listeriolysin O (LLO), the endosomolytic pore-forming protein from Listeria monocytogenes, and a 22 amino acid sequence of the DNA-condensing polypeptide protamine (PN), singly or as a pair: LLO-PN and LLO-PNPN. We demonstrate dramatic enhancement of the gene delivery efficiency of protamine-condensed DNA upon incorporation of a small amount of LLO-PN fusion protein and further improvement with LLO-PNPN in vitro using cultured cells. Additionally, the association of anionic liposomes with cationic LLO-PNPN/protamine/DNA complexes, yielding a net negative surface charge, resulted in better in vitro transfection efficiency in the presence of serum. An initial, small set of data in mice indicated that the observed enhancement in gene expression could also be applicable to in vivo gene delivery. This study suggests that incorporation of a recombinant fusion protein with multiple functional components, such as LLO–protamine fusion protein, in a nonviral vector is a promising strategy for various nonviral gene delivery systems. PMID:25521817

  4. Efficacy of ALK5 inhibition in myelofibrosis

    PubMed Central

    Zhao, Wanke; Ho, Wanting Tina; Han, Ying; Murdun, Cem; Mailloux, Adam W.; Zhang, Ling; Wang, Xuefeng; Budhathoki, Anjali; Pradhan, Kith; Rapaport, Franck; Wang, Huaquan; Shao, Zonghong; Ren, Xiubao; Steidl, Ulrich; Levine, Ross L.; Zhao, Zhizhuang Joe; Verma, Amit; Epling-Burnette, Pearlie K.

    2017-01-01

    Myelofibrosis (MF) is a bone marrow disorder characterized by clonal myeloproliferation, aberrant cytokine production, extramedullary hematopoiesis, and bone marrow fibrosis. Although somatic mutations in JAK2, MPL, and CALR have been identified in the pathogenesis of these diseases, inhibitors of the Jak2 pathway have not demonstrated efficacy in ameliorating MF in patients. TGF-β family members are profibrotic cytokines and we observed significant TGF-β1 isoform overexpression in a large cohort of primary MF patient samples. Significant overexpression of TGF-β1 was also observed in murine clonal MPLW515L megakaryocytic cells. TGF-β1 stimulated the deposition of excessive collagen by mesenchymal stromal cells (MSCs) by activating the TGF-β receptor I kinase (ALK5)/Smad3 pathway. MSCs derived from MPLW515L mice demonstrated sustained overproduction of both collagen I and collagen III, effects that were abrogated by ALK5 inhibition in vitro and in vivo. Importantly, use of galunisertib, a clinically active ALK5 inhibitor, significantly improved MF in both MPLW515L and JAK2V617F mouse models. These data demonstrate the role of malignant hematopoietic stem cell (HSC)/TGF-β/MSC axis in the pathogenesis of MF, and provide a preclinical rationale for ALK5 blockade as a therapeutic strategy in MF.

  5. Proactive management strategies for potential gastrointestinal adverse reactions with ceritinib in patients with advanced ALK-positive non-small-cell lung cancer

    PubMed Central

    Schaefer, Eric S; Baik, Christina

    2016-01-01

    Anaplastic lymphoma kinase (ALK) gene fusions occur in 3%–7% of non-small-cell lung cancer (NSCLC) cases. Ceritinib, a once-daily, oral ALK inhibitor, has activity against crizotinib-resistant and crizotinib-naïve NSCLC, including brain metastases. Ceritinib (Zykadia™) was granted accelerated approval by the US Food and Drug Administration in 2014 for treating crizotinib-resistant ALK-positive NSCLC. Adverse events (AEs), particularly gastrointestinal (GI) AEs, are commonly experienced at the recommended dose of 750 mg/d and ∼38% of patients require dose interruption or reduction for GI AEs. This case study details our experience with the use of proactive GI AE management regimens in patients treated with ceritinib (750 mg/d) across two study sites. Proactive Regimens A and B were implemented in patients with metastatic ALK-positive NSCLC treated with ceritinib to manage drug-related GI AEs. Regimen A comprised ondansetron and diphenoxylate/atropine or loperamide, taken 30 minutes prior to ceritinib dose. Regimen B included dicyclomine (taken with the first ceritinib dose), ondansetron (taken 30 minutes prior to ceritinib dose for the first seven doses), and loperamide (taken as needed with the onset of diarrhea). The proactive medications were tapered off depending on patient tolerability to ceritinib. Nine patient cases are presented. Starting Regimens A or B before the first dose of ceritinib, or as soon as GI symptoms were encountered, prevented the need for dose reduction due to GI toxicity in eight of the nine patients. Using these regimens, 78% of patients were able to remain on 750 mg/d fasting. Two patients received 23 months and 16 months of therapy and remain on ceritinib 750 mg/d and 600 mg/d, respectively. Although not currently recommended or implemented in clinical studies, based on the patients evaluated here, upfront or proactive treatment plans that address AEs early on can allow the majority of patients to remain on the approved 750 mg

  6. The brain expressed x-linked gene 1 (Bex1) regulates myoblast fusion

    PubMed Central

    Yue, Feng; Kuang, Shihuan

    2015-01-01

    Skeletal muscle development (myogenesis) is a complex but precisely orchestrated process involving spatiotemporal regulation of the proliferation, differentiation and fusion of myogenic progenitor cells (myoblasts). Here we identify brain expressed x-linked gene 1 (Bex1) as a transient, developmentally regulated gene involved in myoblast fusion. Bex1 expression is undetectable in adult muscles or in quiescent muscle stem cells (satellite cells). During embryonic myogenesis, however, Bex1 is robustly expressed by myogenin+ differentiating myoblasts, but not by Pax7+ proliferating myoblasts. Interestingly, Bex1 is initially localized in the cytoplasm and then translocates into the nucleus. During adult muscle regeneration, Bex1 is highly expressed in newly regenerated myofibers and the expression is rapidly downregulated during maturation. Consistently, in cultured myoblasts, Bex1 is not expressed at the proliferation stage but transiently expressed upon induction of myogenic differentiation, following a similar cytoplasm to nucleus translocation pattern as seen in vivo. Using gain- and loss-of-function studies, we found that overexpression of Bex1 promotes the fusion of primary myoblasts without affecting myogenic differentiation and myogenin expression. Conversely, Bex1 knockout myoblasts exhibit obvious fusion defects, even though they express normal levels of myogenin and differentiate normally. These results elucidate a novel role of Bex1 in myogenesis through regulating myoblast fusion. PMID:26586200

  7. Characterization of the genomic features and expressed fusion genes in micropapillary carcinomas of the breast

    PubMed Central

    Natrajan, Rachael; Wilkerson, Paul M; Marchiò, Caterina; Piscuoglio, Salvatore; Ng, Charlotte KY; Wai, Patty; Lambros, Maryou B; Samartzis, Eleftherios P; Dedes, Konstantin J; Frankum, Jessica; Bajrami, Ilirjana; Kopec, Alicja; Mackay, Alan; A'hern, Roger; Fenwick, Kerry; Kozarewa, Iwanka; Hakas, Jarle; Mitsopoulos, Costas; Hardisson, David; Lord, Christopher J; Kumar-Sinha, Chandan; Ashworth, Alan; Weigelt, Britta; Sapino, Anna; Chinnaiyan, Arul M; Maher, Christopher A; Reis-Filho, Jorge S

    2014-01-01

    Micropapillary carcinoma (MPC) is a rare histological special type of breast cancer, characterized by an aggressive clinical behaviour and a pattern of copy number aberrations (CNAs) distinct from that of grade- and oestrogen receptor (ER)-matched invasive carcinomas of no special type (IC-NSTs). The aims of this study were to determine whether MPCs are underpinned by a recurrent fusion gene(s) or mutations in 273 genes recurrently mutated in breast cancer. Sixteen MPCs were subjected to microarray-based comparative genomic hybridization (aCGH) analysis and Sequenom OncoCarta mutation analysis. Eight and five MPCs were subjected to targeted capture and RNA sequencing, respectively. aCGH analysis confirmed our previous observations about the repertoire of CNAs of MPCs. Sequencing analysis revealed a spectrum of mutations similar to those of luminal B IC-NSTs, and recurrent mutations affecting mitogen-activated protein kinase family genes and NBPF10. RNA-sequencing analysis identified 17 high-confidence fusion genes, eight of which were validated and two of which were in-frame. No recurrent fusions were identified in an independent series of MPCs and IC-NSTs. Forced expression of in-frame fusion genes (SLC2A1–FAF1 and BCAS4–AURKA) resulted in increased viability of breast cancer cells. In addition, genomic disruption of CDK12 caused by out-of-frame rearrangements was found in one MPC and in 13% of HER2-positive breast cancers, identified through a re-analysis of publicly available massively parallel sequencing data. In vitro analyses revealed that CDK12 gene disruption results in sensitivity to PARP inhibition, and forced expression of wild-type CDK12 in a CDK12-null cell line model resulted in relative resistance to PARP inhibition. Our findings demonstrate that MPCs are neither defined by highly recurrent mutations in the 273 genes tested, nor underpinned by a recurrent fusion gene. Although seemingly private genetic events, some of the fusion transcripts found

  8. A gene fusion at a homeobox locus: alterations in leaf shape and implications for morphological evolution.

    PubMed Central

    Chen, J J; Janssen, B J; Williams, A; Sinha, N

    1997-01-01

    Compound leaves are seen in many angiosperm genera and are thought to be either fundamentally different from simple leaves or elaborations of simple leaves. The knotted1-like homeobox (knox) genes are known to regulate plant development. When overexpressed in homologous or heterologous species, this family of genes can cause changes in leaf morphology, including excessive leaf compounding in tomato. We describe here an instance of a spontaneously arisen fusion between a gene encoding a metabolic enzyme and a homeodomain protein. We show that the fusion results in overexpression of the homeodomain protein and a change in morphology that approximates the changes caused by overexpression of the same gene under the control of the cauliflower mosaic virus 35S promoter in transgenic plants. Exon-shuffling events can account for the modularity of proteins. If the shuffled exons are associated with altered promoters, changes in gene expression patterns can result. Our results show that gene fusions of this nature can cause changes in expression patterns that lead to altered morphology. We suggest that such phenomena may have played a role in the evolution of form. PMID:9286107

  9. Integrated genomic analyses identify frequent gene fusion events and VHL inactivation in gastrointestinal stromal tumors

    PubMed Central

    Sun, Choong-Hyun; Park, Inho; Lee, Seungmook; Kwon, Jekeun; Do, Ingu; Hong, Min Eui; Van Vrancken, Michael; Lee, Jeeyun; Park, Joon Oh; Cho, Jeonghee; Kim, Kyoung-Mee; Sohn, Tae Sung

    2016-01-01

    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. We sequenced nine exomes and transcriptomes, and two genomes of GISTs for integrated analyses. We detected 306 somatic variants in nine GISTs and recurrent protein-altering mutations in 29 genes. Transcriptome sequencing revealed 328 gene fusions, and the most frequently involved fusion events were associated with IGF2 fused to several partner genes including CCND1, FUS, and LASP1. We additionally identified three recurrent read-through fusion transcripts: POLA2-CDC42EP2, C8orf42-FBXO25, and STX16-NPEPL1. Notably, we found intragenic deletions in one of three exons of the VHL gene and increased mRNAs of VEGF, PDGF-β, and IGF-1/2 in 56% of GISTs, suggesting a mechanistic link between VHL inactivation and overexpression of hypoxia-inducible factor target genes in the absence of hypoxia. We also identified copy number gain and increased mRNA expression of AMACR, CRIM1, SKP2, and CACNA1E. Mapping of copy number and gene expression results to the KEGG pathways revealed activation of the JAK-STAT pathway in small intestinal GISTs and the MAPK pathway in wild-type GISTs. These observations will allow us to determine the genetic basis of GISTs and will facilitate further investigation to develop new therapeutic options. PMID:25987131

  10. Integrated genomic analyses identify frequent gene fusion events and VHL inactivation in gastrointestinal stromal tumors.

    PubMed

    Kang, Guhyun; Yun, Hongseok; Sun, Choong-Hyun; Park, Inho; Lee, Seungmook; Kwon, Jekeun; Do, Ingu; Hong, Min Eui; Van Vrancken, Michael; Lee, Jeeyun; Park, Joon Oh; Cho, Jeonghee; Kim, Kyoung-Mee; Sohn, Tae Sung

    2016-02-09

    Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. We sequenced nine exomes and transcriptomes, and two genomes of GISTs for integrated analyses. We detected 306 somatic variants in nine GISTs and recurrent protein-altering mutations in 29 genes. Transcriptome sequencing revealed 328 gene fusions, and the most frequently involved fusion events were associated with IGF2 fused to several partner genes including CCND1, FUS, and LASP1. We additionally identified three recurrent read-through fusion transcripts: POLA2-CDC42EP2, C8orf42-FBXO25, and STX16-NPEPL1. Notably, we found intragenic deletions in one of three exons of the VHL gene and increased mRNAs of VEGF, PDGF-β, and IGF-1/2 in 56% of GISTs, suggesting a mechanistic link between VHL inactivation and overexpression of hypoxia-inducible factor target genes in the absence of hypoxia. We also identified copy number gain and increased mRNA expression of AMACR, CRIM1, SKP2, and CACNA1E. Mapping of copy number and gene expression results to the KEGG pathways revealed activation of the JAK-STAT pathway in small intestinal GISTs and the MAPK pathway in wild-type GISTs. These observations will allow us to determine the genetic basis of GISTs and will facilitate further investigation to develop new therapeutic options.

  11. TMPRSS2-ERG Fusion Gene Expression in Prostate Tumor Cells and Its Clinical and Biological Significance in Prostate Cancer Progression

    PubMed Central

    St. John, Jason; Powell, Katelyn; Conley-LaComb, M. Katie; Chinni, Sreenivasa R.

    2012-01-01

    TMPRSS2-Ets gene fusions were identified in prostate cancers where the promoter of transmembrane protease, serine 2 (TMPRSS2) fused with coding sequence of the erythroblastosis virus E26 (Ets) gene family members. TMPRSS2 is an androgen responsive transmembrane serine protease. Ets family members are oncogenic transcription factors that contain a highly conserved Ets DNA binding domain and an N-terminal regulatory domain. Fusion of these gene results in androgen dependent transcription of Ets factor in prostate tumor cells. The ERG is the most common fusion partner with TMPRSS2 promoter in prostate cancer patients. The high prevalence of these gene fusions, in particular TMPRSS2-ERG, makes them attractive as potential diagnostic and prognostic indicators, as well as making them a potential target for tailored therapies. This review focuses on the clinical and biological significance of TMPRSS2-ERG fusions and their role in PC development and progression. PMID:23264855

  12. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types

    PubMed Central

    Sartore-Bianchi, Andrea; Siena, Salvatore

    2016-01-01

    The tropomyosin receptor kinase (Trk) receptor family comprises 3 transmembrane proteins referred to as Trk A, B and C (TrkA, TrkB and TrkC) receptors that are encoded by the NTRK1, NTRK2 and NTRK3 genes, respectively. These receptor tyrosine kinases are expressed in human neuronal tissue and play an essential role in the physiology of development and function of the nervous system through activation by neurotrophins. Gene fusions involving NTRK genes lead to transcription of chimeric Trk proteins with constitutively activated or overexpressed kinase function conferring oncogenic potential. These genetic abnormalities have recently emerged as targets for cancer therapy, because novel compounds have been developed that are selective inhibitors of the constitutively active rearranged proteins. Developments in this field are being aided by next generation sequencing methods as tools for unbiased gene fusions discovery. In this article, we review the role of NTRK gene fusions across several tumour histologies, and the promises and challenges of targeting such genetic alterations for cancer therapy. PMID:27843590

  13. Isolation and characterization of Escherichia coli strains containing new gene fusions (soi::lacZ) inducible by superoxide radicals.

    PubMed Central

    Mito, S; Zhang, Q M; Yonei, S

    1993-01-01

    Gene fusions in Escherichia coli that showed increased beta-galactosidase expression in response to treatment with a superoxide radical (O2-) generator, methyl viologen (MV), were obtained. These fusions were constructed by using a Mud(Ap lac) phage to insert the lactose structural genes randomly into the E. coli chromosome. Ampicillin-resistant colonies were screened for increased expression of beta-galactosidase on X-Gal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) plates containing MV at 1.25 micrograms/ml. Other O2- generators, menadione and plumbagin, also induced beta-galactosidase activity in these fusion strains. The induction by these drugs occurred only under aerobic conditions. Hyperoxygenation also elicited an induction of the fusions. On the other hand, no significant induction was observed with hydrogen peroxide and cumene hydroperoxide. The induction of these fusions by MV was not dependent on the peroxide stress control mediated by the oxyR gene or on the recA-dependent SOS system. These fusions were named soi (superoxide inducible)::lacZ. The induction of beta-galactosidase was significantly reduced by introducing a soxS::Tn10 locus into the fusion strains, indicating that the soi genes are members of the soxRS regulon. Five of the fusions were located in 6 to 26 min of the E. coli genetic map, while three fusions were located in 26 to 36 min, indicating that these fusions are not related to genes already known to be inducible by O2- under the control of soxRS. At least five mutants containing the soi::lacZ fusion were more sensitive to MV and menadione than the wild-type strain, suggesting that the products of these soi genes play an important role in protection against oxidative stress. PMID:8386722

  14. Treatment of advanced non-small-cell lung cancer with epidermal growth factor receptor (EGFR) mutation or ALK gene rearrangement: results of an international expert panel meeting of the Italian Association of Thoracic Oncology.

    PubMed

    Gridelli, Cesare; de Marinis, Filippo; Cappuzzo, Federico; Di Maio, Massimo; Hirsch, Fred R; Mok, Tony; Morgillo, Floriana; Rosell, Rafael; Spigel, David R; Yang, James Chih-Hsin; Ciardiello, Fortunato

    2014-05-01

    The availability of targeted drugs has made the assessment of the EGFR mutation and ALK rearrangement critical in choosing the optimal treatment for patients with advanced non-small-cell lung cancer (NSCLC). In May 2013, the Italian Association of Thoracic Oncology (AIOT) organized an International Experts Panel Meeting to review strengths and limitations of the available evidence for the diagnosis and treatment of advanced NSCLC with EGFR or anaplastic lymphoma kinase (ALK) alterations and to discuss implications for clinical practice and future clinical research. All patients with advanced NSCLC, with the exclusion of pure squamous cell carcinoma in former or current smokers, should be tested for EGFR mutations and ALK rearrangements before decisions are made on first-line treatment. First-line treatment of EGFR-mutated cases should be with an EGFR tyrosine kinase inhibitor (TKI). Any available agent (gefitinib, erlotinib, or afatinib) can be used, until further data from comparative studies may better guide TKI selection. As general rule, and when clinically feasible, results of EGFR mutational status should be awaited before starting first-line treatment. Panelists agreed that the use of crizotinib is justified in any line of treatment. Although solid evidence supporting the continuation of EGFR TKIs or crizotinib beyond progression is lacking, in some cases (minimal, asymptomatic progression, or oligoprogression manageable by local therapy), treatment continuation beyond progression could be justified. Experimental strategies to target tumor heterogeneity and to treat patients after failure of EGFR TKIs or crizotinib are considered high-priority areas of research. A number of relevant research priorities were identified to optimize available treatment options.

  15. Gene fusion analysis of membrane protein topology: a direct comparison of alkaline phosphatase and beta-lactamase fusions.

    PubMed Central

    Prinz, W A; Beckwith, J

    1994-01-01

    To compare two approaches to analyzing membrane protein topology, a number of alkaline phosphatase fusions to membrane proteins were converted to beta-lactamase fusions. While some alkaline phosphatase fusions near the N terminus of cytoplasmic loops of membrane proteins have anomalously high levels of activity, the equivalent beta-lactamase fusions do not. This disparity may reflect differences in the folding of beta-lactamase and alkaline phosphatase in the cytoplasm. PMID:7929016

  16. Recurrent MET fusion genes represent a drug target in pediatric glioblastoma.

    PubMed

    2016-11-01

    Pediatric glioblastoma is one of the most common and most deadly brain tumors in childhood. Using an integrative genetic analysis of 53 pediatric glioblastomas and five in vitro model systems, we identified previously unidentified gene fusions involving the MET oncogene in ∼10% of cases. These MET fusions activated mitogen-activated protein kinase (MAPK) signaling and, in cooperation with lesions compromising cell cycle regulation, induced aggressive glial tumors in vivo. MET inhibitors suppressed MET tumor growth in xenograft models. Finally, we treated a pediatric patient bearing a MET-fusion-expressing glioblastoma with the targeted inhibitor crizotinib. This therapy led to substantial tumor shrinkage and associated relief of symptoms, but new treatment-resistant lesions appeared, indicating that combination therapies are likely necessary to achieve a durable clinical response.

  17. Two novel imatinib-responsive PDGFRA fusion genes in chronic eosinophilic leukaemia.

    PubMed

    Curtis, Claire E; Grand, Francis H; Musto, Pellegrino; Clark, Andrew; Murphy, John; Perla, Gianni; Minervini, Maria M; Stewart, Janet; Reiter, Andreas; Cross, Nicholas C P

    2007-07-01

    We identified two patients with a t(2;4)(p24;q12) and a t(4;12)(q2?3;p1?2), respectively, in association with BCR-ABL and FIP1L1-PDGFRA negative chronic eosinophilic leukaemia. Molecular analysis revealed a novel STRN-PDGFRA fusion for the t(2;4) and ETV6-PDGFRA for the t(4;12). The fusions were confirmed by specific amplification of the genomic breakpoints, reverse transcription polymerase chain reaction and fluorescence in situ hybridisation. Both patients were treated with imatinib and, following a rapid haematological response, achieved cytogenetic remission and a major molecular response. In conclusion, PDGFRA fuses to diverse partner genes in myeloid disorders. Identification of these fusions is important as they are particularly sensitive to imatinib.

  18. A Search for Gene Fusions/Translocations in Breast Cancer

    DTIC Science & Technology

    2012-10-01

    pseudogenes derived from AURKA (kidney samples), RHOB (colon samples), and HMGB1 ( myeloproliferative neoplasms [MPNs]) (Figure 3A, top). Interestingly...key clusters are labeled with their corresponding parental gene symbols. MPN, myeloproliferative neoplasms . See also Table S6.transcripts in samples

  19. Diverse alkane hydroxylase genes in microorganisms and environments

    PubMed Central

    Nie, Yong; Chi, Chang-Qiao; Fang, Hui; Liang, Jie-Liang; Lu, She-Lian; Lai, Guo-Li; Tang, Yue-Qin; Wu, Xiao-Lei

    2014-01-01

    AlkB and CYP153 are important alkane hydroxylases responsible for aerobic alkane degradation in bioremediation of oil-polluted environments and microbial enhanced oil recovery. Since their distribution in nature is not clear, we made the investigation among thus-far sequenced 3,979 microbial genomes and 137 metagenomes from terrestrial, freshwater, and marine environments. Hundreds of diverse alkB and CYP153 genes including many novel ones were found in bacterial genomes, whereas none were found in archaeal genomes. Moreover, these genes were detected with different distributional patterns in the terrestrial, freshwater, and marine metagenomes. Hints for horizontal gene transfer, gene duplication, and gene fusion were found, which together are likely responsible for diversifying the alkB and CYP153 genes adapt to the ubiquitous distribution of different alkanes in nature. In addition, different distributions of these genes between bacterial genomes and metagenomes suggested the potentially important roles of unknown or less common alkane degraders in nature. PMID:24829093

  20. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN

    PubMed Central

    Guan, J.; Tucker, E. R.; Wan, H.; Chand, D.; Danielson, L. S.; Ruuth, K.; El Wakil, A.; Witek, B.; Jamin, Y.; Umapathy, G.; Robinson, S. P.; Johnson, T. W.; Smeal, T.; Martinsson, T.; Chesler, L.; Palmer, R. H.

    2016-01-01

    ABSTRACT The first-in-class inhibitor of ALK, c-MET and ROS1, crizotinib (Xalkori), has shown remarkable clinical efficacy in treatment of ALK-positive non-small cell lung cancer. However, in neuroblastoma, activating mutations in the ALK kinase domain are typically refractory to crizotinib treatment, highlighting the need for more potent inhibitors. The next-generation ALK inhibitor PF-06463922 is predicted to exhibit increased affinity for ALK mutants prevalent in neuroblastoma. We examined PF-06463922 activity in ALK-driven neuroblastoma models in vitro and in vivo. In vitro kinase assays and cell-based experiments examining ALK mutations of increasing potency show that PF-06463922 is an effective inhibitor of ALK with greater activity towards ALK neuroblastoma mutants. In contrast to crizotinib, single agent administration of PF-06463922 caused dramatic tumor inhibition in both subcutaneous and orthotopic xenografts as well as a mouse model of high-risk neuroblastoma driven by Th-ALKF1174L/MYCN. Taken together, our results suggest PF-06463922 is a potent inhibitor of crizotinib-resistant ALK mutations, and highlights an important new treatment option for neuroblastoma patients. PMID:27483357

  1. Economic Analysis of Alternative Strategies for Detection of ALK Rearrangements in Non Small Cell Lung Cancer

    PubMed Central

    Doshi, Shivang; Ray, David; Stein, Karen; Zhang, Jie; Koduru, Prasad; Fogt, Franz; Wellman, Axel; Wat, Ricky; Mathews, Charles

    2016-01-01

    Identification of alterations in ALK gene and development of ALK-directed therapies have increased the need for accurate and efficient detection methodologies. To date, research has focused on the concordance between the two most commonly used technologies, fluorescent in situ hybridization (FISH) and immunohistochemistry (IHC). However, inter-test concordance reflects only one, albeit important, aspect of the diagnostic process; laboratories, hospitals, and payors must understand the cost and workflow of ALK rearrangement detection strategies. Through literature review combined with interviews of pathologists and laboratory directors in the U.S. and Europe, a cost-impact model was developed that compared four alternative testing strategies—IHC only, FISH only, IHC pre-screen followed by FISH confirmation, and parallel testing by both IHC and FISH. Interviews were focused on costs of reagents, consumables, equipment, and personnel. The resulting model showed that testing by IHC alone cost less ($90.07 in the U.S., $68.69 in Europe) than either independent or parallel testing by both FISH and IHC ($441.85 in the U.S. and $279.46 in Europe). The strategies differed in cost of execution, turnaround time, reimbursement, and number of positive results detected, suggesting that laboratories must weigh the costs and the clinical benefit of available ALK testing strategies. PMID:26838801

  2. An Unusual Case of Systemic Inflammatory Myofibroblastic Tumor with Successful Treatment with ALK-Inhibitor

    PubMed Central

    Jacob, Sanjivini V.; Reith, John D.; Kojima, Angerika Y.; Williams, William D.; Liu, Chen; Vila Duckworth, Lizette

    2014-01-01

    Systemic inflammatory myofibroblastic tumor is an exceedingly rare entity. A 45-year-old Hispanic female presented with a 6-month history of left-sided thigh pain, low back pain, and generalized weakness. PET/CT scan revealed abnormal activity in the liver, adrenal gland, and pancreas. MRI of the abdomen demonstrated two 6-7 cm masses in the liver. MRI of the lumbar spine demonstrated lesions in the L2 to L4 spinous processes, paraspinal muscles, and subcutaneous tissues, as well as an 8 mm enhancing intradural lesion at T11, all thought to be metastatic disease. A biopsy of the liver showed portal tract expansion by a spindle cell proliferation rich in inflammation. Tumor cells showed immunoreactivity for smooth muscle actin and anaplastic lymphoma kinase 1 (ALK1). Tissue from the L5 vertebra showed a process histologically identical to that seen in the liver. FISH analysis of these lesions demonstrated an ALK (2p23) gene rearrangement. The patient was successfully treated with an ALK-inhibitor, Crizotinib, and is now in complete remission. We present the first reported case, to our knowledge, of inflammatory myofibroblastic tumor with systemic manifestations and ALK translocation. This case is a prime example of how personalized medicine has vastly improved patient care through the use of molecular-targeted therapy. PMID:25045570

  3. Selection against Robertsonian fusions involving housekeeping genes in the house mouse: integrating data from gene expression arrays and chromosome evolution.

    PubMed

    Ruiz-Herrera, Aurora; Farré, Marta; Ponsà, Montserrat; Robinson, Terence J

    2010-11-01

    Monobrachial homology resulting from Robertsonian (Rb) fusions is thought to contribute to chromosomal speciation through underdominance. Given the karyotypic diversity characterizing wild house mouse populations [Mus musculus domesticus, (MMU)], variation that results almost exclusively from Rb fusions (diploid numbers range from 22 to 40) and possibly whole arm reciprocal translocations (WARTs), this organism represents an excellent model for testing hypotheses of chromosomal evolution. Previous studies of chromosome size and recombination rates have failed to explain the bias for certain chromosomes to be involved more frequently than others in these rearrangements. Here, we show that the pericentromeric region of one such chromosome, MMU19, which is infrequently encountered as a fusion partner in wild populations, is significantly enriched for housekeeping genes when compared to other chromosomes in the genome. These data suggest that there is selection against breakpoints in the pericentromeric region and provide new insights into factors that constrain chromosomal reorganizations in house mice. Given the anticipated increase in vertebrate whole genome sequences, the examination of gene content and expression profiles of the pericentromeric regions of other mammalian lineages characterized by Rb fusions (i.e., other rodents, bats, and bovids, among others) is both achievable and crucial to developing broadly applicable models of chromosome evolution.

  4. Origin and Evolution of a Chimeric Fusion Gene in Drosophila subobscura, D. madeirensis and D. guanche

    PubMed Central

    Jones, Corbin D.; Custer, Andrew W.; Begun, David J.

    2005-01-01

    An understanding of the mutational and evolutionary mechanisms underlying the emergence of novel genes is critical to studies of phenotypic and genomic evolution. Here we describe a new example of a recently formed chimeric fusion gene that occurs in Drosophila guanche, D. madeirensis, and D. subobscura. This new gene, which we name Adh-Twain, resulted from an Adh mRNA that retrotransposed into the Gapdh-like gene, CG9010. Adh-Twain is transcribed; its 5′ promoters and transcription patterns appear similar to those of CG9010. Population genetic and phylogenetic analyses suggest that the amino acid sequence of Adh-Twain evolved rapidly via directional selection shortly after it arose. Its more recent history, however, is characterized by slower evolution consistent with increasing functional constraints. We present a model for the origin of this new gene and discuss genetic and evolutionary factors affecting the evolution of new genes and functions. PMID:15781692

  5. The relationship of TMPRSS2-ERG gene fusion between primary and metastatic prostate cancers

    PubMed Central

    Guo, Charles C.; Wang, Yan; Xiao, Li; Troncoso, Patricia; Czerniak, Bogdan A.

    2013-01-01

    Recent studies have revealed the presence of TMPRSS2-ERG gene fusion in both primary and metastatic prostatic cancers (PCAs). However, the relationship between primary and corresponding metastatic PCAs with respect to the status of this gene fusion remains unclear. Using fluorescence in situ hybridization, we evaluated the rearrangement of the ERG gene in the radical prostatectomy (RP) specimens and corresponding lymph node metastases from 19 patients with PCA. The mean age of the patients was 61 years and the median Gleason score in the RP specimens was 7 (4+3). PCA was unifocal in 6 cases and multifocal in 13 cases, including 10 with 2 foci and 3 with 3 foci. In the primary PCAs, rearrangement of the ERG gene was observed in 13 cases and associated with deletion of the 5’ ERG gene in 8 cases. In the metastases, the ERG rearrangement was present in 10 cases and associated with deletion of the 5’ ERG gene in 6 cases. In unifocal PCAs, the status of the ERG rearrangement was concordant between the primary PCA and metastasis in 5 of 6 cases. In multifocal PCA, despite a significant interfocal discordance, the status of the ERG rearrangement was concordant between the index (largest) primary tumor focus and metastasis in all 13 cases. Our study demonstrates a close relationship of the TMPRSS2-ERG gene fusion status between primary and metastatic PCA. The concordance of the ERG gene rearrangement status between the index primary tumor focus and metastasis suggests that metastasis most likely arises from the index tumor focus in multifocal PCA. PMID:21937078

  6. The relationship of TMPRSS2-ERG gene fusion between primary and metastatic prostate cancers.

    PubMed

    Guo, Charles C; Wang, Yan; Xiao, Li; Troncoso, Patricia; Czerniak, Bogdan A

    2012-05-01

    Recent studies have revealed the presence of TMPRSS2-ERG gene fusion in both primary and metastatic prostate cancers. However, the relationship between primary and corresponding metastatic prostate cancers with respect to the status of this gene fusion remains unclear. Using fluorescence in situ hybridization, we evaluated the rearrangement of the ERG gene in the radical prostatectomy specimens and corresponding lymph node metastases from 19 patients with prostate cancer. The mean age of the patients was 61 years, and the median Gleason score in the radical prostatectomy specimens was 7 (4 + 3). Prostate cancer was unifocal in 6 cases and multifocal in 13 cases, including 10 with 2 foci and 3 with 3 foci. In the primary prostate cancers, rearrangement of the ERG gene was observed in 13 cases and associated with deletion of the 5' ERG gene in 8 cases. In the metastases, the ERG rearrangement was present in 10 cases and associated with deletion of the 5' ERG gene in 6 cases. In unifocal prostate cancers, the status of the ERG rearrangement was concordant between the primary prostate cancer and metastasis in 5 of 6 cases. In multifocal prostate cancer, despite a significant interfocal discordance, the status of the ERG rearrangement was concordant between the index (largest) primary tumor focus and metastasis in all 13 cases. Our study demonstrates a close relationship of the TMPRSS2-ERG gene fusion status between primary and metastatic prostate cancer. The concordance of the ERG gene rearrangement status between the index primary tumor focus and metastasis suggests that metastasis most likely arises from the index tumor focus in multifocal prostate cancer.

  7. Gene expression, single nucleotide variant and fusion transcript discovery in archival material from breast tumors.

    PubMed

    Norton, Nadine; Sun, Zhifu; Asmann, Yan W; Serie, Daniel J; Necela, Brian M; Bhagwate, Aditya; Jen, Jin; Eckloff, Bruce W; Kalari, Krishna R; Thompson, Kevin J; Carr, Jennifer M; Kachergus, Jennifer M; Geiger, Xochiquetzal J; Perez, Edith A; Thompson, E Aubrey

    2013-01-01

    Advantages of RNA-Seq over array based platforms are quantitative gene expression and discovery of expressed single nucleotide variants (eSNVs) and fusion transcripts from a single platform, but the sensitivity for each of these characteristics is unknown. We measured gene expression in a set of manually degraded RNAs, nine pairs of matched fresh-frozen, and FFPE RNA isolated from breast tumor with the hybridization based, NanoString nCounter (226 gene panel) and with whole transcriptome RNA-Seq using RiboZeroGold ScriptSeq V2 library preparation kits. We performed correlation analyses of gene expression between samples and across platforms. We then specifically assessed whole transcriptome expression of lincRNA and discovery of eSNVs and fusion transcripts in the FFPE RNA-Seq data. For gene expression in the manually degraded samples, we observed Pearson correlations of >0.94 and >0.80 with NanoString and ScriptSeq protocols, respectively. Gene expression data for matched fresh-frozen and FFPE samples yielded mean Pearson correlations of 0.874 and 0.783 for NanoString (226 genes) and ScriptSeq whole transcriptome protocols respectively, p<2x10(-16). Specifically for lincRNAs, we observed superb Pearson correlation (0.988) between matched fresh-frozen and FFPE pairs. FFPE samples across NanoString and RNA-Seq platforms gave a mean Pearson correlation of 0.838. In FFPE libraries, we detected 53.4% of high confidence SNVs and 24% of high confidence fusion transcripts. Sensitivity of fusion transcript detection was not overcome by an increase in depth of sequencing up to 3-fold (increase from ~56 to ~159 million reads). Both NanoString and ScriptSeq RNA-Seq technologies yield reliable gene expression data for degraded and FFPE material. The high degree of correlation between NanoString and RNA-Seq platforms suggests discovery based whole transcriptome studies from FFPE material will produce reliable expression data. The RiboZeroGold ScriptSeq protocol performed

  8. Gene Fusion Analysis in the Battle against the African Endemic Sleeping Sickness

    PubMed Central

    Trimpalis, Philip; Koumandou, Vassiliki Lila; Pliakou, Evangelia; Anagnou, Nicholas P.; Kossida, Sophia

    2013-01-01

    The protozoan Trypanosoma brucei causes African Trypanosomiasis or sleeping sickness in humans, which can be lethal if untreated. Most available pharmacological treatments for the disease have severe side-effects. The purpose of this analysis was to detect novel protein-protein interactions (PPIs), vital for the parasite, which could lead to the development of drugs against this disease to block the specific interactions. In this work, the Domain Fusion Analysis (Rosetta Stone method) was used to identify novel PPIs, by comparing T. brucei to 19 organisms covering all major lineages of the tree of life. Overall, 49 possible protein-protein interactions were detected, and classified based on (a) statistical significance (BLAST e-value, domain length etc.), (b) their involvement in crucial metabolic pathways, and (c) their evolutionary history, particularly focusing on whether a protein pair is split in T. brucei and fused in the human host. We also evaluated fusion events including hypothetical proteins, and suggest a possible molecular function or involvement in a certain biological process. This work has produced valuable results which could be further studied through structural biology or other experimental approaches so as to validate the protein-protein interactions proposed here. The evolutionary analysis of the proteins involved showed that, gene fusion or gene fission events can happen in all organisms, while some protein domains are more prone to fusion and fission events and present complex evolutionary patterns. PMID:23874788

  9. microRNA classifiers are powerful diagnostic/prognostic tools in ALK-, EGFR-, and KRAS-driven lung cancers.

    PubMed

    Gasparini, Pierluigi; Cascione, Luciano; Landi, Lorenza; Carasi, Stefania; Lovat, Francesca; Tibaldi, Carmelo; Alì, Greta; D'Incecco, Armida; Minuti, Gabriele; Chella, Antonio; Fontanini, Gabriella; Fassan, Matteo; Cappuzzo, Federico; Croce, Carlo M

    2015-12-01

    microRNAs (miRNAs) can act as oncosuppressors or oncogenes, induce chemoresistance or chemosensitivity, and are major posttranscriptional gene regulators. Anaplastic lymphoma kinase (ALK), EGF receptor (EGFR), and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) are major drivers of non-small cell lung cancer (NSCLC). The aim of this study was to assess the miRNA profiles of NSCLCs driven by translocated ALK, mutant EGFR, or mutant KRAS to find driver-specific diagnostic and prognostic miRNA signatures. A total of 85 formalin-fixed, paraffin-embedded samples were considered: 67 primary NSCLCs and 18 matched normal lung tissues. Of the 67 primary NSCLCs, 17 were echinoderm microtubule-associated protein-like 4-ALK translocated (ALK(+)) lung cancers; the remaining 50 were not (ALK(-)). Of the 50 ALK(-) primary NSCLCs, 24 were EGFR and KRAS mutation-negative (i.e., WT; triple negative); 11 were mutant EGFR (EGFR(+)), and 15 were mutant KRAS (KRAS(+)). We developed a diagnostic classifier that shows how miR-1253, miR-504, and miR-26a-5p expression levels can classify NSCLCs as ALK-translocated, mutant EGFR, or mutant KRAS versus mutation-free. We also generated a prognostic classifier based on miR-769-5p and Let-7d-5p expression levels that can predict overall survival. This classifier showed better performance than the commonly used classifiers based on mutational status. Although it has several limitations, this study shows that miRNA signatures and classifiers have great potential as powerful, cost-effective next-generation tools to improve and complement current genetic tests. Further studies of these miRNAs can help define their roles in NSCLC biology and in identifying best-performing chemotherapy regimens.

  10. Structure and expression of the Drosophila ubiquitin-80-amino-acid fusion-protein gene.

    PubMed Central

    Barrio, R; del Arco, A; Cabrera, H L; Arribas, C

    1994-01-01

    In the fruitfly Drosophila, as in all eukaryotes examined so far, some ubiquitin-coding sequences appear fused to unrelated open reading frames. Two of these fusion genes have been previously described (the homologues of UBI1-UBI2 and UBI4 in yeast), and we report here the organization and expression of a third one, the DUb80 gene (the homologue of UBI3 in yeast). This gene encodes a ubiquitin monomer fused to an 80-amino-acid extension which is homologous with the ribosomal protein encoded by the UB13 gene. The 5' regulatory region of DUb80 shares common features with another ubiquitin fusion gene, DUb52, and with the ribosomal protein genes of Drosophila, Xenopus and mouse. We also find helix-loop-helix protein-binding sequences (E-boxes). The DUb80 gene is transcribed to a 0.9 kb mRNA which is particularly abundant under conditions of high protein synthesis, such as in ovaries and exponentially growing cells. Images Figure 3 Figure 4 PMID:8068011

  11. SFM: A novel sequence-based fusion method for disease genes identification and prioritization.

    PubMed

    Yousef, Abdulaziz; Moghadam Charkari, Nasrollah

    2015-10-21

    The identification of disease genes from human genome is of great importance to improve diagnosis and treatment of disease. Several machine learning methods have been introduced to identify disease genes. However, these methods mostly differ in the prior knowledge used to construct the feature vector for each instance (gene), the ways of selecting negative data (non-disease genes) where there is no investigational approach to find them and the classification methods used to make the final decision. In this work, a novel Sequence-based fusion method (SFM) is proposed to identify disease genes. In this regard, unlike existing methods, instead of using a noisy and incomplete prior-knowledge, the amino acid sequence of the proteins which is universal data has been carried out to present the genes (proteins) into four different feature vectors. To select more likely negative data from candidate genes, the intersection set of four negative sets which are generated using distance approach is considered. Then, Decision Tree (C4.5) has been applied as a fusion method to combine the results of four independent state-of the-art predictors based on support vector machine (SVM) algorithm, and to make the final decision. The experimental results of the proposed method have been evaluated by some standard measures. The results indicate the precision, recall and F-measure of 82.6%, 85.6% and 84, respectively. These results confirm the efficiency and validity of the proposed method.

  12. Adenoviral-Mediated Imaging of Gene Transfer Using a Somatostatin Receptor-Cytosine Deaminase Fusion Protein

    PubMed Central

    Lears, Kimberly A.; Parry, Jesse J.; Andrews, Rebecca; Nguyen, Kim; Wadas, Thaddeus J.; Rogers, Buck E.

    2015-01-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy due to the enzyme’s ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that the both the SSTR2 and yCD were functional in binding assays, conversion assays, and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies, and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy. PMID:25837665

  13. Adenoviral-mediated imaging of gene transfer using a somatostatin receptor-cytosine deaminase fusion protein.

    PubMed

    Lears, K A; Parry, J J; Andrews, R; Nguyen, K; Wadas, T J; Rogers, B E

    2015-03-01

    Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy owing to the enzyme's ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that both the SSTR2 and yCD were functional in binding assays, conversion assays and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy.

  14. Inferring orthologous gene regulatory networks using interspecies data fusion

    PubMed Central

    Penfold, Christopher A.; Millar, Jonathan B. A.; Wild, David L.

    2015-01-01

    Motivation: The ability to jointly learn gene regulatory networks (GRNs) in, or leverage GRNs between related species would allow the vast amount of legacy data obtained in model organisms to inform the GRNs of more complex, or economically or medically relevant counterparts. Examples include transferring information from Arabidopsis thaliana into related crop species for food security purposes, or from mice into humans for medical applications. Here we develop two related Bayesian approaches to network inference that allow GRNs to be jointly inferred in, or leveraged between, several related species: in one framework, network information is directly propagated between species; in the second hierarchical approach, network information is propagated via an unobserved ‘hypernetwork’. In both frameworks, information about network similarity is captured via graph kernels, with the networks additionally informed by species-specific time series gene expression data, when available, using Gaussian processes to model the dynamics of gene expression. Results: Results on in silico benchmarks demonstrate that joint inference, and leveraging of known networks between species, offers better accuracy than standalone inference. The direct propagation of network information via the non-hierarchical framework is more appropriate when there are relatively few species, while the hierarchical approach is better suited when there are many species. Both methods are robust to small amounts of mislabelling of orthologues. Finally, the use of Saccharomyces cerevisiae data and networks to inform inference of networks in the budding yeast Schizosaccharomyces pombe predicts a novel role in cell cycle regulation for Gas1 (SPAC19B12.02c), a 1,3-beta-glucanosyltransferase. Availability and implementation: MATLAB code is available from http://go.warwick.ac.uk/systemsbiology/software/. Contact: d.l.wild@warwick.ac.uk Supplementary information: Supplementary data are available at Bioinformatics

  15. Identification of target genes of synovial sarcoma-associated fusion oncoprotein using human pluripotent stem cells

    SciTech Connect

    Hayakawa, Kazuo; Ikeya, Makoto; Fukuta, Makoto; Woltjen, Knut; Tamaki, Sakura; Takahara, Naoko; Kato, Tomohisa; Sato, Shingo; Otsuka, Takanobu; Toguchida, Junya

    2013-03-22

    Highlights: ► We tried to identify targets of synovial sarcoma (SS)-associated SYT–SSX fusion gene. ► We established pluripotent stem cell (PSC) lines with inducible SYT–SSX gene. ► SYT–SSX responsive genes were identified by the induction of SYT–SSX in PSC. ► SS-related genes were selected from database by in silico analyses. ► 51 genes were finally identified among SS-related genes as targets of SYT–SSX in PSC. -- Abstract: Synovial sarcoma (SS) is a malignant soft tissue tumor harboring chromosomal translocation t(X; 18)(p11.2; q11.2), which produces SS-specific fusion gene, SYT–SSX. Although precise function of SYT–SSX remains to be investigated, accumulating evidences suggest its role in gene regulation via epigenetic mechanisms, and the product of SYT–SSX target genes may serve as biomarkers of SS. Lack of knowledge about the cell-of-origin of SS, however, has placed obstacle in the way of target identification. Here we report a novel approach to identify SYT–SSX2 target genes using human pluripotent stem cells (hPSCs) containing a doxycycline-inducible SYT–SSX2 gene. SYT–SSX2 was efficiently induced both at mRNA and protein levels within three hours after doxycycline administration, while no morphological change of hPSCs was observed until 24 h. Serial microarray analyses identified genes of which the expression level changed more than twofold within 24 h. Surprisingly, the majority (297/312, 95.2%) were up-regulated genes and a result inconsistent with the current concept of SYT–SSX as a transcriptional repressor. Comparing these genes with SS-related genes which were selected by a series of in silico analyses, 49 and 2 genes were finally identified as candidates of up- and down-regulated target of SYT–SSX, respectively. Association of these genes with SYT–SSX in SS cells was confirmed by knockdown experiments. Expression profiles of SS-related genes in hPSCs and human mesenchymal stem cells (hMSCs) were strikingly

  16. ETS Gene Fusions as Predictive Biomarkers of Resistance to Radiation Therapy for Prostate Cancer

    DTIC Science & Technology

    2013-08-01

    University of Michigan Ann Arbor, MI 48109 REPORT DATE: August 2013 TYPE OF REPORT: Annual ummary PREPARED FOR: U.S. Army Medical...2. REPORT TYPE Annual 3. DATES COVERED 15 July 2012 to 14 July 2013 4. TITLE AND SUBTITLE ETS Gene Fusions as Predictive Biomarkers of...wild- type prostate cancer cells and human prostate cancer samples (data not shown). Unfortunately, this level of homogenous diffuse expression, as well

  17. Colorimetric TMPRSS2-ERG Gene Fusion Detection in Prostate Cancer Urinary Samples via Recombinase Polymerase Amplification.

    PubMed

    Koo, Kevin M; Wee, Eugene J H; Trau, Matt

    2016-01-01

    TMPRSS2 (Exon 1)-ERG (Exon 4) is the most frequent gene fusion event in prostate cancer (PC), and is highly PC-specific unlike the current serum prostate specific antigen (PSA) biomarker. However, TMPRSS2-ERG levels are currently measured with quantitative reverse-transcription PCR (RT-qPCR) which is time-consuming and requires costly equipment, thus limiting its use in clinical diagnostics. Herein, we report a novel rapid, cost-efficient and minimal-equipment assay named "FusBLU" for detecting TMPRSS2-ERG gene fusions from urine. TMPRSS2-ERG mRNA was amplified by isothermal reverse transcription-recombinase polymerase amplification (RT-RPA), magnetically-isolated, and detected through horseradish peroxidase (HRP)-catalyzed colorimetric reaction. FusBLU was specific for TMPRSS2-ERG mRNA with a low visual detection limit of 10(5) copies. We also demonstrated assay readout versatility on 3 potentially useful platforms. The colorimetric readout was detectable by naked eye for a quick yes/no evaluation of gene fusion presence. On the other hand, a more quantitative TMPRSS2-ERG detection was achievable by absorbance/electrochemical measurements. FusBLU was successfully applied to 12 urinary samples and results were validated by gold-standard RT-qPCR. We also showed that sediment RNA was likely the main source of TMPRSS2-ERG mRNA in urinary samples. We believe that our assay is a potential clinical screening tool for PC and could also have wide applications for other disease-related fusion genes.

  18. Colorimetric TMPRSS2-ERG Gene Fusion Detection in Prostate Cancer Urinary Samples via Recombinase Polymerase Amplification

    PubMed Central

    Koo, Kevin M.; Wee, Eugene J.H.; Trau, Matt

    2016-01-01

    TMPRSS2 (Exon 1)-ERG (Exon 4) is the most frequent gene fusion event in prostate cancer (PC), and is highly PC-specific unlike the current serum prostate specific antigen (PSA) biomarker. However, TMPRSS2-ERG levels are currently measured with quantitative reverse-transcription PCR (RT-qPCR) which is time-consuming and requires costly equipment, thus limiting its use in clinical diagnostics. Herein, we report a novel rapid, cost-efficient and minimal-equipment assay named “FusBLU” for detecting TMPRSS2-ERG gene fusions from urine. TMPRSS2-ERG mRNA was amplified by isothermal reverse transcription-recombinase polymerase amplification (RT-RPA), magnetically-isolated, and detected through horseradish peroxidase (HRP)-catalyzed colorimetric reaction. FusBLU was specific for TMPRSS2-ERG mRNA with a low visual detection limit of 105 copies. We also demonstrated assay readout versatility on 3 potentially useful platforms. The colorimetric readout was detectable by naked eye for a quick yes/no evaluation of gene fusion presence. On the other hand, a more quantitative TMPRSS2-ERG detection was achievable by absorbance/electrochemical measurements. FusBLU was successfully applied to 12 urinary samples and results were validated by gold-standard RT-qPCR. We also showed that sediment RNA was likely the main source of TMPRSS2-ERG mRNA in urinary samples. We believe that our assay is a potential clinical screening tool for PC and could also have wide applications for other disease-related fusion genes. PMID:27375789

  19. SUPPRESSOR OF FRIGIDA (SUF4) Supports Gamete Fusion via Regulating Arabidopsis EC1 Gene Expression.

    PubMed

    Resentini, Francesca; Cyprys, Philipp; Steffen, Joshua G; Alter, Svenja; Morandini, Piero; Mizzotti, Chiara; Lloyd, Alan; Drews, Gary N; Dresselhaus, Thomas; Colombo, Lucia; Sprunck, Stefanie; Masiero, Simona

    2017-01-01

    The EGG CELL1 (EC1) gene family of Arabidopsis (Arabidopsis thaliana) comprises five members that are specifically expressed in the egg cell and redundantly control gamete fusion during double fertilization. We investigated the activity of all five EC1 promoters in promoter-deletion studies and identified SUF4 (SUPPRESSOR OF FRIGIDA4), a C2H2 transcription factor, as a direct regulator of the EC1 gene expression. In particular, we demonstrated that SUF4 binds to all five Arabidopsis EC1 promoters, thus regulating their expression. The down-regulation of SUF4 in homozygous suf4-1 ovules results in reduced EC1 expression and delayed sperm fusion, which can be rescued by expressing SUF4-β-glucuronidase under the control of the SUF4 promoter. To identify more gene products able to regulate EC1 expression together with SUF4, we performed coexpression studies that led to the identification of MOM1 (MORPHEUS' MOLECULE1), a component of a silencing mechanism that is independent of DNA methylation marks. In mom1-3 ovules, both SUF4 and EC1 genes are down-regulated, and EC1 genes show higher levels of histone 3 lysine-9 acetylation, suggesting that MOM1 contributes to the regulation of SUF4 and EC1 gene expression.

  20. Molecular Testing Guideline for Selection of Lung Cancer Patients for EGFR and ALK Tyrosine Kinase Inhibitors

    PubMed Central

    Lindeman, Neal I.; Cagle, Philip T.; Beasley, Mary Beth; Chitale, Dhananjay Arun; Dacic, Sanja; Giaccone, Giuseppe; Jenkins, Robert Brian; Kwiatkowski, David J.; Saldivar, Juan-Sebastian; Squire, Jeremy; Thunnissen, Erik; Ladanyi, Marc

    2014-01-01

    Objective To establish evidence-based recommendations for the molecular analysis of lung cancers that are that are required to guide EGFR- and ALK-directed therapies, addressing which patients and samples should be tested, and when and how testing should be performed. Participants Three cochairs without conflicts of interest were selected, one from each of the 3 sponsoring professional societies: College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. Writing and advisory panels were constituted from additional experts from these societies. Evidence Three unbiased literature searches of electronic databases were performed to capture articles published published from January 2004 through February 2012, yielding 1533 articles whose abstracts were screened to identify 521 pertinent articles that were then reviewed in detail for their relevance to the recommendations. Evidence was formally graded for each recommendation. Consensus Process Initial recommendations were formulated by the cochairs and panel members at a public meeting. Each guideline section was assigned to at least 2 panelists. Drafts were circulated to the writing panel (version 1), advisory panel (version 2), and the public (version 3) before submission (version 4). Conclusions The 37 guideline items address 14 subjects, including 15 recommendations (evidence grade A/B). The major recommendations are to use testing for EGFR mutations and ALK fusions to guide patient selection for therapy with an epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK) inhibitor, respectively, in all patients with advanced-stage adenocarcinoma, regardless of sex, race, smoking history, or other clinical risk factors, and to prioritize EGFR and ALK testing over other molecular predictive tests. As scientific discoveries and clinical practice outpace the completion of randomized clinical trials, evidence-based guidelines developed

  1. The Drosophila midkine/pleiotrophin homologues Miple1 and Miple2 affect adult lifespan but are dispensable for alk signaling during embryonic gut formation.

    PubMed

    Hugosson, Fredrik; Sjögren, Camilla; Birve, Anna; Hedlund, Ludmilla; Eriksson, Therese; Palmer, Ruth H

    2014-01-01

    Midkine (MDK) and Pleiotrophin (PTN) are small heparin-binding cytokines with closely related structures. The Drosophila genome harbours two genes encoding members of the MDK/PTN family of proteins, known as miple1 and miple2. We have investigated the role of Miple proteins in vivo, in particular with regard to their proposed role as ligands for the Alk receptor tyrosine kinase (RTK). Here we show that Miple proteins are neither required to drive Alk signaling during Drosophila embryogenesis, nor are they essential for development in the fruit fly. Additionally we show that neither MDK nor PTN can activate hALK in vivo when ectopically co-expressed in the fly. In conclusion, our data suggest that Alk is not activated by MDK/PTN related growth factors Miple1 and Miple 2 in vivo.

  2. The rationale of vectored gene-fusion vaccines against cancer: evolving strategies and latest evidence

    PubMed Central

    Ragonnaud, Emeline

    2013-01-01

    The development of vaccines that target tumor antigens in cancer has proven difficult. A major reason for this is that T cells specific for tumor self-antigens and neoantigens are eliminated or inactivated through mechanisms of tolerance. Antigen fusion strategies which increase the ability of vaccines to stimulate T cells that have escaped tolerance mechanisms, may have a particular potential as immunotherapies. This review highlights antigen fusion strategies that have been successful in stimulating the induction of T-cell immunity against cancer and counteracting tumor-associated tolerance. In preclinical studies, these strategies have shown to improve the potency of vectored vaccines through fusion of tumor antigen to proteins or protein domains that increase CD4+ T-cell help, CD8+ T-cell responses or both the CD4+ and CD8+ T-cell responses. However, in clinical trials such strategies seem to be less efficient when provided as a DNA vaccine. The first clinical trial using a viral vectored fusion-gene vaccine is expected to be tested as a partner in a heterologous prime-boost regimen directed against cervical cancer. PMID:24757514

  3. [Analysis of DEK-CAN fusion gene expression in acute myeloid leukemia patients with 6; 9 chromosome translocation].

    PubMed

    Wang, Ya-Lun; Wang, Tong; Xu, Feng; Gang, Yan; Wang, Jie

    2006-04-01

    This study was aimed to explore the relationship of 6; 9 chromosome translocation with DEK-CAN fusion gene expression in patients with acute myeloid leukemia (AML) and its clinical significance. Chromosome specimens were prepared by routine method after short-term culture of bone marrow cells; karyotype analysis was performed by R banding technique; the expression of fusion gene DEK-CAN was analyzed by RT-nested-PCR in mononuclear cells of bone marrow or peripheral blood of 4 AML patients, for 3 patients received allo-BMT out of 4 patients the dynamic follow-up was performed. The results indicated that t (6; 9) (p23; q34) was confirmed by chromosome karyotype analysis in the four AML patients. The DEK-CAN fusion gene was found during in all four de novo, relapsed and CR patients (100%). And the expression of DEK-CAN fusion gene enhanced apparently in de novo and relapsed patients, and weakened in CR patient. DEK-CAN mRNA was found in the three patients during 1-24 months after allo-BMT. Clinical data showed 2 patients relapsed and died after CR for 1-24 months; the other two patients received allo-BMT got CR and still survive. It is concluded that DEK-CAN fusion gene is the molecular basis in pathogenesis of AML. The detection of DEK-CAN fusion gene is significant for diagnosis of AML, evaluation of curative effect, and predication of prognosis.

  4. Gene expression profile of ewing sarcoma cell lines differing in their EWS-FLI1 fusion type.

    PubMed

    Bandrés, Eva; Malumbres, Raquel; Escalada, Alvaro; Cubedo, Elena; González, Iranzu; Honorato, Beatriz; Zarate, Ruth; García-Foncillas, Jesus; de Alava, Enrique

    2005-10-01

    The t(11;22)(q24;q12) translocation is present in up to 95% of Ewing tumor patients and results in the formation of an EWS-FLI-1 fusion gene that encodes a chimeric transcription factor. Many alternative forms of EWS-FLI-1 exist because of variations in the location of the EWS and FLI-1 genomic breakpoints. Previous reports have shown that the type 1 fusion is associated with a significantly better prognosis than the other fusion types. It has been suggested that the observed clinical discrepancies result from different transactivation potentials of the various EWS-FLI-1 fusion proteins. In an attempt to identify genes whose expression levels are differentially modulated by structurally different EWS-FLI-1 transcription factors, we have used microarray technology to interrogate 19,000 sequence genes to compare gene expression profile of type 1 or non-type 1 Ewing sarcoma cell lines. Data analysis showed few qualitative differences on gene expression; expression of only 41 genes (0.215% of possible sequences analyzed) differed significantly between Ewing tumor cell lines carrying EWS-FLI-1 fusion type 1 with respect to those with non-type 1 fusion.

  5. Origin of the plant Tm-1-like gene via two independent horizontal transfer events and one gene fusion event

    PubMed Central

    Yang, Zefeng; Liu, Li; Fang, Huimin; Li, Pengcheng; Xu, Shuhui; Cao, Wei; Xu, Chenwu; Huang, Jinling; Zhou, Yong

    2016-01-01

    The Tomato mosaic virus (ToMV) resistance gene Tm-1 encodes a direct inhibitor of ToMV RNA replication to protect tomato from infection. The plant Tm-1-like (Tm-1L) protein is predicted to contain an uncharacterized N-terminal UPF0261 domain and a C-terminal TIM-barrel signal transduction (TBST) domain. Homologous searches revealed that proteins containing both of these two domains are mainly present in charophyte green algae and land plants but absent from glaucophytes, red algae and chlorophyte green algae. Although Tm-1 homologs are widely present in bacteria, archaea and fungi, UPF0261- and TBST-domain-containing proteins are generally encoded by different genes in these linages. A co-evolution analysis also suggested a putative interaction between UPF0261- and TBST-domain-containing proteins. Phylogenetic analyses based on homologs of these two domains revealed that plants have acquired UPF0261- and TBST-domain-encoding genes through two independent horizontal gene transfer (HGT) events before the origin of land plants from charophytes. Subsequently, gene fusion occurred between these two horizontally acquired genes and resulted in the origin of the Tm-1L gene in streptophytes. Our results demonstrate a novel evolutionary mechanism through which the recipient organism may acquire genes with functional interaction through two different HGT events and further fuse them into one functional gene. PMID:27647002

  6. Membrane fusion inducers, chloroquine and spermidine increase lipoplex-mediated gene transfection

    SciTech Connect

    Wong-Baeza, Carlos; Bustos, Israel; Serna, Manuel; Tescucano, Alonso; Alcantara-Farfan, Veronica; Ibanez, Miguel; Montanez, Cecilia; Wong, Carlos; Baeza, Isabel

    2010-05-28

    Gene transfection into mammalian cells can be achieved with viral and non-viral vectors. Non-viral vectors, such as cationic lipids that form lipoplexes with DNA, are safer and more stable than viral vectors, but their transfection efficiencies are lower. Here we describe that the simultaneous treatment with a membrane fusion inducer (chlorpromazine or procainamide) plus the lysosomotropic agent chloroquine increases lipoplex-mediated gene transfection in human (HEK293 and C-33 A) and rat (PC12) cell lines (up to 9.2-fold), as well as in situ in BALB/c mice spleens and livers (up to 6-fold); and that the polyamine spermidine increases lipoplex-mediated gene transfection and expression in cell cultures. The use of these four drugs provides a novel, safe and relatively inexpensive way to considerably increase lipoplex-mediated gene transfection efficiency.

  7. Wnt signaling induces transcription, spatial proximity, and translocation of fusion gene partners in human hematopoietic cells.

    PubMed

    Ugarte, Giorgia D; Vargas, Macarena F; Medina, Matías A; León, Pablo; Necuñir, David; Elorza, Alvaro A; Gutiérrez, Soraya E; Moon, Randall T; Loyola, Alejandra; De Ferrari, Giancarlo V

    2015-10-08

    Chromosomal translocations are frequently associated with a wide variety of cancers, particularly hematologic malignancies. A recurrent chromosomal abnormality in acute myeloid leukemia is the reciprocal translocation t(8;21) that fuses RUNX1 and ETO genes. We report here that Wnt/β-catenin signaling increases the expression of ETO and RUNX1 genes in human hematopoietic progenitors. We found that β-catenin is rapidly recruited into RNA polymerase II transcription factories (RNAPII-Ser5) and that ETO and RUNX1 genes are brought into close spatial proximity upon Wnt3a induction. Notably, long-term treatment of cells with Wnt3a induces the generation a frequent RUNX1-ETO translocation event. Thus, Wnt/β-catenin signaling induces transcription and translocation of RUNX1 and ETO fusion gene partners, opening a novel window to understand the onset/development of leukemia.

  8. Deep RNA sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma and reference samples

    PubMed Central

    2011-01-01

    Background Readthrough fusions across adjacent genes in the genome, or transcription-induced chimeras (TICs), have been estimated using expressed sequence tag (EST) libraries to involve 4-6% of all genes. Deep transcriptional sequencing (RNA-Seq) now makes it possible to study the occurrence and expression levels of TICs in individual samples across the genome. Methods We performed single-end RNA-Seq on three human prostate adenocarcinoma samples and their corresponding normal tissues, as well as brain and universal reference samples. We developed two bioinformatics methods to specifically identify TIC events: a targeted alignment method using artificial exon-exon junctions within 200,000 bp from adjacent genes, and genomic alignment allowing splicing within individual reads. We performed further experimental verification and characterization of selected TIC and fusion events using quantitative RT-PCR and comparative genomic hybridization microarrays. Results Targeted alignment against artificial exon-exon junctions yielded 339 distinct TIC events, including 32 gene pairs with multiple isoforms. The false discovery rate was estimated to be 1.5%. Spliced alignment to the genome was less sensitive, finding only 18% of those found by targeted alignment in 33-nt reads and 59% of those in 50-nt reads. However, spliced alignment revealed 30 cases of TICs with intervening exons, in addition to distant inversions, scrambled genes, and translocations. Our findings increase the catalog of observed TIC gene pairs by 66%. We verified 6 of 6 predicted TICs in all prostate samples, and 2 of 5 predicted novel distant gene fusions, both private events among 54 prostate tumor samples tested. Expression of TICs correlates with that of the upstream gene, which can explain the prostate-specific pattern of some TIC events and the restriction of the SLC45A3-ELK4 e4-e2 TIC to ERG-negative prostate samples, as confirmed in 20 matched prostate tumor and normal samples and 9 lung cancer

  9. Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch

    PubMed Central

    Aspalter, Irene Maria; Gordon, Emma; Dubrac, Alexandre; Ragab, Anan; Narloch, Jarek; Vizán, Pedro; Geudens, Ilse; Collins, Russell Thomas; Franco, Claudio Areias; Abrahams, Cristina Luna; Thurston, Gavin; Fruttiger, Marcus; Rosewell, Ian; Eichmann, Anne; Gerhardt, Holger

    2015-01-01

    Sprouting angiogenesis drives blood vessel growth in healthy and diseased tissues. Vegf and Dll4/Notch signalling cooperate in a negative feedback loop that specifies endothelial tip and stalk cells to ensure adequate vessel branching and function. Current concepts posit that endothelial cells default to the tip-cell phenotype when Notch is inactive. Here we identify instead that the stalk-cell phenotype needs to be actively repressed to allow tip-cell formation. We show this is a key endothelial function of neuropilin-1 (Nrp1), which suppresses the stalk-cell phenotype by limiting Smad2/3 activation through Alk1 and Alk5. Notch downregulates Nrp1, thus relieving the inhibition of Alk1 and Alk5, thereby driving stalk-cell behaviour. Conceptually, our work shows that the heterogeneity between neighbouring endothelial cells established by the lateral feedback loop of Dll4/Notch utilizes Nrp1 levels as the pivot, which in turn establishes differential responsiveness to TGF-β/BMP signalling. PMID:26081042

  10. Analysis of API2-MALT1 fusion, trisomies, and immunoglobulin VH genes in pulmonary mucosa-associated lymphoid tissue lymphoma.

    PubMed

    Xia, Hongjing; Nakayama, Takahisa; Sakuma, Hidenori; Yamada, Seiji; Sato, Fumihiko; Takino, Hisashi; Okabe, Mitsukuni; Fujiyoshi, Yukio; Hattori, Hideo; Inagaki, Hiroshi

    2011-09-01

    Pulmonary mucosa-associated lymphoid tissue lymphoma is unique in that chronic inflammation is rare and that API2-MALT1 fusion, resulting from t(11;18)(q21;q21), occurs frequently. In this study, we examined 20 cases for API2-MALT1 fusion using the multiplex reverse-transcription polymerase chain reaction and looked for trisomy 3, trisomy 18, and abnormalities of MALT1 and IGH genes using fluorescence in situ hybridization. In addition, we analyzed VH genes by subcloning of the monoclonal polymerase chain reaction products. Of 20 cases studied, we detected gene abnormalities in 16: API2-MALT1 fusion in 9, trisomy 3 in 5, trisomy 18 in 4, MALT1 abnormality in 13, and IGH abnormality in 1. MALT1 gene abnormalities were concordant with API2-MALT1 fusion or trisomy 18. One case showed API2-MALT1 fusion and trisomy 3. On detection of API2-MALT1 fusion and trisomies, we were able to divide our cases into 3 groups, API2-MALT1 positive, trisomy positive, and no detectable gene abnormality, suggesting that tumor development had processed along different genetic pathways. All 20 cases were analyzed for VH genes. Most of the VH genes selected by the lymphomas belonged to the VH3 family, but there was no restriction to any particular VH fragment. Of interest, VH genes were unmutated in 7 cases, suggesting that T-cell-independent extrafollicular B-cell maturation may be important in the development of this lymphoma. In addition, both mutated and unmutated tumor cases were found to carry the API2-MALT1 fusion and trisomy 3. This observation suggests that these gene abnormalities may occur in microenvironments found before or outside of follicular germinal centers.

  11. A novel immunohistochemical classifier to distinguish Hodgkin lymphoma from ALK anaplastic large cell lymphoma.

    PubMed

    Döring, Claudia; Hansmann, Martin-Leo; Agostinelli, Claudio; Piccaluga, Pier P; Facchetti, Fabio; Pileri, Stefano; Küppers, Ralf; Newrzela, Sebastian; Hartmann, Sylvia

    2014-10-01

    Classical Hodgkin lymphoma and ALK(-) anaplastic large cell lymphoma share many features like strong CD30 expression and usually loss of B- and T-cell markers. However, their clinical course is dramatically different with curability rates of >90% for classical Hodgkin lymphoma and an unfavorable prognosis for anaplastic large cell lymphoma. Classical Hodgkin lymphoma and ALK(-) anaplastic large cell lymphoma can usually be distinguished by PAX5 expression in the Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma and expression of cytotoxic molecules in tumor cells of anaplastic large cell lymphoma. However, in some cases the differential diagnosis is difficult owing to absence of established markers. To be able to better classify these cases, we reevaluated gene expression data of microdissected tumor cells of both lymphomas for differentially expressed genes. A classifier was established, comprising four genes strongly expressed in Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma (MDC/CCL22, CD83, STAT3, and TUBB2B). Applying this classifier to a test cohort, Hodgkin lymphoma was successfully distinguished from ALK(-) anaplastic large cell lymphoma with an accuracy of 97% (43/44). MDC/CCL22, CD83, and STAT3 have also been found to be expressed in antigen-presenting cells. Therefore, based on our established classifier, Hodgkin and Reed-Sternberg cells differ from tumor cells of anaplastic large cell lymphoma, which can successfully be applied for practical purposes in histopathologic diagnostics.

  12. Anti-colorectal cancer effect of interleukin-2 and interferon-β fusion gene driven by carcinoembryonic antigen promoter

    PubMed Central

    Wang, Yan; Wang, Mengchun; Li, Yan

    2016-01-01

    This study was designed to investigate the antitumor effects of combined interleukin-2/interferon-β-based gene therapy in colorectal cancer. Transfection of the fusion gene expression plasmid induced significant apoptosis of Lovo cells. Additionally, the fusion gene exhibited strong inhibitory activity against tumor growth and apoptosis when being injected into the nude mice implanted with human colon cancer cells. Furthermore, the tail-vein injection showed a more notable effect than direct injection into tumor. These results suggest that the combined interleukin-2/interferon-β-based gene therapy with the carcinoembryonic antigen promoter might be an effective antitumor strategy. PMID:27313471

  13. Ethanol utilization regulatory protein: profile alignments give no evidence of origin through aldehyde and alcohol dehydrogenase gene fusion.

    PubMed Central

    Nicholas, H. B.; Persson, B.; Jörnvall, H.; Hempel, J.

    1995-01-01

    The suggestion that the ethanol regulatory protein from Aspergillus has its evolutionary origin in a gene fusion between aldehyde and alcohol dehydrogenase genes (Hawkins AR, Lamb HK, Radford A, Moore JD, 1994, Gene 146:145-158) has been tested by profile analysis with aldehyde and alcohol dehydrogenase family profiles. We show that the degree and kind of similarity observed between these profiles and the ethanol regulatory protein sequence is that expected from random sequences of the same composition. This level of similarity fails to support the suggested gene fusion. PMID:8580855

  14. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas

    PubMed Central

    Jones, David T. W.; Kocialkowski, Sylvia; Liu, Lu; Pearson, Danita M.; Bäcklund, L. Magnus; Ichimura, Koichi; Collins, V. Peter

    2008-01-01

    Brain tumours are the commonest solid tumours of childhood, and pilocytic astrocytomas (PAs) are the most common central nervous system tumour in 5-19 year-olds. Little is known about the genetic alterations underlying their development. Here we describe a tandem duplication of ∼2Mb at 7q34 occurring in 66% of pilocytic astrocytomas. This rearrangement, which was not observed in a series of 244 higher-grade astrocytomas, results in an in-frame fusion gene incorporating the kinase domain of the BRAF oncogene. We further show that the resulting fusion protein has constitutive BRAF kinase activity, and is able to transform NIH3T3 cells. This is the first report of BRAF activation through rearrangement as a frequent feature in a sporadic tumor. The frequency and specificity of this change underline its potential both as a therapeutic target and a diagnostic tool. PMID:18974108

  15. Protein interaction maps for complete genomes based on gene fusion events

    NASA Astrophysics Data System (ADS)

    Enright, Anton J.; Iliopoulos, Ioannis; Kyrpides, Nikos C.; Ouzounis, Christos A.

    1999-11-01

    A large-scale effort to measure, detect and analyse protein-protein interactions using experimental methods is under way. These include biochemistry such as co-immunoprecipitation or crosslinking, molecular biology such as the two-hybrid system or phage display, and genetics such as unlinked noncomplementing mutant detection. Using the two-hybrid system, an international effort to analyse the complete yeast genome is in progress. Evidently, all these approaches are tedious, labour intensive and inaccurate. From a computational perspective, the question is how can we predict that two proteins interact from structure or sequence alone. Here we present a method that identifies gene-fusion events in complete genomes, solely based on sequence comparison. Because there must be selective pressure for certain genes to be fused over the course of evolution, we are able to predict functional associations of proteins. We show that 215 genes or proteins in the complete genomes of Escherichia coli, Haemophilus influenzae and Methanococcus jannaschii are involved in 64 unique fusion events. The approach is general, and can be applied even to genes of unknown function.

  16. Therapeutic efficacy of the bromodomain inhibitor OTX015/MK-8628 in ALK-positive anaplastic large cell lymphoma: an alternative modality to overcome resistant phenotypes

    PubMed Central

    Vurchio, Valentina; Yang, Shao Ning; Moon, John; Kwee, Ivo; Rinaldi, Andrea; Pan, Heng; Crescenzo, Ramona; Cheng, Mangeng; Cerchietti, Leandro; Elemento, Olivier; Riveiro, Maria E.; Cvitkovic, Esteban; Bertoni, Francesco; Inghirami, Giorgio

    2016-01-01

    Anaplastic large cell lymphomas (ALCL) represent a peripheral T-cell lymphoma subgroup, stratified based on the presence or absence of anaplastic lymphoma kinase (ALK) chimeras. Although ALK-positive ALCLs have a more favorable outcome than ALK-negative ALCL, refractory and/or relapsed forms are common and novel treatments are needed. Here we investigated the therapeutic potential of a novel bromodomain inhibitor, OTX015/MK-8628 in ALK-positive ALCLs. The effects of OTX015 on a panel of ALK+ ALCL cell lines was evaluated in terms of proliferation, cell cycle and downstream signaling, including gene expression profiling analyses. Synergy was tested with combination targeted therapies. Bromodomain inhibition with OTX015 led primarily to ALCL cell cycle arrest in a dose-dependent manner, along with downregulation of MYC and its downstream regulated genes. MYC overexpression did not compensate this OTX015-mediated phenotype. Transcriptomic analysis of OTX015-treated ALCL cells identified a gene signature common to various hematologic malignancies treated with bromodomain inhibitors, notably large cell lymphoma. OTX015-modulated genes included transcription factors (E2F2, NFKBIZ, FOS, JUNB, ID1, HOXA5 and HOXC6), members of multiple signaling pathways (ITK, PRKCH, and MKNK2), and histones (clusters 1-3). Combination of OTX015 with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib led to cell cycle arrest then cell death, and combination with suboptimal doses of the ALK inhibitor CEP28122 caused cell cycle arrest. When OTX015 was associated with GANT61, a selective GLI1/2 inhibitor, C1156Y-resistant ALK ALCL growth was impaired. These findings support OTX015 clinical trials in refractory ALCL in combination with inhibitors of interleukin-2-inducible kinase or SHH/GLI1. PMID:27793034

  17. Construction and characterization of Escherichia coli polA-lacZ gene fusions.

    PubMed Central

    Ward, D F; Murray, N E

    1980-01-01

    The promoter of the polA gene of Escherichia coli K-12 was fused to the lacZ gene by selecting deletions within a lambda lacZ polA transducing phage. Four fusions, deleting varying amounts of the polA gene, were characterized. The polA promoter was found to be approximately 3% as active as the fully induced lac promoter. This figure is compatible with the normal intracellular level of deoxyribonucleic acid polymerase I. No evidence was found for outogenous regulation of transcription from the polA promoter. Expression from this promoter was influenced by neither recA nor mitomycin C, but uvrD and uvrE mutations reduced expression slightly. Images PMID:6445899

  18. Studying Gene Expression: Database Searches and Promoter Fusions to Investigate Transcriptional Regulation in Bacteria†

    PubMed Central

    Martinez-Vaz, Betsy M.; Makarevitch, Irina; Stensland, Shane

    2010-01-01

    A laboratory project was designed to illustrate how to search biological databases and utilize the information provided by these resources to investigate transcriptional regulation in Escherichia coli. The students searched several databases (NCBI Genomes, RegulonDB and EcoCyc) to learn about gene function, regulation, and the organization of transcriptional units. A fluorometer and GFP promoter fusions were used to obtain fluorescence data and measure changes in transcriptional activity. The class designed and performed experiments to investigate the regulation of genes necessary for biosynthesis of amino acids and how expression is affected by environmental signals and transcriptional regulators. Assessment data showed that this activity enhanced students’ knowledge of databases, reporter genes and transcriptional regulation. PMID:23653697

  19. Isolation of ara-lac gene fusions in Salmonella typhimurium LT2 by using transducing bacteriophage Mu d (Apr lac).

    PubMed

    Lee, J H; Heffernan, L; Wilcox, G

    1980-09-01

    A specialized Mu transducing phage containing a gene encoding ampicillin resistance and the lac structural genes without the lac promotor [Mu d(apr lac)] has been constructed and used to create gene fusions in Escherichia coli (M. J. Cadadaban and S. N. Cohen, Proc. Natl. Acad. Sci. U.S.A. 76:4530--4533, 1979). Transposition of the Mu d(Apr lac) phage to chromosomal sites can result in lac expression being controlled by a chromosomal promoter. We have constructed an Escherichia coli K-12 strain in which the Mu d(Apr lac) phage is integrated into an F factor. The F+::Mu d(Apr lac) was then transferred by conjugation into a Salmonella typhimurium strain that was sensitive to L-arabinose. Strains containing gene fusions were selected as L-arabinose-resistant colonies after partial induction of the phage. Two classes of ara-lac fusion strains were isolated: (i) araC-lac fusions in which the expression of beta-galactosidase synthesis was constitutuve and not inducible by L-arabinose; and ((ii) fusion of the lac genes to the ara structural genes in which the expression of beta-galatosidase synthesis was induced 263-fold by L-arabinose.

  20. Synergistic activity of ALK and mTOR inhibitors for the treatment of NPM-ALK positive lymphoma

    PubMed Central

    Redaelli, Sara; Ceccon, Monica; Antolini, Laura; Rigolio, Roberta; Pirola, Alessandra; Peronaci, Marco; Gambacorti-Passerini, Carlo; Mologni, Luca

    2016-01-01

    ALK-positive Anaplastic Large Cell Lymphoma (ALCL) represents a subset of Non-Hodgkin Lymphoma whose treatment benefited from crizotinib development, a dual ALK/MET inhibitor. Crizotinib blocks ALK-triggered pathways such as PI3K/AKT/mTOR, indispensable for survival of ALK-driven tumors. Despite the positive impact of targeted treatment in ALCL, resistant clones are often selected during therapy. Strategies to overcome resistance include the design of second generation drugs and the use of combined therapies that simultaneously target multiple nodes essential for cells survival. We investigated the effects of combined ALK/mTOR inhibition. We observed a specific synergistic effect of combining ALK inhibitors with an mTOR inhibitor (temsirolimus), in ALK+ lymphoma cells. The positive cooperation resulted in an increased inhibition of mTOR effectors, compared to single treatments, a block in G0/G1 phase and induction of apoptosis. The combination was able to prevent the selection of resistant clones, while long-term exposure to single agents led to the establishment of resistant cell lines, with either ALK inhibitor or temsirolimus. In vivo, mice injected with Karpas 299 cells and treated with low dose combination showed complete regression of tumors, while only partial inhibition was obtained in single agents-treated mice. Upon treatment stop the combination was able to significantly delay tumor relapses. Re-challenge of relapsed tumors at a higher dose led to full regression of xenografts in the combination group, but not in mice treated with lorlatinib alone. In conclusion, our data suggest that the combination of ALK and mTOR inhibitors could be a valuable therapeutic option for ALK+ ALCL patients. PMID:27662658

  1. [Cloning of CTB-PROIN fusion gene and its expression in Escherichia coli].

    PubMed

    Chen, Li; Ouyang, Feng-Xiu; Qian, Bing-Jun; Ren, Hong; Wang, Qiang; Jiang, Qing-Wu; Wang, Yu-Jiong; Liu, Jing-Bo; Liang, Wan-Qi; Zhang, Da-Bing

    2005-03-01

    A fusion gene CTB-PROIN, in which Proinsulin gene was fused to the 3' end of CTB gene by a hinge peptide 'GPGP', was constructed and cloned into pET-30a(+) to obtain a prokaryotic expression vector pETCPI. Subsequently the recombinant plasmid pETCPI was transformed into E. coli stain BL21 (DE3). After induced by IPTG, the expression product was analyzed by sodium dodecyl sulphate-polyacrylamide gel (15%) electrophoresis (SDS-PAGE), and its result indicated that the recombinant protein CTB-PROIN was expressed and accumulated as inclusion bodies. The recombinant CTB-PROIN protein accumulated to the level of 25% of total bacterial proteins. After inclusion bodies was denaturalized and refolded in vitro, significant assembly of monomers had occurred, and the recombinant protein represented assembled pentamers. The results of western blotting analysis also demonstrated that the fusion protein could be recognized by the anti-CT and anti-insulin antibody, respectively. In addition, the result of the CTB-PROIN-GM1 binding assay, that the protein could bind to monosialoganglioside specifically, showed it possesed biological activity in vitro. These results provided the possibility of developing a cheaper and more efficient oral vaccine for type I diabetes using such constructs.

  2. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy.

    PubMed

    Shahid, Mohd; Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A; Leyton, Patricio A; Cheng, Juan; Tainsh, Robert E T; Mayeur, Claire; Rhee, David K; Wu, Mei X; Scherrer-Crosbie, Marielle; Buys, Emmanuel S; Zapol, Warren M; Bloch, Kenneth D; Bloch, Donald B

    2016-04-15

    Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis.

  3. Fusion of the Escherichia coli lac genes to the ara promoter: a general technique using bacteriophage Mu-1 insertions.

    PubMed

    Casadaban, M J

    1975-03-01

    The lac genes were fused to the ara promoter by means of phage phi 80 translocations of the lac and ara genes to att80. Homology for a crossover between the nonhomologous ara and lac operons was provided by mu insertions. Selection for recombinants within the mu insertions generated strains that had the ara promoter on one side of a mu insertion and the lac genes on the other side. ara-lac fusions were obtained from these strains by deleting the mu insertion. These fusions extend the techniques available for studies on the lac operon to studies on the ara operon. It should be possible to fuse other operons by this method.

  4. Fluoride Regulate Osteoblastic Transforming Growth Factor-β1 Signaling by Mediating Recycling of the Type I Receptor ALK5

    PubMed Central

    Yang, Chen; Wang, Yan; Xu, Hui

    2017-01-01

    This study aimed to preliminary investigate the role of activin receptor-like kinase (ALK) 5 as one of TGF-βR1 subtypes in bone turnover and osteoblastic differentiation induced by fluoride. We analyzed bone mineral density and the expression of genes related with transforming growth factor-β1(TGF-β1) signaling and bone turnover in rats treated by different concentrations of fluoride with or without SB431542 in vivo. Moreover, MTT assay, alkaline phosphatase staining, RT-PCR, immunocytochemical analysis and western blot analysis were used to detect the influence on bone marrow stem cells (BMSC) after stimulating by varying concentration of fluoride with or without SB431542 in vitro. The in vivo study showed SB431542 treatment affected bone density and gene expression of rats, which indicated TGF-β1 and ALK5 might take part in fluoride-induced bone turnover and bone formation. The in vitro study showed low concentration of fluoride improved BMSC cells viability, alkaline phosphatase activity, and osteocalcin protein expression which were inhibited by high concentration of fluoride. The gene expression of Runx2 and ALK5 in cells increased after low concentration fluoride treatment which was also inhibited by high concentration of fluoride. Fluoride treatment inhibited gene and protein expression of Samd3 (except 1 mgF-/L). Compared with fluoride treatment alone, cells differentiation was inhibited with SB431542 treatment. Moreover, the expression of Runx2, ALK5 and Smad3 were influenced by SB431542 treatment. In conclusion, this preliminary study indicated that fluoride regulated osteoblastic TGFβ1 signaling in bone turnover and cells differentiation via ALK5. PMID:28125630

  5. Activation of the orphan receptor tyrosine kinase ALK by zinc.

    PubMed

    Bennasroune, Aline; Mazot, Pierre; Boutterin, Marie-Claude; Vigny, Marc

    2010-08-06

    Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase essentially and transiently expressed during development of the central and peripheral nervous system. The nature of the cognate ligand of this receptor in Vertebrates is still a matter of debate. During synaptic transmission the release of ionic zinc found in vesicles of certain glutamatergic and gabaergic terminals may act as a neuromodulator by binding to pre- or post-synaptic receptors. Recently, zinc has been shown to activate the receptor tyrosine kinase, TrkB, independently of neurotrophins. This activation occurs via increasing the Src family kinase activity. In the present study, we investigated whether the ALK activity could be modulated by extracellular zinc. We first showed that zinc alone rapidly activates ALK. This activation is dependent of ALK tyrosine kinase activity and dimerization of the receptor but is independent of Src family kinase activity. In contrast, addition of sodium pyrithione, a zinc ionophore, led to a further activation of ALK. This stronger activation is dependent of Src family kinase but independent of ALK activity and dimerization. In conclusion, zinc could constitute an endogenous ligand of ALK in vertebrates.

  6. Prokaryotic ancestry and gene fusion of a dual localized peroxiredoxin in malaria parasites

    PubMed Central

    Djuika, Carine F.; Huerta-Cepas, Jaime; Przyborski, Jude M.; Deil, Sophia; Sanchez, Cecilia P.; Doerks, Tobias; Bork, Peer; Lanzer, Michael; Deponte, Marcel

    2015-01-01

    Horizontal gene transfer has emerged as a crucial driving force for the evolution of eukaryotes. This also includes Plasmodium falciparum and related economically and clinically relevant apicomplexan parasites, whose rather small genomes have been shaped not only by natural selection in different host populations but also by horizontal gene transfer following endosymbiosis. However, there is rather little reliable data on horizontal gene transfer between animal hosts or bacteria and apicomplexan parasites. Here we show that apicomplexan homologues of peroxiredoxin 5 (Prx5) have a prokaryotic ancestry and therefore represent a special subclass of Prx5 isoforms in eukaryotes. Using two different immunobiochemical approaches, we found that the P. falciparum Prx5 homologue is dually localized to the parasite plastid and cytosol. This dual localization is reflected by a modular Plasmodium-specific gene architecture consisting of two exons. Despite the plastid localization, our phylogenetic analyses contradict an acquisition by secondary endosymbiosis and support a gene fusion event following a horizontal prokaryote-to-eukaryote gene transfer in early apicomplexans. The results provide unexpected insights into the evolution of apicomplexan parasites as well as the molecular evolution of peroxiredoxins, an important family of ubiquitous, usually highly concentrated thiol-dependent hydroperoxidases that exert functions as detoxifying enzymes, redox sensors and chaperones. PMID:28357258

  7. High-speed biosensing strategy for non-invasive profiling of multiple cancer fusion genes in urine.

    PubMed

    Koo, Kevin M; Wee, Eugene J H; Trau, Matt

    2017-03-15

    Aberrant chromosal rearrangements, such as the multiple variants of TMPRSS2:ERG fusion gene mutations in prostate cancer (PCa), are promising diagnostic and prognostic biomarkers due to their specific expression in cancerous tissue only. Additionally, TMPRSS2:ERG variants are detectable in urine to provide non-invasive PCa diagnostic sampling as an attractive surrogate for needle biopsies. Therefore, rapid and simplistic assays for identifying multiple urinary TMPRSS2:ERG variants are potentially useful to aid in early cancer detection, immediate patient risk stratification, and prompt personalized treatment. However, current strategies for simultaneous detection of multiple gene fusions are limited by tedious and prolonged experimental protocols, thus limiting their use as rapid clinical screening tools. Herein, we report a simple and rapid gene fusion strategy which expliots the specificity of DNA ligase and the speed of isothermal amplification to simultaneously detect multiple fusion gene RNAs within a short sample-to-answer timeframe of 60min. The method has a low detection limit of 2 amol (1000 copies), and was successfully applied for non-invasive fusion gene profiling in patient urine samples with subsequent validation by a PCR-based gold standard approach.

  8. Definition of the ovalbumin gene promoter by transfer of an ovalglobin fusion gene into cultured cells.

    PubMed Central

    Knoll, B J; Zarucki-Schulz, T; Dean, D C; O'Malley, B W

    1983-01-01

    In order to study the initiation of transcription from the ovalbumin gene promoter, we constructed a hybrid gene (ovalglobin) in which 753 bps of ovalbumin gene 5'-flanking sequence were joined to the chicken adult beta-globin gene. When transfected into HeLa S3 cells, ovalglobin gene transcription initiated at the ovalbumin gene cap site, as measured by S1 nuclease and primer extension analysis. Deletion of 5'-flanking sequences to position -95 had little effect on transcription; deletion to -77 reduced transcription to about 20% of the wild type level and deletion to -48 reduced the level to about 2%. A deletion to -24, removing the sequence TATATAT, abolished transcription entirely. Hormonal regulation of the ovalglobin gene was observed when primary oviduct cells were used as recipients for DNA transfection. Under these conditions, addition of progesterone increased the level of ovalglobin transcripts to more than 10 times the uninduced level. Images PMID:6314256

  9. Regioselective alkane hydroxylation with a mutant AlkB enzyme

    DOEpatents

    Koch, Daniel J.; Arnold, Frances H.

    2012-11-13

    AlkB from Pseudomonas putida was engineered using in-vivo directed evolution to hydroxylate small chain alkanes. Mutant AlkB-BMO1 hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. Mutant AlkB-BMO2 similarly hydroxylates propane and butane at the terminal carbon at a rate greater than the wild-type to form 1-propanol and 1-butanol, respectively. These biocatalysts are highly active for small chain alkane substrates and their regioselectivity is retained in whole-cell biotransformations.

  10. Spatial and temporal analysis of gene expression during growth and fusion of the mouse facial prominences.

    PubMed

    Feng, Weiguo; Leach, Sonia M; Tipney, Hannah; Phang, Tzulip; Geraci, Mark; Spritz, Richard A; Hunter, Lawrence E; Williams, Trevor

    2009-12-16

    Orofacial malformations resulting from genetic and/or environmental causes are frequent human birth defects yet their etiology is often unclear because of insufficient information concerning the molecular, cellular and morphogenetic processes responsible for normal facial development. We have, therefore, derived a comprehensive expression dataset for mouse orofacial development, interrogating three distinct regions - the mandibular, maxillary and frontonasal prominences. To capture the dynamic changes in the transcriptome during face formation, we sampled five time points between E10.5-E12.5, spanning the developmental period from establishment of the prominences to their fusion to form the mature facial platform. Seven independent biological replicates were used for each sample ensuring robustness and quality of the dataset. Here, we provide a general overview of the dataset, characterizing aspects of gene expression changes at both the spatial and temporal level. Considerable coordinate regulation occurs across the three prominences during this period of facial growth and morphogenesis, with a switch from expression of genes involved in cell proliferation to those associated with differentiation. An accompanying shift in the expression of polycomb and trithorax genes presumably maintains appropriate patterns of gene expression in precursor or differentiated cells, respectively. Superimposed on the many coordinated changes are prominence-specific differences in the expression of genes encoding transcription factors, extracellular matrix components, and signaling molecules. Thus, the elaboration of each prominence will be driven by particular combinations of transcription factors coupled with specific cell:cell and cell:matrix interactions. The dataset also reveals several prominence-specific genes not previously associated with orofacial development, a subset of which we externally validate. Several of these latter genes are components of bidirectional

  11. Spatial and Temporal Analysis of Gene Expression during Growth and Fusion of the Mouse Facial Prominences

    PubMed Central

    Feng, Weiguo; Leach, Sonia M.; Tipney, Hannah; Phang, Tzulip; Geraci, Mark; Spritz, Richard A.; Hunter, Lawrence E.; Williams, Trevor

    2009-01-01

    Orofacial malformations resulting from genetic and/or environmental causes are frequent human birth defects yet their etiology is often unclear because of insufficient information concerning the molecular, cellular and morphogenetic processes responsible for normal facial development. We have, therefore, derived a comprehensive expression dataset for mouse orofacial development, interrogating three distinct regions – the mandibular, maxillary and frontonasal prominences. To capture the dynamic changes in the transcriptome during face formation, we sampled five time points between E10.5–E12.5, spanning the developmental period from establishment of the prominences to their fusion to form the mature facial platform. Seven independent biological replicates were used for each sample ensuring robustness and quality of the dataset. Here, we provide a general overview of the dataset, characterizing aspects of gene expression changes at both the spatial and temporal level. Considerable coordinate regulation occurs across the three prominences during this period of facial growth and morphogenesis, with a switch from expression of genes involved in cell proliferation to those associated with differentiation. An accompanying shift in the expression of polycomb and trithorax genes presumably maintains appropriate patterns of gene expression in precursor or differentiated cells, respectively. Superimposed on the many coordinated changes are prominence-specific differences in the expression of genes encoding transcription factors, extracellular matrix components, and signaling molecules. Thus, the elaboration of each prominence will be driven by particular combinations of transcription factors coupled with specific cell:cell and cell:matrix interactions. The dataset also reveals several prominence-specific genes not previously associated with orofacial development, a subset of which we externally validate. Several of these latter genes are components of bidirectional

  12. Oncogenic function and clinical implications of SLC3A2-NRG1 fusion in invasive mucinous adenocarcinoma of the lung

    PubMed Central

    Shin, Dong Hoon; Lee, Donghoon; Wan Hong, Dong; Hyun Hong, Seung; Hwang, Jung-Ah; Il Lee, Byung; You, Hye Jin; Kook Lee, Geon; Kim, In-Hoo; Lee, Yeon-Su; Han, Ji-Youn

    2016-01-01

    The neuregulin 1 (NRG1) fusion is a recently identified novel driver oncogene in invasive mucinous adenocarcinoma of the lung (IMA). After identification of a case of SLC3A2-NRG1 in a patient with IMA, we verified this fusion gene in a cohort of 59 patients with IMA. Targeted cancer panel sequencing and RT-PCR identified the possible coexistence of other driver oncogenes. Among 59 IMAs, we found 16 NRG1 fusions (13 SLC3A2-NRG1 and 3 CD74-NRG1). Of 16 patients with NRG1 fusions, concurrent KRAS codon 12 mutations were found in 10 cases. We also found concurrent NRAS Q61L mutation and EML4-ALK fusion in additional two cases with NRG1 fusions. When comparing overall survival (OS) according to the presence of NRG1 fusions showed that patients harboring NRG1 fusions had significantly inferior OS than those without NRG1 fusions (hazard ratio = 0.286; 95% confidence interval, .094 to .865). Ectopic expression of the SLC3A2-NRG1 fusion in lung cancer cells increased cell migration, proliferation and tumor growth in vitro and in xenograft models, suggesting oncogenic function for the fusion protein. We found that the SLC3A2-NRG1 fusion promoted ERBB2-ERBB3 phosphorylation and heteroduplex formation and activated the downstream PI3K/AKT/mTOR pathway through paracrine signaling. These findings suggested that the SLC3A2-NRG1 fusion was a driver in IMA with an important prognostic impact. SLC3A2-NRG1 should be considered a therapeutic target for patients with IMA. PMID:27626312

  13. Conformational features and binding affinities to Cripto, ALK7 and ALK4 of Nodal synthetic fragments.

    PubMed

    Calvanese, Luisa; Sandomenico, Annamaria; Caporale, Andrea; Focà, Annalia; Focà, Giuseppina; D'Auria, Gabriella; Falcigno, Lucia; Ruvo, Menotti

    2015-04-01

    Nodal, a member of the TGF-β superfamily, is a potent embryonic morphogen also implicated in tumor progression. As for other TGF-βs, it triggers the signaling functions through the interaction with the extracellular domains of type I and type II serine/threonine kinase receptors and with the co-receptor Cripto. Recently, we reported the molecular models of Nodal in complex with its type I receptors (ALK4 and ALK7) as well as with Cripto, as obtained by homology modeling and docking simulations. From such models, potential binding epitopes have been identified. To validate such hypotheses, a series of mutated Nodal fragments have been synthesized. These peptide analogs encompass residues 44-67 of the Nodal protein, corresponding to the pre-helix loop and the H3 helix, and reproduce the wild-type sequence or bear some modifications to evaluate the hot-spot role of modified residues in the receptor binding. Here, we show the structural characterization in solution by CD and NMR of the Nodal peptides and the measurement of binding affinity toward Cripto by surface plasmon resonance. Data collected by both conformational analyses and binding measurements suggest a role for Y58 of Nodal in the recognition with Cripto and confirm that previously reported for E49 and E50. Surface plasmon resonance binding assays with recombinant proteins show that Nodal interacts in vitro also with ALK7 and ALK4 and preliminary data, generated using the Nodal synthetic fragments, suggest that Y58 of Nodal may also be involved in the recognition with these protein partners.

  14. On the origin of protein synthesis factors: a gene duplication/fusion model.

    PubMed

    Cousineau, B; Leclerc, F; Cedergren, R

    1997-12-01

    Sequence similarity has given rise to the proposal that IF-2, EF-G, and EF-Tu are related through a common ancestor. We evaluate this proposition and whether the relationship can be extended to other factors of protein synthesis. Analysis of amino acid sequence similarity gives statistical support for an evolutionary affiliation among IF-1, IF-2, IF-3, EF-Tu, EF-Ts, and EF-G and suggests further that this association is a result of gene duplication/fusion events. In support of this mechanism, the three-dimensional structures of IF-3, EF-Tu, and EF-G display a predictable domain structure and overall conformational similarity. The model that we propose consists of three consecutives duplication/fusion events which would have taken place before the divergence of the three superkingdoms: eubacteria, archaea, and eukaryotes. The root of this protein superfamily tree would be an ancestor of the modern IF-1 gene sequence. The repeated fundamental motif of this protein superfamily is a small RNA binding domain composed of two alpha-helices packed along side of an antiparallel beta-sheet.

  15. Expression pattern of the RAR alpha-PML fusion gene in acute promyelocytic leukemia.

    PubMed Central

    Alcalay, M; Zangrilli, D; Fagioli, M; Pandolfi, P P; Mencarelli, A; Lo Coco, F; Biondi, A; Grignani, F; Pelicci, P G

    1992-01-01

    Two chimeric genes, PML-RAR alpha and RAR alpha-PML, are formed as a consequence of the acute promyelocytic leukemia (APL)-specific reciprocal translocation of chromosomes 15 and 17 [t(15;17)]. PML-RAR alpha is expressed as a fusion protein. We investigated the organization and expression pattern of the RAR alpha-PML gene in a series of APL patients representative of the molecular heterogeneity of the t(15;17) and found (i) two types of RAR alpha-PML mRNA junctions (RAR alpha exon 2/PML exon 4 or RAR alpha exon 2/PML exon 7) that maintain the RAR alpha and PML longest open reading frames aligned and are the result of chromosome 15 breaking at two different sites; and (ii) 10 different RAR alpha-PML fusion transcripts that differ for the assembly of their PML coding exons. A RAR alpha-PML transcript was present in most, but not all, APL patients. Images PMID:1317574

  16. Horizontal gene transfers and cell fusions in microbiology, immunology and oncology (Review).

    PubMed

    Sinkovics, Joseph G

    2009-09-01

    Evolving young genomes of archaea, prokaryota and unicellular eukaryota were wide open for the acceptance of alien genomic sequences, which they often preserved and vertically transferred to their descendants throughout three billion years of evolution. Established complex large genomes, although seeded with ancestral retroelements, have come to regulate strictly their integrity. However, intruding retroelements, especially the descendents of Ty3/Gypsy, the chromoviruses, continue to find their ways into even the most established genomes. The simian and hominoid-Homo genomes preserved and accommodated a large number of endogenous retroviral genomic segments. These retroelements may mature into exogenous retroviruses, or into functional new genes. Phages and viruses have been instrumental in incorporating and transferring host cell genes. These events profoundly influenced and altered the course of evolution. Horizontal (lateral) gene transfers (HGT) overwhelmed the genomes of the ancient protocells and the evolving unicellular microorganisms, actually leading to their Cambrian explosion. While the rigidly organized genomes of multicellular organisms increasingly resist H/LGT, de-differentiated cells assuming the metabolism of their onto- or phylogenetic ancestors, open up widely to the practice of H/LGT by direct transfer, or to transfers mediated by viruses, or by cell fusions. This activity is intensified in malignantly transformed cells, thus rendering these subjects receptive to therapy with oncolytic viruses and with viral vectors of tumor-suppressive or immunogenic genetic materials. Naturally formed hybrids of dendritic and tumor cells are often tolerogenic, whereas laboratory products of these unisons may be immunogenic in the hosts of origin. As human breast cancer stem cells are induced by a treacherous class of CD8+ T cells to undergo epithelial to mesenchymal (ETM) transition and to yield to malignant transformation by the omnipresent proto

  17. Use of gene fusions to study outer membrane protein localization in Escherichia coli.

    PubMed Central

    Silhavy, T J; Shuman, H A; Beckwith, J; Schwartz, M

    1977-01-01

    Escherichia coli strains have been isolated that produce hybrid proteins comprised of an NH2-terminal sequence from the lamB gene product (an outer membrane protein) and a major portion of the COOH-terminal sequence of beta-galactosidase (beta-D-galactoside galactohydrolase, EC 3.2.1.23; a cytoplasmic protein). These proteins exhibit beta-galactosidase activity. One such strain, pop 3105, produces a hybrid protein containing very little of the lamB gene protein; the protein is found in the cytoplasm. The protein found in a second strain, pop 3186, contains much more of the lamB gene protein; a substantial fraction of the beta-galactosidase activity is found in the outer membrane, probably facing outward. These results indicate that information necessary to direct the lamB gene product to its outer membrane location is located within the lamB gene itself. The properties of such fusion strains open up the prospect of a precise genetic analysis of the genetic components involved in protein transport. Images PMID:414221

  18. Inhibition of protein translation by the DISC1-Boymaw fusion gene from a Scottish family with major psychiatric disorders

    PubMed Central

    Ji, Baohu; Higa, Kerin K.; Kim, Minjung; Zhou, Lynn; Young, Jared W.; Geyer, Mark A.; Zhou, Xianjin

    2014-01-01

    The t(1; 11) translocation appears to be the causal genetic lesion with 70% penetrance for schizophrenia, major depression and other psychiatric disorders in a Scottish family. Molecular studies identified the disruption of the disrupted-in-schizophrenia 1 (DISC1) gene by chromosome translocation at chromosome 1q42. Our previous studies, however, revealed that the translocation also disrupted another gene, Boymaw (also termed DISC1FP1), on chromosome 11. After translocation, two fusion genes [the DISC1-Boymaw (DB7) and the Boymaw-DISC1 (BD13)] are generated between the DISC1 and Boymaw genes. In the present study, we report that expression of the DB7 fusion gene inhibits both intracellular NADH oxidoreductase activities and protein translation. We generated humanized DISC1-Boymaw mice with gene targeting to examine the in vivo functions of the fusion genes. Consistent with the in vitro studies on the DB7 fusion gene, protein translation activity is decreased in the hippocampus and in cultured primary neurons from the brains of the humanized mice. Expression of Gad67, Nmdar1 and Psd95 proteins are also reduced. The humanized mice display prolonged and increased responses to the NMDA receptor antagonist, ketamine, on various mouse genetic backgrounds. Abnormal information processing of acoustic startle and depressive-like behaviors are also observed. In addition, the humanized mice display abnormal erythropoiesis, which was reported to associate with depression in humans. Expression of the DB7 fusion gene may reduce protein translation to impair brain functions and thereby contribute to the pathogenesis of major psychiatric disorders. PMID:24908665

  19. Variations for susceptibilities to ultraviolet induced cellular inactivation and gene segregation among protoplast fusion hybrids of Candida albicans.

    PubMed

    Sarachek, A; Henderson, L A

    1988-01-01

    Hybrids of the naturally diploid, asexual and opportunistically pathogenic yeast, Candida albicans, can be obtained artificially by protoplast fusion. Evidence is presented that gene conversion and reciprocal recombination contribute to ultraviolet (UV)-induced segregations of heterozygous markers from both diploid and hybrid strains, and that hybrids also segregate through induced chromosome loss. Heterozygous diploid strains independently derived from the same wild-type diploid stock were alike in post-UV survival and segregational responses, and the organization of a four gene linkage group identified in diploids from the segregant products of reciprocal recombinations was transmitted intact to all hybrids from fusions between diploids of isogenic or nonisogenic backgrounds. However, hybrids arising independently from a given fusion cross differed significantly from each other in post-UV survival, absolute ability to segregate some parental markers, frequency of gene segregation, and proclivities for each of the three mechanisms of gene segregation. The bearings of the genetic backgrounds of parental strains and of growth temperatures during hybrid formation on each of these variables are described. The findings emphasize that awareness of the intrinsic heterogeneities of fusion hybrids is essential for reliable application of the protoplast fusion procedure to genetic analysis of C. albicans.

  20. Dysregulated Glycoprotein B-Mediated Cell-Cell Fusion Disrupts Varicella-Zoster Virus and Host Gene Transcription during Infection.

    PubMed

    Oliver, Stefan L; Yang, Edward; Arvin, Ann M

    2017-01-01

    The highly conserved herpesvirus glycoprotein complex gB/gH-gL mediates membrane fusion during virion entry and cell-cell fusion. Varicella-zoster virus (VZV) characteristically forms multinucleated cells, or syncytia, during the infection of human tissues, but little is known about this process. The cytoplasmic domain of VZV gB (gBcyt) has been implicated in cell-cell fusion regulation because a gB[Y881F] substitution causes hyperfusion. gBcyt regulation is necessary for VZV pathogenesis, as the hyperfusogenic mutant gB[Y881F] is severely attenuated in human skin xenografts. In this study, gBcyt-regulated fusion was investigated by comparing melanoma cells infected with wild-type-like VZV or hyperfusogenic mutants. The gB[Y881F] mutant exhibited dramatically accelerated syncytium formation in melanoma cells caused by fusion of infected cells with many uninfected cells, increased cytoskeleton reorganization, and rapid displacement of nuclei to dense central structures compared to pOka using live-cell confocal microscopy. VZV and human transcriptomes were concurrently investigated using whole transcriptome sequencing (RNA-seq) to identify viral and cellular responses induced when gBcyt regulation was disrupted by the gB[Y881F] substitution. The expression of four vital VZV genes, ORF61 and the genes for glycoproteins gC, gE, and gI, was significantly reduced at 36 h postinfection for the hyperfusogenic mutants. Importantly, hierarchical clustering demonstrated an association of differential gene expression with dysregulated gBcyt-mediated fusion. A subset of Ras GTPase genes linked to membrane remodeling were upregulated in cells infected with the hyperfusogenic mutants. These data implicate gBcyt in the regulation of gB fusion function that, if unmodulated, triggers cellular processes leading to hyperfusion that attenuates VZV infection.

  1. Clinical Courses of Two Pediatric Patients with Acute Megakaryoblastic Leukemia Harboring the CBFA2T3-GLIS2 Fusion Gene

    PubMed Central

    Ishibashi, Mayu; Yokosuka, Tomoko; Yanagimachi, Masakatsu D.; Iwasaki, Fuminori; Tsujimoto, Shin-ichi; Sasaki, Koji; Takeuchi, Masanobu; Tanoshima, Reo; Kato, Hiromi; Kajiwara, Ryosuke; Tanaka, Fumiko; Goto, Hiroaki; Yokota, Shumpei

    2016-01-01

    Acute megakaryoblastic leukemia (AMKL) in children without Down syndrome (DS) has an extremely poor outcome with 3-year survival of less than 40%, whereas AMKL in children with DS has an excellent survival rate. Recently, a novel recurrent translocation involving CBFA2T3 and GLIS2 was identified in about 30% of children with non-DS AMKL, and the fusion gene was reported as a strong poor prognostic factor in pediatric AMKL. We report the difficult clinical courses of pediatric patients with AMKL harboring the CBFA2T3-GLIS2 fusion gene. PMID:27094503

  2. Identification and assembly of V genes as idiotype-specific DNA fusion vaccines in multiple myeloma.

    PubMed

    Sahota, Surinder S; Townsend, Mark; Stevenson, Freda K

    2005-01-01

    Tumor-specific markers are important in identifying and tracking malignant cells. In this regard, functionally rearranged immunoglobulin variable (V) region genes in B-cell tumors fulfill and extend these criteria. V genes provide signature motifs in tumor cells and can delineate critical features of the clonal history of the cell of origin. They also define a tumor-specific antigen, which can be targeted for immunotherapy. Our focus has been on using novel DNA fusion vaccines to induce antitumor immunity. Here, we describe in detail the methods for identifying tumor-derived V genes at the nucleotide level in the malignant plasma cells of multiple myeloma. We further present the methodology for assembly of tumor V genes as single-chain variable region fragments (scFv), fused in frame with an immunopotentiating nontoxic bacterial sequence, Fragment C (FrC) of tetanus toxin. These scFv.FrC DNA vaccines provide protection in myeloma models and are currently in clinical trials. The vaccines are patient specific and can be rapidly assembled for clinical use.

  3. Construction and Expression of Sugar Kinase Transcriptional Gene Fusions by Using the Sinorhizobium meliloti ORFeome▿

    PubMed Central

    Humann, Jodi L.; Schroeder, Brenda K.; Mortimer, Michael W.; House, Brent L.; Yurgel, Svetlana N.; Maloney, Scott C.; Ward, Kristel L.; Fallquist, Heather M.; Ziemkiewicz, Hope T.; Kahn, Michael L.

    2008-01-01

    The Sinorhizobium meliloti ORFeome project cloned 6,314 open reading frames (ORFs) into a modified Gateway entry vector system from which the ORFs could be transferred to destination vectors in vivo via bacterial conjugation. In this work, a reporter gene destination vector, pMK2030, was constructed and used to generate ORF-specific transcriptional fusions to β-glucuronidase (gusA) and green fluorescent protein (gfp) reporter genes. A total of 6,290 ORFs were successfully transferred from the entry vector library into pMK2030. To demonstrate the utility of this system, reporter plasmids corresponding to 30 annotated sugar kinase genes were integrated into the S. meliloti SM1021 and/or SM8530 genome. Expression of these genes was measured using a high-throughput β-glucuronidase assay to track expression on nine different carbon sources. Six ORFs integrated into SM1021 and SM8530 had different basal levels of expression in the two strains. The annotated activities of three other sugar kinases were also confirmed. PMID:18791020

  4. Analysis of the fusion protein gene of the porcine rubulavirus LPMV: comparative analysis of paramyxovirus F proteins.

    PubMed

    Berg, M; Bergvall, A C; Svenda, M; Sundqvist, A; Moreno-López, J; Linné, T

    1997-01-01

    Complementary DNA clones representing the fusion (F) protein gene of the porcine rubulavirus LPMV were isolated and sequenced. The F gene was found to be 1,845 nucleotides long containing one long open reading frame capable of encoding a protein of 541 amino acids. The cleavage motif for F0 into F1 and F2 is His-Arg-Lys-Lys-Arg. A sequence comparison and a phylogenetic analysis was performed in order to identify possible functional domains of paramyxovirus fusion proteins and also to classify the porcine rubulavirus. The F gene of LPMV is most closely related to the human mumps virus and simian virus type 5 F genes, and is therefore classified into the rubulavirus genus. A coding region for a small hydrophobic protein was however not found between the F and hemagglutinin-neuraminidase (HN) genes as previously found in both SV5 and mumps.

  5. Alk1 controls arterial endothelial cell migration in lumenized vessels.

    PubMed

    Rochon, Elizabeth R; Menon, Prahlad G; Roman, Beth L

    2016-07-15

    Heterozygous loss of the arterial-specific TGFβ type I receptor, activin receptor-like kinase 1 (ALK1; ACVRL1), causes hereditary hemorrhagic telangiectasia (HHT). HHT is characterized by development of fragile, direct connections between arteries and veins, or arteriovenous malformations (AVMs). However, how decreased ALK1 signaling leads to AVMs is unknown. To understand the cellular mis-steps that cause AVMs, we assessed endothelial cell behavior in alk1-deficient zebrafish embryos, which develop cranial AVMs. Our data demonstrate that alk1 loss has no effect on arterial endothelial cell proliferation but alters arterial endothelial cell migration within lumenized vessels. In wild-type embryos, alk1-positive cranial arterial endothelial cells generally migrate towards the heart, against the direction of blood flow, with some cells incorporating into endocardium. In alk1-deficient embryos, migration against flow is dampened and migration in the direction of flow is enhanced. Altered migration results in decreased endothelial cell number in arterial segments proximal to the heart and increased endothelial cell number in arterial segments distal to the heart. We speculate that the consequent increase in distal arterial caliber and hemodynamic load precipitates the flow-dependent development of downstream AVMs.

  6. Functional screening of antibiotic resistance genes from human gut microbiota reveals a novel gene fusion.

    PubMed

    Cheng, Gong; Hu, Yongfei; Yin, Yeshi; Yang, Xi; Xiang, Chunsheng; Wang, Baohong; Chen, Yanfei; Yang, Fengling; Lei, Fang; Wu, Na; Lu, Na; Li, Jing; Chen, Quanze; Li, Lanjuan; Zhu, Baoli

    2012-11-01

    The human gut microbiota has a high density of bacteria that are considered a reservoir for antibiotic resistance genes (ARGs). In this study, one fosmid metagenomic library generated from the gut microbiota of four healthy humans was used to screen for ARGs against seven antibiotics. Eight new ARGs were obtained: one against amoxicillin, six against d-cycloserine, and one against kanamycin. The new amoxicillin resistance gene encodes a protein with 53% identity to a class D β-lactamase from Riemerella anatipestifer RA-GD. The six new d-cycloserine resistance genes encode proteins with 73-81% identity to known d-alanine-d-alanine ligases. The new kanamycin resistance gene encodes a protein of 274 amino acids with an N-terminus (amino acids 1-189) that has 42% identity to the 6'-aminoglycoside acetyltransferase [AAC(6')] from Enterococcus hirae and a C-terminus (amino acids 190-274) with 35% identity to a hypothetical protein from Clostridiales sp. SSC/2. A functional study on the novel kanamycin resistance gene showed that only the N-terminus conferred kanamycin resistance. Our results showed that functional metagenomics is a useful tool for the identification of new ARGs.

  7. Genetic diversity of fusion gene (ORF 117), an analogue of vaccinia virus A27L gene of capripox virus isolates.

    PubMed

    Dashprakash, M; Venkatesan, Gnanavel; Ramakrishnan, Muthannan Andavar; Muthuchelvan, Dhanavelu; Sankar, Muthu; Pandey, Awadh Bihari; Mondal, Bimelendu

    2015-04-01

    The fusion gene (ORF 117) sequences of twelve (n = 12) capripox virus isolates namely sheeppox (SPPV) and goatpox (GTPV) viruses from India were demonstrated for their genetic and phylogenetic relationship among them. All the isolates were confirmed for their identity by routine PCR before targeting ORF 117 gene for sequence analysis. The designed primers specifically amplified ORF 117 gene as 447 bp fragment from total genomic DNA extracted from all the isolates. Sequence analysis revealed a significant percentage of identity among GTPV, SPPV and between them at both nucleotide and amino acid levels. The topology of the phylogenetic tree revealed that three distinct clusters corresponding to SPPV, GTPV and lumpy skin disease virus was formed. However, SPPV Pune/08 and SPPV Roumanian Fanar isolates were clustered into GTPV group as these two isolates showed a 100 and 99.3 % identity with GTPV isolates of India at nt and aa levels, respectively. Protein secondary structure and 3D view was predicted and found that it has high antigenic index and surface probability with low hydrophobicity, and it can be targeted for expression and its evaluation to explore its diagnostic potential in epidemiological investigation in future.

  8. Codon-Optimized NADH Oxidase Gene Expression and Gene Fusion with Glycerol Dehydrogenase for Bienzyme System with Cofactor Regeneration

    PubMed Central

    Zhou, Qiang; Wang, Shizhen

    2015-01-01

    NADH oxidases (NOXs) play an important role in maintaining balance of NAD+/NADH by catalyzing cofactors regeneration. The expression of nox gene from Lactobacillus brevis in Escherichia coli BL21 (BL21 (DE3)) was studied. Two strategies, the high AT-content in the region adjacent to the initiation codon and codon usage of the whole gene sequence consistent with the host, obtained the NOX activity of 59.9 U/mg and 73.3 U/mg (crude enzyme), with enhanced expression level of 2.0 and 2.5-folds, respectively. Purified NOX activity was 213.8 U/mg. Gene fusion of glycerol dehydrogenase (GDH) and NOX formed bifuctional multi-enzymes for bioconversion of glycerol coupled with coenzyme regeneration. Kinetic parameters of the GDH-NOX for each substrate, glycerol and NADH, were calculated as Vmax(Glycerol) 20 μM/min, Km(Glycerol) 19.4 mM, Vmax (NADH) 12.5 μM/min and Km (NADH) 51.3 μM, respectively, which indicated the potential application of GDH-NOX for quick glycerol analysis and dioxyacetone biosynthesis. PMID:26115038

  9. Discovery and characterization of a novel CCND1/MRCK gene fusion in mantle cell lymphoma.

    PubMed

    Masamha, Chioniso Patience; Albrecht, Todd R; Wagner, Eric J

    2016-03-29

    The t(11;14) translocation resulting in constitutive cyclin D1 expression is an early event in mantle cell lymphoma (MCL) transformation. Patients with a highly proliferative phenotype produce cyclin D1 transcripts with truncated 3'UTRs that evade miRNA regulation. Here, we report the recurrence of a novel gene fusion in MCL cell lines and MCL patient isolates that consists of the full protein coding region of cyclin D1 (CCND1) and a 3'UTR consisting of sequences from both the CCND1 3'UTR and myotonic dystrophy kinase-related Cdc42-binding kinase's (MRCK) intron one. The resulting CCND1/MRCK mRNA is resistant to CCND1-targeted miRNA regulation, and targeting the MRCK region of the chimeric 3'UTR with siRNA results in decreased CCND1 levels.

  10. Effects of an adenoviral vector containing a suicide gene fusion on growth characteristics of breast cancer cells.

    PubMed

    Kong, Heng; Liu, Chunli; Zhu, Ting; Huang, Zonghai; Yang, Liucheng; Li, Qiang

    2014-12-01

    The herpes simplex virus thymidine kinase/ganciclovir (HSV‑TK/GCV) and the cytosine deaminase/5‑fluorocytosine (CD/5‑FC) systems have been widely applied in suicide gene therapy for cancer. Although suicide gene therapy has been successfully used in vitro and in vivo studies, the number of studies on the effects of recombinant adenoviruses (Ads) containing suicide genes on target cancer cells is limited. The aim of this study was to examine whether recombinant Ads containing the CD/TK fusion gene affect cell proliferation of breast cancer cells in vitro. In the present study, we explored the use of a recombinant adenoviral vector to deliver the CD/TK fusion gene to the breast cancer cell line MCF‑7. We found that the recombinant adenoviral vector efficiently infected MCF‑7 cells. Western blot analysis revealed that CD and TK proteins are expressed in the infected cells. The infected breast cancer cells did not show any significant changes in morphology, ultrastructure, cell growth, and cell‑cycle distribution compared to the uninfected cells. This study revealed that the Ad‑vascular endothelial growth factor promoter (VEGFp)‑CD/TK vector is non‑toxic to MCF‑7 cells at the appropriate titer. Our results indicate that it is feasible to use a recombinant adenoviral vector containing the CD/TK fusion gene in suicide gene therapy to target breast cancer cells.

  11. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models.

    PubMed

    Okamoto, Kiyoshi; Kodama, Kotaro; Takase, Kazuma; Sugi, Naoko Hata; Yamamoto, Yuji; Iwata, Masao; Tsuruoka, Akihiko

    2013-10-28

    RET gene fusions are recurrent oncogenes identified in thyroid and lung carcinomas. Lenvatinib is a multi-tyrosine kinase inhibitor currently under evaluation in several clinical trials. Here we evaluated lenvatinib in RET gene fusion-driven preclinical models. In cellular assays, lenvatinib inhibited auto-phosphorylation of KIF5B-RET, CCDC6-RET, and NcoA4-RET. Lenvatinib suppressed the growth of CCDC6-RET human thyroid and lung cancer cell lines, and as well, suppressed anchorage-independent growth and tumorigenicity of RET gene fusion-transformed NIH3T3 cells. These results demonstrate that lenvatinib can exert antitumor activity against RET gene fusion-driven tumor models by inhibiting oncogenic RET gene fusion signaling.

  12. Post-entrapment genome engineering: first exon size does not affect the expression of fusion transcripts generated by gene entrapment.

    PubMed

    Osipovich, Anna B; Singh, Aparna; Ruley, H Earl

    2005-03-01

    Gene trap mutagenesis in mouse embryonic stem cells has been widely used for genome-wide studies of mammalian gene function. However, while large numbers of genes can be disrupted, individual mutations may suffer from limitations due to the structure and/or placement of targeting vector. To extend the utility of gene trap mutagenesis, replaceable 3' [or poly(A)] gene trap vectors were developed that permit sequences inserted in individual entrapment clones to be engineered by Cre-mediated recombination. 3' traps incorporating different drug resistance genes could be readily exchanged, simply by selecting for the drug-resistance gene of the replacement vector. By substituting different 3' traps, we show that otherwise identical fusion genes containing a large first exon (804 nt) are not expressed at appreciably lower levels than genes expressing small first exons (384 and 151 nt). Thus, size appears to have less effect on the expression and processing of first exons than has been reported for internal exons. Finally, a retroviral poly(A) trap (consisting of a RNA polymerase II promoter, a neomycin-resistance gene, and 5'-splice site) typically produced mutagenized clones in which vector sequences spliced to the 3'-terminal exons of cellular transcription units, suggesting strong selection for fusion transcripts that evade nonsense-mediated decay. The efficient exchange of poly(A) traps should greatly extend the utility of mutant libraries generated by gene entrapment and provides new strategies to study the rules that govern the expression of exons inserted throughout the genome.

  13. Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice.

    PubMed

    Quilis, Jordi; López-García, Belén; Meynard, Donaldo; Guiderdoni, Emmanuel; San Segundo, Blanca

    2014-04-01

    Plant proteinase inhibitors (PIs) are considered as candidates for increased insect resistance in transgenic plants. Insect adaptation to PI ingestion might, however, compromise the benefits received by transgenic expression of PIs. In this study, the maize proteinase inhibitor (MPI), an inhibitor of insect serine proteinases, and the potato carboxypeptidase inhibitor (PCI) were fused into a single open reading frame and introduced into rice plants. The two PIs were linked using either the processing site of the Bacillus thuringiensis Cry1B precursor protein or the 2A sequence from the foot-and-mouth disease virus (FMDV). Expression of each fusion gene was driven by the wound- and pathogen-inducible mpi promoter. The mpi-pci fusion gene was stably inherited for at least three generations with no penalty on plant phenotype. An important reduction in larval weight of Chilo suppressalis fed on mpi-pci rice, compared with larvae fed on wild-type plants, was observed. Expression of the mpi-pci fusion gene confers resistance to C. suppressalis (striped stem borer), one of the most important insect pest of rice. The mpi-pci expression systems described may represent a suitable strategy for insect pest control, better than strategies based on the use of single PI genes, by preventing insect adaptive responses. The rice plants expressing the mpi-pci fusion gene also showed enhanced resistance to infection by the fungus Magnaporthe oryzae, the causal agent of the rice blast disease. Our results illustrate the usefulness of the inducible expression of the mpi-pci fusion gene for dual resistance against insects and pathogens in rice plants.

  14. Regulation of Sinorhizobium meliloti 1021 rrnA-reporter gene fusions in response to cold shock.

    PubMed

    Gustafson, Ann M; O'Connell, Kevin P; Thomashow, Michael F

    2002-09-01

    We previously reported that mutants of Sinorhizobium meliloti 1021 carrying luxAB insertions in each of the three 16S rRNA genes exhibited a dramatic (> or = 28-fold) increase in luminescence following a temperature downshift from 30 to 15 degrees C. These results raised the possibility that the rRNA operons (rrn) of S. meliloti were cold shock loci. In testing this possibility, we found that fusion of the S. meliloti 1021 rrnA promoter to two different reporter genes, luxAB and uidA, resulted in hybrid genes that were transiently upregulated (as measured by transcript accumulation) about four- to sixfold in response to a temperature downshift. These results are consistent with the hypothesis that the rrn promoters are transiently upregulated in response to cold shock. However, much of the apparent cold shock regulation of the initial luxAB insertions was due to an unexpected mechanism: an apparent temperature-dependent inhibition of translation. Specifically, the rrnA sequences from +1 to +172 (relative to the start of transcription) were found to greatly decrease the ability of S. meliloti to translate hybrid rrn-luxAB transcripts into active protein at 30 degrees C. This effect, however, was largely eliminated at 15 degrees C. Possible mechanisms for the apparent transient increase in rrnA promoter activity and temperature-dependent inhibition of translation are discussed.

  15. Construction of a dual-tag system for gene expression, protein affinity purification and fusion protein processing.

    PubMed

    Motejadded, Hassan; Altenbuchner, Josef

    2009-04-01

    An E. coli vector system was constructed which allows the expression of fusion genes via a L: -rhamnose-inducible promotor. The corresponding fusion proteins consist of the maltose-binding protein and a His-tag sequence for affinity purification, the Saccharomyces cerevisiae Smt3 protein for protein processing by proteolytic cleavage and the protein of interest. The Smt3 gene was codon-optimized for expression in E. coli. In a second rhamnose-inducible vector, the S. cerevisiae Ulp1 protease gene for processing Smt3 fusion proteins was fused in the same way to maltose-binding protein and His-tag sequence but without the Smt3 gene. The enhanced green fluorescent protein (eGFP) was used as reporter and protein of interest. Both fusion proteins (MalE-6xHis-Smt3-eGFP and MalE-6xHis-Ulp1) were efficiently produced in E. coli and separately purified by amylose resin. After proteolytic cleavage the products were applied to a Ni-NTA column to remove protease and tags. Pure eGFP protein was obtained in the flow-through of the column in a yield of around 35% of the crude cell extract.

  16. Gene expression in E. coli after treatment with streptozotocin.

    PubMed

    Fram, R J; Marinus, M G; Volkert, M R

    1988-03-01

    Gene induction by the methylating agents streptozotocin (STZ), N-methyl-N-nitrosourea (MNU), and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was evaluated in E. coli fusion mutants. These mutants have fusions of the lac operon to genes induced by treatment with sublethal levels of alkylating agents and were previously selected from random insertions of the Mu-dl (Apr lac) phage by screening for induction of beta-galactosidase activity in the presence of methyl methanesulfonate or MNNG. The results demonstrate that STZ differs from MNNG and MNU in failing to induce aidC expression. Further, expression of aidC after exposure to MNU and MNNG occurs only in nonaerated cultures; aeration blocks the induction. Induction of aidD, alkA, aidB, and sfiA expression occurs with all 3 agents although at markedly lower concentrations of MNNG and STZ compared to MNU. alkA and to a lesser extent aidD mutants of E. coli strains were more sensitive to these agents, while no differences were evident between wild-type and aidB or aidC fusion mutants.

  17. PF-06463922, an ALK/ROS1 inhibitor, overcomes resistance to 1st and 2nd generation ALK inhibitors in pre-clinical models

    PubMed Central

    Zou, Helen Y.; Friboulet, Luc; Kodack, David P.; Engstrom, Lars D.; Li, Qiuhua; West, Melissa; Tang, Ruth W.; Wang, Hui; Tsaparikos, Konstantinos; Wang, Jinwei; Timofeevski, Sergei; Katayama, Ryohei; Dinh, Dac M.; Lam, Hieu; Lam, Justine L.; Yamazaki, Shinji; Hu, Wenyue; Patel, Bhushankumar; Bezwada, Divya; Frias, Rosa L.; Lifshits, Eugene; Mahmood, Sidra; Gainor, Justin F.; Affolter, Timothy; Lappin, Patrick B.; Gukasyan, Hovhannes; Lee, Nathan; Deng, Shibing; Jain, Rakesh K; Johnson, Ted W.; Shaw, Alice T.; Fantin, Valeria R.; Smeal, Tod

    2015-01-01

    SUMMARY We report the preclinical evaluation of PF-06463922, a potent and brain penetrant ALK/ROS1 inhibitor. Compared to other clinically available ALK inhibitors, PF-06463922 displayed superior potency against all known clinically acquired ALK mutations, including the highly resistant G1202R mutant. Furthermore, PF-06463922 treatment led to regression of EML4-ALK driven brain metastases, leading to prolonged mouse survival, in a superior manner. Finally, PF-06463922 demonstrated high selectivity and safety margins in a variety of preclinical studies. These results suggest that PF-06463922 will be highly effective for the treatment of patients with ALK-driven lung cancers, including those who relapsed on clinically available ALK inhibitors due to secondary ALK kinase domain mutations and/or due to the failed control of brain metastases. PMID:26144315

  18. Drosophila Erect wing (Ewg) controls mitochondrial fusion during muscle growth and maintenance by regulation of the Opa1-like gene.

    PubMed

    Rai, Mamta; Katti, Prasanna; Nongthomba, Upendra

    2014-01-01

    Mitochondrial biogenesis and morphological changes are associated with tissue-specific functional demand, but the factors and pathways that regulate these processes have not been completely identified. A lack of mitochondrial fusion has been implicated in various developmental and pathological defects. The spatiotemporal regulation of mitochondrial fusion in a tissue such as muscle is not well understood. Here, we show in Drosophila indirect flight muscles (IFMs) that the nuclear-encoded mitochondrial inner membrane fusion gene, Opa1-like, is regulated in a spatiotemporal fashion by the transcription factor/co-activator Erect wing (Ewg). In IFMs null for Ewg, mitochondria undergo mitophagy and/or autophagy accompanied by reduced mitochondrial functioning and muscle degeneration. By following the dynamics of mitochondrial growth and shape in IFMs, we found that mitochondria grow extensively and fuse during late pupal development to form the large tubular mitochondria. Our evidence shows that Ewg expression during early IFM development is sufficient to upregulate Opa1-like, which itself is a requisite for both late pupal mitochondrial fusion and muscle maintenance. Concomitantly, by knocking down Opa1-like during early muscle development, we show that it is important for mitochondrial fusion, muscle differentiation and muscle organization. However, knocking down Opa1-like, after the expression window of Ewg did not cause mitochondrial or muscle defects. This study identifies a mechanism by which mitochondrial fusion is regulated spatiotemporally by Ewg through Opa1-like during IFM differentiation and growth.

  19. In vivo topological analysis of Ste2, a yeast plasma membrane protein, by using beta-lactamase gene fusions.

    PubMed Central

    Cartwright, C P; Tipper, D J

    1991-01-01

    Gene fusions were constructed between Ste2, the receptor for the Saccharomyces cerevisiae alpha-factor, and beta la, the secreted form of beta-lactamase encoded by the bla gene of pBR322. The Ste2 and beta la components were linked by a processing fragment (P) from the yeast killer preprotoxin containing a C-terminal lysine-arginine site for cleavage by the Golgi-associated Kex2 protease. Ste2 is predicted to have a rhodopsinlike topology, with an external N terminus and seven transmembrane segments. Fusions to three of the four Ste2 domains predicted to be external resulted in beta la secretion from yeast cells. A fusion at a site just preceding the first transmembrane segment was an exception; the product was cell associated, indicating that the first 44 residues of Ste2 are insufficient to direct secretion of beta la; translocation of this domain presumably requires the downstream transmembrane segment. Expression of fusions located in two domains predicted to be cytoplasmic failed to result in beta la secretion. Following insertion of the preprotoxin signal peptide (S) between the Ste2 and P components of these cytoplasmic fusions, secretion of beta la activity occurred, which is consistent with inversion of the orientation of the beta la reporter. Conversely, insertion of S between Ste2 and P in an external fusion sharply reduced beta la secretion. Complementary information about both cytoplasmic and external domains of Ste2 was therefore provided, and most aspects of the predicted topology were confirmed. The steady-state levels of beta la detected were low, presumably because of efficient degradation of the fusions in the secretory pathway; levels, however, were easily detectable. This method should be valuable in the analysis of in vivo topologies of both homologous and foreign plasma membrane proteins expressed in yeast cells. Images PMID:2017168

  20. Overexpression of Recombinant Human Teriparatide, rhPTH (1–34) in Escherichia coli : An Innovative Gene Fusion Approach

    PubMed Central

    Bakhtiari, Nahid; Amini Bayat, Zahra; Sagharidouz, Sepideh; Vaez, Mohsen

    2017-01-01

    Background: Parathyroid hormone is an 84-amino acid peptide secreted by the parathyroid glands. Its physiological role is maintenance of normal serum calcium level and bone remodeling. Biological activity of this hormone is related to N-terminal 1–34 amino acids. The recombinant form of hormone (1–34) has been approved for treatment of osteoporosis from 2002. In this study, a novel fusion partner has been developed for preparation of high yield recombinant 1–34 amino acids of hPTH. Methods: Novel nucleotide cassette designed encoding a chimeric fusion protein comprising of a fusion partner consisting of a His-tag in N-terminal, 53 amino acids belong to Escherichia coli (E. coli) β-galactosidase (LacZ) gene, a linker sequence for increasing of expression and protection of target peptide structure from fusion tag effect, an Enteropeptidase cleavage site, rhPTH (1–34) gene fragment. Optimized fusion gene was synthesized and ligated into pET-28a vector under control of T7 promoter, and then transformed in E. coli (DH5α) cells. Positive clones containing this gene were double digested with NcoI and-BamHI and also approved by sequencing. Gene overexpression was observed in SDS-PAGE after induction with 0.2 mM IPTG. Confirmation of gene expression was performed by western blotting using anti-His-tag antibody conjugated with peroxidase. Results: By this fusion gene design approach, we achieved a high level expression of the rhPTH, where it represented at least 43.7% of the total protein as determined by SDS-PAGE and confirmed by western blotting. Conclusion: In addition to high level expression of the designed gene in this work, specific amino acid sequence of bacterial β-galactosidase was selected as major part of carrier tag for protection of this hormone as important step of recombinant rhPTH with relevant isoelectronic point (pI). This innovation resulted in recombinant production of hPTH very well and the gene construct could be applied as a pattern for

  1. LAMTOR1-PRKCD and NUMA1-SFMBT1 fusion genes identified by RNA sequencing in aneurysmal benign fibrous histiocytoma with t(3;11)(p21;q13).

    PubMed

    Panagopoulos, Ioannis; Gorunova, Ludmila; Bjerkehagen, Bodil; Lobmaier, Ingvild; Heim, Sverre

    2015-11-01

    RNA sequencing of an aneurysmal benign fibrous histiocytoma with the karyotype 46,XY,t(3;11)(p21;q13),del(6)(p23)[17]/46,XY[2] showed that the t(3;11) generated two fusion genes: LAMTOR1-PRKCD and NUMA1-SFMBT1. RT-PCR together with Sanger sequencing verified the presence of fusion transcripts from both fusion genes. In the LAMTOR1-PRKCD fusion, the part of the PRKCD gene coding for the catalytic domain of the serine/threonine kinase is under control of the LAMTOR1 promoter. In the NUMA1-SFMBT1 fusion, the part of the SFMBT1 gene coding for two of four malignant brain tumor domains and the sterile alpha motif domain is controlled by the NUMA1 promoter. The data support a neoplastic genesis of aneurysmal benign fibrous histiocytoma and indicate a pathogenetic role for LAMTOR1-PRKCD and NUMA1-SFMBT1.

  2. Chromoplectic TPM3–ALK rearrangement in a patient with inflammatory myofibroblastic tumor who responded to ceritinib after progression on crizotinib

    PubMed Central

    Mansfield, A. S.; Murphy, S. J.; Harris, F. R.; Robinson, S. I.; Marks, R. S.; Johnson, S. H.; Smadbeck, J. B.; Halling, G. C.; Yi, E. S.; Wigle, D.; Vasmatzis, G.; Jen, J.

    2016-01-01

    Background Inflammatory myofibroblastic tumors (IMTs) are rare sarcomas that can occur at any age. Surgical resection is the primary treatment for patients with localized disease; however, these tumors frequently recur. Less commonly, patients with IMTs develop or present with metastatic disease. There is no standard of care for these patients and traditional cytotoxic therapy is largely ineffective. Most IMTs are associated with oncogenic ALK, ROS1 or PDGFRβ fusions and may benefit from targeted therapy. Patient and methods We sought to understand the genomic abnormalities of a patient who presented for management of metastatic IMT after progression of disease on crizotinib and a significant and durable partial response to the more potent ALK inhibitor ceritinib. Results The residual IMT was resected based on the recommendations of a multidisciplinary tumor sarcoma tumor board and analyzed by whole-genome mate pair sequencing. Analysis of the residual, resected tumor identified a chromoplectic TPM3–ALK rearrangement that involved many other known oncogenes and was confirmed by rtPCR. Conclusions In our analysis of the treatment-resistant, residual IMT, we identified a complex pattern of genetic rearrangements consistent with chromoplexy. Although it is difficult to know for certain if these chromoplectic rearrangements preceded treatment, their presence suggests that chromoplexy has a role in the oncogenesis of IMTs. Furthermore, this patient's remarkable response suggests that ceritinib should be considered as an option after progression on crizotinib for patients with metastatic or unresectable IMT and ALK mutations. PMID:27742657

  3. Establishment of cells to monitor Microprocessor through fusion genes of microRNA and GFP.

    PubMed

    Tsutsui, Motomu; Hasegawa, Hitoki; Adachi, Koichi; Miyata, Maiko; Huang, Peng; Ishiguro, Naoki; Hamaguchi, Michinari; Iwamoto, Takashi

    2008-08-08

    Microprocessor, the complex of Drosha and DGCR8, promotes the processing of primary microRNA to precursor microRNA, which is a crucial step for microRNA maturation. So far, no convenient assay systems have been developed for observing this step in vivo. Here we report the establishment of highly sensitive cellular systems where we can visually monitor the function of Microprocessor. During a series of screening of transfectants with fusion genes of the EGFP cDNA and primary microRNA genes, we have obtained certain cell lines where introduction of siRNA against DGCR8 or Drosha strikingly augments GFP signals. In contrast, these cells have not responded to Dicer siRNA; thus they have a unique character that GFP signals should be negatively and specifically correlated to the action of Microprocessor among biogenesis of microRNA. These cell lines can be useful tools for real-time analysis of Microprocessor action in vivo and identifying its novel modulators.

  4. Uterine ALK3 is essential during the window of implantation

    PubMed Central

    Monsivais, Diana; Clementi, Caterina; Peng, Jia; Titus, Mary M.; Barrish, James P.; Creighton, Chad J.; Lydon, John P.; DeMayo, Francesco J.; Matzuk, Martin M.

    2016-01-01

    The window of implantation is defined by the inhibition of uterine epithelial proliferation, structural epithelial cell remodeling, and attenuated estrogen (E2) response. These changes occur via paracrine signaling between the uterine epithelium and stroma. Because implantation defects are a major cause of infertility in women, identifying these signaling pathways will improve infertility interventions. Bone morphogenetic proteins (BMPs) are TGF-β family members that regulate the postimplantation and midgestation stages of pregnancy. In this study, we discovered that signaling via activin-like kinase 3 (ALK3/BMPR1A), a BMP type 1 receptor, is necessary for blastocyst attachment. Conditional knockout (cKO) of ALK3 in the uterus was obtained by producing Alk3flox/flox-Pgr-cre–positive females. Alk3 cKO mice are sterile and have defects in the luminal uterine epithelium, including increased microvilli density and maintenance of apical cell polarity. Moreover, Alk3 cKO mice exhibit an elevated uterine E2 response and unopposed epithelial cell proliferation during the window of implantation. We determined that dual transcriptional regulation of Kruppel-like factor 15 (Klf15), by both the transforming growth factor β (TGF-β) transcription factor SMAD family member 4 (SMAD4) and progesterone receptor (PR), is necessary to inhibit uterine epithelial cell proliferation, a key step for embryo implantation. Our findings present a convergence of BMP and steroid hormone signaling pathways in the regulation of uterine receptivity. PMID:26721398

  5. Inhibition of Axl improves the targeted therapy against ALK-mutated neuroblastoma

    SciTech Connect

    Xu, Fei; Li, Hongling; Sun, Yong

    2014-11-28

    Highlights: • First reported Axl is co-expressed with ALK in neuroblastoma tissues and cell lines. • Axl activation promotes cell growth and impairs the efficiency of ALK inhibitor. • Further found silence of Axl leads to increased sensitivity to ALK inhibitors. • Axl inhibitor promotes the efficiency of targeted therapy in vitro and in vivo. • Axl activation should be considered in the clinical application of ALK inhibitors. - Abstract: Neuroblastoma (NB) patients harboring mutated ALK can be expected to potentially benefit from targeted therapy based on ALK tyrosine kinase inhibitor (TKI), such as crizotinib and ceritinib. However, the effect of the treatment varies with different individuals, although with the same genic changes. Axl receptor tyrosine kinase is expressed in a variety of human cancers, but little data are reported in NB, particularly in which carrying mutated ALK. In this study, we focus on the roles of Axl in ALK-mutated NB for investigating rational therapeutic strategy. We found that Axl is expressed in ALK-positive NB tissues and cell lines, and could be effectively activated by its ligand GAS6. Ligand-dependent Axl activation obviously rescued crizotinib-mediated suppression of cell proliferation in ALK-mutated NB cells. Genetic inhibition of Axl with specific small interfering RNA markedly increased the sensitivity of cells to ALK-TKIs. Furthermore, a small-molecule inhibitor of Axl significantly enhanced ALK-targeted therapy, as an increased frequency of apoptosis was observed in NB cells co-expressing ALK and Axl. Taken together, our results demonstrated that activation of Axl could lead to insensitivity to ALK inhibitors, and dual inhibition of ALK and Axl might be a potential therapeutic strategy against ALK-mutated NB.

  6. Long-Term Endurance Exercise in Humans Stimulates Cell Fusion of Myoblasts along with Fusogenic Endogenous Retroviral Genes In Vivo

    PubMed Central

    Suhr, Frank; Konou, Thierry M.; Tappe, Kim A.; Toigo, Marco; Jung, Hans H.; Henke, Christine; Steigleder, Ruth; Strissel, Pamela L.; Huebner, Hanna; Beckmann, Matthias W.; van der Keylen, Piet; Schoser, Benedikt; Schiffer, Thorsten; Frese, Laura; Bloch, Wilhelm; Strick, Reiner

    2015-01-01

    Myogenesis is defined as growth, differentiation and repair of muscles where cell fusion of myoblasts to multinucleated myofibers is one major characteristic. Other cell fusion events in humans are found with bone resorbing osteoclasts and placental syncytiotrophoblasts. No unifying gene regulation for natural cell fusions has been found. We analyzed skeletal muscle biopsies of competitive cyclists for muscle-specific attributes and expression of human endogenous retrovirus (ERV) envelope genes due to their involvement in cell fusion of osteoclasts and syncytiotrophoblasts. Comparing muscle biopsies from post- with the pre-competitive seasons a significant 2.25-fold increase of myonuclei/mm fiber, a 2.38-fold decrease of fiber area/nucleus and a 3.1-fold decrease of satellite cells (SCs) occurred. We propose that during the pre-competitive season SC proliferation occurred following with increased cell fusion during the competitive season. Expression of twenty-two envelope genes of muscle biopsies demonstrated a significant increase of putative muscle-cell fusogenic genes Syncytin-1 and Syncytin-3, but also for the non-fusogenic erv3. Immunohistochemistry analyses showed that Syncytin-1 mainly localized to the sarcolemma of myofibers positive for myosin heavy-chain isotypes. Cellular receptors SLC1A4 and SLC1A5 of Syncytin-1 showed significant decrease of expression in post-competitive muscles compared with the pre-competitive season, but only SLC1A4 protein expression localized throughout the myofiber. Erv3 protein was strongly expressed throughout the myofiber, whereas envK1-7 localized to SC nuclei and myonuclei. Syncytin-1 transcription factors, PPARγ and RXRα, showed no protein expression in the myofiber, whereas the pCREB-Ser133 activator of Syncytin-1 was enriched to SC nuclei and myonuclei. Syncytin-1, Syncytin-3, SLC1A4 and PAX7 gene regulations along with MyoD1 and myogenin were verified during proliferating or actively-fusing human primary myoblast cell

  7. Long-Term Endurance Exercise in Humans Stimulates Cell Fusion of Myoblasts along with Fusogenic Endogenous Retroviral Genes In Vivo.

    PubMed

    Frese, Sebastian; Ruebner, Matthias; Suhr, Frank; Konou, Thierry M; Tappe, Kim A; Toigo, Marco; Jung, Hans H; Henke, Christine; Steigleder, Ruth; Strissel, Pamela L; Huebner, Hanna; Beckmann, Matthias W; van der Keylen, Piet; Schoser, Benedikt; Schiffer, Thorsten; Frese, Laura; Bloch, Wilhelm; Strick, Reiner

    2015-01-01

    Myogenesis is defined as growth, differentiation and repair of muscles where cell fusion of myoblasts to multinucleated myofibers is one major characteristic. Other cell fusion events in humans are found with bone resorbing osteoclasts and placental syncytiotrophoblasts. No unifying gene regulation for natural cell fusions has been found. We analyzed skeletal muscle biopsies of competitive cyclists for muscle-specific attributes and expression of human endogenous retrovirus (ERV) envelope genes due to their involvement in cell fusion of osteoclasts and syncytiotrophoblasts. Comparing muscle biopsies from post- with the pre-competitive seasons a significant 2.25-fold increase of myonuclei/mm fiber, a 2.38-fold decrease of fiber area/nucleus and a 3.1-fold decrease of satellite cells (SCs) occurred. We propose that during the pre-competitive season SC proliferation occurred following with increased cell fusion during the competitive season. Expression of twenty-two envelope genes of muscle biopsies demonstrated a significant increase of putative muscle-cell fusogenic genes Syncytin-1 and Syncytin-3, but also for the non-fusogenic erv3. Immunohistochemistry analyses showed that Syncytin-1 mainly localized to the sarcolemma of myofibers positive for myosin heavy-chain isotypes. Cellular receptors SLC1A4 and SLC1A5 of Syncytin-1 showed significant decrease of expression in post-competitive muscles compared with the pre-competitive season, but only SLC1A4 protein expression localized throughout the myofiber. Erv3 protein was strongly expressed throughout the myofiber, whereas envK1-7 localized to SC nuclei and myonuclei. Syncytin-1 transcription factors, PPARγ and RXRα, showed no protein expression in the myofiber, whereas the pCREB-Ser133 activator of Syncytin-1 was enriched to SC nuclei and myonuclei. Syncytin-1, Syncytin-3, SLC1A4 and PAX7 gene regulations along with MyoD1 and myogenin were verified during proliferating or actively-fusing human primary myoblast cell

  8. Role of the crc gene in catabolic repression of the Pseudomonas putida GPo1 alkane degradation pathway.

    PubMed

    Yuste, L; Rojo, F

    2001-11-01

    Expression of the alkane degradation pathway encoded in the OCT plasmid of Pseudomonas putida GPo1 is induced in the presence of alkanes by the AlkS regulator, and it is down-regulated by catabolic repression. The catabolic repression effect reduces the expression of the two AlkS-activated promoters of the pathway, named PalkB and PalkS2. The P. putida Crc protein participates in catabolic repression of some metabolic pathways for sugars and nitrogenated compounds. Here, we show that Crc has an important role in the catabolic repression exerted on the P. putida GPo1 alkane degradation pathway when cells grow exponentially in a rich medium. Interestingly, Crc plays little or no role on the catabolic repression exerted by some organic acids in a defined medium, which shows that these two types of catabolic repression can be genetically distinguished. Disruption of the crc gene led to a six- to sevenfold increase in the levels of the mRNAs arising from the AlkS-activated PalkB and PalkS2 promoters in cells growing exponentially in rich medium. This was not due to an increase in the half-lives of these mRNAs. Since AlkS activates the expression of its own gene and seems to be present in limiting amounts, the higher mRNA levels observed in the absence of Crc could arise from an increase in either transcription initiation or in the translation efficiency of the alkS mRNA. Both alternatives would lead to increased AlkS levels and hence to elevated expression of PalkB and PalkS2. High expression of alkS from a heterologous promoter eliminated catabolic repression. Our results indicate that catabolic repression in rich medium is directed to down-regulate the levels of the AlkS activator. Crc would thus modulate, directly or indirectly, the levels of AlkS.

  9. Phosphoproteomics reveals ALK promote cell progress via RAS/JNK pathway in neuroblastoma

    PubMed Central

    Xu, Guofeng; Zhang, Min; Wu, Yeming; Wu, Zhixiang

    2016-01-01

    Emerging evidence suggests receptor tyrosine kinase ALK as a promising therapeutic target in neuroblastoma. However, clinical trials reveal that a limited proportion of ALK-positive neuroblastoma patients experience clinical benefits from Crizotinib, a clinically approved specific inhibitor of ALK. The precise molecular mechanisms of aberrant ALK activity in neuroblastoma remain elusive, limiting the clinical application of ALK as a therapeutic target in neuroblastoma. Here, we describe a deep quantitative phosphoproteomic approach in which Crizotinib-treated neuroblastoma cell lines bearing aberrant ALK are used to investigate downstream regulated phosphoproteins. We identified more than 19,500—and quantitatively analyzed approximately 10,000—phosphorylation sites from each cell line, ultimately detecting 450–790 significantly-regulated phosphorylation sites. Multiple layers of bioinformatic analysis of the significantly-regulated phosphoproteins identified RAS/JNK as a downstream signaling pathway of ALK, independent of the ALK variant present. Further experiments demonstrated that ALK/JNK signaling could be inactivated by either ALK- or JNK-specific inhibitors, resulting in cell growth inhibition by induction of cell cycle arrest and cell apoptosis. Our study broadly defines the phosphoproteome in response to ALK inhibition and provides a resource for further clinical investigation of ALK as therapeutic target for the treatment of neuroblastoma. PMID:27732954

  10. A rapid and efficient newly established method to detect COL1A1-PDGFB gene fusion in dermatofibrosarcoma protuberans

    SciTech Connect

    Yokoyama, Yoko; Shimizu, Akira; Okada, Etsuko; Ishikawa, Osamu; Motegi, Sei-ichiro

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer We developed new method to rapidly identify COL1A1-PDGFB fusion in DFSP. Black-Right-Pointing-Pointer New PCR method using a single primer pair detected COL1A1-PDGFB fusion in DFSP. Black-Right-Pointing-Pointer This is the first report of DFSP with a novel COL1A1 breakpoint in exon 5. -- Abstract: The detection of fusion transcripts of the collagen type 1{alpha}1 (COL1A1) and platelet-derived growth factor-BB (PDGFB) genes by genetic analysis has recognized as a reliable and valuable molecular tool for the diagnosis of dermatofibrosarcoma protuberans (DFSP). To detect the COL1A1-PDGFB fusion, almost previous reports performed reverse transcription polymerase chain reaction (RT-PCR) using multiplex forward primers from COL1A1. However, it has possible technical difficulties with respect to the handling of multiple primers and reagents in the procedure. The objective of this study is to establish a rapid, easy, and efficient one-step method of PCR using only a single primer pair to detect the fusion transcripts of the COL1A1 and PDGFB in DFSP. To validate new method, we compared the results of RT-PCR in five patients of DFSP between the previous method using multiplex primers and our established one-step RT-PCR using a single primer pair. In all cases of DFSP, the COL1A1-PDGFB fusion was detected by both previous method and newly established one-step PCR. Importantly, we detected a novel COL1A1 breakpoint in exon 5. The newly developed method is valuable to rapidly identify COL1A1-PDGFB fusion transcripts in DFSP.

  11. Development of RNA-FISH Assay for Detection of Oncogenic FGFR3-TACC3 Fusion Genes in FFPE Samples

    PubMed Central

    Kojima, Takahiro; Nishimura, Kouichi; Kandori, Shuya; Kawahara, Takashi; Yoshino, Takayuki; Ueno, Satoshi; Iizumi, Yuichi; Mitsuzuka, Koji; Arai, Yoichi; Tsuruta, Hiroshi; Habuchi, Tomonori; Kobayashi, Takashi; Matsui, Yoshiyuki; Ogawa, Osamu; Sugimoto, Mikio; Kakehi, Yoshiyuki; Nagumo, Yoshiyuki; Tsutsumi, Masakazu; Oikawa, Takehiro; Kikuchi, Koji; Nishiyama, Hiroyuki

    2016-01-01

    Introduction and Objectives Oncogenic FGFR3-TACC3 fusions and FGFR3 mutations are target candidates for small molecule inhibitors in bladder cancer (BC). Because FGFR3 and TACC3 genes are located very closely on chromosome 4p16.3, detection of the fusion by DNA-FISH (fluorescent in situ hybridization) is not a feasible option. In this study, we developed a novel RNA-FISH assay using branched DNA probe to detect FGFR3-TACC3 fusions in formaldehyde-fixed paraffin-embedded (FFPE) human BC samples. Materials and Methods The RNA-FISH assay was developed and validated using a mouse xenograft model with human BC cell lines. Next, we assessed the consistency of the RNA-FISH assay using 104 human BC samples. In this study, primary BC tissues were stored as frozen and FFPE tissues. FGFR3-TACC3 fusions were independently detected in FFPE sections by the RNA-FISH assay and in frozen tissues by RT-PCR. We also analyzed the presence of FGFR3 mutations by targeted sequencing of genomic DNA extracted from deparaffinized FFPE sections. Results FGFR3-TACC3 fusion transcripts were identified by RNA-FISH and RT-PCR in mouse xenograft FFPE tissues using the human BC cell lines RT112 and RT4. These cell lines have been reported to be fusion-positive. Signals for FGFR3-TACC3 fusions by RNA-FISH were positive in 2/60 (3%) of non-muscle-invasive BC (NMIBC) and 2/44 (5%) muscle-invasive BC (MIBC) patients. The results of RT-PCR of all 104 patients were identical to those of RNA-FISH. FGFR3 mutations were detected in 27/60 (45%) NMIBC and 8/44 (18%) MIBC patients. Except for one NMIBC patient, FGFR3 mutation and FGFR3-TACC3 fusion were mutually exclusive. Conclusions We developed an RNA-FISH assay for detection of the FGFR3-TACC3 fusion in FFPE samples of human BC tissues. Screening for not only FGFR3 mutations, but also for FGFR3-TACC3 fusion transcripts has the potential to identify additional patients that can be treated with FGFR inhibitors. PMID:27930669

  12. ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype

    PubMed Central

    Hirabayashi, Shinsuke; Ohki, Kentaro; Nakabayashi, Kazuhiko; Ichikawa, Hitoshi; Momozawa, Yukihide; Okamura, Kohji; Yaguchi, Akinori; Terada, Kazuki; Saito, Yuya; Yoshimi, Ai; Ogata-Kawata, Hiroko; Sakamoto, Hiromi; Kato, Motohiro; Fujimura, Junya; Hino, Moeko; Kinoshita, Akitoshi; Kakuda, Harumi; Kurosawa, Hidemitsu; Kato, Keisuke; Kajiwara, Ryosuke; Moriwaki, Koichi; Morimoto, Tsuyoshi; Nakamura, Kozue; Noguchi, Yasushi; Osumi, Tomoo; Sakashita, Kazuo; Takita, Junko; Yuza, Yuki; Matsuda, Koich; Yoshida, Teruhiko; Matsumoto, Kenji; Hata, Kenichiro; Kubo, Michiaki; Matsubara, Yoichi; Fukushima, Takashi; Koh, Katsuyoshi; Manabe, Atsushi; Ohara, Akira; Kiyokawa, Nobutaka

    2017-01-01

    Fusion genes involving ZNF384 have recently been identified in B-cell precursor acute lymphoblastic leukemia, and 7 fusion partners have been reported. We further characterized this type of fusion gene by whole transcriptome sequencing and/or polymerase chain reaction. In addition to previously reported genes, we identified BMP2K as a novel fusion partner for ZNF384. Including the EP300-ZNF384 that we reported recently, the total frequency of ZNF384-related fusion genes was 4.1% in 291 B-cell precursor acute lymphoblastic leukemia patients enrolled in a single clinical trial, and TCF3-ZNF384 was the most recurrent, with a frequency of 2.4%. The characteristic immunophenotype of weak CD10 and aberrant CD13 and/or CD33 expression was revealed to be a common feature of the leukemic cells harboring ZNF384-related fusion genes. The signature gene expression profile in TCF3-ZNF384-positive patients was enriched in hematopoietic stem cell features and related to that of EP300-ZNF384-positive patients, but was significantly distinct from that of TCF3-PBX1-positive and ZNF384-fusion-negative patients. However, clinical features of TCF3-ZNF384-positive patients are markedly different from those of EP300-ZNF384-positive patients, exhibiting higher cell counts and a younger age at presentation. TCF3-ZNF384-positive patients revealed a significantly poorer steroid response and a higher frequency of relapse, and the additional activating mutations in RAS signaling pathway genes were detected by whole exome analysis in some of the cases. Our observations indicate that ZNF384-related fusion genes consist of a distinct subgroup of B-cell precursor acute lymphoblastic leukemia with a characteristic immunophenotype, while the clinical features depend on the functional properties of individual fusion partners. PMID:27634205

  13. A patient previously treated with ALK inhibitors for central nervous system lesions from ALK rearranged lung cancer: a case report

    PubMed Central

    Kashima, Jumpei; Okuma, Yusuke; Hishima, Tsunekazu

    2016-01-01

    Background Patients with anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC) are now preferentially treated with tyrosine kinase inhibitors (TKIs). However, patients treated with ALK inhibitors end up with acquired resistance. Case presentation We present a patient with recurrent ALK-rearranged NSCLC that developed multiple brain metastases and meningitis carcinomatosa after sequential treatment with several lines of cytotoxic chemotherapy, crizotinib, and alectinib. After the patient underwent retreatment with crizotinib as salvage therapy because of poor performance status, the intracranial metastatic foci and meningeal thickening were shrank within 1 week. Conclusion Our experience with this case suggests that alectinib may restore sensitivity to crizotinib or amplified pathway such as MET which bestowed alectinib resistance was inhibited with crizotinib. PMID:27785052

  14. A Naturally Occurring rev1-vpu Fusion Gene Does Not Confer a Fitness Advantage to HIV-1

    PubMed Central

    Langer, Simon M.; Hopfensperger, Kristina; Iyer, Shilpa S.; Kreider, Edward F.; Learn, Gerald H.; Lee, Lan-Hui; Hahn, Beatrice H.; Sauter, Daniel

    2015-01-01

    Background Pandemic strains of HIV-1 (group M) encode a total of nine structural (gag, pol, env), regulatory (rev, tat) and accessory (vif, vpr, vpu, nef) genes. However, some subtype A and C viruses exhibit an unusual gene arrangement in which the first exon of rev (rev1) and the vpu gene are placed in the same open reading frame. Although this rev1-vpu gene fusion is present in a considerable fraction of HIV-1 strains, its functional significance is unknown. Results Examining infectious molecular clones (IMCs) of HIV-1 that encode the rev1-vpu polymorphism, we show that a fusion protein is expressed in infected cells. Due to the splicing pattern of viral mRNA, however, these same IMCs also express a regular Vpu protein, which is produced at much higher levels. To investigate the function of the fusion gene, we characterized isogenic IMC pairs differing only in their ability to express a Rev1-Vpu protein. Analysis in transfected HEK293T and infected CD4+ T cells showed that all of these viruses were equally active in known Vpu functions, such as down-modulation of CD4 or counteraction of tetherin. Furthermore, the polymorphism did not affect Vpu-mediated inhibition of NF-кB activation or Rev-dependent nuclear export of incompletely spliced viral mRNAs. There was also no evidence for enhanced replication of Rev1-Vpu expressing viruses in primary PBMCs or ex vivo infected human lymphoid tissues. Finally, the frequency of HIV-1 quasispecies members that encoded a rev1-vpu fusion gene did not change in HIV-1 infected individuals over time. Conclusions Expression of a rev1-vpu fusion gene does not affect regular Rev and Vpu functions or alter HIV-1 replication in primary target cells. Since there is no evidence for increased replication fitness of rev1-vpu encoding viruses, this polymorphism likely emerged in the context of other mutations within and/or outside the rev1-vpu intergenic region, and may have a neutral phenotype. PMID:26554585

  15. Post-entrapment genome engineering: First exon size does not affect the expression of fusion transcripts generated by gene entrapment

    PubMed Central

    Osipovich, Anna B.; Singh, Aparna; Ruley, H. Earl

    2005-01-01

    Gene trap mutagenesis in mouse embryonic stem cells has been widely used for genome-wide studies of mammalian gene function. However, while large numbers of genes can be disrupted, individual mutations may suffer from limitations due to the structure and/or placement of targeting vector. To extend the utility of gene trap mutagenesis, replaceable 3′ [or poly(A)] gene trap vectors were developed that permit sequences inserted in individual entrapment clones to be engineered by Cre-mediated recombination. 3′ traps incorporating different drug resistance genes could be readily exchanged, simply by selecting for the drug-resistance gene of the replacement vector. By substituting different 3′ traps, we show that otherwise identical fusion genes containing a large first exon (804 nt) are not expressed at appreciably lower levels than genes expressing small first exons (384 and 151 nt). Thus, size appears to have less effect on the expression and processing of first exons than has been reported for internal exons. Finally, a retroviral poly(A) trap (consisting of a RNA polymerase II promoter, a neomycin-resistance gene, and 5′-splice site) typically produced mutagenized clones in which vector sequences spliced to the 3′-terminal exons of cellular transcription units, suggesting strong selection for fusion transcripts that evade nonsense-mediated decay. The efficient exchange of poly(A) traps should greatly extend the utility of mutant libraries generated by gene entrapment and provides new strategies to study the rules that govern the expression of exons inserted throughout the genome. PMID:15741512

  16. ESCHERICHIA COLI Gene Induction by Alkylation Treatment

    PubMed Central

    Volkert, Michael R.; Nguyen, Dinh C.; Beard, K. Christopher

    1986-01-01

    Searches for alkylation-inducible (aid) genes of Escherichia coli have been conducted by screening random fusions of the Mu-dl(ApR lac) phage for fusions showing increased β-galactosidase activity after treatment with methylating agents, but not after treatments with UV-irradiation. In this report we describe gene fusions that are specifically induced by alkylation treatments. Nine new mutants are described, and their properties are compared with the five mutants described previously. The total of 14 fusion mutants map at five distinct genetic loci. They can be further subdivided on the basis of their induction by methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). alkA, aidB and aidD are induced by both agents and appear to be regulated by ada. Neither aidC nor aidI is regulated by ada. Moreover, since aidC is induced only by MNNG and aidI is induced only by MMS, these two genes are likely to be individually regulated. Thus, there appear to be at least three different regulatory mechanisms controlling aid genes. PMID:3080354

  17. Escherichia coli gene induction by alkylation treatment.

    PubMed

    Volkert, M R; Nguyen, D C; Beard, K C

    1986-01-01

    Searches for alkylation-inducible (aid) genes of Escherichia coli have been conducted by screening random fusions of the Mu-dl(ApR lac) phage for fusions showing increased beta-galactosidase activity after treatment with methylating agents, but not after treatments with UV-irradiation. In this report we describe gene fusions that are specifically induced by alkylation treatments. Nine new mutants are described, and their properties are compared with the five mutants described previously. The total of 14 fusion mutants map at five distinct genetic loci. They can be further subdivided on the basis of their induction by methyl methanesulfonate (MMS) and N-methyl-N' -nitro-N-nitrosoguanidine (MNNG). alkA, aidB and aidD are induced by both agents and appear to be regulated by ada. Neither aidC nor aidI is regulated by ada. Moreover, since aidC is induced only by MNNG and aidI is induced only by MMS, these two genes are likely to be individually regulated. Thus, there appear to be at least three different regulatory mechanisms controlling aid genes.

  18. Synergistic Effects of Crizotinib and Temozolomide in Experimental FIG-ROS1 Fusion-Positive Glioblastoma

    PubMed Central

    Das, Arabinda; Cheng, Ron Ron; Hilbert, Megan L.T.; Dixon-Moh, Yaenette N.; Decandio, Michele; Vandergrift, William Alex; Banik, Naren L.; Lindhorst, Scott M.; Cachia, David; Varma, Abhay K.; Patel, Sunil J.; Giglio, Pierre

    2015-01-01

    Glioblastoma (GB) is the most common malignant brain tumor. Drug resistance frequently develops in these tumors during chemotherapy. Therefore, predicting drug response in these patients remains a major challenge in the clinic. Thus, to improve the clinical outcome, more effective and tolerable combination treatment strategies are needed. Robust experimental evidence has shown that the main reason for failure of treatments is signal redundancy due to coactivation of several functionally linked receptor tyrosine kinases (RTKs), including anaplastic lymphoma kinase (ALK), c-Met (hepatocyte growth factor receptor), and oncogenic c-ros oncogene1 (ROS1: RTK class orphan) fusion kinase FIG (fused in GB)-ROS1. As such, these could be attractive targets for GB therapy. The study subjects consisted of 19 patients who underwent neurosurgical resection of GB tissues. Our in vitro and ex vivo models promisingly demonstrated that treatments with crizotinib (PF-02341066: dual ALK/c-Met inhibitor) and temozolomide in combination induced synergistic antitumor activity on FIG-ROS1-positive GB cells. Our results also showed that ex vivo FIG-ROS1+ slices (obtained from GB patients) when cultured were able to preserve tissue architecture, cell viability, and global gene-expression profiles for up to 14 days. Both in vitro and ex vivo studies indicated that combination blockade of FIG, p-ROS1, p-ALK, and p-Met augmented apoptosis, which mechanistically involves activation of Bim and inhibition of survivin, p-Akt, and Mcl-1 expression. However, it is important to note that we did not see any significant synergistic effect of crizotinib and temozolomide on FIG-ROS1-negative GB cells. Thus, these ex vivo culture results will have a significant impact on patient selection for clinical trials and in predicting response to crizotinib and temozolomide therapy. Further studies in different animal models of FIG-ROS1-positive GB cells are warranted to determine useful therapies for the

  19. Synergistic Effects of Crizotinib and Temozolomide in Experimental FIG-ROS1 Fusion-Positive Glioblastoma.

    PubMed

    Das, Arabinda; Cheng, Ron Ron; Hilbert, Megan L T; Dixon-Moh, Yaenette N; Decandio, Michele; Vandergrift, William Alex; Banik, Naren L; Lindhorst, Scott M; Cachia, David; Varma, Abhay K; Patel, Sunil J; Giglio, Pierre

    2015-01-01

    Glioblastoma (GB) is the most common malignant brain tumor. Drug resistance frequently develops in these tumors during chemotherapy. Therefore, predicting drug response in these patients remains a major challenge in the clinic. Thus, to improve the clinical outcome, more effective and tolerable combination treatment strategies are needed. Robust experimental evidence has shown that the main reason for failure of treatments is signal redundancy due to coactivation of several functionally linked receptor tyrosine kinases (RTKs), including anaplastic lymphoma kinase (ALK), c-Met (hepatocyte growth factor receptor), and oncogenic c-ros oncogene1 (ROS1: RTK class orphan) fusion kinase FIG (fused in GB)-ROS1. As such, these could be attractive targets for GB therapy. The study subjects consisted of 19 patients who underwent neurosurgical resection of GB tissues. Our in vitro and ex vivo models promisingly demonstrated that treatments with crizotinib (PF-02341066: dual ALK/c-Met inhibitor) and temozolomide in combination induced synergistic antitumor activity on FIG-ROS1-positive GB cells. Our results also showed that ex vivo FIG-ROS1+ slices (obtained from GB patients) when cultured were able to preserve tissue architecture, cell viability, and global gene-expression profiles for up to 14 days. Both in vitro and ex vivo studies indicated that combination blockade of FIG, p-ROS1, p-ALK, and p-Met augmented apoptosis, which mechanistically involves activation of Bim and inhibition of survivin, p-Akt, and Mcl-1 expression. However, it is important to note that we did not see any significant synergistic effect of crizotinib and temozolomide on FIG-ROS1-negative GB cells. Thus, these ex vivo culture results will have a significant impact on patient selection for clinical trials and in predicting response to crizotinib and temozolomide therapy. Further studies in different animal models of FIG-ROS1-positive GB cells are warranted to determine useful therapies for the

  20. A human ESC model for MLL-AF4 leukemic fusion gene reveals an impaired early hematopoietic-endothelial specification.

    PubMed

    Bueno, Clara; Montes, Rosa; Melen, Gustavo J; Ramos-Mejia, Verónica; Real, Pedro J; Ayllón, Verónica; Sanchez, Laura; Ligero, Gertrudis; Gutierrez-Aranda, Iván; Fernández, Agustín F; Fraga, Mario F; Moreno-Gimeno, Inmaculada; Burks, Deborah; Plaza-Calonge, María del Carmen; Rodríguez-Manzaneque, Juan C; Menendez, Pablo

    2012-06-01

    The MLL-AF4 fusion gene is a hallmark genomic aberration in high-risk acute lymphoblastic leukemia in infants. Although it is well established that MLL-AF4 arises prenatally during human development, its effects on hematopoietic development in utero remain unexplored. We have created a human-specific cellular system to study early hemato-endothelial development in MLL-AF4-expressing human embryonic stem cells (hESCs). Functional studies, clonal analysis and gene expression profiling reveal that expression of MLL-AF4 in hESCs has a phenotypic, functional and gene expression impact. MLL-AF4 acts as a global transcriptional activator and a positive regulator of homeobox gene expression in hESCs. Functionally, MLL-AF4 enhances the specification of hemogenic precursors from hESCs but strongly impairs further hematopoietic commitment in favor of an endothelial cell fate. MLL-AF4 hESCs are transcriptionally primed to differentiate towards hemogenic precursors prone to endothelial maturation, as reflected by the marked upregulation of master genes associated to vascular-endothelial functions and early hematopoiesis. Furthermore, we report that MLL-AF4 expression is not sufficient to transform hESC-derived hematopoietic cells. This work illustrates how hESCs may provide unique insights into human development and further our understanding of how leukemic fusion genes, known to arise prenatally, regulate human embryonic hematopoietic specification.

  1. A human ESC model for MLL-AF4 leukemic fusion gene reveals an impaired early hematopoietic-endothelial specification

    PubMed Central

    Bueno, Clara; Montes, Rosa; Melen, Gustavo J; Ramos-Mejia, Verónica; Real, Pedro J; Ayllón, Verónica; Sanchez, Laura; Ligero, Gertrudis; Gutierrez-Aranda, Iván; Fernández, Agustín F; Fraga, Mario F; Moreno-Gimeno, Inmaculada; Burks, Deborah; del Carmen Plaza-Calonge, María; Rodríguez-Manzaneque, Juan C; Menendez, Pablo

    2012-01-01

    The MLL-AF4 fusion gene is a hallmark genomic aberration in high-risk acute lymphoblastic leukemia in infants. Although it is well established that MLL-AF4 arises prenatally during human development, its effects on hematopoietic development in utero remain unexplored. We have created a human-specific cellular system to study early hemato-endothelial development in MLL-AF4-expressing human embryonic stem cells (hESCs). Functional studies, clonal analysis and gene expression profiling reveal that expression of MLL-AF4 in hESCs has a phenotypic, functional and gene expression impact. MLL-AF4 acts as a global transcriptional activator and a positive regulator of homeobox gene expression in hESCs. Functionally, MLL-AF4 enhances the specification of hemogenic precursors from hESCs but strongly impairs further hematopoietic commitment in favor of an endothelial cell fate. MLL-AF4 hESCs are transcriptionally primed to differentiate towards hemogenic precursors prone to endothelial maturation, as reflected by the marked upregulation of master genes associated to vascular-endothelial functions and early hematopoiesis. Furthermore, we report that MLL-AF4 expression is not sufficient to transform hESC-derived hematopoietic cells. This work illustrates how hESCs may provide unique insights into human development and further our understanding of how leukemic fusion genes, known to arise prenatally, regulate human embryonic hematopoietic specification. PMID:22212479

  2. Monitoring of gene expression in bacteria during infections using an adaptable set of bioluminescent, fluorescent and colorigenic fusion vectors.

    PubMed

    Uliczka, Frank; Pisano, Fabio; Kochut, Annika; Opitz, Wiebke; Herbst, Katharina; Stolz, Tatjana; Dersch, Petra

    2011-01-01

    A family of versatile promoter-probe plasmids for gene expression analysis was developed based on a modular expression plasmid system (pZ). The vectors contain different replicons with exchangeable antibiotic cassettes to allow compatibility and expression analysis on a low-, midi- and high-copy number basis. Suicide vector variants also permit chromosomal integration of the reporter fusion and stable vector derivatives can be used for in vivo or in situ expression studies under non-selective conditions. Transcriptional and translational fusions to the reporter genes gfp(mut3.1), amCyan, dsRed2, luxCDABE, phoA or lacZ can be constructed, and presence of identical multiple cloning sites in the vector system facilitates the interchange of promoters or reporter genes between the plasmids of the series. The promoter of the constitutively expressed gapA gene of Escherichia coli was included to obtain fluorescent and bioluminescent expression constructs. A combination of the plasmids allows simultaneous detection and gene expression analysis in individual bacteria, e.g. in bacterial communities or during mouse infections. To test our vector system, we analyzed and quantified expression of Yersinia pseudotuberculosis virulence genes under laboratory conditions, in association with cells and during the infection process.

  3. An interaction map of small-molecule kinase inhibitors with anaplastic lymphoma kinase (ALK) mutants in ALK-positive non-small cell lung cancer.

    PubMed

    Ai, Xinghao; Shen, Shengping; Shen, Lan; Lu, Shun

    2015-05-01

    Human anaplastic lymphoma kinase (ALK) has become a well-established target for the treatment of ALK-positive non-small cell lung cancer (NSCLC). Here, we have profiled seven small-molecule inhibitors, including 2 that are approved drugs, against a panel of clinically relevant mutations in ALK tyrosine kinase (TK) domain, aiming at a comprehensive understanding of molecular mechanism and biological implication underlying inhibitor response to ALK TK mutation. We find that (i) the gatekeeper mutation L1196M causes crizotinib resistance by simultaneously increasing and decreasing the binding affinities of, respectively, ATP and inhibitor to ALK, whereas the secondary mutation C1156Y, which is located far away from the ATP-binding site of ALK TK domain, causes the resistance by inducing marked allosteric effect on the site, (ii) the 2nd and 3rd generation kinase inhibitors exhibit relatively high sensitivity towards ALK mutants as compared to 1st generation inhibitors, (iii) the pan-kinase inhibitor staurosporine is insensitive for most mutations due to its high structural compatibility, and (iv) ATP affinity to ALK is generally reduced upon most clinically relevant mutations. Furthermore, we also identify six novel mutation-inhibitor pairs that are potentially associated with drug resistance. In addition, the G1202R and C1156Y mutations are expected to generally cause resistance for many existing inhibitors, since they can address significant effect on the geometric shape and physicochemical property of ALK active pocket.

  4. Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma.

    PubMed

    Clark, J; Lu, Y J; Sidhar, S K; Parker, C; Gill, S; Smedley, D; Hamoudi, R; Linehan, W M; Shipley, J; Cooper, C S

    1997-10-01

    We demonstrate that the cytogenetically defined translocation t(X;1)(p11.2;p34) observed in papillary renal cell carcinomas results in the fusion of the splicing factor gene PSF located at 1p34 to the TFE3 helix-loop-helix transcription factor gene at Xp11.2. In addition we define an X chromosome inversion inv(X)(p11.2;q12) that results in the fusion of the NonO (p54nrb) gene to TFE3. NonO (p54nrb), the human homologue of the Drosophila gene NonAdiss which controls the male courtship song, is closely related to PSF and also believed to be involved in RNA splicing. In each case the rearrangement results in the fusion of almost the entire splicing factor protein to the TFE3 DNA-binding domain. These observations suggest the possibility of intriguing links between the processes of RNA splicing, DNA transcription and oncogenesis.

  5. Regulation of fos-lacZ fusion gene expression in primary mouse epidermal keratinocytes isolated from transgenic mice.

    PubMed Central

    Bollag, W B; Xiong, Y; Ducote, J; Harmon, C S

    1994-01-01

    The expression of a fos-lacZ fusion gene was studied in primary mouse epidermal keratinocytes obtained from transgenic mice. This gene construct contains the entire upstream regulatory sequence of c-fos, and expression of the endogenous and fusion gene was shown by Northern analysis to correlate upon induction with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Using a chromogenic substrate of beta-galactosidase, we also demonstrated that expression of the fusion gene product, like that of Fos, was localized to the cell nucleus. In addition, we showed that epidermal keratinocytes responded to dialysed fetal bovine serum (FBS), TPA and high-calcium medium with enhanced Fos-lacZ expression and an inhibition of proliferation. The time course of induction of Fos-lacZ expression was similar for dialysed FBS and TPA, with a peak approximately 2 h after exposure. Exposure for approximately 24 h to an elevated extracellular calcium concentration was required to elicit an increase in Fos-lacZ expression. The lack of an immediate effect of raising medium calcium levels on Fos-lacZ expression contrasted with the rapidity of its effect on DNA synthesis, which was significantly inhibited within 6-8 h. In addition, we found that the protein kinase C inhibitor Ro 31-7549 blocked Fos-lacZ expression induced by TPA but had little or no effect on that elicited by high calcium levels. Thus, although our results indicate that the fos gene product may be involved in mediating epidermal keratinocyte growth arrest in response to differentiative agents such as FBS, TPA and high medium calcium levels, the exact role of this gene product remains unclear. Images Figure 1 Figure 2 PMID:8198544

  6. Regulation of fos-lacZ fusion gene expression in primary mouse epidermal keratinocytes isolated from transgenic mice.

    PubMed

    Bollag, W B; Xiong, Y; Ducote, J; Harmon, C S

    1994-05-15

    The expression of a fos-lacZ fusion gene was studied in primary mouse epidermal keratinocytes obtained from transgenic mice. This gene construct contains the entire upstream regulatory sequence of c-fos, and expression of the endogenous and fusion gene was shown by Northern analysis to correlate upon induction with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Using a chromogenic substrate of beta-galactosidase, we also demonstrated that expression of the fusion gene product, like that of Fos, was localized to the cell nucleus. In addition, we showed that epidermal keratinocytes responded to dialysed fetal bovine serum (FBS), TPA and high-calcium medium with enhanced Fos-lacZ expression and an inhibition of proliferation. The time course of induction of Fos-lacZ expression was similar for dialysed FBS and TPA, with a peak approximately 2 h after exposure. Exposure for approximately 24 h to an elevated extracellular calcium concentration was required to elicit an increase in Fos-lacZ expression. The lack of an immediate effect of raising medium calcium levels on Fos-lacZ expression contrasted with the rapidity of its effect on DNA synthesis, which was significantly inhibited within 6-8 h. In addition, we found that the protein kinase C inhibitor Ro 31-7549 blocked Fos-lacZ expression induced by TPA but had little or no effect on that elicited by high calcium levels. Thus, although our results indicate that the fos gene product may be involved in mediating epidermal keratinocyte growth arrest in response to differentiative agents such as FBS, TPA and high medium calcium levels, the exact role of this gene product remains unclear.

  7. TBL1XR1/TP63: a novel recurrent gene fusion in B-cell non-Hodgkin lymphoma | Office of Cancer Genomics

    Cancer.gov

    Recently, the landscape of single base mutations in diffuse large B-cell lymphoma (DLBCL) was described. Here we report the discovery of a gene fusion between TBL1XR1 and TP63, the only recurrent somatic novel gene fusion identified in our analysis of transcriptome data from 96 DLBCL cases. Based on this cohort and a further 157 DLBCL cases analyzed by FISH, the incidence in de novo germinal center B cell-like (GCB) DLBCL is 5% (6 of 115).

  8. Increased gene copy number of ERG on chromosome 21 but not TMPRSS2–ERG fusion predicts outcome in prostatic adenocarcinomas

    PubMed Central

    Toubaji, Antoun; Albadine, Roula; Meeker, Alan K; Isaacs, William B; Lotan, Tamara; Haffner, Michael C; Chaux, Alcides; Epstein, Jonathan I; Han, Misop; Walsh, Patrick C; Partin, Alan W; De Marzo, Angelo M; Platz, Elizabeth A; Netto, George J

    2012-01-01

    The role of TMPRSS2–ERG gene fusion in prostate cancer prognostication remains controversial. We evaluated the prognostic role of TMPRSS2–ERG fusion using fluorescence in situ hybridization analysis in a case–control study nested in The Johns Hopkins retropubic radical prostatectomy cohort. In all, 10 tissue microarrays containing paired tumors and normal tissues obtained from 172 cases (recurrence) and 172 controls (non-recurrence) matched on pathological grade, stage, race/ethnicity, and age at the time of surgery were analyzed. All radical prostatectomies were performed at our institution between 1993 and 2004. Recurrence was defined as biochemical recurrence, development of clinical evidence of metastasis, or death from prostate carcinoma. Each tissue microarray spot was scored for the presence of TMPRSS2–ERG gene fusion and for ERG gene copy number gains. The odds ratio of recurrence and 95% confidence intervals were estimated from conditional logistic regression. Although the percentage of cases with fusion was slightly lower in cases than in controls (50 vs 57%), the difference was not statistically significant (P=0.20). The presence of fusion due to either deletion or split event was not associated with recurrence. Similarly, the presence of duplicated ERG deletion, duplicated ERG split, or ERG gene copy number gain with a single ERG fusion was not associated with recurrence. ERG gene polysomy without fusion was significantly associated with recurrence (odds ratio 2.0, 95% confidence interval 1.17–3.42). In summary, TMPRSS2–ERG fusion was not prognostic for recurrence after retropubic radical prostatectomy for clinically localized prostate cancer, although men with ERG gene copy number gain without fusion were twice more likely to recur. PMID:21743434

  9. Fine-needle aspiration cytology yield as a basis for morphological, molecular, and cytogenetic diagnosis in alk-positive anaplastic large cell lymphoma with atypical clinical presentation.

    PubMed

    Bogdanic, Maja; Ostojic Kolonic, Slobodanka; Kaic, Gordana; Kardum Paro, Mirjana Mariana; Lasan Trcic, Ruzica; Kardum-Skelin, Ika

    2017-01-01

    ALK positive anaplastic large cell lymphoma is a T-cell lymphoma usually occurring in children and young adults. It frequently involves lymph nodes and extranodal sites and is associated with favorable prognosis. A 20-year old man was admitted for painful mass in the left axilla with overlying skin redness. Clinical presentation and US findings were highly suspicious for sarcoma. Definitive diagnosis was established cytolologically and using ancillary technologies from cytological samples. Fine needle aspiration cytology of tumor mass (lymph node conglomerate and surrounding tissue) show predominance of large, pleomorphic, atypical cells with large nuclei and vacuolised cytoplasm. Atypical cells immunocytochemically were positive for LCA, CD30, CD3, EMA, and ALK; negative for CD15 and CD56. NPM-ALK transcript was detected by reverse transcriptase-polymerase chain reaction (RT-PCT). Molecular analysis of TCRß and TCRγ genes demonstrated clonal TCR genes rearrangement. Complex karyotype with multiple numerical and structural changes was found on conventional cytogenetics. These findings excluded sarcoma and corroborated the diagnosis of ALK positive ALCL. Cutaneous involvement in ALCL can clinically mimic sarcoma, especially in cases with localized disease without B symptoms. In those cases, immunostaining, PCR, and conventional cytogenetics are helpful to exclude sarcoma. Diagn. Cytopathol. 2017;45:51-54. © 2016 Wiley Periodicals, Inc.

  10. The use of cellular thermal shift assay (CETSA) to study Crizotinib resistance in ALK-expressing human cancers

    PubMed Central

    Alshareef, Abdulraheem; Zhang, Hai-Feng; Huang, Yung-Hsing; Wu, Chengsheng; Zhang, Jing Dong; Wang, Peng; El-Sehemy, Ahmed; Fares, Mohamed; Lai, Raymond

    2016-01-01

    Various forms of oncogenic ALK proteins have been identified in various types of human cancers. While Crizotinib, an ALK inhibitor, has been found to be therapeutically useful against a subset of ALK+ tumours, clinical resistance to this drug has been well recognized and the mechanism of this phenomenon is incompletely understood. Using the cellular thermal shift assay (CETSA), we measured the Crizotinib—ALK binding in a panel of ALK+ cell lines, and correlated the findings with the ALK structure and its interactions with specific binding proteins. The Crizotinib IC50 significantly correlated with Crizotinib—ALK binding. The suboptimal Crizotinib—ALK binding in Crizotinib-resistant cells is not due to the cell-specific environment, since transfection of NPM-ALK into these cells revealed substantial Crizotinib—NPM-ALK binding. Interestingly, we found that the resistant cells expressed higher protein level of β-catenin and siRNA knockdown restored Crizotinib—ALK binding (correlated with a significant lowering of IC50). Computational analysis of the crystal structures suggests that β-catenin exerts steric hindrance to the Crizotinib—ALK binding. In conclusion, the Crizotinib—ALK binding measurable by CETSA is useful in predicting Crizotinib sensitivity, and Crizotinib—ALK binding is in turn dictated by the structure of ALK and some of its binding partners. PMID:27641368

  11. Targeted endostatin-cytosine deaminase fusion gene therapy plus 5-fluorocytosine suppresses ovarian tumor growth.

    PubMed

    Sher, Y-P; Chang, C-M; Juo, C-G; Chen, C-T; Hsu, J L; Lin, C-Y; Han, Z; Shiah, S-G; Hung, M-C

    2013-02-28

    There are currently no effective therapies for cancer patients with advanced ovarian cancer, therefore developing an efficient and safe strategy is urgent. To ensure cancer-specific targeting, efficient delivery, and efficacy, we developed an ovarian cancer-specific construct (Survivin-VISA-hEndoyCD) composed of the cancer specific promoter survivin in a transgene amplification vector (VISA; VP16-GAL4-WPRE integrated systemic amplifier) to express a secreted human endostatin-yeast cytosine deaminase fusion protein (hEndoyCD) for advanced ovarian cancer treatment. hEndoyCD contains an endostatin domain that has tumor-targeting ability for anti-angiogenesis and a cytosine deaminase domain that converts the prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic drug, 5-fluorouracil. Survivin-VISA-hEndoyCD was found to be highly specific, selectively express secreted hEndoyCD from ovarian cancer cells, and induce cancer-cell killing in vitro and in vivo in the presence of 5-FC without affecting normal cells. In addition, Survivin-VISA-hEndoyCD plus 5-FC showed strong synergistic effects in combination with cisplatin in ovarian cancer cell lines. Intraperitoneal (i.p.) treatment with Survivin-VISA-hEndoyCD coupled with liposome attenuated tumor growth and prolonged survival in mice bearing advanced ovarian tumors. Importantly, there was virtually no severe toxicity when hEndoyCD is expressed by Survivin-VISA plus 5-FC compared with CMV plus 5-FC. Thus, the current study demonstrates an effective cancer-targeted gene therapy that is worthy of development in clinical trials for treating advanced ovarian cancer.

  12. [Construction of eukaryotic recombinant vector and expression in COS7 cell of LipL32-HlyX fusion gene from Leptospira serovar Lai].

    PubMed

    Huang, Bi; Bao, Lang; Zhong, Qi; Zhang, Huidong; Zhang, Ying

    2009-04-01

    This study was conducted to construct eukaryotic recombinant vector of LipL32-HlyX fusion gene from Leptospira serovar Lai and express it in mammalian cell. Both of LipL32 gene and HlyX gene were amplified from Leptospira strain O17 genomic DNA by PCR. Then with the two genes as template, LipL32-HlyX fusion gene was obtained by SOE PCR (gene splicing by overlap extension PCR). The fusion gene was then cloned into pcDNA3.1 by restriction nuclease digestion. Having been transformed into E. coli DH5alpha, the recombiant plasmid was identified by restriction nuclease digestion, PCR analysis and sequencing. The recombinant plasmid was then transfected into COS7 cell whose expression was detected by RT-PCR and Western blotting analysis. RT-PCR amplified a fragment about 2000 bp and Western blotting analysis found a specific band about 75 KD which was consistent with the expected fusion protein size. In conclusion, the successful construction of eukaryotic recombinant vector containing LipL32-HlyX fusion gene and the effective expression in mammalian have laid a foundation for the application of Leptospira DNA vaccine.

  13. Characterization of foot-and-mouth disease virus gene products with antisera against bacterially synthesized fusion proteins

    SciTech Connect

    Strebel, K.; Beck, E.; Strohmaier, K.; Schaller, H.

    1986-03-01

    Defined segments of the cloned foot-and-mouth disease virus genome corresponding to all parts of the coding region were expressed in Escherichia coli as fusions to the N-terminal part of the MS2-polymerase gene under the control of the inducible lambdaPL promoter. All constructs yielded large amounts of proteins, which were purified and used to raise sequence-specific antisera in rabbits. These antisera were used to identify the corresponding viral gene products in /sup 35/S-labeled extracts from foot-and-mouth disease virus-infected BHK cells. This allowed us to locate unequivocally all mature foot-and-mouth disease virus gene products in the nucleotide sequence, to identify precursor-product relationships, and to detect several foot-and mouth disease virus gene products not previously identified in vivo or in vitro.

  14. Dominant negative selection of vaccinia virus using a thymidine kinase/thymidylate kinase fusion gene and the prodrug azidothymidine

    SciTech Connect

    Holzer, Georg W. . E-mail: falknef@baxter.com

    2005-07-05

    The Escherichia coli thymidine kinase/thymidylate kinase (tk/tmk) fusion gene encodes an enzyme that efficiently converts the prodrug 3'-azido-2',3'-dideoxythymidine (AZT) into its toxic triphosphate derivative, a substance which stops DNA chain elongation. Integration of this marker gene into vaccinia virus that normally is not inhibited by AZT allowed the establishment of a powerful selection procedure for recombinant viruses. In contrast to the conventional vaccinia thymidine kinase (tk) selection that is performed in tk-negative cell lines, AZT selection can be performed in normal (tk-positive) cell lines. The technique is especially useful for the generation of replication-deficient vaccinia viruses and may also be used for gene knock-out studies of essential vaccinia genes.

  15. EP300-ZNF384 fusion gene product up-regulates GATA3 gene expression and induces hematopoietic stem cell gene expression signature in B-cell precursor acute lymphoblastic leukemia cells.

    PubMed

    Yaguchi, Akinori; Ishibashi, Takeshi; Terada, Kazuki; Ueno-Yokohata, Hitomi; Saito, Yuya; Fujimura, Junya; Shimizu, Toshiaki; Ohki, Kentaro; Manabe, Atsushi; Kiyokawa, Nobutaka

    2017-04-04

    ZNF384-related fusion genes are associated with a distinct subgroup of B-cell precursor acute lymphoblastic leukemias in childhood, with a frequency of approximately 3-4%. We previously identified a novel EP300-ZNF384 fusion gene. Patients with the ZNF384-related fusion gene exhibit a hematopoietic stem cell (HSC) gene expression signature and characteristic immunophenotype with negative or low expression of CD10 and aberrant expression of myeloid antigens, such as CD33 and CD13. However, the molecular basis of this pathogenesis remains completely unknown. In the present study, we examined the biological effects of EP300-ZNF384 expression induced by retrovirus-mediated gene transduction in an REH B-cell precursor acute lymphoblastic leukemia cell line, and observed the acquisition of the HSC gene expression signature and an up-regulation of GATA3 gene expression, as assessed by microarray analysis. In contrast, the gene expression profile induced by wild-type ZNF384 in REH cells was significantly different from that by EP300-ZNF384 expression. Together with the results of reporter assays, which revealed the enhancement of GATA3-promoter activity by EP300-ZNF384 expression, these findings suggest that EP300-ZNF384 mediates GATA3 gene expression and may be involved in the acquisition of the HSC gene expression signature and characteristic immunophenotype in B-cell precursor acute lymphoblastic leukemia cells.

  16. Dickkopf-3 Upregulates VEGF in Cultured Human Endothelial Cells by Activating Activin Receptor-Like Kinase 1 (ALK1) Pathway

    PubMed Central

    Busceti, Carla L.; Marchitti, Simona; Bianchi, Franca; Di Pietro, Paola; Riozzi, Barbara; Stanzione, Rosita; Cannella, Milena; Battaglia, Giuseppe; Bruno, Valeria; Volpe, Massimo; Fornai, Francesco; Nicoletti, Ferdinando; Rubattu, Speranza

    2017-01-01

    Dkk-3 is a member of the dickkopf protein family of secreted inhibitors of the Wnt pathway, which has been shown to enhance angiogenesis. The mechanism underlying this effect is currently unknown. Here, we used cultured HUVECs to study the involvement of the TGF-β and VEGF on the angiogenic effect of Dkk-3. Addition of hrDkk-3 peptide (1 or 10 ng/ml) to HUVECs for 6 or 12 h enhanced the intracellular and extracellular VEGF protein levels, as assessed by RTPCR, immunoblotting, immunocytochemistry and ELISA. The increase in the extracellular VEGF levels was associated to the VEGFR2 activation. Pharmacological blockade of VEGFR2 abrogated Dkk-3-induced endothelial cell tubes formation, indicating that VEGF is a molecular player of the angiogenic effects of Dkk-3. Moreover, Dkk-3 enhanced Smad1/5/8 phosphorylation and recruited Smad4 to the VEGF gene promoter, suggesting that Dkk-3 activated ALK1 receptor leading to a transcriptional activation of VEGF. This mechanism was instrumental to the increased VEGF expression and endothelial cell tubes formation mediated by Dkk-3, because both effects were abolished by siRNA-mediated ALK1 knockdown. In summary, we have found that Dkk-3 activates ALK1 to stimulate VEGF production and induce angiogenesis in HUVECs. PMID:28352232

  17. Overexpression of HMGA2-LPP fusion transcripts promotes expression of the {alpha} 2 type XI collagen gene

    SciTech Connect

    Kubo, Takahiro; Matsui, Yoshito . E-mail: ymatsui@sb4.so-net.ne.jp; Goto, Tomohiro; Yukata, Kiminori; Yasui, Natsuo

    2006-02-10

    In a subset of human lipomas, a specific t (3; 12) chromosome translocation gives rise to HMGA2-LPP fusion protein, containing the amino (N)-terminal DNA binding domains of HMGA2 fused to the carboxyl (C)-terminal LIM domains of LPP. In addition to its role in adipogenesis, several observations suggest that HMGA2-LPP is linked to chondrogenesis. Here, we analyzed whether HMGA2-LPP promotes chondrogenic differentiation, a marker of which is transactivation of the {alpha} 2 type XI collagen gene (Col11a2). Real-time PCR analysis showed that HMGA2-LPP and COL11A2 were co-expressed. Luciferase assay demonstrated that either of HMGA2-LPP, wild-type HMGA2 or the N-terminal HMGA2 transactivated the Col11a2 promoter in HeLa cells, while the C-terminal LPP did not. RT-PCR analysis revealed that HMGA2-LPP transcripts in lipomas with the fusion were 591-fold of full-length HMGA2 transcripts in lipomas without the fusion. These results indicate that in vivo overexpression of HMGA2-LPP promotes chondrogenesis by upregulating cartilage-specific collagen gene expression through the N-terminal DNA binding domains.

  18. Making genes green: creating green fluorescent protein (GFP) fusions with blunt-end PCR products.

    PubMed

    Lo, W; Rodgers, W; Hughes, T

    1998-07-01

    The jellyfish green fluorescent protein (GFP) has proven to be a useful tool in protein localization and trafficking studies. Fused to GFP, a protein of interest can be visualized and tracked in vivo through fluorescence microscopy. However, the process of making these fusion proteins is often tedious and painstaking. Here, we describe a simple and quick method for creating GFP fusion proteins using blunt-end PCR product ligation.

  19. Acute leukemias of different lineages have similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation

    SciTech Connect

    Corral, J.; Forster, A.; Thompson, S.; Rabbitts, T.H. ); Lampert, F. ); Kaneko, Y. ); Slater, R.; Kroes, W.G. ); Van Der Schoot, C.E. ); Ludwig, W.D. ); Karpas, A. ); Pocock, C.; Cotter, F. )

    1993-09-15

    The MLL gene, on human chromosome 11q23, undergoes chromosomal translocation in acute leukemias, resulting in gene fusion with AF4 (chromosome 4) and ENL (chromosome 19). The authors report here translocation of MLL with nine different chromosomes and two paracentric chromosome 11 deletions in early B cell, B- or T-cell lineage, or nonlymphocytic acute leukemias. The mRNA translocation junction from 22t(4;11) patients, including six adult leukemias, and nine t(11;19) tumors reveals a remarkable conservation of breakpoints within MLL, AF4, or ENL genes, irrespective of tumor phenotype. Typically, the breakpoints are upstream of the zinc-finger region of MLL, and deletion of this region can accompany translocation, supporting the der(11) chromosome as the important component in leukemogenesis. Partial sequence of a fusion between MLL and the AFX1 gene from chromosome X shows the latter to be rich in Ser/Pro codons, like the ENL mRNA. These data suggest that the heterogeneous 11q23 abnormalities might cause attachment of Ser/Pro-rich segments to the NH[sub 2] terminus of MLL, lacking the zinc-finger region, and that translocation occurs in early hematopoietic cells, before commitment to distinct lineages. 36 refs., 2 figs.

  20. Functional characterization of the 5' flanking region of human ubiquitin fusion degradation 1 like gene (UFD1L).

    PubMed

    Amati, Francesca; Conti, Emanuela; Botta, Annalisa; Amicucci, Paola; Dallapiccola, Bruno; Novelli, Giuseppe

    2002-06-01

    UFD1L (Ubiquitin Fusion Degradation 1 Like) gene encodes for a component of a multi-complex involved in the degradation of ubiquitin fusion proteins. The gene maps on chromosome 22q11, in a region commonly deleted in severe congenital disorders such as DiGeorge (DGS) and velo-cardio-facial (VCFS) syndromes. UFD1L is a single copy gene ubiquitously expressed in high levels in the pharyngeal pouches and fourth branchial arch artery during development. To understand the regulation of UFD1L expression we performed a functional analysis of its 5' regulatory region. 5'-RACE and primer extension analyses revealed the presence of different transcription start sites in adult and fetal tissues. UFD1L 5' flanking region contains a TATA-box motif and is also very GC-rich with a CpG island encompassing exon 1. Transcriptional activity of this region was examined by transfection experiments of promoter-GFP reporter gene constructs in a human epithelial cell line. These experiments revealed the importance of the region between -17 and -463 nt which contains the TATA-box. EMSA assay resulted in the detection of five functional consensus sequences respectively for the transcription complex TFIID and for the transcription factors AP-1 (one site), AP-2 (one) and Sp1 (two).

  1. The EWSR1/NR4A3 fusion protein of extraskeletal myxoid chondrosarcoma activates the PPARG nuclear receptor gene.

    PubMed

    Filion, C; Motoi, T; Olshen, A B; Laé, M; Emnett, R J; Gutmann, D H; Perry, A; Ladanyi, M; Labelle, Y

    2009-01-01

    The NR4A3 nuclear receptor is implicated in the development of extraskeletal myxoid chondrosarcoma (EMC), primitive sarcoma unrelated to conventional chondrosarcomas, through a specific fusion with EWSR1 resulting in an aberrant fusion protein that is thought to disrupt the transcriptional regulation of specific target genes. We performed an expression microarray analysis of EMC tumours expressing the EWSR1/NR4A3 fusion protein, comparing their expression profiles to those of other sarcoma types. We thereby identified a set of genes significantly overexpressed in EMC relative to other sarcomas, including PPARG and NDRG2. Western blot or immunohistochemical analyses confirm that PPARG and NDRG2 are expressed in tumours positive for EWSR1/NR4A3. Bioinformatic analysis identified a DNA response element for EWSR1/NR4A3 in the PPARG promoter, and band-shift experiments and transient transfections indicate that EWSR1/NR4A3 can activate transcription through this element. Western blots further show that an isoform of the native NR4A3 receptor lacking the C-terminal domain is very highly expressed in tumours positive for EWSR1/NR4A3, and co-transfections of this isoform along with EWSR1/NR4A3 indicate that it may negatively regulate the activity of the fusion protein on the PPARG promoter. These results suggest that the overall expression of PPARG in EMC may be regulated in part by the balance between EWSR1/NR4A3 and NR4A3, and that PPARG may play a crucial role in the development of these tumours. The specific up-regulation of PPARG by EWSR1/NR4A3 may also have potential therapeutic implications.

  2. Inhibition of TGF-beta signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis.

    PubMed

    de Gouville, Anne-Charlotte; Boullay, Valerie; Krysa, Gael; Pilot, Julia; Brusq, Jean-Marie; Loriolle, Florence; Gauthier, Jean-Michel; Papworth, Stephen A; Laroze, Alain; Gellibert, Françoise; Huet, Stephane

    2005-05-01

    1 Chronic liver disease is characterized by an exacerbated accumulation of matrix, causing progressive fibrosis, which may lead to cirrhosis. Transforming growth factor beta (TGF-beta), a well-known profibrotic cytokine, transduces its signal through the ALK5 ser/thr kinase receptor, and increases transcription of different genes including PAI-1 and collagens. The identification of GW6604 (2-phenyl-4-(3-pyridin-2-yl-1H-pyrazol-4-yl)pyridine), an ALK5 inhibitor, allowed us to evaluate the therapeutic potential of inhibiting TGF-beta pathway in different models of liver disease. 2 A cellular assay was used to identify GW6604 as a TGF-beta signaling pathway inhibitor. This ALK5 inhibitor was then tested in a model of liver hepatectomy in TGF-beta-overexpressing transgenic mice, in an acute model of liver disease and in a chronic model of dimethylnitrosamine (DMN)-induced liver fibrosis. 3 In vitro, GW6604 inhibited autophosphorylation of ALK5 with an IC(50) of 140 nM and in a cellular assay inhibited TGF-beta-induced transcription of PAI-1 (IC(50): 500 nM). In vivo, GW6604 (40 mg kg(-1) p.o.) increased liver regeneration in TGF-beta-overexpressing mice, which had undergone partial hepatectomy. In an acute model of liver disease, GW6604 reduced by 80% the expression of collagen IA1. In a chronic model of DMN-induced fibrosis where DMN was administered for 6 weeks and GW6604 dosed for the last 3 weeks (80 mg kg(-1) p.o., b.i.d.), mortality was prevented and DMN-induced elevations of mRNA encoding for collagen IA1, IA2, III, TIMP-1 and TGF-beta were reduced by 50-75%. Inhibition of matrix genes overexpression was accompanied by reduced matrix deposition and reduction in liver function deterioration, as assessed by bilirubin and liver enzyme levels. 4 Our results suggest that inhibition of ALK5 could be an attractive new approach to treatment of liver fibrotic diseases by both preventing matrix deposition and promoting hepatocyte regeneration.

  3. Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions)

    ClinicalTrials.gov

    2017-04-05

    Breast Cancer; Cholangiocarcinoma; Colorectal Cancer; Head and Neck Neoplasms; Lymphoma, Large-Cell, Anaplastic; Melanoma; Neuroendocrine Tumors; Non-Small Cell Lung Cancer; Ovarian Cancer; Pancreatic Cancer; Papillary Thyroid Cancer; Primary Brain Tumors; Renal Cell Carcinoma; Sarcomas; Salivary Gland Cancers; Adult Solid Tumor

  4. Anaplastic lymphoma kinase (ALK 1) staining and molecular analysis in inflammatory myofibroblastic tumours of the bladder: a preliminary clinicopathological study of nine cases and review of the literature.

    PubMed

    Freeman, Alex; Geddes, Nicola; Munson, Philippa; Joseph, Jean; Ramani, Pramila; Sandison, Ann; Fisher, Cyril; Parkinson, M Connie

    2004-07-01

    Inflammatory myofibroblastic tumours (IMFT) may arise at any anatomical site, including lung, soft tissues, retroperitoneum and bladder. Although morphologically similar, these lesions encompass a spectrum of entities with differing aetiology, ranging from reactive/regenerative proliferations to low-grade neoplasms with a risk of local recurrence, but no significant metastatic potential. Vesical IMFT usually presents as a polypoid mass with a pale firm cut surface and can be of considerable size, mimicking a malignant tumour clinically and radiologically. Its good outcome, however, warrants conservative surgical excision, emphasising the importance of identification and distinction from malignant tumours of the bladder that may require more radical surgery and/or adjuvant therapy. We conducted a preliminary retrospective, comparative immunocytochemical study of 20 bladder tumours, including nine IMFTs, five spindle cell (sarcomatoid) carcinomas, two rhabdomyosarcomas, two leiomyosarcomas and two neurofibromas. The results confirmed IMFT positivity for smooth muscle actin, desmin and cytokeratin in 78-89% cases, resulting in potential confusion with sarcomatoid carcinoma or leiomyosarcoma. In contrast, cytoplasmic anaplastic lymphoma kinase (ALK 1) staining was present in eight IMFT (89%), but was not seen in any other lesion examined. The ALK 1 staining was confirmed by fluorescence in situ hybridisation, with translocation of the ALK gene present in 15-60% tumour cells in four of six IMFT examined, but not in four cases of sarcomatoid carcinoma or three of leiomyosarcoma. In conclusion, ALK 1 staining may be of value in the distinction of vesical IMFT from morphologically similar entities, and often reflects ALK gene translocations in these lesions.

  5. NAB2-STAT6 Gene Fusion in Meningeal Hemangiopericytoma and Solitary Fibrous Tumor.

    PubMed

    Fritchie, Karen J; Jin, Long; Rubin, Brian P; Burger, Peter C; Jenkins, Sarah M; Barthelmeß, Sarah; Moskalev, Evgeny A; Haller, Florian; Oliveira, Andre M; Giannini, Caterina

    2016-03-01

    Meningeal solitary fibrous tumor (SFT) and hemangiopericytoma (HPC) are considered to be distinct entities in the WHO Classification of CNS Tumours (2007). They harbor NAB2-STAT6 fusions similar to their soft tissue counterparts, supporting the view that they are part of a tumor continuum. We examined 30 meningeal-based tumors originally diagnosed as either SFT or HPC. These showed a spectrum of morphologic features and were diagnosed as SFTs, malignant SFTs, HPCs, or tumors with "intermediate" features. All of the tumors showed nuclear expression of STAT6. SFTs consistently expressed diffuse CD34, while HPCs and intermediate tumors had heterogeneous staining. NAB2-STAT6 fusions were identified in 20 cases, including 7 with exon 4-exon 3, 9 with exon 6-exon 17, and 4 with exon 6-exon 18 fusions. NAB2 exon 4-STAT6 exon 3 fusion correlated with classic SFT morphology and older age and showed a trend toward less mitotic activity; there was also a trend toward more aggressive behavior in tumors lacking NAB2 exon 4-STAT6 exon 3. Thus, despite their clinical and morphologic differences, meningeal-based SFTs, HPCs, and tumors with intermediate features, similar to their soft tissue counterparts, form a histopathologic spectrum unified by STAT6 immunoexpression and NAB2-STAT6 fusion.

  6. Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia

    SciTech Connect

    Barker, G.F.; Golub, T.R.; Gilliland, D.G.; Bohlander, S.K.; Rowley, J.D.; Heibert, S.W.; Raimondi, S.C.; Ward, D.C.; Bray-Ward, P.; Morgan, E.

    1995-05-23

    Chromosomal rearrangements involving band 12p13 are found in a wide variety of human leukemias but are particularly common in childhood acute lymphoblastic leukemia. The genes involved in these rearrangements, however, have not been identified. We now report the cloning of a t(12;21) translocation breakpoint involving 12p13 and 21q22 in two cases of childhood pre-B acute lymphoblastic leukemia, in which t(12;21) rearrangements were not initially apparent. The consequence of the translocation is fusion of the helix-loop-helix domain of TEL, an ETS-like putative transcription factor, to the DNA-binding and transactivation domains of the transcription factor AML1. These data show that TEL, previously shown to be fused to the platelet-derived growth factor receptor {beta} in chronic myelomonocytic leukemia, can be implicated in the pathogenesis of leukemia through its fusion to either a receptor tyrosine kinase or a transcription factor. The TEL-AML1 fusion also indicates that translocations affecting the AML1 gene can be associated with lymphoid, as well as myeloid, malignancy. 23 refs., 5 figs.

  7. Alk7 Depleted Mice Exhibit Prolonged Cardiac Repolarization and Are Predisposed to Ventricular Arrhythmia

    PubMed Central

    Ying, Shaozhen; Cao, Hong; Hu, He; Wang, Xin; Tang, Yanhong; Huang, Congxin

    2016-01-01

    We aimed to investigate the role of activin receptor-like kinase (ALK7) in regulating cardiac electrophysiology. Here, we showed that Alk7-/- mice exhibited prolonged QT intervals in telemetry ECG recordings. Furthermore, Langendorff-perfused Alk7-/- hearts had significantly longer action potential duration (APD) and greater incidence of ventricular arrhythmia (AV) induced by burst pacing. Using whole-cell patch clamp, we found that the densities of repolarizing K+ currents Ito and IK1 were profoundly reduced in Alk7-/- ventricular cardiomyocytes. Mechanistically, the expression of Kv4.2 (a major subunit of Ito carrying channel) and KCHIP2 (a key accessory subunit of Ito carrying channel), was markedly decreased in Alk7-/- hearts. These findings suggest that endogenous expression of ALK7 is necessary to maintain repolarizing K+ currents in ventricular cardiomyocytes, and finally prevent action potential prolongation and ventricular arrhythmia. PMID:26882027

  8. RecA stimulates AlkB-mediated direct repair of DNA adducts

    PubMed Central

    Shivange, Gururaj; Monisha, Mohan; Nigam, Richa; Kodipelli, Naveena; Anindya, Roy

    2016-01-01

    The Escherichia coli AlkB protein is a 2-oxoglutarate/Fe(II)-dependent demethylase that repairs alkylated single stranded and double stranded DNA. Immunoaffinity chromatography coupled with mass spectrometry identified RecA, a key factor in homologous recombination, as an AlkB-associated protein. The interaction between AlkB and RecA was validated by yeast two-hybrid assay; size-exclusion chromatography and standard pull down experiment and was shown to be direct and mediated by the N-terminal domain of RecA. RecA binding results AlkB–RecA heterodimer formation and RecA–AlkB repairs alkylated DNA with higher efficiency than AlkB alone. PMID:27378775

  9. The role of FLI-1-EWS, a fusion gene reciprocal to EWS-FLI-1, in Ewing sarcoma.

    PubMed

    Elzi, David J; Song, Meihua; Houghton, Peter J; Chen, Yidong; Shiio, Yuzuru

    2015-11-01

    Ewing sarcoma is a cancer of bone and soft tissue in children that is characterized by a chromosomal translocation involving EWS and an Ets family transcription factor, most commonly FLI-1. The EWS-FLI-1 fusion oncogene is widely believed to play a central role in Ewing sarcoma. The EWS-FLI-1 gene product regulates the expression of a number of genes important for cancer progression, can transform mouse cells such as NIH3T3 and C3H10T1/2, and is necessary for proliferation and tumorigenicity of Ewing sarcoma cells, suggesting that EWS-FLI-1 is the causative oncogene. However, a variety of evidence also suggest that EWS-FLI-1 alone cannot fully explain the Ewing sarcomagenesis. Here we report that FLI-1-EWS, a fusion gene reciprocal to EWS-FLI-1, is frequently expressed in Ewing sarcoma. We present evidence suggesting that endogenous FLI-1-EWS is required for Ewing sarcoma growth and that FLI-1-EWS cooperates with EWS-FLI-1 in human mesenchymal stem cells, putative cells of origin of Ewing sarcoma, through abrogation of the proliferation arrest induced by EWS- FLI-1.

  10. HSP70 and modified HPV 16 E7 fusion gene without the addition of a signal peptide gene sequence as a candidate therapeutic tumor vaccine.

    PubMed

    Zong, Jinbao; Wang, Changyuan; Wang, Qingyong; Peng, Qinglin; Xu, Yufei; Xie, Xixiu; Xu, Xuemei

    2013-12-01

    Millions of women are currently infected with high-risk human papillomavirus (HPV), which is considered to be a major risk factor for cervical cancer. Thus, it is urgent to develop therapeutic vaccines to eliminate the established infections or HPV-related diseases. In the present study, using the mycobacterium tuberculosis heat shock protein 70 (MtHSP70) gene linked to the modified HPV 16 E7 (mE7) gene, we generated two potential therapeutic HPV DNA vaccines, mE7/MtHSP70 and SigmE7/MtHSP70, the latter was linked to the signal peptide gene sequence of human CD33 at the upstream of the fusion gene. We found that vaccination with the mE7/MtHSP70 DNA vaccine induced a stronger E7-specific CD8+ T cell response and resulted in a more significant therapeutic effect against E7-expressing tumor cells in mice. Our results demonstrated that HSP70 can play a more important role in mE7 and MtHSP70 fusion DNA vaccine without the help of a signal peptide. This may facilitate the use of HSP70 and serve as a significant reference for future study.

  11. A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN

    DTIC Science & Technology

    2014-09-01

    AWARD NUMBER: W81XWH-13-1-0220 TITLE: A Genetically Engineered Mouse Model of Neuroblastoma ...CONTRACT NUMBER A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN 5b. GRANT NUMBER W81XWH-13-1-0220 5c...common ALK mutations in neuroblastoma , F1174L and R1275Q. We have determined that in tumors cells expressing mutated ALK, different downstream

  12. Insights into brain metastasis in patients with ALK+ lung cancer: is the brain truly a sanctuary?

    PubMed

    Toyokawa, Gouji; Seto, Takashi; Takenoyama, Mitsuhiro; Ichinose, Yukito

    2015-12-01

    Anaplastic lymphoma kinase (ALK) has been identified to exert a potent transforming activity through its rearrangement in non-small cell lung cancer (NSCLC), and patients (pts) with ALK rearrangement can be treated more successfully with ALK inhibitors, such as crizotinib, alectinib, and ceritinib, than with chemotherapy. Despite the excellent efficacy of ALK inhibitors, resistance to these drugs is inevitably encountered in most ALK-rearranged pts. Cases of resistance are subtyped into three groups, i.e., systemic, oligo, and central nervous system (CNS) types, with the CNS being used to be considered a sanctuary. With regard to the management of CNS lesions in pts with ALK+ NSCLC, a growing body of evidence has gradually demonstrated the intracranial (IC) efficacy of ALK inhibitor (ALKi) in ALK+ NSCLC pts with brain metastases (BMs). Although the efficacy of crizotinib for the CNS lesions remains controversial, a recent retrospective investigation of ALK+ pts with BM enrolled in PROFILE 1005 and PROFILE 1007 demonstrated that crizotinib is associated with a high disease control rate for BM. However, BM comprises the most common site of progressive disease in pts with or without baseline BMs, which is a serious problem for crizotinib. Furthermore, alectinib can be used to achieve strong and long-lasting inhibitory effects on BM. In addition to alectinib, the IC efficacy of other next-generation ALK inhibitors, such as ceritinib, AP26113 and PF-06463922, has been demonstrated. In this article, we review the latest evidence regarding the BM and IC efficacy of ALK inhibitors in pts with ALK+ NSCLC.

  13. A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN

    DTIC Science & Technology

    2015-09-01

    AWARD NUMBER: W81XWH-13-1-0220 TITLE: A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN PRINCIPAL...4. TITLE AND SUBTITLE A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN 5a. CONTRACT NUMBER 5b. GRANT NUMBER... genetic and epigenetic changes that occur during tumorigenesis. 15. SUBJECT TERMS Anaplastic lymphoma kinase, neuroblastoma, ALK, ALKF1174L, MYCN, CDK7

  14. Clinical outcomes of advanced non-small-cell lung cancer patients with EGFR mutation, ALK rearrangement and EGFR/ALK co-alterations

    PubMed Central

    Chen, Hua-Jun; Zhou, Qing; Yan, Li-Xu; Xie, Zhi; Su, Jian; Chen, Zhi-Hong; Tu, Hai-Yan; Yan, Hong-Hong; Wang, Zhen; Xu, Chong-Rui; Jiang, Ben-Yuan; Wang, Bin-Chao; Bai, Xiao-Yan; Zhong, Wen-Zhao; Wu, Yi-Long; Yang, Jin-Ji

    2016-01-01

    The co-occurrence of epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) rearrangements constitutes a rare molecular subtype of non-small-cell lung cancer (NSCLC). Herein, we assessed the clinical outcomes and incidence of acquired resistance to tyrosine kinase inhibitors (TKIs) in this subtype. So we enrolled 118 advanced NSCLC treated with TKIs. EGFR mutations and ALK rearrangements were detected by DNA sequencing or Scorpion amplification refractory mutation system and fluorescence in situ hybridization respectively. Immunohistochemistry was used to evaluate the activation of associated proteins. We found that nine in ten patients with EGFR/ALK co-alterations had good response with first-line EGFR TKI, and the objective response rate (ORR) of EGFR TKIs was 80% (8/10) for EGFR/ALK co-altered and 65.5% (55/84) for EGFR-mutant (P = 0.57), with a median progression-free survival (PFS) of 11.2 and 13.2 months, (hazard ratio [HR]=0.95, 95% [CI], 0.49-1.84, P= 0.87). ORR of crizotinib was 40% (2/5) for EGFR/ALK co-altered and 73.9% (17/23) for ALK-rearranged (P= 0.29), with a median PFS of 1.9 and 6.9 months (hazard ratio [HR], 0.40; 95% [CI] 0.15-1.10, P = 0.08). The median overall survival (OS) was 21.3, 23.7, and 18.5 months in EGFR-mutant, ALK-rearranged, and EGFR/ALK co-altered (P= 0.06), and there existed a statistically significant difference in OS between ALK-rearranged and EGFR/ALK co-altered (P=0.03). Taken together, the first-line EGFR-TKI might be the reasonable care for advanced NSCLC harbouring EGFR/ALK co-alterations, whether or nor to use sequential crizotinib should be guided by the status of ALK rearrangement and the relative level of phospho-EGFR and phospho-ALK. PMID:27533086

  15. Optimizing Transgene Configuration and Protein Fusions to Maximize Dopamine Production for the Gene Therapy of Parkinson's Disease.

    PubMed

    Stewart, Hannah J; Ralph, G Scott; Fong-Wong, Liang; Strickland, Iain; McCloskey, Laura; Barnes, Lucy; Blount, Ian; Wells, Owen; Truran, Christelle J M; Kingsman, Alan J; Palfi, Stéphane; Mitrophanous, Kyriacos A

    2016-09-01

    Pharmacological dopamine replacement therapies provide the most well-established treatments for Parkinson's disease (PD). However, these long-term treatments can lead to motor complications and off-target effects. ProSavin(®), a lentiviral vector (LV)-based gene therapy approach aimed at restoring local and continuous dopamine production, through delivery of three enzymes in the dopamine biosynthesis pathway, was demonstrated to be safe and well-tolerated in a phase I/II clinical study of patients with advanced PD. Although improvements in motor behaviour were observed, the data indicated that higher levels of dopamine replacement might be required to maximize benefit. We attempted to increase production of dopamine, and its precursor L-Dopa in LV-transduced cells, by optimizing the gene order in the ProSavin expression cassette, and by creating fusions of two or three of the transgenes, using linker sequences. In vitro analysis showed that several gene arrangements provided significantly increased dopamine and/or L-Dopa production compared with ProSavin, and that LV titers and transgene expression were not affected by introducing gene fusions. One vector, equine infectious anemia virus (EIAV)-TCiA, was selected for further characterization and showed significant improvements in dopamine and L-Dopa production compared with ProSavin, in human neuronal cells. Further characterization of EIAV-TCiA demonstrated expression of all three dopamine enzymes in vivo and faithful delivery and integration of the expected gene expression cassette within the genome of target cells, as assessed by Northern and Southern blotting. In conclusion, we have developed a novel LV vector with an increased capacity for L-Dopa and dopamine production compared with the current ProSavin vector. Clinical evaluation of this vector will be performed to assess the benefits in patients with PD.

  16. Detection of ALK rearrangements in lung cancer patients using a homebrew PCR assay.

    PubMed

    Yu, Hui; Chang, JianHua; Liu, Fang; Wang, Qifeng; Lu, YongMing; Zhang, ZhuanXu; Shen, Jiabing; Zhai, Qing; Meng, Xia; Wang, Jialei; Ye, Xun

    2017-01-31

    Lung cancer patients with anaplastic lymphoma kinase (ALK) rearrangements are candidates for targeted therapeutics. However, patients must be tested with a companion diagnostic assay to realize their ALK rearrangement status. We analyzed the publicly available E-GEOD-31210 microarray dataset and identified a non-coding RNA, sweyjawbu, which is strongly associated with ALK rearrangements. We validated these results using quantitative real-time PCR in an independent cohort consisting of 4 cell lines and 83 clinical samples. We could differentiate between ALK rearrangement-positive and -negative lung cancer samples by comparing sweyjawbu expression. Additionally, ALK rearrangement status was determined by comparing the expression of the 5' and 3' regions of the ALK transcript or by detecting known ALK hybrid subtypes. Thus, using our homebrew PCR assay, we were able to accurately detect ALK rearrangements, which could be used for diagnostic screening of lung cancer patients. The prototype could potentially be transferred to an automatic multiplex PCR platform (FilmArray) to differentiate between ALK rearrangement-positive and -negative patients in point-of-care settings.

  17. Targeted Disruption of ALK Reveals a Potential Role in Hypogonadotropic Hypogonadism

    PubMed Central

    Nord, Christoffer; Ahlgren, Ulf; Eriksson, Maria; Vernersson-Lindahl, Emma; Helland, Åslaug; Alexeyev, Oleg A.; Hallberg, Bengt; Palmer, Ruth H.

    2015-01-01

    Mice lacking ALK activity have previously been reported to exhibit subtle behavioral phenotypes. In this study of ALK of loss of function mice we present data supporting a role for ALK in hypogonadotropic hypogonadism in male mice. We observed lower level of serum testosterone at P40 in ALK knock-out males, accompanied by mild disorganization of seminiferous tubules exhibiting decreased numbers of GATA4 expressing cells. These observations highlight a role for ALK in testis function and are further supported by experiments in which chemical inhibition of ALK activity with the ALK TKI crizotinib was employed. Oral administration of crizotinib resulted in a decrease of serum testosterone levels in adult wild type male mice, which reverted to normal levels after cessation of treatment. Analysis of GnRH expression in neurons of the hypothalamus revealed a significant decrease in the number of GnRH positive neurons in ALK knock-out mice at P40 when compared with control littermates. Thus, ALK appears to be involved in hypogonadotropic hypogonadism by regulating the timing of pubertal onset and testis function at the upper levels of the hypothalamic-pituitary gonadal axis. PMID:25955180

  18. Analysis of a MULE-cyanide hydratase gene fusion in Verticillium dahliae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genome of the phytopathogenic fungus Verticillium dahliae encodes numerous Class II “cut-and-paste” transposable elements, including those of a small group of MULE transposons. We have previously identified a fusion event between a MULE transposon sequence and sequence encoding a cyanide hydrata...

  19. NAB2-STAT6 fusion gene analysis in two cases of meningeal solitary fibrous tumor/hemangiopericytoma with late distant metastases.

    PubMed

    Nakada, Satoko; Minato, Hiroshi; Takegami, Tsutomu; Kurose, Nozomu; Ikeda, Hiroko; Kobayashi, Masako; Sasagawa, Yasuo; Akai, Takuya; Kato, Takashi; Yamamoto, Norio; Nojima, Takayuki

    2015-10-01

    We present two cases of meningeal solitary fibrous tumor (SFT)/hemangiopericytoma (HPC) with immunohistochemistry of STAT6 and analysis of NAB2-STAT6 fusion genes. Case 1 was a 37-year-old male with a left middle fossa tumor; case 2 was a 68-year-old female with a cerebellar tumor. They showed late metastasis to the lung or bone 8 or 13 years, respectively, after the first surgery. Histology of both primary and metastatic tumors showed a cellular hemangiopericytomatous pattern with nuclear atypia. The primary tumors showed nuclear staining of STAT6, but both metastatic tumors showed nuclear and cytoplasmic STAT6. DNA sequencing revealed two kinds of NAB2-STAT6 fusion genes. One consisted of exon 6 of NAB2, intron 6 of NAB2, and the middle of exon 17 of STAT6 (observed in the primary and metastatic tumors of case 1); the other consisted of exon 6 of NAB2 and the beginning of exon 17 of STAT6 (observed in the metastatic tumor of case 2). The primary tumor of case 2 had both fusion genes. To the best of our knowledge, we are the first to report NAB2-STAT6 fusion gene analysis in primary and metastatic meningeal SFT/HPCs and a case showed different fusion gene status in the metastatic tumor.

  20. Alectinib for choroidal metastasis in a patient with crizotinib-resistant ALK rearranged positive non-small cell lung cancer.

    PubMed

    Okuma, Yusuke; Tanaka, Yuichiro; Kamei, Tina; Hosomi, Yukio; Okamura, Tatsuru

    2015-01-01

    Choroidal metastasis is rare in cancer patients. Small molecules of molecular targeted agents for lung cancer with actionable mutations were reported to be palliated for symptoms caused by choroidal metastasis. Visual disturbance by choroidal metastasis significantly decreases quality of life during the patient's remaining lifespan; therefore, radiotherapy or laser photocoagulation is proposed with consensus. However, improvement in survival with matched molecular targeted agents for oncogenic driver mutations reminds us to also be concerned with late treatment toxicities. A 30-year-old female patient previously treated with crizotinib harboring ALK rearranged non-small cell lung cancer complained of visual disturbance, fever, and bone pains undergoing anti-PD-1 antibody treatment. A decreased proportion of ALK fusion was demonstrated by fluorescence in situ hybridization in liver metastasis compared to the primary site in a chemo-naïve state. She was diagnosed with low vision, choroidal metastasis and retinal detachment. Therefore, she started alectinib treatment and both her ocular and systemic symptoms were palliated in a week. Later, she temporarily discontinued alectinib because of skin rash although the choroidal metastasis and retinal detachment resolved and she regained low vision completely at 2 weeks. She obtained partial response with alectinib for more than 5 months after recovering from skin rash.

  1. Amphiregulin triggered epidermal growth factor receptor activation confers in vivo crizotinib-resistance of EML4-ALK lung cancer and circumvention by epidermal growth factor receptor inhibitors.

    PubMed

    Taniguchi, Hirokazu; Takeuchi, Shinji; Fukuda, Koji; Nakagawa, Takayuki; Arai, Sachiko; Nanjo, Shigeki; Yamada, Tadaaki; Yamaguchi, Hiroyuki; Mukae, Hiroshi; Yano, Seiji

    2017-01-01

    Crizotinib, a first-generation anaplastic lymphoma kinase (ALK) tyrosine-kinase inhibitor, is known to be effective against echinoderm microtubule-associated protein-like 4 (EML4)-ALK-positive non-small cell lung cancers. Nonetheless, the tumors subsequently become resistant to crizotinib and recur in almost every case. The mechanism of the acquired resistance needs to be deciphered. In this study, we established crizotinib-resistant cells (A925LPE3-CR) via long-term administration of crizotinib to a mouse model of pleural carcinomatous effusions; this model involved implantation of the A925LPE3 cell line, which harbors the EML4-ALK gene rearrangement. The resistant cells did not have the secondary ALK mutations frequently occurring in crizotinib-resistant cells, and these cells were cross-resistant to alectinib and ceritinib as well. In cell clone #2, which is one of the clones of A925LPE3-CR, crizotinib sensitivity was restored via the inhibition of epidermal growth factor receptor (EGFR) by means of an EGFR tyrosine-kinase inhibitor (erlotinib) or an anti-EGFR antibody (cetuximab) in vitro and in the murine xenograft model. Cell clone #2 did not have an EGFR mutation, but the expression of amphiregulin (AREG), one of EGFR ligands, was significantly increased. A knockdown of AREG with small interfering RNAs restored the sensitivity to crizotinib. These data suggest that overexpression of EGFR ligands such as AREG can cause resistance to crizotinib, and that inhibition of EGFR signaling may be a promising strategy to overcome crizotinib resistance in EML4-ALK lung cancer.

  2. Combining random gene fission and rational gene fusion to discover near-infrared fluorescent protein fragments that report on protein-protein interactions.

    PubMed

    Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J

    2015-05-15

    Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.

  3. Expression of DNA damage-inducible genes of Escherichia coli upon treatment with methylating, ethylating and propylating agents.

    PubMed

    Volkert, M R; Gately, F H; Hajec, L I

    1989-03-01

    Several alkylation-inducible genes have been identified by construction of Mu-d1 (Apr lac) fusions to genes whose expression is increased in response to alkylation treatment, but not UV treatment. We have examined the induction of 4 different alkylation-inducible genes by treatment with a variety of methylating and ethylating agents, and a propylating agent. We have compared the induction of the alkylation-inducible genes with the induction of the sulA gene, which is a component of the SOS response to DNA damage. We find that the Ada-regulated adaptive response genes (ada-alkB, alkA and aidB) are induced primarily in response to methylation treatment. The ada-independent aidC gene is induced upon treatment with agents that alkylate predominantly by SN1 nucleophilic attack. aidC induction occurs only when cells are not aerated during treatment. The SOS response, as indicated by sulA induction, is strongly induced by all types of alkylating agents used.

  4. Biosensing of BCR/ABL fusion gene using an intensity-interrogation surface plasmon resonance imaging system

    NASA Astrophysics Data System (ADS)

    Wu, Jiangling; Huang, Yu; Bian, Xintong; Li, DanDan; Cheng, Quan; Ding, Shijia

    2016-10-01

    In this work, a custom-made intensity-interrogation surface plasmon resonance imaging (SPRi) system has been developed to directly detect a specific sequence of BCR/ABL fusion gene in chronic myelogenous leukemia (CML). The variation in the reflected light intensity detected from the sensor chip composed of gold islands array is proportional to the change of refractive index due to the selective hybridization of surface-bound DNA probes with target ssDNA. SPRi measurements were performed with different concentrations of synthetic target DNA sequence. The calibration curve of synthetic target sequence shows a good relationship between the concentration of synthetic target and the change of reflected light intensity. The detection limit of this SPRi measurement could approach 10.29 nM. By comparing SPRi images, the target ssDNA and non-complementary DNA sequence are able to be distinguished. This SPRi system has been applied for assay of BCR/ABL fusion gene extracted from real samples. This nucleic acid-based SPRi biosensor therefore offers an alternative high-effective, high-throughput label-free tool for DNA detection in biomedical research and molecular diagnosis.

  5. [Construction of the plant expression vector with hepatitis a capsid protein fusion gene and genetic transformation of Citrus. Sinensis Osbeck].

    PubMed

    Hu, Rong; Wei, Hong; Chen, Shan-Chun; He, Yong-Rui

    2004-07-01

    The use of edible plants for the production and delivery of vaccine proteins could provide an economical alternative to fermentation systems. The construction of the plant expression vector pBI121-A was reported, which contained a fusion gene encoding hepatitis A capsid proteins. The gene was located between the left and right Ti border sequences under the control of CaMV35S promoter. The vector was identified via PCR and restriction enzyme analysis and was introduced into Agrobacterium tumerifacience LBA4404. The transgenic Citrus plants were produced by Agrobacterium-mediated transformation of epicotyl segments.13 putatively transformed plants through the kanamycin selection were micrografted onto the seedlings. The presence and integration of the transgene had been verified by PCR analysis. The result showed that five transformants were integrated and the transformation efficiency was 4.1%.

  6. Synergistic antitumor effect of a human papillomavirus DNA vaccine harboring E6E7 fusion gene and vascular endothelial growth factor receptor 2 gene.

    PubMed

    Gao, Jie; Fan, Lei; Ma, Wei; Xiao, Huan

    2016-09-01

    Human papillomavirus (HPV) has been identified as the primary etiological factor in cervical cancer as well as in subsets of anogenital and oropharyngeal cancers. The two HPV viral oncoproteins, E6 and E7, are uniquely and consistently expressed in all HPV-infected cells and are therefore promising targets for therapeutic vaccination. In order to achieve a synergistic antitumor and anti-angiogenesis effect, we designed and constructed a novel DNA vaccine that can express the HPV 16 E6E7 fusion protein and VEGFR2 in the same reading frame. A series of DNA plasmids encoding E6E7, VEGFR2 and their conjugates were constructed and injected into mice. The resultant humoral and cellular immune responses were detected by ELISA and enzyme-linked immunospot (ELISPOT), respectively. To evaluate the antitumor efficacy of these plasmids, tumor-bearing mice expressing the E6E7 fusion protein were constructed. After injection into the tumor-bearing mouse model, the plasmid harboring the E6E7 fusion gene and VEGFR2 showed stronger inhibition of tumor growth than the plasmid expressing E6E7 or VEGFR2 alone, which indicated that the combination of E6E7 and VEGFR2 could exert a synergistic antitumor effect. These observations emphasize the potential of a synergistic antitumor and anti-angiogenesis strategy using a DNA vaccine, which could be a promising approach for tumor immunotherapy.

  7. Xp11.2 translocation renal cell carcinoma with NONO-TFE3 gene fusion: morphology, prognosis, and potential pitfall in detecting TFE3 gene rearrangement.

    PubMed

    Xia, Qiu-Yuan; Wang, Zhe; Chen, Ni; Gan, Hua-Lei; Teng, Xiao-Dong; Shi, Shan-Shan; Wang, Xuan; Wei, Xue; Ye, Sheng-Bing; Li, Rui; Ma, Heng-Hui; Lu, Zhen-Feng; Zhou, Xiao-Jun; Rao, Qiu

    2017-03-01

    Xp11 translocation renal cell carcinomas are characterized by several different translocations involving the TFE3 gene. Tumors with different specific gene fusions may have different clinicopathological manifestations. Fewer than 10 renal cell carcinoma cases with NONO-TFE3 have been described. Here we examined eight additional cases of this rare tumor using clinicopathological, immunohistochemical, and molecular analyses. The male-to-female ratio of our study cohort was 1:1, and the median age was 30 years. The most distinctive feature of the tumors was that they exhibited glandular/tubular or papillary architecture that was lined with small-to-medium cuboidal to high columnar cells with indistinct cell borders and an abundantly clear or flocculent eosinophilic cytoplasm. The nuclei were oriented toward the luminal surface and were round and uniform in shape, which resulted in the appearance of secretory endometrioid subnuclear vacuolization. The distinct glandular/tubular or papillary architecture was often accompanied by sheets of epithelial cells that presented a biphasic pattern. Immunohistochemically, all eight cases demonstrated moderate (2+) or strong (3+) positive staining for TFE3, CD10, RCC marker, and PAX-8. None of the tumors were immunoreactive for CK7, Cathepsin K, Melan-A, HMB45, Ksp-cadherin, Vimentin, CA9, 34βE12 or CD117. NONO-TFE3 fusion transcripts were identified in six cases by RT-PCR. All eight cases showed equivocal split signals with a distance of nearly 2 signal diameters and sometimes had false-negative results. Furthermore, we developed a fluorescence in situ hybridization (FISH) assay to serve as an adjunct diagnostic tool for the detection of the NONO-TFE3 fusion gene and used this method to detect the fusion gene in all eight cases. Long-term follow-up (range, 10-102 months) was available for 7 patients. All 7 patients were alive with no evidence of recurrent disease or disease progression after their initial resection. This report

  8. Metachronous neuroblastoma in an infant with germline translocation resulting in partial trisomy 2p: a role for ALK?

    PubMed

    Morgenstern, Daniel A; Soh, Shui Yen; Stavropoulos, Dimitri J; Bowdin, Sarah; Baruchel, Sylvain; Malkin, David; Meyn, M Stephen; Irwin, Meredith S

    2014-04-01

    A male infant with dysmorphic features, intestinal malrotation, and developmental delay was found to have a germline translocation resulting in partial trisomy 2p and monosomy 16p. At 3 and 9 months of age, he developed localized neuroblastoma in each adrenal, which was managed with surgical resection. Tumors were MYCN non-amplified, with 2p copy gain consistent with the germline translocation. The potential increased risk of neuroblastoma associated with partial trisomy 2p is discussed in the context of this and previously published cases, and may be due to increased constitutional expression of MYCN and ALK genes, both located within the duplicated 2p region.

  9. Region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression.

    PubMed

    Anderson, Danielle E; von Messling, Veronika

    2008-11-01

    Morbilliviruses, including measles and canine distemper virus (CDV), are nonsegmented, negative-stranded RNA viruses that cause severe diseases in humans and animals. The transcriptional units in their genomes are separated by untranslated regions (UTRs), which contain essential transcription and translation signals. Due to its increased length, the region between the matrix (M) protein and fusion (F) protein open reading frames is of particular interest. In measles virus, the entire F 5' region is untranslated, while several start codons are found in most other morbilliviruses, resulting in a long F protein signal peptide (Fsp). To characterize the role of this region in morbillivirus pathogenesis, we constructed recombinant CDVs, in which either the M-F UTR was replaced with that between the nucleocapsid (N) and phosphoprotein (P) genes, or 106 Fsp residues were deleted. The Fsp deletion alone had no effect in vitro and in vivo. In contrast, substitution of the UTR was associated with a slight increase in F gene and protein expression. Animals infected with this virus either recovered completely or experienced prolonged disease and death due to neuroinvasion. The combination of both changes resulted in a virus with strongly increased F gene and protein expression and complete attenuation. Taken together, our results provide evidence that the region between the morbillivirus M and F genes modulates virulence through transcriptional control of the F gene expression.

  10. Increased expression of the diabetes gene SOX4 reduces insulin secretion by impaired fusion pore expansion

    PubMed Central

    Collins, Stephan C.; Do, Hyun Woong; Hastoy, Benoit; Hugill, Alison; Adam, Julie; Chibalina, Margarita V.; Galvanovskis, Juris; Godazgar, Mahdieh; Lee, Sheena; Goldsworthy, Michelle; Salehi, Albert; Tarasov, Andrei I.; Rosengren, Anders H.; Cox, Roger; Rorsman, Patrik

    2016-01-01

    The transcription factor Sox4 has been proposed to underlie the increased type-2 diabetes risk linked to an intronic SNP in CDKAL1. In a mouse model expressing a mutant form of Sox4, glucose-induced insulin secretion is reduced by 40% despite normal intracellular Ca2+ signalling and depolarization-evoked exocytosis. This paradox is explained by a 4-fold increase in kiss-and-run exocytosis (as determined by single-granule exocytosis measurements), in which the fusion pore connecting the granule lumen to the exterior only expands to a diameter of 2 nm that does not allow the exit of insulin. Microarray analysis indicated that this correlated with an increased expression of the exocytosis-regulating protein Stxbp6. In a large collection of human islet preparations (n=63), STXBP6 expression and GIIS correlated positively and negatively with SOX4 expression, respectively. Overexpression of SOX4 in the human insulin-secreting cell EndoC-βH2 interfered with granule emptying and inhibited hormone release, the latter effect was reversed by silencing of STXBP6. These data suggest that increased SOX4 expression inhibits insulin secretion and increased diabetes risk by upregulation of STXBP6 and an increase in kiss-and-run exocytosis at the expense of full fusion. We propose that pharmacological interventions promoting fusion pore expansion may be effective in diabetes therapy. PMID:26993066

  11. Gene identification and analysis: an application of neural network-based information fusion

    SciTech Connect

    Matis, S.; Xu, Y.; Shah, M.B.; Mural, R.J.; Einstein, J.R.; Uberbacher, E.C.

    1996-10-01

    Identifying genes within large regions of uncharacterized DNA is a difficult undertaking and is currently the focus of many research efforts. We describe a gene localization and modeling system called GRAIL. GRAIL is a multiple sensor-neural network based system. It localizes genes in anonymous DNA sequence by recognizing gene features related to protein-coding slice sites, and then combines the recognized features using a neural network system. Localized coding regions are then optimally parsed into a gene mode. RNA polymerase II promoters can also be predicted. Through years of extensive testing, GRAIL consistently localizes about 90 percent of coding portions of test genes with a false positive rate of about 10 percent. A number of genes for major genetic diseases have been located through the use of GRAIL, and over 1000 research laboratories worldwide use GRAIL on regular bases for localization of genes on their newly sequenced DNA.

  12. Development of GFP fusions for examination of the effects of the space environment on gene expression in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Mancinelli, R.; Fahlen, T.

    The goal of the In situ Space Gene Expression on Nano-satillites (ISGEN) program is to be ready to fly technology that can support a fully automated experiment to quantify changes in model organisms in situ in low earth orbit in a free flyer platform in less than two years. A straightforward gene expression assay that meets the ISGEN flight objective for testing flight hardware as well as return data regarding the effects of microgravity on gene expression has been developed. Escherichia coli K-12, a bacterium that exhibits changes in its growth pattern when flown in micro-gravity on the Space Shuttle, was used. The scientific objective of this work is to determine if there is a discernable change in metabolic and stress pathway gene expression due to growth in the space environment. To that end, we have linked the green fluorescent protein (GFP) reporter gfp to phoP, a gene that responds to extracellular Mg2+ levels, and pykF, a gene involved in the glycolytic pathway that responds to changes in intracellular pyruvate. These genes respond to the metabolic needs of the cell and may be altered in the micro-gravity environment. E. coli cells containing a plasmid encoding the phoP-gfp-mut3 reporter construct were grown with or without MgSO_4. The effect of the added MgSO_4 is the repression of the expression of GFP. This is the expected result if GFP expression were under the control of a magnesium-regulated promoter such as phoP. Consistent with the negative feedback loop, we observe repression of GFP production in cells containing our pykF-gfp plasmid construct, when grown in the presence of excess glucose. Thus, the pykF-gfp fusion functions as a glucose sensor.

  13. Shear induced collateral artery growth modulated by endoglin but not by ALK1

    PubMed Central

    Seghers, Leonard; de Vries, Margreet R; Pardali, Evangelia; Hoefer, Imo E; Hierck, Beerend P; ten Dijke, Peter ten; Goumans, Marie Jose; Quax, Paul HA

    2012-01-01

    Transforming growth factor-beta (TGF-β) stimulates both ischaemia induced angiogenesis and shear stress induced arteriogenesis by signalling through different receptors. How these receptors are involved in both these processes of blood flow recovery is not entirely clear. In this study the role of TGF-β receptors 1 and endoglin is assessed in neovascularization in mice. Unilateral femoral artery ligation was performed in mice heterozygous for either endoglin or ALK1 and in littermate controls. Compared with littermate controls, blood flow recovery, monitored by laser Doppler perfusion imaging, was significantly hampered by maximal 40% in endoglin heterozygous mice and by maximal 49% in ALK1 heterozygous mice. Collateral artery size was significantly reduced in endoglin heterozygous mice compared with controls but not in ALK1 heterozygous mice. Capillary density in ischaemic calf muscles was unaffected, but capillaries from endoglin and ALK1 heterozygous mice were significantly larger when compared with controls. To provide mechanistic evidence for the differential role of endoglin and ALK1 in shear induced or ischaemia induced neovascularization, murine endothelial cells were exposed to shear stress in vitro. This induced increased levels of endoglin mRNA but not ALK1. In this study it is demonstrated that both endoglin and ALK1 facilitate blood flow recovery. Importantly, endoglin contributes to both shear induced collateral artery growth and to ischaemia induced angiogenesis, whereas ALK1 is only involved in ischaemia induced angiogenesis. PMID:22436015

  14. The landscape of fusion transcripts in spitzoid melanoma and biologically indeterminate spitzoid tumors by RNA sequencing

    PubMed Central

    Wu, Gang; Barnhill, Raymond L.; Lee, Seungjae; Li, Yongjin; Shao, Ying; Easton, John; Dalton, James; Zhang, Jinghui; Pappo, Alberto; Bahrami, Armita

    2016-01-01

    Kinase activation by chromosomal translocations is a common mechanism that drives tumorigenesis in spitzoid neoplasms. To explore the landscape of fusion transcripts in these tumors, we performed whole-transcriptome sequencing using formalin-fixed paraffin-embedded tissues in malignant or biologically indeterminate spitzoid tumors from 7 patients (age 2–14 years). RNA sequence libraries enriched for coding regions were prepared and the sequencing was analyzed by a novel assembly-based algorithm designed for detecting complex fusions. In addition, tumor samples were screened for hotspot TERT promoter mutations, and telomerase expression was assessed by TERT mRNA in situ hybridization (ISH). Two patients had widespread metastasis and subsequently died of disease, and 5 patients had a benign clinical course on limited follow-up (mean: 30 months). RNA sequencing and TERT mRNA ISH were successful in 6 tumors and unsuccessful in 1 disseminating tumor due to low RNA quality. RNA sequencing identified a kinase fusion in 5 of the 6 sequenced tumors: TPM3–NTRK1 (2 tumors), complex rearrangements involving TPM3, ALK, and IL6R (1 tumor), BAIAP2L1–BRAF (1 tumor), and EML4–BRAF (1 disseminating tumor). All predicted chimeric transcripts were expressed at high levels and contained the intact kinase domain. In addition, 2 tumors each contained a second fusion gene, ARID1B-SNX9 or PTPRZ1-NFAM1. The detected chimeric genes were validated by home-brew break-apart or fusion fluorescence in situ hybridization. The 2 disseminating tumors each harbored the TERT promoter −124C>T (Chr 5:1,295,228 hg19 coordinate) mutation whereas the remaining 5 tumors retained the wild-type gene. The presence of the −124C>T mutation correlated with telomerase expression by TERT mRNA ISH. In summary, we demonstrated complex fusion transcripts and novel partner genes for BRAF by RNA sequencing of FFPE samples. The diversity of gene fusions demonstrated by RNA sequencing defines the molecular

  15. Urokinase-Targeted Fusion by Oncolytic Sendai Virus Eradicates Orthotopic Glioblastomas by Pronounced Synergy With Interferon-β Gene

    PubMed Central

    Hasegawa, Yuzo; Kinoh, Hiroaki; Iwadate, Yasuo; Onimaru, Mitsuho; Ueda, Yasuji; Harada, Yui; Saito, Satoru; Furuya, Aki; Saegusa, Takashi; Morodomi, Yosuke; Hasegawa, Mamoru; Saito, Shigeyoshi; Aoki, Ichio; Saeki, Naokatsu; Yonemitsu, Yoshikazu

    2010-01-01

    Glioblastoma multiforme (GM), the most frequent primary malignant brain tumor, is highly invasive due to the expression of proteases, including urokinase-type plasminogen activator (uPA). Here, we show the potential of our new and powerful recombinant Sendai virus (rSeV) showing uPA-specific cell-to-cell fusion activity [rSeV/dMFct14 (uPA2), named “BioKnife”] for GM treatment, an effect that was synergistically enhanced by arming BioKnife with the interferon-β (IFN-β) gene. BioKnife killed human GM cell lines efficiently in a uPA-dependent fashion, and this killing was prevented by PA inhibitor-1. Rat gliosarcoma 9L cells expressing both uPA and its functional receptor uPAR (9L-L/R) exhibited high uPA activity on the cellular surface and were highly susceptible to BioKnife. Although parent 9L cells (9L-P) were resistant to BioKnife and to BioKnife expressing IFN-β (BioKnife-IFNβ), cell–cell fusion of 9L-L/R strongly facilitated the expression of IFN-β, and in turn, IFN-β significantly accelerated the fusion activity of BioKnife. A similar synergy was seen in a rat orthotopic brain GM model with 9L-L/R in vivo; therefore, these results suggest that BioKnife-IFNβ may have significant potential to improve the survival of GM patients in a clinical setting. PMID:20606645

  16. Construction, expression, and characterization of Arabidopsis thaliana 4CL and Arachis hypogaea RS fusion gene 4CL::RS in Escherichia coli.

    PubMed

    Zhang, Erhao; Guo, Xuefeng; Meng, Zhifen; Wang, Jin; Sun, Jia; Yao, Xi; Xun, Hang

    2015-09-01

    Resveratrol is an important antioxidant that confers several beneficial effects on human health. 4-coumarate coenzyme A ligase (4CL) and resveratrol synthase (RS) are key rate-limiting enzymes in the biosynthetic pathway of resveratrol. Using gene fusion technology, the fusion gene, 4CL::RS, was constructed by the 4CL gene from Arabidopsis thaliana and RS gene from Arachis hypogaea. DNAMAN analysis showed that the fusion gene encoded a 964-amino acid protein with an approximate weight of 104.7 kDa and a pI of 5.63. A prokaryotic expression vector containing Nco-I and EcoR-I restriction sites, pET-30a/4CL::RS, was identified by liquid culture bacterial PCR, enzyme digestion, and sequencing, and then used in the induction of expression. Subsequently, a biosynthetic pathway of resveratrol was constructed in Escherichia coli BL21(DE3) that harbored pET-30a/4CL::RS. The recombinant strains were induced to express the fusion protein at 28 °C for 8 h. After bacterial cells were disrupted by hypothermic ultrasonication, the 4CL::RS fusion protein was thoroughly separated from tags using Ni-NTA affinity chromatography, and then detected by SDS-PAGE analysis. When the recombinant strains expressed the fusion protein, the precursor, p-coumaric acid, was converted to resveratrol. In the present study, the final concentration of resveratrol derived from 1 mM p-coumaric acid was 80.524 mg/L, with a 35.28 % (mol/mol) conversion yield.

  17. Functional consequences of a gene duplication and fusion event in an arginine kinase.

    PubMed

    Compaan, Deanne M; Ellington, W Ross

    2003-05-01

    Arginine kinase (AK) from the foot of the razor clam Ensis directus consists of two full-length AK domains, denoted D1 and D2, fused in a single polypeptide chain. The full-length cDNA for Ensis AK was obtained and its deduced amino acid sequence was analyzed in the context of the X-ray crystal structure of a typical, monomeric AK. Both domains of Ensis AK contain most of the residues currently thought to be critical in catalysis, suggesting that both AK domains are catalytically competent. The full-length Ensis AK, a D2-NusA-His-tag fusion protein and a D2-truncated AK (enterokinase cleavage product of the fusion protein) were expressed in Escherichia coli and purified. All recombinant AK constructs displayed high enzyme activity. Attempts at expressing active D1 alone, D2 alone or a D1-NusA-His-tag fusion protein were unsuccessful. The catalytic properties of the active proteins were compared with the corresponding properties of recombinant AK from the horseshoe crab Limulus polyphemus, which is a typical monomeric AK. In contrast to expectations, the kinetic results strongly suggest that Ensis AK has only one active domain, namely D2. The K(cat) values for all Ensis constructs were roughly twice that of typical AKs, indicating higher overall catalytic throughput at the competent active site. Furthermore, both the full-length and truncated D2 Ensis AKs showed no synergism of substrate binding unlike typical AKs. The D2-NusA-His-tag fusion construct actually displayed negative synergism of substrate binding, which means that, in effect, the first substrate bound acts as a competitive inhibitor of the second. The conservation of the structure of the apparently inactive D1 may be related to constraints imposed by structural changes that could potentially impact substrate binding in D2 and/or possibly influence the proper folding of the enzyme during synthesis. Overall, the results from the present study indicate that the AK contiguous dimer from Ensis directus

  18. Evidence that the multifunctional polypeptides of vertebrate and fungal fatty acid synthases have arisen by independent gene fusion events.

    PubMed

    McCarthy, A D; Goldring, J P; Hardie, D G

    1983-10-17

    The enoyl reductase (NADPH binding site) of rabbit mammary fatty acid synthase has been radioactively labelled using pyridoxal phosphate and sodium [3H]borohydride. Using this method we have been able to add this site to the four sites whose location has already been mapped within the multifunctional polypeptide chain of the protein. The results show that the enoyl reductase lies between the 3-oxoacylsynthase and the acyl carrier. This confirms that the active sites occur in a different order on the single multifunctional polypeptide of vertebrate fatty acid synthase and the two multifunctional polypeptides of fungal fatty acid synthase, and suggests that these two systems have arisen by independent gene fusion events.

  19. BMP-9 regulates the osteoblastic differentiation and calcification of vascular smooth muscle cells through an ALK1 mediated pathway

    PubMed Central

    Zhu, Dongxing; Mackenzie, Neil Charles Wallace; Shanahan, Catherine M; Shroff, Rukshana C; Farquharson, Colin; MacRae, Vicky Elizabeth

    2015-01-01

    The process of vascular calcification shares many similarities with that of physiological skeletal mineralization, and involves the deposition of hydroxyapatite crystals in arteries. However, the cellular mechanisms responsible have yet to be fully explained. Bone morphogenetic protein (BMP-9) has been shown to exert direct effects on both bone development and vascular function. In the present study, we have investigated the role of BMP-9 in vascular smooth muscle cell (VSMC) calcification. Vessel calcification in chronic kidney disease (CKD) begins pre-dialysis, with factors specific to the dialysis milieu triggering accelerated calcification. Intriguingly, BMP-9 was markedly elevated in serum from CKD children on dialysis. Furthermore, in vitro studies revealed that BMP-9 treatment causes a significant increase in VSMC calcium content, alkaline phosphatase (ALP) activity and mRNA expression of osteogenic markers. BMP-9-induced calcium deposition was significantly reduced following treatment with the ALP inhibitor 2,5-Dimethoxy-N-(quinolin-3-yl) benzenesulfonamide confirming the mediatory role of ALP in this process. The inhibition of ALK1 signalling using a soluble chimeric protein significantly reduced calcium deposition and ALP activity, confirming that BMP-9 is a physiological ALK1 ligand. Signal transduction studies revealed that BMP-9 induced Smad2, Smad3 and Smad1/5/8 phosphorylation. As these Smad proteins directly bind to Smad4 to activate target genes, siRNA studies were subsequently undertaken to examine the functional role of Smad4 in VSMC calcification. Smad4-siRNA transfection induced a significant reduction in ALP activity and calcium deposition. These novel data demonstrate that BMP-9 induces VSMC osteogenic differentiation and calcification via ALK1, Smad and ALP dependent mechanisms. This may identify new potential therapeutic strategies for clinical intervention. PMID:25297851

  20. Profile of Ventana ALK (D5F3) companion diagnostic assay for non-small-cell lung carcinomas.

    PubMed

    Conde, Esther; Hernandez, Susana; Prieto, Mario; Martinez, Rebeca; Lopez-Rios, Fernando

    2016-06-01

    The development of several ALK inhibitors means that the importance of accurately identifying ALK-positive lung cancer has never been greater. Therefore, it is crucial that ALK testing assays become more standardized. The aim of this review is to comment on the recently FDA-approved VENTANA ALK (D5F3) Companion Diagnostic (CDx) Assay. This kit provides high sensitivity and specificity for the detection of ALK rearrangements and seamless integration into the laboratory workflow, with a fully automated analytical phase and fast interpretation. The use of controls increases the sensitivity and specificity and a dichotomous scoring approach enhances reproducibility.

  1. Cytotoxicity of HSVtk and hrTNF-alpha fusion genes with IRES in treatment of gastric cancer.

    PubMed

    Zhang, Jian-Hua; Wan, Ming-Xi; Pan, Bo-Rong; Yu, Bing

    2006-04-28

    The efficacy of the suicide gene therapy by using the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) system for the treatment of cancer is limited because of the insufficient gene transfer and the low killing activity. To enhance the anti-tumor activity, we probed into whether recombinant retroviral expression vector PLXSN expressing both HSVtk and TNF-alpha genes could potentiate the destruction of SGC7901. The pL(tk-TNF-alpha)SN harboring HSVtk and TNF-alpha genes in sequence was constructed with a bicistronic unit including the internal ribosomal entry site, the recombinant retroviruses were transferred into SGC7901 cells by lipofectamine, and pEGFP and Western blot analysis were used to detect the expression of fusion genes in transfected SGC7901 cells, and then apoptosis of the transfected cells were detected by using the TdT-mediated dUTP nick end labeling, flow cytometric analysis and transmission electron microscopy. In vitro study, the transfected gastric cancer cells were maintained in the GCV-contained medium, to assay the cell killing effect and bystander effect. In vivo experiments, retroviral serum plasmids were transfected into tumor-bearing nude mice, to observe the changes of tumor volumes and survival of the mice. In vitro there was no significant difference of cell survival rate between the three groups. However, in vivo results showed that tk/GCV, tk-TNF-alpha/GCV and TNF-alpha could inhibit the tumor growth, and the obvious anti-tumor effect was shown in tk-TNF-alpha/GCV group, and TNF-alpha obviously enhanced the anti-tumor effect in vivo. The pathologic examination showed necrosis of the cancer in the treated groups.

  2. A novel type of EWS-CHOP fusion gene in myxoid liposarcoma

    SciTech Connect

    Matsui, Yoshito . E-mail: ymatsui@sb4.so-net.ne.jp; Ueda, Takafumi; Kubo, Takahiro; Hasegawa, Tadashi; Tomita, Yasuhiko; Okamoto, Mina; Myoui, Akira; Kakunaga, Shigeki; Yasui, Natsuo; Yoshikawa, Hideki

    2006-09-22

    The cytogenetic hallmark of myxoid type and round cell type liposarcoma consists of reciprocal translocation of t(12;16)(q13;p11) and t(12;22)(q13;q12), which results in fusion of TLS/FUS and CHOP, and EWS and CHOP, respectively. Nine structural variations of the TLS/FUS-CHOP chimeric transcript have been reported, however, only two types of EWS-CHOP have been described. We describe here a case of myxoid liposarcoma containing a novel EWS-CHOP chimeric transcript and identified the breakpoint occurring in intron 13 of EWS. Reverse transcription-polymerase chain reaction and direct sequence showed that exon 13 of EWS was in-frame fused to exon 2 of CHOP. Genomic analysis revealed that the breaks were located in intron 13 of EWS and intron 1 of CHOP.

  3. Mammary Analogue Secretory Carcinoma of Salivary Glands: Molecular Analysis of 25 ETV6 Gene Rearranged Tumors With Lack of Detection of Classical ETV6-NTRK3 Fusion Transcript by Standard RT-PCR: Report of 4 Cases Harboring ETV6-X Gene Fusion.

    PubMed

    Skálová, Alena; Vanecek, Tomas; Simpson, Roderick H W; Laco, Jan; Majewska, Hanna; Baneckova, Martina; Steiner, Petr; Michal, Michal

    2016-01-01

    ETV6 gene abnormalities are well described in tumor pathology. Many fusion partners of ETV6 have been reported in a variety of epithelial and hematological malignancies. In salivary gland tumor pathology, however, the ETV6-NTRK3 translocation is specific for mammary analogue secretory carcinoma (MASC), and has not been documented in any other salivary tumor type. The present study comprised a clinical and molecular analysis of 25 cases morphologically and immunohistochemically typical of MASC. They all also displayed the ETV6 rearrangement as visualized by fluorescent in situ hybridization but lacked the classical ETV6-NTRK3 fusion transcript by standard reverse-transcriptase-polymerase chain reaction. In 4 cases, the classical fusion transcript was found by more sensitive, nested reverse-transcription-polymerase chain reaction. Five other cases harbored atypical fusion transcripts as detected by both standard and nested reverse-transcription-polymerase chain reaction. In addition, fluorescent in situ hybridization with an NTRK3 break-apart probe was also performed; rearrangement of NTRK3 gene was detected in 16 of 25 cases. In 3 other cases, the tissue was not analyzable, and in 2 further cases analysis could not be performed because of a lack of appropriate tissue material. Finally, in the 4 remaining cases whose profile was NTRK3 split-negative and ETV6 split-positive, unknown (non-NTRK) genes appeared to fuse with ETV6 (ETV6-X fusion). In looking for possible fusion partners, analysis of rearrangement of other kinase genes known to fuse with ETV6 was also performed, but without positive results. Although numbers were small, correlating the clinico-pathologic features of the 4 ETV6-X fusion tumors and 5 MASC cases with atypical fusion transcripts raises the possibility of that they may behave more aggressively.

  4. Enhancing potency of siRNA targeting fusion genes by optimization outside of target sequence

    PubMed Central

    Gavrilov, Kseniya; Seo, Young-Eun; Tietjen, Gregory T.; Cui, Jiajia; Cheng, Christopher J.; Saltzman, W. Mark

    2015-01-01

    Canonical siRNA design algorithms have become remarkably effective at predicting favorable binding regions within a target mRNA, but in some cases (e.g., a fusion junction site) region choice is restricted. In these instances, alternative approaches are necessary to obtain a highly potent silencing molecule. Here we focus on strategies for rational optimization of two siRNAs that target the junction sites of fusion oncogenes BCR-ABL and TMPRSS2-ERG. We demonstrate that modifying the termini of these siRNAs with a terminal G-U wobble pair or a carefully selected pair of terminal asymmetry-enhancing mismatches can result in an increase in potency at low doses. Importantly, we observed that improvements in silencing at the mRNA level do not necessarily translate to reductions in protein level and/or cell death. Decline in protein level is also heavily influenced by targeted protein half-life, and delivery vehicle toxicity can confound measures of cell death due to silencing. Therefore, for BCR-ABL, which has a long protein half-life that is difficult to overcome using siRNA, we also developed a nontoxic transfection vector: poly(lactic-coglycolic acid) nanoparticles that release siRNA over many days. We show that this system can achieve effective killing of leukemic cells. These findings provide insights into the implications of siRNA sequence for potency and suggest strategies for the design of more effective therapeutic siRNA molecules. Furthermore, this work points to the importance of integrating studies of siRNA design and delivery, while heeding and addressing potential limitations such as restricted targetable mRNA regions, long protein half-lives, and nonspecific toxicities. PMID:26627251

  5. Application of AlkBGT and AlkL from Pseudomonas putida GPo1 for Selective Alkyl Ester ω-Oxyfunctionalization in Escherichia coli

    PubMed Central

    Eggink, Gerrit; Weusthuis, Ruud A.

    2016-01-01

    ABSTRACT The enzyme system AlkBGT from Pseudomonas putida GPo1 can efficiently ω-functionalize fatty acid methyl esters. Outer membrane protein AlkL boosts this ω-functionalization. In this report, it is shown that whole cells of Escherichia coli expressing the AlkBGT system can also ω-oxidize ethyl nonanoate (NAEE). Coexpression of AlkBGT and AlkL resulted in 1.7-fold-higher ω-oxidation activity on NAEE. With this strain, initial activity on NAEE was 70 U/g (dry weight) of cells (gcdw), 67% of the initial activity on methyl nonanoate. In time-lapse conversions with 5 mM NAEE the main product was 9-hydroxy NAEE (3.6 mM), but also 9-oxo NAEE (0.1 mM) and 9-carboxy NAEE (0.6 mM) were formed. AlkBGT also ω-oxidized ethyl, propyl, and butyl esters of fatty acids ranging from C6 to C10. Increasing the length of the alkyl chain improved the ω-oxidation activity of AlkBGT on esters of C6 and C7 fatty acids. From these esters, application of butyl hexanoate resulted in the highest ω-oxidation activity, 82 U/gcdw. Coexpression of AlkL only had a positive effect on ω-functionalization of substrates with a total length of C11 or longer. These findings indicate that AlkBGT(L) can be applied as a biocatalyst for ω-functionalization of ethyl, propyl, and butyl esters of medium-chain fatty acids. IMPORTANCE Fatty acid esters are promising renewable starting materials for the production of ω-hydroxy fatty acid esters (ω-HFAEs). ω-HFAEs can be used to produce sustainable polymers. Chemical conversion of the fatty acid esters to ω-HFAEs is challenging, as it generates by-products and needs harsh reaction conditions. Biocatalytic production is a promising alternative. In this study, biocatalytic conversion of fatty acid esters toward ω-HFAEs was investigated using whole cells. This was achieved with recombinant Escherichia coli cells that produce the AlkBGT enzymes. These enzymes can produce ω-HFAEs from a wide variety of fatty acid esters. Medium-chain-length acids (C

  6. Single-cell RNA-seq reveals activation of unique gene groups as a consequence of stem cell-parenchymal cell fusion.

    PubMed

    Freeman, Brian T; Jung, Jangwook P; Ogle, Brenda M

    2016-03-21

    Fusion of donor mesenchymal stem cells with parenchymal cells of the recipient can occur in the brain, liver, intestine and heart following transplantation. The therapeutic benefit or detriment of resultant hybrids is unknown. Here we sought a global view of phenotypic diversification of mesenchymal stem cell-cardiomyocyte hybrids and associated time course. Using single-cell RNA-seq, we found hybrids consistently increase ribosome components and decrease genes associated with the cell cycle suggesting an increase in protein production and decrease in proliferation to accommodate the fused state. But in the case of most other gene groups, hybrids were individually distinct. In fact, though hybrids can express a transcriptome similar to individual fusion partners, approximately one-third acquired distinct expression profiles in a single day. Some hybrids underwent reprogramming, expressing pluripotency and cardiac precursor genes latent in parental cells and associated with developmental and morphogenic gene groups. Other hybrids expressed genes associated with ontologic cancer sets and two hybrids of separate experimental replicates clustered with breast cancer cells, expressing critical oncogenes and lacking tumor suppressor genes. Rapid transcriptional diversification of this type garners consideration in the context of cellular transplantation to damaged tissues, those with viral infection or other microenvironmental conditions that might promote fusion.

  7. Construction and uses of a new transposable element whose insertion is able to produce gene fusions with the neomycin-phosphotransferase-coding region of Tn903.

    PubMed

    Ratet, P; Richaud, F

    1986-01-01

    We describe the construction of a transposable element derived from the Mu phage that upon insertion is able to create a gene fusion between the region of Tn903 coding for neomycin phosphotransferase (NPT I), which confers resistance to aminoglycosides including kanamycin (KmR), neomycin and G418, and the control elements of the gene where the insertion occurs. A chloramphenicol (Cm) transacetylase gene (cat) that confers resistance to Cm is present in the transposon so that transposition events can be monitored even when no active fusions with the nptI coding region occur. The transposase gene is deleted and, therefore, this transposon is perfectly stable upon insertion. The properties of this new transposable element were studied by obtaining gene fusions between the Escherichia coli L-arabinose operon and 'nptI gene. In some of them the KmR phenotype is induced by arabinose. Insertions of this element in cloned fragments of the T-DNA region of Agrobacterium rhizogenes were also isolated. Some of them confer a KmR phenotype upon its E. coli carriers, which indicates that portions of the T-DNA are expressed in these cells.

  8. Molecular characterization of partial fusion gene and C-terminus extension length of haemagglutinin-neuraminidase gene of recently isolated Newcastle disease virus isolates in Malaysia

    PubMed Central

    2010-01-01

    Background Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a highly contagious disease of birds and has been one of the major causes of economic losses in the poultry industry. Despite routine vaccination programs, sporadic cases have occasionally occurred in the country and remain a constant threat to commercial poultry. Hence, the present study was aimed to characterize NDV isolates obtained from clinical cases in various locations of Malaysia between 2004 and 2007 based on sequence and phylogenetic analysis of partial F gene and C-terminus extension length of HN gene. Results The coding region of eleven NDV isolates fusion (F) gene and carboxyl terminal region of haemagglutinin-neuraminidase (HN) gene including extensions were amplified by reverse transcriptase PCR and directly sequenced. All the isolates have shown to have non-synonymous to synonymous base substitution rate ranging between 0.081 - 0.264 demonstrating presence of negative selection. Analysis based on F gene showed the characterized isolates possess three different types of protease cleavage site motifs; namely 112RRQKRF117, 112RRRKRF117 and 112GRQGRL117 and appear to show maximum identities with isolates in the region such as cockatoo/14698/90 (Indonesia), Ch/2000 (China), local isolate AF2240 indicating the high similarity of isolates circulating in the South East Asian countries. Meanwhile, one of the isolates resembles commonly used lentogenic vaccine strains. On further characterization of the HN gene, Malaysian isolates had C-terminus extensions of 0, 6 and 11 amino acids. Analysis of the phylogenetic tree revealed that the existence of three genetic groups; namely, genotype II, VII and VIII. Conclusions The study concluded that the occurrence of three types of NDV genotypes and presence of varied carboxyl terminus extension lengths among Malaysian isolates incriminated for sporadic cases. PMID:20691110

  9. Fusion of the Dhfr/Mtx and IR/MAR gene amplification methods produces a rapid and efficient method for stable recombinant protein production.

    PubMed

    Noguchi, Chiemi; Araki, Yoshio; Miki, Daisuke; Shimizu, Noriaki

    2012-01-01

    Amplification of the dihydrofolate reductase gene (Dhfr) by methotrexate (Mtx) exposure is commonly used for recombinant protein expression in Chinese hamster ovary (CHO) cells. However, this method is both time- and labor-intensive, and the high-producing cells that are generated are frequently unstable in culture. Another gene amplification method is based on using a plasmid bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR), which result in the spontaneous initiation of gene amplification in transfected cells. The IR/MAR and Dhfr/Mtx methods of gene amplification are based on entirely different principles. In this study, we combine these two methods to yield a novel method, termed the IR/MAR-Dhfr fusion method, which was used to express three proteins, the Fc receptor, GFP, and recombinant antibody. The fusion method resulted in a dramatic increase in expression of all three proteins in two CHO sub-lines, DXB-11, and DG44. The IR/MAR-Dhfr fusion amplified the genes rapidly and efficiently, and produced larger amounts of antibody than the Dhfr/Mtx or IR/MAR methods alone. While the amplified structure produced by the Dhfr/Mtx method was highly unstable, and the antibody production rate rapidly decreased with the culture time of the cells, the IR/MAR-Dhfr fusion method resulted in stable amplification and generated clonal cells that produced large amounts of antibody protein over a long period of time. In summary, the novel IR/MAR-Dhfr fusion method enables isolation of stable cells that produce larger amounts of a target recombinant protein more rapidly and easily than either the Dhfr/Mtx or IR/MAR methods alone.

  10. Alectinib: a novel second generation anaplastic lymphoma kinase (ALK) inhibitor for overcoming clinically-acquired resistance

    PubMed Central

    Song, Zilan; Wang, Meining; Zhang, Ao

    2015-01-01

    The development of inhibitors for the tyrosine anaplastic lymphoma kinase (ALK) has advanced rapidly, driven by biology and medicinal chemistry. The first generation ALK inhibitor crizotinib was granted US FDA approval with only four years of preclinical and clinical testing. Although this drug offers significant clinical benefit to the ALK-positive patients, resistance has been developed through a variety of mechanisms. In addition to ceritinib, alectinib is another second-generation ALK inhibitor launched in 2014 in Japan. This drug has a unique chemical structure bearing a 5H-benzo[b]carbazol-11(6H)-one structural scaffold with an IC50 value of 1.9 nmol/L, and is highly potent against ALK bearing the gatekeeper mutation L1196M with an IC50 of 1.56 nmol/L. In the clinic, alectinib is highly efficacious in treatment of ALK-positive non-small cell lung cancer (NSCLC), and retains potency to combat crizotinib-resistant ALK mutations L1196M, F1174L, R1275Q and C1156Y. PMID:26579422

  11. Rhein Inhibits AlkB Repair Enzymes and Sensitizes Cells to Methylated DNA Damage.

    PubMed

    Li, Qi; Huang, Yue; Liu, Xichun; Gan, Jianhua; Chen, Hao; Yang, Cai-Guang

    2016-05-20

    The AlkB repair enzymes, including Escherichia coli AlkB and two human homologues, ALKBH2 and ALKBH3, are iron(II)- and 2-oxoglutarate-dependent dioxygenases that efficiently repair N(1)-methyladenine and N(3)-methylcytosine methylated DNA damages. The development of small molecule inhibitors of these enzymes has seen less success. Here we have characterized a previously discovered natural product rhein and tested its ability to inhibit AlkB repair enzymes in vitro and to sensitize cells to methyl methane sulfonate that mainly produces N(1)-methyladenine and N(3)-methylcytosine lesions. Our investigation of the mechanism of rhein inhibition reveals that rhein binds to AlkB repair enzymes in vitro and promotes thermal stability in vivo In addition, we have determined a new structural complex of rhein bound to AlkB, which shows that rhein binds to a different part of the active site in AlkB than it binds to in fat mass and obesity-associated protein (FTO). With the support of these observations, we put forth the hypothesis that AlkB repair enzymes would be effective pharmacological targets for cancer treatment.

  12. NAB2-STAT6 gene fusion and STAT6 immunoexpression in extrathoracic solitary fibrous tumors: the association between fusion variants and locations.

    PubMed

    Chuang, I-Chieh; Liao, Kuan-Cho; Huang, Hsuan-Ying; Kao, Yu-Chien; Li, Chien-Feng; Huang, Shih-Chiang; Tsai, Jen-Wei; Chen, Ko-Chin; Lan, Jui; Lin, Po-Chun

    2016-05-01

    Solitary fibrous tumor (SFT) is a rare mesenchymal neoplasm harboring NAB2-STAT6 fusion, which drives STAT6 nuclear relocation. For extrathoracic SFTs, the clinical relevance of this molecular hallmark remains obscure. We assessed STAT6 immunoexpression for 61 extrathoracic SFTs exclusive of the meninges and head and neck, and 25 had analyzable RNAs to distinguish fusion variants by RT-PCR. The immunohistochemical and molecular findings were correlated with clincopathological features and disease-free survival (DFS). Twenty-eight males and 33 females had SFTs in the body cavities (n = 31), extremities (n = 17), and trunk (n = 13), categorized into 53 non-malignant and 8 malignant tumors. The vast majority (n = 57, 93%) exhibited distinctive STAT6 nuclear expression, including malignant ones. The common fusion variants were NAB2ex6-STAT6ex16/17 in 13 SFTs and NAB2ex4-STAT6ex2 in 8, while miscellaneous variants were detected only in 4 SFTs in the limbs and trunk but not in any body cavity-based cases (P = 0.026). The worse DFS was univariately associated with malignant histology (P = 0.04) but unrelated to tumor size, location, or fusion variant. Conclusively, extrathoracic SFTs mostly harbor NAB2ex6-STAT6ex16/17, followed by NAB2ex4-STAT6ex2. Miscellaneous variants are significantly rare in SFTs within the body cavities. The clinical aggressiveness of extrathoraic SFTs is associated with malignant histology but unrelated to the NAB2-STAT6 fusion variants.

  13. Paediatric and adult soft tissue sarcomas with NTRK1 gene fusions: a subset of spindle cell sarcomas unified by a prominent myopericytic/haemangiopericytic pattern.

    PubMed

    Haller, Florian; Knopf, Jasmin; Ackermann, Anne; Bieg, Matthias; Kleinheinz, Kortine; Schlesner, Matthias; Moskalev, Evgeny A; Will, Rainer; Satir, Ali Abdel; Abdelmagid, Ibtihalat E; Giedl, Johannes; Carbon, Roman; Rompel, Oliver; Hartmann, Arndt; Wiemann, Stefan; Metzler, Markus; Agaimy, Abbas

    2016-04-01

    Neoplasms with a myopericytomatous pattern represent a morphological spectrum of lesions encompassing myopericytoma of the skin and soft tissue, angioleiomyoma, myofibromatosis/infantile haemangiopericytoma and putative neoplasms reported as malignant myopericytoma. Lack of reproducible phenotypic and genetic features of malignant myopericytic neoplasms have prevented the establishment of myopericytic sarcoma as an acceptable diagnostic category. Following detection of a LMNA-NTRK1 gene fusion in an index case of paediatric haemangiopericytoma-like sarcoma by combined whole-genome and RNA sequencing, we identified three additional sarcomas harbouring NTRK1 gene fusions, termed 'spindle cell sarcoma, NOS with myo/haemangiopericytic growth pattern'. The patients were two children aged 11 months and 2 years and two adults aged 51 and 80 years. While the tumours of the adults were strikingly myopericytoma-like, but with clear-cut atypical features, the paediatric cases were more akin to infantile myofibromatosis/haemangiopericytoma. All cases contained numerous thick-walled dysplastic-like vessels with segmental or diffuse nodular myxohyaline myo-intimal proliferations of smooth muscle actin-positive cells, occasionally associated with thrombosis. Immunohistochemistry showed variable expression of smooth muscle actin and CD34, but other mesenchymal markers, including STAT6, were negative. This study showed a novel variant of myo/haemangiopericytic sarcoma with recurrent NTRK1 gene fusions. Given the recent introduction of a novel therapeutic approach targeting NTRK fusion-positive neoplasms, recognition of this rare but likely under-reported sarcoma variant is strongly encouraged.

  14. Structure and expression of the Drosophila ubiquitin-52-amino-acid fusion-protein gene.

    PubMed Central

    Cabrera, H L; Barrio, R; Arribas, C

    1992-01-01

    Ubiquitin belongs to a multigene family. In Drosophila two members of this family have been previously described. We report here the organization and expression of a third member, the DUb52 gene, isolated by screening a Drosophila melanogaster genomic library. This gene encodes an ubiquitin monomer fused to a 52-amino acid extension protein. There are no introns interrupting the coding sequence. Recently, it has been described that this extension encodes a ribosomal protein in Saccharomyces, Dictyostelium, and Arabidopsis. The present results show that the 5' regulatory region of DUb52 shares common features with the ribosomal protein genes of Drosophila, Xenopus and mouse, including GC- and pyrimidine-rich regions. Moreover, sequences similar to the consensus Ribo-box in Neurospora crassa have been identified. Furthermore, a sequence has been found that is similar to the binding site for the TFIIIA distal element factor from Xenopus laevis. The DUb52 gene is transcribed to a 0.9 kb mRNA that is expressed constitutively throughout development and is particularly abundant in ovaries. In addition, the DUb52 gene has been found to be preferentially transcribed in exponentially growing Drosophila cells. Images Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:1381584

  15. Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion.

    PubMed

    Nikolaidis, Nikolas; Doran, Nicole; Cosgrove, Daniel J

    2014-02-01

    Horizontal gene transfer (HGT) has been described as a common mechanism of transferring genetic material between prokaryotes, whereas genetic transfers from eukaryotes to prokaryotes have been rarely documented. Here we report a rare case of HGT in which plant expansin genes that code for plant cell-wall loosening proteins were transferred from plants to bacteria, fungi, and amoebozoa. In several cases, the species in which the expansin gene was found is either in intimate association with plants or is a known plant pathogen. Our analyses suggest that at least two independent genetic transfers occurred from plants to bacteria and fungi. These events were followed by multiple HGT events within bacteria and fungi. We have also observed that in bacteria expansin genes have been independently fused to DNA fragments that code for an endoglucanase domain or for a carbohydrate binding module, pointing to functional convergence at the molecular level. Furthermore, the functional similarities between microbial expansins and their plant xenologs suggest that these proteins mediate microbial-plant interactions by altering the plant cell wall and therefore may provide adaptive advantages to these species. The evolution of these nonplant expansins represents a unique case in which bacteria and fungi have found innovative and adaptive ways to interact with and infect plants by acquiring genes from their host. This evolutionary paradigm suggests that despite their low frequency such HGT events may have significantly contributed to the evolution of prokaryotic and eukaryotic species.

  16. Mutations in the lipoma HMGIC fusion partner-like 5 (LHFPL5) gene cause autosomal recessive nonsyndromic hearing loss.

    PubMed

    Kalay, Ersan; Li, Yun; Uzumcu, Abdullah; Uyguner, Oya; Collin, Rob W; Caylan, Refik; Ulubil-Emiroglu, Melike; Kersten, Ferry F J; Hafiz, Gunter; van Wijk, Erwin; Kayserili, Hulya; Rohmann, Edyta; Wagenstaller, Janine; Hoefsloot, Lies H; Strom, Tim M; Nürnberg, Gudrun; Baserer, Nermin; den Hollander, Anneke I; Cremers, Frans P M; Cremers, Cor W R J; Becker, Christian; Brunner, Han G; Nürnberg, Peter; Karaguzel, Ahmet; Basaran, Seher; Kubisch, Christian; Kremer, Hannie; Wollnik, Bernd

    2006-07-01

    In two large Turkish consanguineous families, a locus for autosomal recessive nonsyndromic hearing loss (ARNSHL) was mapped to chromosome 6p21.3 by genome-wide linkage analysis in an interval overlapping with the loci DFNB53 (COL11A2), DFNB66, and DFNB67. Fine mapping excluded DFNB53 and subsequently homozygous mutations were identified in the lipoma HMGIC fusion partner-like 5 (LHFPL5) gene, also named tetraspan membrane protein of hair cell stereocilia (TMHS) gene, which was recently shown to be mutated in the "hurry scurry" mouse and in two DFNB67-linked families from Pakistan. In one family, we found a homozygous one-base pair deletion, c.649delG (p.Glu216ArgfsX26) and in the other family we identified a homozygous transition c.494C>T (p.Thr165Met). Further screening of index patients from 96 Turkish ARNSHL families and 90 Dutch ARNSHL patients identified one additional Turkish family carrying the c.649delG mutation. Haplotype analysis revealed that the c.649delG mutation was located on a common haplotype in both families. Mutation screening of the LHFPL5 homologs LHFPL3 and LHFPL4 did not reveal any disease causing mutation. Our findings indicate that LHFPL5 is essential for normal function of the human cochlea.

  17. HAWAIIAN SKIRT: An F-Box Gene That Regulates Organ Fusion and Growth in Arabidopsis1[C][W][OA

    PubMed Central

    González-Carranza, Zinnia H.; Rompa, Unchalee; Peters, Janny L.; Bhatt, Anuj M.; Wagstaff, Carol; Stead, Anthony D.; Roberts, Jeremy A.

    2007-01-01

    A fast neutron-mutagenized population of Arabidopsis (Arabidopsis thaliana) Columbia-0 wild-type plants was screened for floral phenotypes and a novel mutant, termed hawaiian skirt (hws), was identified that failed to shed its reproductive organs. The mutation is the consequence of a 28 bp deletion that introduces a premature amber termination codon into the open reading frame of a putative F-box protein (At3g61590). The most striking anatomical characteristic of hws plants is seen in flowers where individual sepals are fused along the lower part of their margins. Crossing of the abscission marker, ProPGAZAT:β-glucuronidase, into the mutant reveals that while floral organs are retained it is not the consequence of a failure of abscission zone cells to differentiate. Anatomical analysis indicates that the fusion of sepal margins precludes shedding even though abscission, albeit delayed, does occur. Spatial and temporal characterization, using ProHWS:β-glucuronidase or ProHWS:green fluorescent protein fusions, has identified HWS expression to be restricted to the stele and lateral root cap, cotyledonary margins, tip of the stigma, pollen, abscission zones, and developing seeds. Comparative phenotypic analyses performed on the hws mutant, Columbia-0 wild type, and Pro35S:HWS ectopically expressing lines has revealed that loss of HWS results in greater growth of both aerial and below-ground organs while overexpressing the gene brings about a converse effect. These observations are consistent with HWS playing an important role in regulating plant growth and development. PMID:17496113

  18. Molecular evolution of viral fusion and matrix protein genes and phylogenetic relationships among the Paramyxoviridae.

    PubMed

    Westover, K M; Hughes, A L

    2001-10-01

    Phylogenetic relationships among the Paramyxoviridae, a broad family of viruses whose members cause devastating diseases of wildlife, livestock, and humans, were examined with both fusion (F) and matrix (M) protein-coding sequences. Neighbor-joining trees of F and M protein sequences showed that the Paramyxoviridae was divided into the two traditionally recognized subfamilies, the Paramyxovirinae and the Pneumovirinae. Within the Paramyxovirinae, the results also showed groups corresponding to three currently recognized genera: Respirovirus, Morbillivirus, and Rubulavirus. The relationships among the three genera of the Paramyxovirinae were resolved with M protein sequences and there was significant bootstrap support (100%) showing that members of the genus Respirovirus and the genus Morbillivirus were more closely related to each other than to members of the genus Rubulavirus. Both F and M phylogenies showed that Newcastle disease virus (NDV) was more closely related to the genus Rubulavirus than to the other two genera but were consistent with the proposal (B. S. Seal et al., 2000, Virus Res. 66, 1-11) that NDV be classified as a separate genus within the Paramyxovirinae. Both F and M phylogenies were also consistent with the proposal (L. Wang et al., 2000, J. Virol 74, 9972-9979) that Hendra virus be classified as a new genus closely related and basal to the genus Morbillivirus. Rinderpest was most closely related to measles and a more derived virus than to canine distemper virus, phocine distemper virus, or dolphin morbillivirus.

  19. Adamantinoma-like Ewing's sarcoma with EWS-FLI1 fusion gene: a case report.

    PubMed

    Fujii, Hiromasa; Honoki, Kanya; Enomoto, Yasunori; Kasai, Takahiko; Kido, Akira; Amano, Itsuto; Kumamoto, Makiko; Morishita, Toru; Mii, Yoshio; Nonomura, Akitaka; Takakura, Yoshinori

    2006-11-01

    Recent studies have advocated the genotypic and phenotypic delineation of a novel Ewing's sarcoma histologic variant showing epithelial features defined as "adamantinoma-like Ewing's sarcoma". We described an 18-year-old girl with a primary small round-cell sarcoma of the right tibia showing polyphenotypic differentiation with epithelioid features. The neoplastic cells had mainly round or oval nuclei with fine chromatin with a portion of epithelial arrangements. The immunohistochemical analysis showed the epithelial markers of cytokeratin 5/6/18, AE1/AE3, and cytokeratin high molecular weight were stained especially in the foci with epithelioid features, as well as MIC2, S100, and NSE. The diagnosis of the lesion was confirmed as Ewing's sarcoma by the presence of the EWS-FLI1 fusion transcript, and could be defined as the so-called "adamantinoma-like Ewing's sarcoma". After wide excision and high-dose chemotherapy with peripheral blood stem cell transfusion, the patient has been well and continuously event-free for 3 years since the initial diagnosis.

  20. A unique RPW8-encoding class of genes that originated in early land plants and evolved through domain fission, fusion, and duplication

    PubMed Central

    Zhong, Yan; Cheng, Zong-Ming (Max)

    2016-01-01

    Duplication, lateral gene transfer, domain fusion/fission and de novo domain creation play a key role in formation of initial common ancestral protein. Abundant protein diversities are produced by domain rearrangements, including fusions, fissions, duplications, and terminal domain losses. In this report, we explored the origin of the RPW8 domain and examined the domain rearrangements that have driven the evolution of RPW8-encoding genes in land plants. The RPW8 domain first emerged in the early land plant, Physcomitrella patens, and it likely originated de novo from a non-coding sequence or domain divergence after duplication. It was then incorporated into the NBS-LRR protein to create a main sub-class of RPW8-encoding genes, the RPW8-NBS-encoding genes. They evolved by a series of genetic events of domain fissions, fusions, and duplications. Many species-specific duplication events and tandemly duplicated clusters clearly demonstrated that species-specific and tandem duplications played important roles in expansion of RPW8-encoding genes, especially in gymnosperms and species of the Rosaceae. RPW8 domains with greater Ka/Ks values than those of the NBS domains indicated that they evolved faster than the NBS domains in RPW8-NBSs. PMID:27678195

  1. Ewing Sarcoma With ERG Gene Rearrangements: A Molecular Study Focusing on the Prevalence of FUS-ERG and Common Pitfalls in Detecting EWSR1-ERG Fusions by FISH

    PubMed Central

    Chen, Sonja; Deniz, Kemal; Sung, Yun-Shao; Zhang, Lei; Dry, Sarah; Antonescu, Cristina R.

    2016-01-01

    The genetics of Ewing sarcoma (ES) are characterized by a canonical fusion involving EWSR1 gene and a member of the ETS family of transcription factors, such as FLI1 and ERG. In fact, ERG gene rearrangements represent the second most common molecular alteration, with EWSR1-ERG being identified in 5–10% of cases, while only a handful of reports document a FUS-ERG fusion. In this study, we focus on ES with ERG gene abnormalities, specifically to investigate the prevalence and clinicopathologic features of FUS-ERG fusions in a large cohort of small blue round cell tumors (SBRCTs) and compare to the eight reported FUS-positive ES. Among the 85 SBRCTs tested, seven (8.2%) cases harbored FUS gene rearrangements; six fused to ERG and one with FEV. During this investigation we came across a number of ERG-rearranged ES lacking both EWSR1 and FUS abnormalities by FISH. In one case, RNA sequencing identified an EWSR1-ERG transcript despite the negative EWSR1 rearrangements by FISH. Additional 3-color FISH fusion assay demonstrated the fusion of EWSR1 and ERG signals in all four cases negative for break-apart EWSR1 FISH. These results emphasize a potential pitfall of relying on EWSR1 FISH assay alone for diagnosis of ES. In cases with classic morphology and/or strong CD99 and ERG immunoreactivity, additional molecular testing should be applied, such as ERG FISH or RT-PCR/next generation sequencing, for a more definitive diagnosis. Although our study group is small, there were no differences noted between the clinical, morphologic features and immunoprofile of the different subsets of ERG-rearranged SBRCTs. PMID:26690869

  2. Recent Progress on the Construction and Testing of a Fusion Poly(hydroxyalkanoate) Synthase Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly(hydroxyalkanoates) (PHAs) are biodegradable polyesters produced by some bacteria. Two genes in Allochromatium vinosum, phaE and phaC, respectively code for the two subunits of the enzyme complex, PHA synthase, which catalyzes the polymerization of precursors into PHA. We hypothesized that by ...

  3. Functional Impact and Evolution of a Novel Human Polymorphic Inversion That Disrupts a Gene and Creates a Fusion Transcript.

    PubMed

    Puig, Marta; Castellano, David; Pantano, Lorena; Giner-Delgado, Carla; Izquierdo, David; Gayà-Vidal, Magdalena; Lucas-Lledó, José Ignacio; Esko, Tõnu; Terao, Chikashi; Matsuda, Fumihiko; Cáceres, Mario

    2015-10-01

    Despite many years of study into inversions, very little is known about their functional consequences, especially in humans. A common hypothesis is that the selective value of inversions stems in part from their effects on nearby genes, although evidence of this in natural populations is almost nonexistent. Here we present a global analysis of a new 415-kb polymorphic inversion that is among the longest ones found in humans and is the first with clear position effects. This inversion is located in chromosome 19 and has been generated by non-homologous end joining between blocks of transposable elements with low identity. PCR genotyping in 541 individuals from eight different human populations allowed the detection of tag SNPs and inversion genotyping in multiple populations worldwide, showing that the inverted allele is mainly found in East Asia with an average frequency of 4.7%. Interestingly, one of the breakpoints disrupts the transcription factor gene ZNF257, causing a significant reduction in the total expression level of this gene in lymphoblastoid cell lines. RNA-Seq analysis of the effects of this expression change in standard homozygotes and inversion heterozygotes revealed distinct expression patterns that were validated by quantitative RT-PCR. Moreover, we have found a new fusion transcript that is generated exclusively from inverted chromosomes around one of the breakpoints. Finally, by the analysis of the associated nucleotide variation, we have estimated that the inversion was generated ~40,000-50,000 years ago and, while a neutral evolution cannot be ruled out, its current frequencies are more consistent with those expected for a deleterious variant, although no significant association with phenotypic traits has been found so far.

  4. Functional Impact and Evolution of a Novel Human Polymorphic Inversion That Disrupts a Gene and Creates a Fusion Transcript

    PubMed Central

    Puig, Marta; Castellano, David; Pantano, Lorena; Giner-Delgado, Carla; Izquierdo, David; Gayà-Vidal, Magdalena; Lucas-Lledó, José Ignacio; Esko, Tõnu; Terao, Chikashi; Matsuda, Fumihiko; Cáceres, Mario

    2015-01-01

    Despite many years of study into inversions, very little is known about their functional consequences, especially in humans. A common hypothesis is that the selective value of inversions stems in part from their effects on nearby genes, although evidence of this in natural populations is almost nonexistent. Here we present a global analysis of a new 415-kb polymorphic inversion that is among the longest ones found in humans and is the first with clear position effects. This inversion is located in chromosome 19 and has been generated by non-homologous end joining between blocks of transposable elements with low identity. PCR genotyping in 541 individuals from eight different human populations allowed the detection of tag SNPs and inversion genotyping in multiple populations worldwide, showing that the inverted allele is mainly found in East Asia with an average frequency of 4.7%. Interestingly, one of the breakpoints disrupts the transcription factor gene ZNF257, causing a significant reduction in the total expression level of this gene in lymphoblastoid cell lines. RNA-Seq analysis of the effects of this expression change in standard homozygotes and inversion heterozygotes revealed distinct expression patterns that were validated by quantitative RT-PCR. Moreover, we have found a new fusion transcript that is generated exclusively from inverted chromosomes around one of the breakpoints. Finally, by the analysis of the associated nucleotide variation, we have estimated that the inversion was generated ~40,000–50,000 years ago and, while a neutral evolution cannot be ruled out, its current frequencies are more consistent with those expected for a deleterious variant, although no significant association with phenotypic traits has been found so far. PMID:26427027

  5. Creation of immune 'stealth' genes for gene therapy through fusion with the Gly-Ala repeat of EBNA-1.

    PubMed

    Ossevoort, M; Visser, B M J; van den Wollenberg, D J M; van der Voort, E I H; Offringa, R; Melief, C J M; Toes, R E M; Hoeben, R C

    2003-11-01

    A major obstacle in gene-therapy protocols is T-cell-mediated destruction of transgene-expressing cells. Therefore new approaches are needed to prevent rapid clearance of transduced cells. We exploited the Gly-Ala repeat (GAr) domain of the Epstein-Barr virus nuclear antigen-1, since the GAr prevents cytotoxic T-lymphocyte-epitope generation. Here we show that three different enzymes (viz. the E. coli LacZ gene encoded beta-galactosidase, firefly luciferase, and HSV1 thymidine kinase) fused with the GAr retained their function. Moreover, linking GAr with beta-galactosidase successfully prevented recognition of GAr-LacZ-expressing cells by beta-galactosidase-specific CTL. Nonetheless, vaccination with a GAr-LacZ adenovirus or with an allogeneic cell line expressing GAr-LacZ resulted in the induction of beta-gal-specific CTL. This demonstrates that the GAr domain does not inhibit cross presentation of antigens, but only affects breakdown of endogenously synthesized proteins. These data demonstrate how the GAr domain can be exploited to create immuno'stealth' genes by hiding transgene products from CTL-mediated immune attack.

  6. Gene expression caused by alkylating agents and cis-diamminedichloroplatinum(II) in Escherichia coli.

    PubMed

    Fram, R J; Crockett, J; Volkert, M R

    1988-09-01

    Previous work has demonstrated heterogeneous effects of methylating agents on induction of DNA damage inducible genes in Escherichia coli. These studies employed E. coli mutants that have fusions of the lac operon to genes induced by treatment with sublethal levels of alkylating agents. These mutants were selected from random insertions of the Mu-dl (Apr lac) phage by screening for induction of beta-galactosidase activity in the presence of methylmethanesulfonate or N-methyl-N'-nitro-N-nitrosoguanidine. The current report extends these findings by analyzing gene expression caused by mechlorethamine, chloroethylnitrosoureas and cis-diamminedichloroplatinum(II) (cis-DDP). The results demonstrate heterogeneous effects by these agents on gene expression. While 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea induces alkA, other nitrosoureas, mechlorethamine, and cis-DDP do not cause expression of this gene. Further, while all nitrosoureas caused expression of aidC, mechlorethamine and cis-DDP did not. Lastly, cis-DDP caused marked expression of a sulA fusion mutant while not inducing any of the other E. coli fusion mutants.

  7. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion.

    PubMed

    Paquette, Stéphane G; Banner, David; Chi, Le Thi Bao; Leόn, Alberto J; Xu, Luoling; Ran, Longsi; Huang, Stephen S H; Farooqui, Amber; Kelvin, David J; Kelvin, Alyson A

    2014-01-05

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus-epithelial cell interaction.

  8. Resensitization to Crizotinib by the Lorlatinib ALK Resistance Mutation L1198F.

    PubMed

    Shaw, Alice T; Friboulet, Luc; Leshchiner, Ignaty; Gainor, Justin F; Bergqvist, Simon; Brooun, Alexei; Burke, Benjamin J; Deng, Ya-Li; Liu, Wei; Dardaei, Leila; Frias, Rosa L; Schultz, Kate R; Logan, Jennifer; James, Leonard P; Smeal, Tod; Timofeevski, Sergei; Katayama, Ryohei; Iafrate, A John; Le, Long; McTigue, Michele; Getz, Gad; Johnson, Ted W; Engelman, Jeffrey A

    2016-01-07

    In a patient who had metastatic anaplastic lymphoma kinase (ALK)-rearranged lung cancer, resistance to crizotinib developed because of a mutation in the ALK kinase domain. This mutation is predicted to result in a substitution of cysteine by tyrosine at amino acid residue 1156 (C1156Y). Her tumor did not respond to a second-generation ALK inhibitor, but it did respond to lorlatinib (PF-06463922), a third-generation inhibitor. When her tumor relapsed, sequencing of the resistant tumor revealed an ALK L1198F mutation in addition to the C1156Y mutation. The L1198F substitution confers resistance to lorlatinib through steric interference with drug binding. However, L1198F paradoxically enhances binding to crizotinib, negating the effect of C1156Y and resensitizing resistant cancers to crizotinib. The patient received crizotinib again, and her cancer-related symptoms and liver failure resolved. (Funded by Pfizer and others; ClinicalTrials.gov number, NCT01970865.).

  9. ALK1 heterozygosity increases extracellular matrix protein expression, proliferation and migration in fibroblasts.

    PubMed

    Muñoz-Félix, José M; Perretta-Tejedor, Nuria; Eleno, Nélida; López-Novoa, José M; Martínez-Salgado, Carlos

    2014-06-01

    Fibrosis is a pathological situation in which excessive amounts of extracellular matrix (ECM) are deposited in the tissue. Myofibroblasts play a crucial role in the development and progress of fibrosis as they actively synthesize ECM components such as collagen I, fibronectin and connective tissue growth factor (CTGF) and cause organ fibrosis. Transforming growth factor beta 1 (TGF-β1) plays a major role in tissue fibrosis. Activin receptor-like kinase 1 (ALK1) is a type I receptor of TGF-β1 with an important role in angiogenesis whose function in cellular biology and TGF-β signaling is well known in endothelial cells, but its role in fibroblast biology and its contribution to fibrosis is poorly studied. We have recently demonstrated that ALK1 regulates ECM protein expression in a mouse model of obstructive nephropathy. Our aim was to evaluate the role of ALK1 in several processes involved in fibrosis such as ECM protein expression, proliferation and migration in ALK1(+/+) and ALK1(+/-) mouse embryonic fibroblasts (MEFs) after TGF-β1 stimulations and inhibitors. ALK1 heterozygous MEFs show increased expression of ECM proteins (collagen I, fibronectin and CTGF/CCN2), cell proliferation and migration due to an alteration of TGF-β/Smad signaling. ALK1 heterozygous disruption shows an increase of Smad2 and Smad3 phosphorylation that explains the increases in CTGF/CCN2, fibronectin and collagen I, proliferation and cell motility observed in these cells. Therefore, we suggest that ALK1 plays an important role in the regulation of ECM protein expression, proliferation and migration.

  10. Transformation of tobacco plants by Yali PPO-GFP fusion gene and observation of subcellular localization.

    PubMed

    Qi, Jing; Li, Gui-Qin; Dong, Zhen; Zhou, Wei

    2016-01-01

    To explore the subcellular localization of Polyphenol oxidase (PPO) from Pyrus bretschneideri, the 1779 bp cDNA of PPO gene excluding the termination codon TAA was cloned and fused with GFP to construct a binary vector pBI121-PPO-GFP. Then, the binary vector was transformed into Nicotiana tabacum by the tumefanciens-mediated method. Using confocal laser scanning microscopy, green fluorescent signals were localized in chloroplasts of the transformed Nicotiana tabacum cell, suggesting that the Polyphenol oxidase from Pyrus bretschneideri was a chloroplast protein.

  11. Proteinase-activated receptor 2 promotes TGF-β-dependent cell motility in pancreatic cancer cells by sustaining expression of the TGF-β type I receptor ALK5.

    PubMed

    Zeeh, Franziska; Witte, David; Gädeken, Thomas; Rauch, Bernhard H; Grage-Griebenow, Evelin; Leinung, Nadja; Fromm, Sofie Joline; Stölting, Stephanie; Mihara, Koichiro; Kaufmann, Roland; Settmacher, Utz; Lehnert, Hendrik; Hollenberg, Morley D; Ungefroren, Hendrik

    2016-07-05

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by high expression of transforming growth factor (TGF)-β and the G protein-coupled receptor proteinase-activated receptor 2 (PAR2), the latter of which functions as a cell-surface sensor for serine proteinases asscociated with the tumour microenvironment. Since TGF-β and PAR2 affect tumourigenesis by regulating migration, invasion and metastasis, we hypothesized that there is signalling crosstalk between them. Depleting PDAC and non-PDAC cells of PAR2 by RNA interference strongly decreased TGF-β1-induced activation of Smad2/3 and p38 mitogen-activated protein kinase, Smad dependent transcriptional activity, expression of invasion associated genes, and cell migration/invasion in vitro. Likewise, the plasminogen activator-inhibitor 1 gene in primary cultures of aortic smooth muscle cells from PAR2-/- mice displayed a greatly attenuated sensitivity to TGF-β1 stimulation. PAR2 depletion in PDAC cells resulted in reduced protein and mRNA levels of the TGF-β type I receptor activin receptor-like kinase 5 (ALK5). Forced expression of wild-type ALK5 or a kinase-active ALK5 mutant, but not a kinase-active but Smad-binding defective ALK5 mutant, was able to rescue TGF-β1-induced Smad3 activation, Smad dependent transcription, and cell migration in PAR2-depleted cells. Together, our data show that PAR2 is crucial for TGF-β1-induced cell motility by its ability to sustain expression of ALK5. Therapeutically targeting PAR2 may thus be a promising approach in preventing TGF-β-dependent driven metastatic dissemination in PDAC and possibly other stroma-rich tumour types.

  12. Proteinase-activated receptor 2 promotes TGF-β-dependent cell motility in pancreatic cancer cells by sustaining expression of the TGF-β type I receptor ALK5

    PubMed Central

    Gädeken, Thomas; Rauch, Bernhard H.; Grage-Griebenow, Evelin; Leinung, Nadja; Fromm, Sofie Joline; Stölting, Stephanie; Mihara, Koichiro; Kaufmann, Roland; Settmacher, Utz; Lehnert, Hendrik; Hollenberg, Morley D.; Ungefroren, Hendrik

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is characterized by high expression of transforming growth factor (TGF)-β and the G protein-coupled receptor proteinase-activated receptor 2 (PAR2), the latter of which functions as a cell-surface sensor for serine proteinases asscociated with the tumour microenvironment. Since TGF-β and PAR2 affect tumourigenesis by regulating migration, invasion and metastasis, we hypothesized that there is signalling crosstalk between them. Depleting PDAC and non-PDAC cells of PAR2 by RNA interference strongly decreased TGF-β1-induced activation of Smad2/3 and p38 mitogen-activated protein kinase, Smad dependent transcriptional activity, expression of invasion associated genes, and cell migration/invasion in vitro. Likewise, the plasminogen activator-inhibitor 1 gene in primary cultures of aortic smooth muscle cells from PAR2−/− mice displayed a greatly attenuated sensitivity to TGF-β1 stimulation. PAR2 depletion in PDAC cells resulted in reduced protein and mRNA levels of the TGF-β type I receptor activin receptor-like kinase 5 (ALK5). Forced expression of wild-type ALK5 or a kinase-active ALK5 mutant, but not a kinase-active but Smad-binding defective ALK5 mutant, was able to rescue TGF-β1-induced Smad3 activation, Smad dependent transcription, and cell migration in PAR2-depleted cells. Together, our data show that PAR2 is crucial for TGF-β1-induced cell motility by its ability to sustain expression of ALK5. Therapeutically targeting PAR2 may thus be a promising approach in preventing TGF-β-dependent driven metastatic dissemination in PDAC and possibly other stroma-rich tumour types. PMID:27248167

  13. Genes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae

    PubMed Central

    Li, Jing; Lee, Eun-Jeong; Chang, Limei; Facchini, Peter J.

    2016-01-01

    Norcoclaurine synthase (NCS) catalyzes the enantioselective Pictet-Spengler condensation of dopamine and 4-hydroxyphenylacetaldehyde as the first step in benzylisoquinoline alkaloid (BIA) biosynthesis. NCS orthologs in available transcriptome databases were screened for variants that might improve the low yield of BIAs in engineered microorganisms. Databases for 21 BIA-producing species from four plant families yielded 33 assembled contigs with homology to characterized NCS genes. Predicted translation products generated from nine contigs consisted of two to five sequential repeats, each containing most of the sequence found in single-domain enzymes. Assembled contigs containing tandem domain repeats were detected only in members of the Papaveraceae family, including opium poppy (Papaver somniferum). Fourteen cDNAs were generated from 10 species, five of which encoded NCS orthologs with repeated domains. Functional analysis of corresponding recombinant proteins yielded six active NCS enzymes, including four containing either two, three or four repeated catalytic domains. Truncation of the first 25 N-terminal amino acids from the remaining polypeptides revealed two additional enzymes. Multiple catalytic domains correlated with a proportional increase in catalytic efficiency. Expression of NCS genes in Saccharomyces cereviseae also produced active enzymes. The metabolic conversion capacity of engineered yeast positively correlated with the number of repeated domains. PMID:27991536

  14. Genes encoding norcoclaurine synthase occur as tandem fusions in the Papaveraceae.

    PubMed

    Li, Jing; Lee, Eun-Jeong; Chang, Limei; Facchini, Peter J

    2016-12-19

    Norcoclaurine synthase (NCS) catalyzes the enantioselective Pictet-Spengler condensation of dopamine and 4-hydroxyphenylacetaldehyde as the first step in benzylisoquinoline alkaloid (BIA) biosynthesis. NCS orthologs in available transcriptome databases were screened for variants that might improve the low yield of BIAs in engineered microorganisms. Databases for 21 BIA-producing species from four plant families yielded 33 assembled contigs with homology to characterized NCS genes. Predicted translation products generated from nine contigs consisted of two to five sequential repeats, each containing most of the sequence found in single-domain enzymes. Assembled contigs containing tandem domain repeats were detected only in members of the Papaveraceae family, including opium poppy (Papaver somniferum). Fourteen cDNAs were generated from 10 species, five of which encoded NCS orthologs with repeated domains. Functional analysis of corresponding recombinant proteins yielded six active NCS enzymes, including four containing either two, three or four repeated catalytic domains. Truncation of the first 25 N-terminal amino acids from the remaining polypeptides revealed two additional enzymes. Multiple catalytic domains correlated with a proportional increase in catalytic efficiency. Expression of NCS genes in Saccharomyces cereviseae also produced active enzymes. The metabolic conversion capacity of engineered yeast positively correlated with the number of repeated domains.

  15. Mutations in the Drosophila Pushover Gene Confer Increased Neuronal Excitability and Spontaneous Synaptic Vesicle Fusion

    PubMed Central

    Richards, S.; Hillman, T.; Stern, M.

    1996-01-01

    We describe the identification of a gene called pushover (push), which affects both behavior and synaptic transmission at the neuromuscular junction. Adults carrying either of two mutations in push exhibit sluggishness, uncoordination, a defective escape response, and male sterility. Larvae defective in push exhibit increased release of transmitter at the neuromuscular junction. In particular, the frequency of spontaneous transmitter release and the amount of transmitter release evoked by nerve stimulation are each increased two- to threefold in push mutants at the lowest external [Ca(2+)] tested (0.15 mM). Furthermore, these mutants are more sensitive than wild type to application of the potassium channel-blocking drug quinidine: following qunidine application, push mutants, but not wild-type, display repetitive firing of the motor axon, leading to repetitive muscle postsynaptic potentials. The push gene thus might affect both neuronal excitability and the transmitter release process. Complementation tests and recombinational mapping suggest that the push mutations are allelic to a previously identified P-element-induced mutation, which also causes behavioral abnormalities and male sterility. PMID:8846899

  16. Electrochemical determination of BCR/ABL fusion gene based on in situ synthesized gold nanoparticles and cerium dioxide nanoparticles.

    PubMed

    Li, Shenfeng; Wang, Li; Li, Yajuan; Zhu, Xiaoying; Zhong, Liang; Lu, Lingsong; Zhang, Wei; Liu, Bei; Xie, Guoming; Feng, Wenli

    2013-12-01

    An efficient DNA electrochemical biosensor, based on the gold nanoparticles (GNPs) in situ synthesized at the surface of multiwalled carbon nanotubes (MWCNTs), cerium dioxide (CeO2) and chitosan (Chits) composite membrane, was developed for the detection of BCR/ABL fusion gene in chronic myelogenous leukemia (CML). The capture probe was attached onto the nanocomposite membrane modified glassy carbon electrode (GCE) through the conjugated structure. Owing to the synergistic effects of CeO2 nanoparticles with a strong adsorption ability and MWCNTs with a large surface area and excellent electron transfer ability, the prepared composite membrane was demonstrated an efficient electron transfer ability. The biosensor was electrochemically characterized by cyclic voltammogram (CV) and differential pulse voltammetry (DPV), and the decrease of the peak currents upon hybridization was observed using methylene blue (MB) as the electroactive indicator. Under the optimized conditions, peak currents were linear over the range from 1 × 10(-9) M to 1 × 10(-)(12) M, with a detection limit of 5 × 10(-)(13) M (based on the 3σ). And the proposed method was successfully applied for the detection of PCR real samples with satisfactory results. Furthermore, the developed DNA biosensor was demonstrated a good selectivity, a reasonable stability and a favorable reproducibility, which could be regenerated easily.

  17. Novel real-time polymerase chain reaction assay for simultaneous detection of recurrent fusion genes in acute myeloid leukemia.

    PubMed

    Dolz, Sandra; Barragán, Eva; Fuster, Óscar; Llop, Marta; Cervera, José; Such, Esperanza; De Juan, Inmaculada; Palanca, Sarai; Murria, Rosa; Bolufer, Pascual; Luna, Irene; Gómez, Inés; López, María; Ibáñez, Mariam; Sanz, Miguel A

    2013-09-01

    The recent World Health Organization classification recognizes different subtypes of acute myeloid leukemia (AML) according to the presence of several recurrent genetic abnormalities. Detection of these abnormalities and other molecular changes is of increasing interest because it contributes to a refined diagnosis and prognostic assessment in AML and enables monitoring of minimal residual disease. These genetic abnormalities can be detected using single RT-PCR, although the screening is still labor intensive and costly. We have developed a novel real-time RT-PCR assay to simultaneously detect 15 AML-associated rearrangements that is a simple and easily applicable method for use in clinical diagnostic laboratories. This method showed 100% specificity and sensitivity (95% confidence interval, 91% to 100% and 92% to 100%, respectively). The procedure was validated in a series of 105 patients with AML. The method confirmed all translocations detected using standard cytogenetics and fluorescence in situ hybridization and some additional undetected rearrangements. Two patients demonstrated two molecular rearrangements simultaneously, with BCR-ABL1 implicated in both, in addition to RUNX1-MECOM in one patient and PML-RARA in another. In conclusion, this novel real-time RT-PCR assay for simultaneous detection of multiple AML-associated fusion genes is a versatile and sensitive method for reliable screening of recurrent rearrangements in AML.

  18. Targeting of the CNS in MPS-IH Using a Nonviral Transferrin-α-l-iduronidase Fusion Gene Product

    PubMed Central

    Osborn, Mark J; McElmurry, Ron T; Peacock, Brandon; Tolar, Jakub; Blazar, Bruce R

    2008-01-01

    Mucopolysaccharidosis type I (Hurler syndrome) is caused by a deficiency of the enzyme α-l-iduronidase (IDUA), and is characterized by widespread lysosomal glycosaminoglycan (GAG) accumulation. Successful treatment of central nervous system (CNS) diseases is limited by the presence of the blood–brain barrier, which prevents penetration of the therapeutic enzyme. Given that the brain capillary endothelial cells that form this barrier express high levels of the transferrin receptor (TfR), we hypothesized that the coupling of IDUA to transferrin (Tf) would facilitate IDUA delivery to the CNS. A plasmid bearing a fusion gene consisting of Tf and IDUA was constructed which, when delivered in vivo, resulted in the production of high levels of an enzymatically active protein that was transported into the CNS by TfR-mediated endocytosis. Short-term treatment resulted in a decrease in GAGs in the cerebellum of mucopolysaccharidosis type I (MPS I) mice. This approach, therefore, represents a potential strategy for the delivery of therapeutic enzyme to the CNS. PMID:18523448

  19. Use of minimal disseminated disease and immunity to NPM-ALK antigen to stratify ALK-positive ALCL patients with different prognosis.

    PubMed

    Mussolin, L; Damm-Welk, C; Pillon, M; Zimmermann, M; Franceschetto, G; Pulford, K; Reiter, A; Rosolen, A; Woessmann, W

    2013-02-01

    We studied the prognostic value of minimal disseminated disease (MDD) and anti-ALK immune response in children with NPM-ALK-positive anaplastic-large cell lymphoma (ALCL) and evaluated their potential for risk stratification. NPM-ALK transcripts were analyzed by RT-PCR in bone marrow/peripheral blood of 128 ALCL patients at diagnosis, whereas ALK antibody titers in plasma were assessed using an immunocytochemical approach. MDD was positive in 59% of patients and 96% showed an anti-ALK response. Using MDD and antibody titer results, patients could be divided into three biological risk groups (bRG) with different prognosis: high risk (bHR): MDD-positive and antibody titer ≤ 1/750, 26/128 (20%); low risk (bLR): MDD negative and antibody titer >1/750, 40/128 (31%); intermediate risk (bIR): all remaining patients, 62/128 (48%). Progression-free survival was 28% (s.e., 9%), 68% (s.e., 6%) and 93% (s.e., 4%) for bHR, bIR and bLR, respectively (P<0.0001). Survival was 71% (s.e., 9%), 83% (s.e., 5%) and 98% (s.e., 2%) for bHR, bIR and bLR (P=0.02). Only bHR and histology other than common type were predictive of higher risk of failure (hazard ratio 4.9 and 2.7, respectively) in multivariate analysis. Stratification of ALCL patients based on MDD and anti-ALK titer should be considered in future ALCL trials to optimize treatment.

  20. Arteriovenous malformations in hereditary haemorrhagic telangiectasia: looking beyond ALK1-NOTCH interactions.

    PubMed

    Peacock, Hanna M; Caolo, Vincenza; Jones, Elizabeth A V

    2016-02-01

    Hereditary haemorrhagic telangiectasia (HHT) is characterized by the development of arteriovenous malformations--enlarged shunts allowing arterial flow to bypass capillaries and enter directly into veins. HHT is caused by mutations in ALK1 or Endoglin; however, the majority of arteriovenous malformations are idiopathic and arise spontaneously. Idiopathic arteriovenous malformations differ from those due to loss of ALK1 in terms of both location and disease progression. Furthermore, while arteriovenous malformations in HHT and Alk1 knockout models have decreased NOTCH signalling, some idiopathic arteriovenous malformations have increased NOTCH signalling. The pathogenesis of these lesions also differs, with loss of ALK1 causing expansion of the shunt through proliferation, and NOTCH gain of function inducing initial shunt enlargement by cellular hypertrophy. Hence, we propose that idiopathic arteriovenous malformations are distinct from those of HHT. In this review, we explore the role of ALK1-NOTCH interactions in the development of arteriovenous malformations and examine a possible role of two signalling pathways downstream of ALK1, TMEM100 and IDs, in the development of arteriovenous malformations in HHT. A nuanced understanding of the precise molecular mechanisms underlying idiopathic and HHT-associated arteriovenous malformations will allow for development of targeted treatments for these lesions.

  1. A simple, rapid, low-cost technique for naked-eye detection of urine-isolated TMPRSS2:ERG gene fusion RNA

    PubMed Central

    Koo, Kevin M.; Wee, Eugene J. H.; Mainwaring, Paul N.; Trau, Matt

    2016-01-01

    The TMPRSS2:ERG gene fusion is one of a series of highly promising prostate cancer (PCa) biomarker alternatives to the controversial serum PSA. Current methods for detecting TMPRSS2:ERG are limited in terms of long processing time, high cost and the need for specialized equipment. Thus, there is an unmet need for less complex, faster, and cheaper methods to enable gene fusion detection in the clinic. We describe herein a simple, rapid and inexpensive assay which combines robust isothermal amplification technique with a novel visualization method for evaluating urinary TMPRSS2:ERG status at less than USD 5 and with minimal equipment. The assay is sensitive, and rapidly detects as low as 105 copies of TMPRSS2:ERG transcripts while maintaining high levels of specificity. PMID:27470540

  2. A GAL4-HP1 fusion protein targeted near heterochromatin promotes gene silencing.

    PubMed

    Seum, C; Spierer, A; Delattre, M; Pauli, D; Spierer, P

    2000-11-01

    We have constructed a new reporter transgene, Winkelried, equipped with a synthetic binding site for the yeast GAL4 transcriptional activator. The binding site is inserted between the white and lacZ reporter genes, and is flanked by FRT sequences. These elements allow excision of the GAL4 binding site by crossing the transgenic line with an FLP recombinase producing strain. We have generated by X-ray irradiation two independent chromosomal rearrangements, Heidi and Tell, relocating Winkelried next to pericentromeric heterochromatin. These rearrangements induce variegation of both white and lacZ. Variegation of Winkelried in the rearranged transgenic lines responds to the loss and excess of doses of the dominant suppressors of position-effect variegation (PEV) Su(var)3-7 and Su(var)2-5. Winkelried therefore constitutes a unique tool to test the effect on variegation in cis of any factor fused to the GAL4 DNA binding domain. Indeed, a chimeric protein, made of the DNA binding site of GAL4 and of HP1, the modifier of PEV encoded by Su(var)2-5, is shown to enhance variegation of Heidi and Tell. Excision of the binding sites for GAL4 in the variegating rearrangements Heidi and Tell abolishes the modifier effect of the GAL4-HP1 chimera. Therefore, in the Heidi and Tell rearrangements, enhancement of position-effect variegation depends strictly both on the concentration of GAL4-HP1 and on the presence of its binding site in the vicinity of the reporter genes.

  3. The Neurospora Transcription Factor ADV-1 Transduces Light Signals and Temporal Information to Control Rhythmic Expression of Genes Involved in Cell Fusion

    PubMed Central

    Dekhang, Rigzin; Wu, Cheng; Smith, Kristina M.; Lamb, Teresa M.; Peterson, Matthew; Bredeweg, Erin L.; Ibarra, Oneida; Emerson, Jillian M.; Karunarathna, Nirmala; Lyubetskaya, Anna; Azizi, Elham; Hurley, Jennifer M.; Dunlap, Jay C.; Galagan, James E.; Freitag, Michael; Sachs, Matthew S.; Bell-Pedersen, Deborah

    2016-01-01

    Light and the circadian clock have a profound effect on the biology of organisms through the regulation of large sets of genes. Toward understanding how light and the circadian clock regulate gene expression, we used genome-wide approaches to identify the direct and indirect targets of the light-responsive and clock-controlled transcription factor ADV-1 in Neurospora crassa. A large proportion of ADV-1 targets were found to be light- and/or clock-controlled, and enriched for genes involved in development, metabolism, cell growth, and cell fusion. We show that ADV-1 is necessary for transducing light and/or temporal information to its immediate downstream targets, including controlling rhythms in genes critical to somatic cell fusion. However, while ADV-1 targets are altered in predictable ways in Δadv-1 cells in response to light, this is not always the case for rhythmic target gene expression. These data suggest that a complex regulatory network downstream of ADV-1 functions to generate distinct temporal dynamics of target gene expression relative to the central clock mechanism. PMID:27856696

  4. Genes encoding Cher-TPR fusion proteins are predominantly found in gene clusters encoding chemosensory pathways with alternative cellular functions.

    PubMed

    Muñoz-Martínez, Francisco; García-Fontana, Cristina; Rico-Jiménez, Miriam; Alfonso, Carlos; Krell, Tino

    2012-01-01

    Chemosensory pathways correspond to major signal transduction mechanisms and can be classified into the functional families flagellum-mediated taxis, type four pili-mediated taxis or pathways with alternative cellular functions (ACF). CheR methyltransferases are core enzymes in all of these families. CheR proteins fused to tetratricopeptide repeat (TPR) domains have been reported and we present an analysis of this uncharacterized family. We show that CheR-TPRs are widely distributed in GRAM-negative but almost absent from GRAM-positive bacteria. Most strains contain a single CheR-TPR and its abundance does not correlate with the number of chemoreceptors. The TPR domain fused to CheR is comparatively short and frequently composed of 2 repeats. The majority of CheR-TPR genes were found in gene clusters that harbor multidomain response regulators in which the REC domain is fused to different output domains like HK, GGDEF, EAL, HPT, AAA, PAS, GAF, additional REC, HTH, phosphatase or combinations thereof. The response regulator architectures coincide with those reported for the ACF family of pathways. Since the presence of multidomain response regulators is a distinctive feature of this pathway family, we conclude that CheR-TPR proteins form part of ACF type pathways. The diversity of response regulator output domains suggests that the ACF pathways form a superfamily which regroups many different regulatory mechanisms, in which all CheR-TPR proteins appear to participate. In the second part we characterize WspC of Pseudomonas putida, a representative example of CheR-TPR. The affinities of WspC-Pp for S-adenosylmethionine and S-adenosylhomocysteine were comparable to those of prototypal CheR, indicating that WspC-Pp activity is in analogy to prototypal CheRs controlled by product feed-back inhibition. The removal of the TPR domain did not impact significantly on the binding constants and consequently not on the product feed-back inhibition. WspC-Pp was found to be

  5. Chromatin-prebound Crm1 recruits Nup98-HoxA9 fusion to induce aberrant expression of Hox cluster genes.

    PubMed

    Oka, Masahiro; Mura, Sonoko; Yamada, Kohji; Sangel, Percival; Hirata, Saki; Maehara, Kazumitsu; Kawakami, Koichi; Tachibana, Taro; Ohkawa, Yasuyuki; Kimura, Hiroshi; Yoneda, Yoshihiro

    2016-01-07

    The nucleoporin Nup98 is frequently rearranged to form leukemogenic Nup98-fusion proteins with various partners. However, their function remains largely elusive. Here, we show that Nup98-HoxA9, a fusion between Nup98 and the homeobox transcription factor HoxA9, forms nuclear aggregates that frequently associate with facultative heterochromatin. We demonstrate that stable expression of Nup98-HoxA9 in mouse embryonic stem cells selectively induces the expression of Hox cluster genes. Genome-wide binding site analysis revealed that Nup98-HoxA9 is preferentially targeted and accumulated at Hox cluster regions where the export factor Crm1 is originally prebound. In addition, leptomycin B, an inhibitor of Crm1, disassembled nuclear Nup98-HoxA9 dots, resulting in the loss of chromatin binding of Nup98-HoxA9 and Nup98-HoxA9-mediated activation of Hox genes. Collectively, our results indicate that highly selective targeting of Nup98-fusion proteins to Hox cluster regions via prebound Crm1 induces the formation of higher order chromatin structures that causes aberrant Hox gene regulation.

  6. Chromatin-prebound Crm1 recruits Nup98-HoxA9 fusion to induce aberrant expression of Hox cluster genes

    PubMed Central

    Oka, Masahiro; Mura, Sonoko; Yamada, Kohji; Sangel, Percival; Hirata, Saki; Maehara, Kazumitsu; Kawakami, Koichi; Tachibana, Taro; Ohkawa, Yasuyuki; Kimura, Hiroshi; Yoneda, Yoshihiro

    2016-01-01

    The nucleoporin Nup98 is frequently rearranged to form leukemogenic Nup98-fusion proteins with various partners. However, their function remains largely elusive. Here, we show that Nup98-HoxA9, a fusion between Nup98 and the homeobox transcription factor HoxA9, forms nuclear aggregates that frequently associate with facultative heterochromatin. We demonstrate that stable expression of Nup98-HoxA9 in mouse embryonic stem cells selectively induces the expression of Hox cluster genes. Genome-wide binding site analysis revealed that Nup98-HoxA9 is preferentially targeted and accumulated at Hox cluster regions where the export factor Crm1 is originally prebound. In addition, leptomycin B, an inhibitor of Crm1, disassembled nuclear Nup98-HoxA9 dots, resulting in the loss of chromatin binding of Nup98-HoxA9 and Nup98-HoxA9-mediated activation of Hox genes. Collectively, our results indicate that highly selective targeting of Nup98-fusion proteins to Hox cluster regions via prebound Crm1 induces the formation of higher order chromatin structures that causes aberrant Hox gene regulation. DOI: http://dx.doi.org/10.7554/eLife.09540.001 PMID:26740045

  7. Bis-three-way junction nanostructure and DNA machineries for ultrasensitive and specific detection of BCR/ABL fusion gene by chemiluminescence imaging

    PubMed Central

    Xu, Yongjie; Bian, Xintong; Sang, Ye; Li, Yujian; Li, Dandan; Cheng, Wei; Yin, Yibing; Ju, Huangxian; Ding, Shijia

    2016-01-01

    A novel G-quadruplex DNAzyme-driven chemiluminescence (CL) imaging method has been developed for ultrasensitive and specific detection of BCR/ABL fusion gene based on bis-three-way junction (bis-3WJ) nanostructure and cascade DNA machineries. Bis-3WJ probes are designed logically to recognize BCR/ABL fusion gene, which forms the stable bis-3WJ nanostructure for the activation of polymerase/nicking enzyme machineries in cascade, resulting in synthesis of DNAzyme subunits. These DNAzyme subunits can form integrated DNAzyme by self-assembly to catalyze CL substrate, thus providing an amplified signal for the sensing events or outputs for AND logic operation. The imaging method achieved ultrasensitive detection of BCR/ABL fusion gene with a low detection limit down to 23 fM. And this method exhibited wide linear ranges over seven orders of magnitude and excellent discrimination ability toward target. In addition, an acceptable recovery was obtained in complex matrix. It is notable that this biosensing strategy possesses merits of homogenous, isothermal and label-free assay system. Therefore, these merits endow the developed imaging method with a potential tool for CML diagnosis. PMID:27577607

  8. Use of hupS::lacZ gene fusion to study regulation of hydrogenase expression in Rhodobacter capsulatus: stimulation by H2.

    PubMed Central

    Colbeau, A; Vignais, P M

    1992-01-01

    The Escherichia coli beta-galactosidase enzyme was used as a reporter molecule for genetic fusions in Rhodobacter capsulatus. DNA fragments that were from the upstream region of the hydrogenase structural operon hupSLM and contained 5' hupS sequences were fused in frame to a promoterless lacZ gene, yielding fusion proteins comprising the putative signal sequence and the first 22 amino acids of the HupS protein joined to the eight amino acid of beta-galactosidase. We demonstrate the usefulness of the hupS::lacZ fusion in monitoring regulation of hydrogenase gene expression. The activities of plasmid-determined beta-galactosidase and chromosome-encoded hydrogenase changed in parallel in response to various growth conditions (light or dark, aerobiosis or anaerobiosis, and presence or absence of ammonia or of H2), showing that changes in hydrogenase activity were due to changes in enzyme synthesis. Molecular hydrogen stimulated hydrogenase synthesis in dark, aerobic cultures and in illuminated, anaerobic cultures. Analysis of hupS::lacZ expression in various mutants indicated that neither the hydrogenase structural genes nor NifR4 (sigma 54) was essential for hydrogen regulation of hydrogenase synthesis. PMID:1624420

  9. Enhanced immune response with foot and mouth disease virus VP1 and interleukin-1 fusion genes.

    PubMed

    Park, Jong Hyeon; Kim, Sun Jin; Oem, Jae Ku; Lee, Kwang Nyeong; Kim, Yong Joo; Kye, Soo Jeong; Park, Jee Yong; Joo, Yi Seok

    2006-09-01

    The capsid of the foot and mouth disease (FMD) virus carries the epitopes that are critical for inducing the immune response. In an attempt to enhance the specific immune response, plasmid DNA was constructed to express VP1/interleukin-1alpha (IL-1alpha) and precursor capsid (P1) in combination with 2A (P1-2A)/IL-1alpha under the control of the human cytomegalovirus (HCMV) immediateearly promoter and intron. After DNA transfection into MA104 (monkey kidney) cells, Western blotting and an immunofluorescence assay were used to confirm the expression of VP1 or P1-2A and IL-1alpha. Mice were inoculated with the encoding plasmids via the intradermal route, and the IgG1 and IgG2a levels were used to determine the immune responses. These results show that although the immunized groups did not carry a high level of neutralizing antibodies, the plasmids encoding the VP1/ IL-1alpha, and P1-2A /IL-1alpha fused genes were effective in inducing an enhanced immune response.

  10. Design, synthesis and pharmacological evaluation of 2-(thiazol-2-amino)-4-arylaminopyrimidines as potent anaplastic lymphoma kinase (ALK) inhibitors.

    PubMed

    Liu, Zhiqing; Yue, Xihua; Song, Zilan; Peng, Xia; Guo, Junfeng; Ji, Yinchun; Cheng, Zhen; Ding, Jian; Ai, Jing; Geng, Meiyu; Zhang, Ao

    2014-10-30

    A series of new 2,4-diarylaminopyrimidine analogues (DAAPalogues) was developed by incorporation of a substituted 2-aminothiazole component as the C-2 substituent of the center pyrimidine core. Compound 5i showed highest potency of 12.4 nM against ALK and 24.1 nM against ALK gatekeeper mutation L1196M. Although only having moderate cellular potency in the SUP-M2 cells harboring NPM-ALK, compound 5i showed good kinase selectivity and dose-dependently inhibited phosphorylation of ALK and its down-stream signaling pathways.

  11. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3

    PubMed Central

    Kasprzycka, Monika; Marzec, Michal; Liu, Xiaobin; Zhang, Qian; Wasik, Mariusz A.

    2006-01-01

    The mechanisms of malignant cell transformation mediated by the oncogenic, chimeric nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) tyrosine kinase remain only partially understood. Here we report that the NPM/ALK-carrying T cell lymphoma (ALK+TCL) cells secrete IL-10 and TGF-β and express FoxP3, indicating their T regulatory (Treg) cell phenotype. The secreted IL-10 suppresses proliferation of normal immune, CD3/CD28-stimulated peripheral blood mononuclear cells and enhances viability of the ALK+TCL cells. The Treg phenotype of the affected cells is strictly dependent on NPM/ALK expression and function as demonstrated by transfection of the kinase into BaF3 cells and inhibition of its enzymatic activity and expression in ALK+TCL cells. NPM/ALK, in turn, induces the phenotype through activation of its key signal transmitter, signal transducer and activator of transcription 3 (STAT3). These findings identify a mechanism of NPM/ALK-mediated oncogenesis based on induction of the Treg phenotype of the transformed CD4+ T cells. These results also provide an additional rationale to therapeutically target the chimeric kinase and/or STAT3 in ALK+TCL. PMID:16766651

  12. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion

    SciTech Connect

    Paquette, Stéphane G.; Banner, David; Chi, Le Thi Bao; Leon, Alberto J.; Xu, Luoling; Ran, Longsi; Huang, Stephen S.H.; Farooqui, Amber; and others

    2014-01-05

    Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus–epithelial cell interaction. - Highlights: • We investigated H1N1pdm/sH1N1 infection in primary epithelial cells. • H1N1pdm directly initiated a robust inflammatory gene signature, sH1N1 did not. • H1N1pdm viral RNA triggered a stronger response than sH1N1. • H1N1pdm induces greater response due to direct virus–cell interaction. • These results have potential to impact vaccine and therapeutic development.

  13. Epigenome Mapping Reveals Distinct Modes of Gene Regulation and Widespread Enhancer Reprogramming by the Oncogenic Fusion Protein EWS-FLI1

    PubMed Central

    Tomazou, Eleni M.; Sheffield, Nathan C.; Schmidl, Christian; Schuster, Michael; Schönegger, Andreas; Datlinger, Paul; Kubicek, Stefan; Bock, Christoph; Kovar, Heinrich

    2015-01-01

    Summary Transcription factor fusion proteins can transform cells by inducing global changes of the transcriptome, often creating a state of oncogene addiction. Here, we investigate the role of epigenetic mechanisms in this process, focusing on Ewing sarcoma cells that are dependent on the EWS-FLI1 fusion protein. We established reference epigenome maps comprising DNA methylation, seven histone marks, open chromatin states, and RNA levels, and we analyzed the epigenome dynamics upon downregulation of the driving oncogene. Reduced EWS-FLI1 expression led to widespread epigenetic changes in promoters, enhancers, and super-enhancers, and we identified histone H3K27 acetylation as the most strongly affected mark. Clustering of epigenetic promoter signatures defined classes of EWS-FLI1-regulated genes that responded differently to low-dose treatment with histone deacetylase inhibitors. Furthermore, we observed strong and opposing enrichment patterns for E2F and AP-1 among EWS-FLI1-correlated and anticorrelated genes. Our data describe extensive genome-wide rewiring of epigenetic cell states driven by an oncogenic fusion protein. PMID:25704812

  14. Internalization and Down-Regulation of the ALK Receptor in Neuroblastoma Cell Lines upon Monoclonal Antibodies Treatment

    PubMed Central

    Mazot, Pierre; Cazes, Alex; Dingli, Florent; Degoutin, Joffrey; Irinopoulou, Théano; Boutterin, Marie-Claude; Lombard, Bérangère; Loew, Damarys; Hallberg, Bengt; Palmer, Ruth Helen; Delattre, Olivier

    2012-01-01

    Recently, activating mutations of the full length ALK receptor, with two hot spots at positions F1174 and R1275, have been characterized in sporadic cases of neuroblastoma. Here, we report similar basal patterns of ALK phosphorylation between the neuroblastoma IMR-32 cell line, which expresses only the wild-type receptor (ALKWT), and the SH-SY5Y cell line, which exhibits a heterozygous ALK F1174L mutation and expresses both ALKWT and ALKF1174L receptors. We demonstrate that this lack of detectable increased phosphorylation in SH-SY5Y cells is a result of intracellular retention and proteasomal degradation of the mutated receptor. As a consequence, in SH-SY5Y cells, plasma membrane appears strongly enriched for ALKWT whereas both ALKWT and ALKF1174L were present in intracellular compartments. We further explored ALK receptor trafficking by investigating the effect of agonist and antagonist mAb (monoclonal antibodies) on ALK internalization and down-regulation, either in SH-SY5Y cells or in cells expressing only ALKWT. We observe that treatment with agonist mAbs resulted in ALK internalization and lysosomal targeting for receptor degradation. In contrast, antagonist mAb induced ALK internalization and recycling to the plasma membrane. Importantly, we correlate this differential trafficking of ALK in response to mAb with the recruitment of the ubiquitin ligase Cbl and ALK ubiquitylation only after agonist stimulation. This study provides novel insights into the mechanisms regulating ALK trafficking and degradation, showing that various ALK receptor pools are regulated by proteasome or lysosome pathways according to their intracellular localization. PMID:22479414

  15. Specificity and Structure of a High Affinity Activin Receptor-like Kinase 1 (ALK1) Signaling Complex

    PubMed Central

    Townson, Sharon A.; Martinez-Hackert, Erik; Greppi, Chloe; Lowden, Patricia; Sako, Dianne; Liu, June; Ucran, Jeffrey A.; Liharska, Katia; Underwood, Kathryn W.; Seehra, Jasbir; Kumar, Ravindra; Grinberg, Asya V.

    2012-01-01

    Activin receptor-like kinase 1 (ALK1), an endothelial cell-specific type I receptor of the TGF-β superfamily, is an important regulator of normal blood vessel development as well as pathological tumor angiogenesis. As such, ALK1 is an important therapeutic target. Thus, several ALK1-directed agents are currently in clinical trials as anti-angiogenic cancer therapeutics. Given the biological and clinical importance of the ALK1 signaling pathway, we sought to elucidate the biophysical and structural basis underlying ALK1 signaling. The TGF-β family ligands BMP9 and BMP10 as well as the three type II TGF-β family receptors ActRIIA, ActRIIB, and BMPRII have been implicated in ALK1 signaling. Here, we provide a kinetic and thermodynamic analysis of BMP9 and BMP10 interactions with ALK1 and type II receptors. Our data show that BMP9 displays a significant discrimination in type II receptor binding, whereas BMP10 does not. We also report the crystal structure of a fully assembled ternary complex of BMP9 with the extracellular domains of ALK1 and ActRIIB. The structure reveals that the high specificity of ALK1 for BMP9/10 is determined by a novel orientation of ALK1 with respect to BMP9, which leads to a unique set of receptor-ligand interactions. In addition, the structure explains how BMP9 discriminates between low and high affinity type II receptors. Taken together, our findings provide structural and mechanistic insights into ALK1 signaling that could serve as a basis for novel anti-angiogenic therapies. PMID:22718755

  16. Characterization of a Cellulomonas fimi exoglucanase/xylanase-endoglucanase gene fusion which improves microbial degradation of cellulosic biomass.

    PubMed

    Duedu, Kwabena O; French, Christopher E

    2016-11-01

    Effective degradation of cellulose requires multiple classes of enzyme working together. However, naturally occurring cellulases with multiple catalytic domains seem to be rather rare in known cellulose-degrading organisms. A fusion protein made from Cellulomonas fimi exo- and endo- glucanases, Cex and CenA which improves breakdown of cellulose is described. A homologous carbohydrate binding module (CBM-2) present in both glucanases was fused to give a fusion protein CxnA. CxnA or unfused constructs (Cex+CenA, Cex, or CenA) were expressed in Escherichia coli and Citrobacter freundii. The latter recombinant strains were cultured at the expense of cellulose filter paper. The expressed CxnA had both exo- and endo- glucanase activities. It was also exported to the supernatant as were the non-fused proteins. In addition, the hybrid CBM from the fusion could bind to microcrystalline cellulose. Growth of C. freundii expressing CxnA was superior to that of cells expressing the unfused proteins. Physical degradation of filter paper was also faster with the cells expressing fusion protein than the other constructs. Our results show that fusion proteins with multiple catalytic domains can improve the efficiency of cellulose degradation. Such fusion proteins could potentially substitute cloning of multiple enzymes as well as improving product yields.

  17. The 3; 21 translocation in myelodysplasia results in a fusion transcript between the AML1 gene and the gene for EAP, a highly conserved protein associated with the Epstein-Barr virus small RNA EBER 1

    SciTech Connect

    Nucifora, G.; Begy, C.R.; Rowley, J.D. ); Erickson, P.; Drabkin, H.A. )

    1993-08-15

    In the 8;21 translocation, the AML1 gene, located at chromosome band 21q22, is translocated to chromosome 8 (q22), where it is fused to the ETO gene and transcribed as a chimeric gene. AML1 is the human homolog of the recently cloned mouse gene pebp2[alpha]B, homologous to the DNA binding [alpha] subunit of the polyoma enhancer factor pebp2. AML1 is also involved in a translocation with chromosome 3 that is seen in patients with therapy-related acute myeloid leukemia and myelodysplastic syndrome and in chronic myelogenous leukemia in blast crisis. The authors have isolated a fusion cDNA clone from a t(3;21) library derived from a patient with therapy-related myelodysplastic syndrome; this clone contains sequences from AML1 and from EAP, which have now been localized to ban 3q26. EAP has previously been characterized as a highly expressed small nuclear protein of 128 residues (EBER 1) associated with Epstein-Barr virus small RNA. The fusion clone contains the DNA binding 5[prime] part of AML1 that is fused to ETO in the t(8;21) and, in addition, at least one other exon. The translocation replaces the last nine codons of AML1 with the last 96 codons of EAP. The fusion does not maintain the correct reading frame of EAP and may not lead to a functional chimeric protein. 23 refs., 6 figs.

  18. BMP9/ALK1 inhibits neovascularization in mouse models of age-related macular degeneration

    PubMed Central

    Ntumba, Kalonji; Akla, Naoufal; Oh, S. Paul; Eichmann, Anne; Larrivée, Bruno

    2016-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in aging populations of industrialized countries. The drawbacks of inhibitors of vascular endothelial growth factor (VEGFs) currently used for the treatment of AMD, which include resistance and potential serious side-effects, require the identification of new therapeutic targets to modulate angiogenesis. BMP9 signaling through the endothelial Alk1 serine-threonine kinase receptor modulates the response of endothelial cells to VEGF and promotes vessel quiescence and maturation during development. Here, we show that BMP9/Alk1 signaling inhibits neovessel formation in mouse models of pathological ocular angiogenesis relevant to AMD. Activating Alk1 signaling in laser-induced choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR) inhibited neovascularization and reduced the volume of vascular lesions. Alk1 signaling was also found to interfere with VEGF signaling in endothelial cells whereas BMP9 potentiated the inhibitory effects of VEGFR2 signaling blockade, both in OIR and laser-induced CNV. Together, our data show that targeting BMP9/Alk1 efficiently prevents the growth of neovessels in AMD models and introduce a new approach to improve conventional anti-VEGF therapies. PMID:27517154

  19. Concurrent EGFR Mutation and ALK Translocation in Non-Small Cell Lung Cancer

    PubMed Central

    Thomas, Sachdev; Bank, Bruce; Fishkin, Paul; Mooney, Colin; Salgia, Ravi

    2016-01-01

    Epidermal growth factor receptor (EGFR) mutations and anaplastic large-cell lymphoma kinase (ALK) rearrangements are now routine biomarkers that have been incorporated into the practice of managing non-small cell lung cancer (NSCLC). Historically, the two molecular alterations have been viewed as mutually exclusive, but recent identified cases suggest otherwise. In this report, we describe cases of lung cancer with concurrent EGFR mutation and ALK rearrangement and identify their clinical characteristics. Non-small cell lung cancer patients with multiple molecular alterations were retrospectively analyzed from an academic referral center from 2011–2013. An additional review was conducted of reported cases with dual alterations. Four cases of NSCLC with alterations in both EGFR and ALK were identified and evaluated with 16 published cases for a total of 20 cases. The age of patients ranged from 37 to 77 years. Nine patients were never smokers. The disease control rates in patients treated with EGFR inhibitors and ALK inhibitors were 46% (6/13) and 71% (5/7), respectively. This series highlights the importance of comprehensive molecular profiling of newly diagnosed lung cancer, as NSCLC may be driven by concurrent molecular alterations. EGFR- and ALK-targeted therapies appear to have modest activity in patients with tumors possessing both alterations. Dual-altered NSCLC patients may have distinct clinical characteristics warranting further study. Combination targeted therapy or novel multi-targeted tyrosine kinase inhibitors may prove important in these patients, though necessary studies remain ongoing. PMID:27026837

  20. A molecular dynamics investigation on the crizotinib resistance mechanism of C1156Y mutation in ALK

    SciTech Connect

    Sun, Hui-Yong; Ji, Feng-Qin

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The study revealed the detailed resistance mechanism of the non-active mutation C1156Y in ALK. Black-Right-Pointing-Pointer C1156Y leads to crizotinib displacement and conformational changes in the binding cavity. Black-Right-Pointing-Pointer The conformations cause a decline in the vdW and electrostatic energy between crizotinib and ALK. -- Abstract: Crizotinib is an anaplastic lymphoma kinase (ALK) inhibitor that has recently been approved in the US for the treatment of non-small cell lung carcinoma (NSCLC). Despite its outstanding safety and efficacy, several resistant mutations against crizotinib have been detected in the treatment of NSCLC. However, in contrast to the widely accepted mechanism of steric hindrance by mutations at the active site, the mechanism by which the C1156Y non-active site mutation confers resistance against crizotinib remains unclear. In the present study, the resistance mechanism of C1156Y in ALK was investigated using molecular dynamics simulations. The results suggest that despite the non-active site mutation, C1156Y causes the dislocation of crizotinib as well as the indirect conformational changes in the binding cavity, which results in a marked decrease in the van der Waals and electrostatic interactions between crizotinib and ALK. The obtained results provide a detailed explanation of the resistance caused by C1156Y and may give a vital clue for the design of drugs to combat crizotinib resistance.

  1. Trans-activation function of a 3 prime truncated X gene-cell fusion product from integrated hepatitis B virus DNA in chronic hepatitis tissues

    SciTech Connect

    Takada, Shinako; Koike, Katsuro )

    1990-08-01

    To investigate the expression and transactivation function of the X gene in integrated hepatitis B virus (HBV) DNA from chronic hepatitis tissues, a series of transfectants containing cloned integrated HBV DNAs was made and analyzed for X mRNA expression and trans-activation activity by using a chloramphenicol acetyltransferase assay. Most of the integrated HBV DNAs expressed X mRNA and encoded a product with trans-activation activity in spite of the loss of the 3{prime} end region of the X gene due to integration. From cDNA cloning and sequence analysis of X mRNA transcribed from native or integrated HBV DNA, the X protein was found to be translated from the X open reading frame without splicing. For integrated HBV DNA, transcription was extended to a cellular flanking DNA and an X gene-cell fusion transcript was terminated by using a cellular poly(A) signal. The amino acid sequence deduced from an X-cell fusion transcript indicated truncation of the carboxyl-terminal five amino acids, but the upstream region of seven amino acids conserved among hepadnaviruses was retained in the integrated HBV DNA, suggesting that this conserved region is essential for the transactivation function of the X protein. These findings support the following explanation for hepatocarcinogenesis by HBV DNA integration: the expression of a cellular oncogene(s) is transactivated at the time of chronic infection by the increasing amounts of the integrated HBV gene product(s), such as the X-cell fusion product.

  2. Differential transactivation by orphan nuclear receptor NOR1 and its fusion gene product EWS/NOR1: possible involvement of poly(ADP-ribose) polymerase I, PARP-1.

    PubMed

    Ohkura, Naganari; Nagamura, Yuko; Tsukada, Toshihiko

    2008-10-15

    In extraskeletal myxoid chondrosarcoma, a chromosomal translocation creates a gene fusion between EWS and an orphan nuclear receptor, NOR1. The resulting fusion protein EWS/NOR1 has been believed to lead to malignant transformation by functioning as a transactivator for NOR1-target genes. By comparing the gene expression profiles of NOR1- and EWS/NOR1-overexpressing cells, we found that they largely shared up-regulated genes, but no significant correlation was observed with respect to the transactivation levels of each gene. In addition, the proteins associated with NOR1 and EWS/NOR1 were mostly the same in these cells. The results suggest that these proteins differentially transactivate overlapping target genes through a similar transcriptional machinery. To clarify the mechanisms underlying the transcriptional divergence between NOR1 and EWS/NOR1, we searched for alternatively associated proteins, and identified poly(ADP-ribose) polymerase I (PARP-1) as an NOR1-specific binding protein. Consistent with its binding properties, PARP-1 acted as a transcriptional repressor of NOR1, but not EWS/NOR1, in a luciferase reporter assay employing PARP-1(-/-) fibroblasts. Interestingly, suppressive activity of PARP-1 was observed in a DNA response element-specific manner, and in a subtype-specific manner toward the NR4A family (Nur77, Nurr1, and NOR1), suggesting that PARP-1 plays a role in the diversity of transcriptional regulation mediated by the NR4A family in normal cells. Altogether, our findings suggest that NOR1 and EWS/NOR1 regulate overlapping target genes differently by utilizing associated proteins, including PARP-1; and that EWS/NOR1 may acquire oncogenic activities by avoiding (or gaining) transcription factor-specific modulation by the associated proteins.